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Many physical processes considered in the Review of Particle Properties (RPP) involve hadrons.
The properties of hadrons—which are composed of quarks and gluons—are governed primarily
by Quantum Chromodynamics (QCD) (with small corrections from Quantum Electrodynamics
[QED]). Theoretical calculations of these properties require non-perturbative methods, and Lattice
Quantum Chromodynamics (LQCD) is a tool to carry out such calculations. It has been success-
fully applied to many properties of hadrons. Most important for the RPP are the calculation of
electroweak decay constants and form factors, which are needed to extract Cabbibo-Kobayashi-
Maskawa (CKM) matrix elements when combined with the corresponding experimental measure-
ments. LQCD has also been used to determine other fundamental parameters of the standard
model, in particular the strong gauge coupling and quark masses, as well as to predict hadronic
contributions to the anomalous magnetic moment of the muon, g−2.

This review describes the theoretical foundations of LQCD and sketches the methods used to
calculate the quantities relevant for the RPP. It also describes the various sources of error that must
be controlled in a LQCD calculation. Results for hadronic quantities are found in the corresponding
dedicated reviews.

S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024) and 2025 update
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17.1 Lattice regularization of QCD
Gauge theories form the building blocks of the Standard Model. While the SU(2) and U(1)

parts have weak couplings and can be studied accurately with perturbative methods, the SU(3)
component—QCD—is only amenable to a perturbative treatment at high energies. The growth
of the gauge coupling in the infrared—the flip-side of asymptotic freedom—requires the use of
non-perturbative methods to determine the low energy properties of QCD. Lattice gauge theory,
proposed by K. Wilson in 1974 [1], provides such a method, for it gives a non-perturbative definition
of vector-like gauge field theories such as QCD. In lattice regularized QCD—commonly called lattice
QCD or LQCD—Euclidean space-time is discretized, usually on a hypercubic lattice with lattice
spacing a, with quark fields placed on sites and gauge fields on the links between sites. The lattice
spacing plays the role of the ultraviolet regulator, rendering the quantum field theory finite. The
continuum theory is recovered by taking the limit of vanishing lattice spacing, which can be reached
by tuning the bare gauge coupling to zero according to the renormalization group.

Unlike dimensional regularization, which is commonly used in continuum QCD calculations,
the definition of LQCD does not rely on the perturbative expansion. Indeed, LQCD allows non-
perturbative calculations by numerical evaluation of the path integral that defines the theory.

Practical LQCD calculations are limited by the availability of computational resources and the
efficiency of algorithms. Because of this, LQCD results come with both statistical and systematic
errors, the former arising from the use of Monte-Carlo integration, the latter, for example, from
the use of non-zero values of a. There are also different ways in which the QCD action can be
discretized, and all must give consistent results in the continuum limit, a→ 0. It is the purpose of
this review to provide an outline of the methods of LQCD, with particular focus on applications to
particle physics, and an overview of the various sources of error. This should allow the reader to
better understand the LQCD results that are presented in other reviews, primarily those on “Quark
Masses,” “Quark Model,” “Quantum Chromodynamics,” “CKM quark-mixing matrix,” “Vud, Vus,
Cabibbo angle and CKM Unitarity,” “Leptonic Decays of Charged Pseudoscalar Mesons,” “B0-B̄0

Mixing,” and “Semileptonic b-Hadron Decays, Determination of Vcb and Vub.” For more extensive
explanations the reader should consult the available textbooks or lecture notes, the most up-to-date
of which are Refs. [2–4].

17.1.1 Gauge invariance, gluon fields and the gluon action
A key feature of the lattice formulation of QCD is that it preserves gauge invariance. This is

in contrast to perturbative calculations, where gauge fixing is an essential step. The preservation
of gauge invariance leads to considerable simplifications, e.g., restricting the form of operators that
can mix under renormalization.

The gauge transformations of lattice quark fields are just as in the continuum: q(x) −→
V (x)q(x) and q̄(x) −→ q̄(x)V †(x), with V (x) an arbitrary element of SU(3). The only differ-
ence is that the Euclidean space-time positions x are restricted to lie on the sites of the lattice,
i.e. x = a(n1, n2, n3, n4) for a hypercubic lattice, with the nj being integers. Quark bilinears in-
volving different lattice points can be made gauge invariant by introducing the gluon field Uµ(x).
For example, for adjacent points the bilinear is q̄(x)Uµ(x)q(x+aµ̂), with µ̂ the unit vector in the
µ’th direction. (This form is used in the construction of the lattice covariant derivative.) This is
illustrated in Fig. 17.1. The gluon field (or “gauge link”) is an element of the group, SU(3), in
contrast to the continuum field Aµ which takes values in the Lie algebra. The bilinear is invariant
if Uµ transforms as Uµ(x) → V (x)Uµ(x)V †(x+aµ̂). The lattice gluon field is naturally associated
with the link joining x and x+aµ̂, and corresponds in the continuum to a Wilson line connecting
these two points, P exp(i

∫ x+aµ̂
x dxµA

cont
µ (x)) (where P indicates a path-ordered integral, and the

superscript on Aµ indicates that it is a continuum field). The trace of a product of the Uµ(x)
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3 17. Lattice Quantum Chromodynamics

Figure 17.1: Sketch of a two-dimensional slice through the µ−ν plane of a lattice, showing gluon
fields lying on links and forming either the plaquette product appearing in the gauge action or a
component of the covariant derivative connecting quark and antiquark fields.

around any closed loop is easily seen to be gauge invariant and is the lattice version of a Wilson
loop.

The simplest possible gauge action, usually called the Wilson gauge action, is given by the
product of gauge links around elementary plaquettes:

Sg = β
∑
x,µ<ν

[1− 1
3ReTr[Uµ(x)Uν(x+aµ̂)U †µ(x+aν̂)U †ν (x)]] . (17.1)

This is illustrated in Fig. 17.1. For small a, assuming that the fields are slowly varying, one can
expand the action in powers of a using Uµ(x) = exp(iaAµ(x)). Keeping only the leading non-
vanishing term, and replacing the sum with an integral, one finds the continuum form,

Sg −→
∫
d4x

1
4g2

lat
Tr[F 2

µν(x)] ,

(Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ])
(17.2)

as long as one chooses β = 6/g2
lat for the lattice coupling. In this expression, glat is the bare

gauge coupling in the lattice scheme, which can be related (by combining continuum and lattice
perturbation theory) to a more conventional gauge coupling such as that in the MS scheme (see
Sec. 17.3.5 below).

In practice, the lattice spacing a is non-zero, leading to discretization errors. In particular, the
lattice breaks Euclidean rotational invariance (which is the Euclidean version of Lorentz invariance)
down to a discrete hypercubic subgroup. One wants to reduce discretization errors as much as pos-
sible. A very useful tool for understanding and then reducing discretization errors is the Symanzik
effective action: the interactions of quarks and gluons with momenta low compared to the lattice
cutoff (|p| � 1/a) are described by a continuum action consisting of the standard continuum terms
(e.g., the gauge action given in Eq. (17.2)) augmented by higher dimensional operators suppressed
by powers of a [5]. For the Wilson lattice gauge action, the leading corrections to the continuum
terms come in at O(a2). They take the form

∑
j a

2cjO
(j)
6 , with the sum running over all dimension-

six operators O(j)
6 allowed by the lattice symmetries, and cj unknown coefficients. Some of these
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operators violate Euclidean rotational invariance, and all of them lead to discretization errors of the
form a2Λ2 (up to log(a) corrections that will be discussed below), where Λ is a typical momentum
scale for the quantity being calculated. These errors can, however, be reduced by adding corre-
sponding operators to the lattice action and tuning their coefficients to eliminate the dimension-six
operators in the effective action to a given order in perturbation theory or even non-perturbatively.
This is the idea of the Symanzik improvement program [5]. In the case of the gauge action, one
adds Wilson loops involving six gauge links (as opposed to the four links needed for the original
plaquette action, Eq. (17.1)) to define the O(a2) improved (or “Symanzik”) action [6]. In practical
implementations, the improvement is either at tree-level (so that residual errors are proportional
to αsa2, where the coupling is evaluated at a scale ∼ 1/a giving the log(a) dependence mentioned
above)), or at one-loop order (errors proportional to α2

sa
2). Another popular choice is motivated

by studies of renormalization group (RG) flow. It has the same terms as the O(a2) improved action
but with different coefficients, and is called the RG-improved or “Iwasaki” action [7].
17.1.2 Lattice fermions

Discretizing the fermion action turns out to involve subtle issues, and the range of actions
being used is more extensive than for gauge fields. Recall that the continuum fermion action is
Sf =

∫
d4x q̄[Dµγµ + mq]q, where Dµ = ∂µ + iAµ is the gauge-covariant derivative. The simplest

discretization replaces the derivative with a symmetric difference:

Dµq(x) −→ 1
2a [Uµ(x)q(x+ aµ̂)− Uµ(x− aµ̂)†q(x− aµ̂)] . (17.3)

The factors of Uµ ensure that Dµq(x) transforms under gauge transformations in the same way as
q(x), so that the discretized version of q̄(x)γµDµq(x) is gauge invariant. The choice in Eq. (17.3)
leads to the so-called naive fermion action. This, however, suffers from the fermion doubling
problem—in d dimensions it describes 2d equivalent fermion fields in the continuum limit. The
appearance of the extra “doubler” fermions is related to the deeper theoretical problem of formu-
lating chirally symmetric fermions on the lattice. This is encapsulated by the Nielsen-Ninomiya
theorem [8]: one cannot define lattice fermions having exact chiral symmetry of the standard form
δq = εγ5q, δq̄ = εq̄γ5 (ε is infinitesimal) without producing doublers. Naive lattice fermions do have
chiral symmetry but at the cost of introducing 15 unwanted doublers (for d = 4).

There are a number of different strategies for dealing with the doubling problem, each with
their own theoretical and computational advantages and disadvantages. Wilson fermions [1] add a
term proportional to aq̄∆q to the fermion action (the “Wilson term”—in which ∆ is a covariant
lattice Laplacian). This gives a mass of O(1/a) to the doublers, so that they decouple in the
continuum limit. The Wilson term, however, violates chiral symmetry at non-zero lattice spacing,
and introduces discretization errors linear in a. A commonly used variant that eliminates the O(a)
discretization error is the O(a)-improved Wilson (or “clover”) action [9]. In this application of
Symanzik improvement, methods have been developed to remove O(a) terms non-perturbatively
using auxiliary simulations to tune parameters [10]. Such “non-perturbative improvement” is of
great practical importance as it brings the discretization error from the fermion action down to the
same level as that from the Wilson gauge action.

The advantages of Wilson fermions are their theoretical simplicity and relatively low compu-
tational cost. Their main disadvantage is the lack of chiral symmetry, which makes them difficult
to use in cases where mixing with wrong chirality operators can occur, particularly if this involves
divergences proportional to powers of 1/a. A related problem is the presence of potential numerical
instabilities due to spurious near-zero modes of the lattice Dirac operator. There are, however,
studies that successfully ameliorate the problems due to the lack of chiral symmetry and increase
the range of quantities for which Wilson fermions can be used (see, e.g., Refs. [11–13]).
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Twisted-mass fermions [14] are a variant of Wilson fermions in which two flavors are treated
together with an isospin-breaking mass term (the “twisted mass” term). The main advantage of
this approach is that all errors linear in a are automatically removed (without the need for tuning of
parameters) by a clever choice of twisted mass and operators [15]. A disadvantage is the presence of
isospin breaking effects (such as a splitting between charged and neutral pion masses even when up
and down quarks are degenerate), which, however, vanish as a2Λ2 in the continuum limit. Strange
and charm quarks can be added as a second pair, with a term added to split their masses [16,17].

Staggered fermions are a reduced version of naive fermions in which there is only a single fermion
Dirac component on each lattice site, with the full Dirac structure built up from neighboring
sites [18]. They have the advantages of being faster to simulate than Wilson-like fermions, of
preserving some chiral symmetry, and of having discretization errors of O(a2). Their disadvantage
is that they retain some of the doublers (3 for d = 4). The action thus describes four degenerate
fermions in the continuum limit. These are usually called “tastes”, to distinguish them from
physical flavors, and the corresponding SU(4) symmetry is referred to as the “taste symmetry”.
The preserved chiral symmetry in this formulation has non-singlet taste. Practical applications
usually introduce one staggered fermion for each physical flavor, and remove contributions from
the unwanted tastes by taking the fourth-root of the fermion determinant appearing in the path
integral. The validity of this “rooting” procedure is not obvious because taste symmetry is violated
for non-zero lattice spacing. Theoretical arguments, supported by numerical evidence, suggest
that the procedure is valid as long as one takes the continuum limit before approaching the light
quark mass region [19]. Additional issues arise for the valence quarks (those appearing in quark
propagators, as described in Sec. 17.2 below), where rooting is not possible, and one must ignore
the extra tastes, or account for them by including appropriate factors [20], which can be nontrivial
in applications involving baryons [21].

