b' (4th Generation) Quark, Searches for

b'(-1/3)-quark/hadron mass limits in $p\overline{p}$ and pp collisions

p (-1/3)-quark/hadron mass mints in pp and pp consists					
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>1530	95	¹ AAD	24BP	ATLS	B(b' ightarrow W u) = 1
>1540	95	² HAYRAPETY	.24AQ	CMS	B(b' ightarrow Z b) = 1
>1570	95	² HAYRAPETY	.24AQ	CMS	B(b' ightarrow Hb) = 1
>1560	95		23V	CMS	B(b' ightarrow Wt) = 1
>1570	95		20BI	CMS	B(b' ightarrow Hb) = 1
>1000	95		18CE	ATLS	$\geq 2\ell + ot\!$
> 950	95		18CL	ATLS	Wt, Zb, hb modes
>1010	95				2,3 ℓ , singlet model
>1140	95				2,3 ℓ , doublet model
>1220	95 ¹	^{0,11} AABOUD	18CR	ATLS	singlet b' . ATLAS Combi-
>1370	95 1	^{0,12} AABOUD	18CR	ATLS	nation b' in a weak isospin dou- blet (t', b') . ATLAS combination.
> 730	95	¹³ SIRUNYAN	17AU	CMS	combination.
> 810	95		15z	ATLS	
> 190	95		08X	D0	$c\tau = 200 mm$
> 190	95	¹⁶ ACOSTA	03	CDF	quasi-stable <i>b</i> ′
• • • We do not use t	he follo	wing data for averag	ges, fit	s, limits	, etc. ● ● ●
>1460	95	¹⁷ AAD	23AG	ATLS	$B(b' \rightarrow Wt) = 1$
>1420	95	10			$B(b' \rightarrow Zb) = 1$
>1390	95				$B(b' \rightarrow Zb) = 1$
>1130	95	10			$B(b' \rightarrow Zb) = 1$
>1230	95	²⁰ SIRUNYAN	19 _{BW}		$B(b' \rightarrow Wt) = 1$
>1350	95		18AW		$B(b' \rightarrow Wt) = 1$
> 910	95	00	18BM		Wt, Zb, hb modes
> 845	95	00	18Q	CMS	$B(b' \rightarrow W u) = 1$
> 880	95	²⁴ KHACHATRY	.16AN		$B(b' \rightarrow Wt) = 1$
<350, 580–635, >700	95	²⁵ AAD	15 AR	ATLS	$B(b' \rightarrow Hb) = 1$
> 620	95		15by	ATLS	Wt, Zb, hb modes
> 730	95	²⁷ AAD	15by	ATLS	B(b' ightarrow Wt) = 1
> 690	95	²⁸ AAD	15CN	ATLS	$B(b' \rightarrow Wq) = 1 (q=u)$
> 755	95				$B(b' \to Wt) = 1$
> 675	95	³⁰ CHATRCHYAN	131	CMS	$B(b' \rightarrow Wt) = 1$
> 480	95	³¹ AAD			$B(b' \rightarrow Wt) = 1$
> 400	95	³² AAD			$B(b' \rightarrow Zb) = 1$
> 350	95	³³ AAD			$B(b' \to Wq) = 1$ $(q=u,c)$
> 450	95	³⁴ AAD	12be	ATLS	$B(b' \to W t) = 1$
> 685	95	³⁵ CHATRCHYAN			$m_{t'} = m_{b'}$
> 611	95	³⁶ CHATRCHYAN			
> 372	95	~-			$b' \rightarrow Wt$
			-		-

> 361	95	³⁸ CHATRCHYAN 11L	CMS	Repl. by CHA- TRCHYAN 12X
> 338	95		CDF	$b' \rightarrow Wt$
> 380–430	95	⁴⁰ FLACCO 10	RVUE	$m_{b'} > m_{t'}$
> 268	95 4		CDF	B(b' o Zb) = 1
> 199	95	⁴³ AFFOLDER 00	CDF	NC: $b' \rightarrow Zb$
> 148	95		CDF	NC: $b' \rightarrow Zb + vertex$
> 96	95		D0	NC: $b' \rightarrow b\gamma$
> 128	95	⁴⁶ ABACHI 95F	D0	$\ell\ell+{\sf jets},\ell+{\sf jets}$
> 75	95		RVUE	NC: $b' \rightarrow b\ell\ell$
> 85	95	⁴⁸ ABE 92	CDF	CC: <i>ℓℓ</i>
> 72	95	⁴⁹ ABE 90B	CDF	CC: $e + \mu$
> 54	95	⁵⁰ AKESSON 90	UA2	$CC: \ e + jets + \not\!\!\!E_T$
> 43	95	⁵¹ ALBAJAR 90B	UA1	CC: μ + jets
> 34	95	⁵² ALBAJAR 88	UA1	CC: $e \text{ or } \mu + jets$

¹ AAD 24BP based on 140 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Limit on pair-production of heavy vectorlike quarks where each decays into a W boson and a light quark. Used events with $\ell + \not\!\!E_T$ + multiple jets + 1 boosted-W-jet.

