$$\begin{array}{||c|c|c|c|c|} \hline \textbf{BOTTOM BARYONS} \\ (B = -1) \\ A_{b}^{0} = udb, \Sigma_{b}^{0} = udb, \Sigma_{b}^{+} = uub, \Sigma_{b}^{-} = ddb \\ \overline{=}_{b}^{0} = usb, \overline{=}_{b}^{-} = dsb, \Omega_{b}^{-} = ssb \\ \hline \textbf{I}(J^{P}) = 0(\frac{1}{2}^{+}) \\ \hline \textbf{I}(J^{P}) \text{ not yet measured; } 0(\frac{1}{2}^{+}) \text{ is the quark model prediction.} \\ Mass $m = 5619.57 \pm 0.16 \text{ MeV} \\ m_{A_{b}}^{0} - m_{B^{0}} = 339.2 \pm 1.4 \text{ MeV} \\ m_{A_{b}}^{0} - m_{B^{+}} = 339.72 \pm 0.28 \text{ MeV} \\ \text{Mean life } \tau = (1.468 \pm 0.009) \times 10^{-12} \text{ s} \\ c\tau = 440.1 \, \mu\text{m} \\ A_{CP}(A_{b} \leftrightarrow p\pi^{-}) = -0.025 \pm 0.029 \quad (5 = 1.2) \\ A_{CP}(A_{b} \leftrightarrow p\pi^{-}) = 0.025 \pm 0.029 \quad (5 = 1.2) \\ A_{CP}(A_{b} \leftrightarrow p\pi^{-}) = 0.007 \pm 0.009 \\ A_{CP}(A_{b}^{0} \leftrightarrow A_{c}^{+}\pi^{-}) = 0.007 \pm 0.009 \\ A_{CP}(A_{b}^{0} \leftrightarrow A_{c}^{+}\pi^{-}) = 0.007 \pm 0.024 \\ A_{CP}(A_{b} \leftrightarrow A_{c}^{+}\pi^{-}) = 0.014 \pm 0.024 \\ A_{CP}(A_{b} \leftrightarrow A_{c}^{+}\pi^{-}) = 0.022 \pm 0.13 \\ \Delta A_{CP}(A_{b} \leftrightarrow A_{c}^{+}\pi^{-}) = -0.28 \pm 0.12 \\ \Delta A_{CP}(A_{b} \leftrightarrow A_{c}^{+}\pi^{-}) = -0.28 \pm 0.12 \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p\pi^{-}\pi^{+}\pi^{-}) = (1.1 \pm 2.6) \times 10^{-2} \\ A_{CP}(A_{b}^{0} \leftrightarrow p\pi^{-}\pi^{+}\pi^{-}) = (1.1 \pm 2.6) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p\pi^{-}\pi^{+}\pi^{-}) = (1.1 \pm 3.3) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (3.2 \pm 1.3) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (3.2 \pm 1.3) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (3.2 \pm 1.3) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (3.2 \pm 1.3) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (4.4 \pm 2.7) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (-7 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (-7 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (-7 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (-7 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (-7 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (-7 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (-7 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (-7 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(A_{b}^{0} \leftrightarrow p(\pi^{-}\pi^{+}\pi^{-}) = (-7 \pm 6) \times 10^$$$

Created: 4/11/2025 17:09

$$\begin{split} & \Delta A_{CP}(\Lambda_b^0 \to \Lambda(1520) \phi(1020)) = (4 \pm 6) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ & \Delta A_{CP}(\Lambda_b^0 \to (pK^-K^+K^-)_{LBM}) = (2.7 \pm 2.4) \times 10^{-2} \\ & \Lambda_{FB}^{\ell}(\mu\mu) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.39 \pm 0.04 \\ & \Delta (\Lambda_{FB}^{\ell}(\mu\mu)) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.35 \pm 0.09 \\ & \Lambda_{FB}^{h}(p\pi) \text{ in } \Lambda_b \to \Lambda(p\pi) \mu^+ \mu^- = -0.30 \pm 0.05 \\ & \Lambda_{FB}^{\ell h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \end{split}$$

The branching fractions B(*b*-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$ anything) and B($\Lambda_b^0 \rightarrow \Lambda_c^+ \ell^- \overline{\nu}_{\ell}$ anything) are not pure measurements because the underlying measured products of these with B($b \rightarrow b$ -baryon) were used to determine B($b \rightarrow b$ -baryon), as described in the note "Production and Decay of *b*-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b\to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

