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50.1 General Considerations

Perturbative methods can be applied to systems of quarks and gluons only for large momentum
transfers (see review on ‘Quantum Chromodynamics’) and, under certain conditions, to some prop-
erties of systems that contain heavy quarks or very large momentum scales (see review on “Heavy-
quark and soft-collinear effective theory”). Dealing with Quantum Chromodynamics (QCD) in
the low momentum transfer region is a very complicated, non-perturbative problem.  Accord-
ingly, most hadrons are resonances, which means that they appear as poles of the S-matrix in the
complex plane on unphysical sheets. These resonances can show up either in so-called formation
experiments,

A+ B—-R—->C1+..4+C, ,

where they become visible in an energy scan (for example, the R-function measured in ete™ an-
nihilations — c¢f. the corresponding plots in the review on “Plots of Cross Sections and Related

Quantities”), or together with a spectator particle S in production experiments of the kind

A+B R4S = [Cr+..+Co+ S,
ZR+S 5 [Cr+ .. +Col+ S,

where the first reaction corresponds to an associated production, the second is a decay (see “Re-
view of Multibody Charm Analyses”). In the latter case, the resonance properties are commonly
extracted from a Dalitz-plot analysis (see review on “Kinematics”) or projections thereof.

Resonance phenomena are very rich: while typical hadronic widths are of the order of 100 MeV
(e.g., for the meson resonances p(770) or ¢(4040) or the baryon resonance A(1232)) corresponding
to a lifetime of 10723 s, the widths can also be as small as a few MeV (e.g. of ¢(1020) or J/4)) or
as large as several hundred MeV (e.g. of the meson resonances f(500) or D;(2430) or the baryon
resonance N (2190)).

Typically, a resonance appears as a peak in the total cross section. If the structure is narrow
and if there are no relevant thresholds or other resonances nearby, the resonance properties may be
extracted employing a Breit—Wigner parameterization, if necessary improved by using an energy-
dependent width (cf. Sec. 50.3.1 of this review). However, in general, unitarity and analyticity call
for the use of more refined tools. When there are overlapping resonances with the same quantum
numbers, the resonance terms should not simply be added but combined in a non-trivial way
either in a K-matrix approach (cf. Sec. 50.3.2 of this review) or using other advanced methods
(cf. Sec. 50.3.6 of this review). Additional constraints from the S-matrix allow one to build more
reliable amplitudes and, in turn, to reduce the systematic uncertainties of the resonance parameters:
pole locations and residues. In addition, for broad resonances there is no direct relation between
pole location and the total width/lifetime — then, the pole residues need to be used in order to
quantify the decay properties.

For simplicity, throughout this review the formulas are given for resonances in a system of
distinguishable, scalar particles. The additional complications that appear in the presence of spins
can be controlled in the helicity framework developed by Jacob and Wick [1], or in a non-covariant [2]
or covariant [3] tensor-operator formalisms. Within these approaches, sequential (cascade) decays
are commonly treated as a coherent sum of two-body interactions. Most of the expressions below
are given for two-body kinematics.
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(a) first Riemann sheet

(¢) transition from first to second Riemann
sheet

Figure 50.1: Imaginary part of a typical single-channel scattering amplitude with an isolated
resonance. The blue line shows the physical range of the Mandelstam variable s: it is real and starts
from the threshold shown by the blue dot. Plot (a) shows the imaginary part of the amplitude
in the complex s-plane that corresponds to the first or physical sheet (green surface), plot (b)
shows the related unphysical or the second sheet (red surface) which contains the resonance poles,
and plot (c¢) shows the analytic continuation of the same amplitude from the upper half plane of
the physical sheet to the lower half plane of the unphysical sheet. The two sheets are connected
smoothly along the real axis above the threshold.

50.1.1 Properties of the S-matrix

The unitary operator that connects asymptotic in and out states is called the S-matrix. The
scattering amplitude is defined as the interacting part of the S matrix. For a two-particles scattering
process, it reads:

i(2m)*6% (p1 + p2 — pi — P5) M(P1,2; D1 Ph)ba = out(PiPh, b S — 1 |p1pe, a)y, (50.1)

where |p1p2,a) and |p)ph, b) are asymptotic states of two non-interacting particles with momentum
p1, p2 and pi, ph. The channel labels a and b are multi-indices specifying all additional properties
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3 50. Resonances

of the channel. In general, M is a matrix in channel space. For a single-particle state, we employ
the relativistic normalization,

