7/16/2025 11:49

NODE=M079

Page 1

 $\chi_{b0}(2P$ $I^{G}(J^{PC}) = 0^{+}(0^{++})$ J needs confirmation. Observed in radiative decay of the $\Upsilon(3S)$, therefore C = +. Branch-NODE=M079 ing ratio requires E1 transition, M1 is strongly disfavored, therefore P = +. $\chi_{b0}(2P)$ MASS NODE=M079M NODE=M079M DOCUMENT ID VALUE (MeV) **10232.5 \pm 0.4 \pm 0.5 OUR EVALUATION** From γ energy below, using $\Upsilon(3S)$ mass = \rightarrow UNCHECKED \leftarrow 10355.2 \pm 0.5 MeV $m_{\chi_{b1}(2P)} = m_{\chi_{b0}(2P)}$ NODE=M079M2 VALUE (MeV) DOCUMENT ID TECN COMMENT NODE=M079M2 23.8 ± 1.7 LEES 14M BABR $\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^ \gamma$ ENERGY IN $\Upsilon(3S)$ DECAY NODE=M079DM VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT NODE=M079DM 121.9 ±0.4 OUR EVALUATION Treating systematic errors as correlated \rightarrow UNCHECKED \leftarrow 122.2 ±0.5 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below. ARTUSO $121.55 \pm 0.16 \pm 0.46$ 05 CLEO $\Upsilon(3S) \rightarrow \gamma X$ ¹ HEINTZ 4959 92 CSB2 $123.0\ \pm 0.8$ $e^+e^- \rightarrow \gamma X$ 2 HEINTZ $e^+e^- \rightarrow \ell^+\ell^-$ OCCUR=2 $124.6 \ \pm 1.4$ 17 92 CSB2 $-\gamma\gamma$ $e^+e^- \rightarrow \gamma X$ $122.3\ \pm 0.3\ \pm 0.6$ 9903 MORRISON 91 CLE2 1 A systematic uncertainty on the energy scale of 0.9% not included. Supersedes NODE=M079DM;LINKAGE=A NARAIN 91. ^2A systematic uncertainty on the energy scale of 0.9% not included. Supersedes NODE=M079DM;LINKAGE=B HEINTZ 91. WEIGHTED AVERAGE 122.2±0.5 (Error scaled by 1.4) χ^2 ARTUSO CLEO 1.8 05 HEINTZ 92 CSB2 1.0 CSB2 HEINTZ 92 3.0 MORRISON 91 CLE2 0.0 5.7 (Confidence Level = 0.125) 120 122 128 124 126 130 γ energy in $\Upsilon(3S)$ decay (MeV) $\chi_{b0}(2P)$ DECAY MODES

Mode Fraction (Γ_i/Γ) Confidence level $\gamma \Upsilon(2S)$ Γ_1 $(1.38\pm0.30)\%$ DESIG=2 $(3.8 \pm 1.7) \times 10^{-3}$ Γ_2 $\gamma \Upsilon(1S)$ DESIG=1 $D^0 X$ Γ3 < 8.2 % 90% DESIG=3 $\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$ Γ_4 imes 10⁻⁵ < 3.4 90% DESIG=4 $2\pi^{+}\pi^{-}K^{-}K_{c}^{0}$ Γ_5 < 5 $\times 10^{-5}$ 90% DESIG=5 κŏ $2\pi^{+}\pi^{-}$ $\times 10^{-4}$ Γ₆ K < 2.2 90% DESIG=6 $^{-}2\pi^{0}$ Γ_7 $imes 10^{-4}$ $2\pi^{+}2\pi^{-}$ < 2.4 90% DESIG=7 $2\pi^+ 2\pi^- K^+ K^ \times 10^{-4}$ Γ₈ < 1.5 90% DESIG=8

