QUARKS

The u-, d-, and s-quark masses are the $\overline{\mathsf{MS}}$ masses at the scale μ = 2 GeV. The c- and b-quark masses are the $\overline{\text{MS}}$ masses renormalized at the $\overline{\rm MS}$ mass, i.e. $\overline{m}=\overline{m}(\mu=\overline{m})$. The t-quark mass is extracted from event kinematics (see the review "The Top Quark").

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_u = 2.16^{+0.49}_{-0.26}~{
m MeV}$$
 Charge $= \frac{2}{3}~e~~l_z = +\frac{1}{2}$ $m_u/m_d = 0.474^{+0.056}_{-0.074}$

Charge
$$=\frac{2}{3} e \quad I_z = +\frac{1}{2}$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_s = 93.4^{+8.6}_{-3.4}~{
m MeV}~{
m Charge} = -\frac{1}{3}~e~{
m Strangeness} = -1$$
 $m_s~/~((m_u+m_d)/2) = 27.33^{+0.67}_{-0.77}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_c=1.27\pm 0.02~{
m GeV}$$
 Charge $=\frac{2}{3}~e$ Charm $=+1$ $m_b-m_c=3.45\pm 0.05~{
m GeV}$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$m_b = 4.18^{+0.03}_{-0.02} \text{ GeV}$$
 Charge $= -\frac{1}{3} e$ Bottom $= -1$

Created: 5/31/2023 09:09

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ \mathsf{e} \qquad \quad \mathsf{Top} = +1$$

Mass (direct measurements) $m=172.69\pm0.30~{\rm GeV}^{\;[a,b]}~({\rm S}=1.3)$ Mass (from cross-section measurements) $m=162.5^{+2.1}_{-1.5}~{\rm GeV}^{\;[a]}$ Mass (Pole from cross-section measurements) $m=172.5\pm0.7~{\rm GeV}$ $m_t-m_{\overline{t}}=-0.15\pm0.20~{\rm GeV}~({\rm S}=1.1)$ Full width $\Gamma=1.42^{+0.19}_{-0.15}~{\rm GeV}~({\rm S}=1.4)$ $\Gamma(W\,b)/\Gamma(W\,q\,(q=b,\,s,\,d))=0.957\pm0.034~({\rm S}=1.5)$

t-quark EW Couplings

$$\begin{aligned} F_0 &= 0.693 \pm 0.013 \\ F_- &= 0.315 \pm 0.010 \\ F_+ &= -0.005 \pm 0.007 \\ F_{V+A} &< 0.29 \text{, CL} = 95\% \end{aligned}$$

t DECAY MODES		Fraction (Γ_i/Γ)	Confidence leve	р I (MeV/c)
Wq(q = b, s, d)				_
Wb				_
$e u_e b$		(11.10 ± 0.30) %	6	_
μu_{μ} b	$(11.40 \pm 0.20) \%$			
$ au u_{ au}$ b	(10.7 \pm 0.5) %			
q q b	(66.5 ± 1.4)% —			
$\gamma q(q=u,c)$		$[c] < 1.8 \rightarrow$	< 10 ⁻⁴ 95%	_
$\Delta T = 1$ weak neutral current (T1) modes				
Zq(q=u,c)	T1	$[d] < 5 \rightarrow$	< 10 ⁻⁴ 95%	_
Hu	T1	< 1.9	$< 10^{-4}$ 95%	_
Hс	T1	< 7.3	$< 10^{-4}$ 95%	_
$\ell^+ \overline{q} \overline{q}'(q=d,s,b; q'=u,c)$	T1	< 1.6	$< 10^{-3}$ 95%	_
Lepton Family number (LF) violating modes				
$e^{\pm}\mu^{\mp}c$	LF	< 8.9	< 10 ⁻⁷	_
$e^{\pm}\mu^{\mp}u$	LF	< 7	< 10 ⁻⁸	_

Created: 5/31/2023 09:09

b' (4th Generation) Quark, Searches for

```
Mass m > 190 GeV, CL = 95% (p \overline{p}, \text{ quasi-stable } b') Mass m > 1390 GeV, CL = 95% (B(b' \to Zb) = 1) Mass m > 1350 GeV, CL = 95% (B(b' \to Wt) = 1) Mass m > 1570 GeV, CL = 95% (B(b' \to Hb) = 1) Mass m > 46.0 GeV, CL = 95% (e^+e^-, \text{ all decays})
```

t' (4th Generation) Quark, Searches for

```
m(t'(2/3)) > 1280 GeV, CL = 95% (B(t' \rightarrow Zt) = 1) m(t'(2/3)) > 1295 GeV, CL = 95% (B(t' \rightarrow Wb) = 1) m(t'(2/3)) > 1310 GeV, CL = 95% (singlet t') m(t'(2/3)) > 1350 GeV, CL = 95% (t' in a weak isospin doublet (t',b')) m(t'(5/3)) > 1.350 \times 10^3 GeV, CL = 95% (t'(5/3) \rightarrow tW^+)
```

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [d] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 5/31/2023 09:09