

$$I(J^{P}) = 0(0^{-})$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0} = 5366.93 \pm 0.10 \text{ MeV}$$

 $m_{B_s^0} - m_B = 87.37 \pm 0.12 \text{ MeV}$
Mean life $\tau = (1.516 \pm 0.006) \times 10^{-12} \text{ s}$
 $c\tau = 454.5 \ \mu\text{m}$
 $\Delta\Gamma_{B_s^0} = \Gamma_{B_{sL}^0} - \Gamma_{B_{sH}^0} = (0.082 \pm 0.005) \times 10^{12} \text{ s}^{-1}$

$B_s^0 - \overline{B}_s^0$ mixing parameters

 B_s^0

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.765 \pm 0.006) \times 10^{12} \ \hbar \ \mathrm{s}^{-1}$$
$$= (1.1693 \pm 0.0004) \times 10^{-8} \ \mathrm{MeV}$$
$$x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 26.93 \pm 0.10$$
$$\chi_s \ (B_s^0 - \overline{B}_s^0 \ \mathrm{mixing \ parameter}) = 0.499314 \pm 0.000005$$

CP violation parameters in B_s^0

$$\begin{aligned} &\operatorname{Re}(\epsilon_{B_{s}^{0}}) / \left(1 + \left|\epsilon_{B_{s}^{0}}\right|^{2}\right) = (-0.15 \pm 0.70) \times 10^{-3} \\ &C_{K\,K}(B_{s}^{0} \to K^{+}K^{-}) = 0.162 \pm 0.035 \\ &S_{K\,K}(B_{s}^{0} \to K^{+}K^{-}) = 0.14 \pm 0.05 \quad (S = 1.3) \\ &r_{B}(B_{s}^{0} \to D_{s}^{\mp}K^{\pm}) = 0.37^{+0.10}_{-0.09} \\ &r_{B}(B_{s}^{0} \to D_{s}^{\pm}K^{\pm}\pi^{\pm}\pi^{\mp}) = 0.47 \pm 0.08 \\ &\delta_{B}(B_{s}^{0} \to D_{s}^{\pm}K^{\mp}) = (358 \pm 14)^{\circ} \\ &\delta_{B}(B_{s}^{0} \to D_{s}^{\pm}K^{\mp}\pi^{\pm}\pi^{\mp}) = (-6^{+10}_{-13})^{\circ} \\ &CP \text{ Violation phase } \beta_{s} \left(b \to c \overline{c} s\right) = (2.0 \pm 0.8) \times 10^{-2} \text{ rad} \\ &CP \text{ Violation phase } \beta_{s} \left(b \to s \overline{s} s\right) = (3.7 \pm 3.5) \times 10^{-2} \text{ rad} \\ &|\lambda| \left(B_{s}^{0} \to J/\psi(1S)\phi\right) = 0.988 \pm 0.009 \\ &|\lambda| \left(b \to c \overline{c} s\right) = 0.989 \pm 0.008 \\ &A, CP \text{ violation parameter } = -0.79 \pm 0.08 \\ &C, CP \text{ violation parameter } = 0.17 \pm 0.06 \\ &S, CP \text{ violation parameter } = 0.17 \pm 0.06 \\ &A_{CP}^{L}(B_{s} \to J/\psi\overline{K}^{*}(892)^{0}) = -0.05 \pm 0.06 \end{aligned}$$

