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Monte Carlo techniques are often the only practical way to evaluate difficult integrals or to
sample random variables governed by complicated probability density functions. Here we describe
an assortment of methods for sampling some commonly occurring probability density functions.

42.1 Sampling the uniform distribution

Most Monte Carlo sampling or integration techniques assume a “random number generator,”
which generates uniform statistically independent values on the half open interval [0, 1); for reviews
see, e.g., Refs. [1,2].

Uniform random number generators are available in software libraries such as CLHEP [3], and
ROOT [4], as well as from the standard C++ library [5]. The ROOT generators are available
in Python using the PyROOT interface [6]. All of the algorithms produce a periodic sequence
of numbers, and to obtain effectively random values, one must not use more than a small subset
of a single period. The performance of the generators can be investigated with tests such as
DIEHARD [7] or TestUO1 [8]. Many commonly available congruential generators fail these tests
and often have sequences (typically with periods less than 232), which can be easily exhausted on
modern computers.

The generators in ROOT can be accessed through the interface class TRandom. These include the
widely used TRandom3 generator, which implements the Mersenne twister algorithm of Matsumoto
and Nishimura [9]. This is very fast and has an extremely long period of 2!9937 — 1 although
it fails some of the more stringent TestUO1 tests. Two somewhat slower generators available in
ROOT that do not fail any TestUO1 tests are the Ranlux++ generator [10] based on the method of
Liischer [11], and the MIXMAX generator of Savvidy [12]. A recent review of high-quality random
number generators can be found in Ref. [13].

42.2 Inverse transform method

If the desired probability density function is f(x) on the range —oco < z < o0, its cumulative
distribution function (expressing the probability that = < a) is given by Eq. (39.6). If a is chosen
with probability density f(a), then the integrated probability up to point a, F(a), is itself a
random variable which will occur with uniform probability density on [0, 1]. Suppose u is generated
according to a uniformly distributed in (0, 1). If z can take on any value, and ignoring the endpoints,
we can then find a unique x chosen from the p.d.f. f(x) for a given u if we set

u=F(zx), (42.1)
provided we can find an inverse of F', defined by
x=F"(u). (42.2)

This method is shown in Fig. 42.1a. It is most convenient when one can calculate by hand the
inverse function of the indefinite integral of f. This is the case for some common functions f(x)
such as exp(z), (1 —z)", and 1/(1 + 2?) (Cauchy or Breit-Wigner), although it does not necessar-
ily produce the fastest generator. Standard libraries contain software to implement this method
numerically, working from functions or histograms in one or more dimensions, e.g., the UNU.RAN
package [14], available in ROOT. For a discrete distribution, F'(z) will have a discontinuous jump
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Figure 42.1: Use of a random number u chosen from a uniform distribution (0,1) to find a random
number z from a distribution with cumulative distribution function F'(x).

of size f(xy) at each allowed zy,k = 1,2,---. Choose u from a uniform distribution on (0,1) as
before. Find zj such that

k
F(zi_1) <u < F(z) =Prob (z < ay) = Z f(zi); (42.3)
i=1

then xy is the value we seek (note: F(xg) = 0). This algorithm is illustrated in Fig. 42.1b.

42.3 Acceptance-rejection method (Von Neumann)

Very commonly an analytic form for F(z) is unknown or too complex to work with, so that
obtaining an inverse as in Eq. (42.2) is impractical. We suppose that for any given value of z, the
probability density function f(x) can be computed, and further that enough is known about f(x)
that we can enclose it entirely inside a shape which is C' times an easily generated distribution
h(z), as illustrated in Fig. 42.2. That is, Ch(z) > f(z) must hold for all z. Frequently h(zx) is
uniform or is a normalized sum of uniform distributions. Note that both f(z) and h(z) must be
normalized to unit area, and therefore, the proportionality constant C' > 1. To generate f(x), first
generate a candidate = according to h(x). Calculate f(x) and the height of the envelope C h(x);
generate u and test if uC h(x) < f(z). If so, accept z; if not reject x and try again. If we regard
x and uC h(x) as the abscissa and ordinate of a point in a two-dimensional plot, these points will
populate the entire area C h(z) in a smooth manner; then we accept those which fall under f(z).
The efficiency is the ratio of areas, which must equal 1/C; therefore we must keep C as close as
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(b)

Figure 42.2: Illustration of the acceptance-rejection method. Random points are chosen inside
the upper bounding figure, and rejected if the ordinate exceeds f(x). The lower figure illustrates a
method to increase the efficiency (see text).

possible to 1.0. Therefore, we try to choose C' h(x) to be as close to f(x) as convenience dictates,
as in the lower part of Fig. 42.2.