¥'lp) = (21)°2B, 6° (5 — ), (50.2)

with E, = /p 2 + m2. The Mandelstam variables s = (p1 +p2)?, t = (p1 —p})?, and u = (p1 — ph)?
are the invariant variables describing the scattering. With these definitions the process in Eq. (50.1)
is referred to as the s-channel scattering, where the total energy of the interacting system is given
by /s, while the variable ¢ is related to the scattering angle, i.e. the angle between the momenta
of the particles 1 and 1’ in the center-of-momentum frame. The variable u is not independent of s
and t, but the relation

s+t +u=mi+m}+m} +m}

holds, where the m; denote the masses of the incoming and outgoing particles, ¢ € 1,1’,2,2".
Therefore, the reaction amplitude is a function of two variables, M(s,t). The function M(s,t) is a
multi-valued function due to the complex branch points in the Mandelstam variables. Branch points
appear whenever there is a channel opening. Each two-particle threshold introduces a square-root
singularity and the number of Riemann sheets doubles. For resonances coupled to multi-particle
states with odd number of particles the threshold branch point is logarithmic [4]. The branch points
appear in the complex plane of an unphysical sheet when there is a resonance in a subsystem of
the final-state particles [4]. The cuts related to the openings of the crossed channels are located
on the left-hand side of the complex plane, and, therefore, are referred to as the left-hand cuts.
Triangle topologies can induce logarithmic branch points on the unphysical sheets often called
triangle singularities (TS) [4-6].

Poles of reaction amplitude refer either to bound states or to resonances. The former poles
are located on the physical sheet, the latter are located on unphysical sheets. Naturally, those
located on the unphysical sheet closest to the physical one, often called the second sheet, have
usually the largest impact on observables. Moreover, as follows from analyticity, if there is a pole
at some complex value of s, there must be another pole at its complex conjugate value, s*. For
a single-channel case this is illustrated in Fig. 50.1: the pole with a negative imaginary part is
closer to the physical axis and thus influences the observables in the vicinity of the resonance
region more strongly. However, at the threshold both poles are equally distant and accordingly
equally important. Any of these singularities can lead to some structure in the observables (see also
Ref. [7]). If certain kinematical constraints are met, especially the T'S can mimic resonance signals,
as claimed in Refs. [8-13] or cause significant changes of resonance signals [14]. In addition to not
all bumps being resonances, not every resonance generates a bump in all observables. For instance,
there is no clear trace of the N(1440)1/2", the so called Roper resonance, in the 7N observables
or phase shifts, although careful analyses reveal a pole [15].

In case of two relevant channels we are faced with four Riemann sheets. Then, the sheet that
is the closest to the physical axis changes, as the energy increases. This can be seen from the
illustration in Fig. 50.2: for energies higher than the first, but lower than the second threshold,
the sheet that connects smoothly to the upper half plane of the physical sheet (11) is sheet (21).
However, for energies above the second threshold this role is taken over by sheet (22). Accordingly,
a pole on sheet (21), but above the second threshold, will show up in data only as a cusp exactly
at the second threshold. Sheet (12), on the other hand, is remote for all energies.

The analyticity principle of the S-matrix forbids any singularities on the first Riemann sheet
except poles and branch points on the real axis. Unitarity constrains the imaginary part of the
amplitude on the real axis as further discussed in the following section. Further constraints come,
e.g., from crossing symmetry and duality [16]. Approaches based on analyticity and crossing
symmetry, implemented via dispersion theory, like the Roy equations [17] or variants thereof, were
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4 50. Resonances

Figure 50.2: Cut structure of the S-matrix in the presence of two-channels. The four sheets are
labelled as (ij) with i = 1,2 and j = 1,2 referring to the doubling of the sheets at the first and the
second thresholds, respectively.

developed and applied to 7w — 77 scattering [18-20], 7K scattering [21], vy — 77 [22] as well as
pion-nucleon scattering [23,24].

