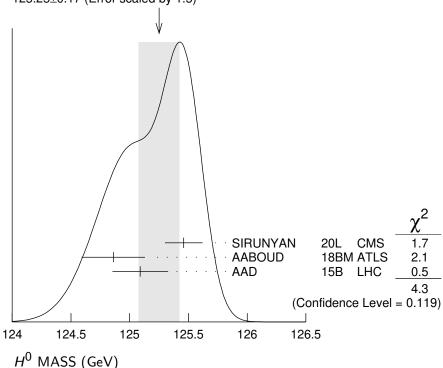
$$H^0$$

$$J = 0$$


In the following H^0 refers to the signal that has been discovered in the Higgs searches. Whereas the observed signal is labeled as a spin 0 particle and is called a Higgs Boson, the detailed properties of H^0 and its role in the context of electroweak symmetry breaking need to be further clarified. These issues are addressed by the measurements listed below.

Concerning mass limits and cross section limits that have been obtained in the searches for neutral and charged Higgs bosons, see the sections "Searches for Neutral Higgs Bosons" and "Searches for Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$)", respectively.

H ⁰ MASS			
VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
125.25±0.17 OUR AVERAG	E Error includes	s scale factor of	of 1.5. See the ideogram below.
125.46 ± 0.16	$^{ m 1}$ SIRUNYAN	20L CMS	pp, 13 TeV, $\gamma\gamma$, $ZZ^* ightarrow 4\ell$
124.86 ± 0.27	² AABOUD	18BM ATLS	<i>pp</i> , 13 TeV, $\gamma\gamma$, $ZZ^* \rightarrow 4\ell$
$125.09 \pm 0.21 \pm 0.11$	^{2,3} AAD	15B LHC	<i>pp</i> , 7, 8 TeV
ullet $ullet$ We do not use the fol	lowing data for av	erages, fits, li	mits, etc. • • •
125.78 ± 0.26	⁴ SIRUNYAN	20L CMS	pp , 13 TeV, $\gamma\gamma$
125.38 ± 0.14	⁵ SIRUNYAN	20L CMS	pp , 7, 8, 13 TeV, $\gamma\gamma$,
	6		$ZZ^* \rightarrow 4\ell$
124.79 ± 0.37	⁶ AABOUD	18BM ATLS	pp , 13 TeV, $ZZ^* o 4\ell$
124.93 ± 0.40	⁷ AABOUD	18BM ATLS	pp , 13 TeV, $\gamma\gamma$
124.97 ± 0.24	^{2,8} AABOUD	18BM ATLS	pp , 7, 8, 13 TeV, $\gamma\gamma$,
$125.26 \pm 0.20 \pm 0.08$	⁹ SIRUNYAN	17av CMS	$ZZ^* \rightarrow 4\ell$
$125.20 \pm 0.20 \pm 0.08$ $125.07 \pm 0.25 \pm 0.14$	³ AAD	17AV CIVIS 15B LHC	pp , 13 TeV, $ZZ^* o 4\ell$ pp , 7, 8 TeV, $\gamma\gamma$
$125.07 \pm 0.23 \pm 0.14$ $125.15 \pm 0.37 \pm 0.15$	³ AAD	15B LHC	$pp, 7, 8 \text{ TeV}, \gamma \gamma$ $pp, 7, 8 \text{ TeV}, ZZ^* \rightarrow 4\ell$
$126.02 \pm 0.43 \pm 0.27$	AAD	15B LITC	pp , 7, 8 TeV, $\gamma\gamma$
$124.51 \pm 0.52 \pm 0.04$	AAD	15B ATLS	pp, 7, 8 TeV, 77 $pp, 7, 8 \text{ TeV}, ZZ^* \rightarrow 4\ell$
$125.59 \pm 0.42 \pm 0.17$	AAD	15B CMS	$pp, 7, 8 \text{ TeV}, ZZ^* \rightarrow 4\ell$ $pp, 7, 8 \text{ TeV}, ZZ^* \rightarrow 4\ell$
-0.27 - 0.13	¹⁰ KHACHATRY.	15AM CMS	pp, 7, 8 TeV
	¹¹ AAD	14W ATLS	<i>pp</i> , 7, 8 TeV
	¹¹ AAD	14W ATLS	pp, 7, 8 TeV, $\gamma\gamma$
	¹¹ AAD	14W ATLS	pp , 7, 8 TeV, $ZZ^* ightarrow4\ell$
	12 CHATRCHYAI		pp , 7, 8 TeV, $ZZ^* ightarrow4\ell$
	¹³ CHATRCHYAI		pp, 7, 8 TeV, $ au au$
$124.70 \pm 0.31 \pm 0.15$	14 KHACHATRY.	14P CMS	pp, 7, 8 TeV, $\gamma\gamma$
-0.0	¹⁵ AAD	13AK ATLS	pp, 7, 8 TeV
$126.8 \pm 0.2 \pm 0.7$	¹⁵ AAD	13AK ATLS	pp , 7, 8 TeV, $\gamma\gamma$
$124.3 \begin{array}{l} +0.6 \\ -0.5 \end{array} \begin{array}{l} +0.5 \\ -0.3 \end{array}$	¹⁵ AAD	13AK ATLS	pp , 7, 8 TeV, $ZZ^* \rightarrow 4\ell$

```
<sup>2,16</sup> CHATRCHYAN 13J CMS
125.8 \ \pm 0.4 \ \pm 0.4
                                                                 pp, 7, 8 TeV
                              <sup>16</sup> CHATRCHYAN 13」 CMS
                                                              pp, 7, 8 TeV, ZZ^* \rightarrow 4\ell
126.2 \pm 0.6 \pm 0.2
                            ^{2,17} AAD
                                                  12AI ATLS pp, 7, 8 TeV
126.0 \pm 0.4 \pm 0.4
                            ^{2,18} CHATRCHYAN 12N CMS pp, 7, 8 TeV
125.3 \pm 0.4 \pm 0.5
```


 1 SIRUNYAN 20L result of $H^0 \to ~\gamma \gamma$ is combined with that of $H^0 \to ~ZZ^* \to ~4\ell$ where $\ell = e$, μ (SIRUNYAN 17AV).

 $^{^2}$ Combined value from $\gamma\gamma$ and $ZZ^*
ightarrow ext{ 4}\ell$ final states.

 $^{^{3}}$ ATLAS and CMS data are fitted simultaneously.

 $^{^4}$ SIRUNYAN 20L use 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 13 TeV with ${\it H}^0\rightarrow~\gamma\gamma.$

⁵SIRUNYAN 20L combine 13 TeV results with 7 and 8 TeV results (KHACHA-TRYAN 15AM).

 $^{^{6}}$ AABOUD 18BM use 36.1 fb $^{-1}$ of pp collisions at $E_{cm}=$ 13 TeV with $H^{0} \rightarrow ZZ^{*} \rightarrow$ 4 ℓ where ℓ = e, μ .

⁷ AABOUD 18BM use 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=$ 13 TeV with $H^0 \to \gamma \gamma$.

⁸ AABOUD 18BM combine 13 TeV results with 7 and 8 TeV results. Other combined

results are summarized in their Fig. 4. 9 SIRUNYAN 17AV use 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV with $H^0\to ZZ^*\to$ 4 ℓ where $\ell=e,\ \mu.$

 $^{^{10}}$ KHACHATRYAN 15AM use up to 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV and up to 19.7 ${\rm fb^{-1}}$ at $E_{\rm cm}=$ 8 TeV.

 $^{^{11}}$ AAD 14W use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at 8 TeV. 12 CHATRCHYAN 14AA use 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at

 $^{^{13}\,{\}rm CHATRCHYAN}$ 14K use 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV.

- 14 KHACHATRYAN $^{14\rm P}$ use 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=$ 8 TeV.
- 15 AAD 13AK use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}{=}7$ TeV and 20.7 fb $^{-1}$ at $E_{\rm cm}{=}8$ TeV. Superseded by AAD 14W.
- 16 CHATRCHYAN 13J use 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV and 12.2 fb $^{-1}$ at $E_{\rm cm}=$ 8 TeV.
- 17 AAD 12AI obtain results based on 4.6–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.8–5.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. An excess of events over background with a local significance of 5.9 σ is observed at $m_{\mbox{\it H}^0}=126$ GeV. See also AAD 12DA.
- 18 CHATRCHYAN 12N obtain results based on 4.9–5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.1–5.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. An excess of events over background with a local significance of 5.0 σ is observed at about $m_{\slashed{H^0}}=125$ GeV. See also CHATRCHYAN 12BY and CHATRCHYAN 13Y.

H⁰ SPIN AND CP PROPERTIES

The observation of the signal in the $\gamma\gamma$ final state rules out the possibility that the discovered particle has spin 1, as a consequence of the Landau-Yang theorem. This argument relies on the assumptions that the decaying particle is an on-shell resonance and that the decay products are indeed two photons rather than two pairs of boosted photons, which each could in principle be misidentified as a single photon.

Concerning distinguishing the spin 0 hypothesis from a spin 2 hypothesis, some care has to be taken in modelling the latter in order to ensure that the discriminating power is actually based on the spin properties rather than on unphysical behavior that may affect the model of the spin 2 state.

Under the assumption that the observed signal consists of a single state rather than an overlap of more than one resonance, it is sufficient to discriminate between distinct hypotheses in the spin analyses. On the other hand, the determination of the *CP* properties is in general much more difficult since in principle the observed state could consist of any admixture of *CP*-even and *CP*-odd components. As a first step, the compatibility of the data with distinct hypotheses of pure *CP*-even and pure *CP*-odd states with different spin assignments has been investigated. In order to treat the case of a possible mixing of different *CP* states, certain cross section ratios are considered. Those cross section ratios need to be distinguished from the amount of mixing between a *CP*-even and a *CP*-odd state, as the cross section ratios depend in addition also on the coupling strengths of the *CP*-even and *CP*-odd components to the involved particles. A small relative coupling implies a small sensitivity of the corresponding cross section ratio to effects of *CP* mixing.

<u>VALUE ____ DOCUMENT ID ____ TECN ___ COMMENT </u>

• • We do not use the following data for averages, fits, limits, etc.

¹ AAD	20N ATLS	$H^0 ightarrow ~ au au$, VBF, 13 TeV
² AAD		$t\overline{t} H^0$, $H^0 ightarrow \ \gamma \gamma$, 13 TeV
³ SIRUNYAN	20AS CMS	$t\overline{t}H^0$, $H^0 ightarrow \gamma\gamma$, 13 TeV
⁴ SIRUNYAN	19BL CMS	pp, 7, 8, 13 TeV, $ZZ^*/ZZ ightarrow 4\ell$
⁵ SIRUNYAN	19BZ CMS	$pp \rightarrow H^0 + 2$ jets (VBF, ggF, VH),
		$H^0 ightarrow au au$, 13 TeV
⁶ AABOUD	18AJ ATLS	$H^0 ightarrow ZZ^* ightarrow 4\ell \ (\ell=e,\ \mu),\ 13 { m TeV}$
⁷ SIRUNYAN	17AM CMS	$pp \rightarrow H^0 + \geq 2j, H^0 \rightarrow 4\ell \ (\ell = e, \mu)$
⁸ AAD	16 ATLS	$H^0 ightarrow \gamma \gamma$

https://pdg.lbl.gov Page 3 Created: 8/11/2022 09:39

```
9 AAD 16BL ATLS pp \rightarrow H^0 jjX (VBF), H^0 \rightarrow \tau \tau, 8 TeV 10 KHACHATRY...16AB CMS pp \rightarrow WH^0, ZH^0, H^0 \rightarrow b\overline{b}, 8 TeV 11 AAD 15AX ATLS H^0 \rightarrow WW^* 12 AAD 15CI ATLS H^0 \rightarrow ZZ^*, WW^*, \gamma \gamma 13 AALTONEN 15 TEVA p\overline{p} \rightarrow WH^0, ZH^0, H^0 \rightarrow b\overline{b} 14 AALTONEN 15B CDF p\overline{p} \rightarrow WH^0, ZH^0, H^0 \rightarrow b\overline{b} 15 KHACHATRY...15Y CMS H^0 \rightarrow 4\ell, WW^*, \gamma \gamma 16 ABAZOV 14F D0 p\overline{p} \rightarrow WH^0, ZH^0, H^0 \rightarrow b\overline{b} 17 CHATRCHYAN 14AA CMS H^0 \rightarrow ZZ^* 18 CHATRCHYAN 14G CMS H^0 \rightarrow ZZ^* 18 CHATRCHYAN 14G CMS H^0 \rightarrow WW^* 19 KHACHATRY...14P CMS H^0 \rightarrow \gamma \gamma 20 AAD 13AJ ATLS H^0 \rightarrow \gamma \gamma, ZZ^* \rightarrow 4\ell, WW^* \rightarrow \ell \nu \ell \nu 21 CHATRCHYAN 13J CMS H^0 \rightarrow ZZ^* \rightarrow 4\ell
```

- ¹ AAD 20N test CP invariance in H^0 production via VBF using $H^0 \to \tau\tau$ decay channel with 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV. By using the Optimal Observable method, the data constrain a parameter \widetilde{d} , which is for the strength of CP violation in an effective field theory, to be $-0.090 \le \widetilde{d} \le 0.035$ at 68% CL (see their Fig. 6).
- 2 AAD 20Z exclude a $\it CP$ -mixing angle α , $|\alpha| > 43^{\circ}$ at 95% CL, where $\alpha = 0$ represents the Standard Model, in 139 fb $^{-1}$ of data at $E_{\rm cm} = 13$ TeV. The pure $\it CP$ -odd structure of the top Yukawa coupling ($\alpha = 90^{\circ}$) is excluded at 3.9 σ .
- 3 SIRUNYAN 20AS exclude the pure *CP*-odd structure of the top Yukawa coupling at 3.2 σ using $t\overline{t}H^0$, $H^0 \to \gamma\gamma$ in 137 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. The fractional contribution of the *CP*-odd component $f_{CP}^{t\overline{t}}H^0$ is measured to be 0.00 \pm 0.33.
- ⁴ SIRUNYAN 19BL measure the anomalous HVV couplings from on-shell and off-shell production in the 4ℓ final state. Data of 80.2 fb⁻¹ at 13 TeV, 19.7 fb⁻¹ at 8 TeV, and 5.1 fb⁻¹ at 7 TeV are used. See their Tables VI and VII for anomalous HVV couplings of CP-violating and CP-conserving parameters with on- and off-shells.
- ⁵ SIRUNYAN 19BZ constrain anomalous HVV couplings of the Higgs boson with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV using Higgs boson candidates with two jets produced in VBF, ggF, and VH that decay to $\tau\tau$. See their Table 2 and Fig. 10, which show 68% CL and 95% CL intervals. Combining those with the $H^0\to 4\ell$ (SIRUNYAN 19BL, on-shell scenario), results shown in their Tables 3, 4, and Fig. 11 are obtained. A CP-violating parameter is set to be $f_{a3}\cos(\phi_{a3})=(0.00\pm0.27)\times10^{-3}$ and CP-conserving parameters are $f_{a2}\cos(\phi_{a2})=(0.08^{+1.04}_{-0.21})\times10^{-3}$, $f_{\Lambda1}\cos(\phi_{\Lambda1})=(0.00^{+0.53}_{-0.09})\times10^{-3}$, and $f_{\Lambda1}^{Z\gamma}\cos(\phi_{\Lambda1}^{Z\gamma})=(0.0^{+1.1}_{-1.3})\times10^{-3}$.
- ⁶ AABOUD 18AJ study the tensor structure of the Higgs boson couplings using an effective Lagrangian using 36.1 fb $^{-1}$ of pp collision data at $E_{\rm cm}=13$ TeV. Constraints are set on the non-Standard-Model CP-even and CP-odd couplings to Z bosons and on the CP-odd coupling to gluons. See their Figs. 9 and 10, and Tables 10 and 11.
- 7 SIRUNYAN 17AM constrain anomalous couplings of the Higgs boson with 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV, 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV, and 38.6 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. See their Table 3 and Fig. 3, which show 68% CL and 95% CL intervals. A CP violation parameter f_{a3} is set to be $f_{a3}{\rm cos}(\phi_{a3})=[-0.38,\,0.46]$ at 95% CL $(\phi_{a3}=0\,{\rm or}\,\pi)$.
- ⁸ AAD 16 study $H^0 \to \gamma \gamma$ with an effective Lagrangian including CP even and odd terms in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The data is consistent with the expectations for the Higgs boson of the Standard Model. Limits on anomalous couplings are also given.

- ⁹ AAD 16BL study VBF $H^0 \to \tau \tau$ with an effective Lagrangian including a CP odd term in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The measurement is consistent with the expectation of the Standard Model. The CP-mixing parameter \widetilde{d} (a dimensionless coupling $\widetilde{d}=-(m_W^2/\Lambda^2)f_{\widetilde{W}W}$) is constrained to the interval of (-0.11, 0.05) at 68% CL under the assumption of $\widetilde{d}=\widetilde{d}_B$.
- 10 KHACHATRYAN 16AB search for anomalous pseudoscalar couplings of the Higgs boson to W and Z with 18.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. See their Table 5 and Figs 5 and 6 for limits on possible anomalous pseudoscalar coupling parameters. 11 AAD 15AX compare the $J^{CP}=0^+$ Standard Model assignment with other J^{CP} hy-
- ¹¹ AAD 15AX compare the $J^{CP}=0^+$ Standard Model assignment with other J^{CP} hypotheses in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV, using the process $H^0\to WW^*\to e\nu\mu\nu$. 2⁺ hypotheses are excluded at 84.5–99.4%CL, 0⁻ at 96.5%CL, 0⁺ (field strength coupling) at 70.8%CL. See their Fig. 19 for limits on possible CP mixture parameters.
- AAD 15CI compare the $J^{CP}=0^+$ Standard Model assignment with other J^{CP} hypotheses in 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV, using the processes $H^0\to ZZ^*\to 4\ell$. $H^0\to \gamma\gamma$ and combine with AAD 15AX data. 0^+ (field strength coupling), 0^- and several 2^+ hypotheses are excluded at more than 99.9% CL. See their Tables 7–9 for limits on possible CP mixture parameters.
- 13 AALTONEN 15 combine AALTONEN 15B and ABAZOV 14F data. An upper limit of 0.36 of the Standard Model production rate at 95% CL is obtained both for a 0^- and a 2^+ state. Assuming the SM event rate, the $J^{CP}=0^-$ (2^+) hypothesis is excluded at the 5.0σ (4.9σ) level.
- ¹⁴ AALTONEN 15B compare the $J^{CP}=0^+$ Standard Model assignment with other J^{CP} hypotheses in 9.45 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV, using the processes $ZH^0\to \ell\ell b\overline{b}$, $WH^0\to\ell\nu b\overline{b}$, and $ZH^0\to\nu\nu b\overline{b}$. Bounds on the production rates of 0^- and 2^+ (graviton-like) states are set, see their tables II and III.
- 15 KHACHATRYAN 15Y compare the $J^{CP}=0^+$ Standard Model assignment with other J^{CP} hypotheses in up to $5.1~{\rm fb}^{-1}$ of pp collisions at $E_{\rm cm}=7~{\rm TeV}$ and up to $19.7~{\rm fb}^{-1}$ at $E_{\rm cm}=8~{\rm TeV}$, using the processes $H^0\to 4\ell,~H^0\to WW^*$, and $H^0\to \gamma\gamma.~0^-$ is excluded at 99.98% CL, and several 2^+ hypotheses are excluded at more than 99% CL. Spin 1 models are excluded at more than 99.999% CL in ZZ^* and WW^* modes. Limits on anomalous couplings and several cross section fractions, treating the case of CP-mixed states, are also given.
- ¹⁶ ABAZOV 14F compare the $J^{CP}=0^+$ Standard Model assignment with $J^{CP}=0^-$ and 2^+ (graviton-like coupling) hypotheses in up to 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. They use kinematic correlations between the decay products of the vector boson and the Higgs boson in the final states $ZH\to\ell\ell b\overline{b}$, $WH\to\ell\nu b\overline{b}$, and $ZH\to\nu\nu b\overline{b}$. The 0^- (2^+) hypothesis is excluded at 97.6% CL (99.0% CL). In order to treat the case of a possible mixture of a 0^+ state with another J^{CP} state, the cross section fractions $f_X=\sigma_X/(\sigma_{0^+}+\sigma_X)$ are considered, where $X=0^-$, 2^+ . Values for $f_0-(f_{2^+})$ above 0.80 (0.67) are excluded at 95% CL under the assumption that the total cross section is that of the SM Higgs boson.
- ¹⁷ CHATRCHYAN 14AA compare the $J^{CP}=0^+$ Standard Model assignment with various J^{CP} hypotheses in 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. $J^{CP}=0^-$ and 1^\pm hypotheses are excluded at 99% CL, and several J=2 hypotheses are excluded at 95% CL. In order to treat the case of a possible mixture of a 0^+ state with another J^{CP} state, the cross section fraction $f_{a3}=|a_3|^2$ σ_3 / $(|a_1|^2$ $\sigma_1+|a_2|^2$ $\sigma_2+|a_3|^2$ σ_3) is considered, where the case $a_3=1$, $a_1=a_2=0$ corresponds to a pure CP-odd state. Assuming $a_2=0$, a value for f_{a3} above 0.51 is excluded at 95% CL.

