3/18/2024 14:57

NODE=M052

 $I^{G}(J^{PC}) = 0^{-}(1^{--})$

$\Upsilon(2S)$ MASS

VALUE (MeV)	DOCUMENT ID	TEC	N COMMEN	Г	NODE=
10023.4±0.5	¹ SHAMOV	23 RV	JE e ⁺ e ⁻ -	hadrons	
\bullet \bullet \bullet We do not use th	e following data for averages	s, fits, limi	s, etc. • • •		
$10022.7\!\pm\!0.4$	² SHAMOV	23 RV	JE e ⁺ e ⁻ -	hadrons	OCCUR
$10023.5 \!\pm\! 0.5$	^{3,4} ARTAMONOV	'00 MD	$1 e^+e^$	hadrons	
10023.6 ± 0.5	^{5,6} BARU	868 MD	1 e ⁺ e ⁻ -	hadrons	
10023.1 ± 0.4	⁷ BARBER	84 AR	G e ⁺ e ⁻ -	hadrons	
¹ Reanalysis of MD1 of tions from KURAEN	data using the electron mass / 85 and interference effects.	from COI	IEN 87, the r	adiative correc-	NODE=
² Obtained by reanaly by the ARGUS and	sing ARGUS and Crystal Ba Crystal Ball collaboration.	ll data (BA	RBER 84), b	ut not authored	NODE=
³ Reanalysis of BARU	86B using new electron mas	s (COHE	l 87).		NODE=

 $^{\rm 4}\,{\rm Superseded}$ by SHAMOV 23.

⁵ Reanalysis of ARTAMONOV 84. ⁶Superseded by ARTAMONOV 00.

⁷ Reanalysed by SHAMOV 23.

$m_{\Upsilon(3S)} = m_{\Upsilon(2S)}$

VALUE (MeV) $331.50 \pm 0.02 \pm 0.13$

 $\psi(2S)\chi_{c2}$

 $\psi(2S)\eta_c(2S)$

 $\psi(2S)X(3940)$

 $\psi(2S)X(4160)$

 $T_{c\overline{c}1}(3900)^+ T_{c\overline{c}1}(3900)^-$

 Γ_1

 Γ_2

 Γ_3

Γ4

 Γ_5

 Γ_6

 Γ_7

Γ₈

Γg

Γ₁₀

 Γ_{11}

 Γ_{12}

 Γ_{13}

Γ₁₄

Γ₁₅

 Γ_{16}

 Γ_{17}

Γ₁₈

Γ₁₉

 Γ_{20}

 Γ_{21}

Γ₂₂

Γ₂₃

Γ₂₄

Γ₂₅

Γ₂₆

DOCUMENT ID TECN COMMENT 11C BABR $e^+e^- \rightarrow \pi^+\pi^- X$ LEES

$\Upsilon(2S)$ WIDTH

VALUE (keV) States"

DOCUMENT ID **31.98±2.63 OUR EVALUATION** See the Note on "Width Determinations of the γ

$\Upsilon(2S)$ DECAY MODES

		Sca	le factor/
Mode	Fraction (Γ_i/Γ)	Confid	ence level
$\Upsilon(1S)\pi^+\pi^-$	(17.85 ± 0.26)	%	
$\Upsilon(1S)\pi^0\pi^0$	(8.6 ± 0.4)	%	
$\tau^+ \tau^-$	(2.00 ± 0.21)	%	
$\mu^+\mu^-$	(1.93 ± 0.17)	%	S=2.2
e ⁺ e ⁻	(1.91 ± 0.16)	%	
$\Upsilon(1S)\pi^0$	< 4	imes 10 ⁻⁵	CL=90%
$\Upsilon(1S)\eta$	($2.9~\pm~0.4$)	$ imes 10^{-4}$	S=2.0
$J/\psi(1S)$ anything	< 6	imes 10 ⁻³	CL=90%
$J/\psi(1S)\eta_c$	< 5.4	imes 10 ⁻⁶	CL=90%
$J/\psi(1S)\chi_{c0}$	< 3.4	imes 10 ⁻⁶	CL=90%
$J/\psi(1S)\chi_{c1}$	< 1.2	imes 10 ⁻⁶	CL=90%
$J/\psi(1S)\chi_{c2}$	< 2.0	imes 10 ⁻⁶	CL=90%
$J/\psi(1S)\eta_c(2S)$	< 2.5	imes 10 ⁻⁶	CL=90%
$J/\psi(1S)X(3940)$	< 2.0	imes 10 ⁻⁶	CL=90%
$J/\psi(1S)X(4160)$	< 2.0	imes 10 ⁻⁶	CL=90%
χ_{c1} anything	($2.2~\pm~0.5$)	imes 10 ⁻⁴	
$\chi_{c1}(1P)^0 X_{tetra}$	< 3.67	imes 10 ⁻⁵	CL=90%
χ_{c2} anything	($2.3~\pm~0.8$)	imes 10 ⁻⁴	
$\psi(2S)\eta_c$	< 5.1	imes 10 ⁻⁶	CL=90%
$\psi(2S)\chi_{c0}$	< 4.7	imes 10 ⁻⁶	CL=90%
$\psi(2S)\chi_{c1}$	< 2.5	$\times 10^{-6}$	CL=90%

< 1.9

<

3.3

< 3.9

< 3.9

< 1.0

imes 10⁻⁶

 $imes 10^{-6}$

imes 10⁻⁶

imes 10⁻⁶

 $imes 10^{-6}$

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

NODE=M052215;NODE=M052

DESIG=4 DESIG=5 DESIG=3 DESIG=1 DESIG=2 DESIG=10 DESIG=6 DESIG=20 DESIG=143 DESIG=144 DESIG=145 DESIG=146 DESIG=147 DESIG=148 DESIG=149 DESIG=157 DESIG=160 DESIG=158 DESIG=150 DESIG=151 DESIG=152 DESIG=153 DESIG=154

DESIG=155

DESIG=156

DESIG=162

Page 1

NODE=M052M

-M052M

=2

=M052M;LINKAGE=A

=M052M;LINKAGE=B

NODE=M052M;LINKAGE=AR NODE=M052M;LINKAGE=E NODE=M052M;LINKAGE=C NODE=M052M;LINKAGE=RZ NODE=M052M;LINKAGE=D

NODE=M052DM3

NODE=M052DM3

NODE=M052W

NODE=M052W \rightarrow UNCHECKED \leftarrow

Γ ₂₇	$T_{c\overline{c}1}(4200)^+ T_{c\overline{c}1}(4200)^-$	< 1.67	imes 10 ⁻⁵	CL=90%	DESIG=163
Γ ₂₈	$T_{c\overline{c}1}(3900)^{\pm} T_{c\overline{c}1}(4200)^{\mp}$	< 7.3	imes 10 ⁻⁶	CL=90%	DESIG=164
Γ ₂₉	$T_{c\overline{c}}(4050)^+ T_{c\overline{c}}(4050)^-$	< 1.35	imes 10 ⁻⁵	CL=90%	DESIG=165
Γ ₃₀	$T_{c\overline{c}}(4250)^+ T_{c\overline{c}}(4250)^-$	< 2.67	imes 10 ⁻⁵	CL=90%	DESIG=166
Γ ₃₁	$T_{c\overline{c}}(4050)^{\pm}$ $T_{c\overline{c}}(4250)^{\mp}$	< 2.72	imes 10 ⁻⁵	CL=90%	DESIG=167
Γ ₃₂	$T_{c\overline{c}1}(4430)^+ T_{c\overline{c}1}(4430)^-$	< 2.03	imes 10 ⁻⁵	CL=90%	DESIG=168
Г ₃₃	$T_{c\overline{c}}(4055)^{\pm}$ $T_{c\overline{c}}(4055)^{\mp}$	< 1.11	imes 10 ⁻⁵	CL=90%	DESIG=170
Г ₃₄	$T_{c\overline{c}}(4055)^{\pm}$ $T_{c\overline{c}1}(4430)^{\mp}$	< 2.11	imes 10 ⁻⁵	CL=90%	DESIG=171
Г ₃₅	$\overline{{}^{2}H}$ anything	(2.78 + 0.30)	$(5) \times 10^{-5}$	S=1.2	DESIG=16
Г ₃₆	hadrons	(94 ±11) %		DESIG=101
Γ ₃₇	ggg	(58.8 \pm 1.2) %		DESIG=105
Г ₃₈	$\gamma g g$	($1.87\pm$ 0.28	3) %		DESIG=106
Г ₃₉	$\phi K^+ K^-$	(1.6 \pm 0.4	$) \times 10^{-6}$		DESIG=133
Г ₄₀	$\omega \pi^+ \pi^-$	< 2.58	imes 10 ⁻⁶	CL=90%	DESIG=134
Γ ₄₁	$K^{*}(892)^{0}K^{-}\pi^{+}+$ c.c.	(2.3 \pm 0.7	$) \times 10^{-6}$		DESIG=135
Γ ₄₂	$\phi f'_{2}(1525)$	< 1.33	imes 10 ⁻⁶	CL=90%	DESIG=136
Г ₄₃	$\omega f_2(1270)$	< 5.7	imes 10 ⁻⁷	CL=90%	DESIG=137
Γ ₄₄	$\rho(770) a_2(1320)$	< 8.8	imes 10 ⁻⁷	CL=90%	DESIG=138
Γ ₄₅	$K^{*}(892)^{0}\overline{K}_{2}^{*}(1430)^{0}+ ext{ c.c.}$	($1.5~\pm~0.6$	$) imes 10^{-6}$		DESIG=139
Г ₄₆	$K_1(1270)^{\pm} \bar{K}^{\mp}$	< 3.22	imes 10 ⁻⁶	CL=90%	DESIG=140
Γ ₄₇	$K_1(1400)^\pm K^\mp$	< 8.3	imes 10 ⁻⁷	CL=90%	DESIG=141
Γ ₄₈	$b_1(1235)^{\pm}\pi^{\mp}$	< 4.0	imes 10 ⁻⁷	CL=90%	DESIG=142
Γ ₄₉	$\rho\pi$	< 1.16	imes 10 ⁻⁶	CL=90%	DESIG=126
Γ ₅₀	$\pi^+\pi^-\pi^0$	< 8.0	imes 10 ⁻⁷	CL=90%	DESIG=127
Γ ₅₁	$\omega \pi^0$	< 1.63	imes 10 ⁻⁶	CL=90%	DESIG=128
Γ ₅₂	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	($1.30\pm$ 0.28	$3) \times 10^{-5}$		DESIG=129
Γ ₅₃	$K_{S}^{0}K^{+}\pi^{-}+$ c.c.	(1.14 ± 0.33)	$3) \times 10^{-6}$		DESIG=130
Γ ₅₄	$\widetilde{K^{*}(892)^{0}}\overline{K}^{0}+$ c.c.	< 4.22	imes 10 ⁻⁶	CL=90%	DESIG=131
Γ ₅₅	$K^{*}(892)^{-}K^{+}$ + c.c.	< 1.45	imes 10 ⁻⁶	CL=90%	DESIG=132
Γ ₅₆	$f_1(1285)$ anything	(2.2 \pm 1.6	$) \times 10^{-3}$		DESIG=159
Γ ₅₇	$f_1(1285) X_{tetra}$	< 6.47	imes 10 ⁻⁵	CL=90%	DESIG=161
Γ ₅₈	$D_{s}^{+} D_{s1}(2536)^{-}$				DESIG=177
Γ ₅₉	$D_s^+ D_{s1}(2536)^-$, $D_{s1}^- \rightarrow$	(1.6 \pm 0.4	$) imes 10^{-5}$		DESIG=178
_	$K^- D^* (2007)^0$		6		
I ₆₀	$D_{s}^{+} D_{s1}(2536)^{-}, D_{s1}^{-} \rightarrow \kappa^{0} D^{*}(2010)^{-}$	(8.4 ± 2.3)) × 10 ⁻⁰		DESIG=179
Гст	$D^{*+} D_{1}(2536)^{-}$				
Г.,	$D_{s}^{*+} D_{s}(2536)^{-} D^{-} \rightarrow$	(14 ± 04)) _{× 10} −5		
62	$K^{-}D^{*}(2007)^{0}$	(1.4 ± 0.4) × 10		DE313-101
Г ₆₃	$D_{s}^{*+}D_{s1}(2536)^{-}, D_{s1}^{-} \rightarrow$	(8.2 ± 3.1	$) imes 10^{-6}$		DESIG=182
	$K_{S}^{0}D^{*}(2010)^{-}$				
Γ ₆₄	$D^+_{-}D^*_{-}(2573)^-$				DESIG=183
Γ ₆₅	$D_{s}^{+}D_{s2}^{*}(2573)^{-}, D_{s2}^{*-} \rightarrow$	(1.4 \pm 0.4	$) imes 10^{-5}$		DESIG=184
-	$K^{-}D^{0}$		6		
I 66	$D_{s}^{+} D_{s2}^{+} (2573)$, $D_{s2}^{+} \rightarrow K_{s}^{0} D^{-}$	(6.9 ± 3.0)) × 10 ⁻⁰		DESIG=185
Г ₆₇	$D_{c}^{*+} D_{c2}^{*}$ (2573) ⁻				DESIG=186
Γ ₆₈	$D_{s}^{*+}D_{s2}^{*}(2573)^{-}, D_{s2}^{*-} \rightarrow$	(9 ± 5)	$) imes 10^{-6}$		DESIG=187
-	$K^- D^0$. 6		
Г ₆₉	$D_{s}^{*+} D_{s2}^{*} (2573)^{-}, \ D_{s2}^{*-} \rightarrow K_{S}^{0} D^{-}$	(5 ± 6))×10 ⁻⁶		DESIG=188
Γ ₇₀	Sum of 100 exclusive modes	($2.90\pm$ 0.30	0) × 10 ⁻³		DESIG=121

