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General-purpose Monte Carlo (GPMC) generators like HERWIG [1–3], PYTHIA [4,5], and SHERPA
[6], provide detailed simulations of high-energy collisions. They play an essential role in QCD
modeling (in particular for aspects beyond fixed-order perturbative QCD) and in data analysis and
the planning of new experiments, where they are used together with detector simulation to estimate
signals and backgrounds in high-energy processes. They are built from several components, that
describe the physics starting from very short distance scales, up to the typical scale of hadron
formation and decay. Since QCD is weakly interacting at short distances (below a femtometer),
the components of the GPMC dealing with short-distance physics are based upon perturbation
theory. At larger distances, all soft hadronic phenomena, like hadronization and the formation of
the underlying event in hadron collisions, cannot be computed from first principles at present, and
one must rely upon QCD-inspired models.

The purpose of this review is to illustrate the main components of these generators. It is
divided into four sections. The first one deals with short-distance, perturbative phenomena. The
basic concepts leading to the simulations of the dominant QCD processes are illustrated here. In the
second section, the nonperturbative transition from partons to hadrons (“hadronization”) is treated.
The two most popular hadronization models, the string and cluster models, are illustrated. The
basics of the implementation of decay chains of unstable “primary” hadrons into stable “secondaries”
is also illustrated here. In the third section, models for soft hadron physics are discussed. These
include models for the underlying event and for low-p⊥ (“minimum-bias”) interactions. Issues of
collective effects, such as Bose-Einstein and color-reconnection effects, are also discussed here. The
fourth section briefly introduces the challenges of MC uncertainty estimates and tuning.

We use natural units throughout, such that c = 1 and } = 1, with energies, momenta and
masses measured in GeV, and times and distances measured in GeV−1.

43.1 Short-distance physics in GPMC generators
The short-distance components of a GPMC generator deal with the computation of the primary

process at hand, with decays of short-lived particles, and with the generation of QCD and QED
radiation. QCD radiation is computable in perturbation theory as long as the time scales involved
are well below 1/Λ, where Λ is a typical hadronic scale of few hundred MeV. Because of the
presence of logarithmic enhancements due to both collinear and soft emissions, this description
involves an indefinite number of final-state particles that are emitted at time scales below 1/Λ. In
e+e− annihilation into hadrons, for example, the time scale of the primary process is of the order of
the inverse of the annihilation energy Q. Collinear and soft emissions take place at all time scales
between 1/Q and 1/Λ, Technically, the computation of the dominant collinear and soft radiation is
carried out by the so called shower algorithms. Historically, “Parton Shower” algorithms were first
developed for resummation of collinear singularities. We will briefly describe this approach in this
section. We stress, however, that many modern generators adopt approaches that focus initially
upon soft singularities, leading to “Dipole Showers”, discussed in Sec. 43.1.3.

Collinear singularities arise when the angle between two emitted light partons becomes small.
For example, in a process in which a quark and a gluon are emitted, if the angle θ among them is
very small (and is smaller than the angles among all other pairs of light partons in the process) the
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squared amplitude factorizes as follows

|Mqg|2dΦqg ≈ |Mq|2 dΦq
αs
2πPq,qg(z)dz

dφ
2π

dθ2

θ2 (43.1)

whereMqg, dΦqg are the amplitude and phase space when both the gluon and the quark are emitted;
Mq, dΦq are the amplitude and phase space when only the quark is emitted; z = Eq/(Eq + Eg) is
the fraction of energy carried by the quark; φ is the azimuth of the splitting plane, and Pq,qg(z) =
CF (1 + z2)/(1− z) is the Altarelli-Parisi splitting kernel for gluon emission from a quark line, with
color factor CF = 4/3. The factorized form of Eq. (43.1) is due to the fact that for small angle
the process is dominated by a single amplitude in which the splitting quark is almost on shell and
hence propagates for long distances. We define the energy scale corresponding to the inverse of
this distance as the hardness of the splitting process, so that larger hardness corresponds to shorter
distance. We can define the hardness t as the product E2θ2, or as the virtuality of the splitting
parton p2, or as a measure of the relative transverse momentum in the splitting such as the kt of
an emitted parton relative to its parent, defined by

p2 = 2E2z(1− z)(1− cos θ) ≈ z(1− z)E2θ2 , k2
t = z2(1− z)2E2θ2 . (43.2)

If the region of small values of z and 1 − z was not important, these definitions would be equiv-
alent. In QCD we also have soft divergences, arising when soft gluons are emitted. In Eq. (43.1)
they appear as z → 1, because of the 1/(1 − z) singularity of Pq,qg(z). Thus, we expect that the
choice of the appropriate ordering variable will be relevant when dealing with soft divergences (see
Sec. 43.3). The dθ2/θ2 factor in Eq. (43.1) can be equivalently written in terms of the hardness
dt/t. After integration, it gives rise to a logarithmic factor log(Q2/Λ2). We can have many subse-
quent splittings, that we can describe by applying Eq. (43.1) recursively, as long as the splittings
are strongly ordered in decreasing hardness. This means that, from a typical final-state configura-
tion, by clustering together final-state parton pairs with the smallest hardness recursively, we can
reconstruct a branching tree, that may be viewed as the splitting history of the event. We stress
that all hardness values between the hardness of the primary process and the cutoff scale Λ are
equally involved here. The collinear approximation is applied recursively to splitting processes that
have much smaller hardness with respect to all previous ones.

By integrating over the phase space, a process with n collinear splittings will be of order
(αS(Q2) log(Q2/Λ2))n with respect to the primary process. Since αS(Q2) ∝ 1/ log(Q2/Λ2) [7],
these corrections are not small. The so-called KLN theorem [8,9] guarantees that large logarithmic
enhancements arising from final-state collinear splitting cancel against the virtual corrections in
inclusive cross sections, order by order in perturbation theory. Furthermore, the factorization
theorem guarantees that initial-state collinear singularities can be factorized into the parton density
functions (PDFs) [7]. Therefore, the cross section for the basic process remains accurate up to
corrections of higher orders in αS(Q), provided it is interpreted as an inclusive cross section, rather
than as a bare partonic cross section. For example, the leading order (LO) cross section for
e+e− → qq̄ is a good LO estimate of the e+e− cross section for the production of a pair of quarks
accompanied by an arbitrary number of collinear and soft gluons, but is not a good estimate of the
cross section for the production of a qq̄ pair with no extra radiation. In summary, perturbation
theory at fixed order can yield increasingly accurate predictions for inclusive observables, but cannot
be used to describe the indefinite sequence of collinear and soft radiations that accompany the hard
partons.

Parton-Shower algorithms are used to compute the cross section for generic hard processes
including all dominant collinear radiation. These algorithms begin with the generation of the
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kinematics of the basic process, performed with a probability proportional to its LO partonic cross
section. This is interpreted physically as the inclusive cross section for the basic process, followed
by an arbitrary sequence of shower splittings. The algorithm then assigns a probability to each
splitting sequence, so that the initial LO cross section is partitioned into the cross sections for a
multitude of final states of arbitrary multiplicity, with their sum equal to the cross section of the
primary process. This property of the GPMCs reflects the KLN cancellation mentioned earlier,
and it is often called “unitarity of the shower process”, a name that reminds us that the KLN
cancellation itself is a consequence of unitarity. The fact that a quantum mechanical process can
be described in terms of composition of probabilities, rather than amplitudes, follows from the
collinear approximation. In fact, because of strong ordering, a radiated parton cannot be collinear
to more than one parton in the amplitude, and this suppresses interference effects.

We now illustrate the basic parton-shower algorithm, as first introduced in Ref. [10]. (For more
pedagogical introductions see Ref. [11] and references therein.) For simplicity, we consider the
example of e+e− annihilation into qq̄ pairs, where we only have to deal with final state radiation
(FSR). We consider all final states that can be built by dressing the q and q̄ partons with an
indefinite number of splitting processes. By recursively clustering together final state parton pairs
with the smallest relative hardness, from each final state configuration we can construct two trees
rooted at the q and q̄ partons. The momenta of all intermediate lines of the tree diagrams are
then uniquely determined from the final-state momenta. Hardnesses in the trees are ordered. One
assigns to each splitting vertex the hardness t, the energy fractions z and 1−z of the two generated
partons, and the azimuth φ of the splitting process with respect to the momentum of the incoming
parton. For definiteness, we assume that z and φ are defined in the center-of-mass (CM) frame of
the e+e− collision. The differential cross section for a given final state is given by the product of
the differential cross section for the initial e+e− → qq̄ process, multiplied by a factor

∆i(tm, tn)αS(t)
2π Pi,jk(z)

dtm
tm

dz
dφ

2π (43.3)

for each intermediate line arising from the nth and ending in the mth splitting vertex. ∆(tm, tn) is
the so-called Sudakov form factor

∆i(tm, tn) = exp

− ∫ tn

tm

dq2

q2
αS(q2)

2π
∑
jk

Pi,jk(z)dz
dφ

2π

 . (43.4)

The suffixes i and jk represent the parton species of the incoming and final partons, respectively,
and Pi,jk(z) are the Altarelli-Parisi [12] splitting kernels. Notice that the endpoints on the z
integration depend upon the definition of hardness. For example, in case of virtuality or transverse
momentum ordering, the z integration is automatically cut-off near the extremes, see eq. (1.2).
When this is not the case (as, for example, for angular ordering) an explicit cut-off on z must be
introduced, corresponding to the requirement that an emission must have some minimum energy
to be distinguishable from no emission. For lines originating at the primary vertex, the scale tn
is replaced by the typical scale of the primary process and for lines ending without any further
splitting the scale tm is replaced by t0, an infrared cutoff defined by the shower hadronization scale
(at which the charges are screened by hadronization) or, for an unstable particle, its width (a source
cannot emit radiation with a period exceeding its lifetime).

