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There are two neutral B'-B° meson systems, Bgfﬁg and B}ES (generically denoted Bgfﬁg,

g = s,d), which exhibit particle-antiparticle mixing [1]. This mixing phenomenon is described
in Ref. [2]. In the following, we adopt the notation introduced in Ref. [2], and assume CPT
conservation throughout. In each system, the light (L) and heavy (H) mass eigenstates,

|BLu) = p|By) + ¢|BY), (74.1)

have a mass difference Am, = mpyg —mp, > 0, a total decay width difference AI'; = I, — I'y and an
average decay width I'y = (I, +I%)/2. In the absence of C'P violation in the mixing, |¢/p| = 1, the
differences are given by Amy = 2| M| and |AI};| = 2|I2|, where M2 and I are the off-diagonal
elements of the mass and decay matrices [2]. The evolution of a pure |BY) or |BY)) state at t = 0 is
given by

«Bga>>:g+<o\32>+-gg_<wrfﬂ>, (74.2)
[BY(t)) =g+ (t) [BY) + gg_ (t)|BY), (74.3)

which means that the flavor states remain unchanged (+) or oscillate into each other (—) with
time-dependent probabilities proportional to

o—Tat

2

gs ()2 = Cosh(AQFq t> + cos(Am, t)} . (74.4)

In the absence of C'P violation, the time-integrated mixing probability [ |g_(¢)[>dt/([ |g— (t)|* dt +
Jlg+ ()] dt) is given by
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Xq = where 1z, =
74.1 Standard Model predictions and phenomenology

In the Standard Model, the transitions Bg — E(q) and Eg — Bg are due to the weak interaction.
They are described, at the lowest order, by box diagrams involving two W bosons and two up-type
quarks (see Fig. 74.1), as is the case for K* — K mixing. However, the long range interactions
arising from intermediate virtual states are negligible for the neutral B meson systems, because
the large B mass is off the region of hadronic resonances. The calculation of the dispersive and
absorptive parts of the box diagrams yields the following predictions for the off-diagonal element
of the mass and decay matrices [3],
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2 74. B°-B° Mizing

Figure 74.1: Dominant box diagrams for the Bg — qu transitions (¢ = d or s). Similar diagrams
exist where one or both ¢ quarks are replaced with ¢ or u quarks.

where G is the Fermi constant, my, the W boson mass, and m; the mass of quark i; mp_, fp,
and Bp, are the Bg mass, weak decay constant and bag parameter, respectively. The known
function Sp(z¢) can be approximated very well by 0.784 2976 [4], and Vj; are the elements of the
CKM matrix [5]. The QCD corrections np and 7z are of order unity. The only non-negligible
contributions to Mj, are from box diagrams involving two top quarks. The phases of Mis and I19
satisfy
m2
oM —¢r=m+0 <m§> , (74.8)
b
implying that the mass eigenstates have mass and width differences of opposite signs. This means
that, like in the K9~ K9 system, the heavy state is expected to have a smaller decay width than
that of the light state: I'y < I1,. Hence, AI', = I, — 'y is expected to be positive in the Standard
Model.
Furthermore, the quantity

Flg 3T m% 1 m%
~ 37 ~o(™ 74.9
Mo 2 mi, So(m?/m3,) m? (74.9)
is small, and a power expansion of |q/p|? yields
2 2
q Ig | . I'y
K QY 1 - —120) 4.1
‘p + ‘Mm sin(¢pr — or) + O ( Moo ) (74.10)

Therefore, considering both Eqgs. (74.8) and (74.9), the C' P-violating parameter

2
q I'o

1—|=| ~Im () 74.11
‘p Mo ( )

is expected to be very small: ~ O(1073) for the B}}ES system and < O(1074) for the BgLPS
system [6].

In the approximation of negligible C'P violation in mixing, the ratio AIj/Am, is equal to
the small quantity |I12/Mi2| of Eq. (74.9); it is hence independent of CKM matrix elements, i.e.,
the same for the Bgﬁg and Bgfﬁg systems. Calculations [7] yield ~ 5 x 1072 with a ~ 15%
uncertainty. Given the published experimental knowledge [8] on the mixing parameter z,

-0
{xd = 0.7697 +0.0035 (BY-B, system) (74.12)

25 = 26.99 + 0.09 (BY-B.

