Extra Dimensions

For explanation of terms used and discussion of significant model dependence of following limits, see the "Extra Dimensions" review. Footnotes describe originally quoted limit. δ indicates the number of extra dimensions.

Limits not encoded here are summarized in the "Extra Dimensions" review, where the latest unpublished results are also described.

See the related review(s):

Extra Dimensions

CONTENTS:

Limits on R from Deviations in Gravitational Force Law Limits on R from On-Shell Production of Gravitons: $\delta = 2$ Mass Limits on M_{TT} Limits on $1/R = M_c$ Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions Limits on Kaluza-Klein Gluons in Warped Extra Dimensions Black Hole Production Limits – Semiclassical Black Holes

– Quantum Black Holes

Limits on R from Deviations in Gravitational Force Law

This section includes limits on the size of extra dimensions from deviations in the Newtonian $(1/r^2)$ gravitational force law at short distances. Deviations are parametrized by a gravitational potential of the form $V = -(G \ m \ m'/r) \ [1 + \alpha \ \exp(-r/R)]$. For δ toroidal extra dimensions of equal size, $\alpha = 8\delta/3$. Quoted bounds are for $\delta = 2$ unless otherwise noted.

VALUE (µm)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	g data for averages	s, fits,	limits, e	etc. • • •
< 37	95	 BLAKEMORE HEACOCK LEE TAN BERGE FAYET KLIMCHITSK. XU BEZERRA SUSHKOV BEZERRA SUSHKOV BEZERRA GERACI TRENKEL 	21 20 20A 18 18A	MICR MICR	Optical levitation Neutron scattering Torsion pendulum Torsion pendulum Space accelerometer Space accelerometer Torsion oscillator Nuclei properties Torsion oscillator Torsion pendulum Microcantilever Torsion pendulum Microcantilever Newton's constant

	¹⁵ DECCA	07A	Torsion oscillator
95	¹⁶ KAPNER	07	Torsion pendulum
95	¹⁷ TU	07	Torsion pendulum
		05	Microcantilever
95	-	04	Torsion pendulum
		03	Microcantilever
95		03	Microcantilever
95		01	Torsion pendulum
	²³ HOSKINS	85	Torsion pendulum
	95 95 95	95 16 KAPNER 95 17 TU 18 SMULLIN 95 19 HOYLE 20 CHIAVERINI 95 21 LONG	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- ¹ BLAKEMORE 21 obtain constraints on non-Newtonian forces with strengths $|\alpha| \gtrsim 10^8$ and length scales $R > 10 \ \mu$ m. See their Fig. 4 for more details including comparison with previous searches.
- ² HEACOCK 21 obtain constraints on non-Newtonian forces with strengths $10^{18} \lesssim |\alpha| \lesssim 10^{25}$ and length scales $R \simeq 0.02$ –10 nm. See their Figure 3 for more details. This improves the results of HADDOCK 18. These constraints do not place limits on the size of extra flat dimensions.
- ³LEE 20 search for new forces probing a range of $|\alpha| \simeq 0.1-10^5$ and length scales $R \simeq 7-90 \ \mu\text{m}$. For $\delta = 1$ the bound on R is 30 μm . See their Fig. 5 for details on the bound.

⁴ TAN 20A search for new forces probing a range of $|\alpha| \simeq 4 \times 10^{-3} - 1 \times 10^2$ and length scales $R \simeq 40-350 \ \mu$ m. See their Fig. 6 for details on the bound.

- ⁵ BERGE 18 uses results from the MICROSCOPE experiment to obtain constraints on non-Newtonian forces with strengths $10^{-11} \lesssim |\alpha| \lesssim 10^{-7}$ and length scales $R \gtrsim 10^5$ m. See their Figure 1 for more details. These constraints do not place limits on the size of extra flat dimensions. ⁶ FAYET 18A uses results from the MICROSCOPE experiment to obtain constraints on
- ^o FAYET 18A uses results from the MICROSCOPE experiment to obtain constraints on an EP-violating force possibly arising from a new U(1) gauge boson. For $R \gtrsim 10^7$ m the limits are $|\alpha| \leq a$ few 10^{-13} to a few 10^{-11} depending on the coupling, corresponding to $|\epsilon| \leq 10^{-24}$ for the coupling of the new spin-1 or spin-0 mediator. These constraints do not place limits on the size of extra flat dimensions. This extends the results of FAYET 18.
- ⁷ KLIMCHITSKAYA 17A uses an experiment that measures the difference of Casimir forces to obtain bounds on non-Newtonian forces with strengths $|\alpha| \simeq 10^5 10^{17}$ and length scales $R = 0.03 10 \ \mu$ m. See their Fig. 3. These constraints do not place limits on the size of extra flat dimensions.
- ⁸ XU 13 obtain constraints on non-Newtonian forces with strengths $|\alpha| \simeq 10^{34} 10^{36}$ and length scales $R \simeq 1 10$ fm. See their Fig. 4 for more details. These constraints do not place limits on the size of extra flat dimensions.
- ⁹BEZERRA 11 obtain constraints on non-Newtonian forces with strengths $10^{11} \leq |\alpha| \leq 10^{18}$ and length scales R = 30-1260 nm. See their Fig. 2 for more details. These constraints do not place limits on the size of extra flat dimensions.
- $^{10}\,{\rm SUSHKOV}$ 11 obtain improved limits on non-Newtonian forces with strengths $10^7 \lesssim |\alpha| \lesssim 10^{11}$ and length scales 0.4 $\mu{\rm m} < R <$ 4 $\mu{\rm m}$ (95% CL). See their Fig. 2. These bounds do not place limits on the size of extra flat dimensions. However, a model dependent bound of $M_* >$ 70 TeV is obtained assuming gauge bosons that couple to baryon number also propagate in (4 + δ) dimensions.
- ¹¹ BEZERRA 10 obtain improved constraints on non-Newtonian forces with strengths $10^{19} \lesssim |\alpha| \lesssim 10^{29}$ and length scales R = 1.6-14 nm (95% CL). See their Fig. 1. This bound does not place limits on the size of extra flat dimensions.

 12 MASUDA 09 obtain improved constraints on non-Newtonian forces with strengths $10^9 \lesssim |\alpha| \lesssim 10^{11}$ and length scales R = 1.0–2.9 μm (95% CL). See their Fig. 3. This bound does not place limits on the size of extra flat dimensions.

- ¹³ GERACI 08 obtain improved constraints on non-Newtonian forces with strengths $|\alpha| > 14,000$ and length scales $R = 5-15 \ \mu$ m. See their Fig. 9. This bound does not place limits on the size of extra flat dimensions.
- ¹⁴ TRENKEL 08 uses two independent measurements of Newton's constant G to constrain new forces with strength $|\alpha| \simeq 10^{-4}$ and length scales R = 0.02-1 m. See their Fig. 1. This bound does not place limits on the size of extra flat dimensions.
- 15 DECCA 07A search for new forces and obtain bounds in the region with strengths $|\alpha|\simeq 10^{13}-10^{18}$ and length scales R=20-86 nm. See their Fig. 6. This bound does not place limits on the size of extra flat dimensions.
- ¹⁶ KAPNER 07 search for new forces, probing a range of $|\alpha| \simeq 10^{-3} 10^5$ and length scales $R \simeq 10-1000 \ \mu\text{m}$. For $\delta = 1$ the bound on R is 44 μm . For $\delta = 2$, the bound is expressed in terms of M_* , here translated to a bound on the radius. See their Fig. 6 for details on the bound.
- ¹⁷ TU 07 search for new forces probing a range of $|\alpha| \simeq 10^{-1}$ -10⁵ and length scales $R \simeq 20$ -1000 μ m. For $\delta = 1$ the bound on R is 53 μ m. See their Fig. 3 for details on the bound.
- ¹⁸SMULLIN 05 search for new forces, and obtain bounds in the region with strengths $\alpha \simeq 10^3 10^8$ and length scales $R = 6 20 \ \mu m$. See their Figs. 1 and 16 for details on the bound. This work does not place limits on the size of extra flat dimensions.
- ¹⁹ HOYLE 04 search for new forces, probing α down to 10^{-2} and distances down to 10μ m. Quoted bound on R is for $\delta = 2$. For $\delta = 1$, bound goes to 160 μ m. See their Fig. 34 for details on the bound.
- ²⁰ CHIAVERINI 03 search for new forces, probing α above 10⁴ and λ down to 3 μ m, finding no signal. See their Fig. 4 for details on the bound. This bound does not place limits on the size of extra flat dimensions.
- ²¹LONG 03 search for new forces, probing α down to 3, and distances down to about 10 μ m. See their Fig. 4 for details on the bound.
- ²² HOYLE 01 search for new forces, probing α down to 10^{-2} and distances down to 20μ m. See their Fig. 4 for details on the bound. The quoted bound is for $\alpha \geq 3$.
- ²³ HOSKINS 85 search for new forces, probing distances down to 4 mm. See their Fig. 13 for details on the bound. This bound does not place limits on the size of extra flat dimensions.

Limits on R from On-Shell Production of Gravitons: $\delta = 2$

This section includes limits on on-shell production of gravitons in collider and astrophysical processes. Bounds quoted are on R, the assumed common radius of the flat extra dimensions, for $\delta = 2$ extra dimensions. Studies often quote bounds in terms of derived parameter; experiments are actually sensitive to the masses of the KK gravitons: $m_{\vec{n}} = |\vec{n}|/R$. See the Review on "Extra Dimensions" for details. Bounds are given in μ m for $\delta = 2$.

VALU	<i>IE</i> (µm)	CL%	DOCUMENT ID		TECN	COMMENT
<	3.8	95	¹ AAD	21F	ATLS	$p p \rightarrow j G$
<	0.00016	95	² HANNESTAD	03		Neutron star heating
• •	• We do not use the	following	data for averages	, fits,	limits, e	tc. ● ● ●
<	56	95				$p p \rightarrow Z G$
<	4.1	95	⁴ TUMASYAN	21 D	CMS	p p ightarrow j G
				17aq	CMS	$p p ightarrow \gamma G$
<	90	95				$p p ightarrow \gamma G$
			⁷ KHACHATRY	.16N	CMS	$p p ightarrow \gamma G$
			⁸ AAD	15CS	ATLS	$p p ightarrow \gamma G$
< 1	.27	95	⁹ AAD	13C	ATLS	$p p ightarrow \gamma G$
<	34.4		¹⁰ AAD	13 D	ATLS	p p ightarrow j j
<	0.0087	95	¹¹ AJELLO	12	FLAT	Neutron star γ sources
http	os://pdg.lbl.gov		Page 3		Create	ed: 12/4/2023 14:09

< 245 < 615 < 0.916 < 350 < 270 < 210 < 480 < 0.00038 < 610 < 0.96 < 0.096 < 0.096 < 0.051 < 300 < 0.66	95 95 95 95 95 95 95 95 95 95 95 95 95 9	 12 AALTONEN 13 ABAZOV 14 DAS 15 ABULENCIA,A 16 ABDALLAH 17 ACHARD 18 ACOSTA 19 CASSE 20 ABAZOV 21 HANNESTAD 22 HANNESTAD 23 HANNESTAD 24 HEISTER 25 FAIRBAIRN 26 HANHART 27 CASSISI 28 ACCIARRI 	08AC CDF 085 D0 08 CDF 05B DLPH 04E L3 04C CDF 04 CDF 04 D0 03 D0 03 D0 03 ALEP 01 01 00 L3 995 L3	$\begin{array}{l} p \overline{p} \rightarrow \gamma G, j G \\ p \overline{p} \rightarrow \gamma G \\ \text{Supernova cooling} \\ p \overline{p} \rightarrow j G \\ e^+ e^- \rightarrow \gamma G \\ e^+ e^- \rightarrow \gamma G \\ \overline{p} p \rightarrow j G \\ \text{Neutron star } \gamma \text{ sources} \\ \overline{p} p \rightarrow j G \\ \text{Supernova cooling} \\ \text{Diffuse } \gamma \text{ background} \\ \text{Neutron star } \gamma \text{ sources} \\ e^+ e^- \rightarrow \gamma G \\ \text{Cosmology} \\ \text{Supernova cooling} \\ \text{Red giants} \\ e^+ e^- \rightarrow Z G \end{array}$
<1500	90		993 L3	$e \cdot e \rightarrow ZG$

¹ AAD 21F search for $pp \rightarrow jG$, using 139 fb⁻¹ of data at $\sqrt{s} = 13$ TeV to place lower limits on M_D for two to six extra dimensions (see their Table X), from which this bound on R is derived. This limit supersedes that in AABOUD 18I.

² HANNESTAD 03 obtain a limit on *R* from the heating of old neutron stars by the surrounding cloud of trapped KK gravitons. Limits for all $\delta \leq 7$ are given in their Tables V and VI. These limits supersede those in HANNESTAD 02.

- ³ SIRUNYAN 21A search for $pp \rightarrow ZG$, using 137 fb⁻¹ of data at $\sqrt{s} = 13$ TeV to place lower limits on M_D for two to seven extra dimensions (see their Figure 12), from which this bound on R is derived. These limits supersede those obtained in SIRUNYAN 18BV.
- ⁴ TUMASYAN 21D search for $pp \rightarrow jG$, using 137 fb⁻¹ of data at $\sqrt{s} = 13$ TeV to place lower limits on M_D for two to seven extra dimensions (see their Table 3), from which this bound on R is derived. This limit supersedes that in SIRUNYAN 18S.

⁵ SIRUNYAN 17AQ search for $pp \rightarrow \gamma G$, using 12.9 fb⁻¹ of data at $\sqrt{s} = 13$ TeV to place limits on M_D for three to six extra dimensions (see their Table 3).

⁶AABOUD 16F search for $pp \rightarrow \gamma G$, using 3.2 fb⁻¹ of data at $\sqrt{s} = 13$ TeV to place limits on M_D for two to six extra dimensions (see their Figure 9), from which this bound on R is derived.

⁷ KHACHATRYAN 16N search for $pp \rightarrow \gamma G$, using 19.6 fb⁻¹ of data at $\sqrt{s} = 8$ TeV to place limits on M_D for three to six extra dimensions (see their Table 5).

⁸ AAD 15CS search for $pp \rightarrow \gamma G$, using 20.3 fb⁻¹ of data at $\sqrt{s} = 8$ TeV to place lower limits on M_D for two to six extra dimensions (see their Fig. 18).

⁹AAD 13C search for $pp \rightarrow \gamma G$, using 4.6 fb⁻¹ of data at $\sqrt{s} = 7$ TeV to place bounds on M_D for two to six extra dimensions, from which this bound on R is derived.

- ¹⁰ AAD 13D search for the dijet decay of quantum black holes in 4.8 fb⁻¹ of data produced in *pp* collisions at $\sqrt{s} = 7$ TeV to place bounds on M_D for two to seven extra dimensions, from which these bounds on *R* are derived. Limits on M_D for all $\delta \leq 7$ are given in their Table 3.
- ¹¹AJELLO 12 obtain a limit on R from the gamma-ray emission of point γ sources that arise from the photon decay of KK gravitons which are gravitationally bound around neutron stars. Limits for all $\delta \leq 7$ are given in their Table 7.
- ¹² AALTONEN 08AC search for $p\overline{p} \rightarrow \gamma G$ and $p\overline{p} \rightarrow jG$ at $\sqrt{s} = 1.96$ TeV with 2.0 fb⁻¹ and 1.1 fb⁻¹ respectively, in order to place bounds on the fundamental scale and size of the extra dimensions. See their Table III for limits on all $\delta \leq 6$.
- ¹³ABAZOV 08S search for $p\overline{p} \rightarrow \gamma G$, using 1 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV to place bounds on M_D for two to eight extra dimensions, from which these bounds on R are derived. See their paper for intermediate values of δ .

- ¹⁴DAS 08 obtain a limit on R from Kaluza-Klein graviton cooling of SN1987A due to plasmon-plasmon annihilation.
- ¹⁵ ABULENCIA, A 06 search for $p\overline{p} \rightarrow jG$ using 368 pb⁻¹ of data at $\sqrt{s} = 1.96$ TeV. See their Table II for bounds for all $\delta \leq 6$.
- ¹⁶ ABDALLAH 05B search for $e^+e^- \rightarrow \gamma G$ at $\sqrt{s} = 180-209$ GeV to place bounds on the size of extra dimensions and the fundamental scale. Limits for all $\delta \leq 6$ are given in their Table 6. These limits supersede those in ABREU 00Z.
- ¹⁷ ACHARD 04E search for $e^+e^- \rightarrow \gamma G$ at $\sqrt{s} = 189-209$ GeV to place bounds on the size of extra dimensions and the fundamental scale. See their Table 8 for limits with $\delta \leq 8$. These limits supersede those in ACCIARRI 99R.
- ¹⁸ ACOSTA 04C search for $\overline{p}p \rightarrow jG$ at $\sqrt{s} = 1.8$ TeV to place bounds on the size of extra dimensions and the fundamental scale. See their paper for bounds on $\delta = 4, 6$.
- ¹⁹ CASSE 04 obtain a limit on *R* from the gamma-ray emission of point γ sources that arises from the photon decay of gravitons around newly born neutron stars, applying the technique of HANNESTAD 03 to neutron stars in the galactic bulge. Limits for all $\delta \leq$ 7 are given in their Table I.
- ²⁰ABAZOV 03 search for $p\overline{p} \rightarrow jG$ at $\sqrt{s}=1.8$ TeV to place bounds on M_D for 2 to 7 extra dimensions, from which these bounds on R are derived. See their paper for bounds on intermediate values of δ . We quote results without the approximate NLO scaling introduced in the paper.
- ²¹ HANNESTAD 03 obtain a limit on R from graviton cooling of supernova SN1987a. Limits for all $\delta \leq 7$ are given in their Tables V and VI.
- ²² HANNESTAD 03 obtain a limit on *R* from gravitons emitted in supernovae and which subsequently decay, contaminating the diffuse cosmic γ background. Limits for all $\delta \leq 7$ are given in their Tables V and VI. These limits supersede those in HANNESTAD 02.
- ²³ HANNESTAD 03 obtain a limit on *R* from gravitons emitted in two recent supernovae and which subsequently decay, creating point γ sources. Limits for all $\delta \leq 7$ are given in their Tables V and VI. These limits are corrected in the published erratum.
- ²⁴ HEISTER 03C use the process $e^+e^- \rightarrow \gamma G$ at $\sqrt{s} = 189-209$ GeV to place bounds on the size of extra dimensions and the scale of gravity. See their Table 4 for limits with $\delta \leq 6$ for derived limits on M_D .
- ²⁵ FAIRBAIRN 01 obtains bounds on *R* from over production of KK gravitons in the early universe. Bounds are quoted in paper in terms of fundamental scale of gravity. Bounds depend strongly on temperature of QCD phase transition and range from $R < 0.13 \,\mu\text{m}$ to 0.001 μm for δ =2; bounds for δ =3,4 can be derived from Table 1 in the paper.
- ²⁶ HANHART 01 obtain bounds on *R* from limits on graviton cooling of supernova SN 1987a using numerical simulations of proto-neutron star neutrino emission.
- ²⁷ CASSISI 00 obtain rough bounds on M_D (and thus *R*) from red giant cooling for δ =2,3. See their paper for details.
- ²⁸ ACCIARRI 99S search for $e^+e^- \rightarrow ZG$ at $\sqrt{s}=189$ GeV. Limits on the gravity scale are found in their Table 2, for $\delta \leq 4$.

Mass Limits on M_{TT}

This section includes limits on the cut-off mass scale, M_{TT} , of dimension-8 operators from KK graviton exchange in models of large extra dimensions. Ambiguities in the UV-divergent summation are absorbed into the parameter λ , which is taken to be $\lambda = \pm 1$ in the following analyses. Bounds for $\lambda = -1$ are shown in parenthesis after the bound for $\lambda = +1$, if appropriate. Different papers use slightly different definitions of the mass scale. The definition used here is related to another popular convention by $M_{TT}^4 = (2/\pi) \Lambda_T^4$, as discussed in the above Review on "Extra Dimensions."

VALUE (TeV)		CL%	DOCUMENT ID	TECN	COMMENT
> 9.02 >20.6	(> 15.7)	95 95	¹ SIRUNYAN ² GIUDICE		pp ightarrow dijet, ang. distrib. Dim-6 operators
https://pc	lg.lbl.gov		Page 5	Cre	ated: 12/4/2023 14:09

• • • We do not use the following data for averages, fits, limits, etc. • • •

				503, 111	3, 1111113	
> 6.7		95	³ SIRUNYAN	21N	CMS	$p p ightarrow e^+ e^-$, $\mu^+ \mu^-$
> 6.9		95	⁴ SIRUNYAN	19AC	CMS	$pp \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma$
> 7.0	(>5.6)	95	⁵ SIRUNYAN	18DU	CMS	$pp \rightarrow \gamma\gamma$
> 6.5		95	⁶ AABOUD	17 AP	ATLS	$p p \rightarrow \gamma \gamma$
> 3.8		95	⁷ AAD	14BE	ATLS	$p p ightarrow e^+ e^-$, $\mu^+ \mu^-$
> 3.2		95	⁸ AAD	13E	ATLS	$pp \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma$
			⁹ BAAK	12	RVUE	Electroweak
> 0.90	(>0.92)	95	¹⁰ AARON	11C	H1	$e^{\pm} p \rightarrow e^{\pm} X$
> 1.48		95	¹¹ ABAZOV	09AE	D0	$p \overline{p} ightarrow$ dijet, ang. distrib.
> 1.45		95	¹² ABAZOV	09 D	D0	$p \overline{p} ightarrow ~e^+ e^-$, $\gamma \gamma$
> 1.1	(> 1.0)	95	¹³ SCHAEL	07A	ALEP	$e^+e^- ightarrow e^+e^-$
> 0.898	(> 0.998)	95	¹⁴ ABDALLAH	06C	DLPH	$e^+e^- \rightarrow \ \ell^+\ell^-$
> 0.853	(> 0.939)	95	¹⁵ GERDES	06		$p\overline{p} ightarrow e^+e^-, \gamma\gamma$
> 0.96	(> 0.93)	95	¹⁶ ABAZOV	05V	D0	$p\overline{p} \rightarrow \mu^+\mu^-$
> 0.78	(> 0.79)	95	¹⁷ CHEKANOV	04 B	ZEUS	$e^{\pm}p \rightarrow e^{\pm}X$
> 0.805	(> 0.956)	95	¹⁸ ABBIENDI	03 D	OPAL	$e^+e^- \rightarrow \gamma \gamma$
> 0.7	(> 0.7)	95	¹⁹ ACHARD	03 D	L3	$e^+e^- \rightarrow ZZ$
> 0.82	(> 0.78)	95	²⁰ ADLOFF	03	H1	$e^{\pm}p \rightarrow e^{\pm}X$
> 1.28	(> 1.25)	95	²¹ GIUDICE	03	RVUE	
> 0.80	(> 0.85)	95	²² HEISTER	03C	ALEP	$e^+e^- \rightarrow \gamma \gamma$
> 0.84	(> 0.99)	95	²³ ACHARD	0 2D	L3	$e^+e^- \rightarrow \gamma \gamma$
> 1.2	(>1.1)	95	²⁴ ABBOTT	01	D0	$p\overline{p} \rightarrow e^+ e^-, \gamma \gamma$
> 0.60	(> 0.63)	95	²⁵ ABBIENDI	00 R	OPAL	$e^+e^- ightarrow \mu^+\mu^-$
> 0.63	(> 0.50)	95	²⁵ ABBIENDI	00 R	OPAL	$e^+e^- \rightarrow \tau^+\tau^-$
> 0.68	(> 0.61)	95	²⁵ ABBIENDI	00 R	OPAL	$e^+e^- \rightarrow \mu^+\mu^-, \tau^+\tau^-$
	· · · ·		²⁶ ABREU	00A	DLPH	$e^+e^- \rightarrow \gamma\gamma$
> 0.680	(> 0.542)	95	²⁷ ABREU	00s	DLPH	$e^+e^- \rightarrow \mu^+\mu^-, \tau^+\tau^-$
> 15–28	. ,	99.7	²⁸ CHANG	00 B	RVUE	Electroweak
> 0.98		95	²⁹ CHEUNG	00	RVUE	$e^+e^- \rightarrow \gamma \gamma$
> 0.29–0.38	}	95	³⁰ GRAESSER	00	RVUE	$(g-2)_{\mu}$
> 0.50-1.1		95	³¹ HAN	00	RVUE	Electroweak
> 2.0	(> 2.0)	95	³² MATHEWS	00	RVUE	$\overline{p}p \rightarrow jj$
> 1.0	(> 1.1)	95	³³ MELE	00	RVUE	$e^+e^- \rightarrow VV$
	. ,		³⁴ ABBIENDI	99 P	OPAL	
			³⁵ ACCIARRI	99 M	L3	
			³⁶ ACCIARRI	99s	L3	
> 1.412	(> 1.077)	95	³⁷ BOURILKOV	99		$e^+e^- \rightarrow e^+e^-$

¹SIRUNYAN 18DD use dijet angular distributions in 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to place a lower bound on Λ_T , here converted to M_{TT} . This updates

the results of SIRUNYAN 17F. ² GIUDICE 03 place bounds on Λ_6 , the coefficient of the gravitationally-induced dimension-6 operator $(2\pi\lambda/\Lambda_6^2)(\sum \overline{f}\gamma_{\mu}\gamma^5 f)(\sum \overline{f}\gamma^{\mu}\gamma^5 f)$, using data from a variety of experiments. Results are quoted for $\lambda = \pm 1$ and are independent of δ .

³ SIRUNYAN 21N use 137 (140) fb⁻¹ of data from *pp* collisions at √s = 13 TeV in the dielectron (dimuon) channels to place a lower limit on Λ_T, here converted to M_{TT}. Bounds on individual channels can be found in their Table 7.
⁴ SIRUNYAN 19AC use 35.9 (36.3) fb⁻¹ of data from *pp* collisions at √s = 13 TeV in the dielectron (dimuon) channels to place a lower limit on Λ_T, here converted to M_{TT}. The dielectron and dimuon channels are combined with previous results in the dielectron.

The dielectron and dimuon channels are combined with previous results in the diphoton

channel to set the best limit. Bounds on individual channels and different priors can be found in their Table 2. This updates the results in KHACHATRYAN 15AE.

- ⁵ SIRUNYAN 18DU use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to place lower limits on M_{TT} (equivalent to their M_S). This updates the results of CHATRCHYAN 12R.
- ⁶ AABOUD 17AP use 36.7 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to place lower limits on M_{TT} (equivalent to their M_S). This updates the results of AAD 13AS.
- ⁷ AAD 14BE use 20 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV in the dilepton channel to place lower limits on M_{TT} (equivalent to their M_S).
- ⁸AAD 13E use 4.9 and 5.0 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV in the dielectron and dimuon channels, respectively, to place lower limits on M_{TT} (equivalent to their M_S). The dielectron and dimuon channels are combined with previous results in the diphoton channel to set the best limit. Bounds on individual channels and different priors can be found in their Table VIII.
- 9 BAAK 12 use electroweak precision observables to place bounds on the ratio Λ_T/M_D as a function of M_D . See their Fig. 22 for constraints with a Higgs mass of 120 GeV.
- ¹⁰ AARON 11C search for deviations in the differential cross section of $e^{\pm}p \rightarrow e^{\pm}X$ in 446 pb⁻¹ of data taken at $\sqrt{s} = 301$ and 319 GeV to place a bound on M_{TT} .
- ¹¹ABAZOV 09AE use dijet angular distributions in 0.7 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place lower bounds on Λ_T (equivalent to their M_S), here converted to M_{TT} .
- ¹²ABAZOV 09D use 1.05 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place lower bounds on Λ_T (equivalent to their M_s), here converted to M_{TT} .
- ¹³SCHAEL 07A use e^+e^- collisions at $\sqrt{s} = 189-209$ GeV to place lower limits on Λ_T , here converted to limits on M_{TT} .
- ¹⁴ABDALLAH 06C use e^+e^- collisions at $\sqrt{s} \sim 130-207$ GeV to place lower limits on M_{TT} , which is equivalent to their definition of M_s . Bound shown includes all possible final state leptons, $\ell = e, \mu, \tau$. Bounds on individual leptonic final states can be found in their Table 31.
- ¹⁵ GERDES 06 use 100 to 110 pb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.8$ TeV, as recorded by the CDF Collaboration during Run I of the Tevatron. Bound shown includes a K-factor of 1.3. Bounds on individual e^+e^- and $\gamma\gamma$ final states are found in their Table I.
- ¹⁶ABAZOV 05V use 246 pb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for deviations in the differential cross section to $\mu^+\mu^-$ from graviton exchange.
- ¹⁷ CHEKANOV 04B search for deviations in the differential cross section of $e^{\pm} p \rightarrow e^{\pm} X$ with 130 pb^{-1} of combined data and Q^2 values up to 40,000 GeV² to place a bound on M_{TT} .
- ¹⁸ ABBIENDI 03D use e^+e^- collisions at \sqrt{s} =181–209 GeV to place bounds on the ultraviolet scale M_{TT} , which is equivalent to their definition of M_s .
- ¹⁹ACHARD 03D look for deviations in the cross section for $e^+e^- \rightarrow ZZ$ from $\sqrt{s} = 200-209$ GeV to place a bound on M_{TT} .
- ²⁰ ADLOFF 03 search for deviations in the differential cross section of $e^{\pm}p \rightarrow e^{\pm}X$ at \sqrt{s} =301 and 319 GeV to place bounds on M_{TT} .
- 21 GIUDICE 03 review existing experimental bounds on $M_{\mathcal{TT}}$ and derive a combined limit.
- ²² HEISTER 03C use e^+e^- collisions at $\sqrt{s}=$ 189–209 GeV to place bounds on the scale of dim-8 gravitational interactions. Their M_s^{\pm} is equivalent to our M_{TT} with $\lambda=\pm 1$.
- ²³ ACHARD 02 search for s-channel graviton exchange effects in $e^+e^- \rightarrow \gamma\gamma$ at $E_{cm} = 192-209$ GeV.
- ²⁴ABBOTT 01 search for variations in differential cross sections to e^+e^- and $\gamma\gamma$ final states at the Tevatron.
- ²⁵ ABBIENDI 00R uses e^+e^- collisions at $\sqrt{s}=$ 189 GeV.
- ²⁶ ABREU 00A search for *s*-channel graviton exchange effects in $e^+e^- \rightarrow \gamma\gamma$ at $E_{\rm cm}$ = 189–202 GeV.

- ²⁷ ABREU 00S uses e^+e^- collisions at \sqrt{s} =183 and 189 GeV. Bounds on μ and τ individual final states given in paper.
- ²⁸ CHANG 00B derive 3σ limit on M_{TT} of (28,19,15) TeV for δ =(2,4,6) respectively assuming the presence of a torsional coupling in the gravitational action. Highly model dependent.
- ²⁹ CHEUNG 00 obtains limits from anomalous diphoton production at OPAL due to graviton exchange. Original limit for δ =4. However, unknown *UV* theory renders δ dependence unreliable. Original paper works in HLZ convention.
- ³⁰ GRAESSER 00 obtains a bound from graviton contributions to g-2 of the muon through loops of 0.29 TeV for $\delta=2$ and 0.38 TeV for $\delta=4,6$. Limits scale as $\lambda^{1/2}$. However calculational scheme not well-defined without specification of high-scale theory. See the "Extra Dimensions Review."
- ³¹ HAN 00 calculates corrections to gauge boson self-energies from KK graviton loops and constrain them using S and T. Bounds on M_{TT} range from 0.5 TeV (δ =6) to 1.1 TeV (δ =2); see text. Limits have strong dependence, $\lambda^{\delta+2}$, on unknown λ coefficient.
- ³² MATHEWS 00 search for evidence of graviton exchange in CDF and DØ dijet production data. See their Table 2 for slightly stronger δ -dependent bounds. Limits expressed in terms of $\widetilde{M}_{S}^{4} = M_{TT}^{4}/8$.
- ³³ MELE 00 obtains bound from KK graviton contributions to $e^+e^- \rightarrow VV$ ($V=\gamma,W,Z$) at LEP. Authors use Hewett conventions.
- ³⁴ABBIENDI 99P search for s-channel graviton exchange effects in $e^+e^- \rightarrow \gamma\gamma$ at $E_{\rm cm}$ =189 GeV. The limits $G_+ > 660$ GeV and $G_- > 634$ GeV are obtained from combined $E_{\rm cm}$ =183 and 189 GeV data, where G_{\pm} is a scale related to the fundamental gravity scale.
- ³⁵ ACCIARRI 99M search for the reaction $e^+e^- \rightarrow \gamma G$ and s-channel graviton exchange effects in $e^+e^- \rightarrow \gamma \gamma$, W^+W^- , ZZ, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $q\overline{q}$ at $E_{\rm cm}$ =183 GeV. Limits on the gravity scale are listed in their Tables 1 and 2.
- ³⁶ ACCIARRI 99S search for the reaction $e^+e^- \rightarrow ZG$ and s-channel graviton exchange effects in $e^+e^- \rightarrow \gamma\gamma$, W^+W^- , ZZ, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $q\overline{q}$ at $E_{\rm cm}$ =189 GeV. Limits on the gravity scale are listed in their Tables 1 and 2.
- ³⁷ BOURILKOV 99 performs global analysis of LEP data on e^+e^- collisions at \sqrt{s} =183 and 189 GeV. Bound is on Λ_T .

Limits on $1/R = M_c$

This section includes limits on $1/R = M_c$, the compactification scale in models with one TeV-sized extra dimension, due to exchange of Standard Model KK excitations. Bounds assume fermions are not in the bulk, unless stated otherwise. See the "Extra Dimensions" review for discussion of model dependence.

VALUE (TeV)	CL%	DOCUMENT ID	TECN	COMMENT
>4.16	95		ATLS	$p p ightarrow \ell \overline{\ell}$
>6.1		² BARBIERI 04	RVUE	Electroweak
• • • We do not	use the	following data for average	s, fits, li	imits, etc. • • •
		³ AVNISH 21	RVUE	$p p \rightarrow multijet$
		⁴ AABOUD 18AV	ATLS	$pp \rightarrow t\overline{t}t\overline{t}$
		⁵ AABOUD 18CE		
>3.8	95	⁶ ACCOMANDO 15		
>3.40	95	⁷ KHACHATRY15⊤		
		⁸ CHATRCHYAN 13AG	CMS	$p p ightarrow \ell X$
>1.38	95	⁹ CHATRCHYAN 13w	CMS	$p p \rightarrow \gamma \gamma$, δ =6, M_D =5 TeV
>0.715	95	¹⁰ EDELHAUSER 13	RVUE	$p p ightarrow \ell \overline{\ell} + X$
>1.40	95	¹¹ AAD 12CP	ATLS	$pp ightarrow\gamma\gamma$, $\delta{=}$ 6, $M_{D}{=}$ 5 TeV
https://pdg.lb	l.gov	Page 8		Created: 12/4/2023 14:09

>1.23	95	¹² AAD	12X	ATLS	$pp ightarrow \gamma \gamma$, $\delta=$ 6, $M_D=$ 5 TeV
>0.26	95	¹³ ABAZOV	12M	D0	$p\overline{p} \rightarrow \mu\mu$
>0.75	95	¹⁴ BAAK	12	RVUE	Electroweak
		¹⁵ FLACKE	12	RVUE	Electroweak
>0.43	95	¹⁶ NISHIWAKI	12	RVUE	$H ightarrow ~W$ W, $\gamma \gamma$
>0.729	95	¹⁷ AAD	11F	ATLS	$p p ightarrow \gamma \gamma$, $\delta {=}$ 6, $M_D {=}$ 5 TeV
>0.961	95	¹⁸ AAD	11X	ATLS	$p p ightarrow \gamma \gamma$, $\delta {=}$ 6, $M_D^{-} {=}$ 5 TeV
>0.477	95	¹⁹ ABAZOV	10P	D0	$p \overline{p} ightarrow \gamma \gamma$, $\delta =$ 6, $M_D^- =$ 5 TeV
>1.59	95	²⁰ ABAZOV	09AE	D0	$p \overline{p} ightarrow$ dijet, angular dist.
>0.6	95	²¹ HAISCH	07	RVUE	$\overline{B} \rightarrow X_{S} \gamma$
>0.6	90	²² GOGOLADZE	06	RVUE	Electroweak
>3.3	95	²³ CORNET	00	RVUE	Electroweak
> 3.3–3.8	95	²⁴ RIZZO	00	RVUE	Electroweak

¹ AAD 12CC use 4.9 and 5.0 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV in the dielectron and dimuon channels, respectively, to place a lower bound on the mass of the lightest KK Z/γ boson (equivalent to $1/R = M_c$). The limit quoted here assumes a flat prior corresponding to when the pure Z/γ KK cross section term dominates. See their Section 15 for more details.

- ² BARBIERI 04 use electroweak precision observables to place a lower bound on the compactification scale 1/R. Both the gauge bosons and the Higgs boson are assumed to propagate in the bulk.
- ³ AVNISH 21 perform a study on the ATLAS collaboration search for multiple jets plus missing transverse energy from pp collisions at $\sqrt{s} = 13$ TeV and integrated luminosity of 139 fb⁻¹, to place constraints on the compactification scale and cutoff scale Λ in universal extra dimension models with Standard Model fields propagating in the bulk.
- ⁴ AABOUD 18AV use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV in final states with multiple b-jets, to place a lower bound on the compactification scale in a model with two universal extra dimensions. Assuming the radii of the two extra dimensions are equal, a lower limit of 1.8 TeV for the Kaluza-Klein mass is obtained.
- ⁵ AABOUD 18CE use 36.1 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV in final states with same-charge leptons and b-jets, to place a lower bound on the compactification scale in a model with two universal extra dimensions. Assuming the radii of the two extra dimensions are equal, a lower limit of 1.45 TeV for the Kaluza-Klein mass is obtained.
- ⁶ ACCOMANDO 15 use electroweak precision observables to place a lower bound on the compactification scale 1/R. See their Fig. 2 for the bound as a function of $\sin\beta$, which parametrizes the VEV contribution from brane and bulk Higgs fields. The quoted value is for the minimum bound which occurs at $\sin\beta = 0.45$.
- is for the minimum bound which occurs at $\sin\beta = 0.45$. ⁷ KHACHATRYAN 15T use 19.7 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV to place a lower bound on the compactification scale 1/R.
- ⁸ CHATRCHYAN 13AQ use 5.0 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV and a further 3.7 fb⁻¹ of data at $\sqrt{s} = 8$ TeV to place a lower bound on the compactification scale 1/R, in models with universal extra dimensions and Standard Model fields propagating in the bulk. See their Fig. 5 for the bound as a function of the universal bulk fermion mass parameter μ .
- ⁹ CHATRCHYAN 13W use diphoton events with large missing transverse momentum in 4.93 fb⁻¹ of data produced from pp collisions at $\sqrt{s} = 7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c = 20$. The model parameters are chosen such that

¹⁰ EDELHAUSER 13 use 19.6 and 20.6 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV analyzed by the CMS Collaboration in the dielectron and dimuon channels, respectively, to place a lower bound on the mass of the second lightest Kaluza-Klein Z/γ boson (converted to a limit on $1/R = M_c$). The bound assumes Standard Model fields propagating

in the bulk and that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c=$ 20.

¹¹ AAD 12CP use diphoton events with large missing transverse momentum in 4.8 fb⁻¹ of data produced from pp collisions at $\sqrt{s} = 7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c = 20$. The model parameters are chosen such that the decay e^* λ for a course with an approxible branching fraction

decay $\gamma^* \rightarrow G\gamma$ occurs with an appreciable branching fraction.

- ¹² AAD 12X use diphoton events with large missing transverse momentum in 1.07 fb⁻¹ of data produced from pp collisions at $\sqrt{s} = 7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c = 20$. The model parameters are chosen such that the decay $\gamma^* \rightarrow G\gamma$ occurs with an appreciable branching fraction.
- ¹³ ABAZOV 12M use same-sign dimuon events in 7.3 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the compactification scale 1/R, in models with universal extra dimensions where all Standard Model fields propagate in the bulk.
- ¹⁴ BAAK 12 use electroweak precision observables to place a lower bound on the compactification scale 1/R, in models with universal extra dimensions and Standard Model fields propagating in the bulk. Bound assumes a 125 GeV Higgs mass. See their Fig. 25 for the bound as a function of the Higgs mass.
- ¹⁵ FLACKE 12 use electroweak precision observables to place a lower bound on the compactification scale 1/R, in models with universal extra dimensions and Standard Model fields propagating in the bulk. See their Fig. 1 for the bound as a function of the universal bulk fermion mass parameter μ .
- ¹⁶ NISHIWAKI 12 use up to 2 fb⁻¹ of data from the ATLAS and CMS experiments that constrains the production cross section of a Higgs-like particle to place a lower bound on the compactification scale 1/R in universal extra dimension models. The quoted bound assumes Standard Model fields propagating in the bulk and a 125 GeV Higgs mass. See their Fig. 1 for the bound as a function of the Higgs mass.
- ¹⁷ AAD 11F use diphoton events with large missing transverse energy in 3.1 pb⁻¹ of data produced from *pp* collisions at $\sqrt{s} = 7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c = 20$. The model parameters are chosen such that the decay $\gamma^* \rightarrow G \gamma$ occurs with an appreciable branching fraction.
- ¹⁸ AAD 11x use diphoton events with large missing transverse energy in 36 pb⁻¹ of data produced from *pp* collisions at $\sqrt{s} = 7$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c = 20$. The model parameters are chosen such that the decay $\gamma^* \rightarrow G \gamma$ occurs with an appreciable branching fraction.
- ¹⁹ ABAZOV 10P use diphoton events with large missing transverse energy in 6.3 fb⁻¹ of data produced from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the compactification scale in a universal extra dimension model with gravitational decays. The bound assumes that the cutoff scale Λ , for the radiative corrections to the Kaluza-Klein masses, satisfies $\Lambda/M_c=20$. The model parameters are chosen such that the decay

 $\gamma^* \rightarrow \ G \gamma$ occurs with an appreciable branching fraction.

- ²⁰ABAZOV 09AE use dijet angular distributions in 0.7 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the compactification scale.
- ²¹ HAISCH 07 use inclusive \overline{B} -meson decays to place a Higgs mass independent bound on the compactification scale 1/R in the minimal universal extra dimension model.
- ²² GOGOLADZE 06 use electroweak precision observables to place a lower bound on the compactification scale in models with universal extra dimensions. Bound assumes a 115 GeV Higgs mass. See their Fig. 3 for the bound as a function of the Higgs mass.

- ²³CORNET 00 translates a bound on the coefficient of the 4-fermion operator $(\bar{\ell}\gamma_{\mu}\tau^{a}\ell)(\bar{\ell}\gamma^{\mu}\tau^{a}\ell)$ derived by Hagiwara and Matsumoto into a limit on the mass scale of KK *W* bosons.
- of KK W bosons.
 ²⁴ RIZZO 00 obtains limits from global electroweak fits in models with a Higgs in the bulk (3.8 TeV) or on the standard brane (3.3 TeV).

Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions

This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the graviton in the warped extra dimension model of Randall and Sundrum. Bounds in parenthesis assume Standard Model fields propagate in the bulk. Experimental bounds depend strongly on the warp parameter, k. See the "Extra Dimensions" review for a full discussion.

Here we list limits for the value of	the warp parameter A	$k/\overline{M}_P = 0.1.$
--------------------------------------	----------------------	---------------------------

VALUE (TeV)	CL%	DOCUMENT ID	TECN	COMMENT				
>4.78	95	¹ SIRUNYAN	21N CMS	$p p ightarrow G ightarrow e^+ e^-$, $\mu^+ \mu^-$				
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
		² AAD	22F ATLS	pp ightarrow G ightarrow HH				
		³ TUMASYAN	22D CMS	$p p \rightarrow G \rightarrow W W$				
		⁴ TUMASYAN	22J CMS	$p p \rightarrow G \rightarrow Z Z$				
		⁵ TUMASYAN	22R CMS	$p p \rightarrow G \rightarrow Z Z$				
		⁶ TUMASYAN	220 CMS	p p ightarrow G ightarrow H H				
		⁷ AAD	21AF ATLS	$p p \rightarrow G \rightarrow Z Z$				
>4.5	95	⁸ AAD	21AY ATLS	$p p \rightarrow G \rightarrow \gamma \gamma$				
		⁹ AAD	20AT ATLS	pp ightarrow G ightarrow WW, ZZ				
		¹⁰ AAD	20c ATLS	$p p \rightarrow G \rightarrow H H$				
		¹¹ AAD	20T ATLS	$p p \rightarrow G \rightarrow b \overline{b}$				
>2.6	95	¹² SIRUNYAN	20AI CMS	p p ightarrow G ightarrow j j				
		¹³ SIRUNYAN	20F CMS	p p ightarrow G ightarrow H H				
		¹⁴ SIRUNYAN	20Q CMS	p p ightarrow G ightarrow WW, ZZ				
		¹⁵ AABOUD	190 ATLS	p p ightarrow G ightarrow H H				
		¹⁶ AAD	19D ATLS	pp ightarrow G ightarrow WW, ZZ				
		¹⁷ SIRUNYAN	19 CMS	p p ightarrow G ightarrow H H				
		¹⁸ SIRUNYAN	19BE CMS	p p ightarrow G ightarrow H H				
		¹⁹ AABOUD	18BI ATLS	$p p \rightarrow G \rightarrow t \overline{t}$				
		²⁰ AABOUD	18cj ATLS	$p p ightarrow \ G ightarrow \ V V, V H, \ell \overline{\ell}$				
		²¹ AABOUD	18CQ ATLS	$p p \rightarrow G \rightarrow H H$				
		²² AABOUD	18cwATLS	$p p \rightarrow G \rightarrow H H$				
		²³ SIRUNYAN	18AF CMS	$p p \rightarrow G \rightarrow H H$				
		²⁴ SIRUNYAN	18AS CMS	$p p \rightarrow G \rightarrow Z Z$				
		²⁵ SIRUNYAN	18CWCMS	p p ightarrow G ightarrow H H				
>4.1	95	²⁶ SIRUNYAN	18DU CMS	$p p ightarrow G ightarrow \gamma \gamma$				
		²⁷ SIRUNYAN	18I CMS	$p p ightarrow G ightarrow b \overline{b}$				
		²⁸ AAD	16R ATLS	$p p \rightarrow G \rightarrow W W, Z Z$				
		²⁹ AAD	15AZ ATLS	$p p \rightarrow G \rightarrow W W$				
		³⁰ AAD	15CT ATLS	$pp \rightarrow G \rightarrow WW, ZZ$				
>2.68	95	³¹ AAD	14V ATLS	pp $ ightarrow$ G $ ightarrow$ e $^+$ e $^-$, μ^+ μ^-				
>1.23 (>0.84)	95	³² AAD	13A ATLS	$p p \rightarrow G \rightarrow W W$				
>0.94 (>0.71)	95	³³ AAD	13A0 ATLS	$p p \rightarrow G \rightarrow W W$				

>2.23 >0.845	95 95	³⁴ aad ³⁵ aad ³⁶ aaltonen ³⁷ baak ³⁸ aaltonen	13AS ATLS 12AD ATLS 12V CDF 12 RVUE 11G CDF	$pp \rightarrow \gamma\gamma, e^+e^-, \mu^+\mu^-$ $pp \rightarrow G \rightarrow ZZ$ $p\overline{p} \rightarrow G \rightarrow ZZ$ Electroweak $p\overline{p} \rightarrow G \rightarrow ZZ$
>1.058	95	³⁹ AALTONEN	11R CDF	$p\overline{p} ightarrowG ightarrowe^+e^-$, $\gamma\gamma$
>0.754	95	⁴⁰ ABAZOV	11H D0	$p \overline{p} \rightarrow G \rightarrow W W$
>0.607		⁴¹ AALTONEN	10N CDF	$p \overline{p} \rightarrow G \rightarrow W W$
>1.05		⁴² ABAZOV	10F D0	$p \overline{p} ightarrow$ $G ightarrow$ $e^+ e^-$, $\gamma \gamma$
		⁴³ AALTONEN	08s CDF	$p \overline{p} \rightarrow G \rightarrow Z Z$
>0.90		⁴⁴ ABAZOV	08J D0	$p\overline{p} ightarrowG ightarrowe^+e^-$, $\gamma\gamma$
		⁴⁵ AALTONEN	07G CDF	$p \overline{p} \rightarrow G \rightarrow \gamma \gamma$
>0.889		⁴⁶ AALTONEN	07н CDF	$p \overline{p} \rightarrow G \rightarrow e \overline{e}$
>0.785		47 ABAZOV	05N D0	$p\overline{p} ightarrowG ightarrow\ell\ell$, $\gamma\gamma$
>0.71		⁴⁸ ABULENCIA	05A CDF	$p \overline{p} \rightarrow G \rightarrow \ell \overline{\ell}$

¹SIRUNYAN 21N use 137 (140) fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for dilepton resonances in the dielectron (dimuon) channel. See Table 6 for other limits with warp parameter values $k/\overline{M}_P = 0.01$ and 0.05. This updates the results of SIRUNYAN 18BB.

² AAD 22F use 126–139 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}b\overline{b}$ final state. See their Figure 14 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $k/\overline{M}_P = 1$, gravitons in the mass range 298–1460 GeV are excluded. This updates the results of AABOUD 19A.

- ³ TUMASYAN 22D use 137 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for WW resonances in $\ell \nu q q$ final states ($\ell = e, \mu$). See their Figure 6 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $k/\overline{M}_P = 0.5$. This updates the results of SIRUNYAN 18AX.
- ⁴ TUMASYAN 22J use 137 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for *ZZ* resonances in the $\nu \overline{\nu} q \overline{q}$ final state. See their Figure 10 for the limit on the KK graviton mass as a function of the cross section times branching fraction, assuming $k/\overline{M}_P = 0.5$. This updates the result of SIRUNYAN 18BK.
- ⁵ TUMASYAN 22R use 138 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for ZZ resonances in $2\ell 2q$ final states ($\ell = e, \mu$). See their Figure 8 for the limit on the KK graviton mass as a function of the cross section times branching fraction. Assuming $k/M_P = 0.5$, a graviton mass is excluded below 1200 GeV. This updates the result of SIRUNYAN 18DJ.
- ⁶TUMASYAN 22U use 138 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}q\overline{q}'\ell\nu$, $b\overline{b}\ell\nu\ell\nu$ and $b\overline{b}\ell\nu\nu\ell\nu\nu$ final states $(\ell = e, \mu)$. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P = 0.3$ and 0.5. This updates the results of SIRUNYAN 19CF and SIRUNYAN 18F. ⁷AAD 21AF use 139 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for ZZ
- ⁷ AAD 21AF use 139 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for ZZ resonances in the $\ell\ell\ell\ell\ell$ and $\ell\ell\nu\bar{\nu}$ final states ($\ell=e, \mu$). See their Figure 8 for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/M_P = 1$. This updates the results of AAD 15AU and AABOUD 18BF.
- ⁸ AAD 21AY use 139 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. This updates the results of AABOUD 17AP.
- ⁹ AAD 20AT use 139 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for diboson resonances in semileptonic final states ($\ell \nu q q, \ell \ell q q, \nu \nu q q$). See their Figure 15 for the limit on the cross section times branching fraction as a function of the KK graviton mass. Lower limits on the graviton mass are also given for $k/M_P = 1$. This updates the results of AABOUD 18AK and AABOUD 18AL.

- ¹⁰ AAD 20C use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}b\overline{b}$, $b\overline{b}W^+W^-$, and $b\overline{b}\tau^+\tau^-$ final states. See their Figure 5(b)(c) for limits on the cross section as a function of the KK graviton mass. In the case of $k/\overline{M}_P = 1$ and 2, gravitons are excluded in the mass range 260–3000 GeV and 260–1760 GeV, respectively.
- ¹¹ AAD 20T use 139 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for narrow resonances decaying to bottom quark pairs. See their Figure 7 for the limit on the product of the cross section, branching fraction, acceptance and *b*-tagging efficiency as a function of the KK graviton mass. In the case of $k/M_P = 0.2$, KK gravitons in the mass range 1.25–2.8 TeV are excluded.
- ¹² SIRUNYAN 20AI use 137 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for dijet resonances. See their Figure 6 for the limit on the product of the cross section, branching fraction and acceptance as a function of the KK graviton mass. This updates the results of SIRUNYAN 18BO.
- ¹³ SIRUNYAN 20F use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}ZZ$ final state. See their Figure 4 for limits on the cross section times branching fraction as a function of the KK graviton mass, and Figure 5 for limits as a function of k/\overline{M}_P .
- ¹⁴ SIRUNYAN 20Q use 77.3 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for diboson resonances with dijet final states. See their Figure 12 for the limit on the cross section times branching fraction as a function of the KK graviton mass, including the theoretical prediction for $k/\overline{M}_P = 0.5$. This updates the results of SIRUNYAN 18P.
- ¹⁵ AABOUD 190 use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}WW$ final state. See their Figure 12 for limits on the cross section times branching fraction as a function of the KK graviton mass for $k/\overline{M}_P = 1$ and $k/\overline{M}_P = 2$.
- ¹⁶ AAD 19D use 139 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for diboson resonances in the all-hadronic final state. See their Figure 9(b) for the limit on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P = 1$. This updates the results of AABOUD 18F.
- ¹⁷ SIRUNYAN 19 use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $\gamma \gamma b \overline{b}$ final state. See their Figure 9 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $k/\overline{M}_P = 1$, gravitons in the mass range 290–810 GeV are excluded. This updates the result of KHACHATRYAN 16BQ.
- ¹⁸ SIRUNYAN 19BE use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production by combining the results from four final states: $b\overline{b}\gamma\gamma$, $b\overline{b}\tau\overline{\tau}$, $b\overline{b}b\overline{b}$, and $b\overline{b}VV$. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass.
- ¹⁹ AABOUD 18BI use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for top-quark pairs decaying into the lepton-plus jets topology. See their Figure 16 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $k/\overline{M}_P = 1$.
- ²⁰ AABOUD 18CJ combine the searches for heavy resonances decaying into bosonic and leptonic final states from 36.1 fb⁻¹ of pp collision data at $\sqrt{s} = 13$ TeV. The lower limit on the KK graviton mass, with $k/\overline{M}_P = 1$, is 2.3 TeV.
- ²¹ AABOUD 18CQ use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}\tau^+\tau^-$ final state. See their Figure 2 for limits on the cross section times branching fraction as a function of the KK graviton mass. Assuming $k/\overline{M}_P = 1$, gravitons in the mass range 325–885 GeV are excluded.
- ²² AABOUD 18CW use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $\gamma \gamma b \overline{b}$ final state. See their Figure 7 for limits on the cross section times branching fraction as a function of the KK graviton mass.
- ²³ SIRUNYAN 18AF use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}b\overline{b}$ final state. See their Figure 9 for limits on the

cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P = 0.5$. This updates the results of KHACHATRYAN 15R.

- ²⁴ SIRUNYAN 18AS use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for ZZ resonances in the $\ell\ell\nu\overline{\nu}$ final state ($\ell=e, \mu$). See their Figure 5 for the limit on the KK graviton mass as a function of the cross section times branching fraction, including theoretical values for $k/\overline{M}_P = 0.1, 0.5$, and 1.0.
- ²⁵ SIRUNYAN 18CW use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for Higgs boson pair production in the $b\overline{b}b\overline{b}$ final state. See their Figure 8 for limits on the cross section times branching fraction as a function of the KK graviton mass, including theoretical values for $k/\overline{M}_P = 0.5$.
- ²⁶ SIRUNYAN 18DU use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV, in the diphoton channel to place a lower limit on the mass of the lightest KK graviton. See their paper for limits with other warp parameter values $k/M_P = 0.01$ and 0.2. This updates the results of KHACHATRYAN 16M.
- ²⁷ SIRUNYAN 18I use 19.7 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV to search for narrow resonances decaying to bottom quark pairs. See their Figure 3 for the limit on the KK graviton mass as a function of the cross section times branching fraction in the mass range of 325–1200 GeV.
- ²⁸AAD 16R use 20.3 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 4 for the limit on the KK graviton mass as a function of the cross section times branching fraction.
- ²⁹ AAD 15AZ use 20.3 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV to place a lower bound on the mass of the lightest KK graviton. See their Figure 2 for limits on the KK graviton mass as a function of the cross section times branching ratio.
- ³⁰AAD 15CT use 20.3 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV to place a lower bound on the mass of the lightest KK graviton. See their Figures 6b and 6c for the limit on the KK graviton mass as a function of the cross section times branching fraction.
- ³¹ AAD 14V use 20.3 (20.5) fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 8$ TeV in the dielectron (dimuon) channels to place a lower bound on the mass of the lightest KK graviton. This updates the results of AAD 12CC .
- ³²AAD 13A use 4.7 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV in the $\ell \nu \ell \nu$ channel, to place a lower bound on the mass of the lightest KK graviton.
- ³³AAD 13AO use 4.7 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV in the $\ell \nu jj$ channel, to place a lower bound on the mass of the lightest KK graviton.
- ³⁴AAD 13AS use 4.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 7$ TeV in the diphoton channel to place lower limits on the mass of the lightest KK graviton. The diphoton channel is combined with previous results in the dielectron and dimuon channels to set the best limit. See their Table 2 for warp parameter values k/\overline{M}_P between 0.01 and 0.1. This updates the results of AAD 12Y.
- ³⁵AAD 12AD use 1.02 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV to search for KK gravitons in a warped extra dimension decaying to ZZ dibosons in the *IIjj* and *IIII* channels ($\ell = e, \mu$). The limit is quoted for the combined *IIjj* + *IIII* channels. See their Figure 5 for limits on the cross section $\sigma(G \rightarrow ZZ)$ as a function of the graviton mass.
- ³⁶ AALTONEN 12V use 6 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in a warped extra dimension decaying to ZZ dibosons in the *IIjj* and *IIII* channels ($\ell = e, \mu$). It provides improved limits over the previous analysis in AALTONEN 11G. See their Figure 16 for limits from all channels combined on the cross section times branching ratio $\sigma(p\overline{p} \rightarrow G^* \rightarrow ZZ)$ as a function of the graviton mass.
- ³⁷ BAAK 12 use electroweak precision observables to place a lower bound on the compactification scale $k e^{-\pi k R}$, assuming Standard Model fields propagate in the bulk and the Higgs is confined to the IR brane. See their Fig. 27 for more details.
- ³⁸ AALTONEN 11G use 2.5–2.9 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in a warped extra dimension decaying to ZZ dibosons via the eeee, $ee\mu\mu$, $\mu\mu\mu\mu\mu$, eejj, and $\mu\mu jj$ channels. See their Fig. 20 for limits on the cross section $\sigma(G \rightarrow ZZ)$ as a function of the graviton mass.

- ³⁹ AALTONEN 11R uses 5.7 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV in the dielectron channel to place a lower bound on the mass of the lightest graviton. It provides combined limits with the diphoton channel analysis of AALTONEN 11U. For warp parameter values k/M_P between 0.01 to 0.1 the lower limit on the mass of the lightest graviton is between 612 and 1058 GeV. See their Table I for more details.
- ⁴⁰ ABAZOV 11H use 5.4 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the mass of the lightest graviton. Their 95% C.L. exclusion limit does not include masses less than 300 GeV.
- not include masses less than 300 GeV. 41 AALTONEN 10N use 2.9 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the mass of the lightest graviton.
- ⁴² ABAZOV 10F use 5.4 fb⁻¹ of data from $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to place a lower bound on the mass of the lightest graviton. For warp parameter values of k/\overline{M}_P between 0.01 and 0.1 the lower limit on the mass of the lightest graviton is between 560 and 1050 GeV. See their Fig. 3 for more details.
- ⁴³ AALTONEN 085 use $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to four electrons via two Z bosons using 1.1 fb⁻¹ of data. See their Fig. 8 for limits on $\sigma \cdot B(G \rightarrow ZZ)$ versus the graviton mass.
- ⁴⁴ ABAZOV 08J use $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons and photons using 1 fb⁻¹ of data. For warp parameter values of k/\overline{M}_P between 0.01 and 0.1 the lower limit on the mass of the lightest excitation is between 300 and 900 GeV. See their Fig. 4 for more details.
- ⁴⁵ AALTONEN 07G use $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to photons using 1.2 fb⁻¹ of data. For warp parameter values of $k/\overline{M}_P = 0.1, 0.05$, and 0.01 the bounds on the graviton mass are 850, 694, and 230 GeV, respectively. See their Fig. 3 for more details. See also AALTONEN 07H.
- ⁴⁶ AALTONEN 07H use $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to electrons using 1.3 fb⁻¹ of data. For a warp parameter value of $k/\overline{M}_P = 0.1$ the bound on the graviton mass is 807 GeV. See their Fig. 4 for more details. A combined analysis with the diphoton data of AALTONEN 07G yields for $k/\overline{M}_P = 0.1$ a graviton mass lower bound of 889 GeV.
- ⁴⁷ ABAZOV 05N use $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons, electrons or photons, using 260 pb⁻¹ of data. For warp parameter values of $k/M_P = 0.1$, 0.05, and 0.01, the bounds on the graviton mass are 785, 650 and 250 GeV respectively. See their Fig. 3 for more details.
- ⁴⁸ ABULENCIA 05A use $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV to search for KK gravitons in warped extra dimensions. They search for graviton resonances decaying to muons or electrons, using 200 pb⁻¹ of data. For warp parameter values of $k/\overline{M}_P = 0.1$, 0.05, and 0.01, the bounds on the graviton mass are 710, 510 and 170 GeV respectively.

Limits on Kaluza-Klein Gluons in Warped Extra Dimensions

This section places limits on the mass of the first Kaluza-Klein (KK) excitation of the gluon in warped extra dimension models with Standard Model fields propagating in the bulk. Bounds are given for a specific benchmark model with $\Gamma/m = 15.3\%$ where Γ is the width and *m* the mass of the KK gluon. See the "Extra Dimensions" review for more discussion.

VALUE (TeV)	CL%	DOCUMENT ID	TECN	COMMENT
>3.8	95	¹ AABOUD	18bi ATLS	$g_{KK} \rightarrow t \overline{t} \rightarrow \ell j$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		² TUMASYAN	22C CMS	$g_{KK} ightarrow$ Rj $ ightarrow$ jjj
		³ AABOUD	19AS ATLS	$g_{KK} \rightarrow t \overline{t} \rightarrow j j$
		⁴ SIRUNYAN	19AL CMS	$g_{KK} ightarrow$ tT
>2.5	95	⁵ CHATRCHYAI	N 13BM CMS	$g_{KK} \rightarrow t \overline{t}$
		⁶ CHEN	13A	$\overline{B} \rightarrow X_s \gamma$
>1.5	95	⁷ AAD		$g_{KK} \rightarrow t \overline{t} \rightarrow \ell j$

¹AABOUD 18BI use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV. This result updates AAD 13AQ.

- ²TUMASYAN 22C use 138 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to place limits on a KK gluon decaying to gluons via a spin-0 radion, R. See their Figure 5 for limits on the cross section times branching fraction as a function of the KK gluon mass and various values of the radion mass.
- ³AABOUD 19AS use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV. An upper bound of 3.4 TeV is placed on the KK gluon mass for $\Gamma/m = 30\%$.
- ⁴ SIRUNYAN 19AL use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to place limits on a KK gluon decaying to a top quark and a heavy vector-like fermion, T. KK gluon masses between 1.5 and 2.3 TeV and between 2.0 and 2.4 TeV are excluded for T masses of 1.2 and 1.5 TeV, respectively.
- ⁵ CHATRCHYAN 13BM use 19.7 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV. Bound is for a width of approximately 15–20% of the KK gluon mass.
- ⁶CHEN 13A place limits on the KK mass scale for a specific warped model with custodial symmetry and bulk fermions. See their Figures 4 and 5.
- ⁷AAD 12BV use 2.05 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV.

— Black Hole Production Limits ———

Semiclassical Black Holes DOCUMENT ID VALUE (GeV) TECN COMMENT • We do not use the following data for averages, fits, limits, etc. • • • ¹ SIRUNYAN 18DA CMS $pp \rightarrow \text{multijet}$ ² AAD 16N ATLS $pp \rightarrow multijet$ ³ AAD 160 ATLS $pp \rightarrow \ell + (\ell \ell / \ell i / j i)$ 4 AAD 13AW ATLS $pp \rightarrow \mu \mu$

- ¹ SIRUNYAN 18DA use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for semiclassical black holes decaying to multijet final states. No excess of events above the expected level of standard model background was observed. Exclusions at 95% CL are set on the mass threshold for black hole production as a function of the higher-dimensional Planck scale for rotating and nonrotating black holes under several model assumptions (ADD, 2, 4, 6 extra dimensions model) in the 7.1–10.3 TeV range. These limits supersede those in SIRUNYAN 17CP.
- ² AAD 16N use 3.6 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for semiclassical black hole decays to multijet final states. No excess of events above the expected level of Standard Model background was observed. Exclusion contours at 95% C.L. are set on the mass threshold for black hole production versus higher-dimensional Planck scale for rotating black holes (ADD, 6 extra dimensions model).
- ³ AAD 160 use 3.2 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for semiclassical black hole decays to high-mass final states with leptons and jets. No excess of events above the expected level of Standard Model background was observed. Exclusion contours at 95% C.L. are set on the mass threshold for black hole production versus higher-dimensional Planck scale for rotating black holes (ADD, 2 to 6 extra dimensions).

⁴ AAD 13AW use 20.3 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV to search for semiclassical black hole decays to like-sign dimuon final states using large track multiplicity. No excess of events above the expected level of Standard Model background was observed. Exclusion contours at 95% C.L. are set on the mass threshold for black hole production versus higher-dimensional Planck scale in various extra dimensions, rotating and non-rotating models.

Quantum Black Holes

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the fol	lowing data for ave	erages, fits, lin	nits, etc. • • •
	¹ AAD	20T ATLS	pp ightarrow jj
	² AABOUD	18ba ATLS	$p p ightarrow \gamma j$
	³ AABOUD	18CM ATLS	$p p ightarrow e \mu$, $e au$, μau
	⁴ SIRUNYAN	18AT CMS	$p p ightarrow e \mu$
		18DD CMS	11 July 18 July 18
	⁶ SIRUNYAN	17CP CMS	p p ightarrow j j
	⁷ KHACHATRY	16BE CMS	$p p ightarrow e \mu$
	⁸ KHACHATRY	15V CMS	pp ightarrowjj
	⁹ AAD	14al ATLS	$p p ightarrow \ell j$
	¹⁰ AAD	14∨ ATLS	$p p ightarrow$ ee, $\mu \mu$
	¹¹ CHATRCHYAI	N13A CMS	p p ightarrow j j

- ¹ AAD 20T use 139 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for quantum black hole decays to final states with dijets. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in an ADD (6 extra dimensions) model. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 9.4 TeV are excluded. This limit supersedes AABOUD 17AK.
- ² AABOUD 18BA use 36.7 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for quantum black hole decays to final states with a photon and a jet. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in ADD (6 extra dimensions) and RS1 models. Assuming the black hole mass threshold is equal to the Planck scale, mass thresholds below 7.1 TeV and 4.4 TeV are excluded for the ADD and RS1 models, respectively. These limits supersede those in AAD 16AI.
- ³AABOUD 18CM use 36.1 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for quantum black hole decays with different-flavor high-mass dilepton final states. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in ADD (6 extra dimensions) and RS1 models. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 5.6 (3.4), 4.9 (2.9), and 4.5 (2.6) TeV are excluded in the $e\mu$, $e\tau$ and $\mu\tau$ channels for the ADD (RS1) models, respectively. These limits supersede those in AABOUD 16P.
- ⁴ SIRUNYAN 18AT use 35.9 fb⁻¹ of data from pp collisions at $\sqrt{s} = 13$ TeV to search for quantum black hole decays to $e\mu$ final states. In Figure 4, lower mass limits of 5.3, 5.5 and 5.6 TeV are placed in a model with 4, 5 and 6 extra dimensions, respectively, and a lower mass limit of 3.6 TeV is found for a single warped dimension.
- ⁵ SIRUNYAN 18DD use 35.9 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for quantum black hole decays in dijet angular distributions. A lower mass limit of 5.9 (8.2) TeV is placed in the RS (ADD) model with one (six) extra dimension(s).
- ⁶SIRUNYAN 17CP use 2.3 fb⁻¹ of data from *pp* collisions at $\sqrt{s} = 13$ TeV to search for quantum black holes decaying to dijet final states. No excess of events above the expected level of standard model background was observed. Limits on the quantum black hole mass threshold are set as a function of the higher-dimensional Planck scale, under the assumption that the mass threshold must exceed the above Planck scale. Depending on the model, mass thresholds in the range up to 5.1–9.0 TeV are excluded.

- ⁷ KHACHATRYAN 16BE use 19.7 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV to search for quantum black holes undergoing lepton flavor violating decay to the $e\mu$ final state. No excess of events above the expected level of standard model background was observed. Exclusion limits at 95% CL are set on mass thresholds for black hole production in the ADD (2–6 flat extra dimensions), RS1 (1 warped extra dimension), and a model with a Planck scale at the TeV scale from a renormalization of the gravitational constant (no extra dimensions). Limits on the black hole mass threshold are set assuming that it is equal to the higher-dimensional Planck scale. Mass thresholds for quantum black holes in the range up to 3.15–3.63 TeV are excluded in the ADD model. In the RS1 model, mass thresholds below 2.81 TeV are excluded in the PDG convention for the Schwarzschild radius. In the model with no extra dimensions, mass thresholds below 1.99 TeV are excluded.
- ⁸ KHACHATRYAN 15V use 19.7 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV to search for quantum black holes decaying to dijet final states. No excess of events above the expected level of standard model background was observed. Exclusion limits at 95% CL are set on mass thresholds for black hole production in the ADD (2–6 flat extra dimensions) and RS1 (1 warped extra dimension) model. Limits on the black hole mass threshold are set as a function of the higher-dimensional Planck scale, under the assumption that the mass threshold must exceed the above Planck scale. Depending on the model, mass thresholds in the range up to 5.0–6.3 TeV are excluded. This paper supersedes CHATRCHYAN 13AD.
- ⁹ AAD 14AL use 20.3 fb⁻¹ of data from pp collisions at $\sqrt{s} = 8$ TeV to search for quantum black hole decays to final states with high-invariant-mass lepton + jet. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in an ADD (6 extra dimensions) model. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 5.3 TeV are excluded.
- ¹⁰ AAD 14V use 20.3 (20.5) fb⁻¹ of data in the dielectron (dimuon) channels from pp collisions at $\sqrt{s} = 8$ TeV to search for quantum black hole decays involving high-mass dilepton resonances. No excess of events above the expected level of Standard Model background was observed. Exclusion limits at 95% C.L. are set on mass thresholds for black hole production in ADD (6 extra dimensions) and RS1 models. Assuming the black hole mass threshold is equal to the higher-dimensional Planck scale, mass thresholds below 3.65 TeV and 2.24 TeV are excluded for the ADD and RS1 models, respectively.
- ¹¹ CHATRCHYAN 13A use 5 fb⁻¹ of data from pp collisions at $\sqrt{s} = 7$ TeV to search for quantum black holes decaying to dijet final states. No excess of events above the expected level of standard model background was observed. Exclusion limits at 95% CL are set on mass thresholds for black hole production in the ADD (2–6 flat extra dimensions) and RS (1 warped extra dimension) model. Limits on the black hole mass threshold are set as a function of the higher-dimensional Planck scale, under assumption that the mass threshold must exceed the above Planck scale. Depending on the model, mass thresholds in the range up to 4.0–5.3 TeV are excluded.

REFERENCES FOR Extra Dimensions

AAD	22F	PR D105 092002	G. Aad <i>et al.</i>	(ATLAS Collab.)
TUMASYAN	22C	PL B832 137263	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22D	PR D105 032008	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22J	PR D106 012004	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22R	JHEP 2204 087	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22U	JHEP 2205 005	A. Tumasyan <i>et al.</i>	(CMS Collab.)
AAD	21AF	EPJ C81 332	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21AY	PL B822 136651	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21F	PR D103 112006	G. Aad <i>et al.</i>	(ATLAS Collab.)
AVNISH	21	PR D103 115011	Avnish <i>et al.</i>	
BLAKEMORE	21	PR D104 L061101	C.P. Blakemore <i>et al.</i>	(STAN)
HEACOCK	21	SCI 373 1239	B. Heacock <i>et al.</i>	(NIST, RIKEN, NAGO+)
SIRUNYAN	21A	EPJ C81 13	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
Also		EPJ C81 333 (errat.)	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	21N	JHEP 2107 208	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	21D	JHEP 2111 153	A. Tumasyan <i>et al.</i>	(CMS Collab.)

Citation: R.L. Workman et a	(Particle Data Group)	Prog Theor Eyn Phys	2022 0	83C01 (2022) and 2023 update
Citation. R.E. Workman et a	(I alticle Data Gloup)	, i log. i neoi. Exp.i nys.	2022, 0	03001 (2022) and 2023 update

AAD	20AT	EPJ C80 1165	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20C	PL B800 135103	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20T	JHEP 2003 145	G. Aad <i>et al.</i>	(ATLAS Collab.)
LEE	20	PRL 124 101101	J.G. Lee <i>et al.</i>	(WASH)
SIRUNYAN	20AI	JHEP 2005 033	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20A1		A.M. Sirunyan et al.	(CMS Collab.)
		PR D102 032003	A.M. Sirunyan <i>et al.</i>	
SIRUNYAN	20Q	EPJ C80 237	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
TAN	20A	PRL 124 051301	WH. Tan <i>et al.</i>	
AABOUD	19A	JHEP 1901 030	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19AS	PR D99 092004	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	190	JHEP 1904 092	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD	19D	JHEP 1909 091	G. Aad <i>et al.</i>	(ATLAS Collab.)
Also		JHEP 2006 042 (errat.)	G. Aad <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	19	PL B788 7	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1904 114	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		EPJ C79 208	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PRL 122 121803	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1910 125	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD		JHEP 1803 042	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1803 009	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18AV	JHEP 1807 089	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18BA	EPJ C78 102	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18BF	EPJ C78 293	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18BI	EPJ C78 565	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1812 039	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PR D98 052008	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PR D98 092008	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
			M. Aaboud <i>et al.</i>	
AABOUD		PRL 121 191801		(ATLAS Collab.)
AABOUD		JHEP 1811 040	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18F	PL B777 91	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18I	JHEP 1801 126	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
BERGE	18	PRL 120 141101	J. Berge <i>et al.</i>	(MICROSCOPE Collab.)
FAYET	18	PR D97 055039	P. Fayet	(EPOL)
FAYET	18A	PR D99 055043	P. Fayet	(ENSP, EPOL)
HADDOCK	18	PR D97 062002	C. Haddock <i>et al.</i>	(NAGO, ŘEK, OSAK+)
SIRUNYAN	18AF	PL B781 244	A.M. Sirunyan <i>et al.</i>	CMS Collab.)
SIRUNYAN	18AS	JHEP 1803 003	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18AT	JHEP 1804 073	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1805 088	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1806 120	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1807 075	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1808 130	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		EPJ C78 291	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1808 152	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	-	JHEP 1811 042	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		EPJ C78 789	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18DJ	JHEP 1809 101	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18DU	PR D98 092001	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18F	JHEP 1801 054	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	181	PRL 120 201801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18P	PR D97 072006	A.M. Sirunyan <i>et al.</i>	(CMS_Collab.)
SIRUNYAN	18S	PR D97 092005	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD		PR D96 052004	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PL B775 105	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
KLIMCHITSK		PR D95 123013	G.L. Klimchitskaya, V.M. I	· · · · · · · · · · · · · · · · · · ·
SIRUNYAN		JHEP 1710 073	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PL B774 279	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	17F	JHEP 1707 013	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	16F	JHEP 1606 059	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	16P	EPJ C76 541	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD	16AI	JHEP 1603 041	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16N	JHEP 1603 026	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	160	PL B760 520	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16R	PL B755 285	G. Aad <i>et al.</i>	(ATLAS Collab.)
KHACHATRY			V. Khachatryan <i>et al.</i>	(CMS Collab.)
		PR D94 052012	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	-	PRL 117 051802	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY		PL B755 102	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD		EPJ C75 69	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		EPJ C75 209	G. Aad <i>et al.</i>	(ATLAS Collab.)
Also	IJAL	EPJ C75 370 (errat.)	G. Aad <i>et al.</i>	(ATLAS Collab.)
			S. May of al.	(ATEAS COND.)

AAD 15CS PR D91 012008 G. Aad et al. (ATLAS Collab.) AAD 15CT JHEP 1512 0555 G. Aad et al. (ATLAS Collab.) ACCOMANDO 15 MPL A30 154001 G. Aad et al. (CMS Collab.) KHACHATEY ISE JHEP 1504 (CMS Collab.) (KMS Collab.) KHACHATEY ISF PR 190 052005 V. Khachatryan et al. (CMS Collab.) KHACHATEY ISF PR 190 052005 G. Aad et al. (ATLAS Collab.) AAD 14AL PR 11206 G. Aad et al. (ATLAS Collab.) AAD 13A PLE P1301 CG. Aad et al. (ATLAS Collab.) AAD 13A PLE P1301 CG. Aad et al. (ATLAS Collab.) AAD 13A PLE P1301 CG. Aad et al. (ATLAS Collab.) AAD 13A PLE P1301 CG. Aad et al. (ATLAS Collab.) AAD 13A PLE P1301 CG. Aad et al. (ATLAS Collab.)					
AAD 1SCT JHEP 1512 055 G. Aad et al. (ATLAS Collab.) ACCOMANDO 5 MPL A3O 15400.00 (CMS Collab.) KHACHATEY ISR PL B794 500 V. Khachatryan et al. (CMS Collab.) KHACHATEY ISR PL B794 500 V. Khachatryan et al. (CMS Collab.) KHACHATEY ISF PR D91 052005 G. Aad et al. (ATLAS Collab.) AAD 14AL PR D90 052005 G. Aad et al. (ATLAS Collab.) AAD 13A PL B7112006 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D8112006 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D87112006 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D87101010 G. Aad et al. (ATLAS Collab.) AAD 13A PR D870101010 G. Aad et al. (ATLAS Collab.) AAD 13A PR D870101010 G. Aad et al. (ATLAS Collab.) CHATREYTANI ISAD PR D870101010 G. Charchy	AAD	15CS	PR D91 012008	G. Aad <i>et al.</i>	(ATLAS Collab.)
ACCOMANDO 15 MPL A30 1540010 E. Accomando (CMS Collab.) KHACHATEY ISR PLB 749 560 V. Khachatzyan et al. (CMS Collab.) KHACHATEY ISR PR D91 052009 V. Khachatzyan et al. (CMS Collab.) KHACHATEY ISV PR D91 052009 V. Khachatzyan et al. (CMS Collab.) AAD 14AL PR L12 091052005 C. Kade et al. (ATLAS Collab.) AAD 13A PR D83 012004 C. Aad et al. (ATLAS Collab.) AAD 13A PR D83 012004 C. Aad et al. (ATLAS Collab.) AAD 13A PR D83 012004 C. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 0136 C. Chatchyan et al. (ATLAS Collab.) AAD 13D JHEP 1301 S. Chatchyan et al. (CMS Collab.) CHATRCHYAN 13A JHEP 1301 S. Chatchyan et al. (CMS Collab.) CHATRCHYAN 13A JHEP 1303 S. Chatchyan	Also		PR D92 059903 (errat.)	G. Aad <i>et al.</i>	(ATLAS Collab.)
KHACHATEY 15AE JHEP 1504 025 V. Khachateyan et al. (CMS Collab.) KHACHATEY 15F PR 091 092005 V. Khachateyan et al. (CMS Collab.) KHACHATEY 15F PR 091 092005 V. Khachateyan et al. (CMS Collab.) AAD 14AL PRI. 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14AE EPJ CT 43134 G. Aad et al. (ATLAS Collab.) AAD 13A PL B711860 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D87 112006 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D87 112006 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D87 112006 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D87 10100 G. Aad et al. (ATLAS Collab.) AAD 13A PR PR 07 015010 G. Aad et al. (ATLAS Collab.) AAD 13A PR PR 07 015010 G. Charteryan et al. (CMS Collab.) CHATREYTAM 13AD PR 07 02005 S. Charteryan et al. (CMS Collab.) CHATREYTAM 13AD PR 07 02001 S. Charteryan et al. (CMS Collab.) <	AAD	15CT	JHEP 1512 055	G. Aad <i>et al.</i>	(ATLAS Collab.)
KHACHATRY ISA PL B749 560 V. Khachatryan et al. (CMS Collab.) KHACHATRY ISV PR D91 052009 V. Khachatryan et al. (CMS Collab.) AAD 14AL PR L12 091804 G. Aad et al. (ATLAS Collab.) AAD 14AL PR L12 091804 G. Aad et al. (ATLAS Collab.) AAD 14AL PR L12 091804 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13D VHP D80 02005 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 013 S. ChatrChyan et al. (CMS Collab.) CHATRCHYAN 13AD JHEP 1301 013 S. ChatrChyan et al. (CMS Collab.) CHATRCHYAN 13AD JHEP 1303 111 S. ChatrChyan et al. (CMS Collab.) Also PR 1020030 S. ChatrChyan et al. (CMS Collab.) <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
KHACHATRY IST PR D91 092005 V. Khachatryan et al. (CMS Collab.) KHACHATRY ISV PR D91 092005 V. Khachatryan et al. (CMS Collab.) AAD 144E PR L12 091804 G. Aad et al. (ATLAS Collab.) AAD 144E PR D90 052005 G. Aad et al. (ATLAS Collab.) AAD 13A0 PR D87 112006 G. Aad et al. (ATLAS Collab.) AAD 13A0 PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13A0 PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13A0 PR D88 012001 G. Aad et al. (ATLAS Collab.) AAD 13C PR D87 015010 G. Aad et al. (ATLAS Collab.) AAD 13E PR D87 015010 G. Aad et al. (CMS Collab.) CHATRCHYAN 13A0 PR D87 072005 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13A0 PR D87 072005 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13A0 PR D87 063102 J.B. Chatrchyan et al. (CMS Collab.) Aba 13P G 400 095107 J. S. Chatrchyan et al. (CMS Collab.) <td></td> <td></td> <td></td> <td>5</td> <td>```</td>				5	```
KHACHATEY ISV PR D31 052009 V. Khachatrýan et al. (CMX Scollab.) AAD 144L PR L12 091804 G. Aad et al. (ATLAS Collab.) AAD 144V PR D30 052005 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AM PR D88 072001 G. Aad et al. (ATLAS Collab.) AAD 13AV PR D87 072001 G. Aad et al. (ATLAS Collab.) AAD 13D HFP 1301 029 G. Aad et al. (ATLAS Collab.) CHATRCHYAN 13AD HFP 1307 178 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AD HFP 1301 029 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AD PG 40 05107 J. Xu et al. (CMS Collab.) CHATRCHYAN 13AD PF 40 05107 J. Xu et al. (ATLAS Collab.) CHATRCHYAN 1					
AAD 14AL PRL 112 091804 G. Aad et al. (ATLAS Collab.) AAD 14V PR D90 052005 G. Aad et al. (ATLAS Collab.) AAD 13A PL B71 18600 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D87 112006 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012001 G. Aad et al. (ATLAS Collab.) AAD 13AV PR D88 012001 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13E PR D87 015010 G. Aad et al. (CMS Collab.) CHATRCHYAN 13AJ JHEP 1301 013 S. Chatrohyan et al. (CMS Collab.) CHATRCHYAN 13BM PRL 121 119903 (rerat.) S. Chatrohyan et al. (CMS Collab.) CHATRCHYAN 13BM PRL 1303 111 S. Chatrohyan et al. (CMS Collab.) CHATRCHYAN 13BM PRL 1303 111 S. Chatrohyan et al. (CMS Collab.) CHATRCHYAN 13BM PRL 1303 111 S. Chatrohyan et al. (CMS Collab.) <				-	
AAD 14BE EPJ C74 3134 G. Aad et al. (ATLAS Collab.) AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AV PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AV PR D88 072001 G. Aad et al. (ATLAS Collab.) AAD 13D PR D87 015010 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (CMTS Collab.) CHATRCHYAN 13AD JHEP 1307 178 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AD JHEP 1303 111 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AD JHEP 1303 107 J. Xu et al. (CMS Collab.) AbD 12D PL B712 331 G. Aad et al. (ATLAS Collab.) CHATRCHYAN 13M JHEP 1303 101 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13M JHEP 1303 101 G. Aad et al. (ATLAS Collab.) <td></td> <td></td> <td></td> <td></td> <td></td>					
AAD 14V PR D90 052005 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D87 112006 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AO PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AW PR D88 072001 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13E PR D87 015010 G. Aad et al. (CMS Collab.) CHATRCHYAN 13A JHEP 1301 013 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AD JHEP 1303 111 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13BW PRL 112 119903 (errat.) S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13W JHEP 1303 111 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13W JHEP 1303 112 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13W JHEP 1303 113 S. Chatrchyan et al. (CMS Collab.) AAD 12AD PL B712 331 G. Aad et al. (ATLAS Collab.) <					
AAD 13A PL B718 860 G. Aad et al. (ATLAS Collab.) AAD 13AQ PR D88 112004 G. Aad et al. (ATLAS Collab.) AAD 13AS NP D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AS NP D88 072001 G. Aad et al. (ATLAS Collab.) AAD 13A NP D88 072001 G. Aad et al. (ATLAS Collab.) AAD 13C PR 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 013 S. Chartchyan et al. (CMS Collab.) CHATRCHYAN 13A JHEP 1301 013 S. Chartchyan et al. (CMS Collab.) CHATRCHYAN 13A JHEP 1303 013 S. Chartchyan et al. (CMS Collab.) CHATRCHYAN 13A JHEP 1303 011 S. Chartchyan et al. (CMS Collab.) CHATRCHYAN 13A JHEP 1309 011 L. Edelhauser, T. Flacke, M. Kramer (AACH, KAST) XU 13 JF G40 035107 J. Xu et al. (ATLAS Collab.) AAD 12AD PL B712 3131 G. Aad et al.					````
AAD 13AO PR D87 112006 G. Aad et al. (ATLAS Collab.) AAD 13AQ PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AW PR D88 072001 G. Aad et al. (ATLAS Collab.) AAD 13AW PR D88 072001 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011902 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 101 01302 G. Aad et al. (ATLAS Collab.) AAD 13E PR D87 072005 S. Chatrchyan et al. (CMS Collab.) Also PRL 112 119903 (errat.) S. Chatrchyan et al. (CMS Collab.) Also PRL 112 119903 (errat.) S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13A CP C37 063107 J. Xu et al. (ATLAS Collab.) AAD 12AD PL B712 31 G. Aad et al. (ATLAS Collab.) AAD 12AD PL B712 S1 G. Aad et al. <					()
AAD 13AQ PR D88 012004 G. Aad et al. (ATLAS Collab.) AAD 13AW PR D88 072001 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) AAD 13D JHEP 1301 029 G. Aad et al. (ATLAS Collab.) CHATRCHYAN 13AD JHEP 1301 13 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AD JHEP 1303 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AD PR D87 O72005 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AD PR D87 O73012 J-B. Chen et al. (CMS Collab.) CHATRCHYAN 13AD F400 O3107 J. Xu et al. (AACH, KAST) AD 12AD PL B712 S. Aad et al. (ATLAS Collab.) AD 12AD PL B712 G. Aad et al. (ATLAS Collab.)					()
AAD 13XW PR D88 072001 G. Aad et al. (ATLAS Collab.) AAD 13C PRL 110 011802 G. Aad et al. (ATLAS Collab.) AAD 13E PR 87 015010 G. Aad et al. (ATLAS Collab.) CHATRCHYAN 13A JHEP 1301 013 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13A JHEP 1307 178 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13A DF0 702005 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13A DF0 702005 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13A PC 37 063102 J.B. Chen et al. (DALI) DELHAUSER 13 JHEP 1308 091 L. Edelhauser, T. Flacke, M. Kramer (AACH, KAST) XU 13 JF 260 035107 J. Xu et al. (ATLAS Collab.) AAD 12AD PL 8712 331 G. Aad et al. (ATLAS Collab.) AAD 12CP JHEP 1301 G. Aad et al. (ATLAS Collab.) AAD 12CP PL 8712 331 G. Aad et al.					
AAD 13C PRL 110 011802 G. Aad et al. (ATLAS collab.) AAD 13E PR D67 015010 G. Aad et al. (ATLAS collab.) CHATRCHYAN 13A JHEP 1301 013 S. Chatrchyan et al. (CMS collab.) CHATRCHYAN 13AA JHEP 1307 178 S. Chatrchyan et al. (CMS collab.) CHATRCHYAN 13AA JHEP 1307 178 S. Chatrchyan et al. (CMS collab.) CHATRCHYAN 13AA Q PR D67 072005 S. Chatrchyan et al. (CMS collab.) Also PRL 112 119903 (errat.) S. Chatrchyan et al. (CMS collab.) CHATRCHYAN 13W JHEP 1303 011 S. Chatrchyan et al. (CMS collab.) CHATRCHYAN 13W JHEP 1303 011 L. Edelhauser, T. Flacke, M. Kramer (AACH, KAST) XU 13 JP G40 035107 J. Xu et al. (ATLAS collab.) AAD 12AD PL B712 311 G. Aad et al. (ATLAS collab.) AAD 12AD PL B712 313 G. Aad et al. (ATLAS collab.) AAD 12AD PL B710 519 G. Aad et al. (ATLAS collab.) AAD 12X PL B710 538 G. Aad et al.	AAD	13AS	NJP 15 043007	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 13D JHEP 130 12P CA ad et al. (ATLAS collab.) CHATRCHYAN 13A JHEP 130 101 S. Chatrchyan et al. (CMS collab.) CHATRCHYAN 13AQ PR D87 072005 S. Chatrchyan et al. (CMS collab.) CHATRCHYAN 13AQ PR D87 072005 S. Chatrchyan et al. (CMS collab.) CHATRCHYAN 13AW PRL 111 2118003 (cmst.) S. Chatrchyan et al. (CMS collab.) CHATRCHYAN 13W JHEP 1303 11 S. Chatrchyan et al. (CMS collab.) CHEN 13 JHEP 1303 15 C. Chatrchyan et al. (CMS collab.) ADD 12AD PL B712 331 G. Aad et al. (ATLAS collab.) ADD 12AD PL B712 331 G. Aad et al. (ATLAS collab.) ADD 12EV PL B718 31 G. Aad et al. (ATLAS collab.) ADD 12EV PL B710 538 G. Aad et al. (ATLAS collab.) <td></td> <td>13AW</td> <td>PR D88 072001</td> <td></td> <td></td>		13AW	PR D88 072001		
AAD 13E PR D87 015010 G. Aad et al. (ATLAS Collab.) CHATRCHYAN 13A JHEP 1307 178 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AQ PR D87 072005 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AQ PR D87 072005 S. Chatrchyan et al. (CMS Collab.) Also PRL 112 119903 (errat.) S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13M PFP 1303 111 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13M PFP 1303 011 L. Edelhauser, T. Flacke, M. Kramer (AACH, KAIST) XU 13 JP G40 035107 J. Xu et al. (ATLAS Collab.) AAD 12AP PL B712 311 G. Aad et al. (ATLAS Collab.) AAD 12CP PL B712 131 G. Aad et al. (ATLAS Collab.) AAD 12CP PL B718 411 G. Aad et al. (ATLAS Collab.) AAD 12CP PL B718 519 G. Aad et al. (ATLAS Collab.) AAD 12V PL B710 538 G. Aad et al. (DO Collab.) ABAZOV 12M PL 108 131802 V.M. Abazov et					
CHATRCHYAN 13A JHEP 1301 013 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AQ JREP 1307 178 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13AQ PR D87 072005 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13BM PRL 111 211804 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13W JHEP 1303 111 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13W JHEP 1308 091 L. Edelhauser, T. Flacke, M. Kramer (AACH, KAIST) XU 13 JP 640 035107 J. Ku et al. (ATLAS Collab.) AAD 1220 PL B712 331 G. Aad et al. (ATLAS Collab.) AAD 122C JHEP 1211 138 G. Aad et al. (ATLAS Collab.) AAD 122C PL B718 411 G. Aad et al. (ATLAS Collab.) AAD 122V PL B710 519 G. Aad et al. (ATLAS Collab.) AALTONEN 12W PL 080 102008 T. Aahtonen et al. (CDF Collab.) AALTONEN 12W PL 081 131802 V.M. Abazov et al. (DO Collab.) AJELO 12 JCAP 1202 012 M. Ajello et al. (CMS Collab.) AJELO 12					````
CHATRCHYAN 13AD JHEP 1307 178 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13BM PRL 111 211804 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13W PRL 111 211804 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13W JHEP 1303 (CMS Collab.) (CMS Collab.) CHATRCHYAN 13W JHEP 1303 (CMS Collab.) (CMS Collab.) CHATRCHYAN 13W JHEP 1303 (CMS Collab.) (CMS Collab.) CHATRCHYAN 13W JHEP 1303 (CAdd. KAS) (CMS Collab.) ADD 12AD PL B710 S10 G. Aad et al. (ATLAS Collab.) AAD 12C PLEP 1218 G. Aad et al. (ATLAS Collab.) AAD 12V PL B710 S18 G. Aad et al. (ATLAS Collab.) AAD 12V PL B710 S18 G. Aad et al. (ATLAS Collab.) <t< td=""><td></td><td>-</td><td></td><td></td><td></td></t<>		-			
CHATRCHYAN 13AQ PR D87 072005 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13BM PRL 111 211804 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13W JHEP 1303 111 S. Chatrchyan et al. (CMS Collab.) CHEN 13A PC 637 063102 J.B. Chen et al. (DAL) EDELHAUSER 13 JHEP 1308 091 L. Edelhauser, T. Flacke, M. Kramer (AACH, KAIST) XU 13 JHEP 1209 041 G. Aad et al. (ATLAS Collab.) AAD 128V JHEP 1209 041 G. Aad et al. (ATLAS Collab.) AAD 12CP PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12CP PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12X PL B710 519 G. Aad et al. (CDF Collab.) AALTONE 12V PL B710 519 G. Aad et al. (CDF Collab.) ABZOV 12W PRL 108 131802 V.M. Abazov et al. (DO Collab.) AJELLO 12 PLCP 1222 003 M. Baak et al. (CMS Collab.) RALTONEN 12 PL B707 506 K. Nishiwaki et al. (ATLAS Collab.)					
CHATRCHYAN 13BM PRL 111 211804 S. Chatrchyan et al. (CMS Collab.) Also PRL 12 11903 (erat.) S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13W JHEP 1303 111 S. Chatrchyan et al. (CMS Collab.) CHEN 13 A CP C37 063102 J-B. Chen et al. (CALK, KAIST) XU 13 JP C40 035107 J. Xu et al. (ATLAS Collab.) AAD 12AD PL B712 331 G. Aad et al. (ATLAS Collab.) AAD 12CC JHEP 1211 138 G. Aad et al. (ATLAS Collab.) AAD 12CP PL B718 411 G. Aad et al. (ATLAS Collab.) AAD 12X PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12X PL B710 538 G. Aad et al. (DO Collab.) ABAZOV 12M PL 108 131802 V.M. Abazov et al. (DO Collab.) ABAZOV 12M PL 108 131802 V.M. Abazov et al. (DO Collab.) JALLO 12 JCAP 1202 012 M. Ajello et al. (Fermi-LAT Collab.) AALTONEN 12P PR D85 126007 T. Flacke, C. Pasold (WURZ)					
Also PR. 112 119903 (errat.) S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 13W JHEP 1303 111 S. Chatrchyan et al. (DALI) EDELHAUSER 13 JHEP 1308 091 L. Edelhauser, T. Flacke, M. Kramer (AACH, KAIST) XU 13 JHEP 1208 091 L. Edelhauser, T. Flacke, M. Kramer (ATLAS Collab.) AAD 12AD PL B712 331 G. Aad et al. (ATLAS Collab.) AAD 12BV JHEP 1200 041 G. Aad et al. (ATLAS Collab.) AAD 12CV JHEP 1211 138 G. Aad et al. (ATLAS Collab.) AAD 12V PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12Y PL B710 538 G. Aad et al. (CDE Collab.) AALTONEN 12V PR D85 012008 T. Aaltonen et al. (CDE Collab.) ABAZOV 12M PRL 108 131802 V.M. Abazov et al. (D0 Collab.) AJLTONEN 12V PR D85 012001 M. Baak et al. (Gfttter Group) CHATRCHYAN 12R PRL 108 111801 S. Chatrchyan et al. (CMS Collab.) AAD 11F PRL 106 121803 G. Aad et al. (AT				· ·	· · · · · · · · · · · · · · · · · · ·
CHATRCHYAN 13W JHEP 1303 111 S. Chatrchyan et al. (CMS Collab.) CHEN 13A CP C37 063102 J-B. Chen et al. (DALI) DELLHAUSER 13 JHEP 1308 091 L. Edelhauser, T. Flacke, M. Kramer (AACH, KAIST) XU 13 JP C40 035107 J. Xu et al. (AACA, KAIST) AAD 12AD HEP 1209 041 G. Aad et al. (ATLAS Collab.) AAD 12CC JHEP 1201 138 G. Aad et al. (ATLAS Collab.) AAD 12CV PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12V PL B710 538 G. Aad et al. (ATLAS Collab.) AAD 12V PL B710 518 G. Aad et al. (DO Collab.) ABAZOV 12W PR D85 012008 T. Aaltonen et al. (DO Collab.) ABAZOV 12W PR D85 012003 M. Baak et al. (GMC Sollab.) ABALO 12 PP RD 707 506 K. Nishiwaki et al. (CDF Collab.) AALTONEN 12 PR PR1 107 10180 S. Chatrchyan et al. (ATLAS Collab.) AAD 11X PP L 707 1744 G. Aad et al. (ATLAS Collab.)		TODIAL			```
CHEN 13 ACP GP GP GP GP GAU GALL EDELHAUSER 13 JP G40 035107 J. Xu et al. (AACH, KAIST) AAD 12AD PL B712 331 G. Aad et al. (ATLAS Collab.) AAD 12AD PL B712 331 G. Aad et al. (ATLAS Collab.) AAD 12CC JHEP 1209 041 G. Aad et al. (ATLAS Collab.) AAD 12C JHEP 1519 G. Aad et al. (ATLAS Collab.) AALTONEN 12Y PL B710 519 G. Aad et al. (DO Collab.) ALLO 12 JCP PL B710 51200 T. Aaltonen et al. (DO Collab.) ALLO 12 JCAP 1202 M. Baak et al. (Gitter Group) CHATRCHYAN 12R PRL 108 118001 S. Chatretnyan et al. (CDK Col		13W			
EDELHAUSER 13 JHEP 1308 091 L. Edelhauser, T. Flacke, M. Kramer (AACH, ŘAIST) XU 13 JP G40 035107 J. Xu et al. (ATLAS Collab.) AAD 12XD PL B712 331 G. Aad et al. (ATLAS Collab.) AAD 12XV JHEP 12109 041 G. Aad et al. (ATLAS Collab.) AAD 12XV PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12X PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12V PL B710 538 G. Aad et al. (CDF Collab.) AALTONEN 12V PR D85 012008 T. Aaltonen et al. (CDF Collab.) ABAZOV 12M PL 108 131802 V.M. Abazov et al. (D0 Collab.) ABAZOV 12M PR L108 131801 S. Chatrchyan et al. (CMS Collab.) FLACKE 12 PR D85 126007 T. Flacke, C. Pasold (WURZ) NISHIWAKI 12 PL B70 506 K. Nishiwaki et al. (ATLAS Collab.) AALTONEN 11K PR D83 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11K PR D70 51801 <td< td=""><td></td><td></td><td></td><td>2</td><td>` <i>(</i></td></td<>				2	` <i>(</i>
XU 13 JP G40 035107 J. Xu et al. AAD 12AD PL B712 331 G. Aad et al. (ATLAS Collab.) AAD 12BV JHEP 1209 041 G. Aad et al. (ATLAS Collab.) AAD 12CC JHEP 1211 138 G. Aad et al. (ATLAS Collab.) AAD 12CP PL B718 411 G. Aad et al. (ATLAS Collab.) AAD 12X PL B710 519 G. Aad et al. (ATLAS Collab.) AALTONEN 12Y PR D85 012008 T. Aaltonen et al. (CDF Collab.) AALTONEN 12Y PR L08 131802 V.M. Abazov et al. (D0 Collab.) BAAK 12 EPJ C72 2003 M. Baak et al. (Gftter Group) CHATRCHYAN 12R PR L108 131801 S. Chatrchyan et al. (CMS Collab.) CHATRCHYAN 12R PR L106 121803 G. Aad et al. (ATLAS Collab.) AAD 11F PR L106 121803 G. Aad et al. (ATLAS Collab.) AALTONEN 11G PR D83 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11G PR D83 01102 T. Aaltonen et al. (CDF Collab.) AALTONEN 11G PR D83 01100 T. Aaltonen et al. (DD Collab.) <td< td=""><td>EDELHAUSER</td><td></td><td></td><td></td><td></td></td<>	EDELHAUSER				
AAD 12BV JHEP 1209 041 G. Aad et al. (ATLAS Collab.) AAD 12CC JHEP 1211 138 G. Aad et al. (ATLAS Collab.) AAD 12X PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12X PL B710 518 G. Aad et al. (ATLAS Collab.) AAD 12Y PL B710 518 G. Aad et al. (DC Collab.) AALTONEN 12V PR D85 012008 T. Aaltonen et al. (CDF Collab.) AALTONEN 12V PR D83 126007 T. Aaltonen et al. (CMS Collab.) AAAD 11F PRL 106 11803 G. Aad et al. (ATLAS Collab.) AAD 11F PRL 106 12803 G. Aad et al. (ATLAS Collab.) AAD 11F PRL 106 12803 G. Aad et al. (ATLAS Collab.) AAD 11F PRL 107 1744 G. Aad	XU	13	JP G40 035107		
AAD 12CC JHEP 1211 138 G. Aad et al. (ATLAS Collab.) AAD 12CP PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12Y PL B710 538 G. Aad et al. (ATLAS Collab.) AALTONEN 12Y PL B710 538 G. Aad et al. (ATLAS Collab.) AALTONEN 12Y PR D85 01208 T. Aaltonen et al. (CDF Collab.) AALTONEN 12Y PR 108 131802 V.M. Abazov et al. (D0 Collab.) ALTONEN 12 JCAP 1202 12 M. Ajello et al. (Fermi-LAT Collab.) AALTONEN 12 PL S70 2003 M. Baak et al. (CMS Collab.) NISHIWAKI 12 PL B707 506 K. Nishiwaki et al. (KOBE, OSAK) AAD 11F PRL 106 121803 G. Aad et al. (ATLAS Collab.) AALTONEN 11G PR 203 11208 T. Aaltonen et al. (CDF Collab.) AALTONEN 11C	AAD	12AD	PL B712 331	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 12CP PL B718 411 G. Aad et al. (ATLAS Collab.) AAD 12X PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12Y PL B710 538 G. Aad et al. (ATLAS Collab.) AALTONEN 12V PR D85 012008 T. Aaltonen et al. (CDF Collab.) ABAZOV 12M PRL 108 131802 V.M. Abazov et al. (D0 Collab.) AJELLO 12 JCAP 1202 012 M. Ajello et al. (Fermi-LAT Collab.) BAAK 12 EPJ C72 2003 M. Baak et al. (GMS Collab.) FLACKE 12 PR L08 111801 S. Chatrchyan et al. (CMS Collab.) AAD 11X EPJ C71 1744 G. Aad et al. (ATLAS Collab.) AAD 11X EPJ C71 1744 G. Aad et al. (CDF Collab.) AALTONEN 11R PR L030 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PR B03 01102 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PR B130 05502 F. D. Aaron et al. (DO Collab.) ABAZOV 11P PRL 107 011801 V.M. Abazov et al.<	AAD	12BV	JHEP 1209 041		(ATLAS Collab.)
AAD 12X PL B710 519 G. Aad et al. (ATLAS Collab.) AAD 12Y PL B710 538 G. Aad et al. (CDF Collab.) AALTONEN 12Y PR D85 012008 T. Aaltonen et al. (CDF Collab.) AABZOV 12M PR D85 012002 M. Ajello et al. (Fermi-LAT Collab.) AAEXOV 12M PR D85 012003 M. Baak et al. (Gfitter Group) CHATRCHYAN 12R PR L108 111801 S. Chatrchyan et al. (CMS Collab.) FLACKE 12 PR D85 126007 T. Flacke, C. Pasold (WURZ) NISHIWAKI 12R PL B707 506 K. Nishiwaki et al. (KDEE, OSAK) AAD 11F PR D83 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PR D83 01102 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PR D83 05504 V.B. Bezerra et al. (D0 Collab.) ABZOV 11H PR D83 055004 V.B. Abazov et al. (D0 Collab.) ABAZOV 11P PRL 107 171101 A.O. Sushkov et al. <					
AAD 12Y PL B710 538 G. Aad et al. (ATLAS Collab.) AALTONEN 12V PR D85 012008 T. Aaltonen et al. (CDF Collab.) ABAZOV 12W PR 108 13802 V.M. Abazov et al. (D0 Collab.) AALTONEN 12 JCAP 1202 012 M. Ajello et al. (Fermi-LAT Collab.) BAAK 12 EPJ C72<2003					
AALTONEN 12V PR D85 012008 T. Aaltonen et al. (CDF Collab.) ABAZOV 12M PRL 108 131802 V.M. Abazov et al. (D0 Collab.) MAELLO 12 JCAP 1202 012 M. Ajello et al. (Fermi-LAT Collab.) BAAK 12 EPJ C72 2003 M. Baak et al. (Gfitter Group) CHATRCHYAN 12R PR D85 126007 T. Flacke, C. Pasold (WUR2) NISHIWAKI 12 PL B707 506 K. Nishiwaki et al. (ATLAS Collab.) AAD 11F PR L106 121803 G. Aad et al. (ATLAS Collab.) AALTONEN 11G PR D83 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PR L 107 051801 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PR L 107 011801 V.M. Abazov et al. (D0 Collab.) AAAZOV 11H PR L 107 17101 A.O. Sushkov et al. (D0 Collab.) ABAZOV 10P PRL 104 241801 T. Aaltonen et al. (CDF Collab.) ABAZOV 10P PRL 104 241801 T. Aaltonen et al. (D0 Collab.) ABAZOV 10P					
ABAZOV 12M PRL 108 131802 V.M. Abazov et al. (D0 Collab.) AJELLO 12 JCAP 1202 012 M. Ajello et al. (Fermi-LAT Collab.) BAAK 12 EPJ C72 2003 M. Baak et al. (Gfitter Group) CHATRCHYAN 12R PRL 108 111801 S. Chatrchyan et al. (CMS Collab.) FLACKE 12 PR D85 126007 T. Flacke, C. Pasold (WUR2) NISHIWAKI 12 PR D85 126007 T. Flacke, C. Pasold (MUR2) NISHIWAKI 12 PL B707 506 K. Nishiwaki et al. (ATLAS Collab.) AAD 11F PRL 101 21803 G. Aad et al. (ATLAS Collab.) AALTONEN 11G PR B3 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11U PR D83 011102 T. Aaltonen et al. (DO Collab.) AARON 11C PL B70 552 F. D. Aaron et al. (DO Collab.) AABAZOV 11H PRL 107 011801 V.M. Abazov et al. (DO Collab.) ABAZOV 10P PRL 104 241802 V.M. Abazov et al. (DO Collab.) ABAZOV 10P PRL 1055					
AJELLO 12 JCAP 1202 012 M. Ajello et al. (Fermi-LAT Collab.) BAAK 12 EPJ C72 2003 M. Baak et al. (Gfitter Group) CHATRCHYAN 12R PR DR 108 111801 S. Chatrchyan et al. (CMS Collab.) FLACKE 12 PR D85 126007 T. Flacke, C. Pasold (WURZ) NISHWAKI 12 PL B707 506 K. Nishiwaki et al. (ATLAS Collab.) AAD 11F PR D83 112008 G. Aad et al. (ATLAS Collab.) AALTONEN 11G PR D83 011102 T. Aaltonen et al. (CDF Collab.) AALTONEN 11P PR 107 051801 T. Aaltonen et al. (CDF Collab.) AALTONEN 11P PR D83 011102 T. Aaltonen et al. (DD Collab.) AALTONEN 11P PR D83 075004 V.B. Bezerra et al. (DD Collab.) BZERRA 11 PR D83 075004 V.B. Bezerra et al. (DD Collab.) ABZOV 10F PRL 107 171101 A.O. Sushkov et al. (DD Collab.) ABZAOV 10F PRL 105 221802 V.M. Abazov et al. (DD Collab.) ABZAOV 10P PRL 102 051					· · · · · · · · · · · · · · · · · · ·
BAAK 12 EPJ C72 2003 M. Baak et al. (Gfitter Group) CHATRCHYAN 12R PR L08 111801 S. Chatrchyan et al. (CMS Collab.) FLACKE 12 PR D85 126007 T. Flacke, C. Pasold (WWZ) NISHIWAKI 12 PL B707 506 K. Nishiwaki et al. (ATLAS Collab.) AAD 11F PR L06 121803 G. Aad et al. (ATLAS Collab.) AALTONEN 11G PR D83 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PRL 107 051801 T. Aaltonen et al. (CDF Collab.) AALTONEN 11U PR D83 011102 T. Aaltonen et al. (DD Collab.) AALTONEN 11U PR D83 075004 V.B. Bezerra et al. (D0 Collab.) BEZERRA 11 PR D81 075004 V.B. Bezerra et al. (D0 Collab.) SUSHKOV 11 PR L104 241801 T. Aaltonen et al. (D0 Collab.) AALTONEN 10N PRL 104 241801 T. Aaltonen et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B					
CHATRCHYAN 12R PRL 108 111801 S. Chatrchyan et al. (CMS Collab.) FLACKE 12 PR D85 126007 T. Flacke, C. Pasold (WURZ) NISHIWAKI 12 PL B707 506 K. Nishiwaki et al. (ATLAS Collab.) AAD 11F PRL 106 121803 G. Aad et al. (ATLAS Collab.) AALTONEN 11G PR D83 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PR L 07 051801 T. Aaltonen et al. (CDF Collab.) AALTONEN 11U PR D83 011102 T. Aaltonen et al. (DD Collab.) AALTONEN 11U PR D83 075004 V.B. Bezerra et al. (DD Collab.) BZERRA 11 PR L 107 171101 A.O. Sushkov et al. (DD Collab.) ABAZOV 10F PRL 104 241801 T. Aaltonen et al. (DD Collab.) ABAZOV 10F PRL 102 107 1101 A.O. Sushkov et al. (DO Collab.) ABAZOV 10P PRL 103 110 M. Abazov et al. (DO Collab.) A					(Gfitter Group)
FLACKE 12 PR D85 126007 T. Flacke, C. Pasold (WURZ) NISHIWAKI 12 PL B707 506 K. Nishiwaki et al. (KOBE, OSAK) AAD 11F PRL 106 121803 G. Aad et al. (ATLAS Collab.) AAD 11X EPJ C71 1744 G. Aad et al. (ATLAS Collab.) AALTONEN 11G PR D83 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11U PR D83 011102 T. Aaltonen et al. (CDF Collab.) AALTONEN 11U PR D83 011102 T. Aaltonen et al. (DO Collab.) ABZOV 11H PR D83 075004 V.B. Bezerra et al. (DO Collab.) BEZERRA 11 PR D83 075004 V.B. Bezerra et al. (DO Collab.) SUSHKOV 11 PRL 107 171101 A.O. Sushkov et al. (DO Collab.) AALTONEN 10N PRL 104 241802 V.M. Abazov et al. (DO Collab.) ABZZOV 10P PRL 105 221802 V.M. Abazov et al. (DO Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (DO Collab.) ABAZOV 09D PRL 102 1					
NISHIWAKI 12 PL B707 506 K. Nishiwaki et al. (KOBE, OSAK) AAD 11F PRL 106 121803 G. Aad et al. (ATLAS Collab.) AAD 11X EPJ C71 1744 G. Aad et al. (ATLAS Collab.) AALTONEN 11G PR D83 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PR L 107 051801 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PR D83 011102 T. Aaltonen et al. (CDF Collab.) AALTONEN 11L PR D83 075004 V.B. Bezerra et al. (D0 Collab.) ABZOV 11H PR L 107 011801 V.M. Abazov et al. (D0 Collab.) BEZERRA 11 PR D83 075004 V.B. Bezerra et al. (D0 Collab.) ABZOV 10P PRL 107 171101 A.O. Sushkov et al. (D0 Collab.) ABZOV 10P PRL 105 221802 V.M. Abazov et al. (D0 Collab.) ABZZOV 10P PRL 103 191803 V.M. Abazov et al. (D0 Collab.) ABZZOV 09D PRL 102 051601 V.M.					· · · · ·
AAD 11F PRL 106 121803 G. Aad et al. (ATLAS Collab.) AAD 11X EPJ C71 1744 G. Aad et al. (ATLAS Collab.) AALTONEN 11G PR D83 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PRL 107 051801 T. Aaltonen et al. (CDF Collab.) AALTONEN 11U PR D83 011102 T. Aaltonen et al. (CDF Collab.) AALTONEN 11U PR D83 011102 T. Aaltonen et al. (DO Collab.) AARON 11C PL B705 52 F. D. Aaron et al. (DO Collab.) BEZERRA 11 PR D83 075004 V.B. Bezerra et al. (DO Collab.) SUSHKOV 11 PRL 107 171101 A.O. Sushkov et al. (DO Collab.) AALTONEN 10N PRL 104 241801 T. Aaltonen et al. (DO Collab.) ABAZOV 10F PRL 105 221802 V.M. Abazov et al. (DO Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (DO Collab.) ABAZOV 09D PRL 102 15101 M. Abazov et al. (DO Collab.) ABAZOV 09P RL 102 051601	NISHIWAKI	12	PL B707 506	K. Nishiwaki <i>et al.</i>	
AALTONEN 11G PR D83 112008 T. Aaltonen et al. (CDF Collab.) AALTONEN 11R PRL 107 051801 T. Aaltonen et al. (CDF Collab.) AALTONEN 11U PR D83 011102 T. Aaltonen et al. (CDF Collab.) AARON 11C PL B705 52 F. D. Aaron et al. (DF Collab.) AARON 11C PL B705 52 F. D. Aaron et al. (DO Collab.) BEZERRA 11 PR D83 075004 V.B. Bezerra et al. (DO Collab.) SUSHKOV 11 PRL 107 171101 A.O. Sushkov et al. (DO Collab.) AALTONEN 10N PRL 104 241801 T. Aaltonen et al. (CDF Collab.) ABAZOV 10F PRL 104 241802 V.M. Abazov et al. (DO Collab.) ABAZOV 10P PRL 105 221802 V.M. Abazov et al. (DO Collab.) ABAZOV 09P PRL 102 051601 V.M. Abazov et al. (DO Collab.) ABAZOV 09D PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08AS	AAD	11F	PRL 106 121803	G. Aad <i>et al.</i>	
AALTONEN 11R PRL 107 051801 T. Aaltonen et al. (CDF Collab.) AALTONEN 11U PR D83 011102 T. Aaltonen et al. (CDF Collab.) AARON 11C PL B705 52 F. D. Aaron et al. (H1 Collab.) ABAZOV 11H PRL 107 011801 V.M. Abazov et al. (D0 Collab.) BEZERRA 11 PR D83 075004 V.B. Bezerra et al. (D0 Collab.) SUSHKOV 11 PRL 107 171101 A.O. Sushkov et al. (D0 Collab.) AALTONEN 10N PRL 104 241802 V.M. Abazov et al. (D0 Collab.) ABAZOV 10F PRL 104 241802 V.M. Abazov et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (D0 Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) ABAZOV 08J		11X	EPJ C71 1744		
AALTONEN 11U PR D83 011102 T. Aaltonen et al. (CDF Collab.) AARON 11C PL B705 52 F. D. Aaron et al. (H1 Collab.) ABAZOV 11H PRL 107 011801 V.M. Abazov et al. (D0 Collab.) BEZERRA 11 PR D83 075004 V.B. Bezerra et al. (D0 Collab.) SUSHKOV 11 PRL 107 171101 A.O. Sushkov et al. (D0 Collab.) AALTONEN 10N PRL 104 241801 T. Aaltonen et al. (CDF Collab.) ABAZOV 10F PRL 104 241802 V.M. Abazov et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B. Abazov et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.M. Abazov et al. (D0 Collab.) ABAZOV 09AE PRL 102 051601 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (D0 Collab.) AALTONEN 08S					
AARON 11C PL B705 52 F. D. Aaron et al. (H1 Collab.) ABAZOV 11H PRL 107 011801 V.M. Abazov et al. (D0 Collab.) BEZERRA 11 PR D83 075004 V.B. Bezerra et al. (D0 Collab.) SUSHKOV 11 PRL 107 171101 A.O. Sushkov et al. (CDF Collab.) AALTONEN 10N PRL 104 241801 T. Aaltonen et al. (D0 Collab.) ABAZOV 10F PRL 104 241802 V.M. Abazov et al. (D0 Collab.) ABAZOV 10P PRL 105 221802 V.M. Abazov et al. (D0 Collab.) ABAZOV 09P PRL 102 20503 V.B. Bezerra et al. (D0 Collab.) ABAZOV 09AE PRL 102 10205101 V.M. Abazov et al. (D0 Collab.) ABAZOV 09AE PRL 102 10205101 V.M. Abazov et al. (D0 Collab.) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (D0 Collab.) AALTONEN 08S PR D78 012008 T. Aaltonen et al. (D0 Collab.) ABAZOV 08J<					
ABAZOV 11H PRL 107 011801 V.M. Abazov et al. (D0 Collab.) BEZERRA 11 PR D83 075004 V.B. Bezerra et al. (D0 Collab.) SUSHKOV 11 PRL 107 171101 A.O. Sushkov et al. (CDF Collab.) AALTONEN 10N PRL 104 241801 T. Aaltonen et al. (D0 Collab.) ABAZOV 10F PRL 104 241802 V.M. Abazov et al. (D0 Collab.) ABAZOV 10P PRL 105 221802 V.M. Abazov et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (D0 Collab.) ABAZOV 09AE PRL 102 051601 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PR 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08S PR D78 012008 T. Aaltonen et al. (D0 Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08J PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (D0 Collab.) ABAZOV					· · · · · · · · · · · · · · · · · · ·
BEZERRA 11 PR D83 075004 V.B. Bezerra et al. SUSHKOV 11 PRL 107 171101 A.O. Sushkov et al. (CDF Collab.) AALTONEN 10N PRL 104 241801 T. Aaltonen et al. (DO Collab.) ABAZOV 10F PRL 104 241802 V.M. Abazov et al. (DO Collab.) ABAZOV 10P PRL 105 221802 V.M. Abazov et al. (DO Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (DO Collab.) ABAZOV 09AE PRL 103 191803 V.M. Abazov et al. (DO Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (DO Collab.) ABAZOV 09D PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08S PR D78 012008 T. Aaltonen et al. (DO Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (DO Collab.) ABAZOV 08J PR D78 063011 P.K. Das, V.H.S. Kumar, P.K					
SUSHKOV 11 PRL 107 171101 A.O. Sushkov et al. AALTONEN 10N PRL 104 241801 T. Aaltonen et al. (CDF Collab.) ABAZOV 10F PRL 104 241802 V.M. Abazov et al. (D0 Collab.) ABAZOV 10P PRL 105 221802 V.M. Abazov et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (D0 Collab.) ABAZOV 09AE PRL 103 191803 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PR D78 012008 T. Aaltonen et al. (CDF Collab.) AALTONEN 08S PR D78 012008 T. Aaltonen et al. (D0 Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08J PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (STAN) GERACI 08 PR D77 122001 C. Trenkel					(Du Collab.)
AALTONEN 10N PRL 104 241801 T. Aaltonen et al. (CDF Collab.) ABAZOV 10F PRL 104 241802 V.M. Abazov et al. (D0 Collab.) ABAZOV 10P PRL 105 221802 V.M. Abazov et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (D0 Collab.) ABAZOV 09AE PRL 103 191803 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08S PR D78 012008 T. Aaltonen et al. (D0 Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08J PRL 101 011601 V.M. Abazov et al. (D0 Collab.) ABAZOV 08J PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (STAN) GERACI 08					
ABAZOV 10F PRL 104 241802 V.M. Abazov et al. (D0 Collab.) ABAZOV 10P PRL 105 221802 V.M. Abazov et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (D0 Collab.) ABAZOV 09AE PRL 103 191803 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (D0 Collab.) MASUDA 09 PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08S PR D78 012008 T. Aaltonen et al. (D0 Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08J PRL 100 11601 V.M. Abazov et al. (D0 Collab.) ABAZOV 08S PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (STAN) GERACI 08 PR D77 122001 C. Trenkel (STAN) AALTONEN 07G PR					(CDF_Collab_)
ABAZOV 10P PRL 105 221802 V.M. Abazov et al. (D0 Collab.) BEZERRA 10 PR D81 055003 V.B. Bezerra et al. (D0 Collab.) ABAZOV 09AE PRL 103 191803 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08S PR D78 012008 T. Aaltonen et al. (D0 Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08J PR D78 063011 V.M. Abazov et al. (D0 Collab.) ABAZOV 08S PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (D0 Collab.) ABAZOV 08 PR D78 022002 A.A. Geraci et al. (STAN) CERACI 08 PR D77 122001 C. Trenkel (CDF Collab.) AALTONEN 07G PRL 99 171802 T. Aaltonen et al. (CDF Collab.) AALTONEN 07G					· · · · · · · · · · · · · · · · · · ·
BEZERRA 10 PR D81 055003 V.B. Bezerra et al. ABAZOV 09AE PRL 103 191803 V.M. Abazov et al. (D0 Collab.) ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (D0 Collab.) MASUDA 09 PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08S PR D78 012008 T. Aaltonen et al. (D0 Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08J PR D78 012008 T. Aaltonen et al. (D0 Collab.) ABAZOV 08J PR D78 063011 V.M. Abazov et al. (D0 Collab.) ABAZOV 08S PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (D0 Collab.) GERACI 08 PR D77 122001 C. Trenkel (STAN) TRENKEL 08 PR D77 122001 C. Trenkel (CDF Collab.) AALTONEN 07G PRL 99 171802 T. Aaltonen et al. (CDF Collab.) AALTONEN 07H PRL 99 171802 T.					
ABAZOV 09D PRL 102 051601 V.M. Abazov et al. (D0 Collab.) MASUDA 09 PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08AC PR D78 012008 T. Aaltonen et al. (CDF Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08J PRL 101 011601 V.M. Abazov et al. (D0 Collab.) DAS 08 PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (D0 Collab.) GERACI 08 PR D78 022002 A.A. Geraci et al. (STAN) TRENKEL 08 PR D77 122001 C. Trenkel (CDF Collab.) AALTONEN 07G PRL 99 171801 T. Aaltonen et al. (CDF Collab.) AALTONEN 07G PRL 99 171802 T. Aaltonen et al. (CDF Collab.) ALTONEN 07G PRL 99 171802 T. Aaltonen et al. (CDF Collab.) DECCA 07A EPJ C51 963 R.S. Decca et al. (CDF Collab.) HAISCH 07		10		V.B. Bezerra <i>et al.</i>	()
MASUDA 09 PRL 102 171101 M. Masuda, M. Sasaki (ICRR) AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08S PR D78 012008 T. Aaltonen et al. (CDF Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08S PR D78 063011 V.M. Abazov et al. (D0 Collab.) DAS 08 PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (STAN) GERACI 08 PR D77 122001 C. Trenkel (STAN) AALTONEN 07G PRL 99 171801 T. Aaltonen et al. (CDF Collab.) AALTONEN 07G PRL 99 171802 T. Aaltonen et al. (CDF Collab.) AALTONEN 07H PRL 99 171802 T. Aaltonen et al. (CDF Collab.) AALTONEN 07A EPJ C51 963 R.S. Decca et al. (CDF Collab.) HAISCH 07 PR D76 034014 U. Haisch, A. Weiler (ALEPH Collab.) SCHAEL 07A EPJ C49 411 S. Scha	ABAZOV	09AE	PRL 103 191803	V.M. Abazov et al.	(D0 Collab.)
AALTONEN 08AC PRL 101 181602 T. Aaltonen et al. (CDF Collab.) AALTONEN 08S PR D78 012008 T. Aaltonen et al. (CDF Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08S PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (D0 Collab.) ABAZOV 08 PR D78 02002 A.A. Geraci et al. (D0 Collab.) DAS 08 PR D78 022002 A.A. Geraci et al. (STAN) TRENKEL 08 PR D77 122001 C. Trenkel (CDF Collab.) AALTONEN 07G PRL 99 171801 T. Aaltonen et al. (CDF Collab.) AALTONEN 07H PRL 99 17802 T. Aaltonen et al. (CDF Collab.) ALTONEN 07H PRL 99 17802 T. Aaltonen et al. (CDF Collab.) DECCA 07A EPJ C51 963 R.S. Decca et al. (CDF Collab.) HAISCH 07 PR D76 034014 U. Haisch, A. Weiler J. Kapner et al. SCHAEL 07A <	ABAZOV	09D	PRL 102 051601		(D0 Collab.)
AALTONEN 08S PR D78 012008 T. Aaltonen et al. (CDF Collab.) ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08S PRL 101 011601 V.M. Abazov et al. (D0 Collab.) DAS 08 PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (STAN) GERACI 08 PR D78 022002 A.A. Geraci et al. (STAN) TRENKEL 08 PR D77 122001 C. Trenkel (CDF Collab.) AALTONEN 07G PRL 99 171801 T. Aaltonen et al. (CDF Collab.) AALTONEN 07G PRL 99 171802 T. Aaltonen et al. (CDF Collab.) DECCA 07A EPJ C51 963 R.S. Decca et al. (CDF Collab.) HAISCH 07 PR D76 034014 U. Haisch, A. Weiler HAISCH O7 KAPNER 07 PRL 98 021101 D.J. Kapner et al. (ALEPH Collab.) SCHAEL 07A EPJ C49 411 S. Schael et al. (ALEPH Collab.)					
ABAZOV 08J PRL 100 091802 V.M. Abazov et al. (D0 Collab.) ABAZOV 08S PRL 101 011601 V.M. Abazov et al. (D0 Collab.) DAS 08 PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (BERACI GERACI 08 PR D78 022002 A.A. Geraci et al. (STAN) TRENKEL 08 PR D77 122001 C. Trenkel (STAN) AALTONEN 07G PRL 99 171801 T. Aaltonen et al. (CDF Collab.) AALTONEN 07H PRL 99 171802 T. Aaltonen et al. (CDF Collab.) DECCA 07A EPJ C51 963 R.S. Decca et al. (CDF Collab.) HAISCH 07 PR D76 034014 U. Haisch, A. Weiler KAPNER SCHAEL 07A EPJ C49 411 S. Schael et al. (ALEPH Collab.)					
ABAZOV 08S PRL 101 011601 V.M. Abazov et al. (D0 Collab.) DAS 08 PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh (STAN) GERACI 08 PR D78 022002 A.A. Geraci et al. (STAN) TRENKEL 08 PR D77 122001 C. Trenkel (CDF Collab.) AALTONEN 07G PRL 99 171801 T. Aaltonen et al. (CDF Collab.) AALTONEN 07H PRL 99 171802 T. Aaltonen et al. (CDF Collab.) DECCA 07A EPJ C51 963 R.S. Decca et al. (DF Collab.) HAISCH 07 PR D76 034014 U. Haisch, A. Weiler KAPNER The Second et al. SCHAEL 07A EPJ C49 411 S. Schael et al. (ALEPH Collab.)					
DAS 08 PR D78 063011 P.K. Das, V.H.S. Kumar, P.K. Suresh GERACI 08 PR D78 022002 A.A. Geraci et al. (STAN) TRENKEL 08 PR D77 122001 C. Trenkel (CDF Collab.) AALTONEN 07G PRL 99 171801 T. Aaltonen et al. (CDF Collab.) AALTONEN 07H PRL 99 171802 T. Aaltonen et al. (CDF Collab.) DECCA 07A EPJ C51 963 R.S. Decca et al. (DF Collab.) HAISCH 07 PR D76 034014 U. Haisch, A. Weiler KAPNER KAPNER 07 PRL 98 021101 D.J. Kapner et al. (ALEPH Collab.) SCHAEL 07A EPJ C49 411 S. Schael et al. (ALEPH Collab.)					
GERACI 08 PR D78 022002 A.A. Geraci et al. (STAN) TRENKEL 08 PR D77 122001 C. Trenkel (CDF Collab.) AALTONEN 07G PRL 99 171801 T. Aaltonen et al. (CDF Collab.) AALTONEN 07H PRL 99 171802 T. Aaltonen et al. (CDF Collab.) DECCA 07A EPJ C51 963 R.S. Decca et al. (DF Collab.) HAISCH 07 PR D76 034014 U. Haisch, A. Weiler (ALEPH Collab.) SCHAEL 07A EPJ C49 411 S. Schael et al. (ALEPH Collab.)					· · · · ·
TRENKEL 08 PR D77 122001 C. Trenkel AALTONEN 07G PRL 99 171801 T. Aaltonen et al. (CDF Collab.) AALTONEN 07H PRL 99 171802 T. Aaltonen et al. (CDF Collab.) DECCA 07A EPJ C51 963 R.S. Decca et al. (CDF Collab.) HAISCH 07 PR D76 034014 U. Haisch, A. Weiler (ALEPH Collab.) SCHAEL 07A EPJ C49 411 S. Schael et al. (ALEPH Collab.)					
AALTONEN 07G PRL 99 171801 T. Aaltonen et al. (CDF Collab.) AALTONEN 07H PRL 99 171802 T. Aaltonen et al. (CDF Collab.) DECCA 07A EPJ C51 963 R.S. Decca et al. (CDF Collab.) HAISCH 07 PR D76 034014 U. Haisch, A. Weiler (ALEPH Collab.) SCHAEL 07A EPJ C49 411 S. Schael et al. (ALEPH Collab.)					
AALTONEN 07H PRL 99 171802 T. Aaltonen et al. (CDF Collab.) DECCA 07A EPJ C51 963 R.S. Decca et al. (CDF Collab.) HAISCH 07 PR D76 034014 U. Haisch, A. Weiler (ALEPH Collab.) KAPNER 07 PRL 98 021101 D.J. Kapner et al. (ALEPH Collab.) SCHAEL 07A EPJ C49 411 S. Schael et al. (ALEPH Collab.)					(CDF Collab.)
DECCA 07A EPJ C51 963 R.S. Decca et al. HAISCH 07 PR D76 034014 U. Haisch, A. Weiler KAPNER 07 PRL 98 021101 D.J. Kapner et al. SCHAEL 07A EPJ C49 411 S. Schael et al.					
HAISCH 07 PR D76 034014 U. Haisch, A. Weiler KAPNER 07 PRL 98 021101 D.J. Kapner et al. SCHAEL 07A EPJ C49 411 S. Schael et al. (ALEPH Collab.)					
SCHAEL 07A EPJ C49 411 S. Schael <i>et al.</i> (ALEPH Collab.)		07		U. Haisch, A. Weiler	
				•	
IU 07 PRL 98 201101 LC. Tu et al.					(ALEPH Collab.)
	IU	07	PKL 98 201101	LC. Iu et al.	

ABDALLAH	06C	EPJ C45 589	J. Abdallah <i>et al.</i>	(DELPHI	Collab.)
ABULENCIA,A	06	PRL 97 171802	A. Abulencia <i>et al.</i>		Collab.)
GERDES	06	PR D73 112008	D. Gerdes <i>et al.</i>	(,
GOGOLADZE	06	PR D74 093012	I. Gogoladze, C. Macesanu		
ABAZOV	05N	PRL 95 091801	V.M. Abazov <i>et al.</i>	(D0	Collab.)
ABAZOV	05V	PRL 95 161602	V.M. Abazov <i>et al.</i>	(D0	Collab.)
ABDALLAH	05B	EPJ C38 395	J. Abdallah <i>et al.</i>	(DELPHI	
ABULENCIA	05A	PRL 95 252001	A. Abulencia <i>et al.</i>		Collab.)
SMULLIN	05	PR D72 122001	S.J. Smullin et al.	(⁻	,
ACHARD	04E	PL B587 16	P. Achard <i>et al.</i>	(L3	Collab.)
ACOSTA	04C	PRL 92 121802	D. Acosta <i>et al.</i>	. `	Collab.)
BARBIERI	04	NP B703 127	R. Barbieri <i>et al.</i>	(⁻	,
CASSE	04	PRL 92 111102	M. Casse <i>et al.</i>		
CHEKANOV	04B	PL B591 23	S. Chekanov <i>et al.</i>	(ZEUS	Collab.)
HOYLE	04	PR D70 042004	C.D. Hoyle <i>et al.</i>	· ·	(WASH)
ABAZOV	03	PRL 90 251802	V.M. Abazov <i>et al.</i>		Collab.)
ABBIENDI	03D	EPJ C26 331	G. Abbiendi <i>et al.</i>		Collab.)
ACHARD	03D	PL B572 133	P. Achard <i>et al.</i>	· · ·	Collab.)
ADLOFF	03	PL B568 35	C. Adloff <i>et al.</i>		Collab.)
CHIAVERINI	03	PRL 90 151101	J. Chiaverini <i>et al.</i>	(111	conab.)
GIUDICE	03	NP B663 377	G.F. Giudice, A. Strumia		
HANNESTAD	03	PR D67 125008	S. Hannestad, G.G. Raffelt		
Also	05	PR D69 029901(errat.)	S. Hannestad, G.G. Raffelt		
HEISTER	03C	EPJ C28 1	A. Heister <i>et al.</i>	(ALEPH	Collab)
LONG	03	NAT 421 922	J.C. Long <i>et al.</i>		collab.)
ACHARD	02	PL B524 65	P. Achard <i>et al.</i>	(13	Collab.)
ACHARD	02D	PL B531 28	P. Achard <i>et al.</i>		Collab.)
HANNESTAD	020	PRL 88 071301	S. Hannestad, G. Raffelt	(L3	Collab.)
ABBOTT	02	PRL 86 1156	B. Abbott <i>et al.</i>	(D0	Collab.)
FAIRBAIRN	01	PL B508 335	M. Fairbairn	(D0	Collab.)
HANHART	01	PL B508 555 PL B509 1	C. Hanhart <i>et al.</i>		
HOYLE	01	PRL 86 1418	C.D. Hoyle <i>et al.</i>		
-	01 00R	EPJ C13 553	G. Abbiendi <i>et al.</i>		Callah)
ABBIENDI ABREU	00R	PL B491 67	P. Abreu <i>et al.</i>		Collab.)
-			P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI	,
ABREU	00S	PL B485 45		(DELPHI	,
ABREU	00Z	EPJ C17 53	P. Abreu <i>et al.</i>	(DELPHI	Collab.)
CASSISI	00	PL B481 323	S. Cassisi <i>et al.</i>		
CHANG	00B	PRL 85 3765	L.N. Chang <i>et al.</i>		
CHEUNG	00	PR D61 015005	K. Cheung		
CORNET	00	PR D61 037701	F. Cornet, M. Relano, J. Rico		
GRAESSER	00	PR D61 074019	M.L. Graesser		
HAN	00	PR D62 125018	T. Han, D. Marfatia, RJ. Zhang		
MATHEWS	00	JHEP 0007 008	P. Mathews, S. Raychaudhuri, K. Srid	dhar	
MELE	00	PR D61 117901	S. Mele, E. Sanchez		
RIZZO	00	PR D61 016007	T.G. Rizzo, J.D. Wells		
ABBIENDI	99P	PL B465 303	G. Abbiendi <i>et al.</i>		Collab.)
ACCIARRI	99M	PL B464 135	M. Acciarri <i>et al.</i>	<u>`````````````````````````````````````</u>	Collab.)
ACCIARRI	99R	PL B470 268	M. Acciarri <i>et al.</i>		Collab.)
ACCIARRI	99S	PL B470 281	M. Acciarri <i>et al.</i>	(L3	Collab.)
BOURILKOV	99	JHEP 9908 006	D. Bourilkov		
HOSKINS	85	PR D32 3084	J.K. Hoskins <i>et al.</i>		