- ¹⁸ CHATRCHYAN 14G compare the $J^{CP}=0^+$ Standard Model assignment with $J^{CP}=0^-$ and 2^+ (graviton-like coupling) hypotheses in 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.4 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. Varying the fraction of the production of the 2^+ state via gg and $q\overline{q}$, 2^+ hypotheses are disfavored at CL between 83.7 and 99.8%. The 0^- hypothesis is disfavored against 0^+ at the 65.3% CL.
- The 0^- hypothesis is disfavored against 0^+ at the 65.3% CL. ¹⁹ KHACHATRYAN 14P compare the $J^{CP}=0^+$ Standard Model assignment with a 2^+ (graviton-like coupling) hypothesis in 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. Varying the fraction of the production of the 2^+ state via gg and $q\overline{q}$, 2^+ hypotheses are disfavored at CL between 71 and 94%.
- AAD 13AJ compare the spin 0, *CP*-even hypothesis with specific alternative hypotheses of spin 0, *CP*-odd, spin 1, *CP*-even and *CP*-odd, and spin 2, *CP*-even models using the Higgs boson decays $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ and combinations thereof. The data are compatible with the spin 0, *CP*-even hypothesis, while all other tested hypotheses are excluded at confidence levels above 97.8%.
- ²¹ CHATRCHYAN 13J study angular distributions of the lepton pairs in the ZZ^* channel where both Z bosons decay to e or μ pairs. Under the assumption that the observed particle has spin 0, the data are found to be consistent with the pure CP-even hypothesis, while the pure CP-odd hypothesis is disfavored.

HO DECAY WIDTH

The total decay width for a light Higgs boson with a mass in the observed range is not expected to be directly observable at the LHC. For the case of the Standard Model the prediction for the total width is about 4 MeV, which is three orders of magnitude smaller than the experimental mass resolution. There is no indication from the results observed so far that the natural width is broadened by new physics effects to such an extent that it could be directly observable. Furthermore, as all LHC Higgs channels rely on the identification of Higgs decay products, the total Higgs width cannot be measured indirectly without additional assumptions. The different dependence of on-peak and off-peak contributions on the total width in Higgs decays to ZZ^{\ast} and interference effects between signal and background in Higgs decays to $\gamma\gamma$ can provide additional information in this context. Constraints on the total width from the combination of on-peak and off-peak contributions in Higgs decays to ZZ^{\ast} rely on the assumption of equal on- and off-shell effective couplings. Without an experimental determination of the total width or further theoretical assumptions, only ratios of couplings can be determined at the LHC rather than absolute values of couplings.

VALUE (MeV)	CL%	DOCUMENT ID	TECN	COMMENT
3.2 ^{+2.8} _{-2.2}		¹ SIRUNYAN	19BL CMS	pp, 7, 8, 13 TeV, $ZZ^*/ZZ \rightarrow 4\ell$

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 14.4 <1100	95 95	² AABOUD 18BP ATLS ³ SIRUNYAN 17AV CMS	pp , 13 TeV, $ZZ o 4\ell$, $2\ell 2\nu$ pp , 13 TeV, $ZZ^* o 4\ell$
< 26	95	⁴ KHACHATRY16BA CMS	
< 13	95	⁵ KHACHATRY16BA CMS	
< 22.7	95		pp , 8 TeV, $ZZ^{(*)}$, $WW^{(*)}$
<1700	95		<i>pp</i> , 7, 8 TeV
$> 3.5 \times 10^{-9}$	95	⁸ KHACHATRY15BA CMS	pp, 7, 8 TeV, flight distance

< 46	95	⁹ KHACHATRY15BA CMS	pp, 7, 8 TeV, $ZZ^{(*)} o 4\ell$
< 5000	95	¹⁰ AAD 14W ATLS	pp , 7, 8 TeV, $\gamma\gamma$
< 2600	95		pp , 7, 8 TeV, $ZZ^* ightarrow4\ell$
<3400	95	¹¹ CHATRCHYAN 14AA CMS	
< 22	95	¹² KHACHATRY14D CMS	<i>рр</i> , 7, 8 TeV, <i>ZZ</i> ^(*)
<2400	95	¹³ KHACHATRY14P CMS	pp , 7, 8 TeV, $\gamma\gamma$

- 1 SIRUNYAN 19 BL measure the width and anomalous HVV couplings from on-shell and off-shell production in the 4ℓ final state. Data of $80.2~{\rm fb}^{-1}$ at $13~{\rm TeV},~19.7~{\rm fb}^{-1}$ at $8~{\rm TeV},~{\rm and}~5.1~{\rm fb}^{-1}$ at $7~{\rm TeV}$ are used. The total width for the SM-like couplings is measured to be also [0.08, 9.16] MeV with 95% CL, assuming SM-like couplings for on-and off-shells (see their Table VIII). Constraints on the total width for anomalous HVV interaction cases are found in their Table IX. See their Table X for the Higgs boson signal strength in the off-shell region.
- 2 AABOUD 18BP use $36.1~{\rm fb}^{-1}$ at $E_{\rm cm}=13~{\rm TeV}.$ An observed upper limit on the off-shell Higgs signal strength of 3.8 is obtained at 95% CL using off-shell Higgs boson production in the $ZZ\to 4\ell$ and $ZZ\to 2\ell 2\nu$ decay channels $(\ell=e,~\mu).$ Combining with the on-shell signal strength measurements, the quoted upper limit on the Higgs boson total width is obtained, assuming the ratios of the relevant Higgs-boson couplings to the SM predictions are constant with energy from on-shell production to the high-mass range.
- ³ SIRUNYAN 17AV obtain an upper limit on the width from the $m_{4\ell}$ distribution in $ZZ^* \to 4\ell$ ($\ell=e,\ \mu$) decays. Data of 35.9 fb⁻¹ pp collisions at $E_{\rm cm}=13$ TeV is used. The expected limit is 1.60 GeV.
- ⁴ KHACHATRYAN 16BA derive constraints on the total width from comparing $WW^{(*)}$ production via on-shell and off-shell H^0 using 4.9 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.4 fb⁻¹ at 8 TeV.
- 5 KHACHATRYAN 16BA combine the $WW^{(*)}$ result with $ZZ^{(*)}$ results of KHACHATRYAN 15BA and KHACHATRYAN 14D.
- ⁶ AAD 15BE derive constraints on the total width from comparing $ZZ^{(*)}$ and $WW^{(*)}$ production via on-shell and off-shell H^0 using 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The K factor for the background processes is assumed to be equal to that for the signal.
- 7 KHACHATRYAN 15AM combine $\gamma\gamma$ and $ZZ^*\to 4\ell$ results. The expected limit is 2.3 GeV.
- 8 KHACHATRYAN 15BA derive a lower limit on the total width from an upper limit on the decay flight distance $\tau < 1.9 \times 10^{-13}$ s. 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm} = 7$ TeV and 19.7 fb $^{-1}$ at 8 TeV are used.
- ⁹ KHACHATRYAN 15BA derive constraints on the total width from comparing $ZZ^{(*)}$ production via on-shell and off-shell H^0 with an unconstrained anomalous coupling. 4ℓ final states in 5.1 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm}=8$ TeV are used.
- 10 AAD 14W use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at 8 TeV. The expected limit is 6.2 GeV.
- 11 CHATRCHYAN 14AA use 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The expected limit is 2.8 GeV.
- ¹² KHACHATRYAN 14D derive constraints on the total width from comparing $ZZ^{(*)}$ production via on-shell and off-shell H^0 . 4ℓ and $\ell\ell\nu\nu$ final states in 5.1 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm}=8$ TeV are used.
- 13 KHACHATRYAN 14P use 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The expected limit is 3.1 GeV.

HO DECAY MODES

	Mode		Fraction (Γ_i/Γ)	Confidence level
Γ ₁	WW*			
Γ_2	<i>Z Z</i> *			
Γ_3^-	$\gamma\gamma$			
	$rac{\gamma}{b}rac{\gamma}{b}$			
	e^+e^-		$< 3.6 \times 10^{-4}$	95%
	$\mu^+\mu^-$			
Γ_7	$ au^+ au^-$			
	$Z\gamma$			
-	$Z \rho$ (770)		< 1.21 %	95%
Γ_{10}	$Z\phi(1020)$		$< 3.6 \times 10^{-3}$	95%
	$Z\eta_c$			
	ZJ/ψ			
	$\gamma^* \gamma$			
	$J/\psi\gamma$		$< 3.5 \times 10^{-4}$	95%
	$J/\psiJ/\psi$		$< 1.8 \times 10^{-3}$	95%
	$\psi(2S)\gamma$		$< 2.0 \times 10^{-3}$	95%
Γ_{17}	$\Upsilon(1S)\gamma$		$< 4.9 \times 10^{-4}$	95%
	$\Upsilon(2S)\gamma$		$< 5.9 \times 10^{-4}$	95%
	Υ (3 S) γ		$< 5.7 \times 10^{-4}$	95%
	$\Upsilon(nS)\ \Upsilon(mS)$		$< 1.4 \times 10^{-3}$	95%
	$ ho$ (770) γ		$< 8.8 \times 10^{-4}$	95%
Γ_{22}	ϕ (1020) γ		$< 4.8 \times 10^{-4}$	95%
Γ_{23}	$e\mu$	LF	$< 6.1 \times 10^{-5}$	95%
Γ_{24}	e au	LF		95%
Γ_{25}	μau	LF	$< 1.5 \times 10^{-3}$	95%
	invisible		<19 %	95%
Γ ₂₇	γ invisible			

H⁰ BRANCHING RATIOS

$\Gamma(e^+e^-)/\Gamma_{ m total}$						Γ_5/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 3.6 \times 10^{-4}$	95	¹ AAD	20F	ATLS	<i>рр</i> , 13 TeV	
• • • We do not use the	e following	g data for average	s, fits	limits,	etc. • • •	
$< 1.9 \times 10^{-3}$	95	² KHACHATRY	15H	CMS	<i>pp</i> , 7, 8 TeV	
$^{ m 1}$ AAD 20F use 139 fl	o^{-1} of p_I	σ collisions at $E_{ m cr}$	m =	13 TeV.	The best-fit valu	e of the
$H^0 ightarrow e e $ branching	g fraction	is (0.0 \pm 1.7 \pm 0.	.6) ×	$10^{-4}\;{ m fo}$	$m_{H0}=125~{ m GeV}$	V .
² KHACHATRYAN 15 8 TeV.						

 $\Gamma(Z\rho(770))/\Gamma_{\text{total}}$

 Γ_9/Γ

<u>VALUE</u>	<u>CL%_</u>	<u>DOCUMENT ID</u>	TECN	COMMENT	
$<1.21 \times 10^{-2}$	95	¹ SIRUNYAN	20BK CMS	pp, 13 TeV	
1 CIDLINIXANI 2001			+ - / +	+ _	

¹ SIRUNYAN 20BK search for $H^0 \to Z \rho$, $Z \to e^+ e^-/\mu^+\mu^-$, $\rho \to \pi^+\pi^-$ with 137 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV. The quoted branching fraction is for the unpolarized decay. See their Table 3 for different polarizations.

$\Gamma(Z\phi(1020))/\Gamma_{\text{total}}$

 Γ_{10}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 3.6 \times 10^{-3}$	95	¹ SIRUNYAN	20BK CMS	<i>pp</i> , 13 TeV

 $^{^1}$ SIRUNYAN 20BK search for $H^0\to Z\phi,\,Z\to e^+e^-/\mu^+\mu^-,\,\phi\to K^+K^-$ with 137 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The quoted branching fraction is for the unpolarized decay. See their Table 4 for different polarizations.

$\Gamma(Z\eta_c)/\Gamma_{\text{total}}$

 Γ_{11}/Γ

<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet ullet ullet AAD 20AE ATLS $p\,p$, 13 TeV

$\Gamma(ZJ/\psi)/\Gamma_{\text{total}}$

 Γ_{12}/Γ

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • • •

¹ AAD 20AE ATLS pp, 13 TeV

$\Gamma(J/\psi\gamma)/\Gamma_{\text{total}}$

 Γ_{14}/Γ

Created: 8/11/2022 09:39

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 7.6 \times 10^{-4}$	95	¹ SIRUNYAN	19AJ CMS	13 TeV, 35.9 ${\rm fb}^{-1}$
$< 3.5 \times 10^{-4}$	95	² AABOUD	18BL ATLS	13 TeV, 36.1 ${\rm fb}^{-1}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $<1.5\times10^{-3}$ 95 3 KHACHATRY...16B CMS 8 TeV $<1.5\times10^{-3}$ 95 4 AAD 15I ATLS 8 TeV

¹ AAD 20AE search for $H^0 \to Z\eta_c$ with two-leptons $(e^+e^-/\mu^+\mu^-)$ plus jet events using 139 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV. The upper limit of $\sigma(pp\to H^0)\cdot {\rm B}(H^0\to Z\eta_c)$ is 110 pb at 95% CL.

¹ AAD 20AE search for $H^0 \to ZJ/\psi$ with two-leptons $(e^+e^-/\mu^+\mu^-)$ plus jet events using 139 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV. The upper limit of $\sigma(pp\to H^0)\cdot {\rm B}(H^0\to ZJ/\psi)$ is 100 pb at 95% CL.

 $^{^1}$ SIRUNYAN 19AJ search for $H^0\to J/\psi\gamma,\,J/\psi\to\mu^+\mu^-$ with 35.9 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13\,$ TeV. The upper limit corresponds to 260 times the SM prediction and by combining the KHACHATRYAN 16B, it is 220 times the SM prediction.

² AABOUD 18BL search for $H^0 \to J/\psi \gamma$, $J/\psi \to \mu^+ \mu^-$ with 36.1 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV.

 $^{^3}$ KHACHATRYAN 16B use 19.7 fb $^{-1}$ of pp collision data at 8 TeV.

 $^{^4}$ AAD 15I use 19.7 fb $^{-1}$ of pp collision data at 8 TeV.

$\Gamma(J/\psi J/\psi)/\Gamma_{\text{total}}$	CL O/	0.000 4547 10	TECN	COMMENT	Γ ₁₅ /Γ
VALUE <1.8 × 10 ⁻³	<u>CL%</u>	1 CIDLINIXAN	1000 CMC	COMMENT	
1 SIRUNYAN 19BR sea lision data at $E_{\rm cm}$ = For fully longitudina	arch for HS = 13 TeV I (transver	$J ightarrow J/\psi J/\psi$, J/ψ s from the Higgse) polarized J/ψ s	$\psi ightarrow \ \mu^+ \ \mu^-$ gs decay are a s, limits chang	with 37.5 fb ⁻¹ dissumed to be unge by -22% (+1)	of <i>p p</i> col- polarized. .0%).
$\Gamma(\psi(2S)\gamma)/\Gamma_{\text{total}}$	CI %	DOCUMENT ID	TECN	COMMENT	Γ ₁₆ /Γ
<2.0 × 10 ⁻³	95	1 AAROUD	18RI ATIS	13 TeV 36 1 f	$\frac{1}{h^{-1}}$
1 AABOUD 18BL sear collision data at $E_{\rm cr}$	ch for H^0	$\rightarrow \psi(2S)\gamma, \psi(2S)\gamma$			
$\Gamma(\Upsilon(1S)\gamma)/\Gamma_{total}$					Γ_{17}/Γ
VALUE 4.9 × 10⁻⁴	CL%	DOCUMENT ID	TECN	COMMENT	
$<4.9 \times 10^{-4}$	95	$^{ m 1}$ AABOUD	18BL ATLS	13 TeV, 36.1 f	b^{-1}
• • • We do not use the					
$<1.3 \times 10^{-3}$	95	² AAD	15ı ATLS	8 TeV	
1 AABOUD 18BL sear collision data at $E_{\rm cr}$ 2 AAD 15I use 19.7 fb	$_{\sf n}=13$ Te	eV.		ι^- with 36.1 fb $^\circ$	$^{-1}$ of pp
$\Gamma(\Upsilon(2S)\gamma)/\Gamma_{total}$					Γ ₁₈ /Γ
VALUE <5.9 × 10^{−4}	CL%	DOCUMENT ID	TECN	COMMENT	
					p_{-1}
• • • We do not use the					
		² AAD			
1 AABOUD 18BL sear collision data at E_{cr} 2 AAD 15I use 19.7 fb	_n = 13 Te	·V.	,	μ^- with 36.1 fb	$^{-1}$ of pp
	οι ρρ	Comsion data at c	o iev.		
$\Gamma(\Upsilon(3S)\gamma)/\Gamma_{total}$					Γ ₁₉ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID 1 AABOUD	<u>TECN</u>	COMMENT	. 1
<5.7 × 10 ⁻⁴ • • • We do not use the					b
$<1.3\times10^{-3}$	_	² AAD			
¹ AABOUD 18BL sear	ch for H ⁰	$\rightarrow \gamma(3S)\gamma, \gamma($			$^{-1}$ of pp
collision data at $E_{\rm cr}$ AAD 151 use 19.7 fb			B TeV.		
$\Gamma(\Upsilon(nS)\Upsilon(mS))/\Gamma_{t}$	otal				Γ ₂₀ /Γ
VALUE <1.4 × 10 ⁻³	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
1 SIRUNYAN 19BR se m = 1, 2, 3) for 37.	arch for H	${ m M}^{0} ightarrow ~ { m \Upsilon(nS)} ~ { m \Upsilon(mS)}$	nS) with Υ (n	S), $\Upsilon(mS) \to \mu$	$^{+}\mu^{-}$ (n,

gs limits change by -22% (+10%). The three \varUpsilon states selected in a mass range of 8.5–11 GeV are not distinguished.

Γ ₂₁ /Ι
MENT 13 TeV
13 TeV
Γ ₂₂ /Ι
" 22 / ' MENT
13 TeV
• •
13 TeV
Γ ₂₃ /Ι
<i>MENT</i> 13 TeV
• •
3 TeV
est-fit value of th
= 125 GeV.
collisions at $E_{ m cr}$
$\frac{1}{ \mathbf{e}\mu ^2 + \mathbf{Y}_{\mu \mathbf{e}} ^2}$
Γ ₂₄ /Ι
1 24/1
•
MENT
MENT 13 TeV
MENT 13 TeV • •
MENT 13 TeV • • 13 TeV
MENT 13 TeV 13 TeV 13 TeV 13 TeV 3 TeV
MENT 13 TeV • • 13 TeV 13 TeV
MENT 13 TeV 13 TeV 13 TeV 13 TeV 3 TeV
MENT 13 TeV • • 13 TeV 13 TeV 13 TeV 3 TeV 3 TeV
MENT 13 TeV 13 TeV 13 TeV 13 TeV 3 TeV 3 TeV 3 TeV 3 TeV $\frac{1}{2} = 13 \text{ TeV}$
MENT 13 TeV 13 TeV 13 TeV 13 TeV 3 TeV 3 TeV 3 TeV 3 TeV at E _{cm} = 13 TeV
MENT 13 TeV 14 TeV 15 TeV 16 TeV 17 TeV 18 TeV 19 TeV 10 TeV 10 TeV 11 TeV 12 TeV 13 TeV 14 TeV 15 TeV 16 TeV 17 TeV 18 TeV
MENT 13 TeV 14 $E_{cm} = 13 \text{ TeV}$ 15 $e_{cm} = 13 \text{ TeV}$ 16 $e_{cm} = 13 \text{ TeV}$ 17 $e_{cm} = 13 \text{ TeV}$ 18 $e_{cm} = 13 \text{ TeV}$ 19 $e_{cm} = 13 \text{ TeV}$ 20 $e_{cm} = 13 \text{ TeV}$
MENT 13 TeV 14 TeV 15 TeV 16 TeV 17 TeV 18 TeV 19 TeV 10 TeV 10 TeV 11 TeV 12 TeV 13 TeV 14 TeV 15 TeV 16 TeV 17 TeV 18 TeV
MENT 13 TeV • • 13 TeV 14 E _{cm} = 13 TeV 17 < 1.35 × 10 ⁻⁴ 18 c_{cm} = 13 TeV 19 < 2.0 × 10 ⁻³ a 10 c_{cm} = 13 TeV 10 < 2.26 × 10 ⁻⁴ 11 = 8 TeV.

