$$a_0(1450)$$

$$I^{G}(J^{PC}) = 1^{-}(0^{++})$$

See the review on "Spectroscopy of Light Meson Resonances."

$a_0(1450)$ T-MATRIX POLE \sqrt{s}

Note that $\Gamma \approx 2 \operatorname{Im}(\sqrt{s})$.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
(1290–1500) $-i$ (30–140) OUR E	STIMATE			
$egin{array}{rl} (1302.1\pm1.1\pm3.9) -i \ (56.2\pm0.7\pm1.7) \end{array}$	¹ ALBRECHT	20	RVUE	$\begin{array}{rcl} 0.9 \ \overline{p} p \rightarrow & \pi^0 \pi^0 \eta, \\ \pi^0 \eta \eta, & \pi^0 K^+ K^- \end{array}$
$(1515 \pm 30) - i \; (115 \pm 18)$	ANISOVICH	09	RVUE	$0.0 \overline{p}p, \pi N$
$(1432 \pm 13 \pm 25) - i(98 \pm 5 \pm 5)$	² BUGG	08A	RVUE	<u>p</u> p
$(1441 {+40 \atop -15}) - i \ (55 \pm 7)$	³ BAKER	03	SPEC	$\overline{p}p \rightarrow \omega \pi^+ \pi^- \pi^0$
$(1303 \pm 16) - i \; (46 \pm 8)$	⁴ BARGIOTTI	03	OBLX	<u>p</u> p
$(1296 \pm 10) - i \; (41 \pm 11)$	AMSLER	02	CBAR	$0.9 \overline{p} p \rightarrow \pi^0 \pi^0 \eta$
$(1565 \pm 30) - i \; (146 \pm 20)$	ANISOVICH	98 B	RVUE	Compilation
$(1470 \pm 25) - i(132 \pm 15)$	⁵ AMSLER	95 D	CBAR	$\begin{array}{ccc} 0.0 \ \overline{p}p \rightarrow & \pi^0 \pi^0 \pi^0, \\ \pi^0 \eta \eta, & \pi^0 \pi^0 \eta \end{array}$
1				

¹T-matrix pole, 2 poles, 2 channels $(\pi \eta, K\overline{K})$.

²Using data from AMSLER 94D, ABELE 98, and BAKER 03. Supersedes BUGG 94.

³ From the pole position of a fitted Breit-Wigner amplitude. ⁴ Coupled channel analysis of $\pi^+\pi^-\pi^0$, $\kappa^+\kappa^-\pi^0$, and $\kappa^\pm\kappa^0_S\pi^\mp$.

⁵ Coupled-channel analysis of AMSLER 95B, AMSLER 95C, and AMSLER 94D.

a0(1450) MASS

VALUE (N	/leV)		EVTS	DOCUMENT ID		TECN	COMMENT
1439	±34	OUR A	VERAGE	Error includes sc	ale fac	tor of 1.	8.
1480	± 30			ABELE	98	CBAR	$0.0 \ \overline{p} p \rightarrow \ K^0_I K^{\pm} \pi^{\mp}$
1410	± 25			ETKIN	82C	MPS	$23 \pi^- p \rightarrow n^2 K^0_S$
• • • W	/e do n	ot use th	ne following	g data for average	s, fits,	limits, e	etc. • • •
1458	± 14	± 15	190k	¹ AAIJ	16N	LHCB	$D^0 \rightarrow \kappa^0_S \kappa^{\pm} \pi^{\mp}$
1316.8	8^+ 0.7 - 1.0	7 + 24.7 0 - 4.6		² UEHARA	09A	BELL	$\gamma \gamma \rightarrow \pi^0 \eta$
1477	± 10		80k	³ UMAN	06	E835	5.2 $\overline{p}p \rightarrow \eta \eta \pi^0$
1290	± 10			⁴ BERTIN	98 B	OBLX	$0.0 \ \overline{p} p \rightarrow \ K^{\pm} K_{s} \pi^{\mp}$
1450	± 40			AMSLER	94 D	CBAR	$0.0 \ \overline{p} p \rightarrow \pi^0 \pi^0 \eta$
~ 1300				MARTIN	78	SPEC	10 $K^{\pm} p \rightarrow K^{0}_{S} \pi p$
1255	\pm 5			⁵ CASON	76		5
¹ Usin	g a mo	del with	Gaussian	constraints to the	PDG	averaged	l values .
² May	be a c	lifferent	state.				
³ Stat	istical	error only	y.				
⁴ Not	confirm	ned by B	UGG 08A.				
⁵ Isosı	oin 0 n	ot excluc	led.				

