$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE MEAN LIFE

Each measurement of the *B* mean life is an average over an admixture of various bottom mesons and baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different *B* mean life.

"OUR EVALUATION" is an average using rescaled values of the data listed below. This is a weighted average of the lifetimes of the five main b-hadron species (B^+ , B^0 , B^0_{sH} , B^0_{sL} , and Λ_b) that assumes the production fractions in Z decays (given at the end of this section) and equal production fractions of B^0_{sH} and B^0_{sL} mesons.

 $VALUE (10^{-12} \text{ s})$ DOCUMENT ID TECN COMMENT **EVTS** 1.5673 ± 0.0029 OUR EVALUATION (Produced by HFLAV) • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABDALLAH 04E DLPH $e^+e^- \rightarrow Z$ $1.570 \pm 0.005 \pm 0.008$ +0.035² ABE 1.533 ± 0.015 CDF $p\overline{p}$ at 1.8 TeV ³ ACCIARRI L3 $e^+e^- \rightarrow Z$ $1.549 \ \pm 0.009 \ \pm 0.015$ 98 ⁴ ACKERSTAFF 97F OPAL $1.611 \pm 0.010 \pm 0.027$ ⁴ ABREU 96E DLPH $e^+e^- \rightarrow Z$ $1.582 \pm 0.011 \pm 0.027$ ⁵ ABREU 96E DLPH $e^+e^- \rightarrow$ $1.575 \pm 0.010 \pm 0.026$ ⁶ BUSKULIC $1.533 \pm 0.013 \pm 0.0229.8 k$ 96F **ALEP** $1.564 \pm 0.030 \pm 0.036$ ⁷ ABE,K **95**B SLD ⁸ ABREU $1.542 \pm 0.021 \pm 0.045$ 94L DLPH $e^+e^- \rightarrow Z$ $^{+\,0.24}_{-\,0.21}$ ⁹ ABREU DLPH $e^+e^- \rightarrow Z$ 1.50 ± 0.03 ¹⁰ ABE 1.46 ± 0.06 ± 0.065344 CDF Repl. by ABE 98B +0.14¹¹ ABRFU 1.23 ± 0.15 188 93D DLPH Sup. by ABREU 94L -0.13¹² ABREU 1.49 ± 0.11 ± 0.12 253 DLPH Sup. by ABREU 94L +0.16¹³ ACTON OPAL $e^+e^- \rightarrow Z$ 1.51 ± 0.11 130 -0.14¹⁴ ACTON $e^+e^- \rightarrow Z$ 93L OPAL $1.523 \pm 0.034 \pm 0.0385372$ ¹⁴ ADRIANI Repl. by ACCIARRI 98 $1.535 \pm 0.035 \pm 0.0287357$ L3 ¹⁵ BUSKULIC 930 ALEP $e^+e^- \rightarrow Z$ $1.511 \pm 0.022 \pm 0.078$ ¹⁶ ABREU 92 1.28 ± 0.10 DLPH Sup. by ABREU 94L ¹⁷ ACTON 1.37 $\pm\,0.07$ ± 0.061354 92 OPAL Sup. by ACTON 93L ¹⁸ BUSKULIC ± 0.03 $\pm\,0.06$ **ALEP** Sup. by BUSKULIC 96F 1.49 +0.19¹⁹ BUSKULIC $e^+e^- \rightarrow Z$ 92G ALEP 1.35 ± 0.05 -0.17²⁰ ADEVA 91H L3 Sup. by ADRIANI 93K 1.32 ± 0.08 ± 0.091386 $+0.31 \\ -0.25$ 21 ALEXANDER 91G OPAL $e^+e^- \rightarrow Z$ 1.32 ± 0.15 37 ²² DECAMP 91c ALEP Sup. by BUSKULIC 92F 1.29 ± 0.06 ± 0.102973 ²³ HAGEMANN JADE $E_{cm}^{ee} = 35 \text{ GeV}$ 90 1.36

1.13	±0.15			24	LYONS	90	RVUE		
1.35	±0.10	±0.24			BRAUNSCH	89 B	TASS	$E_{\rm cm}^{\rm ee}=35$	GeV
0.98	± 0.12	± 0.13			ONG	89	MRK2	$E_{\rm cm}^{ee}=29$	GeV
1.17	$^{+0.27}_{-0.22}$	$^{+0.17}_{-0.16}$			KLEM	88	DLCO	E ^{ee} _{cm} = 29	GeV
	±0.20			25	ASH	87	MAC	$E_{\rm cm}^{ee}=29$	GeV
1.02	$+0.42 \\ -0.39$		301	26	BROM	87	HRS	$E_{\rm cm}^{ee}=29$	GeV

 $^{^{1}}$ Measurement performed using an inclusive reconstruction and B flavor identification technique.

² Measured using inclusive $J/\psi(1S) \rightarrow \mu^{+}\mu^{-}$ vertex.

³ACCIARRI 98 uses inclusively reconstructed secondary vertex and lepton impact parameter.

⁴ ACKERSTAFF 97F uses inclusively reconstructed secondary vertices.

⁵ Combines ABREU 96E secondary vertex result with ABREU 94L impact parameter result.

⁶ BUSKULIC 96F analyzed using 3D impact parameter.

⁷ABE,K 95B uses an inclusive topological technique.

⁸ ABREU 94L uses charged particle impact parameters. Their result from inclusively reconstructed secondary vertices is superseded by ABREU 96E.

⁹ From proper time distribution of $b \to J/\psi(1S)$ anything.

¹⁰ ABE 93J analyzed using $J/\psi(1S) \rightarrow \mu\mu$ vertices.

¹¹ ABREU 93D data analyzed using $D/D^*\ell$ anything event vertices.

¹² ABREU 93G data analyzed using charged and neutral vertices.

 $^{^{13}}$ ACTON 93C analysed using $D/D^*\ell$ anything event vertices.

 $^{^{14}}$ ACTON 93L and ADRIANI 93K analyzed using lepton (e and μ) impact parameter at Z.

¹⁵ BUSKULIC 930 analyzed using dipole method.

 $^{^{16}}$ ABREU 92 is combined result of muon and hadron impact parameter analyses. Hadron tracks gave $(12.7\pm0.4\pm1.2)\times10^{-13}$ s for an admixture of B species weighted by production fraction and mean charge multiplicity, while muon tracks gave $(13.0\pm1.0\pm0.8)\times10^{-13}$ s for an admixture weighted by production fraction and semileptonic branching fraction.

¹⁷ ACTON 92 is combined result of muon and electron impact parameter analyses.

¹⁸ BUSKULIC 92F uses the lepton impact parameter distribution for data from the 1991

¹⁹ BUSKULIC 92G use $J/\psi(1S)$ tags to measure the average b lifetime. This is comparable to other methods only if the $J/\psi(1S)$ branching fractions of the different b-flavored hadrons are in the same ratio.

Using $Z \to e^+ X$ or $\mu^+ X$, ADEVA 91H determined the average lifetime for an admixture of B hadrons from the impact parameter distribution of the lepton.

²¹ Using $Z \to J/\psi(1S)$ X, $J/\psi(1S) \to \ell^+\ell^-$, ALEXANDER 91G determined the average lifetime for an admixture of B hadrons from the decay point of the $J/\psi(1S)$.

²² Using $Z \rightarrow eX$ or μX , DECAMP 91C determines the average lifetime for an admixture of B hadrons from the signed impact parameter distribution of the lepton.

²³ HAGEMANN 90 uses electrons and muons in an impact parameter analysis.

²⁴LYONS 90 combine the results of the *B* lifetime measurements of ONG 89, BRAUN-SCHWEIG 89B, KLEM 88, and ASH 87, and JADE data by private communication. They use statistical techniques which include variation of the error with the mean life, and possible correlations between the systematic errors. This result is not independent of the measured results used in our average.

 $^{^{25}}$ We have combined an overall scale error of 15% in quadrature with the systematic error of ± 0.7 to obtain ± 2.1 systematic error.

²⁶ Statistical and systematic errors were combined by BROM 87.

CHARGED b-HADRON ADMIXTURE MEAN LIFE

VALUE (10	0^{-12} s	DOCUMENT ID	1	TECN	СОММЕІ	ΝΤ
1.72±0.	08±0.06	1 ADAM			e^+e^-	
¹ ADA	.M 95 data analyzed using	g vertex-charge to	echniqu	ue to tag	<i>b</i> -hadror	n charge.
	NEUTRAL <i>b</i> -H	ADRON ADM	IXTU	RE ME	AN LIFE	Ξ
VALUE (10	0^{-12} s	DOCUMENT ID	1	TECN	COMMEI	ΝΤ
1.58±0.	11±0.09	DOCUMENT ID 1 ADAM	95	DLPH	e^+e^-	\rightarrow Z
¹ ADA	M 95 data analyzed using	g vertex-charge to	echniqu	ue to tag	<i>b</i> -hadro	n charge.
	MEAN LIFE RAT	$IO\ au_{charged\ b-}$	hadron	$/ au_{neutr}$	al <i>b</i> —had	ron
VALUE		DOCUMENT ID	1	TECN	COMMEI	NT
1.09 ⁺ 0.	$^{11}_{10} \pm 0.08$	$^{ m 1}$ ADAM				
¹ ADA	.M 95 data analyzed using	g vertex-charge to	echniqu	ue to tag	<i>b</i> -hadroi	n charge.
		$ \Delta au_b / au_b$	Б			
	$rac{ au_{b,\overline{b}}}{\overline{b}}$ and $\left \Delta au_{b} ight $ are the \overline{b} hadrons.					
VALUE	±0.012±0.008	DOCUMENT ID ABBIENDI				
$^{1}Data$	analyzed using both the site hemisphere.					
	\overline{b} PRODUCTION	FRACTIONS	AND	DECA	/ MOD	ES
	The branching fraction in and baryons at energies a (LHC, LEP, Tevatron, Sp. In the following, we assure the LHC, LEP, and at the	bove the $\Upsilon(4S)$. $p = p = p = p = p = p = p = p = p = p $	Only the bra	the highe inching fi	st energy action av	results verages.
	For inclusive branching usually are multiplicities, than one.					
	The modes below are list conjugates. Reactions in mixing.					•
M	/lode		Fract	ion (Γ _i /Ι	_)	Scale factor Confidence leve

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. We no longer provide world averages of the b-hadron production fractions, where results from LEP, Tevatron and LHC are averaged together; indeed the available data (from CDF and LHCb) shows that the fractions depend on the kinematics (in particular the p_T) of the produced b hadron. Hence we would like to list the fractions in Z decays instead, which are well-defined physics observables. The production fractions in $p_{\overline{p}}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b}\to \ B^+) = \mathsf{B}(\overline{b}\to \ B^0) \\ \mathsf{B}(\overline{b}\to \ B^+) + \mathsf{B}(\overline{b}\to \ B^0) + \mathsf{B}(\overline{b}\to \ B^0) + \mathsf{B}(b\to \ b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

$$cor(B_s^0, b\text{-baryon}) = 0.064$$

 $cor(B_s^0, B^{\pm} = B^0) = -0.633$
 $cor(b\text{-baryon}, B^{\pm} = B^0) = -0.813.$

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), \operatorname{Br}(b \to \overline{B}^0))$. We use our own branching fraction notation here, $\operatorname{B}(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

Γ_1	B^+	(40.8 \pm 0.7) %
Γ_2	B^0	(40.8 \pm 0.7) %
Γ_3	B_s^0	(10.0 ± 0.8) %
Γ_4	B_c^+	
Γ_5	<i>b</i> -baryon	(8.4 ± 1.1) %

DECAY MODES

Semileptonic and leptonic modes

Γ ₆	u anything	$(23.1 \pm 1.5)\%$	
Γ_7	$\ell^+ u_\ell$ anything	[a] $(10.69\pm~0.22)~\%$	
Γ ₈	$e^+ u_e$ anything	$(10.86\pm\ 0.35)\%$	
Γ ₉	$\mu^+ u_\mu$ anything	(10.95^{+}_{-} $\stackrel{0.29}{0.25}$) %	
Γ_{10}	$D^-\ell^+ u_\ell$ anything	[a] (2.2 \pm 0.4) %	=1.9
	$D^-\pi^+\ell^+ u_\ell$ anything	$(4.9 \pm 1.9) \times 10^{-3}$	
	$D^-\pi^-\ell^+ u_\ell$ anything	$(2.6 \pm 1.6) \times 10^{-3}$	
Γ_{13}	$\overline{\it D}{}^0\ell^+ u_\ell$ anything	[a] $(6.79 \pm 0.34)\%$	

https://pdg.lbl.gov Page 4 Created: 4/10/2025 13:32

 $\Gamma_{41} D^0 D^*(2010)^{\pm}$ anything

[c] $(3.0 + 1.1 \atop -0.0)\%$

```
D^*(2010)^{\pm}D^{\mp} anything
                                                                                                                   [c] (2.5 + 1.2)\%
\Gamma_{42}
\Gamma_{43} D^*(2010)^{\pm} D^*(2010)^{\mp} anything
                                                                                                                    [c] ( 1.2 \pm 0.4)%
                                                                                                                                (10 \begin{array}{cc} +11 \\ -10 \end{array})\%
\Gamma_{44} \overline{D} D anything
\Gamma_{45} D_2^*(2460)^0 anything
                                                                                                                                 (4.7 \pm 2.7)\%
\Gamma_{46} D_{s}^{-} anything
                                                                                                                                (14.7 \pm 2.1)\%
\Gamma_{47} D_s^+ anything
                                                                                                                                 ( 10.1 \pm 3.1 ) %
\Gamma_{48} \Lambda_c^{\dagger} anything
                                                                                                                                 (7.6 \pm 1.1)\%
\Gamma_{49} = \overline{c}/c anything
                                                                                                                    [d] (116.2 \pm 3.2)\%
                                                                                 Charmonium modes
             J/\psi(1S) anything
                                                                                                                                 ( 1.16\pm~0.10) %
\Gamma_{50}
                                                                                                                                 (3.06\pm 0.30)\times 10^{-3}
             \psi(2S) anything
                                                                                                                                 (3.0 \pm 0.6) \times 10^{-3}
             \chi_{c0}(1P) anything
             \chi_{c1}(1P) anything
                                                                                                                                (5.9 \pm 1.5) \times 10^{-3}
\Gamma_{53}
                                                                                                                                                                                                          S=1.2
                                                                                                                                (1.6 \pm 1.2) \times 10^{-3}
              \chi_{c2}(1P) anything
              \chi_c(2P) anything, \chi_c 	o \phi \phi
                                                                                                                             < 2.8
                                                                                                                                                                         \times 10^{-7}
                                                                                                                                                                                                   CL=95%
\Gamma_{56}
              \eta_c(1S) anything
                                                                                                                            (5.7 \pm 0.7) \times 10^{-3}
             \eta_{m{c}}(2S) anything, \eta_{m{c}} 
ightarrow \phi \phi
                                                                                                                               (4.1 \pm 1.6) \times 10^{-7}
\Gamma_{57}
                \chi_{c1}(3872) anything, \chi_{c1} \rightarrow \phi \phi
                                                                                                                             < 4.5
                                                                                                                                                                         \times 10^{-7}
\Gamma_{58}
                                                                                                                                                                                                    CL=95%
                \chi_{c0}(3915) anything, \chi_{c0} \rightarrow \phi \phi
                                                                                                                                                                         \times 10^{-7}
                                                                                                                                        3.1
                                                                                                                                                                                                   CL=95%
                                                                                       K or K^* modes
                                                                                                                                (3.1 \pm 1.1) \times 10^{-4}
\Gamma_{60}
                \overline{s}\gamma
                                                                                                                                                                    \times 10^{-4}
\Gamma_{61} \overline{s} \overline{\nu} \nu
                                                                                                  B1
                                                                                                                              < 6.4
                                                                                                                                                                                                   CL=90%
\Gamma_{62}^{-} K^{\pm} anything
                                                                                                                                 (74 \pm 6)\%
\Gamma_{63}^{02} K_{S}^{0} anything
                                                                                                                                 (29.0 \pm 2.9)\%
                                                                                            Pion modes
\Gamma_{64} \pi^{\pm} anything
                                                                                                                                 (397
                                                                                                                                                   \pm 21 )%
            \pi^0 anything
                                                                                                                    [d] (280 \pm 60) %
\Gamma_{66} \phi anything
                                                                                                                                 (2.82 \pm 0.23)\%
                                                                                         Baryon modes
\Gamma_{67} p/\overline{p} anything
                                                                                                                                 ( 13.1 \pm 1.1 ) %
\Gamma_{68} \Lambda / \Lambdaanything
                                                                                                                                 (5.9 \pm 0.6)\%
\Gamma_{69}
             b-baryon anything
                                                                                                                                 (10.2 \pm 2.8)\%
\Gamma_{70} \overline{\Lambda}_{b}^{0} anything
\Gamma_{71} \Xi_h^+ anything
                                                                                           Other modes
\Gamma_{72} charged anything
                                                                                                                   [d] (497 \pm 7)\%
                                                                                                                                 ( 1.7 \buildrel + 1.0 \build
Γ<sub>73</sub> hadron<sup>+</sup> hadron<sup>-</sup>
                                                                                                                                 (7 \pm 21) \times 10^{-3}
\Gamma_{74} charmless
```

$\Delta B = 1$ weak neutral current (B1) modes

 Γ_{75} e^+e^- anything $$\rm B1$$ < 3.2 $\times\,10^{-4}$ CL=90% Γ_{77} $\nu\,\overline{\nu}$ anything

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [d] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE BRANCHING RATIOS

 $\Gamma(B^+)/\Gamma_{\text{total}}$ "OUR EVALUATION" is an average from Z decay.

