Page 1

NODE=B038

NODE=B038

NODE=B038225

A(1520) 3/2

 $I(J^{P}) = 0(\frac{3}{2})$ Status: ****

Discovered by FERRO-LUZZI 62; the elaboration in WATSON 63 is the classic paper on the Breit-Wigner analysis of a multichannel resonance.

The measurements of the mass, width, and elasticity published before 1975 are now obsolete and have been omitted. They were last listed in our 1982 edition Physics Letters 111B 1 (1982).

Production and formation experiments agree quite well, so they are listed together here.

A(1520) POLE POSITION

	-	DOCUMENT ID		TECN	COMM	ENT	NODE=B038RE
1517 to 1518	B (≈ 1517.5) OL	JR ESTIMATE		TECN	COMIM		\rightarrow UNCHECKED \leftarrow
1517.5±0.4 O	UR AVERAGE		10				
1517.5 ± 0.4		SARAN I SEV	19	DPVVA	K N m		
1517 - 4		⁺ KAMANO	15	DPWA	K N m	nultichannel	
• • • We do r	not use the follow	wing data for aver	ages,	fits, lim	its, etc.	• • •	
1518		ZHANG	13A	DPWA	<u></u> <i>K</i> Ν m	nultichannel	
1518.8		QIANG	10	SPEC	ep ightarrow	$e'K^+X$ (fit to X)	
¹ From the p	preferred solution	n A in KAMANO	15.				NODE=B038RE;LINKAGE=
-2×IMAGI	NARY PART						NODE=B038IM
VALUE (MeV)		DOCUMENT ID		TECN	СОММ	ENT	NODE=B038IM
14 to 18 (≈ 15.3+ 0.9 OL	16) OUR ESTIN IR AVERAGE	ИАТЕ					$ ightarrow$ UNCHECKED \leftarrow
15.3± 0.9		SARANTSEV	19	DPWA	$\overline{K}N$ m	ultichannel	
15 + 10		¹ KAMANO	15	DPWA	$\overline{K}N$ m	ultichannel	
• • • We do r	not use the follo	wing data for aver	ages.	fits. lim	its. etc.	• • •	
16		ZHANG	13A	DPWA	$\overline{K}N$ m	ultichannel	
17.2		QIANG	10	SPEC	$ep \rightarrow$	$e'K^+X$ (fit to X)	
1 From the p	preferred solution	n A in KAMANO	15.			× ,	NODE=B038IM;LINKAGE=
	4	A(1520) POLE	RES	IDUES			NODE=B038250
The r	normalized residu	ue is the residue d	ividec	l by Г $_{pot}$	le/2.		NODE=B038250
Normalized	residue in $N\overline{K}$	$\overline{A} \rightarrow \Lambda(1520)$ -	→ N	Ī			
MODULUS	PHASE (°)		NT IL)	TECN	COMMENT	NODE=B038A00
0.45 ±0.01	-10 ± 3	SARAN	TSE\	/ 19	DPWA	<i>K</i> <i>N</i> multichannel	
• • • We do r	not use the follow	wing data for aver	ages,	fits, lim	its, etc.	• • •	
0.431	-11	¹ KAMAI	10	15	DPWA	$\overline{K}N$ multichannel	
1 From the μ	preferred solution	n A in KAMANO	15.				NODE=B038A00;LINKAGE=
Normalized	residue in $N\overline{k}$	$\bar{a} \rightarrow \Lambda(1520) =$	÷Σ	π			
MODULUS	PHASE (°)	DOCUME)	TECN	COMMENT	NODE=B038A01 NODE=B038A01
0.44 ±0.01	-15 ± 3	SARAN	TSE\	/ 19	DPWA	$\overline{K}N$ multichannel	
• • • We do r	not use the follo	wing data for aver	ages,	fits, lim	its, etc.	• • •	
0.435	-10	¹ KAMAI	10	15	DPWA	<i>K</i> <i>N</i> multichannel	
1 From the μ	preferred solution	n A in KAMANO	15.				NODE=B038A01;LINKAGE=
Normalized	residue in N k	$ \rightarrow \Lambda(1520) -$	۸ ن	n			
MODULUS	PHASE (°)		 NT II	• •	TECN	COMMENT	NODE=B038A04 NODE=B038A04