$\Gamma(\mu au)/\Gamma_{ ext{total}}$						Γ_{25}/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 1.5 \times 10^{-3}$	95	¹ SIRUNYAN	21z	CMS	<i>pp</i> , 13 TeV	
\bullet \bullet We do not use	the followin	g data for average	s, fits,	limits,	etc. • • •	
$< 2.8 \times 10^{-3}$	95	² AAD	20A	ATLS	<i>pp</i> , 13 TeV	
$< 26 \times 10^{-2}$	95	³ AAIJ	18AN	иLHCВ	<i>рр</i> , 8 TeV	
$< 2.5 \times 10^{-3}$	95	⁴ SIRUNYAN	18BH	I CMS	<i>pp</i> , 13 TeV	
$< 1.43 \times 10^{-2}$	95	⁵ AAD	17	ATLS	<i>pp</i> , 8 TeV	
$< 1.51 \times 10^{-2}$	95	⁶ KHACHATRY	15Q	CMS	рр. 8 TeV	

- 1 SIRUNYAN 21Z search for $H^0\to \mu\tau$ in 137 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. The limit constrains the $Y_{\mu\tau}$ Yukawa coupling to $\sqrt{|Y_{\mu\tau}|^2+|Y_{\tau\mu}|^2}<1.11\times 10^{-3}$ at 95% CL (see their Fig. 8).
- 2 AAD 20A search for $H^0\to \mu\tau$ in 36.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. The limit constrains the $Y_{\mu\tau}$ Yukawa coupling to $\sqrt{|Y_{\mu\tau}|^2+|Y_{\tau\mu}|^2}<1.5\times 10^{-3}$ at 95% CL (see their Fig. 5).
- 3 AAIJ 18AM search for $H^0\to \mu\tau$ in 2.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. The limit constrains the $Y_{\mu\tau}$ Yukawa coupling to $\sqrt{|Y_{\mu\tau}|^2+|Y_{\tau\mu}|^2}<1.7\times10^{-2}$ at 95% CL assuming SM production cross sections.
- 4 SIRUNYAN 18BH search for $H^0\to \mu\tau$ in 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. The limit constrains the $Y_{\mu\tau}$ Yukawa coupling to $\sqrt{|Y_{\mu\tau}|^2+|Y_{\tau\mu}|^2}<1.43\times 10^{-3}$ at 95% CL (see their Fig. 10).
- ⁵ AAD 17 search for $H^0 \rightarrow \mu \tau$ in 20.3 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV.

DOCUMENT ID

⁶ KHACHATRYAN 15Q search for $H^0 \to \mu \tau$ with τ decaying electronically or hadronically in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The fit gives B($H^0 \to \mu \tau$) = $(0.84^{+0.39}_{-0.37})\%$ with a significance of 2.4 σ .

<u>TECN</u> <u>COMMENT</u>

Created: 8/11/2022 09:39

Γ(invisible)/Γ_{total} Invisible final states.

 Γ_{26}/Γ

< 0.26	95	¹ AABOUD	19AL ATLS	pp , 7, 8, 13 TeV, $H o ext{inv}$
<0.19	95	² SIRUNYAN	19во CMS	pp, 7, 8, 13 TeV
• • • We do no	t use the follo	owing data for aver	ages, fits, limi	ts, etc. • • •
< 0.34	95	³ AAD	21F ATLS	pp, 13 TeV
< 0.29	95	⁴ SIRUNYAN	21A CMS	$pp ightarrow ZH^0$, $H^0 ightarrow ext{inv}$, 13 TeV
< 0.278	95	⁵ TUMASYAN	21D CMS	pp, 13 TeV
< 0.37	95	⁶ AABOUD	19AI ATLS	$pp ightarrow qqH^0X, H^0 ightarrow inv, 13 TeV$
< 0.38	95	⁷ AABOUD	19AL ATLS	pp , 13 TeV, $H \rightarrow \text{inv}$
< 0.22	95	⁸ SIRUNYAN	19AT CMS	pp, 13 TeV, $H o$ inv
< 0.33	95	⁹ SIRUNYAN	19BO CMS	$pp ightarrow qqH^0X, H^0 ightarrow inv, 13 TeV$
< 0.26	95	¹⁰ SIRUNYAN	19во CMS	pp, 13 TeV
< 0.67	95	¹¹ AABOUD	18 ATLS	$pp \rightarrow H^0 ZX, H^0 \rightarrow \text{inv } 13 \text{ TeV}$
< 0.83	95	¹² AABOUD	18CA ATLS	$pp \rightarrow H^0 W/Z$, $W/Z \rightarrow jj$, 13 TeV
<0.40	95	¹³ SIRUNYAN	18BV CMS	$pp \rightarrow Z(\ell\ell)H^0, H^0 \rightarrow \text{inv, 13 TeV}$

< 0.53	95	¹⁴ SIRUNYAN 18S CMS	
< 0.46	95	¹⁵ AABOUD 17BD ATL	
<0.24	95	16 KHACHATRY17F CMS	to the second se
< 0.28	95	17 AAD 16AF ATL	S $pp o qqH^0X$, 8 TeV
< 0.34	95	¹⁸ AAD 16AN LHC	<i>pp</i> , 7, 8 TeV
< 0.78	95	19 AAD 15BD ATL	S $pp \rightarrow H^0W/ZX$, 8 TeV
< 0.25	95	²⁰ AAD 15cx ATL	S pp , 7, 8 TeV, $H \rightarrow \text{inv}$
< 0.75	95	²¹ AAD 140 ATL	S $pp \rightarrow H^0ZX$, 7, 8 TeV
< 0.58	95	²² CHATRCHYAN 14B CMS	
< 0.81	95	²³ CHATRCHYAN 14B CMS	5 $pp o H^0ZX$, 7, 8 TeV
< 0.65	95	²⁴ CHATRCHYAN 14B CMS	$6 pp ightarrow qqH^0X$, 8 TeV

 $^1\,\mathrm{AABOUD}$ 19AL combine results of 7, 8 (AAD 15CX), and 13 TeV for H^0 decaying to invisible final states.

 2 SIRUNYAN 19BO combine 13 TeV 35.9 fb $^{-1}$ results with 7, 8, 13 TeV (KHACHATRYAN 17F) for H^0 decaying to invisible final states. The quoted limit on the branching ratio is given for $m_{\mbox{\scriptsize H}^0}=125.09$ GeV and assumes the Standard Model production rates. The branching ratio is obtained to be 0.05 \pm 0.03 (stat) \pm 0.07(syst).

 3 AAD 21F search for an invisibly decaying Higgs boson with an energetic jet ($p_T > 150$ GeV) and missing transverse momentum (> 200 GeV) in 139 fb $^{-1}$ at $E_{\rm cm} = 13$ TeV. The quoted limit on the branching ratio is given for $m_{H^0} = 125$ GeV.

⁴SIRUNYAN 21A search for H^0 decaying to invisible final states associated with a Z decaying $e\,e/\mu\,\mu$ using 137 fb⁻¹ at 13 TeV. The limit is obtained for $m_{H^0}=125$ GeV and assuming the SM $Z\,H^0$ production cross section.

⁵ TUMASYAN 21D search for H^0 decaying to invisible final states associated with an energetic jet or a $V, V \to q \overline{q}$ using 101 fb⁻¹ at 13 TeV and the result is combined with SIRUNYAN 18S.

⁶ AABOUD 19AI search for $pp \rightarrow qqH^0X$ (VBF) with H^0 decaying to invisible final states using 36.1 fb⁻¹ of data. The quoted limit on the branching ratio is given for $m_{H^0} = 125$ GeV and assumes the Standard Model rates for VBF and gluon-fusion production.

125 GeV and assumes the Standard Model rates for VBF and gluon-fusion production.
⁷ AABOUD 19AL combine results of H^0 decaying to invisible final states with VBF(AABOUD 19AI), ZH, and WH productions (AABOUD 18, AABOUD 18CA), which use 36.1 fb⁻¹ of data at 13 TeV. The quoted limit is given for $m_{H^0} = 125$ GeV and assumes the Standard Model rates for gluon fusion, VBF, ZH, and WH productions.

 8 SIRUNYAN 19AT perform a combined fit with visible decay using 35.9 fb $^{-1}$ of data at 13 TeV.

 9 SIRUNYAN 19BO search for $pp \to qqH^0X$ (VBF) with H^0 decaying to invisible final states using 35.9 fb $^{-1}$ of data. The quoted limit on the branching ratio is given for $m_{H^0}=125.09$ GeV and assumes the Standard Model production rates.

 10 SIRUNYAN 19BO combine the VBF channel with results of other 13 TeV analyses: SIRUNYAN 18BV and SIRUNYAN 18S. The quoted limit on the branching ratio is given for $m_{H^0}=125.09$ GeV and assumes the Standard Model production rates.

 11 AABOUD 18 search for $pp\to H^0\,ZX,\,Z\to ee,\,\,\mu\mu$ with H^0 decaying to invisible final states in 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The quoted limit on the branching ratio is given for $m_{H^0}=125$ GeV and assumes the Standard Model rate for $H^0\,Z$ production.

¹²AABOUD 18CA search for H^0 decaying to invisible final states using WH, and ZH productions, where W and Z hadronically decay. The data of 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV is used. The quoted limit assumes SM production cross sections with combining the contributions from WH, ZH, ggF and VBF production modes.

- 13 SIRUNYAN 18BV search for H^0 decaying to invisible final states associated with a Z, $Z \to \ell \ell$ using 35.9 fb $^{-1}$ at 13 TeV.The limit is obtained for $m_{H^0} = 125$ GeV and assuming the SM ZH^0 production cross section.
- 14 SIRUNYAN 18S search for H^0 decaying to invisible final states associated with an energetic jet or a $V,~V\to~q\,\overline{q}$ using 35.9 fb $^{-1}$ at 13 TeV.
- 15 AABOUD 17BD search for H^0 decaying to invisible final states with ≥ 1 jet and VBF events using 3.2 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=13$ TeV. A cross-section ratio $R^{\rm miss}$ is used in the measurement. The quoted limit is given for $m_{H^0}=125$ GeV.
- 16 KHACHATRYAN 17F search for H^0 decaying to invisible final states with gluon fusion, VBF, ZH, and WH productions using 2.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV, $19.7~{\rm fb}^{-1}$ at 8 TeV, and $5.1~{\rm fb}^{-1}$ at 7 TeV. The quoted limit is given for $m_{H^0}=125~{\rm GeV}$ and assumes the Standard Model rates for gluon fusion, VBF, ZH, and WH productions.
- ¹⁷ AAD 16AF search for $pp \to qqH^0X$ (VBF) with H^0 decaying to invisible final states in 20.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. The quoted limit on the branching ratio is given for $m_{H^0}=125$ GeV and assumes the Standard Model rates for VBF and gluon-fusion production.
- 18 AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The branching fraction of decays into BSM particles that are invisible or into undetected decay modes is measured for $m_{H^0}=125.09$ GeV.
- ¹⁹ AAD 15BD search for $pp \to H^0WX$ and $pp \to H^0ZX$ with W or Z decaying hadronically and H^0 decaying to invisible final states using data at $E_{\rm cm}=8$ TeV. The quoted limit is given for $m_{H^0}=125$ GeV, assumes the Standard Model rates for the production processes and is based on a combination of the contributions from H^0W , H^0Z and the gluon-fusion process.
- 20 AAD 15CX search for H^0 decaying to invisible final states with VBF, ZH, and WH productions using 20.3 fb $^{-1}$ at 8 TeV, and 4.7 fb $^{-1}$ at 7 TeV. The quoted limit is given for $m_{H^0} = 125.36$ GeV and assumes the Standard Model rates for gluon fusion, VBF, ZH, and WH productions. The upper limit is improved to 0.23 by adding the measured visible decay rates.
- ²¹ AAD 140 search for $pp \to H^0 ZX$, $Z \to \ell\ell$, with H^0 decaying to invisible final states in 4.5 fb⁻¹ at $E_{\rm cm} = 7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. The quoted limit on the branching ratio is given for $m_{H^0} = 125.5$ GeV and assumes the Standard Model rate for $H^0 Z$ production.
- ²² CHATRCHYAN 14B search for $pp \to H^0ZX$, $Z \to \ell\ell$ and $Z \to b\overline{b}$, and also $pp \to qqH^0X$ with H^0 decaying to invisible final states using data at $E_{\rm cm}=7$ and 8 TeV. The quoted limit on the branching ratio is obtained from a combination of the limits from H^0Z and qqH^0 . It is given for $m_{H^0}=125$ GeV and assumes the Standard Model rates for the two production processes.
- ²³ CHATRCHYAN 14B search for $pp \to H^0 ZX$ with H^0 decaying to invisible final states and $Z \to \ell \ell$ in 4.9 fb⁻¹ at $E_{\rm cm} = 7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm} = 8$ TeV, and also with $Z \to b \, \overline{b}$ in 18.9 fb⁻¹ at $E_{\rm cm} = 8$ TeV. The quoted limit on the branching ratio is given for $m_{H^0} = 125$ GeV and assumes the Standard Model rate for $H^0 Z$ production.
- ²⁴ CHATRCHYAN 14B search for $pp \to qqH^0X$ (vector boson fusion) with H^0 decaying to invisible final states in 19.5 fb⁻¹ at $E_{\rm cm}=8$ TeV. The quoted limit on the branching ratio is given for $m_{H^0}=125$ GeV and assumes the Standard Model rate for qqH^0 production.

 $\Gamma(\gamma \text{ invisible})/\Gamma_{\text{total}}$

 Γ_{27}/Γ

•	,				
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.029	95	1,2 SIRUNYAN	21L	CMS	VBF, $H^0 Z$, $H^0 \rightarrow \gamma +$

• • We do not use the following data for averages, fits, limits, etc.

< 0.035	95	$^{ m 1}$ SIRUNYAN	21L CMS	VBF, $H^0 o \gamma + \text{invisible}$,
< 0.046	95	³ SIRUNYAN	19cg CMS	$pp \rightarrow H^0 Z, H^0 \rightarrow \gamma + 1$
				invisible, $Z ightarrow~\ell\ell$, 13
				T ₂ \/

 $^{^1}$ SIRUNYAN 21L search for H^0 decaying to an invisible final state plus a γ in the VBF production using 130 fb $^{-1}$ data at $E_{\rm cm}=13$ TeV. The invisible state is called a dark photon. The quoted limit on the branching ratio is given for $m_{H^0}=125$ GeV assuming the Standard Model rates.

HO SIGNAL STRENGTHS IN DIFFERENT CHANNELS

The H^0 signal strength in a particular final state xx is given by the cross section times branching ratio in this channel normalized to the Standard Model (SM) value, $\sigma \cdot \mathsf{B}(H^0 \to xx) / (\sigma \cdot \mathsf{B}(H^0 \to xx))_{\rm SM}$, for the specified mass value of H^0 . For the SM predictions, see DITTMAIER 11, DITTMAIER 12, and HEINEMEYER 13A. Results for fiducial and differential cross sections are also listed below.

Combined Final States

VALUE	DOCUMENT ID	TECN	COMMENT
1.13±0.06 OUR AVERAGE			
$1.11^{+0.09}_{-0.08}$	¹ AAD	20 ATLS	<i>pp</i> , 13 TeV
1.17 ± 0.10	² SIRUNYAN	19AT CMS	<i>pp</i> , 13 TeV
$1.09\!\pm\!0.07\!\pm\!0.04\!\pm\!0.03\!+\!0.07\\-0.06$	3,4 AAD	16AN LHC	<i>pp</i> , 7, 8 TeV
$1.44 ^{igoplus 0.59}_{-0.56}$	⁵ AALTONEN	13M TEVA	$ ho \overline{ ho} ightarrow H^0 X$, 1.96 TeV
• • • We do not use the following	ng data for averages	, fits, limits, e	etc. • • •
	⁶ SIRUNYAN	19BA CMS	pp, 13 TeV, diiferential cross sections
$1.20 \pm 0.10 \pm 0.06 \pm 0.04 {+0.08 \atop -0.07}$	⁴ AAD	16AN ATLS	<i>pp</i> , 7, 8 TeV
$0.97 \pm 0.09 \pm 0.05 {}^{+ 0.04}_{- 0.03} {}^{+ 0.07}_{- 0.06}$	⁴ AAD	16AN CMS	pp, 7, 8 TeV
$1.18\!\pm\!0.10\!\pm\!0.07\!+\!0.08\\-0.07$	⁷ AAD	16K ATLS	pp, 7, 8 TeV
$0.75 ^{+ 0.28 + 0.13 + 0.08}_{- 0.26 - 0.11 - 0.05}$	⁷ AAD	16K ATLS	<i>pp</i> , 7 TeV
$1.28\!\pm\!0.11\!+\!0.08\!+\!0.10\\-0.07\!-\!0.08$	⁷ AAD	16K ATLS	<i>рр</i> , 8 TeV
https://pdg.lbl.gov	Page 15	Creat	red: 8/11/2022 09:39

the Standard Model rates. ² The result of the VBF production is combined with the $pp \to H^0 Z$ result (SIRUN-YAN 19CG).

 $^{^3}$ SIRUNYAN 19CG search for $pp \to H^0\,Z,\,Z \to e\,e,\,\,\mu\mu$ with H^0 decaying to invisible final states plus a γ in 137 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The quoted limit on the branching ratio is given for $m_{H^0}=125$ GeV assuming the Standard Model rate for $H^0\,Z$ production and is obtained in the context of a theoretical model, where the undetected (invisible) particle is massless.

```
15P ATLS pp, 8 TeV, cross sec-
1.00\pm0.09\pm0.07^{+0.08}_{-0.07}
                                              <sup>9</sup> KHACHATRY...15AM CMS
                                                                                      pp, 7, 8 TeV
1.33^{+0.14}_{-0.10}\pm0.15
                                            <sup>10</sup> AAD
                                                                     13AK ATLS
                                                                                     pp, 7 and 8 TeV
1.54^{igoplus 0.77}_{-0.73}
                                             <sup>11</sup> AALTONEN
                                                                                      p\overline{p} \rightarrow H^0 X, 1.96 TeV
                                                                     13L CDF
1.40^{+0.92}_{-0.88}
                                                                                      p\overline{p} \rightarrow H^0 X, 1.96 TeV
                                             <sup>12</sup> ABAZOV
                                                                     13L D0
                                                                     12AI ATLS pp \rightarrow H^0 X, 7, 8 TeV
                                             <sup>13</sup> AAD
1.4\ \pm0.3
                                                                     12AI ATLS pp \rightarrow H^0 X, 7 TeV
                                             <sup>13</sup> AAD
1.2 \pm 0.4
                                             13 AAD
                                                                     12AI ATLS pp \rightarrow H^0 X, 8 TeV
1.5 \pm 0.4
                                             <sup>14</sup> CHATRCHYAN 12N CMS pp \rightarrow H^0 X, 7, 8 TeV
0.87 \pm 0.23
```

- ¹ AAD 20 combine results of up to 79.8 fb⁻¹ of data at $E_{\rm cm}=13$ TeV, assuming $m_{H^0}=125.09$ GeV: $\gamma\gamma$, ZZ^* , WW^* , $\tau\tau$, $b\overline{b}$, $\mu\mu$, invisible, and off-shell analyses (see their Table I). The signal strengths for individual production processes are 1.04 ± 0.09 for gluon fusion, $1.21^{+0.24}_{-0.22}$ for vector boson fusion, $1.30^{+0.40}_{-0.38}$ for WH^0 production, $1.05^{+0.31}_{-0.29}$ for ZH^0 production, and $1.21^{+0.26}_{-0.24}$ for $t\overline{t}H^0+tH^0$ production (see their Fig. 2 and Table IV). Several results with the simplified template cross section and κ -frameworks are presented: see their Figs. 9–11, Figs 20, 21 and Table VIII for stage-1 simplified template cross sections, their Figs. 12–17 and Tables X–XII for the κ -framework.
- 2 SIRUNYAN 19AT combine results of 35.9 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_{H^0}=125.09$ GeV. The signal strengths for individual production processes are $1.22^{+0.14}_{-0.12}$ for gluon fusion, $0.73^{+0.30}_{-0.27}$ for vector boson fusion, $2.18^{+0.58}_{-0.55}$ for WH^0 production, $0.87^{+0.44}_{-0.42}$ for ZH^0 production, and $1.18^{+0.30}_{-0.27}$ for $t\overline{t}H^0$ production. Several results with the simplified template cross section and κ -frameworks are presented: see their Fig. 8 and Table 5 for stage-0 simplified template cross sections, their Figs. 9–18 and Tables 7–11 for the κ -framework.
- 3 AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are $1.03^{+0.16}_{-0.14}$ for gluon fusion, $1.18^{+0.25}_{-0.23}$ for vector boson fusion, $0.89^{+0.40}_{-0.38}$ for $W\,H^0$ production, $0.79^{+0.38}_{-0.36}$ for $Z\,H^0$ production, and $2.3^{+0.7}_{-0.6}$ for $t\,\overline{t}\,H^0$ production.
- ⁴ AAD 16AN: The uncertainties represent statistics, experimental systematics, theory systematics on the background, and theory systematics on the signal. The quoted signal strengths are given for $m_{H^0}=125.09$ GeV. In the fit, relative branching ratios and relative production cross sections are fixed to those in the Standard Model.
- ⁵ AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb⁻¹ and 9.7 fb⁻¹, respectively, of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- ⁶ SIRUNYAN 19BA measure differential cross sections for the Higgs boson transverse momentum, the number of jets, the rapidity of the Higgs boson and the transverse momentum of the leading jet using 35.9 fb⁻¹ of data at $E_{\rm cm}=13$ TeV with $H^0\to\gamma\gamma$, $H^0\to ZZ^*$, and $H^0\to b\overline{b}$. The total cross section for Higgs boson production is measured to be 61.1 ± 6.0 ± 3.7 pb using $H^0\to\gamma\gamma$ and $H^0\to ZZ^*$ channels. Several coupling measurements in the κ-framework are performed.
- 7 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm CM}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm CM}=8$ TeV. The third uncertainty in the measurement is theory systematics. The signal strengths for individual production modes are $1.23\pm0.14^{+0.09}_{-0.08} + 0.12$ for gluon fusion, $1.23^{+0.28}_{-0.27} + 0.13^{+0.11}_{-0.09}$ for vector boson fusion, $0.80^{+0.31}_{-0.30} \pm 0.17^{+0.10}_{-0.05}$ for

- W/ZH^0 production, and $1.81^{+0.52}_{-0.50} + 0.58_{-0.12} + 0.12$ for $t\overline{t}H^0$ production. The quoted signal strengths are given for $m_{H^0}=125.36$ GeV.
- ⁸ AAD 15P measure total and differential cross sections of the process $pp \to H^0 X$ at $E_{\rm cm}=8$ TeV with 20.3 fb⁻¹. $\gamma\gamma$ and 4 ℓ final states are used. $\sigma(pp\to H^0 X)=33.0\pm5.3\pm1.6$ pb is given. See their Figs. 2 and 3 for data on differential cross sections.
- 9 KHACHATRYAN 15AM use up to 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The third uncertainty in the measurement is theory systematics. Fits to each production mode give the value of $0.85^{+0.19}_{-0.16}$ for gluon fusion, $1.16^{+0.37}_{-0.34}$ for vector boson fusion, $0.92^{+0.38}_{-0.36}$ for WH^0 , ZH^0 production, and $2.90^{+1.08}_{-0.94}$ for $t\bar{t}H^0$ production.
- 10 AAD 13AK use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The combined signal strength is based on the $\gamma\gamma$, $ZZ^*\to 4\ell$, and $WW^*\to\ell\nu\ell\nu$ channels. The quoted signal strength is given for $m_{\mbox{\it H}^0}=125.5$ GeV. Reported statistical error value modified following private communication with the experiment.
- 11 AALTONEN 13L combine all CDF results with 9.45–10.0 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 12 ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{\mbox{$H^0$}}=125$ GeV.
- 13 AAD 12AI obtain results based on 4.6–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.8–5.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. An excess of events over background with a local significance of 5.9 σ is observed at $m_{H^0}=126$ GeV. The quoted signal strengths are given for $m_{H^0}=126$ GeV. See also AAD 12DA.
- 14 CHATRCHYAN 12N obtain results based on 4.9–5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.1–5.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. An excess of events over background with a local significance of 5.0 σ is observed at about $m_{H^0}=125$ GeV. The combined signal strength is based on the $\gamma\gamma$, ZZ*, WW*, $\tau^+\tau^-$, and $b\overline{b}$ channels. The quoted signal strength is given for $m_{H^0}=125.5$ GeV. See also CHATRCHYAN 13Y.

