LEPTONS

е

Mass $m = (548.579909065 \pm 0.00000016) \times 10^{-6}$ u Mass $m = 0.51099895000 \pm 0.00000000015$ MeV $|m_{e^+} - m_{e^-}|/m < 8 \times 10^{-9}$, CL = 90% $|q_{e^+} + q_{e^-}|/e < 4 \times 10^{-8}$ Magnetic moment anomaly $(g-2)/2 = (1159.65218062 \pm 0.00000012) \times 10^{-6}$ $(g_{e^+} - g_{e^-}) / g_{average} = (-0.5 \pm 2.1) \times 10^{-12}$ Electric dipole moment $d < 0.11 \times 10^{-28}$ ecm, CL = 90% Mean life $\tau > 6.6 \times 10^{28}$ yr, CL = 90% ^[a]

 $J = \frac{1}{2}$

μ

$J = \frac{1}{2}$

Mass $m = 0.1134289259 \pm 0.000000025$ u Mass $m = 105.6583755 \pm 0.000023$ MeV Mean life $\tau = (2.1969811 \pm 0.000022) \times 10^{-6}$ s $\tau_{\mu^+}/\tau_{\mu^-} = 1.00002 \pm 0.0008$ $c\tau = 658.6384$ m Magnetic moment anomaly $(g-2)/2 = (11659206 \pm 4) \times 10^{-10}$ $(g_{\mu^+} - g_{\mu^-}) / g_{average} = (-0.11 \pm 0.12) \times 10^{-8}$ Electric dipole moment $|d| < 1.8 \times 10^{-19}$ ecm, CL = 95%

Decay parameters [b]

$$\begin{split} \rho &= 0.74979 \pm 0.00026 \\ \eta &= 0.057 \pm 0.034 \\ \delta &= 0.75047 \pm 0.00034 \\ \xi P_{\mu} &= 1.0009 \substack{+0.0016 \ [c]} \\ \xi P_{\mu} \delta / \rho &= 1.0018 \substack{+0.0016 \ [c]} \\ \xi' &= 1.00 \pm 0.04 \\ \xi'' &= 0.98 \pm 0.04 \\ \alpha / A &= (0 \pm 4) \times 10^{-3} \\ \alpha' / A &= (-10 \pm 20) \times 10^{-3} \\ \beta / A &= (4 \pm 6) \times 10^{-3} \\ \beta' / A &= (2 \pm 7) \times 10^{-3} \\ \overline{\eta} &= 0.02 \pm 0.08 \end{split}$$

 μ^+ modes are charge conjugates of the modes below.

μ^- DECAY MODES	Fraction	(Γ _i /Γ)	Confidence level	р (MeV/c)						
$ \frac{e^{-}\overline{\nu}_{e}\nu_{\mu}}{e^{-}\overline{\nu}_{e}\nu_{\mu}\gamma} $	$pprox 100\%$ [d] (6.0 \pm 0).5) × 10 ⁻⁸	3	53 53						
$e^-\overline{\nu}_e \nu_\mu e^+ e^-$	[e] (3.4±0	$(0.4) \times 10^{-5}$	i i	53						
Lepton Family number (LF) violating modes										
$e^- \nu_e \overline{ u}_\mu$ LF	[f] < 1.2	%	90%	53						
$e^-\gamma$ LF	< 4.2	imes 10 ⁻¹	.3 90%	53						
$e^-e^+e^-$ LF	< 1.0	$ imes$ 10 $^{-1}$.2 90%	53						
$e^- 2\gamma$ LF	< 7.2	imes 10 ⁻¹	.1 90%	53						

au

$$J = \frac{1}{2}$$

 $\begin{array}{l} \text{Mass } m = 1776.86 \pm 0.12 \ \text{MeV} \\ (m_{\tau^+} - m_{\tau^-})/m_{\text{average}} \ < \ 2.8 \times 10^{-4}, \ \text{CL} = 90\% \\ \text{Mean life } \tau = (290.3 \pm 0.5) \times 10^{-15} \ \text{s} \\ c\tau = 87.03 \ \mu\text{m} \\ \text{Magnetic moment anomaly} > -0.052 \ \text{and} \ < 0.013, \ \text{CL} = 95\% \\ \text{Re}(d_{\tau}) = -0.185 \ \text{to} \ 0.061 \times 10^{-16} \ e \ \text{cm}, \ \text{CL} = 95\% \\ \text{Im}(d_{\tau}) = -0.103 \ \text{to} \ 0.0230 \times 10^{-16} \ e \ \text{cm}, \ \text{CL} = 95\% \end{array}$

Weak dipole moment

 $\begin{array}{l} {\sf Re}(d^w_\tau) < \ 0.50 \times 10^{-17} \ e\,{\sf cm}, \ {\sf CL} = 95\% \\ {\sf Im}(d^w_\tau) < \ 1.1 \times 10^{-17} \ e\,{\sf cm}, \ {\sf CL} = 95\% \end{array}$

Weak anomalous magnetic dipole moment

 $\begin{array}{l} \operatorname{Re}(\alpha_{\tau}^{w}) < 1.1 \times 10^{-3}, \, \operatorname{CL} = 95\% \\ \operatorname{Im}(\alpha_{\tau}^{w}) < 2.7 \times 10^{-3}, \, \operatorname{CL} = 95\% \\ \tau^{\pm} \rightarrow \pi^{\pm} \mathcal{K}_{S}^{0} \nu_{\tau} \, (\operatorname{RATE} \, \operatorname{DIFFERENCE}) \, / \, (\operatorname{RATE} \, \operatorname{SUM}) = \\ (-0.36 \pm 0.25)\% \end{array}$

Decay parameters

See the τ Particle Listings for a note concerning τ -decay parameters.