VALUEDOCUMENT IDTECNCOMMENT 0.408 ± 0.007 OUR EVALUATION(Produced by HFLAV) $0.4099 \pm 0.0082 \pm 0.0111$ 1 ABDALLAH03KDLPH $e^+e^- \rightarrow Z$

 $\Gamma(B^+)/\Gamma(B^0)$ VALUE

DOCUMENT ID

TECN

COMMENT

1.054 \pm 0.018 \pm 0.062

AALTONEN

OBN

CDF $p \overline{p}$ at 1.96 TeV

 $\Gamma(B_s^0)/\Gamma(B^+)$ Γ_3/Γ_1

<u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • We do not use the following data for averages, fits, limits, etc. • •

¹ AAIJ 20V measures the average value using the observed $B_s^0 \to J/\psi \phi$ and $B^+ \to J/\psi K^+$ yields, over the ranges *b*-hadron p_T of 0.5 and 40 GeV and η of 2.0 and 6.5. The value is not used in averages as BR-related systematic uncertainties are not evaluated.

² AAIJ 20V reports $[\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^+)] \times [B(B_s^0 \to J/\psi(1S)\phi)] / [B(B^+ \to J/\psi(1S)K^+)] = 0.1238 \pm 0.0010 \pm 0.0022$ which we multiply or divide by our best values $B(B_s^0 \to J/\psi(1S)\phi) = (1.03 \pm 0.04) \times 10^{-3}$, $B(B^+ \to J/\psi(1S)K^+) = (1.020 \pm 0.019) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

³ AAIJ 20V reports $[\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^+)] \times [B(B_s^0 \to J/\psi(1S)\phi)] / [B(B^+ \to J/\psi(1S)K^+)] = 0.1270 \pm 0.0007 \pm 0.0022$ which we multiply or divide by our best

 $^{^1}$ The analysis is based on a neural network, to estimate the charge of the weakly-decaying b hadron by distinguishing its decay products from particles produced at the primary vertex.

values B($B_s^0 \to J/\psi(1S)\phi$) = (1.03 \pm 0.04) \times 10⁻³, B($B^+ \to J/\psi(1S)K^+$) = (1.020 \pm 0.019) \times 10⁻³. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 4 AAIJ 20V reports the results in two different data sets, and we quote here the weighted

 $^{5}\,\text{AAIJ}\,\, \overset{\frown}{\text{20V reports}}\,\, [\Gamma(\overline{b}\rightarrow \ B_{\mathcal{S}}^{0})/\Gamma(\overline{b}\rightarrow \ B^{+})]\,\times\, [\text{B}(B_{\mathcal{S}}^{0}\rightarrow \ J/\psi(1S)\,\phi)]\,\,/\,\, [\text{B}(B^{+}\rightarrow B_{\mathcal{S}}^{0})/\Phi(1S)\,\phi]$ $J/\psi(1S)K^+)] = 0.1326 \pm 0.0007 \pm 0.0023$ which we multiply or divide by our best values B($B_s^0 \to J/\psi(1S)\phi$) = $(1.03 \pm 0.04) \times 10^{-3}$, B($B^+ \to J/\psi(1S)K^+$) = $(1.020 \pm 0.019) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values

 $\Gamma_3/(\Gamma_1+\Gamma_2)$

 $\Gamma(B_s^0)/[\Gamma(B^+)+\Gamma(B^0)]$ "OUR EVALUATION" is an average from Z decay.

DOCUMENT ID TECN COMMENT 0.1230 ± 0.0115 OUR EVALUATION (Produced by HFLAV) • • We do not use the following data for averages, fits, limits, etc. 1 AALL 0.122 ± 0.006 19AD LHCB pp at 13 TeV $0.134\ \pm0.004\ ^{+0.011}_{-0.010}$ 2 AALI 12J LHCB pp at 7 TeV ³ AAIJ $0.1265 \pm 0.0085 \pm 0.0131$ 11F LHCB pp at 7 TeV $0.128 \ \, {}^{+\, 0.011}_{-\, 0.010} \ \, \pm 0.011$ ⁴ AALTONEN 08N CDF $p\overline{p}$ at 1.96 TeV ⁵ AFFOLDER 00E CDF 0.213 ± 0.068 $p\overline{p}$ at 1.8 TeV $0.21 \quad \pm 0.036 \ \, ^{+ \, 0.038}_{- \, 0.030}$ 6 ABE 99P CDF $\overline{p}p$ at 1.8 TeV

 $^{^5}$ AFFOLDER 00E uses several electron-charm final states in $b\to c\,e^-$ X. 6 ABE 99P uses the numbers of $K^*(892)^0,~K^*(892)^+,$ and $\phi(1020)$ events produced in association with the double semileptonic decays $b \to c \mu^- X$ with $c \to s \mu^+ X$.

$\Gamma(B_s^0)/\Gamma(B^0)$				Γ_3/Γ_2
VALUE	DOCUMENT ID	TECN	COMMENT	
0.246 ± 0.023 OUR EVALUATIO	N (Produced by	y HFLAV)		
0.239 ± 0.016 OUR AVERAGE				
$0.240\ \pm0.004\ \pm0.020$	¹ AAD	15CM ATLS	pp at 7 TeV	
$0.238 \pm 0.004 \pm 0.026$	² AAIJ	13P LHCB	pp at 7 TeV	
ullet $ullet$ We do not use the following	data for averages	, fits, limits, e	etc. • • •	
0.2385 ± 0.0075	³ AAIJ	21Y LHCB	pp at 8 TeV	
0.2539 ± 0.0079	³ AAIJ		pp at 13 TeV	
0.2390 ± 0.0076	³ AAIJ	21Y LHCB	pp at 7 TeV	

https://pdg.lbl.gov

Page 8

 $^{^{}m 1}$ AAIJ $^{
m 19}$ AD measured the average value using $^{
m b}$ -hadron semileptonic decays and assuming isospin symmetry for b-hadron p_T of 4 and 25 GeV and η of 2 and 5.

 $^{^2}$ AAIJ 12J measured this value using b-hadron semileptonic decays and assuming isospin

 $^{^3}$ AAIJ 11F measured $f_s/f_d=0.253\pm0.017\pm0.017\pm0.020$, where the errors are statistical, systematic, and theoretical. We divide their value by 2. Our second error combines systematic and theoretical uncertainties.

⁴ AALTONEN 08N reports $\left[\Gamma(\overline{b} \to \ B_s^0)/\left[\Gamma(\overline{b} \to \ B^+) + \Gamma(\overline{b} \to \ B^0)\right]\right] \times \left[\mathrm{B}(D_s^+ \to \ B_s^0)/\left[\Gamma(\overline{b} \to \ B^+) + \Gamma(\overline{b} \to \ B^0)\right]\right]$ $[\phi\pi^+)]=(5.76\pm0.18^{+0.45}_{-0.42})\times10^{-3}$ which we divide by our best value B($D_s^+\to$ $\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

- 1 AAD 15CM measurement is derived from the observed $B_s^0 o J/\psi \phi$ and $B_d^0 o J/\psi K^{*0}$ yields and a recent theory prediction of B($B_s^0 \to J/\psi \phi$)/B($B_d^0 \to J/\psi K^{*0}$). The second uncertainty combines in quadrature systematic and theoretical uncertainties.
- 2 AAIJ 13P studies also separately the $p_T(B)$ and $\eta(B)$ dependency of $\Gamma(\overline{b} o B_S^0)/\Gamma(\overline{b} o$ (B^0) , finding $f_s/f_d(p_T) = (0.256 \pm 0.020) + (-2.0 \pm 0.6) \ 10^{-3} \ /\text{GeV/c} \ (p_T - \langle p_T \rangle)$ and $f_s/f_d(\eta) = (0.256 \pm 0.020) + (0.005 \pm 0.006) (\eta - \langle \eta \rangle)$, where $\langle p_T \rangle = 10.4 \text{ GeV/c}$ and $\langle \eta \rangle =$ 3.28. AAIJ 13P reports the measurement as 0.238 \pm 0.004 \pm 0.015 \pm 0.021 where the last uncertainly is theoretical.
- 3 AAIJ 21Y uses hadronic decays $B^0 \to D^-\pi^+$, $B^0 \to D^-K^+$, $B^0_s \to D^-_s\pi^+$ and $B_s^0 \to J/\psi \phi$ as well as semileptonic B^0 and B_s^0 decays. Measured within the p_T range [0.5,40] GeV/c, η range [2, 6.4].

$\Gamma(B_s^+)/[\Gamma(B^+)+\Gamma(B^0)]$

 $\Gamma_4/(\Gamma_1+\Gamma_2)$

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
3.7 \pm 0.6 OUR AVERAGE				
$3.63 \pm 0.08 \pm 0.87$	¹ AAIJ	19AI	LHCB	pp at 7 TeV
$3.78 \pm 0.04 \pm 0.90$	¹ AAIJ	19AI	LHCB	pp at 13 TeV

¹ Measured using B_c^+ semileptonic decays.

$\Gamma(b\text{-baryon})/[\Gamma(B^+)+\Gamma(B^0)]$ "OUR EVALUATION" is an average from Z decay.

 $\Gamma_5/(\Gamma_1+\Gamma_2)$

Created: 4/10/2025 13:32

DOCUMENT ID TECN COMMENT 0.103 ± 0.015 OUR EVALUATION (Produced by HFLAV)

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.259 ± 0.018	¹ AAIJ	19AD LHCB	pp at 13 TeV
$0.305 \pm 0.010 \pm 0.081$	² AAIJ	12J LHCB	pp at 7 TeV
$0.31 \ \pm 0.11 \ ^{+0.12}_{-0.08}$	³ AALTONEN	09E CDF	$p\overline{p}$ at 1.8 TeV
$0.22 \ ^{+0.08}_{-0.07} \ \pm 0.01$	⁴ AALTONEN		• •
0.118 ± 0.042	^{3,5} AFFOLDER	00E CDF	$p\overline{p}$ at 1.8 TeV

- 1 AAIJ 19AD measured the average value for Λ_b^0 using semileptonic decays and assuming isospin symmetry for $b\text{-hadron }p_T$ of 4 and 25 GeV and η of 2 and 5.
- 2 AAIJ 12J measured the ratio to be (0.404 \pm 0.017 \pm 0.027 \pm 0.105) imes [1 (0.031 \pm $0.004 \pm 0.003) imes P_T$]using b-hadron semileptonic decays where the P_T is the momentum of charmed hadron-muon pair in GeV/c.We quote their weighted average value where the second error combines systematic and the error on B($\Lambda_c^+ \to p K^- \pi^+$).
- 3 AALTONEN 09E errata to the measurement reported in AFFOLDER 00E using the ho_T spectra from fully reconstructed ${\it B}^{0}$ and ${\it \Lambda}_{\it b}$ decays.
- ⁴ AALTONEN 08N reports $[\Gamma(\overline{b} \rightarrow b\text{-baryon})/[\Gamma(\overline{b} \rightarrow B^+) + \Gamma(\overline{b} \rightarrow B^0)]] \times [B(\Lambda_c^+ \rightarrow b^+)]$ $pK^-\pi^+)]=(14.1\pm0.6^{+5.3}_{-4.4})\times10^{-3}$ which we divide by our best value B($\Lambda_C^+\to$ $pK^-\pi^+$) = $(6.35 \pm 0.25) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁵ AFFOLDER 00E uses several electron-charm final states in $b \rightarrow ce^- X$.

 $\Gamma(\nu \text{anything})/\Gamma_{\text{total}}$ VALUE $0.2308 \pm 0.0077 \pm 0.0124$ DOCUMENT ID TECN TECN COMMENT $e^+e^- \rightarrow Z$

$\Gamma(\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_7/Γ

"OUR EVALUATION" is an average of the data listed below, excluding all asymmetry measurements, performed by the LEP Electroweak Working Group as described in the "Note on the Z boson" in the Z Particle Listings.

VALUE	DOCUMENT ID		TECN	COMMENT				
0.1069 ± 0.0022 OUR EVALUATI	0.1069±0.0022 OUR EVALUATION							
0.1064 ± 0.0016 OUR AVERAGE								
$0.1070 \pm 0.0010 \pm 0.0035$	$^{ m 1}$ HEISTER	02G	ALEP	$e^+e^- ightarrow Z$				
$0.1070 \!\pm\! 0.0008 \!+\! 0.0037 \\ -0.0049$	² ABREU	01L	DLPH	$e^+e^- o Z$				
$0.1083 \!\pm\! 0.0010 \!+\! 0.0028 \\ -0.0024$	³ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$				
$0.1016 \pm 0.0013 \pm 0.0030$	⁴ ACCIARRI	00	L3	$e^+e^- ightarrow Z$				
$0.1085 \pm 0.0012 \pm 0.0047$	^{5,6} ACCIARRI	96C	L3	$e^+e^- ightarrow Z$				
• • • We do not use the following	g data for averages	s, fits,	limits, e	etc. • • •				
$0.1106 \pm 0.0039 \pm 0.0022$	⁷ ABREU	95 D	DLPH	$e^+e^- ightarrow Z$				
$0.114\ \pm0.003\ \pm0.004$	⁸ BUSKULIC	94G	ALEP	$e^+e^- ightarrow Z$				
$0.100 \pm 0.007 \pm 0.007$	⁹ ABREU	93C	DLPH	$e^+e^- ightarrow Z$				
$0.105 \pm 0.006 \pm 0.005$	¹⁰ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E				

¹ Uses the combination of lepton transverse momentum spectrum and the correlation between the charge of the lepton and opposite jet charge. The first error is statistic and the second error is the total systematic error including the modeling.

¹ ACCIARRI 96C assumes relative *b* semileptonic decay rates $e:\mu:\tau$ of 1:1:0.25. Based on missing-energy spectrum.

 $^{^2}$ Assumes Standard Model value for R_B .

