$\rho(1700)$

$$I^{G}(J^{PC}) = 1^{+}(1^{--})$$

THE $\rho(1450)$ AND THE $\rho(1700)$

Updated September 2019 by S. Eidelman (Novosibirsk), C. Hanhart (Juelich) and G. Venanzoni (Pisa).

In our 1988 edition, we replaced the $\rho(1600)$ entry with two new ones, the $\rho(1450)$ and the $\rho(1700)$, because there was emerging evidence that the 1600-MeV region actually contains two ρ -like resonances. Erkal [1] had pointed out this possibility with a theoretical analysis on the consistency of 2π and 4π electromagnetic form factors and the $\pi\pi$ scattering length. Donnachie [2], with a full analysis of data on the 2π and 4π final states in e^+e^- annihilation and photoproduction reactions, had also argued that in order to obtain a consistent picture, two resonances were necessary. The existence of $\rho(1450)$ was supported by the analysis of $\eta\rho^0$ mass spectra obtained in photoproduction and e^+e^- annihilation [3], as well as that of $e^+e^- \to \omega\pi$ [4].

The analysis of [2] was further extended by [5,6] to include new data on 4π -systems produced in e^+e^- annihilation, and in τ -decays (τ decays to 4π , and e^+e^- annihilation to 4π can be related by the Conserved Vector Current assumption). These systems were successfully analyzed using interfering contributions from two ρ -like states, and from the tail of the $\rho(770)$ decaying into two-body states. While specific conclusions on $\rho(1450) \rightarrow 4\pi$ were obtained, little could be said about the $\rho(1700)$.

Independent evidence for two 1⁻ states is provided by [7] in 4π electroproduction at $\langle Q^2 \rangle = 1$ (GeV/c)², and by [8] in a high-statistics sample of the $\eta\pi\pi$ system in π^-p charge exchange.

This scenario with two overlapping resonances is supported by other data. Bisello [9] measured the pion form factor in the interval 1.35–2.4 GeV, and observed a deep minimum around 1.6 GeV. The best fit was obtained with the hypothesis of ρ -like resonances at 1420 and 1770 MeV, with widths of about 250 MeV. Antonelli [10] found that the $e^+e^- \rightarrow \eta \pi^+ \pi^-$ cross section is better fitted with two fully interfering Breit-Wigners, with parameters in fair agreement with those of [2] and [9]. These results can be considered as a confirmation of the $\rho(1450)$.

Decisive evidence for the $\pi\pi$ decay mode of both $\rho(1450)$ and $\rho(1700)$ comes from $\overline{p}p$ annihilation at rest [11]. It has been shown that these resonances also possess a $K\overline{K}$ decay mode [12–14]. . High-statistics studies of the decays $\tau \to \pi\pi\nu_{\tau}$ [15,16], and $\tau \to 4\pi\nu_{\tau}$ [17] also require the $\rho(1450)$, but are not sensitive to the $\rho(1700)$, because it is too close to the τ mass. A recent very-high-statistics study of the $\tau \to \pi\pi\nu_{\tau}$ decay performed at Belle [18] reports the first observation of both $\rho(1450)$ and $\rho(1700)$ in τ decays. A clear picture of the two $\pi^{+}\pi^{-}$ resonances interfering with the $\rho(770)$ in $e^{+}e^{-}$ annihilation was also reported by BaBar using the ISR method [19].

The structure of these ρ states is not yet completely clear. Barnes [20] and Close [21] claim that $\rho(1450)$ has a mass consistent with radial 2*S*, but its decays show characteristics of hybrids, and suggest that this state may be a 2*S*-hybrid mixture. Donnachie [22] argues that hybrid states could have a 4π decay mode dominated by the $a_1\pi$. Such behavior has been observed by [23] in $e^+e^- \rightarrow 4\pi$ in the energy range 1.05–1.38 GeV, and by [17] in $\tau \rightarrow 4\pi$ decays. CLEO [24] and Belle [25] observe the $\rho(1450) \rightarrow \omega \pi$ decay mode in *B*-meson decays, however, do not find $\rho(1700) \rightarrow \omega \pi^0$. A similar conclusion is made by

[26,27], who studied the process $e^+e^- \rightarrow \omega \pi^0$ and do not observe a statistically significant signal of the $\rho(1700)$. Various decay modes of the $\rho(1450)$ and $\rho(1700)$ are observed in $\overline{p}n$ and $\overline{p}p$ annihilation [28,29], but no definite conclusions can be drawn. More data should be collected to clarify the nature of the ρ states, particularly in the energy range above 1.6 GeV.

We now list under a separate entry the $\rho(1570)$, the $\phi\pi$ state with $J^{PC} = 1^{--}$ earlier observed by [30] (referred to as C(1480)) and recently confirmed by [31]. While [32] shows that it may be a threshold effect, [5] and [33] suggest two independent vector states with this decay mode. The C(1480) has not been seen in the $\overline{p}p$ [34] and e^+e^- [35,36] experiments. However, the sensitivity of the two latter is an order of magnitude lower than that of [31]. Note that [31] can not exclude that their observation is due to an OZIsuppressed decay mode of the $\rho(1700)$.

Several observations on the $\omega\pi$ system in the 1200-MeV region [37–43] mmay be interpreted in terms of either $J^P = 1^- \rho(770) \rightarrow \omega\pi$ production [44], or $J^P = 1^+ b_1(1235)$ production [42,43]. We argue that no special entry for a $\rho(1250)$ is needed. The LASS amplitude analysis [45] showing evidence for $\rho(1270)$ is preliminary and needs confirmation. For completeness, the relevant observations are listed under the $\rho(1450)$.

Recently [46] reported a very broad 1⁻⁻ resonance-like K^+K^- state in $J/\psi \to K^+K^-\pi^0$ decays. Its pole position corresponds to mass of 1576 MeV and width of 818 MeV. [47–49] ssuggest its exotic structure (molecular or multiquark), while [50] and [51] explain it by the interference between the $\rho(1450)$ and $\rho(1700)$. The latter statement is qualitatively supported by BaBar [52] and SND [53]. We quote [46] as X(1575) in the section "Further States."

Evidence for ρ -like mesons decaying into 6π states was first noted by [54] in the analysis of 6π mass spectra from e^+e^- annihilation [55,56] and diffractive photoproduction [57]. Clegg [54] argued that two states at about 2.1 and 1.8 GeV exist: while the former is a candidate for the $\rho(2150)$, the latter could be a manifestation of the $\rho(1700)$ distorted by threshold effects. BaBar reported observations of the new decay modes of the $\rho(2150)$ in the channels $\eta'(958)\pi^+\pi^-$ and $f_1(1285)\pi^+\pi^-$ [58]. The relativistic quark model [59] predicts the 2^3D_1 state with $J^{PC} = 1^{--}$ at 2.15 GeV which can be identified with the $\rho(2150)$.

We no longer list under a separate particle $\rho(1900)$ various observations of irregular behavior of the cross sections near the $N\bar{N}$ threshold. Dips of various width around 1.9 GeV were reported by the E687 Collaboration (a narrow one in the $3\pi^+3\pi^-$ diffractive photoproduction [60,61]), by the FENICE experiment (a narrow structure in the R value [62]) , by BaBar in ISR (a narrow structure in $e^+e^- \rightarrow \phi\pi$ fi-[63], but much broader in $e^+e^- \rightarrow 3\pi^+3\pi^$ nal state and $e^+e^- \rightarrow 2(\pi^+\pi^-\pi^0)$ [64]), by CMD-3 (also a rather broad dip in $e^+e^- \rightarrow 3\pi^+3\pi^-$ [65]). A dedicated scan of the $N\bar{N}$ -threshold region by CMD-3 confirms this effect in the $e^+e^- \rightarrow 3\pi^+3\pi^-$ and $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$ final states, but does not see it in the cross section of $e^+e^- \rightarrow 2\pi^+2\pi^-$ [66]. Most probably, these structures emerge as a threshold effect due to the opening of the $N\bar{N}$ channel [67,68,69].