W W* Final State

VALUE	DOCUMENT ID	TECN	COMMENT
1.19 ± 0.12 OUR AVERAGE			
$1.28^{igoplus 0.17}_{igoplus 0.16}$	¹ SIRUNYAN	19AT CMS	<i>pp</i> , 13 TeV
$1.09 ^{+ 0.18}_{- 0.16}$	^{2,3} AAD	16AN LHC	<i>pp</i> , 7, 8 TeV
$0.94^{+0.85}_{-0.83}$	⁴ AALTONEN	13M TEVA	$p\overline{p} ightarrow H^0X$, 1.96 TeV
• • • We do not use the follow	owing data for avera	ages, fits, limit	s, etc. • • •

• • • vvc do not use the follow	• • We do not use the following data for averages, fits, fillits, etc. • • •				
	⁵ AABOUD	19F ATLS	pp, 13 TeV, cross sections		
$2.5 \begin{array}{l} +0.9 \\ -0.8 \end{array}$	⁶ AAD	19A ATLS	$pp \rightarrow H^0 W/H^0 Z$, $H^0 \rightarrow WW^*$, 13 TeV		
$1.28 ^{+ 0.18}_{- 0.17}$	⁷ SIRUNYAN	19AX CMS	<i>pp</i> , 13 TeV		
$1.22^{+0.23}_{-0.21}$	³ AAD	16AN ATLS	pp, 7, 8 TeV		
$0.90^{+0.23}_{-0.21}$	³ AAD	16AN CMS	pp, 7, 8 TeV		
	⁸ AAD	16AO ATLS	pp, 8 TeV, cross sections		
$1.18\!\pm\!0.16\!+\!0.17\\-0.14$	⁹ AAD	16K ATLS	<i>pp</i> , 7, 8 TeV		

https://pdg.lbl.gov Page 17 Created: 8/11/2022 09:39

$1.09 {+0.16 +0.17 \atop -0.15 -0.14}$	¹⁰ AAD	15AA ATLS	<i>pp</i> , 7, 8 TeV
$3.0 \begin{array}{c} +1.3 \\ -1.1 \end{array} \begin{array}{c} +1.0 \\ -0.7 \end{array}$	¹¹ AAD	15AQ ATLS	$pp \rightarrow H^0 W/ZX$, 7, 8
$1.16 {}^{+ 0.16}_{- 0.15} {}^{+ 0.18}_{- 0.15}$	¹² AAD	15AQ ATLS	pp, 7, 8 TeV
$0.72 \pm 0.12 \pm 0.10 ^{+0.12}_{-0.10}$	¹³ CHATRCHYAN	N 14G CMS	pp, 7, 8 TeV
$0.99^{igoplus 0.31}_{igoplus 0.28}$	¹⁴ AAD	13AK ATLS	<i>pp</i> , 7 and 8 TeV
$0.00^{igoplus 1.78}_{-0.00}$	¹⁵ AALTONEN	13L CDF	$p\overline{p} ightarrow H^0X$, 1.96 TeV
$1.90^{+1.63}_{-1.52}$	¹⁶ ABAZOV	13L D0	$p\overline{p} ightarrow H^0X$, 1.96 TeV
1.3 ±0.5	¹⁷ AAD	12AI ATLS	$pp \rightarrow H^0 X$, 7, 8 TeV
0.5 ± 0.6	¹⁷ AAD	12AI ATLS	$pp ightarrow \; H^0X$, 7 TeV
1.9 ± 0.7	¹⁷ AAD	12AI ATLS	$pp ightarrow \; H^0X$, 8 TeV
$0.60^{+0.42}_{-0.37}$	¹⁸ CHATRCHYAN	N 12N CMS	$pp ightarrow H^0 X$, 7, 8 TeV

- ¹ SIRUNYAN 19AT perform a combine fit to 35.9 fb⁻¹ of data at $E_{\rm cm}=13$ TeV.
- 2 AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are 0.84 \pm 0.17 for gluon fusion, 1.2 \pm 0.4 for vector boson fusion, 1.6 $^{+1.2}_{-1.0}$ for $W\,H^0$ production, 5.9 $^{+2.6}_{-2.2}$ for $Z\,H^0$ production, and 5.0 $^{+1.8}_{-1.7}$ for $t\,\overline{t}\,H^0$ production.
- ³ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^0}=125.09$ GeV.
- 4 AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb $^{-1}$ and 9.7 fb $^{-1}$, respectively, of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{\slashed{H^0}}=125$ GeV.
- ⁵ AABOUD 19F measure cross-sections times the $H^0 \to WW^*$ branching fraction in the $H^0 \to WW^* \to e \nu \mu \nu$ channel using 36.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV: $\sigma_{ggF} \times {\rm B}(H^0 \to WW^*)=11.4^{+1.2}_{-1.1}^{+1.8}_{-1.1}$ pb and $\sigma_{VBF} \times {\rm B}(H^0 \to WW^*)=0.50^{+0.24}_{-0.22} \pm 0.17$ pb.
- ⁶ AAD 19A use 36.1 fb $^{-1}$ data at 13 TeV. The cross section times branching fraction values are measured to be $0.67^{+0.31}_{-0.27}^{+0.31}_{-0.14}^{+0.18}$ pb for WH^0 , $H^0 \rightarrow WW^*$ and $0.54^{+0.31}_{-0.24}^{+0.31}_{-0.07}^{+0.15}_{-0.07}$ pb for ZH^0 , $H^0 \rightarrow WW^*$.
- 7 SIRUNYAN 19AX measure the signal strengths, cross sections and so on using gluon fusion, VBF and $V\,H^0$ production processes with 35.9 fb $^{-1}$ of data. The quoted signal strength is given for $m_{H^0}=125.09$ GeV. Signal strengths for each production process is found in their Fig. 9. Measured cross sections and ratios to the SM predictions in the stage-0 simplified template cross section framework are shown in their Fig. 10. $\kappa_F=1.52^{+0.48}_{-0.41}$ and $\kappa_V=1.10\pm0.08$ are obtained (see their Fig. 11 (right)).
- ⁸ AAD 16AO measure fiducial total and differential cross sections of gluon fusion process at $E_{\rm cm}=8$ TeV with 20.3 fb $^{-1}$ using $H^0 \to WW^* \to e \nu \mu \nu$. The measured fiducial total cross section is 36.0 \pm 9.7 fb in their fiducial region (Table 7). See their Fig. 6 for fiducial differential cross sections. The results are given for $m_{H^0}=125$ GeV.
- 9 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.36$ GeV.
- 10 AAD 15AA use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The signal strength for the gluon fusion and vector boson fusion mode is

- $1.02\pm0.19^{+0.22}_{-0.18}$ and $1.27^{+0.44}_{-0.40}^{+0.30}$, respectively. The quoted signal strengths are given for $m_{H^0}=125.36$ GeV.
- 11 AAD 15AQ use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.36$ GeV.
- 12 AAD 15AQ combine their result on W/ZH^0 production with the results of AAD 15AA (gluon fusion and vector boson fusion, slightly updated). The quoted signal strength is given for $m_{H^0}=125.36$ GeV.
- $^{13}\,\mathrm{CHATRCHYAN}$ 14G use 4.9 fb $^{-1}$ of $p\,p$ collisions at $E_\mathrm{cm}=7$ TeV and 19.4 fb $^{-1}$ at $E_\mathrm{cm}=8$ TeV. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_{H^0}=125.6$ GeV.
- 14 AAD 13AK use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.5$ GeV. Superseded by AAD 15AA
- ¹⁵ AALTONEN 13L combine all CDF results with 9.45–10.0 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 16 ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 17 AAD 12AI obtain results based on 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.8 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strengths are given for $m_{H^0}=126$ GeV. See also AAD 12DA.
- also AAD 12DA. $^{18}\,\mathrm{CHATRCHYAN}$ 12N obtain results based on 4.9 fb $^{-1}$ of $p\,p$ collisions at $E_\mathrm{cm}=7$ TeV and 5.1 fb $^{-1}$ at $E_\mathrm{cm}=8$ TeV. The quoted signal strength is given for $m_{\mbox{$H^0$}}=125.5$ GeV. See also CHATRCHYAN 13Y.

ZZ* Final State

VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
1.01±0.07 OUR AVE	RAGE				
$0.94 \pm 0.07 {+ 0.09 \atop - 0.08}$		¹ SIRUNYAN	21s CMS	pp, 13 TeV	
$1.01\!\pm\!0.11$		2,3 AAD	20AQ ATLS	pp, 13 TeV	
$1.29^{+0.26}_{-0.23}$		^{4,5} AAD	16AN LHC	pp, 7, 8 TeV	

• • • We do not use the following data for averages, fits, limits, etc. • • •

		⁶ SIRUNYAN ^{2,7} AAD ⁸ AAD		pp, 13 TeV, couplingspp, 13 TeVpp, 13 TeV cross sections
< 6.5	95	⁹ AABOUD	19N ATLS	pp, 13 TeV, off-shell
$1.06^{igoplus 0.19}_{-0.17}$		¹⁰ SIRUNYAN	19AT CMS	<i>pp</i> , 13 TeV
$1.28^{igoplus 0.21}_{-0.19}$		¹¹ AABOUD	18AJ ATLS	<i>pp</i> , 13 TeV
<3.8	95	¹² AABOUD	18BP ATLS	pp, 13 TeV, off-shell
$1.05 \!+\! 0.15 \!+\! 0.11 \\ -0.14 \!-\! 0.09$		¹³ SIRUNYAN	17AV CMS	pp, 13 TeV
$1.52 {+0.40 \atop -0.34}$		⁵ AAD	16AN ATLS	pp, 7, 8 TeV
$1.04 ^{+ 0.32}_{- 0.26}$		⁵ AAD	16AN CMS	pp, 7, 8 TeV
$1.46 ^{+ 0.35 + 0.19}_{- 0.31 - 0.13}$		¹⁴ AAD	16K ATLS	pp, 7, 8 TeV

	¹⁵ KHACHATRY	16AR CMS	pp, 7, 8 TeV cross sections
$1.44 + 0.34 + 0.21 \\ -0.31 - 0.11$	¹⁶ AAD	15F ATLS	$pp \rightarrow H^0 X$, 7, 8 TeV
0.02	¹⁷ AAD	14AR ATLS	pp, 8 TeV, cross sections
$0.93 \!+\! 0.26 \!+\! 0.13 \\ -0.23 \!-\! 0.09$	¹⁸ CHATRCHYAI	N 14AA CMS	pp, 7, 8 TeV
$1.43^{igoplus 0.40}_{-0.35}$	¹⁹ AAD	13AK ATLS	pp, 7 and 8 TeV
$0.80^{+0.35}_{-0.28}$	²⁰ CHATRCHYAI	N 13J CMS	$pp \rightarrow H^0X$, 7, 8 TeV
1.2 ±0.6	²¹ AAD		$pp \rightarrow H^0 X$, 7, 8 TeV
$1.4~\pm1.1$	²¹ AAD	12AI ATLS	$pp ightarrow H^0 X$, 7 TeV
1.1 ± 0.8	²¹ AAD	12AI ATLS	$pp ightarrow H^0 X$, 8 TeV
$0.73^{igoplus 0.45}_{-0.33}$	²² CHATRCHYAI	N 12N CMS	$pp ightarrow H^0 X$, 7, 8 TeV

- ¹ SIRUNYAN 21s measure cross sections with the $H^0 \to ZZ^* \to 4\ell$ ($\ell=e, \mu$) channel using 137 fb⁻¹ data at $E_{\rm cm}=13$ TeV. Results are given for $m_{H^0}=125.38$ GeV. The signal strengths for individual production processes in their Table 4. Cross sections are given in their Table 6 and Fig. 14, which are based on the simplified template cross section framework (reduced stage-1.2).
- 2 AAD 20AQ perform analyses using $H^0\to ZZ^*\to 4\ell$ ($\ell=e,~\mu$) with data of 139 ${\rm fb}^{-1}$ at $E_{\rm cm}=13$ TeV. Results are given for $m_{H^0}=125$ GeV.
- ³ AAD 20AQ measured the inclusive cross section times branching ratio for $H^0 \to ZZ^*$ decay $(|y(H^0)| < 2.5)$ to be 1.34 ± 0.12 pb (with 1.33 ± 0.08 pb expected in the SM).
- 4 AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are $1.13^{+0.34}_{-0.31}$ for gluon fusion and $0.1^{+1.1}_{-0.6}$ for vector boson fusion.
- ⁵ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^0}=125.09$ GeV.
- ⁶ SIRUNYAN 21AE obtains constraints on anomalous couplings to vector bosons (W, Z, and gluon) and top quark using $H^0 \to ZZ^* \to 4\ell$ ($\ell=e, \mu$) with data of 137 fb⁻¹ at $E_{\rm cm}=13$ TeV. Their Table 5 and Figs 14–17 show (effective) couplings to gluon and top with combining gluon fusion, $t\bar{t}H^0$ and tH^0 production channels and the result of $t\bar{t}H^0$, $H^0 \to \gamma\gamma$ (SIRUNYAN 20AS). Their Tables 6–9 and Figs 18–22 show couplings to W and Z for different assumptions and bases (Higgs and Warsaw).
- ⁷ AAD 20AQ present several results for the channel $H^0 \to ZZ^* \to 4\ell$ ($\ell=e, \mu$) with the simplified template cross section with κ -frameworks and the effective field theory (EFT) approach; see their Table 8 and Fig. 10 for simplified template cross sections. $\kappa_V=1.02\pm0.06$ and $\kappa_F=0.88\pm0.16$ are obtained, see their Fig. 12 for the κ -framework. See their Tables 9 and 10 and Figs. 16–18 for the EFT-framework.
- See their Tables 9 and 10 and Figs. 16–18 for the EFT-framework.
 ⁸ AAD 20BA measure the cross section for $pp \to H^0 \to ZZ^* \to 4\ell$ ($\ell=e, \mu$) using 139 fb⁻¹ at $E_{\rm cm}=13$ TeV. They give $\sigma \cdot B=3.28\pm0.30\pm0.11$ fb in their fiducial region, where 3.41 \pm 0.18 fb is expected in the Standard Model for $m_{H^0}=125$ GeV. Various differential cross sections are also given; see their Figs. 19-39. Constraints on Yukawa couplings for bottom and charm quarks are given in their Table 9 and Fig. 41.
- ⁹ AABOUD 19N measure the spectrum of the four-lepton invariant mass m_{4 ℓ} ($\ell=e$ or μ) using 36.1 fb⁻¹ of data at $E_{\rm cm}=13$ TeV. The quoted signal strength upper limit is obtained from 180 GeV < m_{4 ℓ} < 1200 GeV.

 10 SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV.

- 11 AABOUD 18AJ perform analyses using $H^0 \to ZZ^* \to 4\ell$ ($\ell=e,~\mu$) with data of 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. Results are given for $m_{H^0}=125.09$ GeV. The inclusive cross section times branching ratio for $H^0 \to ZZ^*$ decay ($\left|\eta(H^0)\right| < 2.5$) is measured to be $1.73^{+0.26}_{-0.24}$ pb (with $1.34^{+0.09}_{-0.09}$ pb expected in the SM).
- 12 AABOUD 18BP measure an off-shell Higgs boson production using $ZZ\to 4\ell$ and $ZZ\to 2\ell\,2\nu$ ($\ell=e,~\mu$) decay channels with 36.1 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. The quoted signal strength upper limit is obtained from a combination of these two channels, where 220 GeV < m $_{4\ell}~<$ 2000 GeV for $ZZ\to 4\ell$ and 250 GeV < m $_{T}^{ZZ}~<$ 2000 GeV for $ZZ\to 2\ell\,2\nu$ (m $_{T}^{ZZ}$ is defined in their Section 5). See their Table 2 for each measurement
- ¹³ SIRUNYAN 17AV use 35.9 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength, obtained from the analysis of $H^0\to ZZ^*\to 4\ell$ ($\ell=e,\mu$) decays, is given for $m_{H^0}=125.09$ GeV. The signal strengths for different production modes are given in their Table 3. The fiducial and differential cross sections are shown in their Fig. 10.
- 14 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.36$ GeV.
- 15 KHACHATRYAN 16 Ar use data of $5.1~{\rm fb}^{-1}$ at $E_{\rm cm}=7~{\rm TeV}$ and $^{19.7}$ fb $^{-1}$ at 8 TeV. The fiducial cross sections for the production of 4 leptons via $H^0\to 4\ell$ decays are measured to be $0.56^{+0.67}_{-0.44}^{+0.21}$ fb at 7 TeV and $1.11^{+0.41}_{-0.35}^{+0.14}^{+0.14}$ fb at 8 TeV in their fiducial region (Table 2). The differential cross sections at $E_{\rm cm}=8~{\rm TeV}$ are also shown in Figs. 4 and 5. The results are given for $m_{H^0}=125~{\rm GeV}$.
- 16 AAD 15F use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.36$ GeV. The signal strength for the gluon fusion production mode is $1.66^{+0.45}_{-0.41}^{+0.25}_{-0.15}^{+0.25}$, while the signal strength for the vector boson fusion production mode is $0.26^{+1.60}_{-0.91}^{+1.60}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.91}^{+0.36}_{-0.23}^{+0.36}_{-0.23}^{+0.36}_{-0.23}^{+0.36}_{-0.23}^{+0.36}_{-0.23}^{+0.36}_{-0.23}^{+0.36}_{-0.23}^{+0.36}_{-0.23}^{+0.23}_{-0.23}^{+0$
- 17 AAD 14AR measure the cross section for $pp \to H^0 \to ZZ^* \to 4\ell$ ($\ell=e,~\mu$) using $20.3 {\rm fb}^{-1}$ at $E_{\rm cm}=8$ TeV. They give $\sigma \cdot B=2.11^{+0.53}_{-0.47}\pm 0.08$ fbin their fiducial region, where 1.30 ± 0.13 fb is expected in the Standard Model for $m_{H^0}=125.4$ GeV. Various differential cross sections are also given; see their Fig. 2.
- 18 CHATRCHYAN 14AA use 5.1 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.6$ GeV. The signal strength for the gluon fusion and $t\,\bar{t}\,H$ production mode is $0.80^{+0.46}_{-0.36}$, while the signal strength for the vector boson fusion and $W\,H^0$, $Z\,H^0$ production mode is $1.7^{+2.2}_{-2.1}$.
- 19 AAD 13AK use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.5$ GeV.
- 20 CHATRCHYAN 13J obtain results based on $ZZ\to 4\ell$ final states in 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 12.2 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.8$ GeV. Superseded by CHATRCHYAN 14AA.
- ²¹ AAD 12AI obtain results based on 4.7–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.8 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strengths are given for $m_{H^0}=126$ GeV. See also AAD 12DA.
- ²² CHATRCHYAN 12N obtain results based on 4.9–5.1 fb⁻¹ of pp collisions at $E_{\rm Cm}=7$ TeV and 5.1–5.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. An excess of events over background with a local significance of 5.0 σ is observed at about $m_{H^0}=125$ GeV. The quoted signal strengths are given for $m_{H^0}=125.5$ GeV. See also CHATRCHYAN 12BY and CHATRCHYAN 13Y.