https://pdg.lbl.gov

a0(1450) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
258 ±14	OUR AVERAGE				
265 ± 15		ABELE	98	CBAR	$0.0 \ \overline{p} p \rightarrow \ K^0_I \ K^{\pm} \pi^{\mp}$
230 ± 30		ETKIN	82C	MPS	$23 \pi^- p \rightarrow n^- K^0_S$
• • • We do no	ot use the following	data for averages	, fits,	limits, e	etc. • • •
282 ±12 ±	±13 190k	¹ AAIJ	16N	LHCB	$D^0 \rightarrow \kappa^0_S \kappa^{\pm} \pi^{\mp}$
65.0^+ $\begin{array}{c} 2.1 \\ 5.4 \end{array}$	+99.1 -32.6	² UEHARA	09 A	BELL	$\gamma \gamma \rightarrow \pi^0 \eta$
267 ± 11	80k	³ UMAN	06	E835	5.2 $\overline{p}p \rightarrow \eta \eta \pi^0$
$80~\pm~5$		⁴ BERTIN	98 B	OBLX	$0.0 \ \overline{p} p \rightarrow K^{\pm} K_s \pi^{\mp}$
270 ± 40		AMSLER	94 D	CBAR	$0.0 \overline{p} p \rightarrow \pi^0 \pi^0 \eta$
~ 250		MARTIN	78	SPEC	$10 \ K^{\pm} p \rightarrow K^0_{S} \pi p$
79 ± 10		⁵ CASON	76		5
¹ Using a mo ² May be a d	del with Gaussian c ifferent state.	onstraints to the	PDG	averaged	values .

³ Statistical error only. ⁴ Not confirmed by BUGG 08A.

⁵ Isospin 0 not excluded.

a0(1450) DECAY MODES

Branching fractions are given relative to the one **DEFINED AS 1**.

	Mode	Fraction (Γ_i/Γ)
Γ_1	$\pi \eta$	0.093±0.020
Γ2	$\pi \eta'(958)$	0.033 ± 0.017
Γ ₃	$\overline{K}\overline{K}$	0.082 ± 0.028
Г4	$\omega \pi \pi$	DEFINED AS 1
Γ ₅	$a_0(980) \pi \pi$	seen
Г ₆	$\gamma \gamma$	seen

$a_0(1450) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(\pi\eta) imes \Gamma(\gamma\gamma) / \Gamma_{\text{total}}$					Γ ₁ Γ ₆ /Γ
VALUE (eV)	DOCUMENT I	2	TECN	COMMENT	
\bullet \bullet \bullet We do not use the following	ng data for averag	ges, fits,	limits,	etc. ● ● ●	
$432{\pm}6{+1073\atop-256}$	¹ UEHARA	09 A	BELL	$\gamma \gamma \rightarrow \pi^0 \eta$	
1 May be a different state.					

a0(1450) BRANCHING RATIOS

$\Gamma(\pi \eta'(958))/\Gamma(\pi \eta)$					Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	
0.35±0.16	¹ ABELE	98	CBAR	$0.0 \ \overline{p} p \rightarrow$	$\kappa^0_I \kappa^{\pm} \pi^{\mp}$
\bullet \bullet \bullet We do not use the following	ng data for averages	s, fits,	limits, e	etc. • • •	-

https://pdg.lbl.gov

Created: 5/31/2023 09:11

0.43 ± 0.19	ABELE	97c CBAR	$0.0 \ \overline{p} p \rightarrow$	$\pi^0 \pi^0 \eta'$	
1 0					

¹ Using $\pi^0 \eta$ from AMSLER 94D.

