$a_2(1700)$

$$I^{G}(J^{PC}) = 1^{-}(2^{++})$$

$a_2(1700)$ T-MATRIX POLE \sqrt{s}

Note that $\Gamma \approx 2 \operatorname{Im}(\sqrt{s})$.

VALUE (MeV)	DOCUMENT ID)	TECN	COMMENT				
(1630–1780) – <i>i</i> (60–250) OUR ESTIMATE								
$(1686 \pm 22 {+19 \atop -7}) - i (211 \pm$	¹ KOPF	21	RVUE	$0.9 \ p \overline{p} \rightarrow \ \pi^0 \pi^0 \eta, \ \pi^0 \eta \eta,$				
38^{+32}_{-29})				$\pi^0 K^+ K^-$ and 191 $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$				
$(1638.9 \pm 2.3 + 57.4)$	² ALBRECHT	20	RVUE	$0.9 \ \overline{p} p \rightarrow \pi^0 \pi^0 \eta, \ \pi^0 \eta \eta,$				
$-~i(112.0\pm1.3^{+}_{-24.2})$				$\pi^{0}K^{+}K^{-}$				
$(1722 \pm 15 \pm 67) - i(124 \pm 9 \pm 32)$	³ RODAS	19	RVUE	191 $\pi^- p \rightarrow \eta' \pi^- p$				
$(1698 \pm 44) - i \ (133 \pm 28)$	AMSLER	02	CBAR	$0.9 \ \overline{p} p \rightarrow \pi^0 \eta \eta$				
1 Based on combined fit of C	rystal Barrel and	$\pi\pi$ s	cattering	data (ALBRECHT 20), and				
COMPASS data (ADOLPH systems.	15), using a co	upled	-channel	model of $\eta\pi$, $\eta'\pi$ and $K\overline{K}$				
2	(

²Based on 2 poles, 2 channels ($\pi\eta$, \overline{K}).

 3 The coupled-channel analysis of both the $\eta\pi$ and $\eta'\pi$ systems using ADOLPH 15 data.

a2(1700) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1706±14 OUR A	VERAGE	Error includes scale	facto	r of 1.2.	
1681^{+22}_{-35}	46M	^{1,2} AGHASYAN	18 B	COMP	$190 \ \pi^{-} p \rightarrow \\ \pi^{-} \pi^{+} \pi^{-} p$
$1726 \pm 12 \pm 25$ $1722 \pm 9 \pm 15$ 1660 ± 40 • • • We do not us	18k e the follow	² ABLIKIM ³ SCHEGELSKY ² ABELE wing data for average	17к 06 99в es, fits	BES3 RVUE CBAR s, limits,	$\psi(2S) \rightarrow \gamma \eta \pi^{+} \pi^{-}$ $\gamma \gamma \rightarrow \pi^{+} \pi^{-} \pi^{0}$ 1.94 $\overline{p}p \rightarrow \pi^{0} \eta \eta$ etc. • •
$\begin{array}{rrr} 1720 \pm 10 \pm 60 \\ 1675 \pm 25 \\ 1702 \pm & 7 \\ 1721 \pm 13 \pm 44 \\ 1737 \pm & 5 \pm & 7 \end{array}$	80k 145k	⁴ JACKURA ANISOVICH ⁵ UMAN LU ABE	18 09 06 05 04	RVUE RVUE E835 B852 BELL	$\pi^{-} p \rightarrow \eta \pi^{-} p$ $0.0 \overline{p} p, \pi N$ $5.2 \overline{p} p \rightarrow \eta \eta \pi^{0}$ $18 \pi^{-} p \rightarrow \omega \pi^{-} \pi^{0} p$ $10.6 e^{+} e^{-} \rightarrow$ $+ e^{-} + e^{-}$
1767 ± 14	221	⁶ ACCIARRI	01н	L3	$\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}, E_{cm}^{ee} =$ 91, 183–209 GeV
~ 1775		⁷ GRYGOREV	99	SPEC	$40 \ \pi^- p \rightarrow K^0_{S} K^0_{S} n$
$1752 \pm 21 \pm 4$		ACCIARRI	97 ⊤	L3	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$
¹ Statistical error ² Breit-Wigner ma ³ From analysis of ⁴ Superseded by R ⁵ Statistical error	negligible. ass. CL3 data a RODAS 19. only.	t 183–209 GeV.			

https://pdg.lbl.gov

Citation: R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022) and 2023 update

⁶Spin 2 dominant, isospin not determined, could also be I=1. ⁷Possibly two $J^P = 2^+$ resonances with isospins 0 and 1.

https://pdg.lbl.gov

 3 From analysis of L3 data at 183–209 GeV. 4 Superseded by RODAS 19.

⁵ Statistical error only.

