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49. Kinematics

Reviewed August 2021 by D. Miller (Glasgow), D.R. Tovey (Sheffield), written January 2000 by
J.D. Jackson (LBNL).

Throughout this section units are used in which 2 = ¢ = 1. The following conversions are useful:
hc = 197.3 MeV fm, (hc)? = 0.3894 (GeV)? mb.

49.1 Lorentz transformations

The energy E and 3-momentum p of a particle of mass m form a 4-vector p = (F,p) whose
square p? = E? — |p|?> = m?. The velocity of the particle is 8 = p/E. The energy and momentum
(E*,p*) viewed from a frame moving with velocity B are given by

E* — ’Yf _7f6f> <E> * 49.1
)= (2, () e (a0.1)

where 5 = (1— 6]2@)*1/2 and p,. (p|) are the components of p perpendicular (parallel) to B;. Other
4-vectors, such as the space-time coordinates of events, of course transform in the same way. The
scalar product of two 4-momenta p; - po = E1Es — p; - py is invariant (frame independent).

49.2 Center-of-mass energy and momentum
In the collision of two particles of masses mq and ms the total center-of-mass energy can be
expressed in the Lorentz-invariant form

1/2
Ecm = [(El + E2)2 - (pl +p2>2} ’

9 9 1/2
= [ml +m5 + 2E1E2<1 — 6152 CcOs 9)] ,
(49.2)

where 6 is the angle between the particles. In the frame where one particle (of mass mg) is at rest
(lab frame),

Eem = (m} + m3 + 2E1 10 m2) "/ . (49.3)

The velocity of the center-of-mass in the lab frame is

ch = plab/(El lab + m2) 5 (494)

where py,;, = Py, and
Yem = (El lab + mQ)/Ecm . (49.5)

The c.m. momenta of particles 1 and 2 are of magnitude

ma

Pcm = Plab o . (496)

For example, if a 0.80 GeV/c kaon beam is incident on a proton target, the center of mass energy
is 1.699 GeV and the center of mass momentum of either particle is 0.442 GeV/c. It is also useful
to note that

Eem dEem = ma dFEq1a, = Mo Bl lab AP1ab - (497)
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49.3 Lorentz-invariant amplitudes
The matrix elements for a scattering or decay process are written in terms of an invariant
amplitude —i.#. As an example, the S-matrix for 2 — 2 scattering is related to .# by
(P15 |S — 1] pap2) = i(2m)* 6*(p1 + p2 — ph — Pb)# (p1, p2; P, Ph) - (49.8)

The state normalization is such that
(P'lp) = (27)°2E, 6°(p' — p) , (49.9)

with E, = /p? + m?2.
For a 2 — 2 scattering process producing unstable particles 1’ and 2’ decaying via 1’ — 3/4’
and 2 — 5’6’ the matrix element for the complete process can be written in the narrow width
approximation as:
(12— 12t (1 — 3'4). (2 — 56
(M3 —mi, + imy L) (mg,e —mi, +imaTa)

AM(12 — 3456 = >

hqr by

(49.10)

Here, m;; is the invariant mass of particles i and j, m; and I';, are the mass and total width of
particle k, and the sum runs over the helicities of the intermediate particles. This enables the cross
section for such a process to be written as the product of the cross section for the initial 2 — 2
scattering process with the branching ratios (relative partial decay rates) of the subsequent decays.
A more sophisticated treatment, beyond the narrow width approximation, can be found in the
review on "'Resonances".

49.4 Particle decays
The partial decay rate of a particle of mass M into n bodies in its rest frame is given in terms
of the Lorentz-invariant matrix element .# by

dl' = @) ! .4 ? dD,, (P; ) (49.11)
IM n y P1y -+ Pn)s .
where d®,, is an element of n-body phase space given by

n

- d*pi
d®,(P; p1, ..., pp) = 6% (P — Zpl) H o=yl (49.12)
i=1 =1

This phase space is reduced by combinatoric factors whenever there are identical particles in the
final state. The phase space can be generated recursively, viz.

d®,(P; p1, ..., pn) = d®;(q; p1, ..., Dj)
X d®n_ji1 (P ¢, pjs1, - -, pn)(27)3dg” (49.13)

. 2
where ¢ = ( ) E;)? — ’ ) pi‘ . This form is particularly useful in the case where a particle
decays into another particle that subsequently decays.