LINKAGE=C52

	Radiative	decays			NODE=M052;CLUMP=A
Γ ₇₁	$\gamma \chi_{b1}(1P)$	($6.9~\pm~0.4$)%		DESIG=8
Γ ₇₂	$\gamma \chi_{b2}(1P)$	($7.15\pm$ 0.3	5) %		DESIG=7
Γ ₇₃	$\gamma \chi_{b0}(1P)$	(3.8 ± 0.4)%		DESIG=9
Γ ₇₄	$\gamma f_0(1710)$	< 5.9	imes 10 ⁻⁴	CL=90%	DESIG=13
Γ ₇₅	$\gamma f'_{2}(1525)$	< 5.3	imes 10 ⁻⁴	CL=90%	DESIG=12
Γ ₇₆	$\gamma f_2(1270)$	< 2.41	$ imes 10^{-4}$	CL=90%	DESIG=11
Γ ₇₇	$\gamma f_J(2220)$				DESIG=14
Γ ₇₈	$\gamma \eta_c(1S)$	< 2.7	imes 10 ⁻⁵	CL=90%	DESIG=111
Γ ₇₉	$\gamma \chi_{c0}$	< 1.0	imes 10 ⁻⁴	CL=90%	DESIG=112
Γ ₈₀	$\gamma \chi_{c1}$	< 3.6	imes 10 ⁻⁶	CL=90%	DESIG=113
Γ ₈₁	$\gamma \chi_{c2}$	< 1.5	imes 10 ⁻⁵	CL=90%	DESIG=114
Γ ₈₂	$\gamma \chi_{c1}(3872)$	< 2.2	imes 10 ⁻⁵	CL=90%	DESIG=172
Г ₈₃	$\gamma \chi_{c1}$ (3872), $\chi_{c1} \rightarrow$	< 2.4	imes 10 ⁻⁶	CL=90%	DESIG=116
	$\pi^+\pi^-\pi^0 J/\psi$				
Γ ₈₄	$\gamma \chi_{c0}(3915) \rightarrow \omega J/\psi$	< 2.8	$ imes 10^{-6}$	CL=90%	DESIG=117
Γ ₈₅	$\gamma \chi_{c1}$ (4140) $\rightarrow \phi J/\psi$	< 1.2	$\times 10^{-6}$	CL=90%	DESIG=118
Г ₈₆	$\gamma X(4350) \rightarrow \phi J/\psi$	< 1.3	$ imes 10^{-6}$	CL=90%	DESIG=119
Γ ₈₇	$\gamma \eta_b(1S)$	(5.5 $\stackrel{+}{_{-}}$ $\stackrel{1.1}{_{0.9}}$	$) imes 10^{-4}$	S=1.2	DESIG=102
Г ₈₈	$\gamma \eta_b(1S) \rightarrow \gamma$ Sum of 26 exclusive modes	< 3.7	imes 10 ⁻⁶	CL=90%	DESIG=124
Г ₈₉	$\gamma X_{b\overline{b}} \rightarrow \gamma$ Sum of 26 exclusive modes	< 4.9	$ imes 10^{-6}$	CL=90%	DESIG=125
Γ ₉₀	$\gamma X ightarrow \gamma + \geq$ 4 prongs	[<i>a</i>] < 1.95	$ imes 10^{-4}$	CL=95%	DESIG=103
Γ ₉₁	$\gamma A^0 \rightarrow \gamma$ hadrons	< 8	imes 10 ⁻⁵	CL=90%	DESIG=108
Γ ₉₂	$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	< 8.3	imes 10 ⁻⁶	CL=90%	DESIG=123
	Lepton Family number	(<i>LF</i>) violating mo	odes		NODE=M052·CLUMP=B
Γ ₉₃	$e^{\pm}\tau^{\mp}$ LF	< 3.2	imes 10 ⁻⁶	CL=90%	DESIG=107
Г ₉₄	$\mu^{\pm} \tau^{\mp}$ LF	< 3.3	imes 10 ⁻⁶	CL=90%	DESIG=104

 $[a] 1.5 \,\, {
m GeV} < m_X < 5.0 \,\, {
m GeV}$

FIT INFORMATION

An overall fit to 3 branching ratios uses 13 measurements to determine 2 parameters. The overall fit has a $\chi^2=$ 11.8 for 11 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$.

T (25	NODE=M052218		
$\frac{\Gamma(\mu^+\mu^-) \times \Gamma(e^+e^-)/\Gamma_{\text{tota}}}{\frac{VALUE \ (e^{\vee})}{6.5 \pm 1.5 \pm 1.0}}$	I <u>DOCUMENT ID</u> <u>7</u> KOBEL 92 C	$\Gamma_{4}\Gamma_{5}/$ CBAL $\frac{COMMENT}{e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}}$	NODE=M052G1 NODE=M052G1
$\Gamma(\Upsilon(1S)\pi^{+}\pi^{-}) \times \Gamma(e^{+}e^{-})$ $\frac{VALUE(e^{\vee})}{105.4\pm1.0\pm4.2} \xrightarrow{EVTS} \frac{DOO}{11.8k}$)/ Г_{total} <u>CUMENT ID</u> <u>TECN</u> C BERT 088P BABR 10	$\Gamma_{1}\Gamma_{5}/$ COMMENT $0.58 e^{+}e^{-} \rightarrow \gamma \pi^{+}\pi^{-}\ell^{+}\ell$	NODE=M052G03 NODE=M052G03
¹ Using B($\Upsilon(1S) \rightarrow e^+e^-$) = 0.05)%.	= (2.38 \pm 0.11)% and B($(\Upsilon(1S) \to \mu^+ \mu^-) = (2.48)$	± NODE=M052G03;LINKAGE=AU

NODE=M052G2 NODE=M052G2

> NODE=M052G2;LINKAGE=P NODE=M052G2;LINKAGE=R

NODE=M052220

NODE=M052W2 NODE=M052W2 \rightarrow UNCHECKED \leftarrow

NODE=M052225

NODE=M052R4 NODE=M052R4 NODE=M052R4

NODE=M052R4;LINKAGE=ES

NODE=M052R4;LINKAGE=LE NODE=M052R4;LINKAGE=BH NODE=M052R4;LINKAGE=AU

NODE=M052R4;LINKAGE=T

NODE=M052R5 NODE=M052R5

NODE=M052R5;LINKAGE=BH NODE=M052R5;LINKAGE=T

NODE=M052R21:LINKAGE=BH

NODE=M052R21 NODE=M052R21

 $\begin{array}{c|c} \Gamma(\Upsilon(1S)\pi^{0}\pi^{0})/\Gamma(\Upsilon(1S)\pi^{+}\pi^{-}) & \Gamma_{2}/\Gamma_{1} \\ \hline \underline{VALUE} & \underline{DOCUMENT \ ID} & \underline{TECN} & \underline{COMMENT} \\ \bullet \bullet \bullet \ We \ do \ not \ use \ the \ following \ data \ for \ averages, \ fits, \ limits, \ etc. \ \bullet \bullet \\ 0.462 \pm 0.037 & {}^{1} \ BHARI & 09 & CLEO \ e^{+}e^{-} \rightarrow \ \Upsilon(2S) \end{array}$

¹ BHARI

¹Authors assume B($\Upsilon(1S) \rightarrow e^+e^-$) + B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = 4.96%.

² ALEXANDER

ALBRECHT

GELPHMAN

²Using B($\Upsilon(1S) \rightarrow e^+e^-$) = (2.52 ± 0.17)% and B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = (2.48 ±

FONSECA

 1 Not independent of other values reported by BHARI 09.

38k

275

25

DOCU<u>MENT</u> ID

¹ JAKUBOWSKI 88

06

96

84B

MD1

CBAL

CLEO

¹ ROSNER

¹ BARU

² GILES

Γ (hadrons) × $\Gamma(e^+e^-)/\Gamma_{total}$

0.577±0.009 OUR AVERAGE

 $0.581 \pm 0.004 \pm 0.009$

 $0.552 \pm 0.031 \pm 0.017$

 $0.54\ \pm 0.04\ \pm 0.02$

 $0.58 \pm 0.03 \pm 0.04$

 $8.43\!\pm\!0.16\!\pm\!0.42$

 $9.2 \ \pm 0.6 \ \pm 0.8$

 $9.5 \ \pm 1.9 \ \pm 1.9$

 $8.0\ \pm 1.5$

 $10.3\ \pm 2.3$

0.07)%.

TECN COMMENT

 e^+

CLEO 10.0 $e^+e^- \rightarrow$ hadrons

 $e^+e^- \rightarrow hadrons$

 $e^+e^- \rightarrow hadrons$

 $e^- \rightarrow hadrons$

 $e^+ e^- \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$

 $e^+e^- \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$

 e^+e^-

CUSB $e^+e^- \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$

CBAL e^+e^-

 $\rightarrow \pi^0 \pi^0 \ell^+ \ell^-$

 $\rightarrow \pi^0 \pi^0 \ell^+ \ell^-$

CLEO

CLE2

ARG

09

98

87

85

84

 $\Gamma_{36}\Gamma_5/\Gamma$

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹Not independent of other values reported by LEES 11L.

 2 Not independent of other values reported by AUBERT 08BP.

 $1.35\!\pm\!0.17\!\pm\!0.08$

90

< 5.2

¹LEES 11L BABR $\Upsilon(2S) \rightarrow (\pi^+\pi^-)(\gamma\gamma)\mu^+\mu^-$ ²AUBERT 08BP BABR $e^+e^- \rightarrow \gamma\pi^+\pi^-(\pi^0)\ell^+\ell^-$