Eq. (43.3) can be obtained by iterating formula Eq. (43.1) recursively, with two important
corrections: a) the strong coupling is evaluated at a scale corresponding to the hardness of the
splitting process; b) the presence of the Sudakov form factor. Both these modifications arise from
the inclusion of all collinear-dominant virtual corrections.
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Notice that the Sudakov form factor for a small hardness interval ∆i(t, t + δt) is equal to one
minus the integrated emission probability of Eq. (43.3), i.e. it can be interpreted as the probability
of no emission in the interval t, t + δt. From this, it immediately follows that ∆i(tm, tn) can be
interpreted as the no-emission probability in the full tm, tn interval. This interpretation allows to
formulate the shower process as a probabilistic algorithm. We first notice that 0 < ∆i(tm, tn) ≤ 1,
where the upper extreme is reached for tm = tn, and the lower extreme is approached for tm = t0.
Starting from each of the partons in the primary process (e.g., e+e− → qq̄), event generation then
proceeds recursively as follows. Given a parton exiting a vertex with hardness tn, (taken to be
of order the annihilation scale Q2 for the first branching) one seeks a solution of the equation
r = ∆i(tm, tn), with r ∈ [0, 1] a uniform random number, and solves it for the hardness of the next
branching tm. If tm ≤ t0, no splitting is generated and the line is interpreted as a final parton.
If tm > t0, a branching is generated at the scale tm. Its z value and the final parton species
jk are generated with a probability proportional to Pi,jk(z). The azimuth is generated uniformly,
neglecting angular correlations (see Sec. 43.1.1). This procedure is started with each of the primary
process partons, and is applied recursively to all generated partons. It may generate an arbitrary
number of partons, and it stops when no final-state partons undergo further splitting.

The four-momenta of the final-state partons are reconstructed from the momenta of the initial
ones, and from the whole sequence of splitting variables, subject to overall momentum conser-
vation. Different algorithms employ different strategies to treat recoil effects due to momentum
conservation, which may be applied either locally for each splitting, or globally for the entire set of
partons (a procedure called momentum reshuffling.) This has a subleading effect with respect to
the collinear approximation.

We emphasize that the shower cross sections described above can be derived from perturbative
QCD by keeping only the collinear-dominant real and virtual contributions to the cross section.
As such it is unpredictive for large-angle radiation. It is thus unsafe to rely upon Parton Shower
Monte Carlo alone to compute backgrounds to new physics signals that are characterized by several
widely separated jets.

A Shower Monte Carlo builds its final state as if it developed from an iterative process, often
with each intermediate stage made available to the user. It should be remarked that the meaning
of these intermediate stages is only relevant within the approximation adopted by the generator,
and could also differ in different implementations.

43.1.1 Angular correlations
In gluon-splitting processes (g → qq̄, g → gg) in the collinear approximation, the distribution

of the split pair is not uniform in azimuth, and the Altarelli-Parisi splitting functions are recovered
only after azimuthal averaging. This dependence is due to the interference of positive and negative
helicity states for the gluon that undergoes splitting. Spin correlations propagate through the
splitting process, and determine acausal correlations of the EPR kind [13]. A method to partially
account for these effects was introduced in Ref. [14], in which the azimuthal correlation between
two successive splittings is computed by averaging over polarizations. This can then be applied
at each branching step. Acausal correlations are argued to be small, and are discarded with this
method, that is still used in PYTHIA [4]. A method that fully includes spin correlation effects was
later proposed [15], and has been implemented in HERWIG [3, 16].

43.1.2 Initial-state radiation
Initial-state radiation (ISR) arises because incoming particles may undergo collinear radiation

before entering the hard-scattering process. In doing so, they acquire a non-vanishing transverse
momentum, and their virtuality becomes negative (spacelike). It turns out to be convenient to
develop the ISR shower starting with the highest hardness (i.e. with the hard process) and ending

1st December, 2021



5 43. Monte Carlo Event Generators

with the smallest (i.e. with the incoming parton in the hadron). Unlike the case of FSR, however,
hardness ordering is opposite to time ordering in the ISR case. A corresponding backwards-evolution
algorithm was formulated by Sjöstrand [17], and was basically adopted in all shower models. It can
be illustrated by considering a primary interaction initiated by a quark where no collinear emission
of hardness ≥ t have taken place, and the same process where the quark also emits a collinear gluon
of hardness t. The respective cross sections are proportional to

|Mq(x)|2dxfq(x, t), and |Mq(x)|2 dxαs(t)2π fq(x/z, t)Pq,qg(z)dz
dŒ
2π

dt
t
. (43.5)

Here fq is the quark PDF in the incoming hadron, x is the fraction of momentum of the incoming
quark that enters the basic process, while x/z is the fraction of momentum of the incoming quark
before it emits the collinear gluon. The elementary emission probability is the ratio of the second
over the first expression in Eq. (43.5). In analogy with the final state radiation case, this ratio
will appear in the exponent of the Sudakov form factor, that (after the inclusion of all splitting
subprocesses) is given by

∆ISR
i (t, t′) = exp

− ∫ t

t′

dt′′

t′′
αS(t′′)

2π

∫ 1

x

dz

z

∑
jk

Pj,ik(z)
fj(t′′, x/z)
fi(t′′, x)

 . (43.6)

Notice that there are two uses of the PDFs: they are used to compute the cross section for the
basic hard process, and they control ISR via backward evolution. Since the evolution is generated
with leading-logarithmic accuracy, it is acceptable to use two different PDF sets for these two tasks,
provided they agree at the LO level.

In the context of GPMC evolution, each ISR emission generates a finite amount of transverse
momentum. Details on how the recoils generated by these transverse “kicks” are distributed among
other partons in the event, in particular the ones involved in the hard process, constitute one of
the main areas of difference between existing algorithms, see Ref. [11]. An additional O(1 GeV)
of “primordial kT ” is typically added, to represent the sum of unresolved and/or non-perturbative
motion below the shower cutoff scale.
43.1.3 Soft emissions and QCD coherence

Soft singularities arise in QCD due to the real or virtual emission of soft gluons. For example,
the cross section for the emission of a soft gluon in e+e− annihilation into hadrons is given by

dσqq̄g ≈ dσqq̄
4
3(4παs)

[
2 pq · pq̄
pq · l pq̄ · l

]
d3l

2l0(2π)3 = dσqq̄
αs
2π

4
3

dl0

l0
dφ
2π

d cos θ
1− cos2 θ

, (43.7)

where pq, pq̄ and l are the quark, antiquark and gluon momentum, and θ and φ are the polar and
azimuthal angle of the gluon momentum with respect to the quark direction. Since the gluon is
soft, we may assume that pq and pq̄ are unaffected by the gluon emission. The soft singularity
is manifest in the dl0/l0 factor. Notice that also collinear singularities are present at the same
time when θ → 0 and θ → π, corresponding to the gluon becoming collinear to either the quark
or the antiquark. It is easy to check that in the collinear limits Eq. (43.7) becomes equivalent to
Eq. (43.1) with Pq,qg(z) = (4/3)2/(1 − z), i.e. the limiting form of Pq,qg(z) when z approaches
1. Thus, soft singularities coexist with collinear ones, so that two potentially large logarithms can
arise simultaneously due to gluon emission.

Unlike the case of collinear emission, soft emission is not tied to a single emitting particle.
The amplitude for the emission of a soft gluon from an external (incoming or outgoing) line with
momentum p is proportional to p · ε/p · l. When squaring the amplitude, products like the one
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appearing in the square bracket of Eq. (43.1) arise for all pairs of external particles, with the
product of a single emission amplitude with itself appearing only if p2 > 0, i.e. for massive
colored particles. Thus, interference plays here a crucial role. This is unlike the case of collinear
singularities, where because of strong ordering a radiated parton cannot be collinear to more than
one other parton.

