$$f_J(2220)$$

$$I^{G}(J^{PC}) = 0^{+}(2^{++} \text{ or } 4^{++})$$

OMITTED FROM SUMMARY TABLE

Needs confirmation. See our mini-review in the 2004 edition of this *Review*, PDG 04.

f_J(2220) MASS

VALUE	(Me	√)		EVTS		DOCUMENT ID		TECN	COMMENT
2231.	1±	3.5	5 OUF	AVERAGE	Ξ				
2235	\pm	4	\pm 6	74		BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$
2230	+	6 7	± 16	46		BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow$
									$\gamma K^+ K^-$
2232	+	8 7	± 15	23		BAI	96 B	BES	$e^+ e^- \rightarrow J/\psi \rightarrow \gamma \kappa^0_S \kappa^0_S$
2235	\pm	4	\pm 5	32		BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma p \overline{p}$
2209	$^{+1}_{-1}$	7 5	± 10			ASTON	88F	LASS	11 $K^- p \rightarrow K^+ K^- \Lambda$
2230	± 2	0				BOLONKIN	88	SPEC	40 $\pi^- p \rightarrow K^0_S K^0_S n$
2220	± 1	0		41	1	ALDE	86 B	GA24	38–100 $\pi p \rightarrow n \eta \eta'$
2230	±	6	± 14	93		BALTRUSAIT.	. 86 D	MRK3	$e^+e^- \rightarrow \gamma K^+K^-$
2232	\pm	7	\pm 7	23		BALTRUSAIT	. 86 D	MRK3	$e^+e^- \rightarrow \gamma \kappa^0_S \kappa^0_S$
• • •	We	dc	not ı	ise the follo	owi	ing data for ave	rages	, fits, lin	nits, etc. • • •
2223.9	$9\pm$	2.5	5		2	VLADIMIRSK	.08	SPEC	40 $\pi^- p \rightarrow \kappa^0_S \kappa^0_S n + m\pi^0$
2246	± 3	6				BAI	9 8H	BES	$J/\psi \rightarrow \gamma \pi^0 \pi^0$
1 A ار 2		86 = 2	$\frac{1}{2}B$ use $\frac{1}{2}$ + +	s data from Systemati	ו b ic ו	oth the GAMS- uncertainties no	2000 t eva	and GA luated	MS-4000 detectors.

*f*_J(2220) WIDTH

VALUE (MeV)	CL% EVTS	DOCUMENT ID		TECN	COMMENT
23^{+}_{-} $\frac{8}{7}$ OUR AV	ERAGE				
$19^+\ {}^{13}_{11}{\pm}12$	74	BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$
20^+ $^{20}_{15}\pm 17$	46	BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \chi K^+ K^-$
$20^+\ {}^{25}_{16}{\pm}14$	23	BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma K^0_{\rm c} K^0_{\rm c}$
$15^+\ {}^{12}_9\pm$ 9	32	BAI	96 B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma p \overline{p}$
60^{+107}_{-57}		ASTON	88F	LASS	$11 \ K^- p \rightarrow \ K^+ K^- \Lambda$
80± 30		BOLONKIN	88	SPEC	40 $\pi^- p \rightarrow K^0_S K^0_S n$
$26^+_{-16} \pm 17$	93	BALTRUSAIT.	86 D	MRK3	$e^+e^- \rightarrow \gamma K^+ K^-$
$18^+\ {}^{23}_{15}{\pm}10$	23	BALTRUSAIT.	86 D	MRK3	$e^+e^- ightarrow \ \gamma \kappa^0_S \kappa^0_S$
https://pdg.lbl.	gov	Page 1		Crea	ted: 6/1/2021 08:31

• • •	We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
$8.6 \pm$	2.5	¹ VLADIMIRSK.	08	SPEC	40 $\pi^- p \rightarrow$	$K^0_{\varsigma}K^0_{\varsigma}n$
					$+m\pi^0$	0 0
<80	90	ALDE	87C	GAM2	38 $\pi^- p \rightarrow$	η′ η n
<i>ار</i> 1	$PC = 2^{++}$. Systematic unc	ertainties not eva	luated	I		

f_J(2220) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	ππ	not seen
Γ ₂	$\pi^+\pi^-$	not seen
Γ ₃	KK	not seen
Γ ₄	p p	not seen
Γ ₅	$\gamma \gamma$	not seen
Г ₆	$\eta \eta'$ (958)	seen
Γ ₇	$\phi \phi$	not seen
Г ₈	$\eta \eta$	not seen