> NODE=M052R22;LINKAGE=LE NODE=M052R22;LINKAGE=AU

rage <i>i</i>

Γ(Υ(15)π⁰)/Γ(Υ(1	5)η) ^{CL%}	DOCUMENT ID		TECN	COMMENT	Г ₆ /Г ₇	NODE=M052R23 NODE=M052R23
• • • We do not use the	following d	ata for averages,	fits,	limits, e	tc. • • •		
<0.13	90	TAMPONI	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(1S)\pi^0$	
$\Gamma(J/\psi(1S) \text{ anything})$	/Γ _{total}	DOCUMENT ID		TECN	COMMENT	Г ₈ /Г	NODE=M052R16 NODE=M052R16
<0.006	90	MASCHMANN	90	CBAL	$e^+e^- \rightarrow$	hadrons	
$\Gamma(J/\psi(1S)\eta_c)/\Gamma_{\text{total}}$	CI %	DOCUMENT ID		TECN	COMMENT	Г9/Г	NODE=M052R53
<5.4 × 10 ⁼⁶	90	YANG 1	14	BELL	$e^+e^- \rightarrow$	J/ψX	
$\Gamma(J/\psi(1S)\chi_{c0})/\Gamma_{tot}$	əl					Г ₁₀ /Г	
<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	COMMENT		NODE=M052R54
<3.4 x 10 $<\Gamma(J/\psi(1S)\chi_{c1})/\Gamma_{tot}$	al	YANG 1	L4	BELL	e'e →	Γ ₁₁ /Γ	NODE=M052R55
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		NODE=M052R55
<1.2 × 10 ⁼⁰	90	YANG 1	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$	
$\Gamma(J/\psi(1S)\chi_{c2})/\Gamma_{ ext{tot}}$	al 	DOCUMENT ID		TECN	<u>COMMENT</u>	Γ ₁₂ /Γ	NODE=M052R56 NODE=M052R56
<2.0 × 10 ⁻⁶	90	YANG 1	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$	
Γ(J/ψ(15)η _c (25))/Γ	total	DOCUMENT ID		TECN	COMMENT	Г ₁₃ /Г	NODE=M052R57 NODE=M052R57
<2.5 × 10 ⁻⁶	90	YANG 1	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$	
Γ (J/ψ(1S)Χ(3940)) , _{VALUE}	/F _{total}	DOCUMENT ID		<u>TECN</u>	COMMENT	Γ ₁₄ /Γ	NODE=M052R58 NODE=M052R58
<2.0 × 10 ⁼⁶	90	YANG 1	14	BELL	$e^+e^- \rightarrow$	$J/\psi X$	
$\Gamma(J/\psi(1S)X(4160))$	/F _{total}	DOCUMENT ID		TECN	COMMENT	Г ₁₅ /Г	NODE=M052R59
<2.0 × 10 ⁻⁶	90	YANG 1	14	BELL	$e^+e^- \rightarrow$	J/ψX	
$(\chi_{c1} \text{ anything})/1_{\text{total}}$	əl					₁₆ /	
$\frac{VALUE \text{ (units } 10^{-4})}{224 \pm 0.44 \pm 0.20}$	EVTS	DOCUMENT ID		TECN	<u>COMMENT</u>		NODE-M052R00
$\Gamma(\chi_{c1}(1P)^0 X_{tetra})/I$	- total	JIA	L	BELL	T(25) →	γJ/ψ(13) Γ ₁₇ /Γ	NODE=M052R69
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		NODE=M052R69
<36.7 × 10 ⁻⁰	90 1	JIA 1	17A	BELL	$e^+ e^- \rightarrow$	hadrons	
¹ For a tetraquark stat range 0–0.3 GeV. Me from 4.4×10^{-6} to 3	e X $_{tetra}$, w asured 90% 36.7 $ imes$ 10 $^{-6}$	rith mass in the ra CL limits as a fun 5	ange ctior	1.16–2. 1 of X _{tet}	46 GeV and t_{ra} mass an	l width in the d width range	NODE=M052R69;LINKAGE=A
$\Gamma(\chi_{c2} \text{ anything}) / \Gamma_{total}$	al					Г ₁₈ /Г	
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT		NODE=M052R67
2.28±0.73±0.34		JIA	17	BELL	$\Upsilon(2S) ightarrow$	$\gamma J/\psi(1S)$	
$\Gamma(\psi(2S)\eta_c)/\Gamma_{\text{total}}$	CI %	DOCUMENT ID		TECN	COMMENT	Г ₁₉ /Г	NODE=M052R60
<5.1 × 10 ⁻⁶	90	YANG 1	14	BELL	$e^+e^- \rightarrow$	ψ(25)X	
$\Gamma(\psi(2S)\chi_{c0})/\Gamma_{total}$,	_{¢(=0)/1} Г ₂₀ /Г	
VALUE	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>		NODE=M052R61
<4.7 × 10 ° $\Gamma(\psi(2S)\chi_{c1})/\Gamma_{total}$	90	YANG	14	RELL	$e \circ e^- \rightarrow$	_{ψ(25)} χ Γ ₂₁ /Γ	NODE=M052R62
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	/	NODE=M052R62
<2.5 × 10 ⁻⁶	90	YANG 1	14	BELL	$e^+e^- \rightarrow$	$\psi(2S)X$	

$\Gamma(\psi(2S)\chi_{c2})/\Gamma$	total					Γ22/Γ	NODE
VALUE		DOCUMENT I	ID	TECN	COMMENT	~~~	NODE
<1.9 × 10 ⁻⁶	90	YANG	14	BELL	$\overline{e^+e^-} \rightarrow$	$\psi(2S)X$	
Γ(ψ(2 <i>S</i>)η _c (2 <i>S</i>))	/Γ _{total}					Г ₂₃ /Г	NODE
<u>VALUE</u> <33 x 10 ⁼ 6	<u> </u>	<u>DOCUMENT I</u> YANG	1 <u>D</u> 14	<u>TECN</u> BELL	$\frac{COMMENT}{e^+e^-} \rightarrow$	a/1(25) X	NODE
)) /=	i/iiiG	14	DELL		φ(23)Χ	
Ι (ψ(25) Χ (3940) VALUE))/I total	DOCUMENT I	חו	TECN	COMMENT	l ₂₄ /l	NODE NODE
<3.9 × 10 ⁻⁶	90	YANG	14	BELL	$e^+e^- \rightarrow$	$\psi(2S)X$	
Γ(ψ(2 <i>S</i>) <i>X</i> (4160)))/Г _{total}			TEON	601 / FNT	Г ₂₅ /Г	NODE
<3.9 × 10 ⁼⁶	<u> </u>	<u>DOCUMENT I</u> YANG	14	BELL	$e^+e^- \rightarrow$	ψ(25)X	NODE
<pre><(T (2000)+;</pre>	T (2000)-	-) /=		DELL		φ(20)X	
I (<i>I _c</i> c1(3900) ⁺ I	/ _{c̄c1} (3900)⁻)/I total	חו	TECN	COMMENT	l ₂₆ /l	
<1.0 × 10 ⁻⁶	90	¹ IIA	18	BELL	$\Upsilon(2.5) \rightarrow$	$I/\psi \pi^{\pm} X$	NODE
¹ Assuming B(T_{c}	(3900) [±] −	$\rightarrow J/\psi \pi^{\pm}) = 1.$. (/	-/ +	NODE
Γ(T	 T1(4200)-	-)/ г				Г <u>ат</u> /Г	NODE
VALUE	CL%	J/ ' total DOCUMENT I	ID	TECN	COMMENT	127/1	NODE NODE
<16.7 × 10 ⁻⁶	90	¹ JIA	18	BELL	$\Upsilon(1S) ightarrow$	$J/\psi \pi^{\pm} X$	
¹ Assuming B(T_c		$\rightarrow J/\psi \pi^{\pm}) = 1$				- / / ·	NODE
$\Gamma(T_{c\bar{c}1}(3900)^{\pm})$	 T1(4200) [∃]	F)/Ftotal				Г28/Г	NODE
VALUE	<u>CL%</u>	DOCUMENT I	ID	TECN	COMMENT	20/	NODE
<7.3 × 10 ⁻⁶	90	¹ JIA	18	BELL	$\Upsilon(2S) ightarrow$	$J/\psi \pi^{\pm} X$	
¹ Assuming B(T_c	$\overline{c1}(4200)^{\pm}$ –	$\rightarrow J/\psi \pi^{\pm}) = 1$	$= B(T_{c}$		$(0)^{\pm} \rightarrow J/\psi$	π^{\pm}).	NODE
$\Gamma(T_{c\bar{c}}(4050)^+ T_{c\bar{c}})$		/F _{total}				Г29/Г	
VALUE	<u>CL%</u>	DOCUMENT ID	1	TECN C	COMMENT		NODE
<13.5 × 10 ⁻⁶	90	¹ JIA	18 E	BELL î	$\gamma(2S) \rightarrow \chi$	$x_{c1}(1P)\pi^{\pm}X$	
¹ Assuming B(T_c	\overline{c} (4050) $^{\pm} \rightarrow$	$\chi_{c1}(1P)\pi^{\pm})$					NODE
$\Gamma(T_{c\bar{c}}(4250)^+ T_{c\bar{c}})$		/Γ _{total}				Гзо/Г	
VALUE	<u>CL%</u>	DOCUMENT ID	1	TECN C	COMMENT	50,	NODE
$<26.7 \times 10^{-6}$	90	¹ JIA	18 E	BELL ($\gamma(2S) \rightarrow \chi$	$c_1(1P)\pi^{\pm}X$	
¹ Assuming B(T_c	\overline{c} (4250) [±] \rightarrow	$\chi_{c1}(1P)\pi^{\pm}) =$	= 1				NODE
$\Gamma(T_{-=}(4050)^{\pm}T)$	(4250) [∓])	/Г				Г21 /Г	
VALUE	CL%_	DOCUMENT ID	1	TECN C	COMMENT	- 31/ -	NODE
<27.2 × 10 ⁻⁶	90	¹ JIA	18 E	BELL 2	$\gamma(2S) \rightarrow \chi$	$T_{c1}(1P)\pi^{\pm}X$	
¹ Assuming B(T_c	\overline{c} (4050) [±] \rightarrow	$\chi_{c1}(1P)\pi^{\pm}) =$	= 1 = B	$(T_{c\overline{c}}(42$	$(250)^{\pm} \rightarrow \chi$	$c_1(1P)\pi^{\pm})$	NODE
Г(<i>T_{ст}</i> 1(4430) ⁺ 7	T _{c≂1} (4430) ⁻	¯)/Γ _{total}				Гзэ/Г	NODE
VALUE	CL%	DOCUMENT I	ID	TECN	COMMENT	- JZ / -	NODE
<20.3 × 10 ⁻⁶	90	¹ JIA	18	BELL	$\Upsilon(2S) ightarrow$	$\psi(2S)\pi^{\pm}X$	
¹ Assuming B(T_c		$\rightarrow \psi(2P)\pi^{\pm}) =$	1				NODE
Г(<i>T_c</i> =(4055) [±] Т	(4055)∓)	/Ftotal				Г33/Г	NODE
VALUE	<u> </u>	DOCUMENT I	ID	TECN	<u>COMMEN</u> T	- 33/ -	NODE
<11.1 × 10 ⁻⁶	90	¹ JIA	18	BELL	$\Upsilon(2S) ightarrow$	$\psi(2S)\pi^{\pm}X$	
¹ Assuming B(T_c	\overline{c} (4055) $^{\pm} \rightarrow$	$\psi(2S)\pi^{\pm})=1$	L				NODE
$\Gamma(T_{c\overline{c}}(4055)^{\pm}T)$)/F _{total}				Г24/Г	
VALUE	<u> CL%</u>	DOCUMENT I	ID	TECN	<u>COMMENT</u>	- ,++/ -	NODE
<21.1 × 10 ⁻⁶	90	¹ JIA	18	BELL	$\Upsilon(2S) ightarrow$	$\psi(2S)\pi^{\pm}X$	

¹Assuming B($T_{c\overline{c}}(4055)^{\pm} \rightarrow \psi(2S)\pi^{\pm}$) = 1 = B($T_{c\overline{c}1}(4430)^{\pm} \rightarrow \psi(2S)\pi^{\pm}$)

3/18/2024 14:57 Page 8 =M052R63 =M052R63 =M052R64 =M052R64 M052R65 M052R65 =M052R66 =M052R66 M052R71 M052R71 M052R71;LINKAGE=A M052R72 M052R72 M052R72;LINKAGE=A =M052R73 =M052R73 M052R73;LINKAGE=A =M052R74 =M052R74 M052R74;LINKAGE=A M052R75 M052R75 M052R75;LINKAGE=A =M052R76 =M052R76 M052R76;LINKAGE=A M052R77 M052R77 M052R77;LINKAGE=A =M052R79 =M052R79 M052R79;LINKAGE=A

