$I(J^{P}) = \frac{1}{2}(\frac{3}{2}^{-})$ Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

N(1700) POLE POSITION

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1650 to 1750 (\approx 1700) OUR ESTI	MATE			
1780 ± 35	SOKHOYAN	15A	DPWA	Multichannel
$1757\pm$ 4 ± 1	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1660 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
1647	HUNT	19	DPWA	Multichannel
1770 ± 40	ANISOVICH	12A	DPWA	Multichannel
1806 ± 23	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
1704	VRANA	00	DPWA	Multichannel
1700	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1 Fit to the amplitudes of HOEH	LER 79.			
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
100 to 300 (≈ 200) OUR ESTIMA	TE			
420 ± 140	SOKHOYAN	15A	DPWA	Multichannel
$136\pm$ 7 ± 4	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
90± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
79	HUNT	19	DPWA	Multichannel
420 ± 180	ANISOVICH	12A	DPWA	Multichannel
$129\pm$ 33	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
156	VRANA	00	DPWA	Multichannel
120		03	SPED	$\pi N \rightarrow \pi N$

 $^{1}\,{\rm Fit}$ to the amplitudes of HOEHLER 79.

N(1700) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
5 to 50 ($pprox$ 10) OUR ESTIMATE				
60±30	SOKHOYAN	15A	DPWA	Multichannel
$7\pm$ 1 ± 1	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
6± 3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet \bullet We do not use the following of	lata for averages	, fits,	limits, e	tc. • • •
50±40	ANISOVICH	12A	DPWA	Multichannel
7	BATINIC	10	DPWA	$\pi N \rightarrow N \pi$, $N \eta$
5	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
1 Fit to the amplitudes of HOEHL	.ER 79.			
https://pdg.lbl.gov	Page 1		Creat	ed: 4/10/2025 13:28

PHASE θ				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
-120 to 0 (\approx -90) OUR ESTIM/	ATE			
-115 ± 30	SOKHOYAN	15A	DPWA	Multichannel
$-113\pm$ 4 ± 2	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
0 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	s, fits,	limits, e	tc. ● ● ●
-100 ± 40	ANISOVICH	12A	DPWA	Multichannel
- 34	BATINIC	10	DPWA	$\pi N ightarrow N \pi$, $N \eta$
1 Fit to the amplitudes of HOEH	LER 79.			

N(1700) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized re	esidue in $N\pi ightarrow$	$N(1700) \rightarrow \Delta \pi$, <i>S</i> -wave
MODULUS	PHASE (°)	DOCUMENT ID TECN COMMENT
0.33 ± 0.10	-70 ± 25	SOKHOYAN 15A DPWA Multichannel
• • • We do no	ot use the following	; data for averages, fits, limits, etc. • • •
0.34 ± 0.21	-60 ± 40	ANISOVICH 12A DPWA Multichannel
Normalized re	esidue in $N\pi ightarrow$	$N(1700) ightarrow \Delta \pi$, <i>D</i> -wave
MODULUS	PHASE (°)	DOCUMENT ID TECN COMMENT
0.10 ± 0.06	75 ± 30	SOKHOYAN 15A DPWA Multichannel
• • • We do no	ot use the following	; data for averages, fits, limits, etc. • • •
$0.08 \!\pm\! 0.06$	90 ± 35	ANISOVICH 12A DPWA Multichannel
Normalized re	esidue in $N\pi ightarrow$	$N(1700) \rightarrow N\sigma$
MODULUS	PHASE (°)	DOCUMENT ID TECN COMMENT
0.13 ± 0.08	-100 ± 35	SOKHOYAN 15A DPWA Multichannel
Normalized re	esidue in $N\pi ightarrow$	$N(1700) \rightarrow N(1440)\pi$
MODULUS	PHASE (°)	DOCUMENT ID TECN COMMENT
0.13 ± 0.05	40 ± 35	SOKHOYAN 15A DPWA Multichannel
Normalized re	esidue in $N\pi ightarrow$	$N(1700) \rightarrow N(1520)\pi$, <i>P</i> -wave
MODULUS	PHASE (°)	DOCUMENT ID TECN COMMENT
0.07 ± 0.03	160 ± 45	SOKHOYAN 15A DPWA Multichannel

N(1700) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1650 to 1800 (\approx 1720) OUR ESTIN	IATE			
1653± 5	¹ HUNT	19	DPWA	Multichannel
1800 ± 35	SOKHOYAN	15A	DPWA	Multichannel
1675 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1731 ± 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

1790±40	ANISOVICH	12A	DPWA Multichannel
$1665\pm$ 3	¹ SHRESTHA	12A	DPWA Multichannel
1817 ± 22	BATINIC	10	DPWA $\pi N \rightarrow N \pi, N \eta$
1736 ± 33	VRANA	00	DPWA Multichannel
1			

¹ Statistical error only.