References

- 1. C. Erkal, Z. Phys. C31, 615 (1986).
- 2. A. Donnachie and H. Mirzaie, Z. Phys. C33, 407 (1987).
- 3. A. Donnachie and A.B. Clegg, Z. Phys. C34, 257 (1987).
- 4. A. Donnachie and A.B. Clegg, Z. Phys. C51, 689 (1991).

- 5. A.B. Clegg and A. Donnachie, Z. Phys. C40, 313 (1988).
- 6. A.B. Clegg and A. Donnachie, Z. Phys. C62, 455 (1994).
- 7. T.J. Killian *et al.*, Phys. Rev. **D21**, 3005 (1980).
- 8. S. Fukui *et al.*, Phys. Lett. **B202**, 441 (1988).
- 9. D. Bisello et al., Phys. Lett. **B220**, 321 (1989).
- 10. A. Antonelli *et al.*, Phys. Lett. **B212**, 133 (1988).
- 11. A. Abele *et al.*, Phys. Lett. **B391**, 191 (1997).
- 12. A. Abele *et al.*, Phys. Rev. **D57**, 3860 (1998).
- 13. A. Bertin *et al.*, Phys. Lett. **B434**, 180 (1998).
- 14. A. Abele *et al.*, Phys. Lett. **B468**, 178 (1999).
- 15. R. Barate *et al.*, Z. Phys. **C76**, 15 (1997).
- 16. S. Anderson, Phys. Rev. **D61**, 112002 (2000).
- 17. K.W. Edwards et al., Phys. Rev. D61, 072003 (2000).
- 18. M. Fujikawa et al., Phys. Rev. D78, 072006 (2008).
- 19. J.P. Lees et al., Phys. Rev. D86, 032013 (2012).
- 20. T. Barnes et al., Phys. Rev. D55, 4157 (1997).
- 21. F.E. Close et al., Phys. Rev. D56, 1584 (1997).
- 22. A. Donnachie and Yu.S. Kalashnikova, Phys. Rev. **D60**, 114011 (1999).
- 23. R.R. Akhmetshin *et al.*, Phys. Lett. **B466**, 392 (1999).
- 24. J.P. Alexander *et al.*, Phys. Rev. **D64**, 092001 (2001).
- 25. D. Matvienko *et al.*, Phys. Rev. **D92**, 012013 (2015).
- 26. R.R. Akhmetshin *et al.*, Phys. Lett. **B562**, 173 (2003).
- 27. M.N. Achasov *et al.*, Phys. Rev. **D94**, 112001 (2016).
- 28. A. Abele *et al.*, Eur. Phys. J. **C21**, 261 (2001).
- 29. M. Bargiotti *et al.*, Phys. Lett. **B561**, 233 (2003).
- 30. S.I. Bityukov *et al.*, Phys. Lett. **B188**, 383 (1987).
- 31. B. Aubert *et al.*, Phys. Rev. **D77**, 092002 (2008).
- N.N. Achasov and G.N. Shestakov, Phys. Atom. Nucl. 59, 1262 (1996).
- 33. L.G. Landsberg, Sov. J. Nucl. Phys. 55, 1051 (1992).
- 34. A. Abele *et al.*, Phys. Lett. **B415**, 280 (1997).

- V.M. Aulchenko *et al.*, Sov. Phys. JETP Lett. **45**, 145 (1987).
- 36. D. Bisello *et al.*, Z. Phys. **C52**, 227 (1991).
- 37. P. Frenkiel *et al.*, Nucl. Phys. **B47**, 61 (1972).
- 38. G. Cosme *et al.*, Phys. Lett. **B63**, 352 (1976).
- 39. D.P. Barber *et al.*, Z. Phys. **C4**, 169 (1980).
- 40. D. Aston, Phys. Lett. **B92**, 211 (1980).
- 41. M. Atkinson *et al.*, Nucl. Phys. **B243**, 1 (1984).
- 42. J.E. Brau *et al.*, Phys. Rev. **D37**, 2379 (1988).
- 43. C. Amsler *et al.*, Phys. Lett. **B311**, 362 (1993).
- 44. J. Layssac and F.M. Renard, Nuovo Cimento **6A**, 134 (1971).
- 45. D. Aston *et al.*, Nucl. Phys. (Proc. Supp.) **B21**, 105 (1991).
- 46. M. Ablikim et al., Phys. Rev. Lett. 97, 142002 (2006).
- 47. G.-J. Ding and M.-L. Yan, Phys. Lett. **B643**, 33 (2006).
- 48. F.K. Guo et al., Nucl. Phys. A773, 78 (2006).
- 49. A. Zhang et al., Phys. Rev. D76, 036004 (2007).
- 50. B.A. Li, Phys. Rev. **D76**, 094016 (2007).
- 51. X. Liu et al., Phys. Rev. **D75**, 074017 (2007).
- 52. J.P. Lees et al., Phys. Rev. D88, 032013 (2013).
- 53. M.N. Achasov *et al.*, Phys. Rev. **D94**, 112006 (2016).
- 54. A.B. Clegg and A. Donnachie, Z. Phys. C45, 677 (1990).
- 55. D. Bisello *et al.*, Phys. Lett. **107B**, 145 (1981).
- 56. A. Castro *et al.*, LAL-88-58(1988).
- 57. M. Atkinson *et al.*, Z. Phys. **C29**, 333 (1985).
- 58. B. Aubert *et al.*, Phys. Rev. **D76**, 092005 (2007).
- 59. S. Godfrey and N. Isgur, Phys. Rev. **D32**, 189 (1985).
- 60. P.L. Frabetti *et al.*, Phys. Lett. **B514**, 240 (2001).
- 61. P.L. Frabetti *et al.*, Phys. Lett. **B578**, 290 (2004).
- 62. A. Antonelli *et al.*, Phys. Lett. **B365**, 427 (1996).
- 63. B. Aubert *et al.*, Phys. Rev. **D77**, 092002 (2008).

- 64. B. Aubert *et al.*, Phys. Rev. **D73**, 052003 (2006).
- 65. R.R. Akhmetshin *et al.*, Phys. Lett. **B723**, 83 (2013).
- 66. R.R. Akhmetshin *et al.*, Phys. Lett. **B794**, 64 (2019).
- A. Obrazovsky and S. Serednyakov, Sov. Phys. JETP Lett. 99, 315 (2014).
- 68. J. Heidenauer *et al.*, Phys. Rev. **D92**, 054032 (2015).
- A.I. Milstein and S.G. Salnikov, Nucl. Phys. A977, 60 (2018).

ρ(1700) MASS

$\eta \rho^0$ AND $\pi^+ \pi^-$ MODES

 1720 ± 20 OUR ESTIMATE

DOCUMENT ID

$\eta \rho^0$ MODE

 VALUE (MeV)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

The data in this block is included in the average printed for a previous datablock.

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

1834 ± 12	13.4k	¹ GRIBANOV	20	CMD3	1.1–2.0 $e^+e^- \rightarrow \eta \pi^+\pi^-$
$1840\!\pm\!10$	7.4k	² ACHASOV	18	SND	1.22–2.00 $e^+e^- \rightarrow \eta \pi^+\pi^-$
$1740\!\pm\!20$		ANTONELLI	88	DM2	$e^+e^- \rightarrow \eta \pi^+\pi^-$
$1701\!\pm\!15$		³ FUKUI	88	SPEC	8.95 $\pi^- p \rightarrow \eta \pi^+ \pi^- n$

¹ Mass and width of the ρ (770) fixed at 775 and 149 MeV, respectively; solution 2 of model 2, $\eta \rightarrow \gamma \gamma$ decays used.

² From the combined fit of AULCHENKO 15 and ACHASOV 18 in the model with the interfering $\rho(1450)$, $\rho(1700)$ and $\rho(2150)$ with the parameters of the $\rho(1450)$ and $\rho(1700)$ floating and the mass and width of the $\rho(2150)$ fixed at 2155 MeV and 320 MeV, respectively. The phases of the resonances are π , 0 and π , respectively.