19	DPWA	K N multichannel	
.385	5)π, S-1	wave	1
	TECN	COMMENT	

Normalized residue in $N\overline{K} ightarrow \Lambda(1520) ightarrow \Sigma(1385)\pi$, S-wave					
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the following data for averages, fits, limits, etc. • • •					
0.431	-123 1	KAMANO 1	5 DPWA	$\overline{K}N$ multichannel	
1 From the preferred solution A in KAMANO 15.					

SARANTSEV

 0.013 ± 0.003

 116 ± 3

A

=A

=A

NODE=B038A02 NODE=B038A02

NODE=B038A03 NODE=B038A03

Normalized residue in $N\overline{K} \rightarrow \Lambda(1520) \rightarrow \Sigma(1385)\pi$, D-waveMODULUSPHASE (°)DOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc.• • •0.0141122¹ KAMANO15DPWA $\overline{K}N$ multichannel

 1 From the preferred solution A in KAMANO 15.

Л(1520) MASS

VALUE (I	MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1518	to 15	20 (≈ 1519) OUR	ESTIMATE			
1519.42	2±0.19	OUR AVERAGE	Error includes so	cale fa	actor of 1	1.1.
1518.5	± 0.5		SARANTSEV	19	DPWA	$\overline{K}N$ multichannel
1519.6	± 0.5		ZHANG	13A	DPWA	$\overline{K}N$ multichannel
1520.4	± 0.6	± 1.5	QIANG	10	SPEC	$e p \rightarrow e' K^+ X$ (fit to X)
1517.3	± 1.5	300	BARBER	80D	SPEC	$\gamma p \rightarrow \Lambda(1520) K^+$
1517.8	± 1.2	5k	BARLAG	79	HBC	<i>К</i> р 4.2 GeV/с
1520.0	± 0.5		ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1519.7	± 0.3	4k	CAMERON	77	HBC	$K^- p \ 0.96 - 1.36 \ \text{GeV}/c$
1519	± 1		GOPAL	77	DPWA	$\overline{K}N$ multichannel
1519.4	± 0.3	2000	CORDEN	75	DBC	$K^- d$ 1.4–1.8 GeV/ c

Л(1520) WIDTH

VALU	E (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT			
15	15 to 17 (\approx 16) OUR ESTIMATE								
15.73	± 0.26 OUR AV	ERAGE							
15.7	± 1.0		SARANTSEV	19	DPWA	<i>KN</i> multichannel			
17	± 1		ZHANG	13A	DPWA	$\overline{K}N$ multichannel			
18.6	± 1.9 ± 1.0		QIANG	10	SPEC	$e p ightarrow e^\prime {\cal K}^+ X$ (fit to X)			
16.3	± 3.3	300	BARBER	80D	SPEC	$\gamma p \rightarrow \Lambda(1520) K^+$			
16	± 1		GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$			
14	± 3	677 1	BARLAG	79	HBC	<i>K</i> ⁻ <i>p</i> 4.2 GeV/ <i>c</i>			
15.4	± 0.5		ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$			
16.3	± 0.5	4k	CAMERON	77	HBC	К р 0.96–1.36 GeV/с			
15.0	± 0.5		GOPAL	77	DPWA	$\overline{K}N$ multichannel			
15.5	± 1.6	2000	CORDEN	75	DBC	$K^{-}d$ 1.4–1.8 GeV/ c			

¹ From the best-resolution sample of $\Lambda\pi\pi$ events only.

