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50.1 General Considerations
Perturbative methods can be applied to systems of quarks and gluons only for large momentum

transfers (see review on ‘Quantum Chromodynamics’) and, under certain conditions, to some prop-
erties of systems that contain heavy quarks or very large momentum scales (see review on “Heavy-
quark and soft-collinear effective theory”). Dealing with Quantum Chromodynamics (QCD) in the
low momentum transfer region is a very complicated, non-perturbative problem. Most hadrons are
resonances, which means that they appear as poles of the S-matrix in the complex energy plane,
a notion further detailed in Sec. 50.2. These resonances can show up either in so-called formation
experiments,

A+B → R → C1 + ...+ Cn ,

where they become visible in an energy scan (for example, the R-function measured in e+e− anni-
hilation, cf. the corresponding plots in the review on “Plots of Cross Sections and Related Quanti-
ties”), or together with a spectator particle S in production experiments of the kind

A+B → R + S → [C1 + ...+ Cn] + S ,

Z → R + S → [C1 + ...+ Cn] + S ,

where the first reaction corresponds to an associated production, the second is a decay (see “Re-
view of Multibody Charm Analyses”). In the latter case, the resonance properties are commonly
extracted from a Dalitz-plot analysis (see review on “Kinematics”) or projections thereof.

Resonance phenomena are very rich: while typical hadronic widths are of the order of 100MeV
(e.g., for the meson resonances ρ(770) or ψ(4040) or the baryon resonance ∆(1232)) corresponding
to a lifetime of 10−23 s, the widths can also be as small as a few MeV (e.g. of φ(1020)) or even a
lot smaller (e.g. of J/ψ) or as large as several hundred MeV (e.g. of the meson resonances f0(500)
or D1(2430) or the baryon resonance N(2190)).

Typically, a resonance appears as a peak in the total cross section, however, under certain
conditions they can induce dips or become visible only after a partial wave decomposition. If the
structure is narrow and if there are no relevant thresholds or other resonances nearby, the resonance
properties may be extracted employing a Breit–Wigner parameterization, if necessary improved by
using an energy-dependent width (cf. Sec. 50.3.1 of this review). However, in general, unitarity and
analyticity call for the use of more refined tools as described in this manuscript, as well as in recent
review articles [1,2]. When there are overlapping resonances with the same quantum numbers, the
resonance terms should not simply be added but combined in a non-trivial way either in a K-matrix
approach (cf. Sec. 50.3.2 of this review) or using other advanced methods (cf. Sec. 50.3.5 of this
review). Additional constraints from the S-matrix allow one to build more reliable amplitudes and,
in turn, to reduce the systematic uncertainties of the resonance parameters: pole locations and
residues. In addition, for broad resonances there is no direct relation between pole location and
the total width/lifetime — then, the pole residues need to be used in order to quantify the decay
properties.

For simplicity, throughout this review we will primarily focus on the two-body kinematics. The
formulas are given for resonances in a system of distinguishable, scalar particles. The additional
complications that appear in the presence of spins can be controlled in the helicity framework de-
veloped by Jacob and Wick [3], or in a non-covariant [4] or covariant [5] tensor-operator formalisms.
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Figure 50.1: Illustration of the relation between s- and t-channel.

Within these approaches, sequential (cascade) decays are commonly treated as a coherent sum of
two-body interactions.
50.1.1 Properties of the S-matrix

The unitary operator that connects asymptotic in and out states is called the S-matrix. The
scattering amplitude is defined as the interacting part of the S-matrix. For a two-particle scattering
process, it is commonly defined via:

i(2π)4δ4(p1 + p2 − p1′ − p2′)M(p1, p2; p1′ , p2′)ba = out〈p1′p2′ , b| S − 1 |p1p2, a〉in (50.1)

where |p1p2, a〉 and |p1′p2′ , b〉 are asymptotic states with on-shell four-momenta p1, p2 and p1′ , p2′ ,
respectively, that can be treated as non-interacting particles in the spirit of the Lehmann-Symanzik-
Zimmermann (LSZ) reduction (for details see [6]).

The labels a and b are used to specify the reaction channels. In general terms, a reaction channel
describes the possible outcome of a scattering event, characterized by the quantum numbers of the
particles involved. Note that in general Mab operates as a matrix in channel space and encodes
both elastic transitions (a = b) and inelastic ones (a 6= b).

In many situations, however, the initial state is not itself part of the strongly interacting channel
space. Typical examples are an electromagnetic current, e.g. e+e−, a weak decay, or a hadronic
configuration with only a very small coupling to the system. Formally, such a source defines an
additional row and column of the full scattering matrix, but its feedback on the hadronic submatrix
is negligible. It is therefore advantageous to restrict attention to the strongly coupled channels, while
collecting the source transitions into a production amplitude vector Aa, with one component per
hadronic channel. In Section 50.1.2, we make a great use of this distinction. The strong dynamics
and rescattering are governed entirely by the coupled-channel matrixMab, but the external source
enters only as a driving term feeding into the hadronic system.

For a single-particle state, we employ the relativistic normalization,〈
p′|p

〉
= (2π)32Ep δ3(~p ′ − ~p ), (50.2)

with Ep =
√
~p 2 +m2.

Mandelstam variables are defined as s = (p1 + p2)2, t = (p1 − p1′)2, and u = (p1 − p2′)2. They
are not independent, since

s+ t+ u = m2
1 +m2

2 +m2
1′ +m2

2′

holds, where the mi with i ∈ {1, 1′, 2, 2′} represent the masses of the particles involved. As a result,
the reaction amplitude can be expressed as a function of two variables,M(s, t).

The Mandelstam variables represent a common choice of variables for characterizing particle
scattering. Specifically, the process described in Eq. (50.1) is known as s-channel, referring to
a reaction, 1, 2 → 1′, 2′. Here,

√
s represents the total energy of the interacting system in the
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center-of-momentum frame. The variable t corresponds to the momentum transfer squared, which
is related to the scattering angle, the angle between the momenta of particles 1 and 1′ in the center-
of-momentum frame (see also the review on “Kinematics” in this Review of Particle Physics). The
scattering process with particles 1 and the antiparticle of 1′, denoted by 1′, incoming and the
antiparticle of 2, denoted by 2, and 2′ outgoing represents a different reaction, it is referred to as
the t-channel reaction. The scattering amplitudes of s- and t-channel are related via the so-called
crossing symmetry. The u-channel is introduced analogously as a reaction with the initial state
of particles 1 and 2′ and the final state of particles 1′ and 2. The t-channel and the u-channel
are referred to as the crossed channels relative to the reaction in Eq. (50.1). This relationship is
illustrated in Fig. 50.1.