⁶Spin 2 dominant, isospin not determined, could also be I=1.

a2(1700) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\eta \pi$	(2.5±0.6) %
Γ2	$\eta' \pi$	seen
Г ₃	$\gamma \gamma$	$(7.9\pm1.7) imes10^{-7}$
Г4	$ ho \pi$	seen
Γ ₅	$f_2(1270)\pi$	seen
Г ₆	KK	(1.3±0.8) %
Γ ₇	$\omega \pi^- \pi^0$	seen
Г ₈	ωho	seen

a2(1700) PARTIAL WIDTHS

$\Gamma(\eta\pi)$					Г1
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
9.5±2.0	870	¹ SCHEGELSKY 06A	RVUE	$\gamma \gamma \rightarrow \kappa^0_S \kappa^0_S$	

¹ From analysis of L3 data at 91 and 183–209 GeV, using $a_2(1700)$ mass of 1730 MeV and width of 340 MeV, and SU(3) relations.

$\Gamma(\gamma \gamma)$					Гз
VALUE (keV)	EVTS	DOCUMENT ID	TECN	COMMENT	
0.30±0.05	870	¹ SCHEGELSKY 06A	RVUE	$\gamma \gamma \rightarrow \kappa^0_S \kappa^0_S$	

 1 From analysis of L3 data at 91 and 183–209 GeV, using $a_2(1700)$ mass of 1730 MeV and width of 340 MeV, and SU(3) relations.

Г(КК)					Г6
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
5.0±3.0	870	¹ SCHEGELSKY 06A	RVUE	$\gamma \gamma \rightarrow \kappa^0_S \kappa^0_S$	

¹ From analysis of L3 data at 91 and 183–209 GeV, using $a_2(1700)$ mass of 1730 MeV and width of 340 MeV, and SU(3) relations.

$a_2(1700) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$[\Gamma(\rho\pi) + \Gamma(f_2(1270)\pi)]$	$] \times \Gamma(\gamma \gamma) / \Gamma_{\text{total}}$			(Г ₄ +Г ₅)Г ₃ /Г
VALUE (keV) EV	TS DOCUMENT ID		TECN	COMMENT
$0.29 \pm 0.04 \pm 0.02$	ACCIARRI	97T	L3	$\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$
$\bullet \bullet \bullet$ We do not use the fo	llowing data for average	s, fits,	limits, e	etc. • • •
$0.37 \substack{+0.12 \\ -0.08} \pm 0.10$ 1	8k ¹ SCHEGELSKY	06	RVUE	$\gamma\gamma \rightarrow \pi^+\pi^-\pi^0$
1 From analysis of L3 dat	a at 183–209 GeV.			

Page 3

https://pdg.lbl.gov

.