Just as for Wilson fermions, the staggered action can be improved, so as to reduce discretization
errors. The Asqtad (a-squared tadpole improved) action [22] was used until recently in many large
scale simulations [23]. More recent calculations use the HISQ (highly improved staggered quark)
action, introduced in Ref. [24]. At tree-level it removes both O(a2) errors and, to lowest order in the
quark speed v/c, O([am]4) errors. It also substantially reduces effects caused by taste-symmetry
breaking. This makes it attractive not only for light quarks, but means that it is also quite accurate
for heavy quarks because it suppresses (am)n errors. It is being used to directly simulate charm
quarks and to approach direct simulations of bottom quarks (for early studies, see, e.g., [25–27]).

There is an important class of lattice fermions, “Ginsparg-Wilson fermions,” that possess a
continuum-like chiral symmetry without introducing unwanted doublers. The lattice Dirac operator
D for these fermions satisfies the Ginsparg-Wilson relation Dγ5 + γ5D = aDγ5D [28]. In the
continuum, the right-hand-side vanishes, leading to chiral symmetry. On the lattice, it is non-
vanishing, but with a particular form (with two factors of D) that restricts the violations of chiral
symmetry in Ward-Takahashi identities to short-distance terms that do not contribute to physical
matrix elements [29]. In fact, one can define a modified chiral transformation on the lattice (by
including dependence on the gauge fields) such that Ginsparg-Wilson fermions have an exact chiral
symmetry for on-shell quantities [30]. The net result is that such fermions essentially have the same
properties under chiral transformations as do continuum fermions, including the index theorem [29].
Their leading discretization errors are of O(a2).

Two types of Ginsparg-Wilson fermions are currently being used in large-scale numerical simu-
lations. The first is Domain-wall fermions (DWF). These are defined on a five-dimensional space,
in which the fifth dimension is fictitious [31]. The action is chosen so that the low-lying modes are
chiral, with left- and right-handed modes localized on opposite four-dimensional surfaces. For an
infinite fifth dimension, these fermions satisfy the Ginsparg-Wilson relation. In practice, the fifth
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dimension is kept finite, and there remains a small, controllable violation of chiral symmetry. The
second type is Overlap fermions. These appeared from a completely different context and have an
explicit form that exactly satisfies the Ginsparg-Wilson relation [32]. Their numerical implementa-
tion requires an approximation of the matrix sign function of a Wilson-like fermion operator, and
various approaches are being used. In fact, it is possible to rewrite these approximations in terms
of a five-dimensional formulation, showing that the DWF and Overlap approaches are essentially
equivalent [33,34]. Numerically, the five-dimensional approach appears to be more computationally
efficient.

The various lattice fermion formulations are often combined with the technique of link smear-
ing. Here one couples the fermions to a smoother gauge link, defined by averaging with adjacent
links in a gauge invariant manner. Several closely related implementations are being used. All
reduce the coupling of fermions to the short-distance fluctuations in the gauge field, leading to an
improvement in the numerical stability and speed of algorithms. One cannot perform this smear-
ing too aggressively, however, since the smearing may distort short distance physics and enhance
discretization errors.

As noted above, each fermion formulation has its own advantages and disadvantages. For
instance, domain-wall and overlap fermions are theoretically preferred as they have chiral symmetry
without doublers, but their computational cost is greater than for other choices. If the physics
application of interest and the target precision do not require near-exact chiral symmetry, there
is no strong motivation to use these expensive formulations. On the other hand, there is a class
of applications (including the calculation of the ∆I = 1/2 amplitude for K → ππ decays [35–37]
and the S-parameter [38]) where chiral symmetry plays an essential role and for which the use of
Ginsparg-Wilson fermions is strongly favored.

17.1.3 Heavy quarks on the lattice
The fermion formulations described in the previous subsection can be used straightforwardly

only for quarks whose masses are small compared to the lattice cutoff, mq . 1/a. This is because
there are discretization errors proportional to powers of amq, and if amq & 1 these errors can
become large and uncontrolled. Present LQCD simulations typically have cutoffs in the range of
1/a = 2–5 GeV (corresponding to a ≈ 0.1–0.04 fm). Thus, while for the up, down and strange
quarks one has amq � 1, for bottom quarks (with mb ≈ 4.5 GeV) one must use alternative
approaches on all but the finest lattices. Charm quarks (mc ≈ 1.5 GeV) are an intermediate case,
allowing simulations with either direct or alternative approaches, although increasingly the direct
approach is being used.

For the charm quark, the straightforward approach is to simultaneously reduce the lattice
spacing and to improve the fermion action so as to reduce the size of errors proportional to powers
of amc. This approach has been followed successfully using the HISQ, twisted-mass and domain-
wall actions [24, 25, 27, 39–41]. It is important to note, however, that reducing a increases the
computational cost because an increased number of lattice points are needed for the same physical
volume. One cannot reduce the spatial size below 2–3 fm without introducing significant finite
volume errors. Present lattices have typical sizes of ∼ 643 × 128 (with the long direction being
Euclidean time), and thus allow a lattice cutoff up to 1/a ∼ 4–6 GeV.

This approach can, to some extent, be extended to the bottom quark, by the use of simulations
with small lattice spacings [26,42]. This has been pursued with the HISQ action [43], using lattices
of size up to 1443 × 288 and lattice spacings down to a ≈ 0.03 fm (1/a ≈ 6.6 GeV). Extrapolation
in mb is still needed [44], however, and this makes use of the mass dependence predicted by Heavy
Quark Effective Theory (HQET) when heavy-light hadrons are being studied. Small lattice spacings
are also helpful for the simulations of quarkonium for which a different heavy-quark mass scaling
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is expected. See Ref. [45] for a recent study.
Alternative approaches for discretizing heavy quarks are motivated by effective field theories.

For a bottom quark in heavy-light hadrons, one can use HQET to expand about the infinite quark-
mass limit. In this limit, the bottom quark is a static color source, and one can straightforwardly
write the corresponding lattice action [46]. Corrections, proportional to powers of 1/mb, can be
introduced as operator insertions, with coefficients that can be determined non-perturbatively us-
ing existing techniques [47]. This method allows the continuum limit to be taken systematically
including the 1/mb corrections.

Another way of introducing the 1/mb corrections is to include the relevant terms in the effective
action. This leads to a non-relativistic QCD (NRQCD) action, in which the heavy quark is described
by a two-component spinor [48]. This approach has the advantage over HQET that it can also be
used for heavy-heavy systems, such as the Υ states. Moreover, the bottom quark can be treated
without any extrapolation in mb. A disadvantage is that some of the parameters in this effective
theory are determined perturbatively (at tree-level or at one-loop [49]), which limits the precision
of the final results. Although discretization effects can be controlled with good numerical precision
for a range of lattice spacings, these artifacts cannot be extrapolated away by taking the lattice
spacing to zero. This is because NRQCD is a non-relativistic effective field theory and so ceases
to work when the cutoff π/a becomes much larger than the heavy-quark mass. In practice these
effects are accounted for in the error budget.

This problem can be avoided if one uses HQET power counting to analyze and reduce discretiza-
tion effects for heavy quarks while using conventional fermion actions [50]. For instance, one can
tune the parameters of an improved Wilson quark action so that the leading HQET corrections to
the static quark limit are correctly accounted for. As the lattice spacing becomes finer, the action
smoothly goes over to that of a light Wilson quark action, where the continuum limit can be taken
as usual. In principle, one can improve the action in the heavy quark regime up to arbitrarily
high orders using HQET, but so far large-scale simulations have typically used clover improved
Wilson quarks, where tuning the parameters of the action corresponds to including all corrections
through next-to-leading order in HQET. Three different methods for tuning the parameters of the
clover action are being used: the Fermilab [50], Tsukuba [51] and Columbia [52] approaches. An
advantage of this HQET approach is that the c and b quarks can be treated on the same footing.
Parameter tuning has been done perturbatively, as in NRQCD, or using non-perturbative tuning
of some of the parameters [53, 54]. One can improve the effective theory including the terms be-
yond the next-to-leading order. The Oktay-Kronfeld action that includes dimension-six and -seven
operators has been constructed [55] and used in large-scale numerical calculations [56].

Another approach is the “ratio method” introduced in Ref. [57]. Here one uses quarks with
masses lying at, or slightly above, the charm mass mc, which can be simulated with a relativistic
action, and extrapolates to mb incorporating the behavior predicted by HQET. The particular
implementation relies on the use of ratios. As an example, consider the B meson decay constant fB.
According to HQET, this scales as 1/√mB for mB � ΛQCD, up to a logarithmic dependence that is
calculable in perturbative QCD (but will be suppressed in the following). Here mB is the B meson
mass, which differs from mb by ∼ ΛQCD. One considers the ratio y(λ,mb′) ≡ fB′′

√
mB′′/fB′

√
mB′

for fictitious B mesons containing b quarks with unphysical masses mb′ and mb′′ = λmb′ . HQET
implies that y(λ,mb′) approaches unity for large mb′ and any fixed λ > 1. The ratios are evaluated
on the lattice for the sequence of masses mb′ = mc, λmc, λ2mc, all well below the physical mb, and
for each the continuum limit is taken. The form of the ratio for larger values of mb′ is obtained by
fitting, incorporating the constraints implied by HQET. The result for fB

√
mB is then obtained as

a product of y’s with fD
√
mD [58].
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17.1.4 QED on the lattice

Quarks in nature are electrically charged, and the resultant coupling to photons leads to shifts
in the properties of hadrons that are generically of O(αEM). Thus, for example, the proton mass is
increased by ∼ 1 MeV relative to that of the neutron due to its overall charge although this effect
is more than compensated for by the ∼ 2.5 MeV relative decrease due to the up quark being lighter
than the down quark [59]. This example shows that once pure QCD, isospin-symmetric lattice
calculations reach percent-level accuracy, further improvement requires the inclusion of effects due
to both electromagnetism and the up-down mass difference. This level of accuracy has in fact been
obtained for various quantities, e.g., light hadron masses and decay constants (see Ref. [60]), and
simulations including isospin-breaking and QED effects are becoming more common.

One approach for including QED is to treat electromagnetic gauge fields in a similar fashion to
those of QCD. This extension is straightforward, although some new subtleties arise. The essential
change is that the quark must now propagate through a background field containing both gluons
and photons. The gauge field Uµ that appears in the covariant derivative of Eq. (17.3) is extended
from an SU(3) matrix to one living in U(3): Uµ → Uµe

iaqeAEM
µ . Here AEM

µ is the photon field, e the
electromagnetic coupling, and q the charge of the quark, e.g., q = 2/3 for up and −1/3 for down
and strange quarks. The lattice action for the photon that is typically used is a discretized version
of the continuum action Eq. (17.2), rather than the form used for the gluons, Eq. (17.1). This
“non-compact” action has the advantage that it is quadratic in AEM

µ , which simplifies the QED
part of the generation of configurations.

One subtlety that arises is that Gauss’ law forbids a charged particle in a box with periodic
boundary conditions. This can be overcome by including a uniform background charge, which can
be shown to be equivalent to removing the zero-momentum mode from the photon field, an approach
denoted QEDL [61]. However, this modification leads to enhanced finite-volume dependence for
physical quantities, scaling as 1/Ln with n = 1, 2, · · · . This should be compared to the exp(−mπL)
dependence expected for many quantities (as discussed in Sec. 17.1.6.2 below). Methods to remove
the leading few powers of 1/L have been developed [62, 63], and there is a promising alternative
approach in which QED effects are calculated analytically in infinite volume [64]. Finally we note
that there is an alternative approach using so-called C∗ boundary conditions that avoids the Gauss’
law issue altogether, although the numerical application is still at an early stage [65,66].

Substantial progress on including QED and isospin-breaking effects has been made over the
last few years. The direct approach of using different up and down-quark masses and simulating
QED has been successfully carried out for a range of quark masses approaching the physical values
[59, 67–69]. Alternative approaches have also been used: reweighting the QCD fields a posteriori
[70], using a massive photon [71], and keeping only the linear term in an expansion in αEM about
the QCD only case [72,73], with the latter approach by now the most popular. Most calculations to
date have included QED effects for the valence quarks but not the sea quarks (the “electro-quenched
approximation”). [41, 74–77].

