ho(1450)

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

ρ(1450) MASS

ρ(1450) MASS

VALUE (MeV)

DOCUMENT ID

1465 \pm 25 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

$\eta \rho^0$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do no	t use the fo	ollowing data for av	erage	s, fits, li	mits, etc. • • •
1506 ± 11	13.4k	¹ GRIBANOV	20	CMD3	1.1–2.0 $e^+e^- \rightarrow \eta \pi^+\pi^-$
$1500\pm\!10$	7.4k	² ACHASOV	18	SND	1.22–2.00 $e^+e^- \rightarrow \eta \pi^+\pi^-$
1497 ± 14		³ AKHMETSHIN	01 в	CMD2	$e^+e^- ightarrow \eta \gamma$
1421 ± 15		⁴ AKHMETSHIN	0 0 D	CMD2	$e^+e^- ightarrow \eta \pi^+\pi^-$
1470 ± 20		ANTONELLI	88	DM2	$e^+e^- \rightarrow \eta \pi^+\pi^-$
1446 ± 10		FUKUI	88	SPEC	8.95 $\pi^- p \rightarrow \eta \pi^+ \pi^- n$

¹ Mass and width of the ρ (770) fixed at 775 and 149 MeV, respectively; solution 2 of model 2, $\eta \rightarrow \gamma \gamma$ decays used.

- ² From the combined fit of AULCHENKO 15 and ACHASOV 18 in the model with the interfering $\rho(1450)$, $\rho(1700)$ and $\rho(2150)$ with the parameters of the $\rho(1450)$ and $\rho(1700)$ floating and the mass and width of the $\rho(2150)$ fixed at 2155 MeV and 320 MeV, respectively. The phases of the resonances are π , 0 and π , respectively.
- ³Using the data of AKHMETSHIN 01B on $e^+e^- \rightarrow \eta\gamma$, AKHMETSHIN 00D and ANTONELLI 88 on $e^+e^- \rightarrow \eta\pi^+\pi^-$.
- ⁴ Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energy-independent width of the $\rho(1450)$ and $\rho(1700)$ mesons assumed.

$\omega\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the follo	owing data for ave	rages	, fits, lin	nits, etc. • • •
$1510\pm~7$	10.2k	¹ ACHASOV	16 D	SND	1.05–2.00 $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$
$1544 \pm 22 {+11 \atop -46}$	821	² MATVIENKO	15	BELL	$\overline{B}^0 \rightarrow D^{*+} \omega \pi^-$
$\begin{array}{c} 1491 \!\pm\! 19 \\ 1582 \!\pm\! 17 \!\pm\! 25 \end{array}$	7815 2382	³ ACHASOV ⁴ AKHMETSHIN	13 03в	SND CMD2	$\begin{array}{ll} 1.052.00 \ e^+ e^- \rightarrow \ \pi^0 \pi^0 \gamma \\ e^+ e \rightarrow \ \pi^0 \pi^0 \gamma \end{array}$
$1349 \pm 25 {+10 \atop -5}$	341	⁵ ALEXANDER	01 B	CLE2	$B \rightarrow D^{(*)} \omega \pi^{-}$
1523 ± 10 1463 ± 25 1250 1290 ± 40		⁶ EDWARDS ⁷ CLEGG ⁸ ASTON ⁸ BARBER	00A 94 80C 80C	CLE2 RVUE OMEG SPEC	$\tau^{-} \rightarrow \omega \pi^{-} \nu_{\tau}$ 20-70 $\gamma p \rightarrow \omega \pi^{0} p$ 3-5 $\gamma p \rightarrow \omega \pi^{0} p$

- 1 From a phenomenological model based on vector meson dominance with interfering $\rho(770),\ \rho(1450),\ \text{and}\ \rho(1700).$ The $\rho(1700)$ mass and width are fixed at 1720 MeV and 250 MeV, respectively. Systematic uncertainties not estimated. Supersedes a ACHASOV 13.
- ² Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming equal probabilities of the $\rho(1450) \rightarrow \pi\pi$ and $\rho(1450) \rightarrow \omega\pi$ decays.
- ³ From a phenomenological model based on vector meson dominance with the interfering $\rho(1450)$ and $\rho(1700)$ and their widths fixed at 400 and 250 MeV, respectively. Systematic uncertainty not estimated.
- ⁴ Using the data of AKHMETSHIN 03B and BISELLO 91B assuming the $\omega \pi^0$ and $\pi^+ \pi^-$ mass dependence of the total width. $\rho(1700)$ mass and width fixed at 1700 MeV and 240 MeV, respectively.
- ⁵ Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming the $\omega \pi^-$ mass dependence for the total width.
- ⁶ Mass-independent width parameterization. $\rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV respectively.

⁷ Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87L.

⁸Not separated from $b_1(1235)$, not pure $J^P = 1^-$ effect.

4π MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT			
$\bullet \bullet \bullet$ We do not use the follow	ving data for aver	ages,	fits, limi	ts, etc. ● ● ●			
1435±40	ABELE	01 B	CBAR	$0.0 \ \overline{p} n \rightarrow 2\pi^{-} 2\pi^{0} \pi^{+}$			
1350 ± 50	ACHASOV	97	RVUE	$e^+e^- ightarrow 2(\pi^+\pi^-)$			
1449± 4	¹ ARMSTRONG	89E	OMEG	$300 \ pp \rightarrow \ pp2(\pi^+\pi^-)$			
1							

¹ Not clear whether this observation has I=1 or 0.