- ² HAYRAPETYAN 24AQ based on 138 fb⁻¹ of *pp* data at $\sqrt{s} = 13$ TeV. Pair production of vector-like *b*' is searched for in the fully hadronic final states and those containing $\ell^+ \ell^-$ from a *Z* boson. The data are consistent with the SM background predictions and limits are obtained for different branching ratios B(*b*' \rightarrow *Hb*), B(*b*' \rightarrow *Zb*), B(*b*' \rightarrow *W t*).
- ³TUMASYAN 23V based on 138 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vector-like b' is seached for in the single-lepton, same-sign charge dilepton and multilepton channels. The data are consistent with the SM background predictions and limits are obtained for different branching ratios.
- ⁴ SIRUNYAN 20BI based on 137 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vector-like b' is seached for with each b' decaying into Zb or hb. Analysis focuses on final states consisting of jets from six quarks. Mass limits are obtained for a variety of branching ratios of b' decays.
- ⁵ AABOUD 18CE based on 36.1 fb⁻¹ of proton-proton data taken at $\sqrt{s} = 13$ TeV. Events including a same-sign lepton pair are used. The limit is for a singlet model, assuming the branching ratios of b' into Zb, Wt and Hb as predicted by the model.
- ⁶ AABOUD 18CL, AABOUD 18CP based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b' using all-hadronic final state. The analysis is particularly powerful for the $b' \rightarrow hb$ mode. Assuming the pure decay only in this mode sets a limit $m_{b'} > 1010$ GeV.
- ⁷AABOUD 18CP based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair and single production of vector-like b' are seached for with at least one b' decaying into Zb. In the case of $B(b' \rightarrow Zb) = 1$, the limit is $m_{b'} > 1220$ GeV.
- ⁸ The limit is for the singlet model, assuming that the branching ratios into Wt, Zb, hb add up to one.

 9 The limit is for the doublet model, assuming that the branching ratios into Wt, Zb, hb add up to one.

- ¹⁰ AABOUD 18CR based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. A combination of searches for the pair-produced vector-like b' in various decay channels ($b' \rightarrow Wt$, Zb, hb). Also a model-independent limit is obtained as $m_{b'} > 1.03$ TeV, assuming that the branching ratios into Zb, Wt, and hb add up to one.
- ¹¹ The limit is for the singlet b'.