Ab DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
$\frac{J}{J/\psi(1S)A \times B(b \rightarrow A_b^0)}$	(5.8 \pm 0.8) $ imes$	10 ⁻⁵	1740
$p D^0 \pi^-$	(6.3 ± 0.6) \times	10 ⁻⁴	2370
$\rho D^+ \pi^- \pi^-$	(2.8 \pm 0.4) $ imes$	10 ⁻⁴	2332
$pD^{*}(2010)^{+}\pi^{-}\pi^{-}$	(5.3 ± 1.0) $ imes$	10 ⁻⁴	2277
р D ⁰ К	(4.6 \pm 0.8) $ imes$	10 ⁻⁵	2269
$p J/\psi \pi^-$	(2.6 $\substack{+0.5\\-0.4}$) $ imes$	10 ⁻⁵	1755
$p \pi^- J/\psi$, $J/\psi ightarrow \mu^+ \mu^-$	(1.6 ± 0.8) $ imes$	10 ⁻⁶	_
$p J/\psi K^-$	(3.2 $\substack{+0.6\\-0.5}$) $ imes$	10 ⁻⁴	1589
$p\eta_c(1S)K^-$	$(1.06\pm0.26) imes$	10-4	1670
$P_{c\overline{c}}(4312)^+ K^-, P_{c\overline{c}}^+ \rightarrow p\eta_c(1S)$	< 2.5 ×	10 ⁻⁵ CL=95%	_
$P_{c\overline{c}}(4380)^+ K^-, P_{c\overline{c}}^+ \rightarrow p J/\psi$	[a] (2.7 \pm 1.4) \times	10 ⁻⁵	_
$P_{c}(4450)^{+}K^{-}, P_{c} \rightarrow pJ/\psi$	[a] (1.3 \pm 0.4) $ imes$	10 ⁻⁵	_
$\chi_{c1}(1P) ho K^-$	(7.6 $^{+1.5}_{-1.3}$) $ imes$	10 ⁻⁵	1242
$\chi_{c1}(1P) p \pi^-$	(5.0 $^{+1.3}_{-1.1}$) $ imes$	10 ⁻⁶	1462
$\chi_{c2}(1P) p K^-$	(7.7 $^{+1.6}_{-1.4}$) $ imes$	10 ⁻⁵	1198
$\chi_{c2}(1P) p \pi^-$	(4.8 ± 1.9) $ imes$	10 ⁻⁶	1427
$pJ/\psi(1S)\pi^+\pi^-K^-$	(6.6 $^{+1.3}_{-1.1}$) $ imes$	10 ⁻⁵	1410
$p\psi(2S)K^-$	(6.6 $^{+1.2}_{-1.0}$) $ imes$	10 ⁻⁵	1063

https://pdg.lbl.gov

Created: 4/11/2025 17:09

$\chi_{c1}(3872) p K^{-}$		(2.8 ± 1.2) $\times 10^{-5}$		837
$\chi_{c1}(3872)\Lambda(1520)$		(1.6 ± 0.8) $ imes 10^{-5}$		721
$\psi(2S) p \pi^-$		(7.5 $^{+1.6}_{-1.4}$) $ imes$ 10 $^{-6}$		1320
$p\overline{K}^0\pi^-$		(1.3 ± 0.4) $\times 10^{-5}$		2693
pK ⁰ K ⁻		$< 3.5 \times 10^{-6}$	CL=90%	2639
$\Lambda_{c}^{+}\pi^{-}$		(4.9 \pm 0.4) $ imes$ 10 $^{-3}$	S=1.2	2342
$\Lambda_c^+ K^-$		$(3.56\pm0.28) imes10^{-4}$	S=1.2	2314
$\Lambda_{c}^{+} a_{1}(1260)^{-}$		seen		2153
$\Lambda_c^+ D^-$		(4.6 ± 0.6) $\times 10^{-4}$		1886
$\Lambda_c^+ D_s^-$		$(1.10\pm0.10)\%$		1833
$\Lambda_c^+ D_s^{*-}$		(1.83±0.18) %		1748
$\Lambda_{C}^{+}\overline{D}^{0}K^{-}$		$(2.13\pm0.20)\times10^{-3}$		1581
$\Lambda_{c}^{+}\overline{D}^{*0}K^{-}$		(6.6 \pm 0.7) $ imes$ 10 $^{-3}$		1471
$\Lambda_{c}^{+}\pi^{+}\pi^{-}\pi^{-}$		$(7.6 \pm 1.1) \times 10^{-3}$	S=1.1	2323
$\Lambda_{c}(2595)^{+}\pi^{-}$,		$(3.4 \pm 1.4) \times 10^{-4}$		2210
$\Lambda_c(2595)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$				
$\Lambda_{c}(2625)^{+}\pi^{-}$,		(3.3 ± 1.3) $\times 10^{-4}$		2193
$\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$				
$\Sigma_{c}(2455)^{0}\pi^{+}\pi^{-}$, $\Sigma_{c}^{0} ightarrow$		(5.7 ± 2.2) $\times 10^{-4}$		2265
$\Lambda_{c}^{+}\pi^{-}$				
$\Sigma_{c}(2455)^{++}\pi^{-}\pi^{-}$, Σ_{c}^{++} \rightarrow		(3.2 ± 1.5) $ imes 10^{-4}$		2265
$\Lambda^+_{-}\pi^+$				
$\Sigma_{c}(2455)^{++}D^{-}K^{-}$		(6.0 \pm 0.8) $ imes$ 10 $^{-4}$		1448
$\Sigma_{c}(2455)^{++} D^{*-} K^{-}$		$(1.36\pm0.22)\times10^{-3}$		1324
$\Sigma_{c}(2520)^{++}D^{-}K^{-}$		(2.8 ± 0.5) $\times 10^{-4}$		1392
$\Sigma_{c}(2520)^{++} D^{*-} K^{-}$		(5.4 ± 1.1) $\times 10^{-4}$		1262
$\Lambda_c^+ K^+ K^- \pi^-$		$(1.02\pm0.11) \times 10^{-3}$		2184
$\Lambda_c^+ p \overline{p} \pi^-$		$(2.63\pm0.27) imes10^{-4}$		1805
$\Sigma_c(2455)^0 ho\overline{ ho},\ \Sigma_c^0 ightarrow$		(2.3 ± 0.5) $\times 10^{-5}$		-
$\Lambda_{c}^{+}\pi^{-}$				
$\Sigma_c(2520)^0 ho \overline{ ho}$, $\Sigma_c(2520)^0 ightarrow$		(3.1 ± 0.7) $\times 10^{-5}$		_
$\Lambda_{c}^{+}\pi^{-}$				
$\Lambda_{c}^{+}\ell^{-}\overline{\nu_{\ell}}$ anything	[<i>b</i>]	(10.9 ± 2.2)%		_
$\Lambda_{c}^{+}\ell^{-}\overline{ u}_{\ell}$		(6.2 + 1.4) %		2345
$\Lambda^+ \tau^- \overline{\nu}_{\tau}$		$(1.9 \pm 0.5)\%$		1933
$\Lambda_{c}^{+}\pi^{+}\pi^{-}\ell^{-}\overline{\nu}_{\ell}$		(5.6 ±3.1)%		2335
$\Lambda_c(2595)^+ \ell^- \overline{ u}_\ell$		$(7.9 + 4.0)_{-3.5} \times 10^{-3}$		2212
(2625) + e		5.5		