The analysis of resonance phenomena requires going deeper into the complex analysis of the
amplitude: M(s, t) is a multivalued function due to the complex branch points associated with the
Mandelstam variables. These branch points emerge whenever a new channel becomes accessible,
that is, whenever s exceeds sthr,a = (m1,a+m2,a)2, wheremi,a denotes the masses of the two particles
in channel a. Every two-particle threshold introduces a square-root singularity. The square-root
function is inherently double-valued; for instance, the equation x = y2 has two solutions:

√
x and

−
√
x. In the complex plane, these two solutions are represented as separate layers or surfaces,

known as Riemann sheets or Riemann surfaces. Consequently, each square-root singularity causes
the number of Riemann sheets of the scattering amplitude to double. If a channel opens that has
an odd number of particles, the branch point at the threshold exhibits a logarithmic singularity [7].
Such a branch point gives rise to an infinite number of sheets. The branch points come with their
associated branch cuts — by convention these are taken from the threshold to infinity along the real
axis and accordingly called right-hand cuts. To explore a reaction amplitude in the complex energy
plane, one can introduce a complex component to the Mandelstam variable s. The section of the
complex plane that corresponds to a positive imaginary component of the relative momentum can
be directly accessed from the physical region and is called the first Riemann sheet or the physical
sheet. The other sheets are called unphysical sheets. The physical axis of an s-channel scattering
amplitude represents a line for real values of the variable s larger than the lowest threshold to be
evaluated on the physical sheet.

While the physical Riemann sheet is free of singularities off the real axis (which hosts the
mentioned branch points and, in some cases, poles below the lowest threshold), the unphysical
sheets may contain resonance poles and branch points. Branch points within the complex plane of
an unphysical sheet appear, e.g., when there is a resonance in a subsystem of involved particles [7,8]
(for some in-depth discussion of the discontinuities, see Ref. [9]). The branch points related to
thresholds in the crossed channels are located on the real axis to the left of the physical region, and,
therefore, are referred to as the left-hand cuts. An illustrative example for a left-hand cut is the one-
pion exchange in nucleon-nucleon scattering that is located in the unphysical domain at s = 4m2

N−
m2
π. Triangle topologies, which are Feynman diagrams characterized by a triangular loop of three

propagators, can lead to logarithmic singularities in the scattering amplitude. These singularities,
appearing on the unphysical sheets, are often termed triangle singularities (TS) [7, 10,11].

The reaction amplitude has poles that can be categorized as bound states, virtual states, or
resonances. Poles corresponding to bound and virtual states manifest at real values of s. Specif-
ically, bound state poles are found on the physical sheet below the lowest threshold, while virtual
state poles are situated on an unphysical sheet, below the threshold. Resonance poles, on the other
hand, are located inside the complex plane of the unphysical sheets. Notably, those resonance poles
that are on the unphysical sheet nearest to the physical region exert the most significant influence
on experimental observables. Analyticity dictates that for every pole at a specific complex value
of sp, there must be a corresponding pole at its complex conjugate value s∗p. This relationship
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4 50. Resonances

is a direct consequence of the Schwarz reflection principle, a mathematical technique utilized for
analytic continuation within scattering theory. For a single-channel case, the complex structure
of an amplitude with a single resonance is illustrated in Fig. 50.2(a)-(c). Among the two poles,
symmetrically positioned relative to the real axis on the second sheet, the one exhibiting a negative
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Figure 1.4.: Exemplary scattering amplitude on the first Riemann sheet (green)
with one pole on the second sheet (red).

where �(n)(s) are 2N � 1 different matrices in channel space containing all com-
binations of corresponding phase space factors �k(s) on its diagonal. As an
example the two-channel problem with ⇡⇡ and KK̄ the matrices are given as

�(2)(s) =

✓
�⇡⇡(s) 0

0 0

◆
, �3(s) =

✓
0 0
0 �KK̄(s)

◆
(1.213)

and

�4(s) =

✓
�⇡⇡(s) 0

0 �KK̄(s)

◆
. (1.214)

The same procedure can also be applied for a form factor F (s) with the discon-
tinuity

discF i(s) = 2i

NX

k=1

⇣
tik` (s)

⌘?
�k(s)F

k(s) . (1.215)

Its analytic continuation on different Riemann sheets is defined by

⇣
F (n)(s)

⌘i
=

NX

k=1

h
1 + 2it`(s)�

(n)(s)
i�1

ik
F k(s) . (1.216)
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Figure 50.2: (a)-(c): Imaginary part of a typical scattering amplitude with an isolated resonance.
The blue line shows the physical range of the Mandelstam variable s: it is real and starts from
the threshold shown by the blue dot. Plot (a) shows the imaginary part of the amplitude in the
complex s-plane that corresponds to the first or physical sheet (green surface), plot (b) shows the
related unphysical or the second sheet (red surface) which contains the resonance poles, and plot (c)
shows the analytic continuation of the same amplitude from the upper half plane of the physical
sheet to the lower half plane of the unphysical sheet. The two sheets are connected smoothly along
the real axis above the threshold. Panel (d) shows the k-plane, which is free of cuts. The upper
(lower) half plane maps onto the physical (unphysical) sheet. Also here the blue line corresponds
to the physically accessible values of the momentum k, which starts at threshold, where k = 0. The
thick black line shows the analytic continuation of the on-shell momentum in the below threshold
regime. The locations of the resonance poles are indicated by the black crosses.

imaginary part seamlessly connects to the physical axis, which becomes especially clear in panel (c)
of the figure where the physical axis is shown as the blue line. It therefore has a more pronounced
effect on observables in the vicinity of the resonance region compared to its conjugate counterpart.
The shortest continuous path from the physical region to the second sheet pole with the positive
imaginary part is via a line that goes around the threshold. However, the effective distance to both
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5 50. Resonances

poles becomes comparable for near threshold kinematics, thereby rendering the influence of both
poles on observables similarly significant—in fact it is the interplay of the various resonance poles
that renders scattering amplitudes real below the lowest threshold.

An alternative way to depict the complex sheet structure is through the momentum or k-
plane, where k denotes the relative momentum of the two scattering particles in their center-of-
momentum frame. For particles of equal mass, denoted as m (expression for unequal masses is
given in Eq. (50.7)), one finds

k = 1
2
√
s− sthr , (50.3)

where sthr = 4m2 is the threshold for two particles of mass m. Unlike the complex s-plane,
in the single channel case the k-plane does not have a two-body threshold cut. Consequently,
both the physical and unphysical Riemann sheets, which are linked along the branch cut in s,
are mapped onto the upper and lower half of the complex k-plane, respectively. The k-plane is
sketched in Fig. 50.2(d), including possible locations of resonance poles. In this representation it
becomes especially clear that only one resonance pole drives the dynamics on the physical axis in
the resonance region, while at the threshold, where k = 0, both poles are of equal significance.

In situations involving two relevant channels, we encounter four Riemann sheets. These are
illustrated in the left panel of Fig. 50.3. For a system with two channels, the four-sheeted Riemann
surface can also be transformed into a single plane free of cuts. For non-relativistic kinematics,
it is represented by the new variable, ω, which is defined in relation to the channel-momenta, as
detailed in references [12,13] (for a recent application, see Ref. [14]).

ka =

√
µa∆

2

(
ω + 1

ω

)
, kb =

√
µb∆

2

(
ω − 1

ω

)
, (50.4)

where ∆ denotes the energy difference between the two thresholds and µa is the reduced mass of
the particles in channel a, µa = m1,am2,a/(m1,a+m2,a). The lower threshold is located at ω = 0+i,
the higher at ω = 1+0i. The mapping of the Riemann sheets and the different areas in the ω-plane
is shown in the right panel of Fig. 50.3. The ω-plane nicely shows how the different sheets connect
to each other.1 The solid green line shows the physical axis in the physical regime. The thick black
line shows its analytic continuation below the lowest threshold. The pronounced kinks in this line
for the ω plane show the thresholds. Please observe that for ω ≈ 0 + i the sheet structure agrees
with panel (d) of Fig. 50.2, since in this kinematic regime the second channel does not matter.

