$\Upsilon(2S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

$\Upsilon(2S)$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
10023.4±0.5	¹ SHAMOV	23	RVUE	$e^+e^- \rightarrow$	hadrons
\bullet \bullet \bullet We do not use the following	ng data for averages	, fits,	limits, e	etc. • • •	
10022.7±0.4	² SHAMOV	23	RVUE	$e^+ e^- \rightarrow$	hadrons
10023.5 ± 0.5	^{3,4} ARTAMONOV	00	MD1	$e^+e^- \rightarrow$	hadrons
10023.6 ± 0.5	^{5,6} BARU	86 B	MD1	$e^+e^- \rightarrow$	hadrons
10023.1 ± 0.4	⁷ BARBER	84	ARG	$e^+e^- \rightarrow$	hadrons
 Reanalysis of MD1 data usin tions from KURAEV 85 and Obtained by reanalysing ARG by the ARGUS and Crystal E Reanalysis of BARU 86B usin Superseded by SHAMOV 23. Reanalysis of ARTAMONOV Superseded by ARTAMONOV Reanalysed by SHAMOV 23. 	g the electron mass interference effects. GUS and Crystal Ball Ball collaboration. ng new electron mas 84. V 00.	from data s (CC	COHEN (BARB DHEN 87	I 87, the rad ER 84), but 7).	liative correc-

 $m_{\Upsilon(3S)} - m_{\Upsilon(2S)}$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
331.50±0.02±0.13	LEES	11C	BABR	$e^+e^- \rightarrow \pi^+\pi^- X$

$\Upsilon(2S)$ WIDTH

VALUE (keV)

31.98±2.63 OUR EVALUATION States"

 $\frac{\textit{DOCUMENT ID}}{\textit{See the Note on "Width Determinations of the } \Upsilon}$

$\Upsilon(2S)$ DECAY MODES

	Mode	Fraction (Γ	_i /Г)	Sc Confi	ale factor/ dence level
Г1	$\Upsilon(1S)\pi^+\pi^-$	$(17.85\pm$	0.26) %	6	
Γ2	$\Upsilon(1S) \pi^0 \pi^0$	$(8.6 \pm$	0.4) %	6	
Γ ₃	$\tau^+ \tau^-$	($2.00\pm$	0.21) %	6	
Г ₄	$\mu^+\mu^-$	($1.93\pm$	0.17) %	6	S=2.2
Γ ₅	e ⁺ e ⁻	($1.91\pm$	0.16) %	6	
Г ₆	$\Upsilon(1S)\pi^0$	< 4	>	< 10 ⁻⁵	CL=90%
Γ ₇	$\Upsilon(1S)\eta$	(2.9 \pm	0.4) >	< 10 ⁻⁴	S=2.0
Г ₈	$J/\psi(1S)$ anything	< 6	>	< 10 ⁻³	CL=90%
Гg	$J/\psi(1S)\eta_c$	< 5.4	>	< 10 ⁻⁶	CL=90%
Γ ₁₀	$J/\psi(1S)\chi_{c0}$	< 3.4	>	< 10 ⁻⁶	CL=90%

Γ_{11}	$J/\psi(1S)\chi_{c1}$	< 1.2	imes 10 ⁻⁶	CL=90%
Γ ₁₂	$J/\psi(1S)\chi_{c2}$	< 2.0	imes 10 ⁻⁶	CL=90%
Г ₁₃	$J/\psi(1S)\eta_c(2S)$	< 2.5	imes 10 ⁻⁶	CL=90%
Г ₁₄	$J/\psi(1S)X(3940)$	< 2.0	imes 10 ⁻⁶	CL=90%
Γ ₁₅	$J/\psi(1S)X(4160)$	< 2.0	imes 10 ⁻⁶	CL=90%
Γ ₁₆	χ_{c1} anything	(2.2 \pm 0.5	$) imes 10^{-4}$	
Γ ₁₇	$\chi_{c1}(1P)^0 X_{tetra}$	< 3.67	imes 10 ⁻⁵	CL=90%
Г ₁₈	χ_{c2} anything	(2.3 \pm 0.8	$) imes 10^{-4}$	
Г ₁₉	$\psi(2S)\eta_c$	< 5.1	imes 10 ⁻⁶	CL=90%
Γ ₂₀	$\psi(2S)\chi_{c0}$	< 4.7	imes 10 ⁻⁶	CL=90%
Γ ₂₁	$\psi(2S)\chi_{c1}$	< 2.5	imes 10 ⁻⁶	CL=90%
Γ ₂₂	$\psi(2S)\chi_{c2}$	< 1.9	imes 10 ⁻⁶	CL=90%
Γ ₂₃	$\psi(2S)\eta_c(2S)$	< 3.3	imes 10 ⁻⁶	CL=90%
Г ₂₄	$\psi(2S)X(3940)$	< 3.9	imes 10 ⁻⁶	CL=90%
Γ ₂₅	$\psi(2S)X(4160)$	< 3.9	imes 10 ⁻⁶	CL=90%
Г ₂₆	$Z_c(3900)^+ Z_c(3900)^-$	< 1.0	imes 10 ⁻⁶	CL=90%
Γ ₂₇	$Z_c(4200)^+ Z_c(4200)^-$	< 1.67	imes 10 ⁻⁵	CL=90%
Г ₂₈	$Z_c(3900)^{\pm} Z_c(4200)^{\mp}$	< 7.3	imes 10 ⁻⁶	CL=90%
Γ ₂₉	$X(4050)^+X(4050)^-$	< 1.35	imes 10 ⁻⁵	CL=90%
Г ₃₀	$X(4250)^+X(4250)^-$	< 2.67	imes 10 ⁻⁵	CL=90%
Г ₃₁	$X(4050)^{\pm}X(4250)^{\mp}$	< 2.72	imes 10 ⁻⁵	CL=90%
Г ₃₂	$Z_c(4430)^+ Z_c(4430)^-$	< 2.03	imes 10 ⁻⁵	CL=90%
Г ₃₃	$X(4055)^{\pm}X(4055)^{\mp}$	< 1.11	imes 10 ⁻⁵	CL=90%
Г ₃₄	$X(4055)^{\pm} Z_c(4430)^{\mp}$	< 2.11	imes 10 ⁻⁵	CL=90%
Г ₃₅	$\overline{{}^{2}H}$ anything	$(2.78^+_{-})^{0.30}_{-0.20}$	$_{5}^{0}) \times 10^{-5}$	S=1.2
Г ₃₆	hadrons	$(94 \pm 11$) %	
Г ₃₇	ggg	(58.8 \pm 1.2) %	
Г ₃₈	$\gamma g g$	(1.87 ± 0.23)	8) %	
Г ₃₉	$\phi K^+ K^-$	(1.6 \pm 0.4	$) imes 10^{-6}$	
Г ₄₀	$\omega \pi^+ \pi^-$	< 2.58	imes 10 ⁻⁶	CL=90%
Г ₄₁	$K^{*}(892)^{0}K^{-}\pi^{+}+ ext{ c.c.}$	($2.3~\pm~0.7$	$) imes 10^{-6}$	
Γ ₄₂	$\phi f'_{2}(1525)$	< 1.33	imes 10 ⁻⁶	CL=90%
Г ₄₃	$\omega f_2(1270)$	< 5.7	imes 10 ⁻⁷	CL=90%
Γ ₄₄	$\rho(770) a_2(1320)$	< 8.8	imes 10 ⁻⁷	CL=90%
Γ ₄₅	$K^*(892)^{\overline{0}}\overline{K}_2^*(1430)^0$ + c.c.	($1.5~\pm~0.6$	$) imes 10^{-6}$	
Γ ₄₆	$K_1(1270)^{\pm} \tilde{K}^{\mp}$	< 3.22	$\times 10^{-6}$	CL=90%
Γ_{47}	$K_1(1400)^{\pm}K^{\mp}$	< 8.3	imes 10 ⁻⁷	CL=90%
Γ_{48}	$b_1(1235)^{\pm}\pi^{\mp}$	< 4.0	imes 10 ⁻⁷	CL=90%
Γ⊿ο	$\rho\pi$	< 1.16	imes 10 ⁻⁶	CL=90%
	$\pi^{+}\pi^{-}\pi^{0}$	< 8.0	$\times 10^{-7}$	CL=90%
Γ ₅₁	$\omega \pi^0$	< 1.63	$\times 10^{-6}$	CL=90%
	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.30 ± 0.23)	$(8) \times 10^{-5}$	•
Γ ₅₂	$K_{c}^{0}K^{+}\pi^{-}$ + c.c.	(1.14 + 0.3)	$() \times 10^{-6}$	
55	5	, 0.0.	,	