. system)
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3 74. B°-B° Mizing

the Standard Model thus predicts that AI'y/ Iy is very small (below 1%), but AI'y/I's considerably
larger (~ 10%). These width differences are caused by the existence of final states to which both
the Bg and Eg mesons can decay. Such decays involve b — ccq quark-level transitions, which are
Cabibbo-suppressed if ¢ = d and Cabibbo-allowed if ¢ = s.

A complete set of Standard Model predictions for all mixing parameters in both the Bgfﬁg and

BQ@S systems can be found in Ref. [7].

74.2 Experimental issues and methods for oscillation analyses

Time-integrated measurements of BB’ mixing were published for the first time in 1987 by
UA1 [9] and ARGUS [10], and since then by many other experiments. These measurements are
typically based on counting same-sign and opposite-sign lepton pairs from the semileptonic decay
of the produced bb pairs. Such analyses cannot easily separate the contributions from the different
b-hadron species, therefore, the clean environment of 7°(4S5) machines (where only B and charged
B, mesons are produced) is in principle best suited to measure xg.

However, better sensitivity is obtained from time-dependent analyses aiming at the direct mea-
surement of the oscillation frequencies Amgy and Amg, from the proper time distributions of Bg or
B? candidates identified through their decay in (mostly) flavor-specific modes, and suitably tagged
as mixed or unmixed. This is particularly true for the BgLES system, where the large value of
xs implies maximal mixing, i.e., xs ~ 1/2. In such analyses, the Bg or BY mesons are either
fully reconstructed, partially reconstructed from a charm meson, selected from a lepton with the
characteristics of a b — ¢~ decay, or selected from a reconstructed displaced vertex. At high-energy
colliders (LEP, SLC, Tevatron, LHC), the proper time t = %L is measured from the distance L
between the production vertex and the B decay vertex, and from an estimate of the B momentum
p. At asymmetric B factories (SuperKEKB, KEKB, PEP-II), producing e*e™ — 7'(4S) — BY B,°
events with a boost 5y (= 0.28, 0.425, 0.55), the proper time difference between the two B can-
didates is estimated as At ~ 6AZC , where Az is the spatial separation between the two B decay
vertices along the boost direction. In all cases, the good resolution needed on the vertex positions
is obtained with silicon detectors.

The average statistical significance S of a Bg oscillation signal can be approximated as [11]

S~ \[N/2 fug (1 — 2n) e~ (Amao0)?/2 (74.13)

where NNV is the number of selected and tagged candidates, fsg is the fraction of signal in that
sample, 7 is the total mistag probability, and o; is the resolution on proper time (or proper time
difference). The quantity S decreases very quickly as Am, increases; this dependence is controlled
by o¢, which is therefore a critical parameter for Amg analyses. At high-energy colliders, the proper
time resolution oy ~ %a I @t%’ includes a constant contribution due to the decay length resolution
or, (typically 0.04-0.3 ps), and a term due to the relative momentum resolution o, /p (typically 10—
20% for partially reconstructed decays), which increases with proper time. At B factories, the
boost of the B mesons is estimated from the known beam energies, and the term due to the spatial
resolution dominates (typically 0.7-1.5 ps because of the much smaller B boost).

In order to tag a Bg candidate as mixed or unmixed, it is necessary to determine its flavor both
in the initial state and in the final state. The initial and final state mistag probabilities, n; and 7y,
degrade S by a total factor (1 —2n) = (1 — 2n;)(1 — 27y). In lepton-based analyses, the final state
is tagged by the charge of the lepton from b — ¢~ decays; the largest contribution to 7y is then due
to b — ¢ — ¢~ decays. Alternatively, the charge of a reconstructed charm meson (D*~ from B or
D7 from BY), or that of a kaon hypothesized to come from a b — ¢ — s decay [12], can be used.
For fully-inclusive analyses based on topological vertexing, final-state tagging techniques include
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4 74. B°-B° Mizing

