b' (4th Generation) Quark, Searches for

b'(-1/3)-quark/hadron mass limits in $p\overline{p}$ and pp collisions

<i>б</i> (— 1/3)-quarк/па	aron	mass I	imits in <i>pp</i>	and	pp coll	ISIONS
VALUE (GeV)	CL%	DO	OCUMENT ID		TECN	COMMENT
>1570	95	¹ SI	IRUNYAN	20BI	CMS	$B(b' \rightarrow Hb) = 1$
>1390	95	¹ SI	IRUNYAN	20BI	CMS	$B(b' \to Z b) = 1$
>1130	95	² SI	IRUNYAN	19AQ	CMS	$B(b' \rightarrow Zb) = 1$
>1230	95	³ SI	IRUNYAN	19 _{BW}	CMS	$B(b' \rightarrow Wt) = 1$
>1350	95		ABOUD	18AW	ATLS	$B(b' \rightarrow Wt) = 1$
>1000	95			18CE	ATLS	$\geq 2\ell + ot\!$
> 950	95	6 _A		18CL	ATLS	W t, Z b, h b modes
>1010	95	7,8 A	ABOUD	18CP	ATLS	2,3 ℓ , singlet model
>1140	95	6,9 _A	ABOUD	18CP	ATLS	2,3 ℓ , doublet model
>1220	95		ABOUD	18CR	ATLS	singlet b' . ATLAS Combination
>1370	95	10,12 A	ABOUD	18cr	ATLS	b' in a weak isospin doublet (t',b') . ATLAS combination.
> 910	95	¹³ SI	IRUNYAN	18 _{BM}	CMS	W t, Z b, h b modes
> 845	95			18Q		$B(b' \rightarrow Wu) = 1$
> 730	95	¹⁵ SI	IRUNYAN	17AU		· · · · ·
> 880	95		HACHATRY			$B(b' \rightarrow W t) = 1$
> 620	95	¹⁷ A	AD		ATLS	W t, Z b, h b modes
> 730	95	¹⁸ A	AD	15by	ATLS	$B(b' \to Wt) = 1$
> 810	95	¹⁹ A		15z	ATLS	× ,
> 755	95	²⁰ A	AD	14AZ	ATLS	$B(b' \rightarrow W t) = 1$
> 675	95		HATRCHYAN		CMS	$B(b' \rightarrow Wt) = 1$
> 190	95	²² Al		08X	D0	$c\tau = 200 \text{mm}$
> 190	95	²³ A	COSTA	03	CDF	quasi-stable <i>b</i> ′
• • • We do not use t	he fo			es, fit	s, limits	, etc. ● ● ●
<350, 580–635, >700	95	²⁴ A		15 AR	ATLS	B(b' ightarrow H b) = 1
> 690	95	²⁵ A		15CN	ATLS	$B(b' \rightarrow Wq) = 1 \ (q{=}u)$
> 480	95	26 A		12at	ATLS	B(b' o W t) = 1
> 400	95	27 A		12au	ATLS	B(b' o Z b) = 1
> 350	95	²⁸ A	AD	12BC	ATLS	$egin{array}{lll} {\sf B}(b' o W q) = 1 \ (q{=}u,c) \end{array}$
> 450	95	29 A	AD	12be	ATLS	$B(b' \to W t) = 1$
> 685	95	³⁰ CI	HATRCHYAN	12BH	CMS	$m_{t'} = m_{b'}$
> 611	95		HATRCHYAN			
> 372	95				CDF	$b' \rightarrow W t$
> 361	95	³³ CI	HATRCHYAN	11L	CMS	Repl. by CHA- TRCHYAN 12X
> 338	95			10H	CDF	$b' \rightarrow Wt$
> 380–430	95	³⁵ Fl	LACCO	10	RVUE	$m_{b'} > m_{t'}$
> 268	95	36,37 _A	ALTONEN	07 C	CDF	$B(b' \rightarrow Zb) = 1$
> 199	95				CDF	NC: $b' \rightarrow Zb$
		, (

>	148	95	³⁹ ABE	98N	CDF	NC: $b' \rightarrow Zb + vertex$
>	96	95		97 D	D0	NC: $b' \rightarrow b\gamma$
>	128	95				$\ell\ell + jets, \ell + jets$
>	75	95	⁴² MUKHOPAD	. 93	RVUE	NC: $b' \rightarrow b\ell\ell$
>	85		⁴³ ABE	92	CDF	CC: <i>ℓℓ</i>
>	72	95	⁴⁴ ABE			CC: $e + \mu$
>	54	95	⁴⁵ AKESSON	90	UA2	$CC: e + jets + \not\!\!\!E_T$
>	43	95	⁴⁶ ALBAJAR	90 B	UA1	CC: μ + jets
>	34	95	⁴⁷ ALBAJAR	88	UA1	CC: e or μ + jets

¹SIRUNYAN 20BI based on 137 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vector-like b' is seached for with each b' decaying into Zb or hb. Analysis focuses on final states consisting of jets from six quarks. Mass limits are obtained for a variety of branching ratios of b' decays.

- ² SIRUNYAN 19AQ based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vector-like b' is seached for with one b' decaying into Zb and the other b' decaying into Wt, Zb, hb. Events with an opposite-sign lepton pair consistent with coming from Z and jets are used. Mass limits are obtained for a variety of branching ratios of b'.
- ³SIRUNYAN 19BW based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b' using all-hadronic final state. The analysis is made for the Z b, W t, hb modes and mass limits are obtained for a variety of branching ratios.
- ⁴ AABOUD 18AW based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b' using lepton-plus-jets final state. The search is also sensitive to the decays into Zb and Hb final states.
- ⁵ AABOUD 18CE based on 36.1 fb⁻¹ of proton-proton data taken at $\sqrt{s} = 13$ TeV. Events including a same-sign lepton pair are used. The limit is for a singlet model, assuming the branching ratios of b' into Zb, Wt and Hb as predicted by the model.
- ⁶ AABOUD 18CL, AABOUD 18CP based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b' using all-hadronic final state. The analysis is particularly powerful for the $b' \rightarrow hb$ mode. Assuming the pure decay only in this mode sets a limit $m_{b'} > 1010$ GeV.
- ⁷AABOUD 18CP based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair and single production of vector-like b' are seached for with at least one b' decaying into Zb. In the case of $B(b' \rightarrow Zb) = 1$, the limit is $m_{b'} > 1220$ GeV.
- ⁸ The limit is for the singlet model, assuming that the branching ratios into Wt, Zb, hb add up to one.
- ⁹ The limit is for the doublet model, assuming that the branching ratios into Wt, Zb, hb add up to one.
- ¹⁰ AABOUD 18CR based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. A combination of searches for the pair-produced vector-like b' in various decay channels ($b' \rightarrow Wt$, Zb, hb). Also a model-independent limit is obtained as $m_{b'} > 1.03$ TeV, assuming that the branching ratios into Zb, Wt, and hb add up to one.
- ¹¹ The limit is for the singlet b'.
- 12 The limit is for b' in a weak isospin doublet (t',b') and $|V_{t'b}| \ll |V_{tb'}|$. For a b' in a doublet with a charge -4/3 vector-like quark, the limit $m_{b'} > 1.14$ TeV is obtained.
- ¹³ SIRUNYAN 18BM based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b'. Three channels (single lepton, same-charge 2 leptons, or at least 3 leptons) are considered for various branching fraction combinations. Assuming B(tW) = 1, the limit is 1240 GeV and for B(bZ) = 1 it is 960 GeV.
- ¹⁴ SIRUNYAN 18Q based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The limit is for the pair-produced vector-like b' that couple only to light quarks. Upper cross section limits

on the single production of a b' and constraints for other decay channels (Zq and Hq) are also given in the paper.

- ¹⁵ SIRUNYAN 17AU based on 2.3–2.6 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Limit on pairproduced singlet vector-like b' using one lepton and several jets. The mass bound is given for a b' transforming as a singlet under the electroweak symmetry group, assumed to decay through W, Z or Higgs boson (which decays to jets) and to a third generation quark.
- ¹⁶ KHACHATRYAN 16AN based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pairproduced vector-like b' using 1, 2, and >2 leptons as well as fully hadronic final states. Other limits depending on the branching fractions to tW, bZ, and bH are given in Table IX.
- ¹⁸AAD 15BY based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pair-produced chiral b'-quark. Used events containing $\geq 2\ell + \not\!\!E_T + \geq 2j$ ($\geq 1 b$) and including a same-sign lepton pair.
- ¹⁹ AAD 15Z based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Used events with $\ell + E_T + 26j$ ($\geq 1 b$) and at least one pair of jets from weak boson decay, primarily designed to select the signature $b'\overline{b}' \rightarrow WWt\overline{t} \rightarrow WWWWb\overline{b}$. This is a limit on pair-produced vector-like b'. The lower mass limit is 640 GeV for a vector-like singlet b'.
- ²⁰ Based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. No significant excess over SM expectation is found in the search for pair production or single production of b' in the events with dilepton from a high $p_T Z$ and additional jets ($\geq 1 b$ -tag). If instead of B($b' \rightarrow Wt$) = 1 an electroweak singlet with B($b' \rightarrow Wt$) ~ 0.45 is assumed, the limit reduces to 685 GeV.
- ²² Result is based on 1.1 fb⁻¹ of data. No signal is found for the search of long-lived particles which decay into final states with two electrons or photons, and upper bound on the cross section times branching fraction is obtained for 2 < cτ < 7000 mm; see Fig. 3. 95% CL excluded region of b' lifetime and mass is shown in Fig. 4.
- ²³ ACOSTA 03 looked for long-lived fourth generation quarks in the data sample of 90 pb^{-1} of $\sqrt{s}=1.8$ TeV $p\overline{p}$ collisions by using the muon-like penetration and anomalously high ionization energy loss signature. The corresponding lower mass bound for the charge (2/3)e quark (t') is 220 GeV. The t' bound is higher than the b' bound because t' is more likely to produce charged hadrons than b'. The 95% CL upper bounds for the production cross sections are given in their Fig. 3.
- ²⁴ AAD 15AR based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Used lepton-plus-jets final state. See Fig. 24 for mass limits in the plane of B($b' \rightarrow Wt$) vs. B($b' \rightarrow Hb$) from $b'\overline{b'} \rightarrow Hb + X$ searches.
- ²⁵ AAD 15CN based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pair-production of chiral b'-quark. Used events with $\ell + \not\!\!E_T + \ge 4j$ (non-b-tagged). Limits on a heavy vector-like quark, which decays into Wq, Zq, hq, are presented in the plane B($Q \rightarrow Wq$) vs. B($Q \rightarrow hq$) in Fig. 12.
- ²⁶ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a t quark in the events with a high p_T isolated lepton, large E_T , and at least 6 jets in which one, two or more dijets are from W.
- ²⁷ Based on 2.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No $b' \rightarrow Zb$ invariant mass peak is found in the search of heavy quark pair production that decay into Z and a b quark in

events with $Z \rightarrow e^+e^-$ and at least one *b*-jet. The lower mass limit is 358 GeV for a vector-like singlet b' mixing solely with the third SM generation.

- ²⁸ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons, large $\not{\!\!E}_T$, and ≥ 2 jets.
- ²⁹ Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. AAD 12BE looked for events with two isolated like-sign leptons and at least 2 jets, large \not{E}_T and $H_T > 350$ GeV.
- ³⁰ Based on 5 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 12BH searched for QCD and EW production of single and pair of degenerate 4'th generation quarks that decay to *bW* or *tW*. Absence of signal in events with one lepton, same-sign dileptons or trileptons gives the bound. With a mass difference of 25 GeV/c² between $m_{t'}$ and $m_{b'}$,
- the corresponding limit shifts by about ± 20 GeV/c².
- ³¹Based on 4.9 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 12X looked for events with trileptons or same-sign dileptons and at least one b jet.
- ³²Based on 4.8 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. AALTONEN 11J looked for events with $\ell + \not{\!}_T + \geq 5j$ ($\geq 1 \ b \ or \ c$). No signal is observed and the bound $\sigma(b'\overline{b}')$ < 30 fb for $m_{b'} > 375$ GeV is found for B($b' \rightarrow W t$) = 1.
- ³³ Based on 34 pb⁻¹ of data in pp collisions at 7 TeV. CHATRCHYAN 11L looked for multijet events with trileptons or same-sign dileptons. No excess above the SM background excludes $m_{b'}$ between 255 and 361 GeV at 95% CL for B($b' \rightarrow Wt$) = 1.
- ³⁴ Based on 2.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. AALTONEN 10H looked for pair production of heavy quarks which decay into tW^- or tW^+ , in events with same sign dileptons (e or μ), several jets and large missing E_T . The result is obtained for b' which decays into tW^- . For the charge 5/3 quark ($T_{5/3}$) which decays into tW^+ , $m_{T_{5/3}} > 365$ GeV (95% CL) is found when it has the charge -1/3 partner B of the as me mass.
- ³⁵ FLACCO 10 result is obtained from AALTONEN 10H result of $m_{b'} > 338$ GeV, by relaxing the condition B($b' \rightarrow Wt$) = 100% when $m_{b'} > m_{t'}$.
- ³⁶ Result is based on 1.06 fb⁻¹ of data. No excess from the SM Z+jet events is found when Z decays into ee or $\mu\mu$. The $m_{b'}$ bound is found by comparing the resulting upper bound on $\sigma(b'\overline{b'})$ [1-(1-B($b' \rightarrow Zb$))²] and the LO estimate of the b' pair production cross section shown in Fig. 38 of the article.
- ³⁷ HUANG 08 reexamined the b' mass lower bound of 268 GeV obtained in AALTONEN 07C that assumes $B(b' \rightarrow Zb) = 1$, which does not hold for $m_{b'} > 255$ GeV. The lower mass bound is given in the plane of $\sin^2(\theta_{t b'})$ and $m_{b'}$.
- ³⁸ AFFOLDER 00 looked for b' that decays in to b+Z. The signal searched for is bbZZ events where one Z decays into e^+e^- or $\mu^+\mu^-$ and the other Z decays hadronically. The bound assumes $B(b' \rightarrow Z b) = 100\%$. Between 100 GeV and 199 GeV, the 95%CL upper bound on $\sigma(b' \rightarrow \overline{b'}) \times B^2(b' \rightarrow Z b)$ is also given (see their Fig. 2).
- ³⁹ABE 98N looked for $Z \to e^+e^-$ decays with displaced vertices. Quoted limit assumes $B(b' \to Zb)=1$ and $c\tau_{b'}=1$ cm. The limit is lower than m_Z+m_b (~ 96 GeV) if $c\tau > 22$ cm or $c\tau < 0.009$ cm. See their Fig. 4.
- ⁴⁰ ABACHI 97D searched for b' that decays mainly via FCNC. They obtained 95%CL upper bounds on $B(b'\overline{b}' \rightarrow \gamma + 3 \text{ jets})$ and $B(b'\overline{b}' \rightarrow 2\gamma + 2 \text{ jets})$, which can be interpreted as the lower mass bound $m_{b'} > m_Z + m_b$.
- ⁴¹ABACHI 95F bound on the top-quark also applies to b' and t' quarks that decay predominantly into W. See FROGGATT 97.
- 42 MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes B($b' \rightarrow$

 $b\ell^+\ell^-$)=1%. For an exotic quark decaying only via virtual Z [B($b\ell^+\ell^-$) = 3%], the limit is 85 GeV.

 43 ABE 92 dilepton analysis limit of >85 GeV at CL=95% also applies to b' quarks, as discussed in ABE 90B.

- 44 ABE 90B exclude the region 28–72 GeV.
- ⁴⁵ AKESSON 90 searched for events having an electron with p_T > 12 GeV, missing momentum > 15 GeV, and a jet with E_T > 10 GeV, $|\eta| < 2.2$, and excluded $m_{b'}$ between 30 and 69 GeV.
- ⁴⁶ For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of ______ALBAJAR 90B.
- ⁴⁷ ALBAJAR 88 study events at $E_{\rm cm} = 546$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for the production of charm and bottom, without the need for a new quark. The lower mass limit is obtained by using a conservative estimate for the $b' \overline{b'}$ production cross section and by assuming that it cannot be produced in W decays. The value quoted here is revised using the full $O(\alpha_s^2)$ cross section of ALTARELLI 88.

b'(-1/3) mass limits from single production in $p\overline{p}$ and pp collisions

· · ·		v .			
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3000	95	¹ TUMASYAN	220	CMS	$egin{array}{ccc} g b ightarrow b' ightarrow \ t W) = 1 \end{array} t W, \; {\sf B}(b' ightarrow$
> 693	95	² ABAZOV	11F	D0	$q u \rightarrow q' b' \rightarrow q' (W u)$
> 430	95	² ABAZOV	11F	D0	$ \begin{split} & \widetilde{\kappa}_{u \ b'} = 1, \ B(b' \rightarrow W u) = 1 \\ & q \ d \rightarrow q \ b' \rightarrow q(Z \ d) \\ & \widetilde{\kappa}_{d \ b'} = \sqrt{2}, \ B(b' \rightarrow Z \ d) = 1 \end{split} $
• • • We do no	t use the	following data for	averag	ges, fits,	limits, etc. • • •
>2600	95	³ SIRUNYAN	21A0	G CMS	$g b \rightarrow b' \rightarrow t W, B(b' \rightarrow$

>2600	95	³ SIRUNYAN 21AG CMS $g b \rightarrow b' \rightarrow t W$, B($b' \rightarrow tW$)
		t W)=1 ⁴ SIRUNYAN 19ALCMS $bZ/tW ightarrow b' ightarrow tW$
>1500	95	⁵ AAD 16AH ATLS $g b \rightarrow b' \rightarrow t W$, B $(b' \rightarrow b')$
1000	~-	tW)=1
>1390	95	⁶ KHACHATRY16 CMS $g b \rightarrow b'_{L} \rightarrow t W$, $B(b'_{L} \rightarrow t W)$
> 1420	OF	tW = 1 7 KHACHATDY 16 CMS = $t = \frac{1}{2} + $
>1430	95	⁷ KHACHATRY16I CMS $g \ b o b'_R \ o \ t \ W$, B $(b'_R \ o \ t \ W)=1$
>1530	95	⁸ KHACHATRY16 CMS $g b \rightarrow b' \rightarrow t W$, B($b' \rightarrow$
/ 1000	55	$\begin{array}{c} W = 1 \\ t \\ W = 1 \end{array}$

¹ TUMASYAN 220 based on 138 fb⁻¹ of data in pp collisions at 13 TeV. No significant excess over SM expectation is found in the search for a left-handed b' assuming 100% decay to tW using a t-tagged jet and a lepton from W. The model assumes that the b' has the excited quark couplings. The bound is from a statistical combination with an earlier analysis by SIRUNYAN 21AG. The 95% CL bounds are also set as 3.0, 3.0, and 3.2 TeV, respectively, for left-handed, right-handed, and vector-like couplings.

²ABAZOV 11F based on 5.4 fb⁻¹ of data in ppbar collisions at 1.96 TeV. ABAZOV 11F looked for single production of b' via the W or Z coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes $p\overline{p} \rightarrow b'q \rightarrow Wuq$, and $p\overline{p} \rightarrow b'q \rightarrow Zdq$ are given in Figs. 3 and 4, respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks.

- ³ SIRUNYAN 21AG based on 137 fb⁻¹ of data in pp collisions at 13 TeV. No significant excess over SM expectation is found in the search for a left-handed b' assuming 100% decay to tW using all hadronic final states, where t and W are tagged as single jets, respectively. The model assumes that the b' has the excited quark couplings. The 95% CL bounds are also set as 2.8 and 3.1 TeV, respectively, for the right-handed and vector-like couplings.
- ⁴ SIRUNYAN 19AI based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Exclusion limits are set on the product of the production cross section and branching fraction for the b'(-1/3) + b and b'(-1/3) + t modes as a function of the vector-like quark mass in Figs. 7 and 8 and in Tab. 2 for relative vector-like quark widths between 1 and 30% for left- and right-handed vector-like quark couplings. No significant deviation from the SM prediction is observed.
- ⁵ AAD 16AH based on 20.3 fb⁻¹ of data in pp collisions at 8 TeV. No significant excess over SM expectation is found in the search for a vector-like b' in the single-lepton and dilepton channels (ℓ or $\ell\ell$) + 1,2,3 j ($\geq 1b$). The model assumes that the b' has the excited quark couplings.
- ⁶ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on left-handed b' assuming 100% decay to tW and using all-hadronic, lepton + jets, and dilepton final states.
- ⁷ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on right-handed b' assuming 100% decay to tW and using all-hadronic, lepton + jets, and dilepton final states.
- ⁸ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on vector-like b' assuming 100% decay to tW and using all-hadronic, lepton+jets, and dilepton final states.

MASS LIMITS for b' (4th Generation) Quark or Hadron in e^+e^- Collisions Search for hadrons containing a fourth-generation -1/3 quark denoted b'.

VALUE (GeV) CL% DOCUMENT ID TECN COMMENT 95 ¹ DECAMP >46.0 90F ALEP any decay • • • We do not use the following data for averages, fits, limits, etc. • • • DLPH $b' \rightarrow bZ, cW$ ² ABDALLAH none 96-103 95 07 ³ ADRIANI 93G L3 Quarkonium >44.7 95 ADRIANI 93M L3 $\Gamma(Z)$ >45 91F DLPH $\Gamma(Z)$ 95 ABREU none 19.4-28.2 95 ABE 90D VNS Any decay; event shape 90D DLPH >45.0 95 ABREU B(CC) = 1; event shape ⁴ ABREU 95 90D DLPH $b' \rightarrow c H^-, H^- \rightarrow$ >44.5 $\overline{c}s, \tau^-\nu$ ⁵ ABREU >40.5 95 **90**D DLPH $\Gamma(Z \rightarrow hadrons)$ TOPZ B(FCNC)=100%; isol. 95 ADACHI 90 >28.3 γ or 4 jets ⁶ AKRAWY OPAL >41.4 95 Any decay; acoplanarity **90**B ⁶ AKRAWY >45.2 95 **90**B OPAL B(CC) = 1; acoplanarity ⁷ AKRAWY >46 95 90J OPAL $b' \rightarrow \gamma + any$ ⁸ ABE >27.5 95 89e VNS $B(CC) = 1; \mu, e$ ⁹ ABE $B(b' \rightarrow b\gamma) > 10\%;$ none 11.4-27.3 95 89G VNS isolated γ ¹⁰ ABRAMS >44.7 95 89C MRK2 B(CC) = 100%; isol. track

The last column specifies the assumption for the decay mode (CC denotes the conventional charged-current decay) and the event signature which is looked for.

>42.7	95	¹⁰ ABRAMS	89C	MRK2	B(<i>bg</i>)= 100%; event shape
>42.0	95	¹⁰ ABRAMS	89C		Any decay; event shape
>28.4	95	^{11,12} ADACHI	89C	TOPZ	
>28.8	95	¹³ ENO	89	AMY	B(CC) \gtrsim 90%; μ , e
>27.2	95	^{13,14} ENO	89	AMY	any decay; event shape
>29.0	95	¹³ ENO	89	AMY	$B(b' \rightarrow bg) \gtrsim 85\%;$ event shape
>24.4	95	¹⁵ IGARASHI	88	AMY	μ,e
>23.8	95	¹⁶ SAGAWA	88	AMY	event shape
>22.7	95	¹⁷ ADEVA	86	MRKJ	μ
>21		¹⁸ ALTHOFF	84C	TASS	R, event shape
>19		¹⁹ ALTHOFF	841	TASS	Aplanarity
_					

¹ DECAMP 90F looked for isolated charged particles, for isolated photons, and for four-jet final states. The modes $b' \rightarrow bg$ for $B(b' \rightarrow bg) > 65\% b' \rightarrow b\gamma$ for $B(b' \rightarrow b\gamma) > 5\%$ are excluded. Charged Higgs decay were not discussed.

²ABDALLAH 07 searched for b' pair production at $E_{\rm cm}$ =196-209 GeV, with 420 pb⁻¹. No signal leads to the 95% CL upper limits on B(b' $\rightarrow bZ$) and B(b' $\rightarrow cW$) for $m_{b'}$ = 96 to 103 GeV.

³ ADRIANI 93G search for vector quarkonium states near Z and give limit on quarkonium-Z mixing parameter $\delta m^2 < (10-30) \text{ GeV}^2$ (95%CL) for the mass 88–94.5 GeV. Using Richardson potential, a 1S ($b'\overline{b}'$) state is excluded for the mass range 87.7–94.7 GeV. This range depends on the potential choice.

⁴ABREU 90D assumed $m_{H^-} < m_{b'} - 3$ GeV.

⁵ Superseded by ABREU 91F.

⁶ AKRAWY 90B search was restricted to data near the Z peak at $E_{\rm cm} = 91.26$ GeV at LEP. The excluded region is between 23.6 and 41.4 GeV if no H^+ decays exist. For charged Higgs decays the excluded regions are between $(m_{H^+} + 1.5 \text{ GeV})$ and 45.5 GeV.

⁷AKRAWY 90J search for isolated photons in hadronic Z decay and derive

 $B(Z \rightarrow b' \overline{b'}) \cdot B(b' \rightarrow \gamma X) / B(Z \rightarrow hadrons) < 2.2 \times 10^{-3}$. Mass limit assumes $B(b' \rightarrow \gamma X) > 10\%$.

⁸ ABE 89E search at $E_{\rm cm} = 56-57$ GeV at TRISTAN for multihadron events with a spherical shape (using thrust and acoplanarity) or containing isolated leptons.

 9 ABE 89G search was at $E_{\rm cm} = 55-60.8$ GeV at TRISTAN.

¹⁰ If the photonic decay mode is large (B($b' \rightarrow b\gamma$) > 25%), the ABRAMS 89C limit is 45.4 GeV. The limit for for Higgs decay ($b' \rightarrow cH^-, H^- \rightarrow \overline{c}s$) is 45.2 GeV.

- 11 ADACHI 89C search was at $E_{\rm cm}=56.5-60.8~{\rm GeV}$ at TRISTAN using multi-hadron events accompanying muons.
- ¹² ADACHI 89C also gives limits for any mixture of CC and bg decays.
- 13 ENO 89 search at $E_{\rm cm} = 50-60.8$ at TRISTAN.
- 14 ENO 89 considers arbitrary mixture of the charged current, bg, and $b\gamma$ decays.
- ¹⁵ IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta R(b') < 0.26$ (95% CL) assuming charged current decay, which translates to $m_{b'} > 24.4$ GeV.
- ¹⁶ SAGAWA 88 set limit $\sigma(\text{top}) < 6.1$ pb at CL=95% for top-flavored hadron production from event shape analyses at $E_{\text{CM}} = 52$ GeV. By using the quark parton model crosssection formula near threshold, the above limit leads to lower mass bounds of 23.8 GeV for charge -1/3 quarks.
- ¹⁷ ADEVA 86 give 95%CL upper bound on an excess of the normalized cross section, ΔR , as a function of the minimum c.m. energy (see their figure 3). Production of a pair of 1/3 charge quarks is excluded up to $E_{\rm cm} = 45.4$ GeV.

- ¹⁸ ALTHOFF 84C narrow state search sets limit $\Gamma(e^+e^-)$ B(hadrons) <2.4 keV CL = 95% and heavy charge 1/3 quark pair production m > 21 GeV, CL = 95%. ¹⁹ ALTHOFF 84I exclude heavy quark pair production for 7 <m < 19 GeV (1/3 charge) using aplanarity distributions (CL = 95%).

REFERENCES FOR Searches for (Fourth Generation) b' Quark

TUMASYAN	220	JHEP 2204 048	A. Tumasyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	21AG	JHEP 2112 106	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PR D102 112004	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		EPJ C79 90	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	19AQ	EPJ C79 364	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19BW	PR D100 072001	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
AABOUD		JHEP 1808 048	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1812 039	M. Aaboud <i>et al.</i>	
				(ATLAS Collab.)
AABOUD		PR D98 092005	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18CP	PR D98 112010	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18CR	PRL 121 211801	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	18BM	JHEP 1808 177	A.M. Sirunyan <i>et al.</i>	`(CMS_Collab.)
SIRUNYAN		PR D97 072008	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
	-			
SIRUNYAN		JHEP 1711 085	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AAD		JHEP 1602 110	G. Aad <i>et al.</i>	(ATLAS Collab.)
KHACHATRY	16AN	PR D93 112009	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	16I	JHEP 1601 166	V. Khachatryan <i>et al.</i>	(CMS_Collab.)
AAD		JHEP 1508 105	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1510 150	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PR D92 112007	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15Z	PR D91 112011	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14AZ	JHEP 1411 104	G. Aad <i>et al.</i>	(ATLAS Collab.)
CHATRCHYAN	13I	JHEP 1301 154	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AAD	12AT	PRL 109 032001	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PRL 109 071801	G. Aad <i>et al.</i>	(ATLAS Collab.)
				(ATLAS Collab.)
AAD		PR D86 012007	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1204 069	G. Aad <i>et al.</i>	(ATLAS Collab.)
CHATRCHYAN	12BH	PR D86 112003	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12X	JHEP 1205 123	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN	11J	PRL 106 141803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	11F	PRL 106 081801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
CHATRCHYAN		PL B701 204	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AALTONEN	10H	PRL 104 091801	T. Aaltonen <i>et al.</i>	(CDF_Collab.)
FLACCO	10	PRL 105 111801	C.J. Flacco <i>et al.</i>	(UCI, HAIF)
ATRE	09	PR D79 054018	A. Atre <i>et al.</i>	
ABAZOV	08X	PRL 101 111802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
HUANG	08	PR D77 037302	P.Q. Hung, M. Sher	(ÙVA, WILL)
AALTONEN	07C	PR D76 072006	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABDALLAH	07	EPJ C50 507	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACOSTA	03	PRL 90 131801	D. Acosta <i>et al.</i>	(CDF Collab.)
AFFOLDER	00	PRL 84 835	A. Affolder <i>et al.</i>	(CDF Collab.)
ABE	98N	PR D58 051102	F. Abe <i>et al.</i>	(CDF Collab.)
ABACHI	97D	PRL 78 3818	S. Abachi <i>et al.</i>	(D0 Collab.)
FROGGATT	97	ZPHY C73 333	C.D. Froggatt, D.J. Smith, H.B.	Nielsen (GLAS+)
ABACHI	95F	PR D52 4877	S. Abachi <i>et al.</i>	(D0 Collab.)
ADRIANI	93G	PL B313 326	O. Adriani <i>et al.</i>	(L3 Collab.)
ADRIANI	93M	PRPL 236 1	O. Adriani <i>et al.</i>	(L3 Collab.)
MUKHOPAD		PR D48 2105	B. Mukhopadhyaya, D.P. Roy	(TATA)
ABE	92	PRL 68 447	F. Abe <i>et al.</i>	(CDF Collab.)
Also		PR D45 3921	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	92G	PR D45 3921	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	91F	NP B367 511	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABE	90B	PRL 64 147	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	90D	PL B234 382	K. Abe <i>et al.</i>	(VENUS Collab.)
ABREU	90D	PL B242 536	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ADACHI	90	PL B234 197	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
AKESSON	90	ZPHY C46 179	T. Akesson <i>et al.</i>	(UA2 Collab.)
AKRAWY	90B	PL B236 364	M.Z. Akrawy <i>et al.</i>	(ÒPAL Collab.)
AKRAWY	90J	PL B246 285	M.Z. Akrawy <i>et al.</i>	(OPAL Collab.)
ALBAJAR	90B	ZPHY C48 1	C. Albajar <i>et al.</i>	(UA1 Collab.)
DECAMP	90F	PL B236 511		(ALEPH Collab.)
DECAMI	501	I E D230 JII	D. Decamp <i>et al.</i>	(ALLI IT CONAD.)

89E	PR D39 3524	K. Abe <i>et al.</i>	(VENUS Collab.) (VENUS Collab.)
89C	PRL 63 2447	G.S. Abrams <i>et al.</i>	(Mark II Collab.)
89C 89	PL B229 427 PRL 63 1910	I. Adachi <i>et al.</i> S. Eno <i>et al.</i>	(TOPAZ Collab.) (AMY Collab.)
88 88	ZPHY C37 505 NP B308 724	C. Albajar <i>et al.</i> G. Altarelli <i>et al.</i>	(UA1 Collab.) (CERN, ROMA, ETH)
88	PRL 60 2359	S. Igarashi <i>et al.</i> H. Sagawa <i>et al.</i>	(AMY Collab.) (AMY Collab.)
86	PR D34 681	B. Adeva <i>et al.</i>	(Ňark-J Collab.)
84C 84I	ZPHY C22 307	M. Althoff <i>et al.</i> M. Althoff <i>et al.</i>	(TASSO Collab.) (TASSO Collab.)
	39G 39C 39C 39 38 38 38 38 38 38 38 38 38 38 38	 PRL 63 1776 PRL 63 2447 PRL 63 2447 PRL 63 1910 ZPHY C37 505 NP B308 724 PRL 60 2359 PRL 60 93 PR D34 681 PL 138B 441 	99G PRL 63 1776 K. Abe et al. 89C PRL 63 2447 G.S. Abrams et al. 89C PL B229 427 I. Adachi et al. 89C PRL 63 1910 S. Eno et al. 88 ZPHY C37 505 C. Albajar et al. 88 PRL 60 2359 S. Igarashi et al. 88 PRL 60 2359 S. Igarashi et al. 88 PRL 60 93 H. Sagawa et al. 88 PRL 60 93 H. Sagawa et al. 80 PR D34 681 B. Adeva et al. 84 PL 138B 441 M. Althoff et al.

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update