N(1700) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
100 to 300 (\approx 200) OUR ESTIMATE					
81± 13	¹ HUNT	19	DPWA	Multichannel	
$400\!\pm\!100$	SOKHOYAN	15A	DPWA	Multichannel	
90± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
$110\pm$ 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. • • •	
390±140	ANISOVICH	12A	DPWA	Multichannel	
56± 8	¹ SHRESTHA	12A	DPWA	Multichannel	
$134\pm~37$	BATINIC	10	DPWA	$\pi N ightarrow N \pi$, $N \eta$	
175 ± 133	VRANA	00	DPWA	Multichannel	
¹ Statistical error only.					

N(1700) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Г1	$N\pi$	7–17 %
Γ2	$N\eta$	1–2 %
Γ ₃	$N\omega$	10-34 %
Γ4	ΛΚ	1–2 %
Γ ₅	$N\pi\pi$	>89 %
Г ₆	$\Delta(1232)\pi$	55–85 %
Γ ₇	$arDelta(1232)\pi$, S -wave	50-80 %
Г ₈	$arDelta(1232)\pi$, D -wave	4–14 %
Γ9	N ho, S=3/2, S-wave	32–44 %
Γ_{10}	Νσ	2–14 %
Γ_{11}	$N(1440)\pi$	3–11 %
Γ ₁₂	$N(1520)\pi$	<4 %
Γ_{13}	$p\gamma$	0.01–0.05 %
Γ_{14}	$p\gamma$, helicity ${=}1/2$	0.0-0.024 %
Γ_{15}	$p\gamma$, helicity ${=}3/2$	0.002–0.026 %
Γ ₁₆	$n\gamma$	0.01–0.13 %
Γ_{17}	$n\gamma$, helicity ${=}1/2$	0.0–0.09 %
Γ ₁₈	$n\gamma$, helicity=3/2	0.01–0.05 %

N(1700) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{total}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
7 to 17 (\approx 12) OUR ESTIMAT	E				
3.7 ± 0.1	¹ HUNT	19	DPWA	Multichannel	
15 ± 6	SOKHOYAN	15A	DPWA	Multichannel	
11 ± 5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
8 ±3	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. ● ● ●	
12 ±5	ANISOVICH	12A	DPWA	Multichannel	
2.8 ± 0.5	¹ SHRESTHA	12A	DPWA	Multichannel	
9 ±6	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$	
4 ±2	VRANA	00	DPWA	Multichannel	
¹ Statistical error only.					
$\Gamma(N\eta)/\Gamma_{\rm total}$					Γ2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	_/
1–2 % OUR ESTIMATE					
1 ± 1	MUELLER	20	DPWA	Multichannel	
$1.1 {\pm} 0.6$	¹ HUNT	19	DPWA	Multichannel	
$\bullet \bullet \bullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
14 ±5	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$	
10 ±5	ТНОМА	80	DPWA	Multichannel	
0 ±1	VRANA	00	DPWA	Multichannel	
¹ Statistical error only.					
$\Gamma(N\omega)/\Gamma_{\rm total}$					Γ2/Γ
	DOCUMENT ID		TECN	COMMENT	- 3/ -
22+12		16		Multichannal	
22 ± 12	DEMISENNO	10	DEVVA	Multichannei	
$\Gamma(\Lambda K)/\Gamma_{\text{total}}$					Г₄/Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	•,
1-2 % OUR ESTIMATE					
1.3 ± 0.7	1 HUNT	19	DPWA	Multichannel	
¹ Statistical error only.					
$\Gamma(\Delta(1232)\pi, S-\text{wave})/\Gamma_{\text{total}}$					Γ7/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	• /
11+ 8		19		Multichannel	
65 ± 15	SOKHOYAN	15A	DPWA	Multichannel	
 We do not use the following 	data for averages	s, fits,	limits, e	etc. • • •	
72+23	ANISOVICH	12A	DPWA	Multichannel	
31 ± 9	¹ SHRESTHA	12A	DPWA	Multichannel	
11 ± 1	VRANA	00	DPWA	Multichannel	
¹ Statistical error only					
31 ± 9 11 ± 1 ¹ Statistical error only.	VRANA	12A 00	DPWA DPWA	Multichannel	

$\Gamma(\Delta(1232)\pi, D\text{-wave})/\Gamma_{\text{total}}$

VALUE (%)	DOCUMENT ID		TECN	COMMENT
$13\pm$ 5	¹ HUNT	19	DPWA	Multichannel
$9\pm$ 5	SOKHOYAN	15A	DPWA	Multichannel
\bullet \bullet \bullet We do not use the follow	ving data for averages	s, fits,	limits, e	tc. • • •
<10	ANISOVICH	12A	DPWA	Multichannel
3± 2	¹ SHRESTHA	12A	DPWA	Multichannel
79 ± 56	VRANA	00	DPWA	Multichannel

¹ Statistical error only.