p h	$[c] < 2.3 10^{-5}$	CL=90% 2730
$p\pi^-$	(4.6 ± 0.8) $ imes 10^{-6}$	2730
р К	(5.5 ± 1.0) $ imes 10^{-6}$	2709
pD _s	$(1.25\pm0.13) imes10^{-5}$	2364
$p\mu^-\overline{ u}_\mu$	(4.1 ± 1.0) $ imes 10^{-4}$	2730
$\Lambda \mu^+ \mu^-$	($1.08\pm0.28) imes10^{-6}$	2695
$p\pi^-\mu^+\mu^-$	(6.9 ± 2.5) $ imes 10^{-8}$	2720
p K ⁻ e ⁺ e ⁻	(3.1 ± 0.6) $ imes 10^{-7}$	2708
$ ho m K^-\mu^+\mu^-$	(2.6 $^{+0.5}_{-0.4}$) $ imes$ 10 $^{-7}$	2685
$\Lambda\gamma$	(7.1 ± 1.7) $\times 10^{-6}$	2699
$\Lambda\eta$	$(\begin{array}{cc}9&+7\\-5\end{array}) imes10^{-6}$	2670
$\Lambda \eta'(958)$	$< 3.1 \times 10^{-6}$	CL=90% 2610
$\Lambda \pi^+ \pi^-$	(4.6 ± 1.9) $ imes 10^{-6}$	2692
$\Lambda K^+ \pi^-$	(5.7 ± 1.2) $ imes 10^{-6}$	2660
$\Lambda K^+ K^-$	$(1.61\pm0.22) imes10^{-5}$	2605
$\Lambda D^+ D^-$	$(1.24\pm0.35) imes10^{-4}$	1387
$\Lambda\phi$	(9.8 ± 2.6) $ imes 10^{-6}$	2599
$p\pi^-\pi^+\pi^-$	$(2.12\pm0.21) imes10^{-5}$	2715
$pK^-K^+\pi^-$	(4.1 ± 0.6) $ imes 10^{-6}$	2612
$p K^- \pi^+ \pi^-$	(5.1 ± 0.5) $ imes 10^{-5}$	2675
$nK^-K^+K^-$		0504

Λ_b(5912)⁰

$$J^P = \frac{1}{2}^-$$

Mass $m = 5912.16 \pm 0.16$ MeV Full width $\Gamma \ < \ 0.25$ MeV, CL = 90%

л _b (5912) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda^0_b \pi^+ \pi^-$	seen	86

$\Lambda_b(5920)^0$

$$J^P = \frac{3}{2}^-$$

Mass m= 5920.07 \pm 0.16 MeV Full width Γ < 0.19 MeV, CL = 90%

л _b (5920) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	108
Λ _b (6070) ⁰	$J^P = rac{1}{2}^+$	
Quantum numbers bas	ed on quark model expectatio	ns.
Mass $m = 6072.3$ Full width $\Gamma = 72$	\pm 2.9 MeV \pm 11 MeV	
л _b (6070) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	343
Λ _b (6146) ⁰	$J^P = \frac{3}{2}^+$	
Mass $m=6146.2$: $m_{\Lambda_b(6146)^0}-m_{\Lambda_b^0}$ Full width $\Gamma=2.9$	$\pm ext{ 0.4 MeV} = 526.55 \pm ext{ 0.34 MeV} \\ \pm ext{ 1.3 MeV}$	
Λ_b (6146) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	427
Λ _b (6152) ⁰	$J^P = \frac{5}{2}^+$	
Mass $m = 6152.5$: $m_{\Lambda_b(6152)^0} - m_{\Lambda_b^0}$ $m_{\Lambda_b(6152)^0} - m_{\Lambda_b}$ Full width $\Gamma = 2.1$	\pm 0.4 MeV = 532.89 \pm 0.28 MeV $_{(6146)^0} = 6.34 \pm 0.32$ MeV \pm 0.9 MeV	

