Heavy Neutral Leptons, Searches for

OMITTED FROM SUMMARY TABLE

We define searches for Heavy Neutral Leptons (HNLs) as searches for Dirac or Majorana fermions with sterile neutrino quantum numbers, that are heavy enough to not disrupt the simplest Big Bang Nucleosynthesis bounds and/or unstable on cosmological timescales: Typically HNLs have mass \sim MeV or higher.

Searches for these particles generically set bounds on the mixing between the HNL and the active neutrinos, as parametrized by the extended 3×4 PMNS matrix elements $U_{\ell \times}$ (see the "Neutrino mass, mixing and oscillations" review) where $\ell = e, \mu$ or τ , and we denote the HNL as ν_{χ} . While many measurements may be interpreted to place bounds on various combinations of these matrix elements, we quote below limits only for those cases in which one matrix element is assumed to be much larger than the other two, i.e. $|U_{\ell \times}| \gg$

 $|U_{\ell'x}|$ for $\ell' \neq \ell$.

Experimental searches make use of various different strategies, including e.g. resonance searches in missing mass decay distributions or specific final states, searches for lepton number violating decays, and trilepton signatures. The resulting bounds on $U_{\ell \times}$ are typically dependent on the HNL mass. The quoted limits below are either the best limit near an experimental kinematic threshold, or a characteristic value in the mass range of the experimental sensitivity.

Limits on heavy neutral lepton mixing parameters

Limits on $|U_{ex}|^2$

			value in the mass is	ange		Aperimental sensitivity
VALUI	5	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.1		95	¹ AAD	24AW	/ ATLS	$m_{{ m u}_{ m imes}}~\sim~1$ TeV
<3	imes 10 ⁻⁴	95	² AAD	24BU	ATLS	$m_{ u_{\star}}^{'}\sim~$ 20–50 GeV
<4	imes 10 ⁻⁶	95	³ HAYRAPETY	.24AB	CMS	$m_{ u_{ imes}}^{'}\sim~$ 20–60 GeV
$<\!\!1$	imes 10 ⁻³	95	³ HAYRAPETY	.24AB	CMS	$m_{\nu_{\star}}^{} \gtrsim m_W$
< 1	imes 10 ⁻⁵	95	⁴ HAYRAPETY	.245	CMS	$m_{\nu_{\star}}^{2} \sim 2.5 \text{ GeV}$
< 1	imes 10 ⁻⁶	95	⁵ HAYRAPETY	.24v	CMS	$m_{ u_{\star}}^{\wedge} \sim 10 \; { m GeV}$
<5	imes 10 ⁻⁷	95	⁶ AAD	23A0	ATLS	$\hat{m_{ u_{ imes}}}\sim$ 3–15 GeV, pp at 13 TeV
<3	imes 10 ⁻⁴	90	⁷ AGNES	23A	DS50	$m_{ u_{\star}}^{'} \sim 7$ –35 keV
<3	imes 10 ⁻⁸	90	⁸ BAROUKI	22	RVUE	Near $m_{D_e} - m_e$ kin. thres.
< 1	imes 10 ⁻⁶	95	⁹ TUMASYAN	22AD	CMS	$m_{ m V_{ m V}}\sim 8-14$ GeV, pp at 13 TeV
<2	imes 10 ⁻⁴	95	¹⁰ FRIEDRICH	21		Near $m_{7Be} - m_{7Li}$ kin. thres.
$<\!\!1$	imes 10 ⁻⁹	90	¹¹ CORTINA-GIL	20	NA62	$m_{ u_{\star}} \sim 150-400 \text{ MeV}$
<2	imes 10 ⁻⁵	95	¹² AAD	19F	ATLS	$m_{ u_{ m v}}^{\;\;}\sim\;$ 15–40 GeV
						A

Quoted limits are either the best limit near the kinematic threshold of the experiment, or a characteristic value in the mass range of the experimental sensitivity

$<\!\!1$	imes 10 ⁻⁹	90	¹³ ABE	19 B	T2K	Near $m_K - m_e$ kin. thres.
$<\!\!1$	imes 10 ⁻⁴	90	¹⁴ ABLIKIM	19AL	BES3	$m_{\nu_{\chi}} \sim 0.3-0.7 \text{ GeV}$
<2	imes 10 ⁻⁷	90	¹⁵ BRYMAN	19	RVUE	$m_{\nu_{\star}}^{\prime}\sim~55~{ m MeV}$
$<\!\!1$	imes 10 ⁻⁸	90	¹⁶ AGUILAR-AR	.18A	PIEN	$m_{ u_{\star}}^{'}$ \sim 60–120 MeV
<3	imes 10 ⁻⁷	90	¹⁷ CORTINA-GIL	18	NA62	$m_{ u_{\star}}^{\prime}$ \sim 200–400 MeV
$<\!\!1$	imes 10 ⁻⁶	90	¹⁸ PARK	16	BELL	$m_{ u_{\star}}^{\prime} \sim 1.4 \text{ GeV}$
<3	imes 10 ⁻⁵	90	¹⁹ LIVENTSEV	13	BELL	Near $m_{ m _{V_{ m v}}}\sim~2$ –2.5 GeV
<3	imes 10 ⁻⁵	95	²⁰ ABREU	97ı	DLPH	$m_{ u_{ m v}} \sim 6$ –50 GeV
<2	imes 10 ⁻⁵	95	²¹ ABREU	97ı	DLPH	Near $m_{\nu_{\gamma}} \sim 3.5$ GeV
$<\!\!1$	imes 10 ⁻⁵	90	²² BARANOV	93		Near $m_{\pi} - m_{\rho}$ kin. thres.
<2	imes 10 ⁻⁷	90	²² BARANOV	93		Near $m_K - m_e$ kin. thres.
$<\!\!1$	imes 10 ⁻⁷		^{23,24} BERNARDI	88	CNTR	Near $m_{\pi} - m_e$ kin. thres.
<2	imes 10 ⁻⁹		^{24,25} BERNARDI	88	CNTR	Near $m_K - m_e$ kin. thres.
$<\!\!1$	imes 10 ⁻⁷	90	²⁶ DORENBOS	86	CHRM	Near $m_D - m_e$ kin. thres.
$<\!\!1$	imes 10 ⁻⁷	90	²⁷ COOPER	85	BEBC	Near $m_D - m_e$ kin. thres.
• • •	• We do not	t use t	he following data for	avera	ges, fits,	limits, etc. • • •

