4415

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ψ (4415) MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
4415 \pm 5 OUR AVERAG	E		
$4413.6 \pm \ 9.0 \pm 0.8$	¹ ABLIKIM	24D BES3	$e^+ e^- ightarrow \omega \gamma J/\psi$
$4414.6 \pm \ 3.4 \pm 6.1$	ABLIKIM	23BH BES3	$e^+e^- \rightarrow D_s^{*+}D_s^{*-}$
4415.1± 7.9	² ABLIKIM	08D BES2	$e^+e^- ightarrow$ hadrons
$\bullet~\bullet~$ We do not use the follow	owing data for av	erages, fits, lir	nits, etc. • • •
4412 ±15	³ MO	10 RVUE	$e^+e^- ightarrow $ hadrons
4411 ± 7	⁴ PAKHLOVA	08A BELL	$10.6 e^+e^- \rightarrow D^0 D^- \pi^+ \gamma$
$4425 ~\pm~ 6$	⁵ SETH	05A RVUE	$e^+e^- ightarrow$ hadrons
4429 ± 9	⁶ SETH	05A RVUE	$e^+e^- ightarrow$ hadrons
4417 ±10	BRANDELIK	78C DASP	e ⁺ e ⁻
4414 ± 7	SIEGRIST	76 MRK1	e ⁺ e ⁻
1			

¹Assuming one single Breit-Wigner resonance in $\omega \chi_{c2}(1P)$ ($\chi_{c2} \rightarrow \gamma J/\psi$).

²Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta = (234 \pm 88)^{\circ}$. ³Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the center-of-mass energy 3.8-4.8 GeV covering the $\psi(4040)$, $\psi(4160)$ and $\psi(4415)$ resonances and including interference of

⁴ Systematic uncertainties not estimated.
 ⁵ From a fit to Crystal Ball (OSTERHELD 86) data.

⁶ From a fit to BES (BAI 02C) data.

ψ (4415) WIDTH

VALU	E (MeV)			DOCUMENT ID		TECN	COMMENT
110	±13	OUR AVERAG	Е	Error includes s	cale f	actor of	1.6. See the ideogram below.
110.5	5 ± 15.0	±2.9	7	ABLIKIM	24D	BES3	$e^+ e^- ightarrow \omega \gamma J/\psi$
122.5	5± 7.5	± 8.1		ABLIKIM	23BH	IBES3	$e^+e^- \rightarrow D_s^{*+}D_s^{*-}$
71.5	5 ± 19.0		8	ABLIKIM	08 D	BES2	$e^+e^- \rightarrow hadrons$
• • •	• We do	o not use the fo	llov	ving data for ave	erages	s, fits, lir	mits, etc. • • •
118	± 32		9	МО	10	RVUE	$e^+ e^- ightarrow$ hadrons
77	± 20		10	PAKHLOVA	08A	BELL	10.6 $e^+e^- \rightarrow D^0 D^- \pi^+ \gamma$
119	± 16		11	SETH	05A	RVUE	$e^+e^- ightarrow$ hadrons
118	± 35		12	SETH	05A	RVUE	$e^+e^- ightarrow$ hadrons
66	± 15			BRANDELIK	78C	DASP	e ⁺ e ⁻
33	± 10			SIEGRIST	76	MRK1	e ⁺ e ⁻

https://pdg.lbl.gov

- ⁷Assuming one single Breit-Wigner resonance in $\omega \chi_{c2}(1P)$ ($\chi_{c2} \rightarrow \gamma J/\psi$).
- ⁸ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta = (234 \pm 88)^{\circ}$.
- ⁹ Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the centerof-mass energy 3.8-4.8 GeV covering the $\psi(4040)$, $\psi(4160)$ and $\psi(4415)$ resonances and including interference effects.
- ¹⁰Systematic uncertainties not estimated.
- ¹¹ From a fit to Crystal Ball (OSTERHELD 86) data.
- ¹² From a fit to BES (BAI 02C) data.

