$$I(J^P) = \frac{1}{2}(3^-)$$

 $\overline{J^P}$ determined by AAIJ 15Y from the Dalitz plot analysis of $B^0 o$ $\overline{D}^0 \pi^+ \pi^-$ decays.

D₃*(2750) MASS

VALUE (Me	V)		EVTS	DOCUMENT ID		TECN	CHG	COMMEN	IT
2763.1±	3.2 O	UR /	AVERAGE	Error includes so	ale fa	ctor of	2.1. \$	See the id	eogram below.
$2753 \ \pm$	4 ±	6	79k	1 AAIJ	20 D	LHCB		$B^- ightarrow$	$D^{*+}\pi^{-}\pi^{-}$
$2775.5\pm$	$4.5\pm$	6.5	28k	² AAIJ	16AH	I LHCB		$B^- ightarrow$	$D^+ \pi^- \pi^-$
2798 \pm	7 ±	7		³ AAIJ	15Y	LHCB		$B^0 ightarrow$	$\overline{D}^0 \pi^+ \pi^-$
$2761.1\pm$	$5.1\pm$	6.5	14k	AAIJ	13CC	LHCB	0	pp ightarrow	$D^{*+}\pi^{-}X$
$2760.1\pm$	$1.1\pm$	3.7	56k	AAIJ	13CC	LHCB	0	pp ightarrow	$D^+\pi^-X$
$2771.7\pm$	$1.7\pm$	3.8	20k	AAIJ	13CC	LHCB	+	p p ightarrow	$D^{0} \pi^{+} X$
$2752.4\pm$	$1.7\pm$	2.7	23.5k	⁴ DEL-AMO-SA.	. 10 P	BABR	0	e ⁺ e ⁻ -	$\rightarrow D^{*+}\pi^- X$
$2763.3\pm$	$2.3\pm$	2.3	11.3k	⁴ DEL-AMO-SA.	. .10 P	BABR	0	e ⁺ e ⁻ -	$\rightarrow D^+ \pi^- X$
$2769.7\pm$	$3.8\pm$	1.5	5.7k ⁴	^{I,5} DEL-AMO-SA.	. .10 P	BABR	+	e ⁺ e ⁻ -	$\rightarrow D^0 \pi^+ X$
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$									
2802 ±1	.1 ±3	10		⁶ AAIJ	15Y	LHCB		${\it B}^0 \rightarrow$	$\overline{D}^0 \pi^+ \pi^-$
1 Even a full four body amplitude analysis of the $P^- \rightarrow D^{*+} = -^- decay$									

¹ From a full four-body amplitude analysis of the $B^- \rightarrow D^{*+}\pi^-\pi^-$ decay. ² From the amplitude analysis in the model describing the $D^+\pi^-$ wave together with virtual contributions from the $D^*(2007)^0$ and B^{*0} states, and components corresponding to the $D_2^*(2460)^0$, $D_1^*(2680)^0$, $D_3^*(2760)^0$, and $D_2^*(3000)^0$ resonances. ³ Modeling the $\pi^+\pi^-$ S-wave with the Isobar formalism. ⁴ The states observed in the $D^*\pi$ and $D\pi$ final states are not necessarily the same. ⁵ At a fixed width of 60.9 MeV. ⁶ Modeling the $\pi^+\pi^-$ S-wave with the K-matrix formalism.