42.4 Algorithms

Algorithms for generating random numbers belonging to many different distributions are given
for example by Press [15], Ahrens and Dieter [16], Rubinstein [17], Devroye [18], Walck [19] and
Gentle [20]. For many distributions, alternative algorithms exist, varying in complexity, speed,
and accuracy. For time-critical applications, these algorithms may be coded in-line to remove the
significant overhead often encountered in making function calls.

In the examples given below, we use the notation for the variables and parameters given in Ta-
ble 39.1. Variables named “u” are assumed to be independent and uniform on [0,1). Denominators
must be verified to be non-zero where relevant.

42.4.1 FEzxponential decay

This is a common application of the inverse transform method, and uses the fact that if u
is uniformly distributed in [0, 1], then (1 — u) is as well. Consider an exponential p.d.f. f(t) =
(1/7)exp(—t/7) that is truncated so as to lie between two values, a and b, and renormalized to unit
area. To generate decay times t according to this p.d.f., first let @ = exp(—a/7) and = exp(—b/7);
then generate u and let

t=—7In(f +u(a - B)). (42.4)
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For (a,b) = (0,00), we have simply ¢ = —7Inu. (See also Sec. 42.4.6.)

42.4.2 Isotropic direction in 3D

Isotropy means the density is proportional to solid angle, the differential element of which is
df? = d(cosf@)dp. Hence cosf is uniform (2u; — 1) and ¢ is uniform (27uy). For alternative
generation of sin ¢ and cos ¢, see the next subsection.

42.4.3 Sine and cosine of random angle in 2D

Generate u; and ug. Then v = 2u; — 1 is uniform on (—1,1), and vy = ug is uniform on (0,1).
Calculate 2 = v? +v3. If 72 > 1, start over. Otherwise, the sine (S) and cosine (C) of a random
angle (i.e., uniformly distributed between zero and 27) are given by

S =2vvy/r? and C = (v? —0vd)/r?. (42.5)

42.4.4 Gaussian distribution
If u; and wug are uniform on (0,1), then

z1 = sin(2mu1)v/—2Inus and 2y = cos(27wuq)v/—21Inus (42.6)

are independent and Gaussian distributed with mean 0 and o = 1.

There are many variants of this basic algorithm, which may be faster. For example, construct
v =2u; — 1 and vy = 2ug — 1, Which are uniform on (—1,1). Calculate r? = v? + v, and if 72 > 1
start over. If 72 < 1, it is uniform on ( . Then

—2111 r2 —21Inr?
v\ 5 72 = U2\ — 5 (42.7)

are independent numbers chosen from a normal distribution with mean 0 and variance 1. 2, = p+oz;
distributes with mean p and variance 2.

For a multivariate Gaussian with an n X n covariance matrix V, one can start by generating
n independent Gaussian variables, {n;}, with mean 0 and variance 1 as above. Then the new set
{z;} is obtained as x; = p; + Zj L;jnj, where p; is the mean of x;, and L;; are the components of
L, the unique lower triangular matrix that fulfils V = LL”. The matrix L can be easily computed
by the following recursive relation (Cholesky’s method):

1/2
Lj; = ( ZL ) ) (42.8a)

‘/2] Ek 1 zk:L]k
L]J ’

Lij = j=1.,n;i=75+1,...n
(42.8b)

where V;; = p;jo;0; are the components of V. For n = 2 one has

o1 0
L= , 42.9
<P02 Vi-p? 02> (429
and therefore the correlated Gaussian variables are generated as x1 = p1 + o111, 2 = ps + poany +

V1= p?oan.

1st December, 2025



5 42. Monte Carlo Techniques

42.4.5 x?(n) distribution
To generate a variable following the x? distribution for n degrees of freedom, use the Gamma
distribution with £ = n/2 and A = 1/2 using the method of Sec. 42.4.6.

42.4.6 Gamma distribution
All of the following algorithms are given for A = 1. For A # 1, divide the resulting random
number x by A.

o If k =1 (the exponential distribution), accept = —Inu. (See also Sec. 42.4.1.)

o If 0 < k < 1, initialize with v; = (e + k)/e (with e = 2.71828... being the natural log base).
Generate uy, ug. Define vg = viug.

Case 1: v9 < 1. Define x = v;/k. If up < e %, accept x and stop, else restart by generating
new ui, ug.