NODE=M079215;NODE=M079

Γg	$2\pi^+ 2\pi^- K^+ K^- \pi^0$	< 2.2	imes 10 ⁻⁴	90%	DESIG=9
Γ_{10}	$2\pi^+ 2\pi^- K^+ K^- 2\pi^0$	< 1.1	imes 10 ⁻³	90%	DESIG=10
Γ_{11}	$3\pi^+ 2\pi^- K^- K^0_S \pi^0$	< 7	imes 10 ⁻⁴	90%	DESIG=11
Γ_{12}	$3\pi^+3\pi^-$	< 7	imes 10 ⁻⁵	90%	DESIG=12
Γ_{13}	$3\pi^+3\pi^-2\pi^0$	< 1.2	imes 10 ⁻³	90%	DESIG=13
Γ_{14}	$3\pi^+ 3\pi^- K^+ K^-$	< 1.5	imes 10 ⁻⁴	90%	DESIG=14
Γ_{15}	$3\pi^+ 3\pi^- K^+ K^- \pi^0$	< 7	imes 10 ⁻⁴	90%	DESIG=15
Γ_{16}	$4\pi^+4\pi^-$	< 1.7	imes 10 ⁻⁴	90%	DESIG=16
Γ ₁₇	$4\pi^+ 4\pi^- 2\pi^0$	< 6	imes 10 ⁻⁴	90%	DESIG=17

