$I(J^{P}) = \frac{1}{2}(\frac{9}{2}^{-})$ Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

N(2250) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2100 to 2200 (\approx 2150) OUR ESTI	MATE			
$2095\!\pm\!10$	ROENCHEN	22	DPWA	Multichannel
2195 ± 45	AFZAL	20	DPWA	Multichannel
$2157 \pm 3 \pm 14$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
2195 ± 45	ANISOVICH	12A	DPWA	Multichannel
2150 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	s, fits,	limits, e	tc. ● ● ●
2127	HUNT	19	DPWA	Multichannel
2062	ROENCHEN	15A	DPWA	Multichannel
2217	ARNDT	06	DPWA	π N \rightarrow π N, η N
2187	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1				

¹ Fit to the amplitudes of HOEHLER 79.

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
350 to 500 (\approx 420) OUR ESTIMAT	E				
422± 13	ROENCHEN	22	DPWA	Multichannel	
470± 50	AFZAL	20	DPWA	Multichannel	
412± 7±44	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$	
470± 50	ANISOVICH	12A	DPWA	Multichannel	
360 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
\bullet \bullet \bullet We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
262	HUNT	19	DPWA	Multichannel	
403	ROENCHEN	15A	DPWA	Multichannel	
431	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N	
388	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$	
1 Fit to the amplitudes of HOEHL	ER 79.				

N(2250) ELASTIC POLE RESIDUE

MODULUS |r|

VAL	UE (MeV)	DOCUMENT ID		TECN	COMMENT
15	to 30 (\approx 25) OUR ESTIMAT	E			
14	± 1	ROENCHEN	22	DPWA	Multichannel
24	$\pm 1 \pm 5$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
26	± 5	ANISOVICH	12A	DPWA	Multichannel
20	± 6	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

https://pdg.lbl.gov

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

8.2	ROENCHEN	15A	DPWA	Multichannel
21	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
21	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1				

¹ Fit to the amplitudes of HOEHLER 79.

PHASE θ

VALUE (°)	DOCUMENT ID		TECN	COMMENT		
-60 to $-20 (\approx -40)$ OUR ESTIMATE						
$-67\pm$ 9	ROENCHEN	22	DPWA	Multichannel		
$-62\pm 1\pm 11$	^L SVARC	14	L+P	$\pi N \rightarrow \pi N$		
-38 ± 25	ANISOVICH	12A	DPWA	Multichannel		
-50 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$		
$\bullet \bullet \bullet$ We do not use the following of	lata for averages	, fits,	limits, e	tc. ● ● ●		
-64	ROENCHEN	15A	DPWA	Multichannel		
-20	ARNDT	06	DPWA	π N \rightarrow π N, η N		
1 Fit to the amplitudes of HOEHL	.ER 79.					

N(2250) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi \rightarrow N(2250) \rightarrow N\eta$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	
0.018 ± 0.001	-89 ± 5	ROENCHEN 2	22 DPWA	Multichannel	
$\bullet \bullet \bullet$ We do n	ot use the following o	lata for averages, fits	, limits, etc.	• • •	_
0.017	- 89	ROENCHEN	15A DPWA	Multichannel	
Normalized r	esidue in $N\pi ightarrow$	$N(2250) \rightarrow \Lambda K$			
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	
0.003 ± 0.001	80 ± 5	ROENCHEN 2	22 DPWA	Multichannel	
$\bullet \bullet \bullet$ We do n	ot use the following o	lata for averages, fits	, limits, etc.	• • •	
0.006	-101	ROENCHEN	15A DPWA	Multichannel	
Normalized r	esidue in $N\pi ightarrow$	$N(2250) \rightarrow \Sigma K$			
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	
0.004 ± 0.002	-111 ± 5	ROENCHEN 2	22 DPWA	Multichannel	
• • • We do n	ot use the following o	lata for averages, fits	, limits, etc.	• • •	
0.002	70	ROENCHEN	15A DPWA	Multichannel	

