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Many physical processes considered in the Review of Particle Properties (RPP) involve hadrons.
The properties of hadrons—which are composed of quarks and gluons—are governed primarily
by Quantum Chromodynamics (QCD) (with small corrections from Quantum Electrodynamics
[QED]). Theoretical calculations of these properties require non-perturbative methods, and Lattice
Quantum Chromodynamics (LQCD) is a tool to carry out such calculations. It has been success-
fully applied to many properties of hadrons. Most important for the RPP are the calculation of
electroweak decay constants and form factors, which are needed to extract Cabbibo-Kobayashi-
Maskawa (CKM) matrix elements when combined with the corresponding experimental measure-
ments. LQCD has also been used to determine other fundamental parameters of the standard
model, in particular the strong gauge coupling and quark masses, as well as to predict hadronic
contributions to the anomalous magnetic moment of the muon, gµ−2.

This review describes the theoretical foundations of LQCD and sketches the methods used to
calculate the quantities relevant for the RPP. It also describes the various sources of error that must
be controlled in a LQCD calculation. Results for hadronic quantities are given in the corresponding
dedicated reviews.

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
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17.1 Lattice regularization of QCD
Gauge theories form the building blocks of the Standard Model. While the SU(2) and U(1)

parts have weak couplings and can be studied accurately with perturbative methods, the SU(3)
component—QCD—is only amenable to a perturbative treatment at high energies. The growth
of the gauge coupling in the infrared—the flip-side of asymptotic freedom—requires the use of
non-perturbative methods to determine the low energy properties of QCD. Lattice gauge theory,
proposed by K. Wilson in 1974 [1], provides such a method, for it gives a non-perturbative definition
of vector-like gauge field theories such as QCD. In lattice regularized QCD—commonly called lattice
QCD or LQCD—Euclidean space-time is discretized, usually on a hypercubic lattice with lattice
spacing a, with quark fields placed on sites and gauge fields on the links between sites. The lattice
spacing plays the role of the ultraviolet regulator, rendering the quantum field theory finite. The
continuum theory is recovered by taking the limit of vanishing lattice spacing, which can be reached
by tuning the bare gauge coupling to zero according to the renormalization group.

Unlike dimensional regularization, which is commonly used in continuum QCD calculations,
the definition of LQCD does not rely on the perturbative expansion. Indeed, LQCD allows non-
perturbative calculations by numerical evaluation of the path integral that defines the theory.

Practical LQCD calculations are limited by the availability of computational resources and the
efficiency of algorithms. Because of this, LQCD results come with both statistical and systematic
errors, the former arising from the use of Monte-Carlo integration, the latter, for example, from
the use of non-zero values of a. There are also different ways in which the QCD action can be
discretized, and all must give consistent results in the continuum limit, a→ 0. It is the purpose of
this review to provide an outline of the methods of LQCD, with particular focus on applications to
particle physics, and an overview of the various sources of error. This should allow the reader to
better understand the LQCD results that are presented in other reviews, primarily those on “Quark
Masses,” “Quark Model," “Quantum Chromodynamics,” “CKM quark-mixing matrix,” “Vud, Vus,
Cabibbo angle and CKM Unitarity,” “Leptonic Decays of Charged Pseudoscalar Mesons,” “B0-B̄0

Mixing,” and “Semileptonic b-Hadron Decays, Determination of Vcb and Vub.” For more extensive
explanations the reader should consult the available textbooks or lecture notes, the most up-to-date
of which are Refs. [2–4].

17.1.1 Gauge invariance, gluon fields and the gluon action
A key feature of the lattice formulation of QCD is that it preserves gauge invariance. This is

in contrast to perturbative calculations, where gauge fixing is an essential step. The preservation
of gauge invariance leads to considerable simplifications, e.g., restricting the form of operators that
can mix under renormalization.

The gauge transformations of lattice quark fields are just as in the continuum: q(x) −→
V (x)q(x) and q̄(x) −→ q̄(x)V †(x), with V (x) an arbitrary element of SU(3). The only differ-
ence is that the Euclidean space-time positions x are restricted to lie on the sites of the lattice,
i.e. x = a(n1, n2, n3, n4) for a hypercubic lattice, with the nj being integers. Quark bilinears in-
volving different lattice points can be made gauge invariant by introducing the gluon field Uµ(x).
For example, for adjacent points the bilinear is q̄(x)Uµ(x)q(x+aµ̂), with µ̂ the unit vector in the
µ’th direction. (This form is used in the construction of the lattice covariant derivative.) This is
illustrated in Fig. 17.1. The gluon field (or “gauge link”) is an element of the group, SU(3), in
contrast to the continuum field Aµ which takes values in the Lie algebra. The bilinear is invariant
if Uµ transforms as Uµ(x) → V (x)Uµ(x)V †(x+aµ̂). The lattice gluon field is naturally associated
with the link joining x and x+aµ̂, and corresponds in the continuum to a Wilson line connecting
these two points, P exp(i

∫ x+aµ̂
x dxµA

cont
µ (x)) (where P indicates a path-ordered integral, and the

superscript on Aµ indicates that it is a continuum field). The trace of a product of the Uµ(x)
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3 17. Lattice Quantum Chromodynamics

around any closed loop is easily seen to be gauge invariant and is the lattice version of a Wilson
loop.

Figure 17.1: Sketch of a two-dimensional slice through the µ−ν plane of a lattice, showing gluon
fields lying on links and forming either the plaquette product appearing in the gauge action or a
component of the covariant derivative connecting quark and antiquark fields.

The simplest possible gauge action, usually called the Wilson gauge action, is given by the
product of gauge links around elementary plaquettes:

Sg = β
∑
x,µ,ν

[1− 1
3ReTr[Uµ(x)Uν(x+aµ̂)U †µ(x+aν̂)U †ν (x)]] . (17.1)

This is illustrated in Fig. 17.1. For small a, assuming that the fields are slowly varying, one
can expand the action in powers of a using Uµ(x) = exp(iaAµ(x)). Keeping only the leading
non-vanishing term, and replacing the sum with an integral, one finds the continuum form,

Sg −→
∫
d4x

1
4g2

lat
Tr[F 2

µν(x)] ,

(Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ])
(17.2)

as long as one chooses β = 6/g2
lat for the lattice coupling. In this expression, glat is the bare

gauge coupling in the lattice scheme, which can be related (by combining continuum and lattice
perturbation theory) to a more conventional gauge coupling such as that in the MS scheme (see
Sec. 17.3.4 below).

In practice, the lattice spacing a is non-zero, leading to discretization errors. In particular, the
lattice breaks Euclidean rotational invariance (which is the Euclidean version of Lorentz invariance)
down to a discrete hypercubic subgroup. One wants to reduce discretization errors as much as pos-
sible. A very useful tool for understanding and then reducing discretization errors is the Symanzik
effective action: the interactions of quarks and gluons with momenta low compared to the lattice
cutoff (|p| � 1/a) are described by a continuum action consisting of the standard continuum terms
(e.g., the gauge action given in Eq. (17.2)) augmented by higher dimensional operators suppressed
by powers of a [5]. For the Wilson lattice gauge action, the leading corrections come in at O(a2).
They take the form

∑
j a

2cjO
(j)
6 , with the sum running over all dimension-six operators O(j)

6 allowed
by the lattice symmetries, and cj unknown coefficients. Some of these operators violate Euclidean
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rotational invariance, and all of them lead to discretization errors of the form a2Λ2 (up to log(a)
corrections that will be discussed below), where Λ is a typical momentum scale for the quantity
being calculated. These errors can, however, be reduced by adding corresponding operators to the
lattice action and tuning their coefficients to eliminate the dimension-six operators in the effective
action to a given order in perturbation theory or even non-perturbatively. This is the idea of
the Symanzik improvement program [5]. In the case of the gauge action, one adds Wilson loops
involving six gauge links (as opposed to the four links needed for the original plaquette action,
Eq. (17.1)) to define the O(a2) improved (or “Symanzik”) action [6]. In practical implementations,
the improvement is either at tree-level (so that residual errors are proportional to αsa2, where the
coupling is evaluated at a scale ∼ 1/a), or at one loop order (errors proportional to α2

sa
2). Another

popular choice is motivated by studies of renormalization group (RG) flow. It has the same terms
as the O(a2) improved action but with different coefficients, and is called the RG-improved or
“Iwasaki” action [7].
17.1.2 Lattice fermions

Discretizing the fermion action turns out to involve subtle issues, and the range of actions
being used is more extensive than for gauge fields. Recall that the continuum fermion action is
Sf =

∫
d4xq̄[iDµγµ + mq]q, where Dµ = ∂µ + iAµ is the gauge-covariant derivative. The simplest

discretization replaces the derivative with a symmetric difference:

Dµq(x) −→ 1
2a [Uµ(x)q(x+ aµ̂)− Uµ(x− aµ̂)†q(x− aµ̂)] . (17.3)

The factors of Uµ ensure that Dµq(x) transforms under gauge transformations in the same
way as q(x), so that the discretized version of q̄(x)Dµγµq(x) is gauge invariant. The choice in
Eq. (17.3) leads to the so-called naive fermion action. This, however, suffers from the fermion dou-
bling problem—in d dimensions it describes 2d equivalent fermion fields in the continuum limit. The
appearance of the extra “doubler” fermions is related to the deeper theoretical problem of formulat-
ing chirally symmetric fermions on the lattice. This is encapsulated by the Nielsen-Ninomiya the-
orem [8]: one cannot define lattice fermions having exact, continuum-like chiral symmetry without
producing doublers. Naive lattice fermions do have chiral symmetry but at the cost of introducing
15 unwanted doublers (for d = 4).