=M052R80 =M052R80

NODE=M052R80;LINKAGE=A

$\Gamma(2H)$ anything)/	Γ _{total}		Г ₃₅ /Г	
<u>VALUE (units 10^{-5})</u>	EVTS	DOCUMENT ID TECN	COMMENT	NODE=M052R18
$2.78^{+0.30}_{-0.26}$ OUR AV	ERAGE Er	ror includes scale factor of 1.2.		
$2.64 \pm 0.11 \substack{+0.26 \\ -0.21}$		LEES 14g BABR	$e^+e^- ightarrow \overline{^2H} X$	
$3.37 \pm 0.50 \pm 0.25$	58	ASNER 07 CLEO	$e^+e^- ightarrow \overline{^2H} X$	
$\Gamma(ggg)/\Gamma_{total}$			Г ₃₇ /Г	
VALUE (units 10^{-2})	EVTS	DOCUMENT IDTECN	COMMENT	NODE=M052R01
58.8±1.2	6M	¹ BESSON 06A CLEO	$\Upsilon(2S) ightarrow$ hadrons	
1 Calculated using	g the value I	$\Gamma(\gamma g g)/\Gamma(g g g) = (3.18 \pm 0.0)$	4 \pm 0.22 \pm 0.41)% from	NODE=M052R01;LINKAGE=BE
BESSON 06A an = $(8.6 \pm 0.4)\%$, I is negligible and measurement of	d PDG 08 va B($\mu^+ \mu^-$) = the systema BESSON 06	lues of B $(\pi^+ \pi^- \Upsilon(1S)) = (18.1 \ (1.93 \pm 0.17)\%$, and R _{hadrons} = tic error is partially correlated wi	± 0.4 %, B($\pi^0 \pi^0 \Upsilon(1S)$) 3.51. The statistical error th that of $\Gamma(\gamma g g)/\Gamma_{total}$	
$\Gamma(\gamma g g) / \Gamma(g g g)$			[38/[37	
VALUE (units 10^{-2})	EVTS	DOCUMENT ID TECN	COMMENT	NODE=M052R03 NODE=M052R03
3.18±0.04±0.47	6M	BESSON 06A CLEO	$\Upsilon(2S) ightarrow (\gamma +)$ hadrons	
$\Gamma(\phi K^+ K^-)/\Gamma_{\rm ext}$	hal		Γ20/Γ	
VALUE (units 10^{-6})	EVTS	DOCUMENT ID TECN	COMMENT	NODE=M052R43 NODE=M052R43
$1.58 \pm 0.33 \pm 0.18$	58	SHEN 12A BELL	$\Upsilon(1S) \rightarrow 2(K^+K^-)$	
$\Gamma(\omega\pi^+\pi^-)/\Gamma_{tot}$	5		Γ40/Γ	
VALUE (units 10^{-6})	CL%	DOCUMENT ID TECN	COMMENT	NODE=M052R44 NODE=M052R44
<2.58	90	SHEN 12A BELL	$\gamma(1S) \rightarrow 2(\pi^+\pi^-)\pi^0$	
Г(<i>K</i> *(892) ⁰ <i>K</i> ⁻ π	r ⁺ +c.c.)/	Total	Γ ₄₁ /Γ	
VALUE (units 10^{-6})	EVTS	DOCUMENT ID TECN C	COMMENT	NODE=M052R45 NODE=M052R45
2.32±0.40±0.54	135	SHEN 12A BELL	$\Upsilon(1S) \rightarrow K^+ K^- \pi^+ \pi^-$	
$\Gamma(\phi f_2'(1525))/\Gamma_t$	otal		Γ ₄₂ /Γ	NODE=M052R46
VALUE (units 10^{-6})	<u>CL%</u>	DOCUMENT ID TECN	COMMENT	NODE=M052R46
~1 33				
(1.55	90	SHEN 12A BELL	$\Upsilon(1S) ightarrow 2(K^+K^-)$	
$(\omega f_2(1270))/\Gamma_{to}$	90 otal	SHEN 12A BELL	$\Upsilon(1S) \rightarrow 2(K^+K^-)$ Γ_{43}/Γ	NODE=M052R47
$\Gamma(\omega f_2(1270))/\Gamma_{tr}$ <u>VALUE (units 10⁻⁶)</u>	90 otal <u>CL%</u>	SHEN 12A BELL	$\Upsilon(1S) \rightarrow 2(K^+K^-)$ Γ_{43}/Γ <u>COMMENT</u>	NODE=M052R47 NODE=M052R47
$\Gamma(\omega f_2(1270))/\Gamma_{tr}$ <u>VALUE (units 10⁻⁶)</u> <0.57	90 otal <u>CL%</u> 90	SHEN12ABELLDOCUMENT IDTECNSHEN12ABELL	$\Upsilon(1S) ightarrow 2(\kappa^+ \kappa^-)$ Γ_{43}/Γ $\underline{COMMENT}$ $\Upsilon(1S) ightarrow 2(\pi^+ \pi^-)\pi^0$	NODE=M052R47 NODE=M052R47
$\Gamma(\omega f_2(1270))/\Gamma_{tr}$ <u>VALUE (units 10⁻⁶)</u> <0.57 $\Gamma(\rho(770) a_2(1320))$	90 otal <u>CL%</u> 90))/F _{total}	SHEN12ABELLDOCUMENT IDTECNSHEN12ABELL	$\begin{split} \Upsilon(1S) &\rightarrow 2(\mathcal{K}^{+}\mathcal{K}^{-}) \\ & \mathbf{\Gamma_{43}/\Gamma} \\ \\ \frac{COMMENT}{\Upsilon(1S) \rightarrow 2(\pi^{+}\pi^{-})\pi^{0}} \\ & \mathbf{\Gamma_{44}/\Gamma} \end{split}$	NODE=M052R47 NODE=M052R47 NODE=M052R48
$\frac{\Gamma(\omega f_2(1270))}{\Gamma_{to}} / \Gamma_{to}$ $\frac{VALUE \text{ (units } 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_2(1320))$ $\frac{VALUE \text{ (units } 10^{-6})}{\Gamma_{to}}$	90 otal <u>CL%</u> 90))/F _{total} <u>CL%</u>	SHEN12ABELLDOCUMENT IDTECNDOCUMENT IDTECN	$\begin{split} \Upsilon(1S) &\to 2(K^+ K^-) \\ \hline \Gamma_{43}/\Gamma \\ \hline \\ \hline \\ \hline \\ \Upsilon(1S) &\to 2(\pi^+ \pi^-)\pi^0 \\ \hline \\ $	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R48
$\Gamma(\omega f_2(1270))/\Gamma_{tr}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_2(1320))$ $\frac{VALUE (units 10^{-6})}{<0.88}$	90 otal <u>CL%</u> 90))/ Г total <u>CL%</u> 90	SHEN12ABELLDOCUMENT ID SHENTECN BELLDOCUMENT ID SHENTECN BELL	$\begin{split} \Upsilon(1S) &\rightarrow 2(\mathcal{K}^{+}\mathcal{K}^{-}) \\ \hline \Gamma_{43}/\Gamma \\ \hline \Gamma_{(1S)} &\rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ \hline \Gamma_{44}/\Gamma \\ \hline \Gamma_{(1S)} &\rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \end{split}$	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R48
$\Gamma(\omega f_{2}(1270))/\Gamma_{to}$ $\frac{VALUE \text{ (units } 10^{-6)}}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))$ $\frac{VALUE \text{ (units } 10^{-6)}}{<0.88}$ $\Gamma(K^{*}(892))^{0}\overline{K}_{2}^{*}(12)$	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$.430) ⁰ + c.0	SHEN 12A BELL <u>DOCUMENT ID</u> SHEN 12A <u>DOCUMENT ID</u> SHEN 12A <u>TECN</u> BELL 	$\begin{split} & \Upsilon(1S) \rightarrow \ 2(\kappa^{+} \kappa^{-}) \\ & \mathbf{\Gamma_{43}/\Gamma} \\ & \\ \hline \\ \hline$	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R48
$\Gamma(\omega f_{2}(1270))/\Gamma_{tr}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))$ $\frac{VALUE (units 10^{-6})}{<0.88}$ $\Gamma(K^{*}(892))^{0}\overline{K}_{2}^{*}(1)$ $\frac{VALUE (units 10^{-6})}{VALUE (units 10^{-6})}$	90 otal <u>CL%</u> 90))/F _{total} <u>CL%</u> 90 .430) ⁰ + c.0	SHEN 12A BELL <u>DOCUMENT ID</u> SHEN 12A BELL <u>DOCUMENT ID</u> <u>DOCUMENT ID</u> <u>TECN</u> BELL <u>DOCUMENT ID</u> <u>TECN</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COCUMENT ID</u> <u>TECN</u> <u>COCUMENT ID</u> <u>TECN</u> <u>COCUMENT ID</u> <u>TECN</u> <u>COCUMENT ID</u> <u>TECN</u> <u>COCUMENT ID</u> <u>COCUMENT ID</u>	$\begin{split} \Upsilon(1S) &\rightarrow 2(\mathcal{K}^{+}\mathcal{K}^{-}) \\ \hline \Gamma_{43}/\Gamma \\ \hline \Gamma_{43}/\Gamma \\ \hline \Upsilon(1S) &\rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ \hline \Gamma_{44}/\Gamma \\ \hline \Gamma_{(1S)} &\rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ \hline \Gamma_{45}/\Gamma \\ \hline \Gamma_{COMMENT} \\ \hline \hline \hline \Gamma_{COMMENT} \\ \hline \hline \hline \Gamma_{COMMENT} \\ \hline \hline \Gamma_{COMMENT} \\ \hline \hline \hline \hline \Gamma_{COMMENT} \\ \hline $	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R48 NODE=M052R49 NODE=M052R49
$\Gamma(\omega f_{2}(1270))/\Gamma_{to}$ $\frac{VALUE \text{ (units } 10^{-6)}}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))$ $\frac{VALUE \text{ (units } 10^{-6)}}{<0.88}$ $\Gamma(K^{*}(892)^{0} \overline{K}_{2}^{*}(1))$ $\frac{VALUE \text{ (units } 10^{-6)}}{1.53 \pm 0.52 \pm 0.19}$	90 otal $\frac{CL\%}{90}$)))/Γ_{total} $\frac{CL\%}{90}$.430)⁰ + c. ($\frac{EVTS}{32}$	SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL	$\begin{split} & \Upsilon(1S) \rightarrow 2(K^{+}K^{-}) \\ & \Gamma_{43}/\Gamma \\ \hline & \Gamma_{43}/\Gamma \\ \hline & \Upsilon(1S) \rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ & \Gamma_{44}/\Gamma \\ \hline & \Gamma_{44}/\Gamma \\ \hline & \Gamma_{45}/\Gamma \\ \hline & \Gamma_{45}/\Gamma \\ \hline & \Gamma_{15} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \end{split}$	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R48 NODE=M052R49 NODE=M052R49
$\Gamma(\omega f_{2}(1270))/\Gamma_{tr}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))$ $\frac{VALUE (units 10^{-6})}{<0.88}$ $\Gamma(K^{*}(892)^{0} \overline{K}_{2}^{*}(1))$ $\frac{VALUE (units 10^{-6})}{1.53 \pm 0.52 \pm 0.19}$ $\Gamma(K_{1}(1270)^{\pm} K^{\mp})$	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$ 430) ⁰ + c.4 $\frac{EVTS}{32}$)/ Γ_{total}	SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN Construction SHEN 12A BELL	$\begin{split} \Upsilon(1S) &\rightarrow 2(K^{+}K^{-}) \\ \hline \Gamma_{43}/\Gamma \\ \hline \Gamma_{(1S)} &\rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ \hline \Gamma_{44}/\Gamma \\ \hline \hline \Gamma_{(1S)} &\rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ \hline \Gamma_{45}/\Gamma \\ \hline \Gamma_{(1S)} &\rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \\ \hline \Gamma_{46}/\Gamma \end{split}$	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R48 NODE=M052R49 NODE=M052R49
$\Gamma(\omega f_{2}(1270))/\Gamma_{tx}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320)$ $\frac{VALUE (units 10^{-6})}{<0.88}$ $\Gamma(K^{*}(892)^{0} \overline{K}_{2}^{*}(1)$ $\frac{VALUE (units 10^{-6})}{1.53 \pm 0.52 \pm 0.19}$ $\Gamma(K_{1}(1270)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{VALUE (units 10^{-6})}$	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$.430) ⁰ + c.0 $\frac{EVTS}{32}$)/ Γ_{total} $\frac{CL\%}{5}$	SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL	$\begin{split} & \Upsilon(1S) \rightarrow 2(K^{+}K^{-}) \\ & \Gamma_{43}/\Gamma \\ \hline \\ & \Gamma_{43}/\Gamma \\ \hline \\ & \Upsilon(1S) \rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ \hline \\ & \Gamma_{44}/\Gamma \\ \hline \\ & \Gamma_{45}/\Gamma \\ \hline \\ & \Gamma_{45}/\Gamma \\ \hline \\ & \Gamma_{46}/\Gamma \\ \hline \\ $	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R48 NODE=M052R49 NODE=M052R49 NODE=M052R50 NODE=M052R50
$\Gamma(\omega f_{2}(1270))/\Gamma_{tr}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))$ $\frac{VALUE (units 10^{-6})}{<0.88}$ $\Gamma(K^{*}(892)^{0}\overline{K}_{2}^{*}(1))$ $\frac{VALUE (units 10^{-6})}{1.53\pm0.52\pm0.19}$ $\Gamma(K_{1}(1270)^{\pm}K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<3.22}$	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$.430) ⁰ + C.0 - $\frac{EVTS}{32}$)/ Γ_{total} $= \frac{CL\%}{90}$	SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL	$\begin{split} \Upsilon(1S) &\to 2(K^+ K^-) \\ \hline \Gamma_{43}/\Gamma \\ \hline \Gamma_{(1S)} &\to 2(\pi^+ \pi^-)\pi^0 \\ \hline \Gamma_{44}/\Gamma \\ \hline \Gamma_{(1S)} &\to 2(\pi^+ \pi^-)\pi^0 \\ \hline \Gamma_{45}/\Gamma \\ \hline \Gamma_{(1S)} &\to K^+ K^- \pi^+ \pi^- \\ \hline \Gamma_{46}/\Gamma \\ \hline \Gamma_{(1S)} &\to K^+ K^- \pi^+ \pi^- \\ \hline \Gamma_{(1S)} &\to K^+ K^- \pi^+ \pi^- \\ \end{split}$	NODE=M052R47 NODE=M052R48 NODE=M052R48 NODE=M052R49 NODE=M052R49 NODE=M052R49
$\Gamma(\omega f_{2}(1270))/\Gamma_{to}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320)$ $\frac{VALUE (units 10^{-6})}{<0.88}$ $\Gamma(K^{*}(892)^{0} \overline{K}_{2}^{*}(1)$ $\frac{VALUE (units 10^{-6})}{1.53 \pm 0.52 \pm 0.19}$ $\Gamma(K_{1}(1270)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<3.22}$ $\Gamma(K_{1}(1400)^{\pm} K^{\mp})$	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$.430) ⁰ + c.0 $\frac{EVTS}{32}$)/ Γ_{total} $-\frac{CL\%}{90}$)/ Γ_{total}	SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL C DOCUMENT ID TECN C SHEN 12A BELL C	$\begin{split} & \Upsilon(1S) \rightarrow 2(K^{+}K^{-}) \\ & \Gamma_{43}/\Gamma \\ \hline & \Gamma_{43}/\Gamma \\ \hline & \Upsilon(1S) \rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ \hline & \Gamma_{44}/\Gamma \\ \hline & \Gamma_{45}/\Gamma \\ \hline & \Gamma_{15} \rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ \hline & \Gamma_{45}/\Gamma \\ \hline & \Gamma_{15} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \\ \hline & \Gamma_{46}/\Gamma \\ \hline & \Gamma_{15} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \\ \hline & \Gamma_{47}/\Gamma \\ \end{split}$	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R48 NODE=M052R49 NODE=M052R49 NODE=M052R50 NODE=M052R50 NODE=M052R50