ψ (4415) DECAY MODES

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

	Mode	F	Fraction (Γ _i /Γ)	Confidence level
Γ ₁	DD		seen	
Γ2	$D^0 \overline{D}{}^0$		seen	
Г ₃	$D^+ D^-$		seen	
Г ₄	$D^*\overline{D}$ + c.c.		seen	
Γ ₅	D*(2007) ⁰ D ⁰ + c.c.		seen	
Г ₆	$D^*(2010)^+ D^- + c.c.$		seen	
https:	//pdg.lbl.gov	Page 2	Created: 4	/10/2025 13:30

Γ ₇	$D^*\overline{D}^*$	seen	
Г ₈	<i>D</i> *(2007) ⁰ <i>D</i> [*] (2007) ⁰ + c.c.	seen	
Γ ₉	$D^{*}(2010)^{+}D^{*}(2010)^{-}$ + c.c.	seen	
Γ ₁₀	$D^0 D^- \pi^+$ (excl. $D^* (2010)^+ D^-$	< 2.3 %	90%
Γ11	$^{+\text{c.c.}}_{D_{2}^{+}(2460)} \rightarrow D^{0}D^{-}\pi^{+}+\text{c.c.}$	(10 ±4)%	
Γ12	$D^0 D^{*-} \pi^+ + c.c.$	< 31 %	90%
Γ_{13}	$D_1(2420)\overline{D}$ + c.c.	possibly seen	
Γ ₁₄	$D_{c}^{+}D_{c}^{-}$	not seen	
Γ15	$\omega \chi_{c2}$	$(9 \pm 4) \times 10^{-3}$	
Γ_{16}	$D_{*}^{*+}D_{-}^{-}+c.c.$	seen	
Γ_{17}	$D_{-}^{*+}D_{-}^{*-}$	seen	
Γ ₁₈	$\psi_2(3823)\pi^+\pi^-$	possibly seen	
Γ ₁₉	$\psi(3770)\pi^{+}\pi^{-}$	possibly seen	
Γ_{20}	$J/\psi\eta$	< 1.0 %	90%
Γ ₂₁	$\chi_{c1\gamma}$	$< 1.3 \times 10^{-3}$	90%
Γ ₂₂	$\chi_{c2}\gamma$	< 7 $\times 10^{-3}$	90%
Г ₂₃	$\Lambda\overline{\Lambda}$	$< 5 \times 10^{-6}$	90%
Γ ₂₄	$\Sigma^+ \overline{\Sigma}^-$	$< 1.8 \times 10^{-4}$	90%
Γ ₂₅	$\underline{=}^{0}\underline{\equiv}^{0}$	$< 1.4 \times 10^{-4}$	90%
Γ ₂₆	<u>=-</u> <u>=</u> +	$< 6 \times 10^{-5}$	90%
Γ_{27}^{-1}	$pK^{-}\overline{\Lambda}$ + c.c.	$< 1.0 \times 10^{-5}$	90%
Γ ₂₈	$\Lambda \overline{\Xi}^+ K^- + \text{c.c.}$	$< 4 \times 10^{-5}$	90%
Γ ₂₉	$\Sigma^{0}\overline{\Xi}^{+}K^{-}$ + c.c.	$< 2.5 \times 10^{-4}$	90%
Г ₃₀	$\omega \pi^0$	not seen	
Г ₃₁	$\omega\eta$	not seen	
Γ ₃₂	e^+e^-	$(3.2\pm1.2) imes10^{-6}$	
Г ₃₃	$\mu^+\mu^-$	$(1.1\pm0.4) imes10^{-5}$	