A(1520) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	NK	$(45 \pm 1) \%$
Γ2	$\Sigma \pi$	$(42 \pm 1) \%$
Γ ₃	$\Lambda \pi \pi$	$(10 \pm 1) \%$
Γ ₄	$\Sigma(1385)\pi$, S -wave	
Γ ₅	$\Sigma(1385)\pi$, D -wave	
Г ₆	$\Sigma(1385)\pi$	
Γ ₇	$\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi)$	
Г ₈	$\Lambda(\pi\pi)_{S-wave}$	
Гg	$\Sigma \pi \pi$	($0.9~\pm0.1$) %
Γ ₁₀	$\Lambda\gamma$	$(0.85\pm0.15)\%$
Γ_{11}	$\Sigma^{0}\gamma$	

A(1520) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.45 to 0.47 OUR ESTIMATE				
0.45 ± 0.01	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel
0.47 ±0.04	ZHANG	13A	DPWA	K N multichannel
0.47 ±0.02	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.45 ± 0.03	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.448 ± 0.014	CORDEN	75	DBC	$K^- d$ 1.4–1.8 GeV/ c

NODE=B038A03;LINKAGE=A

NODE=B038M

 $\begin{array}{l} \mathsf{NODE}{=}\mathsf{B038M} \\ \rightarrow \mathsf{UNCHECKED} \leftarrow \end{array}$

NODE=B038W

NODE=B038W \rightarrow UNCHECKED \leftarrow

NODE=B038;LINKAGE=A

NODE=B038215;NODE=B038

DESIG=1;OUR EST
DESIG=2;OUR EST
DESIG=3;OUR EST
DESIG=11
DESIG=12
DESIG=7;OUR EST
DESIG=8;OUR EST
DESIG=9;OUR EST
DESIG=6;OUR EST
DESIG=4;OUR EST
DESIG=5;OUR EST

NODE=B038220

NODE=B038220

NODE=B038R6 NODE=B038R6 \rightarrow UNCHECKED \leftarrow

• • We do not use the following	data for averages	, fits,	limits, etc. • • •
0.43	¹ KAMANO	15	DPWA $\overline{K}N$ multichannel
0.47 ± 0.01	GOPAL	77	DPWA See GOPAL 80
0.42	MAST	76	HBC $K^- p \rightarrow \overline{K}^0 n$
1 From the preferred solution A in	n KAMANO 15.		

 $\Gamma(\Sigma \pi)/\Gamma_{\text{total}}$ Γ_2/Γ VALUE DOCUMENT ID TECN COMMENT 0.42 to 0.46 OUR ESTIMATE SARANTSEV 19 DPWA $\overline{K}N$ multichannel $0.43 \hspace{0.1in} \pm 0.01$ ZHANG 13A DPWA $\overline{K}N$ multichannel $0.47 \ \pm 0.05$ CORDEN 75 DBC K⁻ d 1.4–1.8 GeV/c 0.426 ± 0.014 BARBARO-... 69B HBC K⁻ p 0.28–0.45 GeV/c 0.418 ± 0.017 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ¹ KAMANO 15 DPWA $\overline{K}N$ multichannel 0.446 KIM 71 DPWA K-matrix analysis 0.46

¹From the preferred solution A in KAMANO 15.

$\Gamma(\Sigma\pi)/\Gamma(N\overline{K})$				Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT
0.9 to 1.0 OUR ESTIMATE				
0.98 ± 0.03	¹ GOPAL	77	DPWA	$\overline{K}N$ multichannel
0.82 ± 0.08	BURKHARDT	69	HBC	$K^- p \ 0.8-1.2 \ \text{GeV}/c$
1.06 ± 0.14	SCHEUER	68	DBC	$K^- N$ 3 GeV/ c
0.96 ± 0.20	DAHL	67	HBC	$\pi^- p$ 1.6–4 GeV/ c
0.73 ± 0.11	DAUBER	67	HBC	$K^- p$ 2 GeV/ c
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
1.06 ± 0.12	BERTHON	74	HBC	Quasi-2-body σ
1.72 ± 0.78	MUSGRAVE	65	HBC	
1 The $\overline{\kappa}$ N $ ightarrow$ $\Sigma\pi$ amplitude at	resonance is $+0.4$	$16 \pm$	0.01.	

