With the possible exceptions of "short-baseline anomalies," such as LSND, all neutrino data can be described within the framework of a 3×3 mixing matrix between the mass eigenstates ν_1 , ν_2 , and ν_3 , leading to the flavor eigenstates ν_e , ν_μ , and ν_τ , as described in the review "Neutrino masses, mixing and oscillations."

The Listings are divided in the following sections:

- (A) Neutrino fluxes and event ratios: shows measurements which correspond to various oscillation tests for Accelerator, Reactor, Atmospheric, and Solar neutrino experiments. Typically, ratios involve a measurement in a realm sensitive to oscillations compared to one for which no oscillation effect is expected.
- (B) Neutrino mixing parameters: shows measurements of $\sin^2(\theta_{12})$, $\sin^2(\theta_{23})$, $\sin^2(\theta_{13})$, Δm_{21}^2 , Δm_{32}^2 , and δ_{CP} as extracted from the measured data in the quoted publications in the frame of the three-neutrino mixing scheme. The quoted averages are not the result of a global fit, as in the review "Neutrino masses, mixing, and oscillations," and, as a consequence, might slightly differ from them. In some cases, measurements depend on the mass order (normal when $\Delta m_{32}^2 > 0$ or inverted when $\Delta m_{32}^2 < 0$) or octant of θ_{23} (lower when $\theta_{23} < 45^\circ$ or upper when $\theta_{23} > 45^\circ$).

(C) Other neutrino mixing results:

The LSND anomaly [AGUILAR 01], reported a signal which is consistent with $\overline{\nu}_{\mu} \to \overline{\nu}_{e}$ oscillations. In a three neutrino framework, this would be a measurement of θ_{12} and Δm_{21}^2 . This does not appear to be consistent with the interpretation of other neutrino data. It has been interpreted as evidence for a 4th "sterile" neutrino. The following listings include results which might be relevant towards understanding this observation. They include searches for $\nu_{\mu} \to \nu_{e}$, $\overline{\nu}_{\mu} \to \overline{\nu}_{e}$, sterile neutrino oscillations, and others.

December 1, 2025 11:55