ψ (4415) PARTIAL WIDTHS

				Г ₃₂
DOCUMENT ID		TECN	COMMENT	
¹³ ABLIKIM	08 D	BES2	$e^+e^- \rightarrow$	hadrons
wing data for average	es, fits,	limits, e	etc. • • •	
¹⁴ MO	10	RVUE	$e^+e^- \rightarrow$	hadrons
¹⁵ SETH	05A	RVUE	$e^+e^- \rightarrow$	hadrons
¹⁶ SETH	05A	RVUE	$e^+e^- \rightarrow$	hadrons
BRANDELIK	78C	DASP	e^+e^-	
SIEGRIST	76	MRK1	e^+e^-	
	DOCUMENT ID ¹³ ABLIKIM wing data for average ¹⁴ MO ¹⁵ SETH ¹⁶ SETH BRANDELIK SIEGRIST	DOCUMENT ID 13 ABLIKIM 08D wing data for averages, fits, 14 MO 10 15 SETH 05A 05A 16 SETH 05A BRANDELIK 78C SIEGRIST 76 36 36	DOCUMENT IDTECN13 ABLIKIM08DBES2wing data for averages, fits, limits, e14 MO10 RVUE15 SETH05ARVUE16 SETH05ARVUEBRANDELIK78CDASPSIEGRIST76MRK1	$\begin{array}{c c} \hline DOCUMENT ID \\ \hline 13 \ ABLIKIM \\ minimis data for averages, fits, limits, etc. \bullet \bullet \\ \hline 14 \ MO \\ \hline 10 \\ minimis data for averages, fits, limits, etc. \bullet \bullet \\ \hline 14 \ MO \\ \hline 10 \\ minimis data for averages, fits, limits, etc. \bullet \bullet \\ \hline 15 \ SETH \\ \hline 15 \ SETH \\ \hline 16 \ SETH \\ \hline 16$

¹³ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta = (234 \pm 88)^{\circ}$.

¹⁴ Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the centerof-mass energy 3.8-4.8 GeV covering the $\psi(4040)$, $\psi(4160)$ and $\psi(4415)$ resonances and including interference effects. Four sets of solutions are obtained with the same fit

https://pdg.lbl.gov

. .

quality, mass and total width, but with different e^+e^- partial widths. We quote only the range of values.

¹⁵ From a fit to Crystal Ball (OSTERHELD 86) data.

¹⁶ From a fit to BES (BAI 02C) data.

$\Gamma(\mu^+\mu^-)$				Г ₃₃
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
$1.25 \pm 0.28 \pm 0.35$	17,18 ABLIKIM	20AG BES3	$e^+e^- \rightarrow \mu^+$	<i>u</i> ⁻

 $^{17}\,{\rm From}$ a fit to the $e^+\,e^-\,\rightarrow\,~\mu^+\,\mu^-$ cross section between 3.8 and 4.6 GeV to the coherent sum of four resonant amplitudes assuming $\Gamma(\mu^+\mu^-) = \Gamma(e^+e^-)$. 18 From solution 1 of 8 with equal fit quality. Other solutions range from $1.24\pm0.28\pm0.35$ to $1.27\pm0.41\pm0.36$ keV.

ψ (4415) Γ (i) $\times \Gamma$ (e^+e^-)/ Γ (total)

$\Gamma(\omega \chi_{c2}) \times \Gamma(e^+e^-)/\Gamma_{tc}$	otal			Γ ₁₅ Γ ₃₂ /Γ
VALUE (eV)	DOCUMENT ID		TECN	COMMENT
3.17±0.39±0.24	¹⁹ ABLIKIM	24D	BES3	$e^+e^- ightarrow \omega \gamma J/\psi$
¹⁹ Assuming one single Breit-V	Wigner resonance in a	$\omega \chi_{c2}$	$(1P) (\chi$	$c2 \rightarrow \gamma J/\psi$).

$\Gamma(J/\psi\eta) \times \Gamma(e$	+ e ⁻)/Γ _{tota}	al			Г ₂₀ Г ₃₂ /Г
VALUE (eV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<3.6	90	WANG	13 B	BELL	$e^+ e^- ightarrow J/\psi \eta \gamma$
$\Gamma(\chi_{c1}\gamma) \times \Gamma(e^{-\gamma})$	⁺ e ⁻)/Γ _{tota}	1			Γ ₂₁ Γ ₃₂ /Γ
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
<0.47	90	²⁰ HAN	15	BELL	10.58 $e^+e^- \rightarrow \chi_{c1}\gamma$
²⁰ Using B($\eta ightarrow \gamma$	$(\gamma \gamma) = (39.41)$	\pm 0.21)%.			
$\Gamma(\chi_{c2}\gamma) \times \Gamma(e^{-\gamma})$	⁺ e ⁻)/Γ _{tota}	1			Г ₂₂ Г ₃₂ /Г
VALUE (eV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<2.3	90	²¹ HAN	15	BELL	10.58 $e^+e^- \rightarrow \chi_{c2}\gamma$
21 Using B($\eta ightarrow \gamma$	$(\gamma \gamma) = (39.41)$	\pm 0.21)%.			
$\Gamma(\Lambda\overline{\Lambda}) \times \Gamma(e^+e^+)$	e ⁻)/Γ _{total}				Г ₂₃ Г ₃₂ /Г
VALUE (eV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.8 × 10 ⁻³	90	²² ABLIKIM	21AS	BES3	$e^+e^- \rightarrow \psi$ (4415)