<2	imes 10 ⁻⁵	95	²⁸ SIRUNYAN	18K CMS	$m_{ u_{ m v}}~\sim~$ 20–60 GeV
$<\!\!1$	imes 10 ⁻²	95	²⁸ SIRUNYAN	18K CMS	$m_{ u_{\chi}} \gtrsim m_W$

¹ AAD 24AW search for scattering of same-sign boson pairs into same-sign electron pairs, mediated by a virtual Majorana HNL, in the HNL mass range 50 GeV to 20 TeV. Limits are also set for $|V_{ex} V_{\mu x}^*|$.

² AAD 24BU search for same-sign electron pairs in semileptonic decays of top quarks via a Majorana HNL, in the HNL mass range 15–75 GeV.

- ³ HAYRAPETYAN 24AB search for $W \to e\nu_X \to ee\ell\nu_\ell$ prompt decays assuming coupling to a single SM generation, between 10–1500 GeV. Above $m_{\nu_\chi} \downarrow m_W$, sensitivity is greatly reduced by the required virtuality of the HNL. Results are quoted for a mass range below m_W and just above m_W , for Majorana HNLs. Similar (weaker) limits also for Dirac HNLs are presented.
- ⁴ HAYRAPETYAN 24S search for $W \rightarrow e\nu_{\chi}$ followed by ν_{χ} displaced decay in flight to electromagnetic and hadronic showers in the CMS muon chamber, in the mass range $m_{\nu_{\chi}} \sim 1-3$ GeV. Limits are set for both Majorana and Dirac HNLs. This long-lived particle style search results in an exclusion region in the coupling-mass plane whose upper contour is determined by an insufficiently long HNL lifetime to reach the muon chambers, and lower contour by insufficient HNL production. The intersection of these, and thus the extent of the experimental sensitivity, occurs at $m_{\nu_{\chi}} \sim 3$ GeV.
- ⁵ HAYRAPETYAN 24V searches for $W \rightarrow e\nu_X$ with displaced decay $\nu_X \rightarrow ej$, i.e. with one jet, over the range $m_{\nu_X} \sim 2$ -20 GeV. Limits are set for both Dirac and Majorana HNLs.

⁶AAD 23AO search for $W \rightarrow \nu_{\chi} e$, for both Majorana and Dirac HNL scenarios. Also consider scenarios involving multiflavor mixing, with correspondingly weaker limits.

⁷ Search for ionization signals in an LArTPC. Assumes the candidate particle is 100% of dark matter.

 $^8\,\text{Reanalysis}$ of BEBC results (cf. COOPER-SARKAR 85) to update searches for $D_{\pmb{s}}^\pm$ \rightarrow

 $\nu_{\rm X}\,e^\pm$ using a corrected formula for the HNL decay probabilities, additional production channels, and an improved fit for the charm meson distributions. Assumes a Majorana HNL.

⁹TUMASYAN 22AD search for $W \rightarrow e\nu_x$, $\nu_x \rightarrow e\mu\nu_\mu$ and set limits for Dirac and Majorana Heavy Neutral Leptons. The data correspond to an integrated luminosity of 138 fb⁻¹.