In the context of a two-channel scenario, the proximity of a sheet to the physical axis varies
with increasing energy. Specifically, for energies that exceed the first threshold, but remain below
the second, sheet (21) is the one that smoothly connects to the upper half-plane of the physical
sheet (11). Once the energy surpasses the second threshold, sheet (22) assumes this role. As a
result, any pole on sheet (21) that lies above the second threshold will manifest in the data solely
as a cusp right at the second threshold. Sheet (12), on the other hand, is remote for all energies,
except those very close to the second threshold (for illustration see Ref. [15]).

Singularities, poles and branch points induce visible structures in observables. However, it is
crucial to note that not every observable bump is indicative of a resonance as discussed in [16].
Under certain kinematic conditions, Triangle Singularities, in particular, can either mimic resonance
signals, as suggested in Refs. [17–22], or significantly alter resonance signals [23] (see Ref. [24] for
a review). Conversely, not all resonances produce a noticeable bump across all observables. For
example, in the baryon sector, there is no clear trace of the N(1440)1/2+, the so-called Roper
resonance, in the πN observables or phase shifts, although careful analyses reveal a pole [25].

1An alternative illustration for this two-channel case as well as an extension to three channels can be found in
Ref. [2].
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6 50. Resonances

Figure 50.3: Cut structure of the S-matrix with two channels present. The diagrams feature four
sheets, labeled (ij), where both i and j can be 1 or 2. These labels indicate the doubling of the
sheets at the first and second thresholds. The left panel displays the complex s plane, while the
right panel represents the ω plane. The physical axis, along with its analytic continuation below
the threshold, is highlighted with a thick solid line, green in the physical regime, black for the
analytic continuation below the lowest threshold.

In the meson sector, the f0(500), also known as σ meson, was firmly established only after the
application of very sophisticated theoretical analysis tools (see, e.g., Ref. [26] for a review). This
complexity arises since the approximate chiral symmetry of QCD calls for a zero in the scalar-
isoscalar scattering amplitude right below threshold. Because of this, the scalar-isoscalar ππ phase
shifts reach 90 degrees only near 800MeV, which is approximately 400MeV above the resonance
mass. At this energy, the onset of the next resonance, the f0(980), is already visible.

The analyticity principle of the S-matrix, germane to quantum scattering theories, dictates that
only poles and branch points can exist on the real axis of the first Riemann sheet, excluding any
singularities in the complex plane. This principle is closely linked to causality, ensuring that effects
follow their causes in a chronological order. In non-relativistic scattering, the analyticity finds a
solid mathematical base [27]. Similarly, perturbative relativistic theory maintains this analyticity
through a series expansion of the S-matrix, each term depicted by a Feynman diagram, representing
processes with distinct analytical expressions. A deeper level of analyticity is proposed by the
Mandelstam hypothesis, suggesting not only the analytic properties of the scattering amplitude
within the complex plane of the first Riemann sheet but also a nuanced interconnection between
crossed scattering processes through analytic continuation [28].

Unitarity further constrains the imaginary part of the amplitude on this real axis, a topic
we will explore in the subsequent section. Additional constraints are introduced by principles
such as crossing symmetry, duality [29] and positivity [30]. Approaches based on analyticity and
crossing symmetry have been implemented through dispersion theory. Among the most notable
are the Roy equations and their variants [31]. These have been applied to a range of processes,
including ππ → ππ [32–34], πK scattering [35], γγ → ππ interactions [36], and pion-nucleon
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Disc Mab =
∑

c Mac M†
cb Disc Aa =

∑
c Ac M†

ca

Figure 50.4: Graphical illustration of the discontinuity equations for the scattering and the
production amplitude, respectively. The dashed line indicates that the intermediate state is to be
put on-shell to find the discontinuity.

scattering [37–39].
50.1.2 Consequences from unitarity

Scattering amplitudes, denoted as M, and production amplitudes, represented by A, have
distinct characteristics due to the different constraints imposed by unitarity. When considering the
scattering amplitude, all coupled channels are treated equally within the formalism. In contrast,
for production amplitudes, it is assumed that for the dynamics of the particles in the final state,
the channel of the initial state does not play a role. Accordingly, the interactions in the final state
among the produced particles are described by relevant scattering amplitudes of those particles
only. Scattering processes are, for example, π+π− → KK̄ and D0D̄0 → D0D̄0. Examples of
production processes are e+e− → γ∗ → π+π−, which provides access to the pion vector form
factor, τ− → K−π0ντ , and B0 → J/ψπ+π−.

The unitarity of the S-matrix, represented by the equation S†S = I, ensures the conservation
of probability. This principle imposes a specific constraint on the imaginary part of the reaction
amplitude. Below the lowest threshold (and above the first left-hand cut), the amplitude remains
real. However, once the energy is higher than this threshold, there is a discontinuity associated
with the threshold branch point. The S-matrix unitarity relates the value of the discontinuity to
the amplitude itself [6]:

DiscMba =Mba −M∗ab = i (2π)4∑
c

∫
dΦcM∗cbMca , (50.5)

where dΦc denotes the Lorentz invariant phase space for a given channel, labeled as c. The factor
(2π)4 aligns with the convention for the phase space expression provided in the review on “Kinemat-
ics”. It is essential to note that the summation only considers open channels, meaning those with
a production threshold below the scattered system’s energy. In the evaluation of an actual Feyn-
man diagram, the discontinuity can be extracted by employing the Cutkosky rule, which comprises
replacing the propagators in the pertinent intermediate state by delta-distributions. Eq. (50.5) is
illustrated graphically in Fig. 50.4. The left part of the expression yields 2i ImMba in accordance
to analytic properties of reaction amplitude [40]. For forward scattering, t = 0, the right part of
Eq. (50.5) resembles the total cross section up to a kinematic factor, a relationship known as the
optical theorem:

ImMaa(s, 0) = 2qa
√
s σtot(a→ anything) . (50.6)

In this equation, qa represents the break-up momentum of the particles in the center-of-momentum
frame,

qa =
λ1/2(s,m2

1,a,m
2
2,a)

2
√
s

, (50.7)

where λ(x, y, z) = x2 + y2 + z2− 2xy− 2yz− 2xz is the Källén function, and the masses of the two
particles in the channel a, m1,a and m2,a, cf. Eq. (17) of the review on “Kinematics”.
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Figure 50.5: Argand plot showing a trajectory of the diagonal element of a partial-wave amplitude,
fbb, as a function of energy in the complex plane. As the energy increases the amplitude follows the
line counter clockwise. The amplitude leaves the unitary circle (solid line) as soon as inelasticity
sets in, η < 1 (dashed line).