$\chi_{b0}(2P)$ BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(2S)) / \Gamma_{total}$				Γ ₁ /Γ	NODE=M079R2
VALUE (%)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	NODE=M079R2
1.38 ± 0.30 OUR AVE	RAGE				
$1.31 {\pm} 0.27 {+} 0.13 \\ -0.12$		^{3,4} LEES 14	M BABR	$\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$	
$3.6 \ \pm 1.6 \ \pm 0.3$		^{3,5} HEINTZ 92	CSB2	$e^+ e^- \rightarrow \ell^+ \ell^- \gamma \gamma$	
• • • We do not use th	e followi	ng data for averages, fit	s, limits,	etc. • • •	
<2.8	90	⁶ LEES 11.	BABR	$\Upsilon(3S) \rightarrow X\gamma$	
<8.9	90	⁷ CRAWFORD 92	B CLE2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$	
³ Assuming B($\Upsilon(2S)$ ⁴ LEES 14M reports [(7.7 ± 1.6) × 10 ⁻⁴ (5.9 ± 0.6) × 10 ⁻² the systematic error ⁵ Recalculated by us. $\gamma \Upsilon(2S)) = (0.28 \pm 3)$ Supersedes HEINTZ ⁶ LEES 11J quotes a $\gamma \chi_{b0}(2P))/\Gamma_{total} =$ ⁷ Using B($\Upsilon(2S) \rightarrow \mu$ $\mu^+ \mu^-) < 1.19 \times 10^{-4}$	$ \rightarrow \mu^+ \mu^-$ $ \Gamma(\chi_{b0}(2$ $ T(\chi_{b0}(2) + \mu^-)) = (-0.3)$ $ \Gamma(\mu^- \mu^-) = (-0.3)$	$\begin{array}{l} \mu^{-}) = (1.93 \pm 0.17)\%.\\ P) \rightarrow \gamma \Upsilon(2S))/\Gamma_{\text{tota}}\\ \text{we divide by our best}\\ \text{rst error is their experining our best value.}\\ \overline{Z} \ 92 \ \text{quotes} \ B(\Upsilon(3S))\\ \pm \ 0.03)\% \ \text{using} \ B(\Upsilon(2S))\\ \text{value of} \ \Gamma(\chi_{b0}(2P) \rightarrow \\ \pm \ 0.2 \overset{+}{_{-}0.4})\%.\\ = (1.37 \pm 0.26)\%, \ B(\Upsilon)\\ \text{d} \ B(\Upsilon(3S) \rightarrow \chi_{b0}(2P)) \end{array}$	$[J] \times [B(7)]$ value $B(7)$ value $B(7)$ $\rightarrow \gamma \chi_{b}$ $\gamma \gamma \chi_{b}$ $\gamma \gamma \chi_{c}$ $\gamma \chi_{$	$\begin{aligned} & \Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P))] = \\ & \Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P)) = \\ & \text{or and our second error is} \\ & 0(2P)) \times B(\chi_{b0}(2P) \rightarrow \\ & \mu^{-}) = (1.44 \pm 0.10)\%. \\ & 0/\Gamma_{\text{total}} \times \Gamma(\Upsilon(3S) \rightarrow \\ & \gamma \Upsilon(2S)) \times 2 B(\Upsilon(2S) \rightarrow \\ & 049. \end{aligned}$	NODE=M079R2;LINKAGE NODE=M079R2;LINKAGE NODE=M079R2;LINKAGE NODE=M079R2;LINKAGE NODE=M079R2;LINKAGE
$\Gamma(\gamma \Upsilon(1S)) / \Gamma_{\text{total}}$				Г2/Г	
VALUE (%)	CL%	DOCUMENT ID	TECN	COMMENT	NODE=M079R1
0.38±0.17 OUR AVE 0.36±0.17±0.03 0.9 ±0.7 ±0.1 • • • We do not use th	RAGE 8	9,10 LEES 14 9,11 HEINTZ 92 ng data for averages, fit	M BABR CSB2 s, limits,	$ \begin{array}{c} \Upsilon(3S) \rightarrow \gamma \gamma \mu^{+} \mu^{-} \\ e^{+} e^{-} \rightarrow \ell^{+} \ell^{-} \gamma \gamma \\ \text{etc.} \bullet \bullet \end{array} $	
<1.2	90	¹² LEES 11.	BABR	$\Upsilon(3S) \rightarrow X\gamma$	
<2.5	90	¹³ CRAWFORD 92	B CLE2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$	
8 LEES 14M quotes F(= $(2.1 \pm 1.0) \times 10^{-3}$ and without photon	($\chi_{b0}(2P))^{-4}$ coml	$(\gamma) \rightarrow \gamma \Upsilon(1S))/\Gamma_{\text{total}}$ bining the results from ons.	× $\Gamma(\Upsilon(3) \rightarrow \Upsilon(35) \rightarrow \chi)$	$S) ightarrow \gamma \chi_{b0}(2P))/\Gamma_{total} \gamma \gamma \mu^+ \mu^-$ samples with	NODE=M079R1;LINKAGE
⁹ Assuming B($\Upsilon(1S)$ ¹⁰ LEES 14M reports [$\rightarrow \mu^+$	$(\mu^{-}) = (2.48 \pm 0.05)\%.$ $(P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{\text{total}}$.] × [B(1	$\gamma(35) \rightarrow \gamma \gamma_{LO}(2P))] =$	NODE=M079R1;LINKAGE

LEES 14M reports $[\Gamma(\chi_{b0}(2P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P))] =$ (2.1 ± 1.0) × 10⁻⁴ which we divide by our best value $B(\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P)) =$ $(5.9\pm0.6)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

- ¹¹Recalculated by us. HEINTZ 92 quotes B($\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P)$) × B($\chi_{b0}(2P) \rightarrow \gamma \chi_{b0}(2P)$ $\gamma \Upsilon(1S)) = (0.05 \pm 0.04 \pm 0.01)\%$ using B($\Upsilon(1S) \rightarrow \mu^+ \mu^-$) = (2.57 ± 0.05)%. Supersedes HEINTZ 91.
- ¹²LEES 11J quotes a central value of $\Gamma(\chi_{b0}(2P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{\text{total}} \times \Gamma(\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P))/\Gamma_{\text{total}} = (3.9 \pm 2.2^{+1.2}_{-0.6}) \times 10^{-4}.$
- $^{13}\text{Using B}(\varUpsilon(1S)\rightarrow \ \mu^+ \ \mu^-) = (2.57\pm 0.07)\%, \text{ B}(\varUpsilon(3S)\rightarrow \ \gamma\gamma\varUpsilon(1S))\times 2 \text{ B}(\varUpsilon(1S)\rightarrow \gamma\gamma\varUpsilon(1S))) \times 2 \text{ B}(\varUpsilon(1S)\rightarrow \gamma\gamma\varUpsilon(1S)) \times 2 \text{ B}(\varUpsilon(1S)\rightarrow \gamma\gamma\varUpsilon(1S))) \times 2 \text{ B}(\varUpsilon(1S)\rightarrow \gamma\gamma(1S))) \times 2 \text{ B}(\varUpsilon(1S)) \times 2 \text{ B}((1S)) \times 2 \text{ B}(\Upsilon(1S))) \times 2 \text{ B}(\Upsilon(1S$ $\mu^+\mu^-) < 0.63 \times 10^{-4}$, and B($\Upsilon(3S) \rightarrow \chi_{b0}(2P)\gamma) = 0.049$.