- $^{10}\,{\rm Search}$ in electron capture decay $^7{\rm Be} \rightarrow ~^7{\rm Li}\nu_x.$ Kinematic threshold is \sim 850 keV.
- ¹¹Search for $K^+ \rightarrow e^+ \nu_x$. Assumes lifetime of $\nu_x > 50$ ns.
- 12 Limit from prompt lepton number violating trilepton search.
- $^{13}{\it K}^+$ ightarrow $e^+
 u_{\chi}$, with u_{χ} decay through $U_{e\chi}$. ABE 19B also considers bounds on $|U_{\ell_X} U_{\ell'_X}|$ for combinations of lepton flavors in the ν_X decay final state.
- ¹⁴Searches for a Majorana Heavy Neutral Lepton producing a π^-e^+ resonance in the
- same sign dilepton decay $D \rightarrow K \pi^- e^+ e^+$. ¹⁵ BRYMAN 19 sets best limits $|U_{ex}|^2 < 1 \times 10^{-4}$ – 2×10^{-7} in the mass range $m_{\nu_{\chi}} \sim$ 2-55 MeV, respectively, using the precision branching ratio measurement in AGUILÂR-AREVALO 15. See also BRYMAN 19A. 16 Search for $\pi^+ \rightarrow e^+ \nu_{\chi}$.
- ¹⁷Search for $K^+ \rightarrow e^+ \nu_{\chi}$.
- 18 PARK 16 quotes an approximate limit B($B^+ \to ~e^+ \nu_x) <~3 \times 10^{-6}$ in the mass range $m_{
 u_{
 m v}}~\sim~$ 0.2–1.4 GeV.
- ¹⁹Search for $B^+ \rightarrow e^+ \nu_{\chi}$.
- ²⁰ Search for prompt ν_x decay signatures.
- ²¹ Search for displaced ν_x decay signatures.
- ²² Searches for K or $\pi \rightarrow e^+ \nu_X, \nu_X \rightarrow e^+ e^- \nu_e$ using a beam dump experiment at the 70 GeV Serpukhov proton synchrotron. BARANOV 93 also considers limits for $|U_{e_X} U_{\mu_X}|$

from K or $\pi \to \mu^+ \nu_x$, $\nu_x \to e^+ e^- \nu_e$.

 $^{23}\pi^+
ightarrow e^+
u_{\chi}$, with u_{χ} decay through $U_{e\chi}$.

- ²⁴ BERNARDI 88 also considers bounds on $|U_{ex} U_{\mu x}|$.
- $^{25}\,{\rm K}^+ \rightarrow ~e^+\,\nu_{\chi}$, with ν_{χ} decay through $U_{e\,\chi}.$ $^{26}D^+ \rightarrow e^+ \nu_x$, with $\nu_x \rightarrow e^- \ell^+ \nu_\ell$. $\begin{array}{ccc} 27 & D^+ \rightarrow & e^+ \stackrel{\frown}{\nu_{\chi}}, \text{ with } \stackrel{\frown}{\nu_{\chi}} \rightarrow & e^- \ell^+ \stackrel{\frown}{\nu_{\ell}} \text{ or } \nu_{\chi} \rightarrow & e^- \pi^+. \end{array}$
- ²⁸ Superseded by HAYRAPETYAN 24AB

Limits on $|U_{\mu x}|^2$

Quoted limits are either the best limit near the kinematic threshold of the experiment, or a characteristic value in the mass range of the experimental sensitivity

VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
$<1 \times 10^{-4}$	95	¹ AAD	24BU ATLS	$m_{{ m }_{{ m V}_{ m }}}~\sim~$ 20–50 GeV
$< 3 \times 10^{-8}$	90	² ABRATENKO	24 MBNE	Near $m_{K}^{-}-m_{\pi}^{-}-m_{\mu}^{-}$ kin. thres.
$<1 \times 10^{-6}$	90	² ABRATENKO	24 MBNE	$m_{ u_{\star}} \sim 150~{ m MeV}$
$<3 \times 10^{-6}$	95	³ HAYRAPETY	.24AB CMS	$m_{ u_{\star}}^{^{\prime}}$ \sim 20–60 GeV
$<1 \times 10^{-3}$	95	³ HAYRAPETY	.24AB CMS	$m_{\nu_{\star}} \gtrsim m_W$
$<3 \times 10^{-5}$	95	⁴ HAYRAPETY	.24AC CMS	$m_{ u_{\star}}^{\wedge} \sim 1$ –3 GeV
$< 5 \times 10^{-6}$	95	⁵ HAYRAPETY	.24s CMS	$\hat{m_{\nu_{\star}}} \sim 3 \text{ GeV}$
$< 5 \times 10^{-7}$	95	⁶ HAYRAPETY	.24v CMS	$\hat{m_{ u_{\star}}} \sim 10 \; { m GeV}$
$< 5 \times 10^{-7}$	95	⁷ AAD	23A0 ATLS	$m_{ u_{ imes}}^{\wedge}\sim$ 3–15 GeV, pp at 13 TeV
<0.1	95	⁸ AAD	23CE ATLS	Near $m_{ u_{ imes}}^{} \sim $ 0.1–2 TeV
<0.1	95	⁹ TUMASYAN	23AC CMS	Near $m_{ u_{ m v}}^{^{}} \sim ~$ 0.1–3 TeV
$< 5 \times 10^{-9}$	90	¹⁰ ABRATENKO	22A MBNE	Near $m_{K}^{\uparrow} - m_{\mu}$ kin. thres.
$<3 \times 10^{-7}$	95	¹¹ TUMASYAN	22AD CMS	$m_{{ m }_{{ m V}_{{ m v}}}}\sim$ 8–14 GeV, pp at 13 TeV
$< 1 \times 10^{-3}$	95	¹² AAIJ	21AA LHCB	$m_{ u_{\chi}}^{'}\sim$ 5–50 GeV, pp at 7, 8
				Τ̈́eV
https://pdg.lbl.gov		Page 3		Created: 4/10/2025 13:32

