94. Magnetic Monopoles

Revised August 2025 by D. Milstead (Stockholm U.) and E.J. Weinberg (Columbia U.).

94.1 Theory of magnetic monopoles

The symmetry between electric and magnetic fields in the source-free Maxwell's equations naturally suggests that electric charges might have magnetic counterparts, known as magnetic monopoles. Although the greatest interest has been in the supermassive monopoles that are a firm prediction of all grand unified theories, one cannot exclude the possibility of lighter monopoles.

In either case, the magnetic charge is constrained by a quantization condition first found by Dirac [1]. Consider a monopole with magnetic charge Q_M and a Coulomb magnetic field

$$\mathbf{B} = \frac{Q_M}{4\pi} \frac{\mathbf{\hat{r}}}{r^2} \,. \tag{94.1}$$

Any vector potential \mathbf{A} whose curl is equal to \mathbf{B} must be singular along some line running from the origin to spatial infinity. This Dirac string singularity could potentially be detected through the extra phase that the wavefunction of a particle with electric charge Q_E would acquire if it moved along a loop encircling the string. For the string to be unobservable, this phase must be a multiple of 2π . Requiring that this be the case for any pair of electric and magnetic charges gives the condition that all charges be integer multiples of minimum charges Q_E^{\min} and Q_M^{\min} obeying

$$Q_E^{\min} Q_M^{\min} = 2\pi. \tag{94.2}$$

(For monopoles which also carry an electric charge, called dyons [2], the quantization conditions on their electric charges can be modified. However, the constraints on magnetic charges, as well as those on all purely electric particles, will be unchanged [3].)

Another way to understand this result is to note that the conserved orbital angular momentum of a point electric charge moving in the field of a magnetic monopole has an additional component, with

$$\mathbf{L} = m\mathbf{r} \times \mathbf{v} - \frac{1}{4\pi} Q_E Q_M \hat{\mathbf{r}}$$
 (94.3)

Requiring the radial component of L to be quantized in half-integer units yields Eq. 94.2.

If there are unbroken gauge symmetries in addition to the U(1) of electromagnetism, the above analysis must be modified [4,5]. The allowed color-magnetic charges are determined by the global structure of the gauge group, e.g., $SU(3) \times U(1)$ vs. $(SU(3) \times U(1))/\mathbb{Z}_3$. For example, in QCD the global structure of the gauge group could be $SU(3) \times U(1)$ or $(SU(3) \times U(1))/\mathbb{Z}_3$. In the latter case the magnetic monopole may carry a \mathbb{Z}_3 -valued color-magnetic charge. While the color-magnetic charge does not lead to a long-range color magnetic field, its existence modifies the phase quantization underlying Eq. 94.2: the color and color-magnetic charges of a quark combine with the U(1) magnetic charge to render the Dirac string unobservable; so that the U(1) charge could be the Dirac charge $Q_M^D \equiv 2\pi/e$, the result that would be obtained by substituting the electron charge into Eq. (94.2). On the other hand, for monopoles without color-magnetic charge, one would simply insert the quark electric charges into Eq. 94.2 and conclude that Q_M must be a multiple of $6\pi/e$. This is the minimal magnetic charge when the gauge group is not modded out by \mathbb{Z}_3 .

The prediction of GUT monopoles arises from the work of 't Hooft [6] and Polyakov [7], who showed that certain spontaneously broken gauge theories have nonsingular classical solutions that lead to magnetic monopoles in the quantum theory. The simplest example occurs in a theory where the vacuum expectation value of a triplet Higgs field ϕ breaks an SU(2) gauge symmetry

down to the U(1) of electromagnetism and gives a mass M_V to two of the gauge bosons. In order to have finite energy, ϕ must approach a vacuum value at infinity. However, there is a continuous family of possible vacua, since the scalar field potential determines only the magnitude v of $\langle \phi \rangle$, but not its orientation in the internal SU(2) space. In the monopole solution, the direction of ϕ in internal space is correlated with the position in physical space; i.e., $\phi^a \sim v \hat{r}^a$. The stability of the solution follows from the fact that this twisting Higgs field cannot be smoothly deformed to a spatially uniform vacuum configuration. Reducing the energetic cost of the spatial variation of ϕ requires a nonzero gauge potential, which turns out to yield the magnetic field corresponding to a charge $Q_M = 4\pi/e$. Numerical solution of the classical field equations shows that the mass of this monopole is

$$M_{\rm mon} \sim \frac{4\pi M_V}{e^2} \,. \tag{94.4}$$

The essential ingredient here was the fact that the Higgs fields at spatial infinity could be arranged in a topologically nontrivial configuration. A discussion of the general conditions under which this is possible is beyond the scope of this review, so we restrict ourselves to the two phenomenologically most important cases.