$\Gamma(\Lambda\pi\pi)/\Gamma_{\rm total}$				Г ₃ /Г
VALUE	DOCUMENT ID		TECN	COMMENT
0.09 to 0.11 OUR ESTIMATE				
$0.091 \!\pm\! 0.006$	CORDEN	75	DBC	$K^{-}d$ 1.4–1.8 GeV/ c
0.11 ± 0.01	¹ MAST	73 B	IPWA	$K^- p \rightarrow \Lambda \pi \pi$
¹ Assumes $\Gamma(N\overline{K})/\Gamma_{total} = 0.4$	46 \pm 0.02.			

$\Gamma(\Lambda\pi\pi)/\Gamma(N\overline{K})$				Γ_3/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT
0.18 to 0.22 OUR ESTIMATE				
0.22 ± 0.03	BURKHARDT	69	HBC	$K^- p \ 0.8-1.2 \ \text{GeV}/c$
0.19 ± 0.04	SCHEUER	68	DBC	$K^- N$ 3 GeV/ c
0.17 ± 0.05	DAHL	67	HBC	$\pi^- p$ 1.6–4 GeV/c
0.21 ± 0.18	DAUBER	67	HBC	$K^- p$ 2 GeV/c
$\bullet~\bullet~\bullet$ We do not use the following a	lata for averages	, fits,	limits, e	tc. • • •
0.27 ± 0.13	BERTHON	74	HBC	Quasi-2-body σ
0.2	KIM	71	DPWA	K-matrix analysis
$\Gamma(\Sigma\pi)/\Gamma(\Lambda\pi\pi)$				Γ_2/Γ_3

• (= ^) / • (* • ^)				' 2/' 3
VALUE	DOCUMENT ID		TECN	COMMENT
3.4 to 4.4 OUR ESTIMATE				
3.9 ± 1.0	UHLIG	67	HBC	$K^- p \ 0.9-1.0 \ \text{GeV}/c$
3.3 ± 1.1	BIRMINGHAM	66	HBC	$K^- p$ 3.5 GeV/c
4.5±1.0	ARMENTEROS	65C	HBC	

E(E(100E)) = C

$I(2(1385)\pi, 5-wave)/I_{total}$					14/1
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
0.121	¹ KAMANO	15	DPWA	$\overline{K}N$ multichannel	
1 From the preferred solution A	in KAMANO 15.				
$\Gamma(\Sigma(1385)\pi, D\text{-wave})/\Gamma_{total}$					Г ₅ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	

VALUE	DOCUMENT ID		<u>TECN</u> COMMENT
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, etc. • • •
0.003	¹ KAMANO	15	DPWA Multichannel
¹ From the preferred solution A i	n KAMANO 15.		

NODE=B038R6;LINKAGE=A

 $\begin{array}{l} \text{NODE}{=}\text{B038R7} \\ \text{NODE}{=}\text{B038R7} \\ \rightarrow \text{UNCHECKED} \leftarrow \end{array}$

NODE=B038R7;LINKAGE=A

 $\begin{array}{l} \text{NODE}{=}\text{B038R1} \\ \text{NODE}{=}\text{B038R1} \\ \rightarrow \text{UNCHECKED} \leftarrow \end{array}$

NODE=B038;LINKAGE=B

 $\begin{array}{l} \text{NODE}{=}\text{B038R11} \\ \text{NODE}{=}\text{B038R11} \\ \rightarrow \text{UNCHECKED} \leftarrow \end{array}$