$$\begin{split} \rho(e \text{ or } \mu) &= 0.745 \pm 0.008\\ \rho(e) &= 0.747 \pm 0.010\\ \rho(\mu) &= 0.763 \pm 0.020\\ \xi(e \text{ or } \mu) &= 0.985 \pm 0.030\\ \xi(e) &= 0.994 \pm 0.040\\ \xi(\mu) &= 1.030 \pm 0.059\\ \eta(e \text{ or } \mu) &= 0.013 \pm 0.020\\ \eta(\mu) &= 0.094 \pm 0.073 \end{split}$$

 $(\delta\xi)(e \text{ or } \mu) = 0.746 \pm 0.021$ $(\delta\xi)(e) = 0.734 \pm 0.028$ $(\delta\xi)(\mu) = 0.778 \pm 0.037$ $\xi(\pi) = 0.993 \pm 0.022$ $\xi(\rho) = 0.994 \pm 0.008$ $\xi(a_1) = 1.001 \pm 0.027$ $\xi(\text{all hadronic modes}) = 0.995 \pm 0.007$ $\overline{\eta}(\mu) = -1.3 \pm 1.7$ $(\xi\kappa)(e \text{ or } \mu) \text{ PARAMETER} = 0.5 \pm 0.4$ $(\xi\kappa)(e) = -0.4 \pm 1.2$ $(\xi\kappa)(\mu) = 0.8 \pm 0.6$

 τ^+ modes are charge conjugates of the modes below. " h^{\pm} " stands for π^{\pm} or K^{\pm} . " ℓ " stands for e or μ . "Neutrals" stands for γ 's and/or π^0 's.

			Scale factor/	<i>p</i>
τ DECAY MODES	ŀ	-raction (I_i/I)	Confidence level	(IVIeV/c)
Modes wit	h one	e charged parti	cle	
particle ⁻ \geq 0 neutrals \geq 0 $K^0 \nu_{ au}$		(85.24 \pm 0.06)%	-
("1-prong")				
particle ⁻ \geq 0 neutrals \geq 0 $K_L^0 \nu_{\tau}$		(84.58 ± 0.06))%	-
$\mu^- \overline{ u}_\mu u_ au$	[g]	(17.39 \pm 0.04)%	885
$u^{-}\overline{u}$ $u \circ$	[_]		10-3	005

$\mu \nu \mu \nu \tau$		000
$\mu^- \overline{ u}_\mu u_ au \gamma$	[e] (3.67 \pm 0.08) $ imes$ 10 $^{-3}$	885
$e^-\overline{ u}_e \overline{ u}_{ au}$	$[g]$ (17.82 \pm 0.04)%	888
$e^-\overline{\nu}_e \nu_{\tau} \gamma$	$[e]$ (1.83 \pm 0.05) %	888
$h^- \geq 0 K^0_L \; u_ au$	(12.03 \pm 0.05) %	883
$h^- u_{ au}$	(11.51 \pm 0.05) %	883
$\pi^- u_{ au}$	$[g]$ (10.82 \pm 0.05)%	883
$K^- u_{ au}$	[g] ($6.96~\pm~0.10$) $ imes 10^{-3}$	820
$h^- \geq 1$ neutrals $ u_ au$	(37.01 ± 0.09) %	_
$h^- \geq 1\pi^0 u_ au$ (ex. \mathcal{K}^0)	$(36.51 \pm 0.09)\%$	_
$h^{-}\pi^{0}\nu_{\tau}$	(25.93 \pm 0.09) %	878
$\pi^{-}\pi^{0}\nu_{\tau}$	$[g]$ (25.49 \pm 0.09)%	878
$\pi^{-}\pi^{0}$ non- $ ho(770) u_{ au}$	$(3.0 \pm 3.2) \times 10^{-3}$	878
$K^{-}\pi^{0}\nu_{\tau}$	[g] (4.33 \pm 0.15) $ imes$ 10 $^{-3}$	814
$h^- \geq 2\pi^0 u_ au$	(10.81 \pm 0.09) %	_
$h^- 2\pi^0 \nu_{\tau}$	(9.48 \pm 0.10) %	862
$h^- 2\pi^0 u_ au$ (ex. \mathcal{K}^0)	(9.32 \pm 0.10) %	862
$\pi^- 2\pi^0 u_ au$ (ex. K^0)	$[g]$ (9.26 \pm 0.10) %	862
$\pi^- 2\pi^0 u_{ au}$ (ex. ${\cal K}^0$),	$< 9 \times 10^{-3}$ CL=95%	862
$\pi^{-2}\pi^{0}\nu_{\tau}(\mathrm{ex}.K^{0}),$	$< 7 \times 10^{-3}$ CL=95%	862
$K^- 2\pi^0 \nu_{\tau} (\text{ex.} K^0)$	[g] (6.5 \pm 2.2) \times 10 ⁻⁴	796