л _b (6152) ⁰	DECAY MODES	Fraction (Γ_i/Γ)		<i>p</i> (MeV/ <i>c</i>)
$\Lambda_b^0 \pi^+ \pi^-$		seen		434
Σ _b	Mass $m(\Sigma_b^+)=5$ Mass $m(\Sigma_b^-)=5$	$egin{aligned} & I(J^P) = 1(\ & I,\ J,\ P \ {\sf need} \end{aligned}$ 5810.56 \pm 0.25 MeV 5815.64 \pm 0.27 MeV	$(\frac{1}{2}^+)$ confirmation.	
	$m_{\Sigma_{b}^{+}} - m_{\Sigma_{b}^{-}} =$ $\Gamma(\Sigma_{b}^{+}) = 5.0 \pm 0$ $\Gamma(\Sigma_{b}^{-}) = 5.3 \pm 0$	–5.06 ± 0.18 MeV).5 MeV).5 MeV		
Σ _b DECAY	MODES	Fraction (Γ_i/Γ)		p (MeV/c)
$\Lambda_b^0 \pi$		dominant		133
Σ * b	$\begin{array}{l} \text{Mass } m(\Sigma_{b}^{*+}) = \\ \text{Mass } m(\Sigma_{b}^{*-}) = \\ m_{\Sigma_{b}^{*+}} - m_{\Sigma_{b}^{*-}} = \\ m_{\Sigma_{b}^{*+}} - m_{\Sigma_{b}^{+}} = \\ m_{\Sigma_{b}^{*-}} - m_{\Sigma_{b}^{-}} = \end{array}$	$I(J^P) = 1(I, J, P \text{ need})$ 5830.32 \pm 0.27 MeV 5834.74 \pm 0.30 MeV = -4.37 \pm 0.33 MeV 19.73 \pm 0.18 19.09 \pm 0.22	(S = 1.6)	

·(<u>~</u> _b)		
$\Gamma(\Sigma_{b}^{*-}) =$	$10.4\pm0.8~\text{MeV}$	(S = 1.3)
$m_{\Sigma_b^*} - m_{\Sigma_b^*}$	$\Sigma_b = 21.2 \pm 2.0$ M	MeV

Σ_b^* DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_b^0 \pi$	dominant	159
$\Sigma_b(6097)^+$	$J^{P} = ?^{?}$	