It was shown in a set of publications (see Ref. [18]) that, within the conventional parton-
shower formalism based on collinear factorization, the region of collinear and soft emissions can
be correctly described by using the angle of the emissions as the ordering variable, rather than
the virtuality, and by setting the argument of αS at the splitting vertex equal to the relative
parton transverse momentum after the splitting. Physically, the ordering in angle approximates
the coherent interference arising from large-angle soft emission from a bunch of collinear partons.
Without this effect, the particle multiplicity would grow too rapidly with energy, in conflict with
e+e− data. For this reason, angular ordering is used as the default evolution variable in all versions
of HERWIG (see Ref. [19]). To partially account for soft interference effects, an angular veto is
imposed on the virtuality-ordered evolution in PYTHIA 6 [20].

A radical alternative formulation of QCD cascades first proposed in Ref. [21] focuses upon
soft emission, rather than collinear emission, as the basic splitting mechanism. It then becomes
natural to consider a branching process where it is a parton pair (i.e. a dipole) rather than a
single parton, that emits a soft parton. Adding a suitable correction for non-soft, collinear partons,
one can simultaneously achieve the correct logarithmic structure for both the collinear and soft
emissions in the so called leading color approximation, i.e. when terms suppressed by a power of
the number of colors are neglected. The ARIADNE [22] and VINCIA [23] programs are based on this
approach. Dipole-type showers [24] are also used by default in SHERPA [25] and exist as an option in
HERWIG [26]. An alternative dipole-based model is available in PYTHIA and SHERPA via the DIRE [27]
plugin. The p⊥-ordered showers in PYTHIA 6 and 8 represent a hybrid, combining collinear splitting
kernels with dipole kinematics [28].
43.1.4 Resummation

Shower Monte Carlo generators perform resummation of all-order collinear- and/or soft-enhanced
perturbative contributions, and it is thus natural to compare them to QCD resummation calcu-
lations [7]. The latter start from the definition of specific infrared-safe observables, that develop
towers of large logarithms in certain regions of phase space, typically organized as

A(αS) exp[Lg0(αSL) + g1(αSL) + g2(αSL) + . . .] (43.8)

where L is the large logarithm, αS is the strong coupling constant evaluated at some hard scale,
and the functions A and gi have an all-order expansion in their arguments. We talk about NnLL
accuracy if all gi functions for i ≤ n have been computed correctly in the resummation formula.
In particular we talk about LL accuracy if the function g0 is given correctly, NLL accuracy if g2 is
correct, and so on.

In general, a dedicated resummation calculation must be performed for each new observable.
The predictions of shower MCs, on the other hand, are cast in terms of complete sets of final-state
momenta, on which one can evaluate any observable; i.e., the shower algorithm itself is normally
independent of the specific observable(s) under study. Because of this, it is not easy to qualifying
the accuracy of a shower MC using the same criteria adopted in resummation calculation. In spite
of this fact, shower MCs perform generally quite well in the description of observables that require
resummation. This is related to their inclusion of several universal but formally subleading aspects.
There is no guarantee, however, that the shower MC should perform to a certain level of accuracy
for all distributions that require resummation. Thus, a more systematic treatment of subleading
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effects is quite desirable.
Several studies have appeared in the literature, aiming at either improving the current shower

algorithms or formulate totally new ones, in such a way that the theoretical accuracy can be
discussed in more precise terms [29–34]. In particular, in refs [29–31] (the PanScales collaboration),
it was shown that criteria for defining the accuracy of Shower Generators can indeed be given on a
quite general ground. They identified two such criteria: the first one regards the multi-parton real
matrix-elements generated by the shower algorithm, that are required to be accurate in the region
of phase space that are relevant for NnLL accuracy. The second one regards the implementation
of the virtual corrections, and it requires that for a large class of shape variables the shower MC
must agree with the resummed calculation at the NnLL level. The PanScale collaboration has also
constructed shower algorithms that, at least in the leading color approximation, are NLL accurate
according to these criteria.

43.1.5 Massive quarks
Quark masses act as a cut-off on collinear singularities. If the mass of a quark is below, or of the

order of Λ, its effect in the shower is small. For larger quark masses, like in c, b, or t production, it is
the mass, rather than the typical hadronic scale, that cuts off collinear radiation. For a quark with
energy E and mass mQ, the divergent behavior dθ/θ of the collinear splitting process is regulated
for θ ≤ θ0 = mQ/E. We thus expect less collinear activity for heavy quarks than for light ones,
which in turn is the reason why heavy quarks carry a larger fraction of the momentum acquired in
the hard production process.

This feature can be implemented with different levels of sophistication. Using the fact that soft
emission exhibits a zero at zero emission angle, older parton shower algorithms simply limited the
shower emission to be not smaller than the angle θ0. More modern approaches are used in both
PYTHIA, where mass effects are included using a kind of matrix-element correction method [35], and
in HERWIG++ and SHERPA, where a generalization of the Altarelli-Parisi splitting kernel is used for
massive quarks [36].

43.1.6 Color information
In event generators, quarks and antiquarks are represented by color lines, with arrows indicating

the direction of color flow. In the limit of infinitely many colors (called the leading color approxi-
mation), each such line can be associated with a unique label; the probability for two quarks (or
antiquarks) to have the same color (anticolor) vanishes. Moreover, in the same limit gluons can
be represented by a pair of color lines with opposite arrows, as can be realized e.g. from the SU(3)
group relation 8 = 3⊗ 3̄ 	 1. The rules for color propagation are:

During the shower development, partons are connected by color lines. We can have a quark directly
connected by a color line to an antiquark, or via an arbitrary number of intermediate gluons, as
shown in Fig. 43.1. It is also possible for a set of gluons to be connected cyclically in color, as e.g.
in the decay Υ → ggg. The color information is used in angular-ordered showers, where the angle
of color-connected partons (i.e. partons connected by the same color line) determines the initial
angle for the shower development, and in dipole showers, where dipoles are always color-connected
partons. It is also used in hadronization models, where the initial strings or clusters used for
hadronization are formed by color-neutral clusters of partons.

43.1.7 Electromagnetic (and weak) corrections
The physics of photon emission from charged particles, and of photon splittings to pairs of

charged fermions, can also be treated with a shower MC algorithm. High-energy electrons and
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Figure 43.1: Color development of a shower in e+e− annihilation. Color-neutral clusters of
partons are indicated by the dashed under-brackets.

quarks, for example, are accompanied by bremsstrahlung photons. Also here, similarly to the QCD
case, electromagnetic corrections are of order αem ln(Q/m), where m is the mass of the radiating
particle, or even of order αem ln(Q/m) ln(Eγ/E) for soft γ emissions, so that, especially for the case
of electrons, their inclusion in the simulation process is mandatory. This is done in most GPMCs
(for a comparative study see [37]), which typically agree in collinear (DGLAP) limits but differ in
whether and how soft (multipole) QED interference effects are handled. The specialized generator
PHOTOS [38] is sometimes used as an afterburner for an improved treatment of QED radiation in
non-hadronic resonance decays.

For photon emissions off leptons, the shower can be continued down to virtualities arbitrarily
close to the lepton mass shell (unlike the case in QCD). In practice, an infrared cutoff is still
required for the shower algorithm to terminate. Therefore, there is always an energy cut-off for
emitted photons that depends upon the implementations [37]. In the case of electrons, this energy
is typically of the order of its mass. Electromagnetic radiation below this scale is not enhanced by
collinear singularities, and is thus bound to be soft, so that the electron momentum is not affected
by it.

For photons emitted from quarks, we have instead the obvious limitation that the photon wave-
length cannot exceed the typical hadronic size. Longer-wavelength photons are in fact emitted by
hadrons, rather than quarks. This last effect is in practice never modeled by existing shower MC
implementations. Thus, electromagnetic radiation from quarks is cut off at a typical hadronic
scale. Finally, hadron (and τ) decays involving charged particles can produce additional soft
bremsstrahlung. This is implemented in a general way in HERWIG++/HERWIG 7 [39] and SHERPA [40].

At energies significantly above the electroweak (EW) scale, showers involving emissions (and
splittings) of weak gauge and Higgs bosons can also be relevant, with recent implementations
based on collinear limits ranging from weak-boson emissions from fermions in PYTHIA 8 [41], to
triple-boson couplings in HERWIG 7 [42], to the full set of EW branching processes in VINCIA [43].

43.1.8 Beyond-the-Standard-Model Physics
The inclusion of processes for physics beyond the Standard Model (BSM) in event genera-

tors is to some extent only a matter of implementing the relevant hard processes and (chains of)
decays, with the level of difficulty depending on the complexity of the model and the degree of
automation [44, 45]. Notable exceptions are long-lived colored particles [46], particles in exotic
color representations, and particles showering under new gauge symmetries, with a growing set of
implementations documented in the individual GPMC manuals. Further complications that may
be relevant are finite-width effects (discussed in Sec. 43.1.9) and the assumed threshold behavior.