³Assuming $\rho^+ f_0(1370)$ decay mode interferes with $a_1(1260)^+ \pi$ background. From a two Breit-Wigner fit.

$\pi\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
The data in this blo	ck is included ir	n the average printe	d for a prev	vious datablock.

• • • We do not use the following data for averages, fits, limits, etc. • • •

RVUE $e^+e^- \rightarrow \pi^+\pi^-$ ¹ BARTOS 17 1770.54 ± 5.49 ² BARTOS 17A RVUE $e^+e^- \rightarrow \pi^+\pi^ 1718.50 \pm 65.44$ 17A RVUE $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ ³ BARTOS 1766.80 ± 52.36 17C BABR $J/\psi \rightarrow \pi^+\pi^-\pi^-$ ⁴ LEES 1644 ± 36 20k $+15 \\ -20$ ± 20 63.5k ⁵ ABRAMOWICZ12 ZEUS $ep \rightarrow e\pi^+\pi^-p$ 1780 ⁶ LEES 12G BABR $e^+e^- \rightarrow \pi^+\pi^-\gamma$ ± 17 1861 ^{7,8} FUJIKAWA 08 BELL $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$ 1728 ± 17 ± 89 5.4M $+37 \\ -29$ ⁹ ABELE CBAR $\overline{p}n \rightarrow \pi^{-}\pi^{0}\pi^{0}$ 97 1780 Page 7 Created: 6/1/2021 08:31 https://pdg.lbl.gov

1719	± 15	⁹ BERTIN	97 C	OBLX	$0.0 \ \overline{p} p \rightarrow \ \pi^+ \pi^- \pi^0$
1730	± 30	CLEGG	94	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
1768	± 21	BISELLO	89	DM2	$e^+e^- \rightarrow \pi^+\pi^-$
1745.7	± 91.9	DUBNICKA	89	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
1546	± 26	GESHKEN	89	RVUE	
1650		¹⁰ ERKAL	85	RVUE	20–70 $\gamma p \rightarrow \gamma \pi$
1550	±70	ABE	84 B	HYBR	$20 \ \gamma p \rightarrow \ \pi^+ \pi^- p$
1590	± 20	¹¹ ASTON	80	OMEG	20–70 $\gamma p \rightarrow p 2\pi$
1600	± 10	¹² ATIYA	79 B	SPEC	50 $\gamma C \rightarrow C2\pi$
1598	+24 -22	BECKER	79	ASPK	17 $\pi^- p$ polarized
1659	± 25	¹⁰ LANG	79	RVUE	
1575		¹⁰ MARTIN	78C	RVUE	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
1610	± 30	¹⁰ FROGGATT	77	RVUE	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
1590	± 20	¹³ HYAMS	73	ASPK	$17 \pi^- p \rightarrow \pi^+ \pi^- n$

 1 Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.

²Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, and AMBROSINO 11A. ³Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-

NICKA 10 to analyze the data of FUJIKAWA 08.

⁴ From a Dalitz plot analysis in an isobar model with $\rho(1450)$ and $\rho(1700)$ masses and widths floating.

⁵ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho - \omega$ interference.

 6 Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

 $|F_{\pi}(0)|^2$ fixed to 1.

⁸ From the GOUNARIS 68 parametrization of the pion form factor.

⁹T-matrix pole.

 10 From phase shift analysis of HYAMS 73 data.

¹¹Simple relativistic Breit-Wigner fit with constant width.

 12 An additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape.

¹³ Included in BECKER 79 analysis.

$\pi\omega$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not ι	ise the fol	lowing data for av	erages	s, fits, lin	nits, etc. • • •
1708 ± 41	7815	¹ ACHASOV	13	SND	1.05–2.00 $e^+e^- \rightarrow \pi^0 \pi^0$
1550 to 1620		² ACHASOV	001	SND	$e^+e^- \rightarrow \pi^0 \pi^0 \gamma$
1580 to 1710		³ ACHASOV	001	SND	$e^+e^- \rightarrow \pi^0 \pi^0 \gamma$
1710 ± 90		ACHASOV	97	RVUE	$e^+e^- ightarrow \omega \pi^0$

 1 From a phenomenological model based on vector meson dominance with the interfering $\rho(1450)$ and $\rho(1700)$ and their widths fixed at 400 and 250 MeV, respectively. Systematic uncertainty not estimated.

²Taking into account both $\rho(1450)$ and $\rho(1700)$ contributions. Using the data of ACHASOV 001 on $e^+e^- \rightarrow \omega \pi^0$ and of EDWARDS 00A on $\tau^- \rightarrow \omega \pi^- \nu_{\tau}$. $\rho(1450)$ mass and width fixed at 1400 $\,{\rm MeV}$ and 500 $\,{\rm MeV}$ respectively.

 3 Taking into account the $\rho(1700)$ contribution only. Using the data of ACHASOV 001 on $e^+e^- \rightarrow \omega \pi^0$ and of EDWARDS 00A on $\tau^- \rightarrow \omega \pi^- \nu_{\tau}$.

KK MODE							
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
• • • We do not use	the follov	ving data for ave	rages,	fits, lim	its, eto	C. ● ● ●	
$1688.7 \pm 3.1 \substack{+141.1 \\ - 1.3}$		¹ ALBRECHT	20	RVUE		$0.9 \overline{p} \rho \rightarrow \ \kappa^{+} \kappa^{-} \pi^{0}$	
1541 \pm 12 \pm 33	190k	² AAIJ	16N	LHCB		$D^0 \rightarrow K^0_S K^{\pm} \pi^{\mp}$	
1740.8±22.2	27k	³ ABELE	99 D	CBAR	±	$0.0 \ \overline{p} p \rightarrow K^+ K^- \pi^0$	
1582 ±36	1600	CLELAND	82 B	SPEC	±	$50 \pi p \rightarrow K^0_S K^{\pm} p$	

¹T-matrix pole, 2 poles, 3 channels, including $\pi\pi$ scattering data from HYAMS 75.

² Using the GOUNARIS 68 parameterization with a fixed width. Value is average using different $K\pi$ S-wave parametrizations in fit.

³K-matrix pole. Isospin not determined, could be $\omega(1650)$ or $\phi(1680)$.

2 ($\pi^+\pi^-$) MODE	E				
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use	the following	g data for averages	s, fits,	limits, e	etc. • • •
$1851^{+}_{-}27_{-}24$		ACHASOV	97	RVUE	$e^+e^- ightarrow 2(\pi^+\pi^-)$
$1570\pm~20$		¹ CORDIER	82	DM1	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
$1520\pm~30$		² ASTON	81E	OMEG	20–70 $\gamma p \rightarrow p 4\pi$
$1654\pm$ 25		³ DIBIANCA	81	DBC	$\pi^+ d \rightarrow pp2(\pi^+\pi^-)$
$1666\pm$ 39		¹ BACCI	80	FRAG	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
1780	34	KILLIAN	80	SPEC	$11 \ e^- p \rightarrow 2(\pi^+ \pi^-)$
1500		⁴ ATIYA	79 B	SPEC	50 $\gamma C \rightarrow C 4 \pi^{\pm}$
$1570\pm~60$	65	⁵ ALEXANDER	75	HBC	7.5 $\gamma p ightarrow p 4 \pi$
$1550\pm~60$		² CONVERSI	74	OSPK	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
$1550\pm~50$	160	SCHACHT	74	STRC	5.5–9 $\gamma p \rightarrow p 4\pi$
$1450 \!\pm\! 100$	340	SCHACHT	74	STRC	9–18 $\gamma {m p} ightarrow {m p} 4 \pi$
$1430\pm$ 50	400	BINGHAM	7 2B	HBC	9.3 $\gamma p \rightarrow p 4\pi$

¹Simple relativistic Breit-Wigner fit with model dependent width.

²Simple relativistic Breit-Wigner fit with constant width.