<2	$ imes 10^{-4}$	95	¹³ AAIJ	21AA	LHCB	$m_{ u_{\chi}} \sim$ 5–50 GeV, pp at 7, 8		
<5	imes 10 ⁻⁹	90 1	^{4,15} CORTINA-GIL	21	NA62	Near $m_{K} - m_{\mu}$ kin. thres.		
<2	imes 10 ⁻²	90	¹⁶ PRIM	20	BELL	$m_{\nu} \sim 1 \text{ GeV}$		
<2	imes 10 ⁻⁵	95	¹⁷ AAD	19F	ATLS	$m_{\mu} \sim 10-50 \text{ GeV}$		
<2	imes 10 ⁻⁶	95	¹⁸ AAD	19F	ATLS	$m_{\nu} \sim 10 \text{ GeV}$		
$<\!\!1$	imes 10 ⁻⁹	90	¹⁹ ABE	19 B	T2K	Near $m_K - m_{\mu}$ kin. thres.		
<5	imes 10 ⁻⁶	₉₀ 2	^{0,21} AGUILAR-AR	. 19 в	PIEN	$m_{\nu_{\mu}} \sim 16-30 \text{ MeV}$		
$<\!\!1$	imes 10 ⁻⁵	90	²¹ AGUILAR-AR	. 19 В	PIEN	Near $m_{\pi} - m_{\mu}$ kin. thres.		
<3	imes 10 ⁻⁷	90	¹⁴ CORTINA-GIL	18	NA62	$m_{\nu_{\mu}} \sim 250-350 \text{ MeV}$		
<3	imes 10 ⁻⁶	90	¹⁴ LAZZERONI	17A	NA62	Near $m_K - m_{\mu}$ kin. thres.		
<5	imes 10 ⁻²	90	²² PARK	16	BELL	$m_{\nu_{\star}} \sim 1.4 \text{ GeV}$		
$<\!\!1$	imes 10 ⁻⁸	90	¹⁴ ARTAMONOV	15A	B949	$m_{ u_{ imes}}^{ imes}\sim~200 ext{}300~{ m MeV}$		
<3	imes 10 ⁻⁵	90	²³ LIVENTSEV	13	BELL	Near $m_{\nu} \sim 2-2.5 \text{ GeV}$		
<2.0	0×10^{-8}	95	²⁴ DAUM	00	KARM	$m_{\nu_{x}} = 33.905 \text{ MeV}$		
<8	imes 10 ⁻⁸	90	²⁵ vaitaitis	99	CCFR	Near $m_K - m_\mu$ kin. thres.		
<6	imes 10 ⁻⁸	90	²⁶ VAITAITIS	99	CCFR	Near $m_{D_a} - m_{\mu}$ kin. thres.		
<3	imes 10 ⁻⁵	95	²⁷ ABREU	97ı	DLPH	$m_{\nu_{\star}} \sim 6-50 \text{ GeV}$		
<2	imes 10 ⁻⁵	95	²⁸ ABREU	97ı	DLPH	Near $m_{\nu_{\perp}} \sim 3.5 \text{ GeV}$		
<3	imes 10 ⁻⁵	90	²⁹ VILAIN	95 C	CHM2	Near $m_K - m_{\mu}$ kin. thres.		
<3	imes 10 ⁻⁸	3	^{0,31} BERNARDI	88	CNTR	Near $m_{\mu} + m_{\pi}$ kin. thres.		
<2	imes 10 ⁻⁹	3	^{1,32} BERNARDI	88	CNTR	Near $m_K^{-}-m_\mu^{-}$ kin. thres.		
$<\!\!1$	imes 10 ⁻⁷	90	³³ DORENBOS	86	CHRM	Near $m_D - m_\mu^{'}$ kin. thres.		
< 1	imes 10 ⁻⁷	90	³⁴ COOPER	85	BEBC	Near $m_D - m_\mu^{\prime}$ kin. thres.		
$<\!\!1$	imes 10 ⁻⁶	90	³⁵ HAYANO	82	CNTR	$m_{ u_{\chi}} \sim ~$ 200–300 MeV		
• • •	• We do no	t use th	e following data for	avera	ges, fits,	limits, etc. • • •		
<1	imes 10 ⁻⁷	90	³⁶ ABRATENKO	20	MBNE	Superseded by		
<2	imes 10 ⁻⁵	95	³⁷ SIRUNYAN	18K	CMS	$m_{\nu_{\chi}} \sim 20-60 \text{ GeV}$		
<5	imes 10 ⁻³	95	³⁷ SIRUNYAN	18K	CMS	$\hat{m_{\nu_x}} \gtrsim m_W$		
1 _A	1 AAD 24BU search for same-sign muon pairs in semileptonic decays of top quarks via a							

Majorana HNL, in the HNL mass range 15–75 GeV. ² ABRATENKO 24 search for $K^+ \rightarrow \mu^+ \nu_{\chi}$, with $\nu_{\chi} \rightarrow \nu_{\mu} e^+ e^-$ and $\nu_{\chi} \rightarrow \nu_{\mu} \pi^0 \rightarrow \nu_{\mu} \gamma \gamma$ in the mass ranges $m_{\nu_{\chi}} \sim 10$ –150 MeV and $m_{\nu_{\chi}} \sim 150$ –245 MeV, respectively,

for the case of a Majorana HNL. The π^0 mode dominates above $m_{
u_{\star}}~\sim~150$ MeV.