The unitarity relation for a production amplitude in channel a is represented by:

DiscAa = Aa −A∗a = i (2π)4∑
c

∫
dΦcM∗caAc . (50.8)

Equation (50.8) is illustrated graphically in Fig. 50.4. A direct consequence of this equation is that
the production amplitude shares its poles with the scattering amplitude. The relation between the
production and scattering amplitudes is primarily explored for partial-wave amplitudes introduced
in the next section. A common method to model the production amplitude that adheres to this
unitary relation is to express it as a linear combination of scattering amplitudes. This approach,
known as the Q-vector method (see Sec 50.3.4), has its limitations. Specifically, in this way the
production amplitude inherits the left-hand singularities of the scattering amplitude, while, in
general, it has a different cut structure. To address this drawback, a more sophisticated method,
known as unitarization is employed. This method, rooted in dispersion theory, offers a more refined
approach to the problem and is detailed in [41]. A notable application of this method is the Khuri-
Treiman framework [42, 43], which is frequently used to study three-body decays. This framework
has been successfully applied to a range of decays, from light mesons [44–56] to heavy-flavour
decays [57–61].
50.1.3 Partial-wave decomposition

It is often convenient to expand an amplitude in partial waves in using particle subsystems.
Since resonances have a well-defined spin, they appear only in a specific partial wave of the reaction
amplitude. For scalar particles, the expansion reads:

Mba(s, t) =
∞∑
j=0

(2j + 1)Mj
ba(s)Pj(cos(θ)) , (50.9)

where j denotes the total angular momentum and the Pj(cos(θ)) denotes the Legendre polynomials.
In the presence of spins an expansion more complicated than Eq. (50.9) is necessary — for a general
discussion on how to handle spins see e.g. Ref. [62]. In the absence of spins, the parameter j coincides
with the orbital angular momentum of the particle pairs in the initial and the final state. To simplify
notation and since all amplitudes from here on are understood to be partial wave projected, we
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drop the label j for the single-argument functionMba(s). Plugging Eq. (50.9) into Eq. (50.5), one
finds the unitarity relation for the partial-wave amplitudeMba(s), namely

ImMba(s) =
∑
c

Mcb(s)∗ ρc(s)Mca(s) , (50.10)

with ρc(s) being a factor that is related to the two-body phase space in Eq. (12) of the review on
“Kinematics”,

ρc(s) = (2π)4

2

∫
dΦ2 = 1

16π
2|~qc|√
s
, (50.11)

with the momentum qc being defined in Eq. (50.7). Note that in the case of the two particles being
identical, the inclusion of symmetry factors becomes necessary. The partial-wave amplitude fba(s)
is introduced by normalizing the scattering amplitude with the phase space factors,

fba(s) = √ρbMba(s)
√
ρa . (50.12)

The unitarity condition for fba follows from Eq. (50.10):

Im fba(s) =
∑
c

f∗cb(s)fca(s) . (50.13)

It leads us to deduce that the imaginary part of 1/fba is equal to −δba. Moreover, S = I + 2if is a
unitary matrix. Hence, the diagonal elements of f can be parameterized as

fbb = ηb exp(2iδb)− 1
2i , (50.14)

where δb denotes the phase shift for the scattering from channel b to channel b and ηb is the elasticity
parameter, also known as inelasticity. Building upon Eq. (50.13), we can further deduce that

Im fbb(s) = 1− ηb cos(2δb)
2 =

∑
c

|fcb(s)|2 . (50.15)

Using Eq. (50.14) for the last term in the sum, we obtain a relation highlighting the meaning of
the inelasticity,

1
4(1− η2

b ) =
∑
c 6=b
|fcb(s)|2 . (50.16)

We note that the parameter ηb is confined within the range [0, 1], where the case ηb = 1 is referred
to as a purely elastic scattering. Thus, the function ηb(s) is a direct measure of the contribution of
the inelastic channels on the scattering amplitude in a given channel.

The evolution of the partial-wave amplitude fbb with energy can be displayed as a trajectory in
the Argand plot, as shown in Fig. 50.5. In the case of a two-channel problem, distinct channels a
and b, ηa = ηb = η, and the off-diagonal element is fab =

√
1− η2/2 exp(i(δ1 + δ2)). The unitarity

condition Eq. (50.14) sets the limit to the squared amplitude fbb:

|fbb|2 = 1
4(η2

b − 2ηb cos(2δb) + 1) ≤ 1
4(ηb + 1)2 , (50.17)

where the maximum value is reached for δb = π/2. For the absolute square of the partial-wave-
projected scattering amplitude the unitarity bound thus reads:

|Mbb| ≤
1

2ρb
(ηb + 1) ≤ 8π

qb

√
s , (50.18)
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10 50. Resonances

where the second inequality comes from ηb ≤ 1. For energies much larger than the masses of the
scattering particles the upper bound for |Mbb| tends to 16π for large s.

The partial-wave projected production amplitude A(s) (note that the label j has been omitted
for consistency) is also constrained by unitarity. As derived from Eq. (50.8):

ImAa =
∑
b

M∗ba ρbAb , (50.19)

where the summation encompasses all open channels. For elastic scattering, only one channel,
denoted by a, contributes to the sum. Consequently, the phase of Aa must align with the phase of
Maa, given that the left-hand side of Eq. (50.19) represents a real value. This principle is recognized
as the Watson theorem [63]. Accordingly, the phase of the pion vector form factor agrees with that
of ππ scattering in the vector isovector channel (aside from effects of the isospin-violating ρ − ω
mixing) up to about 1GeV, where inelastic contributions start gaining significance.

50.2 Properties of resonances
A resonance is defined by its pole position in the complex s-plane, denoted as sR, and by the

strength parameters of its couplings to various decay channels evaluated at this pole, known as the
pole residues. The pole mass MR and pole width ΓR are defined via the pole parameters

√
sR = MR − iΓR/2 . (50.20)

For states where the relevant thresholds are situated significantly below the resonance location,
the lifetime τR of the resonance is given by τR = 1/ΓR (refer to the review on “Kinematics” and
for a recent discussion, see Ref. [64]). It is important to note that the conventional Breit–Wigner
parameters mBW and ΓBW, to be introduced in Eq. (50.31), differ from the pole parameters due
to finite width effects and the influence of thresholds and background terms. It should be stressed
that pole location sR and pole residues are the only resonance properties that are model and
parameterization independent.

When a resonance interacts with multiple channels, each channel contributes to the imaginary
part of the pole position. However, these individual contributions do not simply sum up, calling for
a careful definition of partial widths. This behavior is discussed using the example of the f0(980)
in Refs. [65–68].

The pole residues are defined via

Rba = − lim
s→sR

(s− sR)Mba . (50.21)

These can be conveniently calculated via an integration along a closed contour around the pole
using

Rba = − 1
2πi

∮
dsMba . (50.22)

Equivalently, the residue can also be computed using a derivative of inverted matrix element as
(note element inversion, not the matrix inversion)

Rba = −
(

dM−1
ba

ds

∣∣∣∣
s=sR

)−1

. (50.23)

The residue adheres to the factorization relation, (Rba)2 = Raa ×Rbb. This factorization emerges
as a universal property stemming from the unitarity of scattering processes [7]. Building on this
relation, one can define pole couplings as follows:

g̃2
a = Raa = R2

ba/Rbb . (50.24)
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11 50. Resonances

The pole couplings characterize the transition strength of a given resonance to some channel a
independently of how the particular resonance was produced. They are in general complex valued.