$\Gamma(\omega f_{2}(1270))/\Gamma_{tr}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))$ $\frac{VALUE (units 10^{-6})}{<0.88}$ $\Gamma(K^{*}(892)^{0}\overline{K}_{2}^{*}(1))$ $\frac{VALUE (units 10^{-6})}{1.53\pm0.52\pm0.19}$ $\Gamma(K_{1}(1270)^{\pm}K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<3.22}$ $\Gamma(K_{1}(1400)^{\pm}K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<3.22}$	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$ 430) ⁰ + C.0 430) ⁰ + C.0 $\frac{EVTS}{32}$)/ Γ_{total} $\frac{CL\%}{90}$)/ Γ_{total} $\frac{CL\%}{90}$	SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN C DOCUMENT ID TECN C	$\begin{split} & \Upsilon(1S) \rightarrow 2(K^+ K^-) \\ & \Gamma_{43}/\Gamma \\ \hline \\ & \Gamma_{43}/\Gamma \\ \hline \\ & \Upsilon(1S) \rightarrow 2(\pi^+ \pi^-)\pi^0 \\ \hline \\ & \Gamma_{44}/\Gamma \\ \hline \\ \hline \\ & \Gamma_{45}/\Gamma \\ \hline \\ & \Gamma_{47}/\Gamma \\ \hline \\ \hline \\ & OMMENT \\ \hline \\ & \Gamma_{47}/\Gamma \\ \hline \\ \hline \\ & OMMENT \\ \hline \\ & \Gamma_{47}/\Gamma \\ \hline \\ \hline \\ & OMMENT \\ \hline \\ & \Gamma_{47}/\Gamma \\ \hline \\ \hline \\ & OMMENT \\ \hline \\ & \Gamma_{47}/\Gamma \\ \hline \\ \hline \\ & OMMENT \\ \hline \\ & \Gamma_{47}/\Gamma \\ \hline \\ \hline \\ \hline \\ & \Gamma_{47}/\Gamma \\ \hline \\ \hline \\ \hline \\ & \Gamma_{47}/\Gamma \\ \hline \\ $	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R48 NODE=M052R49 NODE=M052R49 NODE=M052R50 NODE=M052R50 NODE=M052R51 NODE=M052R51
$\Gamma(\omega f_{2}(1270))/\Gamma_{tx}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))/\Gamma_{tx}(10^{-6})$ <0.88 $\Gamma(K^{*}(892)^{0} \overline{K}_{2}^{*}(1)$ $\frac{VALUE (units 10^{-6})}{1.53 \pm 0.52 \pm 0.19}$ $\Gamma(K_{1}(1270)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<3.22}$ $\Gamma(K_{1}(1400)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<0.83}$	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$.430) ⁰ + c.0 .430) ⁰ + c.0 $\frac{EVTS}{32}$)/ Γ_{total} $-\frac{CL\%}{90}$)/ Γ_{total} $-\frac{CL\%}{90}$	SHEN 12A BELL DOCUMENT ID SHEN TECN BELL	$\begin{split} & \Upsilon(1S) \rightarrow 2(K^{+}K^{-}) \\ & \Gamma_{43}/\Gamma \\ \hline & \Gamma_{43}/\Gamma \\ \hline & \Upsilon(1S) \rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ \hline & \Gamma_{44}/\Gamma \\ \hline & \Gamma_{45}/\Gamma \\ \hline & \Gamma_{(1S)} \rightarrow 2(\pi^{+}\pi^{-})\pi^{0} \\ \hline & \Gamma_{45}/\Gamma \\ \hline & \Gamma_{45}/\Gamma \\ \hline & \Gamma_{(1S)} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \\ \hline & \Gamma_{46}/\Gamma \\ \hline & \Gamma_{45}/\Gamma \\ \hline & \Gamma_{(1S)} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \\ \hline & \Gamma_{47}/\Gamma \\ \hline & OMMENT \\ \hline & \Gamma_{(1S)} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \\ \hline & \Gamma_{47}/\Gamma \\ \hline & OMMENT \\ \hline & \Gamma_{(1S)} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-} \\ \hline \end{array}$	NODE=M052R47 NODE=M052R48 NODE=M052R48 NODE=M052R49 NODE=M052R49 NODE=M052R50 NODE=M052R50 NODE=M052R50
$\Gamma(\omega f_{2}(1270))/\Gamma_{tx}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))$ $\frac{VALUE (units 10^{-6})}{<0.88}$ $\Gamma(K^{*}(892)^{0} \overline{K}_{2}^{*}(1))$ $\frac{VALUE (units 10^{-6})}{1.53 \pm 0.52 \pm 0.19}$ $\Gamma(K_{1}(1270)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<3.22}$ $\Gamma(K_{1}(1400)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<0.83}$ $\Gamma(b_{1}(1235)^{\pm} \pi^{\mp})$	90 otal $\frac{CL\%}{90}$ ())/ Γ_{total} $\frac{CL\%}{90}$ (430) ⁰ + C.0 (430) ⁰ + C.0 (430) ⁰ + C.0 (430) ⁰	SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL DOCUMENT ID TECN C SHEN 12A BELL C	$\begin{split} & \Upsilon(1S) \rightarrow 2(K^+ K^-) \\ & \Gamma_{43}/\Gamma \\ \hline \\ & \Gamma_{43}/\Gamma \\ \hline \\ & \Upsilon(1S) \rightarrow 2(\pi^+ \pi^-)\pi^0 \\ \hline \\ & \Gamma_{44}/\Gamma \\ \hline \\ & \Gamma_{45}/\Gamma \\ \hline \\ $	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R49 NODE=M052R49 NODE=M052R50 NODE=M052R50 NODE=M052R51 NODE=M052R51 NODE=M052R51
$\Gamma(\omega f_{2}(1270))/\Gamma_{tx}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))/\Gamma_{tx}$ $\frac{VALUE (units 10^{-6})}{<0.88}$ $\Gamma(K^{*}(892)^{0} \overline{K}_{2}^{*}(1)$ $\frac{VALUE (units 10^{-6})}{1.53 \pm 0.52 \pm 0.19}$ $\Gamma(K_{1}(1270)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<3.22}$ $\Gamma(K_{1}(1400)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<0.83}$ $\Gamma(b_{1}(1235)^{\pm} \pi^{\mp})$ $\frac{VALUE (units 10^{-6})}{VALUE (units 10^{-6})}$	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$.430) ⁰ + c.0 .430) ⁰ + c.0 $\frac{EVTS}{32}$)/ Γ_{total} $-\frac{CL\%}{90}$)/ Γ_{total} $-\frac{CL\%}{90}$)/ Γ_{total} $-\frac{CL\%}{90}$	SHEN 12A BELL DOCUMENT ID SHEN TECN BELL	$\begin{split} & \Upsilon(1S) \rightarrow 2(K^+ K^-) \\ & \Gamma_{43}/\Gamma \\ \hline \\ & \Gamma_{43}/\Gamma \\ \hline \\ & \Upsilon(1S) \rightarrow 2(\pi^+ \pi^-)\pi^0 \\ \hline \\ & \Gamma_{44}/\Gamma \\ \hline \\ & \Gamma_{45}/\Gamma \\ \hline \\ & \Gamma_{(1S)} \rightarrow 2(\pi^+ \pi^-)\pi^0 \\ \hline \\ & \Gamma_{45}/\Gamma \\ \hline \\ & \Gamma_{(1S)} \rightarrow K^+ K^- \pi^+ \pi^- \\ \hline \\ & \Gamma_{46}/\Gamma \\ \hline \\ & \Gamma_{(1S)} \rightarrow K^+ K^- \pi^+ \pi^- \\ \hline \\ & \Gamma_{47}/\Gamma \\ \hline \\ & \Gamma_{(1S)} \rightarrow K^+ K^- \pi^+ \pi^- \\ \hline \\ & \Gamma_{48}/\Gamma \\ \hline \\ \hline \\ & \Gamma_{48}/\Gamma \\ \hline \\ $	NODE=M052R47 NODE=M052R48 NODE=M052R48 NODE=M052R49 NODE=M052R49 NODE=M052R50 NODE=M052R50 NODE=M052R51 NODE=M052R51 NODE=M052R51
$\Gamma(\omega f_{2}(1270))/\Gamma_{tx}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))$ $\frac{VALUE (units 10^{-6})}{<0.88}$ $\Gamma(K^{*}(892)^{0} \overline{K}_{2}^{*}(1))$ $\frac{VALUE (units 10^{-6})}{1.53 \pm 0.52 \pm 0.19}$ $\Gamma(K_{1}(1270)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<3.22}$ $\Gamma(K_{1}(1400)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<0.83}$ $\Gamma(b_{1}(1235)^{\pm} \pi^{\mp})$ $\frac{VALUE (units 10^{-6})}{<0.40}$	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$.430) ⁰ + C.0 .430) ⁰ + C.0 $\frac{EVTS}{32}$)/ Γ_{total} $\frac{CL\%}{90}$)/ Γ_{total} $\frac{CL\%}{90}$)/ Γ_{total} $\frac{CL\%}{90}$	SHEN 12A BELL DOCUMENT ID SHEN 12A TECN BELL DOCUMENT ID SHEN 12A TECN BELL DOCUMENT ID SHEN 12A BELL	$\begin{split} & \Upsilon(1S) \rightarrow 2(K^+ K^-) \\ & \Gamma_{43}/\Gamma \\ \hline & \Gamma_{43}/\Gamma \\ \hline & \Upsilon(1S) \rightarrow 2(\pi^+ \pi^-)\pi^0 \\ & \Gamma_{44}/\Gamma \\ \hline & \Gamma_{45}/\Gamma \\ \hline & \Gamma_{46}/\Gamma \\ \hline & \Gamma_{46}/\Gamma \\ \hline & \Gamma_{46}/\Gamma \\ \hline & \Gamma_{46}/\Gamma \\ \hline & \Gamma_{47}/\Gamma \\ \hline & \Gamma_{48}/\Gamma \\ \hline & \Gamma_{48}/\Gamma \\ \hline & \Gamma_{48}/\Gamma \\ \hline & \Gamma_{(1S) \rightarrow K^+ K^- \pi^+ \pi^-} \\ \hline & \Gamma_{48}/\Gamma \\ \hline & \Gamma_{(1S) \rightarrow 2(\pi^+ \pi^-)\pi^0} \\ \hline \end{split}$	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R49 NODE=M052R49 NODE=M052R50 NODE=M052R50 NODE=M052R51 NODE=M052R51 NODE=M052R51 NODE=M052R52
$ \begin{bmatrix} (ω f_2(1270))/Γ_t, \\ VALUE (units 10^{-6}) <0.57 Γ(ρ(770) a_2(1320)) VALUE (units 10^{-6}) <0.88 Γ(K*(892)0 K*2(1)) VALUE (units 10^{-6}) 1.53±0.52±0.19 Γ(K_1(1270)± K‡) VALUE (units 10^{-6}) <3.22 Γ(K_1(1400)± K‡) VALUE (units 10^{-6}) <0.83 Γ(b_1(1235)± π‡) VALUE (units 10^{-6}) <0.40 Γ(ρπ)/Γtotal $	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$ (430) ⁰ + c.0 $\frac{EVTS}{32}$)/ Γ_{total} $\frac{CL\%}{90}$)/ Γ_{total} $-\frac{CL\%}{90}$)/ Γ_{total} $-\frac{CL\%}{90}$	SHEN12ABELLDOCUMENT ID SHENTECN BELLDOCUMENT ID SHENTECN BELLDOCUMENT ID SHENTECN BELLDOCUMENT ID SHENTECN BELLDOCUMENT ID SHENTECN BELLDOCUMENT ID SHENTECN SHENDOCUMENT ID SHENTECN SHELLDOCUMENT ID SHENTECN SHELLDOCUMENT ID SHENTECN SHELLDOCUMENT ID SHENTECN SHELLDOCUMENT ID SHENTECN SHELL	$\begin{split} & \Upsilon(1S) \rightarrow 2(K^+ K^-) \\ & \Gamma_{43}/\Gamma \\ \hline \\ & \Gamma_{43}/\Gamma \\ \hline \\ & \Upsilon(1S) \rightarrow 2(\pi^+ \pi^-)\pi^0 \\ \hline \\ & \Gamma_{44}/\Gamma \\ \hline \\ & \Gamma_{45}/\Gamma \\ \hline \\ & \Gamma_{(1S) \rightarrow 2(\pi^+ \pi^-)\pi^0} \\ \hline \\ & \Gamma_{45}/\Gamma \\ \hline \\ \hline \\ & \Gamma_{(1S) \rightarrow K^+ K^- \pi^+ \pi^-} \\ \hline \\ & \Gamma_{46}/\Gamma \\ \hline \\ \hline \\ & \Gamma_{(1S) \rightarrow K^+ K^- \pi^+ \pi^-} \\ \hline \\ & \Gamma_{47}/\Gamma \\ \hline \\ \hline \\ \hline \\ & \Gamma_{(1S) \rightarrow K^+ K^- \pi^+ \pi^-} \\ \hline \\ \hline \\ & \Gamma_{(1S) \rightarrow K^+ K^- \pi^+ \pi^-} \\ \hline \\ \hline \\ & \Gamma_{(1S) \rightarrow K^+ K^- \pi^+ \pi^-} \\ \hline \\ \hline \\ \hline \\ & \Gamma_{(1S) \rightarrow 2(\pi^+ \pi^-)\pi^0} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ & \Gamma_{(1S) \rightarrow 2(\pi^+ \pi^-)\pi^0} \\ \hline \\ $	NODE=M052R47 NODE=M052R47 NODE=M052R48 NODE=M052R49 NODE=M052R49 NODE=M052R50 NODE=M052R50 NODE=M052R51 NODE=M052R51 NODE=M052R51 NODE=M052R52 NODE=M052R52
$\Gamma(\omega f_{2}(1270))/\Gamma_{tr}$ $\frac{VALUE (units 10^{-6})}{<0.57}$ $\Gamma(\rho(770) a_{2}(1320))$ $\frac{VALUE (units 10^{-6})}{<0.88}$ $\Gamma(K^{*}(892)^{0} \overline{K}_{2}^{*}(1))$ $\frac{VALUE (units 10^{-6})}{1.53 \pm 0.52 \pm 0.19}$ $\Gamma(K_{1}(1270)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<3.22}$ $\Gamma(K_{1}(1400)^{\pm} K^{\mp})$ $\frac{VALUE (units 10^{-6})}{<0.83}$ $\Gamma(b_{1}(1235)^{\pm} \pi^{\mp})$ $\frac{VALUE (units 10^{-6})}{<0.40}$ $\Gamma(\rho\pi)/\Gamma_{total}$ $\frac{VALUE (units 10^{-6})}{VALUE (units 10^{-6})}$	90 otal $\frac{CL\%}{90}$))/ Γ_{total} $\frac{CL\%}{90}$.430) ⁰ + C.4 $\frac{EVTS}{32}$)/ Γ_{total} $\frac{CL\%}{90}$)/ Γ_{total} $\frac{CL\%}{90}$ $\frac{CL\%}{90}$	SHEN 12A BELL DOCUMENT ID SHEN TECN BELL	$\begin{split} & \Upsilon(1S) \rightarrow 2(K^+K^-) \\ & \Gamma_{43}/\Gamma \\ \hline & \Gamma_{43}/\Gamma \\ \hline & \Upsilon(1S) \rightarrow 2(\pi^+\pi^-)\pi^0 \\ & \Gamma_{44}/\Gamma \\ \hline & \Gamma_{44}/\Gamma \\ \hline & \Gamma_{45}/\Gamma \\ \hline & \Gamma_{46}/\Gamma \\ \hline & \Gamma_{46}/\Gamma \\ \hline & \Gamma_{47}/\Gamma \\ \hline & \Gamma_{48}/\Gamma \\ \hline & \Gamma_{48}/\Gamma \\ \hline & \Gamma_{49}/\Gamma \\ \hline \\ \hline & \Gamma_{49}/\Gamma \\ \hline \\ $	NODE=M052R47 NODE=M052R48 NODE=M052R48 NODE=M052R49 NODE=M052R49 NODE=M052R50 NODE=M052R50 NODE=M052R51 NODE=M052R51 NODE=M052R51 NODE=M052R52 NODE=M052R52