²The experimental systematic and model uncertainties are combined in quadrature.

³ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b \bar{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.

⁴ ACCIARRI 00 result obtained from a combined fit of $R_b = \Gamma(Z \to b\overline{b})/\Gamma(Z \to \text{hadrons})$ and B($b \to \ell \nu X$), using double-tagging method.

⁵ ACCIARRI 96C result obtained by a fit to the single lepton spectrum.

 $^{^6}$ Assumes Standard Model value for R_B .

 $^{^7}$ ABREU 95D give systematic errors ± 0.0019 (model) and 0.0012 $(R_{C}).$ We combine these in quadrature.

⁸ BUSKULIC 94G uses e and μ events. This value is from a global fit to the lepton p and p_T (relative to jet) spectra which also determines the b and c production fractions, the fragmentation functions, and the forward-backward asymmetries. This branching ratio depends primarily on the ratio of dileptons to single leptons at high p_T , but the lower p_T portion of the lepton spectrum is included in the global fit to reduce the model dependence. The model dependence is ± 0.0026 and is included in the systematic error.

⁹ ABREU 93C event count includes ee events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100\pm0.007\pm0.007$.

 $^{^{}m 10}$ AKERS 93B analysis performed using single and dilepton events.

$\Gamma(e^+\nu_e$ anything)/ Γ_{to}	tal					Γ_8/Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.1086±0.0035 OUR AV	ERAGE					
$0.1078 \pm 0.0008 {}^{+ 0.0050}_{- 0.0046}$		¹ ABBIENDI	00E	OPAL	$e^+e^- ightarrow ~Z$	
$0.1089 \pm 0.0020 \pm 0.0051$		^{2,3} ACCIARRI	96 C	L3	$e^+e^- ightarrow~Z$	
$0.107\ \pm0.015\ \pm0.007$	260	⁴ ABREU	93 C	DLPH	$e^+e^- ightarrow~Z$	
$0.138 \pm 0.032 \pm 0.008$		⁵ ADEVA	91 C	L3	$e^+e^- ightarrow~Z$	
ullet $ullet$ We do not use the	following	data for averages,	fits, li	mits, etc	c. • • •	
$0.086\ \pm0.027\ \pm0.008$		⁶ ABE	93E	VNS	$E_{\rm cm}^{\it ee} = 58~{\rm GeV}$	
$0.109 \ ^{+0.014}_{-0.013} \ \pm 0.0055$	2719	⁷ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E	
$0.111 \pm 0.028 \pm 0.026$		BEHREND	90 D	CELL	$E_{\rm cm}^{ee} = 43 \; {\rm GeV}$	
$0.150\ \pm0.011\ \pm0.022$		BEHREND	90 D	CELL	$E_{cm}^{ee} = 35 \; GeV$	
$0.112\ \pm0.009\ \pm0.011$		ONG	88	MRK2	$E_{\mathrm{cm}}^{\mathrm{ee}} = 29 \; \mathrm{GeV}$	
$0.149 \begin{array}{l} +0.022 \\ -0.019 \end{array}$		PAL	86	DLCO	$E_{ m cm}^{ee}=$ 29 GeV	
$0.110\ \pm0.018\ \pm0.010$		AIHARA	85	TPC	$E_{cm}^{ee} = 29 \; GeV$	
$0.111 \pm 0.034 \pm 0.040$		ALTHOFF	84J	TASS	Eee 34.6 Ge	/
0.146 ± 0.028		KOOP	84	DLCO	Repl. by PAL 86	5
$0.116\ \pm0.021\ \pm0.017$		NELSON	83	MRK2	E ^{ee} _{cm} = 29 GeV	

 $^{^{}m 1}$ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z o b \overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error. ² ACCIARRI 96C result obtained by a fit to the single lepton spectrum.

⁷ AKERS 93B analysis performed using single and dilepton events.

$\Gamma(\mu^+ u_{\mu} \text{ anything})/\Gamma_{\text{tot}}$	otal					٦/و٦
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.1095^{+0.0029}_{-0.0025}$ OUR AV	ERAGE					
$0.1096\!\pm\!0.0008\!+\!0.0034\\-0.0027$		¹ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$	
$\begin{array}{c} 0.1082 \!\pm\! 0.0015 \!\pm\! 0.0059 \\ 0.110 \ \pm\! 0.012 \ \pm\! 0.007 \\ 0.113 \ \pm\! 0.012 \ \pm\! 0.006 \end{array}$	656	^{2,3} ACCIARRI ⁴ ABREU ⁵ ADEVA	93C	DLPH	$e^+e^- \rightarrow Z$ $e^+e^- \rightarrow Z$ $e^+e^- \rightarrow Z$	

 $^{^3}$ Assumes Standard Model value for R_B .

⁴ABREU 93C event count includes ee events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100 \pm 0.007 \pm 0.007$.

⁵ ADEVA 91C measure the average B($b \rightarrow eX$) branching ratio using single and double tagged b enhanced Z events. Combining e and μ results, they obtain $0.113 \pm 0.010 \pm 0.006$. Constraining the initial number of b_quarks by the Standard Model prediction (378 \pm 3 MeV) for the decay of the Z into $b\overline{b}$, the electron result gives $0.112 \pm 0.004 \pm 0.004$ 0.008. They obtain $0.119 \pm 0.003 \pm 0.006$ when e and μ results are combined. Used to measure the $b\overline{b}$ width itself, this electron result gives $370 \pm 12 \pm 24$ MeV and combined with the muon result gives 385 \pm 7 \pm 22 MeV.

⁶ ABE 93E experiment also measures forward-backward asymmetries and fragmentation functions for b and c.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.122\ \pm0.006$	±0.007	3	³ UENO	96	AMY	e^+e^- at 57.9 GeV
$0.101 \begin{array}{l} +0.010 \\ -0.009 \end{array}$	± 0.0055	4248	⁵ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E
$0.104\ \pm0.023$	± 0.016		BEHREND	90 D	CELL	$E_{\rm cm}^{ee} = 43 \text{ GeV}$
$0.148\ \pm0.010$	± 0.016		BEHREND	90 D	CELL	$E_{\mathrm{cm}}^{\mathrm{ee}} = 35 \; \mathrm{GeV}$
$0.118\ \pm0.012$	± 0.010		ONG	88	MRK2	$E_{ m cm}^{ee} = 29 \; { m GeV}$
$0.117\ \pm0.016$	± 0.015		BARTEL	87	JADE	$E_{\rm cm}^{ee} = 34.6 \; {\rm GeV}$
0.114 ± 0.018	±0.025		BARTEL	85 J	JADE	Repl. by BARTEL 87
$0.117\ \pm0.028$	±0.010		ALTHOFF	84G	TASS	$E_{\rm cm}^{ee} = 34.5 {\rm GeV}$
$0.105\ \pm0.015$	± 0.013		ADEVA	83 B	MRKJ	$E_{\rm cm}^{ee} = 33-38.5 {\rm GeV}$
$0.155 \begin{array}{l} +0.054 \\ -0.029 \end{array}$			FERNANDEZ	83 D	MAC	Eee = 29 GeV

 $^{^{}m 1}$ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b\overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic

$\Gamma(D^-\ell^+\nu_\ell)$ anything $\Gamma(D^-\ell^+\nu_\ell)$

 Γ_{10}/Γ

Created: 4/10/2025 13:32

• • • • • • • • • • • • • • • • • • • •			- •
VALUE	DOCUMENT ID	TECN COMMENT	
0.022 ±0.004 OUR AVERAGE	Error includes scale fa	ctor of 1.9.	
$0.0272\!\pm\!0.0028\!\pm\!0.0018$	¹ ABREU 00R	DLPH $e^+e^- o Z$	
$0.0194 \pm 0.0025 \pm 0.0003$	² AKERS 95Q	OPAL $e^+e^- \rightarrow Z$	

 $^{^1}$ ABREU 00R reports their experiment's uncertainties $\pm 0.0019 \pm 0.0016 \pm 0.0018$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the ${\it D}$ branching fraction. We combine first two in quadrature.

² AKERS 95Q reports $[\Gamma(\overline{b} \to D^- \ell^+ \nu_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(D^+ \to K^- 2\pi^+)] = (1.82 \pm 0.20 \pm 0.12) \times 10^{-3}$ which we divide by our best value $B(D^+ \to K^- 2\pi^+) = 0.00$ $(9.38 \pm 0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D^-\pi^+\ell^+\nu_\ell)$ anything $\Gamma(D^-\pi^+\ell^+\nu_\ell)$	I				Γ_{11}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.0049 \pm 0.0018 \pm 0.0007$	ABREU	00R	DLPH	$e^+e^- ightarrow~Z$	

$$\frac{\Gamma(D^-\pi^-\ell^+\nu_\ell \, \text{anything})/\Gamma_{\text{total}}}{\nu_{ALUE}} \qquad \frac{DOCUMENT\ ID}{DORDON DLPH} \qquad \frac{TECN}{e^+e^- \rightarrow Z}$$

ABREU

error. $^2\,\mathrm{ACCIARRI}$ 96C result obtained by a fit to the single lepton spectrum. $^-$

 $^{^3}$ Assumes Standard Model value for R_B .

⁴ ABREU 93C event count includes $\mu\mu$ events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100 \pm 0.007 \pm 0.007$.

 $^{^{5}}$ ADEVA 91C measure the average B(b o eX) branching ratio using single and double tagged b enhanced Z events. Combining e and μ results, they obtain 0.113 \pm 0.010 \pm 0.006. Constraining the initial number of b quarks by the Standard Model prediction $(378\pm3 \text{ MeV})$ for the decay of the Z into $b\overline{b}$, the muon result gives $0.123\pm0.003\pm0.006$. They obtain $0.119 \pm 0.003 \pm 0.006$ when e and μ results are combined. Used to measure the $b\overline{b}$ width itself, this muon result gives 394 \pm 9 \pm 22 MeV and combined with the electron result gives 385 \pm 7 \pm 22 MeV.

⁶ AKERS 93B analysis performed using single and dilepton events.

$\Gamma(\overline{D}^0\ell^+ u_\ell$ anything)/ $\Gamma_{ ext{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₁₃ /Γ
0.0679±0.0034 OUR AVERAGE	DOCOMENT ID		TLCIV	COMMENT	
$0.0704 \pm 0.0040 \pm 0.0017$	¹ ABREU	00 R	DLPH	$e^+e^- ightarrow~Z$	
$0.0639 \pm 0.0056 \pm 0.0005$	² AKERS	95Q	OPAL	$e^+e^- ightarrow~Z$	
¹ ABREU 00R reports their exper the first error is statistical, the stothe <i>D</i> branching fraction. W ² AKERS 95Q reports $[\Gamma(\overline{b} \rightarrow (2.52 \pm 0.14 \pm 0.17) \times 10^{-3}]$ (3.945 ± 0.030) × 10 ⁻² . Our first the systematic error from using	second is systema to combine first tw $\overline{D}{}^0\ell^+ u_\ell$ anythin which we divide b first error is their	tic, ar vo in α g)/Γ _t by our experi	nd the th quadratu otal] × best val	hird is the uncert ure. $[B(D^0 o K^-)]$ lue $B(D^0 o K^-)$	$[\pi^+)] = -\pi^+) =$
$\Gamma(\overline{D}{}^0\pi^-\ell^+ u_\ell$ anything)/ $\Gamma_{ ext{tota}}$	ıl				Γ ₁₄ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.0107 \pm 0.0025 \pm 0.0011$	ABREU	00 R	DLPH	$e^+e^- ightarrow Z$	
$\Gamma(\overline{D}^0\pi^+\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{tota}}$ $VALUE$ $0.0023\pm0.0015\pm0.0004$	ol DOCUMENT ID ABREU			$\frac{COMMENT}{e^+e^- \rightarrow Z}$	Γ ₁₅ /Γ
0.0023±0.0013±0.0004	ADREU	UUR	DLPH	$e \cdot e \rightarrow Z$	
$\Gamma(D^{*-}\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ_{16}/Γ
0.0275±0.0019 OUR AVERAGE	<u> </u>				
$0.0275 \pm 0.0021 \pm 0.0009$	¹ ABREU	00 R	DLPH	$e^+e^- ightarrow Z$	
$0.0276 \pm 0.0027 \pm 0.0011$	² AKERS	95Q	OPAL	$e^+e^- ightarrow~Z$	
¹ ABREU 00R reports their experthe first error is statistical, the stothe D branching fraction. W ² AKERS 95Q reports $[B(\overline{b} \rightarrow D)]$ = $((7.53 \pm 0.47 \pm 0.56) \times 10^{-5}]$ B($D^0 \rightarrow K^-\pi^+$) = 0.0401 \pm experiments error and the second branching ratios.	second is systema to combine first two set $\ell^+ \nu_\ell X) imes B(\mathit{L}^{-4})$ and uses $B(\mathit{L}^{-6})$ and uses $B(\mathit{L}^{-6})$	tic, ar vo in ()*+ -)*+ - n the a	and the the quadrature $ ightarrow D^0 \pi^-$ above res	hird is the uncertaire. $^+$) $ imes$ B($D^0 ightarrow 0.681 \pm 0 sult. The first er$	ainty due $(K^-\pi^+)$] .013 and ror is the
$\Gamma(D^{*-}\pi^-\ell^+ u_\ell$ anything) $/\Gamma_{to}$	a.l				Γ ₁₇ /Γ
VALUE			TECN	COMMENT	,
0.0006±0.0007±0.0002				$e^+e^- \rightarrow Z$	
$\Gamma(D^{*-}\pi^{+}\ell^{+}\nu_{\ell} \text{ anything})/\Gamma_{tot}$	tal			COMMENT	Γ ₁₈ /Γ
$0.0048 \pm 0.0009 \pm 0.0005$	ABREU	00 R	DLPH	$e^+e^- ightarrow Z$	
$\Gamma(\overline{D}_j^0\ell^+\nu_\ell)$ anything \times B(\overline{D}_j^0					Γ ₁₉ /Γ
D_j represents an unresolved i	mixture of pseudo	scalar	and ten	sor D^{**} (P -wave	e) states.
·	DOCUMENT ID				
	ABBIENDI 03				
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
6.1 ± 1.3 ± 1.3	AKERS 95	iQ OI	PAL Re	epl. by ABBIENI	ОІ 03м
https://pdg.lbl.gov	Page 13		Creat	ed: 4/10/202	5 13:32

$\Gamma(D_j^-\ell^+\nu_\ell \text{ anything} \times B(D_j^- \to D^0\pi^-))/\Gamma_{ ext{total}}$ $\Gamma_{20}/\Gamma_{20}/\Gamma_{20}$ $\Gamma_{20}/\Gamma_{20}/\Gamma_{20}/\Gamma_{20}$ $\Gamma_{20}/$

7.0±1.9^{+1.2} AKERS 95Q OPAL $e^+e^- \to Z$

 $\Gamma(\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell} \text{ anything} \times B(\overline{D}_{2}^{*}(2460)^{0} \rightarrow D^{*-}\pi^{+}))/\Gamma_{\text{total}}$ Γ_{21}/Γ_{21} $VALUE \text{ (units } 10^{-3})$ CL% DOCUMENT ID TECN COMMENT COMMEN

 $\Gamma(\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell} \text{ anything} \times B(\overline{D}_{2}^{*}(2460)^{0} \rightarrow D^{-}\pi^{+}))/\Gamma_{\text{total}}$ Γ_{23}/Γ_{2

 $\Gamma(\text{charmless } \ell \overline{\nu}_{\ell}) / \Gamma_{\text{total}}$ $\Gamma_{24} / \Gamma_{\text{total}}$

"OUR EVALUATION" is an average of the data listed below performed by the LEP Heavy Flavour Steering Group. The averaging procedure takes into account correlations between the measurements.