The first is the standard electroweak theory, with $SU(2) \times U(1)$ broken to U(1). There are no topologically nontrivial configurations of the Higgs field, and hence no topologically stable monopole solutions. Although electroweak scale monopoles are thus not required, there have been claims that they might not be ruled out. For example, there have been a variety of proposals in this direction involving modifications of the Lagrangian.

The second case is when any simple Lie group is broken to a subgroup with a U(1) factor, a case that includes all grand unified theories. Here the spectrum of states must include a topologically stable monopole whose mass is determined by the mass scale of the symmetry breaking that allows nontrivial topology. For example, an SU(5) model with

$$SU(5) \xrightarrow{M_X} (SU(3) \times SU(2) \times U(1)) / \mathbb{Z}_6 \xrightarrow{M_W} (SU(3) \times U(1)) / \mathbb{Z}_6$$
 (94.5)

has a monopole [8] with $Q_M = 2\pi/e$ and mass

$$M_{\rm mon} \sim \frac{4\pi M_{\rm X}}{g^2} \,, \tag{94.6}$$

where g is the SU(5) gauge coupling. For a unification scale of 10^{16} GeV, these monopoles would have a mass $M_{\rm mon} \sim 10^{17} - 10^{18}$ GeV.

In theories with several stages of symmetry breaking, monopoles of different mass scales can arise. In an SO(10) theory with

$$SO(10) \xrightarrow{M_1} (SU(4) \times SU(2) \times SU(2)) / \mathbb{Z}_2 \xrightarrow{M_2} (SU(3) \times SU(2) \times U(1)) / \mathbb{Z}_6$$
 (94.7)

there is monopole with $Q_M = 2\pi/e$ and mass $\sim 4\pi M_1/g^2$ and a much lighter monopole with $Q_M = 4\pi/e$ and mass $\sim 4\pi M_2/g^2$ [9].

The central core of a GUT monopole contains the fields of the superheavy gauge bosons that mediate baryon number violation, so one might expect that baryon number conservation could be violated in baryon–monopole scattering. The surprising feature, pointed out by Callan [10] and Rubakov [11], is that these processes are not suppressed by powers of the gauge boson mass. Instead, the cross-sections for catalysis processes such as $p + \text{monopole} \rightarrow e^+ + \pi^0 + \text{monopole}$ are essentially geometric; i.e., $\sigma_{\Delta B}\beta \sim 10^{-27}$ cm², where $\beta = v/c$. Note, however, that this catalysis is model-dependent and is not even a universal property of all GUT monopoles.

94.2 Production and Annihilation

GUT monopoles are far too massive to be produced in any foreseeable accelerator. However, they could have been produced in the early Universe as topological defects arising via the Kibble mechanism [12] in a symmetry-breaking phase transition. Estimates of the initial monopole abundance, and of the degree to which it can be reduced by monopole-antimonopole annihilation, predict a present-day monopole abundance that exceeds by many orders of magnitude the astrophysical and experimental bounds described below [13]. Cosmological inflation and other proposed solutions to this primordial monopole problem generically lead to present-day abundances exponentially smaller than could be plausibly detected, although potentially observable abundances can be obtained in scenarios with carefully tuned parameters.

Several theoretical models predict composite magnetic monopole solutions with masses of order of the electroweak scale (for a partial review see Ref. [14]). If monopoles light enough to be produced at colliders exist, one would expect that these could be produced by analogs of the electromagnetic processes that produce pairs of electrically charged particles. Because of the large size of the magnetic charge, this is a strong coupling problem for which perturbation theory cannot be trusted. The Schwinger production of monopole pairs mitigates the problem of the non-perturbative coupling due to the semi-classical calculation of production cross sections [15, 16]. Dyson-Schwinger resummation techniques have also been proposed as a solution to the non-perturbativity [17].

It should also be mentioned that bound monopole-antimonopole states may be formed (monopolium), the mass of which may be in reach at colliders [18, 19].