The QED corrections to processes including leptons, such as the leptonic and semileptonic
decays of hadrons, involve additional diagrams in which a photon propagator bridges between a
hadron and a lepton. Such diagrams induce infrared divergences that cancel against soft photon
radiation (Bloch-Nordsieck theorem [78]). Methods have been developed to implement this can-
cellation in lattice calculations, treating the soft photon analytically [62], and results have been
reported for leptonic pion and kaon decays [79–81]. An application to semi-leptonic decays has
been developed [64,82].
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17.1.5 Basic inputs for lattice calculations
Since LQCD is nothing but a regularization of QCD, the renormalizability of QCD implies that

the number of input parameters in LQCD is the same as for continuum QCD—the strong gauge
coupling αs = g2/(4π), the quark masses for each flavor, and the CP violating phase θQCD. The
θQCD parameter is usually assumed to be zero, while the other parameters must be determined
using experimental inputs.

17.1.5.1 Lattice spacing
In QCD, the gauge coupling is a function of scale. With lattice regularization, this scale is the

inverse lattice spacing 1/a, and choosing the bare gauge coupling is equivalent to fixing the lattice
spacing.

In principle, a can be determined using any dimensionful quantity measured accurately by
experiments. For example, using the mass of hadron H one has a = (amH)lat/mexp

H . One chooses
quantities that can be calculated accurately on the lattice, and that are only weakly dependent on
the quark masses. The latter property minimizes errors from extrapolating or interpolating to the
physical light quark masses or from mistuning of other quark masses.

Commonly used choices are the spin-averaged 1S-1P or 1S-2S splittings in the Υ system, the
masses of the Ξ and Ω− baryons, and the pion decay constant fπ. Ultimately, all choices must give
consistent results for physical quantities in the continuum limit, and that this is the case provides
a highly non-trivial check of both the calculational method and of QCD.

Many recent lattice calculations use intermediate length scales in place of a direct determination
of the lattice spacing. These length scales, which we denote R, have the advantage that they can be
precisely, and relatively cheaply, computed numerically. Examples are r0, derived from the heavy
quark potential [83], and t0 and w0, determined from the gradient flow of the gauge field [84]. These
scales are used in the following manner, explained here in the context of calculating a quantity Q
with mass dimension d (e.g. a decay constant for which d = 1). In the first step, one calculates
the dimensionless quantities adQ and R/a in a given lattice calculation, and forms the product
(adQ) × (R/a)d = QRd. In a second step, one uses results available from previous dedicated
lattice calculations that have determined R in physical units (i.e. fm) by relating it to a physical
quantity as discussed above. Then one obtains Q = (QRd)/Rd. The use of intermediate quantities
is reviewed in the latest edition of the Flavor Lattice Averaging Group (FLAG) report [85].

17.1.5.2 Light quark masses
In LQCD simulations, the up, down and strange quarks are usually referred to as the light

quarks, in the sense that mq < ΛQCD. (The standard definition of ΛQCD is given in the “Quantum
Chromodynamics” review; in this review we are using it only to indicate the approximate non-
perturbative scale of QCD.) This condition is stronger than that used above to distinguish quarks
with small discretization errors, mq < 1/a. Loop effects from light quarks must be included in
the simulations to accurately represent QCD. At present, most simulations are done in the isospin
symmetric limit mu = md ≡ m` < ms, with charm-quark loops either excluded (referred to as
“Nf = 2 + 1” simulations) or included (denoted “Nf = 2 + 1 + 1” simulations). As noted above,
precision is now reaching the point where isospin breaking effects must be included. To do so
without approximation requires simulating with non-degenerate up and down quarks (leading to
Nf = 1 + 1 + 1 or 1 + 1 + 1 + 1 simulations) as well as including electromagnetism (as described
above).

We now describe the tuning of m`, ms and mc to their physical values. (For brevity, we ignore
isospin violation in the following discussion.) The most commonly used quantities for these tunings
are, respectively, mπ, mK and mηc or mDs . If the scale is being set by mΩ, then one adjusts the
lattice quark masses until the ratios mπ/mΩ, mK/mΩ and mηc/mΩ take their physical values. In
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the past, most calculations needed to extrapolate to the physical value of m` (typically using forms
based on chiral perturbation theory [ChPT]), while simulating directly at or near to the physical
values of ms and mc. Present calculations are increasingly done with physical or near physical
values of m`, requiring at most only a short extrapolation or interpolation.

17.1.5.3 Heavy quark masses
The b quark is usually treated only as a valence quark, with no loop effects included. The

errors introduced by this approximation can be estimated to be ∼ αs(mb)Λ2
QCD/m

2
b and are likely

to be very small. In the past, the same approximation has been made for the c quark, leading
to errors ∼ αs(mc)Λ2

QCD/m
2
c . (See Ref. [86] for a quantitative estimate of the effects of including

the charm quark on some low energy physical quantities, and Ref. [87] for similar estimates for
B-meson matrix elements.) For high precision, however, dynamical charm quarks are necessary,
and many of the most recent simulations now include them.

The b quark mass can be tuned by setting heavy-heavy (Υ ) or heavy-light (B or Bs) meson
masses to their experimental values. Consistency between these two determinations provides an
important check that the determination of parameters in the heavy quark lattice formulations is
being done correctly (see, e.g., Ref. [26, 88, 89]). For instance, the b quark masses obtained from
heavy-light [44] and heavy-heavy [77] mesons are in excellent agreement within the precision of
0.5%.

17.1.6 Sources of systematic error
Lattice results have statistical and systematic errors that must be quantified for any calculation

in order for the result to be a useful input to phenomenology. The statistical error is due to the
use of Monte Carlo importance sampling to evaluate the path integral (a method discussed below).
There are, in addition, a number of systematic errors that are always present to some degree in
lattice calculations, although the size of any given error depends on the particular quantity under
consideration and the parameters of the ensembles being used. The most common lattice errors
are reviewed below.

Although not strictly a systematic error, it is important to note that the presence of long auto-
correlations in the sequence of lattice configurations generated by the Monte Carlo method can lead
to underestimates of statistical errors [90]. It is known that the global topological charge of the
gauge fields decorrelates very slowly with certain algorithms, especially when the lattice spacing is
small [90, 91]. The effect of poorly sampling topological charge is expected to be most significant
for the pion mass and related quantities [92–94]. This issue becomes more relevant as the precision
of the final results improves. The problem of slow decorrelation of topology can be mitigated using
open boundary conditions, for which the global topological charge is not quantized [95].

17.1.6.1 Continuum limit
Physical results are obtained in the limit that the lattice spacing a goes to zero. Symanzik

effective theory determines the scaling of lattice artefacts with a. Most lattice calculations use
improved actions with leading discretization errors of O(αsaΛ), O(a2Λ2), or O(αsa2Λ2), where Λ
is a typical momentum scale in the system. Knowledge of the scaling of the leading discretization
errors allows controlled extrapolation to a = 0 when multiple lattice spacings are available, as in
current state-of-the-art calculations. Terms that allow for higher powers of a are usually included
in the fit form for the continuum extrapolation, with either loosely constrained or unconstrained
coefficients, to be determined by the fit. There is also sub-leading a dependence with pre-factors
containing powers of log a. This can, in principle, be understood using the Symanzik effective
theory, and first studies of this have been undertaken [96–98].

For many quantities, the typical momentum scale in the system is ΛQCD ≈ 300 MeV. Discretiza-
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tion errors are expected to be larger for quantities involving larger scales, for example form factors
or decays involving particles with momenta or masses larger than ΛQCD.

17.1.6.2 Infinite volume limit
LQCD calculations are necessarily carried out in finite space-time boxes, leading to departures

of physical quantities (masses, decay constants, etc.) from their measured, infinite volume values.
These finite-volume shifts are an important systematic that must be estimated and minimized.

Typical lattices are asymmetric, with Ns points in the three spatial directions and Nt in the
(Euclidean) temporal direction. The spatial and temporal sizes in physical units are thus Ls = aNs

and Lt = aNt, respectively. (Anisotropic lattice spacings are also sometimes used, as discussed
below in Sec. 17.2.2.) Typically, Lt ≥ 2Ls, a longer temporal direction being used to allow excited-
state contributions to correlators to decay. This means that the dominant impact of using finite
volume is from the presence of a finite spatial box.

The highest-precision LQCD calculations are of quantities involving no more than a single
strongly-interacting particle in initial and final states. For such quantities, once the spatial size
exceeds about 2 fm (so that the particle is not “squeezed”), the dominant finite-volume effect comes
from virtual pions wrapping around the lattice in the spatial directions. This effect is exponentially
suppressed as the volume becomes large, roughly as ∼ exp(−mπLs), and has been estimated using
ChPT [99] or other methods [100]. These estimates suggest that finite volume shifts are sub-percent
effects when mπLs & 4, and most large-scale simulations use lattices satisfying this condition. (See
also Sec. 2.1.1 of the FLAG report [85] for more detailed discussion concerning the conditions
required to control finite-volume effects.) This becomes challenging as one approaches the physical
pion mass, for which Ls & 5 fm is required.

Finite-volume errors are usually determined by repeating the simulations on two or more dif-
ferent volumes (with other parameters fixed). If different volumes are not available, the ChPT
estimate can be used, often inflated to account for the fact that the ChPT calculation is truncated
at some order.

LQCD calculations involving more than a single hadron are becoming increasingly precise. Ex-
amples include the calculation of resonance parameters and the K → ππ amplitudes. Finite-volume
effects are much larger in these cases, with power-law terms (e.g., 1/L3

s) in addition to exponential
dependence. Indeed, as will be discussed in Sec. 17.2.4, one can use the volume dependence to
indirectly extract infinite-volume quantities such as scattering lengths. Doing so, however, requires
a set of lattice volumes satisfying mπLs & 4 and is thus more challenging than for single-particle
quantities.

17.1.6.3 Chiral extrapolation
Until recently, an important source of systematic error in LQCD calculations was the need

to extrapolate in mu and md (or, equivalently, in mπ). This extrapolation was usually done
using functional forms based on ChPT, or with analytic functions, with the difference between
different fits used as an estimate of the systematic error, which was often substantial. Increasingly,
however, calculations work directly at, or very close to, the physical quark masses. This either
removes entirely, or greatly reduces, the uncertainties in the extrapolation, such that this error is
subdominant.

17.1.6.4 Operator matching
Many of the quantities that LQCD can precisely calculate involve hadronic matrix elements of

operators from the electroweak Hamiltonian. Examples include the pion and kaon decay constants,
semileptonic form factors and the kaon mixing parameter BK (the latter defined in Eq. (17.13)).
The operators in the lattice matrix elements are defined in the lattice regularization scheme. To be
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used in tests of the Standard Model, however, they must be matched to the continuum regularization
scheme in which the corresponding Wilson coefficients have been calculated. The only case in which
such matching is not needed is if the operator is a conserved or partially conserved current. Similar
matching is also needed for the conversion of lattice bare quark masses to those in the continuum
MS scheme.

Several methods are used to calculate the matching factors: perturbation theory (usually to one-
or two-loop order), non-perturbative renormalization (NPR) using Landau-gauge quark and gluon
external states [101], NPR based on the Schrödinger functional [102], NPR using short-distance
hadron correlators [103], and NPR using heavy-heavy correlators [27, 104]. The NPR methods
replace truncation errors from perturbation theory (which can only be estimated approximately)
by statistical and systematic errors that can be determined reliably and systematically reduced.

An issue that arises in some of such calculations (e.g., for quark masses and BK) is that, using
NPR with Landau-gauge quark and gluon external states, one ends up with operators regularized
in a MOM-like scheme (or a Schrödinger-functional scheme), rather than the MS scheme mostly
used for calculating the Wilson coefficients. To make contact with this scheme requires a purely
continuum perturbative matching calculation supplemented by the operator product expansion
(OPE). (The importance of power corrections is emphasized in [105].) The resultant truncation
error of perturbative expansion and OPE can be minimized by pushing up the momentum scale at
which the matching is done using step-scaling techniques as part of the NPR calculation [106].

It should also be noted that this final step in the conversion to the MS scheme could be avoided
if continuum calculations used a MOM-like scheme or if one imposes a renormalization condition for
quantities that are calculable both in the MS scheme and in LQCD, such as the hadron correlators
at short distances (see, e.g., Ref. [107]).

17.2 Methods and status
Once the lattice action is chosen, it is straightforward to define the quantum theory using the

path integral formulation. The Euclidean-space partition function is

Z =
∫

[dU ]
∏
f

[dqf ][dq̄f ]e−Sg [U ]−
∑

f
q̄f (D[U ]+mf )qf , (17.4)

where link variables are integrated over the SU(3) manifold, qf and q̄f are Grassmann (anti-
commuting) quark and antiquark fields of flavor f , and D[U ] is the chosen lattice Dirac operator
with mf the quark mass in lattice units. Integrating out the quark and antiquark fields, one arrives
at a form suitable for simulation:

Z =
∫

[dU ]e−Sg [U ] ∏
f

det(D[U ] +mf ) . (17.5)

The building blocks for calculations are expectation values of multi-local gauge-invariant operators,
also known as “correlation functions”,

〈O(U, q, q̄)〉 = (1/Z)
∫

[dU ]
∏
f

[dqf ][dq̄f ]O(U, q, q̄)e−Sg [U ]−
∑

f
q̄f (D[U ]+mf )qf . (17.6)

If the operators depend on the (anti-)quark fields qf and q̄f , then integrating these fields out
leads not only to the fermion determinant but also, through Wick’s theorem, to a series of quark
“propagators”, (D[U ] +mf )−1, connecting the positions of the fields.