$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$	I					Г ₅₀ /Г	
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT		NODE=M052R28
<0.80	90	SHEN	13	BELL	$\gamma(2S) ightarrow \gamma$	$\pi^+\pi^-\pi^0$	
$\Gamma(\omega \pi^0)/\Gamma_{total}$						Г ₅₁ /Г	
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT		NODE=M052R29
<1.63	90	SHEN	13	BELL	$\gamma(2S) \rightarrow \pi^{-1}$	$+_{\pi}{\pi}0_{\pi}0_{\pi}$	
$\Gamma(\pi^{+}\pi^{-}\pi^{0}\pi^{0})/\Gamma_{+}$	otal					Г52/Г	
VALUE (units 10^{-6})	EVTS	DOCUMENT ID)	TECN	COMMENT	527	NODE=M052R30 NODE=M052R30
13.0±1.9±2.1 2	61 ± 37	SHEN	13	BELL	$\gamma(2S) \rightarrow \pi$	$+\pi^{-}\pi^{0}\pi^{0}$	
)/Г.					Г /Г	
$1(N_S N^2 n^2 + 0.0)$		DOCUMENT		TECN	COMMENT	153/1	NODE=M052R40 NODE=M052R40
$\frac{VALUE (units 10^{\circ})}{1.14\pm0.30\pm0.13}$	$\frac{L\%}{10} \pm 10$		12	_ <u>TECN</u>	$\gamma(2S)$	$\kappa^{0} \kappa^{-} \pi^{+}$	
1.14±0.30±0.13	40 ± 10	data for average	IS oc fito	DELL	$1(23) \rightarrow 1$	sr π'	
			12	, mmus, ^	r(2S)	к0 к+	
< 5.2 9		- 00663	12/	4	$T(23) \rightarrow T$	nsn π'	
⁺ Obtained by analyz	zing CLEO I	II data but not a	uthore	ed by the	e CLEO Collat	poration.	NODE=M052R40;LINKAGE=DO
$\Gamma(K^*(892)^0\overline{K}^0+c$.c.)/Г _{total}					Г ₅₄ /Г	NODE=M052R41
VALUE (units 10^{-6})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		NODE=M052R41
<4.22	90	SHEN	13	BELL	$\Upsilon(2S) ightarrow V$	$\kappa^0_S \kappa^- \pi^+$	
Γ(<i>K</i> *(892) ⁻ <i>K</i> ⁺ +	c.c.)/Γ _{tota}	1				Г ₅₅ /Г	NODE=M052R42
VALUE (units 10^{-6})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		NODE=M052R42
<1.45	90	SHEN	13	BELL	$\Upsilon(2S) ightarrow I$	$\kappa^0_S \kappa^- \pi^+$	
$\Gamma(f_1(1285))$ anything	z)/Ftatal					Г56/Г	
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	- 30/ -	NODE=M052R68 NODE=M052R68
$2.20 \pm 1.50 \pm 0.63$	2.9k	JIA	17A	BELL	$e^+e^- \rightarrow 1$	nadrons	
$\Gamma(f_1(1285) X_{total})$	/Г					Γ₅ҙ /Γ	
VALUE	• total CL%	DOCUMENT ID		TECN	COMMENT	• 57/•	NODE=M052R70 NODE=M052R70
<64.7 × 10 ⁻⁶	90	¹ JIA	17A	BELL	$e^+e^- \rightarrow 1$	nadrons	
1 For a tetraquark st range 0–0.3 GeV. M from 7.8 $ imes$ 10 $^{-6}$ t	tate X_{tetra} , Measured 90 ⁶ to 64.7 $ imes$ 10 ⁷	with mass in th % CL limits as a -6 _.	e rang functio	te 1.16–2 on of X_{te}	2.46 GeV and $_{etra}$ mass and	width in the width range	NODE=M052R70;LINKAGE=A
$\Gamma(D_{c}^{+}D_{s1}(2536)^{-})$	$D_{c1}^- \rightarrow K$	⁻ D*(2007) ⁰)	/Γ _{tot}	al		Г ₅₉ /Г	
VALUE (units 10^{-5})	31	DOCUMENT ID	,	TECN	COMMENT	,	NODE=M052R86
1.6±0.3±0.2		GAO	23	BELL	e^+e^- at 10).52 GeV	I
$\Gamma(D_{c}^{+}D_{c1}(2536)^{-})$	$D_{c1}^{-} \rightarrow K$	⁰ c <i>D</i> *(2010) [−]))/Г _{тот}	al		Г ₆₀ /Г	
VALUE (units 10^{-5})	31	DOCUMENT ID	,	TECN	COMMENT	,	NODE=M052R87
0.84±0.18±0.15		GAO	23	BELL	e^+e^- at 10).52 GeV	I
$\Gamma(D_{1}^{*+}D_{c1}(2536)^{-})$	$D_{-}^{-} \rightarrow I$	K ⁻ D*(2007) ⁰)/ Г .,	tal		Γες/Γ	
$VALUE$ (units 10^{-5})	51	DOCUMENT ID	// 10	TECN	COMMENT	UL/	NODE=M052R88 NODE=M052R88
1.4±0.4±0.2		GAO	23	BELL	e^+e^- at 10).52 GeV	1
F(D*+ D (0F2C)-	D=	v() _*()-	-) /F			F /F	
$I(D_{s}^{+}, D_{s1}(2530))$, $D_{s1} \rightarrow I$	$K_{S}^{*}D^{*}(2010)$)/I to	otal		I 63/I	
<u>VALUE (units 10^{-5})</u>		DOCUMENT ID		TECN	COMMENT		NODE=10032R89
0.82±0.25±0.19		GAO	23	BELL	e⊤ e [−] at 10	0.52 GeV	1
$\Gamma(D_{s}^{+}D_{\epsilon^{2}}^{*}(2573)^{-})$	$D_{s2}^{*-} \rightarrow P$	$(K^- D^0) / \Gamma_{\text{total}}$				Г ₆₅ /Г	
<u>VALUE (units 10^{-5})</u>	J£	DOCUMENT ID		TECN	<u>COMMENT</u>		NODE=M052R90
$1.4 \pm 0.4 \pm 0.2$		GAO	23	BELL	e^+e^- at 10).52 GeV	1
E(D+ D* (0573)-	D*- · ·	20 n-) /F				E. /E	
$I(U_{s}^{+}U_{s2}^{+}(25/3))$	$\nu_{s2} \rightarrow I$			TECN	COMMENT	1 66/1	NODE=M052R91 NODE=M052R91
*ALU UNIN 10 -1					CONINENT		

VALUE (units 10 ⁻⁵)	DOCUMENT ID		TECN	COMMENT		
$0.69 \pm 0.20 \pm 0.22$	GAO	23	BELL	e^+e^- at 10.52 GeV	L	