$\pi\pi$ MODE

VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
• • • \	We do r	not use	the foll	owing data for avera	ges, fi	ts, limits	s, etc. ● ● ●
1226.22	2 ± 24.7	6	34M	¹ IGNATOV	24	CMD3	$e^+e^- \rightarrow \pi^+\pi^-$
1326.35	5± 3.4	6		² BARTOS	17	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
1342.31	1 ± 46.62	2		³ BARTOS	17A	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
1373.83	3 ± 11.3	7		⁴ BARTOS	17A	RVUE	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
1429	± 41		20k	⁵ LEES	17C	BABR	$J/\psi \rightarrow \pi^+\pi^-\pi^0$
1350	± 20	$^{+20}_{-30}$	63.5k	⁶ ABRAMOWIC	Z12	ZEUS	$ep ightarrow e\pi^+\pi^-p$
1493	± 15			⁷ LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
1446	\pm 7	± 28	5.4M	^{8,9} FUJIKAWA	08	BELL	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
1328	± 15			¹⁰ SCHAEL	05 C	ALEP	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
1406	± 15		87k	^{8,11} ANDERSON	00A	CLE2	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
~ 1368	:			¹² ABELE	99 C	CBAR	$0.0 \ \overline{p}d \rightarrow \ \pi^+\pi^-\pi^-p$
1348	± 33			BERTIN	98	OBLX	0.05–0.405 $\overline{n}p \rightarrow$
1411	± 14			¹³ ABELE	97	CBAR	$\frac{2\pi^{+}\pi^{-}}{\overline{p}n \to \pi^{-}\pi^{0}\pi^{0}\pi^{0}$
1370	$^{+90}_{-70}$			ACHASOV	97	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
1359	± 40			¹¹ BERTIN	97 C	OBLX	$0.0 \ \overline{\rho} \rho \rightarrow \pi^+ \pi^- \pi^0$
1282	± 37			BERTIN	97 D	OBLX	$0.05 \ \overline{ m p} m ho \rightarrow 2\pi^+ 2\pi^-$
1424	± 25			BISELLO	89	DM2	$e^+e^- ightarrow \pi^+\pi^-$
1265.5	± 75.3			DUBNICKA	89	RVUE	$e^+e^- ightarrow \pi^+\pi^-$
1292	± 17			¹⁴ KURDADZE	83	OLYA	$0.64 - 1.4 \underline{e^+ e^-} \rightarrow$
							π ' π

https://pdg.lbl.gov

- ¹ From a fit of the pion form factor using the GOUNARIS 68 parametrization with the complex phase of the $\rho \omega$ interference leaving $\rho(1450)$, $\rho(1700)$ resonances as free parameters of the fit. The fit uses also data from CMD-2 and DM2 experiments. Systematic errors not estimated.
- tematic errors not estimated. ² Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.
- ³ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, and AMBROSINO 11A.
- ⁴ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of FUJIKAWA 08.
- ⁵ From a Dalitz plot analysis in an isobar model with $\rho(1450)$ and $\rho(1700)$ masses and widths floating.
- ⁶ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho-\omega$ interference. ⁷ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and

widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

 8 From the GOUNARIS 68 parametrization of the pion form factor.

 $|F_{\pi}(0)|^2$ fixed to 1.

¹⁰ From the combined fit of the τ^- data from ANDERSON 00A and SCHAEL 05C and e^+e^- data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05. $\rho(1700)$ mass and width fixed at 1713 MeV and 235 MeV, respectively. Supersedes BARATE 97M.

 $^{11}
ho(1700)$ mass and width fixed at 1700 MeV and 235 MeV, respectively.

- $^{12}\rho(1700)$ mass and width fixed at 1780 MeV and 275 MeV respectively.
- ¹³T-matrix pole.

 14 Using for ho(1700) mass and width 1600 \pm 20 and 300 \pm 10 MeV respectively.

KK MODE

VALUE ((MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
• • • '	We do not	use the follo	wing data for av	erages	s, fits, lir	nits, e	tc. ● ● ●
1208	$\pm 8 \pm 9$	190k	¹ AAIJ	16N	LHCB		$D^0 \rightarrow \kappa^0_S \kappa^{\pm} \pi^{\mp}$
1422.8	± 6.5	27k 2	² ABELE	99 D	CBAR	±	$0.0 \ \overline{p} p \rightarrow K^+ K^- \pi^0$
1 Usi	ing the GOU	JNARIS 68	parameterization	with	fixed wi	dth.	

²K-matrix pole. Isospin not determined, could be $\omega(1420)$.

$K\overline{K}^*(892) + c.c.$ MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
$\bullet \bullet \bullet$ We do not use the follow	ving data for avera	ages,	fits, lim	its, etc. • • •
$1505 \pm 19 \pm 7$	AUBERT	08S	BABR	10.6 $e^+e^- \rightarrow K\overline{K}^*(892)\gamma$

$m_{\rho(1450)^0} - m_{\rho(1450)^{\pm}}$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the followi	ng data for average	es, fits, limits, e	etc. • • •
-31.53 ± 47.99	¹ BARTOS	17A RVUE	$\begin{array}{ccc} e^+e^- \rightarrow & \pi^+\pi^- \text{,} \\ \tau^- \rightarrow & \pi^-\pi^0 \nu_{\tau} \end{array}$
¹ Applies the Unitary & Analy	tic Model of the pi	on electromag	netic form factor of DU

¹ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, AMBROSINO 11A, and FUJIKAWA 08.

ρ(1450) WIDTH

ρ(1450) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT					
400 ± 60 OUR ESTIMATE This is only an educated guess; the error given is larger t the error on the average of the published values.								
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
480±180 ¹ ACHASOV 10D SND 1.075–2.0 $e^+e^- \rightarrow \pi^0 \gamma$								
1 From a fit of a VMD mo and 1700 MeV to describ ho(1700). Systematic error	odel with two effect be the excited vectors not evaluated.	ive resonance resonance for states $\omega(1)$	ces with masses of 1450 MeV 1420), $ ho(1450),~\omega(1650),~{ m and}$					
$\eta \rho^0$ MODE								
VALUE (MeV) EVTS	DOCUMENT ID	TECN	COMMENT					
• • • We do not use the following data for averages, fits, limits, etc. • • •								

321 ± 27	13.4k	¹ GRIBANOV	20	CMD3	1.1–2.0 $e^+e^- \rightarrow \eta \pi^+\pi^-$
$280\!\pm\!20$	7.4k	² ACHASOV	18	SND	1.22–2.00 $e^+e^- \rightarrow \eta \pi^+\pi^-$
$226\!\pm\!44$		³ AKHMETSHIN	01 B	CMD2	$e^+e^- ightarrow \eta \gamma$
$211\!\pm\!31$		⁴ AKHMETSHIN	0 0 D	CMD2	$e^+e^- ightarrow \eta \pi^+\pi^-$
$230\!\pm\!30$		ANTONELLI	88	DM2	$e^+e^- ightarrow \eta \pi^+\pi^-$
60 ± 15		FUKUI	88	SPEC	$8.95 \ \pi^- p \rightarrow \eta \pi^+ \pi^- n$

¹ Mass and width of the ρ (770) fixed at 775 and 149 MeV, respectively; solution 2 of model 2, $\eta \rightarrow \gamma \gamma$ decays used.