NODE=B038;LINKAGE=J

 $\begin{array}{l} \mathsf{NODE}{=}\mathsf{B038R2}\\ \mathsf{NODE}{=}\mathsf{B038R2}\\ \rightarrow \mathsf{UNCHECKED} \leftarrow \end{array}$

 $\begin{array}{l} \mathsf{NODE}{=}\mathsf{B038R3} \\ \mathsf{NODE}{=}\mathsf{B038R3} \\ \rightarrow \mathsf{UNCHECKED} \leftarrow \end{array}$

NODE=B038R00 NODE=B038R00

F /F

NODE=B038R00;LINKAGE=A

NODE=B038R01 NODE=B038R01

				3/18/2024 16:03
$\Gamma(\Sigma(1385)\pi)/\Gamma_{total}$	DOCUMENT ID	TECN	Г₆/Г	NODE=B038R10 NODE=B038R10
0.041±0.005	CHAN 72	HBC	$K^- p \rightarrow \Lambda \pi \pi$	
$\Gamma(\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi))/I$	-(Λππ)		Γ ₇ /Γ ₃	NODE=B038R9
The $\Lambda\pi\pi$ mode is largely given by MAST 73B and The discrepancy between made concerning the sha	due to $\Sigma(1385)\pi$. Only CORDEN 75 are based or the two results is essentia pe of the $(\pi\pi)c$ many sta	the value n real 3-b ally due t te.	as of $(\Sigma(1385)\pi) / (\Lambda 2\pi)$ ody partial-wave analyses. o the different hypotheses	NODE=B038R9
VALUE <u>CL%</u>	DOCUMENT ID	TECN	COMMENT	NODE=B038R9
$\begin{array}{l} 0.58 \pm 0.22 \\ 0.82 \pm 0.10 \end{array}$ • • • We do not use the follow	CORDEN 75 ¹ MAST 73E ving data for averages, fits	DBC IPWA 5, limits, 9	$K^{-} d \ 1.4-1.8 \ \text{GeV}/c$ $K^{-} p \rightarrow \Lambda \pi \pi$ etc. • • •	
<0.44 90 0.39±0.10	WIELAND 11 ² BURKHARDT 71	SPHR HBC	$\gamma p \rightarrow K^{+} \Lambda(1520)$ $K^{-} p \rightarrow (\Lambda \pi \pi) \pi$	
¹ Both Σ(1385)π DS ₀₃ and ² The central bin (1514–152 standard deviations.	$\Sigma(\pi\pi) DP_{03}$ contribute. 4 MeV) gives 0.74 \pm 0.1	10; other	bins are lower by 2-to-5	NODE=B038;LINKAGE=I NODE=B038;LINKAGE=G
$\Gamma(\Lambda(\pi\pi)_{S-\text{wave}})/\Gamma(\Lambda\pi\pi)$	DOCUMENT ID	TECN		NODE= $B038R12$
0.20±0.08	CORDEN 75	DBC	$K^{-} d$ 1.4–1.8 GeV/c	
$\Gamma(\Sigma \pi \pi)/\Gamma_{\text{total}}$	DOCUMENT ID	<u>TECN</u>	Г9/Г	NODE=B038R8 NODE=B038R8
0.007 to 0.011 OUR ESTIMA 0.007 ±0.002 0.0085±0.0006 0.010 ±0.0015	TE ¹ CORDEN 75 ² MAST 73 BARBARO 698	DBC MPWA BBC	$K^- d$ 1.4–1.8 GeV/c $K^- p \rightarrow \Sigma \pi \pi$ $K^- p$ 0.28–0.45 GeV/c	$ ightarrow$ UNCHECKED \leftarrow
$rac{1}{2}$ Much of the $\Sigma\pi\pi$ decay pr 2 Assumes $\Gamma(N\overline{K})/\Gamma_{ ext{total}}=$	oceeds via $\Sigma(1385)\pi$. 0.46.			NODE=B038;LINKAGE=F NODE=B038;LINKAGE=E
$\Gamma(\Lambda\gamma)/\Gamma_{\rm total}$			Г ₁₀ /Г	NODE=B038R4
$\frac{VALUE \text{ (units } 10^{-3})}{7 \text{ to 11 OUR ESTIMATE}}$	DOCUMENT ID TEC	<u>CON</u>	IMENT	$\begin{array}{l} NODE = B038R4 \\ \rightarrow UNCHECKED \leftarrow \end{array}$
$10.7 \pm 2.9 {+1.5 \atop -0.4}$ 32	TAYLOR 05 CL	AS γp	$\rightarrow K^+ \Lambda \gamma$	
$\begin{array}{ccc} 10.2 \pm 2.1 \pm 1.5 & 290 \\ 8.0 \pm 1.4 & 238 \end{array}$	ANTIPOV 04A SPI MAST 68B HB	NX pN(C Usir	$(C) \rightarrow \Lambda(1520) K^+ N(C)$ og $\Gamma(N\overline{K}) / \Gamma_{total} = 0.45$	
$\frac{\Gamma(\Sigma^0 \gamma) / \Gamma_{\text{total}}}{0.02 \pm 0.0035}$	DOCUMENT ID ¹ MAST 688	<u>TECN</u> B HBC	Γ₁₁/Γ <u>COMMENT</u> Not measured; see note	NODE=B038R5 NODE=B038R5
1 Calculated from $\Gamma(\Lambda\gamma)/\Gamma_{ m tc}$ branching ratios to be unity	_{tal} , assuming SU(3). Nee	eded to co	onstrain the sum of all the	NODE=B038;LINKAGE=C
	A(1520) REFERENC	ES		NODE=B038
SARANTSEV 19 EPJ A55 180 KAMANO 15 PR C92 025203 ZHANG 13A PR C88 035203 WIELAND 11 EPJ A47 47 QIANG 10 PL B694 123 TAYLOR 05 PR C71 054603 Also PR C72 039902 ANTIPOV 04A PL B604 22 PDG 82 PL 111B 1 BARBER 80D ZPHY C7 17 GOPAL 80 Toronto Conf. BARLAG ALSTON 78 PR D18 182	 A.V. Sarantsev et al H. Kamano et al. H. Zhang et al. F. Wieland et al. Y. Qiang et al. S. Taylor et al. (errat.) S. Taylor et al. Yu.M. Antipov et al M. Roos et al. D.P. Barber et al. I.S. J.M. Barlag et al. M. Alston-Garniosto 	l. (DU l. et al.	(BONN, PNPI) (ANL, OSAK) (KSU) (ELSA SAPHIR Collab.) KE, JEFF, PNPI, GWU+) (JLab CLAS Collab.) (JLab CLAS Collab.) (IHEP SPHINX Collab.) (HELS, CIT, CERN) (DARE, LANC, SHEF) (RHEL), IJP (AMST, CERN, NIJM+) (LBL, MTHO+) I IP	REFID=59986 REFID=57507 REFID=55441 REFID=53763 REFID=53557 REFID=50670 REFID=50291 REFID=41167 REFID=31754 REFID=31755 REFID=31753 REFID=31751