$h^- \geq 3 \pi^0 u_{ au}$		(1.34	\pm	0.07) %		-
$h^{-} > 3\pi^{0} \nu_{\tau}$ (ex. K^{0})		(1.25	\pm	0.07) %		_
$h^{-}3\pi^{0}\nu_{\tau}$		Ì	1.18	\pm	0.07	,)%		836
$\pi^{-}3\pi^{0}\nu_{-}(e \times K^{0})$	[]	í	1 04	+	0.07)%		836
$K^{-} 3\pi^{0} \mu$ (ex K^{0}	[6]	(1.01		2 1) /0) ~ 1	0-4	765
(α, β)	[8]	(4.0	-	2.1)^-	10	105
$h^{-} 4\pi^{0} \mu (\alpha K^{0})$		(16		0.4	$) \sim 1$	uo-3	200
$h^{-}4\pi^{0}\nu_{\tau}(\text{ex.}K^{0})$	г 1		1.0	±	0.4) × 1	L0 -3	000
$= (1260) \qquad = =$	[g]	(1.1	±	0.4) × 1	L0 °	800
$a_1(1200)\nu_{\tau} \rightarrow \pi \gamma \nu_{\tau}$		(3.8	±	1.5) × 1	10 -	_
$K \geq 0\pi^{\circ} \geq 0K^{\circ} \geq 0\gamma \nu_{\tau}$		(1.552	$2\pm$	0.029) %	2	820
${\it K}^- \ge 1$ ($\pi^{ m o}$ or ${\it K}^{ m o}$ or γ) $ u_{ au}$		(8.59	±	0.28	$) \times 1$	10-3	-
Μα	des	wit	h <i>K</i> ⁽) _{'s}				
K_c^0 (particles) ν_{τ}		(9.43	±	0.28	$) \times 1$	10-3	_
$h^{-}\overline{K}^{0}\nu_{-}$		(9 87	+	0 14	,) × 1	_{I0} –3	812
$\pi - \frac{\nu_{\tau}}{K^0} \nu$	[]]	(8 38	- +	0.14) ~ 1	10 ⁻³	812
$\pi - \frac{\kappa}{\kappa} 0^{\nu} \tau$	[8]	(5.30		2 1) ~ 1	10 ⁻⁴	812
$(non-K^*(892)^-)_V$		(5.4	-	2.1)^-	10	012
$\kappa^{-}\kappa^{0}\nu$	[]]	(1 / 86	5+	0.034) ~ 1	_{IO} -3	737
$\kappa^{-}\kappa^{0} > 0\pi^{0}\mu$	[8]	(2 00	/	0.034) ~ 1	10-3	737
$h - \overline{K}_{0} = 0$		(5 3 2	 	0.07) ^ -) ~ 1	10 10-3	70/
$\pi - \frac{1}{K} 0 \pi^0 \mu$	[]		2.52		0.13) ^ 1	10 10 ⁻³	794
$\frac{\pi}{K} 0 \circ \frac{1}{K} u$	[8]	(3.02	Ŧ	0.15) × 1) × 1	10 ⁻³	794 610
$\kappa \rho \nu_{\tau}$	г 1	(2.2	±	0.5) × 1	L0 °	012
$-\overline{\nu}0 > 1 - 0$	[g]	(1.50	±	0.07) × 1	LU ³	085
$\pi \kappa^{\circ} \geq 1\pi^{\circ} \nu_{\tau}$		(4.08	±	0.25) × 1	10 9	_
$\pi \kappa^{\circ} \pi^{\circ} \pi^{\circ} \nu_{\tau} (\text{ex.} \kappa^{\circ})$	[g]	(2.6	±	2.3) × 1		763
$K K^{\circ} \pi^{\circ} \pi^{\circ} \nu_{\tau}$		< ,	1.6			X]	$10^{-4}CL=95\%$	619
$\pi K^{\circ}K^{\circ}\nu_{\tau}$		(1.55	±	0.24) × 1	L0-3	682
π K ^o _S K ^o _S ν_{τ}	[g]	(2.35	±	0.06	$) \times 1$	10-4	682
$\pi^- K^0_S K^0_L \nu_{\tau}$	[g]	(1.08	\pm	0.24	$) \times 1$	10-3	682
$\pi^ K^0_L$ K^0_L $ u_ au$		(2.35	\pm	0.06	$) \times 1$	L0 ⁻⁴	682
$\pi^- K^0 \overline{K}{}^0 \pi^0 u_{ au}$		(3.6	\pm	1.2	$) \times 1$	LO ⁻⁴	614
$\pi^{-}K^{0}_{S}K^{0}_{S}\pi^{0}\nu_{ au}$	[g]	(1.82	\pm	0.21	$) \times 1$	LO ⁻⁵	614
$K^{*-}K^{0}\pi^{0}\nu_{\tau} \rightarrow$		(1.08	±	0.21	$) \times 1$	10-5	_
$\pi^- K^0_c K^{0}_c \pi^0 \nu_{\tau}$		``				,		
$f_1(1285)\pi^-\nu \rightarrow$		(6.8	+	1.5) × 1	₁₀ –6	_
$\pi^{-}K_{0}^{0}K_{0}^{0}\pi^{0}\nu_{-}$		(0.0		1.0	,		
$f_1(1420)\pi^- \mu \rightarrow$		(24	+	0.8) ~ 1	un-6	_
$\pi^{-} K_{0}^{0} K_{0}^{0} \pi^{0} \mu$		C	2.4	1	0.0) ^ 1	10	
$\pi^{-} \kappa^{0} \kappa^{0} \pi^{0} \mu$	[~]	(2 0	_	10		-4	614
$-\kappa_{S}\kappa_{L}\kappa_{\nu_{\tau}}$	[g]	(5.2	т ,	1.2) × 1	10 10-5	014
π <u>n</u> \check{L} <u>n</u> $\check{\nu}_{\tau}$		(1.82	±	0.21) × 1		614
$K^- K_S K_S \nu_{\tau}$		<	6.3			$\times 1$	L0 ⁻ ′CL=90%	466
$K^- K^0_S K^0_S \pi^0 \nu_{\tau}$		<	4.0			$\times 1$	$10^{-7} \text{CL} = 90\%$	337
${\cal K}^{\sf U}h^+h^-h^- \ge 0$ neutrals $ u_ au$		<	1.7			$\times 1$	10^{-3} CL=95%	760

Created: 5/31/2023 09:09

$\Lambda^{\circ} \Pi^{+} \Pi^{-} \Pi^{-} \nu_{\tau}$ g (2.5 ± 2.0)×10 -	760
--	-----

