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49. Kinematics

Reviewed August 2021 by D. Miller (Glasgow), D.R. Tovey (Sheffield), written January 2000 by
J.D. Jackson (LBNL).

Throughout this section units are used in which ~ = c = 1. The following conversions are useful:
~c = 197.3 MeV fm, (~c)2 = 0.3894 (GeV)2 mb.

49.1 Lorentz transformations
The energy E and 3-momentum p of a particle of mass m form a 4-vector p = (E,p) whose

square p2 ≡ E2 − |p|2 = m2. The velocity of the particle is β = p/E. The energy and momentum
(E∗,p∗) viewed from a frame moving with velocity βf are given by(

E∗

p∗‖

)
=
(

γf −γfβf
−γfβf γf

)(
E
p‖

)
, p∗

T
= pT , (49.1)

where γf = (1−β2
f )−1/2 and pT (p‖) are the components of p perpendicular (parallel) to βf . Other

4-vectors, such as the space-time coordinates of events, of course transform in the same way. The
scalar product of two 4-momenta p1 · p2 = E1E2 − p1 · p2 is invariant (frame independent).

49.2 Center-of-mass energy and momentum
In the collision of two particles of masses m1 and m2 the total center-of-mass energy can be

expressed in the Lorentz-invariant form

Ecm =
[
(E1 + E2)2 − (p1 + p2)2

]1/2
,

=
[
m2

1 +m2
2 + 2E1E2(1− β1β2 cos θ)

]1/2
,

(49.2)

where θ is the angle between the particles. In the frame where one particle (of mass m2) is at rest
(lab frame),

Ecm = (m2
1 +m2

2 + 2E1 labm2)1/2 . (49.3)

The velocity of the center-of-mass in the lab frame is

βcm = plab/(E1 lab +m2) , (49.4)

where plab ≡ p1 lab and
γcm = (E1 lab +m2)/Ecm . (49.5)

The c.m. momenta of particles 1 and 2 are of magnitude

pcm = plab
m2
Ecm

. (49.6)

For example, if a 0.80 GeV/c kaon beam is incident on a proton target, the center of mass energy
is 1.699 GeV and the center of mass momentum of either particle is 0.442 GeV/c. It is also useful
to note that

Ecm dEcm = m2 dE1 lab = m2 β1 lab dplab . (49.7)
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49.3 Lorentz-invariant amplitudes
The matrix elements for a scattering or decay process are written in terms of an invariant

amplitude −iM . As an example, the S-matrix for 2→ 2 scattering is related to M by

〈p′1p′2 |S − 1| p1p2〉 = i(2π)4 δ4(p1 + p2 − p′1 − p′2)M (p1, p2; p′1, p′2) . (49.8)

The state normalization is such that

〈p′|p〉 = (2π)3 2Ep δ3(p′ − p) , (49.9)

with Ep =
√
p2 +m2.

For a 2 → 2 scattering process producing unstable particles 1′ and 2′ decaying via 1′ → 3′4′
and 2′ → 5′6′ the matrix element for the complete process can be written in the narrow width
approximation as:

M (12→ 3′4′5′6′) =
∑

h1′ ,h2′

M (12→ 1′2′)M (1′ → 3′4′)M (2′ → 5′6′)
(m2

3′4′ −m2
1′ + im1′Γ1′)(m2

5′6′ −m2
2′ + im2′Γ2′)

. (49.10)

Here, mij is the invariant mass of particles i and j, mk and Γk are the mass and total width of
particle k, and the sum runs over the helicities of the intermediate particles. This enables the cross
section for such a process to be written as the product of the cross section for the initial 2 → 2
scattering process with the branching ratios (relative partial decay rates) of the subsequent decays.
A more sophisticated treatment, beyond the narrow width approximation, can be found in the
review on "Resonances".

49.4 Particle decays
The partial decay rate of a particle of mass M into n bodies in its rest frame is given in terms

of the Lorentz-invariant matrix element M by

dΓ = (2π)4

2M |M |2 dΦn (P ; p1, . . . , pn), (49.11)

where dΦn is an element of n-body phase space given by

dΦn(P ; p1, . . . , pn) = δ4 (P −
n∑
i=1

pi)
n∏
i=1

d3pi
(2π)32Ei

. (49.12)

This phase space is reduced by combinatoric factors whenever there are identical particles in the
final state. The phase space can be generated recursively, viz.

dΦn(P ; p1, . . . , pn) = dΦj(q; p1, . . . , pj)
× dΦn−j+1 (P ; q, pj+1, . . . , pn)(2π)3dq2 , (49.13)

where q2 = (
∑j
i=1Ei)2 −

∣∣∣∑j
i=1 pi

∣∣∣2. This form is particularly useful in the case where a particle
decays into another particle that subsequently decays.
49.4.1 Survival probability

If a particle of mass M has mean proper lifetime τ (= 1/Γ) and has momentum (E,p), then
the probability that it lives for a time t0 or greater before decaying is given by

P (t0) = e−t0 Γ/γ = e−Mt0 Γ/E , (49.14)

and the probability that it travels a distance x0 or greater is

P (x0) = e−Mx0 Γ/|p| . (49.15)
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Figure 49.1: Definitions of variables for two-body decays.