D₃*(2750) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN CHG	COMMENT
66 ± 5 OUR	AVERAGE			
$66 \pm 10 \pm 14$	79k	¹ AAIJ	20D LHCB	$B^- \rightarrow D^{*+} \pi^- \pi^-$
$95.3 \pm 9.6 \pm 34.0$) 28k	² AAIJ	16AH LHCB	$B^- \rightarrow D^+ \pi^- \pi^-$
$105 \hspace{0.1in} \pm 18 \hspace{0.1in} \pm 24$		³ AAIJ	15Y LHCB	$B^0 \rightarrow \overline{D}{}^0 \pi^+ \pi^-$
$74.4 \pm 3.4 \pm 37.0$) 14k	AAIJ	13cc LHCB 0	$pp \rightarrow D^{*+}\pi^- X$
$74.4 \pm 3.4 \pm 19.1$	56k	AAIJ	13cc LHCB 0	$pp \rightarrow D^+ \pi^- X$
$66.7 \pm \ 6.6 \pm 10.5$	5 20k	AAIJ	13cc LHCB $+$	$p p ightarrow D^0 \pi^+ X$
$71~\pm~6~\pm11$	23.5k	⁴ DEL-AMO-SA	10P BABR	$e^+e^- \rightarrow D^{*+}\pi^- X$
$60.9\pm$ $5.1\pm$ 3.6	5 11.3k	⁴ DEL-AMO-SA	10P BABR	$e^+e^- \rightarrow D^+\pi^- X$
\bullet \bullet \bullet We do not	use the follow	ving data for aver	ages, fits, limits, et	tc. ● ● ●
$154 \pm 27 \pm 16$		⁵ AAIJ	15Y LHCB	$B^0 \rightarrow \overline{D}{}^0 \pi^+ \pi^-$
1 From a full for	ur-body amp	litude analysis of t	the $B^- ightarrow D^{*+} \pi$	$-\pi^-$ decay.
2 From the amplitude analysis in the model describing the $D^+\pi^-$ wave together with				

virtual contributions from the $D^*(2007)^0$ and B^{*0} states, and components corresponding to the $D_2^*(2460)^0$, $D_1^*(2680)^0$, $D_3^*(2760)^0$, and $D_2^*(3000)^0$ resonances.

³ Modeling the $\pi^+\pi^-$ S-wave with the Isobar formalism.

⁴ The states observed in the $D^*\pi$ and $D\pi$ final states are not necessarily the same.

⁵ Modeling the $\pi^+\pi^-$ *S*-wave with the K-matrix formalism.

D₃(2750) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$D\pi$	seen
Γ ₂	$D^+\pi^-$	seen
Γ ₃	$D^0 \pi^{\pm}$	seen
Г4	$D^*\pi$	seen
Γ ₅	$D^{*+}\pi^-$	seen

D₃(2750) BRANCHING RATIOS

$\Gamma(D^+\pi^-)/\Gamma(D^{*+}\pi)$	r [—])				Γ_2/Γ_5
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
$0.42 {\pm} 0.05 {\pm} 0.11$	34.8k	¹ DEL-AMO-SA10P	BABR	$e^+e^- \rightarrow$	$D^{(*)+}\pi^{-}X$
1 The states observed	I in the D^*	π and $D\pi$ final states a	are not n	ecessarily th	ie same.

D₃(2750) POLARIZATION AMPLITUDE A_D

A polarization amplitude A_D is a parameter that depends on the initial polarization of the $D_3^*(2750)$. For $D_3^*(2750)$ decays the helicity angle, θ_H , distribution varies like $1 + A_D \cos(\theta_H)$, where θ_H is the angle in the D^* rest frame between the two pions emitted by the $D_3^*(2750) \rightarrow D^* \pi$ and $D^* \rightarrow D\pi$.

VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
• • • We do not use th	e following o	lata for averages, fits,	limits, e	tc. ● ● ●
-0.33 ± 0.28	23.5k	¹ DEL-AMO-SA10P	BABR	$e^+e^- \rightarrow D^{*+}\pi^- X$
¹ Systematic uncertai states are not neces	nties not est sarily the sar	imated. The states of ne.	oserved i	n the $D^{st}\pi$ and $D\pi$ final

D₃^{*}(2750) REFERENCES

AAIJ20DPRD101032005AAIJ16AHPRD94072001AAIJ15YPRD92032002AAIJ13CCJHEP1309145DEL-AMO-SA10PPRD82111101	R. Aaij <i>et al.</i> R. Aaij <i>et al.</i> R. Aaij <i>et al.</i> R. Aaij <i>et al.</i> P. del Amo Sanchez <i>et al.</i>	(LHCb Collab.) (LHCb Collab.) (LHCb Collab.) JP (LHCb Collab.) (BABAR Collab.)
---	--	--