This set-up allows one to choose, by hand, the masses of the quarks in the determinant (the
sea quarks) differently from those in the propagators (valence quarks). This is called “partial
quenching”, and is used by some calculations as a way of obtaining more data points from which
to extrapolate both sea and valence quarks to their physical values.
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17.2.1 Monte-Carlo method
Since the number of integration variables U is huge (N3

s × Nt × 4 × 8), direct numerical inte-
gration is impractical and one has to use Monte-Carlo techniques. In this method, one generates a
Markov chain of gauge configurations (a “configuration” being the set of U ’s on all links) distributed
according to the probability measure [dU ]e−Sg [U ] ∏

f det(D[U ] +mf ). Once the configurations are
generated, expectation values 〈O(U, q, q̄)〉 are calculated by averaging over those configurations.
In this way the configurations can be used for many different calculations, and there are several
large collections of ensembles of configurations (with a range of values of a, lattice sizes and quark
masses) that are publicly available through the International Lattice Data Grid (ILDG) [108].

The most challenging part of the generation of gauge configurations is the need to include the
fermion determinant. Direct evaluation of the determinant is not feasible, as it requires O((N3

s ×
Nt)3) computations. Instead, one rewrites it in terms of “pseudo-fermion” fields φ (auxiliary fermion
fields with bosonic statistics). For example, for two degenerate quarks one has

det(D[U ] +mf )2 =
∫

[dφ]e−φ†((D[U ]+mf )(D[U ]+mf )†)−1φ . (17.7)

By treating the pseudo-fermions as additional integration variables in the path integral, one obtains
a totally bosonic representation. The price one pays is that the pseudo-fermion effective action is
highly non-local since it includes the inverse Dirac operator (D[U ] +mf )−1. Thus, the large sparse
matrix (D[U ] +m) has to be inverted every time one needs an evaluation of the effective action.

Present simulations generate gauge configurations using the Hybrid Monte Carlo (HMC) al-
gorithm [109], or variants thereof. This algorithm combines molecular dynamics (MD) evolu-
tion [110–112] in a fictitious time (which is also discretized) with a Metropolis “accept-reject”
step [113]. It makes a global update of the configuration, and is made exact by the Metropolis step.
In its original form it can be used only for two degenerate flavors, but extensions (particularly the
rational HMC [114]) are available for single flavors. Considerable speed-up of the algorithms has
been achieved over the last two decades using a variety of techniques.

All these algorithms spend the bulk of their computational time on the repeated inversion of
(D[U ] + m) acting on a source (which is required at every step of the MD evolution). Inversions
are done using a variety of iterative algorithms, e.g., the conjugate gradient algorithm. In this class
of algorithms, computational cost is determined by the condition number of the matrix, which is
the ratio of maximum and minimum eigenvalues. For (D[U ] +m) the smallest eigenvalue is ≈ m,
and the cost is inversely proportional to the quark mass. This is a major reason why simulations
at the physical light quark masses are challenging.

Algorithmic improvements have significantly reduced this problem. The main idea is to separate
different length scales [115,116]. Since the low eigenvalues of (D[U ] +m) are associated with long
wavelength quark modes, one may project the problem onto that of a coarse-grained lattice by
averaging the field within a block of sublattices and carrying out the inversion on this coarse lattice.
The result is then fed back to the original lattice as an efficient preconditioner for the iterative
solver, and the whole procedure may be nested multiple times. Variants of such methods have
been implemented, specifically domain-decomposition [117, 118], deflation [119–122] and multigrid
[123,124]. They are increasingly used in large-scale lattice simulations.

A practical concern is the inevitable presence of correlations between configurations in the
Markov chain. These are characterized by an auto-correlation length in the fictitious MD time.
One aims to use configurations separated in MD time by greater than this auto-correlation length.
Then, as the number of decorrelated configurations, N , is increased, the statistical error decreases
as 1/

√
N . In practice, it is difficult to measure this length accurately, see, for example, [125]. This,
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as well as the possibility of insufficient equilibration leads to some uncertainty in the resulting
statistical errors.

The computational cost of gauge generation grows with the lattice volume, Vlat = N3
sNt, as

V 1+δ
lat . Here δ = 1/4 for the HMC algorithm [126] and can be reduced slightly using modern

variants. Such growth with Vlat provides a (time-dependent) limit on the largest lattice volumes
that can be simulated. At present, the largest lattices being used have Ns = 144 and Nt = 288
or Ns = NT = 160. Typically, one aims to create an ensemble of ∼ 103 statistically independent
configurations at each choice of parameters (a, mq and Vlat). For most physical quantities of
interest, this is sufficient to make the resulting statistical errors smaller than or comparable to
the systematic errors. Recently, the master-field approach is being investigated [13, 127, 128]. It
aims to create a large-volume ensemble and repeat the calculation of physical quantities in different
small patches of the entire lattice. Translational invariance guarantees that the correct average is
obtained with fewer configurations than in the traditional approach, with the advantage of reduced
finite-volume effects [129].

In the past, the cost of generating gauge configurations was larger than that of performing
“measurements” on those configurations. However, as the number of quantities being calculated
and their complexity has increased, the balance has shifted to the point that the total cost of
measurements exceeds that of generation. Sharing the configurations, e.g. through the ILDG, has
become more common, and a number of groups are utilizing them to compute a wide variety of
quantities, as partly covered by the following sections.
17.2.2 Two-point functions

One can extract properties of stable hadrons from two-point correlation functions, 〈OX(x)O†Y (0)〉.
Here OX,Y (x) are operators that have non-zero overlaps with the hadronic state of interest |H〉, i.e.
〈0|OX,Y (x)|H〉 6= 0. On the lattice, the two-point correlation function can be constructed, using
Wick’s theorem, from the quark propagators (D[U ] +mf )−1

x0 from the insertion point of the source
operator OY (0) to the sink operator OX(x) (see Fig. 17.2). An average over gauge configurations
yields the estimate of 〈OX(x)O†Y (0)〉 for all x on the lattice.

One usually Fourier transforms in the spatial directions and considers correlators as a function
of Euclidean time:

CXY (t; p) =
∑

x

〈OX(t,x)O†Y (0)〉e−ip·x. (17.8)

(Here and throughout this section all quantities are expressed in dimensionless lattice units, so
that, for example, p = apphys.) By inserting a complete set of states having spatial momentum p,
the two-point function can be written as

CXY (t; p) =
∞∑
i=0

1
2Ei(p)〈0|OX(0)|Hi(p)〉〈Hi(p)|O†Y (0)|0〉e−Ei(p)t, (17.9)

where the energy of the i-th state Ei(p) appears in the eigenvalue of the Euclidean time evolution
operator e−Ht, e−Ei(p)t. The factor of 1/[2Ei(p)] is due to the relativistic normalization used for
the states. For large enough t, the dominant contribution is that of the lowest energy state |H0(p)〉:

CXY (t; p) t→∞−→ 1
2E0(p)〈0|OX(0)|H0(p)〉〈H0(p)|O†Y (0)|0〉e−E0(p)t . (17.10)

One can thus obtain the energy E0(p), which equals the hadron mass mH when p = 0, and the
product of matrix elements 〈0|OX(0)|Hi(p)〉〈Hi(p)|O†Y (0)|0〉.

This method can be used to determine the masses of all the stable (in QCD) mesons and
baryons by making appropriate choices of operators. For example, if one uses the axial current,
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Figure 17.2: Schematic diagrams of a two-point correlation function (left) and three-point cor-
relation function (right). Solid lines represent quark or antiquark propagators obtained by solving
the Dirac equation with a source. For the two-point correlation function the quark and antiquark
propagators from the source point t = 0 are multiplied together at each t value with appropriate γ
matrices in between, corresponding to the operators O†Y and OX . Traces are performed over spin
and color and, usually, a sum over spatial positions at the sink t (see Eq. (17.8)). The three-point
correlation function corresponds to that of Eq. (17.11), with the flavors of the quark propagators
marked (l = u/d). Typically this calculation would be done by using the l propagator from tx at
timeslice ty, after multiplication by appropriate γ matrices for OD, as a source for the c propagator.
The c and s propagators are then tied together at t = 0 after inserting γµ.

OX = OY = Aµ = d̄γµγ5u, then one can determine mπ+ from the rate of exponential fall-off, and
in addition the decay constant fπ from the coefficient of the exponential since 〈0|Aµ|π〉 = fπpµ.

Because of its dominance at large times, the lowest energy ground-state is the one most ac-
curately characterized from the lattice analysis of the correlator CXY (t; p). How accurately the
ground-state parameters can be determined depends on the quantum numbers and quark content of
H0, however. This is because the statistical variance in CXY ∼ 〈OXO†Y 〉 is controlled by 〈(OXO†Y )2〉,
itself a correlation function containing a set of states in a similar way to Eq. (17.9) [130,131]. In the
best-case scenario the ground-state of 〈(OXO†Y )2〉 is two H0 mesons with energy close to 2E0. Then
the signal/noise ratio in CXY is approximately independent of t and the accurate long-time tail of
CXY is useful in obtaining high statistical precision on E0 and the ground-state amplitude. This
is the situation for flavour-diagonal pseudoscalar mesons. For unequal valence quark masses, the
signal/noise ratio falls exponentially in time t with an exponent given by mQq̄ − (mQQ̄ + mqq̄)/2,
where mQq̄ denotes the pseudoscalar meson mass composed of flavor Q and q and so on. This
has a small impact for the kaon, but it is a bigger problem for the B mesons, increasing the sta-
tistical uncertainty in the ground-state parameters. The signal/noise issue is also significant for
light vector mesons and baryons; for ρ meson correlators, the signal/noise falls exponentially with
exponent mρ − mπ and for the nucleon, mN − 3mπ/2. This limits the range of useful t values
in the correlator fits. The same issue is responsible for growing statistical noise in CXY (t; p) as
|p| is increased. Mitigation strategies include using efficient methods for calculating quark prop-
agators, such as all-mode-averaging [132], which allows one to increase the number of samples, as
well as using multi-level Monte-Carlo methods that can reduce the growth of the uncertainty with
distance [133].

The expression given in (17.9) for the correlator CXY (t; p) shows how, in principle, one can
determine the energies of the excited hadron states having the same quantum numbers as the
operators OX,Y , by fitting the correlation function to a sum of exponentials, including both ground-
state and excited-state contributions. It is important to do this in order to obtain accurate results
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for the ground-state parameters. To reliably identify excited-state parameters in practice, one often
needs to use a large basis of operators with a variety of overlaps, 〈0|OX |Hi〉 with the different states,
and to adopt a variational approach, such as that of [134]. The use of anisotropic lattices in which
at, the lattice spacing in the time direction, is smaller than its spatial counterpart, as, allows for
more temporal samples of the correlation function at small times where there is a signal for excited
states. Using these and and other technical improvements, extensive excited-state spectra have
been obtained [135–140].

A complication arises for states with high spins (j ≥ 4 for bosons) because the spatial rotation
group on the lattice is a discrete subgroup of the continuum group SO(3). This implies that lattice
operators, even when chosen to lie in irreducible representations of the lattice rotation group, have
overlap with states that have a number of values of j in the continuum limit [141]. For example
j = 0 operators can also create mesons with j = 4. Methods to overcome this problem in practice
are available [135,142] and have been used successfully.

The two-point function (17.8) contains, in principle, information on all possible states having
the quantum numbers of the operator O. Thus, if O is chosen to be a vector current, it can be
used to estimate the hadronic vacuum polarization function contribution to the muon anomalous
magnetic moment, as discussed in Sec. 17.3.7.
17.2.3 Three-point functions

Hadronic matrix elements needed to calculate semileptonic form factors and neutral meson
mixing amplitudes can be computed from three-point correlation functions. We discuss here, as
a representative example, the D → K amplitude (see Fig. 17.2). As in the case of two-point
correlation functions one constructs operators OD and OK having overlap, respectively, with the
D and K mesons. We are interested in calculating the matrix element 〈K|Vµ|D〉, with Vµ = c̄γµs
the flavor-changing vector current.