In addition to code-specific implementations [11], there are a few commonly adopted standards
that are useful for transferring information and events between codes. Currently, the most im-
portant of these is the Les Houches Event File (LHEF) standard [47], normally used to transfer
parton-level events from a hard-process generator to a shower generator. Another important stan-
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dard is the Supersymmetry Les Houches Accord (SLHA) format [48], originally used to transfer
information on supersymmetric particle spectra and couplings, but by now extended to apply also
to more general BSM frameworks and incorporated within the LHEF standard [49].

43.1.9 Decay Chains and Particle Widths
In most BSM processes and some SM ones, an important aspect of the event simulation is how

decays of short-lived particles, such as top quarks, EW and Higgs bosons, and new BSM resonances,
are handled. We here briefly summarize the spectrum of possibilities, but emphasize that there is
no universal standard. Users are advised to check whether the treatment of a given code is adequate
for the physics study at hand.

The appearance of an unstable resonance as a physical particle at an intermediate stage of the
event generation implies that its production and decay processes are treated as being factorized.
This is valid up to corrections of order Γ/m0, with Γ the width and m0 the pole mass. States whose
widths are a substantial fraction of their mass should instead be treated as intrinsically off-shell
internal propagator lines.

For states treated as physical particles, two aspects are relevant: the mass distribution of the
decaying particle itself and the distributions of its decay products. For the former, matrix-element
generators often use a simple δ function at m0. The next level up, typically used in GPMCs, is
to use a Breit-Wigner distribution, which formally resums higher-order virtual corrections to the
mass distribution. Note, however, that this still only generates an improved picture for moderate
fluctuations away from m0. Similarly to above, particles that are significantly off-shell (in units
of Γ ) should not be treated as resonant, but rather as internal off-shell propagator lines. In most
GPMCs, further refinements are included, for instance by letting Γ be a function of m (“running
widths”) and by limiting the magnitude of the allowed fluctuations away from m0. We finally
point out that NLO+PS generators have appeared that can deal with resonances including off-shell
effects, non-resonance contributions and interference of radiation generated in resonance decay and
production, see [50] and references therein. A new “interleaved” shower treatment also allows for
interference between production and decay in the Vincia model [43].

For the distributions of the decay products, the simplest treatment is again to assign them their
respective m0 values, with a uniform phase-space distribution. A more sophisticated treatment
distributes the decay products according to the differential decay matrix elements, capturing at least
the internal dynamics and helicity structure of the decay process, including EPR-like correlations.
Further refinements include polarizations of the external states [51] and assigning the decay products
their own Breit-Wigner distributions, the latter of which opens the possibility to include also
intrinsically off-shell decay channels, like H →WW ∗.

GPMC manuals often give instructions on how to include new decay modes, at varying levels of
sophistications ranging from simple uniform phase-space sampling (which the user can reweight a
posteriori) and step-function thresholds, to fully matrix-element weighted decay implementations
including potential off-shell / threshold effects.

During subsequent showering of the decay products, most parton-shower models will preserve
the total invariant mass of the decayed resonance, so as not to skew the original resonance shape.
In the context of passing externally generated LHEF files [47] to a GPMC for showering, note that
this is only possible if the intermediate resonances are present (with status code 2) in the LHEF
event record [52].

43.1.10 Matching and Merging with Fixed-Order Matrix Elements
Shower algorithms are based upon a combination of the collinear (small-angle) and soft (small-

energy) approximations and are thus normally inaccurate for hard, wide-angle emissions (i.e., ad-
ditional well-resolved jets). They also contain only the leading singular pieces of next-to-leading
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order (NLO) and higher corrections to the basic process.
Traditional GPMCs, like HERWIG and PYTHIA, have included for a long time the so called Matrix

Element Corrections (MEC), first formulated in Ref. [53] with later developments summarized in
Ref. [11]. They are typically available for 2 → 1 or 1 → 2 processes, like DIS, vector boson and
Higgs production and decays, and top decays. The MEC corrects the emission of the hardest jet at
large angles, so that it becomes exact at LO. A generalization of the method to multiple emissions
was formulated in [54].

Aside from MECs implemented directly in the GPMCs, the improvements on the parton-shower
description of hard collisions have been made in two main directions: the so called Matrix Elements
and Parton Shower matching (ME+PS from now on), and the matching of NLO calculations and
Parton Showers (NLO+PS). We now discuss each of these, and then briefly summarize techniques
becoming available for combining them.

The ME+PS method allows one to use tree-level matrix elements for hard, large-angle emis-
sions. It was first formulated in the so-called CKKW paper [55], and several variants have appeared,
including the CKKW-L, MLM, pseudoshower and MESS methods, see Refs. [11, 56, 57] and refer-
ences therein. So called “Truncated Showers” are required [58] to maintain color coherence when
interfacing to angular-ordered parton showers, and care must be taken to use consistent αS choices
for the real (ME-driven) and virtual (PS-driven) corrections [59].

In the ME+PS method one typically starts by generating LO matrix elements for the production
of the basic process plus a certain number ≤ n of other partons. A minimum separation is imposed
on the produced partons, requiring, for example, that the relative transverse momentum in any
pair of partons is above a given cut Qcut. One then reweights these amplitudes in such a way that,
in the strongly ordered region, the virtual effects that are included in the shower algorithm (i.e.
running couplings and Sudakov form factors) are also accounted for. At this stage, before parton
showers are added, the generated configurations are tree-level accurate at large angle, and at small
angle they match the results of the shower algorithm, except that there are no emissions below
the scale Qcut, and no final states with more than n partons. These kinematic configurations are
thus fed into a GPMC, that must generate all splittings with relative transverse momentum below
the scale Qcut, for initial events with less than n partons, or below the scale of the smallest pair
transverse momentum, for events with n partons. The matching parameter Qcut must be chosen to
be large enough for fixed-order perturbation theory to hold, but small enough so that the shower is
accurate for emissions below it. Notice that the accuracy achieved with MEC is equivalent to that
of ME+PS with n = 1, where MEC has the advantage of not having a matching parameter Qcut.

The popularity of the ME+PS method is due to the fact that processes with many jets often
appear as backgrounds to new-physics searches. These jets are typically required to be well sepa-
rated, and to have large transverse momenta. These kinematic configurations are exactly those for
which pure shower algorithms are unreliable, hence it is mandatory to describe them using at least
LO matrix elements.

Several ME+PS implementations use existing LO generators, like ALPGEN [60], MADGRAPH [61],
and others summarized in Ref. [56], for the calculation of the matrix elements, and feed the partonic
events to a GPMC like PYTHIA or HERWIG using the Les Houches Interface for User Processes
(LHI/LHEF) [47,52]. SHERPA and HERWIG 7 also include their own matrix-element generators.

The NLO+PS methods promote the accuracy of the generation of the basic process from LO to
NLO in QCD. They must thus include the radiation of one extra parton with tree-level accuracy,
since this radiation constitutes a NLO correction to the basic process. They must also include
NLO virtual corrections. They can be viewed as an extension of the MEC methods with the
inclusion of NLO virtual corrections. They are however more general, since they are applicable
to processes of arbitrary complexity. Two of these methods are now widely used: MC@NLO [62]
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and Powheg [58, 63], with several alternative methods now also being pursued, see Ref. [11] and
references therein.

NLO+PS generators produce NLO accurate distributions for inclusive quantities, and generate
the hardest jet with tree-level accuracy. It should be recalled, though, that in 2 → 1 processes
like Z/W production, GPMCs including MEC and weighted by a constant K factor may perform
nearly as well, and, if suitably tuned, may even yield a better description of data. In this context,
note also that the optimal tuning of an NLO+PS generator may well be different from that of the
pure PS.

Several NLO+PS processes are implemented in the MC@NLO program [62], together with the
AMC@NLO development [64], and in the Powheg-Box framework [63]. HERWIG 7 supports its own
variants of Powheg and MC@NLO for several processes. SHERPA instead implements a variant of
the MC@NLO method.

For applications that require an accurate description of more than one hard, large-angle jet
associated with the primary process, ME+PS schemes are still superior to NLO+PS ones. Ideally,
one would like to improve NLO generators in such a way that also the production of associated jets
achieves NLO accuracy. The FXFX [65], UNLOPS [66], MiNLO [67] and MEPS@NLO [68] methods
address this problem. The solution of this problem is also a prerequisite for the construction of
NNLO+PS generators, i.e. generators that, besides being NLO accurate for the production of an
associated jet, are also NNLO accurate for fully inclusive observables. Three different approaches
have appeared in the literature for dealing with this problem: the UN2NLOPS, based upon UN-
LOPS method [69]; methods extending the MiNLO approach by reweigthting [70] and by the so
called MiNNLOPS technique [71]; and the GENEVA method [72]. Several processes have been
implemented with the MiNLO related and GENEVA methods, mostly for the production of color
singlet systems, with the exception of the recent MiNNLOPS implementation of tt̄ production (see
refs. [73, 74] for an extensive list of references).