49.4.2 Two-body decays
In the rest frame of a particle of mass M , decaying into 2 particles labeled 1 and 2,

E1 = M2 −m2
2 +m2

1
2M , (49.16)

|p1| = |p2| =
1

2M

√
λ(M2,m2

1,m
2
2) , (49.17)

and
dΓ = 1

32π2 |M |
2 |p1|
M2 dΩ , (49.18)

where λ(α, β, γ) = α2 + β2 + γ2 − 2αβ − 2αγ − 2βγ is the Källén function and dΩ = dφ1d(cos θ1)
is the solid angle of particle 1. The invariant mass M can be determined from the energies and
momenta using Eq. (49.2) with M = Ecm.
49.4.3 Three-body decays
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Figure 49.2: Definitions of variables for three-body decays.

Defining pij = pi + pj and m2
ij = p2

ij , then m2
12 +m2

23 +m2
13 = M2 +m2

1 +m2
2 +m2

3 and m2
12 =

(P − p3)2 = M2 +m2
3− 2ME3, where E3 is the energy of particle 3 in the rest frame of M . In that

frame, the momenta of the three decay particles lie in a plane. The relative orientation of these
three momenta is fixed if their energies are known. The momenta can therefore be specified in
space by giving three Euler angles (α, β, γ) that specify the orientation of the final system relative
to the initial particle. The direction of any one of the particles relative to the frame in which the
initial particle is described can be specified in space by two angles (α, β) while a third angle, γ, can
be set as the azimuthal angle of a second particle around the first [1]. Then

dΓ = 1
(2π)5

1
16M |M |2 dE1 dE3 dα d(cosβ) dγ . (49.19)

Alternatively
dΓ = 1

(2π)5
1

16M2 |M |
2 |p∗1| |p3| dm12 dΩ∗1 dΩ3 , (49.20)
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where (|p∗1|, Ω∗1) is the momentum of particle 1 in the rest frame of 1 and 2, and Ω3 is the angle of
particle 3 in the rest frame of the decaying particle. |p∗1| and |p3| are given by

|p∗1| =
1

2m12

√
λ(m2

12,m
2
1,m

2
2) , (49.21a)

and

|p3| =
1

2M

√
λ(M2,m2

12,m
2
3) . (49.21b)

[Compare with Eq. (49.17).]
If the decaying particle is a scalar, or we average over its spin states, then integration over the

angles in Eq. (49.19) gives

dΓ = 1
(2π)3

1
8M |M |2 dE1 dE3

= 1
(2π)3

1
32M3 |M |

2 dm2
12 dm

2
23 . (49.22)

This is the standard form for the Dalitz plot.
49.4.3.1 Dalitz plot

For a given value of m2
12, the range of m2

23 is determined by its values when p2 is parallel or
antiparallel to p3:

(m2
23)max =(E∗2 + E∗3)2 −

(√
E∗22 −m2

2 −
√
E∗23 −m2

3

)2
, (49.23a)

(m2
23)min =(E∗2 + E∗3)2 −

(√
E∗22 −m2

2 +
√
E∗23 −m2

3

)2
. (49.23b)

Here E∗2 = (m2
12 −m2

1 +m2
2)/2m12 and E∗3 = (M2−m2

12−m2
3)/2m12 are the energies of particles 2

and 3 in the m12 rest frame. The scatter plot in m2
12 and m2

23 is called a Dalitz plot. If |M |2 is
constant, the allowed region of the plot will be uniformly populated with events [see Eq. (49.22)].
A nonuniformity in the plot gives immediate information on |M |2. For example, in the case of
D → Kππ, bands appear when m(Kπ) = mK∗(892), reflecting the appearance of the decay chain
D → K∗(892)π → Kππ.
49.4.4 Kinematic limits
49.4.4.1 Three-body decays

