$I(J^P) = 0(\frac{5}{2}^+)$ Status: ***

For results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters **111B** 1 (1982). All the references have been retained.

This resonance is in the Baryon Summary Table, but the evidence for it could be better.

*N***(2110) POLE POSITION**

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2048±10	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •
1970	ZHANG	13A	DPWA	$\overline{K}N$ multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
255±20	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel
\bullet \bullet \bullet We do not use the following d	ata for averages	, fits,	limits, e	tc. • • •
350	ZHANG	13A	DPWA	$\overline{K}N$ multichannel

A(2110) POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized r	residue in $N\overline{K} \rightarrow$	$\Lambda(2110) \rightarrow N\overline{K}$	
MODULUS	PHASE (°)	DOCUMENT ID	TECN COMMENT
0.020 ± 0.005	5 ± 15	SARANTSEV 19	DPWA $\overline{K}N$ multichannel
Normalized r	residue in $N\overline{K} \rightarrow$	$\Lambda(2110) \rightarrow \Sigma \pi$	
MODULUS	PHASE (°)	DOCUMENT ID	TECN COMMENT
0.13±0.03	0 ± 15	SARANTSEV 19	DPWA $\overline{K}N$ multichannel
Normalized r	residue in $N\overline{K} \rightarrow$	$\Lambda(2110) \rightarrow \Xi K$	
MODULUS	PHASE (°)	DOCUMENT ID	TECN COMMENT
0.005 ± 0.005		SARANTSEV 19	DPWA $\overline{K}N$ multichannel
Normalized r	residue in $N\overline{K} \rightarrow$	$\Lambda(2110) \rightarrow \Lambda \omega, S$	=1/2, <i>P</i> -wave
MODULUS	PHASE (°)	DOCUMENT ID	TECN COMMENT
0.01 ± 0.01		SARANTSEV 19	DPWA $\overline{K}N$ multichannel
Normalized r	residue in $N\overline{K} \rightarrow$	$\Lambda(2110) \rightarrow \Lambda \omega, S$	=3/2, <i>P</i> -wave
MODULUS	PHASE (°)	DOCUMENT ID	TECN COMMENT
0.03±0.01	-7 ± 16	SARANTSEV 19	DPWA $\overline{K}N$ multichannel

https://pdg.lbl.gov

Normalized residue in $N\overline{K} \rightarrow \Lambda(2110) \rightarrow \Lambda\omega$, S=3/2, F-wave

MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.01±0.01		SARANTSEV	19	DPWA	$\overline{K}N$ multichannel

Л(2110) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2050 to 2130 (\approx 2090) OUR ESTIN	MATE			
2086 ± 12	SARANTSEV	19	DPWA	K N multichannel
2036 ± 13	ZHANG	13A	DPWA	$\overline{K}N$ multichannel
2092 ± 25	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2125 ± 25	CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$
2106 ± 50	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2140±20	DEBELLEFON	77	DPWA	$K^- p \rightarrow \Sigma \pi$
2100 ± 50	GOPAL	77	DPWA	K N multichannel
2112± 7	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
2137	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
2103	¹ NAKKASYAN	75	DPWA	$K^- p \rightarrow \Lambda \omega$

Л(2110) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 300 (\approx 250) OUR ESTIMA	TE			
274±25	SARANTSEV	19	DPWA	K N multichannel
400±38	ZHANG	13A	DPWA	K N multichannel
245±25	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
160 ± 30	CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$
251 ± 50	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
140 ± 20	DEBELLEFON	77	DPWA	$K^- p \rightarrow \Sigma \pi$
200 ± 50	GOPAL	77	DPWA	K N multichannel
190 ± 30	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
132	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
391	¹ NAKKASYAN	75	DPWA	$K^- p \rightarrow \Lambda \omega$

*N***(2110) DECAY MODES**

_	Mode	Fraction (Γ_i/Γ)
Γ_1	NK	5–25 %
Γ2	$\Sigma \pi$	10-40 %
Γ ₃	$\Lambda\omega$	seen
Γ4	$\Lambda\omega$, $S\!\!=\!\!1/2$, $P\!\!-\!\mathrm{wave}$	
Γ ₅	$\Lambda\omega$, $S\!\!=\!\!3/2$, $P\!\!-\!\mathrm{wave}$	(5.0±2.0) %
Г ₆	$\Lambda\omega$, S=3/2 , F-wave	

https://pdg.lbl.gov

Γ ₇	ΞK		
Г ₈	$\Sigma(1385)\pi$	seen	
Г9	$\Sigma(1385)\pi$, $\it P$ -wave		
Γ ₁₀	N K *(892)	10-60 %	
Γ ₁₁	$N\overline{K}^{*}(892), S=1/2$		
Γ ₁₂	$N\overline{K}^{*}(892)$, $S=3/2$, P -wave		
			-