²² From a measurement of the $e^+e^- \rightarrow \Lambda\overline{\Lambda}$ cross section between 3.5 and 4.6 GeV.

$\Gamma(\Sigma^+\overline{\Sigma}^-)$ × $\Gamma(e^+e^-)/\Gamma_{total}$						Γ ₂₄ Γ;	₃₂ /Г
VALUE (eV)	CL%	DOCUMENT ID	7	TECN	COMMENT		
<62.1 × 10 ⁻³	90	²³ ABLIKIM	24ah E	BES3	$e^+e^- \rightarrow$	$\Sigma^+ \overline{\Sigma}^-$	
²³ Interference effect solutions from the	between fit.	resonance and cont	tinuum a	amplit	udes is cons	sidered.	Two

$\Gamma(\Xi^0\overline{\Xi}^0) \times \Gamma(e^+e^-)$	⁻)/Γ _{total}					Г ₂₅ Г ₃₂ /Г
VALUE (eV)	CL%	DOCUMENT ID	TI	ECN	COMMENT	
$< 48.0 \times 10^{-3}$	90 24	ABLIKIM	24cd B	ES3	$e^+e^- \rightarrow$	ψ (4415)
²⁴ From a fit to e^+e^-	$\rightarrow \Xi^0 \overline{\Xi}^0$	cross sections.				I
$\Gamma(\Xi^-\overline{\Xi}^+) \times \Gamma(e^+e^-)$	e ⁻)/Γ _{total}					Г ₂₆ Г ₃₂ /Г
VALUE (eV)	<u>CL%</u>	DOCUMENT ID		ECN	COMMENT	
<21.7 × 10 ⁻³	90 25	ABLIKIM	23вк В	ES3	$e^+e^- \rightarrow$	ψ (4415)
²⁵ From a fit to e^+e^-	$\rightarrow \Xi^-\overline{\Xi}^+$	cross sections.				
$\Gamma(pK^{-}\overline{\Lambda}+\text{c.c.}) \times \Gamma$	(e+e-)/	Γ _{total}				Г ₂₇ Г ₃₂ /Г
VALUE (eV)	<u>CL%</u>	DOCUMENT ID	TI	ECN	COMMENT	
$<3.4 \times 10^{-3}$	90 26	ABLIKIM	23bl B	ES3	$e^+e^- \rightarrow$	ψ (4415)
26 From a fit to e^+e^-	$\rightarrow pK^{-}\overline{\Lambda}$	+ c.c. cross sec	tions.			
$\Gamma(\Lambda \overline{\Xi}^+ K^- + \text{c.c.}) \times$	Γ(e ⁺ e ⁻)/F _{total}	TECN	COL		Г ₂₈ Г ₃₂ /Г
$\frac{VALUE(eV)}{14.3 \times 10^{-3}}$ 00	27 AR		BES3	<u>cow</u>		$+K^{-}+cc$
$27 \wedge \text{fit to the Pown even}$	AD				$\sim - n_{-}$	$\pi + c.c.$
the continuum. Two	solutions fr	om the fit.	ΛŦ	C.C. III		
$\Gamma(\Sigma^{0}\overline{\Xi}+K^{-}+\text{c.c.})$ VALUE (eV) CL%	× Г(е+е	—)/Γ_{total} MENT ID	TECN	СОММ	IENT	Г ₂₉ Г ₃₂ /Г
<87.0 × 10 ⁻³ 90	²⁸ ABLI	KIM 24AL	BES3	e ⁺ e ⁻	$- \rightarrow \Sigma^0 \overline{\Xi}$	$+K^{-}+c.c.$
²⁸ A fit to the Born cro with the continuum.	ss section o Two solutio	f $e^+e^- ightarrow \Sigma^0$ ons from the fit.	^о <u></u> ≡+к-	⁻ + c.	c. includin	g interference
	ψ(4415) Γ	-(i) × Γ(e ⁺ e ⁻	⁻)/Γ²(t	total)		
$\Gamma(D^0 D^{*-} \pi^+ + \text{c.c.})/VALUE}$	Γ _{total} × ∣	Г (e⁺e⁻)/Г_{to} DOCUMENT ID	tal Ti	ECN	Γ ₁₂	/Г × Г ₃₂ /Г
< 0.99 × 10 ⁻⁶	90 29	PAKHLOVA	09 B	ELL	$e^+e^- \rightarrow$	$D^0 D^{*-} \pi^+$
29 Using 4421 \pm 4 MeV	for the ma	ss of ψ (4415).				
	ψ (4415)	BRANCHIN	G RATI	IOS		