jet-charge [13] and charge-dipole [14,15] methods. At high-energy colliders, the methods to tag the
initial state (i.e., the state at production), can be divided into two groups: the ones that tag the
initial charge of the b quark contained in the Bg candidate itself (same-side tag), and the ones that
tag the initial charge of the other b quark produced in the event (opposite-side tag). On the same
side, the sign of a charged pion, kaon or proton from the primary vertex is correlated with the
production state of the Bg meson if that particle is a decay product of a B** state or the first in
the fragmentation chain [16,17]. Jet- and vertex-charge techniques work on both sides and on the
opposite side, respectively. Finally, the charge of a lepton from b — ¢, of a kaon from b — ¢ — s
or of a charm hadron from b — ¢ [18] can be used as an opposite-side tag, keeping in mind that
its performance is degraded due to integrated mixing. At SLC, the beam polarization produced a
sizeable forward-backward asymmetry in the Z — bb decays, and provided another very interesting
and effective initial state tag based on the polar angle of the Bg candidate [14]. Initial state tags
have also been combined to reach n; ~ 26% at LEP [17,19] or 22% at SLD [14] with full efficiency.
In the case 1y = 0, this corresponds to an effective tagging efficiency @ = eD? = ¢(1 — 2n)?, where
€ is the tagging efficiency, in the range 23 — 31%. The equivalent figure achieved by CDF during
Tevatron Run I was ~ 3.5% (see tagging summary on page 160 of Ref. [20]), reflecting the fact that
tagging is more difficult at hadron colliders. The CDF and D@ analyses of Tevatron Run II data
reached eD? = (1.8 + 0.1)% [21] and (2.5 & 0.2)% [22] for opposite-side tagging, while same-side
kaon tagging (for B? analyses) contributed an additional 3.7 — 4.8% at CDF [21], and pushed the
combined performance to (4.7 £ 0.5)% at DO [23]. LHCb, operating in the forward region at the
LHC where the environment is different in terms of track multiplicity and b-hadron production
kinematics, has reported eD? = (2.10 4 0.25)% [24] for opposite-side tagging, (1.80 4 0.26)% [25]
for same-side kaon tagging, and (2.11 £+ 0.11)% [26] for same-side pion and proton tagging: the
combined figure ranges typically between (3.73 4+ 0.15)% [27] and (6.3 £+ 0.5)% [28] depending on
the mode in which the tagged BY meson is reconstructed, and reaches up to (8.1 + 0.6)% [29] for
hadronic B} modes. ATLAS [30] and CMS [31] have reported eD? ~ 1.75% and eD? ~ 10% using
opposite-side tagging of BY — J/¢¢ decays.

At B factories, the flavor of a Bg meson at production cannot be determined, since the two
neutral B mesons produced in a 7°(4S) decay evolve in a coherent P-wave state where they keep
opposite flavors at any time. However, as soon as one of them decays, the other follows a time-
evolution given by Eqs. (74.2) or (74.3), where ¢ is replaced with At (which will take negative values
half of the time). Hence, the “initial state” tag of a B can be taken as the final-state tag of the
other B. Effective tagging efficiencies of 30% are achieved by BaBar and Belle [32], using different
techniques including b — ¢~ and b — ¢ — s tags. It is worth noting that, in this case, mixing of
the other B (i.e., the coherent mixing occurring before the first B decay) does not contribute to
the mistag probability.

Before the experimental observation of a decay-width difference, oscillation analyses typically
neglected Al in Eq. (74.4), and described the time dependence with the functions Ie~Te%(1 +
cos(Amgyt))/2 (high-energy colliders) or I'ye 'al4t(1 4 cos(AmgAt))/4 (asymmetric 7(4S) ma-
chines). As can be seen from Eq. (74.4), a non-zero value of Al would effectively reduce the
oscillation amplitude with a small time-dependent factor that would be very difficult to distinguish
from time resolution effects. Measurements of Am, are usually extracted from the data using a
maximum likelihood fit.