TECN

COMMENT

$\gamma\gamma$ Final State

1.12±0.09	1.10±0.07 OUR AVERAGE			
1.14 $^{+0.19}_{-0.18}$ 3,4 AAD 16AN LHC pp , 7, 8 TeV 5.97 $^{+3.39}_{-3.12}$ 5 AALTONEN 13M TEVA $p\overline{p} \rightarrow H^0 X$, 1.96 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • 1.20 $^{+0.18}_{-0.14}$ 6 SIRUNYAN 19AT CMS pp , 13 TeV 7 SIRUNYAN 19L CMS pp , 13 TeV, diff. x-section 1.18 $^{+0.17}_{-0.14}$ 8 SIRUNYAN 18DS CMS pp , 13 TeV, floated m_{H^0} 1.14 $^{+0.27}_{-0.25}$ 4 AAD 16AN ATLS pp , 7, 8 TeV 1.11 $^{+0.25}_{-0.23}$ 4 AAD 16AN CMS pp , 7, 8 TeV 1.11 $^{+0.25}_{-0.23}$ 4 AAD 16AN CMS pp , 7, 8 TeV 9 KHACHATRY16G CMS pp , 8 TeV, diff. x-section 1.17 $^{\pm0.23}_{-0.08-0.08}$ 10 AAD 14BC ATLS $pp \rightarrow H^0 X$, 7, 8 TeV 1.14 $^{\pm0.21}_{-0.05-0.09}$ 12 KHACHATRY14P CMS pp , 7 and 8 TeV 1.55 $^{+0.33}_{-0.28}$ 13 AAD 13AK ATLS $pp \rightarrow H^0 X$, 1.96 TeV 7.81 $^{+4.61}_{-4.42}$ 14 AALTONEN 13L CDF $p\overline{p} \rightarrow H^0 X$, 1.96 TeV 4.20 $^{+4.60}_{-4.20}$ 15 ABAZOV 13L DO $p\overline{p} \rightarrow H^0 X$, 1.96 TeV 1.8 ±0.5 16 AAD 12AI ATLS $pp \rightarrow H^0 X$, 7, 8 TeV 1.24 ATLS $pp \rightarrow H^0 X$, 7, 8 TeV	1.12 ± 0.09	¹ SIRUNYAN	210 CMS	pp, 13 TeV
5.97 $^{+3.39}_{-3.12}$ 5 AALTONEN 13M TEVA $p\overline{p} \rightarrow H^0 X$, 1.96 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • 1.20 $^{+0.18}_{-0.14}$ 6 SIRUNYAN 19AT CMS pp , 13 TeV 7 SIRUNYAN 19L CMS pp , 13 TeV, diff. x-section 1.18 $^{+0.17}_{-0.14}$ 8 SIRUNYAN 18DS CMS pp , 13 TeV, floated m_{H^0} 1.14 $^{+0.27}_{-0.25}$ 4 AAD 16AN ATLS pp , 7, 8 TeV 1.11 $^{+0.25}_{-0.23}$ 4 AAD 16AN CMS pp , 7, 8 TeV 1.11 $^{+0.25}_{-0.23}$ 9 KHACHATRY16G CMS pp , 8 TeV, diff. x-section 1.17 $^{\pm0.23}_{-0.08}$ 10 AAD 14BC ATLS pp , 8 TeV, diff. x-section 1.14 $^{\pm0.21}_{-0.05}$ 11 AAD 14BJ ATLS pp , 8 TeV, diff. x-section 1.14 $^{\pm0.21}_{-0.05}$ 12 KHACHATRY14P CMS pp , 7 and 8 TeV 1.55 $^{+0.33}_{-0.28}$ 13 AAD 13AK ATLS pp , 7 and 8 TeV 1.55 $^{+0.33}_{-0.28}$ 14 AALTONEN 13L CDF $p\overline{p} \rightarrow H^0 X$, 1.96 TeV 4.20 $^{+4.60}_{-4.20}$ 15 ABAZOV 13L D0 $p\overline{p} \rightarrow H^0 X$, 1.96 TeV 1.8 ±0.5 16 AAD 12AI ATLS $pp \rightarrow H^0 X$, 7, 8 TeV 2.2 ±0.7 16 AAD 12AI ATLS $pp \rightarrow H^0 X$, 7, 8 TeV	$0.99 {+0.15 \atop -0.14}$	² AABOUD	18BO ATLS	pp , 13 TeV, 36.1 fb $^{-1}$
• • • We do not use the following data for averages, fits, limits, etc. • • • •	$1.14 ^{igoplus 0.19}_{-0.18}$	3,4 AAD	16AN LHC	<i>pp</i> , 7, 8 TeV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5.97 + 3.39 \\ -3.12$	⁵ AALTONEN	13M TEVA	$p\overline{p} ightarrow \ H^0 X$, 1.96 TeV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • We do not use the foll	owing data for ave	rages, fits, lin	nits, etc. • • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.20 ^{igoplus 0.18}_{-0.14}$	⁶ SIRUNYAN	19AT CMS	pp, 13 TeV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		⁷ SIRUNYAN	19L CMS	pp, 13 TeV, diff. x-section
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.18 ^{+ 0.17}_{- 0.14}$	⁸ SIRUNYAN	18DS CMS	
$\begin{array}{c} 9 \text{ KHACHATRY16G} \text{CMS} pp, 8 \text{ TeV, diff. x-section} \\ 1.17 \pm 0.23 ^{+0.10}_{-0.08} - 0.08 \\ \hline 10 \text{ AAD} & 14 \text{BC ATLS} & pp \rightarrow H^0 X, 7, 8 \text{ TeV} \\ \hline 11 \text{ AAD} & 14 \text{BJ ATLS} & pp, 8 \text{ TeV, diff. x-section} \\ 1.14 \pm 0.21 ^{+0.09}_{-0.05} + 0.13 \\ 1.55 ^{+0.33}_{-0.28} & 12 \text{ KHACHATRY14P} \text{CMS} pp, 7, 8 \text{ TeV} \\ \hline 1.55 ^{+0.33}_{-0.28} & 13 \text{ AAD} & 13 \text{AK ATLS} pp, 7 \text{ and } 8 \text{ TeV} \\ \hline 1.81 ^{+4.61}_{-4.42} & 14 \text{ AALTONEN} & 13 \text{L CDF} p\overline{p} \rightarrow H^0 X, 1.96 \text{ TeV} \\ \hline 1.82 ^{+4.60}_{-4.20} & 15 \text{ ABAZOV} & 13 \text{L DO} p\overline{p} \rightarrow H^0 X, 1.96 \text{ TeV} \\ \hline 1.82 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} pp \rightarrow H^0 X, 7, 8 \text{ TeV} \\ \hline 1.82 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} pp \rightarrow H^0 X, 7, 8 \text{ TeV} \\ \hline 1.82 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} pp \rightarrow H^0 X, 7, 8 \text{ TeV} \\ \hline 1.82 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} pp \rightarrow H^0 X, 7, 8 \text{ TeV} \\ \hline 1.83 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} pp \rightarrow H^0 X, 7, 8 \text{ TeV} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} pp \rightarrow H^0 X, 7, 8 \text{ TeV} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} pp \rightarrow H^0 X, 7, 8 \text{ TeV} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} pp \rightarrow H^0 X, 7, 8 \text{ TeV} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 16 \text{ AAD} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 12 \text{ATLS} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 12 \text{ATLS} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 12 \text{ATLS} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 12 \text{ATLS} & 12 \text{ATLS} \\ \hline 1.84 ^{+4.60}_{-4.20} & 12 \text{ATLS} & 12 AT$	$1.14 ^{+ 0.27}_{- 0.25}$	⁴ AAD	16AN ATLS	<i>pp</i> , 7, 8 TeV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.11^{igoplus 0.25}_{-0.23}$	⁴ AAD	16AN CMS	<i>pp</i> , 7, 8 TeV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		⁹ KHACHATRY.	16G CMS	pp, 8 TeV, diff. x-section
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.17\!\pm\!0.23 \!+\!0.10 \!+\!0.12 \\ -0.08 \!-\!0.08$		14BC ATLS	$pp ightarrow H^0 X$, 7, 8 TeV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		¹¹ AAD	14BJ ATLS	pp, 8 TeV, diff. x-section
7.81 $^{+4.61}_{-4.42}$ 14 AALTONEN 13L CDF $p\overline{p} \to H^0 X$, 1.96 TeV 4.20 $^{+4.60}_{-4.20}$ 15 ABAZOV 13L D0 $p\overline{p} \to H^0 X$, 1.96 TeV 1.8 ± 0.5 16 AAD 12AI ATLS $pp \to H^0 X$, 7, 8 TeV 2.2 ± 0.7 16 AAD 12AI ATLS $pp \to H^0 X$, 7 TeV	$1.14\!\pm\!0.21\!+\!0.09\!+\!0.13\\-0.05\!-\!0.09$	¹² KHACHATRY.	14P CMS	<i>pp</i> , 7, 8 TeV
$4.20^{+4.60}_{-4.20}$ 15 ABAZOV 13 L D0 $p\overline{p} \rightarrow H^0 X$, 1.96 TeV 1.8 ± 0.5 16 AAD 12 AI ATLS $pp \rightarrow H^0 X$, 7 , 8 TeV 16 AAD 12 AI ATLS $pp \rightarrow H^0 X$, 7 TeV	$1.55^{igoplus 0.33}_{igoplus 0.28}$	¹³ AAD	13AK ATLS	<i>pp</i> , 7 and 8 TeV
1.8 ± 0.5 16 AAD 12AI ATLS $pp \rightarrow H^0 X$, 7, 8 TeV 16 AAD 12AI ATLS $pp \rightarrow H^0 X$, 7 TeV	$7.81^{+4.61}_{-4.42}$	¹⁴ AALTONEN	13L CDF	$p\overline{p} ightarrow \; H^0X$, 1.96 TeV
2.2 ± 0.7 16 AAD 12AI ATLS $pp \rightarrow H^0 X$, 7 TeV	$4.20^{igoplus 4.60}_{-4.20}$	¹⁵ ABAZOV	13L D0	$p\overline{p} ightarrow H^0 X$, 1.96 TeV
2.2 ± 0.7 16 AAD 12ATLS $pp \rightarrow H^0 X$, 7 TeV 1.5 ± 0.6 16 AAD 12ATLS $pp \rightarrow H^0 X$, 8 TeV	1.8 ± 0.5	¹⁶ AAD	12AI ATLS	
1.5 ± 0.6 16 AAD 12AL ATLS $pp \rightarrow H^0 X$, 8 TeV	2.2 ± 0.7	¹⁶ AAD	12AI ATLS	• •
• •	1.5 ± 0.6	¹⁶ AAD	12AI ATLS	$pp ightarrow H^0 X$, 8 TeV
$1.54^{+0.46}_{-0.42}$ 17 CHATRCHYAN 12N CMS $pp \rightarrow H^0 X$, 7, 8 TeV	$1.54 + 0.46 \\ -0.42$	¹⁷ CHATRCHYAN	N12N CMS	$pp \rightarrow H^0 X$, 7, 8 TeV

 $^{^1}$ SIRUNYAN 210 measures cross sections and couplings with the $H^0\to\gamma\gamma$ channel using 137 fb $^{-1}$ data at $E_{\rm cm}=13$ TeV. Results are given for $m_{H^0}=125.38$ GeV. The signal strengths for individual production processes are given in their Fig. 16. Cross sections are given in their Tables 12 and 13 and Figs. 18 and 20, which are based on the simplified template cross section framework (reduced stage-1.2). Results in the κ -framework are given in their Fig. 22.

² AABOUD 18BO use $36.1~{\rm fb^{-1}}$ of pp collisions at $E_{\rm cm}=13~{\rm TeV}$. The signal strengths for the individual production modes are: $0.81^{+0.19}_{-0.18}$ for gluon fusion, $2.0^{+0.6}_{-0.5}$ for vector boson fusion, $0.7^{+0.9}_{-0.8}$ for VH^0 production (V=W,Z), and 0.5 ± 0.6 for $t\overline{t}H^0$ and tH^0 production. Other measurements of cross sections and couplings are summarized in their Section 10. The quoted values are given for $m_{H^0}=125.09~{\rm GeV}$.

 $^{^3}$ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are $1.10^{+0.23}_{-0.22}$ for gluon fusion, 1.3 ± 0.5 for vector boson fusion, $0.5^{+1.3}_{-1.2}$ for WH^0 production, $0.5^{+3.0}_{-2.5}$ for ZH^0 production, and $2.2^{+1.6}_{-1.3}$ for $t\overline{t}H^0$ production.

- ⁴ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^0}=125.09$ GeV.
- 5 AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb $^{-1}$ and 9.7 fb $^{-1}$, respectively, of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{\mbox{\scriptsize H^0}}=125$ GeV.
- 6 SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$ of data at $E_{\rm cm}=$ 13 TeV.
- 7 SIRUNYAN 19L measure fiducial and differential cross sections of the process $pp \to H^0 \to \gamma \gamma$ at $E_{\rm cm}=13$ TeV with 35.9 fb $^{-1}$. See their Figs. 4–11.
- ⁸ SIRUNYAN 18DS use 35.9 fb⁻¹ of $pp \to H^0$ collisions with $H^0 \to \gamma \gamma$ at $E_{\rm cm}=13$ TeV. The Higgs mass is floated in the measurement of a signal strength. The result is $1.18^{+0.12}_{-0.11}({\rm stat.})^{+0.09}_{-0.07}({\rm syst.})^{+0.07}_{-0.06}({\rm theory})$, which is largely insensitive to the Higgs mass around 125 GeV.

9 KHACHATRYAN 16G measure fiducial and differential cross sections of the process $pp \to H^0 X$, $H^0 \to \gamma \gamma$ at $E_{\rm cm} = 8$ TeV with 19.7 fb $^{-1}$. See their Figs. 4–6 and Table 1 for data.

- data. 10 AAD 14BC use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_{H^0}=125.4$ GeV. The signal strengths for the individual production modes are: 1.32 ± 0.38 for gluon fusion, 0.8 ± 0.7 for vector boson fusion, 1.0 ± 1.6 for WH^0 production, $0.1_{-0.1}^{+3.7}$ for ZH^0 production, and $1.6_{-1.8}^{+2.7}$ for $t\overline{t}H^0$ production.
- ¹¹AAD 14BJ measure fiducial and differential cross sections of the process $pp \to H^0 X$, $H^0 \to \gamma \gamma$ at $E_{\rm cm}=8$ TeV with 20.3 fb⁻¹. See their Table 3 and Figs. 3–12 for data.
- ¹² KHACHATRYAN 14P use 5.1 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm}=8$ TeV. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_{H^0}=124.7$ GeV. The signal strength for the gluon fusion and $t\bar{t}H$ production mode is $1.13^{+0.37}_{-0.31}$, while the signal strength for the vector boson fusion and WH^0 , ZH^0 production mode is $1.16^{+0.63}_{-0.58}$.
- 13 AAD 13AK use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.5$ GeV.
- 14 AALTONEN 13L combine all CDF results with 9.45–10.0 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- ¹⁵ ABAZOV 13L combine all D0 results with up to 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 16 AAD 12AI obtain results based on 4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strengths are given for $m_{H^0}=126$ GeV. See also AAD 12DA.
- 17 CHATRCHYAN 12N obtain results based on 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.5$ GeV. See also CHATRCHYAN 13Y.

c 7 Final State

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$37\pm17^{+11}_{-9}$		¹ SIRUNYAN	20AE CMS	<i>pp</i> , 13 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

² AABOUD 95 18M ATLS *pp*, 13 TeV <110

- 1 SIRUNYAN 20AE use 35.9 fb $^{-1}$ at of pp collisions at $E_{\rm cm}=13$ TeV. The measured best fit value of $\sigma(pp\to VH^0)\cdot {\rm B}(H^0\to c\overline{c})$ is $2.40^{+1.12}_{-1.11}+0.65$ pb (equivalent to < 4.5 pb at 95% CL upper limit, i.e. 70 times the standard model), where V is $W\to\ell\nu$, $Z\to\ell\ell$, or $Z\to\nu\nu$ ($\ell=e,\ \mu$). The quoted values are given for $m_{\mbox{$H^0$}}=125$ GeV.
- 2 AABOUD 18M use 36.1 fb $^{-1}$ at of pp collisions at $E_{\rm cm}=13$ TeV. The upper limit on $\sigma(pp \to ZH^0) \cdot B(H^0 \to c\overline{c})$ is 2.7 pb at 95% CL. This corresponds to 110 times the standard model. The quoted values are given for $m_{H^0}=125~{\rm GeV}.$

b Final S	State	DOCUMENT ID	TECN	COMMENT
	2 OUR AVERAGE			
$1.02^{+0.12}_{-0.12}$	2+0.14 $1-0.13$	¹ AAD	21AB ATLS	$pp \rightarrow H^0 W/H^0 Z, H^0 \rightarrow b\overline{b}, 13 \text{ TeV}, 139 \text{ fb}^{-1}$
0.95 ± 0.32	$2^{+0.20}_{-0.17}$	² AAD	21AJ ATLS	VBF, $H^0 \rightarrow b\overline{b}$, pp , 13
1.06 ± 0.26	6	³ SIRUNYAN	18DB CMS	TeV, 126 fb ⁻¹ $pp \rightarrow H^0 W/H^0 Z$, $H^0 \rightarrow b\overline{b}$, 13 TeV, 77.2 fb ⁻¹
$0.70^{+0.29}_{-0.2}$	9 4 7	^{,5} AAD	16AN LHC	pp, 7, 8 TeV
$1.59 ^{+0.69}_{-0.72}$	9 2	⁶ AALTONEN	13M TEVA	$ ho \overline{p} ightarrow H^0 X$, 1.96 TeV
• • • We d	o not use the follo	owing data for av	erages, fits, lir	mits, etc. • • •
0.95 ± 0.18	$8^{oldsymbol{+0.19}}_{-0.18}$	¹ AAD	21AB ATLS	$pp \rightarrow H^0 W, H^0 \rightarrow b\overline{b}, 13$ TeV, 139 fb ⁻¹
1.08 ± 0.1	$7^{egin{smallmatrix} +0.18 \\ -0.15 \end{smallmatrix}}$	¹ AAD	21AB ATLS	$pp \rightarrow H^0 Z, H^0 \rightarrow b\overline{b}, 13$ TeV, 139 fb ⁻¹
$0.72^{+0.29}_{-0.28}$	$9 + 0.26 \\ 8 - 0.22$	⁷ AAD		$pp \rightarrow H^0W/H^0Z, H^0 \rightarrow H^{\overline{L}}$

	TeV, 139 tb ⁻¹
¹ AAD	21AB ATLS $pp \rightarrow H^0 Z, H^0 \rightarrow b\overline{b}, 13$
	TeV, 139 ${\rm fb}^{-1}$
⁷ AAD	21H ATLS $pp \rightarrow H^0W/H^0Z, H^0 \rightarrow$
	$b\overline{b}$, boosted W/Z , 13
_	TeV, 139 fb $^{-1}$
⁸ AAD	21M ATLS VBF+ γ , $H^0 \rightarrow b\overline{b}$, pp , 13

$$0.98^{+0.22}_{-0.21}$$
 13 AABOUD 18BN ATLS $pp \rightarrow H^0 W/H^0 Z$, $H^0 \rightarrow b\overline{b}$, 7, 8, 13 TeV 1.01 \pm 0.20 18BN ATLS $pp \rightarrow H^0 X$, ggF, VBF,

$$VH^0$$
, $t\overline{t}H^0$, 13 TeV 3.0 $^{+1.7}_{-1.6}$ 15,17 AABOUD 18BQ ATLS $pp o H^0 X$, VBF, 13 TeV

¹⁸ AALTONEN 18C CDF
$$p\overline{p} \rightarrow H^0 X$$
, 1.96 TeV

$1.19^{igoplus 0.40}_{-0.38}$	¹⁹ SIRUNYAN 18AE CM	S $pp \rightarrow H^0W/H^0Z, H^0 \rightarrow b\overline{b}, 13 \text{ TeV}$
$1.06 ^{igoplus 0.31}_{-0.29}$	²⁰ SIRUNYAN 18AE CM	
1.01 ± 0.22	²¹ SIRUNYAN 18DB CM	
1.04 ± 0.20	²² SIRUNYAN 18DB CM	
$2.3 \begin{array}{l} +1.8 \\ -1.6 \end{array}$	²³ SIRUNYAN 18E CM	•
$1.20 { + 0.24 + 0.34 \atop - 0.23 - 0.28 }$	²⁴ AABOUD 17BA ATI	•
$0.90\!\pm\!0.18\!+\!0.21\\-0.19$	²⁵ AABOUD 17BA ATI	•
$-0.8 \ \pm 1.3 \ ^{+1.8}_{-1.9}$	²⁶ AABOUD 16X ATI	• • •
0.62 ± 0.37	⁵ AAD 16AN ATI	S <i>pp</i> , 7, 8 TeV
$0.81 ^{igoplus 0.45}_{-0.43}$	⁵ AAD 16AN CM	S pp, 7, 8 TeV
$0.63^{+0.31+0.24}_{-0.30-0.23}$	²⁷ AAD 16K ATI	S <i>pp</i> , 7, 8 TeV
$0.52 \pm 0.32 \pm 0.24$	²⁸ AAD 15G ATI	S $pp \rightarrow H^0W/ZX$, 7, 8 TeV
$2.8 \begin{array}{l} +1.6 \\ -1.4 \end{array}$	²⁹ KHACHATRY15z CM	· ·
$1.03 ^{+ 0.44}_{- 0.42}$	³⁰ KHACHATRY15Z CM	S pp , 8 TeV, combined
1.0 ± 0.5	³¹ CHATRCHYAN 14AI CM	S $pp \rightarrow H^0W/ZX$, 7, 8 TeV
$1.72^{igoplus 0.92}_{-0.87}$	³² AALTONEN 13L CDI	· ·
$1.23 + 1.24 \\ -1.17$	33 ABAZOV 13L D0	$p\overline{p} ightarrow \; H^0 X$, 1.96 TeV
0.5 ±2.2	34 AAD 12AI ATI 35 AALTONEN 12T TEV	, ,
$0.48 ^{+ 0.81}_{- 0.70}$	³⁶ CHATRCHYAN 12N CM	

 $^{^1}$ AAD 21AB search for $V\,H^0,\,H^0\to b\,\overline{b}\,(V=W,\,Z)$ using 139 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The results are given for $m_{H^0}=125$ GeV. Cross sections are given in their Table 13 and Fig. 7, which are based on the simplified template cross section framework (reduced stage-1.2). Wilson coefficients of the Warsaw-basis operators are given in their Fig. 9.