Г ₅₄ Г ₅₅ Г ₅₆ Г	$K^{*}(892)^{0}\overline{K}^{0}$ + c.c. $K^{*}(892)^{-}K^{+}$ + c.c. $f_{1}(1285)$ anything $f_{1}(1285) X$	< < ($\begin{array}{r} 4.22 \\ 1.45 \\ 2.2 \pm 1.6 \end{array})$	$\times 10^{-6}$ $\times 10^{-6}$ $) \times 10^{-3}$ $\times 10^{-5}$	CL=90% CL=90%				
ι ₅₇ Γ ₅₈	Sum of 100 exclusive modes	< (0.47 2.90 ± 0.30	$\times 10^{-3}$	CL=90%				
	Radiative dec	ays							
Γ ₅₉	$\gamma \chi_{b1}(1P)$	(6.9 ± 0.4)) %					
Γ ₆₀	$\gamma \chi_{b2}(1P)$	(7.15 ± 0.35) %					
Γ ₆₁	$\gamma \chi_{b0}(1P)$	(3.8 ± 0.4)) %					
Γ ₆₂	$\gamma f_0(1710)$	<	5.9	$\times 10^{-4}$	CL=90%				
Γ ₆₃	$\gamma f'_{2}(1525)$	<	5.3	imes 10 ⁻⁴	CL=90%				
Γ ₆₄	$\gamma f_2(1270)$	<	2.41	$\times 10^{-4}$	CL=90%				
Г ₆₅	$\gamma f_1(2220)$								
Г ₆₆	$\gamma \eta_c(1S)$	<	2.7	imes 10 ⁻⁵	CL=90%				
Г ₆₇	$\gamma \chi_{c0}$	<	1.0	imes 10 ⁻⁴	CL=90%				
Γ ₆₈	$\gamma \chi_{c1}$	<	3.6	imes 10 ⁻⁶	CL=90%				
Γ ₆₉	$\gamma \chi_{c2}$	<	1.5	imes 10 ⁻⁵	CL=90%				
Γ ₇₀	$\gamma \chi_{c1}(3872)$	<	2.1	imes 10 ⁻⁵	CL=90%				
Γ ₇₁	$\gamma \chi_{c1}(3872), \chi_{c1} \rightarrow$	<	2.4	imes 10 ⁻⁶	CL=90%				
. –	$\pi^+\pi^-\pi^0 J/\psi$								
Γ ₇₂	$\gamma \chi_{c0}(3915) \rightarrow \omega J/\psi$	<	2.8	imes 10 ⁻⁶	CL=90%				
Γ ₇₃	$\gamma \chi_{c1}(4140) \rightarrow \phi J/\psi$	<	1.2	imes 10 ⁻⁶	CL=90%				
Γ ₇₄	$\gamma X(4350) ightarrow \phi J/\psi$	<	1.3	imes 10 ⁻⁶	CL=90%				
Γ ₇₅	$\gamma \eta_b(1S)$	($5.5 \ + \ 1.1 \ - \ 0.9$) × 10 ⁻⁴	S=1.2				
Г ₇₆	$\gamma \eta_{b}(1S) ightarrow \gamma$ Sum of 26 exclu-	<	3.7	imes 10 ⁻⁶	CL=90%				
Г ₇₇	sive modes $\gamma X_{b\overline{b}} \rightarrow \gamma$ Sum of 26 exclusive modes	<	4.9	$ imes 10^{-6}$	CL=90%				
Г ₇₈	$\gamma X \rightarrow \gamma + \ge 4 \text{ prongs}$ [a]	<	1.95	imes 10 ⁻⁴	CL=95%				
Γ ₇₉	$\gamma A^0 \rightarrow \gamma$ hadrons	<	8	imes 10 ⁻⁵	CL=90%				
Г ₈₀	$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	<	8.3	imes 10 ⁻⁶	CL=90%				
Lepton Family number (LF) violating modes									
Г ₈₁	$e^{\pm}\tau^{\mp}$ LF	<	3.2	imes 10 ⁻⁶	CL=90%				
Γ ₈₂	$\mu^{\pm} \tau^{\mp}$ LF	<	3.3	imes 10 ⁻⁶	CL=90%				

 $[a] \, 1.5 \,\, {
m GeV} < m_X < 5.0 \,\, {
m GeV}$

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 13 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2 =$ 11.8 for 11 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

x₇ 2 x₁

Υ (2S) Γ(i)Γ(e^+e^-)/Γ(total)							
$\Gamma(\mu^+\mu^-) \times \Gamma(e^+e^-)/\Gamma_{to}$			TECN	Γ ₄ Γ ₅ /Γ			
6.5±1.5±1.0	KOBEL	92	CBAL	$e^+e^- \rightarrow \mu^+\mu^-$			
$\Gamma(\Upsilon(1S)\pi^{+}\pi^{-}) \times \Gamma(e^{+}e^{-})$	-)/Γ _{total}	TECN	COMM	Γ₁Γ₅/Γ			
105.4±1.0±4.2 11.8k ¹ AU ¹ Using B($\Upsilon(1S) \rightarrow e^+e^-$) 0.05)%.	$JBERT 08BP E = (2.38 \pm 0.11)$ %	3ABR % and	10.58 B($\Upsilon(13)$	$e^+e^- \rightarrow \gamma \pi^+ \pi^- \ell^+ \ell^-$ 5) $\rightarrow \mu^+ \mu^-$) = (2.48 ±			
$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma_t$	otal			Г ₃₆ Г ₅ /Г			
VALUE (keV)	DOCUMENT ID		TECN	COMMENT			
0.577 ± 0.009 OUR AVERAGE							
$0.581 \pm 0.004 \pm 0.009$	¹ ROSNER	06	CLEO	10.0 $e^+e^- ightarrow$ hadrons			
$0.552\!\pm\!0.031\!\pm\!0.017$	¹ BARU	96	MD1	$e^+e^- ightarrow $ hadrons			
$0.54\ \pm 0.04\ \pm 0.02$	¹ JAKUBOWSKI	88	CBAL	$e^+e^- ightarrow$ hadrons			
$0.58\ \pm 0.03\ \pm 0.04$	² GILES	84 B	CLEO	$e^+e^- ightarrow $ hadrons			
$0.60 \pm 0.12 \pm 0.07$	² ALBRECHT	82	DASP	$e^+e^- ightarrow $ hadrons			
$\begin{array}{ccc} 0.54 \hspace{0.2cm} \pm 0.07 \hspace{0.2cm} \begin{array}{c} + 0.09 \\ - 0.05 \end{array}$	² NICZYPORUK	81 C	LENA	$e^+e^- ightarrow$ hadrons			
0.41 ± 0.18	² воск	80	CNTR	$e^+e^- ightarrow $ hadrons			
¹ Radiative corrections evaluat	ed following KURA	AFV 8	5.				
² Radiative corrections reevalue	ated by BUCHMU	ELLE	R 88 foll	owing KURAEV 85.			
<i>r</i> ((25) PARTIAL	WID	THS				
Γ(e ⁺ e ⁻)				Г5			

