Page 1

NODE=M032

 $I^{G}(J^{PC}) = 1^{+}(1^{--})$

OMITTED FROM SUMMARY TABLE

This entry was previously called $T_1(2190)$. See the review on "Spectroscopy of Light Meson Resonances."

ρ(2150) MASS

e ⁺ e ⁻ PRODUCE	D EVTS DOCUMENT ID	TECN	COMMENT	NODE=M032M3 NODE=M032M3
• • • We do not use	the following data for aver	ages, fits, lim	its, etc. • • •	
2044 ± 31 \pm 4	¹ ABLIKIM	23BQ BES3	$e^+e^- \rightarrow a_2(1320)^+\pi^- +$	I
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	² ACHASOV ³ ABLIKIM ⁴ ABLIKIM	23A SND 21A BES3 21X BES3	$c.c. \rightarrow \eta \pi^{+} \pi^{-}$ $e^{+} e^{-} \rightarrow \omega \pi^{0}$ $e^{+} e^{-} \rightarrow \omega \pi^{0}$ $e^{+} e^{-} \rightarrow \eta' \pi^{+} \pi^{-}$	I
$2255 \begin{array}{c} +17 \\ -18 \end{array} \begin{array}{c} +50 \\ -41 \end{array}$	1.8k ⁵ ABLIKIM	20F BES3	$\psi(2S) \rightarrow K^+ K^- \eta$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	⁶ LEES ⁷ LEES	20 BABR 20 RVUE	$e^+e^- \rightarrow K^+K^-\gamma$ $e^+e^- \rightarrow K^+K^-$	OCCUR=2
2039 \pm 8 $^{+36}_{-18}$	⁸ ABLIKIM	19AQ BES	$J/\psi \rightarrow K^+ K^- \pi^0$	
$\begin{array}{c} 2239.2 \pm & 7.1 \pm 11.3 \\ 2254 & \pm 22 \\ 2150 & \pm 40 & \pm 50 \end{array}$	⁹ ABLIKIM ¹⁰ LEES AUBERT	19L BES3 12G BABR 07AU BABR	$e^{+}e^{-} \rightarrow K^{+}K^{-}$ $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\gamma$ $10.6 \ e^{+}e^{-} \rightarrow$ $f_{1}(1285)\pi^{+}\pi^{-}\gamma$	
$\begin{array}{rrr} 1990 & \pm 80 \\ 2153 & \pm 37 \\ 2110 & \pm 50 \end{array}$	AUBERT BIAGINI ¹¹ CLEGG	07AU BABR 91 RVUE 90 RVUE	$10.6 e^+ e^- \to \eta' \pi^+ \pi^- \gamma \\ e^+ e^- \to \pi^+ \pi^-, K^+ K^- \\ e^+ e^- \to 3(\pi^+ \pi^-), \\ 2(e^+ e^ 0)$	OCCUR=2
			(n n n)	

 $^1\,{
m From}$ a fit to the cross section between 2.00 and 3.08 GeV with a coherent sum of a

Breit-Wigner resonance and a non-resonant contribution. Could be another state. $^2\,{\rm From}$ a vector dominance fit to the Born cross section between 1.05 and 2.0 GeV with $\rho(770),~\rho(1570),~\rho(1700),~\rho(2150).$ The fit also uses SND data from the VEPP-2M

collider below 1.02 GeV and from LEES 17H and ABLIKIM 21A above 1.5 GeV. ³ From a fit to the cross section between 2.00 and 3.08 GeV with a coherent sum of Breit-Wigner amplitudes, including contributions from $\rho(770)$, $\rho(1450)$ and $\rho(1700)$. Could be another state.

⁴ From a Breit-Wigner fit to the Born cross section, including an *s*-dependent continuum amplitude.

 5 Seen in $\psi(2S)$ decay with branching ratio $\psi(2S) \rightarrow X\eta \rightarrow K^+K^-\eta$ = (21.7 \pm $1.9^{+7.7}_{-8.3}) \times 10^{-6}$.

 6 From the fit to the BABAR data of LEES 13Q assuming a coherent sum of a single Breit-Wigner resonance and a nonresonant contribution. The resonance significance is 3.5σ .

⁷ From the fit to the BABAR data of LEES 13Q and BESIII data of ABLIKIM 19L assuming a coherent sum of a single Breit-Wigner resonance and a nonresonant contribution.

