V_{cb} and V_{ub} CKM Matrix Elements

OMITTED FROM SUMMARY TABLE

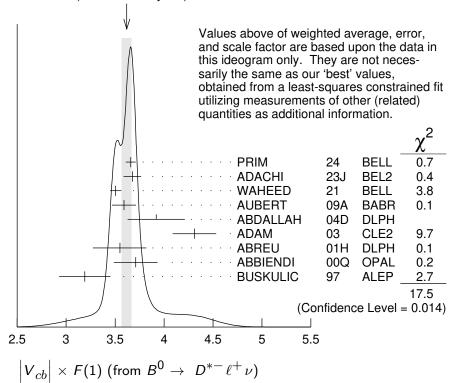
See the related review(s):

Semileptonic B Hadron Decays, Determination of V_{cb} and V_{ub}

V_{cb} MEASUREMENTS

For the discussion of V_{cb} measurements, which is not repeated here, see the review on "Determination of $|V_{cb}|$ and $|V_{ub}|$."

The CKM matrix element $\left|V_{cb}\right|$ can be determined by studying the rate of the semileptonic decay $B \to D^{(*)} \ell \nu$ as a function of the recoil kinematics of $D^{(*)}$ mesons. Taking advantage of theoretical constraints on the normalization and a linear ω dependence of the form factors $(F(\omega), G(\omega))$ provided by Heavy Quark Effective Theory (HQET), the $|V_{ch}| \times F(\omega)$ and ρ^2 can be simultaneously extracted from data, where ω is the scalar product of the two-meson four velocities, F(1) is the form factor at zero recoil $(\omega=1)$ and ρ^2 is the slope. Using the theoretical input of F(1), a value of $|V_{ch}|$ can be obtained.


$|V_{cb}| \times F(1)$ (from $B^0 \rightarrow D^{*-} \ell^+ \nu$)

```
VALUE (units 10^{-2})
                                        DOCUMENT ID
                                                              TECN COMMENT
                                         (Produced by HFLAV) with 
ho^2=1.139\pm0.020 and a
3.522\pm0.037 OUR EVALUATION
correlation 0.268. The fitted \chi^2 is 63.2 for 27 degrees of freedom.
3.62 ±0.05 OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below.
                                      <sup>1</sup> PRIM
                                                                BELL
3.66 \pm 0.05
                                      <sup>2</sup> ADACHI
                                                          23J BEL2
                                                                         e^+e^- \rightarrow \Upsilon(4S)
3.676 \pm 0.028 \pm 0.086
                                      <sup>3</sup> WAHEED
                                                          21
                                                                BELL
                                                                         e^+e^- \rightarrow \Upsilon(4S)
3.506 \pm 0.015 \pm 0.056
                                      <sup>4</sup> AUBERT
                                                          09A BABR e^+e^- \rightarrow \Upsilon(4S)
3.59 \pm 0.02 \pm 0.12
                                                          04D DLPH e^+e^- \rightarrow Z^{0}
                                      <sup>5</sup> ABDALLAH
3.92 \pm 0.18 \pm 0.23
                                      <sup>6</sup> ADAM
                                                                CLE2
4.31 \pm 0.13 \pm 0.18
              +0.23
                                      <sup>7</sup> ABREU
                                                          01H DLPH e^+e^- \rightarrow
3.55 \pm 0.14
                                      <sup>8</sup> ABBIENDI
                                                          000 OPAL
3.71 \pm 0.10 \pm 0.20
                                      <sup>9</sup> BUSKULIC
                                                                ALEP
3.19 \pm 0.18 \pm 0.19
                                                                         e^+e^- \rightarrow Z
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                          e^+e^- 
ightarrow ~ \varUpsilon(4S), Repl.
                                    <sup>10</sup> PRIM
                                                                BELL
3.64 \pm 0.09
                                                                             by PRIM 24
                                      3 WAHEED
                                                          19
                                                                BELL
                                                                          Repl. by WAHEED 21
3.483 \pm 0.015 \pm 0.056
                                    <sup>11</sup> DUNGEL
3.46 \pm 0.02 \pm 0.10
                                                                BELL
                                                                         Rep. by WAHEED 19
                                    <sup>12</sup> AUBERT
                                                          08AT BABR
                                                                         Repl. by AUBERT 09A
3.59 \pm 0.06 \pm 0.14
                                    <sup>13</sup> AUBERT
                                                          08R BABR
                                                                         Repl. by AUBERT 09A
3.44 \pm 0.03 \pm 0.11
                                    <sup>14</sup> AUBERT
                                                                BABR Repl. by AUBERT 08R
3.55 \pm 0.03 \pm 0.16
                                    <sup>15</sup> ABDALLAH
3.77 \pm 0.11 \pm 0.19
                                                          04D DLPH e^+e^- \rightarrow Z^0
```

```
16_{ABF}
                                                    02F BELL Repl. by DUNGEL 10
3.54 \pm 0.19 \pm 0.18
                                 <sup>17</sup> BRIERE
                                                                  e^+e^- \rightarrow \Upsilon(4S)
4.31 \pm 0.13 \pm 0.18
3.28 \pm 0.19 \pm 0.22
                                    ACKERSTAFF 97G OPAL Repl. by ABBIENDI 00Q
                                 <sup>18</sup> ABREU
3.50 \pm 0.19 \pm 0.23
                                                         DLPH Repl. by ABREU 01H
                                 <sup>19</sup> BARISH
3.51 \pm 0.19 \pm 0.20
                                                          CLE2
                                                                  Repl. by ADAM 03
                                                     95
3.14 \pm 0.23 \pm 0.25
                                    BUSKULIC
                                                    95N ALEP
                                                                  Repl. by BUSKULIC 97
```