I (e⁺ e⁻) <u>VALUE (keV)</u> 0.612±0.011 OUR EVALUATION

DOCUMENT ID

$\Upsilon(2S)$ BRANCHING RATIOS

$\Gamma(\Upsilon(1S)\pi^+\pi^-)/\Gamma$ Abbreviation M	total M in the	COMMENT field	below	stands	for missing mass.		
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT		
17.85 ± 0.26 OUR FIT							
17.92 ± 0.26 OUR AVE	RAGE						
$16.8 \ \pm 1.1 \ \pm 1.3$	906k	¹ LEES	11C	BABR	$e^+e^- \rightarrow \pi^+\pi^- X$		
$17.80\!\pm\!0.05\!\pm\!0.37$	170k	² LEES	11L	BABR	$\Upsilon(2S) \rightarrow \pi^+ \pi^- \mu^+ \mu^-$		
$18.02\!\pm\!0.02\!\pm\!0.61$	851k	³ BHARI	09	CLEO	$e^+e^- ightarrow \pi^+\pi^-$ MM		
$17.22\!\pm\!0.17\!\pm\!0.75$	11.8k	⁴ AUBERT	08 BP	BABR	$e^+e^- \rightarrow \gamma \pi^+\pi^-\ell^+\ell^-$		
$19.2 \ \pm 0.2 \ \pm 1.0$	52.6k	⁵ ALEXANDER	98	CLE2	$\pi^{+}\pi^{-}\ell^{+}\ell^{-}, \pi^{+}\pi^{-}MM$		
$18.1 \ \pm 0.5 \ \pm 1.0$	11.6k	ALBRECHT	87	ARG	$e^+e^- \rightarrow \pi^+\pi^-MM$		
16.9 ± 4.0		GELPHMAN	85	CBAL	$e^+e^- \rightarrow e^+e^-\pi^+\pi^-$		
$19.1 \ \pm 1.2 \ \pm 0.6$		BESSON	84	CLEO	$\pi^+\pi^-$ MM		
18.9 ± 2.6		FONSECA	84	CUSB	$e^+e^- \rightarrow \ell^+\ell^-\pi^+\pi^-$		
21 ±7	7	NICZYPORUK	61 В	LENA	$e^+e^- \rightarrow \ell^+\ell^-\pi^+\pi^-$		
¹ LEES 11c reports $[\Gamma(\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \Upsilon(2S) \text{ any-thing})] = (1.78 \pm 0.02 \pm 0.11) \times 10^{-2}$ which we divide by our best value $B(\Upsilon(3S) \rightarrow \Upsilon(2S) \text{ anything}) = (10.6 \pm 0.8) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ² Using $B(\Upsilon(1S) \rightarrow \mu^{+}\mu^{-}) = (2.48 \pm 0.05)\%$. ³ A weighted average of the inclusive and exclusive results. ⁴ Using $B(\Upsilon(2S) \rightarrow e^{+}e^{-}) = (1.91 \pm 0.16)\%$, $B(\Upsilon(2S) \rightarrow \mu^{+}\mu^{-}) = (1.93 \pm 0.17)\%$ and, $\Gamma_{ee}(\Upsilon(2S)) = 0.612 \pm 0.011$ keV. ⁵ Using $B(\Upsilon(1S) \rightarrow e^{+}e^{-}) = (2.52 \pm 0.17)\%$ and $B(\Upsilon(1S) \rightarrow \mu^{+}\mu^{-}) = (2.48 \pm 0.07)\%$.							
$\Gamma(\Upsilon(1S)\pi^0\pi^0)/\Gamma_t$	otal				Γ ₂ /Γ		
VALUE (units 10^{-2})	EVTS	DOCUMENT	ID	TEC	N COMMENT		
8.6 \pm 0.4 OUR AVE	RAGE	1					
$8.43 \pm 0.16 \pm 0.42$	38k	¹ BHARI	0	9 CLE	$0 e^+e^- \rightarrow \pi^0\pi^0\ell^+\ell^-$		
$9.2 \pm 0.6 \pm 0.8$	275	² ALEXAND	ER 9	8 CLE	$2 e^+e^- \rightarrow \pi^0\pi^0\ell^+\ell^-$		
9.5 ± 1.9 ± 1.9	25	ALBRECH	T 8 [.]	7 ARG	$G e^+e^- \rightarrow \pi^0\pi^0\ell^+\ell^-$		
8.0 ± 1.5		GELPHMA	N 8	5 CBA	AL $e^+e^- \rightarrow \pi^0\pi^0\ell^+\ell^-$		
10.3 ± 2.3		FONSECA	84	4 CUS	$SB e^+e^- \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$		
1 Authors assume B 2 Using B($\Upsilon(1S) \rightarrow$ 0.07)%.	$(\Upsilon(1S) - e^+e^-)$	$ ightarrow e^+ e^-) + B(2)$	Υ(1 <i>S</i>) 7)% an	$ ightarrow \mu^+$ nd B($argar{}$	μ^{-}) = 4.96%. 15) $\rightarrow \mu^{+}\mu^{-}$) = (2.48 ±		
$\Gamma(\Upsilon(1S)\pi^0\pi^0)/\Gamma(VALUE)$	(*(15)	π ⁺ π ⁻) <u>DOCUMENT</u>	ID	TEC	Г2/Г1 <u>соммент</u>		
• • • We do not use t	he follow	ving data for aver	ages, f	its, limit	s, etc. • • •		
0.462 ± 0.037		¹ BHARI	0	9 CLE	$20~e^+e^- ightarrow~\Upsilon(2S)$		

 1 Not independent of other values reported by BHARI 09.

$\Gamma(\tau^+ \tau^-) / \Gamma_{\text{total}}$			Г ₃ /Г
$\frac{VALUE \text{ (units } 10^{-2})}{2004} \text{ EVTS}$	DOCUMENT ID	TECN COMMEN	Т
2.00±0.12±0.18 22k ¹ 1.7 ±1.5 ±0.6 ¹ RESCON 07 reports $IE(27)$	$\begin{array}{c} BESSON & 07 \\ HAAS & 84B \\ (2S) & -^+ -^-) / F \end{array}$	CLEO e^+e^- - CLEO e^+e^- -	$\begin{array}{c} \stackrel{\rightarrow}{\rightarrow} \Upsilon(2S) \rightarrow \tau^+ \tau^- \\ \stackrel{\rightarrow}{\rightarrow} \tau^+ \tau^- \end{array}$
0.04 ± 0.05 which we multi 10^{-2} . Our first error is the error from using our best v	iply by our best value neir experiment's erro value.	$\operatorname{Fall} \mathcal{T} [B(\mathcal{T}(2S) \rightarrow \mu^+ \mu)]$ $B(\mathcal{T}(2S) \rightarrow \mu^+ \mu)$ r and our second μ	$(\mu^{+}\mu^{-}) = 1.04 \pm \mu^{-}$ $(\mu^{-}) = (1.93 \pm 0.17) \times \mu^{-}$
$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$	EVTS DOCUME	NT ID TECN	Г4/Г соммент
0.0193±0.0017 OUR AVERAG	GE Error includes sc	ale factor of 2.2.	See the ideogram
$\begin{array}{c} 0.0203 \pm 0.0003 \pm 0.0008 \\ 0.0122 \pm 0.0028 \pm 0.0019 \\ 0.0138 \pm 0.0025 \pm 0.0015 \\ 0.009 \ \pm 0.006 \ \pm 0.006 \\ 0.018 \ \pm 0.008 \ \pm 0.005 \\ \bullet \ \bullet \ \text{We do not use the follow} \end{array}$	120k ADAMS ¹ KOBEL KAARSE ² ALBREC HAAS wing data for average	05 CLEC 92 CBA BERG 89 CSB2 CHT 85 ARG 84B CLEC s. fits. limits. etc.	$\begin{array}{cccc} \mathbf{D} & \mathbf{e^+ e^-} \rightarrow & \mu^+ \mu^- \\ \mathbf{L} & \mathbf{e^+ e^-} \rightarrow & \mu^+ \mu^- \\ 2 & \mathbf{e^+ e^-} \rightarrow & \mu^+ \mu^- \\ \mathbf{e^+ e^-} \rightarrow & \mu^+ \mu^- \\ \mathbf{D} & \mathbf{e^+ e^-} \rightarrow & \mu^+ \mu^- \end{array}$
<0.038 90		ORUK 81C LEN	A $e^+e^- \rightarrow u^+u^-$
1 Taking into account interform 2 Re-evaluated using B($\Upsilon(1)$ WEIGHTED AVERAC 0.0193 \pm 0.0017 (Error	erence between the response $S) ightarrow \mu^+ \mu^-) = 0.0$ GE r scaled by 2.2)	sonance and cont 126.	nuum.
	+ AD KC KA AL HA	AMS 05 BEL 92 ARSBERG 89 BRECHT 85 AS 84B (Confidence	$ \frac{\chi^2}{CLEO = 1.5} CBAL = 4.4 CSB2 = 3.5 ARG CLEO = 9.3 e Level = 0.0094) $
0 0.005 0.01	0.015 0.02 0	.025 0.03	
$\Gamma\left(\mu^{+}\mu^{-} ight)/\Gamma_{ ext{total}}$			