There are a number of different strategies for dealing with the doubling problem, each with their
own theoretical and computational advantages and disadvantages. Wilson fermions [1] add a term
proportional to aq̄∆q to the fermion action (the “Wilson term”—in which ∆ is a covariant lattice
Laplacian). This gives a mass of O(1/a) to the doublers, so that they decouple in the continuum
limit. The Wilson term, however, violates chiral symmetry, and also introduces discretization errors
linear in a. A commonly used variant that eliminates the O(a) discretization error is the O(a)-
improved Wilson (or “clover”) action [9]. In this application of Symanzik improvement, methods
have been developed to remove O(a) terms non-perturbatively using auxiliary simulations to tune
parameters [10]. Such “non-perturbetive improvement” is of great practical importance as it brings
the discretization error from the fermion action down to the same level as that from the gauge
action.

The advantages of Wilson fermions are their theoretical simplicity and relatively low compu-
tational cost. Their main disadvantage is the lack of chiral symmetry, which makes them difficult
to use in cases where mixing with wrong chirality operators can occur, particularly if this involves
divergences proportional to powers of 1/a. A related problem is the presence of potential numerical
instabilities due to spurious near-zero modes of the lattice Dirac operator. There are, however,
studies that successfully ameliorate these problems and increase the range of quantities for which
Wilson fermions can be used (see, e.g., Refs. [11–14]).
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Twisted-mass fermions [15] are a variant of Wilson fermions in which two flavors are treated
together with an isospin-breaking mass term (the “twisted mass” term). The main advantage of
this approach is that all errors linear in a are automatically removed (without the need for tuning of
parameters) by a clever choice of twisted mass and operators [16]. A disadvantage is the presence of
isospin breaking effects (such as a splitting between charged and neutral pion masses even when up
and down quarks are degenerate), which, however, vanish as a2Λ2 in the continuum limit. Strange
and charm quarks can be added as a second pair, with a term added to split their masses [17,18].

Staggered fermions are a reduced version of naive fermions in which there is only a single
fermion Dirac component on each lattice site, with the full Dirac structure built up from neighboring
sites [19]. They have the advantages of being somewhat faster to simulate than Wilson-like fermions,
of preserving some chiral symmetry, and of having discretization errors ofO(a2). Their disadvantage
is that they retain some of the doublers (3 for d = 4). The action thus describes four degenerate
fermions in the continuum limit. These are usually called “tastes”, to distinguish them from
physical flavors, and the corresponding SU(4) symmetry is referred to as the “taste symmetry”.
The preserved chiral symmetry in this formulation has non-singlet taste. Practical applications
usually introduce one staggered fermion for each physical flavor, and remove contributions from
the unwanted tastes by taking the fourth-root of the fermion determinant appearing in the path
integral. The validity of this “rooting” procedure is not obvious because taste symmetry is violated
for non-zero lattice spacing. Theoretical arguments, supported by numerical evidence, suggest
that the procedure is valid as long as one takes the continuum limit before approaching the light
quark mass region [20]. Additional issues arise for the valence quarks (those appearing in quark
propagators, as described in Sec. 17.2 below), where rooting is not possible, and one must ignore
the extra tastes, or account for them by including appropriate factors [21], which can be nontrivial
in applications involving baryons [22].

Just as for Wilson fermions, the staggered action can be improved, so as to reduce discretization
errors. The Asqtad (a-squared tadpole improved) action [23] was used until recently in many large
scale simulations [24]. More recent calculations use the HISQ (highly improved staggered quark)
action, introduced in Ref. [25]. At tree-level it removes both O(a2) errors and, to lowest order in the
quark speed v/c, O([am]4) errors. It also substantially reduces effects caused by taste-symmetry
breaking. This makes it attractive not only for light quarks, but means that it is also quite accurate
for heavy quarks because it suppresses (am)n errors. It is being used to directly simulate charm
quarks and to approach direct simulations of bottom quarks (see, e.g., [26–28]).

There is an important class of lattice fermions, “Ginsparg-Wilson fermions,” that possess a
continuum-like chiral symmetry without introducing unwanted doublers. The lattice Dirac operator
D for these fermions satisfies the Ginsparg-Wilson relation Dγ5 + γ5D = aDγ5D [29]. In the
continuum, the right-hand-side vanishes, leading to chiral symmetry. On the lattice, it is non-
vanishing, but with a particular form (with two factors of D) that restricts the violations of chiral
symmetry in Ward-Takahashi identities to short-distance terms that do not contribute to physical
matrix elements [30]. In fact, one can define a modified chiral transformation on the lattice (by
including dependence on the gauge fields) such that Ginsparg-Wilson fermions have an exact chiral
symmetry for on-shell quantities [31]. The net result is that such fermions essentially have the same
properties under chiral transformations as do continuum fermions, including the index theorem [30].
Their leading discretization errors are of O(a2).

Two types of Ginsparg-Wilson fermions are currently being used in large-scale numerical simu-
lations. The first is Domain-wall fermions (DWF). These are defined on a five-dimensional space,
in which the fifth dimension is fictitious [32]. The action is chosen so that the low-lying modes are
chiral, with left- and right-handed modes localized on opposite four-dimensional surfaces. For an
infinite fifth dimension, these fermions satisfy the Ginsparg-Wilson relation. In practice, the fifth
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dimension is kept finite, and there remains a small, controllable violation of chiral symmetry. The
second type is Overlap fermions. These appeared from a completely different context and have an
explicit form that exactly satisfies the Ginsparg-Wilson relation [33]. Their numerical implementa-
tion requires an approximation of the matrix sign function of a Wilson-like fermion operator, and
various approaches are being used. In fact, it is possible to rewrite these approximations in terms
of a five-dimensional formulation, showing that the DWF and Overlap approaches are essentially
equivalent [34,35]. Numerically, the five-dimensional approach appears to be more computationally
efficient.

The various lattice fermion formulations are often combined with the technique of link smear-
ing. Here one couples the fermions to a smoother gauge link, defined by averaging with adjacent
links in a gauge invariant manner. Several closely related implementations are being used. All
reduce the coupling of fermions to the short-distance fluctuations in the gauge field, leading to an
improvement in the numerical stability and speed of algorithms. One cannot perform this smear-
ing too aggressively, however, since the smearing may distort short distance physics and enhance
discretization errors.

As noted above, each fermion formulation has its own advantages and disadvantages. For
instance, domain-wall and overlap fermions are theoretically preferred as they have chiral symmetry
without doublers, but their computational cost is greater than for other choices. If the physics
application of interest and the target precision do not require near-exact chiral symmetry, there
is no strong motivation to use these expensive formulations. On the other hand, there is a class
of applications (including the calculation of the ∆I = 1/2 amplitude for K → ππ decays and the
S-parameter [36]) where chiral symmetry plays an essential role and for which the use of Ginsparg-
Wilson fermions is strongly favored.

17.1.3 Heavy quarks on the lattice
The fermion formulations described in the previous subsection can be used straightforwardly

only for quarks whose masses are small compared to the lattice cutoff, mq / 1/a. This is because
there are discretization errors proportional to powers of amq, and if amq ' 1 these errors are large
and uncontrolled. Present LQCD simulations typically have cutoffs in the range of 1/a = 2−4 GeV
(corresponding to a ≈ 0.1 − 0.05 fm). Thus, while for the up, down and strange quarks one has
amq � 1, for bottom quarks (with mb ≈ 4.5 GeV) one must use alternative approaches. Charm
quarks (mc ≈ 1.5 GeV) are an intermediate case, allowing simulations using both direct and
alternative approaches.

For the charm quark, the straightforward approach is to simultaneously reduce the lattice
spacing and to improve the fermion action so as to reduce the size of errors proportional to powers
of amc. This approach has been followed successfully using the HISQ, twisted-mass and domain-
wall actions [25, 26, 28, 37, 38]. It is important to note, however, that reducing a increases the
computational cost because an increased number of lattice points are needed for the same physical
volume. One cannot reduce the spatial size below 2–3 fm without introducing finite volume errors.
Present lattices have typical sizes of ∼ 643 × 128 (with the long direction being Euclidean time),
and thus allow a lattice cutoff up to 1/a ∼ 4 GeV.

This approach can, to some extent, be extended to the bottom quark, by the use of simulations
with small lattice spacings [27]. This has been pursued with the HISQ action [39], using lattices
of size up to 1443 × 288 and lattice spacings down to a ≈ 0.03 fm (1/a ≈ 6.6 GeV). Extrapolation
in mb is still needed [40], however, and this makes use of the mass dependence predicted by Heavy
Quark Effective Theory (HQET).