- ² From the combined fit of AULCHENKO 15 and ACHASOV 18 in the model with the interfering $\rho(1450)$, $\rho(1700)$ and $\rho(2150)$ with the parameters of the $\rho(1450)$ and $\rho(1700)$ floating and the mass and width of the $\rho(2150)$ fixed at 2155 MeV and 320 MeV, respectively. The phases of the resonances are π , 0 and π , respectively.
- 3 Using the data of AKHMETSHIN 01B on $e^+\,e^-\,\rightarrow\,\,\eta\,\gamma$, AKHMETSHIN 00D and ANTONELLI 88 on $e^+e^- \rightarrow \eta \pi^+\pi^-$. ⁴ Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energy-

independent width of the $\rho(1450)$ and $\rho(1700)$ mesons assumed.

$\omega\pi$ MODE

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • •	We do not ı	use the following	data for averages	, fits,	limits, e	tc. • • •
$440\pm$	40	10.2k	¹ ACHASOV	16 D	SND	${}^{1.05-2.00}_{~~\pi^0~\pi^0~\gamma} e^+ e^- \rightarrow$
303^+	$31+69 \\ 52-7$	821	² MATVIENKO	15	BELL	$\overline{B}^0 \rightarrow D^{*+} \omega \pi^-$
$429\pm$	$42\!\pm\!10$	2382	³ AKHMETSHIN	03 В	CMD2	$e^+ e \rightarrow \pi^0 \pi^0 \gamma$
$547\pm$	86^{+46}_{-45}	341	⁴ ALEXANDER	01 B	CLE2	$B \rightarrow D^{(*)} \omega \pi^{-}$
$400\pm$	35		⁵ EDWARDS	00A	CLE2	$\tau^- \rightarrow \omega \pi^- \nu_{\tau}$
$311\pm$	62		⁶ CLEGG	94	RVUE	
300			⁷ ASTON	80C	OMEG	20–70 $\gamma p \rightarrow \omega \pi^0 p$
320±3	100		⁷ BARBER	80C	SPEC	$3-5 \gamma p \rightarrow \omega \pi^0 p$
547± 400± 311± 300 320±:	86 - 45 35 62	341	⁴ ALEXANDER ⁵ EDWARDS ⁶ CLEGG ⁷ ASTON ⁷ BARBER	01B 00A 94 80C 80C	CLE2 CLE2 RVUE OMEG SPEC	$B \rightarrow D^{(*)} \omega \pi^{-}$ $\tau^{-} \rightarrow \omega \pi^{-} \nu_{\tau}$ 20-70 $\gamma p \rightarrow \omega \pi^{0} p$ 3-5 $\gamma p \rightarrow \omega \pi^{0} p$

- ¹ From a phenomenological model based on vector meson dominance with interfering $\rho(770)$, $\rho(1450)$, and $\rho(1700)$. The $\rho(1700)$ mass and width are fixed at 1720 MeV and 250 MeV, respectively. Systematic uncertainties not estimated. Supersedes ACHASOV 13.
- ² Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming equal probabilities of the $\rho(1450) \rightarrow \pi\pi$ and $\rho(1450) \rightarrow \omega\pi$ decays.
- ³ Using the data of AKHMETSHIN 03B and BISELLO 91B assuming the $\omega \pi^0$ and $\pi^+ \pi^-$ mass dependence of the total width. $\rho(1700)$ mass and width fixed at 1700 MeV and 240 MeV, respectively.
- ⁴ Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming the $\omega \pi^-$ mass dependence for the total width.
- ⁵ Mass-independent width parameterization. $\rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV respectively.

⁶Using data from BISELLO 91B, DOLINSKY 86 and ALBRECHT 87L.

⁷Not separated from $b_1(1235)$, not pure $J^P = 1^-$ effect.

4π MODE

VALUE (I	MeV)					DOCUMENT ID)	TECN	COMMENT
• • • V	Ve d	o not	use th	ne follo	wing o	lata for averag	es, fits	, limits,	etc. ● ● ●
325 ± 10	00					ABELE	01 B	CBAR	$0.0 \ \overline{p} n \rightarrow \ 2\pi^{-} 2\pi^{0} \pi^{+}$
$\pi\pi$ M	OD	Ε							
VALUE (I	MeV)			EVTS		DOCUMENT ID		TECN	COMMENT
•••	Ve d	o not	use th	ne follo	wing o	lata for averag	es, fits	, limits,	etc. ● ● ●
272.9	$97\pm$	45.5	3	34M	1	IGNATOV	24	CMD3	$e^+e^- \rightarrow \pi^+\pi^-$
324.1	.3±	12.0	1		2	BARTOS	17	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
492.1	$7\pm$	138.3	8		3	BARTOS	17A	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$
340.8	$37\pm$	23.8	4		4	BARTOS	17A	RVUE	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
576	±	29		20k	5	LEES	17C	BABR	$J/\psi \rightarrow \pi^+ \pi^- \pi^0$
460	±	30	$^{+40}_{-45}$	63.5k	6	ABRAMOWIC	Z12	ZEUS	$ep \rightarrow e\pi^+\pi^-p$
427	±	31			7	LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
434	\pm	16	± 60	5.4M	8,9	FUJIKAWA	08	BELL	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
468	\pm	41			10	SCHAEL	05 C	ALEP	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
455	\pm	41		87k	8,11	ANDERSON	00A	CLE2	$\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$
~ 374					12	ABELE	99 C	CBAR	$0.0 \ \overline{p} d \rightarrow \pi^+ \pi^- \pi^- p$
275	\pm	10				BERTIN	98	OBLX	0.05–0.405 $\overline{n}p \rightarrow$
242		20			13		07	CDAD	$\pi^{+}\pi^{+}\pi^{-}$
343	Ŧ	20			11		97		$pn \rightarrow \pi \pi^{*} \pi^{*} \pi^{*}$
310	±	40 20				BERTIN	970	OBLX	$0.0 \ pp \rightarrow \pi \ \pi \ \pi^{\circ}$
230	±	30				BERTIN	97D	OBLX	$0.05 \ pp \rightarrow 2\pi + 2\pi + -$
269	±	31				BISELLO	89	DM2	$e + e \rightarrow \pi + \pi$
391	±	70 16			1/	DUBNICKA	89	RVUE	$e \cdot e \rightarrow \pi \cdot \pi$
218	±	46			14	KURDADZE	83	OLYA	$\begin{array}{c} \text{0.04-1.4 } e^+ e^- \rightarrow \\ \pi^+ \pi^- \end{array}$
-									