50.1.2 Consequences from unitarity

In what follows, scattering amplitudes, M, and production amplitudes, A, will be distinguished,
since unitarity puts different constraints on these. For the scattering amplitude, all considered
channels are supposed to be of comparable importance, while for the production amplitudes we
require that the initial state is only weakly coupled and, therefore, the probability of the time-
reversed reaction is negligibly small compared to the other coupled channels. Most of the strong-
interaction processes are then described by the scattering amplitude, e.g. 7t7~ — KK, or D°D? —
D°DO. Examples for production processes are ete™ — nt7~, 7 — K~ 7%, B® — J/yrtn—,

Unitarity of the S matrix, STS = 1, which is equivalent to the conservation of probability,
translates to a constraint for the imaginary part of the reaction amplitude. The amplitude is real
below the first threshold. Above the threshold, the discontinuity across the cut related to the
threshold branch point, obeys the relation [25]:

My — M2y =i (20)0 S / AP M M | (50.3)

where @, is the invariant phase space for channel ¢. The sum includes only open channels, i.e. those
for which the production threshold is below the energy of the scattered system. Complementary,
the channels with the threshold higher than the energy of the system are called closed. Using time-
reversal symmetry, and Disc M(s,t) = 2iIm(M(s + ie, t)) for the s-channel, the optical theorem
follows:

Im Mo (s,0) = 2¢av/s 0tot (@ — anything) . (50.4)

Here, ¢, is the momentum of particles in their center-of-momentum frame,

A2 (s,md o, m3 )

Qa: 2\/§ )
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5 50. Resonances

where \(z,y,2) = 22 + y? + 22 — 22y — 2yz — 2yx is the Kéllén function, my . and mo are the
masses of the two particles in the channel a, ¢f. Eq. (17) of the review on “Kinematics”. The value
t =0 in Eq. (50.4) corresponds to forward scattering.

The unitarity relation for a production amplitude for a channel a is given by

Ay — A% =i (2m)* / dB M, (50.6)

Note that production amplitude written as a linear combination of the scattering amplitudes satis-
fies Eq. (50.6) due to Eq. (50.3). This solution are often practical, especially, when the scattering
matrix is well known, as for example for 77 system below 1.1 GeV [26,27]. However, it should be
understood that this kind of treatment is only approximate, since it imports the analytic struc-
ture of the scattering amplitude including its left-hand cuts to the production amplitude which in
general has a different cut structure. A more sophisticated application of the two-body-unitarity
constraints from Eq. (50.6) is the Khuri-Treiman framework often employed to study three-body
decays [28]. The standard procedure here is to derive the equations for the production amplitude
for small values of the mass of the decaying particle in the scattering domain and relate it to the
decay kinematics by an analytic continuation in the decay mass. The method was successfully
applied to various decays of light mesons, n — 37 in Refs. [29-34], ¢/w — 37 in Ref. [35, 36],
7 — nrm in Ref. [37], as well as to the charm-mesons decays DT — K%~ x0/* 7+ [38 39].

50.1.3 Partial-wave decomposition

| .
By 12 Relfop)

Figure 50.3: Argand plot showing a diagonal element of a partial-wave amplitude, ayp, as a
function of energy. The amplitude leaves the unitary circle (solid line) as soon as inelasticity sets
in, n < 1 (dashed line).

It is often convenient to expand the scattering amplitude in partial waves. Since resonances
have a well-defined spin, they appear only in a specific partial wave of the reaction amplitude. For
scalar particles the expansion reads:

Mo (s, 1) i (25 +1 /\/l (s)Pj(cos(0)) , (50.7)

where j denotes the total angular momentum and the P;(cos(6)) denotes the Legendre polynomials.
In the presence of spins an expansion more complicated than Eq. (50.7) is necessary. In the absence
of spins the parameter j coincides with the orbital angular momentum of the particle pairs in the
initial and the final state. To simplify notations we will drop the label j for the single-argument
function My, (s). The unitarity constraint for Mba(s) reads,

Im My, (s Z Mep(8)* pe(s) Mea(s) (50.8)

11th August, 2022



6 50. Resonances

with p.(s) being a factor that is related to the two-body phase space in Eq. (12) of the review on
“Kinematics”,

1 2!qc\
167T ’

(50.9)

with the momentum g. being defined in Eq. (50.5). Note that in case of the two particles being
identical the inclusion of symmetry factors becomes necessary. The partial-wave amplitude fpq(s)
is introduced via

Toa(8) = /Pb Mpa(8) /pa - (50.10)

From the unitarity condition Eq. (50.8) it follows that Im fb;l = —0pg- Moreover, I + 2if is a
unitary matrix. Hence, the diagonal elements of f can be parameterized as,

foo = (myexp(2i6p) — 1) /21, (50.11)

where 0, denotes the phase shift for the scattering from channel b to channel b, 7, is elasticity
parameter — also called inelasticity. One has 0 < n, < 1, where g, = 1 is referred to as a purely
elastic scattering. The evolution of the partial-wave amplitude fi, with energy can be displayed as a
trajectory in the Argand plot, as shown in Fig. 50.3. In case of a two-channel problem, n, = 1, = 7,
and the off-diagonal element is fp, = /1 — n?/2 exp(i(dp+0,)). The unitarity condition Eq. (50.11)
sets the limit to the squared amplitude fbb.