Mass $m = 6095.8 \pm 1.7$ MeV Full width $\Gamma = 31 \pm 6$ MeV

Σ_b (6097) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b \pi^+ imes B(b o \Sigma_b(6097)^+)$	seen	_
$\Sigma_b(6097)^-$	$J^{P} = ?^{?}$	
Mass $m=6098.0\pm1.8$ Full width $\Gamma=29\pm4$ M	MeV 1eV	
Σ_b (6097) ⁻ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b \pi^- imes B(b o \Sigma_b(6097)^-)$	seen	_
Ξ_b^-	$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ I, J, P need confirmat	tion.
$m(\Xi_b^-) = 5797.0 \pm 0.4$	MeV $(S = 1.4)$	
$m_{\Xi_b^-} - m_{\Lambda_b^0} = 177.48 \pm$	$\pm 0.24 \text{ MeV} (S = 1.1)$	
$m_{\Xi_b^-} - m_{\Xi_b^0} = 5.9 \pm 0.$.5 MeV	
Wean life $\tau_{\Xi_b^-} = (1.578)$	\pm 0.021) × 10 ⁻¹² s	
$\underline{\boldsymbol{\Xi}_{b}^{-}} \text{ DECAY MODES}$	\pm 0.021) \times 10 ⁻¹² s Fraction (Γ_i/Γ) Confide	<i>p</i> ence level (MeV/c)
$\frac{\boldsymbol{\Xi}_{\boldsymbol{b}}^{-}}{\boldsymbol{B}_{\boldsymbol{b}}^{-}} = (1.578)$ $\frac{\boldsymbol{\Xi}_{\boldsymbol{b}}^{-}}{\boldsymbol{J}/\psi \boldsymbol{\Xi}^{-}} \times \boldsymbol{B}(\boldsymbol{b} \rightarrow \boldsymbol{\Xi}_{\boldsymbol{b}}^{-})$	± 0.021) × 10 ⁻¹² s Fraction (Γ_i/Γ) Confide $(1.02^{+0.26}_{-0.21}) \times 10^{-5}$	p ence level (MeV/c) 1782
$\overline{\Xi_{b}^{-}} = (1.578)$ $\overline{\Xi_{b}^{-}} = (1.578)$ $\overline{J/\psi} \overline{\Xi^{-}} \times B(b \rightarrow \overline{\Xi_{b}^{-}})$ $\overline{J/\psi} \Lambda K^{-} \times B(b \rightarrow \overline{\Xi_{b}^{-}})$	\pm 0.021) × 10 ⁻¹² s Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶	p ence level (MeV/c) 1782 1631
$\overline{\Xi_{b}} = (1.578)$ $\overline{\Xi_{b}} = (1.578)$ $\overline{J/\psi} \overline{\Xi^{-}} \times B(b \rightarrow \overline{\Xi_{b}})$ $J/\psi \Lambda K^{-} \times B(b \rightarrow \overline{\Xi_{b}})$ $p K^{-} K^{-} \times B(b \rightarrow \overline{\Xi_{b}})$	\pm 0.021) × 10 ⁻¹² s Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶ (3.7 ±0.8) × 10 ⁻⁸	p ence level (MeV/c) 1782 1631 2731
$\overline{\Xi_{b}^{-}} = (1.578)$ $\overline{\Xi_{b}^{-}} = (1.578)$ $\overline{J/\psi} \overline{\Xi^{-}} \times B(b \rightarrow \overline{\Xi_{b}^{-}})$ $J/\psi \Lambda K^{-} \times B(b \rightarrow \overline{\Xi_{b}^{-}})$ $pK^{-}K^{-} \times B(b \rightarrow \overline{\Xi_{b}^{-}})$ $pK^{-}K^{-}$ $p\pi^{-}\pi^{-}$	$\pm 0.021) \times 10^{-12} \text{ s}$ Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶ (3.7 ±0.8) × 10 ⁻⁸ (2.3 ±0.9) × 10 ⁻⁶ < 1.2 × 10 ⁻⁶	p ence level (MeV/c) 1782 1631 2731 2731 2731
$\overline{\overline{z}_{b}} = (1.578)$ $\overline{\overline{z}_{b}} = (1.578)$ $\overline{J/\psi} = X \otimes B(b \to \overline{\overline{z}_{b}})$ $J/\psi \wedge K^{-} \times B(b \to \overline{\overline{z}_{b}})$ $pK^{-}K^{-} \times B(b \to \overline{\overline{z}_{b}})$ $pK^{-}K^{-} \times B(b \to \overline{\overline{z}_{b}})$ $pK^{-}K^{-} - \chi^{-}$ $p\pi^{-}\pi^{-}$ $pK^{-}\pi^{-}$	$\pm 0.021) \times 10^{-12} \text{ s}$ Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶ (3.7 ±0.8) × 10 ⁻⁸ (2.3 ±0.9) × 10 ⁻⁶ < 1.3 × 10 ⁻⁶ (2.3 ±1.1) × 10 ⁻⁶	p ence level (MeV/c) 1782 1631 2731 2731 90% 2813 2783
$\overline{\Xi_{b}} = (1.578)$ $\overline{\Xi_{b}} = (1.578)$ $\overline{J/\psi} = X = B(b \rightarrow \overline{\Xi_{b}})$ $J/\psi \wedge K^{-} \times B(b \rightarrow \overline{\Xi_{b}})$ $pK^{-} K^{-} \times B(b \rightarrow \overline{\Xi_{b}})$ $pK^{-} K^{-}$ $p\pi^{-} \pi^{-}$ $pK^{-} \pi^{-}$ $\Lambda_{b}^{0} \pi^{-} \times B(b \rightarrow \overline{\Xi_{b}})/B(b \rightarrow \Lambda_{b}^{0})$	$\pm 0.021) \times 10^{-12} \text{ s}$ Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶ (3.7 ±0.8) × 10 ⁻⁶ (2.3 ±0.9) × 10 ⁻⁶ (2.3 ±1.1) × 10 ⁻⁶ (7.0 ±0.9) × 10 ⁻⁴	p ence level (MeV/c) 1782 1631 2731 2731 2731 2733 2783 2783 99