¹ From a fit of the pion form factor using the GOUNARIS 68 parametrization with the complex phase of the $\rho - \omega$ interference leaving $\rho(1450)$, $\rho(1700)$ resonances as free parameters of the fit. The fit uses also data from CMD-2 and DM2 experiments. Systematic errors not estimated.

² Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of LEES 12G and ABLIKIM 16C.

- ³Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, and AMBROSINO 11A. ⁴ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-
- NICKA 10 to analyze the data of FUJIKAWA 08.
- ⁵ From a Dalitz plot analysis in an isobar model with $\rho(1450)$ and $\rho(1700)$ masses and widths floating.
- ⁶ Using the KUHN 90 parametrization of the pion form factor, neglecting $\rho-\omega$ interference.
- ⁷ Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit.

⁸ From the GOUNARIS 68 parametrization of the pion form factor.

 $|F_{\pi}(0)|^2$ fixed to 1.

 $^{10}\,{\rm From}$ the combined fit of the τ^- data from ANDERSON 00A and SCHAEL 05C and e^+e^- data from the compilation of BARKOV 85, AKHMETSHIN 04, and ALOISIO 05. ho(1700) mass and width fixed at 1713 MeV and 235 MeV, respectively. Supersedes BARATE 97M.

 $^{11}\rho(1700)$ mass and width fixed at 1700 MeV and 235 MeV, respectively.

 $^{12}
ho$ (1700) mass and width fixed at 1780 MeV and 275 MeV respectively.

¹³T-matrix pole.

¹⁴Using for $\rho(1700)$ mass and width 1600 \pm 20 and 300 \pm 10 MeV respectively.

KK MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
$\bullet \bullet \bullet$ We do not	use the foll	owing data for av	/erage	s, fits, lir	nits, e	tc. ● ● ●
410 ±19 ±35	190k	¹ AAIJ	16N	LHCB		$D^0 \rightarrow \kappa^0_S \kappa^{\pm} \pi^{\mp}$
$146.5 \!\pm\! 10.5$	27k	² ABELE	99 D	CBAR	±	$0.0 \ \overline{p} p \rightarrow K^{+} K^{-} \pi^{0}$
1						

¹Using the GOUNARIS 68 parameterization with fixed mass.

²K-matrix pole. Isospin not determined, could be $\omega(1420)$.

$K\overline{K}^*(892) + c.c.$ MODE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use the follow	ving data for aver	rages,	fits, lim	its, etc. • • •	
$418 \pm 25 \pm 4$	AUBERT	0 8S	BABR	10.6 $e^+e^- \rightarrow$	$K\overline{K}^*(892)\gamma$

$\Gamma_{\rho(1450)^0} - \Gamma_{\rho(1450)^{\pm}}$			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	; data for averages, fits,	limits, e	tc. ● ● ●
151.30 ± 140.42	¹ BARTOS 17A	RVUE	$e^+e^- ightarrow \pi^+\pi^-, \ \tau^- ightarrow \pi^-\pi^0 u_{ au}$
1			,

¹ Applies the Unitary & Analytic Model of the pion electromagnetic form factor of DUB-NICKA 10 to analyze the data of ACHASOV 06, AKHMETSHIN 07, AUBERT 09AS, AMBROSINO 11A, and FUJIKAWA 08.

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\pi\pi$	seen
Г ₂	$\pi^+\pi^-$	seen
Г ₃	4π	seen
Г ₄	$\omega \pi$	
Г ₅	$a_1(1260)\pi$	
Г ₆	$h_1(1170)\pi$	
Γ ₇	$\pi(1300)\pi$	
Г ₈	ho ho	
Г9	$ ho(\pi\pi)_{S-wave}$	
Γ ₁₀	e ⁺ e ⁻	seen
Γ_{11}	ηho	seen
Γ ₁₂	a <u>2(1</u> 320)π	not seen
Г ₁₃	KK	seen
Г ₁₄	K^+K^-	seen
Г ₁₅	$KK^{*}(892) + c.c.$	possibly seen
Г ₁₆	$\pi^0\gamma$	seen
Γ ₁₇	$\eta \gamma$	seen
Γ ₁₈	$f_0(500)\gamma$	not seen
Г ₁₉	$f_0(980)\gamma$	not seen
Γ ₂₀	$f_0(1370)\gamma$	not seen
Γ ₂₁	$f_2(1270)\gamma$	not seen

ρ (1450) DECAY MODES

$\rho(1450) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(\pi\pi) \times \Gamma(e^+e^-)/\Gamma_{\rm tot}$	tal			Γ ₁ Γ ₁₀ /Γ		
VALUE (keV)	DOCUMENT ID		TECN	COMMENT		
$\bullet \bullet \bullet$ We do not use the following	owing data for ave	erages	, fits, lin	nits, etc. • • •		
0.12	¹ DIEKMAN	88	RVUE	$e^+e^- \rightarrow \pi^+\pi^-$		
$0.027\substack{+0.015\\-0.010}$	² KURDADZE	83	OLYA	0.64–1.4 $e^+e^- \rightarrow \pi^+\pi^-$		
1 Using total width $=$ 235 MeV. 2 Using for $ ho(1700)$ mass and width 1600 \pm 20 and 300 \pm 10 MeV respectively.						
$\Gamma(\eta \rho) \times \Gamma(e^+ e^-) / \Gamma_{\rm tot}$	al			Γ ₁₁ Γ ₁₀ /Γ		