49.4.1 Survival probability
If a particle of mass M has mean proper lifetime 7 (= 1/T") and has momentum (F,p), then
the probability that it lives for a time ty or greater before decaying is given by

P(tg) = e 0 T/7 = "M T/E (49.14)
and the probability that it travels a distance xg or greater is

P(xq) = e~ Mo I/lpl (49.15)
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p{,my
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Figure 49.1: Definitions of variables for two-body decays.

49.4.2 Two-body decays
In the rest frame of a particle of mass M, decaying into 2 particles labeled 1 and 2,

M? —m2 +m?

By = Wi ; (49.16)
1
lp1l = po| = M (M2, mi, m3) , (49.17)
and X

where Ao, 3,7) = o + B2 + 72 — 2a8 — 2ay — 237 is the Kéllén function and dQ = d¢yd(cos 1)
is the solid angle of particle 1. The invariant mass M can be determined from the energies and
momenta using Eq. (49.2) with M = Eqp,.

49.4.3 Three-body decays

p17 m]_
P,M Py, My

Pg, Mg

Figure 49.2: Definitions of variables for three-body decays.
Defining p;; = p; + p; and m?j = p?j, then m3y + m3; + mis = M% 4+ m? +m3 + m3 and mi, =
(P —p3)? = M? +m2 —2M E3, where Fj3 is the energy of particle 3 in the rest frame of M. In that
frame, the momenta of the three decay particles lie in a plane. The relative orientation of these
three momenta is fixed if their energies are known. The momenta can therefore be specified in
space by giving three Euler angles (a, 3,) that specify the orientation of the final system relative
to the initial particle. The direction of any one of the particles relative to the frame in which the
initial particle is described can be specified in space by two angles («, 8) while a third angle, v, can
be set as the azimuthal angle of a second particle around the first [1]. Then

1 1

= @n)5 160 | #|? dEy dFs do d(cos () dry . (49.19)
Alternatively
1 1 . .
I = @) 1602 |.#)? |p| |ps| dmaz dXf dQ (49.20)
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where (|p7|, ©F) is the momentum of particle 1 in the rest frame of 1 and 2, and Q3 is the angle of
particle 3 in the rest frame of the decaying particle. |p}| and |ps| are given by

" 1
Ip1| = m\/A(m%zam%am%) ; (49.21a)

and

1
Ip3| = m\/k(M%m?g,m@ : (49.21b)

[Compare with Eq. (49.17).]
If the decaying particle is a scalar, or we average over its spin states, then integration over the
angles in Eq. (49.19) gives

11
Gmiaar 41 4B dBs

11
= @ 3 |12 dm?, dm3s . (49.22)

This is the standard form for the Dalitz plot.

49.4.3.1 Dalitz plot
For a given value of m?2,, the range of m3; is determined by its values when p, is parallel or
antiparallel to ps:

dl’ =

2
(13 o (5 + B3 = (\/B5? — i — B~ m3) (19.23)

2
(35 oin =5 + B5)? — (VB = mi B — i) (19.23b)

Here E5 = (m?y — m? +m3)/2mi2 and Ej = (M? —m?2, —m2)/2m1 are the energies of particles 2
and 3 in the mio rest frame. The scatter plot in m3, and m3; is called a Dalitz plot. If [.Z|? is
constant, the allowed region of the plot will be uniformly populated with events [see Eq. (49.22)].
A nonuniformity in the plot gives immediate information on |.#|?. For example, in the case of
D — Knm, bands appear when m ) = mp(sg2), reflecting the appearance of the decay chain
D — K*(892)r — Kr.

49.4.4 Kinematic limits
49.4.4.1 Three-body decays

In a three-body decay (Fig. 49.2) the maximum of |ps|, [given by Eq. (49.21)], is achieved when
mio = mp + mg, t.e., particles 1 and 2 have the same vector velocity in the rest frame of the
decaying particle. If, in addition, m3 > m1, ma, then |p,|max > |P, lmax; |P,|max- The distribution
of myo values possesses an end-point or maximum value at mio = M — mg. This can be used to
constrain the mass difference of a parent particle and one invisible decay product.