- ³ HAYRAPETYAN 24AB search for $W \rightarrow \mu \nu_{\chi} \rightarrow \mu \mu \ell \nu_{\ell}$ prompt decays assuming coupling to a single SM generation, between 10–1500 GeV. Above $m_{\nu_{\chi}} \downarrow m_{W}$, sensitivity is greatly reduced by the required virtuality of the HNL. Results are quoted for a mass range below m_{W} and just above m_{W} , for Majorana HNLs. Similar (weaker) limits also for Dirac HNLs are presented.
- ⁴ HAYRAPETYAN 24AC search for $B \rightarrow X \mu \nu_X$ and $B \rightarrow \mu \nu_X$ followed by displaced $\nu_X \rightarrow \mu \pi^{\pm}$ decay, where X is an unreconstructed hadronic system, for Majorana HNLs. Also considers mixed flavor scenarios with $e\mu$ final state lepton pairs, and presents similar (weaker) limits for Dirac HNLs.

- ⁵HAYRAPETYAN 24S search for $W
 ightarrow \mu
 u_{\chi}$ followed by u_{χ} displaced decay in flight to electromagnetic and hadronic showers in the CMS muon chamber, in the mass range $m_{
 u_{
 m v}} \sim \,$ 1–3 GeV. Limits are set for both Majorana and Dirac HNLs. This long-lived particle style search results in an exclusion region in the coupling-mass plane whose upper contour is determined by an insufficiently long HNL lifetime to reach the muon chambers, and lower contour by insufficient HNL production. The intersection of these, and thus the extent of the experimental sensitivity, occurs at $m_{\nu_{\gamma}}~\sim~$ 3.5 GeV.
- ⁶HAYRAPETYAN 24V searches for $W
 ightarrow \mu
 u_X$ with displaced decay $u_X
 ightarrow \mu j$, i.e. with one jet, over the range $m_{
 u_{e}} \sim 2$ –20 GeV. Limits are set for both Dirac and Majorana HNLs.
- 7 AAD 23AO search for $W
 ightarrow ~
 u_{_{m X}} \mu$, for both Majorana and Dirac HNL scenarios. Also consider scenarios involving multiflavor mixing, with correspondingly weaker limits.
- ⁸AAD 23CE search for Majorana HNLs via vector boson fusion $W^{\pm}W^{\pm} \rightarrow \mu^{\pm}\mu^{\pm}$. Limits set in a $m_{\nu_{e}}$ mass range from 50 GeV up to 20 TeV, using the Phenomenological Type-I Seesaw model as a benchmark scenario.
- 9 TUMASYAN 23AC search for Majorana HNLs via vector boson fusion $W^\pm W^\pm o$ $\mu^{\pm}\,\mu^{\pm}.$ Limits set in a $m_{\nu_{\nu}}$ mass range from 50 GeV up to 25 TeV.
- ¹⁰ABRATENKO 22A search for $K^+ \rightarrow \mu^+ \nu_{\chi}$, with $\nu_{\chi} \rightarrow \mu^{\mp} \pi^{\pm}$, in the mass range $m_{\nu_{\chi}} \sim 246-385$ MeV. Also considers limits from $\nu_{\chi} \rightarrow \mu^{-}\pi^{+}$ only, for the case of a Dirac HNL.
- ¹¹TUMASYAN 22AD search for $W \rightarrow \mu \nu_{\chi}, \nu_{\chi} \rightarrow \mu e \nu_{e}$ and set limits for Dirac and Majorana Heavy Neutral Leptons. The data correspond to an integrated luminosity of 138 fb⁻¹. 12 Limit from prompt lepton number conserving $W \rightarrow \mu \mu j$ search.
- ¹³Limit from prompt lepton number violating $W \rightarrow \mu \mu j$ search.
- ¹⁴ Search for $K^+ \rightarrow \mu^+ \nu_{\chi}$.

 15 Assumes a lifetime exceeding 50 ns, and searches over $m_{\nu_{\chi}}$ range 200–384 MeV.

- $^{16}\,{\rm Search}$ for B^+ $\rightarrow~\mu^+\,\nu_{\chi}$ in the mass range $m_{\nu_{\chi}}~\sim~$ 0–1.5 GeV.
- ¹⁷Limit from prompt lepton number violating trilepton search.
- ¹⁸Limit from displaced lepton violating or conserving trilepton searches.
- $^{19}K^+
 ightarrow ~\mu^+
 u_{_X}$, with $u_{_X}$ decay through $U_{\mu \, _X}$. ABE 19B also considers bounds on $|U_{\ell_X} U_{\ell'_X}|$ for combinations of lepton flavors in the ν_X decay final state.
- 20 Limit requires muon kinetic energy > 1.2 MeV.

²¹ Search for
$$\pi^+ \rightarrow \mu^+ \nu_{\chi}$$
.

²² PARK 16 quotes an approximate limit B($B^+ \rightarrow \mu^+ \nu_{\rm x}$) < 3×10^{-6} in the mass range $m_{
u_{
m v}} \sim 0.2$ –1.4 GeV.