⁸ Could also be another state. Seen in J/ψ decay with branching ratio $J/\psi \rightarrow X\pi^0 \rightarrow K^+K^-\pi^0 = (6.7 \pm 1.1^{+2.2}_{-1.8}) \times 10^{-6}$.

 $^9\,{\rm The}$ observed structure can be due to both the $\phi(2170)$ and $\rho(2150).$

 10 Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit. ¹¹ Includes ATKINSON 85.

$\overline{p}p \rightarrow \pi\pi$

VALUE (MeV)	DOCUMENT ID		TECN COMMENT
• • • We do not use the following	data for averages	, fits,	limits, etc. • • •
\sim 2191	HASAN	94	RVUE $\overline{p}p \rightarrow \pi\pi$
~ 2070	¹ OAKDEN	94	RVUE 0.36–1.55 $\overline{p} p \rightarrow \pi \pi$
~ 2170	² MARTIN	80 B	RVUE
~ 2100	² MARTIN	80C	RVUE

¹See however KLOET 96 who fit $\pi^+\pi^-$ only and find waves only up to J=3 to be important but not significantly resonant.

 $^{2}I(J^{P}) = 1(1^{-})$ from simultaneous analysis of $p\overline{p} \rightarrow \pi^{-}\pi^{+}$ and $\pi^{0}\pi^{0}$.

NODE=M032M1;LINKAGE=CC

NODE=M032M:LINKAGE=P

NODE=M032

NODE=M032205

NODE=M032M3;LINKAGE=G NODE=M032M3;LINKAGE=H

NODE=M032M3;LINKAGE=J

NODE=M032M3;LINKAGE=K

NODE=M032M3;LINKAGE=F

NODE=M032M3;LINKAGE=C

NODE=M032M3;LINKAGE=D

NODE=M032M3;LINKAGE=B

NODE=M032M3;LINKAGE=E NODE=M032M3;LINKAGE=LE

NODE=M032M3;LINKAGE=A

NODE=M032M1 NODE=M032M1

NODE=M032M2 NODE=M032M2

S-CHANNEL N	N			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not us	se the following data	for a	verages,	fits, limits, etc. • • •
2110 ± 35	¹ ANISOVICH	02	SPEC	0.6–1.9 $p\overline{p} \rightarrow \omega \pi^0$, $\omega \eta \pi^0$, $\pi^+ \pi^-$
\sim 2190	² CUTTS	78 B	CNTR	$0.97-3 \overline{p}p \rightarrow \overline{N}N$
2155 ± 15	^{2,3} COUPLAND	77	CNTR	$0.7-2.4 \ \overline{p} p \rightarrow \overline{p} p$
$2193\pm~2$	^{2,4} ALSPECTOR	73	CNTR	$\overline{p}p S$ channel
$2190\!\pm\!10$	⁵ ABRAMS	70	CNTR	S channel $\overline{p}N$
 From the comb and ANISOVICI Isospins 0 and 1 From a fit to th Referred to as Seen as bump i of ABRAMS 70 	hined analysis of AN H 02. L not separated. to total elastic cross of T or T region by AL n $I = 1$ state. See a	ISOVI sectio SPEC also C	CH 00J, n. TOR 73 OOPER	ANISOVICH 01D, ANISOVICH 01E, 68. PEASLEE 75 confirm $\overline{p}p$ results
$\pi^- p \rightarrow \omega \pi^0 n$				
VALUE (MeV)	DC	CUME	NT ID	TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 e^+e^- PRODUCED

2140±30	ALDE	95	GAM2	$38 \pi^- p \rightarrow \omega \pi^0 n$
2170±30	ALDE	9 2C	GAM4	$100 \ \pi^{-} p \rightarrow \ \omega \pi^{0} n$