74.3 Am, and ATI; measurements

Many B}EZ oscillations analyses have been published [33] by the ALEPH [34], DELPHI [15,
35], L3 [36], OPAL [37,38], CDF [16], DO [22], BaBar [39], Belle [40], Belle II [41], and LHCb
[42-45] collaborations. Although a variety of different techniques have been used, the individual
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Amyg results obtained at LEP and Tevatron have remarkably similar precision. Their average
is compatible with the more precise measurements at the asymmetric B factories and the LHC.
The systematic uncertainties are not negligible; they are often dominated by sample composition,
mistag probability, or b-hadron lifetime contributions. Before being combined, the measurements
are adjusted on the basis of a common set of input values, including the b-hadron lifetimes and
fractions published in this Review. Some measurements are statistically correlated. Systematic
correlations arise both from common physics sources (fragmentation fractions, lifetimes, branching
ratios of b hadrons), and from purely experimental or algorithmic effects (efficiency, resolution,
tagging, background description). Combining all measurements [15, 16, 22, 34—45] and accounting
for all identified correlations yields Amg = 0.5069 + 0.0016(stat) & 0.0011(syst) ps~! [8], a result
dominated by the latest LHCb measurement with B® — D®)~ %1, X decays [45).

On the other hand, ARGUS and CLEO have published time-integrated measurements [46-48],
which average to x4 = 0.182 4+ 0.015. Following Ref. [48], the width difference Al; could in
principle be extracted from the measured value of 1/Iy and the above averages for Amy and g4
(see Eq. (74.5)), provided that AI'y has a negligible impact on the Amg and 1/I; analyses that
have assumed Al'; = 0. However, AI'y/Iy is too small and the knowledge of x4 too imprecise to
provide useful sensitivity on Al'y/Iy. Direct time-dependent studies published by DELPHI [15],
BaBar [49], Belle [50], LHCb [51], ATLAS [52] and CMS [53] provide stronger constraints, which
can be combined to yield [8]

Aly/T'y = +0.001 £ 0.010. (74.14)

This determination is compatible both with zero and with the Standard Model prediction of (4.0 +
0.9) x 1073 [54].

Assuming AI; = 0 and no CP violation in mixing, and using the BY lifetime average of
1.517 4+ 0.004 ps [8], the Amy and x4 results are combined to yield the world average

Amg = 0.5069 + 0.0019 ps~* (74.15)

or, equivalently,
X4 = 0.1860 £ 0.0011 . (74.16)

This Amg value provides an estimate of 2|Mj9|, and can be used with Eq. (74.6) to extract |V
within the Standard Model [55]. The main experimental uncertainties on the result come from m;
and Amyg, but are still completely negligible with respect to the uncertainty due to the hadronic
matrix element fp,\/Bp, = 225+9 MeV [56] obtained from three-flavor lattice QCD calculations.

74.4 Am, and AT, measurements

After many years of intense search at LEP and SLC, Bf}?g oscillations were first observed
in 2006 by CDF using 1 fb~! of Tevatron Run II data [21]. LHCb then observed B}}Eﬂ oscilla-
tions independently with BY — Dy 7" [42,57], B? — D;utvX [44] and B? — J/YyKTK~ [27]
decays using up to 3 fb~! of LHC Run 1 data. More recently measurements based on additional
LHC Run 2 data have been published by CMS with BY — J/1¢ decays [31], and by LHCb with
BY — Dynta— 7t [58], B — Dy 7t [59] and B? — J/¢K* K~ [60] decays. Taking systematic cor-
relations into account, the average [8] of all published measurements of Am [21,27,31,42,44,57-60]
is

Am = 17.765 4 0.004(stat) = 0.004(syst) ps—", (74.17)

with an impressive precision dominated by the most recent BY — D7 7t result [59] (see Fig. 74.2).
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Figure 74.2: Proper decay-time distributions of background-subtracted BY — D7t decays
tagged as unmixed (blue), tagged as mixed (red) or untagged (grey) in the Run 2 data of the LHCb

experiment, displaying BgLES oscillations [59].

The information on |V;s| obtained in the framework of the Standard Model is hampered by the
hadronic uncertainty, as in the Bg case. However, several uncertainties cancel in the frequency

ratio
2

A
Ms _ B, ¢2 : (74.18)

Vis
e Vi
where the SU(3) flavor-symmetry breaking factor ¢ = (fp, /BB, )/(fB,\/BB,) is obtained as 1.206+
0.017 from a combination of three-flavor lattice QCD calculations [56] dominated by the results of

Ref. [61], or as 1.201470:50%5 from QCD sum rules [62]. Using the measurements of Eqs. (74.15)
and (74.17), one can extract

Amd mp

Via

74.19
v (74.19)

[ 0.2054 +0.0004 £ 0.0029 (lattice QCD)
T ] 0.2045 +0.000470501% (QCD sum rules)

in good agreement with (but much more precise than) the value obtained from the ratio of the
b — dy and b — s transition rates observed at the B factories [55].