- 12 The limit is for b' in a weak isospin doublet (t',b') and $|V_{t'b}| \ll |V_{tb'}|$. For a b' in a doublet with a charge -4/3 vector-like quark, the limit $m_{b'} > 1.14$ TeV is obtained.
- ¹³ SIRUNYAN 17AU based on 2.3–2.6 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Limit on pairproduced singlet vector-like b' using one lepton and several jets. The mass bound is given for a b' transforming as a singlet under the electroweak symmetry group, assumed to decay through W, Z or Higgs boson (which decays to jets) and to a third generation quark.
- ¹⁴ AAD 15Z based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Used events with $\ell + \not{\!\!E}_T + 26j$ ($\geq 1 b$) and at least one pair of jets from weak boson decay, primarily designed to select the signature $b'\overline{b'} \rightarrow WWt\overline{t} \rightarrow WWWWb\overline{b}$. This is a limit on pair-produced vector-like b'. The lower mass limit is 640 GeV for a vector-like singlet b'.
- ¹⁵ Result is based on 1.1 fb⁻¹ of data. No signal is found for the search of long-lived particles which decay into final states with two electrons or photons, and upper bound on the cross section times branching fraction is obtained for 2 < cτ < 7000 mm; see Fig. 3. 95% CL excluded region of b' lifetime and mass is shown in Fig. 4.
- ¹⁶ ACOSTA 03 looked for long-lived fourth generation quarks in the data sample of 90 pb^{-1} of $\sqrt{s}=1.8$ TeV $p\overline{p}$ collisions by using the muon-like penetration and anomalously high ionization energy loss signature. The corresponding lower mass bound for the charge (2/3)e quark (t') is 220 GeV. The t' bound is higher than the b' bound because t' is more likely to produce charged hadrons than b'. The 95% CL upper bounds for the production cross sections are given in their Fig. 3.
- ¹⁷ AAD 23AG based on 139 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vectorlike top or bs is searched for in the mode $1\ell + \ge 4j(\ge 1b$ -tagged) + $\not\!\!E_T$. The data are consistent with the SM background predictions and limits are obtained for different branching ratios. Masses below 1.59 TeV are excluded assuming a mass-degenerate vector-like doublet (t',b') model.
- ¹⁹ SIRUNYAN 19AQ based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Pair production of vector-like b' is seached for with one b' decaying into Zb and the other b' decaying into Wt, Zb, hb. Events with an opposite-sign lepton pair consistent with coming from Z and jets are used. Mass limits are obtained for a variety of branching ratios of b'.
- ²⁰ SIRUNYAN 19BW based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b' using all-hadronic final state. The analysis is made for the Zb, Wt, hb modes and mass limits are obtained for a variety of branching ratios.
- ²¹AABOUD 18AW based on 36.1 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b' using lepton-plus-jets final state. The search is also sensitive to the decays into Zb and Hb final states.
- ²² SIRUNYAN 18BM based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. The limit is for the pair-produced vector-like b'. Three channels (single lepton, same-charge 2 leptons, or at least 3 leptons) are considered for various branching fraction combinations. Assuming B(tW) = 1, the limit is 1240 GeV and for B(bZ) = 1 it is 960 GeV.
- ²³ SIRUNYAN 18Q based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. The limit is for the pair-produced vector-like b' that couple only to light quarks. Upper cross section limits on the single production of a b' and constraints for other decay channels (Zq and Hq) are also given in the paper.
- ²⁴ KHACHATRYAN 16AN based on 19.7 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pairproduced vector-like b' using 1, 2, and >2 leptons as well as fully hadronic final states. Other limits depending on the branching fractions to tW, bZ, and bH are given in Table IX.

- ²⁵ AAD 15AR based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Used lepton-plus-jets final state. See Fig. 24 for mass limits in the plane of $B(b' \rightarrow Wt)$ vs. $B(b' \rightarrow Hb)$ from $b'\overline{b'} \rightarrow Hb + X$ searches.
- ²⁷ AAD 15BY based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pair-produced chiral b'-quark. Used events containing $\geq 2\ell + \not \!\!E_T + \geq 2j$ ($\geq 1 b$) and including a same-sign lepton pair.
- ²⁸ AAD 15CN based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. Limit on pair-production of chiral b'-quark. Used events with $\ell + \not\!\!E_T + \ge 4j$ (non-*b*-tagged). Limits on a heavy vector-like quark, which decays into Wq, Zq, hq, are presented in the plane B($Q \rightarrow Wq$) vs. B($Q \rightarrow hq$) in Fig. 12.
- ²⁹ Based on 20.3 fb⁻¹ of pp data at $\sqrt{s} = 8$ TeV. No significant excess over SM expectation is found in the search for pair production or single production of b' in the events with dilepton from a high $p_T Z$ and additional jets ($\geq 1 b$ -tag). If instead of B($b' \rightarrow Wt$) = 1 an electroweak singlet with B($b' \rightarrow Wt$) ~ 0.45 is assumed, the limit reduces to 685 GeV.
- ³⁰ Based on 5.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 13I looked for events with one isolated electron or muon, large E_T , and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark.
- ³¹Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a t quark in the events with a high p_T isolated lepton, large E_T , and at least 6 jets in which one, two or more dijets are from W.
- ³²Based on 2.0 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No $b' \rightarrow Zb$ invariant mass peak is found in the search of heavy quark pair production that decay into Z and a b quark in events with $Z \rightarrow e^+e^-$ and at least one b-jet. The lower mass limit is 358 GeV for a vector-like singlet b' mixing solely with the third SM generation.
- ³³Based on 1.04 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons, large $\not\!\!E_T$, and ≥ 2 jets.
- ³⁴ Based on 1.04 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. AAD 12BE looked for events with two isolated like-sign leptons and at least 2 jets, large $\not{\!\!E}_T$ and $H_T > 350$ GeV.
- ³⁵ Based on 5 fb⁻¹ of *pp* data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 12BH searched for QCD and EW production of single and pair of degenerate 4'th generation quarks that decay to *bW* or *tW*. Absence of signal in events with one lepton, same-sign dileptons or trileptons gives the bound. With a mass difference of 25 GeV/c² between $m_{t'}$ and $m_{b'}$,
- the corresponding limit shifts by about $\pm 20 \text{ GeV/c}^2$.
- ³⁶ Based on 4.9 fb⁻¹ of pp data at $\sqrt{s} = 7$ TeV. CHATRCHYAN 12X looked for events with trileptons or same-sign dileptons and at least one b jet.
- ³⁷Based on 4.8 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. AALTONEN 11J looked for events with $\ell + \not{\!}_T + \geq 5j$ ($\geq 1 \ b \ or \ c$). No signal is observed and the bound $\sigma(b'\overline{b}')$ < 30 fb for $m_{b'} > 375$ GeV is found for B($b' \rightarrow W t$) = 1.
- ³⁸ Based on 34 pb⁻¹ of data in pp collisions at 7 TeV. CHATRCHYAN 11L looked for multijet events with trileptons or same-sign dileptons. No excess above the SM background excludes $m_{b'}$ between 255 and 361 GeV at 95% CL for B($b' \rightarrow Wt$) = 1.
- ³⁹ Based on 2.7 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV. AALTONEN 10H looked for pair production of heavy quarks which decay into tW^- or tW^+ , in events with same sign dileptons (e or μ), several jets and large missing E_T . The result is obtained for b'which decays into tW^- . For the charge 5/3 quark ($T_{5/3}$) which decays into tW^+ ,