- 1 PRIM 24 value established from a complete set of angular coefficients for exclusive $B \to \overline{D}^{*}\,\ell^{+}\,\nu_{\ell}$ decays with hadronic tag-side reconstruction. The $|V_{cb}|\times F(1)$ is derived from the extracted the BGL and CNL form factor parameters: $|V_{cb}|_{\rm BGL}=(40.7\pm0.7)\times10^{-3}$ with the zero-recoil lattice QCD point $F(1)=0.900\pm0.009$ and $|V_{cb}|_{\rm CNL}=(40.3\pm0.6)\times10^{-3}$.
- ² ADACHI 23J result comes from differential shapes of exclusive $B \to D^* \ell^- \nu_\ell$ ($\ell = e$ or μ) decays. Using CNL form factor parametrization and the zero-recoil lattice QCD point $F(1) = 0.906 \pm 0.013$ ADACHI 23J finds $|V_{cb}|_{CNL} = (40.57 \pm 0.31 \pm 0.95 \pm 0.58) \times 10^{-3}$ where the last uncertainty is due to the prediction of F(1). Also reports a measurement of $|V_{cb}|_{BGL} = (40.13 \pm 0.27 \pm 0.93 \pm 0.58) \times 10^{-3}$ using BGL form factors parametrization.
- ³WAHEED 21 uses fully reconstructed $D^{*-}\ell^+\nu$ events ($\ell=e$ or μ) and $\eta_{EW}=1.0066$.
- ⁴ Obtained from a global fit to $B \to D^{(*)} \ell \nu_{\ell}$ events, with reconstructed $D^0 \ell$ and $D^+ \ell$ final states and $\rho^2 = 1.22 \pm 0.02 \pm 0.07$.
- 5 Measurement using fully reconstructed D^* sample with a $\rho^2 = 1.32 \pm 0.15 \pm 0.33$.
- ⁶ Average of the $B^0 \to D^*(2010)^- \ell^+ \nu$ and $B^+ \to \overline{D}^*(2007)) \ell^+ \nu$ modes with $\rho^2 = 1.61 \pm 0.09 \pm 0.21$ and $f_{+-} = 0.521 \pm 0.012$.
- 7 ABREU 01H measured using about 5000 partial reconstructed D^* sample with a $\rho^2{=}1.34\pm0.14{+0.24\atop-0.22}.$
- ⁸ ABBIENDI 00Q: measured using both inclusively and exclusively reconstructed $D^{*\pm}$ samples with a ρ^2 =1.21 \pm 0.12 \pm 0.20. The statistical and systematic correlations between $|V_{cb}| \times F(1)$ and ρ^2 are 0.90 and 0.54 respectively.
- 9 BUSKULIC 97: measured using exclusively reconstructed $D^{*\pm}$ with a a^2 =0.31 \pm 0.17 \pm 0.08. The statistical correlation is 0.92.
- Measured from differential shapes of exclusive $B \to D^* \ell^- \nu_\ell$ decays with hadronic tagside reconstruction and extracting the CNL and BGL form factor parameters. PRIM 23 finds $|V_{cb}|_{\text{CNL}} = (40.2 \pm 0.9) \times 10^{-3}$ with the zero-recoil lattice QCD point $F(1) = 0.906 \pm 0.013$. PRIM 23 provides also a measurement of $|V_{cb}|_{\text{BGL}} = (40.7 \pm 1.0) \times 10^{-3}$.
- $^{11}\, {\rm Uses}$ fully reconstructed ${\it D^{*-}}\, \ell^+\, \nu$ events ($\ell=e$ or μ).
- ¹² Measured using the dependence of $B^- \to D^{*0} \, e^- \overline{\nu}_e$ decay differential rate and the form factor description by CAPRINI 98 with $\rho^2 = 1.16 \pm 0.06 \pm 0.08$.
- 13 Measured using fully reconstructed D^* sample and a simultaneous fit to the Caprini-Lellouch-Neubert form factor parameters: $\rho^2=1.191\pm0.048\pm0.028,\,R_1(1)=1.429\pm0.061\pm0.044,$ and $R_2(1)=0.827\pm0.038\pm0.022.$
- 14 Measurement using fully reconstructed D^* sample with a $ho^2=1.29\pm0.03\pm0.27$.
- ¹⁵ Combines with previous partial reconstructed D^* measurement with a $\rho^2=1.39\pm0.10\pm0.33$.
- ¹⁶ Measured using exclusive $B^0 \to D^*(892)^- e^+ \nu$ decays with $\rho^2 = 1.35 \pm 0.17 \pm 0.19$ and a correlation of 0.91.
- 17 BRIERE 02 result is based on the same analysis and data sample reported in ADAM 03.
- 18 ABREU 96P: measured using both inclusively and exclusively reconstructed $D^{*\pm}$ samples.
- ¹⁹ BARISH 95: measured using both exclusive reconstructed $B^0 \to D^{*-}\ell^+\nu$ and $B^+ \to D^{*0}\ell^+\nu$ samples. They report their experiment's uncertainties $\pm 0.0019 \pm 0.0018 \pm 0.0008$, where the first error is statistical, the second is systematic, and the third is the uncertainty in the lifetimes. We combine the last two in quadrature.