$\overline{\overline{z}_{b}} = (1.578)$ $\overline{$	$ \pm 0.021) \times 10^{-12} \text{ s} $ Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶ (3.7 ±0.8) × 10 ⁻⁸ (2.3 ±0.9) × 10 ⁻⁶ < 1.3 × 10 ⁻⁶ (2.3 ±1.1) × 10 ⁻⁶ (7.0 ±0.9) × 10 ⁻⁴ seen	p ence level (MeV/c) 1782 1631 2731 2731 90% 2813 2783 99 2367
$\overline{\overline{z}_{b}} = (1.578)$ $\overline{$	$ \pm 0.021) \times 10^{-12} \text{ s} $ Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶ (3.7 ±0.8) × 10 ⁻⁸ (2.3 ±0.9) × 10 ⁻⁶ < 1.3 × 10 ⁻⁶ (2.3 ±1.1) × 10 ⁻⁶ (7.0 ±0.9) × 10 ⁻⁴ seen (1.9 ±0.5) × 10 ⁻³	p ence level (MeV/c) 1782 1631 2731 2731 2731 2783 2783 90% 2813 2783 99 2367
$\overline{\overline{z}_{b}} = (1.578)$ $\overline{$	$\pm 0.021) \times 10^{-12} \text{ s}$ Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶ (3.7 ±0.8) × 10 ⁻⁸ (2.3 ±0.9) × 10 ⁻⁶ < 1.3 × 10 ⁻⁶ (2.3 ±1.1) × 10 ⁻⁶ (7.0 ±0.9) × 10 ⁻⁴ seen (1.9 ±0.5) × 10 ⁻³ (2.6 ±2.3) × 10 ⁻⁷	p ence level (MeV/c) 1782 1631 2731 2731 2731 2733 2783 90% 2813 2783 99 2367 - 2207
$\overline{z_{b}} = (1.578)$ $\overline{z_{b}} = (1.578)$ $\overline{z_{b}} = (1.578)$ $J/\psi \Xi^{-} \times B(b \rightarrow \Xi_{b}^{-})$ $pK^{-}K^{-} \times B(b \rightarrow \Xi_{b}^{-})$ $pK^{-}K^{-} \times B(b \rightarrow \Xi_{b}^{-})$ $pK^{-}K^{-}$ $p\pi^{-}\pi^{-}$ $pK^{-}\pi^{-}$ $\Lambda_{b}^{0}\pi^{-} \times B(b \rightarrow \Xi_{b}^{-})/B(b \rightarrow \Lambda_{b}^{0})$ $\overline{z_{c}}^{0}\pi^{-}$ $\overline{z_{c}}^{0}D_{s}^{-} \times B(b \rightarrow \Xi_{b}^{-})/B(b \rightarrow \Lambda_{b}^{0})$ $\Sigma(1385)K^{-}$ $\Lambda(1405)K^{-}$	$\pm 0.021) \times 10^{-12} \text{ s}$ Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶ (3.7 ±0.8) × 10 ⁻⁶ (2.3 ±0.9) × 10 ⁻⁶ (2.3 ±1.1) × 10 ⁻⁶ (2.3 ±1.1) × 10 ⁻⁶ (7.0 ±0.9) × 10 ⁻⁴ seen (1.9 ±0.5) × 10 ⁻⁷ (1.9 ±1.2) × 10 ⁻⁷	p ence level (MeV/c) 1782 1631 2731 2731 2731 2733 2783 99% 2367 - 2707 2702
$\overline{z_{b}} = (1.578)$ $\overline{z_{b}} = (1.578)$ $\overline{z_{b}} = (1.578)$ $J/\psi \Xi^{-} \times B(b \rightarrow \Xi_{b}^{-})$ $J/\psi \Lambda K^{-} \times B(b \rightarrow \Xi_{b}^{-})$ $pK^{-} K^{-} \times B(b \rightarrow \Xi_{b}^{-})$ $pK^{-} K^{-}$ $p\pi^{-} \pi^{-}$ $pK^{-} \pi^{-}$ $\Lambda_{b}^{0} \pi^{-} \times B(b \rightarrow \Xi_{b}^{-})/B(b \rightarrow \Lambda_{b}^{0})$ $\overline{z_{c}}^{0} \pi^{-}$ $\overline{z_{c}}^{0} D_{s}^{-} \times B(b \rightarrow \Xi_{b}^{-})/B(b \rightarrow \Lambda_{b}^{0})$ $\Sigma(1385) K^{-}$ $\Lambda(1405) K^{-}$ $\Lambda(1405) K^{-}$ $\Lambda(1520) K^{-}$	$\pm 0.021) \times 10^{-12} \text{ s}$ Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶ (3.7 ±0.8) × 10 ⁻⁸ (2.3 ±0.9) × 10 ⁻⁶ < 1.3 × 10 ⁻⁶ (2.3 ±1.1) × 10 ⁻⁶ (7.0 ±0.9) × 10 ⁻⁴ seen (1.9 ±0.5) × 10 ⁻⁷ (1.9 ±1.2) × 10 ⁻⁷ (7.6 ±3.2) × 10 ⁻⁷	p ence level (MeV/c) 1782 1631 2731 2731 2731 90% 2813 2783 99 2367 - 2707 2707 2702 2673 2673
$\overline{z_{b}} = (1.578)$ $\overline{z_{b}$	$\pm 0.021) \times 10^{-12} \text{ s}$ Fraction (Γ_i/Γ) Confide (1.02 ^{+0.26} _{-0.21}) × 10 ⁻⁵ (2.5 ±0.4) × 10 ⁻⁶ (3.7 ±0.8) × 10 ⁻⁸ (2.3 ±0.9) × 10 ⁻⁶ < 1.3 × 10 ⁻⁶ (2.3 ±1.1) × 10 ⁻⁶ (2.3 ±1.1) × 10 ⁻⁶ (7.0 ±0.9) × 10 ⁻⁴ seen (1.9 ±0.5) × 10 ⁻⁷ (1.9 ±1.2) × 10 ⁻⁷ (7.6 ±3.2) × 10 ⁻⁷ (4.5 ±2.3) × 10 ⁻⁷ (2.2 ±15) × 10 ⁻⁷	p ence level (MeV/c) 1782 1631 2731 2731 2731 2733 2783 90% 2367 - 2707 2707 2702 2673 2629 2500