$\Gamma(D^0 \overline{D}{}^0) / \Gamma_{\text{total}}$ Γ_2/Γ DOCUMENT ID TECN COMMENT VALUE $e^+e^- \rightarrow D^0 \overline{D}^0$ ³⁰ ABLIKIM 24BH BES3 seen $e^+e^- \rightarrow D^0 \overline{D}^0 \gamma$ 08 BELL PAKHLOVA seen • • • We do not use the following data for averages, fits, limits, etc. • • • 09M BABR $e^+e^- \rightarrow D^0 \overline{D}^0 \gamma$ AUBERT not seen 30 A precision measurement of the $e^+\,e^ightarrow\,D^0\,\overline{D}{}^0$ cross section shows complex structure in this mass region.

			TECN	COMMENT	• 3/•
VALUE	31 A RI HZINA	<u>)</u>	IECN	$\frac{COMMENT}{a^+a^-}$	<u>ה + ח</u>
seen		24BF 08	RELI	$e e \rightarrow e^+ e^- \rightarrow e^+ e^- \rightarrow e^+ e^- \rightarrow e^- e^- e^- e^- e^- e^- e^- e^- e^- e^-$	$D^+ D^- \gamma$
 We do not use the follow 	ving data for average	s, fits,	limits, e	etc. • • •	
not seen	AUBERT	09м	BABR	$e^+e^- \rightarrow$	$D^+ D^- \gamma$
³¹ A precision measurement of in this mass region.	the $e^+e^- ightarrow D^+D$	[—] cros	ss sectio	n shows com	plex structure
$\Gamma(D^*(2007)^0\overline{D}^0 + \text{c.c.})/\Gamma_0$	total				Г ₅ /Г
VALUE	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	-*0 0
seen	AUBERT	09M	BABR	$e^+e^- \rightarrow$	$D^{*0} D^0 \gamma$
$\Gamma(D^*(2010)^+ D^- + c.c.)/I$	- total				Г _б /Г
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
seen	³² ZHUKOVA	18	BELL	$e^+e^- \rightarrow$	$D^{*+}D^-\gamma$
seen	AUBERT	09M	BABR	$e^+e^- \rightarrow$	$D^{*+}D^-\gamma$
• • • We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • • • \perp	⊳ *⊥ ⊳ _
seen	PAKHLOVA	07	BELL	$e^+e^- \rightarrow$	$D^{+}D^{-}\gamma$
³² Supersedes PAKHLOVA 07					
$\Gamma(D\overline{D})/\Gamma(D^*\overline{D}^*)$					Γ_1/Γ_7
VALUE	DOCUMENT ID		TECN	COMMENT	() <u>(</u>)
$0.14 \pm 0.12 \pm 0.03$	AUBERT	09M	BABR	$e^+e^- \rightarrow$	$\gamma D(*) D(*)$
$\Gamma(D^*\overline{D} + \text{c.c.})/\Gamma(D^*\overline{D}^*)$					Γ_4/Γ_7
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
$0.17 \pm 0.25 \pm 0.03$	AUBERT	09 M	BABR	$e^+e^- \rightarrow$	$\gamma D^{(*)} \overline{D}^{(*)}$
$\Gamma(D^*(2007)^0 \overline{D}^*(2007)^0 +$	c.c.)/Г _{total}				Г ₈ /Г
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
seen	AUBERT	09 M	BABR	$e^+e^- \rightarrow$	$D^{*0}\overline{D}^{*0}\gamma$
$\Gamma(D^*(2010)^+ D^*(2010)^-$	⊢ c.c.)/Гtatal				Γα/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	• 9/ •
seen	³³ ZHUKOVA	18	BELL	$e^+e^- \rightarrow$	$D^{*+}D^{*-}\gamma$
seen	AUBERT	09 M	BABR	$e^+e^- \rightarrow$	$D^{*+}D^{*-}\gamma$
$\bullet \bullet \bullet$ We do not use the follow	ing data for average	s, fits,	limits, e	etc. • • •	
seen	PAKHLOVA	07	BELL	$e^+e^- \rightarrow$	$D^{*+}D^{*-}\gamma$
³³ Supersedes PAKHLOVA 07					
$\Gamma(D\overline{D}^*(2460) \to D^0 D^- \pi$	++c.c.)/Γ+++				Г11 /Г
					• 11/•
$VALUE$ (units 10^{-2})	DOCUMENT ID	TECM	COM	MENT	
$\frac{VALUE \text{ (units } 10^{-2})}{105+24+39}$	DOCUMENT ID	TECN	<u> </u>	$\frac{MENT}{a^+a^-}$	<u>- + - م 0م</u>