1 1
| fonl* = 1(771? — 2 cos(20) + 1) < 7 (m + 1)?, (50.12)

where the maximum value is achieved for ¢, = 7/2. For the partial-wave-projected scattering
amplitude the unitarity bound reads:
1 8T
(M| < T(nb +1) < —/s, (50.13)
Pb ab
where the second inequality comes from 7, < 1. For energies much larger than the masses of the
scattering particles. One finds that the upper bound for |My| tends to 167 for large s.
The partial-wave-projected production amplitude A(s) (the label j is dropped for consistency)
is also constrained by unitarity. From Eq. (50.6) it follows:

ImA, => M, pp Ay (50.14)
b

where the sum runs over all open channels. For elastic processes, the sum collapses to the channel
a. In this case, the phase of A, must agree with the phase of M,, since the left-hand side of
Eq. (50.14) is a real number. The statement is known as the Watson theorem [40].

50.2 Properties of resonances
The main characteristics of a resonance is its pole position in the complex s-plane, sg. The
pole mass My and pole width I'g are introduced via the pole parameters

\/SR:MR—Z'FR/Q . (5015)

Note that the standard Breit—Wigner parameters Mpw and I gw, also introduced below, in general,
deviate from the pole parameters, e.g., due to finite width effects and the influence of thresholds. It
should be stressed, however, that the pole location sg as well as the pole residues to be introduced
below, are the only resonance properties that are model- and parametrisation independent.
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7 50. Resonances

In addition to the pole position, a resonance is characterized by its couplings to the various
channels called residues. The Baryon Particle Listings give the elastic pole residues and normalized
transition residues. However, different conventions are used in the two sectors, which are shortly
outlined here.

In the close vicinity of the resonance pole the scattering matrix M can be written as

lim (s — sp)Mpy = —Riq - (50.16)

S—SR

The residues are calculated via an integration along a closed contour around the pole using
1
Rba = —%j{dSMba . (50.17)
27

The factorization of the residue (Rba)2 = Raa X Ryp allows one to introduce pole couplings according
to

Ja = Roa/V Rep - (50.18)

The pole couplings characterize the transition strength of a given resonance to some channel a
independently of how the particular resonance was produced. For a two-particle decays in the
S-wave, one may define a partial width and a branching fraction for a resonance via

_ 18af?

TRoye = 7 pa(M3) and Br, = IRa/IR , (50.19)

where Mp and Iy were introduced in Eq. (50.15). This expression was used to define a two-
photon width for the broad fp(500) [41,42] as well as in the corresponding section of the Meson
Particle Listings. Analogously, one should use residues to quantify the coupling of resonances
to certain production channels [43]. For an application of this formalism to the coupling of the
K (1430) resonance to a leptonic current see Ref. [44]. Equation (50.19) defines a partial-decay
width independent of the reaction used to extract the parameters. For a narrow resonances it maps
smoothly onto the other common definition of the branching fraction, discussed in Eq. (50.20)
more closely related to observables. For broad, overlapping resonances, however, it should be
understood that Eq. (50.19) serves the purpose to convert the residues to quantities that allow for
a more direct comparison of resonance transitions to different channels. In case of resonances with
significant couplings to channels that are still closed at the resonance mass, Eq. (50.19) cannot be
used since the phase-space factor yields zero.

In the baryon sector, it is common to define the residue of the pole of the f;, amplitude defined
in Eq. (50.10) in variable /s instead of s. Accordingly, in the baryon listings the elastic pole
residue, which refers to tN — 7N scattering, is related to the residues introduced above via

pﬂN(SR)

TN, - 77?'71' iy 3 5020
TaNxN Nz NN ( )

where sg is the position of the pole. For evaluation of the phase-space factor for the complex
argument, analytic continuation is required.