$\Gamma(\overline{K}\overline{K})/\Gamma(\pi\eta)$					Γ_3/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	
0.88 ±0.23	¹ ABELE	98	CBAR	$0.0 \ \overline{p} p \rightarrow$	$\kappa^0_L \kappa^\pm \pi^\mp$
\bullet \bullet \bullet We do not use the follow	ving data for average	s, fits,	limits, e	etc. • • •	
$1.887 \!\pm\! 0.041 \!\pm\! 0.97$	² ALBRECHT	20	RVUE	$\begin{array}{c} 0.9 \ \overline{p} p \rightarrow \\ \pi^0 \eta \eta, \end{array}$	${\pi^0}{\pi^0}{\eta_{,}} {\pi^0}_{K^+K^-}$

¹ Using $\pi^0 \eta$ from AMSLER 94D. ² Residues from T-matrix pole, 2 poles, 2 channels ($\pi \eta$, \overline{KK}).

$\Gamma(\omega \pi \pi)/\Gamma(\pi \eta)$						Γ_4/Γ_1
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
10.7±2.3	35280	¹ BAKER	03	SPEC	$\overline{p}p \rightarrow \omega \pi^+ \pi^-$	$-\pi^0$
¹ Using results on $\overline{p}p$	$a \rightarrow a_0(14)$	$(50)^0 \pi^0$, $a_0(1450)$ -	$\rightarrow \eta$	π^0 from	ABELE 96C and	assuming

$\Gamma(a_0(980)\pi\pi)/\Gamma_{total}$					Г5/Г
VALUE	DOCUMENT ID		TECN	COMMENT	
seen	BUGG	08A	RVUE	<u>р</u> р	
$\Gamma(a_0(980)\pi\pi)/\Gamma(\pi\eta)$					Γ_5/Γ_1
VALUE	DOCUMENT ID	T	ECN <u>C</u>	HG COMMENT	
$\bullet \bullet \bullet$ We do not use the follow	wing data for average	es, fits,	limits, e	etc. • • •	
\leq 4.3	ANISOVICH 0	1 R	VUE 0	$\overline{p}p ightarrow \eta 2 \eta$	$\pi^{+}2\pi^{-}$
$\Gamma(\gamma\gamma)/\Gamma_{ m total}$					Г ₆ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
seen	¹ UEHARA	0 9A	BELL	$\gamma \gamma \rightarrow \pi^0 \eta$	

¹ May be a different state.

a0(1450) REFERENCES

ALBRECHT AAIJ ANISOVICH	20 16N 09	EPJ C80 453 PR D93 052018 IJMP A24 2481	M. Albrecht <i>et al.</i> R. Aaij <i>et al.</i> V.V. Anisovich, A.V. Sarantsev	(Crystal Barrel Collab.) (LHCb Collab.) (PNPI)
	09A 08A	PR D80 032001 PR D78 07/023	5. Uenara <i>et al.</i>	(BELLE COND.)
UMAN	06	PR D73 052009	I. Uman <i>et al.</i>	(FNAL E835)
BAKER	03	PL B563 140	C.A. Baker <i>et al.</i>	
BARGIOTTI	03	EPJ C26 371	M. Bargiotti <i>et al.</i>	(OBELIX Collab.)
AMSLER	02	EPJ C23 29	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
ANISOVICH	01	NP A690 567	A.V. Anisovich et al.	,
ABELE	98	PR D57 3860	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ANISOVICH	98B	SPU 41 419	V.V. Anisovich et al.	
		Translated from UFN 168	481.	
BERTIN	98B	PL B434 180	A. Bertin <i>et al.</i>	(OBELIX Collab.)
ABELE	97C	PL B404 179	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ABELE	96C	NP A609 562	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	95B	PL B342 433	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	95C	PL B353 571	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
AMSLER	95D	PL B355 425	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)

https://pdg.lbl.gov

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

AMSLER	94D	PL B333 277	C. Amsler et al.	(Crystal Barrel Collab.) IGJPC
BUGG	94	PR D50 4412	D.V. Bugg <i>et al.</i>	(LOQM)
ETKIN	82C	PR D25 2446	A. Etkin <i>et al.</i>	(BNL, CUNY, TUFTS, VAND)
MARTIN	78	NP B134 392	A.D. Martin <i>et al.</i>	(DURH, GEVA)
CASON	76	PRL 36 1485	N.M. Cason <i>et al.</i>	(NDAM, ANL)