- ²³Search for $B^+ \rightarrow \mu^+ \nu_{\chi}$.
- ²⁴ DAUM 00 quotes a branching ratio bound B($\pi^+ \rightarrow \mu^+ \nu_{\chi}$) < 6.0 × 10⁻¹⁰ at 95% $25 \frac{\text{CL.}}{\text{K}^+} \rightarrow \mu^+ \nu_{\chi}$, with $\nu_{\chi} \rightarrow \mu X$.
- $^{26}D_s \rightarrow \mu^+ \nu_x$, with $\nu_x \rightarrow \mu X$.
- $^{27}\,{\rm Search}$ for prompt $\nu_{\rm X}$ decay signatures.
- 28 Search for displaced ν_x decay signatures.
- ²⁹Search for Heavy Neutral Leptons produced by neutral current muon neutrino interactions, with $\nu_x \rightarrow \mu^+ \mu^- \nu_\mu$.
- 30 K $^+ \rightarrow ~\mu^+ \nu_{\chi}$, with ν_{χ} decay through $U_{\mu\chi}$ and $m_{\nu_{\chi}} ~< m_{\mu} + m_{\pi}$.
- $^{31}\,{\rm BERNARDI}$ 88 also considers bounds on $|U_{ex}~U_{\mu x}|.$
- $^{32}K^+ \rightarrow \mu^+ \nu_x$, with $\nu_x \rightarrow \mu^- \pi^+$. $^{33}D^+ \rightarrow \mu^+ \nu_x$, with $\nu_x \rightarrow \mu^- \ell^+ \nu_{\ell}$.

 $\begin{array}{l} {}^{34}D^+ \rightarrow \ \mu^+ \nu_{\chi}, \ \text{with} \ \nu_{\chi} \rightarrow \ \mu^- \ \ell^+ \ \nu_{\ell} \ \text{or} \ \nu_{\chi} \rightarrow \ \mu^- \ \pi^+. \\ {}^{35}\text{ Search for } K^+ \rightarrow \ \mu^+ \nu_{\chi}(\gamma). \\ {}^{36}K^+ \rightarrow \ \mu^+ \nu_{\chi}, \ \text{with} \ \nu_{\chi} \rightarrow \ \mu^- \ \pi^+, \ \text{in the mass range} \ m_{\nu_{\chi}} \ \sim \ 260\text{--}385 \ \text{MeV}. \\ \\ {}^{ABRATENKO \ 20 \ also \ considers} \ \nu_{\chi} \rightarrow \ \mu^+ \ \pi^- \ \text{for the case of a Majorana HNL}. \\ \\ {}^{37}\text{ Superseded by HAYRAPETYAN \ 24AB}. \end{array}$

Limits on $|U_{\tau x}|^2$

Quoted limits are either the best limit near the kinematic threshold of the experiment, or a characteristic value in the mass range of the experimental sensitivity

VALU	Ē	CL%	DOCUMENT ID		TECN	COMMENT
<0.1		95	¹ AAD	24BU	ATLS	$m_{ m m _{ m m _{ m m _{ m m }}}~\sim~20$ –50 GeV
<6	imes 10 ⁻⁴	95	² HAYRAPETY	.24AB	CMS	$m_{ u_{\chi}}^{x} \sim 20-60 \text{ GeV}$
< 1	imes 10 ⁻¹	95	² HAYRAPETY	.24AB	CMS	$m_{\nu_{\perp}}^{\prime} \gtrsim m_{W}$
<3	imes 10 ⁻⁴	95	³ HAYRAPETY	.24S	CMS	$m_{ u_{\star}}^{x} \sim 2 \text{ GeV}$
$<\!\!1$	imes 10 ⁻²	95	⁴ HAYRAPETY	.24V	CMS	$m_{ u_{\star}}^{\prime} \sim 3$ –20 GeV
$<\!\!1$	imes 10 ⁻³	90	⁵ NAYAK	24	BELL	Near $m_{ au} - m_{\pi}$ kin. thres.
< 1	imes 10 ⁻⁵	95	⁶ LEES	23A	BABR	Near $m_{ au}^{\prime} - 3m_{\pi}^{\prime}$ kin. thres.
<2	imes 10 ⁻⁶	90	⁷ BAROUKI	22	RVUE	Near $m_{\tau} = m_{\nu}$ kin. thres.
<3	imes 10 ⁻⁴	90	⁸ ACCIARRI	21	ARNT	Near $m_{\nu_{\chi}} \lesssim 970$ MeV
<3	imes 10 ⁻⁶	90	⁹ BOIARSKA	21	RVUE	Near $m_{ m _v}^{~}\sim~$ 0.8–1.6 GeV
<2	imes 10 ⁻⁴	90	¹⁰ ORLOFF	02	CHRM	Near $m_D^{\wedge} - m_{\tau}$ kin. thres.
$<\!\!1$	imes 10 ⁻⁴	90	¹¹ ORLOFF	02	CHRM	$m_{\nu_{\mu}} \sim 200-250 \text{ MeV}$
<3	imes 10 ⁻⁵	95	¹² ABREU	97ı	DLPH	$m_{\nu_{\star}}^{\chi} \sim 6-50 \text{ GeV}$
<2	imes 10 ⁻⁵	95	¹³ ABREU	97ı	DLPH	Near $m_{ u_{\chi}} \sim 3.5 \; { m GeV}$

• • We do not use the following data for averages, fits, limits, etc. • • •

¹⁴ LIVENTSEV	23	BELL	Near $m_{ m u_{ m u}} \sim 0.8$ –1.2 GeV
¹⁵ TUMASYAN	22н	CMS	pp at 13 TeV

¹ AAD 24^{BU} search for same-sign tau pairs in semileptonic decays of top quarks via a Majorana HNL, in the HNL mass range 15–75 GeV.