 $m_{{\cal T}_{5/3}}>$ 365 GeV (95% CL) is found when it has the charge -1/3 partner B of the same mass.

- ⁴⁰ FLACCO 10 result is obtained from AALTONEN 10H result of $m_{b'} > 338$ GeV, by relaxing the condition B($b' \rightarrow Wt$) = 100% when $m_{b'} > m_{t'}$.
- ⁴¹ Result is based on 1.06 fb⁻¹ of data. No excess from the SM Z+jet events is found when Z decays into e e or $\mu\mu$. The $m_{b'}$ bound is found by comparing the resulting upper bound on $\sigma(b'\overline{b'})$ [1-(1-B($b' \rightarrow Z b$))²] and the LO estimate of the b' pair production cross section shown in Fig. 38 of the article.
- ⁴² HUANG 08 reexamined the b' mass lower bound of 268 GeV obtained in AALTONEN 07C that assumes $B(b' \rightarrow Zb) = 1$, which does not hold for $m_{b'} > 255$ GeV. The lower mass bound is given in the plane of $\sin^2(\theta_{tb'})$ and $m_{b'}$.
- ⁴³ AFFOLDER 00 looked for b' that decays in to b+Z. The signal searched for is bbZZ events where one Z decays into e^+e^- or $\mu^+\mu^-$ and the other Z decays hadronically. The bound assumes $B(b' \rightarrow Z b) = 100\%$. Between 100 GeV and 199 GeV, the 95%CL upper bound on $\sigma(b' \rightarrow \overline{b'}) \times B^2(b' \rightarrow Z b)$ is also given (see their Fig. 2).
- ⁴⁴ ABE 98N looked for $Z \rightarrow e^+e^-$ decays with displaced vertices. Quoted limit assumes $B(b' \rightarrow Zb)=1$ and $c\tau_{b'}=1$ cm. The limit is lower than m_Z+m_b (~ 96 GeV) if $c\tau > 22$ cm or $c\tau < 0.009$ cm. See their Fig. 4.
- ⁴⁵ ABACHI 97D searched for b' that decays mainly via FCNC. They obtained 95%CL upper bounds on B($b'\overline{b}' \rightarrow \gamma + 3$ jets) and B($b'\overline{b}' \rightarrow 2\gamma + 2$ jets), which can be interpreted as the lower mass bound $m_{b'} > m_Z + m_b$.
- ⁴⁶ ABACHI 95F bound on the top-quark also applies to b' and t' quarks that decay predominantly into W. See FROGGATT 97.
- ⁴⁷ MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes $B(b' \rightarrow b\ell^+\ell^-)=1\%$. For an exotic quark decaying only via virtual Z [$B(b\ell^+\ell^-)=3\%$], the limit is 85 GeV.
- ⁴⁸ ABE 92 dilepton analysis limit of >85 GeV at CL=95% also applies to b' quarks, as discussed in ABE 90B.
- 49 ABE 90B exclude the region 28–72 GeV.