Modes with	thre	e charged	particles		
$h^- h^- h^+ \ge 0$ neutrals $\ge 0 \mathcal{K}_I^0 \nu_{\tau}$		(15.20 \pm	0.06)%		861
$h^- h^- h^+ \geq 0$ neutrals $ u_{ au}$		(14.55 \pm	0.06)%		861
(ex. $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}$)			,		
("3-prong")					
$h^- h^- h^+ \nu_{\tau}$		(9.80 \pm	0.05)%		861
$h^{-} h^{-} h^{+} \nu_{\tau} (\text{ex.} K^{0})$		(9.46 \pm	0.05)%		861
$h^- h^- h^+ u_{ au}$ (ex. K^0, ω)		(9.43 \pm	0.05)%		861
$\pi^-\pi^+\pi^- u_ au$		(9.31 \pm	0.05)%		861
$\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}({ m ex.}K^{0})$		(9.02 \pm	0.05)%		861
$\pi^-\pi^+\pi^- u_ au$ (ex. K^0),		< 2.4	%	CL=95%	861
non-axial vector					
$\pi^-\pi^+\pi^-\nu_{\tau}$ (ex. K ^o , ω)	[g]	(8.99 ±	0.05)%		861
$h^- h^- h^+ \ge 1$ neutrals ν_{τ}		(5.29 ±	0.05)%		_
$h^{-}h^{-}h^{+} \ge 1\pi^{0}\nu_{\tau}$ (ex. K ⁰)		(5.09 ±	0.05)%		_
$h h h' \pi^{0} \nu_{\tau}$		(4.76 ±	0.05)%		834
$n n n' \pi^{0} \nu_{\tau} (\text{ex. } K^{0})$		$(4.57 \pm (2.70)$	0.05)%		834
$n n n' \pi^{\circ} \nu_{\tau}$ (ex. K°, ω)		$(2.79 \pm (1.62))$	0.07)%		834
$\pi \pi \pi \pi \pi^{\circ} \nu_{\tau}$		(4.62 ±	0.05)%		834
$\pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(\text{ex}.\text{K}^{\circ})$	r 1	(4.49 ±	0.05)%		834
$\pi^{-}\pi^{+}\pi^{-}\pi^{+}\nu_{\tau}(\text{ex.K}^{+},\omega)$	[g]	(2.74 ±	0.07)%	-3	834
$\binom{n}{\kappa} \binom{n}{\tau} \frac{n}{2} \geq 2\pi^* \nu_{\tau} (\text{ex.}$		$(5.17 \pm$	$0.31) \times 10$	0	_
$b^{-}b^{-}b^{+}2\pi^{0}\nu$		(505 +	0.31) $\times 10^{-1}$	-3	707
$h^{-}h^{-}h^{+}2\pi^{0}\nu$ (ex K^{0})		$(3.03 \pm (4.05 \pm$	0.31×10^{-10}	-3	797
$h^{-}h^{-}h^{+}2\pi^{0}\nu_{-}(\exp K^{0}\omega n)$	[ø]	$(10) \pm$	$(4) \times 10^{-10}$	-4	797
$h^{-}h^{-}h^{+}3\pi^{0}\nu_{\tau}$	[0]	(2.13 + (2.13 +	$0.30) \times 10^{-1}$	-4	749
$2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. K^{0})		(1.95 ±	$0.30) \times 10^{-10}$	-4	749
$2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. K^{0} , <i>n</i> .		(1.7 ±	0.4) $\times 10^{-1}$	-4	_
$f_1(1285))$		X	,		
$2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. K^{0} , η ,	[g]	(1.4 \pm	2.7) × 10 ⁻	-5	_
$\omega, f_1(1285))$,	,		
$K^- h^+ h^- \ge 0$ neutrals $ u_ au$		(6.29 \pm	0.14) $ imes$ 10 $^-$	-3	794
$K^{-} h^{+} \pi^{-} \nu_{\tau} (\text{ex.} K^{0})$		(4.37 ±	0.07) $\times 10^{-1}$	-3	794
$K^{-} h^{+} \pi^{-} \pi^{0} \nu_{\tau} (\text{ex}.K^{0})$		(8.6 ±	1.2) $\times 10^{-1}$	-4	763
$K^-\pi^+\pi^- \ge 0$ neutrals $ u_ au$		(4.77 ±	0.14) $ imes$ 10 $^-$	-3	794
$K^-\pi^+\pi^- \geq$		(3.73 \pm	0.13) $ imes$ 10 $^-$	-3	794
$0\pi^0 u_ au$ (ex. K^0)					
$K^-\pi^+\pi^- u_ au$		(3.45 \pm	0.07) $ imes$ 10^-	-3	794
$K^-\pi^+\pi^-\nu_\tau(\mathrm{ex}.K_{\mathrm{c}}^0)$		(2.93 \pm	0.07) $\times 10^-$	-3	794
$\mathcal{K}^{-}\pi^{+}\pi^{-} u_{ au}(\mathrm{ex}.\mathcal{K}^{0},\omega)$	[g]	(2.93 \pm	0.07) $ imes$ 10 $^-$	-3	794
$K^- \rho^0 \nu_{\tau} \rightarrow$		(1.4 \pm	0.5) $\times 10^{-1}$	-3	-
$K^- \pi^+ \pi^- u_ au$					