The CKM matrix can be constrained using experimental results on observables such as Amyg,
Amg, |[Vup/Ves|, €x, and sin(23) together with theoretical inputs and unitarity conditions [55,63,64].
The constraint from our knowledge on the ratio Amg/Amg is more effective in limiting the position
of the apex of the CKM unitarity triangle than the one obtained from the Amg; measurements
alone, due to the reduced hadronic uncertainty in Eq. (74.18). We also note that the experimental
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value of Amg from Eq. (74.17) is consistent with the Standard Model predictions obtained from
CKM fits where no experimental information on Amg is used, e.g., 17.89 & 0.65 ps~! [63] or
17.26 1553 ps~! [64]. Tt is also consistent with the prediction 18.23 +0.62 ps~' from Ref. [7].

Information on Aly can be obtained from the study of the proper time distribution of untagged
BY samples [65]. In the case of an inclusive BY selection [66], or a flavor-specific (semileptonic or
hadronic) BY decay selection [19,67-69], both the short- and long-lived components are present,
and the proper decay-time distribution is a superposition of two exponentials with decay constants
Iy = I's £ Als/2. In principle, this provides sensitivity to both I's and (AT, /T)?. Ignoring AT
and fitting for a single exponential leads to an estimate of 1/Iy (called effective lifetime) with a
relative bias proportional to (AIs/Iy)?. An alternative approach, sensitive to first order in AT/ T,
is to determine the effective lifetime of untagged BY decays to pure CP eigenstates; measurements
exist for B — D D; [68], B — KtK~ [69,70], BY — J/yn [71,72], B — J/¢f5(980) [73],
BY — J/yrtr~ [53,74,75], BY — J/¢YKQ [76], and B? — ptu~ [77]. The extraction of 1/I; and
ATy from such measurements, discussed in detail in Ref. [78], requires additional information in
the form of theoretical assumptions or external inputs on weak phases and hadronic parameters. In
what follows, we only use the effective lifetimes of decays to CP-even (D} D, , J/¢m) and C P-odd
(J /1 fo(980), J/pmT7~) final states where C'P conservation can be assumed. In addition Ay can
be extracted from the decay-time distributions of B? decays to C'P-even and C'P-odd final states,
as has been done by LHCb with B? — J/¢n’ and B? — J/¢nt7~, respectively [79)].

The best sensitivity to 1/Is and ATl is achieved by the time-dependent measurements of the
BY — J/YwK*K~ (including BY — J/¢) and B? — 1(25)¢ decay rates performed at CDF [80],
DO [81], ATLAS [30,82], CMS [31,83] and LHCb [27,60,84-86], where the C'P-even and C'P-odd
amplitudes are separated statistically through a full angular analysis (see Fig. 74.3). The LHCb
collaboration analyzes the BY — J/1% KK~ decay considering that the K™K~ system can be in
a P-wave or S-wave state, and measures the dependence of the strong phase difference between the
P-wave and S-wave amplitudes as a function of the K+ K~ invariant mass [27,60, 87]; this allows
the unambiguous determination of the sign of Ay, which is found to be positive. All these studies
use both untagged and tagged BY candidates and are optimized for the measurement of the phase
¢ that describes C'P violation in the interference between BS—PS mixing and decay in b — ccs
transitions. The published BY — J/¢K+tK~, J/¢¢ and 1(25)¢ analyses [27,30, 31, 60, 80-86]
are combined in a multi-dimensional fit including all measured parameters and their correlations.
To account for a tension in the time and angular parameters, scale factors are applied on the
combined uncertainty of each parameter where a discrepancy arise. For example, the scale factors
on the uncertainties of AI;, I's and ¢ are 1.84, 2.45 and 1.00, respectively. The averages are
then further refined by applying constraints from the published lifetime measurements with flavor-
specific [19,67-69] and pure C'P [53,68,71-75] final states, to yield [8,88]

ATy = +0.083 4+ 0.005 ps~* and 1/I's = 1.520 £ 0.005 ps, (74.20)
or, equivalently,
1/I7, =1.429 £0.006 ps and 1/I'g = 1.622+0.008 ps, (74.21)

in good agreement with the Standard Model predictions AI'®™ = +0.091 & 0.015 ps~! [7] and
ATSM = 10.076 + 0.017 ps~! [89]. Estimates of AIy/Ts obtained from measurements of the