https://pdg.lbl.gov

- ⁵⁰ AKESSON 90 searched for events having an electron with p_T > 12 GeV, missing momentum > 15 GeV, and a jet with E_T > 10 GeV, $|\eta| < 2.2$, and excluded $m_{b'}$ _, between 30 and 69 GeV.
- 51 For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of ALBAJAR 90B.
- 5^2 ALBAJAR 88 study events at $E_{\rm cm} = 546$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for the production of charm and bottom, without the need for a new quark. The lower mass limit is obtained by using a conservative estimate for the $b'\overline{b'}$ production cross section and by assuming that it cannot be produced in W decays. The value quoted here is revised using the full $O(\alpha_s^2)$ cross section of ALTARELLI 88.

b'(-1/3) mass limits from single production in $p\overline{p}$ and pp collisions

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>3000	95	¹ TUMASYAN	220	CMS	$egin{array}{ccc} g \: b ightarrow b' ightarrow \: t \: W, \: {\sf B}(b' ightarrow t \: W) = 1 \end{split}$
> 693	95	² ABAZOV	11F	D0	$q u \rightarrow q' b' \rightarrow q' (W u)$ $\widetilde{\kappa}_{u b'} = 1, \ B(b' \rightarrow W u) = 1$
> 430	95	² ABAZOV	11F	D0	$q d \rightarrow q b' \rightarrow q(Z d)$ $\widetilde{\kappa}_{d b'} = \sqrt{2}, \ B(b' \rightarrow Z d) = 1$

Created: 4/10/2025 13:31

Page 5

• • • We do not use the following data for averages, fits, limits, etc. • • •

95	³ aad ⁴ sirunyan		$egin{array}{rcl} b' & ightarrow bh \ (h ightarrow b \overline{b}) \ g \ b ightarrow b' ightarrow t \ W, \ { m B}(b' ightarrow t \ W) = 1 \end{array}$
	⁵ SIRUNYAN	19AI CMS	$bZ/tW \rightarrow b' \rightarrow tW$
95	⁶ AAD	16ah ATLS	$g b \xrightarrow{\to} b' \xrightarrow{\to} t W, B(b' \rightarrow$
95	⁷ KHACHATRY.	16I CMS	t W) = 1 $g b \rightarrow b'_L \rightarrow t W, B(b'_L \rightarrow t W) = 1$
95	⁸ KHACHATRY.	16I CMS	$b \to b'_R \to tW, B(b'_R \to tW) = 1$
95	⁹ KHACHATRY.	16I CMS	$\begin{array}{ccc} g \ b \rightarrow \ b' \rightarrow \ t \ W, \ B(b' \rightarrow \ t \ W) = 1 \end{array}$
	95 95 95	95 ⁴ SIRUNYAN ⁵ SIRUNYAN 95 ⁶ AAD 95 ⁷ KHACHATRY 95 ⁸ KHACHATRY	 95 ⁴ SIRUNYAN 21AG CMS ⁵ SIRUNYAN 19AI CMS 95 ⁶ AAD 16AH ATLS 95 ⁷ KHACHATRY16I CMS 95 ⁸ KHACHATRY16I CMS

- ¹ TUMASYAN 220 based on 138 fb⁻¹ of data in pp collisions at 13 TeV. No significant excess over SM expectation is found in the search for a left-handed b' assuming 100% decay to tW using a t-tagged jet and a lepton from W. The model assumes that the b' has the excited quark couplings. The bound is from a statistical combination with an earlier analysis by SIRUNYAN 21AG. The 95% CL bounds are also set as 3.0, 3.0, and 3.2 TeV, respectively, for left-handed, right-handed, and vector-like couplings.
- ²ABAZOV 11F based on 5.4 fb⁻¹ of data in ppbar collisions at 1.96 TeV. ABAZOV 11F looked for single production of b' via the W or Z coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes $p\overline{p} \rightarrow b'q \rightarrow Wuq$, and $p\overline{p} \rightarrow b'q \rightarrow Zdq$ are given in Figs. 3 and 4, respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks.
- ³AAD 23CQ based on 139 fb⁻¹ of data in pp collisions at 13 TeV. No significant excess over SM expectation is found. Limits on mass and production cross section of a vectorlike b' are obtained in several theoretical scenarios determined by the couplings betwen b' and W, Z, h.
- ⁴ SIRUNYAN 21AG based on 137 fb⁻¹ of data in pp collisions at 13 TeV. No significant excess over SM expectation is found in the search for a left-handed b' assuming 100% decay to tW using all hadronic final states, where t and W are tagged as single jets, respectively. The model assumes that the b' has the excited quark couplings. The 95% CL bounds are also set as 2.8 and 3.1 TeV, respectively, for the right-handed and vector-like couplings.
- ⁵ SIRUNYAN 19AI based on 35.9 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV. Exclusion limits are set on the product of the production cross section and branching fraction for the b'(-1/3) + b and b'(-1/3) + t modes as a function of the vector-like quark mass in Figs. 7 and 8 and in Tab. 2 for relative vector-like quark widths between 1 and 30% for left- and right-handed vector-like quark couplings. No significant deviation from the SM prediction is observed.
- ⁶AAD 16AH based on 20.3 fb⁻¹ of data in pp collisions at 8 TeV. No significant excess over SM expectation is found in the search for a vector-like b' in the single-lepton and dilepton channels (ℓ or $\ell\ell$) + 1,2,3 j ($\geq 1b$). The model assumes that the b' has the excited quark couplings.
- ⁷ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on left-handed b' assuming 100% decay to tW and using all-hadronic, lepton + jets, and dilepton final states.
- ⁸ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on right-handed b' assuming 100% decay to tW and using all-hadronic, lepton + jets, and dilepton final states.
- ⁹ Based on 19.7 fb⁻¹ of data in pp collisions at 8 TeV. Limit on vector-like b' assuming 100% decay to tW and using all-hadronic, lepton+jets, and dilepton final states.