94.3 Astrophysical and Cosmological Bounds

If there were no galactic magnetic field, one would expect monopoles in the galaxy to have typical velocities of the order of $10^{-3}c$, comparable to the virial velocity in the galaxy (relevant if the monopoles cluster with the galaxy) and the peculiar velocity of the galaxy with respect to the CMB rest frame (relevant if the monopoles are not bound to the galaxy). This situation is modified by the existence of a galactic magnetic field $B \sim 3\mu G$. A monopole with the Dirac charge and mass M would be accelerated by this field to a velocity

$$v_{\text{mag}} \sim \begin{cases} c, & M \lesssim 10^{11} \text{GeV}, \\ 10^{-3} c \left(\frac{10^{17} \text{ GeV}}{M}\right)^{1/2}, & M \gtrsim 10^{11} \text{GeV}. \end{cases}$$
 (94.8)

Accelerating these monopoles drains energy from the magnetic field. Parker [20,21] obtained an upper bound on the flux of monopoles in the galaxy by requiring that the rate of this energy loss be small compared to the time scale on which the galactic field can be regenerated. With reasonable choices for the astrophysical parameters (see Ref. [22] for details), this Parker bound is

$$F < \begin{cases} 10^{-15} \,\mathrm{cm}^{-2} \,\mathrm{sr}^{-1} \,\mathrm{sec}^{-1} , & M \lesssim 10^{17} \,\mathrm{GeV} ,\\ 10^{-15} \left(\frac{M}{10^{17} \,\mathrm{GeV}}\right) \,\mathrm{cm}^{-2} \,\mathrm{sr}^{-1} \,\mathrm{sec}^{-1} , & M \gtrsim 10^{17} \,\mathrm{GeV} . \end{cases}$$
(94.9)

Applying similar arguments to an earlier seed field that was the progenitor of the current galactic field leads to a tighter bound [23],

$$F < \left[\frac{M}{10^{17} \text{GeV}} + (3 \times 10^{-6}) \right] 10^{-16} \,\text{cm}^{-2} \text{sr}^{-1} \text{sec}^{-1}.$$
 (94.10)

Considering magnetic fields in galactic clusters gives a bound [24] which, although less secure, is about three orders of magnitude lower than the Parker bound.

A flux bound can also be inferred from the total mass of monopoles in the Universe. If the monopole mass density is a fraction $\Omega_{\rm M}$ of the critical density, and the monopoles were uniformly distributed throughout the Universe, there would be a monopole flux

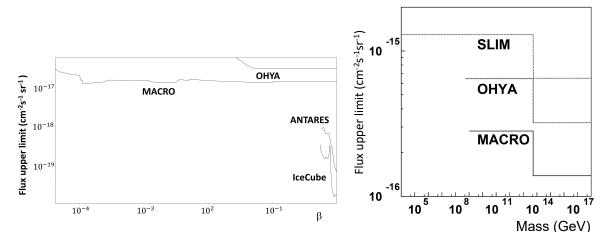
$$F_{\text{uniform}} = 1.3 \times 10^{-16} \Omega_{\text{M}} \left(\frac{10^{17} \,\text{GeV}}{M} \right) \left(\frac{v}{10^{-3} c} \right) \text{cm}^{-2} \text{sr}^{-1} \text{sec}^{-1}.$$
 (94.11)

If we assume that $\Omega_{\rm M} \sim 0.1$, this gives a stronger constraint than the Parker bound for $M \sim 10^{15}$ GeV. However, monopoles with masses $\sim 10^{17}$ GeV are not ejected by the galactic field and can be gravitationally bound to the galaxy. In this case their flux within the galaxy is increased by about five orders of magnitude for a given value of $\Omega_{\rm M}$, and the mass density bound only becomes stronger than the Parker bound for $M \sim 10^{18}$ GeV.

A much more stringent flux bound applies to GUT monopoles that catalyze baryon number violation. The essential idea is that compact astrophysical objects would capture monopoles at a rate proportional to the galactic flux. These monopoles would then catalyze proton decay, with the energy released in the decay leading to an observable increase in the luminosity of the object. A variety of bounds, based on neutron stars [25-29], white dwarfs [30], and Jovian planets [31] have been obtained. These depend in the obvious manner on the catalysis cross section, but also on the details of the astrophysical scenarios; e.g., on how much the accumulated density is reduced by monopole-antimonopole annihilation, and on whether monopoles accumulated in the progenitor star survive its collapse to a white dwarf or neutron star. The bounds obtained in this manner lie in the range

$$F\left(\frac{\sigma_{\Delta B}\beta}{10^{-27}\text{cm}^2}\right) \sim (10^{-18} - 10^{-29})\text{cm}^{-2}\text{sr}^{-1}\text{sec}^{-1}.$$
 (94.12)

It is important to remember that not all GUT monopoles catalyze baryon number nonconservation. In particular, the intermediate mass monopoles that arise in some GUTs at later stages of symmetry-breaking are examples of theoretically motivated monopoles that are exempt from the bound of the above equation.