https://pdg.lbl.gov

$D^{\circ}D^{-}\pi^{+}+c.$	c.)					₁₀ / ₁₁
VALUE	<u> </u>	<u>DOCUMENT ID</u>	<u>TECN</u>	<u> </u>	MENT	
<0.22	90	55 PAKHLOVA 08/	A BEL	L 10.6	$e^+e^- \rightarrow$	$D^{\circ}D^{-}\pi^{+}\gamma$
³⁵ Using 4421 :	\pm 4 MeV for	the mass and 62 \pm 2	0 MeV	for the	width of ψ (4415).
Г(<i>D</i> 1(2420) <i>D</i>	+ c.c.)/Γ _t	otal				Г ₁₃ /Г
VALUE		<u> </u>)	TECN	$\underline{COMMENT}$	$\pm - \overline{n}$
36	1		19AI	< BE23	$e \cdot e \rightarrow$	π π DD
sarily resonal	$e^+e^- \rightarrow r$ nt.	$D_1(2420)D + c.c.$ be	tween $_{\Lambda}$	/s = 4.3	3 and 4.6 G	eV, not neces-
$\Gamma(D_s^+ D_s^-) / \Gamma_t$	otal			TECN	COMMENT	Г ₁₄ /Г
VALUE		<u>DOCUMENT IL</u>	, 11			<u>σ</u> + σ ⁻
not seen			11		$e \cdot e \rightarrow + - $	$D^+_s D^s \gamma$
not seen		DEL-AMO-S	A10N	BABK	$e \cdot e \rightarrow$	$D_{s}^{+}D_{s}^{-}\gamma$
Г(<i>D</i> ^{*+} _s <i>D</i> ⁻ _s +с	.c.)/Γ _{total}					Г ₁₆ /Г
VALUE		DOCUMENT IL)	TECN	COMMENT	
seen		PAKHLOVA	11	BELL	$e^+e^- \rightarrow$	$D_{s}^{\star \top} D_{s}^{-} \gamma$
seen		DEL-AMO-S	A10N	BABR	$e^+e^- \rightarrow$	$D_{s}^{*+}D_{s}^{-}\gamma$
Γ(D _s ^{*+} D _s ^{*-})/	Γ _{total}		_			Г ₁₇ /Г
VALUE		<u>DOCUMENT IL</u>)	TECN	$\underline{COMMENT}$	D*+ D*-
seen	t use the fall	ABLIKIM	23Bi	HBE53	$e \cdot e \rightarrow$	$D_{s}^{\dagger} D_{s}^{\dagger}$
			es, ms,			=*+ =*-
not seen		PAKHLOVA	11	BELL	$e^+e^- \rightarrow$	$D_{s}^{*+}D_{s}^{*-}\gamma$
not seen		DEL-AMO-S	A10N	BABR	$e^+e^- \rightarrow$	$D_{s}^{*} D_{s}^{*} \gamma$
Γ(ψ ₂ (3823) <i>π</i> ⁼	$^{+}\pi^{-})/\Gamma_{tot}$	al				Г ₁₈ /Г
<u>VALUE</u>	<u>EVTS</u>	<u>5 DOCUMENT ID</u>	150	TECN	$\underline{COMMENT}$	+
37 – "	19 		155	BE23	$e \cdot e \rightarrow$	$\pi'\pi \chi_{c1\gamma}$
\sqrt{s} values of	f e⁺ e⁻ → 4.23, 4.26,	$\pi^+\pi^-\psi_2(3823), \psi_2$ 4.36, 4.42, and 4.60 ((3823) GeV to	$ ightarrow \chi_{c1}$ the $\psi(44)$	γ cross sec 415) line sh	ctions taken at ape.
Γ(ψ(3770) π ⁺	$\pi^{-})/\Gamma_{tota}$	I DOCUMENT II)	TECN	COMMENT	Г ₁₉ /Г
possibly seen		³⁸ ABLIKIM	, 19af	R BES3	$e^+e^- \rightarrow$	$\pi^+\pi^-D\overline{D}$
³⁸ Observe <i>e</i> + establish if c	$e^- o \pi^+$ ontinuum or	$\pi^-\psi(3770)$ at \sqrt{s} = resonant.	= 4.26,	4.36, a	and 4.42 Ge	eV but cannot
$\Gamma(\omega \pi^0)/\Gamma_{ m total}$	1					Г ₃₀ /Г
		DOCUMENT ΙΙ)	TECN	COMMENT	
VALUE					0011112111	_

