Quark and Lepton Compositeness, Searches for

The latest unpublished results are described in the "Quark and Lepton Compositeness" review.

See the related review(s):

Searches for Quark and Lepton Compositeness

CONTENTS:

- Scale Limits for Contact Interactions: $\Lambda(eeee)$
- Scale Limits for Contact Interactions: $\Lambda(ee\mu\mu)$
- Scale Limits for Contact Interactions: $\Lambda(ee\tau\tau)$
- Scale Limits for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$
- Scale Limits for Contact Interactions: $\Lambda(eeqq)$
- Scale Limits for Contact Interactions: $\Lambda(\mu \mu q q)$
- Scale Limits for Contact Interactions: $\Lambda(\ell\nu\ell\nu)$
- Scale Limits for Contact Interactions: $\Lambda(e \nu q q)$
- Scale Limits for Contact Interactions: $\Lambda(q q q q)$
- Scale Limits for Contact Interactions: $\Lambda(\nu \nu q q)$

Mass Limits for Excited $e(e^*)$

- Limits for Excited $e(e^*)$ from Pair Production
- Limits for Excited e (e*) from Single Production
- Limits for Excited e (e^*) from $e^+e^- \rightarrow \gamma\gamma$
- Indirect Limits for Excited e (e*)

Mass Limits for Excited μ (μ *)

- Limits for Excited μ (μ^*) from Pair Production
- Limits for Excited μ (μ^*) from Single Production
- Indirect Limits for Excited μ (μ^*)

Mass Limits for Excited τ (τ^*)

- Limits for Excited τ (τ^*) from Pair Production
- Limits for Excited τ (τ^*) from Single Production

Mass Limits for Excited Neutrino (ν^*)

- Limits for Excited ν (ν^*) from Pair Production
- Limits for Excited ν (ν^*) from Single Production

Mass Limits for Excited $q(q^*)$

- Limits for Excited $q(q^*)$ from Pair Production
- Limits for Excited $q(q^*)$ from Single Production

Mass Limits for Color Sextet Quarks (q_6)

Mass Limits for Color Octet Charged Leptons (ℓ_8)

Mass Limits for Color Octet Neutrinos (ν_8)

Mass Limits for W_8 (Color Octet W Boson)

SCALE LIMITS for Contact Interactions: $\Lambda(eeee)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

https://pdg.lbl.gov

Page 1

>4.5	>7.0	95	² SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$
>5.3	>6.8	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130-207 \; {\rm GeV}$
>4.7	>6.1	95	³ ABBIENDI	04 G	OPAL	$E_{\rm cm} = 130-207 \; {\rm GeV}$
>4.3	>4.9	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$

 $^{^{1}\,\}mathrm{A}$ combined analysis of the data from ALEPH, DELPHI, L3, and OPAL.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\mu\mu)$

Limits are for Λ^{\pm}_{LL} only. For other cases, see each reference.

$\Lambda_{\it LL}^+$ (TeV)	$\Lambda_{LL}^-({\sf TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>6.6	>9.5	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$
> 8.5	>3.8	95				$E_{\rm cm} = 130 - 189 {\rm GeV}$
• • • We	e do not us	e the fo	ollowing data for aver	rages,	fits, lim	nits, etc. • • •
>7.3	>7.6	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130 - 207 {\rm GeV}$
>8.1	>7.3	95	² ABBIENDI	04 G	OPAL	$E_{\rm cm} = 130-207 {\rm GeV}$

 $^{^1}$ SCHAEL 07A limits are from $R_c,~Q_{FB}^{depl}$, and hadronic cross section measurements. 2 ABBIENDI 04G limits are from $e^+\,e^-\to~\mu\mu$ cross section at $\sqrt{s}=$ 130–207 GeV.

SCALE LIMITS for Contact Interactions: $\Lambda(ee\tau\tau)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>7.9	>5.8	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$
>7.9	>4.6	95	ABDALLAH	06 C	DLPH	$E_{\rm cm} = 130-207 {\rm GeV}$
>4.9	>7.2	95	² ABBIENDI	0 4G	OPAL	$E_{\rm cm} = 130-207 {\rm GeV}$
• • • We	e do not us	e the foll	owing data for avera	ages,	fits, lim	its, etc. • • •
>5.4	>4.7	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$

 $^{^{1}}$ SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\ell\ell\ell)$

Lepton universality assumed. Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^{-}(\text{TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>7.9	> 10.3	95	¹ SCHAEL	07A	ALEP	$E_{\rm cm} = 189 - 209 \; {\rm GeV}$
>9.1	>8.2	95	ABDALLAH	06C	DLPH	$E_{\rm cm}^{\rm cm} = 130-207 {\rm GeV}$

 $^{^2}$ SCHAEL 07A limits are from $R_c,~Q_{FB}^{depl},$ and hadronic cross section measurements. 3 ABBIENDI 04G limits are from $e^+\,e^-\to~e^+\,e^-$ cross section at $\sqrt{s}=$ 130–207 GeV.

 $^{^2}$ ABBIENDI 04G limits are from $e^+\,e^-\to~\tau\tau$ cross section at $\sqrt{s}=$ 130–207 GeV.

>7.7	>9.5	95	² ABBIENDI	04 G	OPAL	$E_{\rm cm} = 130-207 \; {\rm GeV}$
			³ BABICH	03	RVUE	
>9.0	>5.2	95	ACCIARRI	00 P	L3	$E_{\rm cm} = 130 - 189 \; {\rm GeV}$

 $^{^1}$ SCHAEL 07A limits are from R_c , \mathcal{Q}_{FB}^{depl} , and hadronic cross section measurements.

SCALE LIMITS for Contact Interactions: $\Lambda(eeqq)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

Λ_{LL}^+ (TeV)	$\Lambda_{LL}^-({ m TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>23.5	>26.1	95	¹ AAD	21Q	ATLS	(eeqq)
>19.5	>24.0	95	² SIRUNYAN	21N	CMS	(eeqq)
>23.5	>26.1	95	³ AAD	20 AP	ATLS	(eeqq)
> 4.5	>12.8	95	⁴ ABRAMOWICZ	7 19	ZEUS	(eeqq)
>16.8	>23.9	95	⁵ SIRUNYAN	19 AC	CMS	(eeqq)
>24	>37	95	⁶ AABOUD	17 AT	ATLS	(eeqq)
> 8.4	>10.2	95	⁷ ABDALLAH	09	DLPH	(eebb)
> 9.4	>5.6	95	⁸ SCHAEL	07A	ALEP	(eecc)
> 9.4	>4.9	95		07A	ALEP	(eebb)
>23.3	>12.5	95	⁹ CHEUNG	01 B	RVUE	(eeuu)
>11.1	>26.4	95	⁹ CHEUNG	01 B	RVUE	(eedd)
• • • We	do not use	the fo	ollowing data for ave	erages	, fits, lir	mits, etc. • • •
> 7.1	>7.1	95		21 AU	ATLS	(eebs)
>15.5	>19.5	95	¹¹ AABOUD	16 U	ATLS	(eeqq)
>13.5	>18.3	95	¹² KHACHATRY	.15AE	CMS	(eeqq)
>16.4	>20.7	95	¹³ AAD	14 BE	ATLS	(eeqq)
> 9.5	>12.1	95	¹⁴ AAD	13E	ATLS	(eeqq)
>10.1	>9.4	95	¹⁵ AAD	12 AB	ATLS	(eeqq)
> 4.2	>4.0	95	¹⁶ AARON	11 C	H1	(eeqq)
> 3.8	>3.8	95	¹⁷ ABDALLAH	11	DLPH	(eetc)
>12.9	>7.2	95	¹⁸ SCHAEL	07A	ALEP	(eeqq)
> 3.7	>5.9	95	¹⁹ ABULENCIA	06L	CDF	(eeqq)

 $^{^{1}}$ AAD 21Q limits are from pp collisions at $\sqrt{s}=$ 13 TeV. A frequentist statistical framework is used to remove the prior dependence.