$\Gamma(\tau^+\tau^-)/\Gamma(\mu^-)$	+μ ⁻)		`	TECN	COMMENT	Γ ₃ /Γ ₄
$1.04 \pm 0.04 \pm 0.05$	<u>EV13</u> 22k	BESSON	, 07	CLEO	$e^+e^- \rightarrow$	$\Upsilon(2S)$
$\Gamma(T(1 c) - 0) / \Gamma$						С./Г
$1(7(13)\pi^{2})/1$	total					16/1
<u>VALUE (units 10^{-3})</u>	<u> CL%</u>	DOCUMENT IL)	<u>TECN</u>	COMMENT	
• • • We do not	use the followi	ng data for averag	es, fits,	limits, e	etc. • • •	0
< 4	90	¹ TAMPONI	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(1S)\pi^0$
< 18	90	² HE	08A	CLEO	$e^+e^- \rightarrow$	$\ell^+ \ell^- \gamma \gamma$
<110	90	ALEXANDER	R 98	CLE2	$e^+e^- \rightarrow$	$\ell^+ \ell^- \gamma \gamma$
<800	90	LURZ	87	CBAL	$e^+e^- \rightarrow$	$\ell^+ \ell^- \gamma \gamma$
$< 2.3 \times 10^{-2}$ 17.85 × 10 ⁻² ² Authors assum	$^{-4}$ which we m ne B($\Upsilon(1S)$ $ ightarrow$	hultiply by our besite e^+e^-) + B(Υ)	(15) \rightarrow	$\frac{1}{\mu^{+}\mu^{-}}$	$(23) \rightarrow \gamma$ $S) \rightarrow \gamma$ (1 T(1) = 4.96%.	$(13)^{\pi} \pi^{\pi}$)] S) $\pi^{+} \pi^{-}$) =
$\Gamma(\Upsilon(1S)\pi^{0})/\Gamma$	Γ(Υ(15) π ⁺ α	T))	TECN	COMMENT	Γ_6/Γ_1
VALUE (units 10)	<u> </u>		12			r(1c) = 0
<2.5	90	TAMPONI	13	BELL	$e \cdot e \rightarrow$	$I(15)\pi^{\circ}$
$\Gamma(\Upsilon(1S)\eta)/\Gamma_{to}$	otal					Г ₇ /Г
VALUE (units 10^{-4})	<u>CL%</u> EVTS	DOCUMENT ID	TEC	<u>N _COM</u>	IMENT	
2.9 ±0.4 OUR	FIT Error inc	ludes scale factor of	of 2.0.			
2.9 \pm 0.4 OUR /	AVERAGE Er	ror includes scale	factor c	of 1.9. S	ee the ideog	gram below.
$2.39\!\pm\!0.31\!\pm\!0.14$	112	¹ LEES 11	L BAB	BR $\Upsilon(2$	$S) \rightarrow \ell^+ \ell^-$	$^-\eta$
$2.1 \ \begin{array}{c} +0.7 \\ -0.6 \end{array} \pm 0.3$	14	² HE 08	A CLE	EO e+e	$e^- \rightarrow \ell^+ \ell^-$	$-\eta$
• • • We use the	following data	for averages but	not for	fits. • •	•	
$3.55 \pm 0.32 \pm 0.05$	241	³ TAMPONI 13	BEL	L e ⁺ e	$e^- \rightarrow \gamma(1)$	S) n
• • • We do not	use the followi	ng data for averag	es, fits,	limits, e	etc. • • •	-) .
< 9	90 1,	4 AUBERT 08		SR e+	$ \rightarrow \gamma \pi^+ $	$-\pi - \pi 0 \rho + \rho -$
< 28	90	ALEXANDER 98	CLE	$12 e^+e^-$	$e^- \rightarrow \ell^+ \ell^-$	-n
< 50	90	ALBRECHT 87	ARC	$G e^+e^+$	$e^- \rightarrow \pi^+ \tau$	$\tau^{-}\ell^{+}\ell^{-}MM$
< 70	90	LURZ 87	CB/	AL e^+e^-	$e^- \rightarrow \ell^+ \ell^-$	$-(\gamma\gamma, 3\pi^0)$
< 100	90	BESSON 84	CLE	$0 e^+e$	$e^- \rightarrow \pi^+ \tau$	$\tau^{-}\ell^{+}\ell^{-}MM$
< 20	90	FONSECA 84	CUS	SB e+e	$e^- \rightarrow + e^- ($	+ - 0)
¹ Using B(Υ (15 0.05)%. ² Authors assum ³ TAMPONI 13 = (1.99 ± 0. Υ (15) $\pi^+\pi^-$ our second err	$(5) \rightarrow e^+e^-)$ ne B($\Upsilon(1S) \rightarrow$ reports [$\Gamma(\Upsilon(14 \pm 0.11) \times$) = (17.85 ± 0 for is the system	$= (2.38 \pm 0.11)^{6}$ $e^{+}e^{-}) + B(\gamma)^{6}$ $25) \rightarrow \gamma(15) \gamma^{1}_{10}$ $10^{-3} which we related where the second se$	% and $(1S) \rightarrow (\Gamma_{total})$ multiply first ersing ou	$B(\Upsilon(1S)) = \frac{\mu^{+}\mu^{-}}{\mu^{-}} / [B(\Upsilon)] = \frac{\mu^{+}\mu^{-}}{\mu^{-}} $ by our pror is the r best value of the set value of the	$(\gamma\gamma\gamma,\pi)$ $\rightarrow \mu^+\mu^-$ $(25) \rightarrow \gamma$ $(25) \rightarrow \gamma$ best value eir experime alue.	$T(1S)\pi^{+}\pi^{-}) = (2.48 \pm T(1S)\pi^{+}\pi^{-})]$ B($T(2S) \rightarrow$ ent's error and
TUsing $\Gamma_{ee}(\Upsilon)$	(25)) = 0.612	\pm 0.011 keV.				

$\Gamma(J/\psi(1S)\chi_{c0})/\Gamma$	total					Г ₁₀ /Г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<3.4 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)\chi_{c1})/\Gamma$	total					Г11/Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
<1.2 × 10 ⁻⁶	90	YANG	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)\chi_{c2})/\Gamma$	total					Г ₁₂ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<2.0 × 10 ⁻⁶	90	YANG	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)\eta_c(2S))$)/Г _{total}					Г ₁₃ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
<2.5 × 10 ⁻⁶	90	YANG	14	BELL	$e^+e^- ightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)X(3940))$	0))/Γ _{total}					Г ₁₄ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<2.0 × 10 ⁻⁶	90	YANG	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(J/\psi(1S)X(4160))$	D))/Γ _{total}					Г ₁₅ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
$<2.0 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$
$\Gamma(\chi_{c1} \text{ anything})/\Gamma$	total					Г ₁₆ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.24±0.44±0.20	376	JIA	17	BELL	$\Upsilon(2S) ightarrow$	$\gamma J/\psi(1S)$
$\Gamma(\chi_{c1}(1P)^0 X_{tetra})$)/F _{total}					Г ₁₇ /Г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<36.7 × 10 ⁻⁶	90	¹ JIA	17A	BELL	$e^+e^- ightarrow$	hadrons
1				1 1 0 0	10 0 11	

¹ For a tetraquark state X_{tetra} , with mass in the range 1.16–2.46 GeV and width in the range 0–0.3 GeV. Measured 90% CL limits as a function of X_{tetra} mass and width range from 4.4×10^{-6} to 36.7×10^{-6} .

$\Gamma(\chi_{c2} \text{ anything})/\Gamma_{tot}$	al					Г ₁₈ /Г
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	
$2.28 \pm 0.73 \pm 0.34$		JIA	17	BELL	$\Upsilon(2S) ightarrow$	$\gamma J/\psi(1S)$
$\Gamma(\psi(2S)\eta_c)/\Gamma_{total}$						Г ₁₉ /Г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<5.1 × 10 ⁻⁶	90	YANG	14	BELL	$e^+e^- ightarrow$	$\psi(2S)X$
$\Gamma(\psi(2S)\chi_{c0})/\Gamma_{total}$						Г ₂₀ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
$< 4.7 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- \rightarrow$	$\psi(2S)X$