ρ(2150) WIDTH

NODE=M032210

NODE=M032W3 4032W3

VALUE (MeV)	EVTS	DOCUMENT IL)	TECN	COMMENT		NODE=MC
• • • We do not use	the follo	wing data for ave	rages,	fits, lin	nits, etc. • • •		
$163~\pm~69~\pm~24$		1 ABLIKIM	23вс	BES3	$e^+e^- \rightarrow a_2(1320)^+\pi^- +$	I	
270 ± 3		² ACHASOV	23A	SND	$\begin{array}{ccc} \text{c.c.} \rightarrow & \eta \pi^+ \pi^- \\ e^+ e^- \rightarrow & \omega \pi^0 \end{array}$	I	
$234 \hspace{.1in} \pm \hspace{.1in} 30 \hspace{.1in} \pm \hspace{.1in} 25$		³ ABLIKIM	21A	BES3	$e^+e^- ightarrow \omega \pi^0$		
$135 ~\pm~ 34 ~\pm~ 30$		⁴ ABLIKIM	21X	BES3	$e^+e^- \rightarrow \eta' \pi^+\pi^-$		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.8k	⁵ ABLIKIM	20F	BES3	$\psi(2S) \rightarrow K^+ K^- \eta$		
70 ± 38		⁶ LEES	20	BABR	$e^+e^- \rightarrow K^+K^-\gamma$		
127 \pm 14 \pm 4		⁷ LEES	20	RVUE	$e^+e^- \rightarrow K^+K^-$		OCCUR=2
196 \pm 23 $+$ 25 - 27		⁸ ABLIKIM	19AG	BES	$J/\psi \rightarrow K^+ K^- \pi^0$		
$139.8 \pm 12.3 \pm 20.6$		⁹ ABLIKIM	19L	BES3	$e^+e^- \rightarrow K^+K^-$		
$109~\pm~76$		¹⁰ LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$		
$350 ~\pm~ 40 ~\pm~ 50$		AUBERT	07 AU	BABR	10.6 $e^+ e^- \rightarrow f_1(1285) \pi^+ \pi^- \gamma$		
310 ±140		AUBERT	07 AU	BABR	$10.6 e^+ e^- \rightarrow \eta' \pi^+ \pi^- \gamma$		OCCUR=2
$389 ~\pm~ 79$		BIAGINI	91	RVUE	$e^+e^- ightarrow \pi^+\pi^-$, K^+K^-		
$410 \pm 100 $		¹¹ CLEGG	90	RVUE	$e^+e^- ightarrow~3(\pi^+\pi^-)$,		
					$2(\pi^{+}\pi^{-}\pi^{0})$		

 1 From a fit to the cross section between 2.00 and 3.08 GeV with a coherent sum of a Breit-Wigner resonance and a non-resonant contribution. Could be another state.

 $^2\,{\rm From}$ a vector dominance fit to the Born cross section between 1.05 and 2.0 GeV with $\rho(770), \rho(1570), \rho(1700), \rho(2150)$. The fit also uses SND data from the VEPP-2M

collider below 1.02 GeV and from LEES 17H and ABLIKIM 21A above 1.5 GeV. ³ From a fit to the cross section between 2.00 and 3.08 GeV with a coherent sum of Breit-Wigner amplitudes, including contributions from $\rho(770)$, $\rho(1450)$ and $\rho(1700)$. Could be another state.

⁴ From a Breit-Wigner fit to the Born cross section, including an *s*-dependent continuum amplitude.

⁵Seen in $\psi(2S)$ decay with branching ratio $\psi(2S) \rightarrow X\eta \rightarrow K^+K^-\eta = (21.7 \pm 1.9^{+7.7}_{-8.3}) \times 10^{-6}$.

⁶ From the fit to the BABAR data of LEES 13Q assuming a coherent sum of a single Breit-Wigner resonance and a nonresonant contribution. The resonance significance is 3.5σ .

⁷ From the fit to the BABAR data of LEES 13Q and BESIII data of ABLIKIM 19L assuming a coherent sum of a single Breit-Wigner resonance and a nonresonant contribution.

⁸ Could also be another state. Seen in J/ψ decay with branching ratio $J/\psi \rightarrow X \pi^0 \rightarrow K^+ K^- \pi^0 = (6.7 \pm 1.1 \substack{+2.2 \\ -1.8}) \times 10^{-6}$.

 9 The observed structure can be due to both the $\phi(2170)$ and ho(2150).

 10 Using the GOUNARIS 68 parametrization of the pion form factor leaving the masses and widths of the $\rho(1450)$, $\rho(1700)$, and $\rho(2150)$ resonances as free parameters of the fit. $^{11}\,\rm{Includes}$ ATKINSON 85.