 $^{^2}$ ABBIENDI 04G limits are from $e^+e^-\to \ell^+\ell^-$ cross section at $\sqrt{s}=130$ –207 GeV. 3 BABICH 03 obtain a bound $-0.175~{\rm TeV}^{-2}<1/\Lambda_{LL}^2<0.095~{\rm TeV}^{-2}$ (95%CL) in a model independent analysis allowing all of Λ_{LL} , Λ_{LR} , Λ_{RL} , Λ_{RR} to coexist.

 $^{^2}$ SIRUNYAN 21N limits are from e^+e^- mass distribution in pp collisions at $\sqrt{s}=13$ TeV. ³ AAD 20AP limits are from e⁺ e⁻ mass distribution in pp collisions at $\sqrt{s}=$ 13 TeV.

⁴ ABRAMOWICZ 19 limits are from Q² spectrum measurements of $e^{\pm} p \rightarrow e^{\pm} X$.

 $^{^5}$ SIRUNYAN 19AC limits are from e^+e^- mass distribution in pp collisions at $\sqrt{s}=13$

 $^{^6}$ AABOUD 17AT limits are from pp collisions at $\sqrt{s}=13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$

 $^{^7}$ ABDALLAH 09 and SCHAEL 07A limits are from R_b , A_{FB}^b

 $^{^8}$ SCHAEL 07A limits are from R_c , Q_{FB}^{depl} , and hadronic cross section measurements.

 $^{^9}$ CHEUNG 01B is an update of BARGER 98E.

- 10 AAD 21AU search for new phenomena in final states with $e^+\,e^-$ and one or no b-tagged jets in pp collisions at $\sqrt{s}=13$ TeV. The quoted limits assume $g^2=4$ π .
- 11 AABOUD 160 limits are from pp collisions at $\sqrt{s}=13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.
- 12 KHACHATRYAN 15AE limit is from e^+e^- mass distribution in pp collisions at $E_{\rm cm}=$
- 13 AAD 14BE limits are from pp collisions at $\sqrt{s}=8$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.
- ¹⁴ AAD 13E limis are from e^+e^- mass distribution in pp collisions at $E_{\rm cm}=7$ TeV.
- 15 AAD 12AB limis are from e^+e^- mass distribution in pp collisions at $E_{\rm cm}=$ 7 TeV.
- ¹⁶ AARON 11C limits are from Q^2 spectrum measurements of $e^{\pm}p \rightarrow e^{\pm}X$.
- 17 ABDALLAH 11 limit is from $^{+}$ e $^{-}$ ightarrow $^{+}$ t $^{-}$ cross section. $\Lambda_{LL}=\Lambda_{LR}=\Lambda_{RL}=\Lambda_{RR}$ is assumed.

 18 SCHAEL 07A limit assumes quark flavor universality of the contact interactions.
- 19 ABULENCIA 06L limits are from $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\mu \mu q q)$

$\Lambda_{LL}^+(\text{TeV})$	$\Lambda_{\it LL}^{-}({ m TeV})$	CL%	DOCUMENT ID		TECN	COMMENT
>22.3	>32.7	95	¹ AAD	21Q	ATLS	$(\mu \mu q q)$
>23.3	>40.0	95	² SIRUNYAN	21N	CMS	$(\mu \mu q q)$
>22.3	>32.7	95	³ AAD	20AP	ATLS	$(\mu \mu q q)$
>20.4	>30.4	95	⁴ SIRUNYAN	19 AC	CMS	$(\mu \mu q q)$
>20	>30	95	⁵ AABOUD	17AT	ATLS	$(\mu \mu q q)$
14/	1 .				c	

We do not use the following data for averages, fits, limits, etc.

> 8.5	>8.5	95	⁶ AAD 21AU ATLS	$(\mu \mu b s)$
>15.8	>21.8	95	⁷ AABOUD 16U ATLS	
>12.0	>15.2	95	⁸ KHACHATRY15AE CMS	$(\mu \mu q q)$
>12.5	>16.7	95		$(\mu \mu q q)$
> 9.6	>12.9	95	10 AAD 13E ATLS	$(\mu \mu q q)$ (isosinglet)
> 9.5	>13.1	95	¹¹ CHATRCHYAN 13K CMS	$(\mu \mu q q)$ (isosinglet)
> 8.0	>7.0	95	¹² AAD 12AB ATLS	$(\mu \mu q q)$ (isosinglet)

 $^{^{1}}$ AAD 21Q limits are from pp collisions at $\sqrt{s}=13$ TeV. A frequentist statistical framework is used to remove the prior dependence.

 $^{^2}$ SIRUNYAN 21N limits are from $\mu^+\mu^-$ mass distribution in pp collisions at $\sqrt{s}=13$ TeV. 3 AAD 20AP limits are from $\mu^+\,\mu^-$ mass distribution in $p\,p$ collisions at $\sqrt{s}=$ 13 TeV.

⁴ SIRUNYAN 19AC limits are from $\mu^+\mu^-$ mass distribution in pp collisions at $\sqrt{s}=13$

 $^{^{5}}$ AABOUD 17AT limits are from pp collisions at $\sqrt{s}=13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

 $^{^6}$ AAD 21AU search for new phenomena in final states with $\mu^+\mu^-$ and one or no b-tagged jets in pp collisions at $\sqrt{s}=13$ TeV. The quoted limits assume $g_{**}^2=4$ π .

⁷AABOUD 16U limits are from pp collisions at $\sqrt{s}=13$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

 $^{^{8}}$ KHACHATRYAN 15AE limit is from $\mu^{+}\mu^{-}$ mass distribution in pp collisions at $E_{\rm cm}=$

 $^{^9}$ AAD 14BE limits are from $p\,p$ collisions at $\sqrt{s}=8$ TeV. The quoted limit uses a uniform positive prior in $1/\Lambda^2$.

 $^{^{10}}$ AAD 13E limis are from $\mu^+\mu^-$ mass distribution in pp collisions at $E_{\rm cm}=$ 7 TeV.

 11 CHATRCHYAN 13K limis are from $\mu^+\mu^-$ mass distribution in pp collisions at $E_{\rm cm}=$ 7 TeV. 12 AAD 12AB limis are from $\mu^+\mu^-$ mass distribution in pp collisions at $E_{\rm cm}=$ 7 TeV.

SCALE LIMITS for Contact Interactions: $\Lambda(\ell\nu\ell\nu)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3.10	90	¹ JODIDIO	86	SPEC	$\Lambda_{LR}^{\pm}(u_{\mu} u_{e}\mue)$
ullet $ullet$ We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
>3.8		² DIAZCRUZ	94	RVUE	$\Lambda_{LL}^+(au u_ aue u_e)$
>8.1		² DIAZCRUZ	94	RVUE	$\Lambda_{LL}^-(au u_ au\mathrm{e} u_\mathrm{e})$
>4.1		³ DIAZCRUZ	94	RVUE	$\Lambda_{LL}^+(au u_ au\mu u_\mu)$
>6.5		³ DIAZCRUZ	94	RVUE	$\Lambda_{II}^-(\tau \nu_{\tau} \mu \nu_{II})$

¹ JODIDIO 86 limit is from $\mu^+ \to \overline{\nu}_{\mu} e^+ \nu_e$. Chirality invariant interactions $L = (g^2/\Lambda^2)$ $\left[\eta_{LL} \; (\overline{\nu}_{\mu L} \gamma^{\alpha} \mu_{L}) \; (\overline{e}_{L} \gamma_{\alpha} \nu_{e\, L}) \; + \; \eta_{LR} \; (\overline{\nu}_{\mu L} \gamma^{\alpha} \nu_{e\, L} \; (\overline{e}_{R} \gamma_{\alpha} \mu_{R}) \right] \; \text{with} \; g^{2}/4\pi = 1 \; \text{and} \; (\overline{e}_{L} \gamma_{\alpha} \mu_{R}) \; . \label{eq:eq:lambda_local_loc$ $(\eta_{LL},\eta_{LR})=(0,\pm 1)$ are taken. No limits are given for Λ_{LL}^{\pm} with $(\eta_{LL},\eta_{LR})=(\pm 1,0)$. For more general constraints with right-handed neutrinos and chirality nonconserving contact interactions, see their text.