	- //·tota					. 11. 10/ .
VALUE (eV)	EVTS	DOCUMENT ID		TECN	COMMENT	
• • • We do not	use the follo	wing data for ave	rages,	fits, lim	its, etc. • •	•
$335 \pm 27 \pm 20$	13.4k	¹ GRIBANOV	20	CMD3	$1.1-2.0 e^+$	$e^- \rightarrow \eta \pi^+ \pi^-$
$210 \pm 24 \pm 10$		² LEES	18	BABR	$e^+e^- ightarrow$	$\eta \pi^+ \pi^-$
74 ± 20		³ AKHMETSHIN	00 0	CMD2	$e^+e^- ightarrow$	$\eta \pi^+ \pi^-$
$91\!\pm\!19$		ANTONELLI	88	DM2	$e^+e^- ightarrow$	$\eta \pi^+ \pi^-$

- ¹Mass and width of the ρ (770) fixed at 775 and 149 MeV, respectively; solution 2 of model 2, $\eta \rightarrow \gamma \gamma$ decays used.
- 2 Includes non-resonant contribution. The selected fit model includes three ρ excited states. Model uncertainty is 20%.
- ³ Using the data of ANTONELLI 88, DOLINSKY 91, and AKHMETSHIN 00D. The energyindependent width of the $\rho(1450)$ and $\rho(1700)$ mesons assumed.

$\Gamma(K\overline{K}^*(892)+c.c.)$	$< \Gamma(e^+e^-)/\Gamma_{tot}$	al			Γ ₁₅ Γ ₁₀ /Γ
VALUE (eV)	DOCUMENT ID	DOCUMENT ID		COMMENT	
• • • We do not use the $\frac{1}{2}$	following data for a	verages,	fits, lim	its, etc. • • •	
$127 \pm 15 \pm 6$	AUBERT	0 8S	BABR	10.6 e ⁺ e ⁻ -	$\rightarrow K\overline{K}^*(892)\gamma$
$\Gamma(\eta\gamma) \times \Gamma(e^+e^-)/\Gamma$	total				Г ₁₇ Г ₁₀ /Г
VALUE (eV)	DOCUMENT I	D	TECN	COMMENT	
• • • We do not use the $\frac{1}{2}$	following data for a	verages,	fits, lim	its, etc. • • •	
${<}16.4$ $2.2{\pm}0.5{\pm}0.3$	¹ AKHMETSH ² AKHMETSH	HIN 05 HIN 01в	CMD2 CMD2	$0.60-1.38~e^+$ $e^+e^- ightarrow \eta$	$fe^- \rightarrow \eta \gamma$ γ
1 From 2γ decay mode width. Recalculated by 2 Using the data of Ak ANTONELLI 88 on e^{-1}	of η using 1465 M γ us. KHMETSHIN 01B of $^+e^- \rightarrow \eta \pi^+ \pi^-$.	leV and on <i>e⁺e</i> Recalcu	310 M $- \rightarrow$ lated by	eV for the $ ho(1)$ $\eta\gamma$, AKHMET γ us using widt	1450) mass and ⁻ SHIN 00D and h of 226 MeV.
ρ(14	50) Γ(i)/Γ(total)	× Г(<i>е</i>	+e-)/	Γ(total)	
$\Gamma(\omega \pi)/\Gamma_{\rm total} \times \Gamma(e^+)$	$e^{-})/\Gamma_{total}$			I	$\Gamma_4/\Gamma \times \Gamma_{10}/\Gamma$
VALUE (units 10^{-6}) EVTS	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the	following data for a	verages,	fits, lim	its, etc. • • •	

2.1 ± 0.4	10.2k	¹ ACHASOV	16 D	SND	1.05–2.00 $e^+e^- ightarrow$	$\pi^0 \pi^0 \gamma$
$5.3 {\pm} 0.4$	7815	² ACHASOV	13	SND	1.05–2.00 $e^+e^- \rightarrow$	$\pi^0 \pi^0 \gamma$

¹ From a phenomenological model based on vector meson dominance with interfering $\rho(770)$, $\rho(1450)$, and $\rho(1700)$. The $\rho(1700)$ mass and width are fixed at 1720 MeV and 250 MeV, respectively. Systematic uncertainties not estimated. Supersedes ACHASOV 13.

² From a phenomenological model based on vector meson dominance with the interfering $\rho(1450)$ and $\rho(1700)$ and their widths fixed at 400 and 250 MeV, respectively. Systematic uncertainty not estimated.

$\Gamma(\eta ho)/\Gamma_{\rm total}$ × $\Gamma(e^+e^-)/\Gamma_{\rm total}$

 $\Gamma_{11}/\Gamma \times \Gamma_{10}/\Gamma$

VALUE (units 10^{-7})	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the	following data for av	/erage	es, fits,	limits, etc. • • •
$7.3 {\pm} 0.3$	7.4k	¹ ACHASOV	18	SND	1.22–2.00 $e^+e^- \rightarrow \eta \pi^+\pi^-$
$4.3^{+1.1}_{-0.9}{\pm}0.2$	4.9k	² AULCHENKO	15	SND	1.22–2.00 $e^+e^- \rightarrow \eta \pi^+\pi^-$

¹ From the combined fit of AULCHENKO 15 and ACHASOV 18 in the model with the interfering $\rho(1450)$, $\rho(1700)$ and $\rho(2150)$ with the parameters of the $\rho(1450)$ and $\rho(1700)$ floating and the mass and width of the $\rho(2150)$ fixed at 2155 MeV and 320 MeV, respectively. The phases of the resonances are π , 0 and π , respectively.

² From a fit to the $e^+e^- \rightarrow \eta \pi^+\pi^-$ cross section with vector meson dominance model including $\rho(770)$, $\rho(1450)$, and $\rho(1700)$ decaying exclusively via $\eta \rho(770)$. Masses and widths of vector states are fixed to PDG 14. Coupling constants are assumed to be real.