MASS LIMITS for b' (4th Generation) Quark or Hadron in e^+e^- Collisions

Search for hadrons containing a fourth-generation -1/3 quark denoted b'.

The last column specifies the assumption for the decay mode (CC denotes the conventional charged-current decay) and the event signature which is looked for.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>46.0	95	¹ DECAMP	90F	ALEP	any decay
$\bullet \bullet \bullet$ We do not use the	e follov	ving data for averages	s, fits,	limits, e	etc. • • •
none 96–103	95	² ABDALLAH	07	DLPH	b' ightarrow bZ, cW
		³ ADRIANI	93 G	L3	Quarkonium
>44.7	95	ADRIANI	9 3M	L3	$\Gamma(Z)$
>45	95	ABREU	91F	DLPH	$\Gamma(Z)$
none 19.4-28.2	95	ABE	90 D	VNS	Any decay; event shape
>45.0	95	ABREU	90 D	DLPH	B(CC) = 1; event shape
>44.5	95	⁴ ABREU	90 D	DLPH	$b' \rightarrow c H^-, H^- \rightarrow \overline{c} s, \tau^- \nu$
>40.5	95	⁵ ABREU	90 D	DLPH	$\Gamma(Z \rightarrow hadrons)$
>28.3	95	ADACHI	90	TOPZ	
>41.4	95	⁶ AKRAWY	90 B	OPAL	Any decay; acoplanarity
>45.2	95	⁶ AKRAWY	90 B	OPAL	B(CC) = 1; acopla- narity
>46	95	⁷ AKRAWY	90J	OPAL	$b' ightarrow \gamma + any$
>27.5	95	⁸ ABE	89E	VNS	$B(CC) = 1; \mu, e$
none 11.4-27.3	95	⁹ ABE	89 G	VNS	$B(b' o b\gamma) > 10\%;$ isolated γ
>44.7	95	¹⁰ ABRAMS	89 C	MRK2	B(CC) = 100%; isol.
>42.7	95	¹⁰ ABRAMS	89 C	MRK2	B(bg) = 100%; event shape
>42.0	95	¹⁰ ABRAMS	89 C	MRK2	
>28.4	95	^{11,12} ADACHI	89 C	TOPZ	$B(CC) = 1; \mu$
>28.8	95	¹³ ENO	89	AMY	B(CC) \gtrsim 90%; μ , e
>27.2	95	^{13,14} ENO	89	AMY	any decay; event shape
>29.0	95	¹³ ENO	89	AMY	${ m B}(b' ightarrow bg)\gtrsim$ 85%; event shape
>24.4	95	¹⁵ IGARASHI	88	AMY	μ,e
>23.8	95	¹⁶ SAGAWA	88	AMY	event shape
>22.7	95	¹⁷ ADEVA	86	MRKJ	μ
>21		¹⁸ ALTHOFF	84C	TASS	R, event shape
>19		¹⁹ ALTHOFF	841	TASS	Aplanarity
1					

¹DECAMP 90F looked for isolated charged particles, for isolated photons, and for four-jet final states. The modes $b' \rightarrow bg$ for $B(b' \rightarrow bg) > 65\% b' \rightarrow b\gamma$ for $B(b' \rightarrow b\gamma) > 5\%$ are excluded. Charged Higgs decay were not discussed. ²ABDALLAH 07 searched for b' pair production at E_{cm} =196-209 GeV, with 420 pb⁻¹.

