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62.1 Wfih and K éﬂ/ Form Factors

The radiative decays, 7* — [Ty and K* — [*vy, with [ standing for an e or a p, and ~ for
a real or virtual photon (e*e™ pair), provide a powerful tool to investigate the hadronic structure
of pions and kaons. The structure-dependent part SD; of the amplitude describes the emission of
photons from virtual hadronic states, and is parametrized in terms of form factors V| A, (vector,
axial vector), in the standard description [1-4]. Note that in the Listings and some literature,
equivalent nomenclature Fy and F4 for the vector and axial form factors is often used. Exotic,
non-standard contributions like ¢ = T, S (tensor, scalar) have also been considered. Apart from
the SD terms, there is also the Inner Bremsstrahlung amplitude, 1B, corresponding to photon
radiation from external charged particles and described by Low theorem in terms of the physical
decay Wi(K jE) — [*v. Experiments try to optimize their kinematics so as to minimize the IB part
of the amplitude.

The SD amplitude in its standard form is given as
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which contains an additional axial form factor R” which only can be accessed if the photon remains
virtual. U,y is the Cabibbo-Kobayashi-Maskawa mixing-matrix element; € is the polarization
vector of the photon (or the effective vertex, e = (e/k?)u(p_)y"*v(py), of the ete™ pair); ¢ =
u(py)y” (1—~5)v(pe) is the lepton-neutrino current; g and k are the meson and photon four-momenta
(k = p+ + p_ for virtual photons); and P stands for 7 or K.

For decay processes where the photon is real, the partial decay width can be written in analytical
form as a sum of IB, SD, and IB/SD interference terms INT [1,4]:
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where z = 2B, /mp, y = 2E¢/mp, r = (my/mp)?, fp is the meson decay constant, and ep is +1
for pions and -1 for kaons. The structure dependent terms SD* and SD~ are shown in Fig. 1.
The SD™ term is maximized in the same kinematic region where overwhelming /B term dominates
(along = +y = 1 diagonal). Thus experimental yields with less background are dominated by SD™
contribution and proportional to A” + V¥ making simultaneous precise determination of the form
factors difficult.
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Figure 62.1: Components of the structure dependent terms of the decay width. Left: SD™, right:
SD~

Recently, formulas 62.3 and 62.4 have been extended to describe polarized distributions in
radiative meson and muon decays [5].

The “helicity” factor r is responsible for the enhancement of the SD over the IB amplitude in
the decays 7t — e*vy, while 7t — pF vy is dominated by IB. Interference terms are important for
the decay K* — pu*vy [6], but contribute only a few percent correction to pion decays. However,
they provide the basis for determining the signs of V' and A. Radiative corrections to the decay
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7T — eTvy have to be taken into account in the analysis of the precision experiments. They make
up to 4% corrections in the total decay rate [7]. In 7% — e*rvete™ and K* — (Tvete™ decays,
all three form factors, V', A and RP, can be determined [8,9].

Theoretically, the first non-trivial y PT contributions to A” and V¥ appear at O(p*) [4], re-
spectively from Gasser-Leutwyler coefficients, L;’s, and the anomalous lagrangian:

P _ \ﬁMP
(Ly+Lig), V= g

_ 4V2Mp

AP
Fr

(62.5)
In case of the kaon AX = 0.042 and VE = 0.096. O(p®) contributions to AX can be predicted
accurately: they are flat in the momentum dependence and shift the O(p?) value to 0.034. O(p%)
contributions to VX are model dependent and can be approximated by a form factor linearly
dependent on momentum. For example, when looking at the spread of results obtained within two
different models, the constant piece of this linear form factor is shifted to 0.078 £+ 0.005 [1,2,4].

We give the experimental 7+ form factors V™, A", and R™ in the Listings. In the K Listings, we
give the extracted sum AX + V¥ and difference AX —VE  aswell as VE, AKX and RX. In particular
KLOE has measured for the constant piece of the form factor A% + V& = 0.12540.0074+0.001 [10]
while ISTRA+, VE — AKX =0.21 £0.04 £ 0.04 [11].

The pion vector form factor, V™, is related via CVC (Conserved Vector Current) to the 70 — v
decay width. The constant term is given by |V™(0)| = (1 /a)\/ 2070y /mmpo [3]. The resulting
value, V7™ (0) = 0.0259(9), has been confirmed by calculations based on chiral perturbation theory
(xPT) [4], and by two experiments given in the Listings.