$K^-\pi^+\pi^-\pi^0 u_ au$		(1.31	\pm	0.12) >	10	-3	763
$K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(\text{ex}.K^{0})$		(7.9	\pm	1.2) >	10	-4	763
$K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$ (ex. K^{0} ,	ŋ)	(7.6	\pm	1.2) >	10	-4	763
$K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$ (ex. K^{0} ,	ມ)	(3.7	\pm	0.9) >	10	-4	763
$K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$ (ex. K^{0} ,	ν, η]g]	(3.9	±	1.4) ×	10	-4	763
$K^-\pi^+K^- > 0$ neut. $ u_{ au}$	1,01	<	9			×	10	⁻⁴ CL=95%	685
$K^-K^+\pi^- > 0$ neut. ν_{τ}		(1.49	6±	0.033	3)×	(10-	-3	685
$K^{-}K^{+}\pi^{-}\nu_{\tau}$	[g]	(1.43	$5\pm$	0.027	, 7) ×	10	-3	685
$K^{-}K^{+}\pi^{-}\pi^{0}\nu_{\tau}$	[g]	(6.1	±	1.8) ×	(10-	-5	618
$K^{-}K^{+}K^{-}\nu_{\tau}$	[0]	(2.2	\pm	0.8) ×	(10-	⁻⁵ S=5.4	472
$K^- K^+ K^- \nu_{\tau}$ (ex. ϕ)		<	2.5			, ,	(10-	⁻⁶ CL=90%	_
$K^- K^+ K^- \pi^0 \nu_{\tau}$		<	4.8			×	(10-	⁻⁶ CL=90%	345
$\pi^- K^+ \pi^- > 0$ neut. $ u_ au$		<	2.5			×	10	⁻³ CL=95%	794
$e^-e^-e^+\overline{\nu}_e\nu_{\tau}$		(2.8	±	1.5) >	10	-5	888
$\mu^- e^- e^+ \overline{\nu}_\mu \nu_\tau$		<	3.2			, , ,	10	⁻⁵ CL=90%	885
$\pi^- e^- e^+ \nu_{\tau}$:	seen						883
$\pi^-\mu^-\mu^+\nu_{ au}$		<	1.14			×	10	⁻⁵ CL=90%	870
Madaawi	:+ L £.,		h			مامد			
$2b^{-}2b^{+} > 0$ neutrals u		e ci	narge	a t		ies	. 10-	-4	704
$2\pi^{-1} \geq 0$ fieutrals ν_{τ}		(9.9	±	0.4) ×	10		794
$(ex. N_S \rightarrow \pi^* \pi^*)$									
(5-prong)		(0.00		0.21	١.	. 10-	-4	704
$2\pi^{-}2\pi^{+}\mu$ (ex. K ⁰)		(0.29	Ŧ	0.31) ×	10 -	-4	794
$3\pi^{-}2\pi^{+}\nu_{\tau}(\text{ex.}K^{0},\omega)$	[]	(8.27	±	0.31) >	(10 (10-	-4	794
$5\pi 2\pi^{-} \nu_{\tau}$ (ex. $\Lambda^{-}, \omega, \omega, \ell$	[8]	(1.15	T	0.30) ×	10	-	_
$K^{-}2\pi^{-}2\pi^{+}\mu (\alpha K^{0})$	[~]	(6	<u>т</u> .	10) \	∕ 10 ⁻	-7	716
$K^+ 3\pi^- \pi^+ \mu$	[8]	(50	<u> </u>	12)^	× 10 × 10 ⁻	-6 <u>ci</u> _00%	710
$K = 5\pi - \pi - \pi + \mu$		~	5.0 4 Б			~	× 10 × 10 ⁻	-7 CL $-90%$	529
$3h^{-}2h^{+}\pi^{0}\mu$ (or K^{0})		\leq	4.0		0 11	× ١.	10 × 10	-4	520 746
$3\pi^{-}2\pi^{+}\pi^{0}\mu$ (or K^{0})		(1.00	T	0.11) ×	10- × 10-	-4	740
$3\pi 2\pi^{+}\pi^{-}\nu_{\tau}(\text{ex.}K^{-})$		(1.03	±	0.11) ×	10	_4	740
$3\pi 2\pi^+\pi^-\nu_{\tau}(\text{ex.K}^+,\eta,$		(1.11	±	0.10) >	(10	•	_
(1(1203)) $3\pi^{-}2\pi^{+}\pi^{0}\mu$ (or K^{0} m	[]	(20		0.0	١.	. 10-	-5	
$5\pi - 2\pi + \pi - \nu_{\tau}$ (ex. $\pi - \eta$,	[8]	(5.0	Т	0.9) ×	. 10	-	_
$K^{-}2\pi^{-}2\pi^{+}\pi^{0}\mu$ (ex K^{0})	[]	(1 1	_	0.6	١.	∕ 10 ⁻	-6	657
$K^{+} 3\pi^{-} \pi^{+} \pi^{0} \mu$	[8]	(0	-	0.0)^	× 10 × 10 ⁻	-7 CI -00%	657
$3h^{-}2h^{+}2\pi^{0}\mu$		~	3 1				× 10 × 10 ⁻	-6CL 90%	687
$\sin 2\pi 2\pi \nu_{\tau}$			5.4				. 10	CL—9070	007
Miscellane	ous o	the	r allo	we	d mo	de	5	2	
$(5\pi)^- \nu_{\tau}$		(7.8	±	0.5) >	(10	-3	800
4h $3h^{+} \geq 0$ neutrals ν_{τ}		<	3.0			×	10	-' CL=90%	682
(-prong)								7	
$4h 3h' \nu_{\tau}$		<	4.3			×	(10-	⁻ ' CL=90%	682
4h $^-$ 3h $^+$ π° $ u_{ au}$		<	2.5			×	10	-' CL=90%	612
https://pdg.lbl.gov	Page	6			Сі	reat	ted:	5/31/2023	09:09