- ² HAYRAPETYAN 24AB search for $W \to \tau \nu_{\chi} \to \tau \tau \ell \nu_{\ell}$ prompt decays assuming coupling to a single SM generation, between 10–1500 GeV. Above $m_{\nu_{\chi}}$ *i* m_W , sensitivity is greatly reduced by the required virtuality of the HNL. Results are quoted for a mass range below m_W and just above m_W , for Majorana HNLs. Similar (weaker) limits also for Dirac HNLs are presented.
- ³ HAYRAPETYAN 24S search for $W \rightarrow \tau \nu_{\chi}$ followed by ν_{χ} displaced decay in flight to electromagnetic and hadronic showers in the CMS muon chamber, in the mass range $m_{\nu_{\chi}} \sim 1-2$ GeV. Limits are set for both Majorana and Dirac HNLs. This long-lived particle style search results in an exclusion region in the coupling-mass plane whose upper contour is determined by an insufficiently long HNL lifetime to reach the muon chambers, and lower contour by insufficient HNL production. The intersection of these, and thus the extent of the experimental sensitivity, occurs at $m_{\nu_{\chi}} \sim 2$ GeV.
- ⁴ HAYRAPETYAN 24V searches for $W \rightarrow \tau \nu_X$ with displaced decay $\nu_X \rightarrow \tau j$, i.e. with one jet, over the range $m_{\nu_X} \sim 3$ -20 GeV. Limits are set for both Dirac and Majorana HNLs.
- ⁵ NAYAK 24 searches for $\tau \to \pi \nu_X$ with displaced decay $\nu_X \to \nu_\tau \mu^+ \mu^-$ in the Belle central drift chamber (CDC). This long-lived particle style search results in an exclusion region in the coupling-mass plane whose upper contour is determined by an insufficiently long HNL lifetime to reach the CDC, and lower contour by insufficient HNL production. Limits are set for both Dirac and Majorana HNLs.

⁶Search for $\tau^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}\nu_{x}$.

⁷Reanalysis of BEBC results (cf. COOPER-SARKAR 85) to include searches for $D_s^{\pm} \rightarrow \nu_{\tau} \tau^{\pm}$, $\tau^{\pm} \rightarrow \nu_{\chi} \pi^{\pm}$, $\nu_{\chi} \rho^{\pm}$, or $\nu_{\chi} \nu_{\tau} \ell^{\pm}$ via $U_{\tau\chi}$. Assumes a Majorana HNL. ⁸Search for $\nu_{\chi} \rightarrow \mu^{+} \mu^{-} \nu$.

⁹Reanalysis of CHARM results (cf. ORLOFF 02) to include searches for $\nu_X \rightarrow \nu \ell^+ \ell^-$ decays, and including the production of HNLs from τ decays.

 $^{10}D_{s} \rightarrow \ au^{+}
u_{\chi}$, with u_{χ} decay via $U_{ au\chi}$.

 $\stackrel{11}{\overset{}_{}_{}_{}} D_{s} \rightarrow \nu_{\tau} \tau^{+}, \tau^{+} \rightarrow \nu_{\chi} X, \text{ with } \nu_{\chi} \text{ decay via } U_{\tau \chi}.$

 $^{12}\,{\rm Search}$ for prompt ν_{χ} decay signatures.

- ¹³ Search for displaced ν_{χ} decay signatures. Kinematical suppression of $\nu_{\chi} \rightarrow \tau X$ at lower masses leads to rapid loosening of the $|U_{\tau \chi}|$ bound compared to that for $|U_{e \chi}|$ and $|U_{\mu \chi}|$.
- ¹⁴ Search for $\tau \to \pi \nu_X$, $\nu_X \to \pi e$ or $\pi \mu$ in the range 0.2–1.6 GeV. LIVENTSEV 23 reports results for the sum $\Sigma_{\ell=e,\mu,\tau} |U_{\ell X}|^2$ in a model-dependent context, but which may be roughly reinterpreted as a limit $|U_{eX} U_{\tau X}|^2 + |U_{\mu X} U_{\tau X}|^2 \lesssim 5 \times 10^{-9}$ in either Majorana or Dirac HNL scenarios.
- ¹⁵ TUMASYAN 22H sets limits on an approximately mass-degenerate vector-like lepton SU(2) doublet coupling to the τ . Some of the reported signal region distributions might be used to set limits for heavy neutral leptons coupled to the τ . The data correspond to an integrated luminosity of 138 fb⁻¹.