Alternative approaches for discretizing heavy quarks are motivated by effective field theories.
For a bottom quark in heavy-light hadrons, one can use HQET to expand about the infinite quark-
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mass limit. In this limit, the bottom quark is a static color source, and one can straightforwardly
write the corresponding lattice action [41]. Corrections, proportional to powers of 1/mb, can be
introduced as operator insertions, with coefficients that can be determined non-perturbatively using
existing techniques [42]. This method allows the continuum limit to be taken controlling all 1/mb

corrections.
Another way of introducing the 1/mb corrections is to include the relevant terms in the effective

action. This leads to a non-relativistic QCD (NRQCD) action, in which the heavy quark is described
by a two-component spinor [43]. This approach has the advantage over HQET that it can also be
used for heavy-heavy systems, such as the Upsilon states. Moreover, the bottom quark can be
treated without any extrapolation in mb. A disadvantage is that some of the parameters in this
effective theory are determined perturbatively (at tree-level or at one-loop [44]), which limits the
precision of the final results. Although discretization effects can be controlled with good numerical
precision for a range of lattice spacings, these artifacts cannot be extrapolated away by taking the
lattice spacing to zero. This is because NRQCD is a nonrelativistic effective field theory and so
ceases to work when the cutoff π/a becomes much larger than the heavy-quark mass. In practice
these effects are accounted for in the error budget.

This problem can be avoided if one uses HQET power counting to analyze and reduce discretiza-
tion effects for heavy quarks while using conventional fermion actions [45]. For instance, one can
tune the parameters of an improved Wilson quark action so that the leading HQET corrections to
the static quark limit are correctly accounted for. As the lattice spacing becomes finer, the action
smoothly goes over to that of a light Wilson quark action, where the continuum limit can be taken
as usual. In principle, one can improve the action in the heavy quark regime up to arbitrarily
high orders using HQET, but so far large-scale simulations have typically used clover improved
Wilson quarks, where tuning the parameters of the action corresponds to including all corrections
through next-to-leading order in HQET. Three different methods for tuning the parameters of the
clover action are being used: the Fermilab [45], Tsukuba [46] and Columbia [47] approaches. An
advantage of this HQET approach is that the c and b quarks can be treated on the same footing.
Parameter tuning has been done perturbatively, as in NRQCD, or using non-perturbative tuning
of some of the parameters [48, 49]. One can improve the effective theory including the terms be-
yond the next-to-leading order. The Oktay-Kronfeld action that includes dimension-six and -seven
operators has been constructed [50] and used in large-scale numerical calculations [51].

Another approach is the “ratio method” introduced in Ref. [52]. Here one uses quarks with
masses lying at, or slightly above, the charm mass mc, which can be simulated with a relativistic
action, and extrapolates to mb incorporating the behavior predicted by HQET. The particular
implementation relies on the use of ratios. As an example, consider the B meson decay constant fB.
According to HQET, this scales as 1/√mB for mB � ΛQCD, up to a logarithmic dependence that is
calculable in perturbative QCD (but will be suppressed in the following). Here mB is the B meson
mass, which differs from mb by ∼ ΛQCD. One considers the ratio y(λ,mb′) ≡ fB′′

√
mB′′/fB′

√
mB′

for fictitious B mesons containing b quarks with unphysical masses mb′ and mb′′ = λmb′ . HQET
implies that y(λ,mb′) approaches unity for large mb′ and any fixed λ > 1. The ratios are evaluated
on the lattice for the sequence of masses mb′ = mc, λmc, λ2mc, all well below the physical mb, and
for each the continuum limit is taken. The form of the ratio for larger values of mb′ is obtained by
fitting, incorporating the constraints implied by HQET. The result for fB

√
mB is then obtained as

a product of y’s with fD
√
mD.

17.1.4 QED on the lattice
Quarks in nature are electrically charged, and the resultant coupling to photons leads to shifts

in the properties of hadrons that are generically of O(αEM). Thus, for example, the proton mass is
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increased by ∼ 1 MeV relative to that of the neutron due to its overall charge although this effect
is more than compensated for by the ∼ 2.5 MeV relative decrease due to the up quark being lighter
than the down quark [53]. This example shows that once pure QCD, isospin-symmetric lattice
calculations reach percent level accuracy, further improvement requires the inclusion of effects due
to both electromagnetism and the up-down mass difference. This level of accuracy has in fact been
obtained for various quantities, e.g., light hadron masses and decay constants (see Ref. [54]), and
simulations including QED in addition to QCD are becoming more common.

The extension of lattice methods to include QED is straightforward, although some new sub-
tleties arise. The essential change is that the quark must now propagate through a background field
containing both gluons and photons. The gauge field Uµ that appears in the covariant derivative
of Eq. (17.3) is extended from an SU(3) matrix to one living in U(3): Uµ → Uµe

iaqeAEM
µ . Here AEM

µ

is the photon field, e the electromagnetic coupling, and q the charge of the quark, e.g., q = 2/3
for up and −1/3 for down and strange quarks. The lattice action for the photon that is typically
used is a discretized version of the continuum action Eq. (17.2), rather than the form used for the
gluons, Eq. (17.1). This “non-compact" action has the advantage that it is quadratic in AEM

µ , which
simplifies the QED part of the generation of configurations.

One subtlety that arises is that Gauss’ law forbids a charged particle in a box with periodic
boundary conditions. This finite volume effect can be overcome by including a uniform background
charge, and this can be shown to be equivalent to removing the zero-momentum mode from the
photon field. This is an example of the enhanced finite-volume effects that arise in the presence of
the massless photon.

Simulations including QED have progressed over the last few years, and now a full inclusion of
QED has been achieved for a range of quark masses approaching the physical values [53, 55–57].
Alternative approaches have also been used: reweighting the QCD fields a posteriori [58, 59], and
keeping only the linear term in an expansion in αEM about the QCD only case [60]. In addition,
some calculations have included QED effects for the valence quarks but not the sea quarks (the
“electroquenched approximation”) [61–65].

The QED corrections to processes including leptons, such as the leptonic and semileptonic
decays of hadrons, involve additional diagrams in which a photon propagator bridges between a
hadron and a lepton. Such diagrams induce infrared divergences that cancel against soft photon
radiation (Bloch-Nordsieck theorem [66]). Methods have been developed to implement this cancel-
lation in lattice calculations, treating the soft photon analytically [67], with first results reported
recently for leptonic pion and kaon decays [68,69]. An application to semi-leptonic decays has also
been discussed [70,71].
17.1.5 Basic inputs for lattice calculations

Since LQCD is nothing but a regularization of QCD, the renormalizability of QCD implies that
the number of input parameters in LQCD is the same as for continuum QCD—the strong gauge
coupling αs = g2/(4π), the quark masses for each flavor, and the CP violating phase θ. The θ
parameter is usually assumed to be zero, while the other parameters must be determined using
experimental inputs.
17.1.5.1 Lattice spacing

In QCD, the gauge coupling is a function of scale. With lattice regularization, this scale is the
inverse lattice spacing 1/a, and choosing the bare gauge coupling is equivalent to fixing the lattice
spacing.

In principle, a can be determined using any dimensionful quantity measured by experiments.
For example, using the mass of hadron H one has a = (amH)lat/mexp

H . One chooses quantities that
can be calculated accurately on the lattice, and that are only weakly dependent on the light quark
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masses. The latter property minimizes errors from extrapolating or interpolating to the physical
light quark masses or from mistuning of these masses.

Commonly used choices are the spin-averaged 1S-1P or 1S-2S splittings in the Upsilon system,
the mass of the Ω− baryon, and the pion decay constant fπ. Ultimately, all choices must give
consistent results for a, and that this is the case provides a highly non-trivial check of both the
calculational method and of QCD.

Many recent lattice calculations use intermediate length scales in place of a direct determination
of the lattice spacing. These length scales, which we denote R, have the advantage that they can be
precisely, and relatively cheaply, computed numerically. Examples are r0, derived from the heavy
quark potential [72], and t0 and w0, determined from the gradient flow of the gauge field [73]. These
scales are used in the following manner, explained here in the context of calculating a quantity Q
with mass dimension d (e.g. a decay constant for which d = 1). In the first step, one calculates
the dimensionless quantities adQ and R/a in a given lattice calculation, and forms the product
(adQ) × (R/a)d = QRd. In a second step, one uses results available from previous dedicated
lattice calculations that have determined R in physical units (i.e. fm) by relating them to physical
quantities as discussed above. Then one obtains Q = (QRd)/Rd. The results of this second step
are reviewed in the latest edition of the Flavor Lattice Averaging Group (FLAG) report [74].

17.1.5.2 Light quark masses
In LQCD simulations, the up, down and strange quarks are usually referred to as the light

quarks, in the sense that mq < ΛQCD. (The standard definition of ΛQCD is given in the “Quantum
Chromodynamics” review; in this review we are using it only to indicate the approximate non-
perturbative scale of QCD.) This condition is stronger than that used above to distinguish quarks
with small discretization errors, mq < 1/a. Loop effects from light quarks must be included in
the simulations to accurately represent QCD. At present, most simulations are done in the isospin
symmetric limit mu = md ≡ m` < ms, and are often referred to as “Nf = 2 + 1” simulations.
Increasingly, simulations also include loops of charm quarks (denoted Nf = 2 + 1 + 1 simulations),
although the effect of charmed sea quarks on low-energy physics is generically expected to be at the
sub-percent level [75–79]. Precision is now reaching the point where isospin breaking effects must
be included. To do so without approximation requires simulating with nondegenerate up and down
quarks (leading to Nf = 1+1+1 or 1+1+1+1 simulations) as well as including electromagnetism
(as described above). This has been done in Ref. [53]. Alternatively, one can use the perturbative
approach mentioned above, expanding about the isospin symmetric theory and working to linear
order in αEM and mu −md [60, 80].