SCALE LIMITS for Contact Interactions: $\Lambda(e\nu qq)$

VALUE (TeV)	CL%	DOCUMENT ID		TECN
>2.81	95	¹ AFFOLDER	011	CDF

¹ AFFOLDER 001 bound is for a scalar interaction $\overline{q}_R q_I \overline{\nu} e_I$.

SCALE LIMITS for Contact Interactions: $\Lambda(qqqq)$

$\Lambda_{LL}^{\prime}(1eV)$	$\Lambda_{LL}(\text{TeV})$	CL%	DOCUMENT ID		IECN	COMMENI
>13.1 none 17.4–29.	5 >21.8	95	¹ AABOUD	17A	ATLS	pp dijet angl.
• • • We do not use	the followin	g data f	or averages, fits, lim	its, et	c. • • •	
			² AABOUD	18AV	ATLS	$pp ightarrow t \overline{t} t \overline{t}$
>12.8	>17.5	95	³ SIRUNYAN	18DI	CMS	<i>pp</i> dijet angl.
>11.5	>14.7	95	⁴ SIRUNYAN	17F	CMS	<i>pp</i> dijet angl.
>12.0	>17.5	95	⁵ AAD	16 S	ATLS	<i>pp</i> dijet angl.
			⁶ AAD	15AF	R ATLS	$pp ightarrow t \overline{t} t \overline{t}$
			⁷ AAD	1 5 B\	/ ATLS	$pp ightarrow t \overline{t} t \overline{t}$
> 8.1	>12.0	95	⁸ AAD	15L	_	<i>pp</i> dijet angl.
> 9.0	>11.7	95	⁹ KHACHATRY		CMS	<i>pp</i> dijet angl.
> 5		95	¹⁰ FABBRICHES	l 14	RVUE	q q t t

¹ AABOUD 17AK limit is from dijet angular distribution in pp collisions at $\sqrt{s} = 13$ TeV. u, d, and s quarks are assumed to be composite.

 $^{^2}$ DIAZCRUZ 94 limits are from $\Gamma(au o e
u
u)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} e \nu_{e}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

 $^{^3}$ DIAZCRUZ 94 limits are from $\Gamma(au o \mu
u
u)$ and assume flavor-dependent contact interactions with $\Lambda(\tau \nu_{\tau} \mu \nu_{\mu}) \ll \Lambda(\mu \nu_{\mu} e \nu_{e})$.

- 2 AABOUD 18AV obtain limit on t_R compositeness $2\pi/\Lambda_{RR}^2<1.6~{\rm TeV}^{-2}$ at 95% CL from $t\overline{t}\,t\overline{t}$ production in the pp collisions at $E_{\rm cm}=13~{\rm TeV}.$
- ³ SIRUNYAN 18DD limit is from dijet angular distribution in pp collisions at $\sqrt{s} = 13$ TeV.
- 4 SIRUNYAN 17F limit is from dijet angular cross sections in pp collisions at $E_{\rm cm}=13$ TeV. All quarks are assumed to be composite.
- ⁵ AAD 16S limit is from dijet angular selections in pp collisions at $E_{\rm cm}=13$ TeV. u,d, and s quarks are assumed to be composite.
- ⁶ AAD 15AR obtain limit on the t_R compositeness $2\pi/\Lambda_{RR}^2 <$ 6.6 TeV $^{-2}$ at 95% CL from the $t\overline{t}$ production in the pp collisions at $E_{\rm cm}=$ 8 TeV.
- 7 AAD 15BY obtain limit on the t_R compositeness $2\pi/\Lambda_{RR}^2 < 15.1~{\rm TeV}^{-2}$ at 95% CL from the $t\overline{t}\,t\overline{t}$ production in the $p\,p$ collisions at $E_{\rm cm}=8~{\rm TeV}.$
- ⁸ AAD 15L limit is from dijet angular distribution in pp collisions at $E_{cm} = 8$ TeV. u, d, and s quarks are assumed to be composite.
- ⁹ KHACHATRYAN 15J limit is from dijet angular distribution in pp collisions at $E_{\rm cm}=$ 8 TeV. $u,\,d,\,s,\,c$, and b quarks are assumed to be composite.
- ¹⁰ FABBRICHESI 14 obtain bounds on chromoelectric and chromomagnetic form factors of the top-quark using $pp \to t\bar{t}$ and $p\bar{p} \to t\bar{t}$ cross sections. The quoted limit on the $q\bar{q}t\bar{t}$ contact interaction is derived from their bound on the chromoelectric form factor.

SCALE LIMITS for Contact Interactions: $\Lambda(\nu\nu qq)$

Limits are for Λ_{II}^{\pm} only. For other cases, see each reference.

MASS LIMITS for Excited $e(e^*)$

Most e^+e^- experiments assume one-photon or Z exchange. The limits from some e^+e^- experiments which depend on λ have assumed transition couplings which are chirality violating $(\eta_L=\eta_R)$. However they can be interpreted as limits for chirality-conserving interactions after multiplying the coupling value λ by $\sqrt{2}$; see Note.

Excited leptons have the same quantum numbers as other ortholeptons. See also the searches for ortholeptons in the "Searches for Heavy Leptons" section.

Limits for Excited e (e*) from Pair Production

These limits are obtained from $e^+e^- \to e^{*+}e^{*-}$ and thus rely only on the (electroweak) charge of e^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the e^* coupling is assumed to be of sequential type. Possible t channel contribution from transition magnetic coupling is neglected. All limits assume a dominant $e^* \to e\gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review **D45** S1 (1992)).

Created: 12/4/2023 14:09

https://pdg.lbl.gov

¹ MCFARLAND 98 assumed a flavor universal interaction. Neutrinos were mostly of muon type.

- >102.8 95 2 ACHARD 03B L3 $e^+e^-
 ightarrow e^*e^*$ Homodoublet type
 - ¹ From e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. f=f' is assumed.

Limits for Excited e (e*) from Single Production

These limits are from $e^+e^- \to e^*e$, $W \to e^*\nu$, or $ep \to e^*X$ and depend on transition magnetic coupling between e and e^* . All limits assume $e^* \to e\gamma$ decay except as noted. Limits from LEP, UA2, and H1 are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{e^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID TECN COMMENT
>5600	95	1 SIRUNYAN 20AJ CMS $pp ightarrow ee^{*}X$
ullet $ullet$ We do not use	the followir	ng data for averages, fits, limits, etc. ● ●
>4800	95	² AABOUD 19AZ ATLS $pp \rightarrow ee^*X$
>3900	95	3 SIRUNYAN 19Z CMS $pp \rightarrow ee^*X$
>2450	95	4 KHACHATRY16AQ CMS $pp ightarrow ee^* X$
>3000	95	⁵ AAD 15AP ATLS $pp \rightarrow e^{(*)}e^*X$
>2200	95	6 AAD 13BB ATLS $pp \rightarrow ee^*X$
>1900	95	7 CHATRCHYAN 13AE CMS $pp ightarrow ee^*X$
>1870	95	⁸ AAD 12AZ ATLS $pp \rightarrow e^{(*)}e^*X$