43.2 Hadronization Models
In the context of GPMCs, hadronization denotes the process by which a set of colored partons

(after showering) is transformed into a set of “primary hadrons”, which may then subsequently decay
further (to “secondary hadrons”). This non-perturbative transition takes place at the hadronization
scale Qhad, which by construction is equal to the infrared cutoff of the parton shower. In the absence
of a first-principles solution to the relevant dynamics, GPMCs use QCD-inspired phenomenological
models to describe this transition.

An important result in “quenched” lattice QCD (see Chap. 17 of PDG book) is that the poten-
tial energy between two partons with opposite color charges grows linearly with their separation, at
distances greater than about a femtometer. This is known as “linear confinement”, and it forms
the starting point for the string model of hadronization, discussed below in Sec. 43.2.1. Alterna-
tively, a property of perturbative QCD called “preconfinement” is the basis of the cluster model of
hadronization, discussed in Sec. 43.2.2.

A key difference between MC hadronization models and the fragmentation-function (FF) for-
malism used to describe inclusive hadron spectra in perturbative QCD (see Chap. 9 and Chap. 19 of
PDG book) is that FFs can be defined at an arbitrary perturbative scale Q while MC hadronization
models are intrinsically defined at the scale Qhad. Direct comparisons are therefore only meaning-
ful if the perturbative evolution between Q and Qhad is taken into account. FFs are calculable in
pQCD, given a non-perturbative initial condition obtained by fits to hadron spectra. In the MC
context, one can prove that the correct QCD evolution of the FFs arises from the shower formalism,
with the hadronization model providing an explicit parameterization of the non-perturbative com-
ponent. However, the MC modeling of shower and hadronization includes much more information
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on the final state since it is fully exclusive (i.e., it addresses all particles in the final state explicitly),
while FFs only describe inclusive spectra. This exclusivity also enables MC models to make use
of the color-flow information coming from the perturbative shower evolution (see Sec. 43.1.6) to
determine between which partons confining potentials should arise. E.g., in the string picture, the
nonperturbative limit of a QCD dipole is a string piece [75].

Given an exact hadronization model, its dependence on the scale Qhad should in principle be
compensated by the corresponding scale dependence of the shower algorithm, which stops gener-
ating branchings at the scale Qhad. However, due to their complicated and fully exclusive nature,
it is generally not possible to enforce this compensation automatically in MC models. One must
therefore be aware that the nonperturbative model parameters must be “retuned” by hand if the
infrared cutoff is modified. Any other changes to the perturbative part of the calculation, such as
matching to further (fixed-order or resummed) coefficients, may also necessitate a retuning. Tuning
is discussed briefly in Sec. 43.4.

Finally, it should be emphasized that the so-called “parton level” that can be obtained by
switching off hadronization in a GPMC, is not a universal concept, since each model defines Qhad
differently (e.g. via a cutoff in p⊥, invariant mass, etc., with different tunes using different values
for the cutoff). Comparisons to distributions at this level may therefore be used to provide an idea
of the overall impact of hadronization corrections within a given model, but should be avoided in
the context of physical observables.

43.2.1 The String Model
Starting from early concepts [76], several hadronization models based on strings have been pro-

posed [11]. Of these, the most widely used today is the so-called Lund model [77,78], implemented
in PYTHIA [4,5]. We concentrate on that particular model here, though many of the overall concepts
would be shared by any string-inspired method.

Consider a quark and an antiquark that have a large relative momentum and which are in
an overall color-singlet state, such as the q̄q pair produced at the end of the shower in the
center of Fig. 43.1). As the charges move apart, linear confinement implies that a potential
V (r) = κ r is reached for large distances r. (At short distances, there is a Coulomb term ∝ 1/r
as well, but this is neglected in the Lund string.) This potential describes a string with tension
κ ∼ 1GeV/fm ∼ 0.2GeV2. The physical picture is that of a color flux tube being stretched
between the q and the q̄. As the string grows, the nonperturbative creation of quark-antiquark
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Figure 43.2: Illustration of string breaking by quark pair-creation in the string field.

pairs can break the string, via the process illustrated in Fig. 43.2. If either of the resulting string
pieces after the break still has a large invariant mass, new breaks will then continue to occur until
every piece has a mass of order a typical hadron. In nature, quantum mechanics ensures that these
masses are (Breit-Wigner-distributed around) those of the physical hadron states in QCD, while in
an algorithmic implementation, this is less trivial to impose. Within the Lund model, the constraint
that each final string piece must have a mass consistent with that of physical hadron is addressed
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by first noting that each breakup vertex is spacelike separated from all others (the string cannot
break again in the forward lightcone of a point where it has already broken); since the breakups
are therefore causally disconnected, they do not have to be considered in any particular order. The
Lund model exploits this to perform the fragmentation in an outwards-in manner [78], splitting off
one physical hadron at a time from either the left or right endpoint (chosen randomly in each step).

The first hadron to be generated (starting either from the left or right) is thus the “outermost”
one (sometimes called the “first-rank” hadron), formed by combining the original hadronizing end-
point quark (or antiquark) q0 with an antiquark (or quark) q̄1 produced by the first breakup. The
new leftover quark (or antiquark) q1 becomes the string endpoint for the next iteration, in a Markov
chain which continues, alternating randomly between the left and right ends of the string, until
finally a small last bit of string is decayed directly to two hadrons, with no energy left over.

Not only does this allow for the hadron that is split off in each step to be assigned a physical
mass, the fact that the fragmentation spectrum should be independent of whether one performs the
fragmentation from left to right or vice versa places a strong constraint on the form of the nonper-
turbative fragmentation function, f(z), which governs the probability for the hadron produced in a
given step to take a fraction z ∈ [0, 1] of the remaining energy. Thus, in the Lund model, causality
dictates that the fragmentation function should be of the form,

f(z) ∝ 1
z

(1− z)a exp
(
−b (m2

h + pTh
2)

z

)
. (43.9)

This is known as the Lund symmetric fragmentation function (normalized to unit integral). The
dimensionless parameter a dampens the hard tail of the fragmentation function, towards z → 1,
and may in principle be flavor-dependent, while b, with dimension GeV−2, is a universal constant
related to the string tension [78] which determines the behavior in the soft limit, z → 0. Note that
the dependence on the hadron mass, mh, in f(z) implies that heavier hadrons have higher 〈z〉. We
return to the transverse momentum pTh below.

The model is Lorentz invariant, so considerations involving boosted string systems are straight-
forward, involving the usual Lorentz effects.

As a by-product, the probability distribution in invariant time τ of q′q̄ breakup vertices, or
equivalently Γ = (κτ)2, is also obtained, with dP/dΓ ∝ Γ a exp(−bΓ ) implying an area law for
the color flux, and the average breakup time lying along a hyperbola of constant invariant time
τ0 ∼ 10−23s [78].

For massive endpoints (e.g. c and b quarks), which do not move along straight lightcone sections,
the exponential suppression with string area leads to modifications of the form f(z)→ f(z)/zbm

2
Q ,

with mQ the mass of the heavy quark [79]. Although different forms, such as the Peterson formula
[80], can also be used to describe inclusive heavy-meson spectra (see Sec 19.8 of PDG book), such
choices are not strictly consistent with causality in the string framework.
43.2.1.1 Strings with Gluons

In the string model, energetic gluons lead to transverse “kinks” on strings, illustrated in
Fig. 43.3. The order of these kinks follows from the color ordering produced by the parton shower,
cf. the q̄gggq and q̄gq systems on the left and right part of Fig. 43.1. (Modifications to this order,
by possible color reconnection/rearrangement effects, are discussed in Sec. 43.3.2.) Thus gluons
effectively build up a transverse structure in the originally one-dimensional object, with infinitely
soft ones smoothly absorbed into the string. Note: cyclic topologies made entirely of gluons (closed
strings) are also possible, e.g. in decays such as H → gg or Υ → ggg. The space-time evolution is
more involved when kinks are taken into account [78], but no additional free parameters need to
be introduced. The main difference between quark and gluon hadronization stems from the fact
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PS
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y

Figure 43.3: Schematic illustration of an e+e− → qgq̄ configuration emerging from the parton
shower (PS). Snapshots of string positions are shown at two different times (full and shaded lines
respectively). The gluon forms a transverse kink which grows in the y direction until all the gluon’s
kinetic energy has been used up.

that gluons are connected to two string pieces (one on either side), while quarks are only connected
to a single string piece. Hence, the relative rate of energy loss per unit invariant time — and
consequently also the rate of hadron production — is larger by a factor of 2 for gluons (analogously
to the ratio of gluon to quark color charges CA/CF = 2.25).