Citation: 5. N	avas <i>et al.</i> (Pa	article Data Group), Pl	nys. Re	v. D 110	, 030001 (2024)
$\Gamma(\pi^{0}\gamma)/\Gamma_{\text{total}} \times \Gamma(\gamma)$	(e ⁺ e ⁻)/	total			$\Gamma_{16}/\Gamma imes \Gamma_{10}/\Gamma$
VALUE (units 10)	<u>L</u>	OCUMENT ID	<u> </u>	<u>CN</u> <u>CO</u>	MMENT
• • • vve do not use tr	ie tollowing	data for average	s, nts,		$\mathbf{etc.} \bullet \bullet \bullet$
2.3±1.4	4 -	CHASOV 10	D SN	D 1.0	$175-2.0 e^+e^- \rightarrow \pi^{\circ}\gamma$
From a fit of a VN and 1700 MeV to $ ho(1700)$. Systematic	1D model v describe th c errors not	with two effective e excited vector s evaluated.	resor states	$\omega(1420)$	with masses of 1450 MeV), $ ho(1450)$, $\omega(1650)$, and
$\Gamma(f_0(500)\gamma)/\Gamma_{\text{total}}$	× Г(e+ e	e ⁻)/Γ _{total}			$\Gamma_{18}/\Gamma imes \Gamma_{10}/\Gamma$
VALUE (units 10 ⁻⁹)	CL%	DOCUMENT ID		TECN	COMMENT
<4.0	90	ACHASOV	11	SND	$e^+e^- \rightarrow \pi^0 \pi^0 \gamma$
$\Gamma(f_0(980)\gamma)/\Gamma_{\text{total}}$	× Г(е+е	e ⁻)/Γ _{total}		TECH	$\Gamma_{19}/\Gamma \times \Gamma_{10}/\Gamma$
VALUE (units 10 °)	<u> </u>		11		$\frac{COMMENT}{a+a-} \rightarrow -0.0$
<2.0	90	ACHASOV	11	SND	$e \cdot e \rightarrow \pi^{\circ} \pi^{\circ} \gamma$
$\Gamma(f_0(1370)\gamma)/\Gamma_{\text{total}}$	× Г(е ⁺	e ⁻)/Γ _{total}			$\Gamma_{20}/\Gamma imes \Gamma_{10}/\Gamma$
VALUE (units 10 ⁻⁹)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<3.5	90	ACHASOV	11	SND	$e^+e^- \rightarrow \pi^0 \pi^0 \gamma$
$\Gamma(f_2(1270)\gamma)/\Gamma_{total}$	× Г(е ⁺	$e^{-})/\Gamma_{total}$			$\Gamma_{21}/\Gamma imes \Gamma_{10}/\Gamma$
VALUE (units 10 ⁻⁹)	CL%	DOCUMENT ID		TECN	COMMENT
<0.8	90	¹ ACHASOV	11	SND	$e^+e^- \rightarrow \pi^0 \pi^0 \gamma$
¹ Using Breit-Wigner and 400 MeV, respe	parametriz ectively.	vation of the $ ho(14$	50) w	ith mass	and width of 1465 MeV
	ρ(145) BRANCHIN	g Ra	TIOS	
$\Gamma(\pi\pi)/\Gamma(4\pi)$					Γ_1/Γ_3
VALUE		DOCUMENT ID	. C	<u>TECN</u>	<u>COMMENT</u>
• • • we do not use the 0.37 ± 0.10	ie tollowing	2 ADELE	5, TITS,	CDAD	
1	_	ADELE	018	CDAR	$0.0 \ pn \rightarrow 5\pi$
2 Using ABELE 97.					
$\Gamma(K^+K^-)/\Gamma(\pi^+\pi^-)$	-)				Γ ₁₄ /Γ ₂
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
$30.7 \pm 8.4 \pm 8.2$	20k	¹ LEES	17C	BABR	$J/\psi \rightarrow h^+ h^- \pi^0$
¹ From Dalitz plot an	alyses in is	obar models.			
$\Gamma(\omega\pi)/\Gamma_{ ext{total}}$					Γ ₄ /Γ
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	ne following	data for averages	s, fits,	limits, e	etc. $\bullet \bullet \bullet$
seen	821	¹ MATVIENKO	15	BELL	$B^{U} \rightarrow D^{*+} \omega \pi^{-}$
seen	1.6k	ACHASOV	12 07	SND R\/IIE	$e \cdot e^- \rightarrow \pi^0 \pi^0 \gamma$
- 0.21			54	NVUL	

¹Using Breit-Wigner parameterization of the $\rho(1450)$ and assuming equal probabilities of the $\rho(1450) \rightarrow \pi \pi$ and $\rho(1450) \rightarrow \omega \pi$ decays.

https://pdg.lbl.gov

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)

 $\Gamma(\pi\pi)/\Gamma(\omega\pi)$ Γ_1/Γ_4 VALUE DOCUMENT ID TECN • • • We do not use the following data for averages, fits, limits, etc. • • • CLEGG ~ 0.32 94 RVUE $\Gamma(\omega\pi)/\Gamma(4\pi)$ Γ_4/Γ_3 DOCUMENT ID VALUE TECN • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.14 CLEGG 88 **RVUE** $\Gamma(a_1(1260)\pi)/\Gamma(4\pi)$ Γ_5/Γ_3 VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABELE 01B CBAR 0.0 $\overline{p}n \rightarrow 5\pi$ $0.27\pm\!0.08$ $1 \omega \pi$ not included. $\Gamma(h_1(1170)\pi)/\Gamma(4\pi)$ Γ_6/Γ_3 VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 0.08 ± 0.04 ¹ ABELE 01B CBAR 0.0 $\overline{p}n \rightarrow 5\pi$ $1 \omega \pi$ not included. $\Gamma(\pi(1300)\pi)/\Gamma(4\pi)$ Γ_7/Γ_3 VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABELE 0.37 ± 0.13 01B CBAR 0.0 $\overline{p}n \rightarrow 5\pi$ $1 \omega \pi$ not included. $\Gamma(\rho\rho)/\Gamma(4\pi)$ Γ_8/Γ_3 DOCUMENT ID TECN COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABELE $0.11 \!\pm\! 0.05$ 01B CBAR 0.0 $\overline{p}n \rightarrow 5\pi$ $1 \omega \pi$ not included. $\Gamma(\rho(\pi\pi)_{S-wave})/\Gamma(4\pi)$ Γ_9/Γ_3 VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABELE 0.17 ± 0.09 01B CBAR 0.0 $\overline{p}n \rightarrow 5\pi$ $^{1}\omega\pi$ not included. $\Gamma(\eta \rho) / \Gamma_{\text{total}}$ Γ_{11}/Γ VALUE EVTS DOCUMENT ID TECN COMMENT ¹ ACHASOV 1.15–2.00 $e^+e^- \rightarrow \eta\gamma$ 35 14 SND seen • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.04 DONNACHIE 87B RVUE ¹ From a phenomenological model based on vector meson dominance with $\rho(1450)$ and $\phi(1680)$ masses and widths from the PDG 12.