$J/\psi \equiv^-$	seen			_
$\psi(2S)\Xi^-$	seen			-
$\Xi^-\gamma$	< 1.3	imes 10 ⁻⁴	95%	-

|--|

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

$$\begin{split} m(\Xi_b^0) &= 5791.7 \pm 0.4 \text{ MeV} \\ m_{\Xi_b^0} - m_{\Lambda_b^0} &= 172.3 \pm 0.4 \text{ MeV} \\ \text{Mean life } \tau_{\Xi_b^0} &= (1.477 \pm 0.032) \times 10^{-12} \text{ s} \end{split}$$

$=^{0}_{b}$ DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	р (MeV/c)
$pD^0K^- imes B(b o \Xi^0_b)$	(1.7 ± 0.01)	0.6 $) imes 10^-$	-6	2374
$p \overline{K}{}^{0} \pi^{-} \times B(b \rightarrow \overline{\Xi}{}^{0}_{b})/B(\overline{b} \rightarrow \overline{\Sigma}{}^{0}_{b})$	< 1.6	imes 10 ⁻	-6 90%	2783
$p \mathcal{K}^{0} \mathcal{K}^{-} \times B(b \rightarrow \Xi^{0}_{b}) / B(\overline{b} \rightarrow B^{0})$	< 1.1	imes 10 ⁻	-6 90%	2730
$\Lambda \pi^+ \pi^- \times B(b \rightarrow \Xi_b^0) / B(b \rightarrow D_b)$	< 1.7	imes 10 ⁻	-6 90%	2781
$\Lambda_b^{(0)}$ $\Lambda K^- \pi^+ \times B(b \rightarrow \Xi_b^0)/B(b \rightarrow \Sigma_b^{(0)})$	< 8	\times 10 ⁻	-7 90%	2751
$\Lambda_b^{(0)}$ $\Lambda K^+ K^- imes B(b o \Xi_b^0) / B(b o \Xi_b^0)$	< 3	imes 10 ⁻	-7 90%	2698
$J/\psi \Lambda$	seen			1868
$J/\psi \equiv 0$	seen		2	1785
$= \frac{1}{c} D_{s} \times B(b \rightarrow = \frac{b}{b}) / B(b \rightarrow A_{b}^{0})$	(1.7 ± 0)	0.9)×10⁻	-5	-
$\Lambda_{c}^{+} K^{-} \times B(b \rightarrow \Xi_{b}^{0})$	(6 ±-	4) $ imes$ 10 ⁻	-7	2416
$pK^{-}\pi^{+}\pi^{-}\times B(b \rightarrow$	(1.9 ±	$0.4) \times 10^{-1}$	-6	2766
$\Xi^0_b)/{\sf B}(b o\Lambda^0_b)$				
$pK^-K^-\pi^+ \times B(b \rightarrow b)$	$(1.73\pm$	0.31) × 10 ⁻	-6	2704
$\frac{\Xi_b^{v}}{B} = \frac{B(b)}{B(b)} + \frac{B(b)}{B(b)}$			_7	
p K K K X B($b ightarrow$ $\Xi^0_b)/{ m B}(b ightarrow \Lambda^0_b)$	(1.8 ±	1.0)×10⁻	- 1	2620

Ξ′_b(5935)[−]

$$J^{P} = \frac{1}{2}^{+}$$

Mass $m = 5934.9 \pm 0.4$ MeV Full width $\Gamma = 0.03 \pm 0.032$ MeV

<i>≡</i> ′ _b (5935) [−]	DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\frac{\Xi_b^0 \pi^- \times 1}{\Xi_b'}$	$ \begin{array}{l} B(\overline{b} \rightarrow \\ 35)^{-})/B(\overline{b} \rightarrow \ \overline{\Xi}^{0}_{b}) \end{array} $	(11.8±1.8) %	31
<i>Ξ_b</i> (594	5) ⁰	$J^P = \frac{3}{2}^+$	
	Mass $m=5952.3\pm0.6$ Full width $\Gamma=0.87\pm0$	MeV .07 MeV	
<i>Ξ_b</i> (5945) ⁰	DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_b^- \pi^+$		seen	78
<i>Ξ</i> _b (595	5)-	$J^P = \frac{3}{2}^+$	
	Mass $m=5955.5\pm0.4$ Full width $\Gamma=1.43\pm0$	MeV .11 MeV	
<u>=</u> _b(5955)_	DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\frac{\Xi_b^0 \pi^- \times 1}{\Xi_b^* (59)}$	$B(\overline{b} ightarrow 55)^-)/B(\overline{b} ightarrow \overline{\Xi}^0_b)$	(20.7±3.5) %	84
<i>Ξ</i> _b (608	Mass $m = 6087.0 \pm 0.5$ Full width Γ = 2.4 ± 0.5	$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$ J, P need confirmation. MeV 5 MeV	
<i>Ξ_b</i> (6087) ⁰	DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi}^0_b \pi^+ \pi^-$		seen	_
<i>Ξ_b</i> (609	5)⁰ Mass $m = 6095.1 \pm 0.4$ Full width Γ = 0.50 \pm 0	$I(J^{P}) = \frac{1}{2}(\frac{3}{2}^{-})$ J, P need confirmation. MeV .35 MeV	

Ξ_b (6095) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi^0_b \pi^+ \pi^-$	seen	_
Ξ_b(6100) ⁻ Mass $m = 6099.8 \pm$ Full width $\Gamma = 0.94 \pm$	$J^P = rac{3}{2}^-$ <i>J</i> , <i>P</i> need confirm 0.4 MeV ± 0.31 MeV	nation.
Ξ_b (6100) ⁻ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^-} \pi^+ \pi^-$	seen	128
$\Xi_b(6227)^-$ Mass $m = 6227.9 \pm$	J ^P = ? [?] 0.9 MeV	
Full width $\Gamma = 19.9$:	± 2.6 MeV	_
Ξ_b (6227) ⁻ DECAY MODES	Fraction (Γ_i/Γ)	р Scale factor (MeV/c)
$\Lambda^0_b K^- imes B(b o c)$	$(3.20\!\pm\!0.35)\times10^{-3}$	336
$ \begin{aligned} & \Xi_b(6227))/B(b \to \Lambda_b^0) \\ & \Xi_b^0 \pi^- \times B(b \to \\ & \Xi_b(6227))/B(b \to \Xi_b^0) \end{aligned} $	(2.8 ± 1.1) %	1.8 398
$\Xi_b(6227)^0$	$J^{P} = ?^{?}$	
Mass $m = 6226.8 \pm$ Full width $\Gamma = 19^{+5}_{-4}$	1.6 MeV MeV	
Ξ_b (6227) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	р (MeV/c)
$ \begin{array}{c} \overline{\Xi}_b^- \pi^+ \times \ B(b \to \\ \overline{\Xi}_b(6227)^0) / B(b \to \overline{\Xi}_b^-) \end{array} $	(4.5±0.9) %	398
$E_b(6327)^0$ Mass $m = 6327.28 \pm$	J ^P = ? [?] = 0.35 MeV	
Full width $\Gamma~<~2.56$	MeV, $CL = 95\%$	