https://pdg.lbl.gov

Created: 4/11/2025 17:09

$$\begin{split} A_{CP}^{\parallel}(B_{s} \to J/\psi \,\overline{K}^{*}(892)^{0}) &= 0.17 \pm 0.15 \\ A_{CP}^{-}(B_{s} \to J/\psi \,\overline{K}^{*}(892)^{0}) &= -0.05 \pm 0.10 \\ \textbf{A}_{CP}(B_{s}^{0} \to \pi^{+}K^{-}) = 0.224 \pm 0.012 \\ A_{CP}(B_{s}^{0} \to [\pi^{+}K^{-}]_{D} \,\overline{K}^{*}(892)^{0}) &= -0.009 \pm 0.023 \\ A_{CP}(B_{s}^{0} \to [\pi^{+}\pi^{-}]_{D} \,K^{*}(892)^{0}) &= -0.029 \pm 0.024 \\ A_{CP}(B_{s}^{0} \to [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D} \,\overline{K}^{*}(892)^{0}) &= -0.029 \pm 0.024 \\ A_{CP}(B_{s}^{0} \to [\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D} \,\overline{K}^{*}(892)^{0}) &= 0.02 \pm 0.05 \\ R_{s}^{+} &= \Gamma(B_{s}^{0} \to [\pi^{-}K^{+}]_{D} \,\overline{K}^{*0}) / \Gamma(B_{s}^{0} \to [\pi^{+}K^{-}]_{D} \,\overline{K}^{*0}) &= 0.004 \pm 0.006 \\ R_{s}^{-} &= \Gamma(\overline{B}_{s}^{0} \to [\pi^{-}K^{+}]_{D} \,\overline{K}^{*0}) / \Gamma(B_{s}^{0} \to [\pi^{-}K^{+}]_{D} \,\overline{K}^{*0}) &= 0.004 \pm 0.006 \\ R_{s}^{+} &= \Gamma(B_{s}^{0} \to [\pi^{-}K^{+}\pi^{+}\pi^{-}]_{D} \,\overline{K}^{*0}) / \Gamma(B_{s}^{0} \to [\pi^{-}K^{+}\pi^{+}\pi^{-}]_{D} \,\overline{K}^{*0}) &= 0.019 \pm 0.008 \\ R_{s}^{-} &= \Gamma(\overline{B}_{s}^{0} \to [\pi^{+}K^{-}\pi^{+}\pi^{-}]_{D} \,\overline{K}^{*0}) / \Gamma(\overline{B}_{s}^{0} \to [\pi^{-}K^{+}\pi^{+}\pi^{-}]_{D} \,\overline{K}^{*0}) &= 0.015 \pm 0.008 \\ S(B_{s}^{0} \to \phi\gamma) &= 0.11 \pm 0.31 \\ A^{\Delta}(B_{s}^{0} \to \phi\gamma) &= 0.7 \pm 0.4 \\ \Delta a_{\perp} &< 1.2 \times 10^{-12} \, \text{GeV}, \, \text{CL} &= 95\% \\ \Delta a_{\parallel} &= (-0.9 \pm 1.5) \times 10^{-14} \, \text{GeV} \\ \Delta a_{X} &= (1.0 \pm 2.2) \times 10^{-14} \, \text{GeV} \\ Re(\xi) &= -0.022 \pm 0.033 \\ Im(\xi) &= 0.004 \pm 0.011 \\ \end{split}$$

These branching fractions all scale with $B(\overline{b} \rightarrow B_s^0)$.

The branching fraction $B(B_s^0 \to D_s^- \ell^+ \nu_\ell \text{ anything})$ is not a pure measurement since the measured product branching fraction $B(\overline{b} \to B_s^0) \times B(B_s^0 \to D_s^- \ell^+ \nu_\ell \text{ anything})$ was used to determine $B(\overline{b} \to B_s^0)$, as described in the note on " $B^0 - \overline{B}^0$ Mixing"