N(2250) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2250 to 2320 (≈ 2280) OUR ESTI	MATE			
$2200\!\pm\!10$	¹ HUNT	19	DPWA	Multichannel
2280 ± 40	ANISOVICH	12A	DPWA	Multichannel
$2302\pm$ 6	¹ ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
2250 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2268 ± 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
¹ Statistical error only.				

https://pdg.lbl.gov

N(2250) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
300 to 600 (\approx 500) OUR ESTIMA	TE			
343± 51	¹ HUNT	19	DPWA	Multichannel
520± 50	ANISOVICH	12A	DPWA	Multichannel
628± 28	¹ ARNDT	06	DPWA	π N \rightarrow π N, η N
480 ± 120	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$300\pm$ 40	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
¹ Statistical error only.				

N(2250) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$N\pi$	5–15 %
Γ ₂	$N\eta$	<5 %
Г3	ΛΚ	1-3 %

N(2250) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\rm total}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5–15 % OUR ESTIMATE					
8.5±0.4	¹ HUNT	19	DPWA	Multichannel	
12 ±4	ANISOVICH	12A	DPWA	Multichannel	
8.9 ± 0.1	¹ ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN	
10 ±2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
10 ±2	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
1 Statistical error only.					
$\Gamma(N\eta)/\Gamma_{\rm total}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
<5 % OUR ESTIMATE					
<5	¹ HUNT	19	DPWA	Multichannel	
¹ Statistical error only.					
$\Gamma(\Lambda K)/\Gamma_{\text{total}}$					Гз/Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	•7
1-3 % OUR ESTIMATE					
2.0±0.6	¹ HUNT	19	DPWA	Multichannel	
1 Statistical error only					
Statistical error offly.					

https://pdg.lbl.gov

N(2250) PHOTON DECAY AMPLITUDES AT THE POLE

$N(2250) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

MODULUS (GeV $^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT			
-0.108 ± 0.007	112 ± 4	ROENCHEN	22	DPWA	Multichannel	I		
$\bullet \bullet \bullet$ We do not use	the following data fo	or averages, fits,	limit	s, etc. •	• •			
0.026	-26	ROENCHEN	15A	DPWA	Multichannel			
$N(2250) \rightarrow p\gamma$, helicity-3/2 amplitude $A_{3/2}$								
	• / •	5/2						
MODULUS (GeV $^{-1/2}$)	<u>PHASE (°)</u>	DOCUMENT ID		TECN	COMMENT			
$\frac{MODULUS (GeV^{-1/2})}{0.050 \pm 0.011}$	<u>РНАЅЕ (°)</u> 69 ± 8	DOCUMENT ID ROENCHEN	22	<u>tecn</u> DPWA	COMMENT Multichannel			
$\frac{MODULUS (GeV^{-1/2})}{0.050 \pm 0.011}$ ••• We do not use	$\frac{PHASE (°)}{69 \pm 8}$	DOCUMENT ID ROENCHEN or averages, fits,	22 limit	<u>TECN</u> DPWA s, etc. ●	COMMENT Multichannel			

N(2250) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(2250) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT I	D	TECN	COMMENT	
0.0006±0.0037	¹ HUNT	19	DPWA	Multichannel	
1 Statistical error only.					

$N(2250) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.013±0.004	¹ HUNT	19	DPWA	Multichannel
1				

¹ Statistical error only.

N(2250) REFERENCES

ROENCHEN	22	EPJ A58 229	D. Roenchen <i>et al.</i>	(JULI, GWU, BONN+)
AFZAL	20	PRL 125 152002	F. Afzal <i>et al.</i>	(CBELSA/TAPS Collab.)
HUNT	19	PR C99 055205	B.C. Hunt, D.M. Manley	
ROENCHEN	15A	EPJ A51 70	D. Roenchen et al.	
PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
SVARC	14	PR C89 045205	A. Svarc <i>et al.</i>	(RBI Zagreb, UNI Tuzla)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
ARNDT	06	PR C74 045205	R.A. Arndt <i>et al.</i>	` (GWU)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(ŘARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky <i>et al.</i>	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky <i>et al.</i>	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP