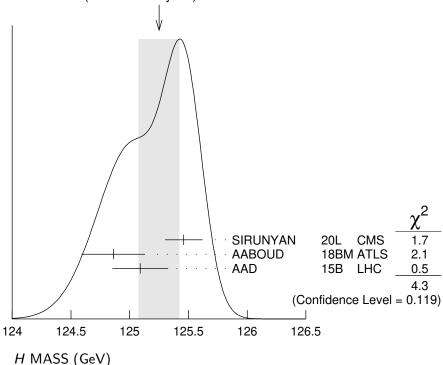


J = 0


In the following H refers to the signal that has been discovered in the Higgs searches. Whereas the observed signal is labeled as a spin 0 particle and is called a Higgs Boson, the detailed properties of H and its role in the context of electroweak symmetry breaking need to be further clarified. These issues are addressed by the measurements listed below.

Concerning mass limits and cross section limits that have been obtained in the searches for neutral and charged Higgs bosons, see the sections "Searches for Neutral Higgs Bosons" and "Searches for Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$)", respectively.

H MASS VALUE (GeV)	DOCUMENT ID		
125.25±0.17 OUR AVERAGE			-
	SIRUNYAN	20L CMS	pp , 13 TeV, $\gamma\gamma$, $ZZ^* o ext{4}\ell$
0.0	AABOUD	18BM ATLS	pp , 13 TeV, $\gamma\gamma$, $ZZ^* o ext{4}\ell$
	AAD	15 в LHC	<i>pp</i> , 7, 8 TeV
• • We do not use the follow		erages, fits, lir	mits, etc. • • •
	SIRUNYAN	20L CMS	pp , 13 TeV, $\gamma\gamma$
125.38 ± 0.14	SIRUNYAN	20L CMS	pp , 7, 8, 13 TeV, $\gamma\gamma$,
124.93 ± 0.40 7	AABOUD AABOUD AABOUD	18BMATLS 18BMATLS 18BMATLS	$ZZ^* ightarrow 4\ell$ pp , 13 TeV, $ZZ^* ightarrow 4\ell$ pp , 13 TeV, $\gamma\gamma$ pp , 7, 8, 13 TeV, $\gamma\gamma$,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SIRUNYAN AAD AAD AAD AAD KHACHATRY AAD AAD	17AV CMS 15B LHC 15B LHC 15B ATLS 15B ATLS 15B CMS .15AM CMS 14W ATLS 14W ATLS 14W ATLS	$ZZ^* oup 4\ell$ $pp, 13 \text{ TeV}, ZZ^* oup 4\ell$ $pp, 7, 8 \text{ TeV}, \gamma\gamma$ $pp, 7, 8 \text{ TeV}, ZZ^* oup 4\ell$ $pp, 7, 8 \text{ TeV}$ $pp, 7, 8 \text{ TeV}$ $pp, 7, 8 \text{ TeV}, \gamma\gamma$ $pp, 7, 8 \text{ TeV}, ZZ^* oup 4\ell$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CHATRCHYAN CHATRCHYAN KHACHATRY AAD AAD	14K CMS	pp , 7, 8 TeV, $ZZ^* \rightarrow 4\ell$ pp , 7, 8 TeV, $\tau\tau$ pp , 7, 8 TeV, $\gamma\gamma$ pp, 7, 8 TeV pp , 7, 8 TeV, $\gamma\gamma$ pp , 7, 8 TeV, $ZZ^* \rightarrow 4\ell$

```
<sup>2,16</sup> CHATRCHYAN 13J CMS
125.8 \ \pm 0.4 \ \pm 0.4
                                                                 pp, 7, 8 TeV
                              <sup>16</sup> CHATRCHYAN 13J CMS
                                                              pp, 7, 8 TeV, ZZ^* \rightarrow 4\ell
126.2 \pm 0.6 \pm 0.2
                            ^{2,17} AAD
                                                  12AI ATLS pp, 7, 8 TeV
126.0 \pm 0.4 \pm 0.4
                            ^{2,18} CHATRCHYAN 12N CMS pp, 7, 8 TeV
125.3 \pm 0.4 \pm 0.5
```


¹ SIRUNYAN 20L result of $H \to \gamma \gamma$ is combined with that of $H \to ZZ^* \to 4\ell$ where ℓ = e, μ (SIRUNYAN 17AV).

²Combined value from $\gamma\gamma$ and $ZZ^* o 4\ell$ final states.

³ATLAS and CMS data are fitted simultaneously.

⁴SIRUNYAN 20L use 35.9 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV with $H\to \gamma\gamma$.

⁵SIRUNYAN 20L combine 13 TeV results with 7 and 8 TeV results (KHACHA-TRYAN 15AM).

 $^{^6}$ AABOUD 18BM use 36.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 13 TeV with $H
ightarrow ~ZZ^*
ightarrow$ 4 ℓ where ℓ = e, μ .

 $^{^7}$ AABOUD 18BM use 36.1 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=$ 13 TeV with $H\to~\gamma\gamma.$

⁸AABOUD 18BM combine 13 TeV results with 7 and 8 TeV results. Other combined results are summarized in their Fig. 4.

 $^{^9}$ SIRUNYAN 17AV use 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 13 TeV with $H \to ZZ^* \to$ 4 ℓ where $\ell = e$, μ .

 $^{^{10}}$ KHACHATRYAN 15AM use up to 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV and up to 19.7 fb $^{-1}$ at $E_{\rm cm} = 8$ TeV.

 $^{^{11}}$ AAD 14W use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at 8 TeV. 12 CHATRCHYAN 14AA use 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at

 $^{^{13}\,\}mathrm{CHATRCHYAN}$ 14K use 4.9 fb $^{-1}$ of pp collisions at $E_\mathrm{cm}=$ 7 TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8~{\rm TeV}.$

- 14 KHACHATRYAN $^{14\rm P}$ use 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=$ 8 TeV.
- 15 AAD 13AK use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}{=}7$ TeV and 20.7 fb $^{-1}$ at $E_{\rm cm}{=}8$ TeV. Superseded by AAD 14W.
- 16 CHATRCHYAN 13J use 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 12.2 fb $^{-1}$ at $E_{\rm cm}=8$ TeV.
- 17 AAD 12AI obtain results based on 4.6–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.8–5.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. An excess of events over background with a local significance of 5.9 σ is observed at $m_{H}=126$ GeV. See also AAD 12DA.
- 18 CHATRCHYAN 12N obtain results based on 4.9–5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.1–5.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. An excess of events over background with a local significance of 5.0 σ is observed at about $m_H=125$ GeV. See also CHATRCHYAN 12BY and CHATRCHYAN 13Y.

H SPIN AND CP PROPERTIES

The observation of the signal in the $\gamma\gamma$ final state rules out the possibility that the discovered particle has spin 1, as a consequence of the Landau-Yang theorem. This argument relies on the assumptions that the decaying particle is an on-shell resonance and that the decay products are indeed two photons rather than two pairs of boosted photons, which each could in principle be misidentified as a single photon.

Concerning distinguishing the spin 0 hypothesis from a spin 2 hypothesis, some care has to be taken in modelling the latter in order to ensure that the discriminating power is actually based on the spin properties rather than on unphysical behavior that may affect the model of the spin 2 state.

Under the assumption that the observed signal consists of a single state rather than an overlap of more than one resonance, it is sufficient to discriminate between distinct hypotheses in the spin analyses. On the other hand, the determination of the *CP* properties is in general much more difficult since in principle the observed state could consist of any admixture of *CP*-even and *CP*-odd components. As a first step, the compatibility of the data with distinct hypotheses of pure *CP*-even and pure *CP*-odd states with different spin assignments has been investigated. In order to treat the case of a possible mixing of different *CP* states, certain cross section ratios are considered. Those cross section ratios need to be distinguished from the amount of mixing between a *CP*-even and a *CP*-odd state, as the cross section ratios depend in addition also on the coupling strengths of the *CP*-even and *CP*-odd components to the involved particles. A small relative coupling implies a small sensitivity of the corresponding cross section ratio to effects of *CP* mixing.

VALUE ___ DOCUMENT ID ___TECN __COMMENT

• • We do not use the following data for averages, fits, limits, etc.

```
<sup>1</sup> AAD
                                            WW^* (\rightarrow e\nu\mu\nu)+2i, 13 TeV
                         22V ATLS
<sup>2</sup> TUMASYAN
                                            H \rightarrow \tau \tau, 13 TeV
                         22Y CMS
<sup>3</sup> AAD
                         20N ATLS
                                           H \rightarrow \tau \tau, VBF, 13 TeV
<sup>4</sup> AAD
                         20Z ATLS t\overline{t}H, H 	o \gamma \gamma , 13 TeV
<sup>5</sup> SIRUNYAN
                                            t\,\overline{t}\,H,\,H
ightarrow\,\gamma\gamma , 13 TeV
                         20AS CMS
<sup>6</sup> SIRUNYAN
                         19BL CMS
                                            pp, 7, 8, 13 TeV, ZZ^*/ZZ \rightarrow 4\ell
<sup>7</sup> SIRUNYAN
                         19BZ CMS
                                            pp \rightarrow H+2jets (VBF, ggF, VH), H \rightarrow
                                               \tau \tau, 13 TeV
<sup>8</sup> AABOUD
                         18AJ ATLS H 
ightarrow ZZ^* 
ightarrow 4\ell \ (\ell=e,\ \mu), 13TeV
<sup>9</sup> SIRUNYAN
                         17AM CMS pp \rightarrow H+ \geq 2j, H \rightarrow 4\ell \ (\ell = e, \mu)
```

https://pdg.lbl.gov Page 3 Created: 5/31/2023 09:12

```
10_{AAD}
                           16 ATLS
                                               H \rightarrow \gamma \gamma
<sup>11</sup> AAD
                           16BL ATLS pp \rightarrow HjjX (VBF), H \rightarrow \tau \tau, 8 TeV
<sup>12</sup> KHACHATRY...16AB CMS
                                               pp \rightarrow WH, ZH, H \rightarrow b\overline{b}, 8 \text{ TeV}
^{13} AAD
                           15AX ATLS
                                              H \rightarrow WW^*
<sup>14</sup> AAD
                           15CI ATLS H \rightarrow ZZ^*, WW^*, \gamma\gamma
<sup>15</sup> AALTONEN
                                  TEVA p\overline{p} \rightarrow WH, ZH, H \rightarrow b\overline{b}
                           15
<sup>16</sup> AALTONEN
                           15B CDF
                                               p\overline{p} \rightarrow WH, ZH, H \rightarrow b\overline{b}
<sup>17</sup> KHACHATRY...15Y CMS
                                               H \rightarrow 4\ell, WW^*, \gamma\gamma
<sup>18</sup> ABAZOV
                                                p\overline{p} \rightarrow WH, ZH, H \rightarrow b\overline{b}
                           14F D0
<sup>19</sup> CHATRCHYAN 14AA CMS
                                               H \rightarrow ZZ^*
<sup>20</sup> CHATRCHYAN 14G CMS
                                                H \rightarrow WW^*
<sup>21</sup> KHACHATRY...14P CMS
                                               H \rightarrow \gamma \gamma, ZZ^* \rightarrow 4\ell, WW^* \rightarrow \ell \nu \ell \nu
<sup>22</sup> AAD
                           13AJ ATLS
<sup>23</sup> CHATRCHYAN 13」 CMS
                                               H \rightarrow ZZ^* \rightarrow 4\ell
```

- 1 AAD 22V measure the CP properties of the effective Higgs-gluon interaction using gluon fusion $H\to~W~W^*\to~e\,\nu\,\mu\nu$ plus two jets with 36.1 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. The measured tangent of the CP-mixing angle $\tan\alpha$ is 0.0 \pm 0.4 \pm 0.3 assuming the standard model H~V~V couplings. See their Fig. 6.
- 2 TUMASYAN 22Y measure the $\it CP$ structure of the τ Yukawa coupling using 137 fb $^{-1}$ of data at $\it E_{\rm cm}=13$ TeV. The $\it CP$ -mixing angle α for τ Yukawa coupling is measured to be $-1\pm19^{\circ}$. The data disfavour the pure $\it CP$ -odd ($\alpha=90^{\circ}$) at 3.0 σ .
- ³AAD 20N test *CP* invariance in *H* production via VBF using $H \to \tau \tau$ decay channel with 36.1 fb⁻¹ at $E_{\text{cm}} = 13$ TeV. By using the Optimal Observable method, the data constrain a parameter \widetilde{d} , which is for the strength of *CP* violation in an effective field theory, to be $-0.090 \le \widetilde{d} \le 0.035$ at 68% CL (see their Fig. 6).
- ⁴ AAD 20Z exclude a *CP*-mixing angle α , $|\alpha| > 43^{\circ}$ at 95% CL, where $\alpha = 0$ represents the Standard Model, in 139 fb⁻¹ of data at $E_{\rm cm} = 13$ TeV. The pure *CP*-odd structure of the top Yukawa coupling ($\alpha = 90^{\circ}$) is excluded at 3.9 σ .
- 5 SIRUNYAN 20AS exclude the pure *CP*-odd structure of the top Yukawa coupling at 3.2 σ using $t\overline{t}H,\,H\to\,\gamma\gamma$ in 137 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. The fractional contribution of the *CP*-odd component $f^{t\overline{t}H}_{CP}$ is measured to be 0.00 \pm 0.33.
- ⁶ SIRUNYAN 19BL measure the anomalous HVV couplings from on-shell and off-shell production in the 4ℓ final state. Data of 80.2 fb $^{-1}$ at 13 TeV, 19.7 fb $^{-1}$ at 8 TeV, and 5.1 fb $^{-1}$ at 7 TeV are used. See their Tables VI and VII for anomalous HVV couplings of CP-violating and CP-conserving parameters with on- and off-shells.
- 7 SIRUNYAN 19BZ constrain anomalous HVV couplings of the Higgs boson with data of 35.9 fb $^{-1}$ at $E_{\rm cm}=13$ TeV using Higgs boson candidates with two jets produced in VBF, ggF, and VH that decay to $\tau\tau$. See their Table 2 and Fig. 10, which show 68% CL and 95% CL intervals. Combining those with the $H\to 4\ell$ (SIRUNYAN 19BL, on-shell scenario), results shown in their Tables 3, 4, and Fig. 11 are obtained. A CP-violating parameter is set to be $f_{a3}\cos(\phi_{a3})=(0.00\pm0.27)\times10^{-3}$ and CP-conserving parameters are $f_{a2}\cos(\phi_{a2})=(0.08^{+1.04}_{-0.21})\times10^{-3}$, $f_{\Lambda1}\cos(\phi_{\Lambda1})=(0.00^{+0.53}_{-0.09})\times10^{-3}$, and $f_{\Lambda1}^{Z\gamma}\cos(\phi_{\Lambda1}^{Z\gamma})=(0.0^{+1.1}_{-1.3})\times10^{-3}$.
- ⁸ AABOUD 18AJ study the tensor structure of the Higgs boson couplings using an effective Lagrangian using 36.1 fb $^{-1}$ of pp collision data at $E_{\rm cm}=13$ TeV. Constraints are set on the non-Standard-Model CP-even and CP-odd couplings to Z bosons and on the CP-odd coupling to gluons. See their Figs. 9 and 10, and Tables 10 and 11.
- 9 SIRUNYAN 17AM constrain anomalous couplings of the Higgs boson with 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV, 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV, and 38.6 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. See their Table 3 and Fig. 3, which show 68% CL and 95% CL intervals. A CP

- violation parameter f_{a3} is set to be $f_{a3}\cos(\phi_{a3})=[-0.38,\ 0.46]$ at 95% CL $(\phi_{a3}=0\ \text{or}\ \pi)$.
- $^{10}\,\text{AAD}$ 16 study $H\to\,\gamma\gamma$ with an effective Lagrangian including $\it CP$ even and odd terms in 20.3 fb $^{-1}$ of $\it p\,p$ collisions at $\it E_{\rm Cm}=8$ TeV. The data is consistent with the expectations for the Higgs boson of the Standard Model. Limits on anomalous couplings are also given.
- ¹¹ AAD 16BL study VBF $H \to \tau \tau$ with an effective Lagrangian including a CP odd term in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The measurement is consistent with the expectation of the Standard Model. The CP-mixing parameter \widetilde{d} (a dimensionless coupling $\widetilde{d}=-(m_W^2/\Lambda^2)f_{\widetilde{W}W}$) is constrained to the interval of (-0.11, 0.05) at 68% CL under the assumption of $\widetilde{d}=\widetilde{d}_B$.
- 12 KHACHATRYAN 16AB search for anomalous pseudoscalar couplings of the Higgs boson to W and Z with 18.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. See their Table 5 and Figs 5 and 6 for limits on possible anomalous pseudoscalar coupling parameters.
- 13 AAD 15AX compare the $J^{CP}=0^+$ Standard Model assignment with other J^{CP} hypotheses in 20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV, using the process $H\to WW^*\to e\nu\mu\nu$. 2^+ hypotheses are excluded at 84.5–99.4%CL, 0^- at 96.5%CL, 0^+ (field strength coupling) at 70.8%CL. See their Fig. 19 for limits on possible CP mixture parameters.
- ¹⁴ AAD 15CI compare the $J^{CP}=0^+$ Standard Model assignment with other J^{CP} hypotheses in 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV, using the processes $H\to ZZ^*\to 4\ell$. $H\to \gamma\gamma$ and combine with AAD 15AX data. 0^+ (field strength coupling), 0^- and several 2^+ hypotheses are excluded at more than 99.9% CL. See their Tables 7–9 for limits on possible CP mixture parameters.
- 15 AALTONEN 15 combine AALTONEN 15B and ABAZOV 14F data. An upper limit of 0.36 of the Standard Model production rate at 95% CL is obtained both for a 0^- and a 2^+ state. Assuming the SM event rate, the $J^{CP}=0^-$ (2^+) hypothesis is excluded at the 5.0σ (4.9σ) level.
- ¹⁶ AALTONEN 15B compare the $J^{CP}=0^+$ Standard Model assignment with other J^{CP} hypotheses in 9.45 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV, using the processes $ZH\to \ell\ell b\overline{b}$, $WH\to \ell\nu b\overline{b}$, and $ZH\to \nu\nu b\overline{b}$. Bounds on the production rates of 0^- and 2^+ (graviton-like) states are set, see their tables II and III.
- ¹⁷ KHACHATRYAN 15Y compare the $J^{CP}=0^+$ Standard Model assignment with other J^{CP} hypotheses in up to 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV, using the processes $H\to 4\ell,\, H\to WW^*$, and $H\to \gamma\gamma$. 0 $^-$ is excluded at 99.98% CL, and several 2 $^+$ hypotheses are excluded at more than 99% CL. Spin 1 models are excluded at more than 99.999% CL in ZZ^* and WW^* modes. Limits on anomalous couplings and several cross section fractions, treating the case of CP-mixed states, are also given.
- 18 ABAZOV 14F compare the $J^{CP}=0^+$ Standard Model assignment with $J^{CP}=0^-$ and 2^+ (graviton-like coupling) hypotheses in up to 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. They use kinematic correlations between the decay products of the vector boson and the Higgs boson in the final states $ZH\to\ell\ell b\overline{b},~WH\to\ell\nu b\overline{b},~{\rm and}~ZH\to\nu\nu b\overline{b}.$ The 0^- (2 $^+$) hypothesis is excluded at 97.6% CL (99.0% CL). In order to treat the case of a possible mixture of a 0^+ state with another J^{CP} state, the cross section fractions $f_X=\sigma_X/(\sigma_{0^+}+\sigma_X)$ are considered, where $X=0^-$, 2 $^+$. Values for f_{0^-} (f_{2^+}) above 0.80 (0.67) are excluded at 95% CL under the assumption that the total cross section is that of the SM Higgs boson.
- 19 CHATRCHYAN 14AA compare the $J^{CP}=0^+$ Standard Model assignment with various J^{CP} hypotheses in 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. $J^{CP}=0^-$ and 1^\pm hypotheses are excluded at 99% CL, and several J=2

hypotheses are excluded at 95% CL. In order to treat the case of a possible mixture of a 0+ state with another J^{CP} state, the cross section fraction $f_{a3}=|a_3|^2~\sigma_3~/~(|a_1|^2~\sigma_1+|a_2|^2~\sigma_2+|a_3|^2~\sigma_3)$ is considered, where the case $a_3=1$, $a_1=a_2=0$ corresponds to a pure CP-odd state. Assuming $a_2=0$, a value for f_{a3} above 0.51 is excluded at 95% CI

²⁰ CHATRCHYAN 14G compare the $J^{CP}=0^+$ Standard Model assignment with $J^{CP}=0^-$ and 2^+ (graviton-like coupling) hypotheses in 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.4 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. Varying the fraction of the production of the 2^+ state via gg and $q\overline{q}$, 2^+ hypotheses are disfavored at CL between 83.7 and 99.8%. The 0^- hypothesis is disfavored against 0^+ at the 65.3% CL.

²¹ KHACHATRYAN 14P compare the $J^{CP}=0^+$ Standard Model assignment with a 2^+ (graviton-like coupling) hypothesis in 5.1 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm}=8$ TeV. Varying the fraction of the production of the 2^+ state via gg and $q\overline{q}$, 2^+ hypotheses are disfavored at CL between 71 and 94%.

AAD 13AJ compare the spin 0, *CP*-even hypothesis with specific alternative hypotheses of spin 0, *CP*-odd, spin 1, *CP*-even and *CP*-odd, and spin 2, *CP*-even models using the Higgs boson decays $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ and combinations thereof. The data are compatible with the spin 0, *CP*-even hypothesis, while all other tested hypotheses are excluded at confidence levels above 97.8%.

²³ CHATRCHYAN 13J study angular distributions of the lepton pairs in the ZZ^* channel where both Z bosons decay to e or μ pairs. Under the assumption that the observed particle has spin 0, the data are found to be consistent with the pure CP-even hypothesis, while the pure CP-odd hypothesis is disfavored.

H DECAY WIDTH

The total decay width for a light Higgs boson with a mass in the observed range is not expected to be directly observable at the LHC. For the case of the Standard Model the prediction for the total width is about 4 MeV, which is three orders of magnitude smaller than the experimental mass resolution. There is no indication from the results observed so far that the natural width is broadened by new physics effects to such an extent that it could be directly observable. Furthermore, as all LHC Higgs channels rely on the identification of Higgs decay products, the total Higgs width cannot be measured indirectly without additional assumptions. The different dependence of on-peak and off-peak contributions on the total width in Higgs decays to ZZ^{\ast} and interference effects between signal and background in Higgs decays to ZZ^{\ast} and interference on-peak and off-peak contributions in Higgs decays to ZZ^{\ast} rely on the assumption of equal on- and off-shell effective couplings. Without an experimental determination of the total width or further theoretical assumptions, only ratios of couplings can be determined at the LHC rather than absolute values of couplings.

VALUE (MeV)	CL%	DOCUMENT ID	TECN	COMMENT
3.2 ^{+2.4} _{-1.7}		¹ TUMASYAN	22AM CMS	$pp, 13 \text{ TeV}, ZZ^*/ZZ \rightarrow A\ell ZZ \rightarrow 2\ell2\nu$

• • We do not use the following data for averages, fits, limits, etc. • •

$3.2^{+2.8}_{-2.2}$		² SIRUNYAN	19BL CMS	pp, 7, 8, 13 TeV,
2.2		_		$ZZ^*/ZZ ightarrow 4\ell$
< 14.4	95	³ AABOUD	18BP ATLS	pp , 13 TeV, $ZZ ightarrow 4\ell$, $2\ell2 u$
<1100	95	⁴ SIRUNYAN	17AV CMS	pp , 13 TeV, $ZZ^* ightarrow 4\ell$
< 26	95	⁵ KHACHATRY	′ 16 ва СМЅ	pp, 7, 8 TeV, <i>WW</i> (*)

https://pdg.lbl.gov Page 6 Created: 5/31/2023 09:12

```
pp, 7, 8 TeV,ZZ^{(*)},WW^{(*)}
                                <sup>6</sup> KHACHATRY...16BA CMS
< 13
                      95
                                                   15BE ATLS pp, 8 TeV, ZZ^{(*)}, WW^{(*)}
                                <sup>7</sup> AAD
     22.7
                      95
<1700
                                <sup>8</sup> KHACHATRY...15AMCMS pp, 7, 8 TeV
                      95
> 3.5 \times 10^{-9}
                      95
                                <sup>9</sup> KHACHATRY...15BA CMS pp, 7, 8 TeV, flight distance
                               ^{10} KHACHATRY...15BA CMS pp, 7, 8 TeV, ZZ^{(*)} \rightarrow 4\ell
< 46
                      95
                               <sup>11</sup> AAD
                                                    14W ATLS pp, 7, 8 TeV, \gamma\gamma
                      95
< 5000
                               <sup>11</sup> AAD
                      95
                                                    14W ATLS pp, 7, 8 TeV, ZZ^* \rightarrow 4\ell
<2600
                               ^{12} CHATRCHYAN 14AA CMS pp, 7, 8 TeV, ZZ^* \rightarrow 4\ell
                      95
<3400
                               <sup>13</sup> KHACHATRY...14D CMS pp, 7, 8 TeV, ZZ^{(*)}
< 22
                      95
                               <sup>14</sup> KHACHATRY...14P CMS pp, 7, 8 TeV, \gamma\gamma
<2400
```

- 1 TUMASYAN 22AM use up to 140 fb $^{-1}$ at $E_{\rm CM}=13$ TeV. The off-shell Higgs boson production in the $ZZ\to 4\ell$ and $ZZ\to 2\ell\,2\nu$ decay channels and the on-shell production in the $ZZ^*\to 4\ell$ ($\ell=e,~\mu$) decay channels are used to measure the total width. The off-shell Higgs signal strength is measured to be $0.62^{+0.68}_{-0.45}$ without the constraint on the ratio of the off-shell signal strengths for gluon-fusion and gauge-boson modes. The scenario of no off-shell contribution is excluded at 3.6 σ . The results are shown in their Table 1 with other constraint scenarios and the decay widths assuming the same coupling modifiers for on- and off-shell couplings $(g_p$ and g_d in their notation). The measurement of anomalous HVV couplings is shown in their Extended Data Table 1 and Fig. 8.
- ²SIRUNYAN 19BL measure the width and anomalous HVV couplings from on-shell and off-shell production in the 4ℓ final state. Data of 80.2 fb⁻¹ at 13 TeV, 19.7 fb⁻¹ at 8 TeV, and 5.1 fb⁻¹ at 7 TeV are used. The total width for the SM-like couplings is measured to be also [0.08, 9.16] MeV with 95% CL, assuming SM-like couplings for on-and off-shells (see their Table VIII). Constraints on the total width for anomalous HVV interaction cases are found in their Table IX. See their Table X for the Higgs boson signal strength in the off-shell region.
- 3 AABOUD 18BP use $36.1~{\rm fb}^{-1}$ at $E_{\rm cm}=13~{\rm TeV}.$ An observed upper limit on the off-shell Higgs signal strength of 3.8 is obtained at 95% CL using off-shell Higgs boson production in the $ZZ\to 4\ell$ and $ZZ\to 2\ell 2\nu$ decay channels $(\ell=e,~\mu).$ Combining with the on-shell signal strength measurements, the quoted upper limit on the Higgs boson total width is obtained, assuming the ratios of the relevant Higgs-boson couplings to the SM predictions are constant with energy from on-shell production to the high-mass range.
- ⁴ SIRUNYAN 17AV obtain an upper limit on the width from the $m_{4\ell}$ distribution in $ZZ^* \to 4\ell$ ($\ell=e,~\mu$) decays. Data of 35.9 fb⁻¹ pp collisions at $E_{\rm cm}=13$ TeV is used. The expected limit is 1.60 GeV.
- ⁵ KHACHATRYAN 16BA derive constraints on the total width from comparing $WW^{(*)}$ production via on-shell and off-shell H using 4.9 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.4 fb⁻¹ at 8 TeV.
- 6 KHACHATRYAN 16BA combine the $WW^{(*)}$ result with $ZZ^{(*)}$ results of KHACHATRYAN 15BA and KHACHATRYAN 14D.
- ⁷ AAD 15BE derive constraints on the total width from comparing $ZZ^{(*)}$ and $WW^{(*)}$ production via on-shell and off-shell H using 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The K factor for the background processes is assumed to be equal to that for the signal.
- 8 KHACHATRYAN 15AM combine $\gamma\gamma$ and $ZZ^*\to 4\ell$ results. The expected limit is 2.3 GeV.
- ⁹ KHACHATRYAN 15BA derive a lower limit on the total width from an upper limit on the decay flight distance $\tau < 1.9 \times 10^{-13}$ s. 5.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 19.7 fb⁻¹ at 8 TeV are used.
- 10 KHACHATRYAN 15BA derive constraints on the total width from comparing $ZZ^{(*)}$ production via on-shell and off-shell H with an unconstrained anomalous coupling. 4ℓ final states in 5.1 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm}=8$ TeV are used.

H DECAY MODES

	Mode		Fraction (Γ_i/Γ)	(Confidence level
Γ ₁	<i>W W</i> *		(25.7 ± 2.5)) %	_
Γ_2	<i>Z Z</i> *		(2.80 ± 0.30)	•	
Γ ₃	$\gamma \gamma$		(2.50 ± 0.20)	$\times 10^{-3}$	3
Γ ₄	$b\overline{b}$		(53 ± 8)) %	
Γ_5	e^+e^-		< 3.6	× 10 ⁻⁴	4 95%
Γ_6	$\mu^+\mu^-$		(2.6 ± 1.3) × 10 ⁻⁴	4
Γ ₇	$ au^+ au^-$		$(6.0 \begin{array}{c} +0.8 \\ -0.7 \end{array}$) %	
Γ ₈	$Z\gamma$		(3.2 ± 1.5	$) \times 10^{-3}$	3
-	$Z\rho(770)$		< 1.21	%	95%
Γ ₁₀	$Z\phi(1020)$		< 3.6	\times 10 ⁻³	3 95%
Γ_{11}	$Z\eta_c$				
Γ_{12}	ZJ/ψ				
	$J/\psi \gamma$		< 3.5	\times 10 ⁻⁴	4 95%
Γ_{14}	$J/\psiJ/\psi$		< 1.8	\times 10 ⁻³	
Γ_{15}	$\psi(2S)\gamma$		< 2.0	\times 10 ⁻³	3 95%
Γ_{16}	$\Upsilon(1S)\gamma$		< 4.9	× 10 ⁻¹	
Γ_{17}	$\Upsilon(2S)\gamma$		< 5.9	\times 10 ⁻⁴	4 95%
	$\Upsilon(3S)\gamma$		< 5.7	× 10 ⁻¹	
Γ_{19}	$\Upsilon(nS)\ \Upsilon(mS)$		< 1.4	\times 10 ⁻³	3 95%
Γ_{20}	$ ho$ (770) γ		< 8.8	× 10 ⁻¹	
Γ_{21}	ϕ (1020) γ		< 4.8	× 10 ⁻¹	4 95%
Γ_{22}	$e\mu$	LF	< 6.1	\times 10 ⁻¹	
Γ ₂₃	e au	LF	< 2.2	\times 10 ⁻³	3 95%
Γ_{24}	μau	LF	< 1.5	\times 10 ⁻³	3 95%
	invisible		< 13	%	95%
Γ ₂₆	γ invisible		< 2.9	%	95%

 $^{^{11}}$ AAD 14W use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at 8 TeV. The expected limit is 6.2 GeV.

¹² CHATRCHYAN 14AA use 5.1 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm}=8$ TeV. The expected limit is 2.8 GeV.

¹³ KHACHATRYAN 14D derive constraints on the total width from comparing $ZZ^{(*)}$ production via on-shell and off-shell H. 4 ℓ and $\ell\ell\nu\nu$ final states in 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV are used.

 $^{^{14}}$ KHACHATRYAN 14P use 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The expected limit is 3.1 GeV.

H BRANCHING RATIOS

Н	BRANCHING I	RATIO	OS		
$\Gamma(WW^*)/\Gamma_{\text{total}}$	DOCUMENT ID		TFCN	COMMENT	Γ_1/Γ
0.257+0.026	¹ ATLAS		· ·	<i>pp</i> , 13 TeV	
1 ATLAS 22 report combined refb $^{-1}$ of data at $E_{\rm cm}=13$ production cross-sections are a	TeV, assuming I	$n_H =$	125.09		
$\Gamma(ZZ^*)/\Gamma_{total}$					Γ_2/Γ
<u>VALUE</u> 0.028±0.003	DOCUMENT ID ATLAS			pp, 13 TeV	
	_			• • •	. 120
1 ATLAS 22 report combined refb $^{-1}$ of data at $E_{\rm cm}=13$ production cross-sections are a	TeV, assuming I	$n_H =$	125.09		
$\Gamma(\gamma\gamma)/\Gamma_{ m total}$					Γ_3/Γ
VALUE	DOCUMENT ID ATLAS				
0.0025±0.0002	_			pp, 13 TeV	
1 ATLAS 22 report combined refb $^{-1}$ of data at $E_{\rm cm}=13$ production cross-sections are a	TeV, assuming I	$n_H =$	125.09		
$\Gamma(b\overline{b})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₄ /Γ
<u>VALUE</u> 0.53±0.08	1 ATLAS	22	ATIS	nn 13 ToV	
1 ATLAS 22 report combined refb $^{-1}$ of data at $E_{\rm cm}=13$ production cross-sections are a	esults (see their E TeV, assuming <i>i</i>	$n_H =$	ed Data : 125.09	Table 1) using u	p to 139 s for the
$\Gamma(e^+e^-)/\Gamma_{\text{total}}$					Γ_5/Γ
VALUE CL%	DOCUMENT ID		TECN	COMMENT	
<3.6 × 10⁻⁴ 95	$^{ m 1}$ AAD	20F	ATLS	<i>pp</i> , 13 TeV	
• • • We do not use the following	g data for average	s, fits,	, limits, e	etc. • • •	
$< 1.9 \times 10^{-3}$ 95	² KHACHATRY	′15H	CMS	pp, 7, 8 TeV	
1 AAD 20F use 139 fb $^{-1}$ of p_{I}	σ collisions at F_{-}	= '	13 TeV.	The best-fit value	ie of the
$H \rightarrow ee$ branching fraction is					01 1110
² KHACHATRYAN 15H use 5.0 8 TeV.	$^{-1}$ of pp collis	ions a	t <i>E</i> _{cm} =	7 TeV and 19.7	${\rm fb}^{-1}$ at
$\Gamma(\mu^+\mu^-)/\Gamma_{ m total}$					Γ_6/Γ
VALUE (units 10^{-4})	1 ATLAS		TECN	COMMENT	
2.6±1.3	$^{ m 1}$ ATLAS	22	ATLS	<i>pp</i> , 13 TeV	
1 ATLAS 22 report combined refb $^{-1}$ of data at $E_{\rm cm}=13$ production cross-sections are a	esults (see their E	xtende	ed Data	Table 1) using u	p to 139 s for the

oladioni (variore)	sata 6.6ap),6g6			000001 (2022) and 2	ozo apaato	
$\Gamma(au^+ au^-)/\Gamma_{total}$					Γ ₇ /Γ	
VALUE	DOCUMENT II	ס	TECN	COMMENT		
$0.060^{igoplus 0.008}_{-0.007}$	¹ ATLAS	22	ATLS	<i>pp</i> , 13 TeV		
1 ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV. SM values for the production cross-sections are assumed. See their Fig. 2b.						
$\Gamma(Z\gamma)/\Gamma_{ m total}$					Γ ₈ /Γ	

 $\Gamma(Z\gamma)/\Gamma_{\text{total}}$ VALUE (units 10^{-3})

DOCUMENT ID

TECN COMMENT

3.2 \pm 1.5 1 ATLAS 22 ATLS pp, 13 TeV

 $\Gamma(Z\rho(770))/\Gamma_{\text{total}}$ Γ_{9}/Γ

VALUECL%DOCUMENT IDTECNCOMMENT $<1.21 \times 10^{-2}$ 951 SIRUNYAN20BK CMSpp, 13 TeV

 $\Gamma(Z\phi(1020))/\Gamma_{total}$ Γ_{10}/Γ

VALUECL%DOCUMENT IDTECNCOMMENT $<3.6 \times 10^{-3}$ 951 SIRUNYAN20BK CMSpp, 13 TeV

 $\Gamma(Z\eta_c)/\Gamma_{ ext{total}}$ VALUE DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ AAD 20AE ATLS pp, 13 TeV

 $\Gamma(ZJ/\psi)/\Gamma_{ ext{total}}$ Γ_{12}/Γ

• • • We do not use the following data for averages, fits, limits, etc. • •

¹ AAD 20AE ATLS *pp*, 13 TeV

 $^{^1}$ ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV. SM values for the production cross-sections are assumed. See their Fig. 2b.

 $^{^1}$ SIRUNYAN 20BK search for $H\to Z\rho,~Z\to e^+e^-/\mu^+\mu^-,~\rho\to \pi^+\pi^-$ with 137 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The quoted branching fraction is for the unpolarized decay. See their Table 3 for different polarizations.

 $^{^1}$ SIRUNYAN 20BK search for $H\to Z\,\phi,\,Z\to e^+\,e^-/\mu^+\,\mu^-,\,\phi\to K^+\,K^-$ with 137 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=$ 13 TeV. The quoted branching fraction is for the unpolarized decay. See their Table 4 for different polarizations.

 $^{^1}$ AAD 20AE search for $H\to Z\,\eta_{\it C}$ with two-leptons ($e^+\,e^-/\mu^+\,\mu^-$) plus jet events using 139 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The upper limit of $\sigma(p\,p\to\,H)\cdot{\rm B}(H\to Z\,\eta_{\it C})$ is 110 pb at 95% CL.

¹AAD 20AE search for $H \to ZJ/\psi$ with two-leptons $(e^+e^-/\mu^+\mu^-)$ plus jet events using 139 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV. The upper limit of $\sigma(pp\to H)\cdot {\rm B}(H\to ZJ/\psi)$ is 100 pb at 95% CL.

 $\Gamma(J/\psi\gamma)/\Gamma_{\text{total}}$ CL% $< 7.6 \times 10^{-4}$ ¹ SIRUNYAN 95 19AJ CMS 13 TeV, 36.1 fb^{-1} ² AABOUD $< 3.5 \times 10^{-4}$ 95 18_{BL} ATLS • • We do not use the following data for averages, fits, limits, etc. ³ KHACHATRY...16B CMS $< 1.5 \times 10^{-3}$ 95 $< 1.5 \times 10^{-3}$ ⁴ AAD 95 15ı ATLS 8 TeV

$\Gamma(J/\psi J/\psi)/\Gamma_{\text{total}}$

 Γ_{14}/Γ

(/ / / / / 1000				
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$<1.8 \times 10^{-3}$	95	¹ SIRUNYAN	19BR CMS	pp at 13 TeV

 $^{^1}$ SIRUNYAN 19BR search for $H\to J/\psi\,J/\psi,\,J/\psi\to\,\mu^+\,\mu^-$ with 37.5 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. $J/\psi{\rm s}$ from the Higgs decay are assumed to be unpolarized. For fully longitudinal (transverse) polarized $J/\psi{\rm s}$, limits change by -22% (+10%).

$\Gamma(\psi(2S)\gamma)/\Gamma_{\text{total}}$

 Γ_{15}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 2.0 \times 10^{-3}$	95	¹ AABOUD	18BL ATLS	13 TeV, 36.1 ${\rm fb}^{-1}$

¹ AABOUD 18BL search for $H \to \psi(2S)\gamma$, $\psi(2S) \to \mu^+\mu^-$ with 36.1 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV.

$\Gamma(\Upsilon(1S)\gamma)/\Gamma_{\text{total}}$

 Γ_{16}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<4.9 × 10 ⁻⁴	95	¹ AABOUD	18BL ATLS	13 TeV, 36.1 fb $^{-1}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$< 1.3 \times 10^{-3}$$
 95 ² AAD 151 ATLS 8 TeV

$\Gamma(\Upsilon(2S)\gamma)/\Gamma_{\text{total}}$

 Γ_{17}/Γ

Created: 5/31/2023 09:12

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<5.9 × 10 ⁻⁴	95	¹ AABOUD	18BL ATLS	13 TeV, 36.1 ${\rm fb}^{-1}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<1.9 \times 10^{-3}$$
 95 ² AAD 151 ATLS 8 TeV

 $^{^1}$ SIRUNYAN 19AJ search for $H\to J/\psi\gamma,\,J/\psi\to\mu^+\mu^-$ with 35.9 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The upper limit corresponds to 260 times the SM prediction and by combining the KHACHATRYAN 16B, it is 220 times the SM prediction.

² AABOUD 18BL search for $H \to J/\psi \gamma$, $J/\psi \to \mu^+ \mu^-$ with 36.1 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV.

 $^{^3}$ KHACHATRYAN 16B use 19.7 fb $^{-1}$ of pp collision data at 8 TeV.

 $^{^4}$ AAD 151 use 19.7 fb $^{-1}$ of pp collision data at 8 TeV.

¹ AABOUD 18BL search for $H \to \Upsilon(1S)\gamma$, $\Upsilon(1S) \to \mu^+\mu^-$ with 36.1 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV.

 $^{^{2}}$ AAD 15I use 19.7 fb $^{-1}$ of pp collision data at 8 TeV.

 $^{^1}$ AABOUD 18BL search for $H\to ~ \Upsilon(2S)\gamma,~\Upsilon(2S)\to ~\mu^+\mu^-$ with 36.1 fb $^{-1}$ of pp collision data at $E_{\rm cm}=$ 13 TeV.

 $^{^2}$ AAD 151 use 19.7 fb $^{-1}$ of pp collision data at 8 TeV.

$\Gamma(\Upsilon(3S)\gamma)/\Gamma_{total}$					Γ ₁₈ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<5.7 × 10 ⁻⁴	95	¹ AABOUD			$^{-1}$
• • • We do not use the	following	data for averages	, fits, limits,	etc. • • •	
$< 1.3 \times 10^{-3}$	95	² AAD	15ı ATLS	8 TeV	
1 AABOUD 18BL search collision data at $E_{\rm cm}$ 2 AAD 15I use 19.7 fb $^{-1}$	= 13 Te	V.		ι^- with 36.1 fb $^-$	$^{-1}$ of pp
$\Gamma(\Upsilon(nS) \Upsilon(mS))/\Gamma_{tc}$	otal				Γ ₁₉ /Γ
VALUE	CL%	DOCUMENT ID SIRUNYAN	TECN	COMMENT	
$<1.4 \times 10^{-3}$	95	¹ SIRUNYAN	19BR CMS	pp at 13 TeV	
¹ SIRUNYAN 19BR sea = 1, 2, 3) for 37.5 f decay are assumed to limits change by -22 GeV are not distingui	$^{ m fb}^{-1}$ of $^{ m p}$ be unpo $^{ m l}\%$ $(+10\%)$	p collision data a larized. For fully	t $E_{ m cm}=13$ longitudinal	TeV. Υ s from t (transverse) pola	he Higgs rized γ s,
$\Gamma(ho(770)\gamma)/\Gamma_{ m total}$					Γ_{20}/Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
$< 8.8 \times 10^{-4}$	95	¹ AABOUD	18AU ATLS	<i>pp</i> , 13 TeV	
¹ AABOUD 18AU use 3	$35.6 \; { m fb}^{-1}$	of <i>pp</i> collision da	ta at 13 TeV	' .	
$\Gamma(\phi(1020)\gamma)/\Gamma_{total}$	7. 0.				Γ_{21}/Γ
<u>VALUE</u> <4.8 × 10 ^{−4}	95	¹ AABOUD	10AU ATLC	COMMENT	
• • • We do not use the					
$<1.4 \times 10^{-3}$		² AABOUD			
				• •	
¹ AABOUD 18AU use 3 ² AABOUD 16K use 2.				·	
$\Gamma(e\mu)/\Gamma_{total}$					Γ ₂₂ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
$<6.1 \times 10^{-5}$	95	¹ AAD		<i>pp</i> , 13 TeV	
• • • We do not use the	following				
$< 3.5 \times 10^{-4}$	95	² KHACHATRY.	16CD CMS	<i>pp</i> , 8 TeV	
1 AAD 20F use 139 fb $H \rightarrow e \mu$ branching 2 KHACHATRYAN 160 The limit constrains	fraction is CD search for the $Y_{e\mu}$ $Y_{e\mu}$	$(0.4\pm 2.9\pm 0.3)$ or $H o e\mu$ in 19.7	$0 imes 10^{-5} ext{ for } 7 ext{ fb}^{-1} ext{ of } pp$	$m_{H} = 125 \text{ GeV}$ collisions at $E_{ m cm}$	= 8 TeV.
at 95% CL (see their	Fig. 6).				_ ,_
$\Gamma(e\tau)/\Gamma_{\text{total}}$	CL%	DOCUMENT ID	TECN	COMMENT	Γ ₂₃ /Γ
$< 2.2 \times 10^{-3}$	95	¹ SIRUNYAN	21Z CMS	<i>pp</i> , 13 TeV	
• • • We do not use the	following		, fits, limits,	etc. • • •	
$< 4.7 \times 10^{-3}$	95	² AAD	20A ATLS	<i>pp</i> , 13 TeV	
https://pdg.lbl.gov		Page 12	Crea	ted: 5/31/202	3 09:12

$< 6.1 \times 10^{-3}$	95	³ SIRUNYAN	18 B	н CMS	<i>p p</i> , 13 TeV
$< 10.4 \times 10^{-3}$	95	⁴ AAD	17	ATLS	<i>pp</i> , 8 TeV
$< 6.9 \times 10^{-3}$	95	⁵ KHACHATRY	16 C	D CMS	ρρ. 8 TeV

 $^{^1}$ SIRUNYAN 21Z search for H
ightarrow e au in 137 fb $^{-1}$ of pp collisions at $E_{
m cm} = 13$ TeV. The limit constrains the $Y_{e\tau}$ Yukawa coupling to $\sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 1.35 \times 10^{-3}$ at 95% CL (see their Fig. 8).

- 2 AAD 20A search for H
 ightarrow e au in 36.1 fb $^{-1}$ of pp collisions at $E_{
 m cm} =$ 13 TeV. The limit constrains the $Y_{e\, au}$ Yukawa coupling to $\sqrt{|Y_{e\, au}|^2+|Y_{ au\,e}|^2}<~2.0 imes10^{-3}$ at 95% CL (see their Fig. 5).
- ³ SIRUNYAN 18BH search for $H \rightarrow e \tau$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. The limit constrains the $Y_{e\, au}$ Yukawa coupling to $\sqrt{|Y_{e\, au}|^2+|Y_{ au\,e}|^2}~<~2.26\times 10^{-3}$ at 95% CL (see their Fig. 10).
- ⁴ AAD 17 search for $H \rightarrow e\tau$ in 20.3 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV.
- 5 KHACHATRYAN 16CD search for H
 ightarrow e au in 19.7 fb $^{-1}$ of pp collisions at $E_{\rm cm} = 8$ TeV. The limit constrains the $Y_{e\, au}$ Yukawa coupling to $\sqrt{|Y_{e\, au}|^2+|Y_{ au\,e}|^2}$ $< 2.4 imes 10^{-3}$ at 95% CL (see their Fig. 6).

 $\Gamma(\mu\tau)/\Gamma_{\text{total}}$ Γ_{24}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 1.5 \times 10^{-3}$	95	$^{ m 1}$ SIRUNYAN	21z	CMS	<i>pp</i> , 13 TeV
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
$< 2.8 \times 10^{-3}$	95	² AAD	20A	ATLS	<i>pp</i> , 13 TeV
$< 26 \times 10^{-2}$	95	³ AAIJ	18AN	1LHCB	<i>pp</i> , 8 TeV
$< 2.5 \times 10^{-3}$	95	⁴ SIRUNYAN	18 BH	CMS	<i>p p</i> , 13 TeV
$< 1.43 \times 10^{-2}$	95	⁵ AAD	17	ATLS	<i>pp</i> , 8 TeV
$< 1.51 \times 10^{-2}$	95	⁶ KHACHATRY.	15Q	CMS	pp, 8 TeV

 $^{^1}$ SIRUNYAN 21Z search for $H
ightarrow ~\mu au$ in 137 fb $^{-1}$ of pp collisions at $E_{
m cm} =$ 13 TeV. The limit constrains the $Y_{\mu\tau}$ Yukawa coupling to $\sqrt{|Y_{\mu\tau}|^2+|Y_{\tau\mu}|^2} < 1.11 \times 10^{-3}$ at 95% CL (see their Fig. 8).

Created: 5/31/2023 09:12

 $^{^2}$ AAD 20A search for $H o \mu au$ in $36.1~{
m fb}^{-1}$ of pp collisions at $E_{
m cm} = 13~{
m TeV}$. The limit constrains the $Y_{\mu\tau}$ Yukawa coupling to $\sqrt{|Y_{\mu\tau}|^2+|Y_{\tau\mu}|^2}$ < 1.5 imes 10 $^{-3}$ at 95% CL (see their Fig. 5).

 $^{^3}$ AAIJ 18AM search for $H
ightarrow \ \mu au$ in 2.0 fb $^{-1}$ of pp collisions at $E_{
m cm} =$ 8 TeV. The limit constrains the $Y_{\mu\tau}$ Yukawa coupling to $\sqrt{|Y_{\mu\tau}|^2+|Y_{\tau\mu}|^2}$ < 1.7 \times 10⁻² at 95% CL assuming SM production cross sections.

⁴ SIRUNYAN 18BH search for $H \to \mu \tau$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. The limit constrains the $Y_{\mu au}$ Yukawa coupling to $\sqrt{|Y_{\mu au}|^2 + |Y_{ au \mu}|^2} < 1.43 imes 10^{-3}$ at 95% CL (see their Fig. 10).

⁵ AAD 17 search for $H \to \mu \tau$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV.

 $^{^6}$ KHACHATRYAN 15Q search for $H o ~\mu au$ with au decaying electronically or hadronically in 19.7 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV. The fit gives B($H \to \mu \tau$) = (0.84 + 0.39)%with a significance of 2.4 σ .

 $\Gamma(\text{invisible})/\Gamma_{\text{total}}$

 Γ_{25}/Γ

erages, fits, limits, etc. $ullet$ $ullet$ $ullet$ 22D ATLS $pp o ZH$, 13 TeV
22D ATLS $pp \rightarrow ZH$, 13 TeV
·
22P ATLS $pp \rightarrow qqH$, 13 TeV
22S ATLS $pp ightarrow qqH\gamma$, 13 TeV
22 CMS <i>pp</i> , 13 TeV
22G CMS $pp \rightarrow qqH$, 8, 13 TeV
22G CMS $pp \rightarrow qqH$, 13 TeV
21F ATLS <i>pp</i> , 13 TeV
21A CMS $pp \rightarrow ZH$, 13 TeV
21D CMS pp , 13 TeV, jet or $V(\rightarrow q\overline{q})$
19ALATLS $pp \rightarrow qqH$, 13 TeV
19AL ATLS pp, 13 TeV
19AL ATLS pp, 7, 8, 13 TeV
19AT CMS <i>pp</i> , 13 TeV
19B0 CMS $pp \rightarrow qqH$, 13 TeV
19B0 CMS pp, 13 TeV
19B0 CMS pp, 7, 8, 13 TeV
18 ATLS $pp \rightarrow ZH$, 13 TeV
18CA ATLS $pp ightarrow WH/ZH$, $W/Z ightarrow jj$, 13 TeV
18BV CMS $pp \rightarrow ZH$, 13 TeV
18S CMS pp , 13 TeV, jet or $V(\rightarrow$
$q\overline{q}$
17BD ATLS $pp \rightarrow Hj$, qqH , 13 TeV
Y17F CMS <i>pp</i> , 7, 8, 13 TeV
16AF ATLS $pp ightarrow qqH$, 8 TeV
16AN LHC <i>pp</i> , 7, 8 TeV
15BD ATLS $pp \rightarrow WH/ZH$, 8 TeV
15CX ATLS <i>pp</i> , 7, 8 TeV
140 ATLS $pp \rightarrow ZH$, 7, 8 TeV
AN 14B CMS $pp o ZH$, qqH
AN 14B CMS $pp o ZH$, 7, 8 TeV
AN 14B CMS $pp ightarrow qqH$, 8 TeV

 $^{^1}$ ATLAS 22 report the combined results using 139 fb $^{-1}$ of data at $E_{\rm cm}=$ 13 TeV, where H decaying to invisible final states in VBF (AAD 22P), and $ZH, Z \rightarrow ~e\,e,~\mu\mu$ (AAD 22D), assuming $\kappa_V \leq 1$ and $B_{undetected} \geq 0$.

²AAD 22D search for H decaying to invisible final states associated with a Z decaying $e\,e/\mu\mu$ using 139 fb⁻¹ at 13 TeV. The limit is obtained for $m_H=125$ GeV and assuming the SM ZH production cross section. The branching ratio is obtained to be $(0.3\pm9.0)\%$.

³AAD 22P search for $pp \to qqHX$ (VBF) with H decaying to invisible final states using 139 fb⁻¹ of data. The quoted limit on the branching ratio is given for $m_H=125$ GeV and assumes the Standard Model cross section.

⁴AAD 22S observe electroweak $Z(\to \nu\nu)\gamma+2$ jets production process with 139 fb⁻¹ of data. This result is applicable to search for $pp\to qqH\gamma X$ (VBF+ γ) with H decaying to invisible final states. The quoted limit on the branching ratio is given for $m_H=125$ GeV and assumes the Standard Model cross section.

- 5 CMS 22 report the combined results using (a part of) 138 fb $^{-1}$ of data at $E_{\rm CM}=13$ TeV, where H decaying to invisible final states in VBF (SIRUNYAN 19BO), associated with an energetic jet or a $V(\rightarrow ~q\,\overline{q})$ (TUMASYAN 21D), and $ZH,~Z\rightarrow~e\,e,~\mu\mu$ (SIRUNYAN 21A) and assuming $\kappa_V~\leq~1$ and $B_{undetected}~\geq~0$.
- 6 TUMASYAN 22G combine 13 TeV 101 fb $^{-1}$ results with 8 TeV (KHACHATRYAN 17F) and other 13 TeV (KHACHATRYAN 17F for 2015 and SIRUNYAN 19BO for 2016) for H decaying to invisible final states with VBF topology. The quoted limit on the branching ratio is given for $m_H=125.38$ GeV and assumes the Standard Model production rates. The branching ratio is obtained to be $0.086 {+0.054 \atop -0.052}$. See their Figs. 11 and 12.
- 7 TUMASYAN 22G search for $pp\to qqHX$ (VBF) with H decaying to invisible final states using 101 fb $^{-1}$ of data (2017 and 2018). The quoted limit on the branching ratio is given for $m_H=125.38$ GeV and assumes the Standard Model cross section. See their Figs. 11 and 12.
- ⁸ AAD 21F search for an invisibly decaying Higgs boson with an energetic jet ($p_T > 150$ GeV) and missing transverse momentum (> 200 GeV) in 139 fb⁻¹ at $E_{\rm cm} = 13$ TeV. The quoted limit on the branching ratio is given for $m_H = 125$ GeV.
- ⁹ SIRUNYAN 21A search for H decaying to invisible final states associated with a Z decaying $ee/\mu\mu$ using 137 fb⁻¹ at 13 TeV. The limit is obtained for $m_H=125$ GeV and assuming the SM ZH production cross section.
- ¹⁰ TUMASYAN 21D search for H decaying to invisible final states associated with an energetic jet or a V, $V \rightarrow q \overline{q}$ using 101 fb⁻¹ at 13 TeV and the result is combined with SIRUNYAN 18S.
- ¹¹ AABOUD 19AI search for $pp \to qqHX$ (VBF) with H decaying to invisible final states using 36.1 fb⁻¹ of data. The quoted limit on the branching ratio is given for $m_H = 125$ GeV and assumes the Standard Model rates for VBF and gluon-fusion production.
- 12 AABOUD 19AL combine results of H decaying to invisible final states with VBF(AABOUD 19AI), ZH, and WH productions (AABOUD 18, AABOUD 18CA), which use 36.1 fb $^{-1}$ of data at 13 TeV. The quoted limit is given for $m_H=125$ GeV and assumes the Standard Model rates for gluon fusion, VBF, ZH, and WH productions.
- 13 AABOUD 19AL combine results of 7, 8 (AAD 15CX), and 13 TeV for H decaying to invisible final states.
- 14 SIRUNYAN 19AT perform a combined fit with visible decay using 35.9 fb $^{-1}$ of data at 13 TeV.
- ¹⁵ SIRUNYAN 19BO search for $pp \to qqHX$ (VBF) with H decaying to invisible final states using 35.9 fb⁻¹ of data. The quoted limit on the branching ratio is given for $m_H = 125.09$ GeV and assumes the Standard Model production rates.
- 16 SIRUNYAN 19BO combine the VBF channel with results of other 13 TeV analyses: SIRUNYAN 18BV and SIRUNYAN 18S. The quoted limit on the branching ratio is given for $m_H=125.09$ GeV and assumes the Standard Model production rates.
- 17 SIRUNYAN 1980 combine 13 TeV 35.9 fb $^{-1}$ results with 7, 8, 13 TeV (KHACHATRYAN 17F) for H decaying to invisible final states. The quoted limit on the branching ratio is given for $m_H=125.09$ GeV and assumes the Standard Model production rates. The branching ratio is obtained to be 0.05 \pm 0.03 (stat) \pm 0.07(syst).
- 18 AABOUD 18 search for $pp \to HZX, Z \to ee, ~\mu\mu$ with H decaying to invisible final states in 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The quoted limit on the branching ratio is given for $m_H=125$ GeV and assumes the Standard Model rate for HZ production.
- ¹⁹ AABOUD 18CA search for H decaying to invisible final states using WH, and ZH productions, where W and Z hadronically decay. The data of 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV is used. The quoted limit assumes SM production cross sections with combining the contributions from WH, ZH, ggF and VBF production modes.
- ²⁰ SIRUNYAN 18BV search for H decaying to invisible final states associated with a Z, $Z \rightarrow \ell\ell$ using 35.9 fb⁻¹ at 13 TeV.The limit is obtained for $m_H=125$ GeV and assuming the SM ZH production cross section.

- ²¹ SIRUNYAN 18S search for H decaying to invisible final states associated with an energetic jet or a V, $V \rightarrow q \overline{q}$ using 35.9 fb⁻¹ at 13 TeV.
- ²² AABOUD 17BD search for H decaying to invisible final states with ≥ 1 jet and VBF events using 3.2 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. A cross-section ratio $R^{\rm miss}$ is used in the measurement. The quoted limit is given for $m_H=125$ GeV.
- ²³ KHACHATRYAN 17F search for H decaying to invisible final states with gluon fusion, VBF, ZH, and WH productions using 2.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV, 19.7 fb $^{-1}$ at 8 TeV, and 5.1 fb $^{-1}$ at 7 TeV. The quoted limit is given for $m_H=125$ GeV and assumes the Standard Model rates for gluon fusion, VBF, ZH, and WH productions.
- ²⁴ AAD 16AF search for $pp \to qqHX$ (VBF) with H decaying to invisible final states in 20.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. The quoted limit on the branching ratio is given for $m_H=125$ GeV and assumes the Standard Model rates for VBF and gluon-fusion production.
- 25 AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The branching fraction of decays into BSM particles that are invisible or into undetected decay modes is measured for $m_0=125.09$ GeV.
- AAD 15BD search for $pp \to HWX$ and $pp \to HZX$ with W or Z decaying hadronically and H decaying to invisible final states using data at $E_{\rm cm}=8$ TeV. The quoted limit is given for $m_H=125$ GeV, assumes the Standard Model rates for the production processes and is based on a combination of the contributions from HW, HZ and the gluon-fusion process.
- ²⁷AAD 15CX search for H decaying to invisible final states with VBF, ZH, and WH productions using 20.3 fb $^{-1}$ at 8 TeV, and 4.7 fb $^{-1}$ at 7 TeV. The quoted limit is given for $m_H=125.36$ GeV and assumes the Standard Model rates for gluon fusion, VBF, ZH, and WH productions. The upper limit is improved to 0.23 by adding the measured visible decay rates.
- ²⁸ AAD 140 search for $pp \to HZX$, $Z \to \ell\ell$, with H decaying to invisible final states in 4.5 fb⁻¹ at $E_{\rm cm} = 7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. The quoted limit on the branching ratio is given for $m_H = 125.5$ GeV and assumes the Standard Model rate for HZ production.
- ²⁹ CHATRCHYAN 14B search for $pp \to HZX$, $Z \to \ell\ell$ and $Z \to b\overline{b}$, and also $pp \to qqHX$ with H decaying to invisible final states using data at $E_{\rm cm}=7$ and 8 TeV. The quoted limit on the branching ratio is obtained from a combination of the limits from HZ and qqH. It is given for $m_H=125$ GeV and assumes the Standard Model rates for the two production processes.
- 30 CHATRCHYAN 14 B search for $pp \to HZX$ with H decaying to invisible final states and $Z \to \ell\ell$ in $^{4.9}$ fb $^{-1}$ at $E_{\rm cm} = 7$ TeV and $^{19.7}$ fb $^{-1}$ at $E_{\rm cm} = 8$ TeV, and also with $Z \to b\overline{b}$ in $^{18.9}$ fb $^{-1}$ at $E_{\rm cm} = 8$ TeV. The quoted limit on the branching ratio is given for $m_H = 125$ GeV and assumes the Standard Model rate for HZ production.
- 31 CHATRCHYAN 14B search for pp o qqHX (vector boson fusion) with H decaying to invisible final states in 19.5 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted limit on the branching ratio is given for $m_H=125$ GeV and assumes the Standard Model rate for qqH production.

$\Gamma(\gamma \text{ invisible})/\Gamma_{\text{total}}$

 Γ_{26}/Γ

Created: 5/31/2023 09:12

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.029	95	1,2 SIRUNYAN	21L	CMS	VBF, HZ , $H \rightarrow \gamma$ + invisible 13 TeV

• • We do not use the following data for averages, fits, limits, etc.
 • •

< 0.035	95	¹ SIRUNYAN	21L CMS	VBF, $H \rightarrow \gamma + \text{invisible, } 13$
< 0.046	95			TeV $pp \rightarrow HZ, H \rightarrow \gamma + \text{invisible } Z \rightarrow \ell\ell \text{ 13 TeV}$

 $^{^1}$ SIRUNYAN 21L search for H decaying to an invisible final state plus a γ in the VBF production using 130 fb $^{-1}$ data at $E_{\rm cm}=13$ TeV. The invisible state is called a dark

photon. The quoted limit on the branching ratio is given for $m_{\hbox{\it H}}=125$ GeV assuming the Standard Model rates.

H SIGNAL STRENGTHS IN DIFFERENT CHANNELS

The H signal strength in a particular final state xx is given by the cross section times branching ratio in this channel normalized to the Standard Model (SM) value, $\sigma \cdot B(H \to xx) / (\sigma \cdot B(H \to xx))_{SM}$, for the specified mass value of H. For the SM predictions, see DITTMAIER 11, DITTMAIER 12, and HEINEMEYER 13A. Results for fiducial and differential cross sections are also listed below.

Combined Final States

VALUE	DOCUMENT ID	TECN	COMMENT
1.03 ±0.04 OUR AVERAGE			
1.05 ± 0.06 1.002 ± 0.057	¹ ATLAS ² CMS	22 ATLS22 CMS	pp, 13 TeVpp, 13 TeV
$1.09 \pm 0.07 \pm 0.04 ^{+0.08}_{-0.07}$	^{3,4} AAD	16AN LHC	<i>pp</i> , 7, 8 TeV
$1.44 \begin{array}{l} +0.59 \\ -0.56 \end{array}$	⁵ AALTONEN	13M TEVA	$p\overline{p} ightarrow \; HX$, 1.96 TeV
ullet $ullet$ We do not use the followi	ng data for averages	s, fits, limits, e	etc. • • •
$1.11 \begin{array}{c} +0.09 \\ -0.08 \end{array}$	⁶ AAD	20 ATLS	<i>pp</i> , 13 TeV
1.17 ± 0.10	⁷ SIRUNYAN ⁸ SIRUNYAN	19AT CMS 19BA CMS	pp, 13 TeV pp, 13 TeV, diiferential cross sections
$1.20 \pm 0.10 \pm 0.06^{+0.09}_{-0.08}$	⁴ AAD	16AN ATLS	pp, 7, 8 TeV
$0.97\ \pm0.09\ \pm0.05 {}^{+ 0.08}_{- 0.07}$	⁴ AAD	16AN CMS	<i>pp</i> , 7, 8 TeV
$1.18 \ \pm 0.10 \ \pm 0.07 {}^{+ 0.08}_{- 0.07}$	⁹ AAD	16K ATLS	pp, 7, 8 TeV
$\begin{array}{cccc} 0.75 & +0.28 & +0.13+0.08 \\ -0.26 & -0.11-0.05 \end{array}$	⁹ AAD	16K ATLS	<i>pp</i> , 7 TeV
$1.28\ \pm0.11\ ^{+0.08}_{-0.07}\ ^{+0.10}_{-0.08}$	⁹ AAD	16K ATLS	<i>pp</i> , 8 TeV
	¹⁰ AAD	15P ATLS	pp, 8 TeV, cross section
$1.00 \pm 0.09 \pm 0.07 ^{+0.08}_{-0.07}$	¹¹ KHACHATRY	15AM CMS	pp, 7, 8 TeV
$1.33 \ ^{+ 0.14}_{- 0.10} \ \pm 0.15$	¹² AAD	13AK ATLS	<i>pp</i> , 7 and 8 TeV
$1.54 \begin{array}{l} +0.77 \\ -0.73 \end{array}$	¹³ AALTONEN	13L CDF	$ ho\overline{p} ightarrow \; HX$, 1.96 TeV
$1.40 \begin{array}{l} +0.92 \\ -0.88 \end{array}$	¹⁴ ABAZOV	13L D0	$p\overline{p} ightarrow \; HX$, 1.96 TeV
$\begin{array}{ccc} 1.4 & \pm 0.3 \\ 1.2 & \pm 0.4 \end{array}$	¹⁵ AAD ¹⁵ AAD	12AI ATLS 12AI ATLS	pp ightarrow HX, 7, 8 TeV $pp ightarrow HX$, 7 TeV

²The result of the VBF production is combined with the $pp \rightarrow HZ$ result (SIRUN-YAN 19CG).

 $^{^3}$ SIRUNYAN 19CG search for $pp\to HZ,\,Z\to ee,\,\,\mu\mu$ with H decaying to invisible final states plus a γ in 137 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The quoted limit on the branching ratio is given for $m_H=125$ GeV assuming the Standard Model rate for HZ production and is obtained in the context of a theoretical model, where the undetected (invisible) particle is massless.

1.5 \pm 0.4 15 AAD 12AI ATLS $pp \rightarrow HX$, 8 TeV 1.87 \pm 0.23 16 CHATRCHYAN 12N CMS $pp \rightarrow HX$, 7, 8 TeV

 1 ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV. The Higgs production cross-sections, branching fractions and several ratios are found in their Figs. 2 and 3.

 2 CMS 22 report combined results (see their Extended Data Table 2) using 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV. Signal strengths for production

modes and decay channels are found in their Fig. 2.

- ³ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are $1.03^{+0.16}_{-0.14}$ for gluon fusion, $1.18^{+0.25}_{-0.23}$ for vector boson fusion, $0.89^{+0.40}_{-0.38}$ for WH production, $0.79^{+0.38}_{-0.36}$ for ZH production, and $2.3^{+0.7}_{-0.6}$ for $t\overline{t}H$ production.
- ⁴ AAD 16AN: The uncertainties represent statistics, experimental systematics, and added in quadrature theory systematics on the background and on the signal. The quoted signal strengths are given for $m_H=125.09$ GeV. In the fit, relative branching ratios and relative production cross sections are fixed to those in the Standard Model.
- 5 AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb $^{-1}$ and 9.7 fb $^{-1}$, respectively, of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- ⁶ AAD 20 combine results of up to 79.8 fb⁻¹ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV: $\gamma\gamma$, ZZ^* , WW^* , $\tau\tau$, $b\overline{b}$, $\mu\mu$, invisible, and off-shell analyses (see their Table I). The signal strengths for individual production processes are 1.04 ± 0.09 for gluon fusion, $1.21^{+0.24}_{-0.22}$ for vector boson fusion, $1.30^{+0.40}_{-0.38}$ for WH production, $1.05^{+0.31}_{-0.29}$ for ZH production, and $1.21^{+0.26}_{-0.24}$ for $t\overline{t}H+tH$ production (see their Fig. 2 and Table IV). Several results with the simplified template cross section and κ -frameworks are presented: see their Figs. 9–11, Figs 20, 21 and Table VIII for stage-1 simplified template cross sections, their Figs. 12–17 and Tables X–XII for the κ -framework.
- ⁷ SIRUNYAN 19AT combine results of 35.9 fb⁻¹ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV. The signal strengths for individual production processes are $1.22^{+0.14}_{-0.12}$ for gluon fusion, $0.73^{+0.30}_{-0.27}$ for vector boson fusion, $2.18^{+0.58}_{-0.55}$ for WH production, $0.87^{+0.44}_{-0.42}$ for ZH production, and $1.18^{+0.30}_{-0.27}$ for $t\bar{t}H$ production. Several results with the simplified template cross section and κ -frameworks are presented: see their Fig. 8 and Table 5 for stage-0 simplified template cross sections, their Figs. 9–18 and Tables 7–11 for the κ -framework.
- SIRUNYAN 19BA measure differential cross sections for the Higgs boson transverse momentum, the number of jets, the rapidity of the Higgs boson and the transverse momentum of the leading jet using 35.9 fb⁻¹ of data at $E_{\rm cm}=13$ TeV with $H\to\gamma\gamma$, $H\to ZZ^*$, and $H\to b\overline{b}$. The total cross section for Higgs boson production is measured to be $61.1\pm6.0\pm3.7$ pb using $H\to\gamma\gamma$ and $H\to ZZ^*$ channels. Several coupling measurements in the κ -framework are performed.
- 9 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm Cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm Cm}=8$ TeV. The third uncertainty in the measurement is theory systematics. The signal strengths for individual production modes are $1.23\pm0.14^{+0.09}_{-0.08}+0.16$ for gluon fusion, $1.23^{+0.28}_{-0.27}+0.13^{+0.11}_{-0.12}$ for vector boson fusion, $0.80^{+0.31}_{-0.30}\pm0.17^{+0.10}_{-0.05}$ for W/ZH production, and $1.81^{+0.52}_{-0.50}+0.58^{+0.31}_{-0.12}$ for $t\bar{t}H$ production. The quoted signal strengths are given for $m_H=125.36$ GeV.
- 10 AAD 15P measure total and differential cross sections of the process pp o HX at $E_{\rm cm}=8$ TeV with 20.3 fb $^{-1}$. $\gamma\gamma$ and 4ℓ final states are used. $\sigma(pp o HX)=0$

- $33.0 \pm 5.3 \pm 1.6$ pb is given. See their Figs. 2 and 3 for data on differential cross sections.
- 11 KHACHATRYAN 15AM use up to 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The third uncertainty in the measurement is theory systematics. Fits to each production mode give the value of $0.85^{+0.19}_{-0.16}$ for gluon fusion, $1.16^{+0.37}_{-0.34}$ for vector boson fusion, $0.92^{+0.38}_{-0.36}$ for WH,ZH production, and $2.90^{+1.08}_{-0.94}$ for $t\bar{t}H$ production.
- 12 AAD 13 AK use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The combined signal strength is based on the $\gamma\gamma$, $ZZ^*\to 4\ell$, and $WW^*\to\ell\nu\ell\nu$ channels. The quoted signal strength is given for $m_H=125.5$ GeV. Reported statistical error value modified following private communication with the experiment.
- ¹³ AALTONEN 13L combine all CDF results with 9.45–10.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. The quoted signal strength is given for m_H = 125 GeV.
- 14 ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- 15 AAD 12AI obtain results based on 4.6–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.8–5.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. An excess of events over background with a local significance of 5.9 σ is observed at $m_{H}=126$ GeV. The quoted signal strengths are given for $m_{H}=126$ GeV. See also AAD 12DA.
- 16 CHATRCHYAN 12N obtain results based on 4.9–5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.1–5.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. An excess of events over background with a local significance of 5.0 σ is observed at about $m_H=125$ GeV. The combined signal strength is based on the $\gamma\gamma$, ZZ*, WW*, $\tau^+\tau^-$, and $b\overline{b}$ channels. The quoted signal strength is given for $m_H=125.5$ GeV. See also CHATRCHYAN 13Y.

WW* Final State

<u>VALUE</u>	DOCUMENT ID	<u></u>	ECN	COMMENT
1.00±0.08 OUR AVERAGE				
0.97 ± 0.09	1 CMS	22 C	CMS	pp, 13 TeV
$1.09 ^{igoplus 0.18}_{-0.16}$	2,3 AAD	16an L	.HC	pp, 7, 8 TeV
$0.94^{igoplus 0.85}_{igoplus 0.83}$	⁴ AALTONEN	13M T	EVA	$p\overline{p} ightarrow \; HX$, 1.96 TeV

• • We do not use the following data for averages, fits, limits, etc. • • •

$0.5 \ \pm 0.4 \ ^{+0.7}_{-0.6}$	⁵ AAD	22V ATLS	$pp, WW^* (\rightarrow e\nu\mu\nu)$
	⁶ AAD	22V ATLS	+2j, 13 TeV pp, $WW^* (\rightarrow e \nu \mu \nu)$ +2j, 13 TeV
	⁷ AABOUD	19F ATLS	pp, 13 TeV, cross sections
$2.5 \begin{array}{c} +0.9 \\ -0.8 \end{array}$	⁸ AAD	19A ATLS	$pp ightarrow HW/HZ, H ightarrow WW^*, 13 TeV$
$1.28^{igoplus 0.17}_{igoplus 0.16}$	⁹ SIRUNYAN	19AT CMS	•
$1.28^{igoplus 0.18}_{igoplus 0.17}$	¹⁰ SIRUNYAN	19AX CMS	<i>pp</i> , 13 TeV
$1.22^{+0.23}_{-0.21}$	³ AAD	16AN ATLS	<i>pp</i> , 7, 8 TeV
$0.90^{+0.23}_{-0.21}$	³ AAD	16AN CMS	pp, 7, 8 TeV
V.==	¹¹ AAD	16AO ATLS	pp, 8 TeV, cross sections
$1.18\!\pm\!0.16^{+0.17}_{-0.14}$	¹² AAD	16K ATLS	pp, 7, 8 TeV

```
1.09 {}^{+\, 0.16\, +\, 0.17}_{-\, 0.15\, -\, 0.14}
                                               <sup>13</sup> AAD
                                                                            15AA ATLS pp, 7, 8 TeV
3.0 \begin{array}{l} +1.3 \\ -1.1 \end{array} \begin{array}{l} +1.0 \\ -0.7 \end{array}
                                               <sup>14</sup> AAD
                                                                                                 pp \rightarrow HW/ZX, 7, 8
                                                                            15AQ ATLS
1.16 ^{+\, 0.16\, +\, 0.18}_{-\, 0.15\, -\, 0.15}
                                               <sup>15</sup> AAD
                                                                            15AQ ATLS pp, 7, 8 TeV
0.72 \pm 0.12 \pm 0.10 + 0.12 \\ -0.10
                                               <sup>16</sup> CHATRCHYAN 14G CMS
                                                                                                 pp, 7, 8 TeV
0.99 ^{\,+\, 0.31}_{\,-\, 0.28}
                                               <sup>17</sup> AAD
                                                                            13AK ATLS
                                                                                               pp, 7 and 8 TeV
0.00 { + 1.78 \atop -0.00 }
                                               <sup>18</sup> AALTONEN
                                                                            13L CDF
                                                                                                 p\overline{p} \rightarrow HX, 1.96 TeV
1.90^{+1.63}_{-1.52}
                                               <sup>19</sup> ABAZOV
                                                                            13L D0
                                                                                                 p\overline{p} \rightarrow HX, 1.96 TeV
                                               <sup>20</sup> AAD
1.3 \pm 0.5
                                                                            12AI ATLS pp \rightarrow HX, 7, 8 TeV
                                               <sup>20</sup> AAD
                                                                            12AI ATLS pp \rightarrow HX, 7 TeV
0.5\ \pm0.6
                                               <sup>20</sup> AAD
1.9 \pm 0.7
                                                                            12AI ATLS
                                                                                               pp \rightarrow HX, 8 TeV
0.60^{+0.42}_{-0.37}
                                               <sup>21</sup> CHATRCHYAN 12N CMS
                                                                                                 pp \rightarrow HX, 7, 8 TeV
```

- 1 CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm CM}=13$ TeV, assuming $m_{H}=125.38$ GeV. See their Fig. 2 right.
- ² AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are 0.84 ± 0.17 for gluon fusion, 1.2 ± 0.4 for vector boson fusion, $1.6^{+1.2}_{-1.0}$ for WH production, $5.9^{+2.6}_{-2.2}$ for ZH production, and $5.0^{+1.8}_{-1.7}$ for $t\bar{t}H$ production.
- ³AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_H = 125.09$ GeV.
- ⁴ AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb⁻¹ and 9.7 fb⁻¹, respectively, of $p\bar{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- 5 AAD 22V measure the signal strength for ggF+2jets with 36.1 fb $^{-1}$ data at 13 TeV.
- AAD 22V probe the Higgs couplings to longitudinally and transversely polarized W and Z using VBF ($H \to WW^* \to e \nu \mu \nu$ plus two jets) with 36.1 fb⁻¹ of data at $E_{\rm cm}=13$ TeV. The ratios of the polarization-dependent couplings $g_H V_L V_L$ and $g_H V_T V_T$ to the Higgs-V coupling predicted by the SM, $a_L = g_H V_L V_L / g_{HVV}^{\rm SM}$ and $a_T = g_H V_T V_T / g_{HVV}^{\rm SM}$ are measured to be $0.91^{+0.10}_{-0.18} + 0.09$ and $1.2 \pm 0.4^{+0.2}_{-0.3}$, respectively, assuming the standard Hgg coupling. These measurements are translated into pseudo-observables of κ_{VV} and ϵ_{VV} : $\kappa_{VV} = 0.91^{+0.10}_{-0.18} + 0.09$ and $\epsilon_{VV} = 0.13^{+0.28}_{-0.20} + 0.09$, where $\kappa_{VV} = 1$ and $\epsilon_{VV} = 0$ for the SM. See their Tables 9 and 10.
- ⁷AABOUD 19F measure cross-sections times the $H \to WW^*$ branching fraction in the $H \to WW^* \to e \nu \mu \nu$ channel using 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV: $\sigma_{ggF} \times {\rm B}(H \to WW^*)=11.4^{+1.2}_{-1.1}^{+1.2}_{-1.7}^{+1.8}$ pb and $\sigma_{VBF} \times {\rm B}(H \to WW^*)=0.50^{+0.24}_{-0.22}^{+0.24} \pm 0.17$ pb.
- ⁸ AAD 19A use 36.1 fb⁻¹ data at 13 TeV. The cross section times branching fraction values are measured to be $0.67^{+0.31}_{-0.27}^{+0.31}_{-0.14}^{+0.18}$ pb for $WH, H \rightarrow WW^*$ and $0.54^{+0.31}_{-0.24}^{+0.31}_{-0.07}^{+0.15}$ pb for $ZH, H \rightarrow WW^*$.
- 9 SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV.
- 10 SIRUNYAN 19AX measure the signal strengths, cross sections and so on using gluon fusion, VBF and VH production processes with 35.9 fb $^{-1}$ of data. The quoted signal

- strength is given for $m_H=125.09~{
 m GeV}.$ Signal strengths for each production process is found in their Fig. 9. Measured cross sections and ratios to the SM predictions in the stage-0 simplified template cross section framework are shown in their Fig. 10. $\kappa_F=$ $1.52^{+0.48}_{-0.41}$ and $\kappa_V=1.10\pm0.08$ are obtained (see their Fig. 11 (right)).
- $^{11}\mathsf{AAD}$ $^{16}\mathsf{AO}$ measure fiducial total and differential cross sections of gluon fusion process at $E_{
 m cm}=$ 8 TeV with 20.3 fb $^{-1}$ using $H o WW^* o e
 u\mu
 u$. The measured fiducial total cross section is 36.0 ± 9.7 fb in their fiducial region (Table 7). See their Fig. 6 for fiducial differential cross sections. The results are given for $m_H=125$ GeV.
- 12 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.36$ GeV.
- 13 AAD 15AA use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The signal strength for the gluon fusion and vector boson fusion mode is $1.02\pm0.19^{+0.22}_{-0.18}$ and $1.27^{+0.44}_{-0.40}+0.30$, respectively. The quoted signal strengths are given for $m_H=125.36$ GeV.
- 14 AAD 15AQ use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.36$ GeV.
- 15 AAD 15 AQ combine their result on W/ZH production with the results of AAD 15 AA (gluon fusion and vector boson fusion, slightly updated). The quoted signal strength is given for $m_H = 125.36$ GeV.
- ¹⁶ CHATRCHYAN 14G use 4.9 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.4 fb⁻¹ at $E_{\rm cm}=8$ TeV. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_H=125.6$ GeV.
- 17 AAD 13AK use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.5$ GeV. Superseded by AAD 15AA.
- 18 AALTONEN 13L combine all CDF results with 9.45–10.0 fb $^{-1}$ of $p\overline{p}$ collisions at E_{cm} = 1.96 TeV. The quoted signal strength is given for $m_H = 125$ GeV.
- 19 ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$ of $p \overline{p}$ collisions at $E_{\rm cm} =$ 1.96 TeV. The quoted signal strength is given for $m_H=125~{\rm GeV}.$
- 20 AAD 12AI obtain results based on 4.7 fb $^{-1}$ of pp collisions at $E_{
 m cm}=$ 7 TeV and 5.8 ${
 m fb^{-1}}$ at $E_{
 m cm}=$ 8 TeV. The quoted signal strengths are given for $m_H=$ 126 GeV. See
- also AAD 12DA. 21 CHATRCHYAN 12N obtain results based on 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.1 fb $^{-1}$ at $E_{\rm cm}=$ 8 TeV. The quoted signal strength is given for $m_H=$ 125.5 GeV. See also CHATRCHYAN 13Y.

ZZ* Final State					
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
1.02±0.08 OUR AVE	RAGE				
$0.97 {+0.12 \atop -0.11}$		$^{ m 1}$ CMS	22	CMS	<i>pp</i> , 13 TeV
1.01 ± 0.11		2,3 AAD	20AG	ATLS	pp, 13 TeV
$1.29 ^{igoplus 0.26}_{-0.23}$		^{4,5} AAD	16AN	LHC	<i>pp</i> , 7, 8 TeV
• • • We do not use the	following	g data for averages	fits,	limits, e	tc. • • •
		⁶ SIRUNYAN	21AE	CMS	pp, 13 TeV, couplings

		⁶ SIRUNYAN	21AE CMS	pp, 13 TeV, couplings
$0.94 \pm 0.07 + 0.09 \\ -0.08$		⁷ SIRUNYAN	21s CMS	pp, 13 TeV
0.00		2,8 AAD		pp, 13 TeV
		⁹ AAD	20BA ATLS	pp, 13 TeV cross sec-
<6.5	95	¹⁰ AABOUD	19N ATLS	tions pp, 13 TeV, off-shell
$1.06^{igoplus 0.19}_{-0.17}$		¹¹ SIRUNYAN	19AT CMS	<i>pp</i> , 13 TeV

https://pdg.lbl.gov Page 21 Created: 5/31/2023 09:12

	$1.28^{igoplus 0.21}_{-0.19}$		¹² AABOUD	18AJ ATLS	pp, 13 TeV
<	<3.8	95	¹³ AABOUD	18BP ATLS	pp, 13 TeV, off-shell
	$1.05 ^{+ 0.15}_{- 0.14} ^{+ 0.11}_{- 0.09}$		¹⁴ SIRUNYAN	17AV CMS	pp, 13 TeV
	$1.52^{+0.40}_{-0.34}$		⁵ AAD	16AN ATLS	pp, 7, 8 TeV
	$1.04^{+0.32}_{-0.26}$		⁵ AAD	16AN CMS	pp, 7, 8 TeV
	$1.46 ^{+ 0.35 + 0.19}_{- 0.31 - 0.13}$		¹⁵ AAD	16к ATLS	pp, 7, 8 TeV
			¹⁶ KHACHATRY.	16AR CMS	pp, 7, 8 TeV cross sections
	$1.44 ^{+ 0.34 + 0.21}_{- 0.31 - 0.11}$		17 AAD	15F ATLS	$pp \rightarrow HX$, 7, 8 TeV
			¹⁸ AAD	14AR ATLS	pp, 8 TeV, cross sections
	$0.93 {}^{+ 0.26}_{- 0.23} {}^{+ 0.13}_{- 0.09}$		¹⁹ CHATRCHYAN	I 14AA CMS	pp, 7, 8 TeV
	$1.43^{+0.40}_{-0.35}$		²⁰ AAD	13AK ATLS	<i>pp</i> , 7 and 8 TeV
	$0.80^{+0.35}_{-0.28}$		²¹ CHATRCHYAN	I 13J CMS	pp ightarrow HX, 7, 8 TeV
	1.2 ± 0.6		²² AAD	12AI ATLS	$pp \rightarrow HX$, 7, 8 TeV
	1.4 ± 1.1		²² AAD	12AI ATLS	pp ightarrow HX, 7 TeV
	1.1 ± 0.8		²² AAD	12AI ATLS	$pp ightarrow \; HX$, 8 TeV
	$0.73^{+0.45}_{-0.33}$		²³ CHATRCHYAN	I12N CMS	$pp ightarrow \ HX$, 7, 8 TeV
	a				_

 $^{^1}$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=$ 13 TeV, assuming $m_H=$ 125.38 GeV. See their Fig. 2 right.

² AAD 20AQ perform analyses using $H \to ZZ^* \to 4\ell$ ($\ell=e, \mu$) with data of 139 fb⁻¹ at $E_{\rm cm}=13$ TeV. Results are given for $m_H=125$ GeV.

³ AAD 20AQ measured the inclusive cross section times branching ratio for $H \to ZZ^*$ decay (|y(H)| < 2.5) to be 1.34 \pm 0.12 pb (with 1.33 \pm 0.08 pb expected in the SM).

 $^{^4}$ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are $1.13^{+0.34}_{-0.31}$ for gluon fusion and $0.1^{+1.1}_{-0.6}$ for vector boson fusion.

⁵ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_H=125.09$ GeV.

⁶ SIRUNYAN 21AE obtains constraints on anomalous couplings to vector bosons (W,Z, and gluon) and top quark using $H \to ZZ^* \to 4\ell$ ($\ell=e,\mu$) with data of 137 fb⁻¹ at $E_{\rm cm}=13$ TeV. Their Table 5 and Figs 14–17 show (effective) couplings to gluon and top with combining gluon fusion, $t\overline{t}H$ and tH production channels and the result of $t\overline{t}H, H \to \gamma\gamma$ (SIRUNYAN 20AS). Their Tables 6–9 and Figs 18–22 show couplings to W and Z for different assumptions and bases (Higgs and Warsaw).

⁷ SIRUNYAN 21S measure cross sections with the $H \to ZZ^* \to 4\ell$ ($\ell=e, \mu$) channel using 137 fb⁻¹ data at $E_{cm}=13$ TeV. Results are given for $m_H=125.38$ GeV. The signal strengths for individual production processes in their Table 4. Cross sections are given in their Table 6 and Fig. 14, which are based on the simplified template cross section framework (reduced stage-1.2).

⁸ AAD 20AQ present several results for the channel $H \to ZZ^* \to 4\ell$ ($\ell=e, \mu$) with the simplified template cross section with κ -frameworks and the effective field theory (EFT) approach; see their Table 8 and Fig. 10 for simplified template cross sections. $\kappa_V=1.02\pm0.06$ and $\kappa_F=0.88\pm0.16$ are obtained, see their Fig. 12 for the κ -framework. See their Tables 9 and 10 and Figs. 16–18 for the EFT-framework.

- ⁹ AAD 20BA measure the cross section for $pp \to H \to ZZ^* \to 4\ell$ ($\ell=e, \mu$) using 139 fb⁻¹ at $E_{\rm cm}=13$ TeV. They give $\sigma \cdot B=3.28\pm0.30\pm0.11$ fb in their fiducial region, where 3.41 \pm 0.18 fb is expected in the Standard Model for $m_H=125$ GeV. Various differential cross sections are also given; see their Figs. 19-39. Constraints on Yukawa couplings for bottom and charm quarks are given in their Table 9 and Fig. 41.
- 10 AABOUD 19N measure the spectrum of the four-lepton invariant mass $\rm m_{4\ell}$ ($\ell=e$ or μ) using 36.1 fb $^{-1}$ of data at $E_{\rm cm}=$ 13 TeV. The quoted signal strength upper limit is obtained from 180 GeV < $\rm m_{4\ell}$ < 1200 GeV.
- 11 SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$ of data at $E_{
 m cm}=$ 13 TeV.
- 12 AABOUD 18AJ perform analyses using $H\to ZZ^*\to 4\ell$ ($\ell=e,~\mu$) with data of 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. Results are given for $m_H=125.09$ GeV. The inclusive cross section times branching ratio for $H\to ZZ^*$ decay ($\left|\eta(H)\right|~<2.5$) is measured to be $1.73^{+0.26}_{-0.24}$ pb (with $1.34^{+0.09}_{-0.09}$ pb expected in the SM).
- 13 AABOUD 18BP measure an off-shell Higgs boson production using $ZZ\to 4\ell$ and $ZZ\to 2\ell 2\nu$ ($\ell=e,~\mu$) decay channels with 36.1 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. The quoted signal strength upper limit is obtained from a combination of these two channels, where 220 GeV < m $_{4\ell}~<$ 2000 GeV for $ZZ\to 4\ell$ and 250 GeV < m $_{T}^{ZZ}~<$ 2000 GeV for $ZZ\to 2\ell 2\nu$ (m $_{T}^{ZZ}$ is defined in their Section 5). See their Table 2 for each measurement.
- 14 SIRUNYAN 17AV use 35.9 fb $^{-1}$ of pp collisions at $E_{\rm Cm}=13$ TeV. The quoted signal strength, obtained from the analysis of $H\to~ZZ^*\to~4\ell~(\ell=e,~\mu)$ decays, is given for $m_H=125.09$ GeV. The signal strengths for different production modes are given in their Table 3. The fiducial and differential cross sections are shown in their Fig. 10.
- 15 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.36$ GeV.
- 16 KHACHATRYAN 16AR use data of 5.1 fb $^{-1}$ at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at 8 TeV. The fiducial cross sections for the production of 4 leptons via $H\to 4\ell$ decays are measured to be $0.56^{+0.67}_{-0.44}^{+0.21}_{-0.06}$ fb at 7 TeV and $1.11^{+0.41}_{-0.35}^{+0.14}_{-0.10}$ fb at 8 TeV in their fiducial region (Table 2). The differential cross sections at $E_{\rm cm}=8$ TeV are also shown in Figs. 4 and 5. The results are given for $m_H=125$ GeV.
- ¹⁷ AAD 15F use 4.5 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H}=125.36$ GeV. The signal strength for the gluon fusion production mode is $1.66^{+0.45}_{-0.41}^{+0.25}$, while the signal strength for the vector boson fusion production mode is $0.26^{+1.60}_{-0.91}^{+0.36}$.
- 18 AAD 14AR measure the cross section for $pp\to H\to ZZ^*\to 4\ell$ ($\ell=e,~\mu$) using 20.3fb $^{-1}$ at $E_{\rm cm}=8$ TeV. They give $\sigma\cdot B=2.11^{+0.53}_{-0.47}\pm 0.08$ fbin their fiducial region, where 1.30 \pm 0.13 fb is expected in the Standard Model for $m_{H}=$ 125.4 GeV. Various differential cross sections are also given; see their Fig. 2.
- ¹⁹ CHATRCHYAN 14AA use 5.1 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb⁻¹ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.6$ GeV. The signal strength for the gluon fusion and $t\bar{t}H$ production mode is $0.80^{+0.46}_{-0.36}$, while the signal strength for the vector boson fusion and WH, ZH production mode is $1.7^{+2.2}_{-2.1}$.
- $^{20}\,\rm AAD~13AK~use~4.7~fb^{-1}$ of pp collisions at $E_{\rm cm}=7~\rm TeV$ and $20.7~\rm fb^{-1}$ at $E_{\rm cm}=8~\rm TeV.$ The quoted signal strength is given for $m_H=125.5~\rm GeV.$
- 21 CHATRCHYAN 13J obtain results based on $ZZ\to 4\ell$ final states in 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 12.2 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.8$ GeV. Superseded by CHATRCHYAN 14AA.

 22 AAD 12AI obtain results based on 4.7–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.8 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strengths are given for $m_{H}=126$ GeV. See also AAD 12DA.

 23 CHATRCHYAN 12N obtain results based on 4.9–5.1 fb $^{-1}$ of pp collisions at $E_{\rm Cm}=7$ TeV and 5.1–5.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. An excess of events over background with a local significance of 5.0 σ is observed at about $m_{H}=125$ GeV. The quoted signal strengths are given for $m_{H}=125.5$ GeV. See also CHATRCHYAN 12BY and CHATRCHYAN 13Y.

$\gamma\gamma$ Final State

 VALUE	DOCUMENT ID	TEC	N COMMENT
1.10 ± 0.07 OUR AVERAGE	_		
1.13 ± 0.09	1 CMS	22 CMS	5 <i>pp</i> , 13 TeV
$0.99^{igoplus 0.15}_{-0.14}$	² AABOUD	18BO ATL	S pp , 13 TeV, 36.1 fb ⁻¹
$1.14 ^{igoplus 0.19}_{-0.18}$	3,4 AAD	16AN LHC	<i>pp</i> , 7, 8 TeV
$5.97 + 3.39 \\ -3.12$	⁵ AALTONEN	13M TEV	'A $p\overline{p} ightarrow HX$, 1.96 TeV
• • • We do not use the fol	lowing data for ave	rages, fits,	limits, etc. • • •
1.12±0.09	⁶ AAD ⁷ SIRUNYAN	22N ATL 210 CMS	S pp , 13 TeV, diff. x-sections pp , 13 TeV
$1.20^{+0.18}_{-0.14}$	⁸ SIRUNYAN	19AT CMS	5 <i>pp</i> , 13 TeV
	⁹ SIRUNYAN	19L CMS	<i>pp</i> , 13 TeV, diff. x-section
$1.18 ^{+0.17}_{-0.14}$	¹⁰ SIRUNYAN	18DS CMS	5 $pp,H o\gamma\gamma$, 13 TeV, floated m_H
$1.14^{+0.27}_{-0.25}$	⁴ AAD	16AN ATL	S pp, 7, 8 TeV
$1.11^{+0.25}_{-0.23}$	⁴ AAD	16AN CMS	<i>pp</i> , 7, 8 TeV
	¹¹ KHACHATRY.	16G CMS	<i>pp</i> , 8 TeV, diff. x-section
$1.17 \pm 0.23 ^{+0.10}_{-0.08} + 0.12$	¹² AAD	14BC ATL	S $pp \rightarrow HX$, 7, 8 TeV
	¹³ AAD	14BJ ATL	S pp, 8 TeV, diff. x-section
$1.14 \!\pm\! 0.21 \!+\! 0.09 \!+\! 0.13 \\ -0.05 \!-\! 0.09$	¹⁴ KHACHATRY.	14P CMS	<i>pp</i> , 7, 8 TeV
$1.55^{+0.33}_{-0.28}$	¹⁵ AAD	13AK ATL	S <i>pp</i> , 7 and 8 TeV
$7.81^{+4.61}_{-4.42}$	¹⁶ AALTONEN	13L CDF	$p\overline{p} ightarrow HX$, 1.96 TeV
$4.20 + 4.60 \\ -4.20$	¹⁷ ABAZOV	13L D0	$p\overline{p} ightarrow \; HX$, 1.96 TeV
1.8 ±0.5	¹⁸ AAD	12AI ATL	S $pp \rightarrow HX$, 7, 8 TeV
2.2 ± 0.7	18 AAD	12AI ATL	S $pp o HX$, 7 TeV
1.5 ± 0.6	¹⁸ AAD	12AI ATL	S $pp \rightarrow HX$, 8 TeV
$1.54 + 0.46 \\ -0.42$	¹⁹ CHATRCHYAN	N 12N CMS	$6 pp \rightarrow HX, 7, 8 \text{ TeV}$
1			

 $^{^1}$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV. See their Fig. 2 right.

²AABOUD 18BO use 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The signal strengths for the individual production modes are: $0.81^{+0.19}_{-0.18}$ for gluon fusion, $2.0^{+0.6}_{-0.5}$ for vector boson fusion, $0.7^{+0.9}_{-0.8}$ for VH production (V=W,Z), and 0.5 ± 0.6 for $t\bar{t}H$ and tH production. Other measurements of cross sections and couplings are summarized in their Section 10. The quoted values are given for $m_H=125.09$ GeV.

- 3 AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are $1.10^{+0.23}_{-0.22}$ for gluon fusion, 1.3 ± 0.5 for vector boson fusion, $0.5^{+1.3}_{-1.2}$ for WH production, $0.5^{+3.0}_{-2.5}$ for ZH production, and $2.2^{+1.6}_{-1.3}$ for $t\bar{t}H$ production.
- ⁴ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_H=125.09$ GeV.
- ⁵ AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb⁻¹ and 9.7 fb⁻¹, respectively, of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- ⁶ AAD 22N measure fiducial and differential cross sections of $pp \to H \to \gamma \gamma$ at $E_{\rm cm}=13$ TeV with 139 fb $^{-1}$ data. The quoted results are given for $m_H=125.09$ GeV. The inclusive fiducial $\sigma \cdot B$ is 67 \pm 5 \pm 4 fb with their defined fiducial region. Other fiducial $\sigma \cdot B$ are in their Table 3. Differential $\sigma \cdot B$ are shown in their Figs. 8–13, 15, 25–32, 35, 36. Double-differential $\sigma \cdot B$ are in their Figs. 14, 33, 34. Modifications of the b- and c-quark Yukawa couplings to H, κ_b and κ_c at 95% CL are in their Table 6 and Fig. 18. Wilson coefficients at 95% CL are in their Table 7 and Fig. 21.
- ⁷ SIRUNYAN 210 measures cross sections and couplings with the $H \to \gamma \gamma$ channel using 137 fb⁻¹ data at $E_{\rm cm}=13$ TeV. Results are given for $m_H=125.38$ GeV. The signal strengths for individual production processes are given in their Fig. 16. Cross sections are given in their Tables 12 and 13 and Figs. 18 and 20, which are based on the simplified template cross section framework (reduced stage-1.2). Results in the κ-framework are given in their Fig. 22.
- 8 SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$ of data at $E_{
 m cm}=$ 13 TeV.
- ⁹ SIRUNYAN 19L measure fiducial and differential cross sections of the process $pp \to H \to \gamma \gamma$ at $E_{\rm cm}=13$ TeV with 35.9 fb⁻¹. See their Figs. 4–11.
- 10 SIRUNYAN 18DS use 35.9 fb $^{-1}$ of $pp\to H$ collisions with $H\to \gamma\gamma$ at $E_{\rm CM}=13$ TeV. The Higgs mass is floated in the measurement of a signal strength. The result is $1.18^{+0.12}_{-0.11}({\rm stat.})^{+0.09}_{-0.07}({\rm syst.})^{+0.07}_{-0.06}({\rm theory})$, which is largely insensitive to the Higgs mass around 125 GeV.
- ¹¹ KHACHATRYAN 16G measure fiducial and differential cross sections of the process $pp \to HX$, $H \to \gamma \gamma$ at $E_{\rm cm} = 8$ TeV with 19.7 fb⁻¹. See their Figs. 4–6 and Table 1 for data.
- 12 AAD 14BC use 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_H=125.4$ GeV. The signal strengths for the individual production modes are: 1.32 ± 0.38 for gluon fusion, 0.8 ± 0.7 for vector boson fusion, 1.0 ± 1.6 for WH production, $0.1^{+3.7}_{-0.1}$ for ZH production, and $1.6^{+2.7}_{-1.8}$ for $t\overline{t}H$ production.
- ¹³AAD 14BJ measure fiducial and differential cross sections of the process $pp \to HX$, $H \to \gamma \gamma$ at $E_{\rm cm} = 8$ TeV with 20.3 fb⁻¹. See their Table 3 and Figs. 3–12 for data.
- 14 KHACHATRYAN 14P use $5.1~{\rm fb^{-1}}$ of pp collisions at $E_{\rm cm}=7~{\rm TeV}$ and $^{19.7}~{\rm fb^{-1}}$ at $E_{\rm cm}=8~{\rm TeV}$. The last uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_H=124.7~{\rm GeV}$. The signal strength for the gluon fusion and $t\overline{t}H$ production mode is $1.13^{+0.37}_{-0.31}$, while the signal strength for the vector boson fusion and WH,~ZH production mode is $1.16^{+0.63}_{-0.58}$.
- 15 AAD 13AK use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.5$ GeV.
- ¹⁶ AALTONEN 13L combine all CDF results with 9.45–10.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. The quoted signal strength is given for m_H = 125 GeV.
- 17 ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_H=125$ GeV.

 18 AAD 12AI obtain results based on 4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 5.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strengths are given for $m_{H}=126$ GeV. See also AAD 12DA.

 19 CHATRCHYAN 12N obtain results based on 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}$ =7 TeV and 5.3 fb $^{-1}$ at $E_{\rm cm}$ =8 TeV. The quoted signal strength is given for m_H =125.5 GeV. See also CHATRCHYAN 13Y.

cc Final State

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
8±22 OU	IR AVERAGE	Error includes s	scale factor of	1.9.
$-9\pm10\pm13$	1 1,2	² AAD	22W ATLS	pp ightarrow WH/ZH, 13 TeV
$37\pm17^{+1}_{-}$	1 9	³ SIRUNYAN	20AE CMS	<i>pp</i> , 13 TeV

• • We do not use the following data for averages, fits, limits, etc. • •

¹ AAD 22W search for VH, $H \to c\overline{c}$ (V = W, Z) using 139 fb⁻¹ of pp collision data at $E_{\rm cm} = 13$ TeV. The results are given for $m_H = 125$ GeV.

² The analysis of VH, $H \rightarrow c\overline{c}$ is combined with VH, $H \rightarrow b\overline{b}$ (AAD 21AB). The ratio $-\kappa_c/\kappa_b$ — is constrained to be less than 4.5 at 95% CL. See their Fig. 7.

³ SIRUNYAN 20AE use 35.9 fb⁻¹ at of pp collisions at $E_{\rm cm}=13$ TeV. The measured best fit value of $\sigma(pp\to VH)\cdot {\rm B}(H\to c\overline{c})$ is $2.40^{+1.12}_{-1.11}^{+0.65}_{-0.61}$ pb (equivalent to < 4.5 pb at 95% CL upper limit, i.e. 70 times the standard model), where V is $W\to \ell\nu$, $Z\to \ell\ell$, or $Z\to \nu\nu$ ($\ell=e$, μ). The quoted values are given for $m_H=125$ GeV.

⁴ The upper limit at 95% CL is 26 times the SM prediction. See their Fig. 2. The constraint on the charm Yukawa coupling modifier $\kappa_{\it C}$ is measured to be $|\kappa_{\it C}| <$ 8.5 at 95% CL. See their Fig. 4.

⁵ AABOUD 18M use 36.1 fb⁻¹ at of pp collisions at $E_{\rm cm}=13$ TeV. The upper limit on $\sigma(pp\to~ZH)\cdot {\rm B}(H\to~c\overline{c})$ is 2.7 pb at 95% CL. This corresponds to 110 times the standard model. The quoted values are given for $m_H=125$ GeV.

$b\overline{b}$ Final State

bb Final State			
VALUE	DOCUMENT ID	TECN	COMMENT
0.99±0.12 OUR AVER	AGE		
$1.05 ^{+ 0.22}_{- 0.21}$	¹ CMS	22 CMS	<i>pp</i> , 13 TeV
$1.02 {+0.12 +0.14\atop -0.11 -0.13}$	² AAD	21AB ATLS	$pp ightarrow \; HW/HZ, H ightarrow \; b \overline{b}, \ 13 \; { m TeV}, 139 \; { m fb}^{-1}$
$0.95 \pm 0.32 {+0.20 \atop -0.17}$	³ AAD	21AJ ATLS	VBF, $H ightarrow b \overline{b}$, pp , 13 TeV, 126 fb $^{-1}$
$0.70^{igoplus 0.29}_{-0.27}$	^{4,5} AAD	16AN LHC	<i>pp</i> , 7, 8 TeV
$1.59 {+0.69 \atop -0.72}$	⁶ AALTONEN	13M TEVA	$p\overline{p} ightarrow \ HX$, 1.96 TeV
• • • We do not use the	following data for av	verages, fits, li	mits, etc. • • •
0.8 ±3.2	⁷ AAD	22X ATLS	boosted $H ightarrow $
$0.95\!\pm\!0.18 \!+\!0.19 \\ -0.18$	² AAD	21AB ATLS	$pp \rightarrow HW, H \rightarrow b\overline{b}, 13$

$0.72^{+0.29}_{-0.28}^{+0.29}_{-0.22}$	⁸ AAD	21H ATLS	$pp \rightarrow HW/HZ, H \rightarrow b\overline{b},$ boosted W/Z , 13 TeV,
1.3 ±1.0	⁹ AAD	21M ATLS	139 fb ⁻¹ VBF $+\gamma$, $H \rightarrow b\overline{b}$, pp , 13 TeV, 132 fb ⁻¹
$3.7 \pm 1.2 ^{+0.11}_{-0.9}$	¹⁰ SIRUNYAN	20BL CMS	boosted $H \rightarrow b\overline{b}$, pp , 13
	¹¹ AABOUD	19∪ ATLS	TeV $pp \rightarrow VH, H \rightarrow b\overline{b}, 13$ TeV, cross sections
$1.12 \!\pm\! 0.29$	¹² SIRUNYAN	19AT CMS	pp, 13 TeV
$1.16^{+0.27}_{-0.25}$	¹³ AABOUD	18BN ATLS	$pp \rightarrow HW/HZ, H \rightarrow b\overline{b},$ 13 TeV, 79.8 fb ⁻¹
$0.98 ^{igoplus 0.22}_{-0.21}$	¹⁴ AABOUD	18BN ATLS	$pp \rightarrow HW/HZ, H \rightarrow b\overline{b},$
1.01 ± 0.20	¹⁵ AABOUD	18BN ATLS	7, 8, 13 TeV $pp \rightarrow HX$, ggF, VBF, VH , $t\overline{t}H$ 7, 8, 13 TeV
$2.5 \begin{array}{c} +1.4 \\ -1.3 \end{array}$	^{16,17} AABOUD	18BQ ATLS	$pp \rightarrow HX$, VBF, ggF, VH , $t\overline{t}H$, 13 TeV
$3.0 \begin{array}{c} +1.7 \\ -1.6 \end{array}$	^{16,18} AABOUD	18BQ ATLS	$pp ightarrow \; HX$, VBF, 13 TeV
	¹⁹ AALTONEN	18C CDF	$p\overline{p} ightarrow \; HX$, 1.96 TeV
$1.19 {+0.40 \atop -0.38}$	²⁰ SIRUNYAN	18AE CMS	$pp ightarrow HW/HZ$, $H ightarrow b\overline{b}$, 13 TeV
$1.06^{igoplus 0.31}_{-0.29}$	²¹ SIRUNYAN	18AE CMS	$pp \rightarrow HW/HZ, H \rightarrow b\overline{b},$
1.06 ± 0.26	²² SIRUNYAN	18DB CMS	7, 8, 13 TeV $pp \rightarrow HW/HZ$, $H \rightarrow b\overline{b}$, 13 TeV, 77.2 fb ⁻¹
1.01 ± 0.22	²³ SIRUNYAN	18DB CMS	$pp \rightarrow HW/HZ, H \rightarrow b\overline{b},$ 7, 8, 13 TeV
1.04 ± 0.20	²⁴ SIRUNYAN	18DB CMS	$pp \rightarrow HX$, ggF, VBF, VH , $t\overline{t}H$ 7, 8, 13 TeV
$2.3 \begin{array}{l} +1.8 \\ -1.6 \end{array}$	²⁵ SIRUNYAN	18E CMS	$pp \rightarrow HX$, boosted, 13 TeV
$1.20 ^{+ 0.24 + 0.34}_{- 0.23 - 0.28}$	²⁶ AABOUD	17BA ATLS	$pp ightarrow \; HW/ZX, \; H ightarrow \; b\overline{b}, \ 13 \; { m TeV}, \; 36.1 \; { m fb}^{-1}$
$0.90\!\pm\!0.18\!+\!0.21\\-0.19$	²⁷ AABOUD	17BA ATLS	$pp \rightarrow HW/ZX, H \rightarrow b\overline{b},$ 7, 8, 13 TeV
$-0.8 \ \pm 1.3 \ ^{+1.8}_{-1.9}$	²⁸ AABOUD	16X ATLS	$pp ightarrow \ HX$, VBF, 8 TeV
0.62 ± 0.37	⁵ AAD	16AN ATLS	pp, 7, 8 TeV
$0.81 ^{igoplus 0.45}_{-0.43}$	⁵ AAD	16AN CMS	<i>pp</i> , 7, 8 TeV
$0.63^{+0.31}_{-0.30}^{+0.24}_{-0.23}$	²⁹ AAD	16K ATLS	pp, 7, 8 TeV
$0.52 \pm 0.32 \pm 0.24$	³⁰ AAD	15G ATLS	$pp \rightarrow HW/ZX$, 7, 8 TeV
$2.8 {+1.6} \atop {-1.4}$	³¹ KHACHATRY		pp ightarrow HX, VBF, 8 TeV
$1.03 ^{+ 0.44}_{- 0.42}$	³² KHACHATRY		pp, 8 TeV, combined
$1.0\ \pm0.5$	³³ CHATRCHYA	N 14AI CMS	$pp \rightarrow HW/ZX$, 7, 8 TeV
$1.72 {+0.92 \atop -0.87}$	³⁴ AALTONEN	13L CDF	$p\overline{p} ightarrow \; HX$, 1.96 TeV
$1.23 ^{+1.24}_{-1.17}$	³⁵ ABAZOV	13L D0	$p\overline{p} ightarrow \; HX$, 1.96 TeV
0.5 ± 2.2	36 _{AAD}	12AI ATLS	pp ightarrow HW/ZX, 7 TeV

- 1 CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_{H}=125.38$ GeV. See their Fig. 2 right.
- ²AAD 21AB search for VH, $H \to b\overline{b}$ (V = W, Z) using 139 fb $^{-1}$ of pp collision data at $E_{\rm cm} = 13$ TeV. The results are given for $m_H = 125$ GeV. Cross sections are given in their Table 13 and Fig. 7, which are based on the simplified template cross section framework (reduced stage-1.2). Wilson coefficients of the Warsaw-basis operators are given in their Fig. 9.
- ³ AAD 21AJ present measurements of $H \to b\overline{b}$ in the VBF production mode. The inclusive VBF cross sections with and without the branching ratio of $H \to b\overline{b}$ are $2.07 \pm 0.70 ^{+0.46}_{-0.37}$ fb and $3.56 \pm 1.21 ^{+0.80}_{-0.64}$ fb, respectively. The latter is obtained assuming the SM value of B $(H \to b\overline{b})$ = 0.5809 and m_H = 125 GeV.
- ⁴ AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are 1.0 ± 0.5 for WH production, 0.4 ± 0.4 for ZH production, and 1.1 ± 1.0 for $t\overline{t}H$ production.
- ⁵ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_H=125.09$ GeV.
- ⁶ AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb⁻¹ and 9.7 fb⁻¹, respectively, of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- ⁷AAD 22X measure cross sections using a boosted $H \to b\overline{b}$ with large-radius jets. The data is 136 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. All the results are given for $m_H=125$ GeV. The inclusive signal strength is given using data with a H candidate jet $p_T>250$ GeV. The fiducial H production cross section $(p_T(H)>450$ GeV and |y(H)|<2) is <115 fb (95% CL) and the upper limits for other four different p_T regions are shown in their Fig 12. The measured fiducial H production cross section $(p_T(H)>1$ TeV) is $2.3\pm3.9({\rm stat})\pm1.3({\rm syst})\pm0.5({\rm theory})$ fb.
- ⁸ AAD 21H present measurements of $H \to b\overline{b}$ with a boosted vector boson ($p_T > 250$ GeV) using 139 fb⁻¹ of pp collision data at $E_{\rm cm} = 13$ TeV. Cross sections are given in their Table 6 and Fig. 4, which are based on the simplified template cross section framework (reduced stage-1.2). Wilson coefficients of the Warsaw-basis operators are given in their Fig. 5.
- ⁹AAD 21M search for VBF+ γ , $H \rightarrow b\overline{b}$ using 132 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV.
- 10 SIRUNYAN 20BL search for boosted $H\to b\,\overline{b}$ (a H candidate jet $p_T>$ 450 GeV) using 137 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 2.5 standard deviations and is given for $m_H=125$ GeV. A differential fiducial cross section as a function of Higgs boson p_T for ggF is shown in their Fig. 7, assuming the other production modes occur at the expected SM rates. The reported value is $3.7\pm1.2^{+0.8}_{-0.7}{}_{-0.5}$ where the last uncertainty comes from theoretical modeling. We have combined the systematic uncertainties in quadrature.
- ¹¹ AABOUD 19U measure cross sections of $pp \to VH$, $H \to b\overline{b}$ production as a function of the gauge boson transverse momentum using data of 79.8 fb⁻¹. The kinematic fiducial volumes used is based on the simplified template cross section framework (reduced stage-1). See their Table 3 and Fig. 3.
- $^{12}\,\mathrm{SIRUNYAN}$ 19AT perform a combine fit to 35.9 fb $^{-1}$ of data at $E_{\mathrm{cm}}=$ 13 TeV.
- 13 AABOUD 18BN search for $V\,H,\,H\to\,b\,\overline{b}\,(V=W,\,Z)$ using 79.8 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 4.9 standard deviations and is given for $m_H=125$ GeV.
- 14 AABOUD 18BN combine results of 79.8 fb $^{-1}$ at $E_{\rm cm}=$ 13 TeV with results of VH at $E_{\rm cm}=$ 7 and 8 TeV.

- 15 AABOUD 18BN combine results of VH at $E_{\rm cm}=7,~8$ and 13 TeV with results of VBF (+gluon fusion) and $t\overline{t}H$ at $E_{\rm cm}=7,~8,$ and 13 TeV to perform a search for the $H\to b\overline{b}$ decay. The quoted signal strength assumes a SM production strength and corresponds to a significance of 5.4 standard deviations.
- 16 AABOUD 18BQ search for $H o b\overline{b}$ produced through vector-boson fusion (VBF) and VBF+ γ with 30.6 fb $^{-1}$ pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- ¹⁷ The signal strength is measured including all production modes (VBF, ggF, VH, $t\overline{t}H$).
- ¹⁸ The signal strength is measured for VBF-only and others (ggF, VH, $t\bar{t}H$) are constrained to Standard Model expectations with uncertainties described in their Section VIII B.
- 19 AALTONEN 18c use 5.4 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The upper limit at 95% CL on $p\overline{p}\to H\to b\overline{b}$ is 33 times the SM predicion, which corresponds to a cross section of 40.6 pb.
- $^{20}\,\rm SIRUNYAN~18AE$ use 35.9 fb $^{-1}$ of pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to 3.3 standard deviations and is given for $m_{H}=125.09$ GeV.
- ²¹ SIRUNYAN 18AE combine the result of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV with the results obtained from data of up to 5.1 fb⁻¹ at $E_{\rm cm}=7$ TeV and up to 18.9 fb⁻¹ at $E_{\rm cm}=8$ TeV (CHATRCHYAN 14AI and KHACHATRYAN 15Z). The quoted signal strength corresponds to 3.8 standard deviations and is given for $m_H=125.09$ GeV.
- ²² SIRUNYAN 18DB search for VH, $H \to b \, \overline{b} \, (V=W, Z)$ using 77.2 fb⁻¹ of $p \, p$ collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 4.4 standard deviations and is given for $m_H=125.09$ GeV.
- 23 SIRUNYAN 18DB combine the result of 77.2 fb $^{-1}$ at $E_{\rm cm}=13$ TeV with the results obtained from data of up to 5.1 fb $^{-1}$ at $E_{\rm cm}=7$ TeV and up to 18.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength corresponds to a significance of 4.8 standard deviations and is given for $m_H=125.09$ GeV.
- 24 SIRUNYAN 18DB combine results of 77.2 fb $^{-1}$ at $E_{\rm cm}=13$ TeV with results of gluon fusion (ggF), VBF and $t\overline{t}H$ at $E_{\rm cm}=7$ TeV, 8 TeV and 13 TeV to perform a search for the $H\to b\overline{b}$ decay. The quoted signal strength assumes a SM production strength and corresponds to a significance of 5.6 standard deviations and is given for $m_H=125.09$ GeV.
- ²⁵ SIRUNYAN 18E use 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_H=125$ GeV. They measure $\sigma \cdot B$ for gluon fusion production of $H \rightarrow b \, \overline{b}$ with $p_T>$ 450 GeV, $|\eta|<$ 2.5 to be 74 \pm 48 $^{+17}_{-10}$ fb.
- 26 AABOUD 17BA use 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_H=125$ GeV. They give $\sigma({\rm W~H})\cdot B(H\to~b\,\overline{b})=1.08^{\,+0.54}_{\,-0.47}$ pb and $\sigma({\rm Z~H})\cdot B(H\to~b\,\overline{b})=0.57^{\,+0.26}_{\,-0.23}$ pb.
- ²⁷ AABOUD 17BA combine 7, 8 and 13 TeV analyses. The quoted signal strength is given for $m_H=125$ GeV.
- ²⁸ AABOUD 16X search for vector-boson fusion production of H decaying to $b\overline{b}$ in 20.2 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- 125 GeV. 29 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.36$ GeV.
- 30 AAD 15G use 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.36$ GeV.
- ³¹ KHACHATRYAN 15Z search for vector-boson fusion production of H decaying to $b\overline{b}$ in up to 19.8 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- ³² KHACHATRYAN 15Z combined vector boson fusion, WH, ZH production, and $t\overline{t}H$ production results. The quoted signal strength is given for $m_H=125$ GeV.

- 33 CHATRCHYAN 14AI use up to 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 18.9 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_{H}=125$ GeV. See also CHATRCHYAN 14AJ.
- ³⁴ AALTONEN 13L combine all CDF results with 9.45–10.0 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. The quoted signal strength is given for m_H = 125 GeV.
- ³⁵ ABAZOV 13L combine all D0 results with up to 9.7 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- 36 AAD 12AI obtain results based on 4.6–4.8 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. The quoted signal strengths are given in their Fig. 10 for $m_{H}=126$ GeV. See also Fig. 13 of AAD 12DA.
- 37 AALTONEN 12T combine AALTONEN 12Q, AALTONEN 12R, AALTONEN 12S, ABAZOV 12O, ABAZOV 12P, and ABAZOV 12K. An excess of events over background is observed which is most significant in the region $m_H=120$ –135 GeV, with a local significance of up to 3.3 σ . The local significance at $m_H=125$ GeV is 2.8 σ , which corresponds to $(\sigma(HW)+\sigma(HZ))\cdot B(H\to b\overline{b})=(0.23^{+0.09}_{-0.08})$ pb, compared to the Standard Model expectation at $m_H=125$ GeV of 0.12 \pm 0.01 pb. Superseded by AALTONEN 13M.
- 38 CHATRCHYAN 12N obtain results based on 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}$ =7 TeV and 5.1 fb $^{-1}$ at $E_{\rm cm}$ =8 TeV. The quoted signal strength is given for m_H =125.5 GeV. See also CHATRCHYAN 13Y.

$\mu^+\mu^-$ Final State

μ μ	i illai State				
VALUI	<u> </u>	CL% DOCUMENT II)	TECN	COMMENT
1	L.21±0.35 OUR AVE	RAGE			
1	$1.21^{+0.45}_{-0.42}$	^{1}CMS	22	CMS	<i>pp</i> , 13 TeV
1	1.2 ±0.6	² AAD	21	ATLS	<i>рр</i> , 13 TeV
• • •	• We do not use the	following data for averag	ges, fits,	limits, e	etc. • • •
1	$1.19^{+0.40}_{-0.39}^{+0.15}_{-0.14}$	³ SIRUNYAN	210	CMS	<i>pp</i> , 13 TeV

$1.19 {}^{+ 0.40 + 0.15}_{- 0.39 - 0.14}$		³ SIRUNYAN	21c CMS	<i>pp</i> , 13 TeV
$0.68 {+} 1.25 \\ -1.24$		⁴ SIRUNYAN	19AT CMS	<i>pp</i> , 13 TeV
$0.7 \ \pm 1.0 \ ^{+0.2}_{-0.1}$		⁵ SIRUNYAN	19E CMS	pp , 13 TeV, 35.9 fb $^{-1}$
$1.0 \pm 1.0 \pm 0.1$		⁵ SIRUNYAN	19E CMS	pp, 7, 8, 13 TeV
-0.1 ± 1.4		⁶ AABOUD	17Y ATLS	pp, 7, 8, 13 TeV
-0.1 ± 1.5		⁶ AABOUD	17Y ATLS	pp, 13 TeV
0.1 ± 2.5		⁷ AAD	16AN LHC	pp, 7, 8 TeV
-0.6 ± 3.6		⁷ AAD	16AN ATLS	pp, 7, 8 TeV
$0.9 \begin{array}{l} +3.6 \\ -3.5 \end{array}$		⁷ AAD	16AN CMS	pp, 7, 8 TeV
< 7.4	95	⁸ KHACHATRY.	15H CMS	$pp \rightarrow HX$, 7, 8 TeV
< 7.0	95	⁹ AAD	14AS ATLS	pp ightarrow HX, 7, 8 TeV
4				1

 $^{^1}$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm CM}=13$ TeV, assuming $m_H=125.38$ GeV. See their Fig. 2 right.

 $^{^2}$ AAD 21 search for $H\to \mu^+\mu^-$ using 139 fb $^{-1}$ of pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 2.0 standard deviations and is given for $m_H=125.09$ GeV. The upper limit on the cross section times branching fraction is 2.2 times the SM prediction at 95% CL, which corresponds to the branching fraction upper limit of 4.7 \times 10^{-4} (assuming SM production cross sections).

³ SIRUNYAN 21 search for $H \to \mu^+\mu^-$ using 137 fb⁻¹ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 3.0 standard deviations and is given for $m_H=125.38$ GeV.

⁴SIRUNYAN 19AT perform a combine fit to 35.9 fb⁻¹ of data at $E_{\rm cm}=13$ TeV.

- 5 SIRUNYAN 19E search for $H\to ~\mu^+\mu^-$ using 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV and combine with results of 7 TeV (5.0 fb $^{-1}$) and 8 TeV (19.7 fb $^{-1}$). The upper limit at 95% CL on the signal strength is 2.9, which corresponds to the SM Higgs boson branching fraction to a muon pair of 6.4 \times 10 $^{-4}$.
- ⁶ AABOUD 17Y use 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV, 20.3 fb⁻¹ at 8 TeV and 4.5 fb⁻¹ at 7 TeV. The quoted signal strength is given for $m_H=125$ GeV.
- 7 AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_H=125.09$ GeV.
- 8 KHACHATRYAN 15H use 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV and 19.7 fb $^{-1}$ at 8 TeV. The quoted signal strength is given for $m_H=125$ GeV.
- ⁹ AAD 14AS search for $H \to \mu^+\mu^-$ in 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.5$ GeV.

$au^+ au^-$ Final State

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
0.91 ± 0.09 OUR AVERAGE			
0.85 ± 0.10	$^{ m 1}$ CMS	22 CMS	<i>pp</i> , 13 TeV
$1.09 ^{+ 0.18 + 0.26 + 0.16}_{- 0.17 - 0.22 - 0.11}$	² AABOUD	19AQ ATLS	<i>pp</i> , 13 TeV
$1.11^{+0.24}_{-0.22}$	3,4 AAD	16AN LHC	pp, 7, 8 TeV
$1.68 ^{+2.28}_{-1.68}$	⁵ AALTONEN	13M TEVA	$p\overline{p} ightarrow \ HX$, 1.96 TeV

• • We do not use the following data for averages, fits, limits, etc.

	0	0 , ,	'
	⁶ AAD	22Q ATLS	<i>pp</i> , 13 TeV
$2.5 \begin{array}{c} +1.4 \\ -1.3 \end{array}$	⁷ SIRUNYAN	19AF CMS	$pp ightarrow \;HW/HZ,\;H ightarrow \ au au,\;13\;{\sf TeV}$
$1.24^{+0.29}_{-0.27}$	⁸ SIRUNYAN	19AF CMS	<i>pp</i> , 13 TeV
$1.02^{+0.26}_{-0.24}$	⁹ SIRUNYAN	19AT CMS	<i>pp</i> , 13 TeV
$1.09^{+0.27}_{-0.26}$	¹⁰ SIRUNYAN	18Y CMS	<i>pp</i> , 13 TeV
0.98 ± 0.18 2.3 ± 1.6	¹¹ SIRUNYAN ¹² AAD	18Y CMS 16AC ATLS	pp, 7, 8, 13 TeV $pp \rightarrow HW/ZX$, 8 TeV
$1.41^{+0.40}_{-0.36}$	⁴ AAD	16AN ATLS	<i>pp</i> , 7, 8 TeV
$0.88^{igoplus 0.30}_{-0.28}$	⁴ AAD	16AN CMS	<i>pp</i> , 7, 8 TeV
$1.44 {+ 0.30 + 0.29 \atop - 0.29 - 0.23}$	¹³ AAD	16K ATLS	<i>pp</i> , 7, 8 TeV
$1.43 ^{+ 0.27 + 0.32}_{- 0.26 - 0.25} \!\pm\! 0.09$	¹⁴ AAD		pp ightarrow HX, 7, 8 TeV
0.78 ± 0.27	¹⁵ CHATRCHYAN	N14K CMS	$pp ightarrow \ HX$, 7, 8 TeV
$0.00^{+8.44}_{-0.00}$	¹⁶ AALTONEN	13L CDF	$p\overline{p} ightarrow \ HX$, 1.96 TeV
$3.96^{+4.11}_{-3.38}$	¹⁷ ABAZOV	13L D0	$p\overline{p} ightarrow \; HX$, 1.96 TeV
$0.4 \begin{array}{c} +1.6 \\ -2.0 \end{array}$	¹⁸ AAD	12AI ATLS	pp ightarrow HX, 7 TeV
$0.09^{+0.76}_{-0.74}$	¹⁹ CHATRCHYAN	N 12N CMS	$pp ightarrow \ HX$, 7, 8 TeV

 $^{^1}$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=$ 13 TeV, assuming $m_H=$ 125.38 GeV. See their Fig. 2 right.

- ² AABOUD 19AQ use $36.1~{\rm fb}^{-1}$ of data. The first, second and third quoted errors are statistical, experimental systematic and theory systematic uncertainties, respectively. The quoted signal strength is given for $m_H=125~{\rm GeV}$ and corresponds to $4.4~{\rm standard}$ deviations. Combining with 7 TeV and 8 TeV results (AAD 15AH), the observed significance is $6.4~{\rm standard}$ deviations. The cross sections in the $H\to \tau\tau$ decay channel ($m_H=125~{\rm GeV}$) are measured to $3.77^{+0.60}_{-0.59}$ (stat) $^{+0.87}_{-0.74}$ (syst) pb for the inclusive, $0.28\pm0.09^{+0.11}_{-0.09}$ pb for VBF, and $3.1\pm1.0^{+1.6}_{-1.3}$ pb for gluon-fusion production. See their Table XI for the cross sections in the framework of simplified template cross sections.
- ³AAD 16AN perform fits to the ATLAS and CMS data at $E_{\rm cm}=7$ and 8 TeV. The signal strengths for individual production processes are 1.0 ± 0.6 for gluon fusion, 1.3 ± 0.4 for vector boson fusion, -1.4 ± 1.4 for WH production, $2.2^{+2.2}_{-1.8}$ for ZH production, and $-1.9^{+3.7}_{-3.3}$ for $t\overline{t}H$ production.
- ⁴ AAD 16AN: In the fit, relative production cross sections are fixed to those in the Standard Model. The quoted signal strength is given for $m_H = 125.09$ GeV.
- 5 AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations with up to 10.0 fb $^{-1}$ and 9.7 fb $^{-1}$, respectively, of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_{H}=125$ GeV.
- ⁶ AAD 22Q measure cross sections of $pp \to H \to \tau \tau$ at $E_{\rm cm}=13$ TeV with 139 fb $^{-1}$ data. The quoted results are given for $m_H=125.09$ GeV and $|{\rm y}(H)|<2.5$ is required. The inclusive fiducial $\sigma \cdot B$ is $2.94\pm0.21^{+0.37}_{-0.32}$ pb. The fiducial $\sigma \cdot B$ for the four dominant production modes are $2.65\pm0.41^{+0.91}_{-0.67}$ pb for ggF, $0.197\pm0.028^{+0.032}_{-0.026}$ pb for VBF, $0.115\pm0.058^{+0.042}_{-0.040}$ pb for VH, $0.033\pm0.031^{+0.022}_{-0.017}$ pb for $t\overline{t}H$. The cross sections using simplified template cross section framework (STXS) are given in their Fig. 14(a) and Table 15. The STXS bins (a reduced stage 1.2) are defined in their Fig. 1.
- ⁷SIRUNYAN 19AF use 35.9 fb⁻¹ of data. The quoted signal strength is given for $m_H = 125$ GeV and corresponds to 2.3 standard deviations.
- ⁸ SIRUNYAN 19AF use 35.9 fb⁻¹ of data. HW/Z channels are added with a few updates on gluon fusion and vector boson fusion with respect to SIRUNYAN 18Y. The quoted signal strength is given for $m_H=125$ GeV and corresponds to 5.5 standard deviations. The signal strengths for the individual production modes are: $1.12^{+0.53}_{-0.50}$ for gluon fusion, $1.13^{+0.45}_{-0.42}$ for vector boson fusion, $3.39^{+1.68}_{-1.54}$ for WH and $1.23^{+1.62}_{-1.35}$ for ZH. See their Fig. 7 for other couplings (κ_{V,κ_f}) .
- 9 SIRUNYAN 19AT perform a combine fit to 35.9 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. This combination is based on SIRUNYAN 18Y.
- combination is based on SIRUNYAN 18Y. 10 SIRUNYAN 18Y use 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_H=125.09$ GeV and corresponds to 4.9 standard deviations.
- 11 SIRUNYAN 18Y combine the result of 35.9 fb $^{-1}$ at $E_{\rm cm}=13$ TeV with the results obtained from data of 4.9 fb $^{-1}$ at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV (KHACHATRYAN 15AM). The quoted signal strength is given for $m_H=125.09$ GeV and corresponds to 5.9 standard deviations.
- 12 AAD 16AC measure the signal strength with $pp \to HW/ZX$ processes using 20.3 fb $^{-1}$ of $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- 13 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.36$ GeV.
- ¹⁴ AAD 15AH use 4.5 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. The third uncertainty in the measurement is theory systematics. The signal strength for the gluon fusion mode is $2.0\pm0.8^{+1.2}_{-0.8}\pm0.3$ and that for vector boson fusion and W/ZH production modes is $1.24^{+0.49}_{-0.45}+0.31\pm0.08$. The quoted signal strength is given for $m_H=125.36$ GeV.

- 15 CHATRCHYAN 14K use 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125$ GeV. See also CHATRCHYAN 14AJ.
- ¹⁶ AALTONEN 13L combine all CDF results with 9.45–10.0 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. The quoted signal strength is given for m_H = 125 GeV.
- 17 ABAZOV 13L combine all D0 results with up to 9.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- 18 AAD 12AI obtain results based on 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV. The quoted signal strengths are given in their Fig. 10 for $m_{H}=126$ GeV. See also Fig. 13 of AAD 12DA.
- 19 CHATRCHYAN 12N obtain results based on 4.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}{=}7$ TeV and 5.1 fb $^{-1}$ at $E_{\rm cm}{=}8$ TeV. The quoted signal strength is given for $m_{\mbox{\scriptsize H}}{=}125.5$ GeV. See also CHATRCHYAN 13Y .

$Z\gamma$ Final State

<u>V</u> ALUE	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
$2.59 ^{igoplus 1.07}_{-0.96}$		$^{1}\mathrm{CMS}$	22	CMS	<i>pp</i> , 13 TeV
< 3.6	95	² AAD	20AG	ATLS	<i>pp</i> , 13 TeV
< 7.4	95	³ SIRUNYAN	18DG	CMS	<i>pp</i> , 13 TeV
< 6.6	95		17AV	/ATLS	pp, 13 TeV
<11	95	⁵ AAD			pp, 7, 8 TeV
< 9.5	95	⁶ CHATRCHYAN	13 BK	CMS	<i>pp</i> , 7, 8 TeV

- 1 CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_{H}=125.38$ GeV. See their Fig. 2 right.
- ² AAD 20AG search for $H \to Z\gamma$, $Z \to ee$, $\mu\mu$ in 139 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The signal strength is $2.0 \pm 0.9 ^{+0.4}_{-0.3}$ at $m_H=125.09$ GeV, which corresponds to a significance of 2.2 σ . The upper limit of $\sigma(pp\to H)\cdot B(H\to Z\gamma)$ is 305 fb at 95% CL.
- ³ SIRUNYAN 18DQ search for $H \to Z\gamma$, $Z \to ee$, $\mu\mu$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength (see their Figs. 6 and 7) is given for $m_H=125$ GeV.
- ⁴ AABOUD 17AW search for $H \to Z\gamma$, $Z \to ee$, $\mu\mu$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_H=125.09$ GeV. The upper limit on the branching ratio of $H \to Z\gamma$ is 1.0% at 95% CL assuming the SM Higgs boson production.
- ⁵ AAD 14J search for $H \to Z\gamma \to \ell\ell\gamma$ in 4.5 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.5$ GeV.
- 6 CHATRCHYAN 13BK search for $H\to Z\gamma\to\ell\ell\gamma$ in 5.0 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.6 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. A limit on cross section times branching ratio which corresponds to (4–25) times the expected Standard Model cross section is given in the range $m_H=120$ –160 GeV at 95% CL. The quoted limit is given for $m_H=125$ GeV, where 10 is expected for no signal.

$\gamma^*\gamma$ Final State

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$1.5 \pm 0.5 {+0.2 \atop -0.1}$		¹ AAD	211	ATLS	pp , 13 TeV, $H ightarrow \ell \ell \gamma$, 130 fb $^{-1}$

- • We do not use the following data for averages, fits, limits, etc. •
- <4.0 95 2 SIRUNYAN 18DQ CMS $pp \to HX$, 13 TeV, $H \to \gamma^* \gamma$ <6.7 95 3 KHACHATRY...16B CMS pp, 8 TeV, $ee\gamma$, $\mu\mu\gamma$
 - 1 AAD 211 search for $H\to\ell\ell\gamma$ ($\ell=e,~\mu$) in 139 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=13$ TeV. The mass of dilepton $m_{\ell\ell}$ is smaller than 30 GeV. This region is dominated by the decay through γ^* . The quoted signal strength corresponds to a significance of 3.2 standard deviations and is given for $m_H=125.09$ GeV. The cross section times the branching ratio of $H\to\ell\ell\gamma$ for $m_{\ell\ell}<30$ GeV is measured to be 8.7 \pm 2.7 $^{+0.7}_{-0.6}$ fb.
 - ² SIRUNYAN 18DQ search for $H \to \gamma^* \gamma$, $\gamma^* \to \mu \mu$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. The mass of γ^* is smaller than 50 GeV except in J/ψ and Υ mass regions. The quoted signal strength (see their Figs. 6 and 7) is given for $m_H = 125$ GeV.
 - 3 KHACHATRYAN 16B search for $H\to ~\gamma^*\,\gamma\to~e^+\,e^-\,\gamma$ and $\mu^+\,\mu^-\,\gamma$ (with m(e^+e^-) <3.5 GeV and m($\mu^+\,\mu^-)<20$ GeV) in 19.7 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=8$ TeV. See their Fig. 6 for limits on individual channels.

Higgs couplings

Fermion coupling (κ_F)

VALUEDOCUMENT IDTECNCOMMENT0.95 ± 0.05 1 ATLAS22 ATLSpp, 13 TeV• • • We do not use the following data for averages, fits, limits, etc. • • •

0.906 ² CMS ² CMS ^{pp, 13} TeV

Gauge boson coupling (κ_V)

VALUEDOCUMENT IDTECNCOMMENT1.035 \pm 0.0311 ATLAS22 ATLSpp, 13 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.014 ² CMS 22 CMS *pp*, 13 TeV

W boson coupling (κ_W)

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	ing data for average	s, fits,	limits,	etc. • • •
1.02 ± 0.05	^{1,2} ATLAS	22	ATLS	pp, 13 TeV
1.05 ± 0.06	1,3 ATLAS	22	ATLS	<i>pp</i> , 13 TeV
$1.00^{+0.00}_{-0.02}$	^{1,4} ATLAS	22	ATLS	pp, 13 TeV
1.06 ± 0.07	^{5,6} CMS	22	CMS	<i>pp</i> , 13 TeV

Created: 5/31/2023 09:12

https://pdg.lbl.gov

Page 34

 $^{^1}$ ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV, $\kappa_V\geq 0$, and $\kappa_F\geq 0$ ($B_{inv}=B_{undetected}=0$). See their Fig. 4.

 $^{^2}$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV. No uncertainty is given while their Fig. 3 left shows 68% and 95% CL contours.

 $^{^1}$ ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV, $\kappa_V\geq 0$, and $\kappa_F\geq 0$ ($B_{inv}=B_{undetected}=0$). See their Fig. 4.

 $^{^2}$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV. See their Fig. 3 left.

 1.02 ± 0.08 5,7 CMS 22 CMS pp. 13 TeV

- 1 ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_{H}=125.09$ GeV.
- ² All modifiers(κ) > 0, and $\kappa_c = \kappa_t$ ($B_{inv} = B_{undetected} = 0$) are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both $\kappa_c = \kappa_t$ and κ_c floating.
- $^3B_{inv}=B_{undetected}=0$ is assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.
- $^4B_{inv}$ floating, $B_{undetected} \geq$ 0, and $\kappa_V \leq$ 1 are assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.
- 5 CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_{H}=125.38$ GeV.
- ⁶ Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3 right.
- ⁷ Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 4 left.

Z boson coupling (κ_Z)

VALUE	DOCUMENT	ID	TECN	COMMENT			
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
$0.99^{+0.06}_{-0.05}$	1,2 ATLAS	22	ATLS	<i>pp</i> , 13 TeV			
0.99 ± 0.06	1,3 ATLAS	22	ATLS	<i>pp</i> , 13 TeV			
$0.98 ^{+ 0.02}_{- 0.05}$	1,4 ATLAS	22	ATLS	<i>pp</i> , 13 TeV			
1.04 ± 0.07	^{5,6} CMS	22	CMS	<i>pp</i> , 13 TeV			
1.04 ± 0.07	5,7 CMS	22	CMS	<i>pp</i> , 13 TeV			

- 1 ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV.
- 2 All modifiers($\kappa)>$ 0, and $\kappa_c=\kappa_t$ ($B_{inv}=B_{undetected}=$ 0) are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both $\kappa_c=\kappa_t$ and κ_c floating.
- $^3B_{inv}=B_{undetected}=$ 0 is assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.
- $^4B_{inv}$ floating, $B_{undetected} \geq$ 0, and $\kappa_V \leq$ 1 are assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.
- 5 CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV.
- ⁶ Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3 right.
- ⁷ Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 4 left.

top Yukawa coupling (κ_t)

<u>VALUE</u>	<u>CL%</u>	<u>DOCUMEN</u>	IT ID	TECN	COMMENT	
• • • We do not use t	he following o	data for ave	rages, fits,	limits, et	.c. • • •	
0.95 ± 0.07		^{L,2} ATLAS	22	ATLS	<i>pp</i> , 13 TeV	
0.94 ± 0.11		^{L,3} ATLAS	22	ATLS	<i>pp</i> , 13 TeV	
0.94 ± 0.11]	^{L,4} ATLAS	22	ATLS	<i>pp</i> , 13 TeV	
$0.95 ^{+ 0.07}_{- 0.08}$	Ę	^{5,6} CMS	22	CMS	<i>pp</i> , 13 TeV	
https://pdg.lbl.gov		Page 35		Create	ed: 5/31/2023	09:12

$1.01 {+0.11 \atop -0.10}$		^{5,7} CMS	22	CMS	<i>pp</i> , 13 TeV
[-0.9, -0.7] or $[0.7, 1.1]$	95	⁸ SIRUNYAN	21 R	CMS	рр, 13 TeV
<1.7	95	⁹ SIRUNYAN	20 C	CMS	<i>pp</i> , 13 TeV
<1.67	95	¹⁰ SIRUNYAN	19 BY	CMS	<i>pp</i> , 13 TeV
<2.1	95	¹¹ SIRUNYAN	18 BU	CMS	<i>pp</i> , 13 TeV

- 1 ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV.
- 2 All modifiers($\kappa)>0$, and $\kappa_c=\kappa_t$ ($B_{inv}=B_{undetected}=0$) are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both $\kappa_c=\kappa_t$ and κ_c floating.
- $^3B_{inv}=B_{undetected}=0$ is assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.
- $^4B_{inv}$ floating, $B_{undetected} \geq$ 0, and $\kappa_V \leq$ 1 are assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.
- 5 CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_{H}=125.38$ GeV.
- ⁶ Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3 right.
- ⁷ Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 4 left.
- ⁸ SIRUNYAN 21R constrain the ratio of the top quark Yukawa coupling y_t to its Standard Model value from $t\overline{t}H$ and tH production rates using 137 fb⁻¹ pp collision data at $E_{\rm cm}=13$ TeV. Assuming a SM Higgs couplings to τ 's, the joint interval $-0.9<\kappa_t(=y_t/y_t^{SM})<-0.7$ and $0.7<\kappa_t<1.1$ is obtained at 95% CL (see their Fig. 17).
- 9 SIRUNYAN 20C search for the production of four top quarks with same-sign and multilepton final states with 137 fb $^{-1}$ pp collision data at $E_{\rm cm}=13$ TeV. The results constraint the ratio of the top quark Yukawa coupling y_t to its Standard Model value by comparing to the central value of a theoretical prediction (see their Refs. [1-2]), yielding $\left|y_t/y_t^{SM}\right| < 1.7$ at 95% CL. See their Fig. 5.
- $^{10}\,\mathrm{SIRUNYAN}$ 19BY measure the top quark Yukawa coupling from $t\,\overline{t}$ kinematic distributions, the invariant mass of the top quark pair and the rapidity difference between t and \overline{t} , in the $\ell+\mathrm{jets}$ final state with 35.8 fb $^{-1}$ pp collision data at $E_\mathrm{cm}=13$ TeV. The results constraint the ratio of the top quark Yukawa coupling to its the Standard Model to be $1.07^{+0.34}_{-0.43}$ with an upper limit of 1.67 at 95% CL (see their Table III).
- 11 SIRUNYAN 18BU search for the production of four top quarks with same-sign and multilepton final states with 35.9 fb $^{-1}$ pp collision data at $E_{\rm cm}=13$ TeV. The results constraint the ratio of the top quark Yukawa coupling y_t to its the Standard Model by comparing to the central value of a theoretical prediction (see their Ref. [16]), yielding $|y_t/y_t^{SM}|<2.1$ at 95% CL.

bottom Yukawa coupling (κ_b)

VALUE	DOCUMENT II	D	TECN	COMMENT
• • • We do not use	the following data for averag	ges, fits	, limits,	etc. • • •
0.90 ± 0.11	1,2 ATLAS	22	ATLS	pp, 13 TeV
0.89 ± 0.11	1,3 ATLAS	22	ATLS	<i>pp</i> , 13 TeV
$0.82 ^{igoplus 0.09}_{-0.08}$	^{1,4} ATLAS	22	ATLS	<i>pp</i> , 13 TeV
$1.02^{+0.15}_{-0.17}$	^{5,6} CMS	22	CMS	<i>pp</i> , 13 TeV

 $0.99^{+0.17}_{-0.16}$ 5,7 CMS 22 CMS pp, 13 TeV

- 1 ATLAS 22 report combined results (see their Extended Data Table 1) using up to $139 {\rm fb}^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV.
- 2 All modifiers $(\kappa)>0$, and $\kappa_c=\kappa_t$ ($B_{inv}=B_{undetected}=0)$ are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both $\kappa_c=\kappa_t$ and κ_c floating.
- $^3B_{inv}=B_{undetected}=$ 0 is assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.
- $^4B_{inv}$ floating, $B_{undetected} \geq$ 0, and $\kappa_V \leq$ 1 are assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.
- ⁵ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb⁻¹ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV.
- ⁶ Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3 right.
- ⁷ Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 4 left.

charm Yukawa coupling (κ_c)

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.03^{+3.02}_{-0.03}$ 1 ATLAS
 22 ATLS pp, 13 TeV

tau Yukawa coupling $(\kappa_{ au})$

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	ing data for average	es, fits	, limits,	etc. • • •
0.94 ± 0.07	1,2 ATLAS	22	ATLS	pp, 13 TeV
0.93 ± 0.07	1,3 ATLAS	22	ATLS	pp, 13 TeV
$0.91^{+0.07}_{-0.06}$	^{1,4} ATLAS	22	ATLS	<i>pp</i> , 13 TeV
0.93 ± 0.08	^{5,6} CMS	22	CMS	pp, 13 TeV
0.92 ± 0.08	^{5,7} CMS	22	CMS	<i>рр</i> , 13 TeV

- 1 ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV.
- 2 All modifiers(κ) > 0, and $\kappa_c=\kappa_t$ ($B_{inv}=B_{undetected}=$ 0) are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both $\kappa_c=\kappa_t$ and κ_c floating.
- $^3B_{inv}=B_{undetected}=$ 0 is assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.
- $^4B_{inv}$ floating, $B_{undetected} \geq$ 0, and $\kappa_V \leq$ 1 are assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.
- ⁵ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb⁻¹ of data at $E_{\rm CM}=13$ TeV, assuming $m_H=125.38$ GeV.
- ⁶ Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3 right.
- ⁷ Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 4 left.

 $^{^1}$ ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV, and all modifiers $(\kappa)>0$ ($B_{inv}=B_{undetected}=0$). Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both $\kappa_c=\kappa_t$ and κ_c floating.

muon Yukawa couping (κ_{μ})

VALUE	DOCUMENT ID		TECN	COMMENT
ullet $ullet$ $ullet$ We do not use	the following data for average	es, fits	, limits,	etc. • • •
$1.07 ^{igoplus 0.25}_{-0.31}$	1,2 ATLAS	22	ATLS	<i>pp</i> , 13 TeV
$1.06^{+0.25}_{-0.30}$	1,3 ATLAS	22	ATLS	<i>pp</i> , 13 TeV
$1.04^{+0.23}_{-0.30}$	^{1,4} ATLAS	22	ATLS	pp, 13 TeV
1.12 ± 0.20	^{5,6} CMS	22	CMS	<i>pp</i> , 13 TeV
$1.12^{+0.21}_{-0.22}$	5,7 CMS	22	CMS	<i>pp</i> , 13 TeV

 $^{^1}$ ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV.

photon effective coupling (κ_{γ})

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	ving data for average	es, fits,	limits,	etc. • • •
$1.01\!\pm\!0.06$	1,2 ATLAS	22	ATLS	<i>pp</i> , 13 TeV
0.98 ± 0.05	1,3 ATLAS	22	ATLS	<i>p p</i> , 13 TeV
1.10 ± 0.08	⁴ CMS	22	CMS	<i>pp</i> , 13 TeV

 $^{^1}$ ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.

gluon effective coupling (κ_{gluon})

VALUE	DOCUMENT II)	TECN	COMMENT	
• • • We do not use the following	owing data for averag	ges, fits,	limits, e	etc. • • •	
0.95 ± 0.07	1,2 ATLAS	22	ATLS	<i>pp</i> , 13 TeV	
$0.94^{+0.07}_{-0.06}$	1,3 ATLAS	22	ATLS	<i>pp</i> , 13 TeV	

² All modifiers(κ) > 0, and $\kappa_c = \kappa_t$ ($B_{inv} = B_{undetected} = 0$) are assumed. Only SM particles assume to contribute to the loop-induced processes. See their Fig. 5, which shows both $\kappa_c = \kappa_t$ and κ_c floating.

 $^{^3}B_{inv}=B_{undetected}=$ 0 is assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.

 $^{^4}B_{inv}$ floating, $B_{undetected} \geq$ 0, and $\kappa_V \leq$ 1 are assumed. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.

 $^{^5}$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV.

⁶ Only SM particles assume to contribute to the loop-induced processes. See their Fig. 3 right.

⁷ Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 4 left.

 $^{^{2}}B_{inv}=B_{undetected}=$ 0 is assumed.

 $^{^3}B_{inv}$ floating, $B_{undetected} \geq$ 0, and $\kappa_V \leq$ 1 are assumed.

 $^{^4}$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 4 left.

 0.92 ± 0.08 4 CMS 22 CMS pp. 13 TeV

$Z\gamma$ effective coupling $(\kappa_{Z\gamma})$

VALUE	DOCUMENT ID	1	TECN	COMMENT	
• • • We do not use the follow	ving data for averag	es, fits	limits,	etc. • • •	
$1.38^{+0.31}_{-0.37}$	1,2 ATLAS	22	ATLS	pp, 13 TeV	
$1.35 ^{+ 0.29}_{- 0.36}$	^{1,3} ATLAS	22	ATLS	<i>pp</i> , 13 TeV	
$1.65^{+0.34}_{-0.37}$	⁴ CMS	22	CMS	pp, 13 TeV	

 $^{^1}$ ATLAS 22 report combined results (see their Extended Data Table 1) using up to 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.

OTHER H PRODUCTION PROPERTIES

DOCUMENT ID TECN COMMENT

$t\overline{t}H$ Production

VALUE

Signal strength relative to the Standard Model cross section.

1.10±0.18 OUR AVERAGE			
$0.92 \pm 0.19 ^{+0.17}_{-0.13}$	¹ SIRUNYAN	21R CMS	pp, 13 TeV, $H ightarrow au au$,
1.2 ±0.3	² AABOUD	18AC ATLS	WW^* , ZZ^* pp , 13 TeV, $H \rightarrow b\overline{b} \tau \tau$, $\gamma \gamma$, WW^* , ZZ^*
$1.9 \begin{array}{l} +0.8 \\ -0.7 \end{array}$	³ AAD	16AN ATLS	pp, 7, 8 TeV
• • • We do not use the follow	ving data for avera	ages, fits, limit	ts, etc. • • •
$0.35^{+0.36}_{-0.34}$	⁴ AAD	22M ATLS	pp , 13 TeV, $H \rightarrow b\overline{b}$
$1.43 ^{+ 0.33 + 0.21}_{- 0.31 - 0.15}$	⁵ AAD	20z ATLS	pp, 13 TeV, $H ightarrow \gamma \gamma$
$1.38^{+0.36}_{-0.29}$	⁶ SIRUNYAN	20AS CMS	<i>pp</i> , 13 TeV, $H ightarrow \gamma \gamma$
$0.72 \pm 0.24 \pm 0.38$	⁷ SIRUNYAN	19R CMS	pp , 13 TeV, $H \rightarrow b\overline{b}$
$1.6 \begin{array}{c} +0.5 \\ -0.4 \end{array}$	⁸ AABOUD	18AC ATLS	pp, 13 TeV, $H ightarrow ~ au au$, WW^* , ZZ^*
	⁹ AABOUD	18BK ATLS	· —
https://pdg.lbl.gov	Page 39	Cr	eated: 5/31/2023 09:12

¹ ATLAS 22 report combined results (see their Extended Data Table 1) using up to $139 {\rm fb}^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.09$ GeV. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 6.

 $^{^{2}}B_{inv}=B_{undetected}=$ 0 is assumed.

 $^{^3}B_{inv}$ floating, $B_{undetected} \, \geq \,$ 0, and $\kappa_V \, \leq \,$ 1 are assumed.

 $^{^4}$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 4 left.

 $^{^{2}}B_{inv}=B_{undetected}=\mathrm{0}$ is assumed.

 $^{^3}B_{inv}$ floating, $B_{undetected}~\ge~$ 0, and $\kappa_V~\le~$ 1 are assumed.

 $^{^4}$ CMS 22 report combined results (see their Extended Data Table 2) using up to 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV, assuming $m_H=125.38$ GeV. Coupling strength modifiers including effective photon, $Z\gamma$ and gluon are measured. See their Fig. 4 left.

$0.84 ^{+ 0.64}_{- 0.61}$	¹⁰ AABOUD	18T ATLS	pp , 13 TeV, $H ightarrow b\overline{b}$
0.9 ± 1.5	¹¹ SIRUNYAN	18BD CMS	pp , 13 TeV, $H ightarrow b \overline{b}$
$1.23 ^{+0.45}_{-0.43}$	¹² SIRUNYAN	18BQ CMS	pp, 13 TeV, $H ightarrow ~ au au$, WW^* , ZZ^*
$1.26^{+0.31}_{-0.26}$	¹³ SIRUNYAN	18L CMS	$pp, 7, 8, 13 \text{ TeV}, H \rightarrow b\overline{b}, \tau \tau, \gamma \gamma, W W^*,$
1.7 ±0.8	¹⁴ AAD	16AL ATLS	ZZ^* pp , 7, 8 TeV, $H \rightarrow b\overline{b}$, $\tau \tau$, $\gamma \gamma$, WW^* , and
$2.3 \begin{array}{c} +0.7 \\ -0.6 \end{array}$	3,15 AAD	16AN LHC	pp, 7, 8 TeV
$2.9 \begin{array}{l} +1.0 \\ -0.9 \end{array}$	³ AAD	16AN CMS	<i>pp</i> , 7, 8 TeV
$1.81 \!+\! 0.52 \!+\! 0.58 \!+\! 0.31 \\ -\! 0.50 \!-\! 0.55 \!-\! 0.12$	¹⁶ AAD	16K ATLS	<i>pp</i> , 7, 8 TeV
$1.4 \begin{array}{c} +2.1 & +0.6 \\ -1.4 & -0.3 \end{array}$	¹⁷ AAD	15 ATLS	pp, 7, 8 TeV
1.5 ±1.1	¹⁸ AAD	15BC ATLS	<i>pp</i> , 8 TeV
$2.1 \begin{array}{c} +1.4 \\ -1.2 \end{array}$	¹⁹ AAD	15T ATLS	<i>pp</i> , 8 TeV
$1.2 \begin{array}{c} +1.6 \\ -1.5 \end{array}$	²⁰ KHACHATRY.	15AN CMS	<i>pp</i> , 8 TeV
$2.8 \begin{array}{l} +1.0 \\ -0.9 \end{array}$	²¹ KHACHATRY	14H CMS	<i>pp</i> , 7, 8 TeV
$9.49^{+6.60}_{-6.28}$	²² AALTONEN	13L CDF	<i>p</i> p , 1.96 TeV
< 5.8 at 95% CL	²³ CHATRCHYAI	N 13X CMS	pp , 7, 8 TeV, $H \rightarrow b\overline{b}$
4			

 $^{^1}$ SIRUNYAN 21R search for $t\overline{t}H$ in final states with electrons, muons and hadronically decaying τ leptons ($H\to WW^*,~ZZ^*,~\tau\tau$) with 137 fb $^{-1}$ of pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 4.7 standard deviations and is given for $m_H=125$ GeV.

² AABOUD 18AC combine results of $t\overline{t}H$, $H\to \tau\tau$, $WW^*(\to \ell\nu\ell\nu, \ell\nu q\overline{q})$, $ZZ^*(\to \ell\ell\nu\nu, \ell\ell q\overline{q})$ with results of $t\overline{t}H$, $H\to b\overline{b}$ (AABOUD 18T), $\gamma\gamma$ (AABOUD 18BO), $ZZ^*(\to 4\ell)$ (AABOUD 18AJ) in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_H=125$ GeV. See their Table 14.

³AAD 16AN: In the fit, relative branching ratios are fixed to those in the Standard Model. The quoted signal strength is given for $m_H = 125.09$ GeV.

⁴ AAD 22M measure $H \to b \overline{b}$ in $t \overline{t} H$ production using 139 fb⁻¹ of data at $E_{\rm cm} = 13$ TeV. See their Fig. 14. The signal strengths and 95% CL cross section upper limits with simplified template cross section bins are given in their Figs. 18 and 19, respectively.

simplified template cross section bins are given in their Figs. 18 and 19, respectively. 5 AAD 20Z measure $\sigma_{t\overline{t}H}$ \cdot B($H\to~\gamma\gamma$) to be $1.64^{+0.38}_{-0.36}^{+0.17}$ fb in 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV.

 $^{^6}$ SIRUNYAN 20AS measure $\sigma_{t\overline{t}\,H}\cdot$ B($H\to~\gamma\gamma)$ to be $1.56^{+0.34}_{-0.32}$ fb in 137 fb $^{-1}$ of data at $E_{\rm CM}=$ 13 TeV.

⁷ SIRUNYAN 19R search for $t\bar{t}H$ production with H decaying to $b\bar{b}$ in 35.9 fb⁻¹ of data at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_H=125$ GeV.

⁸ AABOUD 18AC search for $t\overline{t}H$ production with H decaying to $\tau\tau$, $WW^*(\to \ell\nu\ell\nu, \ell\nu q\overline{q})$, $ZZ^*(\to \ell\ell\nu\nu, \ell\ell q\overline{q})$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_H=125$ GeV. See their Table 13 and Fig. 13.

 $^{^9}$ AABOUD 18BK use $79.8~{\rm fb}^{-1}$ data for $t\overline{t}H$ production with $H\to~\gamma\gamma$ and $ZZ^*\to~4\ell$ $(\ell=e,~\mu)$ and $36.1~{\rm fb}^{-1}$ for other decay channels at $E_{\rm CM}=13$ TeV. A significance of 5.8 standard deviations is observed for $m_H=125.09$ GeV and its signal strength without

- the uncertainty of the $t\overline{t}H$ cross section is $1.32^{+0.28}_{-0.26}$. Combining with results of 7 and 8 TeV (AAD 16K), the significance is 6.3 standard deviations. Assuming Standard Model branching fractions, the total $t\overline{t}H$ production cross section at 13 TeV is measured to be $670 \pm 90^{+110}_{-100}$ fb.
- 10 AABOUD 18T search for $t\overline{t}H$ production with H decaying to $b\overline{b}$ in 36.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted signal strength is given for $m_H=125$ GeV.
- ¹¹ SIRUNYAN 18BD search for $t \, \overline{t} \, H$, $H \to b \, \overline{b}$ in the all-jet final state with 35.9 fb⁻¹ $p \, p$ collision data at $E_{\rm cm} = 13$ TeV. The quoted signal strength is given for $m_H = 125$ GeV.
- 12 SIRUNYAN 18BQ search for $t\,\overline{t}\,H$ in final states with electrons, muons and hadronically decaying τ leptons ($H\to WW^*,~ZZ^*,~\tau\tau$) with 35.9 fb $^{-1}$ of $p\,p$ collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 3.2 standard deviations and is given for $m_H=125$ GeV.
- ¹³ SIRUNYAN 18L use up to 5.1, 19.7 and 35.9 fb⁻¹ of pp collisions at $E_{\rm cm}=7$, 8, and 13 TeV, respectively. The quoted signal strength corresponds to a significance of 5.2 standard deviations and is given for $m_H=125.09$ GeV. H decay channels of WW^* , ZZ^* , $\gamma\gamma$, $\tau\tau$, and $b\bar{b}$ are used. See their Table 1 and Fig. 2 for results on individual channels.
- AAD 16AL search for $t\overline{t}H$ production with H decaying to $\gamma\gamma$ in 4.5 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ TeV and $b\overline{b}$, $\tau\tau$, $\gamma\gamma$, WW^* , and ZZ^* in 20.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125$ GeV. This paper combines the results of previous papers, and the new result of this paper only is: $\mu=1.6\pm2.6$.
- 15 AAD 16AN perform fits to the ATLAS and CMS data at $E_{
 m cm}=7$ and 8 TeV.
- 16 AAD 16K use up to 4.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and up to 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The third uncertainty in the measurement is theory systematics. The quoted signal strength is given for $m_H=125.36$ GeV.
- 17 AAD 15 search for $t\overline{t}H$ production with H decaying to $\gamma\gamma$ in 4.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 20.3 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted result on the signal strength is equivalent to an upper limit of 6.7 at 95% CL and is given for $m_H=125.4$ GeV.
- ¹⁸ AAD 15BC search for $t\overline{t}H$ production with H decaying to $b\overline{b}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=8$ TeV. The corresponding upper limit is 3.4 at 95% CL. The quoted signal strength is given for $m_H=125$ GeV.
- 19 AAD 15T search for $t\overline{t}H$ production with H resulting in multilepton final states (mainly from $WW^*,~\tau\tau,~ZZ^*)$ in 20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. The quoted result on the signal strength is given for $m_H=125$ GeV and corresponds to an upper limit of 4.7 at 95% CL. The data sample is independent from AAD 15 and AAD 15BC.
- 20 KHACHATRYAN 15AN search for $t\overline{t}H$ production with H decaying to $b\overline{b}$ in 19.5 fb $^{-1}$ of pp collisions at $E_{\rm cm}=8$ TeV. The quoted result on the signal strength is equivalent to an upper limit of 4.2 at 95% CL and is given for $m_H=125$ GeV.
- 21 KHACHATRYAN 14H search for $t\overline{t}H$ production with H decaying to $b\overline{b},\,\tau\tau,\,\gamma\gamma,\,W\,W^*,$ and $ZZ^*,$ in 5.1 fb $^{-1}$ of pp collisions at $E_{\rm cm}=7$ TeV and 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The quoted signal strength is given for $m_H=125.6$ GeV.
- ²² AALTONEN 13L combine all CDF results with 9.45–10.0 fb⁻¹ of $p\overline{p}$ collisions at E_{cm} = 1.96 TeV. The quoted signal strength is given for m_H = 125 GeV.
- ²³ CHATRCHYAN 13X search for $t\overline{t}H$ production followed by $H\to b\overline{b}$, one top decaying to $\ell\nu$ and the other to either $\ell\nu$ or $q\overline{q}$ in 5.0 fb⁻¹ and 5.1 fb⁻¹ of pp collisions at $E_{\rm cm}=7$ and 8 TeV. A limit on cross section times branching ratio which corresponds to (4.0–8.6) times the expected Standard Model cross section is given for $m_H=110$ –140 GeV at 95% CL. The quoted limit is given for $m_H=125$ GeV, where 5.2 is expected for no signal.

HH Production Cross Section in pp Collisions

The *HH* production cross section relative to the SM prediction.

<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
• • • We do r	not use t	he following data for	averages, fits	s, limits, etc. • • •
< 4.2	95	¹ AAD	22Y ATLS	13 TeV, $\gamma \gamma b \overline{b}$
< 3.4	95	² CMS	22 CMS	13 TeV, $b\overline{b}ZZ^*$, $b\overline{b}\gamma\gamma$, $b\overline{b}\tau\tau$,
				$b\overline{b}b\overline{b}$, multilepton
< 3.9	95	³ TUMASYAN	22AN CMS	13 TeV, <i>bbbb</i>
< 7.7	95	⁴ SIRUNYAN	21K CMS	13 TeV, $\gamma \gamma b \overline{b}$
< 6.9	95	⁵ AAD	20C ATLS	13 TeV, $b\overline{b}\gamma\gamma$, $b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$,
				$b\overline{b}WW^*$, $WW^*\gamma\gamma$,
		6		<i>WW</i> * <i>WW</i> *
< 40	95	⁶ AAD	20E ATLS	13 TeV, $HH \rightarrow \underline{b} \underline{b} \ell \nu \ell \nu$
<840	95	⁷ AAD	20X ATLS	13 TeV, VBF <u>,</u> bbbb
< 12.9	95	⁸ AABOUD	19A ATLS	13 TeV, <i>b<u>b</u>bb</i>
<300	95	⁹ AABOUD	190 ATLS	13 TeV, <i>bbW W</i> *
<160	95	¹⁰ AABOUD	19T ATLS	13 TeV, <i>W W</i> * <i>W W</i> *
< 24	95	¹¹ SIRUNYAN	19 CMS	13 TeV, $\gamma \gamma b \overline{b}$
< 75	95	¹² SIRUNYAN	19AB CMS	13 TeV, <i>bbbb</i>
< 22.2	95	¹³ SIRUNYAN	19BE CMS	13 TeV, $b\overline{b}\gamma\gamma$ $b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$,
				ь Б WW*, ь Б ZZ*
<179	95	¹⁴ SIRUNYAN	19н CMS	13 TeV, <i>bbbb</i>
<230	95	¹⁵ AABOUD	18BU ATLS	13 TeV, $\gamma \gamma W W^*$
< 12.7	95	¹⁶ AABOUD	18cQ ATLS	13 TeV, $b\overline{b}\tau\tau$
< 22	95	¹⁷ AABOUD	18cwATLS	13 TeV, $\gamma \gamma b \overline{b}$
< 30	95	¹⁸ SIRUNYAN	18A CMS	13 TeV, $b\overline{b}\tau\tau$
< 79	95	¹⁹ SIRUNYAN	18F CMS	13 TeV, $b\overline{b}\ell\nu\ell\nu$
< 43	95	²⁰ SIRUNYAN	17CN CMS	8 TeV, $b\overline{b}\tau\tau$, $\gamma\gamma b\overline{b}$, $b\overline{b}b\overline{b}$
<108	95	²¹ AABOUD	16ı ATLS	13 TeV, <i>bbbb</i>
< 74	95	²² KHACHATRY.	16BQ CMS	8 TeV, $\gamma \gamma b \overline{b}$
< 70	95	²³ AAD	15CE ATLS	8 TeV, $b\overline{b}b\overline{b}$, $b\overline{b}\tau\tau$, $\gamma\gamma b\overline{b}$,
				$\gamma \gamma W W$

 $^{^1}$ AAD 22Y search for non-resonant HH production using $HH\to \gamma\gamma\,b\,\overline{b}$ with data of 139 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $p\,p\to\,HH$ production cross section at 95% CL is measured to be 130 fb, which corresponds to 4.2 times the SM prediction.

 $^{^2}$ CMS 22 report combined results (see their Extended Data Table 2) using 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. See their Fig. 5 (left) for different final states and these combination.

 $^{^3}$ TUMASYAN 22AN search for non-resonant HH production using $HH\to b\overline{b}b\overline{b}$ with data of 138 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to HH$ production cross section at 95% CL is measured to be 120 fb, which corresponds to 3.9 times the SM prediction.

⁴ SIRUNYAN 21K search for non-resonant HH production using $HH \to \gamma \gamma \, b \, \overline{b}$ with data of 137 fb⁻¹ at $E_{\rm cm} = 13$ TeV. The upper limit on the $pp \to HH \to \gamma \gamma \, b \, \overline{b}$ production cross section at 95% CL is measured to be 0.67 fb, which corresponds to about 7.7 times the SM prediction.

⁵AAD 20C combine results of up to 36.1 fb⁻¹ data at $E_{\rm cm}=13$ TeV for $pp\to HH\to b\overline{b}\gamma\gamma$, $b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$, $b\overline{b}WW^*$, $WW^*\gamma\gamma$, WW^*WW^* (AABOUD 18CW, AABOUD 19CQ, AABOUD 19A, AABOUD 19O, AABOUD 18BU, and AABOUD 19T).

⁶ AAD 20E search non-resonant for HH production using $HH \to b\overline{b}\ell\nu\ell\nu$, where one of the Higgs bosons decays to $b\overline{b}$ and the other decays to either WW^* , ZZ^* , or $\tau\tau$, with data of 139 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to HH$ production

- cross section at 95% CL is measured to be 1.2 pb, which corresponds to about 40 times the SM prediction.
- ⁷ AAD 20X search for $HH \rightarrow b\overline{b}b\overline{b}$ process via VBF with data of 126 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the SM non-resonant HH production cross section is 1460 fb at 95% CL, which corresponds to 840 times the SM prediction.
- ⁸AABOUD 19A search for HH production using $HH \to b\overline{b}b\overline{b}$ with data of 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to HH\to b\overline{b}b\overline{b}$ production cross section at 95% is measured to be 147 fb, which corresponds to about 12.9 times the SM prediction.
- ⁹AABOUD 190 search for HH production using $HH \rightarrow b\overline{b}WW^*$ with data of 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp \rightarrow HH$ production cross section at 95% CL is calculated to be 10 pb from the observed upper limit on the $pp \rightarrow HH \rightarrow b\overline{b}WW^*$ production cross section of 2.5 pb assuming the SM branching fractions. The former corresponds to about 300 times the SM prediction.
- 10 AABOUD 19T search for HH production using $HH\to WW^*WW^*$ with data of 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $p\,p\to HH$ production cross section at 95% is measured to be 5.3 pb, which corresponds to about 160 times the SM prediction.
- 11 SIRUNYAN 19 search for HH production using $HH\to\gamma\gamma b\overline{b}$ with data of 35.9 fb $^{-1}$ at $E_{\rm cm}=$ 13 TeV. The upper limit on the $pp\to HH\to\gamma\gamma b\overline{b}$ production cross section at 95% CL is measured to be 2.0 fb, which corresponds to about 24 times the SM prediction.
- ¹² SIRUNYAN 19AB search for HH production using $HH \to b\overline{b}b\overline{b}$, where 4 heavy flavor jets from two Higgs bosons are resolved, with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp \to HH \to b\overline{b}b\overline{b}$ production cross section at 95% is measured to be 847 fb, which corresponds to about 75 times the SM prediction.
- 13 SIRUNYAN 19BE combine results of 13 TeV 35.9 fb $^{-1}$ data: SIRUNYAN 19, SIRUNYAN 19AB, SIRUNYAN 19H, and SIRUNYAN 18F.
- ¹⁴ SIRUNYAN 19H search for HH production using $HH \rightarrow b\overline{b}b\overline{b}$, where one of $b\overline{b}$ pairs is highly boosted and the other one is resolved, with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp \rightarrow HH \rightarrow b\overline{b}b\overline{b}$ production cross section at 95% is measured to be 1980 fb, which corresponds to about 179 times the SM prediction.
- 15 AABOUD 18BU search for HH production using $\gamma\gamma\,W\,W^*$ with the final state of $\gamma\gamma\ell\nu jj$ using data of 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to HH$ production cross section at 95% CL is measured to be 7.7 pb, which corresponds to about 230 times the SM prediction. The upper limit on the $pp\to HH\to \gamma\gamma\,W\,W^*$ at 95% CL is measured to be 7.5 fb (see thier Table 6).
- 16 AABOUD 18CQ search for HH production using $HH\to b\overline{b}\tau\tau$ with data of 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to HH\to b\overline{b}\tau\tau$ production cross section at 95% is measured to be 30.9 fb, which corresponds to about 12.7 times the SM prediction.
- 17 AABOUD 18CW search for HH production using $HH\to \gamma\gamma\,b\,\overline{b}$ with data of 36.1 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $p\,p\to\,HH$ production cross section at 95% is measured to be 0.73 pb, which corresponds to about 22 times the SM prediction.
- 18 SIRUNYAN 18A search for HH production using $HH\to b\overline{b}\tau\tau$ with data of 35.9 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $g\,g\to HH\to b\overline{b}\tau\tau$ production cross section is measured to be 75.4 fb, which corresponds to about 30 times the SM prediction.
- ¹⁹SIRUNYAN 18F search non-resonant for HH production using $HH \to b\overline{b}\ell\nu\ell\nu$, where $\ell\nu\ell\nu$ is either $WW \to \ell\nu\ell\nu$ or $ZZ \to \ell\ell\nu\nu$ (ℓ is e, μ or a leptonically decaying τ), with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on the $HH \to b\overline{b}\ell\nu\ell\nu$ production cross section at 95% CL is measured to be 72 fb, which corresponds to about 79 times the SM prediction.
- 20 SIRUNYAN 17CN search for HH production using $HH\to b\overline{b}\tau\tau$ with data of 18.3 fb $^{-1}$ at $E_{\rm Cm}=8$ TeV. Results are then combined with the published results of the $HH\to\gamma\gamma b\overline{b}$ and $HH\to b\overline{b}b\overline{b}$, which use data of up to 19.7 fb $^{-1}$ at $E_{\rm Cm}=8$ TeV. The

- upper limit on the $gg \to HH$ production cross section is measured to be 0.59 pb from $b\bar{b}\tau\tau$, which corresponds to about 59 times the SM prediction (gluon fusion). The combined upper limit is 0.43 pb, which is about 43 times the SM prediction. The quoted values are given for $m_H=125$ GeV.
- 21 AABOUD 16I search for HH production using $HH\to b\overline{b}b\overline{b}$ with data of 3.2 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to HH\to b\overline{b}b\overline{b}$ production cross section is measured to be 1.22 pb. This result corresponds to about 108 times the SM prediction (gluon fusion), which is $11.3^{+0.9}_{-1.0}$ fb (NNLO+NNLL) including top quark mass effects. The quoted values are given for $m_H=125$ GeV .
- 22 KHACHATRYAN 16BQ search for HH production using $HH\to \gamma\gamma\,b\,\overline{b}$ with data of 19.7 fb $^{-1}$ at $E_{\rm cm}=8$ TeV. The upper limit on the $g\,g\to HH\to \gamma\gamma\,b\,\overline{b}$ production is measured to be 1.85 fb, which corresponds to about 74 times the SM prediction and is translated into 0.71 pb for $g\,g\to HH$ production cross section.
- AAD 15CE search for HH production using $HH \to b\overline{b}\tau\tau$ and $HH \to \gamma\gamma WW$ with data of 20.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. These results are then combined with the published results of the $HH \to \gamma\gamma b\overline{b}$ and $HH \to b\overline{b}b\overline{b}$, which use data of up to 20.3 fb⁻¹ at $E_{\rm cm}=8$ TeV. The upper limits on the $gg\to HH$ production cross section are measured to be 1.6 pb, 11.4 pb, 2.2 pb and 0.62 pb from $b\overline{b}\tau\tau$, $\gamma\gamma WW$, $\gamma\gamma b\overline{b}$ and $b\overline{b}b\overline{b}$, respectively. The combined upper limit is 0.69 pb, which corresponds to about 70 times the SM prediction. The quoted results are given for $m_H=125.4$ GeV. See their Table 4.

Higgs trilinear self coupling modifier κ_{λ}

Signal strength relative to the SM prediction, $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not	use the f	ollowing data for av	erages, fits,	limits, etc. • •
- 1.5 to 6.7	95	¹ AAD	22Y ATLS	13 TeV, $\gamma \gamma b \overline{b}$
- 1.24 to 6.49	95	² CMS	22 CMS	13 TeV, $b\overline{b}ZZ^*$, $b\overline{b}\gamma\gamma$,
		2		$b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$, multilepton
- 2.3 to 9.4	95		22AN CMS	13 TeV, $b\overline{b}b\overline{b}$
- 3.3 to 8.5	95	⁴ SIRUNYAN	21K CMS	13 TeV, $\gamma \gamma b \overline{b}$
- 5.0 to 12.0	95	⁵ AAD	20c ATLS	13 TeV, $b\overline{b}\gamma\gamma$, $b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$,
				$b\overline{b}WW^*$, $WW^*\gamma\gamma$,
		_		W W* W W*
-11 to 17	95	⁶ SIRUNYAN	19 CMS	13 TeV, $\gamma \gamma b \overline{b}$
-11.8 to 18.8	95	⁷ SIRUNYAN	19BE CMS	13 TeV, $b\overline{b}\gamma\gamma$ $b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$,
				$b\overline{b}WW^*, b\overline{b}ZZ^*$
- 8.2 to 13.2	95	⁸ AABOUD	18cwATLS	13 TeV, $\gamma \gamma b \overline{b}$
		⁹ SIRUNYAN	18A CMS	· <u>-</u>
-17 to 22.5	95	¹⁰ KHACHATRY	.16BQ CMS	8 TeV, $\gamma \gamma b \overline{b}$

¹ AAD 22Y search for non-resonant HH production using $HH \to \gamma \gamma b \overline{b}$ with data of 139 fb⁻¹ at $E_{\rm cm}=13$ TeV. The quoted κ_{λ} is obtained from their Fig. 12 where the theory uncertainties are not included while a negative log-likelihood scan vs. κ_{λ} is shown in their Fig. 13 with the theory uncertainties, which provides $\kappa_{\lambda}=2.8^{+2.0}_{-2.2}$ for the 1σ confidence interval.

 $^{^2}$ CMS 22 report combined results (see their Extended Data Table 2) using 138 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. See their Fig. 6 (left).

 $^{^3}$ TUMASYAN 22AN search for non-resonant HH production using $HH o b \overline{b} b \overline{b}$ with data of 138 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the pp o HH production cross section at 95% CL is shown as a function of κ_λ in their Fig. 2 (top).

⁴ SIRUNYAN 21K search for non-resonant HH production using $HH \to \gamma \gamma b \overline{b}$ with data of 137 fb⁻¹ at $E_{\rm cm}=13$ TeV.

- ⁵ AAD 20C combine results of up to 36.1 fb⁻¹ data at $E_{\rm cm}=13$ TeV for $pp\to HH\to b\overline{b}\gamma\gamma$, $b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$, $b\overline{b}WW^*$, $WW^*\gamma\gamma$, WW^*WW^* (AABOUD 18cW, AABOUD 18cQ, AABOUD 19A, AABOUD 19O, AABOUD 18BU, and AABOUD 19T).
- ⁶ SIRUNYAN 19 search for HH production using $HH \to \gamma \gamma \, b \, \overline{b}$ with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The quoted κ_{λ} is measured assuming all other Higgs boson couplings are at their SM value.
- 7 SIRUNYAN 19BE combine results of 13 TeV 35.9 fb $^{-1}$ data: SIRUNYAN 19, SIRUNYAN 18A, SIRUNYAN 19AB, SIRUNYAN 19H, and SIRUNYAN 18F.
- ⁸ AABOUD 18CW search for HH production using $HH\to \gamma\gamma b\overline{b}$ with data of 36.1 fb⁻¹ at $E_{\rm cm}=13$ TeV. The quoted κ_λ is measured assuming all other Higgs boson couplings are at their SM value.
- ⁹ SIRUNYAN 18A search for HH production using $HH \to b \overline{b} \tau \tau$ with data of 35.9 fb⁻¹ at $E_{\rm cm}=13$ TeV. The upper limit on production cross section times branching fraction at 95% CL is shown as a function of $\kappa_{\lambda}/\kappa_{t}$ in their Fig. 6 (top) where $\kappa_{t}=y_{t}/y_{t}^{SM}$ (top Yukawa coupling y_{t}).
- 10 KHACHATRYAN 16BQ search for HH production using $HH\to \gamma\gamma\,b\,\overline{b}$ with data of 19.7 fb $^{-1}$ at $E_{\rm CM}=8$ TeV.

Higgs-gauge boson quartic coupling modifier κ_{2V}

Signal strength relative to the SM prediction, $\kappa_{2V}=\lambda_{VVHH}/\lambda_{VVHH}^{SM}$, V=W,Z.