SARANTSEV	19	EPJ A55 180	A.V. Sarantsev <i>et al.</i>	(BONN, PNPI)
KAMANO	15	PR C92 025205	H. Kamano <i>et al.</i>	(ANL, OSAK)
ZHANG	13A	PR C88 035205	H. Zhang <i>et al.</i>	(KSU)
WIELAND	11	EPJ A47 47	F. Wieland et al.	(ELSA SAPHIR Collab.)
QIANG	10	PL B694 123	Y. Qiang et al.	(DUKE, JEFF, PNPI, GWU+)
TAYLOR	05	PR C71 054609	S. Taylor <i>et al.</i>	(JLab CLAS Collab.)
Also		PR C72 039902 (errat.)	S. Taylor <i>et al.</i>	(JLab CLAS Collab.)
ANTIPOV	04A	PL B604 22	Yu.M. Antipov et al.	(IHEP SPHINX Collab.)
PDG	82	PL 111B 1	M. Roos <i>et al.</i>	(HELS, CIT, CERN)
BARBER	80D	ZPHY C7 17	D.P. Barber et al.	(DARE, LANC, SHEF)
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP
BARLAG	79	NP B149 220	S.J.M. Barlag <i>et al.</i>	(AMST, CERN, NIJM+)
ALSTON	78	PR D18 182	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP
Also		PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP
CAMERON	77	NP B131 399	W. Cameron et al.	(RHEL, LOIC) IJP
GOPAL	77	NP B119 362	G.P. Gopal <i>et al.</i>	(LOIC, RHEL) IJP
MAST	76	PR D14 13	T.S. Mast <i>et al.</i>	(LBL)
CORDEN	75	NP B84 306	M.J. Corden et al.	(BIRM)
BERTHON	74	NC 21A 146	A. Berthon et al.	(CDEF, RHEL, SACL+)
MAST	73	PR D7 3212	T.S. Mast <i>et al.</i>	(LBL) IJP
MAST	73B	PR D7 5	T.S. Mast <i>et al.</i>	(LBL) IJP