$\Gamma(\psi(2S)\chi_{c1})/\Gamma_{total}$						Г ₂₁ /Г
<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID	14	<u>TECN</u>	$\frac{COMMENT}{2}$	(25) V
Z 2.5 X 10	90	TANG	14	DELL	$e \cdot e \rightarrow$	$\psi(23)$ \wedge
$\Gamma(\psi(2S)\chi_{c2})/\Gamma_{total}$						Г ₂₂ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
<1.9 × 10 ⁻⁶	90	YANG	14	BELL	$e^+e^- \rightarrow$	$\psi(2S)X$
$\Gamma(\psi(2S)n_c(2S))/\Gamma_{+c}$	nt al					Г23/Г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	20/
<3.3 × 10 ⁻⁶	90	YANG	14	BELL	$e^+e^- ightarrow$	$\psi(2S)X$
F(~~() C) V(2040)) /F						Г., /Г
$\psi(z_2) \wedge (3940))/1$	total	DOCUMENT ID		TECN	COMMENT	¹ 24/1
$\sim 2.0 \times 10^{-6}$	00	<u>DOCUMENT ID</u>	1/	<u>TECN</u>	$\frac{COMMENT}{2}$	1/(25) Y
< 3.9 × 10	90	TANG	14	DELL	$e \cdot e \rightarrow$	$\psi(23)$ \wedge
$\Gamma(\psi(2S)X(4160))/\Gamma$	total					Г ₂₅ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 3.9 \times 10^{-6}$	90	YANG	14	BELL	$e^+e^- ightarrow$	$\psi(2S)X$
$\Gamma(7 (3000) + 7 (300)$	л)=) /г					Eac/E
$\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_{j$		DOCUMENT ID		TECN	COMMENT	126/1
<1 0 x 10 ⁻⁶	<u>00</u>	1 пд	18	<u>RELI</u>	$\Upsilon(2S) \rightarrow$	$I/a/2\pi \pm X$
1 Assuming B(7)(390)	$0)^{\pm} \rightarrow U^{\prime}$	$(\eta,\pi^{\pm}) = 1$	10	DELL	r (25) →	J /ψπ X
/(3501)	() / J	$\varphi \wedge j = 1$				
$\Gamma(Z_c(4200)^+ Z_c(420)^+)$	0) [_])/Γ _{tot}	al				Г ₂₇ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<16.7 × 10 ⁻⁰	90	¹ JIA	18	BELL	$\Upsilon(1S) ightarrow$	$J/\psi \pi^{\pm} X$
¹ Assuming $B(Z_c(4200))$	$(0)^{\pm} \rightarrow J/2$	$\psi \pi^{\pm}$) = 1				
L(2 (3000)= 2 (130	∩) ∓) /г					Гео /Г
VALUE	·) ·) / · tot	DOCUMENT ID		TECN	COMMENT	1 28/1
<7.3 × 10 ⁻⁶	90	¹ IIA	18	BELL	$\Upsilon(25) \rightarrow$	$I/\psi,\pi^{\pm}X$
$1_{\text{Assuming }} B(7)$ (420)	$0)^{\pm} \rightarrow U'$	$(2\pi^{\pm}) - 1 - B$	-0 (7 (3)	2001±_	$\rightarrow I/2/\pi^{\pm}$	5/ \$ 1. 70
/ 350 ming D(2 _C (120)		φπ)=1=Β	(200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 3,ψπ)	•
Γ(X(4050) ⁺ X(4050)) [_])/Γ _{total}	l				Г ₂₉ /Г
VALUE C	<u></u>	DOCUMENT ID	7	<u>ECN</u>	COMMENT	
<13.5 × 10 ⁻⁶ g	90 ¹	JIA 1	18 E	BELL	$\gamma(2S) \rightarrow \chi$	$c_1(1P)\pi^{\pm}X$
¹ Assuming B(X (4050	$)^{\pm} \rightarrow \chi_{c1}$	$(1P)\pi^{\pm})$				
L(X(4320)+ X(4320))-)/г					
	J J/'tota	DOCUMENT ID	т	FCN (OMMENT	1 30/1
<26.7 × 10 ⁻⁶	$\frac{1}{10}$		<u>/</u> 18 F	SFII ($\Gamma(2S) \rightarrow \gamma$	$(1P)_{\pi} \pm x$
	,, , , , , , , , , , , , , , , , , , ,	$(10)^{+}$	L		$\chi_{23} \rightarrow \chi$	CI(11)// X
- Assuming $B(X)$ (4250	$y^- \rightarrow \chi_{c1}$	$(1\mathcal{P})\pi^{\pm})=1$				

	250) ⁺)/1 _t	otal				Г ₃₁ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	7	ECN O	COMMENT	
<27.2 × 10 ^{—6}	90	¹ JIA 18	E E	BELL	$\gamma(2S) \rightarrow \chi_{c1}(2S)$	$(P) \pi^{\pm} X$
¹ Assuming $B(X($	4050) $^{\pm}$ \rightarrow	$\chi_{c1}(1P)\pi^{\pm}) = 1 =$	B(<i>X</i>	(4250) ⁼	$^{\pm} \rightarrow \chi_{c1}(1P)\pi$	·±)
Г(<i>Z_c</i> (4430) ⁺ <i>Z_c</i> ((4430) [_])/I	total				Г ₃₂ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<20.3 × 10 ⁻⁰	90	¹ JIA	18	BELL	$\Upsilon(2S) ightarrow \psi(2S)$	$(2S)\pi^{\pm}X$
¹ Assuming B(<i>Z_c</i>)	$(4430)^{\pm} \rightarrow$	$\psi(2P)\pi^{\pm})=1$				
Г(X(4055) [±] X(4	055) [∓])/Γ _t	otal				Г ₃₃ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<11.1 × 10 ⁻⁶	90	¹ JIA	18	BELL	$\Upsilon(2S) ightarrow \psi(2S)$	$(2S)\pi^{\pm}X$
¹ Assuming $B(X)$	4055) $^{\pm}$ \rightarrow	$\psi(2S)\pi^{\pm})=1$				
$\Gamma(X(4055)^{\pm} Z_c)^{4}$	1 430) [∓])/Γ	total				Г ₃₄ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	•.,
<21.1 × 10 ⁻⁶	90	¹ JIA	18	BELL	$\Upsilon(2S) ightarrow \psi(2S)$	$(2S)\pi^{\pm}X$
¹ Assuming $B(X(4))$	4055) $^{\pm}$ \rightarrow	$\psi(2S)\pi^{\pm})=1=B($	$Z_c(4$	4430) [±]	$\rightarrow \psi(2S)\pi^{\pm})$	
$\Gamma(\overline{{}^{2}H} \text{ anything})/$	/Γ _{total}					Г ₃₅ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	-
$2.78^{+0.30}_{-0.26}$ OUR AV	ERAGE E	rror includes scale fac	tor c	of 1.2.		
$2.64 \pm 0.11 + 0.26$		LEES	14G	BABR	$e^+e^- ightarrow {\overline {}^2_H}$	X
$3.37 \pm 0.50 \pm 0.25$	58	ASNER	07	CLEO	$e^+ e^- ightarrow {\overline {}^2 H}$	X
Γ(ggg)/Γ _{total}						Г ₃₇ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
58.8±1.2	6M	¹ BESSON	06A	CLEO	$\varUpsilon(2S) o had$	rons
¹ Calculated using BESSON 06A an $= (8.6 \pm 0.4)\%$, is negligible and	g the value of PDG 08 value $B(\mu^+ \mu^-) =$ the systema BESSON 06	$\Gamma(\gamma g g)/\Gamma(g g g) =$ alues of $B(\pi^+ \pi^- \Upsilon)$ = (1.93±0.17)%, and atic error is partially of 5A.	(3.18 LS)) R _{ha} corre	8 ± 0.0 = (18.1 drons = lated wi	4 \pm 0.22 \pm 0.4 \pm 0.4)%, B($\pi^{0} \tau$ = 3.51. The statis th that of $\Gamma(\gamma g$	1)% from $r^0 \gamma(1S))$ stical erro $g)/\Gamma_{tota}$
measurement of						
$\Gamma(\gamma g g) / \Gamma(g g g)$)					Г ₃₈ /Г ₃₇
$\Gamma(\gamma g g) / \Gamma(g g g)$ VALUE (units 10 ⁻²)) <u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	Г ₃₈ /Г ₃₇

$\Gamma(\phi K^+ K^-) / \Gamma_{total}$						Г ₃₉ /Г
VALUE (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.58 \pm 0.33 \pm 0.18$	58	SHEN	12A	BELL	$\Upsilon(1S) ightarrow ~2(K^{-1})$	+ <i>K</i> -)