To obtain this, we use the three-point correlator constructed from three quark propagators

CKVµD(tx, ty; p) =
∑
x,y

〈OK(tx,x)Vµ(0)O†D(ty,y)〉e−ip·x , (17.11)

and focus on the limit tx → ∞, ty → −∞. In this example we set the D-meson at rest while the
kaon carries three-momentum p. Momentum conservation then implies that the weak operator Vµ
inserts three-momentum −p. Inserting a complete set of states between each pair of operators, we
find

CKVµD(tx, ty; p) =
∑
i,j

1
2mDi2EKj (p)e

−mDi tx−EKj (p)|ty |

× 〈0|OK(0)|Kj(p)〉〈Kj(p)|Vµ(0)|Di(0)〉〈Di(0)|O†D(0)|0〉. (17.12)

The matrix element 〈Ki(p)|Vµ(0)|Dj(0)〉 can then be extracted, since all other quantities in this
expression can be obtained from two-point correlation functions. Typically, one is interested in the
weak matrix elements of ground states, such as the lightest pseudo-scalar mesons. In the limit of
large separation between the three operators in Euclidean time, the three-point correlation function
yields the weak matrix element of the transition between ground states. Reliable determination
of the ground-state matrix element requires the calculation of CKVµD for multiple large values of
tx−ty so that simultaneous multi-exponential fits to three-point and two-point correlation functions
can be done. This is harder for cases such as baryon matrix elements with a significant signal/noise
problem (see Sec. 17.2.2). Complications may also arise in cases where a significant contribution
is expected from states with an extra pion. An example relevant to B → π`ν decay is discussed in
Ref. [143].
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From (17.12) the matrix element 〈Ki(p)|Vµ(0)|Dj(0)〉 is obtained at several discretized values of
momentum p, given by a multiple of 2π/L in each spatial direction. Each momentum corresponds
to a certain value of the momentum transfer q2 = (mD − EK(p))2 − p2. The restriction on the
available momentum can be relaxed by introducing twisted boundary conditions [144–146], which
are a generalization of (anti-)periodic boundary conditions in the spatial directions that allows a
general U(1) phase upon translation by distance L. The choice of phase leads to a quark momentum
that does not have to be a multiple of 2π/L. The method has been applied in a number of lattice
calculations.

To interpolate in q2, the so-called z parametrization [147–150] is often employed. It takes
account of the analytic structure of the form factor in the complex q2 plane, and a polynomial
expansion in z is justified.

17.2.4 Scattering amplitudes and resonances
The methods described thus far yield matrix elements involving single, stable particles (where

by stable we mean here absolutely stable to strong interaction decays). Most of the particles listed
in the Review of Particle Properties are, however, unstable—they are resonances decaying into
final states consisting of multiple strongly interacting particles. LQCD simulations cannot directly
calculate resonance properties, but methods have been developed to do so indirectly for resonances
coupled to two- and three-particle final states in the elastic regime, starting from the seminal work
of Lüscher [151].

The difficulty faced by LQCD calculations is that, to obtain resonance properties, one must
calculate multi-particle scattering amplitudes in momentum space and put the external particles
on their mass-shells. This requires analytically continuing from Euclidean to Minkowski momenta.
Although it is straightforward in LQCD to generalize the methods described above to calculate
four- and higher-point correlation functions, one necessarily obtains them at a discrete and finite
set of Euclidean momenta. Analytic continuation to p2

E = −m2 is then an ill-posed and numerically
challenging problem. The same problem arises for single-particle states, but can be largely overcome
by picking out the exponential fall-off of the Euclidean correlator, as described above. With a multi-
particle state there is no corresponding trick, except for two particles at threshold [152], although
recent ideas using smeared correlators and advanced spectral-reconstruction methods have made
significant progress [153–156].

What LQCD can calculate are the energies of the eigenstates of the QCD Hamiltonian in a finite
box. The energies of states containing stable particles, e.g., two or three pions, clearly depend on
the interactions between the particles. It is possible to invert this dependence and, with plausible
assumptions, determine the scattering amplitudes in a limited kinematical range. This is most
straightforward in the case of two particles in the elastic regime with a single dominant partial
wave, in which case one can obtain the scattering phase-shifts at a discrete set of momenta from a
calculation of the two-particle energy levels for a variety of spatial volumes [151]. Determinations
of two-meson and meson-nucleon interactions using generalizations of this methodology to multiple
channels [157], and particles with spin [158], are now standard, albeit largely with heavier-than-
physical quark masses. There is also an alternative approach using a lattice calculation of the
Bethe-Salpeter amplitude to determine two-particle interaction potentials [159]. Channels studied
include ππ, K̄K, Kπ, πω, πφ, KD, DD∗, D∗D∗, Bπ, Nπ, Σπ, and NK. For results using physical
quark masses see [160, 161]; recent comprehensive reviews are [162]. Extensions to two-nucleon
interactions are being actively studied [163]; recent reviews are [164]. The formalism has been
generalized to three particles (both identical and non-degenerate, and including spin and multiple
channels) [165], and has been applied in lattice calculations of 3π+, 2π+ + K+, π+ + 2K+, and
3K∗ systems [161,166], to the I = 1 and 0 three-pion channels [167], and to the DDπ system [168].
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For recent reviews, see [169].
It is also possible to extend the methodology to calculate electroweak decay amplitudes to two

particles below the inelastic threshold, e.g., A(K → ππ) [170]. Results for both the ∆I = 3/2
and 1/2 amplitudes with physical quark masses have been obtained [35–37, 171], the former now
including a controlled continuum limit [172]. First results for the CP -violating quantity ε′ have
been obtained [35,36].

Partial extensions of the formalism above the elastic threshold have been worked out, in par-
ticular for the case of multiple two-particle channels [157]. Another theoretical extension is to
allow the calculation of form factors between a stable particle and a resonance [173], and between
two resonances [174]. The former has been used to calculate the γπ → ρ amplitude, albeit for
unphysically large quark masses [175, 176], as well as γK → K∗ [177] and B → ρ`ν [178]. Finally,
the formalism for using LQCD to calculate electroweak decays or transitions to three particles, e.g
γ∗ → 3π and K → 3π, has recently been worked out [179,180].

While a systematic extension to decays with many multi-particle channels, e.g., hadronic B
decays, has yet to be formulated, a new direction based on smeared spectral functions is being
explored [153,181,182]. Correlation functions computed on a Euclidean lattice contain contributions
from all states allowed by the symmetry of the inserted operators. Their relative weight depends
on their energy E and the time separation t between the operators, and is proportional to e−Et.
Correlation functions with different time separations can be combined so as to obtain various desired
relative weights between the states [154,183], leading to results for smeared spectral functions, such
as the smeared R-ratio [155,184], inclusive hadronic τ decay rates [156,185], inclusive hadron decay
rates [186–190], or cross sections [191]. The weight (or the energy-integral kernel) function has to
be smooth in order that the construction using correlators with different time separations gives a
good approximation. The kernel function required to obtain the inclusive decay rate, for example,
does not satisfy this smoothness condition, and one has to introduce some smearing, which has then
to be eliminated by taking an appropriate limit. This new source of systematic effect is currently
under active investigation [189,190].

17.2.5 Status of LQCD simulations
Until the 1990s, most large-scale lattice simulations were limited to the “quenched” approxi-

mation, wherein the fermion determinant is omitted from the path integral. While much of the
basic methodology was developed in this era, the results obtained had uncontrolled systematic er-
rors and were not suitable for use in placing precision constraints on the Standard Model. During
the 1990s, more extensive simulations including the fermion determinant (also known as simula-
tions with “dynamical” or “sea” quarks) were begun, but with unphysically heavy quark masses
(m` ∼ 50−100 MeV), such that the extrapolation to the physical light quark masses was a source of
large systematic errors [196]. During the 2000s, advances in both algorithms and computers allowed
simulations to reach much smaller quark masses (m` ∼ 10− 20 MeV) such that LQCD calculations
of selected quantities with all sources of error controlled and small became available. Their results
played an important role in constraints on the CKM matrix and other phenomenological analyses.
In the last decade, simulations directly at the physical isospin-symmetric light quark masses for
a range of lattice spacings have become standard, removing the need for a chiral extrapolation
and thus significantly reducing the overall error. This has made many lattice QCD results critical
for tests of the Standard Model and searches for new physics. Figure 17.3 shows as an example
the recent history of improvement in the uncertainty of lattice QCD results for and fK+/fπ+ and
m̄s(2 GeV).

A summary of lattice QCD ensembles produced by some of the international collaborations as
of 2024 can be found in Ref. [197]. The present frontier for u/d quarks, as noted above, is the

1st December, 2025



19 17. Lattice Quantum Chromodynamics

1.186

1.188

1.19

1.192

1.194

1.196

1.198

1.2

1.202

2010 2012 2014 2016 2018 2020 2022 2024

f K
+
/f

π
+

Nf = 2 + 1 + 1
Nf = 2 + 1

88

90

92

94

96

98

100

102

104

2010 2012 2014 2016 2018 2020 2022 2024

PDG24FLAG24

m
s
(2

G
eV

)
[M

eV
]

Figure 17.3: History of the FLAG averages of LQCD results for the ratio of kaon and pion de-
cay constants fK+/fπ+ and the strange-quark mass m̄s(2 GeV) (defined in the MS scheme, µ
=2 GeV) [60, 85, 192–195]. In both cases we see a large improvement in the uncertainty over the
14-year timespan—by a factor of 2.5 for f+

K/f
+
π (the 2010 result is for the isospin-symmetric fK/fπ)

and a factor of 5 for ms—as ensemble sizes have grown for improved statistical errors and lattice
spacings have become finer and light quark masses closer to the physical point for improved sys-
tematic errors. There has also been a shift from nf = 2 + 1 to nf = 2 + 1 + 1 simulations over time.
The grey dashed lines for m̄s indicate the ±1σ band given in the PDG particle listings (pdglive for
2025). The PDG’s evaluation of m̄s is now in good agreement with the average of the lattice QCD
results.

inclusion of isospin breaking. This will be needed to push the accuracy of calculations down to the
few tenths of a percent level. For b-quark physics, realistic sea quark content on very fine lattices
is needed to push uncertainties down.

On a more qualitative level, analytic and numerical results from LQCD have demonstrated
that QCD confines color and spontaneously breaks chiral symmetry. Confinement can be seen
as a linearly rising potential between heavy quark and anti-quark in the absence of quark loops.
Analytically, this can be shown in the strong coupling limit glat →∞ [1]. At weaker couplings there
are precise numerical calculations of the potential that clearly show that this behavior persists in
the continuum limit [198–200].

Chiral symmetry breaking was also demonstrated in the strong coupling limit on the lattice
[18, 201], and there have been a number of numerical studies showing that this holds also in the
continuum limit. The accumulation of low-lying modes of the Dirac operator, which is the analog
of Cooper pair condensation in superconductors, has been observed, yielding a determination of the
chiral condensate [202–208]. Many relations among physical quantities that can be derived under
the assumption of broken chiral symmetry have been confirmed by a number of lattice groups [194].

17.3 Physics applications
In this section we describe the main applications of LQCD that are both computationally mature

and relevant for the determination of particle properties.
A general feature to keep in mind is that, since there are many different choices for lattice

actions, all of which lead to the same continuum theory, a crucial test is that results for any given
quantity are consistent. In many cases, different lattice calculations are completely independent
and often have very different systematic errors. Thus, final agreement, if found, is a highly non-
trivial check, just as it is for different experimental measurements. Indeed the process of ‘blinding’
results during analysis, standard in experiment, is being increasingly adopted in lattice calculations
to eliminate comparison bias.
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The number, variety and precision of the calculations has progressed to the point that an inter-
national collaboration, FLAG, has been formed, which aims to collect all lattice results of relevance
for a variety of phenomenologically interesting quantities and provide averages of those results that
pass appropriate quality criteria. The FLAG averages attempt to account for possible correlations
between results (which can arise, for example, if they use common gauge configurations). The
most recent FLAG review is from 2024 [85] (see also older editions, Refs. [60, 194, 195, 195]). Our
discussion in this section provides summaries for the quantities considered by FLAG, as well as for
two topics not discussed by FLAG: the hadron spectrum and the anomalous magnetics moment of
the muon. The interested reader can consult the FLAG review for very extensive discussions of the
details of the calculations and of the sources of systematic errors.

We stress that the results we quote below are those obtained using the physical complement of
light quarks (i.e. Nf = 2 + 1 or 2 + 1 + 1 simulations).

17.3.1 Spectrum
The most basic prediction of LQCD is of the hadron spectrum. Once the input parameters

are fixed as described in Sec. 17.1.5, the masses or resonance parameters of all other states can be
predicted. This includes hadrons composed of light (u, d and s) quarks, as well as heavy-light and
heavy-heavy hadrons. It also includes quark-model exotics (e.g., JPC = 1−+ mesons) and glueballs.
Thus, in principle, LQCD calculations should be able to reproduce many of the experimental results
compiled in the Review of Particle Properties. Doing so would test both that the error budgets
of LQCD calculations are accurate and that QCD indeed describes the strong interactions in the
low-energy domain. The importance of the latter test can hardly be overstated.