We now describe the tuning of m`, ms and mc to their physical values. (For brevity, we ignore
isospin violation in the following discussion.) The most commonly used quantities for these tunings
are, respectively, mπ, mK and mηc . If the scale is being set by mΩ, then one adjusts the lattice
quark masses until the ratiosmπ/mΩ, mK/mΩ andmηc/mΩ take their physical values. In the past,
most calculations needed to extrapolate to the physical value of m` (typically using forms based
on chiral perturbation theory [ChPT]), while simulating directly at or near to the physical values
of ms and mc. Present calculations are increasingly done with physical or near physical values of
m`, requiring at most only a short extrapolation or interpolation.

17.1.5.3 Heavy quark masses
The b quark is usually treated only as a valence quark, with no loop effects included. The

errors introduced by this approximation can be estimated to be ∼ αs(mb)Λ2
QCD/m

2
b and are likely

to be very small. In the past, the same approximation has been made for the c quark, leading
to errors ∼ αs(mc)Λ2

QCD/m
2
c . (See Ref. [75] for a quantitative estimate of the effects of including

the charm quark on some low energy physical quantities, and Ref. [81] for similar estimates for

11th August, 2022



10 17. Lattice Quantum Chromodynamics

B-meson matrix elements.) For high precision, however, dynamical charm quarks are necessary,
and some of the most recent simulations now include them.

The b quark mass can be tuned by setting heavy-heavy (Υ ) or heavy-light (B) meson masses to
their experimental values. Consistency between these two determinations provides an important
check that the determination of parameters in the heavy quark lattice formulations is being done
correctly (see, e.g., Ref. [27, 82,83])

17.1.6 Sources of systematic error
Lattice results have statistical and systematic errors that must be quantified for any calculation

in order for the result to be a useful input to phenomenology. The statistical error is due to the
use of Monte Carlo importance sampling to evaluate the path integral (a method discussed below).
There are, in addition, a number of systematic errors that are always present to some degree in
lattice calculations, although the size of any given error depends on the particular quantity under
consideration and the parameters of the ensembles being used. The most common lattice errors
are reviewed below.

Although not strictly a systematic error, it is important to note that the presence of long
autocorrelations in the sequence of lattice configurations generated by the Monte Carlo method can
lead to underestimates of statistical errors [84]. It is known that the global topological charge of the
gauge fields decorrelates very slowly with certain algorithms [84,85]. The effect of poorly sampling
topological charge is expected to be most significant for the pion mass and related quantities [86–88].
This issue becomes more relevant as the precision of the final results increases.

17.1.6.1 Continuum limit
Physical results are obtained in the limit that the lattice spacing a goes to zero. The Symanzik

effective theory (SET) determines the scaling of lattice artefacts with a. Most lattice calculations
use improved actions with leading discretizations errors of O(αsaΛ), O(a2Λ2), or O(αsa2Λ2), where
Λ is a typical momentum scale in the system. Knowledge of the scaling of the leading discretization
errors allows controlled extrapolation to a = 0 when multiple lattice spacings are available, as
in current state-of-the-art calculations. Residual errors arise from the exclusion of subleading a
dependence from the fits, either that due to prefactors containing powers of log(a), or from higher
powers of a. The former can, in principle, be understood using the SET, and first studies of this
in pure gauge QCD have been undertaken [89].

For many quantities the typical momentum scale in the system is ∼ ΛQCD ≈ 300 MeV. Dis-
cretization errors are expected to be larger for quantities involving larger scales, for example form
factors or decays involving particles with momenta larger than ΛQCD.

17.1.6.2 Infinite volume limit
LQCD calculations are necessarily carried out in finite space-time boxes, leading to departures

of physical quantities (masses, decay constants, etc.) from their measured, infinite volume values.
These finite-volume shifts are an important systematic that must be estimated and minimized.

Typical lattices are asymmetric, with Ns points in the three spatial directions and Nt in the
(Euclidean) temporal direction. The spatial and temporal sizes in physical units are thus Ls = aNs

and Lt = aNt, respectively. (Anisotropic lattice spacings are also sometimes used, as discussed
below in Sec. 17.2.2.) Typically, Lt ≥ 2Ls, a longer temporal direction being used to allow excited-
state contributions to correlators to decay. This means that the dominant impact of using finite
volume is from the presence of a finite spatial box.

High-precision LQCD calculations are of quantities involving no more than a single strongly-
interacting particle in initial and final states (with the exception of the K → ππ decay amplitudes).
For such quantities, once the volume exceeds about 2 fm (so that the particle is not “squeezed”),
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the dominant finite-volume effect comes from virtual pions wrapping around the lattice in the
spatial directions. This effect is exponentially suppressed as the volume becomes large, roughly as
∼ exp(−mπLs), and has been estimated using ChPT [90] or other methods [91]. The estimates
suggest that finite volume shifts are sub-percent effects when mπLs & 4, and most large-scale
simulations use lattices satisfying this condition. This becomes challenging as one approaches the
physical pion mass, for which Ls & 5 fm is required.

Finite volume errors are usually determined by repeating the simulations on two or more dif-
ferent volumes (with other parameters fixed). If different volumes are not available, the ChPT
estimate can be used, often inflated to account for the fact that the ChPT calculation is truncated
at some order.

In the future, LQCD calculations involving more than a single hadron will become increasingly
precise. Examples include the calculation of resonance parameters and the above-mentioned K →
ππ amplitudes. Finite volume effects are much larger in these cases, with power-law terms (e.g.,
1/L3

s) in addition to exponential dependence. Indeed, as will be discussed in Sec. 17.2.4, one
can use the volume dependence to indirectly extract infinite-volume quantities such as scattering
lengths. Doing so, however, requires a set of lattice volumes satisfying mπLs & 4 and is thus more
challenging than for single-particle quantities.

17.1.6.3 Chiral extrapolation
Until recently, an important source of systematic error in LQCD calculations was the need

to extrapolate in mu and md (or, equivalently, in mπ). This extrapolation was usually done
using functional forms based on ChPT, or with analytic functions, with the difference between
different fits used as an estimate of the systematic error, which was often substantial. Increasingly,
however, calculations work directly at, or very close to, the physical quark masses. This either
removes entirely, or greatly reduces, the uncertainties in the extrapolation, such that this error is
subdominant.

17.1.6.4 Operator matching
Many of the quantities that LQCD can precisely calculate involve hadronic matrix elements of

operators from the electroweak Hamiltonian. Examples include the pion and kaon decay constants,
semileptonic form factors and the kaon mixing parameter BK (the latter defined in Eq. (17.13)).
The operators in the lattice matrix elements are defined in the lattice regularization scheme. To be
used in tests of the Standard Model, however, they must be matched to the continuum regularization
scheme in which the corresponding Wilson coefficients have been calculated. The only case in which
such matching is not needed is if the operator is a conserved or partially conserved current. Similar
matching is also needed for the conversion of lattice bare quark masses to those in the continuum
MS scheme.

Several methods are used to calculate the matching factors: perturbation theory (usually to one-
or two-loop order), non-perturbative renormalization (NPR) using Landau-gauge quark and gluon
external states [92], NPR using gauge-invariant methods based on the Schrödinger functional [93],
NPR using gauge-invariant short-distance hadron correlators [94], and NPR using gauge-invariant
heavy-heavy correlators [28, 95]. The NPR methods replace truncation errors (which can only be
approximately estimated) by statistical and systematic errors that can be determined reliably and
systematically reduced.

An issue that arises in some of such calculations (e.g., for quark masses and BK) is that, using
NPR with Landau-gauge quark and gluon external states, one ends up with operators regularized
in a MOM-like scheme (or a Schrödinger-functional scheme), rather than the MS scheme mostly
used for calculating the Wilson coefficients. To make contact with this scheme requires a purely
continuum perturbative matching calculation supplemented by the operator product expansion
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(OPE). (The importance of power corrections is emphasized in [96].) The resultant truncation
error of perturbative expansion and OPE can be minimized by pushing up the momentum scale at
which the matching is done using step-scaling techniques as part of the NPR calculation [97].

It should also be noted that this final step in the conversion to the MS scheme could be avoided
if continuum calculations used a MOM-like scheme or if one imposes a renormalization condition for
quantities that are calculable both in the MS scheme and in LQCD, such as the hadron correlators
at short distances (see, e.g., Ref. [98]).