³One peak fit result.

⁴ Parameters roughly estimated, not from a fit.

⁵Skew mass distribution compensated by Ross-Stodolsky factor.

$\pi^+\pi^-\pi^0\pi^0$ MODE

VALUE (MeV)	DOCUMENT ID	<u>TECN</u> COMMENT	
• • • We do not use the followi	ng data for average	s, fits, limits, etc. • • •	
1660 ± 30	ATKINSON	85Β OMEG 20-70 γ <i>p</i>	

$3(\pi^{+}\pi^{-})$ AND $2(\pi^{+}\pi^{-}\pi^{0})$ MODES

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following data for	averages, fit	ts, limits, etc. ● ● ●
1730±34 1	FRABETTI 0	4 E687	$\gamma p \rightarrow 3\pi^+ 3\pi^- p$
1783 ± 15	CLEGG 9	0 RVUE	$e^+e^- \rightarrow 3(\pi^+\pi^-)2(\pi^+\pi^-\pi^0)$
1 From a fit with two r	esonances with the	e JACOB 72	continuum.

https://pdg.lbl.gov

	$m_{ ho(1700)^0} - m_{ ho(1700)^\pm}$								
VALUE (I	MeV)			DOCUME	NT ID		TECN	COMMENT	
• • • \	Ve do not	t use the	followi	ng data for av	/erage	s, fits,	limits, e	etc. • • •	
- 48.30	±83.81			¹ BARTO	S	17A	RVUE	$e^+e^- ightarrow \pi^+\pi^-$, $ au^- ightarrow \pi^-\pi^0 u_ au$	
¹ App NIC AM	olies the U CKA 10 to BROSIN	Jnitary & o analyz O 11A, a	2 Analy e the d nd FUJ	tic Model of t ata of ACHAS IKAWA 08.	the pio SOV (on elec)6, AK	tromagr HMETS	netic form factor of DUB SHIN 07, AUBERT 09AS	
				ρ(1700)	WID	тн			
ηρ ⁰ Α	ND π^+	π^- MC	DES	DOCUME					
250+1		ESTIMA	TE	DOCUME	NIID				
			-						
ηρ ⁰ Μ	IODE								
VALUE (I	MeV) to in this	<u>EVTS</u>	include	OCUMENT ID	an pri	TECN	<u>COMN</u>	<u>/ENT</u> views datablock	
The uar		DIOCK IS	include	u ili tile avera	ige pri	nteu ic	n a prev	nous datablock.	
• • • V	Ve do not	t use the	followi	ng data for av	/erage	s, fits,	limits, e	etc. • • •	
47 ± 19	9	13.4k	1 G	RIBANOV	20	CMD3	3 1.1-2	2.0 $e^+e^- \rightarrow \eta \pi^+\pi^-$	
132 ± 40	0	7.4k	2д	CHASOV	18	SND	1.22-	$-2.00 \ e^+ e^- \rightarrow \ \eta \pi^+ \pi^-$	
150 ± 30	0		A	NTONELLI	88	DM2	e ⁺ e	$ \rightarrow \eta \pi^+ \pi^-$	
282 ± 44	4		³ F	UKUI	88	SPEC	8.95	$\pi^- p \rightarrow \eta \pi^+ \pi^- n$	
¹ Mas mod ² Froi inte floa resp ³ Ass	ss and wi del 2, η – m the co erfering $\rho($ ting and pectively. uming ρ^- Breit-Wi	dth of t $\rightarrow \gamma \gamma q$ de mbined 1450), ρ the mat The pha $+ f_0(1370)$ gener fit	he $\rho(77)$ ecays us fit of A (1700) ss and ises of t 0) deca	70) fixed at 7 sed. ULCHENKO and $\rho(2150)$ w width of the the resonances y mode interf	75 an 15 an vith th ho(215) s are π feres v	d 149 d ACH e parar 50) fixe r, 0 and vith <i>a</i> 1	MeV, r ASOV neters o ed at 2 d π , res $(1260)^{-1}$	espectively; solution 2 o 18 in the model with the f the $ ho(1450)$ and $ ho(1700)$ 155 MeV and 320 MeV pectively. $^+\pi$ background. From a	
		giler itt.							
$\pi\pi$ IVI VALUE (1	ODE MeV)		EVTS	DOCUME	NT ID		TECN	COMMENT	
The dat	ta in this	block is	include	d in the avera	ige pri	nted fo	or a prev	vious datablock.	
			с н	I C		<i>c</i> .			
• • • v	ve do no	t use the	followi	ng data for av	/erage ~	s, fits,	limits, e		
268.9	98 ± 11.4	0			S	17	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$ + - + -	
489.5	08 ± 10.9	0		3 DADTO	5	17A	RVUE	$e e \rightarrow \pi \pi \pi$	
414.7 100	1 ± 119.4 + 10	0	20k	4 I FES	5	17A 17C	RARR	$\begin{array}{cccc} \tau & \to & \pi & \pi^* \nu_{\tau} \\ I/\eta & \to & \pi^+ \pi^- \pi^0 \end{array}$	
210	⊥ 19 ⊥ 19	+25	20N			710		$S/\psi \rightarrow \pi + \pi \pi$	
510	± 30	- 35	U3.9K	- ABKAM	Owic	.∠12		$ep \rightarrow e\pi \cdot \pi p$ +	
316	± 26			^v LEES		12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$	
164	\pm 21	+89 -26	5.4M	^{7,8} FUJIKA	NA	08	BELL	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$	

 $164 \pm 21 + \frac{89}{-26}$ 5.4M 7.8 FUJIKAWA

 275 ± 45 9 ABELE

 310 ± 40 9 BERTIN

 400 ± 100 CLEGG

 224 ± 22 BISELLO

https://pdg.lbl.gov

97 CBAR $\overline{p}n \rightarrow \pi^{-}\pi^{0}\pi^{0}$ 97 OBLX 0.0 $\overline{p}p \rightarrow \pi^{+}\pi^{-}\pi^{0}$ 94 RVUE $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}$ 89 DM2 $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}$

	242.5 620	± 163.0 ± 60	DUBNICKA GESHKEN	89 89	RVUE RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
<	<315		¹⁰ ERKAL	85	RVUE	20–70 $\gamma p \rightarrow \gamma \pi$
	280	+ 30 - 80	ABE	84 B	HYBR	$20 \ \gamma p \rightarrow \ \pi^+ \pi^- p$
	230	± 80	¹¹ ASTON	80	OMEG	20–70 $\gamma p \rightarrow p 2\pi$
	283	\pm 14	¹² ATIYA	79 B	SPEC	50 $\gamma C \rightarrow C2\pi$
	175	+ 98 - 53	BECKER	79	ASPK	17 $\pi^- p$ polarized
	232	\pm 34	¹⁰ LANG	79	RVUE	
	340		¹⁰ MARTIN	78 C	RVUE	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
	300	± 100	¹⁰ FROGGATT	77	RVUE	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
	180	\pm 50	¹³ HYAMS	73	ASPK	$17 \pi^- p \rightarrow \pi^+ \pi^- n$

 1 Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.

² Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, and AMBROSINO 11A.

and AMBROSINO 11A. ³Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of FUJIKAWA 08.

⁴ From a Dalitz plot analysis in an isobar model with $\rho(1450)$ and $\rho(1700)$ masses and widths floating.

⁵ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho - \omega$ interference.

⁶ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

 $|F_{\pi}(0)|^2$ fixed to 1.

⁸ From the GOUNARIS 68 parametrization of the pion form factor.

⁹T-matrix pole.

 10 From phase shift analysis of HYAMS 73 data.

¹¹Simple relativistic Breit-Wigner fit with constant width.