What is the status of this fundamental test? As discussed in Sec. 1.2, LQCD calculations are
most straightforward for stable, low-lying hadrons. Calculations of the properties of resonances
that can decay into two particles are more challenging, but are becoming standard in the meson
sector, with the frontier being decays involving baryons. As noted above, the formalism for res-
onances decaying to three particles exists, but has yet to be applied to resonant channels other
than in pioneering calculations. It is also more technically challenging to calculate masses of flavor
singlet states (which can annihilate into purely gluonic intermediate states) than those of flavor
non-singlets, although again algorithmic and computational advances have begun to make such
calculations accessible, including first calculations that reach physical quark masses [209].

The present status for light hadrons is that fully controlled results are available for the masses of
the octet light baryons, while results with less than complete control are available for the decuplet
baryon resonances, the vector meson resonances and the η and η′. This is discussed in the “Quark
Model” review—see, in particular, Fig. 15.9. In addition, it has been possible to calculate the isospin
splitting in light mesons and baryons (due to the up-down mass difference and the incorporation
of QED). There are also extensive accurate results for heavy-light (D and B systems) and heavy-
heavy (ψ, Υ as well as Bc systems). All present results, which are discussed in the “Quark Model”
review, are consistent with experimental values, and several predictions have been made. We refer
the reader to that review for references to the relevant work.

17.3.2 Decay constants and bag parameters
The pseudoscalar meson decay constants can be determined from two-point correlation functions

involving the axial-vector current, as discussed in Sec. 17.2.2. The decay constant fP of a meson P is
extracted from the weak matrix element involving the axial-vector current Aµ(x) using the definition
〈0|Aµ(x)|P (p)〉 = fP pµ exp(−ip · x), where pµ is the momentum of P and Aµ(x) is the axial-vector
current. (In practice, results with the smallest errors are obtained using the pseudoscalar density
operator P (x) = q̄(x)γ5q(x) instead of Aµ(x).) Since they are among the simplest quantities to
calculate, decay constants provide good benchmarks for lattice methods, in addition to being critical
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inputs for the flavor physics phenomenology of leptonic decay rates. Results from several lattice
groups for the pion and kaon decay constants now have sub-percent errors. The decay constants
in the charm and bottom sectors, fD(s) and fB(s) , have also been calculated using the various
heavy-quark formulations on the lattice outlined in Sec. 17.1.3. The precision has now reached the
sub-percent level for both charmed and bottom mesons, meaning that phenomenological analysis
of these leptonic decay rates is limited by the larger experimental uncertainties. Lattice results
for all of these decay constants are discussed in detail in the review “Leptonic Decays of Charged
Pseudoscalar Mesons.” The lattice uncertainty on vector meson decay constants fJ/ψ and fΥ , has
also reached ∼1% and the results agree well with the accurate experimental results for the leptonic
decay rates of J/ψ → `+`− and Υ → `+`− [41, 45].

Another important lattice quantity is the kaon bag parameter, BK , which is needed to turn the
precise measurement of CP -violation in kaon mixing into a constraint on the Standard Model. It
is defined by

8
3m

2
Kf

2
KBK(µ) = 〈K0|Q∆S=2(µ)|K0〉, (17.13)

where mK is the kaon mass, fK is the kaon decay constant, Q∆S=2 = sγµ(1−γ5)dsγµ(1−γ5)d is the
four-quark operator of the effective electroweak Hamiltonian and µ is the renormalization scale. The
short distance contribution to the electroweak Hamiltonian can be calculated perturbatively, but the
hadronic matrix element parameterized by BK must be computed using non-perturbative methods.
In order to be of use to phenomenology, the renormalization factor of the four-quark operator must
be matched to a continuum renormalization scheme, e.g., to MS, as described in Sec. 17.1.6.4.
Determinations with percent-level precision using different fermion actions and Nf = 2+1 light sea
quarks are now available using DWF [210,211], staggered fermions [212], DWF valence on staggered
sea quarks [213], and Wilson fermions [11]. The results are all consistent, and the present FLAG
average is B̂K = 0.7533(91) [85] for its renormalization group invariant definition (for original
papers, see [11,211,213–215]).

The bag parameters for B and Bs meson mixing are defined analogously to that for kaon mixing.
The B and Bs mesons contain a valence b-quark so that calculations of these quantities must use
one of the methods for heavy quarks described above. Calculations have been done using NRQCD
[216, 217], the Fermilab formalism [87], and static heavy quarks [218]. All results are consistent.
The FLAG averages for the quantities relevant for Bs and B mixing with Nf = 2 + 1, which are
based on results from Refs. [87, 216,218], are fBs

√
B̂Bs = 274(8) MeV and fB

√
B̂B = 225(9) MeV,

with their ratio (which is somewhat better determined) being ξ = 1.206(17). There is a single
Nf = 2 + 1 = 1 calculation [217] and this gives fBs

√
B̂Bs = 256(6) MeV fB

√
B̂B = 211(6) MeV,

and ξ = 1.216(16). These are consistent with the Nf = 2 + 1 results at the 2σ level. Errors
for quantities involving b quarks are typically larger than those for quantities involving only light
quarks, although the difference has steadily decreased in recent years.

For theK, D and B systems, one can also consider the matrix elements of four-fermion operators
that arise in beyond-the-standard-model (BSM) theories, which can have a different chiral structure.
Knowledge of these matrix elements allows one to constrain the parameters of the BSM theories,
and is complementary to direct searches at the LHC. Reliable results are now available from lattice
calculations, and are reviewed by FLAG in the case of kaon mixing [85]. Complete results for D
and B mixing are presented in Ref. [219,220] and Ref. [87, 217], respectively.

The results for mixing matrix elements are used in the reviews “The CKM Quark-Mixing
Matrix,” and “B0 − B̄0 Mixing.”
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17.3.3 Semileptonic form factors
Semileptonic decay rates can be used to extract CKM matrix elements once the semileptonic

form factors are known from lattice calculations.
For example, the matrix element of a pseudoscalar meson P undergoing semileptonic decay to

another pseudoscalar meson P ′ is mediated by the vector current, and can be written in terms of
form factors as

〈P ′(p′)|Vµ|P (p)〉 = f+(q2)(p+ p′ −∆)µ + f0(q2)∆µ , (17.14)

where q = p − p′, ∆µ = (m2
P −m2

P ′)qµ/q2, and Vµ is the quark vector current. Typically, f+(q2)
dominates the decay rate, since the contribution from f0(q2) is suppressed when the final state
lepton is light.

For some decays, the shapes of the differential decay rates are well determined by experiment,
and, in principle, the values of the form factors are needed from lattice QCD only at some reference
value of q2 in order to extract CKM matrix elements. In these cases, lattice calculations of the
form factor shapes may provide further consistency checks or can further improve the precision.

The form factor f+(0) forK → π`ν decays is highly constrained by the Ademollo-Gatto theorem
[221] and chiral symmetry. Old estimates using chiral perturbation theory combined with quark
models quote sub-percent precision [222], though they suffer from some model dependence. Utilizing
the constraint from the vector current conservation that f+(0) is normalized to unity in the limit
of degenerate up and strange quark masses, the lattice calculation can be made very precise and
has now matched the precision of the phenomenological estimates [223–232]. The present FLAG
average (from Nf = 2 + 1 + 1 simulations) is f+(0) = 0.9698(17) [85], based on Refs. [230,231].

Charmed meson semileptonic decays have been calculated by different groups using methods
similar to those used for charm decay constants, and results are steadily improving in precision
[233–238]. Charmed baryon decays have also been computed using a similar method [239,240].

For semileptonic decays involving a bottom quark, one can use HQET or NRQCD to control
the discretization errors from the bottom quark mass at the cost of systematic errors from current
renormalisation. Increasingly, calculations are being done with relativistic lattice quark actions and
nonperturbative current normalisation. HQET is then used to constrain the extrapolation of the
lattice results to the b mass from a range of lower values.

The form factors for the semileptonic decay B → π`ν (and the similar decay Bs → K`ν) have
been calculated by a number of groups [241–250]. These B semileptonic form factors are difficult
to calculate at low q2, i.e. when the mass of the B-meson must be balanced by a large pion
momentum, in order to transfer a large momentum to the lepton pair. The low q2 region has large
discretization errors and very large statistical errors (see signal/noise discussion in Sec. 17.2.2),
while the high q2 region is much more accessible to the lattice. For experiment, the opposite is
true. To combine lattice and experimental results it has proved helpful to use the z-parameter
expansion [147–150]. This provides a theoretically constrained parameterization of the entire q2

range, and allows one to obtain |Vub| without model dependence [251]. Analyticity and unitarity
can be used to obtain further constraints, including extra information on susceptibilities relevant
to the form factors in the time-like region [150,252–258]. Now that LQCD results for heavy-to-light
form factors are available from multiple groups, it has become evident that the results are not
always compatible within the quoted errors, suggesting that systematic uncertainties have been
underestimated in some cases. Recent fits performed by FLAG to average the form-factor results
from different groups have χ2/d.o.f. substantially larger than 1 and require scale factors [85]. All of
the current calculations still involve an extrapolation in the light-quark mass, which is one possible
source of underestimated uncertainties. This includes choices made for the form-factor bases used
for the extrapolation and the inclusion of poles in the fit functions [250]. Another challenge is
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excited-state contamination [143].
The semileptonic decays B → D`ν and B → D∗`ν (and the similar decays Bs → Ds`ν and

Bs → D∗s`ν) can be used to extract |Vcb| once the corresponding form factors are known. The lattice
calculation is most precise at zero recoil since the bulk of the systematic error cancels for appropriate
ratios between B → D(∗) and B → B or D(∗) → D(∗) [259]. Calculations of the B → D(∗)`ν and
Bs → D

(∗)
s `ν form factors at zero recoil have been performed with various formulations for the

heavy quark [260]. Calculations at non-zero recoil momenta have also been performed to constrain
the functional form of the form factor, which can be used to extrapolate the experimental data to
the zero-recoil point or to determine |Vcb| directly at the non-zero recoil points [42, 261–266]. The
range of q2 that can be handled for B-meson decays in lattice QCD is growing as more accurate
results become available on finer lattices. Comparison of the shape of the form factors between
lattice calculations and experiments provides non-trivial cross-checks.

Semileptonic decays of the Λb baryon can also be used to constrain |Vcb| and |Vub| using lattice
calculations of the relevant form factors [267]. Another process sensitive to |Vub| is B → ρ`ν, which
is more challenging for lattice QCD due to the unstable nature of the ρ resonance. A first calculation
of the B → ππ`ν P -wave form factors and the resulting B → ρ`ν resonance form factors, using the
finite-volume formalism for ππ scattering as discussed in Sec. 17.2.4 has recently been completed,
but so far only at a heavier-than-physical pion mass [178].

Rare decays such as B → K`+`− involve local matrix elements similar to those needed for
charged-current semileptonic decays, Eq. (17.14), as well as nonlocal matrix elements, which, for
example, involve the decay chain b → scc̄ → s`+`−. Except for rare kaon and hyperon de-
cays [268–270], only the local matrix elements have been calculated on the lattice (see, however,
Ref. [271] for a possible strategy and exploratory steps to compute b→ scc̄→ s`+`− on the lattice).
In the phenomenology of b → s`+`− decays, the nonlocal matrix elements are currently treated
using continuum methods such as operator product expansions and light-cone sum rules, and the
intermediate q2 region where cc̄ resonances are present must be avoided. Recent lattice calculations
for b → s`+`− decays [245, 272, 273] suggest some tension with the experimentally observed decay
rates, but systematic errors, including those from the approximations used for the nonlocal matrix
elements, need to be carefully studied before drawing any definite conclusions. A similar study for
the baryonic decay mode Λb → Λ`+`− can be found in Ref. [274].

The results discussed in this section are used in the reviews “The CKM Quark-Mixing Ma-
trix,” “Vud, Vus, the Cabibbo Angle and CKM Unitarity,” and “Semileptonic b-hadron decays,
determination of Vcb, Vub.”

17.3.4 Long-distance contributions to weak-interaction processes
There are other hadronic processes, for which long-distance contributions are important, where

lattice calculations can significantly improve our quantitative understanding.
One example is the long-distance contribution to the neutral kaon mass splitting, ∆MK . This

requires the evaluation of a four-point function, constructed from the two-point functions described
in Sec. 17.2.2 by the insertion of two electroweak Hamiltonians [275, 276]. Another example is the
long-distance contribution to εK , which provides a correction to the contribution of the mixing
parameter BK [277]. Rare kaon decays K → π`+`− and K → πνν̄ also include long-distance
contributions, and their lattice calculations are discussed in [268,269]. Related processes π0 → e+e−

[278] and KL → µ+µ− [279] have also been studied.
Radiative leptonic decays π → `νγ(∗), K → `νγ(∗), and D → `νγ(∗) also include two operator

insertions, i.e. an electroweak Hamiltonian and an electromagnetic current, and similar techniques
developed for the rare decays above can be applied [64,280].