$\Gamma(\omega \pi^+ \pi^-)/\Gamma_{\rm total}$	I	Г ₄₀ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
<2.58	90	SHEN 12A BELL $\Upsilon(1S) \rightarrow 2(\pi^+\pi^-)\pi^0$
$\Gamma(K^*(892)^0 K^- \pi^-)$	++c.c.)/	Γ _{total} Γ ₄₁ /Γ
VALUE (units 10^{-6})	EVTS	DOCUMENT ID TECN COMMENT
$2.32 {\pm} 0.40 {\pm} 0.54$	135	SHEN 12A BELL $\Upsilon(1S) \rightarrow K^+ K^- \pi^+ \pi^-$
$\Gamma(\phi f_2'(1525))/\Gamma_{tc}$	otal	Г ₄₂ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
<1.33	90	SHEN 12A BELL $\Upsilon(1S) \rightarrow 2(K^+K^-)$
$\Gamma(\omega f_2(1270))/\Gamma_{to}$	tal	Г ₄₃ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
<0.57	90	SHEN 12A BELL $\Upsilon(1S) \rightarrow 2(\pi^+\pi^-)\pi^0$
$\Gamma(\rho(770)a_2(1320))$)/Γ _{total}	Г ₄₄ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
<0.88	90	SHEN 12A BELL $\Upsilon(1S) ightarrow 2(\pi^+\pi^-)\pi^0$
$\Gamma(K^*(892)^0 \overline{K}_2^*(14))$	430) ⁰ + c.	c.)/Γ _{total} Γ ₄₅ /Γ
VALUE (units 10^{-6})	EVTS	DOCUMENT ID TECN COMMENT
$1.53 \pm 0.52 \pm 0.19$	32	SHEN 12A BELL $\Upsilon(1S) \rightarrow K^+ K^- \pi^+ \pi^-$
$\Gamma(K_1(1270)^{\pm}K^{\mp})$	/Γ _{total}	Г ₄₆ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
<3.22	90	SHEN 12A BELL $\Upsilon(1S) \rightarrow K^+ K^- \pi^+ \pi^-$
$\Gamma(K_1(1400)^{\pm}K^{\mp})$	/Γ _{total}	Γ ₄₇ /Γ
<i>VALUE</i> (units 10 ⁻⁶)	<u>CL%</u>	DOCUMENT ID TECN COMMENT
<0.83	90	SHEN 12A BELL $\Upsilon(1S) \rightarrow K^+ K^- \pi^+ \pi^-$
$\Gamma(b_1(1235)^{\pm}\pi^{\mp})$	/Γ _{total}	Г ₄₈ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
<0.40	90	SHEN 12A BELL $\Upsilon(1S) ightarrow 2(\pi^+\pi^-)\pi^0$
$\Gamma(ho\pi)/\Gamma_{ ext{total}}$		Г ₄₉ /Г
VALUE (units 10^{-6})	<u>CL%</u>	DOCUMENT ID TECN COMMENT
<1.16	90	SHEN 13 BELL $\Upsilon(2S) \rightarrow \pi^+ \pi^- \pi^0$
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm tot}$	al	Г ₅₀ /Г
VALUE (units 10^{-6})	<u>CL%</u>	DOCUMENT ID TECN COMMENT
<0.80	90	SHEN 13 BELL $\Upsilon(2S) \rightarrow \pi^+ \pi^- \pi^0$

$\Gamma(\omega \pi^{0})/\Gamma_{total}$						Г ₅₁ /Г
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.63	90	SHEN	13	BELL	$\Upsilon(2S) ightarrow \pi$	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
$\Gamma(\pi^+\pi^-\pi^0\pi^0)/$	Γ _{total}					Г ₅₂ /Г
VALUE (units 10^{-6})	EVTS	DOCUMENT ID)	TECN	COMMENT	
$13.0 \pm 1.9 \pm 2.1$	261 ± 37	SHEN	13	BELL	$\Upsilon(2S) ightarrow$	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
$\Gamma(K_S^0 K^+ \pi^- + c$.c.)/Г _{total}					Г ₅₃ /Г
VALUE (units 10^{-6})	CL% EVTS	DOCUMENT	ID	TECN	COMMENT	
$1.14 {\pm} 0.30 {\pm} 0.13$	40 ± 10	SHEN	13	BELL	. $\Upsilon(2S) ightarrow$	$K_{S}^{0} K^{-} \pi^{+}$
• • • We do not us	e the following	data for average	es, fits	, limits,	etc. • • •	0
<3.2	90	¹ DOBBS	12	Ą	$\Upsilon(2S) ightarrow$	$\kappa^0_S \kappa^- \pi^+$
1 Obtained by ana	alyzing CLEO I	II data but not a	uthore	ed by the	e CLEO Colla	aboration.
Γ(<i>K</i> *(892) ⁰ <i>K</i> ⁰ +	- c.c.)/Γ _{total}					Г ₅₄ /Г
VALUE (units 10^{-6})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<4.22	90	SHEN	13	BELL	$\Upsilon(2S) ightarrow$	$\kappa^0_S \kappa^- \pi^+$
Г(К*(892)-К+	+ c.c.)/Γ _{tota}	ł				Г ₅₅ /Г
VALUE (units 10^{-6})	<i>CL%</i>	DOCUMENT ID		TECN	COMMENT	
<1.45	90	SHEN	13	BELL	$\Upsilon(2S) ightarrow$	$\kappa^0_S \kappa^- \pi^+$
$\Gamma(f_1(1285))$ anyth	ing)/Γ _{total}					Г ₅₆ /Г
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$2.20 \pm 1.50 \pm 0.63$	2.9k	JIA	17A	BELL	$e^+e^- \rightarrow$	hadrons
$\Gamma(f_1(1285)X_{tetra})$,)/Γ _{total}					Г ₅₇ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<64.7 × 10 ⁻⁰	90	JIA	17A	BELL	$e^+e^- \rightarrow$	hadrons

For a tetraquark state X_{tetra} , with mass in the range 1.16–2.46 GeV and width in the range 0–0.3 GeV. Measured 90% CL limits as a function of X_{tetra} mass and width range from 7.8 × 10⁻⁶ to 64.7 × 10⁻⁶.

$\Gamma(\text{Sum of 100 exclusive modes})/\Gamma_{\text{total}}$

 Γ_{58}/Γ

VALUE (units 10^{-2})	DOCUMENT ID		COMMENT
0.29±0.03	1,2 DOBBS	12A	$\Upsilon(2S) ightarrow$ hadrons

 $^1\,\text{DOBBS}$ 12A presents individual exclusive branching fractions or upper limits for 100 modes of four to ten pions, kaons, or protons. $^2\,\text{Obtained}$ by analyzing CLEO III data but not authored by the CLEO Collaboration.

$\Gamma(\gamma \chi_{b1}(1P))/\Gamma_{total}$						Г ₅₉ /Г
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
0.069 ± 0.004 OUR AV	407k	ARTUSO	05		a+ a- \	$\sim \mathbf{X}$
$0.069 \pm 0.0012 \pm 0.0041$ $0.069 \pm 0.005 \pm 0.009$	TUTK	EDWARDS	99	CLE2	$\Upsilon(2S) \rightarrow$	$\gamma \chi(1P)$
$0.091 \pm 0.018 \pm 0.022$		ALBRECHT	85E	ARG	$e^+e^- \rightarrow$	$\gamma \text{ conv. X}$
$0.065 \pm 0.007 \pm 0.012$		NERNST	85	CBAL	$e^+e^- \rightarrow$	γX
$0.080\ \pm 0.017\ \pm 0.016$		HAAS	84	CLEO	$e^+e^- \rightarrow$	γ conv. X
0.059 ± 0.014		KLOPFEN	83	CUSB	$e^+e^- \rightarrow$	γX
$\Gamma(\gamma \chi_{b2}(1P))/\Gamma_{total}$						Г ₆₀ /Г
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
		ΔΟΤΗΣΟ	OF		a+ a-)	- V
$0.0724 \pm 0.0011 \pm 0.0040$ 0.074 ± 0.005 ± 0.008	410K		05	CLEO CLE2	$e \cdot e \rightarrow \gamma(2S) \rightarrow \gamma(2S$	$\gamma \wedge$
$0.014 \pm 0.003 \pm 0.000$ $0.098 \pm 0.021 \pm 0.024$		ALBRECHT	99 85F	ARG	$P(25) \rightarrow P(25) \rightarrow P(25)$	$\gamma_{\chi}(1)$
$0.058 \pm 0.007 \pm 0.010$		NERNST	85	CBAL	$e^+e^- \rightarrow$	γX
$0.102 \pm 0.018 \pm 0.021$		HAAS	84	CLEO	$e^+e^- \rightarrow$	γ conv. X
0.061 ± 0.014		KLOPFEN	83	CUSB	$e^+e^- \rightarrow$	γX
$\Gamma(\gamma \chi_{b0}(1P))/\Gamma_{total}$						Г ₆₁ /Г
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	•=/
0.038 ±0.004 OUR AV	ERAGE					
$0.0375 \pm 0.0012 \pm 0.0047$	198k	ARTUSO	05	CLEO	$e^+e^- \rightarrow$	γX
$0.034 \pm 0.005 \pm 0.006$		EDWARDS	99	CLE2	$\Upsilon(2S) \rightarrow$	$\gamma \chi(1P)$
$0.064 \pm 0.014 \pm 0.016$		ALBRECHT	85E	ARG	$e^+e^- \rightarrow + -$	$\gamma \operatorname{conv.} X$
$0.036 \pm 0.008 \pm 0.009$		NERNSI	85	CBAL	$e e \rightarrow + - + - + - + - + + - + + - + + + + +$	γX
• • • We do not use the	following d	HAAS ata for averages.	64 fits.	Imits. et	$e \cdot e \rightarrow$	$\gamma \operatorname{conv.} \mathbf{X}$
0.035 ± 0.014	0	KLOPFEN	83	CUSB	$e^+e^- ightarrow$	γX
$\Gamma(\gamma f_0(1710))/\Gamma_{total}$						[62/[
$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	- 02/ -
<59	90 1	ALBRECHT	89	ARG	$\Upsilon(2S) \rightarrow T$	$\gamma K^+ K^-$
• • • We do not use the	following d	ata for averages,	fits, I	imits, e	tc. ● ● ●	1
< 5.9	90 2	ALBRECHT	89	ARG	$\Upsilon(2S) ightarrow V$	$\gamma \pi^+ \pi^-$
1 Re-evaluated assumin	g B(<i>f</i> ₀ (1710	$(0) \rightarrow K^+ K^-)$	= 0.1	9.		
² Includes unknown bra	nching ratio	o of $f_0(1710) \rightarrow$	$\pi^+ \tau$	r [—] .		
$\Gamma(\gamma f_2'(1525))/\Gamma_{\text{total}}$						Г ₆₃ /Г
VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT	
<53	90 1	ALBRECHT	89	ARG	$\Upsilon(2S) ightarrow V$	$\gamma K^+ K^-$
¹ Re-evaluated assumin	g B(<i>f</i> [/] ₂ (152	$(5) \rightarrow K\overline{K}) = ($).71.		~ /	
Γ(γ f ₂ (1270))/Γ _{τατα}	_					
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	•1 /
<24.1	90 1	ALBRECHT	89	ARG	$\gamma(2S) \rightarrow \gamma(2S)$	$\gamma \pi^+ \pi^-$
$\frac{1}{1} _{\text{sing } R(f_{1}(1), \mathbb{R})} $	$(\pi \pi) = 0.0$	1	55	,	. (20)	
Using $D(12(1210) \rightarrow$	$\pi\pi j = 0.8$	ч.				
https://pdg.lbl.gov		Page 14		Create	ed: 5/31/2	2023 09:10