17.2 Methods and status
Once the lattice action is chosen, it is straightforward to define the quantum theory using the

path integral formulation. The Euclidean-space partition function is

Z =
∫

[dU ]
∏
f

[dqf ][dq̄f ]e−Sg [U ]−
∑

f
q̄f (D[U ]+mf )qf , (17.4)

where link variables are integrated over the SU(3) manifold, qf and q̄f are Grassmann (anticom-
muting) quark and antiquark fields of flavor f , and D[U ] is the chosen lattice Dirac operator with
mf the quark mass in lattice units. Integrating out the quark and antiquark fields, one arrives at
a form suitable for simulation:

Z =
∫

[dU ]e−Sg [U ] ∏
f

det(D[U ] +mf ) . (17.5)

The building blocks for calculations are expectation values of multi-local gauge-invariant operators,
also known as “correlation functions”,

〈O(U, q, q̄)〉 = (1/Z)
∫

[dU ]
∏
f

[dqf ][dq̄f ]O(U, q, q̄)e−Sg [U ]−
∑

f
q̄f (D[U ]+mf )qf . (17.6)

If the operators depend on the (anti-)quark fields qf and q̄f , then integrating these fields out
leads not only to the fermion determinant but also, through Wick’s theorem, to a series of quark
“propagators”, (D[U ] +mf )−1, connecting the positions of the fields.

This set-up allows one to choose, by hand, the masses of the quarks in the determinant (the
sea quarks) differently from those in the propagators (valence quarks). This is called “partial
quenching”, and is used by some calculations as a way of obtaining more data points from which
to extrapolate both sea and valence quarks to their physical values.

17.2.1 Monte-Carlo method
Since the number of integration variables U is huge (N3

s × Nt × 4 × 9), direct numerical inte-
gration is impractical and one has to use Monte-Carlo techniques. In this method, one generates a
Markov chain of gauge configurations (a “configuration” being the set of U ’s on all links) distributed
according to the probability measure [dU ]e−Sg [U ] ∏

f det(D[U ] +mf ). Once the configurations are
generated, expectation values 〈O(U, q, q̄)〉 are calculated by averaging over those configurations.
In this way the configurations can be used for many different calculations, and there are several
large collections of ensembles of configurations (with a range of values of a, lattice sizes and quark
masses) that are publicly available through the International Lattice Data Grid (ILDG). As the
number of the configurations, N , is increased, the error decreases as 1/

√
N .

The most challenging part of the generation of gauge configurations is the need to include the
fermion determinant. Direct evaluation of the determinant is not feasible, as it requires O((N3

s ×
Nt)3) computations. Instead, one rewrites it in terms of “pseudofermion” fields φ (auxiliary fermion
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fields with bosonic statistics). For example, for two degenerate quarks one has

det(D[U ] +mf )2 =
∫

[dφ]e−φ†(D[U ]+mf )−2φ . (17.7)

By treating the pseudofermions as additional integration variables in the path integral, one obtains
a totally bosonic representation. The price one pays is that the pseudofermion effective action is
highly non-local since it includes the inverse Dirac operator (D[U ] +mf )−1. Thus, the large sparse
matrix (D[U ] +m) has to be inverted every time one needs an evaluation of the effective action.

Present simulations generate gauge configurations using the Hybrid Monte Carlo (HMC) algo-
rithm [99], or variants thereof. This algorithm combines molecular dynamics (MD) evolution in a
fictitious time (which is also discretized) with a Metropolis “accept-reject” step. It makes a global
update of the configuration, and is made exact by the Metropolis step. In its original form it can
be used only for two degenerate flavors, but extensions (particularly the rational HMC [100]) are
available for single flavors. Considerable speed-up of the algorithms has been achieved over the last
two decades using a variety of techniques.

All these algorithms spend the bulk of their computational time on the repeated inversion of
(D[U ] + m) acting on a source (which is required at every step of the MD evolution). Inversions
are done using a variety of iterative algorithms, e.g., the conjugate gradient algorithm. In this class
of algorithms, computational cost is proportional to the condition number of the matrix, which is
the ratio of maximum and minimum eigenvalues. For (D[U ] +m) the smallest eigenvalue is ≈ m,
so the condition number and cost are inversely proportional to the quark mass. This is a major
reason why simulations at the physical quark mass are challenging.

Recent algorithmic improvements have significantly reduced this problem. The main idea is
to separate different length scales. Since the low eigenvalues of (D[U ] + m) are associated with
long wavelength quark modes, one may project the problem onto that of a coarse-grained lattice by
averaging the field within a block of sublattices and carrying out the inversion on this coarse lattice.
The result is then fed back to the original lattice as an efficient preconditioner for the iterative
solver, and the whole procedure may be nested multiple times. Variants of such methods have
been implemented, specifically domain-decomposition [11, 12], deflation [101–104] and multigrid
[105,106]. They are increasingly used in large-scale lattice simulations.

A practical concern is the inevitable presence of correlations between configurations in the
Markov chain. These are characterized by an autocorrelation length in the fictitious MD time.
One aims to use configurations separated in MD time by greater than this autocorrelation length.
In practice, it is difficult to measure this length accurately, see, e.g., [107], and this leads to some
uncertainty in the resulting statistical errors, as well as the possibility of insufficient equilibration.

The computational cost of gauge generation grows with the lattice volume, Vlat = N3
sNt, as

V 1+δ
lat . Here δ = 1/4 for the HMC algorithm [108] and can be reduced slightly using modern variants.

Such growth with Vlat provides a (time-dependent) limit on the largest lattice volumes that can
be simulated. At present, the largest lattices being used have Ns = 144 and Nt = 288. Typically,
one aims to create an ensemble of ∼ 103 statistically independent configurations at each choice of
parameters (a, mq and Vlat). For most physical quantities of interest, this is sufficient to make the
resulting statistical errors smaller than or comparable to the systematic errors.

In the past, the cost of generating gauge configurations was larger than that of performing
“measurements” on those configurations. However, as the number of quantities being calculated
and their complexity has increased, the balance has shifted to the point that the total cost of
measurements exceeds that of generation.
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17.2.2 Two-point functions
One can extract properties of stable hadrons using two-point correlation functions, 〈OX(x)O†Y (0)〉.

Here OX,Y (x) are operators that have non-zero overlaps with the hadronic state of interest |H〉,
i.e. 〈0|OX,Y (x)|H〉 6= 0. One usually Fourier transforms in the spatial directions and considers
correlators as a function of Euclidean time:

CXY (t; p) =
∑

x

〈OX(t,x)O†Y (0)〉e−ip·x. (17.8)

(Here and throughout this section all quantities are expressed in dimensionless lattice units, so
that, for example, p = apphys.) By inserting a complete set of states having spatial momentum p,
the two-point function can be written as

CXY (t; p) =
∞∑
i=0

1
2Ei(p)〈0|OX(0)|Hi(p)〉〈Hi(p)|O†Y (0)|0〉e−Ei(p)t, (17.9)

where the energy of the i-th state Ei(p) appears as an eigenvalue of the time evolution operator e−Ht
in the Euclidean time direction. The factor of 1/[2Ei(p)] is due to the relativistic normalization
used for the states. For large enough t, the dominant contribution is that of the lowest energy state
|H0(p)〉:

CXY (t)t→∞−→ 1
2E0(p)〈0|OX(0)|H0(p)〉〈H0(p)|O†Y (0)|0〉e−E0(p)t . (17.10)

One can thus obtain the energy E0(p), which equals the hadron mass mH when ~p = 0, and the
product of matrix elements 〈0|OX(0)|Hi(p)〉〈Hi(p)|O†Y (0)|0〉.

This method can be used to determine the masses of all the stable mesons and baryons by
making appropriate choices of operators. For example, if one uses the axial current, OX = OY =
Aµ = d̄γµγ5u, then one can determine mπ+ from the rate of exponential fall-off, and in addition
the decay constant fπ from the coefficient of the exponential.

The expression given above for the correlator CXY (t; p) shows how, in principle, one can deter-
mine the energies of the excited hadron states having the same quantum numbers as the operators
OX,Y , by fitting the correlation function to a sum of exponentials, which is also important to pre-
cisely determine the ground-state exponential. In practice, in order to reliably identify the excited
state, one often needs to use a large basis of operators and to adopt the variational approach such
as that of Ref. [109]. One can also use an anisotropic lattice in which at, the lattice spacing in the
time direction, is smaller than its spatial counterpart as. Using a combination of these and other
technical improvements extensive excited-state spectra have been obtained [110–115].