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	р (MeV/c)
D_s^- anything	$(62 \pm 6) \%$		_
D_s^{\pm} anything	(92 ± 11) %		_
D^{0}/\overline{D}^{0} anything	$(38 \pm 10) \%$		_
$\ell \nu_{\ell} X$	(9.6 \pm 0.8) %		-
$e^+ \nu X^-$	(9.1 \pm 0.8) %		-
$\mu^+ \nu X^-$	$(10.2 \pm 1.0)\%$		-
$D_s \ell^+ \nu_\ell$ anything [4]	a] (8.1 \pm 1.3) %		_
D_s^* $\ell^+ \nu_\ell$ anything	$(5.4 \pm 1.1)\%$		_
$D_{s} \mu^{+} \nu_{\mu}$	$(2.29\pm 0.21)\%$		2321
$D_s^{*-} \mu^+ \nu_{\mu}$	$(5.2 \pm 0.5)\%$	2	2266
$D_{s1}(2536)^- \mu^+ \nu_\mu, \ D_{s1}^- \to D^{*-} K^0_S$	(2.7 \pm 0.7) \times	10 ⁻³	_
$D_{s1}(2536)^{-} X \mu^{+} \nu, D_{s1}^{-} \rightarrow \overline{D}^{0} \kappa^{+}$	(4.4 \pm 1.3) \times	10-3	-
$D_{s2}(2573)^- X \mu^+ \nu, D_{s2}^- \rightarrow \overline{D^0} \kappa^+$	(2.7 \pm 1.0) \times	10 ⁻³	-
$K^-\mu^+\nu_\mu$	($1.06\pm~0.09) imes$	10 ⁻⁴	2660
$D_{s}^{-}\pi^{+}$	(2.98 \pm 0.14) $ imes$	10 ⁻³	2320
$D_{s}^{-}\rho^{+}$	(6.8 \pm 1.4) $ imes$	10 ⁻³	2249
$D_s^{-}\pi^+\pi^+\pi^-$	(6.1 \pm 1.0) $ imes$	10 ⁻³	2301
$D_{s1}(2536)^{-}\pi^{+}$, D_{s1}^{-}	(2.4 \pm 0.8) $ imes$	10 ⁻⁵	_
$D_s^-\pi^+\pi^-$			
$D_s^{\mp} K^{\pm}$	(2.25 \pm 0.12) $ imes$	10 ⁻⁴	2293
$D_{s1}(2536)^{\mp}K^{\pm}, D_{s1}^{-} \rightarrow$	(2.48 \pm 0.28) $ imes$	10 ^{—5}	_
$\overline{D}^{*}(2007)^{0} K^{-}$			
$D_s^- K^+ \pi^+ \pi^-$	(3.2 \pm 0.6) $ imes$	10 ⁻⁴	2249
$D_s^+ D_s^-$	(4.5 \pm 0.6) $ imes$	10 ⁻³ S=1.3	1824
$D_s^- D^+$	(3.1 \pm 0.5) $ imes$	10 ⁻⁴	1875
D^+D^-	(2.2 \pm 0.6) $ imes$	10 ⁻⁴	1925
$D^{*+}D^{*-}$	(2.14 \pm 0.32) $ imes$	10 ⁻⁴	1778