VALUE DOCUMENT ID TECN COMMENT 0.00171 ± 0.00052 OUR EVALUATION 0.0017 ± 0.0004 OUR AVERAGE $0.00163 \!\pm\! 0.00053 \!+\! 0.00055$ ¹ ABBIENDI 01R OPAL $e^+e^- \rightarrow Z$ - 0.00062 ² ABREU 00D DIPH $0.00157 \pm 0.00035 \pm 0.00055$ ³ BARATE $0.00173 \pm 0.00055 \pm 0.00055$ 99G ALEP $0.0033 \pm 0.0010 \pm 0.0017$ ⁴ ACCIARRI 98K L3

$\Gamma(\tau^+ \nu_{ au} \text{ anything})/\Gamma_{ ext{total}}$ $\Gamma_{25}/\Gamma_{ ext{VALUE (units }10^{-2})}$ EVTS DOCUMENT ID TECN COMMENT

2.41 ± 0.23 OUR AVERAGE ¹ ABBIENDI 01Q OPAL $2.78 \pm 0.18 \pm 0.51$ ² BARATE 01E ALEP $2.43 \pm 0.20 \pm 0.25$ ³ ABREU 00c DLPH $2.19 \pm 0.24 \pm 0.39$ ^{4,5} ACCIARRI $1.7 \pm 0.5 \pm 1.1$ 96c L3 ⁶ ACCIARRI $2.4 \pm 0.7 \pm 0.8$ 1032 94c L3 • • We do not use the following data for averages, fits, limits, etc. 405 ⁷ BUSKULIC $2.75 \pm 0.30 \pm 0.37$ ALEP Repl. by BARATE 01E **BUSKULIC** Repl. by BUSKULIC 95 $4.08 \pm 0.76 \pm 0.62$ 93B ALEP

https://pdg.lbl.gov Page 14 Created: 4/10/2025 13:32

¹ Obtained from the best fit of the MC simulated events to the data based on the $b \to X_{II} \ell \nu$ neutral network output distributions.

² ABREU 00D result obtained from a fit to the numbers of decays in $b \to u$ enriched and depleted samples and their lepton spectra, and assuming $|V_{c\,b}| = 0.0384 \pm 0.0033$ and $\tau_b = 1.564 \pm 0.014$ ps.

 $^{^3}$ Uses lifetime tagged $b\overline{b}$ sample.

 $^{^4}$ ACCIARRI 98K assumes $R_b = 0.2174 \pm 0.0009$ at Z decay.

$\frac{\Gamma(D^{*-}\tau\nu_{\tau} \text{ anything})/\Gamma_{\text{total}}}{V^{ALUE}} \qquad \frac{DOCUMENT ID}{1 \text{ BARATE}} \qquad \frac{TECN}{e^{+}e^{-} \rightarrow Z}$

$\Gamma(\overline{b} \to \overline{c} \to \ell^- \overline{\nu}_{\ell} \text{ anything}) / \Gamma_{\text{total}}$

 Γ_{27}/Γ

"OUR EVALUATION" is an average of the data listed below, excluding all asymmetry measurements, performed by the LEP Electroweak Working Group as described in the "Note on the Z boson" in the Z Particle Listings.

VALUE	DOCUMENT ID		TECN	COMMENT			
0.0802±0.0019 OUR EVALUATION							
0.0817 ± 0.0020 OUR AVERAGE							
$0.0818 \!\pm\! 0.0015 \!+\! 0.0024 \\ -0.0026$	$^{\mathrm{1}}$ HEISTER	02G	ALEP	$e^+e^- ightarrow Z$			
$0.0798 \!\pm\! 0.0022 \!+\! 0.0025 \\ -\! 0.0029$	² ABREU	01L	DLPH	$e^+e^- ightarrow Z$			
$0.0840 \pm 0.0016 {}^{+ 0.0039}_{- 0.0036}$	³ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$			
• • • We do not use the following	data for averages	, fits,	limits, e	etc. • • •			
$0.0770 \pm 0.0097 \pm 0.0046$	⁴ ABREU	95 D	DLPH	$e^+e^- ightarrow Z$			
$0.082\ \pm0.003\ \pm0.012$	⁵ BUSKULIC	94G	ALEP	$e^+e^- ightarrow Z$			
$0.077 \pm 0.004 \pm 0.007$	⁶ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E			

¹ Uses the combination of lepton transverse momentum spectrum and the correlation between the charge of the lepton and opposite jet charge. The first error is statistic and the second error is the total systematic error including the modeling.

⁶ AKERS 93B analysis performed using single and dilepton events.

$\Gamma(c \to \ell^+ \nu \text{ anything}) / \Gamma_{\text{total}}$					Γ_{28}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.0161 \pm 0.0020 {+0.0034\atop -0.0047}$	¹ ABREU	01L	DLPH	$e^+e^- ightarrow Z$	

 $^{^{}m 1}$ The experimental systematic and model uncertainties are combined in quadrature.

¹ABBIENDI 01Q uses a missing energy technique.

² The energy-flow and *b*-tagging algorithms were used.

³ Uses the missing energy in $Z \rightarrow b\overline{b}$ decays without identifying leptons.

⁴ ACCIARRI 96C result obtained from missing energy spectrum.

 $^{^{5}}$ Assumes Standard Model value for R_{B} .

⁶ This is a direct result using tagged $b\overline{b}$ events at the Z, but species are not separated.

⁷ BUSKULIC 95 uses missing-energy technique.

 $^{^1}$ The energy-flow and b-tagging algorithms were used.

 $^{^2}$ The experimental systematic and model uncertainties are combined in quadrature.

³ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \to b \, \overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.

⁴ ABREU 95D give systematic errors ± 0.0033 (model) and 0.0032 (R_c). We combine these in quadrature. This result is from the same global fit as their $\Gamma(\overline{b} \to \ell^+ \nu_\ell X)$ data.

⁵ BUSKULIC 94G uses e and μ events. This value is from the same global fit as their $\Gamma(\overline{b} \to \ell^+ \nu_\ell \, \text{anything})/\Gamma_{\text{total}} \, \text{data}$.

$\Gamma(\overline{D}^0$ anything)/ Γ_{tota}	al					Γ_{29}/Γ
VALUE					COMMENT	
$0.587 \pm 0.028 \pm 0.005$		¹ BUSKULIC				_
¹ BUSKULIC 96Y rep	orts 0.60	$05 \pm 0.024 \pm 0.$	016 fr	om a r	measurement of	$f [\Gamma(b \rightarrow$
\overline{D}^0 anything)/ Γ_{total} which we rescale to of first error is their exusing our best value.	our best v periment'	value B($D^0 o K$	$-\pi^+$	= (3.94)	$45\pm0.030) imes1$	0^{-2} . Our
$\Gamma(D^0D_s^{\pm} \text{ anything})/I$	total					Γ ₃₀ /Γ
<u>VALUE</u>		DOCUMENT ID			·-	
$0.091 ^{+0.020}_{-0.018} ^{+0.034}_{-0.022}$		¹ BARATE	98Q	ALEP	$e^+e^- \rightarrow Z$	
$^{ m 1}$ The systematic error	includes	the uncertainties	due to	the cha	rm branching ra	atios.
$\Gamma(D^{\mp}D_s^{\pm} \text{ anything})/$	Γ_{total}					Γ_{31}/Γ
VALUE		DOCUMENT ID		TECN	COMMENT	
$0.040 {}^{+ 0.017}_{- 0.014} {}^{+ 0.016}_{- 0.011}$		¹ BARATE	98Q	ALEP	$e^+e^-\to~Z$	
$^{ m 1}$ The systematic error	includes	the uncertainties	due to	the cha	rm branching ra	atios.
$\Gamma(D^0D_s^{\pm})$ anything)	+ Γ(<i>D</i> ∓	D^{\pm} anything)	/Γ _{tot}	. l	(F ₃₀	+Γ ₂₁)/Γ
VALUE		DOCUMENT ID				,,
$0.131^{+0.026}_{-0.022}^{+0.048}_{-0.031}$		$^{ m 1}$ BARATE	98Q	ALEP	$e^+e^- ightarrow Z$	
$^{ m 1}$ The systematic error	includes	the uncertainties	due to	the cha	rm branching ra	atios.
					0	
					Ü	
$\Gamma(\overline{D}^0D^0$ anything)/ Γ_{VALUE}	total	DOCUMENT ID				Γ ₃₂ /Γ
$\Gamma(\overline{D}^0D^0$ anything)/ Γ_{VALUE}	total	DOCUMENT ID		<u>TECN</u>	COMMENT	
$\Gamma(\overline{D}^0D^0$ anything)/ Γ	total	DOCUMENT ID BARATE	98Q	<u>TECN</u> ALEP	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow Z}$	Γ ₃₂ /Γ
$\Gamma(\overline{D}^0D^0 \text{ anything})/\Gamma$ VALUE 0.051+0.016+0.012 1 The systematic error	includes	DOCUMENT ID BARATE	98Q	<u>TECN</u> ALEP	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow Z}$	Г ₃₂ /Г
$\Gamma(\overline{D}^0D^0 \text{ anything})/\Gamma$ VALUE 0.051+0.016+0.012 -0.014-0.011	includes	$rac{DOCUMENT\ ID}{1}$ BARATE the uncertainties	98Q due to	TECN ALEP	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow Z}$	Γ ₃₂ /Γ atios. Γ ₃₃ /Γ
$\Gamma(\overline{D}^0D^0$ anything)/ Γ_{VALUE} 0.051 $^+$ 0.016 $^+$ 0.012 1 The systematic error $\Gamma(D^0D^\pm$ anything)/ Γ	includes	$rac{DOCUMENT\ ID}{1}$ BARATE the uncertainties	98Q due to	TECN ALEP the cha	$rac{COMMENT}{e^+e^- ightarrow Z}$ rm branching ra $rac{COMMENT}{COMMENT}$	Γ ₃₂ /Γ atios. Γ ₃₃ /Γ
$\Gamma(\overline{D}^0D^0$ anything)/ Γ_{VALUE} 0.051 $^+$ 0.016 $^+$ 0.012 1 The systematic error $\Gamma(D^0D^\pm$ anything)/ Γ_{VALUE}	includes	DOCUMENT ID 1 BARATE the uncertainties DOCUMENT ID 1 BARATE	98Q due to 98Q	TECN ALEP the cha	$rac{COMMENT}{e^+e^- ightarrow Z}$ rm branching ra $rac{COMMENT}{e^+e^- ightarrow Z}$	Γ ₃₂ /Γ atios. Γ ₃₃ /Γ
$\Gamma(\overline{D}^0D^0 \text{ anything})/\Gamma$ VALUE 0.051 $^+$ 0.016 $^+$ 0.012 1 The systematic error $\Gamma(D^0D^\pm \text{ anything})/\Gamma$ VALUE 0.027 $^+$ 0.015 $^+$ 0.010 1 The systematic error	includes total includes	DOCUMENT ID 1 BARATE the uncertainties DOCUMENT ID 1 BARATE the uncertainties	98Q due to 98Q due to	TECN ALEP the cha	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow \textit{Z}}$ rm branching ra $\frac{\textit{COMMENT}}{e^+e^- \rightarrow \textit{Z}}$ rm branching ra	Γ ₃₂ /Γ entios. Γ ₃₃ /Γ
$\Gamma(\overline{D}^0D^0 \text{ anything})/\Gamma$ VALUE 0.051 $^+$ 0.016 $^+$ 0.012 1 The systematic error $\Gamma(D^0D^\pm \text{ anything})/\Gamma$ VALUE 0.027 $^+$ 0.015 $^+$ 0.010 0.029	includes total includes	DOCUMENT ID 1 BARATE the uncertainties DOCUMENT ID 1 BARATE the uncertainties D± anything)]/	98Q due to 98Q due to	TECN ALEP the cha	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow \textit{Z}}$ rm branching ra $\frac{\textit{COMMENT}}{e^+e^- \rightarrow \textit{Z}}$ rm branching ra	Γ ₃₂ /Γ atios. Γ ₃₃ /Γ atios. +Γ ₃₃)/Γ
$\Gamma(\overline{D}^0D^0 \text{ anything})/\Gamma$ VALUE 0.051 $^+$ 0.016 $^+$ 0.012 1 The systematic error $\Gamma(D^0D^\pm \text{ anything})/\Gamma$ VALUE 0.027 $^+$ 0.015 $^+$ 0.010 1 The systematic error $\Gamma(\overline{D}^0D^0 \text{ anything})$	includes total includes	DOCUMENT ID 1 BARATE the uncertainties DOCUMENT ID 1 BARATE the uncertainties D± anything)]/	98Q due to	TECN ALEP the cha	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow \textit{Z}}$ rm branching ra $\frac{\textit{COMMENT}}{e^+e^- \rightarrow \textit{Z}}$ rm branching ra (Γ_{32}) $\frac{\textit{COMMENT}}{\textit{COMMENT}}$	Γ ₃₂ /Γ atios. Γ ₃₃ /Γ atios. +Γ ₃₃)/Γ
$\Gamma(\overline{D}^0D^0$ anything)/ Γ VALUE 0.051 $^+$ 0.016 $^+$ 0.012 1 The systematic error $\Gamma(D^0D^\pm$ anything)/ Γ VALUE 0.027 $^+$ 0.015 $^+$ 0.010 1 The systematic error $\Gamma(\overline{D}^0D^0$ anything) - VALUE	includes total includes	DOCUMENT ID 1 BARATE the uncertainties DOCUMENT ID 1 BARATE the uncertainties D= anything)]/ DOCUMENT ID 1 BARATE	98Q due to 98Q due to 'Ttotal	TECN ALEP the cha	$\frac{COMMENT}{e^{+}e^{-} \rightarrow Z}$ rm branching ra $\frac{COMMENT}{e^{+}e^{-} \rightarrow Z}$ rm branching ra $\frac{(\Gamma_{32})}{COMMENT}$ $e^{+}e^{-} \rightarrow Z$	Γ ₃₂ /Γ entios. Γ ₃₃ /Γ entios. +Γ ₃₃)/Γ
$\Gamma(\overline{D}^0D^0 \text{ anything})/\Gamma$ NALUE 0.051+0.016+0.012 1 The systematic error $\Gamma(D^0D^{\pm} \text{ anything})/\Gamma$ NALUE 0.027+0.015+0.010 1 The systematic error $\Gamma(\overline{D}^0D^0 \text{ anything})$ 1 The systematic error $\Gamma(\overline{D}^0D^0 \text{ anything})$ NALUE 0.078+0.020+0.018 1 The systematic error	includes total includes + \(\(\bullet \) \(\bullet \) \(\bullet \) includes	DOCUMENT ID 1 BARATE the uncertainties DOCUMENT ID 1 BARATE the uncertainties D= anything)]/ DOCUMENT ID 1 BARATE	98Q due to 98Q due to 'Ttotal	TECN ALEP the cha	$\frac{COMMENT}{e^{+}e^{-} \rightarrow Z}$ rm branching ra $\frac{COMMENT}{e^{+}e^{-} \rightarrow Z}$ rm branching ra $\frac{(\Gamma_{32})}{COMMENT}$ $e^{+}e^{-} \rightarrow Z$	Γ ₃₂ /Γ atios. Γ ₃₃ /Γ atios. +Γ ₃₃)/Γ
	includes total includes + \(\(\begin{align*} D^0 \\ D	DOCUMENT ID 1 BARATE the uncertainties DOCUMENT ID 1 BARATE the uncertainties D= anything) 1 BARATE 1 BARATE the uncertainties	98Q due to 98Q due to 7 total 98Q due to	TECN ALEP the cha	$\frac{COMMENT}{e^+e^- \rightarrow Z}$ rm branching ranching	Γ_{32}/Γ entios. Γ_{33}/Γ $+\Gamma_{33})/\Gamma$ entios. Γ_{34}/Γ
$\Gamma(\overline{D}^0D^0 \text{ anything})/\Gamma$ NALUE 0.051+0.016+0.012 1 The systematic error $\Gamma(D^0D^{\pm} \text{ anything})/\Gamma$ NALUE 0.027+0.015+0.010 1 The systematic error $\Gamma(\overline{D}^0D^0 \text{ anything})$ 1 The systematic error $\Gamma(\overline{D}^0D^0 \text{ anything})$ NALUE 0.078+0.020+0.018 1 The systematic error	includes total includes + \(\(\begin{align*} D^0 \\ D	DOCUMENT ID 1 BARATE the uncertainties DOCUMENT ID 1 BARATE the uncertainties D= anything)]/ DOCUMENT ID 1 BARATE	98Q due to 98Q due to 7 total 98Q due to	TECN ALEP the cha	$\frac{COMMENT}{e^+e^- \rightarrow Z}$ rm branching ranching	Γ_{32}/Γ entios. Γ_{33}/Γ $+\Gamma_{33})/\Gamma$ entios. Γ_{34}/Γ
	includes total includes + \(\Gamma(D^0) \) includes \(\Gamma(L) \)	DOCUMENT ID 1 BARATE the uncertainties DOCUMENT ID 1 BARATE the uncertainties D= anything) 1 BARATE 1 BARATE the uncertainties	98Q due to 98Q due to 7 total 98Q due to	TECN ALEP the cha	$\frac{COMMENT}{e^+e^- \rightarrow Z}$ rm branching ranching	Γ_{32}/Γ entios. Γ_{33}/Γ $+\Gamma_{33})/\Gamma$ entios. Γ_{34}/Γ
	includes total includes + \(\Gamma(D^0) \) includes \(\Gamma(L) \)	DOCUMENT ID 1 BARATE the uncertainties DOCUMENT ID 1 BARATE the uncertainties D= anything) 1 BARATE 1 BARATE the uncertainties	98Q due to 98Q due to 7 total 98Q due to	TECN ALEP the cha TECN ALEP the cha TECN ALEP the cha	$\frac{COMMENT}{e^+e^- \rightarrow Z}$ rm branching ranching	Γ ₃₂ /Γ entios. Γ ₃₃ /Γ entios. +Γ ₃₃)/Γ entios. Γ ₃₄ /Γ