 $^{^2}$ AAD 21AJ present measurements of $H^0 \to b \, \overline{b}$ in the VBF production mode. The inclusive VBF cross sections with and without the branching ratio of $H^0 \to b \, \overline{b}$ are $2.07 \pm 0.70 ^{+0.46}_{-0.37}$ fb and $3.56 \pm 1.21 ^{+0.80}_{-0.64}$ fb, respectively. The latter is obtained assuming the SM value of B($H^0 \to b \, \overline{b}$) = 0.5809 and $m_{H^0} = 125$ GeV.

 $^{^3}$ SIRUNYAN 18DB search for $V\,H^0,\,H^0\to b\,\overline{b}\,(V=W,\,Z)$ using 77.2 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 4.4 standard deviations and is given for $m_{H^0}=125.09$ GeV.

⁴ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are 1.0 \pm 0.5 for WH^0 production, 0.4 \pm 0.4 for ZH^0 production, and 1.1 \pm 1.0 for $t\bar{t}H^0$ production.

 $^{^5}$ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^0}=125.09$ GeV.

- 6 AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to $10.0~{\rm fb^{-1}}$ and $9.7~{\rm fb^{-1}}$, respectively, of $p\overline{p}$ collisions at $E_{\rm cm}=1.96~{\rm TeV}$. The quoted signal strength is given for $m_{H^0}=125~{\rm GeV}$.
- 7 AAD 21H present measurements of $H^0 o b \, \overline{b}$ with a boosted vector boson ($p_T > 250$ GeV) using 139 fb $^{-1}$ of pp collision data at $E_{\rm cm}=13$ TeV. Cross sections are given in their Table 6 and Fig. 4, which are based on the simplified template cross section framework (reduced stage-1.2). Wilson coefficients of the Warsaw-basis operators are given in their Fig. 5.
- ⁸AAD 21M search for VBF+ γ , $H^0 \rightarrow b \overline{b}$ using 132 fb⁻¹ of pp collision data at $E_{cm} =$
- 9 SIRUNYAN 20BL search for boosted $H^0 \to b \, \overline{b} \, (p_T(H^0) > 450 \, \text{GeV})$ using 137 fb $^{-1}$ of pp collision data at $E_{\text{cm}} = 13 \, \text{TeV}$. The quoted signal strength corresponds to a significance of 2.5 standard deviations and is given for $m_{H^0} = 125$ GeV. A differential cross section as a function of Higgs boson p_T for ggF is shown in their Fig. 7, assuming the other production modes occur at the expected SM rates. The reported value is $3.7\pm1.2 {+0.8+0.8 \atop -0.7-0.5}$ where the last uncertainty comes from theoretical modeling. We have combined the systematic uncertainties in quadrature.
- 10 AABOUD 19U measure cross sections of $pp o VH^0$, $H^0 o b\,\overline{b}$ production as a function of the gauge boson transverse momentum using data of $79.8~{\rm fb}^{-1}$. The kinematic fiducial volumes used is based on the simplified template cross section framework (reduced stage-1). See their Table 3 and Fig. 3.
- 11 SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. 12 AABOUD 18BN search for $V\,H^0,\,H^0\to b\,\overline{b}\,(V=W,\,Z)$ using 79.8 fb $^{-1}$ of $p\,p$ collision data at $E_{
 m cm}=13$ TeV. The quoted signal strength corresponds to a significance of 4.9 standard deviations and is given for $m_{H0} = 125$ GeV.
- 13 AABOUD 18BN combine results of 79.8 fb $^{-1}$ at $E_{\rm cm}=13$ TeV with results of VH^0 at $E_{\rm cm}=7$ and 8 TeV.
- 14 AABOUD 18BN combine results of VH^0 at $E_{
 m cm}=$ 7, 8 and 13 TeV with results of VBF (+gluon fusion) and $t\bar{t}H^0$ at $E_{\rm cm}=$ 7, 8, and 13 TeV to perform a search for the $H^0 \rightarrow b \, \overline{b}$ decay. The quoted signal strength assumes a SM production strength and corresponds to a significance of 5.4 standard deviations.
- 15 AABOUD 18BQ search for $H^0 o b\, \overline{b}$ produced through vector-boson fusion (VBF) and VBF+ γ with 30.6 fb⁻¹ pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_{H^0}=125~{\rm GeV}.$
- ¹⁶ The signal strength is measured including all production modes (VBF, ggF, VH^0 , $t\bar{t}H^0$).
- ¹⁷ The signal strength is measured for VBF-only and others (ggF, VH^0 , $t\overline{t}H^0$) are constrained to Standard Model expectations with uncertainties described in their Section
- 18 AALTONEN 18C use 5.4 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The upper limit at 95% CL on $p\overline{p} \rightarrow H^0 \rightarrow b\overline{b}$ is 33 times the SM predicion, which corresponds to a cross section of 40.6 pb.
- 19 SIRUNYAN 18AE use 35.9 fb $^{-1}$ of pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to 3.3 standard deviations and is given for $m_{H^0}=125.09$
- 20 SIRUNYAN 18AE combine the result of 35.9 fb $^{-1}$ at $E_{
 m cm}=$ 13 TeV with the results obtained from data of up to 5.1 fb $^{-1}$ at $E_{\rm cm}=7$ TeV and up to 18.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV (CHATRCHYAN 14AI and KHACHATRYAN 15Z). The quoted signal strength corresponds to 3.8 standard deviations and is given for $m_{H0} = 125.09$ GeV.
- 21 SIRUNYAN 18DB combine the result of 77.2 fb $^{-1}$ at $E_{
 m cm}=$ 13 TeV with the results obtained from data of up to 5.1 fb $^{-1}$ at $E_{\rm cm}=$ 7 TeV and up to 18.9 fb $^{-1}$ at $E_{\rm cm}=$ 8 TeV. The quoted signal strength corresponds to a significance of 4.8 standard deviations and is given for $m_{H^0} = 125.09$ GeV.

- ²² SIRUNYAN 18DB combine results of 77.2 fb⁻¹ at $E_{\rm cm}=13$ TeV with results of gluon fusion (ggF), VBF and $t\overline{t}H^0$ at $E_{\rm cm}=7$ TeV, 8 TeV and 13 TeV to perform a search for the $H^0 \to b\overline{b}$ decay. The quoted signal strength assumes a SM production strength and corresponds to a significance of 5.6 standard deviations and is given for $m_{H^0}=125.09$ GeV.
- ²³ SIRUNYAN 18E use 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV. They measure $\sigma \cdot B$ for gluon fusion production of $H^0 \rightarrow b \, \overline{b}$ with $p_T > 450$ GeV, $|\eta| < 2.5$ to be 74 \pm 48 $^{+17}_{-10}$ fb.
- ²⁴ AABOUD 17BA use 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV. They give $\sigma({\rm W~H})\cdot B(H^0\to b\,\overline{b})=1.08^{+0.54}_{-0.47}$ pb and $\sigma({\rm Z~H})\cdot B(H^0\to b\,\overline{b})=0.57^{+0.26}_{-0.23}$ pb.
- $^{25}\,\mathrm{AABOUD}$ 17BA combine 7, 8 and 13 TeV analyses. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- ²⁶ AABOUD 16X search for vector-boson fusion production of H^0 decaying to $b\overline{b}$ in 20.2 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- ²⁷ AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.36$ GeV.
- 28 AAD 15G use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.36$ GeV.
- 29 KHACHATRYAN 15Z search for vector-boson fusion production of H^0 decaying to $b\overline{b}$ in up to 19.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- ³⁰ KHACHATRYAN 15Z combined vector boson fusion, WH^0 , ZH^0 production, and $t\bar{t}H^0$ production results. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 31 CHATRCHYAN 14AI use up to 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 18.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV. See also CHATRCHYAN 14AJ.
- ³² AALTONEN 13L combine all CDF results with 9.45–10.0 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- ³³ABAZOV 13L combine all D0 results with up to 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 34 AAD 12AI obtain results based on 4.6–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. The quoted signal strengths are given in their Fig. 10 for $m_{H^0}=126$ GeV. See also Fig. 13 of AAD 12DA.
- 35 AALTONEN 12T combine AALTONEN 12Q, AALTONEN 12R, AALTONEN 12S, ABAZOV 12O, ABAZOV 12P, and ABAZOV 12K. An excess of events over background is observed which is most significant in the region $m_{H^0}=120$ –135 GeV, with a local significance of up to 3.3 σ . The local significance at $m_{H^0}=125$ GeV is 2.8 σ , which corresponds to $(\sigma(H^0W)+\sigma(H^0Z))\cdot \mathrm{B}(H^0\to b\overline{b})=(0.23^{+0.09}_{-0.08})$ pb, compared to the Standard Model expectation at $m_{H^0}=125$ GeV of 0.12 \pm 0.01 pb. Superseded by AALTONEN 13M.
- 36 CHATRCHYAN 12N obtain results based on 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}$ =7 TeV and 5.1 fb $^{-1}$ at $E_{\rm cm}$ =8 TeV. The quoted signal strength is given for m_{H^0} =125.5 GeV. See also CHATRCHYAN 13Y.

$\mu^+\mu^-$ Final State

< 7.4

< 7.0

VALUE	<u>CL%</u> <u>DOCUMENT ID</u>	TE	CNCOMMENT
1.19±0.34 OUR AVE	RAGE		
1.2 ± 0.6	¹ AAD	21 AT	LS <i>pp</i> , 13 TeV
$1.19 {+ 0.40 + 0.15 \atop - 0.39 - 0.14}$	² SIRUNYAN	21C CM	1S <i>pp</i> , 13 TeV
• • • We do not use the	following data for average	s, fits, limi	ts, etc. • • •
$0.68^{+1.25}_{-1.24}$	³ SIRUNYAN	19AT CM	NS <i>pp</i> , 13 TeV
$0.7 \ \pm 1.0 \ {}^{+0.2}_{-0.1}$	⁴ SIRUNYAN	19E CM	1S pp , 13 TeV, 35.9 fb ⁻¹
$1.0 \pm 1.0 \pm 0.1$	⁴ SIRUNYAN	19E CM	1S <i>pp</i> , 7, 8, 13 TeV
$-0.1\ \pm 1.4$	⁵ AABOUD	17Y AT	LS <i>pp</i> , 7, 8, 13 TeV
-0.1 ± 1.5	⁵ AABOUD	17Y AT	LS <i>pp</i> , 13 TeV
0.1 ± 2.5	⁶ AAD	16AN LH	C pp, 7, 8 TeV
-0.6 ± 3.6	⁶ AAD	16AN AT	LS <i>pp</i> , 7, 8 TeV
$0.9 \begin{array}{c} +3.6 \\ -3.5 \end{array}$	⁶ AAD	16AN CM	1S <i>pp</i> , 7, 8 TeV

 1 AAD 21 search for $H^0 \to ~\mu^+\,\mu^-$ using 139 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=$ 13 TeV. The quoted signal strength corresponds to a significance of 2.0 standard deviations and is given for $m_{H^0}=125.09$ GeV. The upper limit on the cross section times branching fraction is 2.2 times the SM prediction at 95% CL, which corresponds to the branching fraction upper limit of 4.7×10^{-4} (assuming SM production cross sections).

⁷ KHACHATRY...15H CMS $pp \rightarrow H^0 X$, 7, 8 TeV

14AS ATLS $pp \rightarrow H^0 X$, 7, 8 TeV

- ² SIRUNYAN 21 search for $H^0 \rightarrow \mu^+\mu^-$ using 137 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 3.0 standard deviations and is given for $m_{H^0}=125.38$ GeV.
- 3 SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. 4 SIRUNYAN 19E search for $H^0\to~\mu^+\,\mu^-$ using 35.9 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=13$ TeV and combine with results of 7 TeV (5.0 fb^{-1}) and 8 TeV (19.7 fb^{-1}) . The upper limit at 95% CL on the signal strength is 2.9, which corresponds to the SM Higgs boson branching fraction to a muon pair of 6.4×10^{-4} .
- ⁵ AABOUD 17Y use 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV, 20.3 fb⁻¹ at 8 TeV and 4.5 fb⁻¹ at 7 TeV. The quoted signal strength is given for $m_{H^0} = 125$ GeV.
- ⁶ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^0}=125.09$ GeV.
- 7 KHACHATRYAN 15H use 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at 8 TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- ⁸ AAD 14AS search for $H^0 o \mu^+\mu^-$ in 4.5 fb $^{-1}$ of $p\,p$ collisions at $E_{
 m cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=$ 8 TeV. The quoted signal strength is given for $m_{H^0}=$ 125.5 GeV.

$au^+ au^-$ Final State

VALUE	DOCUMENT ID	TECN	COMMENT
$1.15^{+0.16}_{-0.15}$ OUR AVERAGE			
$1.09 {}^{+ 0.18}_{- 0.17} {}^{+ 0.26}_{- 0.12} {}^{+ 0.16}_{- 0.11}$	¹ AABOUD	19AQ ATLS	pp, 13 TeV, $H ightarrow au au$
$1.24 ^{igoplus 0.29}_{-0.27}$	² SIRUNYAN	19AF CMS	<i>pp</i> , 13 TeV
$1.11^{+0.24}_{-0.22}$	3,4 AAD	16AN LHC	pp, 7, 8 TeV
$1.68^{+2.28}_{-1.68}$	⁵ AALTONEN	13M TEVA	$p\overline{p} ightarrow \ H^0 X$, 1.96 TeV
https://pdg.lbl.gov	Page 28	Cr	eated: 8/11/2022 09:39

• • • We do not use the following data for averages, fits, limits, etc. • • •

$2.5 \begin{array}{c} +1.4 \\ -1.3 \end{array}$	⁶ SIRUNYAN	19AF CMS	$pp \rightarrow H^0 W/H^0 Z$, $H^0 \rightarrow \tau \tau$, 13 TeV
$1.02^{+0.26}_{-0.24}$	⁷ SIRUNYAN	19AT CMS	pp, 13 TeV
$1.09^{+0.27}_{-0.26}$	⁸ SIRUNYAN	18Y CMS	<i>pp</i> , 13 TeV
0.98 ± 0.18	⁹ SIRUNYAN		pp, 7, 8, 13 TeV
2.3 ± 1.6	¹⁰ AAD	16AC ATLS	$pp \rightarrow H^0W/ZX$, 8 TeV
$1.41 ^{+ 0.40}_{- 0.36}$	⁴ AAD	16AN ATLS	<i>pp</i> , 7, 8 TeV
$0.88^{+0.30}_{-0.28}$	⁴ AAD	16AN CMS	<i>pp</i> , 7, 8 TeV
$1.44 ^{+ 0.30 + 0.29}_{- 0.29 - 0.23}$	¹¹ AAD	16K ATLS	pp, 7, 8 TeV
$1.43^{igoplus 0.27}_{-0.26} {}^{+0.32}_{-0.25} {\pm 0.09}$	¹² AAD	15AH ATLS	$pp \rightarrow H^0 X$, 7, 8 TeV
0.78 ± 0.27	¹³ CHATRCHYAN	N 14K CMS	$pp ightarrow H^0 X$, 7, 8 TeV
$0.00^{+8.44}_{-0.00}$	¹⁴ AALTONEN	13L CDF	$p\overline{p} \rightarrow H^0 X$, 1.96 TeV
$3.96^{+4.11}_{-3.38}$	¹⁵ ABAZOV	13L D0	$p\overline{p} ightarrow H^0 X$, 1.96 TeV
$0.4 \begin{array}{c} +1.6 \\ -2.0 \end{array}$	¹⁶ AAD	12AI ATLS	$pp ightarrow \ H^0 X$, 7 TeV
$0.09^{igoplus 0.76}_{-0.74}$	¹⁷ CHATRCHYAN	N12N CMS	$pp ightarrow H^0 X$, 7, 8 TeV

¹ AABOUD 19AQ use $36.1~{\rm fb}^{-1}$ of data. The first, second and third quoted errors are statistical, experimental systematic and theory systematic uncertainties, respectively. The quoted signal strength is given for $m_{H^0}=125~{\rm GeV}$ and corresponds to $4.4~{\rm standard}$ deviations. Combining with 7 TeV and 8 TeV results (AAD 15AH), the observed significance is $6.4~{\rm standard}$ deviations. The cross sections in the $H^0\to \tau\tau$ decay channel ($m_{H^0}=125~{\rm GeV}$) are measured to $3.77^{+0.60}_{-0.59}$ (stat) $^{+0.87}_{-0.74}$ (syst) pb for the inclusive, $0.28\pm0.09^{+0.11}_{-0.09}$ pb for VBF, and $3.1\pm1.0^{+1.6}_{-1.3}$ pb for gluon-fusion production. See their Table XI for the cross sections in the framework of simplified template cross sections.

 2 SIRUNYAN 19AF use 35.9 fb $^{-1}$ of data. $H^0\,W/Z$ channels are added with a few updates on gluon fusion and vector boson fusion with respect to SIRUNYAN 18Y. The quoted signal strength is given for $m_{H^0}=125~{\rm GeV}$ and corresponds to 5.5 standard deviations.

The signal strengths for the individual production modes are: $1.12^{+0.53}_{-0.50}$ for gluon fusion, $1.13^{+0.45}_{-0.42}$ for vector boson fusion, $3.39^{+1.68}_{-1.54}$ for WH^0 and $1.23^{+1.62}_{-1.35}$ for ZH^0 . See their Fig. 7 for other couplings (κ_{V,κ_f}) .

 $^{^3}$ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are 1.0 \pm 0.6 for gluon fusion, 1.3 \pm 0.4 for vector boson fusion, -1.4 ± 1.4 for WH^0 production, $2.2^{+2.2}_{-1.8}$ for ZH^0 production, and $-1.9^{+3.7}_{-3.3}$ for $t\overline{t}H^0$ production.

⁴ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^0}=125.09$ GeV.

⁵ AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb⁻¹ and 9.7 fb⁻¹, respectively, of $p\bar{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.

⁶ SIRUNYAN 19AF use 35.9 fb⁻¹ of data. The quoted signal strength is given for m_{H^0} = 125 GeV and corresponds to 2.3 standard deviations.

- 7 SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$ of data at $E_{
 m cm}=$ 13 TeV. This
- combination is based on SIRUNYAN 18Y. 8 SIRUNYAN 18Y use 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_{H^0}=125.09$ GeV and corresponds to 4.9 standard deviations.
- 9 SIRUNYAN 18Y combine the result of 35.9 fb $^{-1}$ at $E_{
 m cm}=$ 13 TeV with the results obtained from data of 4.9 fb $^{-1}$ at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV (KHACHATRYAN 15AM). The quoted signal strength is given for $m_{H^0}=125.09$ GeV and corresponds to 5.9 standard deviations.
- 10 AAD 16AC measure the signal strength with $pp
 ightarrow H^0 \, W/ZX$ processes using 20.3 ${\rm fb^{-1}}$ of $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 11 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.36$ GeV.
- 12 AAD 15AH use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The third uncertainty in the measurement is theory systematics. The signal strength for the gluon fusion mode is 2.0 \pm 0.8 $^{+1.2}_{-0.8}$ \pm 0.3 and that for vector boson fusion and W/ZH^0 production modes is $1.24^{+0.49}_{-0.45}^{+0.31}_{-0.29}\pm 0.08$. The quoted signal strength is given for $m_{H^0} = 125.36$ GeV.
- 13 CHATRCHYAN 14K use 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV. See also CHATRCHYAN 14AJ.
- 14 AALTONEN 13L combine all CDF results with 9.45–10.0 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. The quoted signal strength is given for $m_{H^0}=125~{\rm GeV}.$
- 15 ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{\mbox{$H^0$}}=125$ GeV.
- 16 AAD 12AI obtain results based on 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. The quoted signal strengths are given in their Fig. 10 for $m_{H^0}=126$ GeV. See also Fig. 13
- 17 CHATRCHYAN 12N obtain results based on 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}$ =7 TeV and 5.1 fb⁻¹ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.5$ GeV. See also CHATRCHYAN 13Y.