$\Gamma(D^0 X)/\Gamma_{\text{total}}$

12/1

()						
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<8.2 × 10 ⁻²	90	^{14,15} BRIERE	08	CLEO	$\Upsilon(3S) \rightarrow \gamma D^0 X$	
$14 \Gamma_{\rm m} = 2 \Gamma C V$	/-					

For $p_{D^0} > 2.5 \text{ GeV/c.}$

 15 The authors also present their result as (4.1 \pm 3.0 \pm 0.4) \times 10 $^{-2}.$

NODE=M079220

=D=E

=C

=LE

=B

=D

=ENODE=M079R1;LINKAGE=F

NODE=M079R1;LINKAGE=C

NODE=M079R1;LINKAGE=LE

NODE=M079R1;LINKAGE=B

NODE=M079R01 NODE=M079R01

NODE=M079R01;LINKAGE=BR NODE=M079R01;LINKAGE=RI

$\Gamma(\pi^+\pi^-K^+K^-\pi^0)/\Gamma_{total}$

Г₄/Г

 Γ_5/Γ

 Γ_6/Γ

VALUE (units 1	<u>0⁻⁴) C</u>	<u>.L%</u>	DOCUMENT IL)	TECN	COMMENT
<0.34	9	0	¹⁶ ASNER	08A	CLEO	$\Upsilon(3S) \rightarrow \gamma \pi^+ \pi^- K^+ K^- \pi^0$
¹⁶ ASNER	08A re	eports	$[\Gamma(\chi_{b0}(2P) \rightarrow$	$\pi^+\pi$	- <i>к</i> + к	$(\pi^{0})/\Gamma_{\text{total}} \propto [B(\Upsilon(3S) \rightarrow$
$\gamma \chi_{b0}$ (2F	P))] <	$2 \times 10^{\circ}$) ⁻⁶ which we di	ivide by	our best	value B($\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P)$)
= 5.9 $ imes$	10^{-2} .					

$\Gamma(2\pi^+\pi^-K^-K_S^0)/\Gamma_{\text{total}}$

$\Gamma(2\pi^+\pi^-K^-K^0_S 2\pi^0)/\Gamma_{\text{total}}$

 $\begin{array}{c|c} \hline \textit{VALUE (units 10^{-4})} & \underline{\textit{CL\%}} \\ \hline \textit{VALUE (units 10^{-4})} & \underline{\textit{SL\%}} \\ \hline \textit{VALUE (units 10^{-4})} & \underline{\textit{SL\%}} \\ \hline \textit{VALUE (units 10^{-4})} & \underline{\textit{SL\%}} \\ \hline \textit{Value (units 10^{-4})} \\ \hline \textit{Value (units$

$\Gamma(2\pi^+2\pi^-2\pi^0)/\Gamma_{\text{total}}$

CL%

VALUE (units 10⁻⁴)