$\Gamma(N\rho, S=3/2, S-wave)/\Gamma_{total}$

VALUE (%)	DOCUMENT ID		TECN	COMMENT
7.5 ± 3.6	1 HUNT	19	DPWA	Multichannel
\bullet \bullet \bullet We do not use the following	g data for averages	s, fits,	limits, e	tc. ● ● ●
38 ±6	¹ SHRESTHA	12A	DPWA	Multichannel
7 ± 1	VRANA	00	DPWA	Multichannel

¹ Statistical error only.

$\Gamma(N\sigma)/\Gamma_{\text{total}}$

VALUE (%)	DOCUMENT ID		TECN	COMMENT
62± 9	¹ HUNT	19	DPWA	Multichannel
8± 6	SOKHOYAN	15A	DPWA	Multichannel
$\bullet \bullet \bullet$ We do not use the f	following data for average	s, fits,	limits, e	tc. ● ● ●
24± 6	¹ SHRESTHA	12A	DPWA	Multichannel
18 ± 12	THOMA	08	DPWA	Multichannel
$0\pm$ 1	VRANA	00	DPWA	Multichannel
¹ Statistical error only.				

N(1700) PHOTON DECAY AMPLITUDES AT THE POLE

$N(1700) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2} MODULUS (GeV $^{-1/2}$) PHASE (°) DOCUMENT ID TECN COMMENT 0.047 ± 0.016 75 ± 30 SOKHOYAN 15A DPWA Multichannel $N(1700) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2} MODULUS (GeV $^{-1/2}$) PHASE (°) DOCUMENT ID TECN COMMENT -0.041 ± 0.014 0 ± 20 SOKHOYAN 15A DPWA Multichannel

https://pdg.lbl.gov

Г9/Г

Γ₁₀/Γ

N(1700) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(1700) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT	
0.032 ± 0.005	¹ HUNT	19	DPWA	Multichannel	
0.041 ± 0.017	ANISOVICH	12A	DPWA	Multichannel	
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
$0.021\!\pm\!0.005$	¹ SHRESTHA	12A	DPWA	Multichannel	
1					

¹ Statistical error only.

$N(1700) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT	
0.034 ± 0.006	¹ HUNT	19	DPWA	Multichannel	
-0.037 ± 0.014	SOKHOYAN	15A	DPWA	Multichannel	
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
-0.034 ± 0.013	ANISOVICH	12A	DPWA	Multichannel	
0.050 ± 0.009	¹ SHRESTHA	12A	DPWA	Multichannel	
¹ Statistical error only.					

$N(1700) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.005 ± 0.011	¹ HUNT	19	DPWA	Multichannel
$0.025 \!\pm\! 0.010$	ANISOVICH	13 B	DPWA	Multichannel
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$				
-0.049 ± 0.008	¹ SHRESTHA	12A	DPWA	Multichannel
¹ Statistical error only.				

$N(1700) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.094 ± 0.017	¹ HUNT	19	DPWA	Multichannel
-0.032 ± 0.018	ANISOVICH	13 B	DPWA	Multichannel
$\bullet \bullet \bullet$ We do not use the following	ing data for average	s, fits,	limits, e	tc. • • •
-0.092 ± 0.014	¹ SHRESTHA	12A	DPWA	Multichannel
¹ Statistical error only				

N(1700) REFERENCES

For early references, see Physics Letters 111B 1 (1982).

MUELLER HUNT DENISENKO	20 19	PL B803 135323 PR C99 055205 PL B755 07	J. Mueller <i>et al.</i> B.C. Hunt, D.M. Manley	(CBELSA/TAPS Collab.)
SOKHOYAN	15A	EPJ A51 95	V. Sokhoyan <i>et al.</i>	(CBELSA/TAPS Collab.)
PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
SVARC	14	PR C89 045205	A. Svarc <i>et al.</i>	(RBI Zagreb, UNI Tuzla)
ANISOVICH	13B	EPJ A49 67	A.V. Anisovich <i>et al.</i>	
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)

SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSU)
BATINIC	10	PR C82 038203	M. Batinic <i>et al.</i>	(ZAGR)
THOMA	08	PL B659 87	U. Thoma <i>et al.</i>	(CB-ELSA Collab.)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman, TS.H. Lee	(PITT, ANL)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky <i>et al.</i>	(CMÙ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP
				. ,