REFERENCES FOR Heavy Neutral Leptons, Searches for

AAD AAD ABRATENKO HAYRAPETY HAYRAPETY HAYRAPETY HAYRAPETY NAYAK AAD AAD AAD AGNES LEES LIVENTSEV TUMASYAN ABRATENKO BAROUKI TUMASYAN TUMASYAN AAIJ ACCIARRI POLAPSKA	24AW 24BU 24 24AB 24AC 24S 24V 24 23AO 23CE 23A 23A 23A 23AC 22AD 22H 21AA 21	PL B856 138865 PR D110 112004 PRL 132 041801 JHEP 2406 123 JHEP 2406 183 PR D110 012004 JHEP 2403 105 PR D109 L111102 PRL 131 061803 EPJ C83 824 PRL 130 101002 PR D107 052009 PRL 131 211802 PRL 131 011803 PR D106 092006 SCP 13 118 JHEP 2207 081 PR D105 112007 EPJ C81 248 PRL 127 121801 PR D104 005010	 G. Aad et al. G. Aad et al. P. Abratenko et al. A. Hayrapetyan et al. G. Aad et al. G. Aad et al. G. Aad et al. J.P. Lees et al. J.P. Lees et al. A. Tumasyan et al. R. Barouki, G. Marocco, S. A. Tumasyan et al. R. Tumasyan et al. R. Aaij et al. R. Aaij et al. R. Acciarri et al. L. P. Acciarri et al. 	(ATLAS Collab.) (ATLAS Collab.) (MicroBooNE Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (BELLE Collab.) (ATLAS Collab.) (ATLAS Collab.) (DarkSide-50 Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (CMS Collab.) (MicroBooNE Collab.) (MicroBooNE Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (LHCb Collab.) (ArgoNeuT Collab.)
CORTINA-GIL	21	PL B816 136259	E. Cortina Gil <i>et al.</i>	(NA62 Collab.)
FRIEDRICH	21	PRL 126 021803	S. Friedrich <i>et al.</i>	(BeEST Collab.)
ABRATENKO	20	PR D101 052001	 P. Abratenko <i>et al.</i> E. Cortina Gil <i>et al.</i> M T. Prim <i>et al.</i> 	(MiniBooNE Collab.)
CORTINA-GIL	20	PL B807 135599		(NA62 Collab.)
PRIM	20	PR D101 032007		(BELLE Collab.)
AAD	19F	JHEP 1910 265	G. Aad <i>et al.</i>	(ATLAS Collab.)
ABE	19B	PR D100 052006	K. Abe <i>et al.</i>	(T2K Collab.)
ABLIKIM	19AL	PR D99 112002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
AGUILAR-AR	19B	PL B798 134980	 A. Aguilar-Arevalo et al. D.A. Bryman, R. Shrock D.A. Bryman, R. Shrock A. Aguilar-Arevalo et al. E. Cortina Gil et al. A. M. Sirunyan et al. 	(PIENU Collab.)
BRYMAN	19	PR D100 053006		(BRCO, TRIU, STON)
BRYMAN	19A	PR D100 073011		(BRCO, TRIU, STON)
AGUILAR-AR	18A	PR D97 072012		(PIENU Collab.)
CORTINA-GIL	18	PL B778 137		(NA62 Collab.)
SIRI INYAN	18K	PRI 120 221801		(CMS Collab.)

LAZZERONI PARK AGUILAR-AR ARTAMONOV LIVENTSEV Also ORLOFF DAUM VAITAITIS ABREU Also VILAIN Also BARANOV BERNARDI	17A 16 15 15A 13 02 00 99 971 95C 93 88	PL B772 712 PR D94 012003 PRL 115 071801 PR D91 052001 PR D95 099903 (errat.) PL B550 8 PRL 85 1815 PRL 83 4943 ZPHY C74 57 ZPHY C75 580 (errat.) PL B351 387 PL B343 453 PL B302 336 PL B203 332	 C. Lazzeroni et al. CS. Park et al. A. Aguilar-Arevalo et al. A.V. Artamanov et al. D. Liventsev et al. D. Liventsev et al. J. Orloff et al. M. Daum et al. A. Vaitaitis et al. P. Abreu et al. P. Vilain et al. P. Vilain et al. S.A. Baranov et al. G. Bernardi et al. 	(NA62 Collab.) (BELLE Collab.) (PIENU Collab.) (E949 Collab.) (BELLE Collab.) (BELLE Collab.) (CHARM Collab.) (CHARM Collab.) (CCFR Collab.) (DELPHI Collab.) (DELPHI Collab.) (CHARM II Collab.) (CHARM II Collab.) (CHARM II Collab.) (JINR, SERP, BUDA) (PARIN, CERN, INFN+)
BARANOV	93	PL B302 336	S.A. Baranov <i>et al.</i>	(JINR, SERP, BUDA)
BERNARDI	88	PL B203 332	G. Bernardi <i>et al.</i>	(PARIN, CERN, INFN+)
DORENBOS	86	PL 166B 473	J. Dorenbosch <i>et al.</i>	(CHARM Collab.)
COOPER	85	PL 160B 207	A.M. Cooper-Sarkar <i>et al.</i>	(CERN, LOIC+)
HAYANO	82	PRL 49 1305	R.S. Hayano <i>et al.</i>	(TOKY, KEK, TSUK)