Γ₇/Γ

≪2.4	90	¹⁹ ASNER	08A	CLEO	$\Upsilon(3S) ightarrow$	$\gamma 2\pi^+ 2\pi^-$	$^{-}2\pi^{0}$
¹⁹ ASNER 08A re	eports [$\Gamma(\chi_I$	$_{0}(2P) \rightarrow 2\pi^+ 2\pi^+ 2\pi^+ 2\pi^+ 2\pi^+ 2\pi^+ 2\pi^+ 2\pi^+$	$\pi^{-}2\pi^{0})/$	Γ _{total}]	\times [B(Υ (35)	$) \rightarrow \gamma \chi_{b0}$	(2P))]
$< 14 \times 10^{-6}$	which we d	ivide by our best	value B(γ	^(3 <i>5</i>) –	$\gamma \chi_{b0}(2P)$	$)) = 5.9 \times$	10^{-2} .

TECN

COMMENT

DOCUMENT ID

$\Gamma(2\pi^+ 2\pi^- K^+ K^-)/\Gamma_{\text{total}}$

$\Gamma(2\pi^+2\pi^-K^+K^-\pi^0)/\Gamma_{total}$

Γ_و

 Γ_8/Γ

$\Gamma(2\pi^+2\pi^-K^+K^-2\pi^0)/\Gamma_{total}$

Г₁₀/Г

 Γ_{11}/Γ

$\Gamma(3\pi^+2\pi^-K^-K^0_S\pi^0)/\Gamma_{total}$

$\begin{array}{c|c} \hline & \underline{VALUE\ (\text{units}\ 10^{-4})}{90} & \underline{CL\%}\\ \hline & \underline{Q}\\ \hline & \underline{Q}$

NODE=M079R02 NODE=M079R02

NODE=M079R02;LINKAGE=AS

NODE=M079R03 NODE=M079R03

NODE=M079R03;LINKAGE=AS

NODE=M079R04 NODE=M079R04

NODE=M079R04;LINKAGE=AS

NODE=M079R05 NODE=M079R05

NODE=M079R05;LINKAGE=AS

NODE=M079R06 NODE=M079R06

NODE=M079R06;LINKAGE=AS

NODE=M079R07 NODE=M079R07

NODE=M079R07;LINKAGE=AS

NODE=M079R08 NODE=M079R08

NODE=M079R08;LINKAGE=AS

NODE=M079R09 NODE=M079R09

NODE=M079R09;LINKAGE=AS

NODE=M079R10 NODE=M079R10

NODE=M079R10;LINKAGE=AS

$\Gamma(3\pi^+3\pi^-2\pi^0)/\Gamma_{total}$

Γ_{13}/Γ

DOCUMENT ID VALUE (units 10^{-4}) CL% TECN COMMENT ²⁵ ASNER 08A CLEO $\Upsilon(3S) \rightarrow \gamma 3\pi^+ 3\pi^- 2\pi^0$ 90 <12 $^{25}\text{ASNER 08A reports}\left[\Gamma(\chi_{b0}(2P) \rightarrow 3\pi^+ 3\pi^- 2\pi^0)/\Gamma_{\text{total}}\right] \times \left[\mathsf{B}(\varUpsilon(3S) \rightarrow \gamma \chi_{b0}(2P))\right]$ $< 72 \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P)$) = 5.9 × 10⁻².

$\Gamma(3\pi^+3\pi^-K^+K^-)/\Gamma_{total}$

Γ_{14}/Γ

VALUE (units 10^{-4}) CL% DOCUMENT ID TECN COMMENT ²⁶ ASNER <1.5 90 08A CLEO $\Upsilon(3S) \rightarrow \gamma 3\pi^+ 3\pi^- K^+ K^-$ ²⁶ASNER 08A reports $[\Gamma(\chi_{b0}(2P) \rightarrow 3\pi^+ 3\pi^- K^+ K^-)/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P))] < 9 \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P)) = 5.9 \times 10^{-2}$.