https://pdg.lbl.gov

Created: 4/11/2025 17:09

$D^0 \overline{D}{}^0$	($1.9~\pm~0.5$) $\times10^{-4}$	1930
$D_s^{*-}\pi^+$	(1.9 $\stackrel{+}{_{-}} \stackrel{0.5}{_{-}}$) $\times10^{-3}$	2265
$D_s^{*\mp}K^{\pm}$	(1.32^+_{-} $\begin{array}{c} 0.40\\ 0.32 \end{array}$) $ imes$ 10^{-4}	-
$D_s^{*-}\rho^+$	(9.5 \pm 2.0) $\times10^{-3}$	2191
$D_{s}^{*+}D_{s}^{-} + D_{s}^{*-}D_{s}^{+}$	$(1.51\pm~0.13)~\%$	1742
$D_{s}^{*+}D_{s}^{*-}$	(1.58± 0.20) %	S=1.3 1655
$D_{s}^{(*)+} D_{s}^{(*)-}$	$(4.5 \pm 1.4)\%$	-
$D^{*-}D_{s}^{+-}$	(4.0 \pm 0.7) $\times10^{-4}$	1801
$\overline{D}^{*0}\overline{K}^{0}$	(2.8 \pm 1.1) $\times10^{-4}$	2278
$\overline{D}{}^0\overline{K}{}^0$	(4.3 \pm 0.9) $\times10^{-4}$	2330
$\overline{D}^0 K^- \pi^+$	$(1.04\pm 0.13) \times 10^{-3}$	2312
$D^*(2007)^0 K^- \pi^+$	(7.3 \pm 2.6) $ imes$ 10 ⁻⁴	2259
$\frac{D^{0}K^{*}(892)^{0}}{100}$	$(4.4 \pm 0.6) \times 10^{-4}$	2264
$\frac{D^{0}K^{*}(1410)}{100}$	$(3.9 \pm 3.5) \times 10^{-4}$	2117
$\frac{D^{0}}{K_{0}^{*}}(1430)$	$(3.0 \pm 0.7) \times 10^{-4}$	2113
$D^{0} \frac{K_{2}^{*}}{K_{2}^{*}}$ (1430)	$(1.1 \pm 0.4) imes 10^{-4}$	2112
$\underline{D}_{0}^{0} \underline{K}^{*}(1680)$	< 7.8 $\times 10^{-5}$	CL=90% 1997
$D^{0} K_{0}^{*}(1950)$	$< 1.1 \times 10^{-4}$	CL=90% 1884
$D^0 K_3^*(1780)$	< 2.6 $\times 10^{-5}$	CL=90% 1970
$\overline{D}{}^{0}\overline{K}_{4}^{*}(2045)$	< 3.1 $\times 10^{-5}$	CL=90% 1835
$\overline{D}{}^0 {\cal K}^- \pi^+$ (non-resonant)	(2.1 \pm 0.8) $\times10^{-4}$	2312
$[K^+K^-]_D\overline{K}^*(892)^0$	(4.4 \pm 0.6) $\times10^{-4}$	_
$[\pi^+\pi^-]_D \overline{K}^*(892)^0$	(4.4 \pm 0.6) $\times10^{-4}$	_
$[\pi^+\pi^-\pi^+\pi^-]_D K^*(892)^0$	(4.4 \pm 0.6) $ imes$ 10 ⁻⁴	_
$D^*_{s2}(2573)^- \pi^+, \ D^*_{s2} ightarrow \overline{D}{}^0 \kappa^-$	$(2.6 \pm 0.4) \times 10^{-4}$	_
$D_{s1}^{*}(2700)^{-}\pi^{+}, D_{s1}^{*} \rightarrow \overline{D}_{0}^{0}\kappa^{-}$	(1.6 \pm 0.8) $\times10^{-5}$	-
$D_{s1}^{*}(2860)^{-}\pi^{+}, D_{s1}^{*} \rightarrow \overline{D_{s1}^{*}}$	(5 \pm 4) $ imes$ 10 ⁻⁵	-
$D_{s3}^{0}(2860)^{-}\pi^{+}, D_{s3}^{*} \rightarrow \overline{D_{s3}^{0}}$	(2.2 \pm 0.6) $\times10^{-5}$	-
$D^{0}K^{-}$	([() 0 0) + 10 - 5	2042
$\overline{D}^0 f_{\tau}(0.80)$	$(5.0 \pm 0.9) \times 10^{-6}$	2243 CL00% 2243
$\overline{D}^{0} \phi$	$< 3.1 \times 10^{-5}$	CL—9070 2242 2235
$\frac{D}{D} = 0 \phi$	$(2.30 \pm 0.23) \times 10^{-5}$	2233
$D^{*\mp}\pi^{\pm}$	$< 6.1 \times 10^{-6}$	CI = 90% -
$\frac{1}{n_c \phi}$	$(5.0 \pm 0.9) \times 10^{-4}$	1663
$\eta_c \pi^+ \pi^-$	$(1.8 \pm 0.7) \times 10^{-4}$	1840
$\tilde{J}/\psi(1S)\phi$	$(1.03\pm 0.04) \times 10^{-3}$	1588
$J/\psi(1S)\phi\phi$	$(1.18 + 0.14)_{-0.16} \times 10^{-5}$	764