Г(<i>ү fյ</i> (2220))/Г _{to}	otal					Г ₆₅ /Г
VALUE (units 10^{-5})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
• • • We do not use	e the followin	g data for average	es, fits,	limits,	etc. ● ● ●	
<6.8	90	¹ ALBRECHT	89	ARG	$\Upsilon(2S) \rightarrow \gamma P$	<i>к</i> + <i>к</i> −
¹ Includes unknowi	n branching r	atio of <i>f_J</i> (2220) -	$\rightarrow K^+$	⁻ <i>K</i> [−] .		
$\Gamma(\gamma \eta_c(1S))/\Gamma_{tota}$	h					Г ₆₆ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<2.7 × 10 ⁻⁵	90	WANG	11 B	BELL	$\Upsilon(2S) ightarrow \gamma \Sigma$	(
$\Gamma(\gamma \chi_{c0})/\Gamma_{total}$						Г ₆₇ /Г
VALUE	<u> </u>	DOCUMENT ID	115	<u>TECN</u>	<u>COMMENT</u>	/
<1.0 × 10 ⁻⁴	90	WANG	11B	BELL	$T(2S) \rightarrow \gamma \gamma$	K
$\Gamma(\gamma \chi_{c1}) / \Gamma_{total}$						Г ₆₈ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<3.6 × 10 ⁻⁶	90	WANG	11B	BELL	$\Upsilon(2S) ightarrow \gamma \Sigma$	<
$\Gamma(\gamma \chi_{c2})/\Gamma_{total}$						Г ₆₉ /Г
VALUE F	<u>CL%</u>	<u>DOCUMENT ID</u>		TECN	COMMENT	
<1.5 × 10 ⁻⁵	90	WANG	11B	BELL	$\Upsilon(2S) ightarrow \gamma \Sigma$	<
Г(ү <i>ҳ_{с1}(3872))/</i> Г	total					Г ₇₀ /Г
VALUE	<u> </u>	<u>DOCUMENT ID</u>	11-	<u>TECN</u>	<u>COMMENT</u>	/
<2.1 × 10 °	90	+ WANG	TIR	BELL	$I(25) \rightarrow \gamma \gamma$	
$\pi^{+}\pi^{-}J/\psi(1S))$ $\pi^{+}\pi^{-}J/\psi(1S))$	ports [I (7 ($] < 0.8 \times 1$ $= 3.8 \times 10^{-1}$	$25) \rightarrow \gamma \chi_{c1}$ 0^{-6} which we di -2.	(3872) vide b)/I tota y our be] × [$B(\chi_{c1})$ est value $B(\chi_{c1})$	$(3872) \rightarrow$ $(3872) \rightarrow$
$\Gamma(\gamma \chi_{c1}(3872), \chi_{c1})$	c1 $ ightarrow \pi^+\pi^-$	$-\pi^0 J/\psi)/\Gamma_{tot}$	al			Г ₇₁ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	,
<2.4 × 10 ⁻⁰	90	WANG	11B	BELL	$T(2S) \rightarrow \gamma \lambda$	(
$\Gamma(\gamma \chi_{c0}(3915)) \rightarrow$	$\omega J/\psi)/\Gamma_t$			TECN	COMMENT	Г ₇₂ /Г
<2.8 × 10 ⁻⁶	<u> </u>	WANG	11B	BELL	$\Upsilon(2S) \rightarrow \gamma \chi$	<
$\Gamma(\alpha, \alpha, \alpha, \alpha) \rightarrow 0$					(г./г
$(\gamma \chi_{c1}(4140)) \rightarrow$	$\varphi J/\psi)/ _{t}$	otal DOCUMENT ID		TECN	COMMENT	173/1
<1.2 × 10 ⁻⁶	90	WANG	11B	BELL	$\Upsilon(2S) \rightarrow \gamma \Sigma$	(
$\Gamma(\gamma X(4350) ightarrow \phi$	$J/\psi \big)/\Gamma_{ m tot}$	al				Г ₇₄ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	

$\Gamma(\gamma \eta_b(1S))/\Gamma_{to}$	otal				Г ₇₅ /Г
VALUE (units 10^{-4})	CL% EVTS	DOCUMENT	ID <u>TEC</u>	COMMENT	
$5.5^{+1.1}_{-0.9}$ our .	AVERAGE Erro	or includes scale f	factor of 1.2.		
$6.1\substack{+0.6}{-0.7}\substack{+0.9\\-0.7}$	29k	FULSOM	18 BE	LL $\Upsilon(2S) ightarrow$	γX
$3.9\!\pm\!1.1^{+1.1}_{-0.9}$	13 ± 5 k	¹ AUBERT	09AQ BA	BR $\Upsilon(2S) ightarrow$	γX
• • • We do not u	se the following	data for averages	s, fits, limits,	etc. • • •	
<21	90	LEES	11J BA	BR $\Upsilon(2S) ightarrow$	$X\gamma$
< 8.4	90	¹ BONVICINI	10 CLI	EO $~~ \varUpsilon(2S) ightarrow$	γX
< 5.1	90	² ARTUSO	05 CLI	$EO e^+e^- \rightarrow$	γX
¹ Assuming $\Gamma_{\eta_b}($	1S) = 10 MeV.				
² Superseded by	BONVICINI 10.				
$\Gamma(\alpha n, (1S) \rightarrow \alpha$	Sum of 26 eve	lusive modes) /	Γ		
				COMMENT	· 76/ ·
<u>value</u>	<u>CL%</u>		12 RELL	$\gamma(2S) \rightarrow \gamma$	hadrong
<5.7 × 10	90	SANDILIA	13 DELL	$I(23) \rightarrow \gamma$	naurons
$\Gamma(\gamma X_{b\overline{b}} \rightarrow \gamma Su)$	um of 26 exclus	sive modes)/Γ _t	otal		Г ₇₇ /Г
VALUE (units 10^{-6})	CL% EVTS	DOCUMENT	ID TEC	CN <u>COMMENT</u>	
< 4.9	90	SANDILYA	13 BE	LL $\gamma(2S) \rightarrow$	γ hadrons
• • • We do not u	se the following	data for averages	s, fits, limits,	etc. • • •	
$46.2^{+29.7}_{-14.2}{\pm}10.0$	6 10	¹ DOBBS	12	$\Upsilon(2S) ightarrow$	γ hadrons
1 Obtained by an	alyzing CLEO II	II data but not au	thored by th	e CLEO Collab	oration.
$\Gamma(\gamma X \to \gamma + \geq (1.5 \text{ GeV} <$	4 prongs)/ Γ_{tc}	otal			Г ₇₈ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT	
<1.95	95	ROSNER	07A CLEO	$e^+e^- \rightarrow \gamma$	X
$\Gamma(\gamma A^0 \rightarrow \gamma had)$ (0.3 GeV <	rons)/Γ _{total} m _{A⁰} < 7 GeV)				Г ₇₉ /Г
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
$< 8 \times 10^{-5}$	90	¹ LEES	11H BABR	$\Upsilon(2S) ightarrow \gamma$	hadrons
1 For a narrow so range 0.3–7 Ge to $8 imes 10^{-5}$.	calar or pseudos V. Measured 90	calar, A ⁰ , excludi % CL limits as a	ng known res function of <i>i</i>	sonances, with m _A 0 range fron	mass in the n $1 imes 10^{-6}$
$\Gamma(\gamma A^0 \to \gamma \mu^+)$	μ [_])/Γ _{total}				Г ₈₀ /Г
VALUE (units 10^{-6})		CUMENT_ID	<u>TECN</u> COI	MMENT	
<8.3	90 ¹ AU	IBERT 09z	BABR e^+	$e^- \rightarrow A^0 \rightarrow$	$\gamma \mu^+ \mu^-$
¹ For a narrow sc J/ψ and $\psi(2S)$	alar or pseudosca). Measured 90%	alar, A ⁰ , with mas % CL limits as a f	s in the range function of <i>m</i>	e 212–9300 Me A ⁰ range from	V, excluding 0.26–8.3 $ imes$

 10^{-6} .