$\Gamma(3\pi^+3\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{15}/Γ

VALUE (units 10^{-4})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<7	90	²⁷ ASNER	08A	CLEO	$\Upsilon(3S) \rightarrow \gamma 3\pi^+ 3\pi^- K^+ K^- \pi^0$
27 ASNER 08A	report	s [$\Gamma(\chi_{b0}(2P) \rightarrow$	$3\pi^+$	$3\pi^{-}K^{+}$	$- \kappa^{-} \pi^{0}) / \Gamma_{\text{total}}] \times [B(\Upsilon(3S) \rightarrow$
$\gamma \chi_{b0}(2P))] <$	< 43 :	$\times 10^{-6}$ which we c	livide	by our b	est value B($\Upsilon(3S) \rightarrow \gamma \chi_{b0}(2P)$)
$= 5.9 imes 10^{-2}$					

$\Gamma(4\pi^+ 4\pi^-)/\Gamma_{total}$

Γ_{16}/Γ

 Γ_{17}/Γ

VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT				
<1.7	90 2	²⁸ ASNER	08A	CLEO	$\Upsilon(3S) ightarrow$	$\gamma 4\pi^+ 4\pi^-$			
²⁸ ASNER 08A reports $[\Gamma(\chi_{b0}(2P) \rightarrow 4\pi^+ 4\pi^-)/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \gamma\chi_{b0}(2P))]$									
$< 10 imes 10^{-6}$ which v	we divide b	y our best value l	$B(\Upsilon(3$	$(SS) \rightarrow \gamma$	$\chi_{b0}(2P)) =$	$= 5.9 \times 10^{-2}$.			

$\Gamma(4\pi^+4\pi^-2\pi^0)/\Gamma_{total}$

	EGERI					
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<6	90	²⁹ ASNER	08A	CLEO	$\Upsilon(3S) ightarrow$	$\gamma 4\pi^{+} 4\pi^{-} 2\pi^{0}$
²⁹ ASNER 08A rep	orts [$\Gamma(\chi_{I})$	$b_0(2P) \rightarrow 4\pi^+ 4\pi$	$-2\pi^{0})$	$/\Gamma_{total}]$	$ imes$ [B(Υ (35	$\gamma \gamma \chi_{b0}(2P))]$
$<$ 38 $ imes$ 10 $^{-6}$ w	hich we d	ivide by our best v	alue B($\Upsilon(3S)$ -	$\rightarrow \gamma \chi_{b0} (2F)$	$(P)) = 5.9 \times 10^{-2}.$

$$\begin{split} \Gamma(\chi_{b0}(2P) \to \gamma \, \Upsilon(1S)) / \Gamma_{\text{total}} \, \times \, \Gamma(\Upsilon(3S) \to \gamma \, \chi_{b0}(2P)) / \Gamma_{\text{total}} \\ \Gamma_2 / \Gamma \times \Gamma_{22}^{\Upsilon(3S)} / \Gamma^{\Upsilon(3S)} \end{split}$$

VALUE (units 10^{-4})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<8.2	90	³⁰ LEES	11J	BABR	$\Upsilon(3S) \rightarrow X\gamma$
30 LEES 11J quotes a d	central va	lue of $\Gamma(\chi_{b0}(2P)$	\rightarrow	$\gamma \gamma(1S))$	$/\Gamma_{\text{total}} \times \Gamma(\Upsilon(3S) \rightarrow$
$\gamma \chi_{b0}(2P))/\Gamma_{total} =$	= (3.9 \pm	$2.2^{+1.2}_{-0.6}) \times 10^{-4}$	and	derives a	a 90% CL upper limit of
$B(\chi_{b0}(2P) \rightarrow \gamma \Upsilon($	(15)) < 1	.2% using B(Υ (35	$i) \rightarrow$	$\gamma \chi_{b0}(2$	$P)) = (5.9 \pm 0.6)\%.$