BY — Dg*HDg*)_ branching fractions are not included in the average, since they are based on the
questionable [90] assumption that these decays account for all C' P-even final states.
From Eqgs. (74.5), (74.17) and (74.20), one gets

Xs = 0.499318 £ 0.000005 . (74.22)
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Figure 74.3: Distributions of the proper decay-time and of the three decay angles of background-
subtracted B — J/¢ KK~ decays reconstructed by LHCbD in the vicinity of the ¢ resonance [60].
The kaon pair is predominantly in a P-wave state (from the ¢ decay) which can be CP-even or CP-
odd, while a small S-wave state is CP-odd. The curves show the projections of a four-dimensional
fit allowing the various components to be disentangled. The different lifetimes of the CP-even and
CP-odd components is evident from the decay-time distribution.

74.5 CP-violation studies

Evidence for C'P violation in Bg,pg mixing has been searched for, both with flavor-specific and
inclusive Bg decays, in samples where the initial flavor state is tagged, usually with a lepton from
the other b-hadron in the event. In the case of semileptonic (or other flavor-specific) decays, where
the final-state tag is also available, the following asymmetry [2]

40— N(B)(t) = 0T X) = N(B(t) = L7, X)
SLTN(BY(t) — v X) + N(BY(t) — -7, X)

~1—|q/pl; (74.23)

has been measured either in time-integrated analyses at CLEO [48,91], BaBar [92], CDF [93],
DO [94-96] and LHCDb [97], or in time-dependent analyses at LEP [38, 98], BaBar [49, 99] and
Belle [100]. In the inclusive case, also investigated at LEP [98,101], no final-state tag is used, and
the asymmetry [102]

N(BY(t) — all) — N(BY(t) — all)
N(B)(t) — all) + N(BJ(t) — all)
Amqt> g

~ AL [snﬂ (2 %2 sin(Amy ) (74.24)
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must be measured as a function of the proper time to extract information on C'P violation. In
addition LHCb has studied the time dependence of the charge asymmetry of B — D)~ pty, X
decays without tagging the initial state [103], which would be equal to

N(DW=pty,X) — N(DH*u~5,X)
N(D®~uF v, X) + N(D®* =5, X)

1-— Amygt
:AgL cos(Amygt)

(74.25)

in absence of detection and production asymmetries.

The D@ collaboration measured a like-sign dimuon charge asymmetry in semileptonic b decays
that deviates by 2.8 ¢ from the tiny Standard Model prediction and concluded, from a more refined
analysis in bins of muon impact parameters, that the overall discrepancy is at the level of 3.6 o [94].
In all other cases, asymmetries compatible with zero (and the Standard Model [7]) have been found,
with a precision limited by the available statistics. Several of the analyses at high energy don’t
disentangle the Bg and BY contributions, and either quote a mean asymmetry or a measurement of
AgL assuming Ag; = 0: we no longer include these in the average. An exception is the dimuon D@
analysis [94], which separates the two contributions by exploiting their dependence on the muon
impact parameter cut. The resulting measurements of AgL and Ag; are then both compatible with
the Standard Model. They are also correlated. We therefore perform a two-dimensional average of
the measurements of Refs. [48,49,91,92,94-97,99,100, 103] and obtain [§]

Al = —-0.0021 £ 0.0017 < |q/plq = 1.0010 + 0.0008, (74.26)
5, = —0.0006 % 0.0028 < |¢/p|s = 1.0003 + 0.0014, (74.27)

with a correlation coefficient of —0.054 between ACSIL and .AgL. These results show no evidence

of CP violation and are compatible with the very small Standard Model predictions, Ag’LSM =

—(5.1 £0.5) x 107* and A;EM = +(2.240.2) x 107° [7], but have insufficient precision yet to
constrain the Standard Model.