In the literature there are alternative definitions of a branching fraction, which are more close to
what is observed in experiment than what follows from Eq. (50.19). Usually those are defined from
the probability of the decay of a resonance to a certain channel as provided by the corresponding
amplitude on the real axis, where the measurements are performed. It should be understood that
in order to isolate an individual resonance in an amplitude defined on the real axis in general some
model dependence is unavoidable (e.g. this is possible if the amplitude is provided by a sum of
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8 50. Resonances

Breit—Wigner functions, however, since such a sum violates unitarity the parametrisation comes
with an intrinsic theoretical uncertainty difficult to quantify). Having that said one may define the
partial width of a resonance alternatively via

4
%?R / | A, ? dD, | (50.21)

R—a

where A, is the decay amplitude of the resonance into channel a, which for multi-body final
states may even contain resonances in a subchannel. For the two-body decay of a narrow, isolated
resonance, A, is to a good approximation just g, and we get back to Eq. (50.19). If the mass of
the decaying resonance lies below the threshold of the final state, an integration over the resonance
lineshape needs to be employed in addition. For example, for some generic three-body decay
with two of the final-state particles going through a resonance one commonly defines (avoiding
complications from spins or centrifugal barrier factors), for simplicity written in terms of Breit—
Wigner functions (see next section)

9R—R'c
ME%WR —m?2— iMBWRFR(mQ)

o
3 2
Brr_crBrp_a = (27) /2 dm
mminR

IR —ab
2 2 ; 2
MBWR’ — mab — ZMBWR’FR’(mab)

(m—m.)? 2
X(27T)3/ dmgb /d@ab /d@R/(mzb)c, (5022)

2
mminR/

where I'p) (m?) denotes the energy dependent width of resonance R (R') (details are given in the
next section), d® R/(m2,)c denotes the two-body phase space for resonance R’, at a fixed mass my,
and particle ¢ for a total energy m, and d®,, the two-body phase space for particles a and b for a
total energy myp, respectively. Furthermore, mfmn RO denotes the threshold of the lightest channel
resonance R (R') couples to. For example, employing the parameters of the decay of N*(1520) to
pN one observes that the equation given above only allows the tail of the p-meson to contribute
to the partial width of the N*(1520). If in a certain experiment the kinematics do not allow for a
scan of the complete line shape of the mother particle, the appropriate procedure to determine the
partial width in the approximation outlined above is to determine the effective resonance parameters
from a fit to data and to then evaluate Eq. (50.22) in the limits given there. As stressed above,
Eq. (50.22) is correct only, if the use of Breit—~Wigner functions is indeed justified for the mother
and the daughter particles, which is often not the case. Then, to compare with experiment, the
amplitudes need to be parametrised in a more sophisticated way and branching ratios can model
independently only be defined via the residues.

In studies of decays where resonance R is very narrow, the first integral in Eq. (50.22) is obsolete
and m in the boundaries of the second integral gets fixed to the mass of the mother particle. For
recent use of such formulas for B-decays see, e.g., Refs. [45-48]. They were applied to study the
three-pion system in Ref. [49].

50.3 Common parameterizations

In general, there is no universal, model-independent recipe to build scattering amplitudes.
However, a few approaches presented in this section are practical to extract resonance properties
in experimental analyses. The systematic theory uncertainties need to be assessed from a range of
model variations that are permitted by general S-matrix principles and that provide a sufficient
quality of description of the available data.
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50.3.1 The Breit—Wigner parametrization

The relativistic Breit—Wigner parametrization provides a propagator for a single, isolated res-
onance,
. Nq(s)

M]_%W — S — iMBWp(S)
where Mpw is the Breit—Wigner mass, and Igw = I’ (ME%)W) is the Breit—Wigner width. The
function I'(s) is determined by the channels that the resonance can decay to. The numerator
function N,(s) is specific to the production process. It includes kinematic factors and couplings
related to the production process and the decay. Breit—Wigner functions with a s-independent
width are justified only, if there is no relevant threshold in the vicinity of the resonance.

To give a concrete example, we consider a resonance observed in the channel a, that is also

A(s)

(50.23)

coupled to a set of channels labeled by index b = 1,2, ..., with the orbital angular momentum /.
Couplings to the channels are denoted, gp.
No(s) = agana(s) (50.24)
1
I'(s)=—— 2op(s)n2 (s 50.25
()= Ny S AROC) (50.25)

where the factor ny(s) includes the kinematic threshold factor ¢'e, and the barrier factor Fj_ (qa/qo)
that regularize the high—energy behaviour:

Na = (¢a/0)" F, (9a/0) , (50.26)

with [, being the orbital angular momentum in channel a, g,(s) is defined in Eq. (50.5), and
qo denotes some conveniently chosen momentum scale. The factor (g,)! guarantees the correct
threshold behavior. The rapid growth of this factor for angular momenta [ > 0 is commonly
compensated at higher energies by a phenomenological form factor, here denoted by Fj, (¢4, qo)-
Often, the Blatt-Weisskopf form factors, Fj(g/qo), are used [50-52]:

Fi(z)=1, (50.27)
Fi(z) =1/(1+2%),
F(2)=1/(9+ 322 +2%),

with the scale parameter R = 1/q in the range from 1 GeV ™! to 5 GeV . Instead of using coupling
constant in Eq. (50.25), one can define the energy-dependent partial width:

Pu(8) (qb>2l” Fﬁ,(QbaQO)
ps(Mgw) \avr/  Fi (9o, )

Here g,r are the values of the break-up momentum evaluated at s = MEQ,)W. The substitution
is possible only for those channels where the threshold of the decay channel is located below the
nominal resonance mass, otherwise, Eq. (50.25) should be used.

The Breit—Wigner parametrization provides an effective description of resonance phenomena.
However, the parameters agree with the pole parameters only if the resonance is narrow, isolated
(no nearby resonances in the same partial wave) and the background is smooth. Otherwise, the
Breit—Wigner parameters deviate from the pole parameters and are reaction-dependent. If there is
more than one resonance in one partial wave that significantly couples to the same channel, it is
in general incorrect to use a sum of Breit—-Wigner functions, for this usually leads to a violation of
unitarity constraints, and hence, a non-quantifiable bias to resonance properties which are inferred
from the reaction amplitude. In case of overlapping resonances in the same partial wave more
refined methods should be used, like the K-matrix approach described in the next section.

Fb(8> = FBW,b (5028)
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50.3.2 K-matriz approach and Flatté parameterizations
The K-matrix method is a general construction for coupled-channel scattering amplitudes My,
that guarantees two-particle unitarity, but does not allow for the inclusion of left-hand cuts [53].
The amplitude reads,
ng, ./\/lb;1 Ng = IC;al — i0papan?, (50.29)

where [y, is a real function, a subject to modeling. The factor n,, defined in Eq. (50.26), becomes
important for waves with non-zero angular momentum. As there is no unique rigorous recipe
to build I, various parameterizations thereof have to be studied, in order to get access to the
theoretical systematic uncertainty. One possible choice for the K-matrix is

gligh ) i
Koa(s) =Y h + > bys (50.30)
R 'R i=0

where mp is referred to as the bare mass of the resonance R (not to be confused with the physical
mass), the gt are the bare couplings of the resonance R to the channel a (not to be confused with

the residues). The bl()i) are matrices parameterizing the non-pole parts of the K-matrix. As long as
all parameters appearing in Eq. (50.30) are real the amplitude is unitary. From the ansatz given
above the scattering amplitude M can be calculated directly using the matrix form,

M =n[l —Kipn*]"'Kn , (50.31)

where the diagonal matrix in the channel space n = diag(ng,np,...). As an alternative to
Eq. (50.30), the same functional form as on the right side of Eq. (50.30) can be used to parameterize
the inverse K-matrix, called by authors of Ref. [54] the M-matrix. Many other alternative expres-
sions in the K-matrix framework are used for amplitude studies in lattice-QCD calculations [55-57].
Evaluation of the K-matrix amplitude for the multichannel problem requires an analytic con-
tinuation already on the real axis. For a given closed channel ¢, the factor ¢.(s) that enters p,.
and n. has to be calculated below the corresponding threshold, i.e. in the unphysical region of the
particular channel c¢. This is done using analytic continuation as described e.g. in Refs. [27,58]:

ge = iy/—q% for ¢><O0. (50.32)

The resulting line shape above and below the threshold of channel c is called the Flatté parameteri-
zation [58]. The contiuation given above stays on the physical sheet. To reach the unphysical sheet
the negative square root needs to be chosen. If the coupling of a resonance to the channel opening
nearby is very strong, the Flatté parameterization shows a scaling invariance and does not allow
for an extraction of individual partial decay widths, but only of ratios [59]. The position of the
resonance poles can be determined by a study of the zeros of the analytic function det[1 — KCipn?].
Due to the p factor, this determinant has a complicated multisheet structure, however, the closest
unphysical sheet is always the one which is determined by the heaviest threshold below the studied
point in s (cf. Fig. 50.2).