43.2.1.2 Transverse Momentum and Flavors
For each breakup vertex, quantum mechanical tunneling is assumed to control the masses and

pT kicks (transverse to the string axis, in a frame in which the string itself has no transverse motion)
that can be produced, leading to a Gaussian suppression

Prob(m2
q , pTq

2) ∝ exp
(
−πm2

q

κ

)
exp

(
−πpTq

2

κ

)
, (43.10)

where mq is the mass of the produced quark flavor and pT is the nonperturbative transverse
momentum imparted to it by the breakup process, with a universal average value of

〈
pTq

2〉 =
κ/π ∼ (250MeV)2. The antiquark has the same mass and opposite pT.

In an MC model with a fixed shower cutoff t0, the effective amount of pT in string breaks may be
larger than the purely nonperturbative κ/π above, to account for effects of additional (unresolved)
radiation below t0.

From the mass term in Eq. (43.10), one concludes that charm and bottom quarks are too heavy
to be produced in string breaks, while strange quarks will be suppressed relative to up and down
ones. Lacking unambiguous and precise mass definitions for light quarks, however, the effective
amount of strangeness suppression is normally extracted from experimental data, using observables
such as K/π, K∗/ρ, and φ/K∗ ratios.

Baryon production can also be incorporated, at various levels of sophistication. The simplest
option is to allow string breaks to produce pairs of diquarks, loosely bound states of two quarks in
an overall 3̄ representation. Again, the relative rate of such pairs is extracted from data, e.g. using
p/π or Λ/K ratios. Since the perturbative shower splittings do not produce diquarks, the optimal
value for this parameter is mildly correlated with the amount of g → qq̄ splittings in the shower.
More sophisticated options, including the so-called “popcorn” mechanism, are discussed in Ref. [78].
Finally, the PYTHIA framework also allows for baryon string junctions [81]. These represent epsilon
tensors in color space (analogously to how color dipoles represent Kronecker deltas), and are used,
e.g., to model the fragmentation of baryon beam remnants. They can also be created (in pairs of
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junctions and antijunctions) in some color-reconnection scenarios [82], making the effective baryon-
to-meson ratios in such models dependent on the amount and type of color reconnections that occur
in each event.

The next step of the algorithm is the assignment of the produced quarks within hadron multi-
plets. Using a nonrelativistic classification of spin states, the hadronizing q may combine with the
q̄′ from a newly created breakup to produce a hadron of a given spin S and angular momentum
L. The lowest-lying pseudoscalar and vector meson multiplets, and spin-1/2 and -3/2 baryons, are
assumed to dominate in a string framework1, but individual rates are not predicted by the model,
and hence the ratios of spin-1 to spin-0 mesons and diquarks are free parameters (modulo a factor
3 from spin counting) which must be constrained by data. In that context, it is often advisable
to begin with the heaviest states, since so-called feed-down from the decays of higher-lying hadron
states complicates the extraction for lighter particles, see Sec. 43.2.3.
43.2.2 The Cluster Model

The cluster hadronization model is based on preconfinement, i.e., on the observation [83,84] that
the color structure of a perturbative QCD shower evolution at any scale Q0 is such that color-singlet
subsystems of partons (labeled “clusters”) occur with a universal invariant mass distribution which
is power suppressed at large masses. For any starting scale Q � Q0 � ΛQCD, only the number of
such clusters depends on Q, while the shape of their mass distribution only depends on Q0 and on
ΛQCD.

Following early models based on this universality [10,85], the cluster model developed by Web-
ber [86] has for many years been a hallmark of the HERWIG generators, with an alternative imple-
mentation [87] now available in the SHERPA generator. The key idea, in addition to preconfinement,
is to force “by hand” all gluons to split into quark-antiquark pairs at the end of the parton shower.
Compared with the string description, this effectively amounts to viewing gluons as “seeds” for
string breaks, rather than as kinks in a continuous object. After the splittings, a new set of low-
mass color-singlet clusters is obtained, formed only by quark-antiquark pairs. These can be decayed
to on-shell hadrons in a simple manner, with the relative yields of different hadron species mainly
governed by their masses and the size of the phase space.

The algorithm starts by generating the forced g → qq̄ breakups, and by assigning flavors and
momenta to the produced quark pairs. For a typical shower cutoff corresponding to a gluon vir-
tuality of Qhad ∼ 1GeV, the pT generated by the splittings can be neglected. The constituent
light-quark masses, mu,d ∼ 300MeV and ms ∼ 450MeV, imply a suppression (typically even an
absence) of strangeness production. In principle, the model also allows for diquarks to be produced
at this stage, but due to the larger constituent masses this would only become relevant for shower
cutoffs larger than 1GeV.

If a cluster formed in this way has an invariant mass above some cutoff value, typically 3–4 GeV,
it is forced to undergo sequential 1→ 2 cluster breakups, along an axis defined by the constituent
partons of the original cluster, until all sub-cluster masses fall below the cutoff value. Due to the
preservation of the original axis in these breakups, this treatment has some resemblance to the
string-like picture, though the nonperturbative p⊥ kicks generated in this way are generally larger,
up to half the allowed cluster mass.

Next, on the low-mass side of the spectrum, some clusters are allowed to decay directly to a
single hadron, with nearby clusters absorbing any excess momentum. This improves the description
of the high-z part of the spectrum — where the hadron carries almost all the momentum of its
parent jet — at the cost of introducing one additional parameter, controlling the probability for
single-hadron cluster decay.

1In PYTHIA, the four L = 1 meson multiplets (scalar, tensor, and 2 pseudovectors) are also available but are
disabled by default, since many states (and their decays) are poorly known.
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Having obtained a final distribution of small-mass clusters, now with a strict cutoff at 3–4 GeV
and with the component destined to decay to single hadrons already removed, the remaining clusters
are interpreted as a smoothed-out spectrum of excited mesons, each of which decays isotropically to
two hadrons, with relative probabilities proportional to the available phase space for each possible
two-hadron combination that is consistent with the cluster’s internal flavors, including spin degen-
eracy. It is important that all the light members (containing only uds) of each hadron multiplet
be included, as the absence of members can lead to unphysical isospin or SU(3) flavor violation.
Typically, the lightest pseudoscalar, vector, scalar, even and odd charge conjugation pseudovector,
and tensor multiplets of light mesons are included. In addition, some excited vector multiplets of
light mesons may be available. For baryons, usually only the lightest flavor-octet, -decuplet and
-singlet baryons are present, although both the HERWIG++ and SHERPA implementations now include
some heavier baryon multiplets as well.

Differently from the string model, the mechanism of phase-space suppression employed here
leads to a natural enhancement of the lighter pseudoscalars, and no parameters beyond the spectrum
of hadron masses need to be introduced at this point. The phase space also limits the transverse
momenta of the produced hadrons relative to the jet axis.

Note that, since the masses and decays of excited heavy-flavor hadrons in particular are not well
known, there is some freedom in the model to adjust these, which in turn will affect their relative
phase-space populations.

43.2.3 Hadron and τ Decays
Of the so-called primary hadrons, originating directly from string breaks and/or cluster decays

(see above), many are unstable and so decay further, until a set of particles is obtained that
can be considered stable on time scales relevant to the given measurement. (A typical hadron-
collider definition of a “stable particle” cτ ≥ 10mm includes weakly-decaying strange hadrons K,
Λ, Σ±, Σ̄±, Ξ, Ω.) The decay modeling can therefore have a significant impact on final particle
yields and spectra, especially for the lowest-lying hadronic states, which receive the largest relative
contributions from decays (feed-down). This interplay also implies that hadronization parameters
may need to be retuned if significant changes to the decay treatment are made.

Particle summary tables, such as those given elsewhere in this Review, represent a condensed
summary of the available experimental measurements and hence may be incomplete and/or exhibit
inconsistencies within the experimental precision. In an MC decay package, on the other hand,
all information must be quantified and consistent, with all branching ratios summing to unity.
When adapting particle summary information for use in a decay package, a number of choices must
therefore be made. The amount of ambiguity increases as more excited hadron multiplets are added
to the simulation, about which less and less is known from experiment, with each GPMC making
its own choices.

A related choice is how to distribute the decay products differentially in phase space, in partic-
ular which matrix elements to use. Historically, MC generators contained matrix elements only for
selected (generator-specific) classes of hadron and τ decays, coupled with a Breit-Wigner smearing
of the masses, truncated at the edges of the physical decay phase space (the treatment of decay
thresholds can be important for certain modes [11]). A more sophisticated treatment can then be
obtained by reweighting the generated events using the obtained particle four-momenta and/or by
using specialized external packages such as EVTGEN [88] for hadron decays and TAUOLA [89] for τ
decays.