$X^-(S=-1) u_ au$		(2.92	±	0.04) 9	%		-
$\mathcal{K}^*(892)^- \geq 0$ neutrals $\geq 0\mathcal{K}^0_{\nu_{\tau}}$		(1.42	±	0.18) 9	%	S=1.4	665
$K^{*}(892)^{-}\nu_{-}$		(1 20	+	0 07) 0	/_	S=1.8	665
$K^*(892)^-\nu_{\pi} \rightarrow \pi^-\overline{K}^0\nu_{\pi}$		(7.82	+	0.26) >	< 10 ⁻³	0 1.0	-
$K^{*}(892)^{0} K^{-} > 0$ neutrals ν_{τ}		(3.2	±	1.4) >	< 10 ⁻³		542
$K^{*}(892)^{0}K^{-}\nu_{\tau}$		(2.1	±	0.4) >	< 10 ⁻³		542
$\overline{K}^*(892)^0 \pi^- \ge 0$ neutrals ν_{τ}		(3.8	±	1.7);	× 10 ⁻³		655
$\overline{K}^{*}(892)^{0}\pi^{-}\nu_{\tau}$		(2.2	±	0.5) >	× 10 ⁻³		655
$(\overline{K}^*(892)\pi)^-\nu_{\tau} \rightarrow$		(1.0	±	0.4) >	× 10 ⁻³		-
$\pi \kappa^{-} \pi^{-} \nu_{\tau}$		(47	I	1 1	١.	· 10-3		447
$K_1(1270) \nu_{\tau}$		(4.7	T	1.1);	× 10 ° × 10 – 3	S_1 7	44 <i>1</i> 225
$N_1(1400) \nu_{\tau}$		(1.7	т т	2.0 1 /) >	× 10 2	5=1.7	222
$K^{*}(1410)^{-} \nu_{\tau}$		(1.5	—	1.4 1.0);	× 10 ⁻³		326
$K_0^*(1430)^- \nu_{ au}$		<	5			>	≺ 10 ⁻⁴ C	L=95%	317
$K_2^*(1430)^- \nu_{ au}$		<	3			>	≺ 10 ⁻³ C	L=95%	315
$\eta \pi^- \nu_{ au}$		<	9.9			>	< 10 ^{−5} C	L=95%	797
$\eta \pi^- \pi^0 \nu_{\tau}$	[g]	(1.39	±	0.07) >	< 10 ⁻³		778
$\eta \pi^- \pi^0 \pi^0 \nu_{\tau}$	[g]	(2.0	±	0.4) >	$ \times 10^{-4} $		746
$\eta K^- \nu_{\tau}$	[g]	(1.55	\pm	0.08) >	< 10 ⁻⁴		719
$\eta K^{*}(892)^{-} \nu_{\tau}$		(1.38	\pm	0.15) >	< 10 ⁻⁴		511
$\eta K^- \pi^0 \nu_{\tau}$	[g]	(4.8	\pm	1.2) >	< 10 ⁻⁵		665
$\eta \underline{K}^- \pi^0 (\text{non-}K^*(892)) \nu_{\tau}$		<	3.5			>	≺ 10 ⁻⁵ C	L=90%	_
$\eta \underline{K}^0 \pi^- \nu_{\tau}$	[g]	(9.4	\pm	1.5) >	< 10 ⁻⁵		661
$\eta K^0 \pi^- \pi^0 \nu_{\tau}$		<	5.0			>	< 10 ^{−5} C	L=90%	590
$\eta K^- K^0 \nu_{\tau}$		<	9.0			>	< 10 ⁻⁶ C	L=90%	430
$\eta \pi^+ \pi^- \pi^- \ge 0$ neutrals ν_{τ}		<	3			>	< 10 ⁻³ C	L=90%	744
$\eta \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} (\text{ex.} K^{0})$	[g]	(2.20	±	0.13) >	< 10 ⁻⁴		744
$\eta \pi^- \pi^+ \pi^- \nu_\tau$ (ex. K ^o , f_1 (1285	5))	(9.9	±	1.6) >	< 10 ⁻⁵		-
$\eta a_1(1260)^- \nu_\tau \rightarrow \eta \pi^- \rho^0 \nu_\tau$		<	3.9			>	≺ 10 ^{—4} C	L=90%	_
$\eta \eta \pi^- \nu_{\tau}$		<	7.4			>	< 10 ⁻⁰ C	L=90%	637
$\eta\eta\pi^{-}\pi^{0}\nu_{\tau}$		<	2.0			>	< 10 ⁻⁴ C	L=95%	559
$\eta\eta\kappa$ ν_{τ}		<	3.0			>	< 10 ⁻⁰ C	L=90%	382
$\eta'(958)\pi \nu_{\tau}$		<	4.0			>	< 10 ⁻⁰ C	L=90%	620
$\eta'(958)\pi \pi^{\circ}\nu_{\tau}$		<	1.2			>	< 10 ⁻⁵ C	L=90%	591
$\eta'(958) \kappa \nu_{\tau}$		< ,	2.4			, >	< 10 ⁻⁰ C	L=90%	495
$\phi \pi \nu_{\tau}$	г 1	(3.4	±	0.6)>	< 10 ⁻⁵		585
$\varphi \wedge \nu_{\tau}$	[g]	(4.4	±	1.0)>	< 10 ⁻⁵	C 1 0	445
$\nu_1(1203)\pi \nu_{\tau}$		(3.9 1 10	±	0.5	$\left \right\rangle$	× 10 '	S=1.9	408
$n_{1}(1205)\pi \nu_{\tau} \rightarrow n_{\tau} - \pi^{+} \pi^{-} \mu$		(1.10	Ť	0.07)>	× 10 .	5=1.3	_
$f_{\mu}(1285)\pi^{-}\mu \rightarrow$	[~ []]	(БЭ	⊥	0.4	١.	× 10−5		-
$3\pi^{-}2\pi^{+}\nu$	[8]	C	J.2	1	0.4) /	× 10		
$\nabla n = n \nu \tau$									