In the baryon sector, it is customary to define the residue of the pole for the fba amplitude (as
described in Eq. (50.13)) in terms of the variable

√
s rather than s. This residue can be related to

the residues mentioned earlier by:

rba = 1
2

√
ρa(sR)ρb(sR)

sR
Rba , (50.25)

where the phase-space factors are to be continued analytically to the pole location. The residues
quoted in the baryon listings are those for πN scattering (both a and b are πN channel).

Note that in general each resonance has various poles on different Riemann sheets with their
own residues. For example, in a single channel reaction the Schwarz reflection principle calls for a
pole at sR to be accompanied by a pole at s∗R. In this most simple case the residue of the one pole
is the complex conjugate of that of the other. In multi-channel settings no simple relation can be
given anymore. Thus, the equations discussed above are to be understood to refer to the physically
most relevant pole—to ease notation we did not put a label specifying this.

The branching ratio of a resonance decay to a specific channel represents the fraction of the
decay probability directed to that channel.

Bra = Na/Ntot . (50.26)

Here, Na is the experimental count of events for the decay channel R → a, while Ntot represents
the total number of events produced in the decay of the resonance. Since the amplitudes of decays
to different final states add incoherently, we have Ntot =

∑
bNb. We note, however, that both Na

and Ntot may exhibit a dependence on the reaction through which the resonance is produced, due
to the resonance’s finite width. For a narrow resonance, the experimental count is determined by
integrating the squared production amplitude over the decay channel’s phase space:

Na = N0

∫
|Aa|2 dΦa , (50.27)

where N0 is a normalization constant associated with the integrated luminosity, and Aa represents
the amplitude of the resonance decay to channel a. When the decay rate’s variation across the
resonance width becomes significant, the resonance’s lineshape must be considered:

Na = N0

∫ ∞
sthr,a

ds σR(s)
∫
|Aa(s)|2 dΦa(s) . (50.28)

Here, σR(s) denotes a proper weight function of the resonance and sthr,a is the threshold value for
the channel a. Additionally, the phase-space integral, dΦa(s), puts the integrand to zero below
the energy threshold of the decay channel a. This aspect is particularly crucial for the decays of
broad resonances into channels with energy thresholds exceeding the resonance’s nominal mass.
This methodology is frequently employed in light-meson studies, as demonstrated in Ref. [69], and
is also prevalent in light baryon research, as referenced in Ref. [67].

In the case of the decay of a state into multi-body final states, the transition amplitude can
include resonances within subsystems of particles. When the total amplitude is decomposed as
Aa =

∑
RAa(R), the relative branching fraction for the decay of the given heavy state into final

state a via resonance R in some subsystem, denoted as Bra(R) /Bra, is given by:

Bra(R) /Bra =
∫ ∣∣∣Aa(R)

∣∣∣2 dΦa
/∫

|Aa|2 dΦa . (50.29)
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12 50. Resonances

The decomposition of the total amplitude, Aa, into resonance amplitudes, Aa(R), is not a straight-
forward process. Beyond the differentiation of components based on distinct quantum numbers,
this separation is inherently model-dependent. Furthermore, it is essential to be aware that the
amplitudes Aa(R) can interfere with one another. As a result, their individual probabilities might
not sum up to the total branching fraction of channel a. Nonetheless, in many scenarios, the inter-
ference contributions are small, making the fractions Bra(R) /Bra indicative. For recent applications
of these formulas in the context of B-decays see Refs. [70–73].

Lastly, an expression analogous to the branching fraction can be formulated using the pole
parameters. For two-particle decays in the S-wave, one writes:

Bra = |g̃a|2

MRΓR
ρa(M2

R) , (50.30)

whereMR and ΓR are defined in Eq. (50.20) and the pole coupling g̃a in Eq. (50.24). This approach
was utilized to define a two-photon width for the broad f0(500) resonance [74, 75]. Similarly, one
should use residues to quantify the coupling of resonances to certain production channels [76]. For
an application of this approach to the coupling of the K∗0 (1430) resonance to a leptonic current, see
Ref. [77]. Equation (50.30) provides a definition of branching fraction that remains independent
of the reaction used to derive the quantity. For narrow resonances, this definition aligns well with
Eq. (50.26) and Eq. (50.27). However, for broad, overlapping resonances, Eq. (50.30) is primarily
used to convert residues into metrics that facilitate a more straightforward comparison of resonance
transitions across different channels. For resonances with a coupling to a channel that remains
closed at the resonance mass, Eq. (50.30) is not applicable due to the phase-space factor. In such
scenarios, modification of the expression is required as elaborated upon in Refs. [67, 68], and in
Sec. 50.3.5.

50.3 Common parameterizations
In general, there is no universal, model-independent recipe to build scattering amplitudes.

However, a few approaches presented in this section are practical for extracting resonance properties
in experimental analyses. The systematic theory uncertainties need to be assessed from a range
of model variations that provide a sufficient quality of description of the available data and are
permitted by general S-matrix principles and the symmetries controlling the system at hand.
50.3.1 The Breit–Wigner parameterization

The relativistic Breit–Wigner parameterization represents a dressed propagator for an isolated
resonance. An amplitude for a resonance observed in a channel a is given by

BW(s) = 1
m2

BW − s− imBWΓ (s)
(50.31)

where mBW represents the Breit–Wigner mass, and ΓBW = Γ (m2
BW) denotes the Breit–Wigner

width. The function Γ (s) is defined by the channels to which the resonance can decay. When
considering only two-body channels, it is given by

Γ (s) =
∑
b

Γb(s) with Γb(s) = 1
mBW

g2
bρb(s)n2

b(s) . (50.32)

Here the index b runs over all channels coupled to the resonance. The bare coupling constants are
represented by gb, and ρb is the phase-space factor as defined in Eq. (50.11). The expression for
na(s) is:

na = (qa/q0)laFla(qa/q0) , (50.33)
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13 50. Resonances

where la indicates the orbital angular momentum in channel a, qa(s) is the break-up momentum
as defined in Eq. (50.7), and q0 is a suitably selected momentum scale. The term (qa)la ensures the
amplitude’s appropriate threshold behavior. The rapid growth of this factor for angular momenta
la > 0 is offset at specific s values by a phenomenological form factor, represented here by Fla(qa/q0).
We note that the presence of these suppression factors is also a requirement from positivity which
demands that the dressed propagator, the denominator of Eq. (50.31) and similar equations below, is
not allowed to drop faster than 1/s [30]. The Blatt-Weisskopf form factors are frequently employed
in the literature [78–80] to model Fj :

F 2
0 (z) = 1 , (50.34)
F 2

1 (z) = 1/(1 + z2) ,
F 2

2 (z) = 1/(9 + 3z2 + z4) ,

where z = q/q0, the scale parameter 1/q0 typically falls within the range of 1 GeV−1 to 5 GeV−1.
Bare coupling constants gb do not have strict physical meaning, but rather serve as parameters

reflecting the importance of a particular channel to the resonance lifetime. For narrow resonances
with all coupled channel thresholds below the nominal mass, the coupling constant can be traded
for the partial width ΓBW,b.

gb =
√

mBW ΓBW,b

ρb(m2
BW)F 2

lb
(qb r/q0)

(
q0
qb r

)lb
. (50.35)

Here the qb r are the values of the break-up momenta evaluated at s = m2
BW. It is essential to note

that this substitution is valid only for channels where the decay channel’s threshold is positioned
below the nominal resonance mass. In other scenarios, Eq. (50.32) should be applied.