https://pdg.lbl.gov

$J/\psi(1S)\pi^0$	$<$ 1.21 $\times 10^{-5}$	CL=90%	1787
$J/\psi(1S)\eta$	(4.0 \pm 0.7) $\times10^{-4}$	S=1.4	1733
$J/\psi(1S)\underline{K}_{S}^{0}$	(1.92 \pm 0.14) $ imes$ 10 $^{-5}$		1743
$J/\psi(1S)\overline{K}^*(892)^0$	(4.1 \pm 0.4) $ imes$ 10 $^{-5}$		1637
$J/\psi(1S)\eta'$	(3.3 \pm 0.4) $ imes$ 10 ⁻⁴		1612
$J/\psi(1S)\pi^+\pi^-$	$(2.02\pm 0.17) \times 10^{-4}$	S=1.7	1775
$J/\psi(1S) f_0(500), f_0 \rightarrow$	< 4 $\times 10^{-0}$	CL=90%	_
$\pi^+\pi^-$ $I/2/(1S) a \rightarrow \pi^+\pi^-$	< 24 × 10 ⁻⁶	CI00%	_
$J/\psi(1S)p, p \rightarrow \pi \pi$ $J/\psi(1S)f_0(980) = f_0 \rightarrow$	$< 3.4 \times 10^{-4}$	CL = 90 / 0 S = 2.1	_
$\pi^+\pi^-$	(1.24± 0.13) × 10	5-2.1	
$J/\psi(1S) f_2(1270), f_2 \to$	($1.0~\pm~0.4$) $\times10^{-6}$		-
$\pi^+\pi^-$ $J/\psi(1S)f_2(1270)_0, f_2 \rightarrow$	(7.3 \pm 1.7) $ imes$ 10 ⁻⁷		_
$\pi^+\pi^-$	(6		
$J/\psi(1S) t_2(1270)_{\parallel}, t_2 \rightarrow + -$	$(1.05\pm 0.33) \times 10^{-6}$		_
$J/\psi(1S) f_2(1270)$, $f_2 \rightarrow$	(1.3 \pm 0.7) $ imes$ 10 $^{-6}$		_
$\pi^+\pi^-$			
$J/\psi(1S)f_0(1370),\;\;f_0 ightarrow$	(4.4 $\substack{+ & 0.6 \\ - & 4.0}$) $ imes$ 10 $^{-5}$		-
$\pi^+\pi^-$			
$J/\psi(1S)f_{0}(1500), \ f_{0} ightarrow$	$(2.04 + 0.32) \times 10^{-5}$		-
$J/\psi(1S)f'_{2}(1525)_{0}, f'_{2} \rightarrow$	($1.03\pm~0.22) imes10^{-6}$		_
$\pi^+\pi^-$			
$J/\psi(1S)f_2'(1525)_{\parallel}, \ f_2' ightarrow$	(1.2 $\stackrel{+}{_{-}} \stackrel{2.6}{_{-}}) imes 10^{-7}$		_
$\pi^{+}\pi^{-}$	_		
$J/\psi(1S)f_2'(1525)_{\perp}, f_2' \rightarrow$	$(5 \pm 4) \times 10^{-7}$		_
$\pi^+\pi^-$. 10.0		
$J/\psi(1S)f_0(1790), \ f_0 ightarrow$	$(4.9 + 10.0 - 1.0) \times 10^{-6}$		-
$1/2/(1S)\pi^+\pi^-$ (nonresonant)	$(1.74 + 1.10) \times 10^{-5}$		1775
$\frac{1}{2} \sqrt{\frac{1}{2}} \sqrt$	$(111 - 0.34) \land 10 - 5$		1675
$J/\psi(1S) K + K^{-}$	$< 4.4 \times 10^{-4}$	CL=90%	1075
$J/\psi(1S)K^{0}K^{-}\pi^{+}+cc$	$(7.9 \pm 0.7) \times 10$ $(95 \pm 1.3) \times 10^{-4}$		1538
$I/\psi(1S)\overline{K}^{0}K^{+}K^{-}$	$< 12 \times 10^{-5}$	CI =90%	1333
$J/\psi K^*(892)^0 \overline{K}^*(892)^0$	$(1.08 + 0.09) \times 10^{-4}$	02 9070	1083
$J/\psi(1S) f'_{2}(1525)$	$(2.6 \pm 0.6) \times 10^{-4}$		1310
$J/\psi(1S) p\overline{p}$	$(3.6 \pm 0.4) \times 10^{-6}$		982
$J/\psi(1S)\gamma$	$< 7.3 \times 10^{-6}$	CL=90%	1790
$J/\psi \mu^+ \mu^-$, $J/\psi \rightarrow \mu^+ \mu^-$	$< 2.6 \times 10^{-9}$	CL=95%	_
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(7.5 \pm 0.8) $\times10^{-5}$		1731
$J/\psi(1S) \underline{f_1}(1285)$	(7.2 \pm 1.4) $\times10^{-5}$		1460
$J/\psi(1S)\overline{D}{}^0$	< 1.0 $\times 10^{-6}$	CL=90%	996