94.4 Searches for Magnetic Monopoles

To date there have been no confirmed observations of exotic particles possessing magnetic charge. Precision measurements of the properties of known particles have led to tight limits on the values of magnetic charge they may possess. Using the induction method (see below), the electron's magnetic charge has been found to be $Q_e^m < 10^{-24} Q_M^D$ [32]. Furthermore, measurements of the anomalous magnetic moment of the muon have been used to place a model dependent lower limit of 120 GeV on the monopole mass ¹ [33]. Nevertheless, guided mainly by Dirac's argument and the predicted existence of monopoles from spontaneous symmetry breaking mechanisms, searches have been routinely made for monopoles produced at accelerators, in cosmic rays, and bound in matter [34]. Although the resultant limits from such searches are usually made under the assumption of a particle possessing only magnetic charge, most of the searches are also sensitive to dyons.

94.5 Search Techniques

Search strategies are determined by the expected interactions of monopoles as they pass through matter. These would give rise to a number of striking characteristic signatures. Since a complete description of monopole search techniques falls outside of the scope of this minireview, only the most common methods are described below. More comprehensive descriptions of search techniques can be found in Refs. [14, 35, 36].

Where no ambiguity is likely to arise, a reference to a monopole implies a particle possessing Dirac charge.

Figure 94.1: Left: upper flux limits for GUT monopoles as a function of β . Right: upper flux limits for monopoles as a function of monopole mass for $\beta > 0.05$.

The induction method exploits the long-range electromagnetic interaction of the monopole with the quantum state of a superconducting ring which would lead to a monopole which passes through such a ring inducing a permanent current. The induction technique typically uses Superconducting Quantum Interference Devices (SQUID) technology for detection and is employed for searches for monopoles in cosmic rays and matter. Another approach is to exploit the electromagnetic energy loss of monopoles. Monopoles with Dirac charge would typically lose energy at a rate which is several thousand times larger than that expected from particles possessing the elementary electric charge. Consequently, scintillators, gas chambers and nuclear track detectors (NTDs) have been used in cosmic ray and collider experiments. A further approach, which has been used at colliders, is to search for particles describing a non-helical path in a uniform magnetic field.

94.5.1 Searches for Monopoles Bound in Matter

Monopoles have been sought in a range of bulk materials which it is assumed would have absorbed incident cosmic ray monopoles over a long exposure time of order million years. Materials which have been studied include moon rock, meteorites, manganese modules, and sea water [37,38]. A stringent upper limit on the monopoles per nucleon ratio of $\sim 10^{-29}$ has been obtained [38].

94.5.2 Searches in Cosmic Rays

Direct searches for monopoles in cosmic rays refer to those experiments in which the passage of the monopole is measured by an active detector. Searches made assuming a catalysis processes in which GUT monopoles could induce nucleon decay are discussed in the next section. To interpret the results of the non-catalysis searches, the cross section for the catalysis process is typically either set to zero [39] or assigned a modest value (1mb) [40].

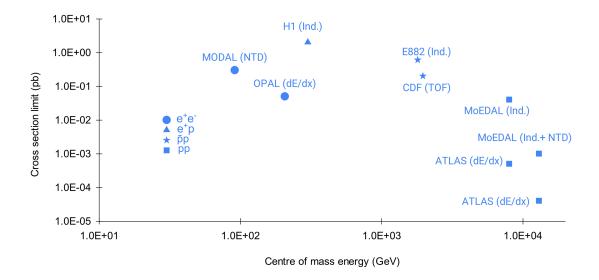
Although early cosmic ray searches using the induction technique [41] and NTDs [42] observed monopole candidates, none of these apparent observations have been confirmed. Recent experiments have typically employed large scale detectors. The MACRO experiment at the Gran Sasso underground laboratory comprised three different types of detector: liquid scintillator, limited stream tubes, and NTDs, which provided a total acceptance of $\sim 10000 \text{m}^2$ for an isotropic flux. As shown in Fig. 94.1, this experiment has so far provided the most extensive β -dependent flux limits for GUT monopoles with Dirac charge [40]. Also shown are limits from an experiment at the OHYA mine in Japan [39], which used a 2000m^2 array of NTDs, and from the IceCube [43,44] and Antares [45] experiments which each employ the Cerenkov method.

In Fig. 94.1, upper flux limits are also shown as a function of monopole mass for monopole speed $\beta > 0.05$. In addition to MACRO and OYHA flux limits, results from the SLIM [46] high-altitude experiment are shown. The SLIM experiment provided a good sensitivity to intermediate mass monopoles ($10^5 \lesssim M \lesssim 10^{12}$ GeV).