Equation (50.32) incorporates thresholds for each of the coupled channels. As an analytic
function, it must remain valid in regions below any of these thresholds. Its evaluation in such
regions, however, requires careful analytic continuation of the break-up momentum qa that has a
square root ambiguity. As outlined in Refs. [81, 82], it’s done as

qa = i
√
−q2

a for q2
a < 0 . (50.36)

The Flatté parameterization [81] describes the amplitude for two S-wave channels near the threshold
of a heavier channel, evaluated in the physical region of the lighter channel using Eq. (50.36). When
a resonance’s coupling to the channel with a higher threshold is notably strong, the parameterization
exhibits scaling invariance. This implies that individual partial decay widths cannot be extracted;
only their ratios can be determined [83].

Commonly, one uses the Breit–Wigner amplitude to describe the production amplitude, then,

Aa(s) = Na(s)BW(s) . (50.37)

The numerator function Na(s) = α ga na(s) is tailored to the production process, encompassing
kinematic factors and couplings pertinent to both the production and decay processes. The Breit–
Wigner amplitude is an example of a unitary parameterization; it satisfies Eq. (50.10) with the
scattering amplitudeMab(s) given by

Mab(s) = ga na(s) BW(s) gb nb(s) . (50.38)

The Breit–Wigner parameterization is an accurate representation of resonance phenomena
strictly in the Γ/∆ → 0 limit, where Γ is the resonance width and ∆ is the distance to the
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14 50. Resonances

closest unaccounted singularity, be it a pole of a higher resonance or a kinematic threshold related
to a channel that couples to the resonance. However, the situation is often more complex due to
multiple singularities in the complex plane around the resonance with different importance. For
instance, in P-wave ππ scattering, the Breit–Wigner parameterization aptly describes the ρ-meson
resonance relatively well over an extensive range. Although the closest singularity to the ρ-meson
pole is the ω-pole (Γρ/∆ω � 1), this isospin breaking effect is insignificant for ππ scattering. How-
ever, in production reactions it can show a sizable effect—examples are χc1(3872) → J/ψππ [84],
e+e− → ππ [85], B → J/ψππ [86] and η′ → ππγ [87]. Subsequent singularities, namely the 3π,
4π, and 6π thresholds, can also be disregarded in the pertinent mass range. The two-pion thresh-
old is incorporated in the Breit–Wigner parameterization through an energy-dependent width and
can be improved further by using the Gounaris-Sakurai parameterization [88], which also includes
dispersive corrections that will be discussed below in some detail. Finally, the parameterization’s
efficacy diminishes around 1.2GeV due to the ρ′ resonance, situated approximately at 1.4GeV.

The extraction of the pole position from the Breit–Wigner amplitude is a straightforward tech-
nical task, achieved through analytic continuation. However, even if the applicability of the Breit–
Wigner parameterization is established for a given resonance, it is crucial to recognize that its
parameters will only align with the pole parameters if the width is small. Moreover, there can be
sizable effects from non-resonant contributions, inducing some reaction dependence. Thus, neither
the Breit–Wigner parameters nor the pole parameters deduced from those should be deemed reli-
able in general. If there is more than one resonance in one partial wave that significantly couples to
the same channel, it is generally inappropriate to employ a sum of Breit–Wigner functions. Such an
approach often results in a breach of unitarity constraints, potentially introducing an indeterminate
bias to the inferred resonance properties from the reaction amplitude. For overlapping resonances
in the same partial wave, more sophisticated methods, such as the K-matrix approach detailed in
the subsequent section, are recommended.

50.3.2 K-matrix approach
The K-matrix method offers a comprehensive framework for modeling coupled-channel ampli-

tudes [89]. This method ensures two-particle unitarity. However, it traditionally omits the physical
left-hand cuts, and introduces spurious branch points when using the phase space factor for particle
loops (see cf. Sect. 50.3.3). The scattering amplitudeMba(s) can be derived from the equation:

nbM−1
ba na = K−1

ba − iδbaρan
2
a . (50.39)

Here, Kba represents a real function and is subject to modeling. The factor na is elaborated
upon in Eq. (50.33). Since there is no unique recipe to build K, it is essential to explore various
parameterizations to gauge the theoretical systematic uncertainty—this idea is often used for the
extraction of resonance poles of lattice studies; see e.g. Ref. [90]. A commonly adopted choice for
the K-matrix is given by:

Kba(s) =
∑

r

gr
bg

r
a

m2
r − s

+
∑
n

b
(n)
ba s

n , (50.40)

where mr is referred to as the bare mass of the bare K-matrix pole r (not to be confused with the
physical mass), and the gr

a represents the bare couplings of the bare pole r to the channel a (not to
be confused with the residues). The b(n)

ba are matrices that parameterize the non-pole components
of the K-matrix. Provided all parameters in Eq. (50.40) are real, the amplitude Mba(s) remains
unitary. We note that K-matrix poles labeled by r produce the physical resonance poles labeled
by R in the scattering amplitude, M, but the converse is not true. Non-pole components of the
K-matrix can also produce poles in M. From Eq. (50.39), the scattering amplitude M can be
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directly computed using its matrix form:

M = n[1−K iρ n2]−1K n , (50.41)

where n and ρ are diagonal matrices, n = diag(na, nb, . . . ), and ρ = diag(ρa, ρb, . . . ). As an alterna-
tive to Eq. (50.40), the same functional structure on the right side of Eq. (50.40) can be employed
to parameterize the inverse K-matrix, termed theM -matrix, by the authors of Ref. [91]. Numerous
alternative formulations within the K-matrix framework are utilized for amplitude studies related
to lattice QCD calculations [90,92–94].

A prevalent method to construct the production amplitude within the K-matrix framework
is the P-vector parameterization [80, 89, 95]. The method utilizes the K-matrix poles and bare
couplings from Eq. (50.40):

Aa(s) = na
∑
c

[
1−K iρn2

]−1

ac
Pc , (50.42)

Pc =
∑

r

αrgr
c

m2
r − s

+ Bc. (50.43)

The production vector, denoted as Pc, comprises two main components. The first component
represents a transition driven by the coupling of the bare resonance, r, to the channel c as well as
the source. The coupling of the latter is characterized by a strength parameter, αr. The second
component, Bc, signifies the direct transition from the source to the channel c. The formalism
ensures that the complete production vector gets dressed via the final state interaction.