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

π (1300) ⁻ $\nu_{ au} \rightarrow (\rho \pi)^{-} \nu_{ au} \rightarrow$	< 1.0	imes 10 ⁻⁴ CL=90%	_
$(3\pi)^- u_ au$			
$\pi(1300)^- \nu_ au ightarrow$	< 1.9	$\times 10^{-4}$ CL=90%	-
$((\pi\pi)_{S-wave} \pi)^- \nu_{ au} \rightarrow$			
$(3\pi)^- u_{ au}$			
$h^-\omega\geq 0$ neutrals $ u_ au$	(2.40 \pm 0.	08)%	708
$h^- \omega \nu_{ au}$	(1.99 \pm 0.	06)%	708
$\pi^- \omega \nu_{ au}$	$[g]$ (1.95 \pm 0.	06)%	708
$K^- \omega \nu_{ au}$	[g] (4.1 ± 0.	9) $ imes$ 10 ⁻⁴	610
$h^- \omega \pi^0 u_ au$	[g] (4.1 ± 0.	4) $ imes$ 10 ⁻³	684
$h^-\omega 2\pi^0 u_ au$	$(1.4 \pm 0.)$	5) $ imes$ 10 ⁻⁴	644
$\pi^-\omega 2\pi^0 u_ au$	[g] (7.2 ± 1.	6) $ imes$ 10 $^{-5}$	644
$h^- 2\omega \nu_{ au}$	< 5.4	imes 10 ⁻⁷ CL=90%	250
$2h^-h^+\omega\nu_{\tau}$	(1.20 \pm 0.	22) $ imes$ 10 $^{-4}$	641
$2\pi^-\pi^+\omega u_ au$ (ex. $\mathcal{K}^{m 0}$)	[g] (8.4 ± 0.	6) $ imes$ 10 $^{-5}$	641

Lepton Family number (*LF*), Lepton number (*L*), or Baryon number (*B*) violating modes

L means lepton number violation (e.g. $\tau^- \rightarrow e^+ \pi^- \pi^-$). Following common usage, *LF* means lepton family violation *and not* lepton number violation (e.g. $\tau^- \rightarrow e^- \pi^+ \pi^-$). *B* means baryon number violation.

$e^-\gamma$	LF	<	3.3	$\times 10^{-8}$ CL=90%	888
$e^-\gamma\gamma$		<	2.5	$\times 10^{-4}$ CL=90%	888
$\mu^-\gamma$	LF	<	4.2	$\times 10^{-8}$ CL=90%	885
$\mu^-\gamma\gamma$		<	5.8	$\times 10^{-4}$ CL=90%	885
$e^{-\pi^0}$	LF	<	8.0	$\times 10^{-8}$ CL=90%	883
$\mu^{-}\pi^{0}$	LF	<	1.1	$\times 10^{-7}$ CL=90%	880
$e^-K_S^0$	LF	<	2.6	$\times 10^{-8}$ CL=90%	819
$\mu^- K_S^0$	LF	<	2.3	\times 10 ⁻⁸ CL=90%	815
$e^-\eta$	LF	<	9.2	$\times 10^{-8}$ CL=90%	804
$\mu^-\eta_{\perp}$	LF	<	6.5	$\times 10^{-8}$ CL=90%	800
$e^- \rho^0$	LF	<	1.8	$\times 10^{-8}$ CL=90%	719
$\mu^- ho^0$	LF	<	1.2	$\times 10^{-8}$ CL=90%	715
$e^-\omega$	LF	<	4.8	$\times 10^{-8}$ CL=90%	716
$\mu^- \omega$	LF	<	4.7	$\times 10^{-8}$ CL=90%	711
$e^{-}K^{*}(892)^{0}$	LF	<	3.2	$\times 10^{-8}$ CL=90%	665
μ^{-} K*(892) ⁰	LF	<	5.9	$\times 10^{-8}$ CL=90%	659
$e^- \overline{K}^* (892)^0$	LF	<	3.4	$\times 10^{-8}$ CL=90%	665
$\mu^-\overline{K}^*(892)^0$	LF	<	7.0	$\times 10^{-8}$ CL=90%	659
$e^{-}\eta'(958)$	LF	<	1.6	$\times 10^{-7}$ CL=90%	630
$\mu^-\eta^\prime$ (958)	LF	<	1.3	$\times 10^{-7}$ CL=90%	625
$e^{-}f_{0}(980) \rightarrow e^{-}\pi^{+}\pi^{-}$	LF	<	3.2	$\times 10^{-8}$ CL=90%	—
$\mu^{-} f_{0}(980) \rightarrow \mu^{-} \pi^{+} \pi^{-}$	LF	<	3.4	$\times 10^{-8}$ CL=90%	_
$e^-\phi$	LF	<	3.1	\times 10 ⁻⁸ CL=90%	596