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use th	e following	g data for average	s, fits, limits,	etc. • • •
0.67 to 1.38	95	¹ CMS	22 CMS	13 TeV, $b\overline{b}ZZ^*$, $b\overline{b}\gamma\gamma$, $b\overline{b}\tau\tau$, $b\overline{b}b\overline{b}$, multilepton
-0.1 to 2.2	95	² TUMASYAN	22AN CMS	13 TeV, $b\overline{b}b\overline{b}$
-1.3 to 3.5	95	³ SIRUNYAN	21K CMS	13 TeV, $\gamma \gamma b \overline{b}$
-0.43 to 2.56	95	⁴ AAD	20x ATLS	13 TeV, VBF, $b\overline{b}b\overline{b}$

 $^{^1}$ CMS 22 report combined results (see their Extended Data Table 2) using 138 fb $^{-1}$ of data at $E_{\rm cm}=$ 13 TeV. See their Fig. 6 (right).

tH production

VALUE	DOCUMENT ID		TECN	COMMENT
$5.7 \pm 2.7 \pm 3.0$	¹ SIRUNYAN	21R	CMS	pp, 13 TeV
• • • We do not use the following	g data for averages,	fits,	limits,	etc. • • •
	² AAD ³ SIRUNYAN ³	20z 198k	ATLS CMS	pp, 13 TeV
	⁴ KHACHATRY:			

¹ SIRUNYAN 21R search for tH in final states with electrons, muons and hadronically decaying τ leptons ($H \to WW^*$, ZZ^* , $\tau\tau$) with 137 fb⁻¹ of pp collision data at $E_{\rm cm}=13$ TeV. The quoted signal strength corresponds to a significance of 1.4 standard deviations and is given for $m_H=125$ GeV.

 $^{^2}$ TUMASYAN 22AN search for non-resonant HH production using $HH\to b\overline{b}b\overline{b}$ with data of 138 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. The upper limit on the $pp\to HH$ production cross section at 95% CL is shown as a function of κ_{2V} in their Fig. 2 (bottom).

³ SIRUNYAN 21K search for non-resonant HH production using $HH \to \gamma \gamma b \overline{b}$ with data of 137 fb⁻¹ at $E_{\rm cm}=13$ TeV.

⁴ AAD 20X search for $HH \rightarrow b\overline{b}b\overline{b}$ process via VBF with data of 126 fb⁻¹ at $E_{\rm cm}=13$ TeV.

- 2 AAD 20Z search for the tH associated production using $H\to \gamma\gamma$ in 139 fb $^{-1}$ of data at $E_{\rm cm}=13$ TeV. An upper limit on its rate is set to be 12 times the Standard Model at 95% CL ($m_H=125.09$ GeV).
- 3 SIRUNYAN 19BK search for the tH associated production using multilepton signatures $(H\to WW^*,\,H\to \tau\tau,\,H\to ZZ^*)$ and signatures with a single lepton and a $b\overline{b}$ pair $(H\to b\overline{b})$ using 35.9 fb $^{-1}$ at $E_{\rm cm}=13$ TeV. Results are combined with $H\to \gamma\gamma$ (SIRUNYAN 18DS). The observed 95% CL upper limit on the tH production cross section times $H\to WW^*+\tau\tau+ZZ^*+b\overline{b}+\gamma\gamma$ branching fraction is 1.94 pb (assuming SM $t\overline{t}H$ production cross section). See their Table X and Fig. 14. The values outside the ranges of $[-0.9,\,-0.5]$ and $[1.0,\,2.1]$ times the standard model top quark Yukawa coupling are excluded at 95% CL.
- 4 KHACHATRYAN 16AU search for the tH associated production in 19.7 fb $^{-1}$ at $E_{\rm CM}=8$ TeV. The 95% CL upper limits on the tH associated production cross section is measured to be 600–1000 fb depending on the assumed $\gamma\gamma$ branching ratios of the Higgs boson. The $\gamma\gamma$ branching ratio is varied to be by a factor of 0.5–3.0 of the Standard Model Higgs boson ($m_H=125$ GeV). The results of the signal strengths for a negative Higgs-boson trilinear coupling are given. The results are given for $m_H=125$ GeV.

H Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV

Assumes $m_H = 125 \text{ GeV}$

VALUE (pb)	DOCUMENT ID	TECN	COMMENT
56.9 ± 3.4 OUR AVERAGE			
58 ± 4 ±4	$^{ m 1}$ AAD	22N ATLS	pp , 13 TeV, $\gamma\gamma$
$53.5 \pm 4.9 \pm 2.1$	² AAD	20BA ATLS	pp , 13 TeV, $ZZ^* ightarrow 4\ell$ (ℓ
61.1± 6.0±3.7	³ SIRUNYAN	19ва CMS	$=e,\ \mu)$ $pp,\ 13\ {\sf TeV},\ \gamma\gamma,\ ZZ^* ightarrow 4\ell\ (\ell=e,\ \mu)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

57.0^{+}_{-} $\begin{array}{cc} 6.0 + 4.0 \\ 5.9 - 3.3 \end{array}$	⁴ AABOUD	18CG ATLS	pp , 13 TeV, $\gamma\gamma$, $ZZ^* ightarrow 4\ell$ $(\ell=e,~\mu)$
47.9^{+}_{-} $\begin{array}{c} 9.1 \\ 8.6 \end{array}$	⁴ AABOUD	18CG ATLS	pp, 13 TeV, $\gamma\gamma$
$68 \begin{array}{c} +11 \\ -10 \end{array}$	⁴ AABOUD	18CG ATLS	pp , 13 TeV, $ZZ^* ightarrow 4\ell \; (\ell = e, \; \mu)$
69 $^{+10}_{-9}$ ± 5	⁵ AABOUD	17co ATLS	pp , 13 TeV, $ZZ^* ightarrow 4\ell$

- 1 AAD 22N use 139 fb $^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. The quoted value is given for $m_H=125.09$ GeV.
- 2 AAD 20BA use 139 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 13 TeV with $H\to ZZ^*\to 4\ell$ where $\ell=e,~\mu.$ The quoted value is given for $m_H=125$ GeV and assumes the Standard Model branching ratio.
- ³ SIRUNYAN 19BA use 35.9 fb⁻¹ of pp collisions at $E_{cm} = 13$ TeV.
- ⁴ AABOUD 18CG use 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV.
- ⁵ AABOUD 17CO use 36.1 fb⁻¹ of pp collisions at $E_{\rm cm}=13$ TeV with $H\to ZZ^*\to 4\ell$ where $\ell=e,~\mu$ for $m_H=125$ GeV. Differential cross sections for the Higgs boson transverse momentum, Higgs boson rapidity, and other related quantities are measured as shown in their Figs. 8 and 9.

H REFERENCES

AAD 22D	PL B829 137066	G. Aad et al.	(ATLAS Collab.)
AAD 22M	JHEP 2206 097	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 22N	JHEP 2208 027	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 22P	JHEP 2208 104	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD 22Q	JHEP 2208 175	G. Aad et al.	(ATLAS Collab.)

Created: 5/31/2023 09:12

https://pdg.lbl.gov

Page 46

AAD	22S	EPJ C82 105	G. Aad et al.	(ATLAS Collab.)
				,
AAD	22V	EPJ C82 622	G. Aad et al.	(ATLAS Collab.)
AAD	22W	EPJ C82 717	G. Aad et al.	(ATLAS Collab.)
AAD	22X	PR D105 092003	G. Aad et al.	(ATLAS Collab.)
AAD	22Y	PR D106 052001	G. Aad et al.	(ATLAS Collab.)
ATLAS	22	NAT 607 52	ATLAS Collaboration	(ATLAS Collab.)
Also		NAT 612 F24 (orrat)	ATLAS Collaboration	(ATLAS Collab.)
		NAT 612 E24 (errat.)		
CMS	22	NAT 607 60	CMS Collaboration	(CMS Collab.)
TUMASYAN		NATP 18 1329	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22AN	PRL 129 081802	A. Tumasyan <i>et al.</i>	(CMS Collab.)
		PR D105 092007		
TUMASYAN	22G		A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22Y	JHEP 2206 012	A. Tumasyan <i>et al.</i>	(CMS Collab.)
AAD	21	PL B812 135980	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21 A R	EPJ C81 178	G. Aad et al.	(ATLAS Collab.)
AAD	21AJ	EPJ C81 537	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21F	PR D103 112006	G. Aad et al.	(ATLAS Collab.)
				,
AAD	21H	PL B816 136204	G. Aad et al.	(ATLAS Collab.)
AAD	211	PL B819 136412	G. Aad et al.	(ATLAS Collab.)
				,
AAD	21M	JHEP 2103 268	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	21	PL B812 135992	A.M. Sirunyan et al.	` (CMS Collab.)
				(CIVIS CONAD.)
SIRUNYAN	21A	EPJ C81 13	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
Also		EPJ C81 333 (errat.)	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	21AE	PR D104 052004	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	21C	JHEP 2101 148	A.M. Sirunyan et al.	(CMS Collab.)
7				
SIRUNYAN	21K	JHEP 2103 257	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	21L	IUED 2102 011	The state of the s	
SIRUNTAIN		JHEP 2103 011	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	210	JHEP 2107 027	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	21R	EPJ C81 378	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	21S	EPJ C81 488	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
			The state of the s	
SIRUNYAN	21Z	PR D104 032013	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	21D	JHEP 2111 153	A. Tumasyan <i>et al.</i>	(CMS Collab.)
			G. Aad et al.	
AAD	20	PR D101 012002		(ATLAS Collab.)
AAD	20A	PL B800 135069	G. Aad et al.	(ATLAS Collab.)
		PRL 125 221802		
AAD			G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20AG	PL B809 135754	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD			G. Aad et al.	
AAD	ZUAQ	EPJ C80 957		(ATLAS Collab.)
Also		EPJ C81 29 (errat.)	G. Aad <i>et al.</i>	(ATLAS Collab.)
Also			G. Aad et al.	
		EPJ C81 398 (errat.)		(ATLAS Collab.)
AAD	20BA	EPJ C80 942	G. Aad et al.	(ATLAS Collab.)
AAD	20C	PL B800 135103	G. Aad et al.	(ATLAS Collab.)
AAD		LF D000 133102		(ATLAS Collab.)
AAD	20E	PL B801 135145	G. Aad et al.	(ATLAS Collab.)
AAD	20F	PL B801 135148	G. Aad et al.	
	-			(ATLAS Collab.)
AAD	20N	PL B805 135426	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20X	JHEP 2007 108	G. Aad et al.	(ATLAS Collab.)
	20/			
Also		JHEP 2101 145 (errat.)	G. Aad <i>et al.</i>	(ATLAS Collab.)
Also		JHEP 2105 207 (errat.)		(ATLAS Collab.)
				(ATLAS CONAD.)
AAD	20Z	PRL 125 061802	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	20 A E		A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	20AS	PRL 125 061801	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20.BK	JHEP 2011 039	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	20BL	JHEP 2012 085	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20C	EPJ C80 75	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	20L	PL B805 135425	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	19A	JHEP 1901 030	M. Aaboud et al.	(ATLAS Collab.)
				,
AABOUD	19Al	PL B793 499	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19AI	PRL 122 231801	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19AQ	PR D99 072001	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19F	PL B789 508	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19N	JHEP 1904 048	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	190	JHEP 1904 092	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19T	JHEP 1905 124	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19U	JHEP 1905 141	M. Aaboud et al.	(ATLAS Collab.)
AAD	19A	PL B798 134949	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	19	PL B788 7	A.M. Sirunyan et al.	(CMS Collab.)
			The state of the s	
SIRUNYAN		JHEP 1904 112	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19AF	JHEP 1906 093	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
		EPJ C79 94	A.M. Sirunyan <i>et al.</i>	` · · · · · · · · · · · · · · · · · · ·
SIRUNYAN				(CMS Collab.)
SIRUNYAN	19AT	EPJ C79 421	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PL B791 96	A.M. Sirunyan et al.	(CMS Collab.)
			The state of the s	` · · · · · · · · · · · · · · · · · · ·
SIRUNYAN	19BA	PL B792 369	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PRL 122 121803	A.M. Sirunyan et al.	(CMS Collab.)
SHILD IN ITAIN	TODE	122 121003	, thirt. Sirunyan Ct al.	(CIVIO COIIAD.)

SIRUNYAN	10RK	PR D99 092005	A.M. Sirunyan et al.	(CMS Collab.)
			A.W. Sirunyan et al.	
SIRUNYAN	19BL	PR D99 112003	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	10R∩	PL B793 520	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19BR	PL B797 134811	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	10RV	PR D100 072007	A.M. Sirunyan et al.	(CMS Collab.)
				`
SIRUNYAN	19R7	PR D100 112002	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	10CG	JHEP 1910 139	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	19E	PRL 122 021801	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19H	JHEP 1901 040	A.M. Sirunyan et al.	(CMS Collab.)
				`
SIRUNYAN	19L	JHEP 1901 183	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19R	JHEP 1903 026	A.M. Sirunyan et al.	(CMS Collab.)
			,	
AABOUD	18	PL B776 318	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18 A C	PR D97 072003	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18AJ	JHEP 1803 095	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18ΔΠ	JHEP 1807 127	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BK	PL B784 173	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19RI	PL B786 134	M. Aaboud et al.	(ATLAS Collab.)
				,
AABOUD	18BM	PL B784 345	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	10RN	PL B786 59	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BO	PR D98 052005	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18RP	PL B786 223	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18R <i>Ó</i>	PR D98 052003	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18RH	EPJ C78 1007	M. Aaboud et al.	(ATLAS Collab.)
				(
AABOUD	18CA	JHEP 1810 180	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18CG	PL B786 114	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18CQ	PRL 121 191801	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18CW/	JHEP 1811 040	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18M	PRL 120 211802	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18T	PR D97 072016	M. Aaboud et al.	(ATLAS Collab.)
AAIJ	18AM	EPJ C78 1008	R. Aaij <i>et al.</i>	(LHCb Collab.)
AALTONEN	18C	PR D98 072002	T. Aaltonen et al.	(CDF Collab.)
SIRUNYAN	18A	PL B778 101	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18AE	PL B780 501	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1806 101	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18BH	JHEP 1806 001	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
CIDLINIVANI	10DA	JHEP 1808 066	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	-			
SIRUNYAN	18BU	EPJ C78 140	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	10R\/	EPJ C78 291	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18DB	PRL 121 121801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	1200	JHEP 1811 152	A.M. Sirunyan et al.	(CMS Collab.)
	-			
SIRUNYAN	18DS	JHEP 1811 185	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18E	PRL 120 071802	A.M. Sirunyan et al.	(CMS Collab.)
	-			
SIRUNYAN	18F	JHEP 1801 054	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18L	PRL 120 231801	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18S	PR D97 092005	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18Y	PL B779 283	A.M. Sirunyan et al.	(CMS Collab.)
		JHEP 1710 112		
AABOUD	I/AVV	JHEP 1/10 112	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17BA	JHEP 1712 024	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17DD	EPJ C77 765	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	17CO	JHEP 1710 132	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	17Y	PRL 119 051802	M. Aaboud et al.	(ATLAS Collab.)
AAD	17	EPJ C77 70	G. Aad <i>et al.</i>	(ATLAS Collab.)
KHACHATRY	17F	JHEP 1702 135	V. Khachatryan et al.	(CMS Collab.)
SIRUNYAN	1/AIVI	PL B775 1	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN				
•	17AV	JHEP 1/11 04/		(CMS Collab.)
CIDLINIVANI		JHEP 1711 047	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PR D96 072004	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN AABOUD			A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	
AABOUD	17CN 16I	PR D96 072004 PR D94 052002	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD	17CN 16I 16K	PR D96 072004 PR D94 052002 PRL 117 111802	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al.	(CMS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AABOUD	17CN 16I	PR D96 072004 PR D94 052002	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD	17CN 16I 16K 16X	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al.	(CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD	17CN 16I 16K 16X 16	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD	17CN 16I 16K 16X 16	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD	17CN 16I 16K 16X 16 16AC	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD AAD	17CN 16I 16K 16X 16 16AC 16AF	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. G. Aad et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD	17CN 16I 16K 16X 16 16AC 16AF	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD AAD AAD	17CN 16I 16K 16X 16 16AC 16AF 16AL	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. G. Aad et al. G. Aad et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD AAD AAD AAD	17CN 16I 16K 16X 16 16AC 16AF 16AL 16AN	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AAD AAD AAD AAD AAD AAD AAD	17CN 16I 16K 16X 16 16AC 16AF 16AL 16AN 16AO	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045 JHEP 1608 104	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD AAD AAD AAD	17CN 16I 16K 16X 16 16AC 16AF 16AL 16AN 16AO	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD AAD AAD AAD AAD AAD	17CN 16I 16K 16X 16 16AC 16AF 16AL 16AN 16AO 16BL	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045 JHEP 1608 104 EPJ C76 658	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD AAD AAD AAD AAD AAD AAD	17CN 16I 16K 16X 16 16AC 16AF 16AL 16AN 16AO 16BL 16K	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045 JHEP 1608 104 EPJ C76 658 EPJ C76 6	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD AAD AAD AAD AAD AAD	17CN 16I 16K 16X 16 16AC 16AF 16AL 16AN 16AO 16BL 16K	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045 JHEP 1608 104 EPJ C76 658 EPJ C76 6	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD AAD AAD AAD AAD AAD AAD AAD A	17CN 16I 16K 16X 16 16AC 16AF 16AL 16AN 16AO 16BL 16K 16AB	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045 JHEP 1608 104 EPJ C76 658 EPJ C76 6 PL B759 672	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. C. Aad et al. G. Aad et al. V. Khachatryan et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AAD AAD AAD AAD AAD AAD AAD AAD AAD A	17CN 16I 16K 16X 16 16AC 16AC 16AL 16AN 16AO 16BL 16K 16AB 16AR	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045 JHEP 1608 104 EPJ C76 658 EPJ C76 6 PL B759 672 JHEP 1604 005	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. C. Aad et al. V. Khachatryan et al. V. Khachatryan et al.	(CMS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.)
AABOUD AABOUD AAD AAD AAD AAD AAD AAD AAD AAD AAD A	17CN 16I 16K 16X 16 16AC 16AC 16AL 16AN 16AO 16BL 16K 16AB 16AR	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045 JHEP 1608 104 EPJ C76 658 EPJ C76 6 PL B759 672	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. C. Aad et al. G. Aad et al. V. Khachatryan et al.	(CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD AAD AAD AAD AAD AAD AAD AAD AAD AAD KHACHATRY KHACHATRY	17CN 16I 16K 16X 16 16AC 16AF 16AL 16AO 16BL 16K 16AB 16AR 16AU	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045 JHEP 1608 104 EPJ C76 658 EPJ C76 6 PL B759 672 JHEP 1604 005 JHEP 1606 177	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al.	(CMS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
AABOUD AABOUD AAD AAD AAD AAD AAD AAD AAD AAD AAD A	17CN 16I 16K 16X 16 16AC 16AF 16AL 16AO 16BL 16K 16AB 16AR 16AU	PR D96 072004 PR D94 052002 PRL 117 111802 JHEP 1611 112 PL B753 69 PR D93 092005 JHEP 1601 172 JHEP 1605 160 JHEP 1608 045 JHEP 1608 104 EPJ C76 658 EPJ C76 6 PL B759 672 JHEP 1604 005	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. G. Aad et al. C. Aad et al. V. Khachatryan et al. V. Khachatryan et al.	(CMS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.)

KILACILATOV	16DA	JHEP 1609 051	V 1/hht	(CMC C-II-L)
			V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	16BQ	PR D94 052012	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	TOCD	PL B/03 4/2	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY	16G	EPJ C76 13	V. Khachatryan et al.	(CMS Collab.)
			,	
AAD	15	PL B740 222	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15ΔΔ	PR D92 012006	G. Aad et al.	(ATLAS Collab.)
AAD	15AH	JHEP 1504 117	G. Aad <i>et al.</i>	(ATLAS Collab.)
A A D	15.40	IUED 1500 127	G. Aad et al.	,
AAD	-			(ATLAS Collab.)
AAD	15AX	EPJ C75 231	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15B	PRL 114 191803	G. Aad <i>et al.</i>	(ATLAS and CMS Collabs.)
AAD	15RC	EPJ C75 349	G. Aad et al.	(ATLAS Collab.)
				` ` · · · · · · · · · · · · · · · · · ·
AAD	15BD	EPJ C75 337	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	1EDE	EPJ C75 335	G. Aad et al.	(ATLAS Callab)
AAD				(ATLAS Collab.)
AAD	15CF	PR D92 092004	G. Aad et al.	(ATLAS Collab.)
				(
AAD	15CI	EPJ C75 476	G. Aad <i>et al.</i>	(ATLAS Collab.)
Also		EPJ C76 152 (errat.)	G Aad et al	(ATLAS Collab.)
	1561	LIED 1511 006		
AAD	15CX	JHEP 1511 206	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15F	PR D91 012006	G. Aad et al.	(ATLAS Collab.)
AAD	15G	JHEP 1501 069	G. Aad et al.	(ATLAS Collab.)
AAD	15I	PRL 114 121801	G. Aad et al.	` · · · · · · · · · · · · · · · · · · ·
				(ATLAS Collab.)
AAD	15P	PRL 115 091801	G. Aad <i>et al.</i>	(ATLAS Collab.)
				(ATLAC C-II-I-)
AAD	15T	PL B749 519	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN	15	PRL 114 151802	T. Aaltonen et al.	(CDF and D0 Collabs.)
				(CDT and Do Conabs.)
AALTONEN	15B	PRL 114 141802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
KHACHATRY	15 A M	ED I C75 212	V. Khachatryan et al.	(CMS Collab.)
			-	
KHACHATRY	15AN	EPJ C75 251	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATDV	1 E D A	PR D92 072010	-	1 - 1
			V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	15H	PL B744 184	V. Khachatryan <i>et al.</i>	(CMS Collab.)
			,	
KHACHATRY	15Q	PL B149 331	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	15Y	PR D92 012004	V. Khachatryan <i>et al.</i>	(CMS Collab.)
				1 - 1
KHACHATRY	15Z	PR D92 032008	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	144R	PL B738 234	G. Aad et al.	(ATLAS Collab.)
				,
AAD	14AS	PL B738 68	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	1/RC	PR D90 112015	G. Aad et al.	(ATLAS Collab.)
AAD	14BJ	JHEP 1409 112	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14J	PL B732 8	G. Aad et al.	(ATLAS Collab.)
				,
AAD	140	PRL 112 201802	G. Aad et al.	(ATLAS Collab.)
	-	PR D90 052004		(ATLAC C-II-I-)
AAD	1400	PK D90 052004	G. Aad <i>et al.</i>	(ATLAS Collab.)
ABAZOV	14F	PRL 113 161802	V.M. Abazov et al.	(D0 Collab.)
CHAIRCHYAN	14AA	PR D89 092007	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	14AI	PR D89 012003	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	14AJ	NATP 10 557	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	14B	EPJ C74 2980	S. Chatrchyan et al.	(CMS Collab.)
				1 - 1
CHATRCHYAN	14G	JHEP 1401 096	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	14K	JHEP 1405 104	S. Chatrchyan et al.	(CMS Collab.)
			•	1 - 1
KHACHATRY	14D	PL B736 64	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	1/IH	JHEP 1409 087	V. Khachartryan et al.	(CMS Collab.)
KHACHATRY	14P	EPJ C74 3076	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	12 A I	PL B726 120	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	13AK	PL B726 88	G. Aad et al.	(ATLAS Collab.)
Also		PL B734 406 (errat.)	G. Aad et al.	(ATLAS Collab.)
		(,		
AALTONEN	13L	PR D88 052013	T. Aaltonen <i>et al.</i>	(CDF Collab.)
			T Asltonen et el	
AALTONEN	13M	PR D88 052014	T. Aaltonen <i>et al.</i>	(CDF and D0 Collabs.)
ABAZOV	13L	PR D88 052011	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN	13BN	PL B120 581	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	13 I	PRL 110 081803	S. Chatrchyan et al.	(CMS Collab.)
				1 - 1
CHATRCHYAN	13X	JHEP 1305 145	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	13Y	JHEP 1306 081	S. Chatrchyan et al.	(CMS Collab.)
HEINEMEYER	13A	arXiv:1307.1347	S. Heinemeyer <i>et al.</i>	(LHC Higgs CS Working Group)
AAD	12AI	PL B716 1	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	12DA	SCI 338 1576	G. Aad <i>et al.</i>	(ATLAS Collab.)
AALTONEN	12Q	PRL 109 111803	T. Aaltonen et al.	` (CDF Collab.)
	-			
AALTONEN	12R	PRL 109 111804	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	12S	PRL 109 111805	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	12T	PRL 109 071804	T. Aaltonen <i>et al.</i>	(CDF and D0 Collabs.)
ABAZOV	12K		V.M. Abazov et al.	`
		PL B716 285		(D0 Collab.)
ABAZOV	100	PRL 109 121803	V.M. Abazov et al.	(D0 Collab.)
	120			
	120 12D			3 (
ABAZOV	12P	PRL 109 121804	V.M. Abazov et al.	(D0 Collab.)
	12P	PRL 109 121804	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN	12P 12BY	PRL 109 121804 SCI 338 1569	V.M. Abazov <i>et al.</i> S. Chatrchyan <i>et al.</i>	(D0 Collab.) (CMS Collab.)
	12P 12BY	PRL 109 121804	V.M. Abazov et al.	(D0 Collab.)

DITTMAIER 12 arXiv:1201.3084 S. Dittmaier *et al.* (LHC Higgs CS Working Group)
DITTMAIER 11 arXiv:1101.0593 S. Dittmaier *et al.* (LHC Higgs CS Working Group)