	DOCUMENT ID		TECN	(Γ ₃₅ :	
0.093±0.017±0.014	¹ ABDALLAH				
¹ The second error is the total used in the measurement.	of systematic unce	rtaintie	s includi	ng the branching	g fraction
Γ(<i>D</i> [—] anything)/Γ _{total}	DOCUMENT ID		TECN	COMMENT	Γ ₃₇ /Ι
0.227±0.016±0.004	¹ BUSKULIC	96Y	ALEP	$e^+e^- \rightarrow Z$	
1 BUSKULIC 96Y reports 0. D^{-} anything)/ $\Gamma_{\rm total}$] \times [B(which we rescale to our best first error is their experiment using our best value.	$(D^+ o K^-2\pi^+)]$ t value B $(D^+ o K^-)$	assum $K^-2\pi^-$	ing B(<i>D</i> +) = (9.	$^+ \rightarrow \ \kappa^- 2\pi^+$.38 \pm 0.16) \times 1	0.091 0.091 0^{-2} 0.091
$\Gamma(D^*(2010)^+$ anything)/ $\Gamma_{ m to}$	otal				Γ ₃₈ /Ι
VALUE			TECN	COMMENT	
$0.173 \pm 0.016 \pm 0.012$	¹ ACKERSTAF	F 98E	OPAL	$e^+e^- ightarrow Z$	
$^{ m 1}$ Uses lepton tags to select Z	$b \rightarrow b \overline{b}$ events.				
$\Gamma(D_1(2420)^0$ anything)/ $\Gamma_{ ext{to}}$	vtal				Г39/І
VALUE	DOCUMENT ID				
$0.050 \pm 0.014 \pm 0.006$					
1 ACKERSTAFF 97W assum $\Gamma_{b\overline{b}}/\Gamma_{\rm hadrons} = 0.216$ at 2		\rightarrow	$D^{*+}\pi^{-}$	$(x) = 0.21 \pm 1$	0.04 and
$\Gamma(D^*(2010)^{\mp}D_s^{\pm}$ anything)			TECN	<u>COMMENT</u>	Γ ₄₀ /Γ
$0.033 + 0.010 + 0.012 \\ -0.009 - 0.009$	¹ BARATE				
1					
I he systematic error include	es the uncertainties	due to	tne cna	rm branching ra	atios.
1 The systematic error include $\Gamma(D^0D^*(2010)^\pm ext{anything})$	/Γ _{total}				
$\Gamma(D^0D^*(2010)^{\pm}$ anything)	/F _{total} DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
$\Gamma(D^0 D^*(2010)^{\pm} \text{ anything})$	/Γ _{total}		<u>TECN</u>	<u>COMMENT</u>	
$\Gamma(D^0D^*(2010)^{\pm}$ anything)	/ C_{total} <u>DOCUMENT ID</u> ¹ BARATE	98Q	TECN ALEP	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow Z}$	Γ ₄₁ /Ι
$\Gamma(D^0D^*(2010)^{\pm} \text{ anything})$ $VALUE$ $0.030^{+0.009}_{-0.008} + 0.005$ 1 The systematic error include $\Gamma(D^*(2010)^{\pm}D^{\mp} \text{ anything})$	/F _{total} DOCUMENT ID BARATE sthe uncertainties /F _{total}	98Q due to	TECN ALEP the cha	$rac{ extit{COMMENT}}{e^+e^- ightarrowZ}$ rm branching ra	Γ ₄₁ /Ι atios. Γ ₄₂ /Ι
$\Gamma(D^0D^*(2010)^{\pm} \text{ anything})$ $VALUE$ $0.030^{+0.009}_{-0.008} + 0.005$ 1 The systematic error include $\Gamma(D^*(2010)^{\pm}D^{\mp} \text{ anything})$ $VALUE$	/F _{total} DOCUMENT ID BARATE sthe uncertainties /F _{total}	98Q due to	TECN ALEP the cha	$rac{COMMENT}{e^+e^- ightarrowZ}$ rm branching ra $rac{COMMENT}{COMMENT}$	Γ ₄₁ /Ι atios. Γ ₄₂ /Ι
$\Gamma(D^0D^*(2010)^{\pm} \text{ anything})$ $VALUE$ $0.030^{+0.009}_{-0.008} + 0.005$ 1 The systematic error include $\Gamma(D^*(2010)^{\pm}D^{\mp} \text{ anything})$ $VALUE$	/F _{total} DOCUMENT ID 1 BARATE es the uncertainties /F _{total} DOCUMENT ID 1 BARATE	98Q due to	TECN ALEP the cha	$\begin{array}{c} \underline{\textit{COMMENT}} \\ e^+ e^- \to Z \\ \\ \text{rm branching ra} \\ \\ \underline{\textit{COMMENT}} \\ e^+ e^- \to Z \end{array}$	Γ ₄₁ /Γ atios. Γ ₄₂ /Γ
$\Gamma(D^0D^*(2010)^{\pm} \text{ anything})$ $VALUE$ $0.030^{+0.009}_{-0.008} + 0.007$ 1 The systematic error include $\Gamma(D^*(2010)^{\pm}D^{\mp} \text{ anything})$ $VALUE$ $0.025^{+0.010}_{-0.009} + 0.006$ 1 The systematic error include $\Gamma(D^*(2010)^{\pm}D^*(2010)^{\mp} \text{ anything})$	/ \(\rac{\frac{\frac{DOCUMENT ID}{DOCUMENT ID}}{1} \) BARATE es the uncertainties / \(\rac{\frac{\frac{DOCUMENT ID}{\frac{1}{0}}}{1} \) BARATE es the uncertainties nything \(\rac{\frac{\frac{1}{0}}{\frac{1}{0}}}{1} \)	98Q due to 98Q due to	TECN ALEP the cha TECN ALEP the cha	$rac{COMMENT}{e^+e^- ightarrowZ}$ rm branching ra $rac{COMMENT}{e^+e^- ightarrowZ}$ rm branching ra	Γ_{41}/I atios. Γ_{42}/I atios. Γ_{43}/I
$\Gamma(D^0D^*(2010)^{\pm} \text{ anything})$ $VALUE$ $0.030^{+0.009}_{-0.008} + 0.005$ 1 The systematic error include $\Gamma(D^*(2010)^{\pm}D^{\mp} \text{ anything})$ $VALUE$ $0.025^{+0.010}_{-0.009} + 0.006$ 1 The systematic error include $\Gamma(D^*(2010)^{\pm}D^*(2010)^{\mp} \text{ anything})$ $\Gamma(D^*(2010)^{\pm}D^*(2010)^{\mp} \text{ anything})$	/ Ttotal DOCUMENT ID BARATE es the uncertainties / Ttotal DOCUMENT ID BARATE es the uncertainties	98Q due to 98Q due to	TECN ALEP the cha TECN ALEP the cha	$COMMENT$ $e^+e^- o Z$ rm branching ra $COMMENT$ $e^+e^- o Z$ rm branching ra $COMMENT$	$\Gamma_{41}/\Gamma_{41}/\Gamma_{42}/\Gamma_{43}/$
$\Gamma(D^0D^*(2010)^{\pm} \text{ anything})$ $VALUE$ $0.030^{+0.009}_{-0.008} + 0.005$ 1 The systematic error include $\Gamma(D^*(2010)^{\pm}D^{\mp} \text{ anything})$ $VALUE$ $0.025^{+0.010}_{-0.009} + 0.006$ 1 The systematic error include $\Gamma(D^*(2010)^{\pm}D^*(2010)^{\mp} \text{ anything})$ $VALUE$ $\Gamma(D^*(2010)^{\pm}D^*(2010)^{\mp} \text{ anything})$ $VALUE$	/F _{total} DOCUMENT ID 1 BARATE es the uncertainties /F _{total} DOCUMENT ID 1 BARATE es the uncertainties es the uncertainties nything)/F _{total} DOCUMENT ID 1 BARATE	98Q due to 98Q due to	TECN ALEP the cha TECN ALEP the cha	$\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \to Z \\ \\ \text{rm branching ra} \\ \\ \underline{COMMENT} \\ e^+ e^- \to Z \\ \\ \text{rm branching ra} \\ \\ \\ \underline{COMMENT} \\ e^+ e^- \to Z \\ \\ \end{array}$	Γ_{41}/Γ atios. Γ_{42}/Γ atios. Γ_{43}/Γ

$\Gamma(\overline{D}D$ anything) $/\Gamma_{\text{total}}$					Γ_{44}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.10\pm0.032_{-0.095}^{+0.107}$	¹ ABBIENDI	041	OPAL	$e^+e^- ightarrow~Z$	

 $^{^{1}}$ Measurement performed using an inclusive identification of B mesons and the D candidates.

$\Gamma(D_2^*(2460)^0 \text{ anything})/\Gamma_{\text{total}}$

 Γ_{45}/Γ

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
$0.047 \pm 0.024 \pm 0.013$	¹ ACKERSTAFF 97W	OPAL	$e^+e^- ightarrow Z$

 $^{^1}$ ACKERSTAFF 97W assumes B($D_2^*(2460)^0\to D^{*+}\pi^-)=0.21\pm0.04$ and $\Gamma_{b\overline{b}}/\Gamma_{\rm hadrons}=0.216$ at Z decay.

$\Gamma(D_s^- \text{ anything})/\Gamma_{\text{total}}$

 Γ_{46}/Γ

VALUE	DOCUMENT ID		TECN	COMMENT
0.147±0.017±0.013	¹ BUSKULIC	96Y	ALEP	$e^+e^- \rightarrow Z$

 $^{^{1}}$ BUSKULIC 96Y reports 0.183 \pm 0.019 \pm 0.009 from a measurement of $[\Gamma(\overline{b}\to D_s^- \, {\rm anything})/\Gamma_{\rm total}] \times [{\rm B}(D_s^+ \to \phi \pi^+)]$ assuming ${\rm B}(D_s^+ \to \phi \pi^+) = 0.036$, which we rescale to our best value ${\rm B}(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D_s^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_{47}/Γ

VALUE	DOCUMENT ID		COMMENT	
$0.101 \pm 0.010 \pm 0.029$	¹ ABDALLAH 03	E DLPH	$e^+e^- ightarrow~Z$	

¹ The second error is the total of systematic uncertainties including the branching fractions used in the measurement.

$\Gamma(b \rightarrow \Lambda_c^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_{48}/Γ

VALUE	DOCUMENT ID		TECN	COMMENT
0.076±0.011±0.003	¹ BUSKULIC	96Y	ALEP	$e^+e^- \rightarrow Z$

¹ BUSKULIC 96Y reports $0.110 \pm 0.014 \pm 0.006$ from a measurement of $[\Gamma(b \to \Lambda_c^+ \text{ anything})/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p \, K^- \, \pi^+)]$ assuming $B(\Lambda_c^+ \to p \, K^- \, \pi^+) = 0.044$, which we rescale to our best value $B(\Lambda_c^+ \to p \, K^- \, \pi^+) = (6.35 \pm 0.25) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{c}/c \text{ anything})/\Gamma_{\text{total}}$

 Γ_{49}/Γ

VALUE	DOCUMENT ID		TECN	COMMENT
1.162 ± 0.032 OUR AVERAGE				
$1.12 \begin{array}{c} +0.11 \\ -0.10 \end{array}$	¹ ABBIENDI	041	OPAL	$e^+e^- ightarrow Z$
$1.166 \pm 0.031 \pm 0.080$	² ABREU	00	DLPH	$e^+e^- ightarrow Z$
1.147 ± 0.041	³ ABREU	98 D	DLPH	$e^+e^- ightarrow Z$
$1.230 \pm 0.036 \pm 0.065$	⁴ BUSKULIC	96Y	ALEP	$e^+e^- ightarrow Z$

$\Gamma(J/\psi(1S))$ anything $\Gamma(J/\psi(1S))$

 Γ_{50}/Γ

Ζ
Ζ
Ζ
Z
GeV
S) →
,
$S) \rightarrow$
,
0.7 ±
Z Ge S)

$\Gamma(\psi(2S))$ anything $\Gamma(\psi(2S))$

 Γ_{51}/Γ

(, (,) (), 1011.				,
VALUE	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the followi	ng data for average	s, fits, limits, e	tc. • • •	
$0.0048 \pm 0.0022 \pm 0.0010$	¹ ABREU	94P DLPH	$e^+e^- \rightarrow Z$	

 $^{^1}$ ABREU 94P is an inclusive measurement from b decays at the Z. Uses $\psi(2S)
ightarrow$ $J/\psi(1S)\pi^+\pi^-$, $J/\psi(1S) \rightarrow \mu^+\mu^-$ channels. Assumes $\Gamma(Z \rightarrow b\overline{b})/\Gamma_{\rm hadron} = 0.22$.

 $(0.3) \times 10^{-3}$ which is used to extract the *b*-hadron contribution to $J/\psi(1S)$ production.

$\Gamma(\psi(2S))$ anything $\Gamma(J/\psi(1S))$ anything

 Γ_{51}/Γ_{50}

VALUE	DOCUMENT ID		TECN	COMMENT
0.263±0.013 OUR AVERAGE				
$0.265\!\pm\!0.002\!\pm\!0.016$	¹ AAIJ	20 G	LHCB	pp at 13 TeV
$0.266 \pm 0.06 \pm 0.03$	^{2,3} AAIJ			pp at 7 TeV
$0.257 \pm 0.015 \pm 0.019$	^{4,5} CHATRCHYAI	1 12AK	CMS	pp at 7 TeV

¹ The first error is statistic; the second error is the total systematic error.