- ¹SIRUNYAN 20AJ search for e^* production in 2e2j final states in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit assumes $\Lambda=m_{e^*}$, f=f'=1. The contact interaction is included. See their Fig.11 for exclusion limits in m_{e^*} - Λ plane.
- ² AABOUD 19AZ search for single e^* production in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is from $e^* \to e \, q \, \overline{q}$ and $e^* \to \nu \, W$ decays assuming f=f'=1 and $m_{e^*}=\Lambda$. The contact interaction is included in e^* production and decay amplitudes. See their Fig.6 for exclusion limits in $m_{e^*}-\Lambda$ plane.
- ³SIRUNYAN 19Z search for e^* production in $\ell\ell\gamma$ final states in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit assumes $\Lambda=m_{e^*},\ f=f'=1$. The contact interaction is included in the e^* production and decay amplitudes.
- ⁴ KHACHATRYAN 16AQ search for single e^* production in pp collisions at $\sqrt{s}=8$ TeV. The limit above is from the $e^*\to e\gamma$ search channel assuming f=f'=1, $m_{e^*}=\Lambda$. See their Table 7 for limits in other search channels or with different assumptions.
- ⁵ AAD 15AP search for e^* production in evens with three or more charged leptons in pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $\Lambda=m_{e^*}$, f=f'=1. The contact interaction is included in the e^* production and decay amplitudes.
- ⁶ AAD 13BB search for single e^* production in pp collisions with $e^* \to e\gamma$ decay. f = f' = 1, and e^* production via contact interaction with $\Lambda = m_{e^*}$ are assumed.
- ⁷CHATRCHYAN 13AE search for single e^* production in pp collisions with $e^* \to e\gamma$ decay. f = f' = 1, and e^* production via contact interaction with $\Lambda = m_{e^*}$ are assumed.
- ⁸ AAD 12AZ search for e^* production via four-fermion contact interaction in pp collisions with $e^* \to e\gamma$ decay. The quoted limit assumes $\Lambda = m_{e^*}$. See their Fig. 8 for the exclusion plot in the mass-coupling plane.

² From e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for f=-f': $m_{e^*}>96.6$ GeV.

Limits for Excited $e(e^*)$ from $e^+e^- \rightarrow \gamma\gamma$

These limits are derived from indirect effects due to e^* exchange in the t channel and depend on transition magnetic coupling between e and e^* . All limits are for $\lambda_{\gamma}=1$. All limits except ABE 89J and ACHARD 02D are for nonchiral coupling with $\eta_I = \eta_R$ = 1. We choose the chiral coupling limit as the best limit and list it in the Summary Table.

For limits prior to 1987, see our 1992 edition (Physical Review **D45** S1 (1992)).

•			, ,		(//	
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
>356	95	$^{ m 1}$ ABDALLAH	04N	DLPH	\sqrt{s} $=$ 161–208 GeV	
 ● ● We do not us 	se the followin	g data for average	es, fits,	limits, e	etc. • • •	
>310	95	ACHARD	02 D	L3	\sqrt{s} = 192–209 GeV	

 $^{^{1}}$ ABDALLAH 04N also obtain a limit on the excited electron mass with ee^* chiral coupling, $m_{o^*} > 295 \text{ GeV at } 95\% \text{ CL}.$

Indirect Limits for Excited e (e*)

These limits make use of loop effects involving e^* and are therefore subject to theoretical uncertainty.

DOCUMENT ID TECN COMMENT VALUE (GeV) • • • We do not use the following data for averages, fits, limits, etc. • • •

MASS LIMITS for Excited μ (μ *)

Limits for Excited μ (μ *) from Pair Production

These limits are obtained from $e^+e^- \rightarrow \mu^{*+}\mu^{*-}$ and thus rely only on the (electroweak) charge of μ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the μ^* coupling is assumed to be of sequential type. All limits assume a dominant $\mu^* \to \mu \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

DOCUMENT ID TECN COMMENT VALUE (GeV) CL% ¹ ABBIENDI 02G OPAL $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type • • • We do not use the following data for averages, fits, limits, etc. • • ² ACHARD 03B L3 $e^+e^- \rightarrow \mu^*\mu^*$ Homodoublet type

¹ From e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. f=f' is assumed.

Created: 12/4/2023 14:09

>102.8

 $^{^1}$ DORENBOSCH 89 obtain the limit $\lambda_{\gamma}^2\Lambda_{\rm cut}^2/m_{e^*}^2<2.6$ (95% CL), where $\Lambda_{\rm cut}$ is the cutoff scale, based on the one-loop calculation by GRIFOLS 86. If one assumes that $\Lambda_{\rm cut}$ = 1 TeV and λ_{γ} = 1, one obtains m_{e^*} > 620 GeV. However, one generally expects $\lambda_{\gamma} \approx m_{e^*}/\Lambda_{\rm cut}$ in composite models.

 $^{^2}$ GRIFOLS 86 uses $\nu_{\mu}\,e \to \ \nu_{\mu}\,e$ and $\overline{\nu}_{\mu}\,e \to \ \overline{\nu}_{\mu}\,e$ data from CHARM Collaboration to derive mass limits which depend on the scale of compositeness.

 $^{^3}$ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

² From e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for f = -f': $m_{\mu^*} > 96.6$ GeV.

Limits for Excited μ (μ *) from Single Production

These limits are from $e^+e^- \to \mu^*\mu$ and depend on transition magnetic coupling between μ and μ^* . All limits assume $\mu^* \to \mu\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\mu^*}$ plane. See the original papers.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>5700	95	¹ SIRUNYAN 20	DAJ CMS	$pp \rightarrow \mu \mu^* X$
• • • We do not use the	ne followir	ng data for averages, fi	ts, limits, e	etc. • • •
>3800	95	² SIRUNYAN 19	oz CMS	$pp \rightarrow \mu \mu^* X$
>2800	95			$pp \rightarrow \mu \mu^* X$
>2470	95	⁴ KHACHATRY16		
>3000	95	⁵ AAD 15	SAP ATLS	$pp ightarrow \ \mu^{ig(st)} \mu^st X$
>2200	95			$pp \rightarrow \mu \mu^* X$
>1900	95	⁷ CHATRCHYAN 13		
>1750	95	⁸ AAD 12	2AZ ATLS	$ ho ho ightarrow \ \mu^{ig(st)} \mu^st X$

- ¹ SIRUNYAN 20AJ search for μ^* production in $2\mu 2j$ final states in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit assumes $\Lambda=m_{\mu^*}$, f=f'=1. The contact interaction is included. See their Fig.11 for exclusion limits in m_{μ^*} - Λ plane.
- ²SIRUNYAN 19Z search for μ^* production in $\ell\ell\gamma$ final states in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit assumes $\Lambda=m_{\mu^*}$, f=f'=1. The contact interaction is included in the μ^* production and decay amplitudes.
- ³AAD 16BM search for μ^* production in $\mu\mu jj$ events in pp collisions at $\sqrt{s}=8$ TeV. Both the production and decay are assumed to occur via a contact interaction with $\Lambda=m_{\mu^*}$.
- ⁴ KHACHATRYAN 16AQ search for single μ^* production in pp collisions at $\sqrt{s}=8$ TeV. The limit above is from the $\mu^*\to\mu\gamma$ search channel assuming f=f'=1, $m_{\mu^*}=\Lambda$. See their Table 7 for limits in other search channels or with different assumptions.
- ⁵ AAD 15AP search for μ^* production in evens with three or more charged leptons in pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $\Lambda=m_{\mu^*}$, f=f'=1. The contact interaction is included in the μ^* production and decay amplitudes.
- ⁶ AAD 13BB search for single μ^* production in pp collisions with $\mu^* \to \mu \gamma$ decay. f=f'=1, and μ^* production via contact interaction with $\Lambda=m_{\mu^*}$ are assumed.
- 7 CHATRCHYAN 13AE search for single μ^* production in $p\,p$ collisions with $\mu^*\to~\mu\gamma$ decay. f=f'=1, and μ^* production via contact interaction with $\varLambda=m_{\mu^*}$ are assumed.
- ⁸ AAD 12AZ search for μ^* production via four-fermion contact interaction in pp collisions with $\mu^* \to \mu \gamma$ decay. The quoted limit assumes $\Lambda = m_{\mu^*}$. See their Fig. 8 for the exclusion plot in the mass-coupling plane.