We note that similar lattice methods allow the calculation of the γW box contribution to the
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radiative corrections to semileptonic decays of pions and kaons [281]. The extension to neutron
β decay is an important next step, as this promises to reduce the theoretical uncertainty in the
extraction of |Vud| from neutron decays [282].

17.3.5 Strong gauge coupling
As explained in Sec. 17.1.5.1, for a given lattice action, the choice of bare lattice gauge coupling,

glat, determines the lattice spacing a. If one then calculates a as described in Sec. 17.1.5.1, one
knows the strong gauge coupling in the bare lattice scheme at the scale 1/a, αlat = g2

lat/(4π). This
is, however, not useful for comparing to results for αs obtained from other inputs, such as deep
inelastic scattering or jet shape variables, because the latter results give αs in the MS scheme,
which is commonly used in such analyses, and the conversion factor between the lattice and MS
schemes is known to converge poorly in perturbation theory [283]. Instead, one must use a method
that directly determines αs on the lattice in a scheme closer to MS.

Several such methods have been used, all following a similar strategy. One calculates a short-
distance quantity K both perturbatively (KPT) and non-perturbatively (KNP) on the lattice, and
requires equality: KNP = KPT =

∑n
i=0 ciα

i
s. Solving this equation one obtains αs at a scale related

to the quantity being used. Often, αs thus obtained is not defined in the conventional MS scheme,
and one has to convert among the different schemes using perturbation theory. Unlike for the bare
lattice scheme, the required conversion factors are reasonably convergent. As a final step, one uses
the renormalization group to run the resulting coupling to a canonical scale (such as MZ). In
each step described above a key systematic error comes from the truncation of the perturbative
expansion. This error must be estimated carefully, for example using data-driven methods.

In the work of the HPQCD collaboration [284, 285], the short-distance quantities are Wilson
loops of several sizes and their ratios. These quantities are perturbatively calculated through
O(α3

s) using the V -scheme defined through the heavy quark potential. The coefficients of even
higher orders are estimated using the data at various values of a. In addition, this work obtains a
result for αs by matching with αlat in a tadpole-improved scheme that improves convergence.

Another choice of short-distance quantities is to use current-current correlators. Appropriate
moments of these correlators are ultraviolet finite, and by matching lattice results to the continuum
perturbative predictions, one can directly extract the MS coupling [286]. The method can be
applied for light meson correlators [287–290] as well as heavy meson correlators [40, 285, 291–294].
Yet another choice of short-distance quantity is the static-quark potential, where the lattice result
for the potential is compared to perturbative calculations; this method was used to compute αs
within 2+1 flavor QCD [295–300]. There is also a determination of αs from a comparison of lattice
data for the ghost-gluon coupling with that of perturbation theory [301,302].

With a definition of αs given using the Schrödinger functional, one can non-perturbatively
control the evolution of αs to high-energy scales, such as 100 GeV, where the perturbative expansion
converges very well and essentially no truncation error remains in the matching to the MS scheme.
This step-scaling method developed by the ALPHA collaboration [106] has been applied to 2+1-
flavor QCD in [303–305]. We also note that the gradient-flow coupling [306] is employed at low-
energies in [84, 305] to avoid large statistical errors associated with the Schrödinger functional
coupling. An alternative path to determine the QCD Λ parameter for three flavors, Λ(3), from that
of the quenched theory, Λ(0), has also been developed [307]. This approach aims to benefit from the
fact that quenched theories are much faster to simulate. The matching between different flavors
can be performed accurately at sufficiently high energy scales.

The various lattice methods for calculating αs have significantly different sources of systematic
error. The FLAG review [85] reports an estimate α(5)

MS(MZ) = 0.1183(7), based on Refs. [285, 290,
292,300,303,305,308–311]. A comparison to other phenomenological determinations can be found
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in the “Quantum Chromodynamics” review, where it is clear that the uncertainty in the LQCD
average is smaller than that from other approaches. Since σαs < O(α3

s), high-order perturbative
series are needed to take advantage of further improvements in uncertainty.

17.3.6 Quark masses
The quark mass parameters in the lattice QCD action are well-defined running masses, but they

need to be converted into masses in a conventional scheme at a canonical scale, such as MS at 2 or
3 GeV, to be useful in continuum phenomenology such as the prediction of Higgs decay rates. This
conversion requires multiplication by a finite renormalisation constant, which depends on the quark
action. Older calculations determined the renormalisation constant using low-order lattice pertur-
bation theory. Most recent calculations use instead an intermediate NPR method (e.g., RI/MOM
or RI/SMOM, see Sec. 17.1.6.4) which can be applied by numerical calculation on the lattice and
which is then converted to the MS scheme using three-loop continuum perturbation theory (see,
e.g., [41, 210, 312–315]). Alternatively, using a definition based on the Schrödinger functional, the
quark mass can be evolved to a high scale non-perturbatively [316,317], before applying perturba-
tive matching to the MS scheme; this minimises the perturbative matching uncertainties. Further
approaches are available for heavy quarks. These include matching current-current correlators at
short distances calculated on the lattice to those obtained in continuum perturbation theory in the
MS scheme [40, 104, 285, 291, 292, 294], or using HQET mass relations matched to MS either via a
ratio method [318] or using the intermediate minimal renormalon-subtracted scheme [319,320].

The accuracy of lattice QCD determinations of quark masses—uncertainties range from 2–4%
for u quark (at a scale of 2 GeV) down to 0.3% for the b quark (at a scale equal to its mass) [85]—
mean that they dominate the values given in the Particle Listings, particularly for u, d and s
quarks (see right-hand plot of Fig. 17.3). As discussed in Secs. 17.1.5.2 and 17.1.5.3, the tuning of
lattice quark masses uses meson masses that are known to sub-MeV precision experimentally and
have no signal/noise issues in lattice QCD (see Sec. 17.2.2). Uncertainties coming from the value
of the lattice spacing that might otherwise limit precision are also suppressed for heavy quarks
because of the relationship between quark and meson masses [292]. A further key point is that
ratios of lattice masses using the same quark action are equal in the continuum limit to the ratio of
MS masses at a given scale, since renormalisation constants cancel in QCD. The ratio mc/ms has
been calculated to 0.2% [44] and mb/mc to 0.3% [44,77] and these ratios can be used to “cascade”
the accuracy of heavy quark masses down to light quark masses [44, 292]. When the effect of the
quark’s electric charge is included, mass ratios between up-type and down-type quarks are no longer
scale-invariant and must be determined at a specific scale [73,75,77,321]. Lattice QCD calculations
are now accurate enough to discern QED effects. The ratio mb/mc needed for the calculation of
Γ (H → bb)/Γ (H → cc) runs from 4.586(12) at a scale of 3 GeV [77] to 4.607(12) at mH , nearly 2σ
higher, for example.

Results are summarized in the review of “Quark Masses.”

17.3.7 The anomalous magnetic moment of the muon
A notable success for LQCD has been the determination of the QCD contributions to the

anomalous magnetic moment of the muon, aµ, in the Standard Model [323], for comparison to
recent experimental results from the Muon g− 2 experiment [322]. This comparison (see Fig. 17.4)
now yields aexpt.

µ − aSM
µ = 39(64) × 10−11, showing agreement between experiment and the SM

at the level of 550 ppb. The uncertainty is dominated by that from theory (the experimental
uncertainty is 124 ppb), and in particular by that from the largest QCD contribution known as the
leading-order hadronic vacuum polarization (LO-HVP). Here we describe briefly how the lattice
QCD calculations for aSM

µ are done, giving a little more detail than on other topics covered in this
review to reflect the size of the community effort involved and the timeliness of the results. For a
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Figure 17.4: The current status of aµ, comparing the experimental world average [322] with
SM theory using lattice QCD for the largest, LOHVP, QCD contribution combined with QED,
electroweak and other QCD contributions [323].

Hadronic corrections to the muon g�2 from lattice QCD T. Blum

Table 1: Standard Model contributions to the muon anomaly. The QED contribution is through a5, EW
a2, and QCD a3. The two QED values correspond to different values of a , and QCD to lowest order (LO)
contributions from the hadronic vacuum polarization (HVP) using e+e� ! hadrons and t! hadrons, higher
order (HO) from HVP and an additional photon, and hadronic light-by-light (HLbL) scattering.

QED 11658471.8845(9)(19)(7)(30)⇥10�10 [2]
11658471.8951(9)(19)(7)(77)⇥10�10 [2]

EW 15.4(2)⇥10�10 [5]
QCD LO (e+e�) 692.3(4.2)⇥10�10, 694.91(3.72)(2.10)⇥10�10 [3, 4]

LO (t) 701.5(4.7)⇥10�10 [3]
HO HVP �9.79(9)⇥10�10 [6]
HLbL 10.5(2.6)⇥10�10 [9]

The HVP contribution to the muon anomaly has been computed using the experimentally
measured cross-section for the reaction e+e� ! hadrons and a dispersion relation to relate the real
and imaginary parts of P(Q2). The current quoted precision on such calculations is a bit more than
one-half of one percent [3, 4]. The HVP contributions can also be calculated from first principles
in lattice QCD [8]. While the current precision is significantly higher for the dispersive method,
lattice calculations are poised to reduce errors significantly in next one or two years. These will
provide important checks of the dispersive method before the new Fermilab experiment. Unlike
the case for aµ(HVP), aµ(HLbL) can not be computed from experimental data and a dispersion
relation (there are many off-shell form factors that enter which can not be measured). While model
calculations exist (see [9] for a summary), they are not systematically improvable. A determination
using lattice QCD where all errors are controlled is therefore desirable.

In Sec. 2 we review the status of lattice calculations of aµ(HVP). Section 3 is a presentation
of our results for aµ(HLbL) computed in the framework of lattice QCD+QED. Section 4 gives our
conclusions and outlook for future calculations.

Z

W

Z
...

Figure 1: Representative diagrams, up to order a3, in the Standard Model that contribute to the muon
anomaly. The rows, from to top to bottom, correspond to QED, EW, and QCD. Horizontal solid lines
represent the muon, wiggly lines denote photons unless otherwise labeled, other solid lines are leptons,
filled loops denote quarks (hadrons), and the dashed line represents the higgs boson.

3

�
`

q

LOHVP HLbL HOHVP

Figure 17.5: QCD contributions to aµ. From left to right: the leading-order hadronic vacuum po-
larisation (LOHVP), hadronic light-by-light (HLbL), higher-order HVP (HOHVP). The horizontal
lines represent the µ and wiggly lines are photons, with the vertical photon the B field probing the
muon magnetic moment. Hatched loops are strongly-interacting and formed from γ∗ → qq → γ∗;
open loops are lepton loops. Figure from [324].

recent review see [325].
The anomalous magnetic moment aµ = (g − 2)/2 quantifies the 0.1% impact on the muon

magnetic moment from the fact that the muon is embedded in a quantum field theory and can
therefore interact directly and indirectly with all the SM particles (and BSM particles, if they
exist). In the SM the muon can, for example, emit a virtual photon that generates for an instant a
quark-antiquark pair before they are re-absorbed as a photon (see Fig. 17.5). The quark-antiquark
“bubble” produced here is strongly-interacting. Because the relevant energy scale is a low one, set
by the muon mass, determining the effect of the bubble on aµ requires a fully nonperturbative QCD
calculation. This LO-HVP contribution is straightforward to calculate in lattice QCD. It requires
the same two-point correlation function CXY (t,p = 0) =

∑
x〈OX(t,x)O†Y (0)〉 (see Sec. 17.2.2) used

to determine the spectrum of flavor-diagonal vector mesons (because O here is the QED current that
couples to the photon). Instead of fitting CXY (t) as a function of time separation, t, between OX
and OY to isolate specific states, here CXY (t) is multiplied by a kernel function, K(t), and summed
over all t (and therefore all states) to obtain the LO-HVP contribution [326,327]. The challenge in
doing this comes from the need to achieve very high accuracy. Vector-vector correlation functions
suffer from exponentially falling signal/noise as t increases (see Sec. 17.2.2) and this is particularly
problematic for the correlation functions constructed from u and d quark fields that yield 90% of
the LO-HVP. In the u/d case the LO-HVP time-sum has a more significant contribution from large
t than for heavier quarks and the signal/noise problem is worse, making it harder to achieve good
statistical accuracy. A further issue is that of the finite-volume of the lattice. Although the u/d
correlation function is dominated by the ρ meson, the lowest-energy ground-state, which starts to
be significant at large t values, is made of two pions. These light long-wavelength particles can ‘see’
the lattice boundary, generating finite-volume effects that must be corrected using ChPT or other
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methods.
As well as calculating the LO-HVP contribution in the continuum and chiral limits from the

vector-vector correlation for each quark flavor as described above, additional small corrections must
be determined from quark-line disconnected correlation functions, from QED and frommu 6= md ef-
fects. The first complete LQCD calculation of the LO-HVP contribution appeared in 2020 from the
BMW collaboration with sub-percent uncertainty [328]. Since then multiple LQCD collaborations
have obtained accurate results for different pieces of the LO-HVP allowing stringent comparisons
between them and enabling a strong consensus to be obtained on the result. A particularly useful
approach has been to determine the LO-HVP in a “time-window” on the lattice [327, 329]. By
summing over a time range that cuts out large t values, both the statistical and systematic un-
certainties can be improved. Eight different groups using six different quark actions have each
achieved between 0.2% and 1% precision for u/d quarks with mu = md in a time window from 0.4
to 1.0 fm (with rounded edges of width 0.15 fm) [328, 330–337]. The striking agreement between
the results (most of which were ‘blinded’ during analysis) represents one of the best tests of LQCD
that has been done.