Γ(D ^{*+} _s D [*] _{s2} (2573) ⁻ ,	$D_{s2}^{*-} \rightarrow$	$K^- D^0) / \Gamma_{\text{total}}$				Г ₆₈ /Г	NODE = M052R92
VALUE (units 10^{-5})	32	DOCUMENT ID		TECN	COMMENT		NODE=M052R92
0.9±0.5±0.2		GAO	23	BELL	e^+e^- at 10.5	2 GeV	
$\Gamma(D_{s}^{*+}D_{s2}^{*}(2573)^{-})$	$D_{s2}^{*-} \rightarrow$	$K_S^0 D^-)/\Gamma_{total}$				Г ₆₉ /Г	NODE=M052R93
VALUE (units 10 ⁻⁵)		DOCUMENT ID		TECN	COMMENT	•	NODE=M052R93
$0.54 \pm 0.31 \pm 0.47$		GAO	23	BELL	e ⁺ e ⁻ at 10.5	2 GeV	
Γ(Sum of 100 exclusiv	ve modes))/Г _{total}		60. U.S		Г ₇₀ /Г	NODE=M052R08
VALUE (units 10^{-2})	1	2 DOCUMENT ID			<u>NT</u>		NODE-M032100
0.29 ± 0.03		² DOBBS	12A	T(25)	\rightarrow hadrons		
¹ DOBBS 12A present modes of four to ten ² Obtained by analyzin	pions, kac or CLFO II	al exclusive branc ons, or protons. Il data but not au	hing thore	fraction:	s or upper limit	s for 100	
	5 CLEO 11		linere	a by the		- /-	NODE-M052R06,EINRAGE-NC
$ (\gamma \chi_{b1}(1P))/ _{total}$					601 / 15VT	l 71/l	NODE=M052R8
<u>VALUE</u> 0.069 +0.004 OUR AV	<u>EVIS</u>	DOCUMENT ID		TECN	COMMENT		NODE=M052R8
$0.0693 \pm 0.0012 \pm 0.0041$	407k	ARTUSO	05	CLEO	$e^+e^- \rightarrow \gamma \lambda$	x	
$0.069\ \pm 0.005\ \pm 0.009$		EDWARDS	99	CLE2	$\Upsilon(2S) \rightarrow \gamma$	$\chi(1P)$	
$0.091\ \pm 0.018\ \pm 0.022$		ALBRECHT	85E	ARG	$e^+e^- \rightarrow \gamma e^-$	conv. X	
$0.065\ \pm 0.007\ \pm 0.012$		NERNST	85	CBAL	$e^+e^- \rightarrow \gamma^2$	×	
$0.080\ \pm 0.017\ \pm 0.016$		HAAS	84	CLEO	$e^+e^- \rightarrow \gamma e^-$	conv. X	
0.059 ± 0.014		KLOPFEN	83	CUSB	$e^+e^- \rightarrow \gamma^2$	X	
$\Gamma(\gamma \chi_{P2}(1P))/\Gamma_{ratal}$						Γ τ 2/Γ	
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	- 12/ -	NODE=M052R7 NODE=M052R7
0.0715±0.0035 OUR AV	ERAGE						
$0.0724 \pm 0.0011 \pm 0.0040$	410k	ARTUSO	05	CLEO	$e^+e^- ightarrow \gamma$	X	
$0.074 \pm 0.005 \pm 0.008$		EDWARDS	99	CLE2	$\gamma(2S) \rightarrow \gamma$	$\chi(1P)$	
$0.098 \pm 0.021 \pm 0.024$		ALBRECHT	85E	ARG	$e^+e^- \rightarrow \gamma e^-$	conv. X	
$0.058 \pm 0.007 \pm 0.010$		NERNST	85	CBAL	$e^+e^- \rightarrow \gamma$	X	
$0.102 \pm 0.018 \pm 0.021$		HAAS	84	CLEO	$e^+e^- \rightarrow \gamma e^-$	conv. X	
0.001 ± 0.014		KLOPFEN	83	COSP	$e \cdot e \rightarrow \gamma$	^	
$\Gamma(\gamma \chi_{b0}(1P))/\Gamma_{total}$						Г ₇₃ /Г	NODE=M052R9
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT		NODE=M052R9
0.038 ± 0.004 OUR AV	ERAGE				I		
$0.0375 \pm 0.0012 \pm 0.0047$	198k	ARTUSO	05	CLEO	$e^+e^- \rightarrow \gamma$	X	
$0.034 \pm 0.005 \pm 0.006$			99	CLE2	$I(2S) \rightarrow \gamma$	$\chi(1P)$	
$0.004 \pm 0.014 \pm 0.010$			00E		$e^+e^- \rightarrow \gamma e^-$		
$0.030 \pm 0.000 \pm 0.009$ 0.044 +0.023 +0.009		HAAS	84		$e^+e^- \rightarrow \gamma \gamma$	conv X	
• • • We do not use the	e following	data for averages	, fits,	limits, e	etc. • • •		
$0.035 \ \pm 0.014$		KLOPFEN	83	CUSB	$e^+e^- \rightarrow \gamma \Sigma$	x	
$\Gamma(\gamma f_0(1710))/\Gamma_{total}$						Γ ₇₄ /Γ	
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	,	NODE=M052R13
<59	90	¹ ALBRECHT	89	ARG	$\Upsilon(2S) \rightarrow \gamma K$	x+κ-	
• • • We do not use the	e following	data for averages	, fits,	limits, e	etc. • • •		
< 5.9	90	² ALBRECHT	89	ARG	$\Upsilon(2S) \rightarrow \gamma \pi$	$+\pi^{-}$	OCCUR=2
1 Re-evaluated assumi	$\log B(f_{o}(17))$	$(10) \rightarrow \kappa^+ \kappa^-)$	- 0	10			
² Includes unknown bra	anching rat	tio of $f_0(1710) \rightarrow$	π^+	π^{-} .			NODE=M052R13;LINKAGE=M NODE=M052R13;LINKAGE=N
$\Gamma(\gamma f_{2}^{\prime}(1525))/\Gamma_{total}$						Г75/Г	
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT		NODE = M052R12 $NODE = M052R12$
<53	90	¹ ALBRECHT	89	ARG	$\gamma(2S) \rightarrow \gamma k$	x ⁺ κ ⁻	
1 Re-evaluated accumi	יי אס R(<i>f¹</i> (1ו	$525) \rightarrow \overline{K}\overline{K}) = 0$	0 71		. () / ///		
	'é D('2(1		J.1 I.				NODE=M052R12;LINKAGE=L
$\Gamma(\gamma f_2(1270))/\Gamma_{total}$						Г ₇₆ /Г	NODE=M052R11
$VALUE$ (units 10^{-5})	CI %	DOCUMENT ID		TECN	COMMENT		NODE=M052R11

$\Gamma(\gamma f_{J}(2220))/\Gamma_{1}$	total				Г ₇₇ /Г	
<u>VALUE</u> (units 10^{-5})	CL%	DOCUMENT ID	TECN	COMMENT		NODE=M052R14
• • • We do not us	se the followin	g data for averages,	fits, limits,	etc. • • •		
<6.8	90	¹ ALBRECHT 8	9 ARG	$\Upsilon(2S) ightarrow \gamma$	$\kappa^+ \kappa^-$	
¹ Includes unknov	vn branching	ratio of $f_J(2220) ightarrow$	К+К−.			NODE=M052R14;LINKAGE=S
$\Gamma(\gamma \eta_c(1S))/\Gamma_{tot}$	tal	DOCUMENT ID	TECN	COMMENT	Г ₇₈ /Г	NODE=M052R31
<2.7 × 10 ⁼⁵	90	WANG 1	.1B BELL	$\Upsilon(2S) \rightarrow \gamma$	X	
$\Gamma(\gamma \chi_{c0})/\Gamma_{total}$	CL%	DOCUMENT ID	TECN	COMMENT	Г ₇₉ /Г	NODE=M052R32 NODE=M052R32
<1.0 × 10 ⁻⁴	90	WANG 1	.1B BELL	$\gamma(2S) \rightarrow \gamma$	X	
$\Gamma(\gamma \chi_{c1})/\Gamma_{total}$	CI %	DOCUMENT ID	TECN	COMMENT	Г ₈₀ /Г	NODE=M052R33
$<3.6 \times 10^{-6}$	90	WANG 1	1B BELL	$\Upsilon(2S) \rightarrow \gamma$	x	
$\Gamma(\gamma \chi_{c2})/\Gamma_{total}$	50 (1%)		TECN		Г ₈₁ /Г	NODE=M052R34
<1.5 × 10 ⁻⁵	90	WANG 1	1B BELL	$\Upsilon(2S) \rightarrow \gamma$	x	NODE-100321(34
$\Gamma(\gamma \chi_{c1}(3872))/VALUE$	F _{total}	DOCUMENT ID	TECN	COMMENT	Г ₈₂ /Г	NODE=M052R81 NODE=M052R81
$<2.2 \times 10^{-5}$ (CL	= 90%) [<2	2.1×10^{-5} (CL = 90	%) OUR 20	23 BEST LIM	IT]	
<2.2 × 10 ⁻⁵	90	¹ WANG 1	.1B BELL	$\Upsilon(2S) ightarrow \gamma$	x	
¹ WANG 11B m $\pi^{+}\pi^{-}J/\psi(1S)$ $\pi^{+}\pi^{-}J/\psi(1S)$	eports $[\Gamma(\Upsilon($))] < 0.8 × 1)) = 3.6 × 10 ²	$(25) \rightarrow \gamma \chi_{c1} (38)$ 10 ⁻⁶ which we divide -2 .	872))/F _{tota} e by our be	$_{\rm I}$] $ imes$ [B(χ_{c1} est value B(χ_{c}	$(3872) \rightarrow 1$	NODE=M052R81;LINKAGE=A
$\Gamma(\gamma \chi_{c1}(3872), \gamma)$ VALUE	$\chi_{c1} \rightarrow \pi^+ \pi$	$(-\pi^0 J/\psi)/\Gamma_{\text{total}}$	TECN	COMMENT	Г ₈₃ /Г	NODE=M052R36 NODE=M052R36
<2.4 × 10 ⁻⁶	90	WANG 1	.1B BELL	$\Upsilon(2S) \rightarrow \gamma$	X	
$\Gamma(\gamma \chi_{c0}(3915) \rightarrow \gamma_{ALUE})$	→ ωJ/ψ)/Γ _ι _{CL%}	otal DOCUMENT ID	TECN	COMMENT	Г ₈₄ /Г	NODE=M052R37 NODE=M052R37
<2.8 × 10 ⁻⁶	90	WANG 1	.1B BELL	$\Upsilon(2S) \rightarrow \gamma$	x	
$\Gamma(\gamma \chi_{c1}(4140) \rightarrow$	<i>φJ/ψ</i>)/Γ _t		TECN	COMMENT	Г ₈₅ /Г	NODE=M052R38
<1.2 × 10 ⁻⁶	90	WANG 1	1B BELL	$\Upsilon(2S) \rightarrow \gamma$	x	
$\Gamma(\gamma X(4350) \rightarrow 0)$	$\phi J/\psi)/\Gamma_{tot}$	al			Г ₈₆ /Г	
<u>VALUE</u>	<u>CL%</u>	WANG 1	<u> </u>	$\Upsilon(2S) \rightarrow \varphi$	Y	NODE=M052R39
$\Gamma(\alpha n, (1S))/\Gamma$			ID DELL	r (23)	́Га= /Г	
V_{ALUE} (units 10^{-4})	tal CI% EVTS	DOCUMENT ID	TEC		187/1	NODE=M052R15 NODE=M052R15
5.5 ^{+1.1} _{-0 9} OUR A	VERAGE E	rror includes scale fac	tor of 1.2.			
$6.1^{+0.6}_{-0.6}^{+0.9}_{-0.6}$	29k	FULSOM	18 BEL	L $\Upsilon(2S) \rightarrow$	γX	
-0.7 - 0.6 3 0 + 1 1 + 1.1	13 + 5k	1 ALIBERT	0040 BAE	$\hat{\mathbf{x}} = \hat{\mathbf{x}}(2\mathbf{x}) \rightarrow \hat{\mathbf{x}}$	~ X	
-0.9	$10 \pm 3K$	ndata for averages	fite limite	$\frac{1}{2} \frac{1}{2} \frac{1}$		
< 21		I FFS	11ι RΔF	$\frac{\gamma(25)}{\gamma(25)} \rightarrow 0$	X~	
< 8.4	90	¹ BONVICINI	10 CLE	$10 \Upsilon(2S) \rightarrow$	γX	
< 5.1	90	² ARTUSO	05 CLE	$e^+e^- \rightarrow$	γX	
1 Assuming $\Gamma_{\eta_b(1)}$	LS) = 10 MeV BONVICINI 10	V. D.				NODE=M052R15;LINKAGE=BC NODE=M052R15;LINKAGE=SU
$\Gamma(\gamma \eta_b(1S) \to \gamma)$	Sum of 26 ex	kclusive modes)/Γ ₁	total TECN	COMMENT	Г ₈₈ /Г	NODE=M052R25 NODE=M052R25