<i>≡_b</i> (6327) ⁰ ∣	DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_b^0 K^- \pi^+$		seen	298
<i>Ξ_b</i> (633	3) ⁰	$J^{P} = ?^{?}$	
	Mass $m = 6332$. Full width $\Gamma <$	69 ± 0.28 MeV 1.92 MeV, CL $=95\%$	
<i>Ξ_b</i> (6333) ⁰ ∣	DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 K^- \pi^+$		seen	309
Ω_b^-		$I(J^P) = 0(rac{1}{2}^+)$ I, J, P need confirm	nation.
	Mass $m = 6045$. $m_{\Omega_b^-} - m_{\Lambda_b^0} = \tau$ $m_{\Omega_b^-} - m_{\Xi_b^-} = \tau$ Mean life $\tau = (1 \tau \tau (\Omega_b^-) / \tau (\Xi_b^-))$	8 ± 0.8 MeV 426.4 \pm 2.2 MeV 248.5 \pm 0.6 MeV 1.64 \pm 0.16) $ imes$ 10 ⁻¹² s mean life ratio = 1.11 \pm 0.16	
Ω_b^- DECAY	MODES	S Fraction (Γ _i /Γ) Conf	cale factor/ p fidence level (MeV/c)
$J/\psi \Omega^- imes$	$B(b o \ arOmega_b)$	$(1.4^{+0.5}_{-0.4})\times 10^{-6}$	S=1.6 1805
$pK^{-}K^{-} \times p\pi^{-}\pi^{-} \times pK^{-}\pi^{-} \times \Omega_{c}^{0}\pi^{-} \times \Omega_{c}^{0}\pi^{-},$ $\Xi_{c}^{+}K^{-}\pi^{-}$	$\left\{ egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccc} & < 2.3 & \times 10^{-9} \\ & < 1.5 & \times 10^{-8} \\ & < 7 & \times 10^{-9} \\ & & \text{seen} \\ & & \\ \pi^+ & & \text{seen} \\ & & & \text{seen} \end{array}$	CL=90% 2865 CL=90% 2943 CL=90% 2915 2420 - 2473
Ω _b (631	6) [_]	$I(J^{P}) = ?(?^{?})$	

 $I(J^{P}) = ?(?^{!})$ I, J, P need confirmation.

Mass $m=6315.6\pm0.6$ MeV Full width $\Gamma~<~4.2$ MeV, CL=95%

$\Omega_{b}(6316)^{-}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Xi_b^0 K^-$	seen	168
$Ω_b(6330)^-$ Mass $m = 6330.3 \pm$ Full width $\Gamma < 4.7$	<i>I</i> (<i>J^P</i>) = ?(? [?]) <i>I</i> , <i>J</i> , <i>P</i> need confirma = 0.6 MeV 7 MeV, CL = 95%	ition.
Ω_b (6330) ⁻ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Xi_b^0 K^-$	seen	206
Ω_b (6340) ⁻ Mass $m = 6339.7 \pm$ Full width $\Gamma < 1.8$	$I(J^{P}) = ?(?^{?})$ I, J, P need confirmants = 0.6 MeV = MeV, CL = 95%	ition.
Ω_b (6340) ⁻ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Xi_b^0 K^-$	seen	227
$Ω_b(6350)^-$ Mass $m = 6349.8 \pm$ Full width $\Gamma < 3.2$	$I(J^{P}) = ?(?^{?})$ I, J, P need confirmate = 0.6 MeV ! MeV, CL = 95%	ition.
Ω_{b} (6350) $^{-}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi}^0_b K^-$	seen	248
<i>b</i> -baryon ADMIXTURE ($(\Lambda_b, \Xi_b, \Omega_b)$	

These branching fractions are actually an average over weakly decaying *b*-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the *b*-baryon production fraction $B(b \rightarrow b$ -baryon).

The branching fractions B(*b*-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$ anything) and B($\Lambda_b^0 \rightarrow \Lambda_c^+ \ell^- \overline{\nu}_{\ell}$ anything) are not pure measurements because the underlying measured products of these with B($b \rightarrow b$ -baryon) were used to determine B($b \rightarrow b$ -baryon), as described in the note "Production and Decay of *b*-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

<i>b</i> -baryon ADMIXTURE DECAY MODES $(\Lambda_b, \Xi_b, \Omega_b)$	Fraction (Γ_i/Γ)	Scale factor	р (MeV/c)
$p\mu^-\overline{ u}$ anything	(5.8+ 2.3) %		_
$p\ell\overline{ u}_\ell$ anything panything	$(\begin{array}{ccc} 5.6 \pm & 1.2 \end{pmatrix}\% \ (70 & \pm 22 \end{array})\%$		-
$\Lambda \ell^- \overline{\nu}_\ell$ anything $\Lambda \ell^+ \nu_\ell$ anything Λ anything	$(3.8 \pm 0.6) \%$ $(3.2 \pm 0.8) \%$ $(39 \pm 7) \%$		- - -
$\Xi^-\ell^-\overline{ u}_\ell$ anything	(4.6 \pm 1.4) $\times10^{-3}$	1.2	_

NOTES

[a] P_c^+ is a pentaquark-charmonium state.

[b] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.

[c] Here h^- means π^- or K^- .