$f_J(2220) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(KK) \times \Gamma(\gamma\gamma)/\Gamma_{1}$	total				Γ ₃ Γ ₅ /Γ
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
< 1.4	95	¹ ACCIARRI	01н	L3	$\gamma \gamma \rightarrow K_S^0 K_S^0, E_{cm}^{ee} =$ 91, 183–209 GeV
\bullet \bullet \bullet We do not use the	e following	data for averages	s, fits,	limits, e	etc. • • •
< 5.6	95	¹ GODANG	97	CLE2	$\gamma \gamma \rightarrow \kappa^0_S \kappa^0_S$
< 86	95	¹ ALBRECHT	90 G	ARG	$\gamma \gamma \rightarrow \kappa^+ \kappa^-$
<1000	95	² ALTHOFF	85 B	TASS	$\gamma \gamma$, $\overline{K} \overline{K} \pi$
$\Gamma(\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{tc}$	otal				$\Gamma_1\Gamma_5/\Gamma_5$
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
<2.5	95	ALAM	9 8C	CLE2	$\gamma \gamma \rightarrow \pi^+ \pi^-$
¹ Assuming $J^P = 2^+$	D				
² True for $J^P = 0^+$ a	nd $J^{P} = 2$	<u>2</u> ⁺ .			

$f_J(2220) \Gamma(i)\Gamma(p\overline{p})/\Gamma^2(total)$

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(p\overline{p})$	$\Gamma_4/\Gamma imes \Gamma_1/\Gamma$				
VALUE (units 10^{-5})	CL%	DOCUMENT IL	0	TECN	COMMENT
<18	95	¹ AMSLER	01	CBAR	1.4–1.5 $p \overline{p} \to \pi^0 \pi^0$
• • • We do not use t	he followi	ng data for averag	ges, fits,	limits, e	etc. • • •
<(11–42)	99	² HASAN	96	SPEC	$1.351.55 \ p \overline{p} ightarrow \pi^+ \pi^-$

https://pdg.lbl.gov

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\phi\phi)/\Gamma_{\text{total}} \qquad \Gamma_4/\Gamma \times \Gamma_7/\Gamma$							
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT		
<6	95	³ EVANGELIS	98	SPEC	1.1-2.0 $p \overline{p} \rightarrow \phi \phi$		
$\Gamma(p\overline{p})/\Gamma_{\text{total}} \times \Gamma(\eta\eta)$	η)/Γ _{total}				$\Gamma_4/\Gamma imes \Gamma_8/\Gamma$		
VALUE (units 10^{-5})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		
<4	95	¹ AMSLER	01	CBAR	1.4–1.5 p $\overline{p} ightarrow \eta \eta$		
<4 95 ¹ AMSLER 01 CBAR 1.4–1.5 $p\overline{p} \rightarrow \eta\eta$ ¹ For $J^P = 2^+$ in the mass range 2222–2240 MeV and the total width between 10 and ²⁰ MeV. ² For $J^P = 2^+$ and $J^P = 4^+$ in the mass range 2220–2245 MeV and the total width of ¹⁵ MeV. ³ For $J^P = 2^+$, the mass of 2235 MeV and the total width of 15 MeV.							

f_J(2220) BRANCHING RATIOS

$\Gamma(\pi\pi)/\Gamma_{total}$				Γ_1/Γ
VALUE	DOCUMENT ID	1	COMMENT	
not seen	¹ DOBBS	15	$J/\psi \rightarrow \gamma \pi \pi$	
not seen	¹ DOBBS	15	$\psi(2S) ightarrow \gamma \pi \pi$	
-				

 $^1\,\textsc{Using}$ CLEO-c data but not authored by the CLEO Collaboration.

$\Gamma(K\overline{K})/\Gamma_{\text{total}}$				Г3/Г
VALUE	DOCUMENT IL)	COMMENT	
not seen	¹ DOBBS	15	$J/\psi \rightarrow \gamma K \overline{K}$	
not seen	¹ DOBBS	15	$\psi(2S) ightarrow \gamma K \overline{K}$	
			н. н	

¹ Using CLEO-c data but not authored by the CLEO Collaboration.