https://pdg.lbl.gov

$\Gamma(\eta ho) / \Gamma(\omega \pi)$							Γ_{11}/Γ_4
VALUE	DO	CUMENT ID		TECN	COMM	1ENT	
\bullet \bullet \bullet We do not use	the following	ng data for	averag	es, fits	, limits,	etc. • • •	
$0.081\!\pm\!0.020$	^{1,2} AU	LCHENKO	15	SND	1.22-2	2.00 e ⁺ e ⁻	$\rightarrow \eta \pi^+ \pi^-$
~ 0.24	³ DC	NNACHIE	91	RVUE			2
>2	FU	KUI	91	SPEC	8.95 7	$\pi^- p \rightarrow \omega \pi$	0 n
¹ From a fit to the including ρ (770), widths of vector s ² Reports the invers ³ Using data from F	$e^+e^- ightarrow e^+e^ ightarrow e^+e^ ightarrow e^+e^+e^+e^+e^+e^+e^+e^+e^+e^+e^+e^+e^+e$	$\eta \pi^+ \pi^-$ croond $ ho(1700)$ and $ ho(1700)$ oted to PDG oted value and the state of the stat	oss sec decay 14. Co as 12.3 SKY 86	tion wi ing exc oupling 3 \pm 3.1 5 and A	th vecto clusively constai	or meson dor via $\eta \rho$ (770) nts are assur HT 87L.	ninance model). Masses and ned to be real.
$\Gamma(\pi\pi)/\Gamma(\eta ho)$							Γ_1/Γ_{11}
VALUE	DO	CUMENT ID		TECN	COMM	1ENT	
$\bullet \bullet \bullet$ We do not use	the following	ng data for	averag	es, fits	, limits,	etc. • • •	
$1.3 {\pm} 0.4$	1 AU	LCHENKO	15	SND	1.22-2	2.00 e ⁺ e ⁻	$\rightarrow \eta \pi^+ \pi^-$
¹ From a fit to the including $\rho(770)$, widths of vector s	$e^+e^- ightarrow r$ $ ho(1450), a$ tates are fix	$\eta \pi^+ \pi^-$ croph crossed to PDG	oss sec decay 14. Co	tion wi ing exc oupling	th vecto clusively constai	or meson dor via $\eta ho(770)$ nts are assur	ninance model). Masses and ned to be real.
$\Gamma(a_2(1320)\pi)/\Gamma_{to}$	tal	DOCUM	IENT IL)	TECN	COMMENT	Г ₁₂ /Г
• • • We do not use	the followir	ng data for	averag	es, fits	, limits,	etc. • • •	
not seen		AMELI	IN	00	VES	37 π ⁻ p -	$\rightarrow \eta \pi^+ \pi^- n$
$\Gamma(K\overline{K})/\Gamma(\omega\pi)$							Γ_{13}/Γ_{4}
VALUE		<u>DOCUM</u>	IENT IL)	TECN	-	
• • • We do not use	the followir	ng data for	averag	es, fits	, limits,	etc. ● ● ●	
<0.08		¹ DONN	ACHIE	E 91	RVUE		
¹ Using data from E	BISELLO 91	lb, DOLINS	5KY 86	5 and A	LBREC	HT 87∟.	
$\Gamma(K\overline{K}^*(892)+c.c)$.)/Γ _{total}						Г ₁₅ /Г
VALUE		DOCUM	IENT IL)	<u>TECN</u>	<u>COMMENT</u>	
• • • We do not use	the following	ng data for	averag	es, fits	, limits,	etc. ● ● ●	
possibly seen		COAN		04	CLEO	$\tau^- \rightarrow K$	$^{-}\pi^{-}K^{+}\nu_{\tau}$
$\Gamma(\eta\gamma)/\Gamma_{total}$					TECH	601415NT	Г ₁₇ /Г
VALUE	<u>EV15</u>		<u>:INI ID</u>	14		<u>COMMENT</u>	_+
seen ¹ From a phenomer $\phi(1680)$ masses a	35 nological m nd widths f	odel based rom the PD	on veo OG 12.	14 ctor me	SIND eson dor	ninance wit	$e^+e^- ightarrow\eta\gamma$ h $ ho(1450)$ and