https://pdg.lbl.gov

$\psi(2S)\eta$	(3.3 \pm 0.9) $\times10^{-4}$	1338
$\psi(2S)\eta'$	(1.29 \pm 0.35) $ imes$ 10 $^{-4}$	1158
$\psi(2S)\pi^+\pi^-$	(6.9 \pm 1.2) $ imes$ 10 $^{-5}$	1397
$\psi(2S)\phi$	(5.2 \pm 0.4) $\times10^{-4}$	1120
$\psi(2S)K^0$	(1.9 \pm 0.5) $ imes$ 10 $^{-5}$	1352
$\psi(2S)\underline{K}^{-}\pi^{+}$	(3.1 \pm 0.4) $ imes$ 10 $^{-5}$	1310
$\psi(2S)\overline{K}^*(892)^0$	(3.3 \pm 0.5) $ imes$ 10 $^{-5}$	1196
$\chi_{c1}\phi$	$(1.95\pm0.25) imes10^{-4}$	1275
$\chi_{c1}(3872)\phi$	$(9.7 \pm 3.3) \times 10^{-5}$	936
$\chi_{c1}(3872)(K^+K^-)_{non-\phi}$	(7.6 \pm 3.0) $ imes$ 10 ⁻⁵	961
$\chi_{c1}(3872)\pi^{+}\pi^{-}$	(3.7 \pm 1.5) $ imes$ 10 ⁻⁵	1264
$\pi^{+}\pi^{-}$	$(7.2 \pm 1.0) \times 10^{-7}$	2680
$\pi^0 \pi^0$	$< 7.7 \times 10^{-6}$	CL=90% 2680
$\eta \pi^0$	$< 1.0 \times 10^{-3}$	CL=90% 2654
$\eta \eta$	$< 1.43 \times 10^{-4}$	CL=90% 2627
$\rho^{0}\rho^{0}$	$< 3.20 \times 10^{-4}$	CL=90% 2569
$\eta' K_S^0$	$< 8.16 \times 10^{-0}$	CL=90% 2573
$\eta'_{,\eta}$	$< 6.5 \times 10^{-5}$	CL=90% 2568
$\eta'_{\prime}\eta'_{\prime}$	$(3.3 \pm 0.7) \times 10^{-5}$	2507
$\eta' \phi$	$< 8.2 \times 10^{-7}$	CL=90% 2495
$\phi f_0(980), f_0(980) \to \pi^+ \pi^-$	$(1.12\pm0.21)\times10^{-6}$	-
$\phi f_2(1270), \;\; f_2(1270) ightarrow$	(6.1 $\stackrel{+}{_{-}} \stackrel{1.8}{_{1.5}}$) $ imes$ 10 $^{-7}$	-
$\pi^{+}\pi^{-}$	7	
$\phi \rho^{\circ}$	$(2.7 \pm 0.8) \times 10^{-7}$	2526
$\phi \pi$ ' π	$(3.5 \pm 0.5) \times 10^{-0}$	2579
$\phi \phi$	$(1.84 \pm 0.14) \times 10^{-5}$	2482
$\phi \phi \phi$	$(2.2 \pm 0.6) \times 10^{-6}$	2165
$\pi^+\kappa^-$	$(5.9 \pm 0.7) \times 10^{-5}$	2659
K + K $\mu 0 \overline{\mu} 0$	$(2.72 \pm 0.23) \times 10^{-5}$	2038
$K^0 \pi^+ \pi^-$	$(1.70 \pm 0.31) \times 10^{-6}$	2037
$K_0 K^{\pm} \pi^{\mp}$	$(9.3 \pm 2.1) \times 10^{-5}$	2003
$K^{*}(892)^{-}\pi^{+}$	$(3.4 \pm 0.9) \times 10$ $(2.9 \pm 1.1) \times 10^{-6}$	2022
$K^{*}(892)^{\pm}K^{\mp}$	$(2.9 \pm 1.1) \times 10^{-5}$	2007
$K_{*}^{*}(1430)^{\pm}K^{\mp}$	$(1.9 \pm 0.5) \times 10^{-5}$	- 2000
$K_{0}(1430)^{\pm}K^{\mp}$	$(3.1 \pm 2.3) \times 10^{-5}$	_
$K_{2}(1+30) = K$	$(1.0 \pm 1.7) \times 10^{-5}$	
$K^{*}(1430) \overline{K}^{0} + c.c.$	$(2.0 \pm 0.0) \times 10^{-5}$	2000
$K^{*}(1430)^{0}\overline{K}^{0} + cc$	$(3.3 \pm 1.0) \times 10^{-5}$	2400
$K_{2}^{(1+30)} = K_{+}^{+} + C.C.$	$(1.1 \pm 2.2) \times 10^{-5}$	2407
$\kappa_{0}\kappa_{1}(092) + c.c.$	$(1.0 \pm 0.4) \times 10^{-6}$	2585
$\overline{K} * (803)0^{0}$	$(1.3 \pm 0.0) \times 10^{-4}$	2568 CL
$\frac{1}{K} (092)^{2} \mu^{2}$	$< 1.01 \times 10^{-5}$	CL=90% 2550
$n (092) n (092)^2$	$(1.11\pm 0.27) \times 10^{-3}$	2531