 $^{^{}m 1}$ Measurement performed using an inclusive identification of B mesons and the D candi-

dates.

² Evaluated via summation of exclusive and inclusive channels.

³ ABREU 98D results are extracted from a fit to the *b*-tagging probability distribution based on the impact parameter.

 $^{^4}$ BUSKULIC 96Y assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons, and PDG 96 branching ratios for charm decays. This is sum of their inclusive $\overline{D}{}^0$, D^- , \overline{D}_s , and Λ_c branching ratios, corrected to include inclusive Ξ_c and charmonium.

²AAIJ 12BD reports B($b o \psi(2S)X$) = $(3.08 \pm 0.07 \pm 0.36 \pm 0.27) imes 10^{-3}$ and we divided our best value of B($b \rightarrow \psi(1S)X$) = $(1.16 \pm 0.10) \times 10^{-2}$ as the ratio listed

³ Assumes lepton universality imposing B($\psi(2s) \rightarrow \mu^+\mu^-$) = B($\psi(2s) \rightarrow e^+e^-$).

⁴ CHATRCHYAN 12AK really reports $\Gamma_{51}/\Gamma=(3.08\pm0.12\pm0.13\pm0.42)\times10^{-3}$ assuming PDG 10 value of $\Gamma_{50}/\Gamma=(1.16\pm0.10)\times10^{-2}$ which we present as a ratio of Γ_{51}/Γ_{50} $= (26.5 \pm 1.0 \pm 1.1 \pm 2.8) \times 10^{-2}$.

 $^{^5\,\}text{CHATRCHYAN}$ 12AK reports (26.5 \pm 1.0 \pm 1.1 \pm 2.8) \times 10 $^{-2}$ from a measurement of $[\Gamma(\overline{b} \to \psi(2S) \text{ anything})/\Gamma(\overline{b} \to J/\psi(1S) \text{ anything})] \times [B(\psi(2S) \to \mu^+\mu^-)]$ / $[B(J/\psi(1S) \rightarrow \mu^+\mu^-)]$ assuming $B(\psi(2S) \rightarrow \mu^+\mu^-) = (7.7 \pm 0.8) \times$

 10^{-3} ,B $(J/\psi(1S) \rightarrow \mu^+\mu^-) = (5.93 \pm 0.06) \times 10^{-2}$, which we rescale to our best values B $(\psi(2S) \rightarrow \mu^+\mu^-) = (8.0 \pm 0.6) \times 10^{-3}$, B $(J/\psi(1S) \rightarrow \mu^+\mu^-) = (5.961 \pm 0.033) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c0}(1P))$ anything $\Gamma(\chi_{c0}(1P))$

 Γ_{52}/Γ

$VALUE$ (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
3.0±0.6±0.2	¹ AAIJ	24AP LHCB	pp at 13 TeV

 $^{^1}$ AAIJ 24AP reports $[\Gamma(\overline{b}\to\chi_{c0}(1P)\,\text{anything})/\Gamma_{\text{total}}]\times[\mathrm{B}(\chi_{c0}(1P)\to\,p\overline{p})]=(6.74\pm1.18\pm0.62)\times10^{-7}$ which we divide by our best value $\mathrm{B}(\chi_{c0}(1P)\to\,p\overline{p})=(2.21\pm0.14)\times10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c0}(1P))$ anything $\Gamma(\eta_c(1S))$ anything

 Γ_{52}/Γ_{56}

VALUE	DOCUMENT ID	TECN	COMMENT	
0.32±0.05±0.08	¹ AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV	

 $^{^1}$ AAIJ 17BB reports [$\Gamma(\overline{b}\to\chi_{c0}(1P) \, {\rm anything})/\Gamma(\overline{b}\to\eta_{c}(1S) \, {\rm anything})] / \, [{\rm B}(\eta_{c}(1S)\to\phi\phi)] \times [{\rm B}(\chi_{c0}(1P)\to\phi\phi)] = 0.147\pm0.023\pm0.011$ which we multiply or divide by our best values ${\rm B}(\eta_{c}(1S)\to\phi\phi)=(1.8\pm0.4)\times10^{-3}, \,\, {\rm B}(\chi_{c0}(1P)\to\phi\phi)=(8.48\pm0.31)\times10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\chi_{c1}(1P))$

 Γ_{53}/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
5.9 ± 1.5 OUR AVERAGI			or of 1	1.2.	
$5.1 \pm 1.3 \pm 0.3$		¹ AAIJ	24AP	LHCB	pp at 13 TeV
$11.2^{+5.7}_{-5.0}\!\pm\!0.4$		² ABREU	94 P	DLPH	$e^+e^- ightarrow Z$
19 ± 7 ± 1	19	³ ADRIANI	93 J	L3	$e^+e^- ightarrow Z$

- 1 AAIJ 24AP reports $[\Gamma(\overline{b}\to\chi_{c1}(1P)\,\text{anything})/\Gamma_{\text{total}}]\times[\mathrm{B}(\chi_{c1}(1P)\to\,p\overline{p})]=(3.88\pm0.91\pm0.36)\times10^{-7}$ which we divide by our best value $\mathrm{B}(\chi_{c1}(1P)\to\,p\overline{p})=(7.6\pm0.4)\times10^{-5}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value. 2 ABREU 94P reports $(1.4\pm0.6^{+0.4}_{-0.2})\times10^{-2}$ from a measurement of $[\Gamma(\overline{b}\to$
- ²ABREU 94P reports $(1.4\pm0.6^{+0.4}_{-0.2})\times10^{-2}$ from a measurement of $[\Gamma(\overline{b}\to\chi_{c1}(1P)\,{\rm anything})/\Gamma_{\rm total}]\times[B(\chi_{c1}(1P)\to\gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P)\to\gamma J/\psi(1S))=(27.3\pm1.6)\times10^{-2}$, which we rescale to our best value $B(\chi_{c1}(1P)\to\gamma J/\psi(1S))=(34.3\pm1.3)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes no $\chi_{c2}(1P)$ and $\Gamma(Z\to b\overline{b})/\Gamma_{\rm hadron}=0.22$.
- ³ADRIANI 93J reports $(2.4 \pm 0.9 \pm 0.2) \times 10^{-2}$ from a measurement of $[\Gamma(\overline{b} \to \chi_{c1}(1P) \, \text{anything})/\Gamma_{\text{total}}] \times [B(\chi_{c1}(1P) \to \gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (27.3 \pm 1.6) \times 10^{-2}$, which we rescale to our best value $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.3 \pm 1.3) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(J/\psi(1S))$ anything

 Γ_{53}/Γ_{50}

• • • We do not use the following data for averages, fits, limits, etc. • • •

 1.92 ± 0.82

121 ¹ ADRIANI

93J L3

 $e^+e^- \rightarrow 2$

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\chi_{c0}(1P))$ anything

 Γ_{53}/Γ_{52}

VALUE	DOCUMENT ID	IECN	COMMENT
1.06±0.22 OUR AVERAGE			
$1.7\ \pm0.7\ \pm0.1$	¹ AAIJ	24AP LHCB	pp at 13 TeV
$1.00\!\pm\!0.22\!\pm\!0.06$	² AAIJ	17вв LHCВ	<i>pp</i> at 7, 8 TeV

 1 AAIJ 2 4AP reports $[\Gamma(\overline{b} \to \chi_{c1}(1P) \, \text{anything})/\Gamma(\overline{b} \to \chi_{c0}(1P) \, \text{anything})] / [B(\chi_{c0}(1P) \to p\overline{p})] \times [B(\chi_{c1}(1P) \to p\overline{p})] = 0.58 \pm 0.23 \pm 0.02$ which we multiply or divide by our best values $B(\chi_{c0}(1P) \to p\overline{p}) = (2.21 \pm 0.14) \times 10^{-4}, \, B(\chi_{c1}(1P) \to p\overline{p}) = (7.6 \pm 0.4) \times 10^{-5}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

² AAIJ 17BB reports $[\Gamma(\overline{b} \to \chi_{c1}(1P) \, \text{anything})/\Gamma(\overline{b} \to \chi_{c0}(1P) \, \text{anything})] / [B(\chi_{c0}(1P) \to \phi\phi)] \times [B(\chi_{c1}(1P) \to \phi\phi)] = 0.50 \pm 0.11 \pm 0.01$ which we multiply or divide by our best values $B(\chi_{c0}(1P) \to \phi\phi) = (8.48 \pm 0.31) \times 10^{-4}$, $B(\chi_{c1}(1P) \to \phi\phi) = (4.26 \pm 0.21) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\eta_{c}(1S))$ anything

 Γ_{53}/Γ_{56}

VALUE	DOCUMENT ID	TECN	COMMENT
$0.31 \pm 0.07 \pm 0.08$	¹ AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV

 1 AAIJ 17BB reports [$\Gamma(\overline{b} \to \chi_{c1}(1P) \, \text{anything}) / \Gamma(\overline{b} \to \eta_{c}(1S) \, \text{anything})] / \left[B(\eta_{c}(1S) \to \phi\phi) \right] \times \left[B(\chi_{c1}(1P) \to \phi\phi) \right] = 0.073 \pm 0.016 \pm 0.006$ which we multiply or divide by our best values $B(\eta_{c}(1S) \to \phi\phi) = (1.8 \pm 0.4) \times 10^{-3}, \; B(\chi_{c1}(1P) \to \phi\phi) = (4.26 \pm 0.21) \times 10^{-4}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\chi_{c2}(1P))$

 Γ_{54}/Γ

<i>VALUE</i> (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
1.6±1.1±0.1	1 AAIJ	24AP LHCB	pp at 13 TeV

 $^{^1}$ AAIJ 24AP reports $[\Gamma(\overline{b}\to\chi_{c2}(1P)\,\text{anything})/\Gamma_{\text{total}}]\times[\text{B}(\chi_{c2}(1P)\to\,p\overline{p})]=(1.13\pm0.83\pm0.10)\times10^{-7}$ which we divide by our best value $\text{B}(\chi_{c2}(1P)\to\,p\overline{p})=(7.3\pm0.4)\times10^{-5}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\chi_{c0}(1P))$ anything

 Γ_{54}/Γ_{52}

VALUE	DOCUMENT ID	TECN	COMMENT
0.39 ± 0.07 OUR AVERAGE			
$0.52 \pm 0.37 \pm 0.04$	¹ AAIJ	24AP LHCB	pp at 13 TeV
$0.39 \pm 0.07 \pm 0.03$	² AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV

¹ ADRIANI 93J is a ratio of inclusive measurements from b decays at the Z using only the $J/\psi(1S) \rightarrow \mu^+\mu^-$ channel since some systematics cancel.

¹ AAIJ 24AP reports $[\Gamma(\overline{b} \to \chi_{C2}(1P) \, \text{anything})/\Gamma(\overline{b} \to \chi_{c0}(1P) \, \text{anything})] / [B(\chi_{c0}(1P) \to p\overline{p})] \times [B(\chi_{c2}(1P) \to p\overline{p})] = 0.17 \pm 0.12 \pm 0.01 \, \text{which we multiply or divide by our best values } B(\chi_{c0}(1P) \to p\overline{p}) = (2.21 \pm 0.14) \times 10^{-4}, \, B(\chi_{c2}(1P) \to p\overline{p}) = (7.3 \pm 0.4) \times 10^{-5}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

² AAIJ 17BB reports $[\Gamma(\overline{b} \to \chi_{c2}(1P) \, \text{anything})/\Gamma(\overline{b} \to \chi_{c0}(1P) \, \text{anything})]$ / $[B(\chi_{c0}(1P) \to \phi\phi)] \times [B(\chi_{c2}(1P) \to \phi\phi)] = 0.56 \pm 0.10 \pm 0.01$ which we multiply or divide by our best values $B(\chi_{c0}(1P) \to \phi\phi) = (8.48 \pm 0.31) \times 10^{-4}$, $B(\chi_{c2}(1P) \to \phi\phi) = (1.23 \pm 0.07) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\eta_{c}(1S))$ anything

 Γ_{54}/Γ_{56}

(/((2()))) (/((- /- /- 6/			J+/	9
<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT		
$0.121 \pm 0.021 \pm 0.030$	¹ AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV		

 1 AAIJ 17BB reports $[\Gamma(\overline{b}\to\chi_{c2}(1P)\,\text{anything})/\Gamma(\overline{b}\to\eta_{c}(1S)\,\text{anything})]\,/\,[\mathrm{B}(\eta_{c}(1S)\to\phi\phi)]\,\times\,[\mathrm{B}(\chi_{c2}(1P)\to\phi\phi)]=0.081\pm0.013\pm0.005$ which we multiply or divide by our best values $\mathrm{B}(\eta_{c}(1S)\to\phi\phi)=(1.8\pm0.4)\times10^{-3},\;\mathrm{B}(\chi_{c2}(1P)\to\phi\phi)=(1.23\pm0.07)\times10^{-3}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_c(2P))$ anything, $\chi_c \to \phi \phi / \Gamma_{total}$

 Γ_{55}/Γ

(,	,			
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<2.8 × 10 ⁻⁷	95	AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV	

$\Gamma(\eta_c(1S))$ anything $\Gamma(J/\psi(1S))$ anything

 Γ_{56}/Γ_{50}

	, , ,			907	-
VALUE	DOCUMENT ID	TECN	COMMENT		
0.49±0.04 OUR AVERAGE					
$0.49 \pm 0.03 \pm 0.05$	¹ AAIJ	24AP LHCE	3 <i>pp</i> at 13 TeV		
$0.48 \pm 0.03 \pm 0.06$	AAIJ	20H LHCE	3 <i>pp</i> at 13 TeV		

¹Using $\eta_c(1S)$ and $J/\psi(1S)$ decays to $p\overline{p}$.