In a three-body decay (Fig. 49.2) the maximum of |p3|, [given by Eq. (49.21)], is achieved when
m12 = m1 + m2, i.e., particles 1 and 2 have the same vector velocity in the rest frame of the
decaying particle. If, in addition, m3 > m1,m2, then |p3 |max > |p1 |max, |p2 |max. The distribution
of m12 values possesses an end-point or maximum value at m12 = M −m3. This can be used to
constrain the mass difference of a parent particle and one invisible decay product.
49.4.4.2 Sequential two-body decays

When a heavy particle initiates a sequential chain of two-body decays terminating in an invisible
particle, constraints on the masses of the states participating in the chain can be obtained from
end-points and thresholds in invariant mass distributions of the aggregated decay products. For
the two-step decay chain depicted in Fig. 49.4 the invariant mass distribution of the two visible
particles possesses an end-point given by:

(mmax
12 )2 = (m2

c −m2
b)(m2

b −m2
a)

m2
b

, (49.24)
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Figure 49.3: Dalitz plot for a three-body final state. In this example, the state is π+K0p at
3 GeV. Four-momentum conservation restricts events to the shaded region.

bc a

2 1

Figure 49.4: Particles participating in sequential two-body decay chain. Particles labeled 1 and
2 are visible while the particle terminating the chain (a) is invisible.

provided particles 1 and 2 are massless. If visible particle 1 has non-zero mass m1 then Eq. (49.24)
is replaced by

(mmax
12 )2 = m2

1 + (m2
c −m2

b)
2m2

b
×(

m2
1 +m2

b −m2
a +

√
(−m2

1 +m2
b −m2

a)2 − 4m2
1m

2
a

)
. (49.25)

See Refs. [2] and [3] for other cases.
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49.4.5 Multibody decays
The above results may be generalized to final states containing any number of particles by

combining some of the particles into “effective particles” and treating the final states as 2 or 3
“effective particle” states. Thus, if pijk... = pi + pj + pk + . . ., then

mijk... =
√
p2
ijk... , (49.26)

and mijk... may be used in place of e.g., m12 in the relations in Sec. 49.4.3 or Sec. 49.4.4 above.

49.5 Cross sections
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Figure 49.5: Definitions of variables for production of an n-body final state.

The differential cross section is given by

dσ = (2π)4|M |2

4
√

(p1 · p2)2 −m2
1m

2
2

× dΦn(p1 + p2; p3, . . . , pn+2) . (49.27)

[See Eq. (49.12).] In the rest frame of m2(lab),√
(p1 · p2)2 −m2

1m
2
2 = m2p1 lab; (49.28a)

while in the center-of-mass frame

√
(p1 · p2)2 −m2

1m
2
2 = p1cm

√
s . (49.28b)

49.5.1 Two-body reactions

p
1
, m

1

p
2
, m

2

p
3
, m

3

p
4
, m

4

Figure 49.6: Definitions of variables for a two-body final state.

Two particles of momenta p1 and p2 and masses m1 and m2 scatter to particles of momenta p3 and
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p4 and masses m3 and m4; the Lorentz-invariant Mandelstam variables are defined by

s = (p1 + p2)2 = (p3 + p4)2

= m2
1 + 2E1E2 − 2p1 · p2 +m2

2 , (49.29)
t = (p1 − p3)2 = (p2 − p4)2

= m2
1 − 2E1E3 + 2p1 · p3 +m2

3 , (49.30)
u = (p1 − p4)2 = (p2 − p3)2

= m2
1 − 2E1E4 + 2p1 · p4 +m2

4 , (49.31)

and they satisfy
s+ t+ u = m2

1 +m2
2 +m2

3 +m2
4 . (49.32)

The two-body cross section may be written as

dσ

dt
= 1

64πs
1

|p1cm|2
|M |2 . (49.33)

In the center-of-mass frame

t = (E1cm − E3cm)2 − (p1cm − p3cm)2 − 4p1cm p3cm sin2(θcm/2)
= t0 − 4p1cm p3cm sin2(θcm/2) , (49.34)

where θcm is the angle between particle 1 and 3. The limiting values t0 (θcm = 0) and t1 (θcm = π)
for 2→ 2 scattering are

t0(t1) =
[
m2

1 −m2
3 −m2

2 +m2
4

2
√
s

]2

− (p1 cm ∓ p3 cm)2 . (49.35)

In the literature the notation tmin (tmax) for t0 (t1) is sometimes used, which should be discouraged
since t0 > t1. The center-of-mass energies and momenta of the incoming particles are

E1cm = s+m2
1 −m2

2
2
√
s

, E2cm = s+m2
2 −m2

1
2
√
s

, (49.36)

For E3cm and E4cm, change m1 to m3 and m2 to m4. Then

pi cm =
√
E2
i cm −m2

i and p1cm = p1 lab m2√
s

. (49.37)

Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations see
Eqs. (49.2)–(49.4).]
49.5.2 Inclusive reactions

Choose some direction (usually the beam direction) for the z-axis; then the energy and momen-
tum of a particle can be written as

E = mT cosh y , px , py , pz = mT sinh y , (49.38)

where mT , conventionally called the ‘transverse mass’, is given by

m2
T

= m2 + p2
x + p2

y . (49.39)
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and the rapidity y is defined by

y = 1
2 ln

(
E + pz
E − pz

)
= ln

(
E + pz
mT

)
= tanh−1

(
pz
E

)
. (49.40)

Note that the definition of the transverse mass in Eq. (49.39) differs from that used by experimen-
talists at hadron colliders (see Sec. 49.6.1 below). Under a boost in the z-direction to a frame with
velocity β, y → y − tanh−1 β. Hence, the shape of the rapidity distribution dN/dy is invariant, as
are differences in rapidity. The invariant cross section may also be rewritten

E
d3σ

d3p
= d3σ

dφ dy pT dpT

=⇒ d2σ

π dy d(p2
T

) . (49.41)

The second form is obtained using the identity dy/dpz = 1/E, and the third form represents the
average over φ.

Feynman’s x variable is given by

x = pz
pzmax

≈ E + pz
(E + pz)max

(pT � |pz|) . (49.42)

In the c.m. frame,

x ≈ 2pz cm√
s

= 2mT sinh ycm√
s

(49.43)

and

= (ycm)max = ln(
√
s/m) . (49.44)

The invariant mass M of the two-particle system described in Sec. 49.4.2 can be written in terms
of these variables as

M2 = m2
1 +m2

2 + 2[ET (1)ET (2) cosh∆y − pT (1) · pT (2)] , (49.45)

where
ET (i) =

√
|pT (i)|2 +m2

i , (49.46)

and pT (i) denotes the transverse momentum vector of particle i.
For p� m, the rapidity [Eq. (49.40)] may be expanded to obtain

y = 1
2 ln cos2(θ/2) +m2/4p2 + . . .

sin2(θ/2) +m2/4p2 + . . .

≈ − ln tan(θ/2) ≡ η (49.47)

where cos θ = pz/p. The pseudorapidity η defined by the second line is approximately equal to the
rapidity y for p� m and θ � 1/γ, and in any case can be measured when the mass and momentum
of the particle are unknown. From the definition one can obtain the identities

sinh η = cot θ , cosh η = 1/ sin θ , tanh η = cos θ . (49.48)
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49.6 Transverse variables
At hadron colliders, a significant and unknown proportion of the energy of the incoming hadrons

in each event escapes down the beam-pipe. Consequently, if invisible particles are created in the
final state, their net momentum can only be constrained in the plane transverse to the beam
direction. Defining the z-axis as the beam direction, this net momentum is equal to the missing
transverse energy vector

Emiss
T = −

∑
i

pT (i) , (49.49)

where the sum runs over the transverse momenta of all visible final state particles.
49.6.1 Single production with semi-invisible final state

Consider a single heavy particle of mass M produced in association with visible particles which
decays as in Fig. 49.1 to two particles, of which one (labeled particle 1) is invisible. The mass of
the parent particle can be constrained with the quantity MT defined by

M2
T ≡ [ET (1) + ET (2)]2 − [pT (1) + pT (2)]2

= m2
1 +m2

2 + 2[ET (1)ET (2)− pT (1) · pT (2)] ,
(49.50)

where
pT (1) = Emiss

T . (49.51)

This quantity is called the ‘transverse mass’ by hadron collider experimentalists but it should be
noted that it is quite different from that used in the description of inclusive reactions [Eq. (49.39)].
The distribution of event MT values possesses an end-point at Mmax

T = M . If m1 = m2 = 0 then

M2
T = 2|pT (1)||pT (2)|(1− cosφ12) , (49.52)

where φij is defined as the angle between particles i and j in the transverse plane.
49.6.2 Pair production with semi-invisible final states

p
11

, mp
44

, mp

, mp

3 1

22

, m

M M

Figure 49.7: Definitions of variables for pair production of semi-invisible final states. Particles 1
and 3 are invisible while particles 2 and 4 are visible.

Consider two identical heavy particles of mass M produced such that their combined center-of-
mass is at rest in the transverse plane (Fig. 49.7). Each particle decays to a final state consisting
of an invisible particle of fixed mass m1 together with an additional visible particle. M and m1
can be constrained with the variables MT2 and MCT which are defined in Refs. [4] and [5].
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