The 2025 White Paper from the Muon g − 2 Theory Initiative [323] quotes an average value
for the LO-HVP from lattice QCD of 713.2(6.1)× 10−11 [328–334,336–345]. It is this value, added
to the other contributions to aSM

µ , that yields the SM theory result in agreement with experiment
quoted above and shown in Fig. 17.4 (and dominates its uncertainty). Note that the 2025 LO-HVP
value is larger than that in the 2020 White Paper [346] by 2.8σ. The earlier value was obtained using
a ‘data-driven’ approach in which experimental data for the cross-section for e+e− → hadrons as a
function of the centre-of-mass energy,

√
s, are converted using analyticity and the optical theorem

into values for the hadronic vacuum polarisation function. The first hints of tension between LQCD
and the data-driven value came in 2020 [328] and this has become more significant with the LQCD
focusing on time-windows, since a disagreement in any time-window is sufficient to demonstrate a
disagreement in the underlying hadronic vacuum polarisation function. The lattice LO-HVP value
from the 0.4–1.0 fm window [323] now disagrees with that from the data-driven approach using
pre-2020 experimental data [347] by 5σ. The channel which contributes most to the data-driven
LO-HVP is e+e− → π+π− at low values of

√
s < 1 GeV2. New values for this cross-section from

the CMD3 collaboration in 2023 [348] are higher than previous results and in tension with them so
that a combination has not proved possible. LQCD favors the CMD3 results.

A quantity linked to the LO-HVP is the hadronic contribution to the running of the QED
coupling since both depend on the hadronic vacuum polarization function. In tandem with LO-
HVP calculations, some lattice groups have calculated ∆αhad for a range of spacelike momenta,
Q2 < 10 GeV2. Again, tension is seen at these Q2 values with the pre-2020 data-driven results but
the tension is much diminished on translating the results to the scale MZ so that both agree with
global EW fit values for ∆αhad(M2

Z) [328,349].
Along with the resolution of the issues in the experimental e+e− data, future progress on the LO-

HVP will require reduced uncertainty from lattice QCD; an uncertainty on the SM aµ comparable
to that of the experiment will require the LO-HVP to be determined to 0.2%. This may need a
combination of lattice QCD and data-driven approaches in complementary time-windows [337,350].

The LO-HVP contribution to aSM
µ appears at O(α2). QCD contributions at O(α3) are about 70

times smaller and include higher-order HVP pieces as well as a diagram in which a quark bubble is
connected to four photons. This is known as the hadronic light-by-light (HLbL) contribution (see
Fig. 17.5). Although small, it must be determined to 10% accuracy to reach the uncertainty aim for
aSM
µ . Three LQCD groups employing different quark actions have performed direct calculations of

the HLbL contribution, using a number of ingenious methods to handle the four-point correlation
functions needed [351–355]. Good agreement is found and the 2025 White paper averages them to
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give 122.5(9.0)× 10−11 as the HLbL contribution to aµ. LQCD calculations are also being done to
provide hadronic input to the phenomenological framework for determining the HLbL contribution.
The most important of these are the transition form factors, FPγ∗γ∗(q2

1, q
2
2) for pseudoscalar (π0,

η, η′ etc.) meson exchange. The form factor calculation requires three-point correlation functions
with a weighted sum over the time separation of the two photons to fix the (spacelike) photon
virtualities. At q2

1 = q2
2 = 0 the π0 form factor yields Γ (π0 → γγ) and the π0 lifetime, for

comparison to experiment. Four lattice groups using four different quark actions have calculated
the π0 pole contribution to the HLbL with good agreement [356–359]. Overall the phenomenological
approach to the HLbL gives a total result in agreement with the direct lattice QCD value within 2σ,
allowing a reliable combination with an uncertainty of 8.5% [323], nearly a factor of 2 improvement
over that in 2020 [346] and now at the level needed.

17.3.8 Nucleon structure
Another topic under active investigation is nucleon structure. Matrix elements of local currents,

〈N(P ′, s′)|J |N(P, s)〉, can be computed on the lattice using techniques similar to those used for
meson semileptonic decays. Some of the challenges involved are the rapid degradation of the signal-
to-noise ratio of correlation functions, behaving like e−(EN−3mπ/2)t as a function of the Euclidean
time separation [131] (this generalizes the result given in Sec.17.2.2 to moving nucleons with energy
EN (P )), excited-state contamination at finite t, such as those from nearby nucleon-pion states [360],
and additional sources of statistical noise for quark-disconnected contractions and gluonic currents.
In matrix elements of isovector quark currents, the disconnected contributions cancel for mu = md.
The isovector axial charge, which corresponds to a zero-momentum matrix element of the axial
current, has been calculated on the lattice with 1%-level precision [361]. The latest results for the
axial, scalar, and tensor charges of the nucleon—both isovector and flavor-diagonal—are reviewed
by FLAG [85]. Introducing a nonzero momentum transfer, one can extract form factors in much the
same way. Lattice calculations of the electromagnetic form factors are approaching the precision
needed to compare with the experimental data on ep scattering; see, e.g., Refs. [362, 363]. The
axial form factors play a crucial role in the estimate of the expected event rate in the current and
future neutrino experiments, such as T2K and DUNE, and lattice calculations are also reaching
the required precision, as reviewed in Ref. [364].

Moving beyond matrix elements of local currents, of particular interest for collider physics are
parton structure functions and parton distribution functions. Their experimental determination
is discussed in the “Structure Functions” section of the Review of Particle Properties. Lattice
calculations increasingly contribute to the knowledge of these quantities, using methods described
in the following; see [365] for a recent review. Here we provide a brief summary.

The partonic structure functions of nucleon are defined through the hadronic tensorWµν(q, ν) =
1

4π
∫
d4z eiqz〈N(P )|[J†µ(z), Jν(0)]|N(P )〉 for a nucleon state |N(P )〉 with four-momentum P . It

becomes a function of x = Q2/2Mν (Q2 ≡ −q2 and ν = q · P/M with M the nucleon mass) in the
limit of Q2 and ν →∞ (Bjorken scaling). In this kinematical limit, the two inserted currents J†µ(z)
and Jν(0) are separated nearly on the light-cone, and its direct computation on the Euclidean lattice
is ill-defined. Instead, one can use OPE to represent the current product in terms of local operators,
for which the lattice calculation becomes possible at least for the lowest orders of the OPE, which
corresponds to an expansion in 1/Q2 (or in terms of twist, strictly speaking). For example, the
lowest-order moment 〈x〉 is a matrix element of operators of the form q̄γµDνq, and it provides
an x-moment of the structure function. (There are different quantities depending on flavour and
spin compositions.) Currently available results are summarized in the FLAG review [85]. Lattice
calculations of higher moments are complicated by power divergences; methods to avoid this issue
have been proposed in, e.g., Refs. [366–368] and are being implemented.
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There are also methods that attempt to directly obtain the x-dependence of the Parton Distri-
bution Functions (PDF) rather than their x-moments. One possibility is to compute the temporal
Fourier transformation of Wµν(q, ν), which is a function of spatial momenta P , q and the time
separation τ between the currents [369]. It contains contributions from all possible states gener-
ated between the currents with a factor e−q0τ , and the ν dependence (or q0 dependence in the rest
frame of the N) can be reproduced if one can invert the Laplace transform using techniques like the
Backus-Gilbert method [153] and its variant [154] or the Maximum Entropy Method [370,371]. This
reconstruction is, however, an example of the infamous inverse problem and no general solution
is known. The methods being studied are closely related to those being developed for calculating
inclusive decay rates; see Sec. 17.2.4. The problem may be circumvented if one is interested in the
hadronic tensor in a different kinematical setup, e.g. the Compton amplitude, for which q0 is too
small to produce any real hadronic states between the two currents [367]. The Compton amplitude
can be written using a Cauchy integral of the hadronic tensor with physical kinematics, so that
some constraints can be obtained for the structure functions.

The approach proposed by Ji [372] treats a matrix element of the form 〈N(P )|q̄(z)γµW (0, z)·
q(0)|N(P )〉 with a Wilson line W (0, z) ≡ exp[ig

∫ z
0 dz

′Az(z′)] connecting the quark fields separated
in spatial z-direction on the lattice. The result can be related to PDF in the limit of large P . The
method is under active theoretical study including the renormalization of the non-local operator as
well as the necessity of large momentum. The large momentum limit can be approached with the
help of the Large Momentum Effective Theory [373]. See [365], for more details.

The signal-to-noise problem mentioned earlier becomes even more severe for large-momentum
nucleon states. Several techniques have been introduced to improve the signal by modifying the
interpolating operator to produce the nucleon state, including momentum-smearing [374] and the
use of kinematically enhanced gamma structures [375].

More details of nucleon structure can be probed by determining Generalized Parton Distri-
butions (GPDs), through which one can obtain the angular momentum distributions of partons.
Another way to study the three-dimensional structure of the nucleon is to determine Transverse
Momentum-dependent Distributions (TMDs). Developing methods to calculate these quantities is
an active research area; for a recent review, see [376–378], for example. Two key ingredients in
determinations of TMDs are the so-called soft function and the Collins-Soper kernel; both can be
computed on the lattice [379].

Finally, we note that there are ongoing lattice calculations of the nucleon electric dipole moments
caused by a nonzero value of θQCD or by BSM physics; see, for example, Ref. [380] for a recent
review.

17.3.9 Other applications of lattice QCD
In this review we have concentrated on applications of LQCD that are relevant to the quantities

discussed in the Review of Particle Properties. We have not considered at all several other appli-
cations that are being actively pursued by simulations. Here we list the major such applications.
The reader can consult the aforementioned texts [2–4] for further details, as well as the proceedings
of recent lattice conferences [381], and several recent white papers [382,383]

LQCD can be used, in principle, to simulate QCD at non-zero temperature and density, and
in particular to study how confinement and chiral-symmetry breaking are lost as T and µ (the
chemical potential) are increased. It is found that, for the physical values of the quark masses,
the deconfinement and chiral-symmetry-restoration transitions are smooth crossovers, rather than
phase transitions, and that they occur together. This is of relevance to heavy-ion collisions, the
early Universe and neutron-star structure. In practice, finite-temperature simulations are compu-
tationally tractable and relatively mature, while simulations at finite µ suffer from a “sign problem”
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and are at a less developed stage.
Finally, we note that there is much recent interest in studying QCD-like theories with more

fermions, possibly in other representations of the gauge group (see, e.g., [383, 384]). The main
interest is to find nearly-conformal theories which might be candidates for “walking technicolor”
models.

17.4 Outlook
While LQCD calculations have made major strides in the last decade, and are now playing

a key role in constraining the Standard Model, there are many calculations that could be done
in principle but are not yet mature due to limitations in computational resources. As we move
to exascale resources (1018 floating point operations per second), the list of mature calculations
will grow. In the longer term, LQCD may be able to harness the power of quantum computers,
including their potential for new types of calculation. How to do this is an active area of study,
see, for example [385].

Examples of calculations that we expect to mature in the next few years are results for B meson
and Λb baryon form factors covering the full range of q2 (see Sec.17.3.3); results for excited hadrons,
including quark-model exotics, at close to physical light-quark masses; results for structure functions
and related parton distribution functions (see Sec.17.3.8); results for a variety of nucleon matrix
elements; π → γγ and related amplitudes; long-distance contributions to K ↔ K mixing and rare
kaon decays such as K → πνν̄; and results for inclusive decay rates (see Sec.17.2.4). There will also
be steady improvement in the precision attained for the mature quantities discussed in previous
sections. For example, an improvement of a factor of 2 in the uncertainty of QCD contributions
to aµ is required for better alignment with the experimental uncertainty (see Sec. 17.3.7). The
detailed error budgets that accompany many lattice QCD calculations make it possible to see what
area needs improvement for future precision gains and to judge what gains may be possible.
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