$\Gamma(\eta_c(2S))$ anything, $\eta_c \to \phi \phi / \Gamma(\eta_c(1S))$ anything)

 Γ_{57}/Γ_{56}

VALUE (units 10 ⁻⁵)	DOCUMENT ID	TECN	COMMENT
7.3±2.1±1.7	¹ AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV

 $^{^1}$ AAIJ 17BB reports [$\Gamma(\overline{b}\to\eta_{\mathcal{C}}(2S)$ anything, $\eta_{\mathcal{C}}\to\phi\phi)/\Gamma(\overline{b}\to\eta_{\mathcal{C}}(1S)$ anything)] / [B($\eta_{\mathcal{C}}(1S)\to\phi\phi)$] = 0.040 \pm 0.011 \pm 0.004 which we multiply by our best value B($\eta_{\mathcal{C}}(1S)\to\phi\phi)$ = (1.8 \pm 0.4) \times 10 $^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c1}(3872))$ anything, $\chi_{c1} \rightarrow \phi \phi / \Gamma_{total}$

 Γ_{58}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	<u>COMMENT</u>
$<4.5 \times 10^{-7}$	95	AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV

$\Gamma(\chi_{c0}(3915))$ anything, $\chi_{c0} \to \phi \phi / \Gamma_{total}$

 Γ_{59}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID	TECN	COMMENT
$< 3.1 \times 10^{-7}$	95	AAIJ	17BB LHCB	pp at 7. 8 TeV

$\Gamma(\overline{s}\gamma)/\Gamma_{total}$						Γ ₆₀ /Γ
VALUE (units 10^{-4})						
$3.11\pm0.80\pm0.72$		BARATE				7
• • • We do not use the						
< 5.4		ADAM				
<12	90	³ ADRIANI	93L	L3	$e^+e^- \rightarrow Z$	7
¹ BARATE 981 uses life						
² ADAM 96D assumes	$f_{B^0} = f_{B^-}$	$=$ 0.39 and f_{B_s}	= 0.	12.		
³ ADRIANI 93L result is	s for $\overline{b} ightarrow$	$ar{s}\gamma$ is performed	inclus	sively.		
Γ /σπ \ /Γ						Г., /Г
$\Gamma(\overline{s}\overline{\nu}\nu)/\Gamma_{\text{total}}$	CL 0/	DOCUMENT ID		TECN	COMMENT	Γ ₆₁ /Γ
<i>VALUE</i> <6.4 × 10 ^{−4}		BARATE				7
				ALEP	$e \cdot e \rightarrow Z$	<u>-</u>
$^{ m 1}$ The energy-flow and	<i>b</i> -tagging a	lgorithms were ι	ısed.			
$\Gamma(K^{\pm} \text{ anything})/\Gamma_{\text{tota}}$	d.					Γ_{62}/Γ
VALUE	"	DOCUMENT ID		TECN	COMMENT	<u> </u>
0.74±0.06 OUR AVERAGE	GE					
$0.72\!\pm\!0.02\!\pm\!0.06$		BARATE				
$0.88 \pm 0.05 \pm 0.18$		ABREU	95 C	DLPH	$e^+e^- \rightarrow Z$	7
r//0 and thing)/r						Г., /Г
$\Gamma(K_S^0 \text{ anything})/\Gamma_{\text{tota}}$	l	DOCUMENT ID		TECN	COMMENT	Γ ₆₃ /Γ
<u>VALUE</u>		DOCUMENT ID				
$0.290 \pm 0.011 \pm 0.027$		ABREU	95C	DLPH	$e^+e^- \rightarrow Z$	<u> </u>
$\Gamma(\pi^{\pm}$ anything)/ $\Gamma_{ m tota}$						Γ ₆₄ /Γ
VALUE VALUE		DOCUMENT ID		TECN	COMMENT	,
3.97±0.02±0.21		BARATE				
		2, 1		, _ .		_
$\Gamma(\pi^0 \text{ anything})/\Gamma_{\text{total}}$						Γ ₆₅ /Γ
VALUE		DOCUMENT ID				
$2.78\pm0.15\pm0.60$	1	- ADAM	96	DLPH	$e^+e^- \rightarrow z$	7
1 ADAM 96 measurements.	ent obtaine	d from a fit to t	he rap	oidity dis	tribution of π	$0^{\prime s}$ in $Z \rightarrow$
$\Gamma(\phi)$ anything $\Gamma(\phi)$						Γ., /Γ
VALUE		DOCUMENT ID		TECN	COMMENT	Γ ₆₆ /Γ
0.0282±0.0013±0.0019		ABBIENDI				
0.0202±0.0013±0.0019		ADDIENDI	002	OPAL	$e \cdot e \rightarrow z$	<u>-</u>
$\Gamma(p/\overline{p})$ anything $\Gamma(p/\overline{p})$	al					Γ_{67}/Γ
VALUE		DOCUMENT ID		TECN	COMMENT	01 /
0.131±0.011 OUR AVER	AGE					
$0.131\!\pm\!0.004\!\pm\!0.011$		BARATE			$e^+e^- \rightarrow z$	
$0.141 \pm 0.018 \pm 0.056$		ABREU	95 C	DLPH	$e^+e^- \rightarrow Z$	7

$\Gamma(\Lambda/\overline{\Lambda})$ anything $\Gamma(\Lambda/\overline{\Lambda})$					Γ ₆₈ /Γ
VALUE 0.059 ±0.006 OUR AVER		T ID	TECN	COMMENT	
0.059 ± 0.006 OUR AVER $0.0587 \pm 0.0046 \pm 0.0048$		FAEE 07N	ODAI	$e^+e^- ightarrow Z$	
$0.059 \pm 0.007 \pm 0.009$	ABREU			$e^+e^- \rightarrow Z$	
0.003 ±0.001 ±0.003	ABILEO	330	DEITI	c c / 2	
$\Gamma(b$ -baryon anything)/ Γ	total				Γ_{69}/Γ
VALUE	<u>DOCUMEN</u>			COMMENT	
0.102±0.007±0.027	¹ BARATE	98V	ALEP	$e^+e^- ightarrow Z$	
¹ BARATE 98V assumes E	$B(B_S \rightarrow pX) = 8$	\pm 4% and	B(<i>b</i> -bar	yon $\rightarrow pX) =$	$58 \pm 6\%$.
$\Gamma(\Xi_b^+ \text{ anything})/\Gamma(\overline{\Lambda}_b^0 \text{ and})$	nything)				Γ ₇₁ /Γ ₇₀
VALUE (units 10^{-2})	DOCUMEN	T ID	TECN	COMMENT	
7.3±1.7 OUR AVERAGE	1				
$6.7 \pm 0.5 \pm 2.1$	¹ AAIJ	19AE	LHCB	<pre>pp at 7 and 8 pp at 13 TeV</pre>	TeV
$8.2 \pm 0.7 \pm 2.6$					
1 Measured from R = [B					
$J/\psi \overline{\Lambda}{}^0)]$ and assumes ${\mathfrak l}$	$\Gamma = + \rightarrow I/2/2 = + /\Gamma$	$\overline{\Lambda}^0 \to I/\psi$	$\overline{\Lambda}_0 = 3/$	'2 related throι	igh SU(3)
flavor symmetry.	-b /3/ 4 -	Б			
$\Gamma(\text{charged anything})/\Gamma_{\text{to}}$					Γ ₇₂ /Γ
VALUE		T ID	TECN	COMMENT	
4.97±0.03±0.06				$e^+e^- \rightarrow Z$	
• • • We do not use the fol					- 11.00
$5.84 \pm 0.04 \pm 0.38$	ABREU			Repl. by ABR	EU 98H
¹ ABREU 98H measureme	nt excludes the cor	tribution f	rom K ⁰	and Λ decay.	
$\Gamma(\text{hadron}^+ \text{hadron}^-)/\Gamma_t$	total				Γ ₇₃ /Γ
VALUE (units 10^{-5})	DOCUMEN	T ID	TECN	COMMENT	
$1.7^{+1.0}_{-0.7}\pm0.2$	^{1,2} BUSKULI	C 96V	ALEP	$e^+e^- ightarrow Z$	
¹ BUSKULIC 96V assumes	s PDG 96 productio	on fractions	for B^0	B ⁺ . B ₋ . b bai	rvons.
² Average branching fract					
hadrons, weighted by the					J
$\Gamma(\text{charmless})/\Gamma_{\text{total}}$					Γ ₇₄ /Γ
VALUE	<u>DOCUMEN</u>	T ID	TECN	COMMENT	
0.007 ± 0.021	$^{ m 1}$ ABREU	98 D	DLPH	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow Z}$	
ABREU 98D results are e on the impact parameter been subtracted.	xtracted from a fit t . The expected hid	o the <i>b</i> -tag den charm	gging pro contribu	bability distribution of 0.026 \pm	tion based 0.004 has
$\Gamma(\mu^+\mu^-$ anything)/ Γ_{tot} . Test for $\Delta B=1$ weak					Γ ₇₆ /Γ
	<u>MOCUMEN</u>	T ID	TECN	COMMENT	
<3.2 × 10⁻⁴ 90	ABBOTT	98 B	D0	<i>p</i> p 1.8 TeV	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$< 5.0 \times 10^{-5}$	90	$^{ m 1}$ ALBAJAR	91c UA1	$E_{cm}^{p\overline{p}} = 630 \; GeV$
< 0.02	95	ALTHOFF	84G TASS	<i>E</i> ^{ee} _{Cm} = 34.5 GeV
< 0.007	95	ADEVA	83 MRKJ	E ^{ee} _{cm} = 30–38 GeV
< 0.007	95	BARTEL	83B JADE	$E_{cm}^{ee} = 33-37 \text{ GeV}$

¹ Both ABBOTT 98B and GLENN 98 claim that the efficiency quoted in ALBAJAR 91C was overestimated by a large factor.

$\left[\Gamma\!\left(e^{+}e^{-} \text{anything}\right) + \Gamma\!\left(\mu^{+}\mu^{-} \text{anything}\right)\right] / \Gamma_{\text{total}}$

 $(\Gamma_{75}+\Gamma_{76})/\Gamma$

Test for $\Delta B = 1$ weak neutral current.

<u>CL%</u>
<u>DOCUME</u>

DOCUMENT ID TECN COMMENT

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

< 0.008 90 MATTEUZZI 83 MRK2 $E_{cm}^{ee} = 29 \text{ GeV}$

$\Gamma(\nu\overline{\nu}_{anything})/\Gamma_{total}$

 Γ_{77}/Γ

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • •

χ_b AT HIGH ENERGY

 χ_b is the average $B - \overline{B}$ mixing parameter at high-energy $\chi_b = f_d' \chi_d + f_s' \chi_s$ where f_d' and f_s' are the fractions of B^0 and B_s^0 hadrons in an unbiased sample of semileptonic b-hadron decays. We consider here $\overline{\chi}$ for hadrons produced in Z decays.

VALUE (units 10^{-2}) EVTS	DOCUMENT ID		TECN	COMMENT
12.59± 0.42 OUR EVALUATION	ON (from LEP-SL	C 06,	eq. 5.3	9)
12.6 \pm 0.4 OUR AVERAGE				
$13.12 \pm 0.49 \pm 0.42$	$^{ m 1}$ ABBIENDI	03 P	OPAL	$e^+e^- ightarrow Z$
$12.7 \pm 1.3 \pm 0.6$	² ABREU	01L	DLPH	$e^+e^- ightarrow~Z$
$11.92 \pm 0.68 \pm 0.51$	³ ACCIARRI	99 D	L3	$e^+e^- ightarrow~Z$
$12.1 \pm 1.6 \pm 0.6$	⁴ ABREU	94J	DLPH	$e^+e^- ightarrow~Z$
$11.4 \pm 1.4 \pm 0.8$	⁵ BUSKULIC	94G	ALEP	$e^+e^- ightarrow Z$
12.9 ± 2.2	⁶ BUSKULIC	92 B	ALEP	$e^+e^- ightarrow Z$
• • • We do not use the follow	ing data for averag	es, fit	s, limits,	, etc. • • •
$13.2 \pm 0.1 \pm 2.4$	⁷ ABAZOV	06 S	D0	$p\overline{p}$ at 1.96 TeV
$15.2 \pm 0.7 \pm 1.1$	⁸ ACOSTA	04A	CDF	$p\overline{p}$ at 1.8 TeV
$13.1 \pm 2.0 \pm 1.6$	⁹ ABE	971	CDF	Repl. by ACOSTA 04A
$11.07 \pm 0.62 \pm 0.55$	¹⁰ ALEXANDER	96	OPAL	Rep. by ABBIENDI 03P
$13.6 \pm 3.7 \pm 4.0$	11 UENO	96	AMY	e^+e^- at 57.9 GeV
14.4 \pm 1.4 $^{+1.7}_{-1.1}$	¹² ABREU	94F	DLPH	Sup. by ABREU 94J
13.1 ± 1.4	¹³ ABREU	94J	DLPH	$e^+e^- ightarrow Z$
$12.3 \pm 1.2 \pm 0.8$	ACCIARRI	94D	L3	Repl. by ACCIARRI 99D
$15.7 \pm 2.0 \pm 3.2$	¹⁴ ALBAJAR	94	UA1	$\sqrt{s} = 630 \text{ GeV}$
https://pdg.lbl.gov	Page 25		Crea	ated: 4/10/2025 13:32

 $^{^1}$ GROSSMAN 96 limit is derived from the ALEPH BUSKULIC 95 limit B($B^+\to \tau^+\nu_\tau$) $<1.8\times 10^{-3}$ at CL=90% using conservative simplifying assumptions.

$12.1 \ ^{+}_{-} \ ^{4.4}_{4.0} \ \pm 1.7$	1665	¹⁵ ABREU	93 C	DLPH	Sup. by ABREU 94J
14.3 $^{+}_{-}$ $^{2.2}_{2.1}$ ± 0.7		¹⁶ AKERS	93 B	OPAL	Sup. by ALEXANDER 96
$14.5 \ \ \begin{array}{c} + \ \ 4.1 \\ - \ \ 3.5 \end{array} \ \pm 1.8$		¹⁷ ACTON	92 C	OPAL	$e^+e^- ightarrow Z$
$12.1 \pm 1.7 \pm 0.6$ $17.6 \pm 3.1 \pm 3.2$ $14.8 \pm 2.9 \pm 1.7$	1112	¹⁸ ADEVA ¹⁹ ABE ²⁰ ALBAJAR	91 G	CDF	Sup. by ACCIARRI 94D $p\overline{p}$ 1.8 TeV $p\overline{p}$ 630 GeV
$13.2 \pm 22.0 \ \begin{array}{c} +1.5 \\ -1.2 \end{array}$	823	²¹ DECAMP	91	ALEP	$e^+e^- \rightarrow Z$
$17.8 \ ^{+}_{-}\ ^{4.9}_{4.0}\ \pm 2.0$		²² ADEVA	90 P	L3	$e^+e^- o Z$
$17 {+15 \atop -8}$	23	3,24 WEIR	90	MRK2	e^+e^- 29 GeV
$\begin{array}{ccc} 21 & +29 \\ -15 \end{array}$		²³ BAND	88	MAC	E ^{ee} _{cm} = 29 GeV
>2 at 90% <i>CL</i> 12.1 \pm 4.7 <12 at 90% <i>CL</i>		²³ BAND 3,25 ALBAJAR 3,26 SCHAAD	88 870 85	UA1	$E_{ m cm}^{\it ee}$ = 29 GeV Repl. by ALBAJAR 91D $E_{ m cm}^{\it ee}$ = 29 GeV

¹The average B mixing parameter is determined simultaneously with b and c forwardbackward asymmetries in the fit.

² The experimental systematic and model uncertainties are combined in quadrature.

⁵ BUSKULIC 94G data analyzed using ee, $e\mu$, and $\mu\mu$ events.

- ⁶ BUSKULIC 92B uses a jet charge technique combined with electrons and muons.
- 7 Uses the dimuon charge asymmetry. Averaged over the mix of *b*-flavored hadrons.
- ⁸ Measurement performed using events containing a dimuon or an e/μ pair.

⁹Uses di-muon events.

- 10 ALEXANDER 96 uses a maximum likelihood fit to simultaneously extract χ as well as the forward-backward asymmetries in $e^+e^- \rightarrow Z \rightarrow b\overline{b}$ and $c\overline{c}$.
- 11 UENO 96 extracted χ from the energy dependence of the forward-backward asymmetry.
- 12 ABREU 94F uses the average electric charge sum of the jets recoiling against a b-quark jet tagged by a high p_T muon. The result is for $\overline{\chi} = f_d \chi_d + 0.9 f_s \chi_s$.
- ¹³ This ABREU 94J result combines $\ell\ell$, $\Lambda\ell$, and jet-charge ℓ (ABREU 94F) analyses. It is for $\overline{\chi} = f_d \chi_d + 0.96 f_s \chi_s$.
- ¹⁴ ALBAJAR 94 uses dimuon events. Not independent of ALBAJAR 91D.
- 15 ABREU 93C data analyzed using ee, e μ , and $\mu\mu$ events.
- $^{16}\,\mathrm{AKERS}$ 93B analysis performed using dilepton events.
- $^{17}\!$ ACTON 92C uses electrons and muons. Superseded by AKERS 93B.
- $^{18}_{10}$ ADEVA 92C uses electrons and muons.
- 19 ABE 91G measurement of χ is done with $e\mu$ and ee events. 20 ALBAJAR 91D measurement of χ is done with dimuons.
- 21 DECAMP 91 done with opposite and like-sign dileptons. Superseded by BUSKULIC 92B.
- 22 ADEVA 90P measurement uses ee, $\mu\mu$, and e μ events from 118k events at the Z. Superseded by ADEVA 92C.
- These experiments are not in the average because the combination of B_s and B_d mesons which they see could differ from those at higher energy.
- ²⁴ The WEIR 90 measurement supersedes the limit obtained in SCHAAD 85. The 90% CL
- ALBAJAR 87C measured $\chi=(\overline{B}^0\to B^0\to \mu^+ X)$ divided by the average production weighted semileptonic branching fraction for B hadrons at 546 and 630 GeV.
- 26 Limit is average probability for hadron containing B quark to produce a positive lepton.