50.3.3 Scattering-length approximation
A scattering length, a, is defined as the first term in an expansion of the scattering phase shift
introduced in Eq. (50.11). For S-waves one finds,

qcotd =1/a+ O(¢?), (50.33)

where ¢ is the break-up momentum of the scattering system. The sign convention used in
Eq. (50.33) is the one commonly employed in particle physics. In this convention a positive scat-
tering length indicates attraction; if, however, the attraction is strong enough to generate a bound
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state, the scattering length changes sign and turns negative. A negative scattering length also
occurs for repuslive interactions. Note that in nuclear physics the leading term in the expansion of
Eq. (50.33) is usually defined as —1/a such that e.g. a bound state would be related to a positive
scattering length. Employing Eq. (50.33) the scattering amplitude reads

M(s) = m (50.34)

The scattering length is proportional to the value of the amplitude at threshold. A scattering
length approximation is applicable only in a very limited energy range, however, might well be
appropriate to analyse the recently discovered narrow near-threshold states [60,61] from this point
of view, e.g., in Refs. [62-64]. Moreover, it is possible to introduce the effect of a weakly coupled
lower channel. To see this one might start from

B
K= (g o) : (50.35)

with 5, v being real numbers. It leads to
. 1
1/(’7 + szinel.(S)) - ZP(S) ’

with piner (s) being the phase-space factor of the inelastic channel. The scattering length for the
amplitude in Eq. (50.36) obtains an imaginary part due to the coupling to the lower channel,

M. (s) (50.36)

a

= 5= (1418 (50) (50.37)
If the function B%pinel(s) does not vary significantly in the energy range studied, the scattering-
length approximation with a complex value is justified. For large values of a the amplitude of
Eq. (50.36) develops a near-threshold pole located on the physical or unphysical sheet for negative
or positive values of v, respectively. While easy to use, it is important to stress, however, that the
approximation in Eq. (50.35) is a specific choice of the dynamic function that produces a single
pole near the physical region pointing at a hadronic molecule nature of the state studied [64-67].
Virtual states are discussed in this context in Ref. [68]. For practical analyses, various modifications
of the parameterization have to be tested.

50.3.4 Two methods to build the production amplitude
When the unitary scattering amplitude is fixed, it can be used to build the production amplitude
in a way that it is consistent with unitarity [52,69].

1. The Q-vector approach is discussed in Ref. [52,54,70]. It reads,
Aa(8) =3 Mac(8)Qc(8)/me,  Qels) = QWS (50.38)

The unitarity condition of Eq. (50.14) is satisfied when Q.(s) is a real function and in partic-
ular does not have singularities above the lowest threshold for all channels ¢. Besides these
conditions Q. (s) is arbitrary. Note that in the Q-vector approach the left hand cuts of the
scattering matrix M,.(s) get imported to the production amplitude which might generate a
wrong analytic structure. If this problem is relevant needs to be investigated on a case-by-
case basis. In a study of vy — 7w, c¢f. Ref. [41,42] a low-order polynomial is claimed to be
sufficient to parametrize the energy dependence of the function Q.(s). The Q-vector method
is convenient, if the full matrix M is known, cf. Ref. [54].
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Figure 50.4: Comparison of the ip function (left plot) to the Chew-Mandelstam function from
Eq. (50.40) (right plot), evaluated for the case of S-wave nm scattering. The values of s are
taken slightly above the real axis, s 4+ ¢0. The solid red line shows the imaginary part that is the
same for both functions above threshold. The dashed black line presents the real part. One finds
indications of the unphysical left-hand singularities of the function ip on the left plot, while the
Chew-Mandelstam function in analytic below the two-particle threshold.

2. The P-vector is a parameterization that exploits the K-matrix of the scattering ampli-
tude [53,69]. It contains two components: the background term B. that is coupled to the
K-matrix via an intermediate loop represented by the ip factor, and the “direct” resonance

production term with couplings o/
. 1 oFfoR
Ay (s) =ng Z [1 — ICzan] P., P. = Z 5 Je + B.. (50.39)
c ac R Mp—S5

Again, unitarity requires the parameters B, and a’® to be real.Here, the masses mp and the
couplings g need to agree with those in K in Eq. (50.30).

An important difference between the methods is to be noticed [69]. When the two-particle
scattering amplitude goes to zero, the production amplitude in the ()—vector method vanishes for
finite values of @., while it stays finite in the P-vector approach. An version of the P-vector
approach that exploits the analytic properties of production amplitudes [69,71,72] is widely used,
e.g. in the dispersive Khuri-Treiman framework [28, 73] for the construction of three-body-decay
amplitudes.