C P violation induced by BgLES mixing in b — ccs decays is controlled by the small weak phase
$%. Measuring ¢<° requires tagging the initial flavour of the decaying B? meson. In addition to
the previously mentioned B? — J/¢K+TK~ (including BY — J/¥¢) and BY — (25)¢ studies,
the decay modes B? — J/vr"n~ (including B? — J/v f5(980)) [75,105] and B — Df D7 [104]
have also been analyzed by LHCb to measure ¢S, without the need for an angular analysis. The
J/¢rt 7w~ final state has been shown indeed to be (very close to) a pure CP-odd state [106]. In
the B? — J/y¢ and B? — J/¢w KK~ analyses, ¢<°° is obtained together with several other
observables, including ATl, I, the longitudinal and perpendicular ¢ polarisation amplitudes, the
S-wave amplitude, and strong phases. In order to account for all correlations, the full sets of
measurements provided by the different analyses are combined in a multi-dimensional fit [8] of which
$% is just one of the free parameters. As already mentioned the BY — J/1¢ analyses of ATLAS,
CMS and LHCb show a poor overall compatibility, mostly in the lifetime and angular parameters,
corresponding approximately to 3 standard deviations. Therefore, scale factors are applied on the
combined uncertainty of each parameter where a discrepancy arises. For the parameters already
in agreement, such as ¢<°*, no scale factor is applied. The combined result based on all published
analyses [27,30,31,60,75,80-86, 104, 105] is

¢S = —0.040 + 0.016. (74.28)

A two-dimensional projection of the overall situation in the (¢, AI'y) plane is shown in Fig. 74.4.
The experimental determination of ¢<¢* is still statistically limited. It is consistent with the Stan-
dard Model prediction, which is equal to —25, = —2arg(—(V,,V};)/(V,.sV3)) = —0.0367+0.0010 [63]
or —0.0376 75008 [64] assuming negligible Penguin pollution.
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Figure 74.4: 68% CL contours in the (¢, AI'y) plane, showing all measurements from CDF [80],
D@ [81], ATLAS [30,82], CMS [31,83] and LHCb [27,60,75,84-86,104,105] using BY decays governed
by the b — ccs transition. Their average [8] is represented as the black ellipse, where the combined
uncertainty on Als has been multiplied by 1.88. The very thin white rectangle represents the
Standard Model predictions of —24, [63,64] and AT [7].

CEE]

CP violation induced by BS—ES mixing in b — sss decays is controlled by the weak phase ¢$%°,
which is an observable different from ¢¢°. In the Standard Model, such pure gluonic Penguin decays
have an amplitude with a CKM phase that cancels that of the mixing amplitude, and hence ¢5%
is expected to be essentially zero. LHCb has performed a flavour-tagged time-dependent angular
analysis of B — ¢¢ decays [28,107], similar to that of BY — J/¢¢ decays, and measured

¢35 = —0.074 £ 0.069, (74.29)

in agreement with the Standard Model prediction.

74.6 Summary

BB’ mixing has been and still is a field of intense study. The mass differences in the Bgfﬁg
and BgLES systems are known to relative precisions of 0.38% and 0.03%, respectively. The non-
zero decay width difference in the BgLES system is well established, with a relative difference
of AT;/Ts = (12.7 £ 0.7)%, meaning that the heavy state of the BQ@S system lives ~ 14%
longer than the light state. In contrast, the relative decay width difference in the Bgfgg system,
Aly/ITy = (0.1 £1.0)%, is still consistent with zero. C'P violation in Bgfﬁg or BgLES mixing has
not been observed yet, with precisions on the semileptonic asymmetries below 0.3%. C'P violation

induced by Bgfﬁg mixing in BY decays has not yet been observed either, with uncertainties on the
¢ and ¢5%¢ phases of 16 mrad and 69 mrad, respectively. All observations so far remain consistent
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with the Standard Model expectations.

However, the measurements where New Physics might show up are still statistically limited.
More results are awaited from the LHC experiments and Belle II, with promising prospects for the
investigation of the C'P-violating phase arg(—M2/I12) and improved determination of the ¢
and ¢35 phases.

Mixing studies have clearly reached the stage of precision measurements, where much effort is
needed, both on the experimental and theoretical sides, in particular to further reduce the hadronic
uncertainties of lattice QCD calculations. In the long term, a stringent check of the consistency of
the Bg and BY mixing amplitudes (magnitudes and phases) with all other measured flavor-physics
observables will be possible within the Standard Model, leading to very tight limits on (or otherwise
a long-awaited surprise about) New Physics.
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