https://pdg.lbl.gov

$\phi K^*(892)^0$	($1.14\pm$ C	$(0.30) \times 10^{-6}$		2507
$p\overline{p}$	< 4.4	imes 10 ⁻⁹	CL=90%	2514
$p\overline{p}K^+K^-$	($4.5~\pm~0$	0.5) $ imes$ 10 $^{-6}$		2231
$p\overline{p}K^{+}\pi^{-}$	($1.39\pm$ C	$(0.26) \times 10^{-6}$		2355
$p\overline{p}\pi^+\pi^-$	(4.3 \pm 2	2.0) $ imes$ 10 $^{-7}$		2454
p <u>p</u> pp	(2.3 \pm 1	1.0) $ imes$ 10 $^{-8}$		1797
$p\overline{\Lambda}K^{-}$ + c.c.	(5.5 \pm 1	LO) $ imes$ 10 $^{-6}$		2358
$\Lambda_c^- \Lambda \pi^+$	($3.6~\pm~1$	1.6) $ imes$ 10 $^{-4}$		1979
$\Lambda_c^- \Lambda_c^+$	< 8.0	imes 10 ⁻⁵	CL=95%	1405

Lepton family (*LF*), lepton (*L*), baryon (*B*) number violating modes or $\Delta B = 1$ weak neutral current (*B1*) modes