ρ (1450) REFERENCES

IGNATOV	24	PR D109 112002	F.V. Ignatov <i>et al.</i>	(CMD-3 Collab.)
GRIBANOV	20	JHEP 2001 112	S.S. Gribanov <i>et al.</i>	(CMD-3 Collab.)
ACHASOV	18	PR D97 012008	M.N. Achasov <i>et al.</i>	(SND Collab.)
	18	PR D97 052007	J.P. Lees <i>et al.</i>	(BABAR Collab.)
BARTOS	17 17 A	ΓΚ D90 113004 ΠΜΡ Δ32 1750154	E. Darlos el al. E. Bartos et al	
LEES	170	PR D95 072007	L. Dartos et al.	(BABAR Collab)
	16N	PR D93 052007	R Agii et al	(LHCh Collab.)
ABLIKIM	16C	PI B753 629	M Ablikim <i>et al</i>	(BESIII Collab.)
ACHASOV	16D	PR D94 112001	M N Achasov et al	(SND Collab.)
AULCHENKO	15	PR D91 052013	V.M. Aulchenko <i>et al.</i>	(SND Collab.)
MATVIENKO	15	PR D92 012013	D. Matvienko et al.	(BELLE Collab.)
ACHASOV	14	PR D90 032002	M.N. Achasov <i>et al.</i>	(SND Collab.)
PDG	14	CP C38 070001	K. Olive et al.	(PDG Collab.)
ACHASOV	13	PR D88 054013	M.N. Achasov et al.	(SND Collab.)
ABRAMOWICZ	12	EPJ C72 1869	H. Abramowicz et al.	(ŻEUS Collab.)
ACHASOV	12	JETPL 94 734	M.N. Achasov et al.	
	100	Translated from ZETFP 9	4 796.	
LEES	12G	PR D86 032013	J.P. Lees <i>et al.</i>	(BABAR Collab.)
PDG	12	PR D80 010001	J. Beringer <i>et al.</i>	(PDG Collab.)
ACHASOV	11	JETP 113 75 Translated from 7ETE 14	NI.N. Achasov <i>et al.</i>	(SND Collab.)
AMBROSINO	11A	PI B700 102	F Ambrosino <i>et al</i>	(KLOE Collab.)
ACHASOV	10D	PR D98 112001	M N Achasov et al	(SND Collab.)
DUBNICKA	10	APS 60 1	S Dubnicka A Z Dubnickov	va
AUBERT	09AS	PRL 103 231801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08S	PR D77 092002	B. Aubert <i>et al.</i>	(BABAR Collab.)
FUJIKAWA	08	PR D78 072006	M. Fujikawa <i>et al.</i>	(BELLE Collab.)
AKHMETSHIN	07	PL B648 28	R.R. Åkhmetshin et al.	(Novosibirsk CMD-2 Collab.)
ACHASOV	06	JETP 103 380	M.N. Achasov et al.	(Novosibirsk SND Collab.)
		Translated from ZETF 130	0_437.	· · · · · · · · · · · · · · · · · · ·
AKHMETSHIN	05	PL B605 26	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
ALOISIO	05	PL B606 12	A. Aloisio <i>et al.</i>	(KLOE Collab.)
SCHAEL	05C	PRPL 421 191	S. Schael <i>et al.</i>	(ALEPH Collab.)
AKHMEISHIN	04	PL B578 285	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
	04 02P	PRL 92 232001	I.E. Coan <i>et al.</i>	(CLEO COllab.)
	03B 01B	PL B302 1/3	R.R. Aknmetsnin <i>et al.</i>	(INOVOSIDITSK CIVID-2 COllab.)
	01D 01D	EFJ C21 201 DI DE00 217	A. Abele et al. P.P. Althmatchin at al	(Noveribirely CMD 2 Collab.)
	01B 01B	PR D64 002001	I P Alexander et al.	(CLEO Collab.)
AKHMETSHIN	00D	PI B480 125	R Akhmetshin et al	(Novosibirsk CMD-2 Collab.)
AMELIN	00	NP A668 83	D Amelin <i>et al</i>	(VES Collab.)
ANDERSON	00A	PR D61 112002	S. Anderson <i>et al.</i>	(CLEO Collab.)
EDWARDS	00A	PR D61 072003	K.W. Edwards <i>et al.</i>	(CLEO Collab.)
ABELE	99C	PL B450 275	A. Abele et al.	(Crystal Barrel Collab.)
ABELE	99D	PL B468 178	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
BERTIN	98	PR D57 55	A. Bertin <i>et al.</i>	(OBELIX Collab.)
ABELE	97	PL B391 191	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
ACHASOV	97	PR D55 2663	N.N. Achasov <i>et al.</i>	(NOVM)
BARATE	97M	ZPHY C76 15	R. Barate <i>et al.</i>	(ALEPH Collab.)
BERTIN	97C	PL B408 476	A. Bertin <i>et al.</i>	(OBELIX Collab.)
BERTIN	97D	PL B414 220	A. Bertin <i>et al.</i>	(OBELIX Collab.)
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC, MCHS)
BISELLO	91B	NPBPS B21 111	D. Bisello	(DM2 Collab.)
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky <i>et al.</i>	
	91 01	DI D257 241	A. Donnachie, A.D. Clegg	
	91	7DUV CAO AAE	J. Fukul et al. (3	(MDIM)
	90 80E	DI R228 536	TA Armstrong M Bonavo	(MFIM)
BISELLO	89	PL B220 321	D Bisello et al	(DM2 Collab)
DUBNICKA	89	IP G15 1349	S Dubnicka <i>et al</i>	(IINR SLOV)
ANTONELLI	88	PL B212 133	A. Antonelli <i>et al.</i>	(DM2 Collab.)
CLEGG	88	ZPHY C40 313	A.B. Clegg, A. Donnachie	(MCHS. LANC)
DIEKMAN	88	PRPL 159 99	B. Diekmann	(BONN)
FUKUI	88	PL B202 441	S. Fukui et al. (S	SUGI, NAGO, KEK, ŘYOT+)
ALBRECHT	87L	PL B185 223	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
DONNACHIE	87B	ZPHY C34 257	A. Donnachie, A.B. Clegg	(MCHS, LANC)
DOLINSKY	86	PL B174 453	S.I. Dolinsky et al.	(NOVO)
BARKOV	85	NP B256 365	L.M. Barkov <i>et al.</i>	(NOVO)

https://pdg.lbl.gov

JETPL 37 733 L.M. Kurdadze *et al.* Translated from ZETFP 37 613. KURDADZE 83 (NOVO) (BONN, CERN, EPOL, GLAS, LANC+) (DARE, LANC, SHEF) ASTON 80C PL 92B 211 D. Aston ZPHY C4 169 PRL 21 244 BARBER 80C D.P. Barber et al. GOUNARIS G.J. Gounaris, J.J. Sakurai 68

Citation: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)