 12 An additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape.

 13 Included in BECKER 79 analysis.

KK MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use t	he followi	ng data for ave	erages,	fits, lim	its, eto	2. ● ● ●
$150.9 \pm 2.5^{+60}_{-10.6}$		¹ ALBRECHT	20	RVUE		$0.9 \ \overline{p} p \rightarrow \ K^+ K^- \pi^0$
187.2 ± 26.7	27k -	² ABELE	99 D	CBAR	±	$0.0 \ \overline{p} p \rightarrow \ K^+ K^- \pi^0$
265 ±120	1600	CLELAND	82 B	SPEC	±	50 $\pi p \rightarrow K^0_S K^{\pm} p$

¹ T-matrix pole, 2 poles, 3 channels, including $\pi\pi$ scattering data from HYAMS 75. ² K-matrix pole. Isospin not determined, could be $\omega(1650)$ or $\phi(1680)$.

2 ($\pi^+\pi^-$) MODE					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use the	following	data for averages	, fits,	limits, e	tc. ● ● ●
510± 40		¹ CORDIER	82	DM1	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
$400\pm$ 50		² ASTON	81E	OMEG	20–70 $\gamma p ightarrow p4\pi$
400 ± 146		³ DIBIANCA	81	DBC	$\pi^+ d \rightarrow pp2(\pi^+\pi^-)$
$700\!\pm\!160$		¹ BACCI	80	FRAG	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
100	34	KILLIAN	80	SPEC	11 $e^- p \to 2(\pi^+ \pi^-)$
https://pdg.lbl.gov		Page 11		Crea	ted: 6/1/2021 08:31

600		⁴ ATIYA	79 B	SPEC	50 $\gamma C \rightarrow C 4 \pi^{\pm}$
340 ± 160	65	⁵ ALEXANDER	75	HBC	7.5 $\gamma p \rightarrow p 4\pi$
360 ± 100		² CONVERSI	74	OSPK	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
400 ± 120	160	⁶ SCHACHT	74	STRC	5.5–9 $\gamma p \rightarrow p 4\pi$
850 ± 200	340	⁶ SCHACHT	74	STRC	9–18 $\gamma p ightarrow p 4\pi$
650 ± 100	400	BINGHAM	7 2B	HBC	9.3 $\gamma p \rightarrow p 4\pi$

¹Simple relativistic Breit-Wigner fit with model-dependent width.

²Simple relativistic Breit-Wigner fit with constant width.

³One peak fit result.

⁴ Parameters roughly estimated, not from a fit.

⁵ Skew mass distribution compensated by Ross-Stodolsky factor.

⁶Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

$\pi^+\pi^-\pi^0\pi^0$ MODE VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	g data for averages, fits,	limits, e	etc. • • •
$300\!\pm\!50$	ATKINSON 85B	OMEG	20–70 <i>γ p</i>
$\omega \pi^0 \text{ MODE}$	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	g data for averages, fits,	limits, e	
350 to 580 490 to 1040	¹ ACHASOV 001 ² ACHASOV 001	SND SND	$e^+e^- \rightarrow \pi^0 \pi^0 \gamma$ $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$
¹ Taking into account both ρ ACHASOV 001 on $e^+e^- \rightarrow$	(1450) and $\rho(1700)$ compared of EDWARDS	ontributio	ons. Using the data of $\pi^- \rightarrow w \pi^- v = o(1450)$

ACHASOV 00I on $e^+e^- \rightarrow \omega \pi^0$ and of EDWARDS 00A on $\tau^- \rightarrow \omega \pi^- \nu_{\tau^-} \rho(1450)$ mass and width fixed at 1400 MeV and 500 MeV respectively.

² Taking into account the $\rho(1700)$ contribution only. Using the data of ACHASOV 001 on $e^+e^- \rightarrow \omega \pi^0$ and of EDWARDS 00A on $\tau^- \rightarrow \omega \pi^- \nu_{\tau}$.

$3(\pi^{+}\pi^{-})$ AND $2(\pi^{+}\pi^{-}\pi^{0})$ MODES

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the following data	for av	verages, i	fits, limits, etc. • • •
315 ± 100	¹ FRABETTI	04	E687	$\gamma p \rightarrow 3\pi^+ 3\pi^- p$
$285\pm~20$	CLEGG	90	RVUE	$e^+e^- \rightarrow 3(\pi^+\pi^-)2(\pi^+\pi^-\pi^0)$
1		41 1		0

¹ From a fit with two resonances with the JACOB 72 continuum.

$$\Gamma_{\rho(1700)^0} - \Gamma_{\rho(1700)^{\pm}}$$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not	use the following dat	a for averages,	fits, limits, etc. • • •	
74.87±120.67	¹ BARTOS	17A RVUE	$e^+e^- \rightarrow \pi^+\pi^-, \tau^-$	$\rightarrow \pi^{-}\pi^{0}\nu_{\tau}$
¹ Applies the U NICKA 10 to AMBROSINO	nitary & Analytic Mo analyze the data of 11A, and FUJIKAWA	del of the pion ACHASOV 06 A 08.	electromagnetic form 6, AKHMETSHIN 07, /	factor of DUB AUBERT 09AS

	Mode	Fraction (Γ_i/Γ)
Γ ₁	4π	
Г2	$2(\pi^{+}\pi^{-})$	seen
Г3	$\rho \pi \pi$	seen
Γ ₄	$\rho_{0}^{0}\pi^{+}\pi^{-}$	seen
Γ ₅	$\rho^0 \pi^0 \pi^0$	
Г ₆	$ ho^{\pm}\pi^{\mp}\pi^{0}$	seen
Γ ₇	$a_1(1260)\pi$	seen
Г ₈	$h_1(1170)\pi$	seen
Г9	$\pi(1300)\pi$	seen
Γ ₁₀	ho ho	seen
Γ_{11}	$\pi^+\pi^-$	seen
Γ_{12}	ππ	seen
Γ ₁₃	<i>K K</i> *(892)+ c.c.	seen
Γ_{14}	ηho	seen
Γ ₁₅	а <u>2(1</u> 320) <i>π</i>	not seen
Γ ₁₆	KK	seen
Γ ₁₇	e^+e^-	seen
Γ ₁₈	$\pi^{0}\omega$	seen
Γ ₁₉	$\pi^{0}\gamma$	not seen

ρ (1700) DECAY MODES

$\rho(1700) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into e^+e^- and with the total width is obtained from the cross-section into channel₁ in e^+e^- annihilation.

$\Gamma(2(\pi^+\pi^-)) \times \Gamma(e^+e^-)$	⁻)/Γ _{total}		Γ ₂ Γ ₁₇ /Γ
VALUE (keV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the follo	owing data for average	s, fits, limits, et	.c. ● ● ●
2.6 ± 0.2	DELCOURT	81B DM1	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
$2.83 {\pm} 0.42$	BACCI	80 FRAG	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
$\Gamma(\pi^+\pi^-) \times \Gamma(e^+e^-)/e^+$	Г _{total}		Γ ₁₁ Γ ₁₇ /Γ
VALUE (keV)	DOCUMENT ID	TECN COM	MENT
\bullet \bullet \bullet We do not use the following the	owing data for average	s, fits, limits, et	
0.13	¹ DIEKMAN 88	RVUE e^+e	$^{-} \rightarrow \pi^{+}\pi^{-}$
$0.029 \substack{+ 0.016 \\ - 0.012}$	KURDADZE 83	OLYA 0.64-	-1.4 $e^+e^- \rightarrow \pi^+\pi^-$
1 Using total width $=$ 220	MeV.		
$\Gamma(K\overline{K}^*(892)+c.c.) \times \Gamma$	$\left(e^+e^-\right)/\Gamma_{total}$		Γ ₁₃ Γ ₁₇ /Γ
VALUE (keV)	DOCUMENT ID	TECN	COMMENT
\bullet \bullet \bullet We do not use the following the	owing data for average	s, fits, limits, et	
0.305 ± 0.071	¹ BIZOT	80 DM1	e ⁺ e ⁻
https://pdg.lbl.gov	Page 13	Creat	ted: 6/1/2021 08:31

 $^1\,\mathrm{Model}$ dependent.

