QUARKS

The *u*-, *d*-, and *s*-quark masses are estimates of so-called "currentquark masses," in a mass-independent subtraction scheme such as $\overline{\text{MS}}$ at a scale $\mu \approx 2$ GeV. The *c*- and *b*-quark masses are the "running" masses in the $\overline{\text{MS}}$ scheme. This can be different from the heavy quark masses obtained in potential models.

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $m_u = 2.16^{+0.49}_{-0.26} \text{ MeV}$ Charge $= \frac{2}{3} e$ $I_z = +\frac{1}{2}$ $m_u/m_d = 0.47^{+0.06}_{-0.07}$

U

d

S

С

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 $\begin{array}{ll} m_d = 4.67 \substack{+0.48 \\ -0.17} \text{ MeV} & \text{Charge} = -\frac{1}{3} \ e & \textit{I}_z = -\frac{1}{2} \\ m_s/m_d = 17\text{--}22 \\ \overline{m} = (m_u + m_d)/2 = 3.45 \substack{+0.55 \\ -0.15} \text{ MeV} \end{array}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $m_s = 93^{+11}_{-5} \text{ MeV}$ Charge $= -\frac{1}{3} e$ Strangeness = -1 $m_s / ((m_u + m_d)/2) = 27.3^{+0.7}_{-1.3}$

$$I(J^P) = 0(\tfrac{1}{2}^+)$$

 $\begin{array}{ll} m_c = 1.27 \pm 0.02 \; {\rm GeV} & {\rm Charge} = \frac{2}{3} \; e & {\rm Charm} = +1 \\ m_c/m_s = 11.72 \pm 0.25 \\ m_b/m_c = 4.577 \pm 0.008 \\ m_b-m_c = 3.45 \pm 0.05 \; {\rm GeV} \end{array}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $m_b = 4.18^{+0.03}_{-0.02} \text{ GeV}$ Charge $= -\frac{1}{3} e$ Bottom $= -1$

t
$$I(J^P) = 0(\frac{1}{2}^+)$$
Charge = $\frac{2}{3} e$ Top = +1

https://pdg.lbl.gov

Created: 6/1/2021 08:29

Mass (direct measurements) $m = 172.76 \pm 0.30$ GeV ^[a,b] (S = 1.2) Mass (from cross-section measurements) $m = 162.5^{+2.1}_{-1.5}$ GeV ^[a] Mass (Pole from cross-section measurements) $m = 172.5 \pm 0.7$ GeV m_t - $m_{\overline{t}}$ = -0.16 \pm 0.19 GeV Full width $\Gamma=1.42\substack{+0.19\\-0.15}~\text{GeV}~(S=1.4)$ $\Gamma(Wb)/\Gamma(Wq(q=b, s, d)) = 0.957 \pm 0.034$ (S = 1.5)

t-quark EW Couplings

 $F_0 = 0.693 \pm 0.013$ $F_{-}=0.315\pm0.010$ $F_{+} = -0.005 \pm 0.007$ $F_{V+A}~<~$ 0.29, CL = 95%

t DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)		
Wq(q = b, s, d)			_		
W b			_		
ev _e b	$(11.10\pm0.30)~\%$)	_		
$\mu u_{\mu} b$	(11.40±0.20) % -				
$ au u_{ au} b$	$(10.7 \pm 0.5)\%$ –				
$q \overline{q} b$	(66.5 ± 1.4) %)	_		
$\gamma q(q=u,c)$	$[c] < 1.8 \times$	10 ⁻⁴ 95%	-		
$\Delta T = 1$ weak neutral current (T1) modes					
Zq(q=u,c) T1	$[d] < 5 \times$	10 ⁻⁴ 95%	_		
Ни Т1	< 1.2 ×	10 ⁻³ 95%	_		
Нс Т1	< 1.1 ×	10 ⁻³ 95%	_		
$\ell^+ \overline{q} \overline{q}'(q=d,s,b; q'=u,c)$ T1	< 1.6 ×	10 ⁻³ 95%	-		

b' (4th Generation) Quark, Searches for

Mass m > 190 GeV, CL = 95% $(p\overline{p}, quasi-stable b')$ $(\mathsf{B}(b' \rightarrow Z b) = 1)$ Mass m > 1130 GeV, CL = 95% $(\mathsf{B}(b' \rightarrow W t) = 1)$ Mass m > 1350 GeV, CL = 95% $(e^+e^-, all decays)$ Mass m > 46.0 GeV, CL = 95%

t' (4th Generation) Quark, Searches for

m(t'(2/3)) >	1280 GeV, $CL=95\%$	(B(t' ightarrow Zt) = 1)
m(t'(2/3)) >	1295 GeV, $CL=95\%$	$(B(t' \rightarrow W b) = 1)$
m(t'(2/3)) >	1310 GeV, $CL = 95\%$	(singlet t')
m(t'(5/3)) >	1350 GeV, $CL=95\%$	

https://pdg.lbl.gov

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s} = 7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] This limit is for $\Gamma(t \rightarrow \gamma q)/\Gamma(t \rightarrow W b)$.
- [d] This limit is for $\Gamma(t \rightarrow Zq)/\Gamma(t \rightarrow Wb)$.