$B(\chi_{b0}(2P) \rightarrow \gamma \Upsilon(1S))$	$)) \times B(\Upsilon(3S) \rightarrow \gamma \chi)$	$_{b0}(2P)) \times B(\Upsilon(1S) \rightarrow \ell^+ \ell^-)$	NODE=M079A02
VALUE (units 10 ⁻⁵)	DOCUMENT ID	TECNCOMMENT	NODE=M079A0
1.4±0.9 OUR AVERAGE			
$1.7^{+1.5}_{-1.4}{}^{+0.1}_{-1.2}$	³¹ LEES	14M BABR $\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$	
$1.3 \pm 1.0 \pm 0.3$	³² HEINTZ	92 CSB2 $\Upsilon(3S) \rightarrow \gamma \gamma \ell^+ \ell^-$	
31 From a sample of $\Upsilon(32)$ 32 Calculated by us. HE $\gamma \Upsilon(1S)) = (0.05 \pm 0.05)$	$5) \rightarrow \gamma \gamma \mu^+ \mu^-$ with one EINTZ 92 quotes B(Υ (35 04 ± 0.01)% using B(Υ (1.	converted photon. 5) $\rightarrow \gamma \chi_{b0}(2P) \times B(\chi_{b0}(2P) \rightarrow S) \rightarrow \mu^+ \mu^-) = (2.57 \pm 0.05)\%.$	NODE=M079A02 NODE=M079A02
$ [B(\chi_{b0}(2P) \to \gamma \mathcal{T}(1S)) \times B(\mathcal{T}(3S) + \mathcal{T}(1S)) \times B(\mathcal{T}(3S) + \mathcal{T}(1S)) \times B(\mathcal{T}(3S) + \mathcal{T}(1S)) $	$\begin{array}{l} \text{5))} \times \text{B}(\varUpsilon(35) \rightarrow \gamma_{\chi}) \\ \rightarrow \gamma_{\chi b1}(2P))] \\ \qquad \qquad$	(b0 (2P))] / [B(χ _{b1} (2P) →	NODE=M079A0 NODE=M079A0
1.71±0.80	³³ LEES	14M BABR $\Upsilon(3S) o \gamma \gamma \mu^+ \mu^-$	
33 From a sample of $\Upsilon(33)$	5) $\rightarrow \gamma \gamma \mu^+ \mu^-$ without of	converted photons.	NODE=M079A0
$\Gamma(\chi_{b0}(2P) \rightarrow \gamma \Upsilon(2S))$	$)/\Gamma_{total} \times \Gamma(\Upsilon(3S) -$	$\gamma \chi_{b0}(2P))/\Gamma_{total}$	
		$\Gamma_1/\Gamma imes\Gamma_{22}^{m{ au}(3S)}/\Gamma^{m{ au}(3S)}$	NODE=M079B0

VALUE (units 10^{-3})	CL%	DOCUMENT I	D	TECN	COMMENT	
<1.6	90	³⁴ LEES	11J	BABR	$\Upsilon(3S) \rightarrow X\gamma$	
34 LEES 11J quotes a d	central	value of $\Gamma(\chi_{b0}(2$	$P) \rightarrow \gamma$	$\gamma \Upsilon(2S))$	$)/\Gamma_{total} \times \Gamma(2)$	$r(3S) \rightarrow$
$\gamma \chi_{b0}(2P))/\Gamma_{total} =$	= (-0	$.3 \pm 0.2^{+0.5}_{-0.4})\%$	and de	rives a	90% CL upper	limit of
$B(\chi_{b0}(2P) \rightarrow \gamma \Upsilon($	2 <i>S</i>)) <	2.8% using B(γ	$(3S) \rightarrow$	$\gamma \chi_{b0}(2$	$(P)) = (5.9 \pm 0)$.6)%.