A recent experiment by the PIBETA collaboration [12] obtained a V™ (0) that is in excellent
agreement with the CVC hypothesis. It also measured the slope parameter a in V™ (s) = V™ (0)(1+
a-s), where s = (1-2FE,/my), and E, is the gamma energy in the pion rest frame: a = 0.095+0.058.
A functional dependence on s is expected for all form factors. It becomes non-negligible in the case
of V™(s) when a wide range of photon momenta is recorded; proper treatment in the analysis of K
decays is mandatory.

The form factor, R”, can be related to the electromagnetic radius, rp, of the meson [2]: R =
smp fp(r%) using PCAC (Partial Conserved Axial vector Current).

In lowest order xPT, the ratio A™/V7™ is related to the pion electric polarizability ap =
[/ (87%m, f2)] x A™/V™ [13]. Direct experimental and theoretical status of pion polarizability
studies currently is not settled. Most recent theoretical predictions from xPT at O(p%) [14] and
experimental results from COMPASS collaboration [15] favor a small value of pion polarizabil-
ity ar ~ (2 +3) x 107* fm3. Dispersive analysis of 7y — 777~ crossection [16] and experimental
results from MAMI collaboration [17] report a much larger value of a;; ~ 6x 10~% fm®. Precise mea-
surement of the pion form factors by PIBETA collaboration favors smaller values of polarizability
ar = 2.7158 x 1074 fm3.

Several searches for the exotic form factors Ff, Ff (tensor), and F& (scalar) have been pursued
in the past. In particular, FT has been brought into focus by experimental as well as theoretical
work [18]. New high-statistics data from the PIBETA collaboration have been re-analyzed together
with an additional data set optimized for low backgrounds in the radiative pion decay. In particular,
lower beam rates have been used in order to reduce the accidental background, thereby making the
treatment of systematic uncertainties easier and more reliable. The PIBETA analysis now restricts
FZ to the range —5.2 x 1074 < FI < 4.0 x 10~* at a 90% confidence limit [12]. This result is in
excellent agreement with the most recent theoretical work [4].

Precision measurements of radiative pion and kaon decays are effective tools to study QCD in
the non-perturbative region and are of interest beyond the scope of radiative decays. Meanwhile
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other processes such as 7+ — eTv that seem to be better suited to search for new physics at the
precision frontier are currently studied. The advantages of such process are the very accurate and
reliable theoretical predictions and the more straightforward experimental analysis.

62.2 K and KJ Form Factors
Assuming that only the vector current contributes to K — mfr decays, we write the matrix
element as

M oc F4(t) [(P + Pr)ulu(1+ )0
+ S () [mel(1 +5)v] (62.6)

where Pr and P, are the four-momenta of the K and m mesons, my is the lepton mass, and f;
and f_ are dimensionless form factors which can depend only on t = (Py — P;)?, the square of the
four-momentum transfer to the leptons. If time-reversal invariance holds, f; and f_ are relatively
real. K3 experiments, discussed immediately below, measure f. and f_, while K3 experiments,
discussed further below, are sensitive only to fi because the small electron mass makes the f_
term negligible.

62.2.1 K,3 Decays
Analyses of K3 data frequently assume a linear dependence of f and f_ on t, i.e.,

Fet) = f2(0) [T+ Aa(t/m2,)] - (62.7)

Most K3 data are adequately described by formula 62.7 for fi and a constant f_ (i.e., \_ = 0).
There are two equivalent parametrizations commonly used in these analyses: \;, £(0) parametriza-
tion and A4, Ao parametrization.
Older analyses of K3 data often introduce the ratio of the two form factors

S0 = F-(O/F+(1) - (62.8)

The K3 decay distribution is then described by the two parameters A and £(0) (assuming time
reversal invariance and A_ = 0).

More recent K3 analyses have parametrized in terms of the form factors fi and fy, which are
associated with vector and scalar exchange, respectively, to the lepton pair. fy is related to fi and

f- by
folt) = fu(t) + [t/ mi —m2)] f-(8) . (62.9)

Here fo(0) must equal fi(0). The earlier assumption that f is linear in ¢t and f_ is constant leads
to fo linear in ¢:

fo(t) = fo(0) [1+ No(t/m2,)] - (62.10)

With the assumption that fy(0) = f4(0), the two parametrizations, (Ay,£(0)) and (A4, \g) are
equivalent as long as correlation information is retained. (A;,\g) correlations tend to be less
strong than (A4, £(0)) correlations.