REFID=59986	
REFID=55441	
REFID=53763	
REFID=53557	
REFID=50670	
REFID=50978	
REFID=50291	
REFID=41167	
REFID=31754	
REFID=31755	
REFID=31753	
REFID=31751	
REFID=31752	
REFID=31749	
REFID=31750	
REFID=31748	
REFID=31747	
REFID=31745	
REFID=31744	
REFID=32035	

CHAN BURKHARDT KIM Also	72 71 71	PRL 28 256 NP B27 64 PRL 27 356 Duke Conf. 161	S.B. Chan <i>et al.</i> E. Burkhardt <i>et al.</i> J.K. Kim J.K. Kim	(MASA, YALE) (HEID, CERN, SACL) (HARV) IJP (HARV) IJP	REFID=31742 REFID=31738 REFID=31740 REFID=31741
BARBARO Also	69B	es, 1970 Lund Conf. 352 Duke Conf. 95	A. Barbaro-Galtieri <i>et al.</i> R.D. Tripp	(LRL) (LRL)	REFID=31735 REFID=31736
Mybein Typeron Burkhardt MAST SCHEUER DAHL DAUBER UHLIG BIRMINGHAM ARMENTEROS MUSGRAVE WATSON FERRO-LUZZI	69 68B 68 67 67 67 67 67 66 65 65 65 63 62	NP B14 106 PRL 21 1715 NP B8 503 PR 163 1377 PL 24B 525 PR 155 1448 PR 152 1148 PL 19 338 NC 35 735 PR 131 2248 PRL 8 28	E. Burkhardt <i>et al.</i> T.S. Mast <i>et al.</i> J.C. Scheuer <i>et al.</i> O.I. Dahl <i>et al.</i> P.M. Dauber <i>et al.</i> R.P. Uhlig <i>et al.</i> M. Haque <i>et al.</i> R. Armenteros <i>et al.</i> B. Musgrave <i>et al.</i> M.B. Watson, M. Ferro-Lu M. Ferro-Luzzi, R.D. Tripp	(HEID, EFI, CERN+) (LRL) (SABRE Collab.) (LRL) (UCLA) (UMD, NRL) (BIRM, GLAS, LOIC, OXF+) (CERN, HEID, SACL) (BIRM, CERN, EPOL+) Izzi, R.D. Tripp (LRL) IJP , M.B. Watson (LRL) IJP	REFID=31733 REFID=31731 REFID=31732 REFID=20321 REFID=31729 REFID=31692 REFID=31725 REFID=31723 REFID=31723 REFID=31721