A complication arises for states with high spins (j ≥ 4 for bosons) because the spatial rotation
group on the lattice is a discrete subgroup of the continuum group SO(3). This implies that lattice
operators, even when chosen to lie in irreducible representations of the lattice rotation group, have
overlap with states that have a number of values of j in the continuum limit [116]. For example
j = 0 operators can also create mesons with j = 4. Methods to overcome this problem in practice
are available [110,117] and have been used successfully.
17.2.3 Three-point functions

Hadronic matrix elements needed to calculate semileptonic form factors and neutral meson
mixing amplitudes can be computed from three-point correlation functions. We discuss here, as a
representative example, the D → K amplitude. As in the case of two-point correlation functions
one constructs operators OD and OK having overlap, respectively, with the D and K mesons.
We are interested in calculating the matrix element 〈K|Vµ|D〉, with Vµ = c̄γµs the vector current
calculations of this contribution.
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To obtain this, we use the three-point correlator

CKVµD(tx, ty; p) =
∑
x,y

〈OK(tx,x)Vµ(0)O†D(ty,y)〉e−ip·x , (17.11)

and focus on the limit tx → ∞, ty → −∞. In this example we set the D-meson at rest while
the kaon carries three-momentum p. Momentum conservation then implies that the weak operator
Vµ inserts three-momentum −p. Inserting a pair of complete sets of states between each pair of
operators, we find

CKVµD(tx, ty; p) =
∑
i,j

1
2mDi2EKj (p)e

−mDi tx−EKj (p)|ty |

× 〈0|OK(0)|Ki(p)〉〈Ki(p)|Vµ(0)|Dj(0)〉〈Dj(0)|O†D(0)|0〉. (17.12)

The matrix element 〈Ki(p)|Vµ(0)|Dj(0)〉 can then be extracted, since all other quantities in this
expression can be obtained from two-point correlation functions. Typically, one is interested in the
weak matrix elements of ground states, such as the lightest pseudoscalar mesons. In the limit of
large separation between the three operators in Euclidean time, the three-point correlation function
yields the weak matrix element of the transition between ground states.
17.2.4 Scattering amplitudes and resonances

The methods described thus far yield matrix elements involving single, stable particles (where
by stable we mean here absolutely stable to strong interaction decays). Most of the particles
listed in the Review of Particle Properties are, however, unstable—they are resonances decaying
into final states consisting of multiple strongly interacting particles. LQCD simulations cannot
directly calculate resonance properties, but methods have been developed to do so indirectly for
resonances coupled to two-particle final states in the elastic regime, starting from the seminal work
of Lüscher [118].

The difficulty faced by LQCD calculations is that, to obtain resonance properties, or, more gen-
erally, scattering phase-shifts, one must calculate multiparticle scattering amplitudes in momentum
space and put the external particles on their mass-shells. This requires analytically continuing from
Euclidean to Minkowski momenta. Although it is straightforward in LQCD to generalize the meth-
ods described above to calculate four- and higher-point correlation functions, one necessarily obtains
them at a discrete and finite set of Euclidean momenta. Analytic continuation to p2

E = −m2 is
then an ill-posed and numerically unstable problem. The same problem arises for single-particle
states, but can be largely overcome by picking out the exponential fall-off of the Euclidean cor-
relator, as described above. With a multi-particle state there is no corresponding trick, except
for two particles at threshold [119], although recent ideas using smeared correlators and advanced
spectral-reconstruction methods offer hope for future progress [120–123].

What LQCD can calculate are the energies of the eigenstates of the QCD Hamiltonian in a
finite box. The energies of states containing two stable particles, e.g., two pions, clearly depend on
the interactions between the particles. It is possible to invert this dependence and, with plausible
assumptions, determine the scattering phase-shifts at a discrete set of momenta from a calculation of
the two-particle energy levels for a variety of spatial volumes [118]. This is a challenging calculation,
but it has been carried through in several channels with quark masses approaching physical values.
Channels studied include ππ (for I = 2, 1 and 0), K̄K, Kπ, πω, πφ, KD, DD∗ and Bπ. For
recent comprehensive reviews see [124]. Extensions to nucleon interactions are also being actively
studied [125]. The formalism has been generalized to three spinless particles (both identical and
nondegenerate) [126], and has been applied to three pions and kaons at maximal isospin [127]. For
recent reviews, see [128].

11th August, 2022



16 17. Lattice Quantum Chromodynamics

It is also possible to extend the methodology to calculate electroweak decay amplitudes to two
particles below the inelastic threshold, e.g., A(K → ππ) [129]. Results for both the ∆I = 3/2
and 1/2 amplitudes with physical quark masses have been obtained [130–132], the former now
including a controlled continuum limit [133]. First results for the CP -violating quantity ε′ have
been obtained [131,132].

Partial extensions of the formalism above the elastic threshold have been worked out, in particu-
lar for the case of multiple two-particle channels [134]. Another theoretical extension is to allow the
calculation of form factors between a stable particle and a resonance [135] , and between two reso-
nances [136]. The former has been used to calculate the γπ → ρ amplitude, albeit for unphysically
large quark masses [137]. Finally, the formalism for using LQCD to calculate electroweak decays
or transitions to three particles, e.g γ∗ → 3π and K → 3π, has recently been worked out [138,139].

While a systematic extension to decays with many multiparticle channels, e.g., hadronic B
decays, has, however, yet to be formulated, some interesting new ideas have been recently proposed
[140,141], including a method to compute inclusive decay rates or cross sections [142,143].

17.2.5 Recent advances
In some physics applications, one is interested in the two-point correlation function 〈OX(x)O†Y (0)〉

for all values of the separation x, not just its asymptotic form for large separations (which is used
to determine the hadron spectrum as sketched above). A topical example is the hadronic vacuum
polarization function Πµν(x) = 〈Vµ(x)Vν(0)〉 and its Fourier transform Πµν(q2). Since the lattice
is in Euclidean space-time, only space-like momenta, q2 = −Q2 < 0, are accessible. Nevertheless,
this quantity is of significant interest. It is related by a dispersion relation to the cross section for
e+e− → hadrons, and is needed for a first-principles calculation of the “hadronic vacuum polar-
ization” contribution to the muon anomalous magnetic moment aµ. There are a number of lattice
calculations of this contribution (see, e.g., Refs. [144–160] following the pioneering work Ref. [161];
see also Ref. [162] for the summary of the status as of March 2020). Since the relevant scale is
set by the muon mass mµ, this quantity is most sensitive to the low-energy region Q2 ' m2

µ of
Πµν(−Q2), where the long-range contribution of multibody states become relevant. The lattice cal-
culation is challenging because of this and also because the necessary precision is high (below 1%).
Many systematic effects must be carefully studied and controlled in order to achieve this precision,
including finite volume errors [163, 164], isospin breaking [156, 165, 166], quark-line disconnected
diagrams [150, 156, 166], and QED corrections [156, 166]. Very recently, a lattice calculation has
achieved the required sub-percent precision [167], a level that is comparable to the determination
from the e+e− data. The result is, however, in tension with the data-driven approach, disagreeing
with intermediate quantities by as much as 3.7σ. More calculations are anticipated to appear in
the near future.

Calculations of the light-by-light scattering contribution to aµ are also underway. These in-
volve the calculations of four-point correlation functions with various external momenta. Ingenious
methods to evaluate the contribution to aµ have been developed by two groups and the results are
in good agreement [168–175].

A summary of the theoretical studies needed to provide the hadronic quantities related to aµ
has been given by the “Muon g − 2 Theory Initiative” [162]. This work quotes a conservative
average of all results for aµ available before April 2019, and thus does not include the result from
Ref. [167].

There are other processes for which lattice calculations can make a significant contribution
to establishing a quantitative understanding. One example is the long-distance contribution to
the neutral kaon mass splitting, ∆MK . This also requires the evaluation of a four-point func-
tion, constructed from the two-point functions described above by the insertion of two electroweak
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Hamiltonians [176,177]. Rare kaon decays K → π`+`− and K → πνν̄ are also important processes
for which first lattice studies have appeared [178–183]. Radiative leptonic decays of pion and kaon,
π → `νγ and K → `νγ, also include two operator insertions, i.e. an electroweak Hamiltonian and
an electromagnetic current, and similar techniques developed for the rare decays can be applied.
First lattice results have appeared [184,185].

17.2.6 Status of LQCD simulations
Until the 1990s, most large-scale lattice simulations were limited to the “quenched” approxima-

tion, wherein the fermion determinant is omitted from the path integral. While much of the basic
methodology was developed in this era, the results obtained had uncontrolled systematic errors and
were not suitable for use in placing precision constraints on the Standard Model. During the 1990s,
more extensive simulations including the fermion determinant (also known as simulations with “dy-
namical” fermions) were begun, but with unphysically heavy quark masses (m` ∼ 50− 100 MeV),
such that the extrapolation to the physical light quark masses was a source of large systematic
errors [186]. During the 2000s, advances in both algorithms and computers allowed simulations to
reach much smaller quark masses (m` ∼ 10 − 20 MeV) such that LQCD calculations of selected
quantities with all sources of error controlled and small became available. Their results played an
important role in constraints on the CKM matrix and other phenomenological analyses. In the
last decade, simulations directly at the physical isospin-symmetric light quark masses have become
standard, removing the need for a chiral extrapolation and thus significantly reducing the overall
error. The present frontier, as noted above, is the inclusion of isospin breaking. This will be needed
to push the accuracy of calculations below the percent level.

On a more qualitative level, analytic and numerical results from LQCD have demonstrated
that QCD confines color and spontaneously breaks chiral symmetry. Confinement can be seen
as a linearly rising potential between heavy quark and anti-quark in the absence of quark loops.
Analytically, this can be shown in the strong coupling limit glat →∞ [1]. At weaker couplings there
are precise numerical calculations of the potential that clearly show that this behavior persists in
the continuum limit [187–189].

Chiral symmetry breaking was also demonstrated in the strong coupling limit on the lattice
[19, 190], and there have been a number of numerical studies showing that this holds also in the
continuum limit. The accumulation of low-lying modes of the Dirac operator, which is the analog
of Cooper pair condensation in superconductors, has been observed, yielding a determination of the
chiral condensate [191–197]. Many relations among physical quantities that can be derived under
the assumption of broken chiral symmetry have been confirmed by a number of lattice groups [198].