$Z\gamma$ Final State

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
< 3.6	95	¹ AAD	20AG ATLS	<i>pp</i> , 13 TeV
• • • We do not use the	following	data for averages	s, fits, limits,	etc. • • •
< 7.4	95	² SIRUNYAN		<i>pp</i> , 13 TeV
< 6.6	95	³ AABOUD	17AW ATLS	pp, 13 TeV
<11	95	⁴ AAD		pp, 7, 8 TeV
< 9.5	95	⁵ CHATRCHYAN	N 13BK CMS	<i>pp</i> , 7, 8 TeV

- 1 AAD 20AG search for $H^{0}
 ightarrow Z \gamma$, Z
 ightarrow e e, $\mu \mu$ in 139 fb $^{-1}$ of p p collisions at $E_{
 m cm} =$ 13 TeV. The signal strength is $2.0 \pm 0.9^{+0.4}_{-0.3}$ at $m_{H^0} = 125.09$ GeV, which corresponds to a significance of 2.2 σ . The upper limit of $\sigma(pp \to H^0) \cdot B(H^0 \to Z\gamma)$ is 305 fb at
- 2 SIRUNYAN 18DQ search for $H^0\to Z\gamma,\,Z\to e\,e,\,\,\mu\mu$ in 35.9 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=$ 13 TeV. The quoted signal strength (see their Figs. 6 and 7) is given for m_{H^0} = 125 GeV.
- ³ AABOUD 17AW search for $H^0 \to Z\gamma$, $Z \to ee$, $\mu\mu$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_{H^0}=125.09$ GeV. The upper limit on the branching ratio of $H^0 \rightarrow Z\gamma$ is 1.0% at 95% CL assuming the SM Higgs boson production.

⁴AAD 14J search for $H^0 \to Z\gamma \to \ell\ell\gamma$ in 4.5 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.5$ GeV.

 5 CHATRCHYAN 13BK search for $H^0\to Z\gamma\to\ell\ell\gamma$ in 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.6 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. A limit on cross section times branching ratio which corresponds to (4–25) times the expected Standard Model cross section is given in the range $m_{H^0}=120$ –160 GeV at 95% CL. The quoted limit is given for $m_{H^0}=125$ GeV, where 10 is expected for no signal.

$\gamma^* \gamma$ Final State

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$1.5 \pm 0.5 {+0.2 \atop -0.1}$		¹ AAD	211	ATLS	pp , 13 TeV, $H^0 ightarrow \ell\ell\gamma$, 139 fb $^{-1}$

• • We do not use the following data for averages, fits, limits, etc. • •

<4.0 95
2
 SIRUNYAN 18DQ CMS $pp \rightarrow H^0 X$, 13 TeV, $H^0 \rightarrow \gamma^* \gamma$ <6.7 95 3 KHACHATRY...16B CMS pp , 8 TeV, $ee\gamma$, $\mu\mu\gamma$

 1 AAD 211 search for $H^0\to\ell\ell\gamma$ ($\ell=e,~\mu$) in 139 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. The mass of dilepton $m_{\ell\ell}$ is smaller than 30 GeV. This region is dominated by the decay through γ^* . The quoted signal strength corresponds to a significance of 3.2 standard deviations and is given for $m_{H^0}=125.09$ GeV. The cross section times the branching ratio of $H^0\to\ell\ell\gamma$ for $m_{\ell\ell}<30$ GeV is measured to be $8.7\pm2.7^{+0.7}_{-0.6}$ fb.

 2 SIRUNYAN 18DQ search for $H^0\to \gamma^*\gamma,\,\gamma^*\to \mu\mu$ in 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. The mass of γ^* is smaller than 50 GeV except in J/ψ and Υ mass regions. The quoted signal strength (see their Figs. 6 and 7) is given for $m_{H^0}=125$ GeV.

 3 KHACHATRYAN 16B search for $H^0\to \gamma^*\gamma\to e^+e^-\gamma$ and $\mu^+\mu^-\gamma$ (with m(e^+e^-) <3.5 GeV and m($\mu^+\mu^-)<20$ GeV) in 19.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. See their Fig. 6 for limits on individual channels.

Higgs Yukawa couplings

top Yukawa coupling

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
[-0.9, -0.7] or $[0.7, 1.1]$	95	¹ SIRUNYAN	21 R	CMS	pp, 13 TeV
 ● ● We do not use the 	following	g data for averages,	fits, li	mits, et	.c. • • •
<1.7	95	² SIRUNYAN	20 C	CMS	pp, 13 TeV
<1.67	95	³ SIRUNYAN	19 _{BY}	CMS	<i>pp</i> , 13 TeV
<2.1	95	⁴ SIRUNYAN	18 BU	CMS	<i>p p</i> , 13 TeV

 $^{^1}$ SIRUNYAN 21R constrain the ratio of the top quark Yukawa coupling y_t to its Standard Model value from $t\overline{t}H^0$ and tH^0 production rates using 137 fb $^{-1}$ pp collision data at $E_{\rm cm}=13$ TeV. Assuming a SM Higgs couplings to τ 's, the joint interval $-0.9<\kappa_t(=y_t/y_t^{SM})<-0.7$ and $0.7<\kappa_t<1.1$ is obtained at 95% CL (see their Fig. 17).

 $^{^2}$ SIRUNYAN 20C search for the production of four top quarks with same-sign and multilepton final states with 137 fb $^{-1}$ pp collision data at $E_{\rm cm}=13$ TeV. The results constraint the ratio of the top quark Yukawa coupling y_t to its Standard Model value by comparing to the central value of a theoretical prediction (see their Refs. [1-2]), yielding $|y_t/y_t^{SM}|\ < 1.7$ at 95% CL. See their Fig. 5.

OTHER H⁰ PRODUCTION PROPERTIES

$t\overline{t}H^0$ Production

Signal strengh relative to the Standard Model cross section.

VALUE	DOCUMENT ID	TECN	COMMENT
1.10 ± 0.18 OUR AVERAGE			
$0.92 \pm 0.19 ^{+0.17}_{-0.13}$	¹ SIRUNYAN	21R CMS	pp, 13 TeV, $H^0 ightarrow au au$, WW^* , ZZ^*
1.2 ± 0.3	² AABOUD	18AC ATLS	$pp, 13 \text{ TeV}, H^0 \rightarrow b\overline{b}$ $\tau \tau, \gamma \gamma, WW^*, ZZ^*$
$1.9 \begin{array}{l} +0.8 \\ -0.7 \end{array}$	³ AAD	16AN ATLS	pp, 7, 8 TeV
• • • We do not use the foll	owing data for avera	ages, fits, limit	s, etc. • • •
$1.43 {}^{+ 0.33}_{- 0.31} {}^{+ 0.21}_{- 0.15}$	⁴ AAD	20z ATLS	pp , 13 TeV, $H^0 ightarrow \gamma \gamma$
$1.38^{+0.36}_{-0.29}$	⁵ SIRUNYAN	20AS CMS	<i>pp</i> , 13 TeV, $H^0 ightarrow \gamma \gamma$
$0.72\!\pm\!0.24\!\pm\!0.38$	⁶ SIRUNYAN	19R CMS	pp , 13 TeV, $H^0 ightarrow b \overline{b}$
$1.6 \begin{array}{c} +0.5 \\ -0.4 \end{array}$	⁷ AABOUD	18AC ATLS	pp, 13 TeV, $H^0 \rightarrow \tau \tau$, WW^* , ZZ^*
	⁸ AABOUD	18BK ATLS	$pp, 13 \text{ TeV}, H^0 \rightarrow b\overline{b}$ $\tau \tau, \gamma \gamma, WW^*, ZZ^*$
$0.84^{+0.64}_{-0.61}$	⁹ AABOUD	18T ATLS	pp , 13 TeV, $H^0 \rightarrow b\overline{b}$
0.9 ±1.5	¹⁰ SIRUNYAN	18BD CMS	pp , 13 TeV, $H^0 \rightarrow b\overline{b}$
$1.23^{+0.45}_{-0.43}$	¹¹ SIRUNYAN	18BQ CMS	pp , 13 TeV, $H^0 \rightarrow \tau \tau$, WW^* , ZZ^*
$1.26^{+0.31}_{-0.26}$	¹² SIRUNYAN	18L CMS	pp , 7, 8, 13 TeV, $H^0 \rightarrow b\overline{b}$, $\tau \tau$, $\gamma \gamma$, WW^* ,
1.7 ±0.8	¹³ AAD	16AL ATLS	ZZ^* pp , 7, 8 TeV, $H^0 \rightarrow b\overline{b}$, $\tau\tau$, $\gamma\gamma$, WW^* , and
$2.3 \begin{array}{c} +0.7 \\ -0.6 \end{array}$	3,14 AAD	16AN LHC	<i>Z Z</i> * pp, 7, 8 TeV
$2.9 \begin{array}{c} +1.0 \\ -0.9 \end{array}$	³ AAD	16AN CMS	<i>pp</i> , 7, 8 TeV
$1.81 {}^{+ 0.52}_{- 0.50} {}^{+ 0.58}_{- 0.12} {}^{+ 0.31}_{- 0.50}$	¹⁵ AAD	16K ATLS	pp, 7, 8 TeV

 $^{^3}$ SIRUNYAN 19BY measure the top quark Yukawa coupling from $t\,\overline{t}$ kinematic distributions, the invariant mass of the top quark pair and the rapidity difference between t and \overline{t} , in the $\ell+$ jets final state with 35.8 fb $^{-1}$ pp collision data at $E_{\rm Cm}=13$ TeV. The results constraint the ratio of the top quark Yukawa coupling to its the Standard Model to be $1.07^{+0.34}_{-0.43}$ with an upper limit of 1.67 at 95% CL (see their Table III).

 $^{^4}$ SIRUNYAN 18BU search for the production of four top quarks with same-sign and multilepton final states with 35.9 fb $^{-1}$ pp collision data at $E_{\rm cm}=13$ TeV. The results constraint the ratio of the top quark Yukawa coupling y_t to its the Standard Model by comparing to the central value of a theoretical prediction (see their Ref. [16]), yielding $|y_t/y_t^{SM}| < 2.1$ at 95% CL.

```
1.4 \begin{array}{l} +2.1 & +0.6 \\ -1.4 & -0.3 \end{array}
                                         16 AAD
                                                                       ATLS pp, 7, 8 TeV
                                         17_{AAD}
                                                                  15BC ATLS pp, 8 TeV
1.5 \pm 1.1
                                         <sup>18</sup> AAD
                                                                  15T ATLS
                                                                                   pp, 8 TeV
                                         <sup>19</sup> KHACHATRY...15AN CMS
                                                                                    pp, 8 TeV
2.8 \begin{array}{c} +1.0 \\ -0.9 \end{array}
                                         <sup>20</sup> KHACHATRY...14H CMS
                                                                                    pp, 7, 8 TeV
9.49^{+6.60}_{-6.28}
                                         <sup>21</sup> AALTONEN
                                                                 13L CDF
                                                                                    pp. 1.96 TeV
                                         <sup>22</sup> CHATRCHYAN 13X CMS pp, 7, 8 TeV, H^0 \rightarrow b\overline{b}
< 5.8 at 95% CL
```

- 1 SIRUNYAN 21R search for $t\overline{t}\,H^0$ in final states with electrons, muons and hadronically decaying τ leptons ($H^0\to W\,W^*,\ Z\,Z^*,\ \tau\tau)$ with 137 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 4.7 standard deviations and is given for $m_{H^0}=125$ GeV.
- ² AABOUD 18AC combine results of $t\overline{t}H^0$, $H^0 \to \tau\tau$, $WW^*(\to \ell\nu\ell\nu, \ell\nu q\overline{q})$, $ZZ^*(\to \ell\ell\nu\nu, \ell\ell q\overline{q})$ with results of $t\overline{t}H^0$, $H^0 \to b\overline{b}$ (AABOUD 18T), $\gamma\gamma$ (AABOUD 18BO), $ZZ^*(\to 4\ell)$ (AABOUD 18AJ) in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV. See their Table 14.
- ³ AAD 16AN: In the fit, relative branching ratios are fixed to those in the Standard Model. The quoted signal strength is given for $m_{H^0}=125.09$ GeV.
- ⁴ AAD 20Z measure $\sigma_{t\overline{t}H^0}$ · B($H^0 \to \gamma\gamma$) to be $1.64^{+0.38}_{-0.36}^{+0.17}$ fb in 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV.
- 5 SIRUNYAN 20AS measure $\sigma_{t\,\overline{t}\,H^0}\cdot {\rm B}(H^0\to\gamma\gamma)$ to be 1.56 $^{+0.34}_{-0.32}$ fb in 137 fb $^{-1}$ of data at $E_{\rm cm}=$ 13 TeV.
- ⁶ SIRUNYAN 19R search for $t\overline{t}H^0$ production with H^0 decaying to $b\overline{b}$ in 35.9 fb⁻¹ of data at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- ⁷ AABOUD 18AC search for $t\overline{t}H^0$ production with H^0 decaying to $\tau\tau$, $WW^*(\to \ell\nu\ell\nu, \ell\nu q\overline{q})$, $ZZ^*(\to \ell\ell\nu\nu, \ell\ell q\overline{q})$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV. See their Table 13 and Fig. 13.
- ⁸ AABOUD 18BK use 79.8 fb⁻¹ data for $t\overline{t}H^0$ production with $H^0 \to \gamma\gamma$ and $ZZ^* \to 4\ell$ ($\ell=e,\mu$) and 36.1 fb⁻¹ for other decay channels at $E_{\rm cm}=13$ TeV. A significance of 5.8 standard deviations is observed for $m_{H^0}=125.09$ GeV and its signal strength without the uncertainty of the $t\overline{t}H^0$ cross section is $1.32^{+0.28}_{-0.26}$. Combining with results of 7 and 8 TeV (AAD 16K), the significance is 6.3 standard deviations. Assuming Standard Model branching fractions, the total $t\overline{t}H^0$ production cross section at 13 TeV is measured to be 670 \pm 90 $^{+110}_{-100}$ fb.
- ⁹ AABOUD 18T search for $t\overline{t}H^0$ production with H^0 decaying to $b\overline{b}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 10 SIRUNYAN 18BD search for $t\overline{t}H^0$, $H^0 \to b\overline{b}$ in the all-jet final state with 35.9 fb $^{-1}$ pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 11 SIRUNYAN 18BQ search for $t\overline{t}H^0$ in final states with electrons, muons and hadronically decaying τ leptons ($H^0\to~W~W^*,~Z~Z^*,~\tau\tau$) with 35.9 fb $^{-1}$ of pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 3.2 standard deviations and is given for $m_{H^0}=125$ GeV.
- 12 SIRUNYAN 18L use up to 5.1, 19.7 and 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$, 8, and 13 TeV, respectively. The quoted signal strength corresponds to a significance of 5.2 standard deviations and is given for $m_{H^0}=125.09$ GeV. H^0 decay channels of WW^* ,

- ZZ^* , $\gamma\gamma$, $\tau\tau$, and $b\overline{b}$ are used. See their Table 1 and Fig. 2 for results on individual channels.
- ¹³ AAD 16AL search for $t\overline{t}H^0$ production with H^0 decaying to $\gamma\gamma$ in 4.5 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and $b\overline{b}$, $\tau\tau$, $\gamma\gamma$, WW^* , and ZZ^* in 20.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV. This paper combines the results of previous papers, and the new result of this paper only is: $\mu=1.6\pm2.6$.
- $^{14}\,\mathrm{AAD}$ 16AN perform fits to the ATLAS and CMS data at $E_\mathrm{cm}=7$ and 8 TeV.
- 15 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The third uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_{\mbox{\scriptsize H^0}}=125.36$ GeV.
- 16 AAD 15 search for $t\overline{t}H^0$ production with H^0 decaying to $\gamma\gamma$ in 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted result on the signal strength is equivalent to an upper limit of 6.7 at 95% CL and is given for $m_{H^0}=125.4$ GeV.
- 17 AAD 15BC search for $t\overline{t}H^0$ production with H^0 decaying to $b\overline{b}$ in 20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. The corresponding upper limit is 3.4 at 95% CL. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 18 AAD 15T search for $t\bar{t}H^0$ production with H^0 resulting in multilepton final states (mainly from WW^* , $\tau\tau$, ZZ^*) in 20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. The quoted result on the signal strength is given for $m_{H^0}=125$ GeV and corresponds to an upper limit of 4.7 at 95% CL. The data sample is independent from AAD 15 and AAD 15BC.
- 19 KHACHATRYAN 15AN search for $t\overline{t}H^0$ production with H^0 decaying to $b\overline{b}$ in 19.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. The quoted result on the signal strength is equivalent to an upper limit of 4.2 at 95% CL and is given for $m_{H^0}=125$ GeV.
- 20 KHACHATRYAN 14H search for $t\overline{t}H^0$ production with H^0 decaying to $b\overline{b},~\tau\tau,~\gamma\gamma,~WW^*$, and ZZ^* , in 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H^0}=125.6$ GeV.
- ²¹ AALTONEN 13L combine all CDF results with 9.45–10.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H^0}=125$ GeV.
- 22 CHATRCHYAN 13X search for $t\overline{t}\,H^0$ production followed by $H^0\to b\,\overline{b}$, one top decaying to $\ell\nu$ and the other to either $\ell\nu$ or $q\overline{q}$ in 5.0 fb $^{-1}$ and 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ and 8 TeV. A limit on cross section times branching ratio which corresponds to (4.0–8.6) times the expected Standard Model cross section is given for $m_{H^0}=110$ –140 GeV at 95% CL. The quoted limit is given for $m_{H^0}=125$ GeV, where 5.2 is expected for no signal.

H⁰ H⁰ Production

The 95% CL limits are for the cross section (CS) and Higgs self coupling (κ_{λ}) scaling factors both relative to the SM predictions.

CS	κ_{λ}	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We d	o not use the fo	ollowing d	ata for averages,	fits, lir	nits, etc	. • • •	
< 7.7	-3.3 to 8.5	95	¹ SIRUNYAN	21K	CMS	13 TeV, $\gamma \gamma b \overline{b}$	I
< 6.9	-5.0 to 12.0	95	² AAD	20 C	ATLS	13 TeV, $b\overline{b}\gamma\gamma$, $b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$, $b\overline{b}WW^*$, $WW^*\gamma\gamma$,	
< 40		95	³ AAD	20E	ATLS	WW^*WW^* 13 TeV, $H^0H^0 \rightarrow$	
<840 < 12.9		95 95	⁴ AAD ⁵ AABOUD		ATLS ATLS	$b\overline{b}\ell\nu\ell\nu$ 13 TeV, VBF, $b\overline{b}b\overline{b}$ 13 TeV, $b\overline{b}b\overline{b}$	

<300		95	⁶ AABOUD	190 ATLS	13 TeV, <i>b</i> b <i>W W</i> *
<160		95	⁷ AABOUD	19⊤ ATLS	13 TeV, <i>W W</i> * <i>W W</i> *
< 24	-11 to 17	95	⁸ SIRUNYAN	19 CMS	13 TeV, $\gamma \gamma b \overline{b}$
< 75		95	⁹ SIRUNYAN	19AB CMS	13 TeV, $b\overline{b}b\overline{b}$
< 22.2	-11.8 to 18.8	95	¹⁰ SIRUNYAN	19BE CMS	13 TeV, $b\overline{b}\gamma\gamma$
					$b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$,
					b <u>¯</u> ₩W*,
			11		b <u>b</u> ΖΖ*
<179		95	¹¹ SIRUNYAN	19H CMS	13 TeV, <i>bbbb</i>
<230		95	¹² AABOUD	18BU ATLS	13 TeV, $\gamma \gamma W W^*$
< 12.7		95	¹³ AABOUD	18cq ATLS	13 TeV, $b\overline{b}\tau\tau$
< 22	-8.2 to 13.2	95	¹⁴ AABOUD	18cw ATLS	13 TeV, $\gamma \gamma b \overline{b}$
< 30		95	¹⁵ SIRUNYAN	18A CMS	13 TeV, $b\overline{b}\tau\tau$
< 79		95	¹⁶ SIRUNYAN	18F CMS	13 TeV, $b\overline{b}\ell\nu\ell\nu$
< 43		95	¹⁷ SIRUNYAN	17CN CMS	8 TeV, $b\overline{b}\tau\tau$, $\gamma\gamma b\overline{b}$,
			10		b <u>b</u> b <u>b</u>
<108		95	¹⁸ AABOUD	16ı ATLS	13 TeV, $b\overline{b}b\overline{b}$
< 74		95	¹⁹ KHACHATRY.	16BQ CMS	8 TeV, $\gamma \gamma b \overline{b}$
< 70		95	²⁰ AAD	15CE ATLS	8 TeV, $\underline{b}\overline{b}b\overline{b}$, $b\overline{b}\tau\tau$,
					$\gamma \gamma b \overline{b}$, $\gamma \gamma W W$