Case 2: vy > 1. Define 2 = —In([v; — v2]/k). If ug < 2%~1 accept = and stop, else restart
by generating new wp, ug. Note that, for £ < 1, the probability density has a pole at
x = 0, so that return values of zero due to underflow must be accepted or otherwise
dealt with.

e Otherwise, if £ > 1, initialize with ¢ = 3k—0.75. Generate u; and compute v; = uj(1—u;) and
vy = (u1 — 0.5)y/c/v1. If © = k+wv9 —1 < 0, go back and generate new uq; otherwise generate
uz and compute vy = 64viul. If v3 < 1 — 203/ or if Invg < 2{[k — 1]In[z/(k — 1)] — v2},
accept x and stop; otherwise go back and generate new wu;.

42.4.7 Binomial distribution

Begin with £ = 0 and generate u uniform in [0,1). Compute Py = (1 — p)” and store P into
B. If u < B accept 1, = k and stop. Otherwise, increment k& by one; compute the next Pj as
Pi-(p/(1=p))-(n—Ek)/(k+1); add this to B. Again, if u < B, accept rp = k and stop, otherwise
iterate until a value is accepted. If p > 1/2, it will be more efficient to generate r from f(r;n,q),
i.e., with p and ¢ interchanged, and then set r, = n — r.

42.4.8 Poisson distribution

Iterate until a successful choice is made: Begin with £k =1 and set A = 1 to start. Generate u.
Replace A with uA; if now A < exp(—u), where p is the Poisson parameter, accept ny = k — 1 and
stop. Otherwise increment k by 1, generate a new u and repeat, always starting with the value of
A left from the previous try.

Note that the Poisson generator used in ROOT’s TRandom classes before version 5.12 (includ-
ing the derived classes TRandoml, TRandom2, TRandom3) uses a Gaussian approximation when
w exceeds a given threshold. This may be satisfactory (and much faster) for some applications.
To do this, generate z from a Gaussian with zero mean and unit standard deviation; then use
x = max(0, [ + zy/;t + 0.5]) where [ ] signifies the greatest integer < the expression. The routines
from Numerical Recipes [15] and CLHEP’s routine RandPoisson do not make this approximation.

42.4.9 Student’s t distribution
Generate u; and ug uniform in (0,1); then ¢ = sin(27ru1)[n(u;2/n —1)]'/2 follows the Student’s
t distribution for n > 0 degrees of freedom (n not necessarily an integer).

Alternatively, generate = from a Gaussian with mean 0 and 02 = 1 according to the method of
42.4.4. Next generate y, an independent gamma random variate, according to 42.4.6 with A = 1/2
and k = n/2. Then z = x/+/y/n is distributed as a ¢t with n degrees of freedom.
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For the special case n = 1, the Breit-Wigner distribution, generate u; and wuo; set v = 2u; — 1
and v9 = 2ug — 1. If U% + v% < 1 accept z = v1/ve as a Breit-Wigner distribution with unit
area, center at 0.0, and FWHM 2.0. Otherwise start over. For center My and FWHM I', use

42.4.10 Beta distribution

The choice of an appropriate algorithm for generation of beta distributed random numbers
depends on the values of the parameters o and 5. For, e.g., a = 1, one can use the transformation
method to find z = 1 — u!/#, and similarly if 8 = 1 one has z = u!/®. For more general cases see,
e.g., Refs. [19,20] and references therein.

42.5 Importance sampling and weighted Monte Carlo

Often the goal of a Monte Carlo calculation is to determine an expectation value of a function
h(z), where z is a (single or vector) random variable that follows a pdf f(z),

Eylh(z)] = / hx) f(z)de = p . (42.10)

A Monte-Carlo estimator fiyic for p is the average of N values of h(x) where z is sampled (generated)
from f(z), i.e., finic = + S°N | h(z;). This has a variance

Viini] = - Vilh(e)] = - (B2 - ) (42.11)

By using the method of importance sampling, one can achieve a reduction in this variance and
thus a more accurate determination of the expectation value for a given number of random values
generated. The key idea is to rewrite the expectation value in Eq. (42.10) as

h= /h(:c)f(x) dz = / Wg(x) dr = E, [W] , (42.12)

where g(x) is any other pdf of z with the same support as f(z) (i.e., nonzero for the same region
of z). Thus the desired quantity p is the expectation value with respect to g of h(x)f(z)/g(z). It
can be estimated by generating N values of x sampled from g and computing

(42.13)

The variance of firg is given by

N

T Z 21‘ 233
Vi ]_1%[h< )f( )}_;V(Eg[h()f()

HIsl = 9(x) ()

By choosing g(z) such that h(z)f(z)/g(x) is as constant as possible, the variance of fi;g can be
substantially reduced. One can show (see, e.g., Refs. [21,22]) that the variance is minimized when
g9(x) o< |h(z)|f(x).

An alternative importance sampling estimator can be constructed by replacing the number of
generated values N in Eq. (42.13) by the sum >~ f(z;)/g(x;). This can given an even smaller
variance at the price of a small bias. It can be of further advantage in problems where the pdf f(x)
is known only up to a normalization constant, which then cancels (see Refs. [21,22]).