Indirect Limits for Excited μ (μ *)

These limits make use of loop effects involving μ^* and are therefore subject to theoretical uncertainty.

 VALUE (GeV)
 DOCUMENT ID
 TECN
 COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ RENARD 82 THEO g-2 of muon

¹ RENARD 82 derived from g-2 data limits on mass and couplings of e^* and μ^* . See figures 2 and 3 of the paper.

MASS LIMITS for Excited au (au^*)

Limits for Excited τ (τ^*) from Pair Production

These limits are obtained from $e^+e^- \to \tau^{*+}\tau^{*-}$ and thus rely only on the (electroweak) charge of τ^* . Form factor effects are ignored unless noted. For the case of limits from Z decay, the τ^* coupling is assumed to be of sequential type. All limits assume a dominant $\tau^* \to \tau \gamma$ decay except the limits from $\Gamma(Z)$.

For limits prior to 1987, see our 1992 edition (Physical Review D45 S1 (1992)).

 VALUE (GeV)
 CL%
 DOCUMENT ID
 TECN
 COMMENT

 >103.2
 95
 1 ABBIENDI
 02G
 OPAL
 $e^{+}e^{-} → τ^{*}τ^{*}$ Homodoublet type

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

>102.8 95 2 ACHARD 03B L3 $e^+e^ightarrow~ au^* au^*$ Homodoublet type

¹ From e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. f=f' is assumed.

Limits for Excited τ (τ^*) from Single Production

These limits are from $e^+e^- \to \tau^*\tau$ and depend on transition magnetic coupling between τ and τ^* . All limits assume $\tau^* \to \tau\gamma$ decay. Limits from LEP are for chiral coupling, whereas all other limits are for nonchiral coupling, $\eta_L = \eta_R = 1$. In most papers, the limit is expressed in the form of an excluded region in the $\lambda - m_{\tau^*}$ plane. See the original papers.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>2500	95	¹ AAD	15AP ATLS	$pp \rightarrow \tau^{(*)}\tau^*X$

• • We do not use the following data for averages, fits, limits, etc. • •

> 180 95 2 ACHARD 03B L3 $e^+e^- \rightarrow \tau \tau^*$ > 185 95 3 ABBIENDI 02G OPAL $e^+e^- \rightarrow \tau \tau^*$

 $^{^2}$ From e $^+$ e $^-$ collisions at $\sqrt{s}=189$ –209 GeV. f=f' is assumed. ACHARD 03B also obtain limit for $f=-f'\colon m_{\tau^*}>96.6$ GeV.

 $^{^1}$ AAD 15AP search for τ^* production in events with three or more charged leptons in pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $\Lambda=m_{\tau^*},\,f=f'=1.$ The contact interaction is included in the τ^* production and decay amplitudes.

² ACHARD 03B result is from e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. $f=f'=\Lambda/m_{\tau^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.

³ ABBIENDI 02G result is from e^+e^- collisions at $\sqrt{s}=183$ –209 GeV. $f=f'=\Lambda/m_{\tau^*}$ is assumed for τ^* coupling. See their Fig. 4c for the exclusion limit in the mass-coupling plane.

MASS LIMITS for Excited Neutrino (ν^*)

Limits for Excited ν (ν^*) from Pair Production

These limits are obtained from $e^+e^- \to \nu^* \nu^*$ and thus rely only on the (electroweak) charge of ν^* . Form factor effects are ignored unless noted. The ν^* coupling is assumed to be of sequential type unless otherwise noted. All limits assume a dominant $\nu^* \to \nu \gamma$ decay except the limits from $\Gamma(Z)$.

VALUE (GeV)CL%DOCUMENT IDTECNCOMMENT>160095 1 AAD15AP ATLS $pp \rightarrow \nu^* \nu^* X$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 2 ABBIENDI 04N OPAL 3 ACHARD 03B L3 $e^+e^-
ightarrow
u^*
u^*$ Homodoublet type

> 102.6 95 ³ ACHARD 03B L3 $e^+e^- \rightarrow \nu^*\nu^*$ Homodoublet type ¹ AAD 15AP search for ν^* pair production in evens with three or more charged leptons in pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $\Lambda=m_{\nu^*}$, f=f'=1. The

contact interaction is included in the u^* production and decay amplitudes.

 2 From $\,{\rm e^+\,e^-}\,$ collisions at $\sqrt{s}=192$ –209 GeV, ABBIENDI 04N obtain limit on $\sigma({\rm e^+\,e^-}\to\,\nu^*\nu^*)$ B $^2(\nu^*\to\,\nu\gamma)$. See their Fig.2. The limit ranges from 20 to 45 fb for $m_{\nu^*}>$ 45 GeV.

 3 From $e^+\,e^-$ collisions at $\sqrt{s}=189$ –209 GeV. f=-f' is assumed. ACHARD 03B also obtain limit for $f=f'\colon$ $m_{\nu_{_A}^*}>101.7$ GeV, $m_{\nu_{_{II}}^*}>101.8$ GeV, and $m_{\nu_{_T}^*}>92.9$ GeV.

See their Fig. 4 for the exclusion plot in the mass-coupling plane.

Limits for Excited ν (ν^*) from Single Production

These limits are from $e^+e^- \to \nu\nu^*$, $Z \to \nu\nu^*$, or $ep \to \nu^*X$ and depend on transition magnetic coupling between ν/e and ν^* . Assumptions about ν^* decay mode are given in footnotes.

VALUE (GeV)CL%DOCUMENT IDTECNCOMMENT>21395 1 AARON08H1 $ep \rightarrow \nu^* X$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

>190 95 2 ACHARD 03B L3 $e^+e^-
ightarrow
u
u^*$ none 50–150 95 3 ADLOFF 02 H1 $e\,p
ightarrow
u^*$ X >158 95 4 CHEKANOV 02D ZEUS $e\,p
ightarrow
u^*$ X

¹ AARON 08 search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 3 and Fig. 4 for the exclusion plots in the mass-coupling plane.

 2 ACHARD 03B result is from $e^+\,e^-$ collisions at $\sqrt{s}=189$ –209 GeV. The quoted limit is for ν_e^* . $f=-f'=\Lambda/m_{\nu^*}$ is assumed. See their Fig. 4 for the exclusion plot in the mass-coupling plane.

³ ADLOFF 02 search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. The quoted limit assumes $f = -f' = \Lambda/m_{\nu^*}$. See their Fig. 1 for the exclusion plots in the mass-coupling plane.

⁴ CHEKANOV 02D search for single ν^* production in ep collisions with the decays $\nu^* \to \nu \gamma$, νZ , eW. $f=-f'=\Lambda/m_{\nu^*}$ is assumed for the e^* coupling. CHEKANOV 02D also obtain limit for $f=f'=\Lambda/m_{\nu^*}$: $m_{\nu^*}>$ 135 GeV. See their Fig. 5c and Fig. 5d for the exclusion plot in the mass-coupling plane.