17.3 Physics applications
In this section we describe the main applications of LQCD that are both computationally mature

and relevant for the determination of particle properties.
A general feature to keep in mind is that, since there are many different choices for lattice

actions, all of which lead to the same continuum theory, a crucial test is that results for any given
quantity are consistent. In many cases, different lattice calculations are completely independent and
often have very different systematic errors. Thus, final agreement, if found, is a highly non-trivial
check, just as it is for different experimental measurements.

The number, variety and precision of the calculations has progressed to the point that an inter-
national collaboration, FLAG, has been formed, which aims to collect all lattice results of relevance
for a variety of phenomenologically interesting quantities and provide averages of those results that
pass appropriate quality criteria. The averages attempt to account for possible correlations between
results (which can arise, for example, if they use common gauge configurations). The quantities
considered are those we discuss in this section, with the exception of the hadron spectrum, as well
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as the intermediate scale-setting quantities discussed earlier. The most recent FLAG review is from
2021 [74] (see also older editions, Refs. [54,198]). The interested reader can consult this review for
very extensive discussions of the details of the calculations and of the sources of systematic errors.

We stress that the results we quote below are those obtained using the physical complement of
light quarks (i.e. Nf = 2 + 1 or 2 + 1 + 1 simulations).

17.3.1 Spectrum
The most basic prediction of LQCD is of the hadron spectrum. Once the input parameters

are fixed as described in Sec. 17.1.5, the masses or resonance parameters of all other states can be
predicted. This includes hadrons composed of light (u, d and s) quarks, as well as heavy-light and
heavy-heavy hadrons. It also includes quark-model exotics (e.g., JPC = 1−+ mesons) and glueballs.
Thus, in principle, LQCD calculations should be able to reproduce many of the experimental results
compiled in the Review of Particle Properties. Doing so would test both that the error budgets
of LQCD calculations are accurate and that QCD indeed describes the strong interactions in the
low-energy domain. The importance of the latter test can hardly be overstated.

What is the status of this fundamental test? As discussed in Sec. 1.2, LQCD calculations are
most straightforward for stable, low-lying hadrons. Calculations of the properties of resonances
that can decay into only two particles are more challenging, but are becoming standard in the
meson sector, with the frontier being decays involving baryons. As noted above, the formalism
for resonances decaying to three particles that are a mix of pions and kaons exists, but has yet
to be applied to resonant channels. It is also more technically challenging to calculate masses of
flavor singlet states (which can annihilate into purely gluonic intermediate states) than those of
flavor non-singlets, although again algorithmic and computational advances have begun to make
such calculations accessible, including first calculations that reach physical quark masses [199].

The present status for light hadrons is that fully controlled results are available for the masses of
the octet light baryons, while results with less than complete control are available for the decuplet
baryon resonances, the vector meson resonances and the η and η′. This is discussed in the “Quark
Model” review—see, in particular, Fig. 15.9. In addition, it has been possible to calculate the isospin
splitting in light mesons and baryons (due to the up-down mass difference and the incorporation
of QED). There are also extensive results for heavy-light (D and B systems) and heavy-heavy
(J/ψ and Υ systems). All present results, which are discussed in the “Quark Model” review, are
consistent with experimental values, and several predictions have been made. We refer the reader
to that review for references to the relevant work.

17.3.2 Decay constants and bag parameters
The pseudoscalar decay constants can be determined from two-point correlation functions in-

volving the axial-vector current, as discussed in Sec. 17.2.2. The decay constant fP of a meson P
is extracted from the weak matrix element involving the axial-vector current using the definition
〈0|Aµ(x)|P (p)〉 = fP pµ exp(−ip · x), where pµ is the momentum of P and Aµ(x) is the axial-vector
current. (In practice, results with the smallest errors are obtained using the pseudoscalar density
P (x) instead of Aµ(x).) Since they are among the simplest quantities to calculate, decay constants
provide good benchmarks for lattice methods, in addition to being important inputs for flavor
physics phenomenology in their own right. Results from several lattice groups for the pion and
kaon decay constants now have subpercent errors. The decay constants in the charm and bottom
sectors, fD, fDs , fB, and fBs , have also been calculated to high precision, with subpercent errors
for charmed mesons, and percent-level errors for bottom mesons. Lattice results for all of these
decay constants are discussed in detail in the review “Leptonic Decays of Charged Pseudoscalar
Mesons.”

Another important lattice quantity is the kaon bag parameter, BK , which is needed to turn the
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precise measurement of CP -violation in kaon mixing into a constraint on the Standard Model. It
is defined by

8
3m

2
Kf

2
KBK(µ) = 〈K0|Q∆S=2(µ)|K0〉, (17.13)

where mK is the kaon mass, fK is the kaon decay constant, Q∆S=2 = sγµ(1−γ5)dsγµ(1−γ5)d is the
four-quark operator of the effective electroweak Hamiltonian and µ is the renormalization scale. The
short distance contribution to the electroweak Hamiltonian can be calculated perturbatively, but the
hadronic matrix element parameterized by BK must be computed using non-perturbative methods.
In order to be of use to phenomenology, the renormalization factor of the four-quark operator must
be matched to a continuum renormalization scheme, e.g., to MS, as described in Sec. 17.1.6.4.
Determinations with percent-level precision using different fermion actions and Nf = 2+1 light sea
quarks are now available using DWF [200] , staggered fermions [201], DWF valence on staggered
sea quarks [202], and Wilson fermions [13]. The results are all consistent, and the present FLAG
average is B̂K = 0.7625(97) [74] (for original papers, see [13,202–204]).

The bag parameters for B and Bs meson mixing are defined analogously to that for kaon mixing.
The B and Bs mesons contain a valence b-quark so that calculations of these quantities must use
one of the methods for heavy quarks described above. Calculations have been done using NRQCD
[205,206], the Fermilab formalism [81], and static heavy quarks [207]. All results are consistent. The
FLAG averages for the quantities relevant for Bs and B mixing with Nf = 2+1, which are based on
results from Refs. [81,205,207], are fBs

√
B̂Bs = 274(8) MeV and fB

√
B̂B = 225(9) MeV, with their

ratio (which is somewhat better determined) being ξ = 1.206(17). FLAG also quotes an “average”
for Nf = 2 + 1 + 1, which comes from a single calculation [206] and gives fBs

√
B̂Bs = 256(6) MeV

fB

√
B̂B = 211(6) MeV, and ξ = 1.216(16). These are consistent with the Nf = 2 + 1 results at

the 2σ level. Errors for quantities involving b quarks are typically larger than those for quantities
involving only light quarks, although the difference has steadily decreased in recent years.

For theK, D and B systems, one can also consider the matrix elements of four-fermion operators
that arise in beyond-the-standard-model (BSM) theories, which can have a different chiral structure.
Knowledge of these matrix elements allows one to constrain the parameters of the BSM theories,
and is complementary to direct searches at the LHC. Reliable results are now available from lattice
calculations, and are reviewed by FLAG in the case of kaon mixing [74]. Complete results for D
and B mixing are presented in Ref. [208,209] and Ref. [81, 210], respectively.

The results for mixing matrix elements are used in the reviews “The CKM Quark-Mixing
Matrix,” and “B0 − B̄0 Mixing.”

17.3.3 Form factors (K → π`ν, D → K`ν, B → π`ν, B → D(∗)`ν)
Semileptonic decay rates can be used to extract CKM matrix elements once the semileptonic

form factors are known from lattice calculations. For example, the matrix element of a pseudoscalar
meson P undergoing semileptonic decay to another pseudoscalar meson D is mediated by the vector
current, and can be written in terms of form factors as

〈D(pD)|Vµ|P (pP )〉 = f+(q2)(pD + pP −∆)µ + f0(q2)∆µ , (17.14)

where q = pD − pP , ∆µ = (m2
D −m2

P )qµ/q2 and Vµ is the quark vector current. The shape of the
form factor is typically well determined by experiment, and the value of f+(q2) at some reference
value of q2 is needed from the lattice in order to extract CKM matrix elements. Typically, f+(q2)
dominates the decay rate, since the contribution from f0(q2) is suppressed when the final state
lepton is light.
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The form factor f+(0) forK → π`ν decays is highly constrained by the Ademollo-Gatto theorem
[211] and chiral symmetry. Old estimates using chiral perturbation theory combined with quark
models quote sub-percent precision [212], though they suffer from some model dependence. Utilizing
the constraint from the vector current conservation that f+(0) is normalized to unity in the limit
of degenerate up and strange quark masses, the lattice calculation can be made very precise and
has now matched the precision of the phenomenological estimates [213–220]. The present FLAG
average (from Nf = 2 + 1 + 1 simulations) is f+(0) = 0.9698(17), based on Refs. [220].

Charm meson semileptonic decays have been calculated by different groups using methods
similar to those used for charm decay constants, and results are steadily improving in precision
[221–225]. For semileptonic decays involving a bottom quark, one uses HQET or NRQCD to
control the discretization errors of the bottom quark. The form factors for the semileptonic decay
B → π`ν have been calculated in unquenched lattice QCD by a number of groups [226–231].
These B semileptonic form factors are difficult to calculate at low q2, i.e. when the mass of the
B-meson must be balanced by a large pion momentum, in order to transfer a large momentum to
the lepton pair. The low q2 region has large discretization errors and very large statistical errors,
while the high q2 region is much more accessible to the lattice. For experiment, the opposite is
true. To combine lattice and experimental results it has proved helpful to use the z-parameter
expansion [232]. This provides a theoretically constrained parameterization of the entire q2 range,
and allows one to obtain |Vub| without model dependence [233,234].