<3.7 × 10⁻⁶ SANDILYA 13 BELL $\Upsilon(2S)
ightarrow \gamma$ hadrons 90

$\Gamma(\gamma X_{b\overline{b}} \rightarrow \gamma S)$	um of 26 exclu	sive modes)/Г _{total}		Г ₈₉ /Г	NODE=M052R26
VALUE (units 10^{-6})	<u>CL%_EVTS</u>	DOCUMENT ID T	ECN COMMENT		NODE=M052R26
< 4.9 • • • We do not i	90 use the following	SANDILYA 13 B data for averages, fits, limit	ELL $\Upsilon(2S) \rightarrow \gamma$ s, etc. • • •	hadrons	
$46.2^{+29.7}_{-14.2}\pm10$.6 10	¹ DOBBS 12	$\Upsilon(2S) ightarrow \gamma$	hadrons	
^{-14.2} ¹ Obtained by a	nalyzing CLEO I	II data but not authored by t	the CLEO Collaborat	tion.	NODE=M052R26·LINKAGE=D0
$\Gamma(\alpha X \rightarrow \alpha \pm)$	4 prongs) /F.				
(15 GeV <	$m_{\rm V} < 5.0 {\rm GeV}$			90/1	NODE=M052R19
VALUE (units 10^{-4})	μηχ < 5.0 GeV) DOCUMENT ID TECI	N COMMENT		NODE= $M052R19$ NODE= $M052R19$
<1.95	95	ROSNER 07A CLE	$\frac{1}{0} \frac{1}{e^+e^- \rightarrow \gamma X}$		
$\Gamma(\gamma A^0 \rightarrow \gamma had)$	Irons)/[++++			Γοι /Γ	
(0.3 GeV <	$m \cdot o < 7 \text{ GeV}$. 91/ .	NODE=M052R06
VALUE	A0 (1 001) CL%	DOCUMENT ID TECI	V COMMENT		NODE=M052R06 NODE=M052R06
$< 8 \times 10^{-5}$	90	¹ LEES 11H BAE	BR $\gamma(2S) ightarrow \gamma$ ha	drons	
¹ For a narrow s range 0.3–7 G	scalar or pseudos eV. Measured 90	calar, A ⁰ , excluding known r)% CL limits as a function of	resonances, with mast $m_{\mathcal{A}^0}$ range from 1	ss in the $ imes 10^{-6}$	NODE=M052R06;LINKAGE=LE
Γ(A0 · +				F /F	
$I(\gamma A^{\circ} \to \gamma \mu)$	μ)/I total		ON MARNE	192/1	NODE=M052R24 NODE=M052R24
<u>VALUE (units 10 °)</u>	$-\frac{CL\%}{00}$ $\frac{DC}{1}$	IRERT 007 BARR	$+ - \times 10 \times 10$.+	
¹ For a narrow so J/ψ and $\psi(2S)$ 10^{-6} .	calar or pseudosc 5). Measured 90	alar, A ⁰ , with mass in the ran % CL limits as a function of	ge 212–9300 MeV, e m _A 0 range from 0.2	xcluding 26–8.3 ×	NODE=M052R24;LINKAGE=AU
	Ton Family	NUMBER (<i>LF</i>) VIOLAT	ING MODES —		NODE=M052230
$\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{\rm tota}$	l			Г ₉₃ /Г	NODE=M052R04
<u>VALUE</u> (units 10^{-6})	<u>CL%</u>	DOCUMENT ID TECH	<u>COMMENT</u>		NODE=M052R04
<3.2	90	LEES 10B BAE	$3R e^+e^- \rightarrow e^{\pm}\tau$	Ŧ	
$\Gamma(\mu^{\pm}\tau^{\mp})/\Gamma_{\rm tota}$	al			Г ₉₄ /Г	NODE=M052R20
VALUE (units 10^{-6})	<u>CL%</u>	DOCUMENT ID TECI	COMMENT		NODE=M052R20
< 3.3	90	LEES 10B BAE	$BR e^+e^- \rightarrow \mu^{\pm}\tau$.Ŧ	
• • • We do not	use the following	data for averages, fits, limit	s, etc. • • •	Ŧ	
<14.4	95	LOVE U8A CLE	$0 e^+e^- \rightarrow \mu^+ \tau$	-	
	<i>Т</i> (25) Сг	oss-Particle Branching R	atios		NODE=M052240
$B(\varUpsilon(2S)\to \pi$	$(\pi^+\pi^-) \times B(\gamma)$	$T(3S) \rightarrow T(2S)X)$			
VALUE (units 10^{-2})	<u>EVTS</u>	DOCUMENT ID TECI	COMMENT		NODE=M052R05
$1.78 {\pm} 0.02 {\pm} 0.11$	906k	LEES 11C BAE	$BR e^+e^- \rightarrow \pi^+\pi$	r ⁻ X	
	า	(2 <i>S</i>) REFERENCES			NODE=M052
GAO 23	PR D108 112015	B.S. Gao <i>et al.</i>	(BELLE Co	llab.)	REFID=62519
FULSOM 18	PL B839 137766 PRL 121 232001	B.G. Fulsom <i>et al.</i>	a (NOVO, NOV (BELLE Co	llab.)	REFID=02012 REFID=59535
JIA 18 JIA 17	PR D97 112004 PR D95 012001	S. Jia <i>et al.</i> S. Jia <i>et al.</i>	(BELLE Co (BELLE Co	llab.) llab.)	REFID=58949 REFID=57635
JIA 17A LEES 14G	PR D96 112002 PR D89 111102	S. Jia <i>et al.</i> J.P. Lees <i>et al.</i>	(BELLE Co (BABAR Co	llab.) llab.)	REFID=58318 REFID=55939
YANG 14 SANDILYA 13	PR D90 112008 PRL 111 112001	S.D. Yang <i>et al.</i> S. Sandilya <i>et al.</i>	(BELLE Co (BELLE Co	llab.) llab.)	$\begin{array}{c} REFID = 56345 \\ REFID = 55590 \end{array}$
SHEN 13 TAMPONI 13	PR D88 011102 PR D87 011104	C.P. Shen <i>et al.</i> U. Tamponi <i>et al.</i>	(BELLE Co (BELLE Co	IIab.) IIab.)	REFID=55395 REFID=54919
DOBBS 12 DOBBS 12A	PRL 109 082001 PR D86 052003	S. Dobbs <i>et al.</i> S. Dobbs <i>et al.</i>			REFID=54288 REFID=54746
SHEN 12A LEES 11C	PR D86 031102 PR D84 011104	C.P. Shen <i>et al.</i> J.P. Lees <i>et al.</i>	(BELLE Co (BABAR Co	llab.) llab.)	REFID=54314 REFID=16775
LEES 11H LEES 11J	PRL 107 221803 PR D84 072002	J.P. Lees <i>et al.</i> J.P. Lees <i>et al.</i>	(BABAR Co (BABAR Co	llab.) llab.)	REFID=53877 REFID=53936
LEES 11L WANG 11B	PR D84 092003	J.P. Lees <i>et al.</i> X.L. Wang <i>et al.</i>	BABAR Co	llab.) llab.)	REFID=53938 REFID=53939

11B

09Z

09

WANG

LEES AUBERT AUBERT

BHARI

BONVICINI

PR D84 071107

PRL 103 081803 PR D79 011103

10 PR D81 031104 10B PRL 104 151802 09AQ PRL 103 161801

J.P. Lees et al. X.L. Wang et al. G. Bonvicini et al. J.P. Lees et al. B. Aubert et al. B. Aubert et al.

S.R. Bhari et al.

REFID=54919 REFID=54919 REFID=54288 REFID=54314 REFID=54314 REFID=53936 REFID=53936 REFID=53938 REFID=53939 REFID=53231 REFID=533106 REFID=52930 REFID=52662

(BABAR Collab.) (BELLE Collab.) (CLEO Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (CLEO Collab.)

AUBERT	08BP	PR D78 112002	B. Aubert et al.	(BABAR Collab.)	REFID=52660
HE	08A	PRL 101 192001	Q. He <i>et al.</i>	(CLEO Collab.)	REFID=52587
LOVE	08A	PRL 101 201601	W. Love et al.	(CLEO Collab.)	REFID=52592
PDG	08	PL B667 1	C. Amsler et al.	(PDG Collab.)	REFID=52166
ASNER	07	PR D75 012009	D.M. Asner et al.	(CLEO Collab.)	REFID=51617
BESSON	07	PRL 98 052002	D. Besson et al.	(CLEO Collab.)	REFID=51620
ROSNER	07A	PR D76 117102	J.L. Rosner <i>et al.</i>	(CLEO Collab.)	REFID=52079
BESSON	06A	PR D74 012003	D. Besson et al.	(CLEO Collab.)	REFID=51147
ROSNER	06	PRL 96 092003	J.L. Rosner <i>et al.</i>	(CLEO Collab.)	REFID=51035
ADAMS	05	PRL 94 012001	G.S. Adams et al.	(CLEO Collab.)	REFID=50452
ARTUSO	05	PRL 94 032001	M. Artuso <i>et al.</i>	(CLEO Collab.)	REFID=50454
ARTAMONOV	00	PL B474 427	A.S. Artamonov et al.		REFID=47424
EDWARDS	99	PR D59 032003	K.W. Edwards <i>et al.</i>	(CLEO Collab.)	REFID=46612
ALEXANDER	98	PR D58 052004	J.P. Alexander et al.	(CLEO Collab.)	REFID=46329
BARU	96	PRPL 267 71	S.E. Baru et al.	(NOVO)	REFID=44651
KOBEL	92	ZPHY C53 193	M. Kobel et al.	(Crystal Ball Collab.)	REFID=41861
MASCHMANN	90	ZPHY C46 555	W.S. Maschmann et al.	(Crystal Ball Collab.)	REFID=41224
ALBRECHT	89	ZPHY C42 349	H. Albrecht <i>et al.</i>	(ARGUS Collab.)	REFID=40731
KAARSBERG	89	PRI 62 2077	T.M. Kaarsberg <i>et al</i>	(CUSB Collab.)	RFFID=40733
RUCHMUEL	88	HE a^+a^- Physics 412	W Buchmueller S Coon	or (HANN DESV MIT)	REFID=40034
Editors: A	Ali an	d P Soeding World Scien	ntific Singapore	er (HANN, DEST, MIT)	
	88	7PHY CAO AQ	7 lakubowski et al	(Crystal Ball Collab.) IG IPC	REFID-40742
ALBRECHT	87	7PHV C35 283	H Albrecht et al	(ARCUS Collab.)	REFID=40016
COHEN	87	RMP 50 1121	ER Cohen BN Taylor	(RISC NBS)	REFID=11616
LURZ	87	7PHV C36 383	B Lurz et al	(Crystal Ball Collab.)	REFID=40021
BARII	86B	7PHV (32, 622 (errat.)	SE Baru et al	(NOVO)	REFID=22338
ALBRECHT	85	7PHV C28 45	H Albrecht et al	(ARCUS Collab.)	REFID=22330
	85E	DI 160B 331	H Albrocht at al	(APCUS Collab.)	REFID=222334
	85	DB D32 2803	D Colphman at al	(Crystal Ball Collab.)	REFID=22200
	05	S IND 41 466	E A Kuraov VS Eadin		REFID=22550
NURAEV	00	Translated from YAE 41	733	(10000)	IXEI ID=40035
NERNST	85	PRL 54 2195	R. Nernst <i>et al.</i>	(Crystal Ball Collab.)	REFID=22289
ARTAMONOV	84	PL 137B 272	A.S. Artamonov et al.	(NOVO)	REFID=22278
BARBER	84	PL 135B 498	D.P. Barber <i>et al.</i>	(REFID=22327:ERROR=1
BESSON	84	PR D30 1433	D Besson <i>et al</i>	(CLEO, Collab.)	RFFID=22279
FONSECA	84	NP B242 31	V Fonseca et al	(CUSB Collab.)	RFFID=22329
GILES	84B	PR D29 1285	R Giles et al	(CLEO Collab.)	RFFID=22280
HAAS	84	PRI 52 799	I Haas et al	(CLEO Collab.)	REFID=22287
HAAS	84R	PR D30 1996	I Haas et al	(CLEO Collab.)	REFID=22332
KLOPEEN	83	PRI 51 160	C Klopfenstein et al	(CUSB Collab.)	REFID=22285
ALBRECHT	82	PI 116B 383	H Albrecht et al	(DESY DORT HEIDH+)	REFID=22270
NICZYPORUK	81R	PL 100B 95	B Niczyporuk et al	(LENA Collab.)	RFFID=22319
NICZYPORUK	810	PL 99B 169	B Niczyporuk et al	(LENA Collab.)	RFFID=22318
ROCK	80	7PHY C6 125	P Bock et al	(HEIDP MPIM DESY HAMB)	REFID=22264
DOCIN	00	21111 C0 125	i. Dock et al.		