More recently, HERWIG++ and SHERPA include helicity-dependence in τ decays [6, 90], with a
more limited treatment available in PYTHIA 8 [5]. The HERWIG++ and SHERPA generators have
also included significantly improved internal simulations of hadronic decays, which include spin
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correlations between those decays for which matrix elements are used. Photon-bremsstrahlung
effects are discussed in Sec. 43.1.7.

HERWIG++ and PYTHIA include the probability for B mesons to oscillate into B̄ ones before decay.
SHERPA and EVTGEN also include CP -violating effects and, for common decay modes of the neutral
meson and its antiparticle, the interference between the direct decay and oscillation followed by
decay.

We end on a note of warning on double counting. This may occur if a particle can decay via
an intermediate on-shell resonance. An example is a1 → πππ which may proceed via a1 → ρπ,
ρ → ππ. If these decay channels of the a1 are both included, each with their full partial width, a
double counting of the on-shell a1 → ρπ contribution would result. Such cases are normally dealt
with consistently in the default MC generator packages, so this warning is mostly for users that
wish to edit decay tables on their own.

43.3 Models for Soft Hadron-Hadron Physics
43.3.1 Underlying Event

In the GPMC context, “underlying event” (UE) denotes any additional activity beyond the
basic process and its associated ISR and FSR activity. The UE is thus only defined in the context
of events selected with a “hard” (i.e., high-p⊥) trigger which defines the basic process at hand.
The dominant contribution to the UE is believed to come from additional color exchanges between
the colliding hadronic states. These multiple exchanges can be modeled either as additional per-
turbative (mainly t-channel gluon) exchanges, called multiple parton-parton interactions (MPI),
or nonperturbatively using so-called cut pomerons (roughly equivalent to exchange of gluons with
p⊥ → 0). The experimental observation that events with a hard trigger are accompanied by a
higher-than-average level of associated activity is called the “jet pedestal” effect.

The most clearly identifiable consequence of MPI is arguably the possibility of observing several
hard parton-parton interactions in one and the same hadron-hadron event. Typically, these are
QCD 2 → 2 interactions, which produce additional back-to-back jet pairs, with each pair having
a small value of sum(~p⊥). The fraction of MPI that give rise to additional reconstructible jets is,
however, small. Soft interactions, that exchange color and a small amount of momentum without
giving rise to observable jets, are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This affects the final-state activity in a more
global way, increasing hadron-multiplicity and summed ET distributions, and contributing to the
break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in Ref. [91], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in Ref. [11]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2→ 2 scattering almost go on shell at low pT, causing
the differential cross sections to behave roughly as

dσ2→2 ∝
dt

t2
∼ dpT

2

pT4 . (43.11)

This cross section represents the inclusive scattering of partons against partons in perturbative
QCD, summed over all partons. Thus, if a single hadron-hadron scattering contains two parton-
parton interactions, that event will contribute twice to the parton-parton cross section σ2→2 but
only once to the hadron-hadron one σtot, and so on. In the limit that all the parton-parton
interactions are independent and equivalent, one has

σ2→2 = 〈n〉 σtot , (43.12)
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with 〈n〉 the average number of parton-parton interactions, typically defined with some minimal
pT > p⊥min to render the parton-parton cross section finite. The probability for n parton-parton
scatterings then follows a Poisson distribution,

Pn = 〈n〉n exp (−〈n〉)
n! . (43.13)

This simple argument expresses unitarity; instead of the total hadron-hadron interaction cross
section diverging as the parton-parton pT → 0 (which would violate unitarity), we have restated the
problem so that it is now the number of parton-parton interactions per hadron-hadron collision that
diverges, with the total hadron-hadron cross section remaining finite. At LHC energies, the parton-
parton scattering cross sections computed using the LO QCD cross section folded with modern
PDFs become larger than the total pp one for p⊥min values of order 4–5 GeV (see e.g. [92,93]). One
therefore expects the average number of perturbative MPI to exceed unity at around that scale.

Two ingredients remain to fully regulate the remaining divergence. Firstly, the interactions
cannot use up more momentum than is available in the parent hadron. This suppresses the large-n
tail of the estimate above. In PYTHIA-based models, the MPI are ordered in pT, and the parton
densities for each successive interaction are explicitly constructed so that the sum of x fractions can
never be greater than unity. In the HERWIG models, the Poisson estimate of 〈n〉 above is used as an
initial guess, but the generation of actual MPI is stopped once the energy-momentum conservation
limit is reached. Both of these approaches generate momentum (conservation) correlations among
the MPI.

The second ingredient invoked to suppress the number of interactions, at low pT and x, is color
screening; if the wavelength ∼ 1/pT of an exchanged colored parton becomes larger than a typical
color-anticolor separation distance, it will only see an average color charge that vanishes in the limit
pT → 0. This provides an infrared cutoff for MPI similar to that provided by the hadronization
scale for parton showers. A first estimate of the color-screening cutoff would be the proton size,
p⊥min ≈ ~/rp ≈ 0.3 GeV ≈ ΛQCD, but empirically this appears to be far too low. In current models,
one replaces the proton radius rp in the above formula by a “typical color screening distance,” i.e.,
an average size of a region within which the net compensation of a given color charge occurs. This
number is not known from first principles [94] and is perceived of simply as an effective cutoff
parameter. The simplest choice is to introduce a step function Θ(pT − p⊥min). Alternatively, one
may note that the jet cross section is divergent like α2

S(pT
2)/pT

4, cf. Eq. (43.11), and that therefore
a factor

α2
S(pT02 + pT

2)
α2

S(pT2)
pT

4

(pT02 + pT2)2 (43.14)

would smoothly regulate the divergences, now with pT0 as the free parameter. Regardless of whether
it is imposed as a smooth (PYTHIA and SHERPA) or steep (HERWIG++) function, this is effectively the
main “tuning” parameter in such models.

Note that the numerical value obtained for the cross section depends upon the PDF set used,
and therefore the optimal value to use for the cutoff will also depend on this choice. Note also that
the cutoff does not have to be energy-independent. Higher energies imply that parton densities can
be probed at smaller x values, where the number of partons rapidly increases. Partons then become
closer packed and the color screening distance d decreases. The uncertainty on the energy and/or x
scaling of the cutoff is a major concern when extrapolating between different collider energies [95].

We now turn to the origin of the observational fact that hard jets appear to sit on top of
a higher “pedestal” of underlying activity than events with no hard jets. This is interpreted as
a consequence of impact-parameter-dependence: in peripheral collisions, only a small fraction of
events contain any high-pT activity, whereas central collisions are more likely to contain at least
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one hard scattering; a high-pT triggered sample will therefore be biased towards small impact
parameters, b. The ability of a model to describe both the UE in events with a hard trigger as
well as the activity in inclusive “minimum-bias” (MB) samples (see below) therefore depends upon
its modeling of the b-dependence, and correspondingly the impact-parameter shape constitutes
another main tuning parameter.

For each impact parameter b, the number of interactions ñ(b) can still be assumed to be dis-
tributed according to Eq. (43.13), again modulo momentum conservation, but now with the mean
value of the Poisson distribution depending on impact parameter, 〈ñ(b)〉. This causes the final
n-distribution (integrated over b) to be wider than a Poissonian.

Finally, there are two perturbative modeling aspects which go beyond the introduction of MPI
themselves: 1) parton showers off the MPI, and 2) perturbative parton-rescattering effects. With-
out showers, MPI models would generate very sharp peaks for back-to-back MPI jets, caused by
unshowered partons passed directly to the hadronization model. However, with the exception of
the oldest PYTHIA6 model, all GPMC models do include such showers [11], and hence should exhibit
more realistic (i.e., broader and more decorrelated) MPI jets. On the initial-state side, the main
questions are whether and how correlated multi-parton densities are taken into account and, as
discussed previously, how the showers are regulated at low pT and/or low x. Although none of the
MC models currently impose a rigorous correlated multi-parton evolution, all of them include some
elementary aspects. The most significant for parton-level results is arguably momentum conserva-
tion, which is enforced explicitly in all the models. The so-called “interleaved” models [28] attempt
to go a step further, generating an explicitly correlated multi-parton evolution in which flavor sum
rules are imposed to conserve, e.g. the total numbers of valence and sea quarks [81].

Perturbative rescattering in the final state can occur if partons are allowed to undergo several
distinct interactions, with showering activity possibly taking place in-between. This has so far not
been studied extensively, but a first exploratory model is available [96]. In the initial state, parton
rescattering/recombination effects have so far not been included in any of the GPMC models.