MASS LIMITS for Excited $q(q^*)$

Limits for Excited $q(q^*)$ from Pair Production

These limits are mostly obtained from $e^+e^- \to q^* \overline{q}^*$ and thus rely only on the (electroweak) charge of the q^* . Form factor effects are ignored unless noted. Assumptions about the q^* decay are given in the comments and footnotes.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>338	95	$^{ m 1}$ AALTONEN	10H	CDF	$q^* o tW^-$
• • • We do not u	ise the followi	ng data for average	s, fits	s, limits,	etc. • • •
none 700-1200	95	² SIRUNYAN	18V	CMS	$pp \rightarrow t_{3/2}^* \overline{t}_{3/2}^* \rightarrow$
					tīgg
		³ BARATE	98 U	ALEP	$Z \rightarrow q^* q^*$
> 45.6	95	⁴ ADRIANI	93M	L3	u or d type, $Z ightarrow q^* q^*$
> 41.7	95	⁵ BARDADIN	92	RVUE	u -type, $\Gamma(Z)$
> 44.7	95	⁵ BARDADIN	92	RVUE	d -type, $\Gamma(Z)$
> 40.6	95	⁶ DECAMP	92	ALEP	u -type, $\Gamma(Z)$
> 44.2	95	⁶ DECAMP	92	ALEP	d -type, $\Gamma(Z)$
> 45	95	⁷ DECAMP	92	ALEP	u or d type, $Z ightarrow q^* q^*$
> 45	95	⁶ ABREU	91F	DLPH	u -type, $\Gamma(Z)$
> 45	95	⁶ ABREU	91F	DLPH	d -type, $\Gamma(Z)$

¹ AALTONEN 10H obtain limits on the q^*q^* production cross section in $p\overline{p}$ collisions. See their Fig. 3.

Limits for Excited $q(q^*)$ from Single Production

These limits are from $e^+e^- \to q^*\overline{q}$, $p\overline{p} \to q^*X$, or $pp \to q^*X$ and depend on transition magnetic couplings between q and q^* . Assumptions about q^* decay mode are given in the footnotes and comments.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>6700 (CL = 95°	%) OUR	LIMIT		
none 2000-6700	95	¹ AAD	20T ATLS	$pp \rightarrow q^*X, q^* \rightarrow qg$
none 1250-3200	95	¹ AAD	20T ATLS	$pp \rightarrow b^* X, b^* \rightarrow bg, b\gamma,$ bZ. tW
none 1800-6300	95	² SIRUNYAN	20AI CMS	$pp \rightarrow q^* X, q^* \rightarrow qg$
none 1500-2600	95	³ AABOUD	18AB ATLS	$pp ightarrow \ b^* X$, $b^* ightarrow \ bg$
none 1500-5300	95	⁴ AABOUD	18BA ATLS	$pp ightarrow \ q^* X$, $q^* ightarrow \ q \gamma$
none 1000-5500	95	⁵ SIRUNYAN	18AG CMS	$pp ightarrow \ q^* X$, $q^* ightarrow \ q \gamma$
none 1000-1800	95	⁶ SIRUNYAN	18AG CMS	$pp ightarrow \ b^*X, \ b^* ightarrow \ b\gamma$
none 600-6000	95	⁷ SIRUNYAN	18BO CMS	$pp ightarrow \ q^* X$, $q^* ightarrow \ qg$
none 1200-5000	95	⁸ SIRUNYAN	18P CMS	$pp ightarrow \ q^* X, \ q^* ightarrow \ q W$
none 1200-4700	95	⁸ SIRUNYAN	18P CMS	$pp ightarrow \ q^* X, \ q^* ightarrow \ q Z$
>6000	95	⁹ AABOUD	17AK ATLS	$pp \rightarrow q^*X, q^* \rightarrow qg$

² SIRUNYAN 18V search for pair production of spin 3/2 excited top quarks. B($t_{3/2}^* \rightarrow t_g$) = 1 is assumed.

³ BARATE 98U obtain limits on the form factor. See their Fig. 16 for limits in mass-form factor plane.

⁴ ADRIANI 93M limit is valid for B($q^* \rightarrow qg$)> 0.25 (0.17) for up (down) type.

⁵ BARDADIN-OTWINOWSKA 92 limit based on $\Delta\Gamma(Z)$ <36 MeV.

⁶ These limits are independent of decay modes.

⁷ Limit is for B($q^* \rightarrow qg$)+B($q^* \rightarrow q\gamma$)=1.

```
<sup>10</sup> TUMASYAN
                                                      220 CMS
                                                                       pp \rightarrow b^*X, b^* \rightarrow tW
none 700-3000
                      95
                                <sup>11</sup> SIRUNYAN
                                                                      pp \rightarrow b^*X, b^* \rightarrow tW
                                                      21AG CMS
>2600
                      95
                                <sup>12</sup> KHACHATRY...17W CMS
                                                                      pp \rightarrow q^*X, q^* \rightarrow qg
                      95
none 600-5400
                                <sup>13</sup> AABOUD
                                                      16 ATLS pp \rightarrow b^*X, b^* \rightarrow bg
none 1100-2100
                      95
                                ^{14} AAD
                                                      16AH ATLS pp \rightarrow b^*X, b^* \rightarrow tW
                      95
>1500
                                <sup>15</sup> AAD
                                                   16AL ATLS pp \rightarrow q^*X, q^* \rightarrow q\gamma
>4400
                      95
                                <sup>16</sup> AAD
                                                   16AV ATLS pp \rightarrow q^*X, q^* \rightarrow Wb
                                ^{17} AAD
                      95
                                                      16S ATLS pp \rightarrow q^*X, q^* \rightarrow qg
>5200
                      95
                                <sup>18</sup> KHACHATRY...161 CMS
                                                                      pp \rightarrow b^*X, b^* \rightarrow tW
>1390
                                <sup>19</sup> KHACHATRY...16K CMS pp \rightarrow q^*X, q^* \rightarrow qg
                      95
>5000
                                ^{20} KHACHATRY...16L CMS pp 
ightarrow q^* X, q^* 
ightarrow qg
none 500-1600
                      95
                                ^{21} AAD
                                               15V ATLS pp \rightarrow q^*X, q^* \rightarrow qg
>4060
                      95
                                <sup>22</sup> KHACHATRY...15v CMS
                                                                      pp \rightarrow q^*X, q^* \rightarrow qg
                      95
>3500
                                23 AAD
                                                14A ATLS pp \rightarrow q^*X, q^* \rightarrow q\gamma
>3500
                      95
                                <sup>24</sup> KHACHATRY...14 CMS
                                                                     pp \rightarrow q^*X, q^* \rightarrow qW
>3200
                      95
                                <sup>25</sup> KHACHATRY...14 CMS
                                                                      pp \rightarrow q^*X, q^* \rightarrow qZ
>2900
                      95
                                <sup>26</sup> KHACHATRY...14J CMS pp \rightarrow q^*X, q^* \rightarrow q\gamma
none 700-3500
                      95
                                ^{27} CHATRCHYAN 13AJ CMS pp 
ightarrow q^* X, q^* 
ightarrow q W
>2380
                      95
                                <sup>28</sup> CHATRCHYAN 13AJ CMS pp \rightarrow q^*X, q^* \rightarrow qZ
                      95
>2150
```