49.4.4.2 Sequential two-body decays

When a heavy particle initiates a sequential chain of two-body decays terminating in an invisible
particle, constraints on the masses of the states participating in the chain can be obtained from
end-points and thresholds in invariant mass distributions of the aggregated decay products. For
the two-step decay chain depicted in Fig. 49.4 the invariant mass distribution of the two visible
particles possesses an end-point given by:

(m& —mi)(mi —m3)

max

(m13 )2 =

: (49.24)
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Figure 49.3: Dalitz plot for a three-body final state. In this example, the state is 7+ K% at
3 GeV. Four-momentum conservation restricts events to the shaded region.

Cc b a

Figure 49.4: Particles participating in sequential two-body decay chain. Particles labeled 1 and
2 are visible while the particle terminating the chain (a) is invisible.

provided particles 1 and 2 are massless. If visible particle 1 has non-zero mass m; then Eq. (49.24)
is replaced by

2 .9
(mrﬁax)Q — m% + (mc ZTn’b) %
2mj;
(m% + m% — mz + \/(—m% + m% —m2)? — 4m%m§) ) (49.25)

See Refs. [2] and [3] for other cases.
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49.4.5 Multibody decays

The above results may be generalized to final states containing any number of particles by
combining some of the particles into “effective particles” and treating the final states as 2 or 3
“effective particle” states. Thus, if p;jr... = p; +pj +pi + ..., then

Mijk... = \/injk..A ) (49'26)

and m;;i... may be used in place of e.g., mi2 in the relations in Sec. 49.4.3 or Sec. 49.4.4 above.

49.5 Cross sections

| SERUST D3 mg

P, My Ppi2s M2

Figure 49.5: Definitions of variables for production of an n-body final state.

The differential cross section is given by

9 4 2
PR
1/ (p1 - p2)? — mim3
X d®n(p1 + p2; p3s - s Pnt2) - (49.27)

[See Eq. (49.12).] In the rest frame of ma(lab),

\/(pl - p2)? — mm3 = mapi 1ab; (49.284a)
while in the center-of-mass frame
\/(Pl - p2)? — mim3 = premv/s . (49.28b)
49.5.1 Two-body reactions
Py, My Ppg, mg
Pg, My Py My

Figure 49.6: Definitions of variables for a two-body final state.
Two particles of momenta p; and py and masses mq and mg scatter to particles of momenta ps and
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p4 and masses mgz and my; the Lorentz-invariant Mandelstam variables are defined by

s = (p +p2)2 = (p3 +p4)2

=m? +2F Ey — 2p, - py +m3 , (49.29)
t=(p1 —p3)* = (p2 — pa)?
=m? —2F B3 + 2p; - p3 +m3 , (49.30)
U= (pl —p4)2 = (p2 —p3)2
=mi — 2E1Ey +2py - py +mj (49.31)
and they satisfy
s+t+u=mi+mj+mj+m]. (49.32)
The two-body cross section may be written as
do 1 1
— = — |#)? . 49.33
dt  647s |Piem|? || ( )
In the center-of-mass frame
t= (Elcm - -ESCm)2 - (plcm - p3cm)2 - 4plcm P3cm Sin2(ecm/2)
=10 — 4P1em P3em Sin(Oem/2) (49.34)

where 0y, is the angle between particle 1 and 3. The limiting values ty (fcry = 0) and t1 (O = 7)
for 2 — 2 scattering are

m%—m%—m%—i—mi

to(tl) = 2\/5 - (plcm :Fp3cm)2 . (49'35)

In the literature the notation tyin (tmax) for to (¢1) is sometimes used, which should be discouraged
since tg > t1. The center-of-mass energies and momenta of the incoming particles are
s +m3 —m3 s +m3 —m}

N N

For Fscn, and Egcnm, change my to ms and mg to my4. Then

m
Piem = \/ B}y — M7 and prem = Z)IL\/EQ : (49.37)

Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations see
Egs. (49.2)-(49.4).]