43.3.2 Bose-Einstein and Color-Reconnection Effects
In the context of e+e− collisions, Bose-Einstein (BE) correlations have mostly been discussed

as a source of uncertainty on high-precisionW mass determinations at LEP [97]. In hadron-hadron
(and nucleus-nucleus) collisions, however, BE correlations are used extensively to study the space-
time structure of hadronizing matter (“femtoscopy”).

In MC models of hadronization, each string break or particle/cluster decay is normally factorized
from all other ones. This reduces the number of variables that must be considered in each step,
but also makes it intrinsically difficult to introduce correlations among particles from different
breaks/decays. In GPMCs, a few semi-classical models are available within the PYTHIA 6 and
8 generators [98], in which the BE effect is mimicked by an attractive interaction between pairs
of identical particles in the final state, with no higher correlations included. Variants of this
model differ mainly by the assumed shape of the correlation function and how overall momentum
conservation is handled.

As discussed in Sec. 43.2, leading-color (“planar”) color flows are used to set up the hadronizing
systems (clusters or strings) at the hadronization stage. If the systems do not overlap significantly in
space and time, subleading-color ambiguities and/or nonperturbative reconnections are expected to
be small. However, if the density of displaced color charges is sufficiently high that several systems
can overlap significantly, full-color and/or reconnection effects should become progressively larger.

In the specific context of MPI, a crucial question is how color is neutralized between different
MPI systems, including the remnants. The large rapidity differences involved imply large invariant
masses (though normally low pT), and hence large amounts of (soft) particle production. Indeed,
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in the context of soft-inclusive physics, it is these “inter-system” strings/clusters that furnish the
dominant particle-production mechanism, and hence their modeling is an essential part of the soft-
physics description, affecting topics such as MB/UE multiplicity and pT distributions, rapidity gaps,
and precision mass measurements. Reviews of color-reconnection effects can be found in [11,82].
43.3.3 Minimum-Bias Events and Diffraction

The term “minimum bias” (MB) originates from the experimental requirement of a minimal
number of tracks (or hits) in a given instrumented region. In order to make MC predictions for
such observables, all possible contributions to the relevant phase-space region must be accounted
for. There are essentially four types of physics processes, which together make up the total hadron-
hadron (hh) cross section: 1) elastic scattering2: hh→ hh, 2) single diffractive dissociation: hh→
h+ gap +X, with X denoting anything that is not the original beam particle, and “gap” denoting
a rapidity region devoid of observed activity; 3) double diffractive dissociation: hh→ X+gap+X,
and 4) inelastic non-diffractive scattering: everything else. A fifth class may also be defined, called
central diffraction (hh → h + gap + X + gap + h). Note that different terminologies exist [99]: in
experimental settings, diffraction is typically defined by an observable gap, of some minimal size in
rapidity, while in the MC context, each diffractive physics process produces a whole spectrum of
gaps, with small ones suppressed but not excluded.

The inelastic non-diffractive part of the cross section is typically modeled either by smoothly
regulating and extending the perturbative QCD scattering cross sections all the way to zero p⊥ [91]
(PYTHIA and SHERPA), or by regulating the QCD cross sections with a sharp cutoff [100] and adding
a separate class of nonperturbative scatterings below that scale [101] (HERWIG). See also Sec. 43.3.1.
In all cases, the most important ingredients are: 1) the IR regularization of the perturbative
scattering cross sections, including their PDF dependence, 2) the assumed matter distribution of
the colliding hadrons, possibly including multi-parton correlations [81] and/or x dependence [102],
and 3) additional soft-QCD effects such as color reconnections, discussed in Sec. 43.3.2.

Currently, there are essentially three methods for simulating diffraction in the main MC models:
1) in PYTHIA 6, one picks a diffractive mass according to parameterized cross sections ∝ dM2/M2

[103]. This mass is represented as a string, which is hadronized as described in Sec. 43.2.1, though
differences in the effective scale of the hadronization may necessitate a (re)tuning of the hadroniza-
tion parameters for diffraction; 2) in PYTHIA 8, the high-mass tail beyondM ∼ 10GeV is augmented
by a partonic description in terms of pomeron PDFs [104], allowing diffractive jet production in-
cluding showers and underlying event [105]; 3) the PHOJET and DPMJET programs also include cen-
tral diffraction and rely directly on a formulation in terms of pomerons (color-singlet multi-gluon
states) [106–108]. Cut pomerons correspond to exchanges of soft gluons while uncut ones give elas-
tic and diffractive topologies as well as virtual corrections that help preserve unitarity. So-called
“hard pomerons” provide a transition to the perturbative regime. Hadronization is still handled
using the Lund string model, so there is some overlap with the above models at the hadronization
stage. In addition, a pomeron-based package exists for HERWIG [109], and an effort is underway to
construct an MC implementation of the “KMR” model [94] within the SHERPA generator. Color
reconnections (Sec. 43.3.2) may also play a role in creating rapidity gaps and the underlying event
(Sec. 43.3.1) in filling them.

43.4 Uncertainties and Tuning
The accuracy that can be achieved by a GPMC model depends on the sophistication of the

theory models it incorporates, on the available constraints on its free parameters, and on the
nature of the observable(s) under study. Using existing data (or more accurate theory calculations)
to constrain the model parameters is referred to as generator tuning. Although tuned models

2The QED elastic cross section diverges and is normally a non-default option.
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do tend to yield improved results also for observables that they have not been tuned to, the
question of evaluating the remaining uncertainties reliably is still far from solved. It is worth noting,
however, that all of the GPMCs now provide options for automatic evaluation of perturbative
shower uncertainties (e.g., via renormalization-scale variations), in the form of vectors of alternative
event weights [110–112]. One must be aware that these variations are not necessarily exhaustive
and significant weight fluctuations can be a problem for processes with large shower phase spaces.
Nonperturbative uncertainties must normally still be evaluated by varying salient model parameters
by hand. A general method called eigentunes [113] is also available, based on global fits to data.

Typically, the overall event properties are determined by only a few, very important parameters,
such as the value of αS, for perturbative corrections, and the shape of the fragmentation functions,
for nonperturbative ones. More parameters may then be introduced to describe successively more
detailed aspects (e.g., the rates and decays of individual hadron species), but these should have
progressively less impact on the overall modeling. One may therefore take a factorized approach,
first constraining the perturbative parameters and thereafter the nonperturbative ones, in order of
decreasing significance to the overall modeling. Furthermore, by identifying which measurements
are most sensitive to each parameter, this ordering can be reflected in the way that data is selected
and applied to constrain the models. Thus, measurements sensitive to global event properties would
typically be applied first, to constrain the most inclusive parameters, and so on for progressively
more exclusive aspects.

At LO×LL, perturbation theory is doing well if it agrees with an IR safe measurement within
∼ 10%. It would therefore not make much sense to tune a GPMC beyond roughly 5% (it might
even be dangerous, due to overfitting). The advent of NLO Monte Carlos may reduce this number
slightly, but only for quantities for which one expects NLO precision. For quantities governed
by nonperturbative physics, uncertainties are larger. For some quantities, e.g. ones for which the
underlying modeling is known to be poor, an order-of-magnitude agreement or worse may have to
be accepted. Note further that the unitarity of shower and hadronization models implies that the
Born-level cross-section normalization is not tunable, hence in tuning contexts one tends to focus
on the shapes of distributions rather than their normalizations.

In the context of LO×LL GPMC tuning, subleading aspects of coupling-constant and PDF
choices are relevant. In particular, one should be aware that the choice of QCD Λ parameter
ΛMC = 1.569ΛMS (for 5 active flavors) improves the predictions of coherent shower algorithms at
the NLL level for a class of relevant observables [114], and hence this scheme is often considered
the baseline for shower tuning. The question of LO vs. NLO PDFs is more involved [11], but it
should be emphasized that the gluon PDF at (very) low x is important for determining the level
of the underlying event in MPI models (Sec. 43.3.1), and hence the MB/UE tuning (and energy
scaling [95]) is linked to the choice of PDF in such models. Further issues and an example of a
specific recipe that could be followed in a realistic set-up can be found in Ref. [92]. A useful online
resource can be found at the mcplots.cern.ch website [115], based on the RIVET tool [116].

Recent years have seen the emergence of automated tools to reduce the amount of both computer
and manpower required for tuning [113]. Automating the human expert input is more difficult. In
the tools currently on the market, this is addressed by a combination of input solicited from the
GPMC authors (e.g., which parameters and ranges to consider, which observables constitute a
complete set, etc) and a set of weights determining the relative priority given to each bin in each
distribution. The final result is therefore still subjective but at least reproducible. When backed by
careful demonstrations of sensitivities, correlations, and uncertainties, the quality of the resulting
tunes is by now competitive. The field is still burgeoning, with future sophistications to be expected.
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