https://pdg.lbl.gov

Citation: S. Navas et al.	(Particle Data	Group), Phys.	Rev.	D 110,	030001	(2024)
---------------------------	----------------	---------------	------	--------	--------	--------

$\Gamma(\omega\eta)/\Gamma_{total}$					Г ₃₁ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
not seen	ABLIKIM	22к	BES3	$e^+e^- \rightarrow \omega \eta$	

ψ (4415) REFERENCES

ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM HAN WANG PAKHLOVA AUBERT PAKHLOVA ABLIKIM PAKHLOVA	24AH 24AL 24BH 24CD 23BH 23BK 23BL 22K 21AS 20AG 19AR 18 15S 15 13B 11 10N 10 09M 09 08D 08	JHEP 2405 022 JHEP 2407 258 PRL 133 081901 JHEP 2411 062 PRL 132 161901 PRL 131 151903 JHEP 2311 228 JHEP 2312 027 JHEP 2207 064 PR D104 L091104 PR D102 112009 PR D100 032005 PR D97 012002 PRL 115 011803 PR D92 012011 PR D87 051101 PR D83 011101 PR D82 052004 PR D82 077501 PR D79 092001 PR D80 091101 PL B660 315 PR D77 011103	 M. Ablikim et al. Y. Zhukova et al. M. Ablikim et al. Y.L. Han et al. Y.L. Wang et al. G. Pakhlova et al. G. Pakhlova et al. M. Ablikim et al. G. Pakhlova et al. 	(BESIII Collab.) (BESIII Collab.) (BELLE Collab.)
PAKHLOVA PAKHLOVA PAKHLOVA	08 08A 07	PR D77 011103 PRL 100 062001 PRL 98 092001	 G. Pakhlova <i>et al.</i> G. Pakhlova <i>et al.</i> G. Pakhlova <i>et al.</i> 	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
SETH BAI BAI OSTERHELD BRANDELIK SIEGRIST	05A 02C 00 86 78C 76	PR D72 017501 PRL 88 101802 PRL 84 594 SLAC-PUB-4160 PL 76B 361 PRL 36 700	K.K. Seth J.Z. Bai <i>et al.</i> J.Z. Bai <i>et al.</i> A. Osterheld <i>et al.</i> R. Brandelik <i>et al.</i> J.L. Siegrist <i>et al.</i>	(BES Collab.) (BES Collab.) (SLAC Crystal Ball Collab.) (DASP Collab.) (LBL, SLAC)