50.3.5 Further improvements: Chew-Mandelstam function

The K-matrix described above usually allows one to get a proper fit of physical amplitudes
and it is easy to deal with, however, it also has an important deficit: it violates constraints from
analyticity — e.g., pq, given by Eq. (50.9), is ill-defined at s = 0, and for unequal masses it develops
an unphysical cut (see left panel of Fig. 50.4). A method to improve the analytic properties was
suggested in Refs. [74-78]. It replaces the phase-space factor ip,(s) in Eq. (50.29) by the analytic
function X,(s) that produces the identical imaginary part on the right-hand cut. This function is
called the Chew-Mandelstam function and for S-waves it reads [72, 76]:

1 1 m

2 2 1
_ _ = Voo —
(ml m2) (S (ml m2)2> Og m2:|’
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where m; and mg are masses of the final-state particles in channel a, sy, = (m1 + m2)2. The
function along the real axis is plotted in the right panel of Fig. 50.4. For channels with j > 0,
the threshold behavior has to be incorporated properly. This can be done, e.g., by computing the
dispersion integral

. S — Sthr o pa(sl)ng(sl) /
o 0) = a ds'. 50.41
als +i0) = — / &~ s ) (5 — s —i0) (50.41)

A further discussion of the calculation of the Chew-Mandelstam function can be found in Refs. [79,
80].

If there is only a single resonance in a given channel, it is possible to feed the imaginary part of
the Breit—-Wigner function, Eq. (50.23) with an energy-dependent width, directly into a dispersion
integral to get a resonance propagator with the correct analytic structure [81,82].

50.3.6 Two-potential decomposition

Another advanced technique to construct the scattering amplitude which is widely used in the
literature [83-87] is based on the two-potential formalism [88]. The method is usually formulated
for the full unprojected amplitude My, (s, t), however, in order to simplify the discussion we present
the equations in the partial-wave-projected form.

The scattering amplitude M is decomposed into a pole part and a non-pole part, often called
background (b.g.)

M(s) = MP&(s) + MPO(s) . (50.42)

The splitting given in Eq. (50.42) is not unique and model-dependent (see, e.g., the discussions in
Refs. [89,90]). The background scattering matrix is assumed to be unitary by itself. One option is
to parameterize it, e.g. at low energies directly in terms of phase shifts and inelasticities — see, e.g.,
Refs. [44,87,91]. In this case the vertex functions §2(s), introduced below can be written in terms
of an Omnes matrix [91], which reduces to the well-known Omnes function in the single-channel
case [71]. Alternatively, it can be computed based on some potential, V& fed into a proper
scattering equation.
The complete amplitude M of Eq. (50.42) is unitary, if the pole part is chosen as

MP(5) = (s) [1 = VE(5)5%(s)] V() 27 (s) . (50.43)

where the resonance potential reads in channel space

Vai (s) = 79‘2 9 (50.44)

3% denotes the self-energy matrix, and g® and Mp denote the bare coupling of the resonance
R to channel a and its bare mass, respectively. A relation analogous to Eq. (50.6) holds for the
normalized vertex functions, however, with the final state interaction provided by MP-&

Disc 2ap(s) = 2> MEE*(s) pe(s) Len(s) - (50.45)
(&
The discontinuity of the self-energy matrix X“(s) is

Disc X% (s) = 2i Z 27,(5) pe(s) Lap(s) - (50.46)

The real part of X can be calculated from Eq. (50.46) via a properly subtracted dispersion integral.
If MP8 is unitary, the use of Eq. (50.43) leads to a unitary full amplitude, cf. Eq. (50.42). However,
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the pole term alone is unitary only for a vanishing background amplitude. In this situation the
amplitude just described reduces to the analytically improved K-matrix of Sec. 50.3.5. While the
omission of non-pole terms is a bad approximation for, e.g., scalar-isoscalar 77 interactions at low
energies [92], it typically works well for higher partial waves.

The algebra of the two potential splitting presented in Eq. (50.42) is found to be very practical
in various other cases, beyond the pole-background separation. It was employed in Refs. [87,91]
to treat the pion vector and scalar form factor, respectively, over a sizable energy range includ-
ing inelasticities. A similar decomposition applied to the 3 — 3 scattering problem provided a
way to isolate the non-separable one-particle exchange singularity from the short-range resonance
interaction [93].
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