NODE=M079R11	
NODE=M079R11	

NODE=M079R11;LINKAGE=AS

NODE=M079R12 NODE=M079R12

NODE=M079R12;LINKAGE=AS

NODE=M079R13 NODE=M079R13

NODE=M079R13;LINKAGE=AS

NODE=M079R14 NODE=M079R14

NODE=M079R14;LINKAGE=AS

NODE=M079R15 NODE=M079R15

NODE=M079R15;LINKAGE=AS

NODE=M079B01 NODE=M079B01

NODE=M079B01;LINKAGE=LE

2 2

2;LINKAGE=A 2;LINKAGE=K

0

0;LINKAGE=A

NODE=M079B02

NODE=M079B02;LINKAGE=LE

NODE=M079

$B(\chi_{b0}(2P) \rightarrow \gamma \Upsilon(2S))$	$\times B(\Upsilon(3S) \rightarrow DOCUMENT)$	γχ _{b0} (2P)) ×	$B(\Upsilon(2S) \to \ell^+ \ell^-)$	NODE=M079A03 NODE=M079A03
4.4±1.6 OUR AVERAGE	BOCOMENT		COMMENT	
$6.6 \substack{+4.9 + 2.0 \\ -4.0 - 0.3}$	³⁵ LEES	14M BABR	$\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$	
$4.0 \pm 1.7 \pm 0.3$	³⁶ HEINTZ	92 CSB2	$\Upsilon(3S) \rightarrow \gamma \gamma \ell^+ \ell^-$	
$ \begin{array}{l} {}^{35} \text{From a sample of } \Upsilon(3S) \\ {}^{36} \text{Calculated by us. HEIN} \\ \gamma \Upsilon(2S)) = (0.28 \pm 0.12 \end{array} $	$ ightarrow \gamma \gamma \mu^+ \mu^-$ with TZ 92 quotes B(\pm 0.03)% using B(one converted p $\Upsilon(3S) \rightarrow \gamma \chi_b$ $\Upsilon(2S) \rightarrow \mu^+ \mu^+$	hoton. $_{0}(2P))$ ×B($\chi_{b0}(2P)$ → $^{-}) = (1.44 \pm 0.10)\%.$	NODE=M079A03;LINKAGE=A NODE=M079A03;LINKAGE=B
$ [B(\chi_{b0}(2P) \rightarrow \gamma \mathcal{T}(2S)) \\ \gamma \mathcal{T}(2S)) \times B(\mathcal{T}(3S) \rightarrow \mathcal{V}_{ALUE}(\%) $	× B($\Upsilon(3S) \rightarrow \gamma \chi_{b1}(2P)$)]	γχ_Ю(2Р))] ID <u>тес</u> м	/ [B(χ _{b1} (2P) →	NODE=M079A01 NODE=M079A01
3.31±0.56	³⁷ LEES	14M BABR	$\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$	
37 From a sample of $\Upsilon(3S)$ -	$\rightarrow \gamma \gamma \mu^+ \mu^-$ with	out converted ph	otons.	NODE=M079A01;LINKAGE=A

$\chi_{b0}(2P)$ REFERENCES

LEES	14M	PR D90 112010	J.P. Lees et al.	(BABAR Collab.)	REFID=56343
LEES	11J	PR D84 072002	J.P. Lees <i>et al.</i>	(BABAR Collab.)	REFID=53936
ASNER	08A	PR D78 091103	D.M. Asner et al.	(CLEO Collab.)	REFID=52574
BRIERE	08	PR D78 092007	R.A. Briere et al.	(CLEO Collab.)	REFID=52577
ARTUSO	05	PRL 94 032001	M. Artuso <i>et al.</i>	(CLEO Collab.)	REFID=50454
CRAWFORD	92B	PL B294 139	G. Crawford et al.	(CLEO Collab.)	REFID=43177
HEINTZ	92	PR D46 1928	U. Heintz <i>et al.</i>	(CUSB II Collab.)	REFID=43604
HEINTZ	91	PRL 66 1563	U. Heintz <i>et al.</i>	(CUSB Collab.)	REFID=41580
MORRISON	91	PRL 67 1696	R.J. Morrison et al.	(CLEO Collab.)	REFID=41634
NARAIN	91	PRL 66 3113	M. Narain <i>et al.</i>	(CUSB Collab.)	REFID=41586