- 1 SIRUNYAN 21K search for non-resonant $H^0\,H^0$ production using $H^0\,H^0\to\gamma\gamma\,b\,\overline{b}$ with data of 137 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $p\,p\to\,H^0\,H^0\to\gamma\gamma\,b\,\overline{b}$ production cross section at 95% CL is measured to be 0.67 fb, which corresponds to about 7.7 times the SM prediction. The quartic coupling (VVH $^0\,H^0$, V = W,Z) scaling factor $\kappa_{2V}(=c_{2V})$ is measured to be $-1.3<\kappa_{2V}<3.5$ at 95% CL.
- 2 AAD 20C combine results of up to 36.1 fb $^{-1}$ data at $E_{\rm cm}=13$ TeV for $pp\to H^0\,H^0\to\,b\,\overline{b}\gamma\gamma,\,b\,\overline{b}\,\tau\tau,\,b\,\overline{b}\,b\,\overline{b},\,b\,\overline{b}\,W\,W^*,\,W\,W^*\gamma\gamma,\,W\,W^*\,W\,W^*$ (AABOUD 18cW, AABOUD 18cQ, AABOUD 19A, AABOUD 19O, AABOUD 18BU, and AABOUD 19T).
- ³ AAD 20E search non-resonant for H^0H^0 production using $H^0H^0 \to b\overline{b}\ell\nu\ell\nu$, where one of the Higgs bosons decays to $b\overline{b}$ and the other decays to either WW^* , ZZ^* , or $\tau\tau$, with data of 139 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to H^0H^0$ production cross section at 95% CL is measured to be 1.2 pb, which corresponds to about 40 times the SM prediction.
- ⁴ AAD 20x search for $H^0H^0 \rightarrow b\overline{b}b\overline{b}$ process via VBF with data of 126 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the SM non-resonant HH production cross section is 1460 fb at 95% CL, which corresponds to 840 times the SM prediction. The quartic coupling $(VVH^0H^0,V=W,Z)$ scaling factor κ_{2V} is excluded in the region of $\kappa_{2V}<-0.43$ or $\kappa_{2V}>2.56$ at 95% CL.
- ⁵ AABOUD 19A search for H^0H^0 production using $H^0H^0 \to b\overline{b}b\overline{b}$ with data of 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp \to H^0H^0 \to b\overline{b}b\overline{b}$ production cross section at 95% is measured to be 147 fb, which corresponds to about 12.9 times the SM prediction.
- ⁶ AABOUD 190 search for H^0H^0 production using $H^0H^0 \to b\overline{b}WW^*$ with data of 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp \to H^0H^0$ production cross section at 95% CL is calculated to be 10 pb from the observed upper limit on the $pp \to H^0H^0 \to b\overline{b}WW^*$ production cross section of 2.5 pb assuming the SM branching fractions. The former corresponds to about 300 times the SM prediction.
- ⁷ AABOUD 19T search for H^0H^0 production using $H^0H^0 \to WW^*WW^*$ with data of 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp \to H^0H^0$ production cross section at 95% is measured to be 5.3 pb, which corresponds to about 160 times the SM prediction
- ⁸ SIRUNYAN 19 search for H^0H^0 production using $H^0H^0 \to \gamma\gamma b\overline{b}$ with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to H^0H^0 \to \gamma\gamma b\overline{b}$ production

- cross section at 95% CL is measured to be 2.0 fb, which corresponds to about 24 times the SM prediction. The effective Higgs boson self-coupling κ_{λ} ($=\lambda_{HHH}$ / λ_{HHH}^{SM}) is constrainted to be $-11~<~\kappa_{\lambda}~<~17$ at 95% CL assuming all other Higgs boson couplings are at their SM value.
- ⁹ SIRUNYAN 19AB search for H^0H^0 production using $H^0H^0 \to b\overline{b}b\overline{b}$, where 4 heavy flavor jets from two Higgs bosons are resolved, with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to H^0H^0\to b\overline{b}b\overline{b}$ production cross section at 95% is measured to be 847 fb, which corresponds to about 75 times the SM prediction.
- 10 SIRUNYAN 19BE combine results of 13 TeV 35.9 fb $^{-1}$ data: SIRUNYAN 19, SIRUNYAN 19AB, SIRUNYAN 19H, and SIRUNYAN 18F.
- ¹¹ SIRUNYAN 19H search for $H^{\bar{0}}H^{\bar{0}}$ production using $H^{\bar{0}}H^{\bar{0}} \to b\bar{b}b\bar{b}$, where one of $b\bar{b}$ pairs is highly boosted and the other one is resolved, with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to H^{\bar{0}}H^{\bar{0}}\to b\bar{b}b\bar{b}$ production cross section at 95% is measured to be 1980 fb, which corresponds to about 179 times the SM prediction.
- 12 AABOUD 18BU search for H^0H^0 production using $\gamma\gamma WW^*$ with the final state of $\gamma\gamma\ell\nu jj$ using data of 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to H^0H^0$ production cross section at 95% CL is measured to be 7.7 pb, which corresponds to about 230 times the SM prediction. The upper limit on the $pp\to H^0H^0\to \gamma\gamma WW^*$ at 95% CL is measured to be 7.5 fb (see thier Table 6).
- 13 AABOUD 18CQ search for $H^0\,H^0$ production using $H^0\,H^0\to b\,\overline{b}\tau\tau$ with data of 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to H^0\,H^0\to b\,\overline{b}\tau\tau$ production cross section at 95% is measured to be 30.9 fb, which corresponds to about 12.7 times the SM prediction.
- ¹⁴ AABOUD 18CW search for H^0H^0 production using $H^0H^0 \to \gamma\gamma b\overline{b}$ with data of 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to H^0H^0$ production cross section at 95% is measured to be 0.73 pb, which corresponds to about 22 times the SM prediction. The effective Higgs boson self-coupling κ_λ is constrained to be $-8.2<\kappa_\lambda<13.2$ at 95% CL assuming all other Higgs boson couplings are at their SM value.
- at 95% CL assuming all other Higgs boson couplings are at their SM value.
 15 SIRUNYAN 18A search for H^0H^0 production using $H^0H^0 \to b\overline{b}\tau\tau$ with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $gg\to H^0H^0 \to b\overline{b}\tau\tau$ production cross section is measured to be 75.4 fb, which corresponds to about 30 times the SM prediction. Limits on Higgs-boson trilinear coupling λ_{HHH} and top Yukawa coupling y_t are also given (see their Fig. 6).
- ¹⁶ SIRUNYAN 18F search non-resonant for H^0H^0 production using $H^0H^0 \to b\overline{b}\ell\nu\ell\nu$, where $\ell\nu\ell\nu$ is either $WW \to \ell\nu\ell\nu$ or $ZZ \to \ell\ell\nu\nu$ (ℓ is e, μ or a leptonically decaying τ), with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $H^0H^0 \to b\overline{b}\ell\nu\ell\nu$ production cross section at 95% CL is measured to be 72 fb, which corresponds to about 79 times the SM prediction.
- 17 SIRUNYAN 17CN search for $H^0\,H^0$ production using $H^0\,H^0\to b\,\overline{b}\,\tau\,\tau$ with data of 18.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. Results are then combined with the published results of the $H^0\,H^0\to\gamma\gamma\,b\,\overline{b}$ and $H^0\,H^0\to b\,\overline{b}\,b\,\overline{b}$, which use data of up to 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The upper limit on the $g\,g\to H^0\,H^0$ production cross section is measured to be 0.59 pb from $b\,\overline{b}\,\tau\,\tau$, which corresponds to about 59 times the SM prediction (gluon fusion). The combined upper limit is 0.43 pb, which is about 43 times the SM prediction. The quoted values are given for $m_{H^0}=125$ GeV.
- ^18 AABOUD 16I search for H^0H^0 production using $H^0H^0 \to b\overline{b}b\overline{b}$ with data of 3.2 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp \to H^0H^0 \to b\overline{b}b\overline{b}$ production cross section is measured to be 1.22 pb. This result corresponds to about 108 times the SM prediction (gluon fusion), which is $11.3^{+0.9}_{-1.0}$ fb (NNLO+NNLL) including top quark mass effects. The quoted values are given for $m_{H^0}=125$ GeV .
- ¹⁹ KHACHATRYAN 16BQ search for H^0H^0 production using $H^0H^0 \to \gamma\gamma b\overline{b}$ with data of 19.7 fb⁻¹ at $E_{\rm cm}=8$ TeV. The upper limit on the $gg\to H^0H^0 \to \gamma\gamma b\overline{b}$

production is measured to be 1.85 fb, which corresponds to about 74 times the SM prediction and is translated into 0.71 pb for $gg \rightarrow H^0H^0$ production cross section.

Limits on Higgs-boson trilinear coupling λ are also given.

²⁰ AAD 15CE search for H^0H^0 production using $H^0H^0 \rightarrow b\overline{b}\tau\tau$ and $H^0H^0 \rightarrow \gamma\gamma WW$ with data of 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. These results are then combined with the published results of the $H^0H^{0} \rightarrow \gamma \gamma b \overline{b}$ and $H^0H^0 \rightarrow b \overline{b} b \overline{b}$, which use data of up to 20.3 fb $^{-1}$ at $E_{\rm cm}=$ 8 TeV. The upper limits on the $gg
ightarrow H^0 H^0$ production cross section are measured to be 1.6 pb, 11.4 pb, 2.2 pb and 0.62 pb from $b\overline{b}\tau\tau$, $\gamma\gamma WW$, $\gamma\gamma b\overline{b}$ and $b\overline{b}b\overline{b}$, respectively. The combined upper limit is 0.69 pb, which corresponds to about 70 times the SM prediction. The quoted results are given for $m_{\mu 0} = 125.4$ GeV. See their Table 4.

tH⁰ production

VALUE	DOCUMENT ID	TECN	COMMENT
5.7±2.7±3.0	¹ SIRUNYAN 21	CMS	<i>pp</i> , 13 TeV

• • We do not use the following data for averages, fits, limits, etc.

² AAD 20Z ATLS ³ SIRUNYAN 19BK CMS ⁴ KHACHATRY...16AU CMS 20z ATLS

- 1 SIRUNYAN 21R search for tH^0 in final states with electrons, muons and hadronically decaying τ leptons ($H^0 \to WW^*$, ZZ^* , $\tau\tau$) with 137 fb $^{-1}$ of pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 1.4 standard deviations and is given for $m_{\columnM0}=125$ GeV.
- 2 AAD 20Z search for the tH^0 associated production using $H^0\to\gamma\gamma$ in 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. An upper limit on its rate is set to be 12 times the Standard Model at 95% CL ($m_{H^0}=125.09$ GeV).
- ³ SIRUNYAN 19BK search for the tH^0 associated production using multilepton signatures $(H^0 \to WW^*, H^0 \to \tau\tau, H^0 \to ZZ^*)$ and signatures with a single lepton and a $b\overline{b}$ pair $(H^0 o b \, \overline{b})$ using 35.9 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. Results are combined with $H^0 o$ $\gamma\gamma$ (SIRUNYAN 18DS). The observed 95% CL upper limit on the tH^0 production cross section times $H^0 \rightarrow WW^* + \tau\tau + ZZ^* + b\overline{b} + \gamma\gamma$ branching fraction is 1.94 pb (assuming SM $t\bar{t}H^0$ production cross section). See their Table X and Fig. 14. The values outside the ranges of [-0.9, -0.5] and [1.0, 2.1] times the standard model top quark Yukawa coupling are excluded at 95% CL.
- 4 KHACHATRYAN 1 6AU search for the tH^0 associated production in 1 9.7 fb $^{-1}$ at $E_{
 m cm}$ = 8 TeV. The 95% CL upper limits on the tH^0 associated production cross section is measured to be 600–1000 fb depending on the assumed $\gamma\gamma$ branching ratios of the Higgs boson. The $\gamma\gamma$ branching ratio is varied to be by a factor of 0.5–3.0 of the Standard Model Higgs boson ($m_{H^0}=$ 125 GeV). The results of the signal strengths for a negative Higgs-boson trilinear coupling are given. The results are given for $m_{H^0}=125~{\rm GeV}.$

H^0 Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV

Assumes $m_{\mu 0} = 125 \text{ GeV}$

VALUE (pb)	DOCUMENT ID	TECN	COMMENT
56 \pm 4 OUR AVERAGE			
$53.5 \pm 4.9 \pm 2.1$	1 AAD	20BA ATLS	pp, 13 TeV, $ZZ^* ightarrow 4\ell$ (ℓ
$61.1 \pm 6.0 \pm 3.7$	² SIRUNYAN	19BA CMS	$=$ e , μ) p p , 13 TeV, $\gamma\gamma$, $ZZ^* ightarrow$ 4ℓ $(\ell=e,\ \mu)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

H⁰ REFERENCES

Also EPJ C81 398 (errat.) G. Aad et al. (ATLAS Collab.) AAD 20BA EPJ C80 942 G. Aad et al. (ATLAS Collab.) AAD 20C PL B800 135103 G. Aad et al. (ATLAS Collab.) AAD 20E PL B801 135145 G. Aad et al. (ATLAS Collab.) AAD 20F PL B801 135148 G. Aad et al. (ATLAS Collab.) AAD 20N PL B805 135426 G. Aad et al. (ATLAS Collab.) AAD 20N PL B805 135426 G. Aad et al. (ATLAS Collab.) AAD 20N JHEP 2007 108 G. Aad et al. (ATLAS Collab.) AAD 20N JHEP 2101 145 (errat.) G. Aad et al. (ATLAS Collab.) Also JHEP 2101 145 (errat.) G. Aad et al. (ATLAS Collab.) ABO 20Z PRL 125 061802 G. Aad et al. (ATLAS Collab.) SIRUNYAN 20AE JHEP 2003 131 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20AS PRL 125 061801 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20BK JHEP 2011 039 A.M. Sirunyan et al. (CMS Collab.) SIRUNYAN 20BK JHEP 2011 039 A.M. Sirunyan et al. (CMS Collab.)
SIRUNYAN 20AE JHEP 2003 131 A.M. Sirunyan <i>et al.</i> (CMS Collab.) SIRUNYAN 20AS PRL 125 061801 A.M. Sirunyan <i>et al.</i> (CMS Collab.)
SIRUNYAN 20BL JHEP 2012 085 A.M. Sirunyan et al. (CMS Collab.)
SIRUNYAN 20C EPJ C80 75 A.M. Sirunyan et al. (CMS Collab.)
SIRUNYAN 20L PL B805 135425 A.M. Sirunyan <i>et al.</i> (CMS Collab.) AABOUD 19A JHEP 1901 030 M. Aaboud <i>et al.</i> (ATLAS Collab.)

 $^{^1}$ AAD 20BA use 139 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV with $H^0\to ZZ^*\to 4\ell$ where $\ell=e,~\mu.$ The quoted value is given for $m_{H^0}=125$ GeV and assumes the Standard Model branching ratio.

 $^{^2}$ SIRUNYAN 19BA use 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. 3 AABOUD 18CG use 36.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV.

⁴AABOUD 17CO use 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV with $H^0\to ZZ^*\to 4\ell$ where $\ell=e,\ \mu$ for $m_{H^0}=125$ GeV. Differential cross sections for the Higgs boson transverse momentum, Higgs boson rapidity, and other related quantities are measured as shown in their Figs. 8 and 9.

AABOUD	19AI	PL B793 499	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	-	PRL 122 231801	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PR D99 072001	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19AQ 19F	PL B789 508	M. Aaboud <i>et al.</i>	
AABOUD	19F 19N	JHEP 1904 048	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	190		M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
	19U 19T	JHEP 1904 092 JHEP 1905 124	M. Aaboud <i>et al.</i>	
AABOUD AABOUD	19 U	JHEP 1905 141	M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AAD	190 19A	PL B798 134949	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	19	PL B788 7	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1904 112	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1906 093	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		EPJ C79 94	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		EPJ C79 421	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PL B791 96	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PL B792 369	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PRL 122 121803	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BK	PR D99 092005	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BL	PR D99 112003	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BO	PL B793 520	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BR	PL B797 134811	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BY	PR D100 072007	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BZ	PR D100 112002	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19CG	JHEP 1910 139	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19E	PRL 122 021801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19H	JHEP 1901 040	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19L	JHEP 1901 183	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19R	JHEP 1903 026	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	18	PL B776 318	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	-	PR D97 072003	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18AJ		M. Aaboud et al.	(ATLAS Collab.)
AABOUD		JHEP 1807 127	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		PL B784 173	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		PL B786 134	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PL B784 345	M. Aaboud et al.	(ATLAS Collab.)
AABOUD AABOUD		PL B786 59 PR D98 052005	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PL B786 223	M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AABOUD		PR D98 052003	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	-	EPJ C78 1007	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1810 180	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		PL B786 114	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PRL 121 191801	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1811 040	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18M	PRL 120 211802	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18T	PR D97 072016	M. Aaboud et al.	(ATLAS Collab.)
AAIJ	18AM	EPJ C78 1008	R. Aaij et al.	(LHCb Collab.)
AALTONEN	18C	PR D98 072002	T. Aaltonen et al.	(CDF Collab.)
SIRUNYAN	18A	PL B778 101	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18AE	PL B780 501	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1806 101	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1806 001	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1808 066	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		EPJ C78 140	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		EPJ C78 291	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PRL 121 121801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1811 152	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN SIRUNYAN	18E	JHEP 1811 185 PRL 120 071802	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN	18F	JHEP 1801 054	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18L	PRL 120 231801	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18S	PR D97 092005	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18Y	PL B779 283	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD		JHEP 1710 112	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1712 024	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		EPJ C77 765	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17CO	JHEP 1710 132	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17Y	PRL 119 051802	M. Aaboud et al.	(ATLAS Collab.)
AAD	17	EPJ C77 70	G. Aad et al.	(ATLAS Collab.)
KHACHATRY		JHEP 1702 135	V. Khachatryan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	1/AM	PL B775 1	A.M. Sirunyan et al.	(CMS Collab.)

	17CN 16I 16K 16X 16 16AC 16AF 16AL 16AO 16BL 16K 16AB 16AR 16AU	JHEP 1711 047 PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045 JHEP 1608 104 EPJ C76 658 EPJ C76 6 PL B759 672 JHEP 1604 005 JHEP 1606 177 PL B753 341	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. V. Khachatryan et al.	(CMS Collab.) (CMS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY	16BA	JHEP 1609 051	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY KHACHATRY		PR D94 052012 PL B763 472	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
KHACHATRY		EPJ C76 13	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	15	PL B740 222	G. Aad et al.	(ATLAS Collab.)
AAD AAD		PR D92 012006 JHEP 1504 117	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AAD		JHEP 1508 137	G. Aad et al.	(ATLAS Collab.)
AAD	15AX	EPJ C75 231	G. Aad et al.	(ATLAS Collab.)
AAD	15B	PRL 114 191803	G. Aad et al.	(ATLAS and CMS Collabs.)
AAD AAD		EPJ C75 349 EPJ C75 337	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AAD	-	EPJ C75 335	G. Aad et al.	(ATLAS Collab.)
AAD		PR D92 092004	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15CI	EPJ C75 476	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.)
Also AAD	15CX	EPJ C76 152 (errat.) JHEP 1511 206	G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.)
AAD	15F	PR D91 012006	G. Aad et al.	(ATLAS Collab.)
AAD	15G	JHEP 1501 069	G. Aad et al.	(ATLAS Collab.)
AAD AAD	15I 15P	PRL 114 121801 PRL 115 091801	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AAD	15T	PL B749 519	G. Aad et al.	(ATLAS Collab.)
AALTONEN	15	PRL 114 151802	T. Aaltonen et al.	(CDF and D0 Collabs.)
AALTONEN KHACHATRY	15B	PRL 114 141802	T. Aaltonen <i>et al.</i> V. Khachatryan <i>et al.</i>	(CDF Collab.) (CMS Collab.)
KHACHATRY			V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	15BA	PR D92 072010	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY		PL B744 184	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY KHACHATRY	•	PL B749 337 PR D92 012004	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
KHACHATRY		PR D92 032008	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD		PL B738 234	G. Aad et al.	(ATLAS Collab.)
AAD AAD		PL B738 68 PR D90 112015	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AAD	14BJ	JHEP 1409 112	G. Aad et al.	(ATLAS Collab.)
AAD	14J	PL B732 8	G. Aad et al.	(ATLAS Collab.)
AAD	140	PRL 112 201802 PR D90 052004	G. Aad et al.	(ATLAS Collab.)
AAD ABAZOV	14W 14F	PRL 113 161802	G. Aad <i>et al.</i> V.M. Abazov <i>et al.</i>	(ATLAS Collab.) (D0 Collab.)
		PR D89 092007	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		PR D89 012003	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN CHATRCHYAN		NATP 10 557 EPJ C74 2980	S. Chatrchyan <i>et al.</i> S. Chatrchyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
CHATRCHYAN		JHEP 1401 096	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN		JHEP 1405 104	S. Chatrchyan et al.	(CMS Collab.)
KHACHATRY KHACHATRY		PL B736 64 JHEP 1409 087	V. Khachatryan <i>et al.</i> V. Khachartryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
KHACHATRY		EPJ C74 3076	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	13AJ	PL B726 120	G. Aad et al.	(ATLAS Collab.)
AAD	13AK	PL B726 88	G. Aad et al.	(ATLAS Collab.)
Also AALTONEN	13L	PL B734 406 (errat.) PR D88 052013	G. Aad <i>et al.</i> T. Aaltonen <i>et al.</i>	(ATLAS Collab.) (CDF Collab.)
AALTONEN	13M	PR D88 052014	T. Aaltonen <i>et al.</i>	(CDF and D0 Collabs.)
ABAZOV	13L	PR D88 052011	V.M. Abazov et al.	(D0 Collab.)