— LEPTON FAMILY NUMBER (LF) VIOLATING MODES —

$\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{total}$						Г ₈₁ /Г
VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT	
<3.2	90	LEES	10 B	BABR	$e^+e^- \rightarrow$	$e^{\pm}\tau^{\mp}$
$\Gamma(\mu^{\pm} au^{\mp}) / \Gamma_{ ext{total}}$						Г ₈₂ /Г
VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT	
< 3.3	90	LEES	10 B	BABR	$e^+e^- \rightarrow$	$\mu^{\pm} \tau^{\mp}$
\bullet \bullet \bullet We do not use the	following d	ata for averages	, fits,	limits, e	tc. • • •	
<14.4	95	LOVE	08A	CLEO	$e^+e^- ightarrow$	$\mu^{\pm} \tau^{\mp}$

$\Upsilon(2S)$ Cross-Particle Branching Ratios

$B(\varUpsilon(2S) \to \pi^+\pi^-) \times B(\varUpsilon(3S) \to \varUpsilon(2S)X)$								
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT			
$1.78 {\pm} 0.02 {\pm} 0.11$	906k	LEES	11C	BABR	$e^+e^- \rightarrow \pi^+\pi^- X$			

$\Upsilon(2S)$ REFERENCES

SHAMOV	23	PL B839 137766	A.G. Shamov. O.L. Rezanova	(NOVO, NOVOU)
FULSOM	18	PRL 121 232001	B.G. Fulsom <i>et al.</i>	(BELLE Collab.)
JIA	18	PR D97 112004	S. Jia et al.	(BELLE Collab.)
JIA	17	PR D95 012001	S. Jia et al.	(BELLE Collab.)
JIA	17A	PR D96 112002	S. Jia et al.	(BELLE Collab.)
LEES	14G	PR D89 111102	J.P. Lees <i>et al.</i>	(BABAR Collab.)
YANG	14	PR D90 112008	S.D. Yang et al.	(BELLE Collab.)
SANDILYA	13	PRL 111 112001	S. Sandilva <i>et al.</i>	(BELLE Collab.)
SHEN	13	PR D88 011102	C.P. Shen <i>et al</i>	(BELLE Collab.)
TAMPONI	13	PR D87 011104	U Tamponi <i>et al</i>	(BELLE Collab.)
DOBBS	12	PRI 109 082001	S Dobbs et al	
DOBBS	12A	PR D86 052003	S Dobbs et al	
SHEN	12A	PR D86 031102	C P Shen et al	(BELLE Collab.)
LEES	110	PR D84 011104	IP Lees et al	(BABAR Collab.)
LEES	11H	PRI 107 221803	IP Lees et al	(BABAR Collab.)
LEES	111	PR D84 072002	IP Lees et al	(BABAR Collab.)
LEES	111	PR D84 092003	IP Lees et al	(BABAR Collab.)
WANG	11B	PR D84 071107	XI Wang et al	(BELLE Collab.)
BONVICINI	10	PR D81 031104	G Bonvicini <i>et al</i>	(CLEO Collab.)
LEES	10B	PRI 104 151802	IP Lees et al	(BABAR Collab.)
AUBERT	09AQ	PRL 103 161801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09Z	PRL 103 081803	B. Aubert <i>et al.</i>	(BABAR Collab.)
BHARI	09	PR D79 011103	S.R. Bhari <i>et al</i>	(CLEO Collab.)
AUBERT	08BP	PR D78 112002	B Aubert et al	(BABAR Collab.)
HF	08A	PRI 101 192001	Q He et al	(CLEO Collab.)
LOVE	08A	PRL 101 201601	W. Love <i>et al.</i>	(CLEO Collab.)
PDG	08	PL B667 1	C. Amsler <i>et al.</i>	(PDG Collab.)
ASNER	07	PR D75 012009	D.M. Asner <i>et al.</i>	(CLEO Collab.)
BESSON	07	PRL 98 052002	D. Besson <i>et al.</i>	(CLEO Collab.)
ROSNER	07A	PR D76 117102	J.L. Rosner <i>et al.</i>	(CLEO Collab.)
BESSON	06A	PR D74 012003	D. Besson <i>et al.</i>	(CLEO Collab.)
ROSNER	06	PRL 96 092003	J.L. Rosner <i>et al.</i>	(CLEO Collab.)
ADAMS	05	PRL 94 012001	G.S. Adams et al.	(CLEO Collab.)
ARTUSO	05	PRL 94 032001	M. Artuso <i>et al.</i>	(CLEO Collab.)
ARTAMONOV	00	PL B474 427	A.S. Artamonov <i>et al.</i>	,
EDWARDS	99	PR D59 032003	K.W. Edwards <i>et al.</i>	(CLEO Collab.)
ALEXANDER	98	PR D58 052004	J.P. Alexander et al.	(CLEO Collab.)
BARU	96	PRPL 267 71	S.E. Baru <i>et al.</i>	(NOVO)
KOBEL	92	ZPHY C53 193	M. Kobel <i>et al.</i>	(Crystal Ball Collab.)

https://pdg.lbl.gov

Created: 5/31/2023 09:10

MASCHMANN	90	ZPHY C46 555	W.S. Maschmann et al.	(Crystal Ball Collab.)
ALBRECHT	89	ZPHY C42 349	H. Albrecht et al.	(ARGUS Collab.)
KAARSBERG	89	PRL 62 2077	T.M. Kaarsberg et al.	(CUSB Collab.)
BUCHMUEL	88	HE e^+e^- Physics 412	W. Buchmueller, S. Coo	per (HANN, DESY, MIT)
Editors: A.	Ali an	id P. Soeding, World Scie	ntific, Singapore	
JAKUBOWSKI	88	ZPHY C40 49	Z. Jakubowski <i>et al.</i>	(Crystal Ball Collab.) IGJPC
ALBRECHT	87	ZPHY C35 283	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)
LURZ	87	ZPHY C36 383	B. Lurz <i>et al.</i>	(Crystal Ball Collab.)
BARU	86B	ZPHY C32 622 (erratum)S.E. Baru <i>et al.</i>	(NOVO)
ALBRECHT	85	ZPHY C28 45	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	85E	PL 160B 331	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
GELPHMAN	85	PR D32 2893	D. Gelphman <i>et al.</i>	(Crystal Ball Collab.)
KURAEV	85	SJNP 41 466	E.A. Kuraev, V.S. Fadin	(NOVO)
		Translated from YAF 41	733.	
NERNST	85	PRL 54 2195	R. Nernst <i>et al.</i>	(Crystal Ball Collab.)
ARTAMONOV	84	PL 137B 272	A.S. Artamonov <i>et al.</i>	(NOVO)
BARBER	84	PL 135B 498	D.P. Barber <i>et al.</i>	
BESSON	84	PR D30 1433	D. Besson <i>et al.</i>	(CLEO Collab.)
FONSECA	84	NP B242 31	V. Fonseca et al.	(CUSB Collab.)
GILES	84B	PR D29 1285	R. Giles <i>et al.</i>	(CLEO Collab.)
HAAS	84	PRL 52 799	J. Haas <i>et al.</i>	(CLEO Collab.)
HAAS	84B	PR D30 1996	J. Haas <i>et al.</i>	(CLEO Collab.)
KLOPFEN	83	PRL 51 160	C. Klopfenstein et al.	(CUSB Collab.)
ALBRECHT	82	PL 116B 383	H. Albrecht et al.	(DESY, DORT, HEIDH+)
NICZYPORUK	81B	PL 100B 95	B. Niczyporuk et al.	(LENA Collab.)
NICZYPORUK	81C	PL 99B 169	B. Niczyporuk et al.	(LENA Collab.)
BOCK	80	ZPHY C6 125	P. Bock et al.	(HEIDP, MPIM, DESY, HAMB)