- ¹ AAD 20T search for resonances decaying into dijets in pp collisions at $\sqrt{s}=13$ TeV. Assume $\Lambda=m_{q^*}$, $f_{\rm S}=f=f'=1$.
- 2 SIRUNYAN 20AI search for resonances decaying into dijets in pp collisions at $\sqrt{s}=13$ TeV. Assume $\Lambda=m_{a^*},\,f_s=f=f'=1.$
- ³ AABOUD 18AB assume $\Lambda = m_{b^*}$, $f_s = f = f' = 1$. The contact interactions are not included in b^* production and decay amplitudes.
- ⁴ AABOUD 18BA search for first-generation excited quarks (u^* and d^*) with degenerate mass, assuming $\Lambda = m_{q^*}$, $f_S = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.
- ⁵ SIRUNYAN 18AG search for first-generation excited quarks (u^* and d^*) with degenerate mass, assuming $\Lambda=m_{q^*}$, $f_S=f=f'=1$.
- ⁶ SIRUNYAN 18AG search for excited b quark assuming $\Lambda=m_{{m q}^*}$, $f_{m s}=f=f'=1$.
- ⁷ SIRUNYAN 18BO assume $\Lambda=m_{q^*}$, $f_S=f=f'=1$. The contact interactions are not included in q^* production and decay amplitudes.
- ⁸ SIRUNYAN 18P use the hadronic decay of W or Z, assuming $\Lambda=m_{q^*}$, $f_{\rm S}=f=f'=1$.
- ⁹ AABOUD 17AK assume $\Lambda=m_{q^*}$, $f_s=f=f'=1$. The contact interactions are not included in q^* production and decay amplitudes. Only the decay of $q^*\to g\,u$ and $q^*\to g\,d$ is simulated as the benchmark signals in the analysis.
- TUMASYAN 220 search for b^* decaying to tW in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above assumes $\kappa_L^b=g_L=1,\ \kappa_R^b=g_R=0$. The limit becomes $m_{b^*}>3.0$ TeV (>3.2 TeV) if we assume $\kappa_L^b=g_L=0,\ \kappa_R^b=g_R=1$ ($\kappa_L^b=g_L=1,\ \kappa_R^b=g_R=1$). See their Fig. 3 for limits on $\sigma\cdot B$.
- 11 SIRUNYAN 21AG search for b^* decaying to $t\,W$ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The limit quoted above assumes $\kappa^b_L=g_L=1,\,\kappa^b_R=g_R=0.$ The limit becomes $m_{b^*}>$

- 2.8 TeV (> 3.1 TeV) if we assume $\kappa_L^b=g_L=0$, $\kappa_R^b=g_R=1$ ($\kappa_L^b=g_L=\kappa_R^b=g_R$
- = 1). See their Fig. 5 for limits on $\sigma \cdot B$. 12 KHACHATRYAN 17W assume $\Lambda = m_{q^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.
- ¹³ AABOUD 16 assume $\Lambda = m_{h^*}$, $f_s = f = f' = 1$. The contact interactions are not included in the b^* production and decay amplitudes.
- 14 AAD 16AH search for b^* decaying to $t\,W$ in $p\,p$ collisions at $\sqrt{s}=8$ TeV. $f_g=f_L=f_R$ = 1 are assumed. See their Fig. 12b for limits on $\sigma \cdot B$.
- 15 AAD 16AI assume $\Lambda=m_{{m q}^*}$, $f_{m s}=f=f'=1$.
- 16 AAD 16 AV search for single production of vector-like quarks decaying to $W\,b$ in $p\,p$ collisions. See their Fig. 8 for the limits on couplings and mixings.
- 17 AAD 16S assume $\Lambda=m_{q^*}$, $f_s=f=f'=1$. The contact interactions are not included in q^* production and decay amplitudes.
- 18 KHACHATRYAN 161 search for b^* decaying to tW in pp collisions at $\sqrt{s}=8$ TeV. κ_I^b $=g_L=1$, $\kappa_R^b=g_R=0$ are assumed. See their Fig. 8 for limits on $\sigma \cdot B$.
- 19 KHACHATRYAN 16K assume $\Lambda=m_{m{q}^*}$, $f_{m{s}}=f=f'=1$. The contact interactions are not included in q^* production and decay amplitudes.
- 20 KHACHATRYAN 16L search for resonances decaying to dijets in pp collisions at $\sqrt{s}=$ 8 TeV using the data scouting technique which increases the sensitivity to the low mass
- 21 AAD 15V assume $\Lambda=m_{\sigma^*}$, $f_s=f=f'=1$. The contact interactions are not included in q^* production and decay amplitudes.
- ²² KHACHATRYAN 15V assume $\Lambda = m_{\sigma^*}$, $f_s = f = f' = 1$. The contact interactions are not included in q^* production and decay amplitudes.
- ²³ AAD 14A assume $\Lambda=m_{a^*}$, $f_s=f=f'=1$.
- ²⁴ KHACHATRYAN 14 use the hadronic decay of W, assuming $\Lambda = m_{q^*}$, $f_s = f = f' = 1$.
- ²⁵ KHACHATRYAN 14 use the hadronic decay of Z, assuming $\Lambda=m_{a^*}$, $f_s=f=f'=1$.
- 26 KHACHATRYAN 14J assume $f_{_{m{S}}}=f=f'=\Lambda\ /\ m_{_{m{G}^*}}.$
- 27 CHATRCHYAN 13AJ use the hadronic decay of W.
- 28 CHATRCHYAN 13AJ use the hadronic decay of Z.

MASS LIMITS for Color Sextet Quarks (q_6)

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>84	95	¹ ABE	89 D	CDF	$p\overline{p} \rightarrow q_6\overline{q}_6$

¹ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color sextet quark is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. A limit of 121 GeV is obtained for a color decuplet.

MASS LIMITS for Color Octet Charged Leptons (ℓ_8)

https://pdg.lbl.gov Page 14 Created: 12/4/2023 14:09

² ABT 93 H1
$$e_8$$
: $e_p \rightarrow e_8$

MASS LIMITS for Color Octet Neutrinos (ν_8)

 $\lambda \equiv m_{\ell_8}/\Lambda$

VALUE (GeV)	CL%	<u>DOCUMENT IL</u>	<u>) </u>	IECN	COMMENT	
>110	90	¹ BARGER	89	RVUE	$\nu_8: p\overline{p} \rightarrow \nu_8\overline{\nu}_8$	
• • • We do not	use the fo	ollowing data for a	verages,	fits, lin	nits, etc. • • •	
nono 2 0 20 0	OE	2 1/11/1	00	Λ N // \	a+ a- \ acanlanar ista	_

none 3.8–29.8 95 2 KIM 90 AMY ν_8 : $e^+e^- \to$ acoplanar jets none 9–21.9 95 3 BARTEL 87B JADE ν_8 : $e^+e^- \to$ acoplanar jets

MASS LIMITS for W_8 (Color Octet W Boson)

VALUE (GeV) DOCUMENT ID TECN COMMENT

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

 1 ALBAJAR 89 UA1 $p\overline{p}
ightarrow W_{8}$ X, $W_{8}
ightarrow W_{g}$

REFERENCES FOR Searches for Quark and Lepton Compositeness

TUMASYAN AAD	22O 21AU	JHEP 2204 048 PRL 127 141801	A. Tumasyan <i>et al.</i> G. Aad <i>et al.</i>		Collab.) Collab.)
AAD	21Q	JHEP 2104 142	G. Aad et al.	(ATLAS	Collab.)
SIRUNYAN	21AG	JHEP 2112 106	A.M. Sirunyan et al.	(CMS	Collab.)
SIRUNYAN	21N	JHEP 2107 208	A.M. Sirunyan et al.	(CMS	Collab.)
AAD	20AP	JHEP 2011 005	G. Aad et al.		Collab.)
AAD	20T	JHEP 2003 145	G. Aad <i>et al.</i>	(ATLAS	Collab.)
SIRUNYAN	20AI	JHEP 2005 033	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
SIRUNYAN	20AJ	JHEP 2005 052	A.M. Sirunyan <i>et al.</i>		Collab.)
AABOUD	19AZ	EPJ C79 803	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
ABRAMOWICZ	19	PR D99 092006	H. Abramowicz et al.		Collab.)
SIRUNYAN	19AC	JHEP 1904 114	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)
SIRUNYAN	19Z	JHEP 1904 015	A.M. Sirunyan <i>et al.</i>		Collab.)
AABOUD	18AB	PR D98 032016	M. Aaboud <i>et al.</i>		Collab.)
AABOUD	18AV	JHEP 1807 089	M. Aaboud <i>et al.</i>		Collab.)
AABOUD	18BA	EPJ C78 102	M. Aaboud <i>et al.</i>	(ATLAS	Collab.)
SIRUNYAN	18AG	PL B781 390	A.M. Sirunyan <i>et al.</i>		Collab.)
SIRUNYAN	18BO	JHEP 1808 130	A.M. Sirunyan <i>et al.</i>	(CMS	Collab.)

https://pdg.lbl.gov Page 15 Created: 12/4/2023 14:09

¹ ABE 89D look for pair production of unit-charged particles which leave the detector before decaying. In the above limit the color octet lepton is assumed to fragment into a unit-charged or neutral hadron with equal probability and to have long enough lifetime not to decay within the detector. The limit improves to 99 GeV if it always fragments into a unit-charged hadron.