 $^{^3}$ ACCIARRI 99D uses maximum-likelihood fits to extract χ_b as well as the A_{FR}^b in Z o $b\overline{b}$ events containing prompt leptons.

 $^{^4}$ This ABREU 94J result is from 5182 $\ell\ell$ and 279 $\Lambda\ell$ events. The systematic error includes 0.004 for model dependence.

CP VIOLATION PARAMETERS in semileptonic b-hadron decays.

$\operatorname{Re}(\epsilon_b) / (1 + |\epsilon_b|^2)$

CP impurity in semileptonic b-hadron decays.

$VALUE$ (units 10^{-3})	DOCUMENT ID)	TECN	COMMENT	
ullet $ullet$ We do not use the following	ng data for averag	es, fits,	limits,	etc. • • •	
$\begin{array}{c} -6.2\ \pm 5.2\ \pm 4.7 \\ -1.24\pm 0.38\pm 0.18 \\ -1.97\pm 0.43\pm 0.23 \\ -2.39\pm 0.63\pm 0.37 \\ \end{array}$ $\begin{array}{c} 1\ \text{AABOUD 17E reports a me} \\ 19)\times 10^{-3}\ \text{in lepton}\ +\ \text{jets} \\ \text{soft muon.} \\ 2\ \text{ABAZOV 14 reports a meas} \\ (-4.96\pm 1.53\pm 0.72)\times 10^{-3}\ \text{ABAZOV 110 reports a meas} \\ (-7.87\pm 1.72\pm 0.93)\times 10^{-4}\ \text{ABAZOV 10H reports a meas} \\ 4\ \text{ABAZOV 10H reports a meas} \\ A_{SL}^{b}=(-9.57\pm 2.51\pm 1.46) \end{array}$	1 AABOUD 2 ABAZOV 3 ABAZOV 4 ABAZOV assurement of characteristic events in which surement of like-signal in semileptonic esurement of like-signal in semileptonic measurement of 1 2 in semileptonic measurement of 1	17E 14 11U 10H rge asym h a b-ha gn dimu c b-hadi ign dimu c b-hadi ike-sign eptonic	ATLS D0 D0 D0 nmetry dron decay on char ron decay uon cha ron decay dimuc b-hadro	pp at 8 TeV $p\overline{p}$ at 1.96 TeV Repl. by ABAZOV 14 Repl. by ABAZOV 11U of $A_{SL}^b = (-25 \pm 21 \pm 20)$ as semileptonically to a ge asymmetry of $A_{SL}^b = 20$ ays. The representation of the repr	
sured production ratio of B_d^0 and B_s^0 , and the asymmetry of B_d^0 A_{SL}^d =(-4.7 ± 4.6) × 10^{-3} measured from B -factories, they obtain the asymmetry for B_s^0 as A_{SL}^s =(-14.6 ±					
$7.5) \times 10^{-3}$.	ones, they obtain t	iic asyiii	inicity i	$S_s = S_s $	

B-HADRON PRODUCTION FRACTIONS IN $p\bar{p}$ COLLISIONS AT Tevatron

The production fractions for b-hadrons in $p\overline{p}$ collisions at the Tevatron have been calculated from the best values of mean lifetimes, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) (see https://hflav.web.cern.ch/).

The values reported below assume:

$$\begin{array}{l} \mathrm{f}(\overline{b} \to B^+) = \mathrm{f}(\overline{b} \to B^0) \\ \mathrm{f}(\overline{b} \to B^+) + \mathrm{f}(\overline{b} \to B^0) + \mathrm{f}(\overline{b} \to B^0_s) + \mathrm{f}(b \to b\text{-baryon}) = 1 \\ \mathrm{e} \ \mathrm{values} \ \mathrm{are} : \end{array}$$

$$f(\overline{b} \rightarrow B^+) = f(\overline{b} \rightarrow B^0) = 0.344 \pm 0.021$$

$$f(\overline{b} \to B_s^0) = 0.115 \pm 0.013$$

$$f(b \to b - baryon) = 0.198 \pm 0.046$$

The values are:
$$f(\overline{b} \rightarrow B^+) = f(\overline{b} \rightarrow B^0) = 0.344 \pm 0.021$$

$$f(\overline{b} \rightarrow B_s^0) = 0.115 \pm 0.013$$

$$f(b \rightarrow b\text{-baryon}) = 0.198 \pm 0.046$$

$$f(\overline{b} \rightarrow B_s^0) / f(\overline{b} \rightarrow B_d^0) = 0.334 \pm 0.041$$
 and their correlation coefficients are:
$$cor(B_s^0, b\text{-baryon}) = -0.429$$

$$cor(B_s^0, B^+ = B^0) = +0.159$$

$$cor(B_s^0, b ext{-baryon}) = -0.429$$

$$cor(B_s^0, B^+=B^0) = +0.159$$

$$cor(b$$
-baryon, $B^+ = B^0$) = -0.960

as obtained with the Tevatron average of time-integrated mixing parameter $\overline{\chi} = 0.147 \pm 0.011.$

PRODUCTION ASYMMETRIES

$\mathsf{A}_C^{b\overline{b}}$

$$\begin{split} &\mathsf{A}_C^{b\,\overline{b}} = \left[\mathsf{N}(\Delta \mathsf{y}>0) - \mathsf{N}(\Delta \mathsf{y}<0)\right] / \left[\mathsf{N}(\Delta \mathsf{y}>0) + \mathsf{N}(\Delta \mathsf{y}<0)\right] \text{ with } \Delta \mathsf{y} = \left|\mathsf{y}_b\right| - \left|\mathsf{y}_{\overline{b}}\right| \\ &\mathsf{where} \ \mathsf{y}_{b/\overline{b}} \ \mathsf{is} \ \mathsf{rapidity} \ \mathsf{of} \ b \ \mathsf{or} \ \overline{b} \ \mathsf{quarks}. \end{split}$$

$VALUE$ (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
Average is meaningless.			
$0.4 \pm 0.4 \pm 0.3$	¹ AAIJ	14AS LHCB	pp at 7 TeV
$2.0 \pm 0.9 \pm 0.6$	² AAIJ	14AS LHCB	pp at 7 TeV
$1.6 \pm 1.7 \pm 0.6$	³ AAIJ	14AS LHCB	pp at 7 TeV
1 Measured for $40 < M(b\overline{b})$	$< 75 \text{ GeV}/c^2$		

$B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE REFERENCES

AAIJ	24AP	EPJ C84 1274	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	21Y	PR D104 032005	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	20G	EPJ C80 185	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	20H	EPJ C80 191	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	20V	PRL 124 122002	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	19AB	PR D99 052006	R. Aaij et al.	(LHCb Collab.)
AAIJ	19AD	PR D100 031102	R. Aaij et al.	(LHCb Collab.)
AAIJ	19AI	PR D100 112006	R. Aaij <i>et al.</i>	(LHCb Collab.)
AABOUD	17E	JHEP 1702 071	M. Aaboud <i>et al.</i>	(ÀTLAS Collab.)
AAIJ	17BB	EPJ C77 609	R. Aaij <i>et al.</i>	`(LHCb Collab.)
AAD		PRL 115 262001	G. Aad <i>et al.</i>	(ÀTLAS Collab.)
AAIJ		PRL 113 082003	R. Aaii <i>et al.</i>	(LHCb Collab.)
ABAZOV	14	PR D89 012002	V.M. Abazov <i>et al.</i>	(D0 Collab.)
AAIJ	13P	JHEP 1304 001	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	-	EPJ C72 2100	R. Aaij <i>et al.</i>	(LHCb Collab.)
Also	1200	EPJ C80 49 (errat.)	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12J	PR D85 032008	R. Aaji <i>et al.</i>	(LHCb Collab.)
-	_	JHEP 1202 011	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AAIJ	11F	PRL 107 211801	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABAZOV	11U	PR D84 052007	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	110 10H	PRL 105 081801	V.M. Abazov et al.	(D0 Collab.)
Also	1011	PR D82 032001	V.M. Abazov et al.	(D0 Collab.)
PDG	10		K. Nakamura <i>et al.</i>	
AALTONEN	10 09E	JP G37 075021 PR D79 032001	T. Aaltonen <i>et al.</i>	(PDG Collab.) (CDF Collab.)
	08N		T. Aaltonen <i>et al.</i>	•
AALTONEN	06S	PR D77 072003		(CDF Collab.)
ABAZOV		PR D74 092001	V.M. Abazov et al.	(D0 Collab.)
LEP-SLC	06	PRPL 427 257	ALEPH, DELPHI, L3, OPAL,	
ABBIENDI	041	EPJ C35 149	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	04E	EPJ C33 307	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACOSTA	04A	PR D69 012002	D. Acosta et al.	(CDF Collab.)
ABBIENDI	03M	EPJ C30 467	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	03P	PL B577 18	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	03E	PL B561 26	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABDALLAH	03K	PL B576 29	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
HEISTER	02G	EPJ C22 613	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	01Q	PL B520 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	01R	EPJ C21 399	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	01L	EPJ C20 455	P. Abreu <i>et al.</i>	(DELPHI Collab.)
BARATE	01E	EPJ C19 213	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	00E	EPJ C13 225	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	00Z	PL B492 13	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	00	EPJ C12 225	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00C	PL B496 43	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00D	PL B478 14	P. Abreu et al.	(DELPHI Collab.)
ABREU	00R	PL B475 407	P. Abreu et al.	(DELPHI Collab.)
ACCIARRI	00	EPJ C13 47	M. Acciarri et al.	` (L3 Collab.)
				` '

 $^{^{1}}$ Measured for 40 < M($b\overline{b})$ < 75 GeV/c 2 . 2 Measured for 75 < M($b\overline{b})$ < 105 GeV/c 2 . 3 Measured for M($b\overline{b})$ > 105 GeV/c 2 .

AFFOLDER ABBIENDI ABE ACCIARRI BARATE ABBOTT ABE ABREU ACCIARRI ACCIARRI ACCIARRI ACCIARRI ACCIARRI ACKERSTAFF BARATE BARATE GLENN ABE ACKERSTAFF ACKERSTA	99J 99P 99B 98B 98B 98B 98B 98B 98F 98V 98 97F 97W 96E 96C 96 96F 96Y 96	PRL 84 1663 EPJ C12 609 PR D60 092005 PL B448 152 EPJ C6 555 PL B423 419 PR D57 5382 PL B426 193 PL B426 193 PL B426 174 EPJ C1 439 PL B436 174 EPJ C1 439 PL B429 169 EPJ C4 387 EPJ C5 205 PRL 80 2289 PR D55 2546 ZPHY C73 397 ZPHY C74 423 ZPHY C74 423 ZPHY C74 423 ZPHY C71 379 ZPHY C71 379 ZPHY C70 357 PL B369 151 PL B388 648 NP B465 369 NP B480 753 (errat.)	T. Affolder et al. G. Abbiendi et al. F. Abe et al. M. Acciarri et al. B. Barate et al. B. Abbott et al. F. Abe et al. B. Abreu et al. P. Abreu et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. K. Ackerstaff et al. R. Barate et al. R. Barate et al. R. Barate et al. K. Ackerstaff et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. D. Abreu et al. D. Buskulic et al.	(CDF Collab.) (OPAL Collab.) (CDF Collab.) (L3 Collab.) (D0 Collab.) (D0 Collab.) (DELPHI Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (OPAL Collab.) (DELPHI Collab.) (ALEPH Collab.) (OPAL Collab.) (ALEPH Collab.)
PDG UENO ABE,K ABREU	96 96 95B 95C	PR D54 1 PL B381 365 PRL 75 3624 PL B347 447	R. M. Barnett et al. K. Ueno et al. K. Abe et al. P. Abreu et al.	(PDG Collab.) (AMY Collab.) (SLD Collab.) (DELPHI Collab.)
ABREU ADAM	95D 95	ZPHY C66 323 ZPHY C68 363	P. Abreu <i>et al.</i> W. Adam <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.)
AKERS BUSKULIC	95Q 95	ZPHY C67 57 PL B343 444	R. Akers <i>et al.</i> D. Buskulic <i>et al.</i>	(OPAL Collab.) (ALEPH Collab.)
ABREU	94F	PL B322 459	P. Abreu et al.	(DELPHI Collab.)
ABREU ABREU	94J 94L	PL B332 488 ZPHY C63 3	P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.)
ABREU	94P	PL B341 109	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI ACCIARRI	94C 94D	PL B332 201 PL B335 542	M. Acciarri <i>et al.</i> M. Acciarri <i>et al.</i>	(L3 Collab.) (L3 Collab.)
ALBAJAR	94	ZPHY C61 41	C. Albajar <i>et al.</i>	(UA1 Collab.)
BUSKULIC ABE	94G 93E	ZPHY C62 179 PL B313 288	D. Buskulic <i>et al.</i> K. Abe <i>et al.</i>	(ALEPH Collab.) (VENUS Collab.)
ABE	93J	PRL 71 3421	F. Abe et al.	(CDF Collab.)
ABREU ABREU	93C 93D	PL B301 145 ZPHY C57 181	P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.)
ABREU	93G	PL B312 253	P. Abreu et al.	(DELPHI Collab.)
ACTON ACTON	93C 93L	PL B307 247 ZPHY C60 217	P.D. Acton <i>et al.</i> P.D. Acton <i>et al.</i>	(OPAL Collab.) (OPAL Collab.)
ADRIANI	93J	PL B317 467	O. Adriani et al.	(L3 Collab.)
ADRIANI ADRIANI	93K 93L	PL B317 474 PL B317 637	O. Adriani <i>et al.</i> O. Adriani <i>et al.</i>	(L3 Collab.) (L3 Collab.)
AKERS	93B	ZPHY C60 199	R. Akers et al.	(OPAL Collab.)
BUSKULIC BUSKULIC	93B 93O	PL B298 479 PL B314 459	D. Buskulic <i>et al.</i> D. Buskulic <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.)
ABREU	92	ZPHY C53 567	P. Abreu et al.	(DELPHI Collab.)
ACTON ACTON	92 92C	PL B274 513 PL B276 379	D.P. Acton <i>et al.</i> D.P. Acton <i>et al.</i>	(OPAL Collab.) (OPAL Collab.)
ADEVA	92C	PL B288 395	B. Adeva et al.	` (L3 Collab.)
ADRIANI BUSKULIC	92 92B	PL B288 412 PL B284 177	O. Adriani <i>et al.</i> D. Buskulic <i>et al.</i>	(L3 Collab.) (ALEPH Collab.)
BUSKULIC	92F	PL B295 174	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC ABE	92G 91G	PL B295 396 PRL 67 3351	D. Buskulic <i>et al.</i> F. Abe <i>et al.</i>	(ALEPH Collab.) (CDF Collab.)
ADEVA	91C	PL B261 177	B. Adeva et al.	(L3 Collab.)
ADEVA ALBAJAR	91H 91C	PL B270 111 PL B262 163	B. Adeva <i>et al.</i> C. Albajar <i>et al.</i>	(L3 Collab.) (UA1 Collab.)
, (20/19/11)	J1C	1 - 0202 103	C. Abajar Ct al.	(O/II Collab.)