The Q-vector, as discussed in Ref. [80,91,96], offers an alternative methodology for constructing
a production amplitude:

Aa(s) =
∑
c

Mac(s)Qc(s)/nc . (50.44)

Here, Qc(s) represents a smooth function of s and can be parameterized using a polynomial series.
The unitarity condition of Eq. (50.19) is satisfied when Qc(s) is a real function and in particular
does not have singularities above the lowest threshold for all channels c. Besides these conditions,
Qc(s) is arbitrary. In a study of γγ → ππ, cf. Ref. [74,75] a low-order polynomial is claimed to be
sufficient to parameterize the energy dependence of the function Qc(s). The Q-vector method is
convenient if the full matrix M is known, cf. Ref. [91]. An important distinction between the P-
vector and the Q-vector methods is highlighted in [95]. When the two-particle scattering amplitude
approaches zero, the production amplitude in the Q-vector construction unavoidably vanishes for
finite values of Qc, whereas it can remain non-zero in the P-vector approach.

Traditionally, amplitudes constructed using the K-matrix technique exclude the left-hand cuts.
Nevertheless, these can be customarily incorporated into the non-pole part of Eq. (50.40) for the
scattering amplitude [97,98], or via properly chosen background amplitudes [68]. Similarly, for the
production amplitude, the functions Bc andQc from Eq. (50.43) and Eq. (50.44), respectively, might
also encompass the left-hand cuts. These can often be parameterized by low order polynomials [74,
75,99].

The position of the resonance poles can be determined by examining the zeros of the analytic
function det[1−K iρ n2]. Owing to the ρ factor, this determinant exhibits a complex multisheet
structure. Nonetheless, the nearest unphysical sheet usually has the highest influence on the phys-
ical region. It is always the one which is determined by the heaviest threshold below the studied
point in s (cf. Fig. 50.3). If for a given resonance the pole closest to the physical region is not
located on a sheet that connects directly to the physical region, it is possible that K-matrix fits
do not allow one to fix the pole parameters, since a larger distance of the pole to the physical
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Figure 50.6: Comparison of the iρ function (left plot) to the Chew-Mandelstam function from
Eq. (50.46) (right plot), evaluated for the case of S-wave ηπ scattering. The values of s are taken
slightly above the real axis, s + i0. The solid red line shows the imaginary part that is the same
for both functions above threshold, sthr = (mη + mπ)2. The dashed black line presents the real
part. One finds indications of the unphysical singularities, a branch point at the pseudothreshold
spth = (mη − mπ)2 and a pole at s = 0, of the function iρ on the left plot, while the Chew-
Mandelstam function is analytic below the two-particle threshold.

region can be balanced by increased residues—for a detailed discussion and a recent application see
Ref. [83] and [100], respectively.
50.3.3 Further improvements: Chew-Mandelstam function

The K-matrix framework often enables an accurate fit of physical amplitudes and is straightfor-
ward to handle. However, it does present a significant drawback: it breaches constraints imposed
by analyticity. For instance, ρa, as defined in Eq. (50.11), is not well-defined at s = 0. Moreover,
in cases of unequal masses, it manifests an unphysical cut, as depicted in the left panel of Fig. 50.6.

A method to improve the analytic properties has been suggested in Refs. [88, 101–104]. This
approach replaces the term iρa(s)n2

a from Eq. (50.39) with the analytic function Σa(s), known as
the Chew-Mandelstam function. This function produces the imaginary part iρa(s)n2

a on the right-
hand cut, while maintaining analyticity on the left-hand side, as represented by the once subtracted
dispersion integral:

Σa(s+ i0) = s− sthr,a
π

∫ ∞
sthr,a

ρa(s′)n2
a(s′)

(s′ − sthr,a)(s′ − s− i0) ds′. (50.45)

Here, we chose the channel threshold, sthr,a, as the subtraction point, and assumed that the sub-
traction constant is absorbed into the other parameters used for the amplitude. For an S-wave
where na = 1, the integral has a closed form [41,102]:

Σa(s) = 1
16π2

[2qa√
s

log
m2

1,a +m2
2,a − s+ 2

√
sqa

2m1,am1,a
− (m2

1,a −m2
2,a)

(
1
s
− 1
s2

thr,a

)
log m1,a

m2,a

]
, (50.46)

wherem1,a andm2,a are masses of the final-state particles in channel a, with sthr,a = (m1,a+m2,a)2.
A closed form expression for the P -wave is provided in Ref. [105]. The behavior of Σa(s) as given
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in Eq. (50.46) along the real axis is illustrated in the right panel of Fig. 50.6. A further discussion
of the calculation of the Chew-Mandelstam function can be found in Refs. [106,107].

If there is only a single resonance in a given channel, it is possible to feed the imaginary part of
the Breit–Wigner function, Eq. (50.31) with an energy-dependent width, directly into a dispersion
integral to get a resonance propagator with the correct analytic structure [108,109].
50.3.4 Effective-range expansion and scattering-length approximation

For elastic scattering, ηb = 1, Eq. (50.14) simplifies to

fbb = eiδ sin(δ) = q

q cot(δ)− iq , (50.47)

where q is the relative momentum of the scattering particles. For S-waves one may then employ
the effective-range expansion [110,111] (ERE)

q cot δ = 1
a

+ 1
2rq

2 +O
(
R3
fq

4
)
, (50.48)

whose radius of convergence is set by the closest non-analyticity, which may be the next threshold,
a left-hand cut or a zero in the amplitude, which is equivalent to a pole in q cot δ. The ERE is
understood to be an expansion in Rfq, where Rf denotes the range of forces provided by the inverse
of the mass of the lightest exchange particle allowed. The scattering length, a, provides the strength
of the scattering amplitude at threshold and is thus defined as the first term in an expansion of the
real part of the inverse scattering amplitude. The sign convention used in Eq. (50.48) is the one
commonly employed in particle physics. In this convention a positive scattering length indicates
attraction; if, however, the attraction is strong enough to generate a bound state, the scattering
length changes sign and turns negative. A negative scattering length also occurs for repulsive
interactions. Note that in nuclear physics the leading term in the expansion of Eq. (50.48) is
usually defined as −1/a such that e.g. a bound state would be related to a positive scattering
length. The parameter r is called the effective range. Especially, in cases where the scattering
length is large, the ERE not only describes the low-energy scattering well, but also allows for an
analytic continuation to find bound states below threshold by proper analytic continuation. This
method was, e.g., employed recently to analyze near threshold scattering phase shifts for D∗+D0

scattering found in lattice analyses to extract properties of the Tcc(3875)+ [112–114] at unphysical
pion masses. It should be stressed that the analyses of the lattice data might call for a modification
to account for the nearby left-hand cut which sets the radius of convergence of the ERE [115,116].