In addition to the results shown in Fig. 94.1, the NoVA experiment [47] has recently set an upper limit on monopole flux of $2\times 10^{-14}~\rm cm^{-2}s^{-1}sr^{-1}$ for speeds $6\times 10^{-4}<\beta<10^{-3}$ for masses greater thsan 5×10^8 GeV. Stringent constraints on the flux of ultra-relativistic monopoles have been obtained at the Pierre Auger Observatory [48] which was sensitive to monopoles with γ values ranging from 10^9 to 10^{12} , leading to flux limits in the range $10^{-15}-2.5\times 10^{-21}~\rm cm^{-2}s^{-1}sr^{-1}$. The RICE [49] and ANITA-II experiments [50] at the South Pole have also sought ultra-relativistic monopoles with γ values of $10^7\lesssim\gamma\lesssim 10^{12}$ and $10^9\lesssim\gamma\lesssim 10^{13}$, respectively, and which produced flux limits as low as $2.5\times 10^{-21}~\rm cm^{-2}s^{-1}sr^{-1}$.

94.5.3 Searches via the Catalysis of Nucleon-Decay

Searches have been performed for evidence of the catalysed decay of a nucleon by a monopole, as predicted by the Callan-Rubakov mechanism. The searches are thus sensitive to the assumed value of the catalysis decay cross section. Searches have been made with the Soudan [51] and Macro [52] experiments, using tracking detectors. Searches at IMB [53], the underwater Lake Baikal experiment [54,55] and the IceCube experiment [56] which exploit the Cerenkov effect have also been made. The resulting β -dependent flux limits from these experiments typically vary between $\sim 10^{-18}$ and $\sim 10^{-14} {\rm cm}^{-2} {\rm sr}^{-1} {\rm s}^{-1}$. A search for low energy neutrinos (assumed to be produced from induced proton decay in the sun) was made at Super-Kamiokande [57]. A model- and β -dependent limit of $6.3 \times 10^{-24} (\frac{\beta}{10^{-3}})^2 {\rm cm}^{-2} {\rm sr}^{-1} {\rm s}^{-1}$ was obtained.


94.5.4 Searches at Colliders

Searches have been performed at hadron-hadron, electron-positron and lepton-hadron experiments. Collider searches can be broadly classed as being direct or indirect. In a direct search, evidence of the passage of a monopole through material, such as a charged particle track, is sought. In indirect searches, virtual monopole processes are assumed to influence the production rates of certain final states.

94.5.4.1 Direct Searches at Colliders

Collider experiments typically express their results in terms of upper limits on a production cross section and/or monopole mass. To calculate these limits, ansatzes are used to model the kinematics of monopole-antimonopole pair production processes since perturbative field theory cannot be used to calculate the rate and kinematic properties of produced monopoles. Limits therefore suffer from a degree of model-dependence, implying that a comparison between the results of different experiments can be problematic, in particular when this concerns excluded mass regions. A conservative approach with as little model-dependence as possible is thus to present representative values of the upper cross-section limits as a function of the centre-of-mass energy of the collisions, as shown in Fig. 94.2 for recent results from high energy colliders.

Searches for monopoles produced at the highest available energies in hadron-hadron collisions were made in pp collisions at the LHC by the ATLAS [58–60] and MoEDAL [61–67] experiments, with the latter including the first direct dyon search at the LHC [63]. ATLAS exploited the characteristic monopole energy loss behaviour $(\frac{dE}{dx})$ in the tracker and calorimeter. MoEDAL used a NTD to tag highly ionising particles and the induction method to search for stopped monopoles. The charge-dependent mass limits extend up to around 4 TeV. The ATLAS experiment has considered hypotheses of monopoles with charges between $0.5Q_M^D$ and $2Q_M^D$ while MoEDAL has quoted limits for monopoles in the charge range Q_M^D to $10Q_M^D$. Models considered include monopole-pair pro-

Figure 94.2: Upper limits on the production cross sections of monopoles from various collider-based experiments. Results from positron-proton, electron-positron, proton-antiproton, and proton-proton experiments are shown. The search techniques are also indicated: induction (Ind.), TOF, and $\frac{dE}{dx}$.

duction via photon fusion along with, as is commonly used in hadron-hadron collisions, Drell-Yan processes [68]. MoEDAL has also looked for monopole produced via the Schwinger mechanism in the intense magnetic field created in PbPb collisions [65,67]. A search has also been made by AT-LAS with PbPb collisions which also considers the Schwinger mechanism [69]. Tevatron searches have also been carried out by the CDF [70] and E882 [71] experiments. The CDF experiment used a dedicated time-of-flight (TOF) system whereas the E882 experiment employed the induction technique to search for stopped monopoles in discarded detector material which had been part of the CDF and D0 detectors using periods of luminosity. Earlier searches at the Tevatron, such as [72], used NTDs and were based on comparatively modest amounts of integrated luminosity. Lower energy hadron-hadron experiments have employed a variety of search techniques including plastic track detectors [73] and searches for trapped monopoles [74].