— ,f) , (42.14)
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A closely related application of importance sampling is the use of weighted Monte Carlo to
compute the probability Py(z € A) for = to be in a specified region A:

Pi(x € A) = /A f(z)dz . (42.15)

It may be, however, that one does not have an MC model capable of generating x ~ f(x), but
rather one can generate x according to a different density g(x). The probability Pr(x € A) can be
written

1

Pz A) = /g )dz = E,Jw(z)|x € A] Py(z € A), (42.16)

where w(z) = f(x)/g(x) is the weight function and Py(x € A) = [, g(z) dz is the probability to
find x € A assuming = ~ g(x). That is, Pr(x € A) is the conditional expectation value of w(z)
with respect to g(z) given x € A multiplied by the probability to find x € A under assumption of
9(x).

Suppose N values of x are generated according to g(x) and m of them are found in the region
A. Then the probability to be in A for z ~ g(x) can be estimated by m/N, and the expectation
value above can be obtained from the average of the weights in A. Therefore the desired probability
P¢(x € A) can be estimated using

1 m
Pz € A) = sz 7:N;wi’ (42.17)

where w; = w(x;) and the sum includes only the m values of x found in A. That is, when generating
the x values according to g(x) instead of f(z), the number of events m found in A is replaced by
the corresponding sum of weights. The variance of P¢(x € A) can be found from

VI[P (x € A)] N? Zw (42.18)

By choosing g(x) so that a larger fraction of = values are sampled in the “important” region A, one
can reduce the variance of the estimated probability for a given total number of generated values.

42.6 Markov Chain Monte Carlo

In applications involving generation of random numbers following a multivariate distribution
with a high number of dimensions, the transformation method may not be possible and the
acceptance-rejection technique may have too low of an efficiency to be practical. If it is not required
to have independent random values, but only that they follow a certain distribution, then Markov
Chain Monte Carlo (MCMC) methods can be used. In depth treatments of MCMC can be found,

g., in the texts by Robert and Casella [21], Liu [22], and the review by Neal [23]. HEP-oriented
software for MCMC is available from the Bayesian Analysis Toolkit (BAT) [24,25].

MCMC is particularly useful in connection with Bayesian statistics, where a p.d.f. p(0) for
an n-dimensional vector of parameters 6 = (61,...,6,) is obtained, and one needs the marginal
distribution of a subset of the components. Here one samples 0 from p(@) and simply records the
marginal distribution for the components of interest.
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A simple and broadly applicable MCMC method is the Metropolis-Hastings algorithm, which
allows one to generate multidimensional points @ distributed according to a target p.d.f. that is
proportional to a given function p(@). It is not necessary to have p(@) normalized to unit area,
which is useful in Bayesian statistics, as posterior probability densities are often determined only
up to an unknown normalization constant.

To generate points that follow p(@), one first needs a proposal p.d.f. ¢(8;6p), which can be
(almost) any p.d.f. from which independent random values @ can be generated, and which contains
as a parameter another point in the same space 6. For example, a multivariate Gaussian centered
about 6y can be used. Beginning at an arbitrary starting point 0y, the Hastings algorithm iterates
the following steps:

Generate a value 0 using the proposal density ¢(;8p);

p(G)Q(Go;B)} .
p(00)q(6;00) |

Generate a value u uniformly distributed in [0, 1];
If u < «, take 81 = 6. Otherwise, repeat the old point, i.e., 81 = 6.
Set 8y = 01 and return to step 1.

Form the Hastings test ratio, & = min [1,

AN o

If one takes the proposal density to be symmetric in 8 and 6, then this is the Metropolis-Hastings
algorithm, and the test ratio becomes o = min[1,p(0)/p(6y)]. That is, if the proposed 0 is at a
value of probability higher than 6, the step is taken. If the proposed step is rejected, the old point
is repeated.

Methods for assessing and optimizing the performance of the algorithm are discussed in, e.g.,
Refs. [21-23]. One can, for example, examine the autocorrelation as a function of the lag k, i.e.,
the correlation of a sampled point with that k& steps removed. This should decrease as quickly as
possible for increasing k.

Generally one chooses the proposal density so as to optimize some quality measure such as the
autocorrelation. For certain problems it has been shown that one achieves optimal performance
when the acceptance fraction, that is, the fraction of points with u < «, is around 40%. This can be
adjusted by varying the width of the proposal density. For example, one can use for the proposal
p.d.f. a multivariate Gaussian with the same covariance matrix as that of the target p.d.f., but
scaled by a constant.
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