² ABDALLAH 07 searched for b' pair production at E_{cm} =196–209 GeV, with 420 pb⁻¹. No signal leads to the 95% CL upper limits on B(b' \rightarrow bZ) and B(b' \rightarrow cW) for $m_{b'}$ = 96 to 103 GeV.

³ ADRIANI 93G search for vector quarkonium states near Z and give limit on quarkonium-Z mixing parameter $\delta m^2 < (10-30) \text{ GeV}^2$ (95%CL) for the mass 88–94.5 GeV. Using Richardson potential, a 1S $(b'\overline{b'})$ state is excluded for the mass range 87.7–94.7 GeV. This range depends on the potential choice.

⁴ABREU 90D assumed $m_{H^-} < m_{b'} - 3$ GeV.

⁵ Superseded by ABREU 91F.

- ⁶ AKRAWY 90B search was restricted to data near the Z peak at $E_{\rm cm} = 91.26$ GeV at LEP. The excluded region is between 23.6 and 41.4 GeV if no H^+ decays exist. For charged Higgs decays the excluded regions are between $(m_{H^+} + 1.5 \text{ GeV})$ and 45.5 GeV.
- GeV. ⁷ AKRAWY 90J search for isolated photons in hadronic Z decay and derive $B(Z \rightarrow b'\overline{b'}) \cdot B(b' \rightarrow \gamma X) / B(Z \rightarrow hadrons) < 2.2 \times 10^{-3}$. Mass limit assumes $B(b' \rightarrow \gamma X) > 10\%$.
- ⁸ABE 89E search at $E_{\rm cm} = 56-57$ GeV at TRISTAN for multihadron events with a spherical shape (using thrust and acoplanarity) or containing isolated leptons.

 $^9\,{\rm ABE}$ 89G search was at $E_{\rm cm}$ = 55–60.8 GeV at TRISTAN.

- ¹⁰ If the photonic decay mode is large (B($b' \rightarrow b\gamma$) > 25%), the ABRAMS 89C limit is 45.4 GeV. The limit for for Higgs decay ($b' \rightarrow cH^-, H^- \rightarrow \overline{c}s$) is 45.2 GeV.
- 11 ADACHI 89C search was at $E_{\rm Cm}=56.5{-}60.8~{\rm GeV}$ at TRISTAN using multi-hadron events accompanying muons.
- 12 ADACHI 89C also gives limits for any mixture of C C and bg decays.
- 13 ENO 89 search at $E_{\rm cm} =$ 50–60.8 at TRISTAN.
- 14 ENO 89 considers arbitrary mixture of the charged current, bg, and $b\gamma$ decays.
- ¹⁵ IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta R(b') < 0.26$ (95% CL) assuming charged current decay, which translates to $m_{b'} > 24.4$ GeV.
- ¹⁶SAGAWA 88 set limit $\sigma(top) < 6.1$ pb at CL=95% for top-flavored hadron production from event shape analyses at $E_{\rm CM} = 52$ GeV. By using the quark parton model cross-section formula near threshold, the above limit leads to lower mass bounds of 23.8 GeV for charge -1/3 quarks.
- ¹⁷ ADEVA 86 give 95%CL upper bound on an excess of the normalized cross section, ΔR , as a function of the minimum c.m. energy (see their figure 3). Production of a pair of 1/3 charge quarks is excluded up to $E_{\rm cm} = 45.4$ GeV.
- 18 ALTHOFF 84C narrow state search sets limit $\Gamma(e^+\,e^-)$ B(hadrons) <2.4 keV CL = 95% and heavy charge 1/3 quark pair production m> 21 GeV, CL = 95%.
- ¹⁹ ALTHOFF 841 exclude heavy quark pair production for 7 < m <19 GeV (1/3 charge) using aplanarity distributions (CL = 95%).