A(2110) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.05 to 0.25 OUR ESTIMATE					
0.020 ± 0.005	SARANTSEV	19	DPWA	<u><i>KN</i></u> multichannel	
0.083 ± 0.005	ZHANG	13A	DPWA	<i>K</i> <i>N</i> multichannel	
0.07 ± 0.03	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.27 ±0.06	² DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
\bullet \bullet \bullet We do not use the following d	lata for averages	s, fits,	limits, e	tc. ● ● ●	
0.07 ± 0.03	GOPAL	77	DPWA	See GOPAL 80	
$\Gamma(\Sigma\pi)/\Gamma_{\rm total}$					Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.88±0.20	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel	
$\Gamma(\Lambda\omega, S=1/2, P-wave)/\Gamma_{total}$					Г₄/Г
VALUE	DOCUMENT ID		TECN	COMMENT	
<0.01	SARANTSEV	19	DPWA	K N multichannel	
$\Gamma(\Lambda\omega, S=3/2, P-wave)/\Gamma_{total}$					Г ₅ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
0.05±0.02	SARANTSEV	19	DPWA	<i>KN</i> multichannel	
$\Gamma(\Lambda\omega, S=3/2, F-wave)/\Gamma_{total}$					Г ₆ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
<0.01	SARANTSEV	19	DPWA	<i>KN</i> multichannel	
$\Gamma(\Xi K)/\Gamma_{\text{total}}$					Γ7/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
~ 0	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel	
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(211)$	10) $\rightarrow \Sigma \pi$			(Γ ₁ Γ ₂)) ^½ /Г
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
$+0.04\pm0.01$	ZHANG	13A	DPWA	Multichannel	
$+0.14\pm0.01$	DEBELLEFON	77	DPWA	$K^- p \rightarrow \Sigma \pi$	
$+0.20\pm0.03$	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$	
• • We do not use the following d	lata for averages	, fits	limits. e	tc. ● ● ●	
+0.10±0.03	GOPAL	77	DPWA	$\overline{K}N$ multichannel	
https://pdg.lbl.gov	Page 3		Creat	ed: 5/31/2023(09:08

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(2$	110) $\rightarrow \Lambda \omega$			(Г ₁ Г ₃) ^½ /Г
VALUE	DOCUMENT ID		TECN	COMMENT
<0.05	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
0.112	¹ NAKKASYAN	75	DPWA	$K^- p \rightarrow \Lambda \omega$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(2$	110) → Σ(138	5) π,	P-wave	(Γ ₁ Γ ₉) ^½ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.04 \pm 0.01$	ZHANG	13A	DPWA	Multichannel
$+0.071\pm0.025$	³ CAMERON	78	DPWA	$K^- p \rightarrow \Sigma(1385) \pi$
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\overline{K} \to \Lambda(2)$	$110) \rightarrow N\overline{K}^{*}(8)$	892) ,	S=1/2	(Γ 1 Γ 11) ^{1/2} / Γ
-0.09 ± 0.01	ZHANG	134	DPW/A	Multichannel
-0.17 ± 0.04	⁴ CAMERON	78B	DPWA	$K^- p \rightarrow N \overline{K}^*$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda(2)$	110) $\rightarrow N\overline{K}^*$ (8	892) ,	<i>S</i> =3/2	, <i>P</i> -wave
N/41115			TECH	(Γ ₁ Γ ₁₂) ⁷² /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.24 ± 0.01	ZHANG	13A	DPWA	Multichannel

A(2110) FOOTNOTES

¹ Found in one of two best solutions.
² The published error of 0.6 was a misprint.
³ The CAMERON 78 upper limit on *F*-wave decay is 0.03. The sign here has been changed to be in accord with the baryon-first convention.
⁴ The published sign has been changed to be in accord with the baryon-first convention. The CAMERON 78B upper limits on the P₃ and F₃ waves are each 0.03.

A(2110) REFERENCES

SARANTSEV	19	EPJ A55 180	A.V. Sarantsev <i>et al.</i>	(BONN, PNPI)
ZHANG	13A	PR C88 035205	H. Zhang <i>et al.</i>	(KSU)
PDG	82	PL 111B 1	M. Roos <i>et al.</i>	(HELS, CIT, CERN)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP
CAMERON	78	NP B143 189	W. Cameron <i>et al.</i>	(RHEL, LOIC) IJP
CAMERON	78B	NP B146 327	W. Cameron <i>et al.</i>	(RHEL, LOIC) IJP
DEBELLEFON	78	NC 42A 403	A. de Bellefon <i>et al.</i>	(CDEF, SACL) IJP
BACCARI	77	NC 41A 96	B. Baccari <i>et al.</i>	(SACL, CDEF) IJP
DEBELLEFON	77	NC 37A 175	A. de Bellefon <i>et al.</i>	(CDEF, SACL) IJP
GOPAL	77	NP B119 362	G.P. Gopal <i>et al.</i>	(LOIC, RHEL) IJP
NAKKASYAN	75	NP B93 85	A. Nakkasyan	CERN) IJP
KANE	74	LBL-2452	D.F. Kane	`(LBL) IJP