Since the 2006 edition of the Review [19], we no longer quote results in the (A1, {(0)) parametriza-
tion. We have removed many older low statistics results from the Listings. See the 2004 version of
this note [20] for these older results, and the 1982 version [21] for additional discussion of the K}
parameters, correlations, and conversion between parametrizations.
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More recent high-statistics experiments have included a quadratic term in the expansion of
f+(t)7

"

Fo(t) = £o(0) |14 Xy (t/m2) + 5 a/m2, 2 (62.11)

If there is a non-vanishing quadratic term, then A; of formula 62.7 represents the average slope,
which is then different from X+. Our convention is to include the factor % in the quadratic term,
and to use m,+ even for K ;g and K:[?) decays. We have converted other’s parametrizations to
match our conventions, as noted in the beginning of the “K 25) and Kgg Form Factors" sections of
the Listings.

There are two alternatives to the Taylor parametrization: The Pole Parametrization and Dis-
persive Parametrization.

The pole model describes the t-dependence of f4(t) and fy(t) in terms of the exchange of the
lightest vector and scalar K* mesons with masses My and Mg, respectively:

My
ME —t

f+<t>=f+<o>[ ] , fo(t)Zfo(O)l Mg ] | (62.12)

2
M2 —t

The Dispersive Parametrization approach, valid in a much wider kinematic range and able to
describe at the same time 7-decay data, [22] uses dispersive techniques and the known low-energy
K- phases to parametrize the vector and scalar form factors:

F1(0) = £4(0) exp | (4 + HD)|; (62.13)
folt) = £1.(0) exp tht_m) (in[C] - G(t))] , (62.14)

where A4 is the slope of the vector form factor, and In C' = In [fo(m% — m2)] is the logarithm of
the scalar form factor at the Callan-Treiman point. The functions H(t) and G(t) are dispersive
integrals.

62.2.2 K.3 Decays
Analysis of K.3 data is simpler than that of K3 because the second term of the matrix element
assuming a pure vector current [formula 62.6 above| can be neglected. Here fi can be assumed to
be linear in ¢, in which case the linear coefficient A} of formula 62.7 is determined, or quadratic, in
which case the linear coeflicient /\/Jr and quadratic coefficient /\i of formula 62.11 are determined.
If we remove the assumption of a pure vector current, then the matrix element for the decay,
in addition to the terms in formula 62.6, would contain

+2my fs (14 y5)v
+(2fT/mK)(PK>/\(P7r);LZUAu(l+'75)V s (6215)

where fg is the scalar form factor, and fp is the tensor form factor. In the case of the K .3 decays
where the f_ term can be neglected, experiments have yielded limits on |fs/fy| and |fr/f+|.

For K3 data, we determine best values for the three parametrizations: linear (Ay), quadratic
(A}, \}) and pole (My). For K3 data, we determine best values for the three parametrizations:
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linear (A4, Ag), quadratic ()\/Jr, )\lfr, o) and pole (My, Mg). We then assume p — e universality so
that we can combine K.3 and K3 data, and again determine best values for the three parametriza-
tions: linear (A4, A\g), quadratic (/\:w)‘:w o), and pole (My, Mg). When there is more than one
parameter, fits are done including input correlations. Simple averages suffice in the two K3 cases
where there is only one parameter: linear (A;) and pole (My ).

A comprehensive global analysis of the semileptonic kaon decay data and its effect on the CKM
unitarity debate can be found in [23,24]. An update on experimental data including NA48/2 newest
results can be found in [25].

Both KTeV and KLOE see an improvement in the quality of their fits relative to linear fits when
a quadratic term is introduced, as well as when the pole parametrization is used. The quadratic
parametrization has the disadvantage that the quadratic parameter )\ZF is highly correlated with
the linear parameter )\/Jr, in the neighborhood of 95%, and that neither parameter is very well deter-
mined. The pole fit has the same number of parameters as the linear fit, but yields slightly better fit
probabilities, so that it would be advisable for all experiments to include the pole parametrization
as one of their choices.

The “Kaon Particle Listings" show the results with and without assuming u-e universality. The
“Meson Summary Tables" show all of the results assuming p-e universality, but most results not
assuming u-e universality are given only in the Listings.
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