$\Gamma(\eta \rho) \times \Gamma(e^+)$	e ⁻)/Γ _{tota}	1				Γ ₁₄ Γ ₁₇ /Γ
VALUE (eV)	EVTS	DOCUMENT ID		TECN CO	OMMENT	
• • • We do not ι	use the follo	wing data for ave	rages, fi	ts, limits,	etc. • • •	
$1.35 \pm 0.53 \pm 0.0$ 84 ±26 ±4 7 ± 3	8 13.4k	¹ GRIBANOV ² LEES ANTONELLI	20 (18 88	CMD3 1. BABR e ⁻ DM2 e ⁻	$1-2.0 e^+ e^- + e^- \rightarrow \eta \pi^- + e^- \rightarrow \eta \pi^-$	$ \rightarrow \eta \pi^+ \pi^- \\ + \pi^- \\ + \pi^- $
1 Mass and widt model 2, $\eta ightarrow$ 2 Includes non-re Model uncertar	th of the $\rho(\gamma \gamma \text{ decays})$ sonant cont inty is 80%.	770) fixed at 77 used. ribution. The sele	5 and 1	49 MeV, model inc	respectively; ludes three $ ho$ e	solution 2 of excited states.
$\Gamma(K\overline{K}) \times \Gamma(e^{-1})$	⁺ e ⁻)/Γ _{tot}			TECN	COMMENT	Г ₁₆ Г ₁₇ /Г
VALUE (keV)	use the fello	DOCUMEN	<u>r ID</u>	te limite		
0.035 ± 0.029 ¹ Model depende	ent.	¹ BIZOT	80 stages, 11) DM1	e^+e^-	
$\Gamma(\rho\pi\pi) \times \Gamma(e^{VALUE (keV)})$	⁺ e ⁻)/Γ _{to}	tal DOCUMEN	T ID	TECN	COMMENT	Г ₃ Г ₁₇ /Г
• • • We do not ι	use the follo	wing data for ave	rages, fi	ts, limits,	etc. • • •	
3.510 ± 0.090		¹ BIZOT	- 80	DM1	e^+e^-	
¹ Model depende	ent.					
	ho(1700)	$\Gamma(i)/\Gamma(total)$	× Г(<i>e</i> +	<i>е</i> ⁻)/Г(t	total)	
$\Gamma(\pi^0\omega)/\Gamma_{total}$	× Г(e ⁺ e⁻	⁻)/Γ _{total}			Г ₁₈	/Г × Г ₁₇ /Г
VALUE (units 10^{-6})	EVTS	DOCUMENT ID	TE	ECN <u>CO</u>	MMENT	
• • • We do not ι	use the follo	wing data for ave	erages, fi	ts, limits,	etc. • • •	
$0.09 \pm 0.05 \\ 1.7 \ \pm 0.4$	10.2k 7815	¹ ACHASOV ² ACHASOV	16D SI 13 SI	ND 1.0 ND 1.0	5–2.00 e ⁺ e ⁻ 5–2.00 e ⁺ e ⁻	$\stackrel{-}{\rightarrow} \pi^{0} \pi^{0} \gamma$ $\stackrel{-}{\rightarrow} \pi^{0} \pi^{0} \gamma$
¹ From a pheno ho(700), ho(1450) 250 MeV, respective ² From a phenor ho(1450) and $ ho(uncertainty not$	menological), and $\rho(17)$ ectively. Sys nenological 1700) and t t estimated.	model based or 00). The $\rho(1700)$ tematic uncertain model based on w heir widths fixed a	n vector) mass a nty not es vector m nt 400 an	meson d nd width stimated. neson dom nd 250 Me	lominance wi are fixed at 1 Supersedes A inance with t V, respectivel	th interfering 720 MeV and CHASOV 13. the interfering y. Systematic
$\Gamma(\eta \rho)/\Gamma_{\text{total}} \times$	Γ(e ⁺ e ⁻)	/Γ _{total}			Г ₁₄	/Г × Г ₁₇ /Г
VALUE (units 10^{-6})	<u>EVTS</u>	DOCUMENT ID	TEO	<u>CN</u> <u>COM</u>	IMENT	
		wing data for ave	rages, n	LS, IIIIILS,		
$8.3^{+3.0}_{-3.1}$	7.4k ¹	ACHASOV	18 SN	ID 1.22	$-2.00 \ e^+ \ e^-$	$\rightarrow \eta \pi^+ \pi^-$
1 From the cominterfering $ ho(14)$	bined fit of	AULCHENKO 1	5 and A	CHASOV	18 in the m	odel with the

ρ (1700) BRANCHING RATIOS

$\Gamma(ho\pi\pi)/\Gamma(4\pi)$					Γ_3/Γ_1
VALUE	DOCUMENT ID	<i>C</i> .	<u>TECN</u>	<u>COMMENT</u>	
• • • We do not use the follow	ing data for average	es, fits,	limits,	etc. • • •	_
0.28±0.06	⁺ ABELE	01 B	CBAR	$0.0 \overline{p}n \rightarrow$	5π
$^{\bot}\omega\pi$ not included.					
$\Gamma(\rho^0 \pi^+ \pi^-) / \Gamma(2(\pi^+ \pi^-))$					Γ4/Γ2
VALUE EVTS	DOCUMENT ID		TECN	COMMENT	-/ -
$\bullet \bullet \bullet$ We do not use the follow	ing data for average	es, fits,	limits,	etc. ● ● ●	
~ 1.0	DELCOURT	81 B	DM1	$e^+e^- ightarrow$	$2(\pi^{+}\pi^{-})$
0.7 ±0.1 500	SCHACHT	74	STRC	5.5–18 γ <i>p</i>	$\rightarrow p 4\pi$
0.80	⁺ BINGHAM	72B	HBC	9.3 $\gamma p \rightarrow$	$p4\pi$
¹ The $\pi\pi$ system is in <i>S</i> -wave					
$\Gamma(\rho^0 \pi^0 \pi^0) / \Gamma(\rho^{\pm} \pi^{\mp} \pi^0)$					Γ_5/Γ_6
VALUE	DOCUMENT ID	TE	<u>ECN</u> CI	HG COMME	NT OF
• • • We do not use the follow	ing data for average	es, fits,	limits,	etc. • • •	
<0.10	ATKINSON 8	5B O	MEG	20–70 -	γ ρ
<0.15	ATKINSON 8	2 0	MEG 0	20-70 <	$\gamma p \rightarrow p 4\pi$
$\Gamma(a_1(1260)\pi)/\Gamma(4\pi)$					Γ_7/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use the follow	ing data for average	es, fits,	limits,	etc. • • •	
0.16 ± 0.05	¹ ABELE	01 B	CBAR	$0.0 \ \overline{p} n \rightarrow$	5π
$^1\omega\pi$ not included.					
$\Gamma(h_1(1170)\pi)/\Gamma(4\pi)$					Γ_8/Γ_1
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
$\bullet \bullet \bullet$ We do not use the follow	ing data for average	es, fits,	limits,	etc. ● ● ●	
0.17 ± 0.06	¹ ABELE	01 B	CBAR	$0.0 \ \overline{p} n \rightarrow$	5π
$^1\omega\pi$ not included.					
$\Gamma(\pi(1300)\pi)/\Gamma(4\pi)$					
VALUE	DOCUMENT ID		TECN	COMMENT	'9/'1
• • • We do not use the follow	ing data for average	es, fits,	limits,	etc. • • •	
$0.30 {\pm} 0.10$	¹ ABELE	01 B	CBAR	$0.0 \overline{p}n \rightarrow$	5π
$1_{\omega\pi}$ not included.				1	
$\Gamma(\rho\rho)/\Gamma(4\pi)$					Γ ₁₀ /Γ ₁
VALUE	DOCUMENT ID	<i>C</i> .	<u>TECN</u>	<u>COMMENT</u>	
• • • We do not use the follow	ing data for average	es, fits,	limits,	etc. ● ● ●	_
0.09±0.03	⁺ ABELE	01 B	CBAR	$0.0 \ \overline{p} n \rightarrow$	5π
$^{\mathbf{L}}\omega\pi$ not included.					
https://pdg.lbl.gov	Page 15		Crea	ated: 6/1/	2021 08:31