NODE=M032M;LINKAGE=AY

NODE=M032M:LINKAGE=I NODE=M032M;LINKAGE=E NODE=M032M;LINKAGE=M NODE=M032M;LINKAGE=B

NODE=M032M4 NODE=M032M4

:2

NODE=M032W3;LINKAGE=J NODE=M032W3;LINKAGE=K

NODE=M032W3;LINKAGE=G

NODE=M032W3;LINKAGE=H

NODE=M032W3;LINKAGE=F

NODE=M032W3;LINKAGE=C

NODE=M032W3;LINKAGE=D

NODE=M032W3;LINKAGE=B

NODE=M032W3;LINKAGE=E NODE=M032W3;LINKAGE=LE

NODE=M032W3:LINKAGE=A

$\overline{p}p \rightarrow \pi\pi$ VALUE (MeV)	DOCUMENT ID TECN COMMENT	NODE=M032W1 NODE=M032W1
• • • We do not use t	he following data for averages, fits, limits, etc. • • •	
~ 296 ~ 40	HASAN94RVUE $\overline{p}p \rightarrow \pi\pi$ 1OAKDEN94RVUE0.36-1.55 $\overline{p}p \rightarrow \pi\pi$ 2MADTIN202DUUE	
~ 250 ~ 200	² MARTIN 80B RVUE ² MARTIN 80C RVUE	
¹ See however KLOE important but not	ET 96 who fit $\pi^+\pi^-$ only and find waves only up to $J=3$ to be significantly resonant.	NODE=M032W1;LINKAGE=CC
$^{2}I(J^{P}) = 1(1^{-})$ from	om simultaneous analysis of $p\overline{p} \rightarrow \pi^-\pi^+$ and $\pi^0\pi^0$.	NODE=M032W;LINKAGE=P
S-CHANNEL NN VALUE (MeV)	DOCUMENT ID TECN COMMENT	NODE=M032W2 NODE=M032W2
• • • We do not use t	he following data for averages, fits, limits, etc. $ullet$ $ullet$	
$\begin{array}{ccc} 230 \pm 50 \\ 135 \pm 75 \\ 98 \pm 8 \\ \sim 85 \end{array} 2$	¹ ANISOVICH 02 SPEC 0.6–1.9 $p\overline{p} \rightarrow \omega \pi^{0}, \omega \eta \pi^{0}, \pi^{+} \pi^{-}$ ³ COUPLAND 77 CNTR 0.7–2.4 $\overline{p}p \rightarrow \overline{p}p$ ³ ALSPECTOR 73 CNTR $\overline{p}p S$ channel ⁴ ABRAMS 70 CNTR S channel $\overline{p}N$	
¹ From the combine	d analysis of ANISOVICH 00J, ANISOVICH 01D, ANISOVICH 01E,	NODE=M032W;LINKAGE=AY
² From a fit to the tr ³ Isospins 0 and 1 nc ⁴ Seen as bump in <i>I</i> of ABRAMS 70, nc	2. otal elastic cross section. ot separated. = 1 state. See also COOPER 68. PEASLEE 75 confirm $\overline{p}p$ results o narrow structure.	NODE=M032W;LINKAGE=E NODE=M032W;LINKAGE=I NODE=M032W;LINKAGE=B
$\pi^- p \rightarrow \omega \pi^0 n$	DOCUMENT ID TECN COMMENT	
• • • We do not use t	he following data for averages, fits, limits, etc. • • •	
320±70	ALDE 95 GAM2 38 $\pi^- p \rightarrow \omega \pi^0 n$	

92C GAM4 100 $\pi^- p \rightarrow \omega \pi^0 n$

ρ (2150) DECAY MODES

ALDE

 ~ 300

NODE=M032215;NODE=M032

	Mode	Fraction (Γ_i/Γ)
Γ ₁	e ⁺ e ⁻	
Γ2	$\pi^+\pi^-$	seen
Г3	K^+K^-	seen
Γ ₄	$3(\pi^{+}\pi^{-})$	seen
Γ ₅	$2(\pi^+\pi^-\pi^0)$	seen
Г ₆	$\eta' \pi^+ \pi^-$	seen
Γ ₇	$f_1(1285)\pi^+\pi^-$	seen
Г ₈	$\omega \pi^0$	seen
Г۹	$\omega \pi^0 \eta$	seen
Γ ₁₀	$a_2(1320)\pi$	
Γ_{11}	р <u></u>	