WEIGHTED AVERAGE 3.62±0.05 (Error scaled by 1.6)

$|V_{cb}| \times G(1) \text{ (from } B \rightarrow D^- \ell^+ \nu)$

VALUE (units 10^{-2})

DOCUMENT ID TECN COMMENT

Created: 4/10/2025 13:32

4.121 \pm 0.100 OUR EVALUATION (Produced by HFLAV) with $ho^2 = 1.128 \pm 0.033$ and a correlation 0.747. The fitted χ^2 is 4.8 for 8 degrees of freedom.

4.17 \pm 0.08 OUR AVERAGE

$4.109\!\pm\!0.116$				$e^+e^- ightarrow$	
4.229 ± 0.137	² GLATTAUER				
$4.23 \pm 0.19 \pm 0.14$	³ AUBERT			$e^+e^- \rightarrow$	
$4.31 \pm 0.08 \pm 0.23$	⁴ AUBERT	09A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.16 \pm 0.47 \pm 0.37$	⁵ BARTELT	99	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$2.78 \pm 0.68 \pm 0.65$	⁶ BUSKULIC	97	ALEP	$e^+e^- \rightarrow$	Z

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$4.11 \pm 0.44 \pm 0.52$$
 7 ABE 02E BELL Repl. by GLATTAUER 16 $3.37 \pm 0.44 \stackrel{+0.72}{-0.49}$ 8 ATHANAS 97 CLE2 Repl. by BARTELT 99

 $^{^1}$ Obtained from a 2D fit to the combined $B o \overline D\ell^+
u_\ell$ sample with a model-independent parametrization according to Boyd-Grinstein-Lebed (BGL), in which a hadronic decay of the second B meson is fully reconstructed.

 $^{^2}$ Obtained from a fit to the combined partially reconstructed $B
ightarrow \ \overline{D} \ell
u_\ell$ sample while tagged by the other fully reconstructed B meson in the event. Also reports fitted ρ^2 1.09 ± 0.05 .

 $^{^3}$ Obtained from a fit to the combined $B o \, \overline{D} \ell^+
u_\ell$ sample in which a hadronic decay of the second *B* meson is fully reconstructed and $\rho^2 = 1.20 \pm 0.09 \pm 0.04$.

⁴Obtained from a global fit to $B \to D^{(*)} \ell \nu_{\ell}$ events, with reconstructed $D^0 \ell$ and $D^+ \ell$ final states and $\rho^2 = 1.20 \pm 0.04 \pm 0.07$.