$\Gamma(\pi\pi)/\Gamma(K\overline{K})$			Γ_1/Γ_3
VALUE	DOCUMENT ID	TECN C	COMMENT
1.0±0.5	BAI 96	Β BES ε	$e^+e^- \rightarrow J/\psi \rightarrow \gamma 2\pi$, $K\overline{K}$
$\Gamma(p\overline{p})/\Gamma_{\text{total}}$			Γ ₄ /Γ
VALUE (units 10^{-4}) CL%	DOCUMENT ID	TECN	COMMENT
\bullet \bullet We do not use the following	wing data for averag	ges, fits, limi	ts, etc. ● ● ●
not seen	¹ AUBERT	07AV BABR	$B \rightarrow p \overline{p} K^{(*)}$
not seen	WANG	05A BELL	$B^+ \rightarrow \overline{p} p K^+$
<3.0 95	² EVANGELIS	97 SPEC	1.96-2.40 $\overline{p}p ightarrow \kappa^0_{\mathcal{S}} \kappa^0_{\mathcal{S}}$
<1.1 99.7	³ BARNES	93 SPEC	1.3-1.57 $\overline{p}p \rightarrow K^{0}_{S}K^{0}_{S}$
<2.6 99.7	³ BARDIN	87 CNTR	1.3-1.5 $\overline{p}p \rightarrow K^{+}K^{-}$
<3.6 99.7	³ SCULLI	87 CNTR	1.29-1.55 $\overline{p}p \rightarrow K^+K^-$
1 Assuming $\Gamma <$ 30 MeV. 2 Assuming $\Gamma ~$ 20 MeV, $_3$ 3 Assuming $\Gamma =$ 30-35 MeV	$J^P=2^+$ and ${\sf B}(f_J)^R$	$2220) \rightarrow K$ $J(2220) \rightarrow$	$\overline{K})=100\%.$ $\overline{K}\overline{K})=100\%.$
Γ(ρ _ρ)/Γ(Κ <u>κ</u>)		TECN	Γ4/Γ3
0.17±0.09	BAI 96	B BES ϵ	$e^+e^- \rightarrow J/\psi \rightarrow \gamma p \overline{p}, K \overline{K}$

https://pdg.lbl.gov

f_J(2220) REFERENCES

Translated from YAF 71 2166.AUBERT07AVPR D76 092004B. Aubert et al.WANG05APL B617 141MZ. Wang et al.PDG04PL B592 1S. Eidelman et al.ACCIARRI01HPL B501 173M. Acciarit et al.AMSLEP01PL B750 175C. Ampler et al.	(BABAR Collab.) (BELLE Collab.) (PDG Collab.) (L3 Collab.)
AUBERT 07AV PR D76 092004 B. Aubert et al. WANG 05A PL B617 141 MZ. Wang et al. PDG 04 PL B592 1 S. Eidelman et al. ACCIARRI 01H PL B501 173 M. Acciarri et al. AMSLEP 01 PL B520 175 C. Amplage et al.	(BABAR Collab.) (BELLE Collab.) (PDG Collab.) (L3 Collab.)
WANG 05A PL B617 141 MZ. Wang et al. PDG 04 PL B592 1 S. Eidelman et al. ACCIARRI 01H PL B501 173 M. Acciarri et al. AMSLEP 01 PL B501 175 C. Ampler et al. (Cruze	(BELLE Collab.) (PDG Collab.) (L3 Collab.)
PDG 04 PL B592 1 S. Eidelman et al. ACCIARRI 01H PL B501 173 M. Acciarri et al. AMSLER 01 PL B500 175 C. Amplar et al.	(PDG Collab.) (L3 Collab.)
ACCIARRI 01H PL B501 173 M. Acciarri et al.	(L3 Collab)
AMSLEP 01 DI DE20 175 C Amelor et al (Cruz	(
AIVIJEEN UI PE DJ2U 173 C. AITISIER <i>et al.</i> (Crys	tal Barrel Collab.)
ALAM 98C PRL 81 3328 M.S. Alam et al.	(CLEO Collab.)
BAI 98H PRL 81 1179 J.Z. Bai et al.	(BES Collab.)
EVANGELIS 98 PR D57 5370 C. Evangelista et al.	(JETSET Collab.)
EVANGELIS 97 PR D56 3803 C. Evangelista et al.	(LEAR Collab.)
GODANG 97 PRL 79 3829 R. Godang et al.	(CLEO Collab.)
BAI 96B PRL 76 3502 J.Z. Bai et al.	(BES Collab.)
HASAN 96 PL B388 376 A. Hasan, D.V. Bugg	(BRUN, LOQM)
BARNES 93 PL B309 469 P.D. Barnes et al.	(PS185 Collab.)
ALBRECHT 90G ZPHY C48 183 H. Albrecht et al.	(ARGUS Collab.)
ASTON 88F PL B215 199 D. Aston et al. (SLAC, NA	GO, CINC, INUS) JP
BOLONKIN 88 NP B309 426 B.V. Bolonkin et al.	(ITEP, SERP)
ALDE 87C SJNP 45 255 D. Alde et al.	
Translated from YAF 45 405.	
BARDIN 87 PL B195 292 G. Bardin <i>et al.</i> (SACL, FERR	, CERN, PADO+)
SCULLI 87 PRL 58 1715 J. Sculli et al.	(NYU, BNL)
ALDE 86B PL B177 120 D.M. Alde <i>et al.</i> (SERP, BEI	_G, LANL, LAPP)
BALTRUSAIT 86D PRL 56 107 R.M. Baltrusaitis (CIT, UC	SC, ILL, SLAC+)
ALTHOFF 85B ZPHY C29 189 M. Althoff <i>et al.</i>	(TASSO Collab.)
OTHER RELATED PAPERS	_

DEL-AMO-SA... 100 PRL 105 172001

P. del Amo Sanchez et al.

(BABAR Collab.)