$\Gamma(\pi^+\pi^-)/\Gamma_{total}$				Г ₁₁ /Г
VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follo	wing data for average	s, fits,	limits, e	etc. • • •
$0.108 \!\pm\! 0.017 \!+\! 0.162 \\ -\! 0.004$	¹ ALBRECHT	20	RVUE	$0.9 \overline{p} p \rightarrow K^+ K^- \pi^0$
$0.287 \substack{+0.043 \\ -0.042}$	BECKER	79	ASPK	17 $\pi^- p$ polarized
0.15 to 0.30	² MARTIN	78C	RVUE	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
<0.20	³ COSTA	77 B	RVUE	$e^+e^- ightarrow 2\pi$, 4π
0.30 ± 0.05	² FROGGATT	77	RVUE	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
<0.15	⁴ EISENBERG	73	HBC	$5 \pi^+ p \rightarrow \Delta^{++} 2\pi$
0.25 ± 0.05	⁵ HYAMS	73	ASPK	$17 \pi^- p \rightarrow \pi^+ \pi^- n$
¹ Residue from T-matrix pole	e 2 poles 3 channels	Chew-	-Mandel	stam functions and simpli-

¹ Residue from T-matrix pole, 2 poles, 3 channels, Chew-Mandelstam functions and simplified analytic continuation for the 4π channel. Includes scattering data from HYAMS 75 and model-independent calculation of GARCIA-MARTIN 11A.

 2 From phase shift analysis of HYAMS 73 data.

³Estimate using unitarity, time reversal invariance, Breit-Wigner.

⁴Estimated using one-pion-exchange model.

⁵ Included in BECKER 79 analysis.

$\Gamma(K\overline{K})/\Gamma_{\text{total}}$

Γ₁₆/Γ

RVUE 0.9 $\bar{p}p \rightarrow K^+ K^- \pi^0$

• • • We do not use the following data for averages, fits, limits, etc. • •

0.007 ± 0.006	+0.041
0.007 ± 0.000	-0.002

¹ Residue from T-matrix pole, 2 poles, 3 channels, Chew-Mandelstam functions and simplified analytic continuation for the 4π channel. Includes scattering data from HYAMS 75 and model-independent calculation of GARCIA-MARTIN 11A.

¹ ALBRECHT

DOCUMENT ID TECN COMMENT

20

$$\Gamma(\pi^+\pi^-)/\Gamma(2(\pi^+\pi^-))$$

VALUE	DOCUMENT ID		<u>TECN</u> COMMENT	
\bullet \bullet \bullet We do not use the fol	lowing data for average	s, fits,	, limits, etc. • • •	
$0.13 {\pm} 0.05$	ASTON	80	OMEG 20–70 $\gamma p ightarrow p2\pi$	
<0.14	¹ DAVIER	73	STRC 6-18 $\gamma p ightarrow p 4 \pi$	
<0.2	² BINGHAM	72 B	HBC 9.3 $\gamma p \rightarrow p 2\pi$	
1				

_ _ _

¹Upper limit is estimate.

 $^22\sigma$ upper limit.

$\Gamma(\pi\pi)/\Gamma(4\pi)$

Γ_{12}/Γ_1

 Γ_{13}/Γ

 Γ_{11}/Γ_2

VALUEDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • • • 0.16 ± 0.04 1.2 ABELE01BCBAR $0.0 \ \overline{p} n \rightarrow 5\pi$ 1 Using ABELE 97.

 $^{2}\omega\pi$ not included.

$\Gamma(\overline{K} \overline{K}^*(892) + c.c.)/\Gamma_{total}$

VALUEDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • •possibly seenCOAN04CLEO $\tau^- \rightarrow K^- \pi^- K^+ \nu_{\tau}$

 $\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma(2(\pi^+\pi^-))$ Γ_{13}/Γ_2 VALUE TECN COMMENT DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ DELCOURT 81B DM1 0.15 ± 0.03 $e^+e^- \rightarrow \overline{K}K\pi$ ¹Assuming $\rho(1700)$ and ω radial excitations to be degenerate in mass. $\Gamma(\eta \rho) / \Gamma_{\text{total}}$ Γ_{14}/Γ CL% DOCUMENT ID TECN COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • AKHMETSHIN 00D CMD2 $e^+e^- \rightarrow \eta \pi^+\pi^$ possibly seen DONNACHIE 87B RVUE < 0.04 < 0.02 58 ATKINSON 86B OMEG 20-70 γ p $\Gamma(\eta \rho) / \Gamma(2(\pi^+ \pi^-))$ Γ_{14}/Γ_2 DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • DELCOURT 82 DM1 $e^+e^- \rightarrow \pi^+\pi^-MM$ 0.123 ± 0.027 ~ 0.1 ASTON 80 OMEG 20-70 γ p $(\Gamma_5 + \Gamma_6 + 0.714\Gamma_{14})/\Gamma_2$ $\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma(2(\pi^+\pi^-))$ TECN COMMENT DOCUMENT ID VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ BALLAM 74 HBC 9.3 γ p 2.6 ± 0.4 ¹Upper limit. Background not subtracted. $\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}$ Γ_{15}/Γ DOCUMENT ID TECN COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • $37 \pi^- p \rightarrow n\pi^+ \pi^- n$ not seen AMELIN 00 VES $\Gamma(K\overline{K})/\Gamma(2(\pi^+\pi^-))$ Γ_{16}/Γ_2 DOCUMENT ID TECN CHG COMMENT VALUE CL% • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ DELCOURT 81B DM1 $e^+e^- \rightarrow \overline{K}K$ 0.015 ± 0.010 < 0.04 95 BINGHAM 72B HBC 0 $9.3 \gamma p$ ¹Assuming $\rho(1700)$ and ω radial excitations to be degenerate in mass. $\Gamma(K\overline{K})/\Gamma(K\overline{K}^*(892)+c.c.)$ Γ_{16}/Γ_{13} <u>VALU</u>E DOCUMENT ID _____ TECN _____ COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $e^+e^- \rightarrow hadrons$ 0.052 ± 0.026 BUON 82 DM1 $\Gamma(\pi^0\omega)/\Gamma_{\rm total}$ Γ_{18}/Γ DOCUMENT ID TECN COMMENT EVTS VALUE • We do not use the following data for averages, fits, limits, etc. • • • BELL $\overline{B}^0 \rightarrow D^{*+} \omega \pi^-$ MATVIENKO 15 not seen $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$ SND ACHASOV 12 seen 1.6k AKHMETSHIN 03B CMD2 $e^+e \rightarrow \pi^0 \pi^0 \gamma$ 2382 not seen 97 RVUE $e^+e^- \rightarrow \omega \pi^0$ ACHASOV seen https://pdg.lbl.gov Page 17 Created: 6/1/2021 08:31

$\Gamma(\pi^{0}\gamma)/\Gamma_{ ext{total}}$				Г ₁₉ /Г	•
VALUE	DOCUMENT ID		TECN	COMMENT	
not seen	¹ ACHASOV	10 D	SND	1.075–2.0 $e^+e^- \rightarrow \pi^0 \gamma$	

not seen

 $^1\,{\rm From}$ a fit of a VMD model with two effective resonances with masses of 1450 MeV and 1700 MeV to describe the excited vector states $\omega(1420), \ \rho(1450), \ \omega(1650),$ and $\rho(1700)$. The width of the highest mass effective resonance is fixed at 315 MeV.