The only LEP-2 search, based on the $\frac{dE}{dx}$ method, was made by OPAL [75] which quoted cross section limits for the production of monopoles possessing masses up to around 103 GeV. At LEP-1, searches were made with NTDs deployed around an interaction region. This allowed a range of charges to be sought for masses up to ~ 45 GeV. The MODAL detector [76] gave limits for monopoles with charges in the range $0.9Q_M^D$ and $3.6Q_M^D$, whilst an earlier search by the MODAL was sensitive to monopoles with charges as low as $0.1Q_M^D$ [77]. The deployment of NTDs around the beam interaction point was also used at earlier e^+e^- colliders such as KEK [78] and PETRA [79]. Searches at e^+e^- facilities have also been made for particles following non-helical trajectories [80,81].

There has so far been one search for monopole production in lepton-hadron scattering. Using the induction method, monopoles were sought which could have stopped in the aluminium beampipe which had been used by the H1 experiment at HERA [82]. Cross section limits were set for monopoles with charges in the range $Q_M^D - 6Q_M^D$ for masses up to around 140 GeV.

94.5.4.2 Indirect Searches at Colliders

It has been proposed that virtual monopoles can mediate processes which give rise to multiphoton final-states [83,84]. Photon-based searches were made by the D0 [85] and L3 [86] experiments. The D0 work led to spin-dependent lower mass limits of between 610 and 1580 GeV, while L3 reported a lower mass limit of 510 GeV. Another indirect way to constrain monopoles is via the search for a monopolium (a bound state of a monopole and antimonopole) through multi-photon decays [87]. While there exist theoretical difficulties in estimating uncertainties related to these limits, stringent lower bounds of magnetic monopole masses in theoretical models can be derived (modulo the uncertainties arising due to the large coupling) by means of exploiting [88] the observed light-by-light scattering at the ATLAS [89,90] and CMS [91,92] experiments.

References

- [1] P. A. M. Dirac, Proc. Roy. Soc. Lond. A133, 821, 60 (1931).
- [2] J. S. Schwinger, Science **165**, 757 (1969).
- [3] K. A. Milton, Rept. Prog. Phys. **69**, 1637 (2006), [hep-ex/0602040].
- [4] F. Englert and P. Windey, Phys. Rev. **D14**, 2728 (1976).
- [5] P. Goddard, J. Nuyts and D. I. Olive, Nucl. Phys. **B125**, 1 (1977).
- [6] G. 't Hooft, Nucl. Phys. **B79**, 276 (1974).
- [7] A. M. Polyakov, JETP Lett. **20**, 194 (1974).
- [8] C. P. Dokos and T. N. Tomaras, Phys. Rev. **D21**, 2940 (1980).
- [9] G. Lazarides and Q. Shafi, Phys. Lett. **94B**, 149 (1980).
- [10] C. G. Callan, Jr., Phys. Rev. **D26**, 2058 (1982).
- [11] V. A. Rubakov, Nucl. Phys. **B203**, 311 (1982).
- [12] T. W. B. Kibble, J. Phys. **A9**, 1387 (1976).
- [13] J. Preskill, Phys. Rev. Lett. 43, 1365 (1979).
- [14] N. E. Mavromatos and V. A. Mitsou, Int. J. Mod. Phys. A $\bf 35$, 23, 2030012 (2020), [arXiv:2005.05100].
- [15] I. K. Affleck and N. S. Manton, Nucl. Phys. B **194**, 38 (1982).
- [16] O. Gould and A. Rajantie, Phys. Rev. Lett. 119, 24, 241601 (2017), [arXiv:1705.07052].
- [17] J. Alexandre and N. E. Mavromatos, Phys. Rev. D 100, 9, 096005 (2019), [arXiv:1906.08738].
- [18] C. T. Hill, Nucl. Phys. B **224**, 469 (1983).
- [19] L. N. Epele et al., Eur. Phys. J. Plus 127, 60 (2012), [arXiv:1205.6120].
- [20] E. N. Parker, Astrophys. J. **160**, 383 (1970).
- [21] D. Perri et al., Phys. Dark Univ. 46, 101704 (2024), [arXiv:2401.00560].
- [22] M. S. Turner, E. N. Parker and T. J. Bogdan, Phys. Rev. **D26**, 1296 (1982).
- [23] F. C. Adams et al., Phys. Rev. Lett. **70**, 2511 (1993).
- [24] Y. Rephaeli and M. S. Turner, Phys. Lett. **121B**, 115 (1983).
- [25] E. W. Kolb, S. A. Colgate and J. A. Harvey, Phys. Rev. Lett. 49, 1373 (1982).
- [26] S. Dimopoulos, J. Preskill and F. Wilczek, Phys. Lett. 119B, 320 (1982).
- [27] K. Freese, M. S. Turner and D. N. Schramm, Phys. Rev. Lett. 51, 1625 (1983).
- [28] E. W. Kolb and M. S. Turner, Astrophys. J. **286**, 702 (1984).
- [29] J. A. Harvey, Nucl. Phys. **B236**, 255 (1984).