$\rho(2150) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(\eta'\pi^+\pi^-)$ × $\Gamma(e^+e^-)$	e [_])/Γ _{total}			$\Gamma_6\Gamma_1/\Gamma$
VALUE (eV)	DOCUMENT ID	TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use the f	ollowing data for average	s, fits, limits, o	etc. • • •	
$23.3 \pm 5.3 \pm 3.3$	¹ ABLIKIM	21X BES3	$e^+e^- \rightarrow \eta$	$n' \pi^{+} \pi^{-}$
¹ From a Breit-Wigner to continuum. For destruc	fit to the Born cross sec ctive interference the valu	tion interferin le is 0.64 \pm 0.	g constructive 49 \pm 0.42 eV	ely with the

$\Gamma(\omega \pi^0) \times \Gamma(e^+ e^-) / \Gamma_{\text{total}}$					Г ₈ Г ₁ /Г
VALUE (eV)	DOCUMENT ID		TECN	COMMENT	
$\bullet~\bullet~\bullet$ We do not use the following	g data for averages,	fits,	limits, e	etc. • • •	
$34 \pm 11 \pm 16$	ABLIKIM	21A	BES3	$e^+e^- \rightarrow \omega e^+$	π^0

 $\begin{array}{l} {\sf DESIG=1} \\ {\sf DESIG=2;} {\sf OUR} \; {\sf EVAL}; \rightarrow \; {\sf UNCHECKED} \leftarrow \\ {\sf DESIG=3;} {\sf OUR} \; {\sf EVAL}; \rightarrow \; {\sf UNCHECKED} \leftarrow \\ {\sf DESIG=4;} {\sf OUR} \; {\sf EVAL}; \rightarrow \; {\sf UNCHECKED} \leftarrow \\ {\sf DESIG=5;} {\sf OUR} \; {\sf EVAL}; \rightarrow \; {\sf UNCHECKED} \leftarrow \\ {\sf DESIG=6;} {\sf OUR} \; {\sf EVAL}; \rightarrow \; {\sf UNCHECKED} \leftarrow \\ {\sf DESIG=7;} {\sf OUR} \; {\sf EVAL}; \rightarrow \; {\sf UNCHECKED} \leftarrow \\ {\sf DESIG=8;} {\sf OUR} \; {\sf EVAL}; \rightarrow \; {\sf UNCHECKED} \leftarrow \\ {\sf DESIG=8;} {\sf OUR} \; {\sf EVAL}; \rightarrow \; {\sf UNCHECKED} \leftarrow \\ {\sf DESIG=9;} {\sf OUR} \; {\sf EVAL}; \rightarrow \; {\sf UNCHECKED} \leftarrow \\ {\sf DESIG=12} \\ {\sf DESIG=10} \end{array}$

NODE=M032220

NODE=M032R02 NODE=M032R02

NODE=M032R02;LINKAGE=A

NODE=M032R00 NODE=M032R00

Γ(a₂(1320)π) × <u>VALUE (eV)</u>	Γ(e⁺e⁻)/Γ_{total} DOCUMENT ID <u>TECN</u>	Г₁₀Г₁/Г	NODE=M032R04 NODE=M032R04
• • • We do not us	se the following data for averages, f	its, limits, etc. • • •	
$34.6 \pm 17.1 \pm 6.0$	¹ ABLIKIM 23BQ BES3	$e^+e^- \rightarrow a_2(1320)^+\pi^- + \text{c.c.} \rightarrow \blacksquare$ $\eta \pi^+ \pi^-$	
¹ From a solution sum of a single $\eta \pi$) × B($\eta \rightarrow$ 73.3 ± 2.1 eV.	of the fit to the cross section betwee Breit-Wigner resonance and a non-r $\gamma \gamma$) fixed to 0.057. Another solutio	an 2.00 and 3.08 GeV using a coherent esonant contribution. B($a_2(1320) \rightarrow$ n with equal fit quality gives 137.1 \pm	NODE=M032R04;LINKAGE=A
	ρ(2150) Γ(i)Γ(e ⁺ e ⁻)/Γ	⁻² (total)	NODE=M032230
$\Gamma(f_1(1285)\pi^+\pi^-$ <u>VALUE (units 10⁻⁷)</u> 3.1±0.6±0.5	$\frac{-}{1} / \Gamma_{\text{total}} \times \Gamma(e^+ e^-) / \Gamma_{\text{total}} \\ \frac{DOCUMENT \ ID}{1} \frac{TECN}{1} \\ \text{AUBERT} $ 07AU BABR	$\frac{\Gamma_7/\Gamma \times \Gamma_1/\Gamma}{10.6 \ e^+ e^- \rightarrow \ f_1(1285) \pi^+ \pi^- \gamma}$	NODE=M032G01 NODE=M032G01
1 Calculated by u	s from the reported value of cross s	ection at the peak.	NODE=M032G01;LINKAGE=A
$\Gamma(\eta'\pi^+\pi^-)/\Gamma_{tot}$ VALUE (units 10 ⁻⁸)	$_{tal} \times \Gamma(e^+e^-)/\Gamma_{total}$	$Γ_6/Γ × Γ_1/Γ$ TECN COMMENT	NODE=M032G02 NODE=M032G02