When considering only the scattering length within the ERE, the scattering amplitude is rep-
resented as:

M(s) = 8π
√
s

1/a− iq(s) . (50.49)

It is worth noting that the scattering length approximation is applicable only in a very limited
energy range, however, it might well be appropriate to analyze the recently discovered narrow
very near-threshold states [117, 118]. Examples of such analyses can be found in Refs. [119–121].
Moreover, it is possible to introduce the effect of a weakly coupled lower channel [122, 123]. Such
coupling results in a positive imaginary part of the scattering length. It is also crucial to highlight
that for large values of a, the amplitude of Eq. (50.49) develops a near-threshold pole located
on the physical or unphysical sheet for negative or positive values of a, respectively. For readers
interested in an exploration of how close-to-threshold poles interact with remote thresholds, we
refer to Ref. [124].

While easy to use, it is important to stress, however, that the approximation in Eq. (50.49)
is a specific choice of the dynamic function. This choice results in a single pole close to the
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physical region, suggesting that the state under study has the characteristics of a hadronic molecule,
as discussed in references such as [121, 125–127]. Virtual states are discussed in this context in
Ref. [128].
50.3.5 Two-potential decomposition

Another advanced technique to construct the scattering amplitude, which is widely used in the
literature [61, 77, 129–133], is based on the two-potential formalism [134, 135]. While it is possible
to formulate this method for the full unprojected amplitude Mba(s, t), for clarity, we focus on
presenting the equations in their partial-wave-projected form.

The scattering amplitude,M(s), can be broken down into two components: a background part
and a pole part. This can be represented as:

M(s) =Mb.g.(s) +Mpole(s) . (50.50)

It is important to note that the division presented in Eq. (50.50) is not unique and model-dependent.
This is further discussed in references such as [136, 137]. The background scattering matrix is
assumed to satisfy the unitarity relations by itself. One approach to parameterize it, especially at
lower energies, is by using phase shifts and inelasticities, as seen in [61, 77, 133]. Alternatively, it
can be computed based on some potential, V b.g., fed into a proper scattering equation [131,132] or
parameterized [68].

The complete amplitude,M, from Eq. (50.50) satisfies the unitarity relations, if the pole part
follows a specific construction. Namely,

Mpole
ab (s) =

∑
c,d,e

na(s)Ωac(s) [1− V poleΣu(s)]−1
cd V

pole
de ΩT

eb(s)nb(s) , (50.51)

with the tamed centrifugal barrier factors introduced in Eq. (50.33). In this context, we introduce
the vertex functions, denoted as Ωab(s), and the resonance potential, represented as V pole(s). This
potential operates as a matrix in the channel space and can be expressed as:

V pole
ab (s) =

∑
r

gr
a g

r
b

m2
r − s

. (50.52)

The term Σu
ab represents the self-energy matrix. Additionally, gr

a denotes the bare coupling of the
resonance, labeled as r, to the channel a, and mr is its bare mass. The vertex functions obey a
unitarity relation similar to the production amplitude in Eq. (50.8). However, in this case, the final
state interaction is determined byMb.g.. This can be represented as:

DiscΩab(s) = 2i
∑
c

Mb.g. ∗
ca (nc(s)/na(s)) ρc(s)Ωcb(s) . (50.53)

When using low-energy phase shifts for the background term, it is practical to express the vertex
functions in terms of an Omnès matrix, as discussed in [61]. The matrix reduces to the well-known
Omnès function

Ω(s) = exp
(
s

π

∫ ∞
sthr

ds′ δb.g.(s′)
s′(s′ − s− iε)

)
, (50.54)

in the single-channel case [138], where δb.g.(s) denotes the phase of the background scattering
matrixMb.g.(s). The discontinuity associated with the self-energy matrix, Σu(s), is given by:

DiscΣu
ab(s) = 2i

∑
c

Ω∗ca(s) ρc(s)nc(s)2Ωcb(s) . (50.55)
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To determine the real part of Σu, one can use Eq. (50.55) with a properly subtracted dispersion
integral — cf. Eq. (50.45).

When Mb.g. satisfies the unitarity relations, the full amplitude also does given Eq. (50.51).
However, it is essential to note that the pole term alone does not satisfy the unitarity relation unless
the background amplitude vanishes. Under such conditions, the described amplitude simplifies to
the K-matrix construction with improved analytic behavior as detailed in Sec. 50.3.3. Neglecting
non-pole terms is not a good approximation for certain interactions, such as the scalar-isoscalar ππ
at low energies, as discussed in Refs. [68,139]. However, for higher partial waves, this approximation
is generally effective.

A production amplitude consistent with Eq. (50.51) reads [61,133]:

Apole
a (s) = na(s)

∑
c,d

Ωac(s) [1− V (r)(s)Σu(s)]−1
cd Pd , (50.56)

with function Pd given in Eq. (50.43). This form was employed in Refs. [61, 133] to treat the pion
vector and scalar form factor, respectively, and in Ref. [77] for the scalar πK form factor.

The ideas presented above can be used to define branching fractions for broad resonances with
minimal bias [68]. The starting point is the dressed resonance propagator for a single resonance
that may be read off Eq. (50.56):

GR(s) = 1
s−m2

r +
∑
a g

r 2
a Σ

u
aa(s)

, (50.57)

where the parameters mr, gr
a as well as those of the background interactions are to be adjusted such

that pole locations and residues get reproduced. For this construction the background interactions
contained in Σu

aa(s) are taken diagonal, which implies diagonal vertex functions and therefore
diagonal self energies, i.e. Σu

ab(s)=δabΣu
aa(s). With this one can define branching ratios in line with

Eq. (50.26) via

Bra = gr 2
a

2πi

∫ ∞
sthr,a

ds |GR(s)|2 DiscΣu
aa(s) = gr 2

a

π

∫ ∞
sthr,a

ds |GR(s)Ωaa(s)na(s)|2 ρc(s) . (50.58)

Thus, in this approach the weight function of Eq. (50.28) can be identified with

σR(s) = MRΓR
π
|GR(s)|2 . (50.59)

The individual branching ratios automatically sum to one, since by construction

∑
a

gr 2
a

2πi

∫ ∞
sthr,a

ds |GR(s)|2 DiscΣu
aa(s) = − 1

2πi

∫ ∞
sthr

dsDiscGR(s) = 1 , (50.60)

where sthr denotes the lowest of the different thresholds. To see the last identity we follow Ref. [140]
and use Cauchy’s theorem as well as the fact that the resonance propagator has no non-analyticities
on the physical sheet besides the threshold branch points, with the branch cuts extending to infinity
along the positive real axis, to find

0 =
∮

dsGR(s) = lim
smax→∞

[∫ smax

sthr
dsDiscGR(s) + i

∫ 2π

0
dφ smaxe

iφGR(smaxe
iφ)
]
, (50.61)

where the integration contour is chosen such that it encloses the branch cut from the lowest threshold
and is closed by an arc of radius smax. Using that lims→∞Σaa(s)/s = 0 such that lims→∞GR(s) =
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1/s the second integral above evaluates to 2πi which proves the identity from above. An alternative
formal proof of Eq. (50.60) is provided in Ref. [30].

There has been considerable interest in the 3 → 3 scattering recently, particularly in light of
new data on three-hadron interactions [141] and advancements in lattice calculations [142]. One
finds that the methodologies devised for accounting for one-pion exchange bear a resemblance to
the two-potential decomposition. For details see Ref. [143], also Eq. (93) in Ref. [144].
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