$|V_{cb}|$ (from $D_s^{*-}\mu^+\nu_\mu$)

$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
41.4±0.6±0.9±1.2	¹ AAIJ	20E	LHCB	<i>pp</i> at 7, 8 TeV

 $^{^1}$ Measured from an inclusive sample of $D_s^-\,\mu^+$ candidates using CNL parameterization of the form factor. AAIJ 20E provides also measurement of $|{\rm V}_{cb}|=$ (42.3 \pm 0.8 \pm 0.9 \pm 1.2) \times 10 $^{-3}$ using BGL parameterization of the form factor. The third uncertainty is due to the external inputs used in the measurement.

V_{ub} MEASUREMENTS

For the discussion of V_{ub} measurements, which is not repeated here, see the review on "Determination of $|V_{cb}|$ and $|V_{ub}|$."

The CKM matrix element $|V_{ub}|$ can be determined by studying the rate of the charmless semileptonic decay $b \to u\ell\nu$. The relevant branching ratio measurements based on exclusive and inclusive decays can be found in the B Listings, and are not repeated here.

V_{cb} and V_{ub} CKM Matrix Elements REFERENCES

LEES	24	PR D110 032018	J.P. Lees <i>et al.</i>	(BABAR Collab.)
PRIM	24	PRL 133 131801	M.T. Prim et al.	(BELLE Collab.)
ADACHI	23J	PR D108 092013	I. Adachi <i>et al.</i>	(BELLE II Collab.)
PRIM	23	PR D108 012002	M.T. Prim et al.	(BELLE Collab.)
WAHEED	21	PR D103 079901	E. Waheed <i>et al.</i>	(BELLE Collab.)
AAIJ	20E	PR D101 072004	R. Aaij <i>et al.</i>	(LHCb Collab.)
WAHEED	19	PR D100 052007	E. Waheed <i>et al.</i>	(BELLE Collab.)
GLATTAUER	16	PR D93 032006	R. Glattauer et al.	(BELLE Collab.)
AUBERT	10	PRL 104 011802	B. Aubert <i>et al.</i>	(BABAR Collab.)
DUNGEL	10	PR D82 112007	W. Dungel et al.	(BELLE Collab.)
AUBERT	09A	PR D79 012002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	TA80	PRL 100 231803	B. Aubert et al.	(BABAR Collab.)
AUBERT	08R	PR D77 032002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	05E	PR D71 051502	B. Aubert et al.	(BABAR Collab.)
ABDALLAH	04D	EPJ C33 213	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ADAM	03	PR D67 032001	N.E. Adam et al.	(CLEO Collab.)
ABE	02E	PL B526 258	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02F	PL B526 247	K. Abe <i>et al.</i>	(BELLE Collab.)
BRIERE	02	PRL 89 081803	R. Briere et al.	(CLEO Collab.)
ABREU	01H	PL B510 55	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABBIENDI	00Q	PL B482 15	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
BARTELT	99	PRL 82 3746	J. Bartelt <i>et al.</i>	(CLEO Collab.)
CAPRINI	98	NP B530 153	I. Caprini, L. Lellouch, M. Neubert	(BCIP, CERN)

⁵ BARTELT 99: measured using both exclusive reconstructed $B^0 \to D^- \ell^+ \nu$ and $B^+ \to D^0 \ell^+ \nu$ samples.

 $^{^6}$ BUSKULIC 97: measured using exclusively reconstructed D^\pm with a $a^2{=}-0.05\pm0.53\pm0.38$. The statistical correlation is 0.99.

⁷ Using the missing energy and momentum to extract kinematic information about the undetected neutrino in the $B^0 \to D^- \ell^+ \nu$ decay.

⁸ ATHANAS 97: measured using both exclusive reconstructed $B^0 \to D^- \ell^+ \nu$ and $B^+ \to D^0 \ell^+ \nu$ samples with a $\rho^2 = 0.59 \pm 0.22 \pm 0.12^{+0.59}_{-0}$. They report their experiment's uncertainties $\pm 0.0044 \pm 0.0048^{+0.0053}_{-0.0012}$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the form factor model variations. We combine the last two in quadrature.

ACKERSTAFF	97G	PL B395 128	K. Ackerstaff et al.	(OPAL Collab.)
ATHANAS	97	PRL 79 2208	M. Athanas et al.	(CLEO Collab.)
BUSKULIC	97	PL B395 373	D. Buskulic et al.	(ALEPH Collab.)
ABREU	96P	ZPHY C71 539	P. Abreu <i>et al.</i>	(DELPHI Collab.)
BARISH	95	PR D51 1014	B.C. Barish et al.	(CLEO Collab.)
BUSKULIC	95N	PL B359 236	D. Buskulic et al.	(ALEPH Collab.)