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

¹ AUBERT 07AU BABR 10.6 $e^+e^- \rightarrow \eta' \pi^+\pi^-\gamma$ $4.9\!\pm\!1.9$

 $^1\ensuremath{\mathsf{Calculated}}$ by us from the reported value of cross section at the peak.

ρ (2150) REFERENCES

ABLIKIM ACHASOV ABLIKIM ABLIKIM ABLIKIM ABLIKIM LEES ABLIKIM LEES LEES LEES AUBERT ANISOVICH ANI	23BQ 23A 21A 20F 20 19AQ 17H 13Q 10L 17H 13Q 01D 01E 00J 96 994 94 994 994 992C 991 908 8008 800C 78B 807 775 73 70 68	PR D108 L111101 PR D108 092012 PL B813 136059 PR D103 072007 PR D101 032008 PR D101 032004 PR D9 032001 PR D96 092009 PR D88 032013 PR D86 032013 PR D86 032013 PR D86 032013 PR D86 032013 PR D86 032013 PR D86 122 PL B542 8 PL B508 6 PL B513 281 PL B491 47 PR D53 6120 ZPHY C66 379 PL B334 215 NP A574 731 ZPHY C45 677 ZPHY C45 6	 M. Ablikim et al. M.N. Achasov et al. M. Ablikim et al. M. Ablikim et al. M. Ablikim et al. J.P. Lees et al. A.V. Anisovich et al. M.M. Kloet, F. Myhrer D.M. Alde et al. A. Hasan, D.V. Bugg M.N. Oakden, M.R. Pennington D.M. Alde et al. A.B. Clegg, A. Donnachie M. Atkinson et al. B.R. Martin, D. Morgan A.D. Martin, M.R. Pennington D. Cutts et al. M. Coupland et al. J.C. Peaslee et al. J. Alspector et al. W.A. Cooper et al. 	(BESIII Collab.) (SND Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BABAR Collab.) (CAMS Collab.) (CAMS Collab.) (COQM) (COQM) (COQM) (COQM) (COQM) (CANC, MCHS) (BONN, CERN, GLAS+) (LOUC, RHEL) JP (CUCQ, RHEL) (CANB, BARI, BROW+) (CANB, BAR, BROW+) (CANL) (CANL) (CANL)
ABRAMS	70 68	PR D1 1917 PRL 20 1059	R.J. Abrams <i>et al.</i> W.A. Cooper <i>et al.</i>	(ROTO, OTNS) (BNL) (ANL)
GOUNARIS	68	PRL 21 244	G.J. Gounaris, J.J. Sakurai	(,

NODE=M032G02;LINKAGE=AU

NODE=M032

REFID=62510
REFID=62428
REFID=61028
REFID=61231
RFFID=60256
REFID=60211
REFID-50000
REFID-50612
REFID-58311
REFID-55404
NEFID 52040
REFID=52049
REFID=48828
REFID=48327
REFID=48349
REFID=47950
REFID=45212
REFID=44371
REFID=44103
REFID=45210
REFID=41859
REFID=41894
RFFID=41355
RFFID=22000
REFID=21838
REFID-21837
REFID=21037
REFID=21733
DEEID_21030
NEFID=21024
DEEID_21013
REFID=48054