- [30] K. Freese and E. Krasteva, Phys. Rev. **D59**, 063007 (1999), [arXiv:astro-ph/9804148].
- [31] J. Arafune, M. Fukugita and S. Yanagita, Phys. Rev. **D32**, 2586 (1985).
- [32] L. L. Vant-Hull, Phys. Rev. 173, 1412 (1968).
- [33] S. Graf, A. Schaefer and W. Greiner, Phys. Lett. **B262**, 463 (1991).
- [34] Review of Particle Physics 2024 (this paper), listing on Searches for Magnetic Monopoles.
- [35] L. Patrizii and M. Spurio, Ann. Rev. Nucl. Part. Sci. 65, 279 (2015), [arXiv:1510.07125].
- [36] M. Fairbairn et al., Phys. Rept. 438, 1 (2007), [hep-ph/0611040].
- [37] J. M. Kovalik and J. L. Kirschvink, Phys. Rev. A33, 1183 (1986).
- [38] H. Jeon and M. J. Longo, Phys. Rev. Lett. **75**, 1443 (1995), [Erratum: Phys. Rev. Lett. **76**,159(1996)], [hep-ex/9508003].
- [39] S. Orito et al., Phys. Rev. Lett. 66, 1951 (1991).
- [40] M. Ambrosio et al. (MACRO), Eur. Phys. J. C25, 511 (2002), [hep-ex/0207020].
- [41] B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).
- [42] P. B. Price et al., Phys. Rev. Lett. **35**, 487 (1975).
- [43] M. G. Aartsen et al. (IceCube), Eur. Phys. J. C76, 3, 133 (2016), [arXiv:1511.01350].
- [44] R. Abbasi et al. (IceCube), Phys. Rev. Lett. 128, 5, 051101 (2022), [arXiv:2109.13719].
- [45] A. Albert et al. (ANTARES), JHEAp 34, 1 (2022), [arXiv:2202.13786].
- [46] S. Balestra et al., Eur. Phys. J. C55, 57 (2008), [arXiv:0801.4913].
- [47] M. A. Acero et al. (NOvA), Phys. Rev. D 103, 1, 012007 (2021), [arXiv:2009.04867].
- [48] A. Aab et al. (Pierre Auger), Phys. Rev. **D94**, 8, 082002 (2016), [arXiv:1609.04451].
- [49] D. P. Hogan et al., Phys. Rev. **D78**, 075031 (2008), [arXiv:0806.2129].
- [50] M. Detrixhe et al. (ANITA-II), Phys. Rev. **D83**, 023513 (2011), [arXiv:1008.1282].
- [51] J. E. Bartelt et al., Phys. Rev. D 36, 1990 (1987), [Erratum: Phys.Rev.D 40, 1701 (1989)].
- [52] M. Ambrosio et al. (MACRO), Eur. Phys. J. C26, 163 (2002), [hep-ex/0207024].
- [53] R. Becker-Szendy et al., Phys. Rev. **D49**, 2169 (1994).
- [54] V. A. Balkanov et al. (Baikal), Prog. Part. Nucl. Phys. 40, 391 (1998), [arXiv:astro-ph/9801044].
- [55] O. N. Gaponenko, Phys. At. Nucl. 84, 3, 287 (2021).
- [56] M. G. Aartsen et al. (IceCube), Eur. Phys. J. C 74, 7, 2938 (2014), [Erratum: Eur.Phys.J.C 79, 124 (2019)], [arXiv:1402.3460].
- [57] K. Ueno et al. (Super-Kamiokande), Astropart. Phys. 36, 131 (2012), [arXiv:1203.0940].
- [58] G. Aad et al. (ATLAS), Phys. Rev. **D93**, 5, 052009 (2016), [arXiv:1509.08059].
- [59] G. Aad et al. (ATLAS), Phys. Rev. Lett. 124, 3, 031802 (2020), [arXiv:1905.10130].
- [60] G. Aad et al. (ATLAS), JHEP 11, 112 (2023), [arXiv:2308.04835].
- [61] B. Acharya et al. (MoEDAL), Phys. Rev. Lett. 118, 6, 061801 (2017), [arXiv:1611.06817].
- [62] B. Acharya et al. (MoEDAL), Phys. Rev. Lett. 123, 2, 021802 (2019), [arXiv:1903.08491].
- [63] B. Acharya *et al.* (MoEDAL), Phys. Rev. Lett. **126**, 7, 071801 (2021), [Erratum: Phys.Rev.Lett. 133, 239902 (2024)], [arXiv:2002.00861].
- [64] B. Acharya et al. (MoEDAL), Eur. Phys. J. C 82, 8, 694 (2022), [arXiv:2112.05806].
- [65] B. Acharya et al. (MoEDAL), Nature 602, 7895, 63 (2022), [arXiv:2106.11933].