The semileptonic decays B → D`ν and B → D∗`ν (and the similar decays Bs → Ds`ν and
Bs → D∗s`ν) can be used to extract |Vcb| once the corresponding form factors are known. The lattice
calculation is most precise at zero recoil since the bulk of the systematic error cancels for appropriate
ratios between B → D(∗) and B → B or D(∗) → D(∗) [235, 236]. The unquenched calculation of
the B → D(∗)`ν form factor at zero recoil has been performed with various formulations for the
heavy quark [237–241]. Calculations at non-zero recoil have also been performed to constrain the
functional form of the form factor, which can be used to extrapolate the experimental data to the
zero-recoil point or to determine |Vcb| directly at the non-zero recoil points [242]. Semileptonic
decays of the Λb baryon can also be used to constrain |Vcb| and |Vub| using lattice calculations of
the relevant form factors [243,244].

The rare decays B → K(∗)`+`− involve matrix elements similar to those needed for semileptonic
decays, Eq. (17.14), except that the vector current Vµ is replaced by the operators s̄γµ(1− γ5)b or
s̄σµν(1 + γ5)b. Lattice calculations of the corresponding form factors involve similar techniques to
those for the semileptonic form factors. The values of q2 for which lattice calculations can be done
are limited as for B semileptonic decays, and, in addition, the region of cc̄ resonances has to be
avoided. Recent lattice calculations [230,245–247] have been used to constrain the standard model
and new physics contributions.

The results discussed in this section are used in the reviews “The CKM Quark-Mixing Ma-
trix,” “Vud, Vus, the Cabibbo Angle and CKM Unitarity,” and “Semileptonic b-hadron decays,
determination of Vcb, Vub.”

17.3.4 Strong gauge coupling
As explained in Sec. 17.1.5.1, for a given lattice action, the choice of bare lattice gauge coupling,

glat, determines the lattice spacing a. If one then calculates a as described in Sec. 17.1.5.1, one
knows the strong gauge coupling in the bare lattice scheme at the scale 1/a, αlat = g2

lat/(4π). This
is not, however, useful for comparing to results for αs obtained from other inputs, such as deep
inelastic scattering or jet shape variables. This is because the latter results give αs in the MS
scheme, which is commonly used in such analyses, and the conversion factor between these two
schemes is known to converge extremely poorly in perturbation theory. Instead, one must use a
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method which directly determines αs on the lattice in a scheme closer to MS.
Several such methods have been used, all following a similar strategy. One calculates a short-

distance quantity K both perturbatively (KPT) and non-perturbatively (KNP) on the lattice, and
requires equality: KNP = KPT =

∑n
i=0 ciα

i
s. Solving this equation one obtains αs at a scale related

to the quantity being used. Often, αs thus obtained is not defined in the conventional MS scheme,
and one has to convert among the different schemes using perturbation theory. Unlike for the bare
lattice scheme, the required conversion factors are reasonably convergent. As a final step, one uses
the renormalization group to run the resulting coupling to a canonical scale (such as MZ).

In the work of the HPQCD collaboration [248, 249], the short-distance quantities are Wilson
loops of several sizes and their ratios. These quantities are perturbatively calculated through
O(α3

s) using the V -scheme defined through the heavy quark potential. The coefficients of even
higher orders are estimated using the data at various values of a. In addition, this work obtains a
result for αs by matching with αlat in a tadpole-improved scheme that improves convergence.

Another choice of short-distance quantities is to use current-current correlators. Appropriate
moments of these correlators are ultraviolet finite, and by matching lattice results to the continuum
perturbative predictions, one can directly extract the MS coupling [250]. The method can be
applied for light meson correlators [251–254] as well as heavy meson correlators [38, 249, 255–258].
Yet another choice of short-distance quantity is the static-quark potential, where the lattice result
for the potential is compared to perturbative calculations; this method was used to compute αs
within 2+1 flavor QCD [259–264]. There is also a determination of αs from a comparison of lattice
data for the ghost-gluon coupling with that of perturbation theory [265,266].

With a definition of αs given using the Schrödinger functional, one can non-perturbatively
control the evolution of αs to high-energy scales, such as 100 GeV, where the perturbative expansion
converges very well. This method developed by the ALPHA collaboration [97] has been applied
to 2+1-flavor QCD in [267–269].

The various lattice methods for calculating αs have significantly different sources of systematic
error. The FLAG review [74] reports an estimate α(5)

MS(MZ) = 0.1184(8), based on Refs. [249, 254,
256, 264, 267, 269–271]. A comparison to other phenomenological determinations can be found in
the “Quantum Chromodynamics” review.

17.3.5 Quark masses
Once the quark mass parameters are tuned in the lattice action, the remaining task is to convert

them to those of the conventional definition. Since the quarks do not appear as asymptotic states
due to confinement, the pole mass of the quark propagator is not a physical quantity. Instead,
one defines the quark mass after subtracting the ultra-violet divergences in some particular way.
The conventional choice is again the MS scheme at a canonical scale such as 2 or 3 GeV. Ratios
such as mc/ms and mb/mc are also useful as they are free from multiplicative renormalization (in
a mass-independent scheme).

As discussed in Sec. 17.1.6.4, one must convert the lattice bare quark mass to that in the MS
scheme. Older calculations did so directly using perturbation theory; most recent calculations use
an intermediate NPR method (e.g., RI/MOM or RI/SMOM) which is then converted to the MS
scheme using perturbation theory (see, e.g., [63, 200,272–276]).

Alternatively, one can use a definition based on the Schrödinger functional, which allows one
to evolve the quark mass to a high scale non-perturbatively [277, 278]. In practice, one can reach
scales as high as ∼100 GeV, at which matching to the MS scheme can be reliably calculated in
perturbation theory.

Other approaches available for heavy quarks are to match current-current correlators at short
distances calculated on the lattice to those obtained in continuum perturbation theory in the MS
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scheme [38,65,249,255–257], or to use HQET mass relations [275,279]. This has allowed an accurate
determination of mc and mb [95, 249,256].

The ratio method for heavy quarks (discussed earlier) can also be used to determine mb [280].
Results are summarized in the review of “Quark Masses.”

17.3.6 Other applications
In this review we have concentrated on applications of LQCD that are relevant to the quantities

discussed in the Review of Particle Properties. We have not discussed at all several other applica-
tions that are being actively pursued by simulations. Here we list the major such applications. The
reader can consult the aforementioned texts [2–4] for further details, as well as the proceedings of
recent lattice conferences [281], and several recent white papers [282–288].

LQCD can be used, in principle, to simulate QCD at non-zero temperature and density, and
in particular to study how confinement and chiral-symmetry breaking are lost as T and µ (the
chemical potential) are increased. For example, as T is increased at µ = 0, It is found that, for the
physical values of the quark masses, the deconfinement and chiral-symmetry-restoration transitions
are smooth crossovers, rather than phase transitions, and that they occur together. This is of
relevance to heavy-ion collisions, the early Universe and neutron-star structure. In practice, finite
temperature simulations are computationally tractable and relatively mature, while simulations at
finite µ suffer from a “sign problem” and are at a rudimentary stage.

Another topic under active investigation is nucleon structure and inter-nucleon interactions.
The simplest nucleon matrix elements are calculable with a precision that is now starting to rival
that for some mesonic quantities. Of particular interest are those of the axial current (leading
to gA) and of the scalar density (with 〈N |s̄s|N〉 needed for dark matter searches), both of which
are reviewed by FLAG [54, 74]. Other such matrix elements provide information on the parton
distribution functions (PDFs) including their low moments. More recently, methods to directly
access PDFs are being developed (see, e.g., Ref. [282] for a recent summary).

Finally, we note that there is much recent interest in studying QCD-like theories with more
fermions, possibly in other representations of the gauge group (see, e.g., [284]). The main interest
is to find nearly conformal theories which might be candidates for “walking technicolor” models.

17.4 Outlook
While LQCD calculations have made major strides in the last decade, and are now playing an

important role in constraining the Standard Model, there are many calculations that could be done
in principle but are not yet mature due to limitations in computational resources. As we move
to exascale resources (1018 floating point operations per second), the list of mature calculations
will grow. Examples that we expect to mature in the next few years are results for B meson and
Λb baryon form factors covering the full range of q2; results for excited hadrons, including quark-
model exotics, at close to physical light-quark masses; results for moments of structure functions;
results for the simplest nucleon matrix elements; K → ππ amplitudes (allowing a prediction of ε′/ε
from the Standard Model); hadronic vacuum polarization contributions to gµ−2, the running of
αEM and αs (the status of the first of which was discussed in Sec. 17.2.5); π → γγ and related
amplitudes; long-distance contributions to K ↔ K mixing; the light-by-light contribution to gµ−2;
and determinations of long distance contributions to rare kaon decays such as K → πνν̄. There will
also be steady improvement in the precision attained for the mature quantities discussed above. As
already noted, for several of these quantities, attaining the desired precision will ultimately require
simulations with mu 6= md and the inclusion of electromagnetic effects.
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