2

Elcm = E2crn = (4936)

49.5.2 Inclusive reactions
Choose some direction (usually the beam direction) for the z-axis; then the energy and momen-
tum of a particle can be written as

E =mjcoshy, py, py, p. =m,sinhy, (49.38)

where m,,, conventionally called the ‘transverse mass’, is given by

2 _
=

m2 =m®+ p. +p, . (49.39)
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and the rapidity y is defined by

1y (E+Pz)
y_2 E_pz

E +pz) 1 (pz>
=1 = tanh - . 49.40
" ( m o E ( )

T

Note that the definition of the transverse mass in Eq. (49.39) differs from that used by experimen-
talists at hadron colliders (see Sec. 49.6.1 below). Under a boost in the z-direction to a frame with
velocity f3, y — y — tanh™! 3. Hence, the shape of the rapidity distribution dN /dy is invariant, as
are differences in rapidity. The invariant cross section may also be rewritten

dgia B d3o . d%o
dp  dédyp,dp, mdyd(p2)

(49.41)

The second form is obtained using the identity dy/dp, = 1/E, and the third form represents the
average over ¢.
Feynman’s x variable is given by

Pz E+ Dz
Prmax  (E + Dz)max

T = (pr < |p2]) - (49.42)

In the c.m. frame,

_2pzem  2mysinhyem

T = = NG (49.43)

and

= (Yem)max = In(v/s/m) . (49.44)

The invariant mass M of the two-particle system described in Sec. 49.4.2 can be written in terms
of these variables as

M? = m? 4 m} + 2[Er(1) Er(2) cosh Ay — pr(1) - pr(2)] , (49.45)

Er(i) = \/lpr(i)]* + m7 , (49.46)

and pp(i) denotes the transverse momentum vector of particle i.
For p > m, the rapidity [Eq. (49.40)] may be expanded to obtain

where

B lln cos?(0/2) + m?/4p? + ...
Y73 sin?(0/2) + m2/4p? + . ..

~ —In tan(0/2) =n (49.47)

where cos = p,/p. The pseudorapidity 1 defined by the second line is approximately equal to the
rapidity y for p > m and 6 > 1/, and in any case can be measured when the mass and momentum
of the particle are unknown. From the definition one can obtain the identities

sinhn =cotf , coshn=1/sinf , tanhn = cosf . (49.48)
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49.6 Transverse variables

At hadron colliders, a significant and unknown proportion of the energy of the incoming hadrons
in each event escapes down the beam-pipe. Consequently, if invisible particles are created in the
final state, their net momentum can only be constrained in the plane transverse to the beam
direction. Defining the z-axis as the beam direction, this net momentum is equal to the missing
transverse energy vector

B =~ pr(i) (49.49)

where the sum runs over the transverse momenta of all visible final state particles.

49.6.1 Single production with semi-invisible final state

Consider a single heavy particle of mass M produced in association with visible particles which
decays as in Fig. 49.1 to two particles, of which one (labeled particle 1) is invisible. The mass of
the parent particle can be constrained with the quantity My defined by

Mj = [Er(1) + Er(2)]* = [pr(1) + pr(2))?
= mi +mj + 2[Er(1)Er(2) — pr(1) - pr(2)]
(49.50)
where '
pr(1) = Ef™ . (49.51)

This quantity is called the ‘transverse mass’ by hadron collider experimentalists but it should be
noted that it is quite different from that used in the description of inclusive reactions [Eq. (49.39)].
The distribution of event Mr values possesses an end-point at M7F** = M. If m; = mg = 0 then

M7 = 2|pr(1)[[pr(2)|(1 — cos ¢12) , (49.52)

where ¢;; is defined as the angle between particles 7 and j in the transverse plane.

49.6.2 Pair production with semi-invisible final states

pl)ml p3’m1

p21 mz p4’m4

Figure 49.7: Definitions of variables for pair production of semi-invisible final states. Particles 1
and 3 are invisible while particles 2 and 4 are visible.

Consider two identical heavy particles of mass M produced such that their combined center-of-
mass is at rest in the transverse plane (Fig. 49.7). Each particle decays to a final state consisting
of an invisible particle of fixed mass m; together with an additional visible particle. M and mq
can be constrained with the variables Mro and Mcr which are defined in Refs. [4] and [5].
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