$\mu^-\phi$	LF	<	8.4	$\times 10^{-8}$ CL=90%	590
e ⁻ e ⁺ e ⁻	LF	<	2.7	$\times 10^{-8}$ CL=90%	888
$e^-\mu^+\mu^-$	LF	<	2.7	$\times 10^{-8}$ CL=90%	882
$e^+\mu^-\mu^-$	LF	<	1.7	$\times 10^{-8}$ CL=90%	882
$\mu^- e^+ e^-$	LF	<	1.8	$\times 10^{-8}$ CL=90%	885
$\mu^+ e^- e^-$	LF	<	1.5	$\times 10^{-8}$ CL=90%	885
$\mu^-\mu^+\mu^-$	LF	<	2.1	$\times 10^{-8}$ CL=90%	873
$e^{-}\pi^{+}\pi^{-}$	LF	<	2.3	$\times 10^{-8}$ CL=90%	877
$e^+\pi^-\pi^-$	L	<	2.0	$\times 10^{-8}$ CL=90%	877
$\mu^-\pi^+\pi^-$	LF	<	2.1	$\times 10^{-8}$ CL=90%	866
$\mu^+\pi^-\pi^-$	L	<	3.9	$\times 10^{-8}$ CL=90%	866
$e^{-}\pi^{+}K^{-}$	LF	<	3.7	$\times 10^{-8}$ CL=90%	813
$e^{-}\pi^{-}K^{+}$	LF	<	3.1	$\times 10^{-8}$ CL=90%	813
$e^+\pi^-K^-$	L	<	3.2	$\times 10^{-8}$ CL=90%	813
$e^{-}K^{0}_{S}K^{0}_{S}$	LF	<	7.1	$\times 10^{-8}$ CL=90%	736
$e^{-}K^{+}K^{-}$	LF	<	3.4	$\times 10^{-8}$ CL=90%	738
$e^+ K^- K^-$	L	<	3.3	$\times 10^{-8}$ CL=90%	738
$\mu^-\pi^+K^-$	LF	<	8.6	$\times 10^{-8}$ CL=90%	800
$\mu^-\pi^-K^+$	LF	<	4.5	$\times 10^{-8}$ CL=90%	800
$\mu^+\pi^-K^-$	L	<	4.8	$\times 10^{-8}$ CL=90%	800
$\mu^{-}K_{S}^{0}K_{S}^{0}$	LF	<	8.0	$\times 10^{-8}$ CL=90%	696
$\mu^- K^+ K^-$	LF	<	4.4	$\times 10^{-8}$ CL=90%	699
$\mu^+ K^- K^-$	L	<	4.7	$\times 10^{-8}$ CL=90%	699
$e^{-}\pi^{0}\pi^{0}$	LF	<	6.5	$\times 10^{-6}$ CL=90%	878
$\mu^{-}\pi^{0}\pi^{0}$	LF	<	1.4	$\times 10^{-5}$ CL=90%	867
$e^{-}\eta\eta$	LF	<	3.5	$\times 10^{-5}$ CL=90%	699
$\mu^-\eta\eta$	LF	<	6.0	$\times 10^{-5}$ CL=90%	653
$e^{-\pi^{0}\eta}$	LF	<	2.4	$\times 10^{-5}$ CL=90%	798
$\mu^{-}\pi^{0}\eta$	LF	<	2.2	$\times 10^{-5}$ CL=90%	784
<i>pe</i> ⁻ <i>e</i> ⁻	L,B	<	3.0	$\times 10^{-8}$ CL=90%	641
$\overline{p}e^+e^-$	L,B	<	3.0	$\times 10^{-8}$ CL=90%	641
$\overline{p}e^+\mu^-$	L,B	<	2.0	$\times 10^{-8}$ CL=90%	635
$\overline{p}e^{-}\mu^{+}$	L,B	<	1.8	$\times 10^{-8}$ CL=90%	635
$\rho \mu^- \mu^-$	L,B	<	4.0	$\times 10^{-8}$ CL=90%	618
$\overline{\rho}\mu^+\mu^-$	L,B	<	1.8	$\times 10^{-8}$ CL=90%	618
$\overline{P}\gamma$	L,B	<	3.5	$\times 10^{-6}$ CL=90%	641
$\overline{p}\pi^0$	L,B	<	1.5	$\times 10^{-5}$ CL=90%	632
$\overline{p}2\pi^0$	L,B	<	3.3	$\times 10^{-5}$ CL=90%	604
$\overline{p}\eta$	L,B	<	8.9	$\times 10^{-6}$ CL=90%	475
$\overline{p}\pi^0\eta$	L,B	<	2.7	$\times 10^{-5}$ CL=90%	360
$\Lambda\pi^{-1}$	L,B	<	7.2	$\times 10^{-8}$ CL=90%	525
$\overline{\Lambda}\pi^{-}$	L,B	<	1.4	$\times 10^{-7}$ CL=90%	525
e [–] light boson	LF	<	2.7	$\times 10^{-3}$ CL=95%	_
μ^- light boson	LF	<	5	$\times 10^{-3}$ CL=95%	-

Heavy Charged Lepton Searches

L^{\pm} – charged lepton

Mass m > 100.8 GeV, CL = 95% ^[h] Decay to νW .

 L^{\pm} – stable charged heavy lepton

Mass m > 102.6 GeV, CL = 95%

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle Listings. Mass m < 0.8 eV, CL = 90% (tritium decay) Mean life/mass, $\tau/m > 300$ s/eV, CL = 90% (reactor) Mean life/mass, $\tau/m > 7 \times 10^9$ s/eV (solar) Mean life/mass, $\tau/m > 15.4$ s/eV, CL = 90% (accelerator) Magnetic moment $\mu < 0.064 \times 10^{-10} \mu_B$, CL = 90% (solar) + radiochemical)

Number of Neutrino Types

Number $N = 2.996 \pm 0.007$ (Standard Model fits to LEP-SLC data) Number $N = 2.92 \pm 0.05$ (S = 1.2) (Direct measurement of invisible Z width)

Neutrino Mixing

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Masses, Mixing, and Oscillations."

$$\begin{split} & \sin^2(\theta_{12}) = 0.307 \pm 0.013 \\ & \Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ & \sin^2(\theta_{23}) = 0.534 \substack{+0.021 \\ -0.024}} \quad (\text{Inverted order}) \\ & \sin^2(\theta_{23}) = 0.547 \substack{+0.018 \\ -0.024}} \quad (\text{Normal order}) \\ & \Delta m_{32}^2 = (-2.519 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad (\text{Inverted order}) \\ & \Delta m_{32}^2 = (2.437 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad (\text{Normal order}) \\ & \sin^2(\theta_{13}) = (2.20 \pm 0.07) \times 10^{-2} \\ & \delta, \ CP \ \text{violating phase} = 1.23 \pm 0.21 \ \pi \ \text{rad} \quad (\text{S} = 1.3) \\ & \left< \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \right> = (-0.12 \pm 0.25) \times 10^{-3} \ \text{eV}^2 \end{split}$$

NOTES

- [a] This is the best limit for the mode $e^- \rightarrow \nu \gamma$.
- [b] See the review on "Muon Decay Parameters" for definitions and details.
- [c] P_{μ} is the longitudinal polarization of the muon from pion decay. For V-A coupling, $P_{\mu} = 1$ and $\rho = \delta = 3/4$.
- [d] This only includes events with energy of e > 45 MeV and energy of $\gamma > 40$ MeV. Since the $e^- \overline{\nu}_e \nu_\mu$ and $e^- \overline{\nu}_e \nu_\mu \gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [e] See the relevant Particle Listings for the energy limits used in this measurement.
- [f] A test of additive vs. multiplicative lepton family number conservation.
- [g] Basis mode for the τ .
- [h] L^{\pm} mass limit depends on decay assumptions; see the Full Listings.