$\gamma \gamma$	B1	<	3.1		imes 10 ⁻⁶	CL=90%	2683
$\phi\gamma$	B1	($3.4\ \pm$	0.4)	imes 10 ⁻⁵		2587
$f_2(1270)\gamma$	B1	(9 +	4 5)	imes 10 ⁻⁶		2532
$f'_{2}(1525)\gamma$	B1	(6.6 +	0.9 0.8)	imes 10 ⁻⁶		2469
ϕ (1680) γ , $\phi \rightarrow K^+K^-$	B1	($9.2\ \pm$	2.4)	imes 10 ⁻⁷		_
$\phi_3(1850)\gamma, \ \phi_3 \rightarrow K^+ K^-$	B1	(7 _	6 5)	× 10 ⁻⁸		_
$egin{array}{ll} f_2(2010)\gamma, & f_2 ightarrow \ K^+K^- \end{array}$	B1	(1.0 +	0.7 0.5)	× 10 ⁻⁷		-
$\mu^+\mu^-$	B1	($3.34\pm$	0.27)	imes 10 ⁻⁹		2681
$e^+ e^-$	B1	<	9.4		imes 10 ⁻⁹	CL=90%	2683
$ au^+ au^-$	B1	<	6.8		imes 10 ⁻³	CL=95%	2011
$\mu^+ \mu^- \gamma$	B1	<	4.2		imes 10 ⁻⁸	CL=95%	2681
$\mu^+ \mu^- \mu^+ \mu^-$	B1	<	8.6		$\times 10^{-10}$	CL=95%	2673
$SP, S ightarrow \mu^+ \mu^-, P ightarrow \mu^+ \mu^-$	B1	[b] <	2.2		× 10 ⁻⁹	CL=95%	-
aa, a $ ightarrow \mu^+\mu^-$	B1	<	5.8		$\times 10^{-10}$	CL=95%	_
$\phi(1020) \mu^+ \mu^-$	B1	($8.3 \pm$	0.4)	imes 10 ⁻⁷		2582
$f'_{2}(1525)\mu^{+}\mu^{-}$	B1	($1.60\pm$	0.22)	imes 10 ⁻⁷		2464
$\overline{K}^{*}(892)^{0} \mu^{+} \mu^{-}$	B1	($2.9~\pm$	1.1)	imes 10 ⁻⁸		2605
$\pi^+\pi^-\mu^+\mu^-$	B1	($8.4 \pm$	1.7)	imes 10 ⁻⁸		2670
$\overline{D}^0 \mu^+ \mu^-$	B1	<	1.2		imes 10 ⁻⁷	CL=90%	2354
$\phi u \overline{ u}$	B1	<	5.4		imes 10 ⁻³	CL=90%	2587
$e^{\pm} \mu^{\mp}$	LF	[c] <	5.4		imes 10 ⁻⁹	CL=90%	2682
$e^{\pm} au^{\mp}$	LF	<	1.4		imes 10 ⁻³	CL=90%	2389
$\mu^{\pm}\tau^{\mp}$	LF	<	4.2		imes 10 ⁻⁵	CL=95%	2388
$\phi \mu^{\pm} e^{\mp}$	LF	<	1.6		imes 10 ⁻⁸	CL=90%	2586
$\phi \mu^{\pm} \tau^{\mp}$	LF	<	1.0		$\times 10^{-5}$	CL=90%	2241
$p\mu^-$	L,B	<	1.21		× 10 ⁻⁸	CL=90%	2600

https://pdg.lbl.gov

B* s

$$I(J^P) = 0(1^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

 $\begin{array}{l} {\sf Mass} \ m = 5415.4 \pm 1.4 \ {\sf MeV} \ \ ({\sf S} = 2.6) \\ {m}_{{\cal B}_{{\sf S}}^{*}} - {m}_{{\cal B}_{{\sf S}}} = 48.5 \pm 1.4 \ {\sf MeV} \ \ \ ({\sf S} = 2.6) \end{array}$

B [*] _s DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$B_s \gamma$	seen	48

$$B_{s1}(5830)^{0} I(J^{P}) = 0(1^{+}) I, J, P \text{ need confirmation}.$$

Mass $m = 5828.73 \pm 0.20$ MeV $m_{B_{s1}^0} - m_{B^{*+}} = 503.98 \pm 0.17$ MeV Full width $\Gamma = 0.5 \pm 0.4$ MeV

<i>B_{s1}</i> (5830) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B^{*+}K^-$	seen	97

B^{*}_{s2}(5840)⁰

$$I(J^P) = 0(2^+)$$

I, J, P need confirmation.

Mass $m = 5839.88 \pm 0.12$ MeV $m_{B_{s2}^{*0}} - m_{B^+} = 560.48 \pm 0.12$ MeV Full width $\Gamma = 1.49 \pm 0.27$ MeV

Branching fractions are given relative to the one **DEFINED AS 1**.

$B_{s2}^{*}(5840)^{0}$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
B ⁺ K ⁻	DEFINED AS 1	252	
$B^{*+}K^{-}$	$0.093 \!\pm\! 0.018$	141	
$B^0 K_S^0$	0.43 ± 0.11	245	
$B^{*0}K_S^0$	0.04 ± 0.04	_	

NOTES

- $[a]\ {\rm Not}\ {\rm a}\ {\rm pure}\ {\rm measurement}.$ See note at head of B^0_s Decay Modes.
- [b] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c² and 214.3 MeV/c², respectively.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.