 $^{^2}$ ABT 93 search for e_8 production via e-gluon fusion in ep collisions with $e_8 \to eg$. See their Fig. 3 for exclusion plot in the m_{e_8} – Λ plane for $m_{e_8}=$ 35–220 GeV.

 $^{^1}$ BARGER 89 used ABE 89B limit for events with large missing transverse momentum. Two-body decay $\nu_8 \to ~\nu\,g$ is assumed.

 $^{^2}$ KIM 90 is at $E_{\rm cm}=50$ –60.8 GeV. The same assumptions as in BARTEL 87B are used.

³ BARTEL 87B is at $E_{\rm cm}=46.3$ –46.78 GeV. The limit assumes the ν_8 pair production cross section to be eight times larger than that of the corresponding heavy neutrino pair production. This assumption is not valid in general for the weak couplings, and the limit can be sensitive to its ${\rm SU}(2)_L \times {\rm U}(1)_Y$ quantum numbers.

 $^{^1}$ ALBAJAR 89 give $\sigma(W_8 \to~W+{\rm jet})/\sigma(W) < 0.019$ (90% CL) for $m_{\slash\hspace{-0.4em}W_8}~>220$ GeV.

SIRUNYAN	18DD	EPJ C78 789	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	18P	PR D97 072006	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18V	PL B778 349	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD		PR D96 052004 JHEP 1710 182	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD KHACHATRY			M. Aaboud <i>et al.</i> V. Khachatryan <i>et al.</i>	(ATLAS Collab.) (CMS Collab.)
SIRUNYAN	17F	JHEP 1707 013	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	16	PL B759 229	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	16U	PL B761 372	M. Aaboud et al.	(ATLAS Collab.)
AAD		JHEP 1602 110	G. Aad et al.	(ATLAS Collab.)
AAD AAD		JHEP 1603 041 EPJ C76 442	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		NJP 18 073021	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AAD	16S	PL B754 302	G. Aad et al.	(ATLAS Collab.)
		JHEP 1603 125	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY		JHEP 1601 166	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY		PRL 116 071801	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY AAD		PRL 117 031802 JHEP 1508 138	V. Khachatryan <i>et al.</i> G. Aad <i>et al.</i>	(CMS Collab.) (ATLAS Collab.)
AAD		JHEP 1508 105	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1510 150	G. Aad et al.	(ATLAS Collab.)
AAD	15L	PRL 114 221802	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15V	PR D91 052007	G. Aad et al.	(ATLAS Collab.)
		JHEP 1504 025	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY KHACHATRY		PL B746 79 PR D91 052009	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
AAD	14A	PL B728 562	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		EPJ C74 3134	G. Aad et al.	(ATLAS Collab.)
FABBRICHESI		PR D89 074028	M. Fabbrichesi, M. Pinamonti, A.	
KHACHATRY		JHEP 1408 173	V. Khachatryan et al.	(CMS Collab.)
KHACHATRY			V. Khachatryan et al.	(CMS Collab.)
AAD AAD	13BB	NJP 15 093011 PR D87 015010	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
CHATRCHYAN			S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN			S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN			S. Chatrchyan et al.	(CMS Collab.)
AAD		PL B712 40	G. Aad et al.	(ATLAS Collab.)
AAD AARON	12AZ 11C	PR D85 072003 PL B705 52	G. Aad <i>et al.</i> F. D. Aaron <i>et al.</i>	(ATLAS Collab.)
ABDALLAH	11	EPJ C71 1555	J. Abdallah <i>et al.</i>	(H1 Collab.) (DELPHI Collab.)
AALTONEN	10H	PRL 104 091801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABDALLAH	09	EPJ C60 1	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
AARON	08	PL B663 382	F.D. Aaron et al.	(H1 Collab.)
SCHAEL ABDALLAH	07A 06C	EPJ C49 411 EPJ C45 589	S. Schael <i>et al.</i> J. Abdallah <i>et al.</i>	(ALEPH Collab.)
ABULENCIA	06L	PRL 96 211801	A. Abulencia <i>et al.</i>	(DELPHI Collab.) (CDF Collab.)
ABBIENDI	04G	EPJ C33 173	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	04N	PL B602 167	G. Abbiendi et al.	(OPAL Collab.)
ABDALLAH	04N	EPJ C37 405	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACHARD	03B	PL B568 23	P. Achard <i>et al.</i>	(L3 Collab.)
BABICH ABBIENDI	03 02G	EPJ C29 103 PL B544 57	A.A. Babich <i>et al.</i> G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ACHARD	02D	PL B531 28	P. Achard <i>et al.</i>	(L3 Collab.)
ADLOFF	02	PL B525 9	C. Adloff et al.	(H1 Collab.)
CHEKANOV	02D	PL B549 32	S. Chekanov et al.	(ZEUS Collab.)
AFFOLDER	011	PRL 87 231803	T. Affolder <i>et al.</i>	(CDF Collab.)
BOURILKOV CHEUNG	01 01B	PR D64 071701 PL B517 167	D. Bourilkov K. Cheung	
ACCIARRI	00P	PL B489 81	M. Acciarri <i>et al.</i>	(L3 Collab.)
AFFOLDER	001	PR D62 012004	T. Affolder et al.	(CDF Collab.)
BARATE	98U	EPJ C4 571	R. Barate et al.	(ALEPH Collab.)
BARGER	98E	PR D57 391	V. Barger <i>et al.</i>	(CCED/N T.V C II I)
MCFARLAND DIAZCRUZ	98 94	EPJ C1 509 PR D49 2149	K.S. McFarland <i>et al.</i>	(CCFR/NuTeV Collab.)
ABT	93	NP B396 3	J.L. Diaz Cruz, O.A. Sampayo I. Abt <i>et al.</i>	(CINV) (H1 Collab.)
ADRIANI	93M	PRPL 236 1	O. Adriani <i>et al.</i>	(L3 Collab.)
BARDADIN	92	ZPHY C55 163	M. Bardadin-Otwinowska	` (CLER)
DECAMP	92	PRPL 216 253	D. Decamp <i>et al.</i>	(ALEPH Collab.)
PDG ABREU	92 91F	PR D45 S1 NP B367 511	K. Hikasa <i>et al.</i> P. Abreu <i>et al.</i>	(KEK, LBL, BOST+) (DELPHI Collab.)
KIM	90	PL B240 243	G.N. Kim <i>et al.</i>	(AMY Collab.)
		-		()

ABE	89B	PRL 62 1825	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	89D	PRL 63 1447	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	89J	ZPHY C45 175	K. Abe <i>et al.</i>	(VÈNUS Collab.)
ALBAJAR	89	ZPHY C44 15	C. Albajar <i>et al.</i>	(UA1 Collab.)
BARGER	89	PL B220 464	V. Barger <i>et al.</i>	(WISC, KEK)
DORENBOS	89	ZPHY C41 567	J. Dorenbosch <i>et al.</i>	(CHARM Collab.)
BARTEL	87B	ZPHY C36 15	W. Bartel <i>et al.</i>	(JADE Collab.)
GRIFOLS	86	PL 168B 264	J.A. Grifols, S. Peris	(BARC)
JODIDIO	86	PR D34 1967	A. Jodidio et al.	(LBL, NWES, TRIU)
Also		PR D37 237 (erratum)	A. Jodidio et al.	(LBL, NWES, TRIU)
RENARD	82	PL 116B 264	F.M. Renard	(CERN)