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

 $\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_6\Gamma_3/\Gamma$ VALUE (eV DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABE 10.6 $e^+e^- \rightarrow e^+e^-K^+K^-$ BELL $20.6 \pm 4.2 \pm 4.6$ 04 $\gamma \gamma \rightarrow K^0_S K^0_S, E^{ee}_{cm} = 91,$ 183–209 GeV ² ACCIARRI 49 ±11 ±13 01H L3 ¹Assuming spin 2. ²Spin 2 dominant, isospin not determined, could also be *I*=1. a₂(1700) BRANCHING RATIOS $\Gamma(\rho\pi)/\Gamma(f_2(1270)\pi)$ Γ_4/Γ_5 DOCUMENT ID TECN COMMENT VALUE EVTS • • • We do not use the following data for averages, fits, limits, etc. • • • ¹SCHEGELSKY 06 RVUE $\gamma \gamma \rightarrow \pi^+ \pi^- \pi^0$ $3.4\!\pm\!0.4\!\pm\!0.1$ 18k ¹ From analysis of L3 data at 183–209 GeV. $\Gamma(K\overline{K})/\Gamma(\eta\pi)$ Γ_6/Γ_1 DOCUMENT ID TECN COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • 21 RVUE 0.9 $p\overline{p} \rightarrow \pi^0 \pi^0 \eta, \pi^0 \eta \eta, \pi^0 \eta \eta, \pi^0 K^+ K^- \text{ and } 191 \pi^- p \rightarrow \pi^0 K^+ K^ 0.029 {\pm} 0.04 \begin{array}{c} +0.011 \\ -0.012 \end{array}$ ¹ KOPF $\pi^-\pi^-\pi^+\rho$ RVUE $0.9 \overline{p} p \rightarrow \pi^0 \pi^0 \eta, \pi^0 \eta \eta, \pi^0 \eta \eta, \pi^0 \kappa^+ \kappa^ 4.134 \pm 0.106 {+4.909 \\ -2.988}$ ² ALBRECHT 20 ¹ From T-matrix pole based on combined fit of Crystal Barrel and $\pi\pi$ scattering data (ALBRECHT 20), and COMPASS data (ADOLPH 15), using a coupled-channel model of $\eta \pi$, $\eta' \pi$ and $K \overline{K}$ systems. ²Residues from T-matrix pole, 2 poles, 2 channels ($\pi\eta$, \overline{KK}). $\Gamma(\eta'\pi)/\Gamma(\eta\pi)$ Γ_2/Γ_1 DOCUMENT ID TECN COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • $0.035 \!\pm\! 0.044 \!+\! 0.069 \\ - 0.012$ $\begin{array}{ccc} \mathsf{RVUE} & 0.9 \ p \, \overline{p} \rightarrow & \pi^0 \, \pi^0 \, \eta, \ \pi^0 \, \eta \, \eta, \\ & \pi^0 \, K^+ \, K^- \ \text{and} \ 191 \ \pi^- \, p \rightarrow \end{array}$ ¹ KOPF 21 $\pi^-\pi^-\pi^+p$ ¹ From T-matrix pole based on combined fit of Crystal Barrel and $\pi\pi$ scattering data

(ALBRECHT 20), and COMPASS data (ADOLPH 15), using a coupled-channel model of $\eta \pi$, $\eta' \pi$ and $K\overline{K}$ systems.

a2(1700) REFERENCES

KOPF	21	EPJ C81 1056	B. Kopf <i>et al.</i>			(BOCH)
ALBRECHT	20	EPJ C80 453	M. Albrecht et al.		(Crystal Barrel	Collab.)
RODAS	19	PRL 122 042002	A. Rodas <i>et al.</i>		(JPAC	Collab.)
AGHASYAN	18B	PR D98 092003	M. Aghasyan <i>et al.</i>		(COMPASS	Collab.)
JACKURA	18	PL B779 464	A. Jackura et al.	(JPAC	and COMPASS	Collab.)
ABLIKIM	17K	PR D95 032002	M. Ablikim <i>et al.</i>		(BESIII	Collab.)
ADOLPH	15	PL B740 303	M. Adolph <i>et al.</i>		(COMPASS	Collab.)
ANISOVICH	09	IJMP A24 2481	V.V. Anisovich, A.V. Sarar	ntsev		(PNPI)
SCHEGELSKY	06	EPJ A27 199	V.A. Schegelsky <i>et al.</i>			. ,

https://pdg.lbl.gov

Page 4

Created: 5/31/2023 09:11

SCHEGELSKY	06A	EPJ A27 207	V.A. Schegelsky <i>et al.</i>	
UMAN	06	PR D73 052009	I. Uman <i>et al.</i>	(FNAL E835)
LU	05	PRL 94 032002	M. Lu <i>et al.</i>	(BNL È852 Collab.)
ABE	04	EPJ C32 323	K. Abe <i>et al.</i>	(BELLE Collab.)
AMSLER	02	EPJ C23 29	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
ACCIARRI	01H	PL B501 173	M. Acciarri et al.	(L3 Collab.)
ABELE	99B	EPJ C8 67	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
GRYGOREV	99	PAN 62 470	V.K. Grygorev et al.	
		Translated from YAF 6	52 513.	
ACCIARRI	97T	PL B413 147	M. Acciarri <i>et al.</i>	(L3 Collab.)

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update