- [66] B. Acharya et al. (MoEDAL), Phys. Rev. Lett. 134, 7, 071802 (2025), [arXiv:2311.06509].
- [67] B. Acharya et al. (MoEDAL), Phys. Rev. Lett. 133, 7, 071803 (2024), [arXiv:2402.15682].
- [68] S. Baines et al., Eur. Phys. J. C78, 11, 966 (2018), [Erratum: Eur. Phys. J.C79,no.2,166(2019)], [arXiv:1808.08942].
- [69] G. Aad et al. (ATLAS), Phys. Rev. Lett. **134**, 6, 061803 (2025), [arXiv:2408.11035].
- [70] A. Abulencia et al. (CDF), Phys. Rev. Lett. 96, 201801 (2006), [hep-ex/0509015].
- [71] G. R. Kalbfleisch et al., Phys. Rev. **D69**, 052002 (2004), [hep-ex/0306045].
- [72] P. B. Price, G.-X. Ren and K. Kinoshita, Phys. Rev. Lett. **59**, 2523 (1987).
- [73] B. Aubert et al., Phys. Lett. **120B**, 465 (1983).
- [74] R. A. Carrigan, F. A. Nezrick and B. P. Strauss, Phys. Rev. D8, 3717 (1973).
- [75] G. Abbiendi et al. (OPAL), Phys. Lett. **B663**, 37 (2008), [arXiv:0707.0404].
- [76] J. L. Pinfold *et al.*, Phys. Lett. **B316**, 407 (1993).
- [77] K. Kinoshita et al., Phys. Rev. **D46**, R881 (1992).
- [78] K. Kinoshita et al., Phys. Lett. **B228**, 543 (1989).
- [79] P. Musset, M. Price and E. Lohrmann, Phys. Lett. 128B, 333 (1983).
- [80] T. Gentile et al. (CLEO), Phys. Rev. **D35**, 1081 (1987).
- [81] W. Braunschweig et al. (TASSO), Z. Phys. C38, 543 (1988).
- [82] A. Aktas et al. (H1), Eur. Phys. J. C41, 133 (2005), [hep-ex/0501039].
- [83] A. De Rujula, Nucl. Phys. **B435**, 257 (1995), [hep-th/9405191].
- [84] I. F. Ginzburg and A. Schiller, Phys. Rev. **D60**, 075016 (1999), [hep-ph/9903314].
- [85] B. Abbott et al. (D0), Phys. Rev. Lett. 81, 524 (1998), [hep-ex/9803023].
- [86] M. Acciarri et al. (L3), Phys. Lett. **B345**, 609 (1995).
- [87] N. D. Barrie et al., Nucl. Phys. B 972, 115564 (2021), [arXiv:2104.06931].
- [88] J. Ellis, N. E. Mavromatos and T. You, Phys. Rev. Lett. **118**, 26, 261802 (2017), [arXiv:1703.08450].
- [89] G. Aad et al. (ATLAS), Phys. Rev. Lett. 123, 5, 052001 (2019), [arXiv:1904.03536].
- [90] G. Aad *et al.* (ATLAS), JHEP **03**, 243 (2021), [Erratum: JHEP 11, 050 (2021)], [arXiv:2008.05355].
- [91] A. M. Sirunyan et al. (CMS), Phys. Lett. B 797, 134826 (2019), [arXiv:1810.04602].
- [92] A. Hayrapetyan et al. (CMS), JHEP 08, 006 (2025), [arXiv:2412.15413].