$\rho(1700)$ REFERENCES

ALBRECHT GRIBANOV ACHASOV LEES BARTOS BARTOS LEES AAIJ ABLIKIM ACHASOV AULCHENKO MATVIENKO ACHASOV ABRAMOWICZ	20 20 18 17 17A 17C 16N 16C 16D 15 15 13 12	EPJ C80 453 JHEP 2001 112 PR D97 012008 PR D97 052007 PR D96 113004 IJMP A32 1750154 PR D95 072007 PR D93 052018 PL B753 629 PR D94 112001 PR D91 052013 PR D92 012013 PR D88 054013 EPJ C72 1869	M. Albrecht et al. S.S. Gribanov et al. M.N. Achasov et al. J.P. Lees et al. E. Bartos et al. J.P. Lees et al. J.P. Lees et al. M. Aaij et al. M. Ablikim et al. M.N. Achasov et al. D. Matvienko et al. M.N. Achasov et al. H. Abramowicz et al.	(Crystal Barrel Collab.) (CMD-3 Collab.) (SND Collab.) (BABAR Collab.) (LHCb Collab.) (BESIII Collab.) (SND Collab.) (BELLE Collab.) (SND Collab.) (SND Collab.) (ZEUS Collab.)		
ACHASOV	12	JETPL 94 734	M.N. Achasov <i>et al.</i>			
IEES	120	Iranslated from ZEIFP 9	4 /96.	(PARAR Collab)		
	12G 11A	PR D60 032013 PL B700 102	J.F. Lees <i>et al.</i> E Ambrosino <i>et al</i>	(BADAR Collab.)		
GARCIA-MAR	11A 11A	PR D83 074004	R Garcia-Martin <i>et al</i>	(MADR CRAC)		
ACHASOV	10D	PR D98 112001	M.N. Achasov <i>et al.</i>	(SND Collab.)		
DUBNICKA	10	APS 60 1	S. Dubnicka, A.Z. Dubnicko	icka. A.Z. Dubnickova		
AUBERT	09AS	PRL 103 231801	B. Aubert <i>et al.</i>	(BABAR Collab.)		
FUJIKAWA	08	PR D78 072006	M. Fujikawa <i>et al.</i>	(BELLE Collab.)		
AKHMETSHIN	07	PL B648 28	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)		
ACHASOV	06	JETP 103 380	M.N. Achasov et al.	(Novosibirsk SND Collab.)		
Translated from ZETF 130 437.						
	04	PRL 92 232001	I.E. Coan <i>et al.</i>	(CLEU Collab.)		
	04 02 P	PL D370 290 DI D563 172	P.L. Fradelli <i>el al.</i>	(Novesibirsk CMD 2 Collab.)		
	03B 01B	FL 0502 175 FDL C21 261	A Abolo of al	(Rovosibirsk CMD-2 Collab.)		
	010	PI B486 20	M N Achasov et al	(Novosibirsk SND Collab.)		
		PL B489 125	R R Akhmetshin et al	(Novosibirsk CMD-2 Collab.)		
AMELIN	00	NP A668 83	D. Amelin <i>et al.</i>	(VES Collab.)		
EDWARDS	00A	PR D61 072003	K.W. Edwards <i>et al.</i>	(CLEO Collab.)		
ABELE	99D	PL B468 178	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)		
ABELE	97	PL B391 191	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)		
ACHASOV	97	PR D55 2663	N.N. Achasov <i>et al.</i>	(NOVM)		
BERTIN	97C	PL B408 476	A. Bertin <i>et al.</i>	(OBELIX Collab.)		
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC, MCHS)		
CLEGG	90	ZPHY C45 677	A.B. Clegg, A. Donnachie	(LANC, MCHS)		
KUHN	90	ZPHY C48 445	J.H. Kuhn <i>et al.</i>	(MPIM)		
BISELLO	89	PL B220 321	D. Bisello <i>et al.</i>	(DM2 Collab.)		
DUBNICKA	89	JP G15 1349	S. Dubnicka <i>et al.</i>	(JINR, SLOV)		
GESHKEN	89	ZPHY C45 351	B.V. Geshkenbein	(ITEP)		
ANTONELLI	88	PL B212 133	A. Antonelli <i>et al.</i>	(DM2 Collab.)		
DIEKMAN	88	PRPL 159 99	B. Diekmann			
	88	PL B202 441	S. Fukui <i>et al.</i> (SUGI, NAGO, KEK, KYOI+)		
	01 D 06 D	ZPHT C34 257 ZDHV C20 521	A. Donnachie, A.B. Clegg			
	85B	ZPHY C26 400	M Atkinson et al	(BONN, CERN, GLAS+)		
FRKAI	85	ZPHY C20 485	C Erkal M.G. Olsson			
ABE	84B	PRI 53 751	K Abe et al	(SLAC HEP Collab.)		
KURDADZE	83	JETPL 37 733	L.M. Kurdadze <i>et al.</i>	(NOVO)		
_	-	Translated from ZETFP 3	57 613.	(
ATKINSON	82	PL 108B 55	M. Atkinson <i>et al.</i>	(BONN, CERN, GLAS+)		
BUON	82	PL 118B 221	J. Buon <i>et al.</i>	(LALO, MONP)		
CLELAND	82B	NP B208 228	W.E. Cleland <i>et al.</i>	(DURH, GEVA, LAUS+)		
CORDIER	82	PL 109B 129	A. Cordier <i>et al.</i>	(LALO)		
DELCOURT	82	PL 113R 93	B. Delcourt <i>et al.</i>	(LALO)		

https://pdg.lbl.gov

Created: 6/1/2021 08:31

ASTON	81E	NP B189 15	D. Aston (BONN, CERN,	EPOL, GLAS, LANC+)
DELCOURT	81B	Bonn Conf. 205	B. Delcourt	(ORSAY)
Also		PL 109B 129	A. Cordier <i>et al.</i>	(LALO)
DIBIANCA	81	PR D23 595	F.A. di Bianca <i>et al.</i>	(CASE, CMU)
ASTON	80	PL 92B 215	D. Aston (BONN, CERN,	EPOL, GĽAS, LANC+)
BACCI	80	PL 95B 139	C. Bacci <i>et al.</i>	(ROMA, FRAS)
BIZOT	80	Madison Conf. 546	J.C. Bizot <i>et al.</i>	(LALO, MONP)
KILLIAN	80	PR D21 3005	T.J. Killian <i>et al.</i>	(CORN)
ATIYA	79B	PRL 43 1691	M.S. Atiya <i>et al.</i>	(COLU, ILL, FNAL)
BECKER	79	NP B151 46	H. Becker <i>et al.</i> (MPIM,	CERN, ZEEM, CRAC)
LANG	79	PR D19 956	C.B. Lang, A. Mas-Parareda	(GRAZ)
MARTIN	78C	ANP 114 1	A.D. Martin, M.R. Pennington	(CERN)
COSTA	77B	PL 71B 345	B. Costa de Beauregard, B. Pire,	T.N. Truong (EPOL)
FROGGATT	77	NP B129 89	C.D. Froggatt, J.L. Petersen	(GLAS, NORD)
ALEXANDER	75	PL 57B 487	G. Alexander <i>et al.</i>	(TELA)
HYAMS	75	NP B100 205	B.D. Hyams <i>et al.</i>	(CERN, MPIM)
BALLAM	74	NP B76 375	J. Ballam <i>et al.</i>	(SLAC, LBL, MPIM)
CONVERSI	74	PL 52B 493	M. Conversi <i>et al.</i>	(ROMA, FRAS)
SCHACHT	74	NP B81 205	P. Schacht <i>et al.</i>	(MPIM)
DAVIER	73	NP B58 31	M. Davier <i>et al.</i>	(SLAC)
EISENBERG	73	PL 43B 149	Y. Eisenberg <i>et al.</i>	(REHO)
HYAMS	73	NP B64 134	B.D. Hyams <i>et al.</i>	(CERN, MPIM)
BINGHAM	72B	PL 41B 635	H.H. Bingham <i>et al.</i>	(LBL, UCB, SLAC) IGJP
JACOB	72	PR D5 1847	M. Jacob, R. Slansky	
GOUNARIS	68	PRL 21 244	G.J. Gounaris, J.J. Sakurai	