REFERENCES FOR Searches for (Fourth Generation) b' Quark

AAD	15BY	JHEP 1510 150	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PR D92 112007	G. Aad <i>et al.</i>	(ATLAS Collab.)
				(
AAD	15Z	PR D91 112011	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1411 104	G. Aad <i>et al.</i>	(ATLAS Collab.)
CHATRCHYAN	13I	JHEP 1301 154	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AAD	12AT	PRL 109 032001	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PRL 109 071801	G. Aad <i>et al.</i>	(ATLAS Collab.)
				(
AAD		PR D86 012007	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1204 069	G. Aad <i>et al.</i>	(ATLAS Collab.)
CHATRCHYAN	12BH	PR D86 112003	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	12X	JHEP 1205 123	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AALTONEN	11J	PRL 106 141803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	11F	PRL 106 081801	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN		PL B701 204	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
	10H			
AALTONEN		PRL 104 091801	T. Aaltonen <i>et al.</i>	(CDF_Collab.)
FLACCO	10	PRL 105 111801	C.J. Flacco <i>et al.</i>	(UCI, HAIF)
ATRE	09	PR D79 054018	A. Atre <i>et al.</i>	
ABAZOV	08X	PRL 101 111802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
HUANG	08	PR D77 037302	P.Q. Hung, M. Sher	(ÙVA, WILL)
AALTONEN	07C	PR D76 072006	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABDALLAH	07	EPJ C50 507	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACOSTA	03	PRL 90 131801	D. Acosta <i>et al.</i>	(CDF Collab.)
AFFOLDER	00	PRL 84 835	A. Affolder <i>et al.</i>	(CDF Collab.)
ABE	98N	PR D58 051102	F. Abe <i>et al.</i>	(CDF Collab.)
ABACHI	97D	PRL 78 3818	S. Abachi <i>et al.</i>	(D0 Collab.)
FROGGATT	97	ZPHY C73 333	C.D. Froggatt, D.J. Smith, H.B.	Nielsen (GLAS+)
ABACHI	95F	PR D52 4877	S. Abachi <i>et al.</i>	(D0 Collab.)
ADRIANI	93G	PL B313 326	O. Adriani <i>et al.</i>	(L3 Collab.)
ADRIANI	93M	PRPL 236 1	O. Adriani <i>et al.</i>	
				(L3 Collab.)
MUKHOPAD		PR D48 2105	B. Mukhopadhyaya, D.P. Roy	(TATA)
ABE	92	PRL 68 447	F. Abe <i>et al.</i>	(CDF Collab.)
Also		PR D45 3921	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	92G	PR D45 3921	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	91F	NP B367 511	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABE	90B	PRL 64 147	F. Abe <i>et al.</i>	CDF Collab.)
ABE	90D	PL B234 382	K. Abe <i>et al.</i>	(VENUS Collab.)
ABREU	90D	PL B242 536	P. Abreu <i>et al.</i>	· · · · · · · · · · · · · · · · · · ·
				(DELPHI Collab.)
ADACHI	90	PL B234 197	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
AKESSON	90	ZPHY C46 179	T. Akesson <i>et al.</i>	(UA2 Collab.)
AKRAWY	90B	PL B236 364	M.Z. Akrawy <i>et al.</i>	(OPAL Collab.)
AKRAWY	90 J	PL B246 285	M.Z. Akrawy <i>et al.</i>	(OPAL Collab.)
ALBAJAR	90B	ZPHY C48 1	C. Albajar <i>et al.</i>	(UA1 Collab.)
DECAMP	90F	PL B236 511	D. Decamp <i>et al.</i>	(ALEPH Collab.)
ABE	89E	PR D39 3524	K. Abe <i>et al.</i>	(VENUS Collab.)
ABE	89G	PRL 63 1776	K. Abe <i>et al.</i>	(VENUS Collab.)
ABRAMS	89C	PRL 63 2447	G.S. Abrams <i>et al.</i>	(Mark II Collab.)
ADACHI	89C	PL B229 427	I. Adachi <i>et al.</i>	(TOPAZ Collab.)
ENO	89	PRL 63 1910	S. Eno <i>et al.</i>	(AMY Collab.)
ALBAJAR	88	ZPHY C37 505	C. Albajar <i>et al.</i>	(UA1 Collab.)
ALTARELLI	88	NP B308 724	G. Altarelli <i>et al.</i>	(CERN, ROMA, ETH)
IGARASHI	88	PRL 60 2359	S. Igarashi <i>et al.</i>	(AMY Collab.)
SAGAWA	88	PRL 60 93	H. Sagawa <i>et al.</i>	(AMY Collab.)
ADEVA	86	PR D34 681	B. Adeva <i>et al.</i>	(Mark-J Collab.)
			M. Althoff <i>et al.</i>	
ALTHOFF	84C	PL 138B 441		(TASSO Collab.)
ALTHOFF	84 I	ZPHY C22 307	M. Althoff <i>et al.</i>	(TASSO Collab.)