NODE=M189

Page 1

 $\psi$ (4660) MASS DOCUMENT ID TECN COMMENT NODE=M189M VALUE (MeV) EVTS **4623**  $\pm$  **10 OUR AVERAGE** Error includes scale factor of 3.7. See the ideogram below. <sup>1</sup> ABLIKIM 24bn BES3  $e^+e^- \rightarrow D_s^+D_{s2}^*(2573)^-$ 24bn BES3  $e^+e^- \rightarrow D_s^+D_{s1}(2536)^ 4603.1 \pm \ 3.9 \pm \ 0.8$ I <sup>2</sup> ABLIKIM OCCUR=2  $4584 \pm 14 \pm 80$ 4708  $^{+17}_{-15}$   $\pm 21$ 23BI BES3  $e^+e^- \rightarrow K^+K^-J/\psi$ <sup>3</sup> ABLIKIM 23H BES3  $e^+e^- \rightarrow \phi \chi_{62}^2$ 23X BES3  $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$  $4701.8 \!\pm\! 10.9 \!\pm\ 2.7$ <sup>4</sup> ABLIKIM <sup>5</sup> ABLIKIM  $4675.3 {\pm} 29.5 {\pm} 3.5$ 21AJ BES3  $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ <sup>6</sup> ABLIKIM  $4651.0 \pm 37.8 \pm \ 2.1$  $4619.8^+_{-}\ \begin{array}{c} 8.9 \\ 8.0 \\ \pm \end{array} 2.3$ 20 BELL  $e^+e^- \rightarrow \gamma D_s^+ D_{s2}^*(2573)^-$ <sup>7</sup> JIA 66  $4625.9^+_{-} \begin{array}{c} 6.2 \\ 6.0 \\ \pm \end{array} 0.4$ <sup>8</sup> JIA 19A BELL  $e^+e^- \rightarrow \gamma D_s^+ D_{s1}(2536)^-$ 89 4652 ±10 ±11 15A BELL 10.58  $e^+e^- \rightarrow \gamma \pi^+ \pi^- \psi(2S)$ 279 <sup>9</sup> WANG BABR 10.58  $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ <sup>10</sup> LEES  $4669 \quad \pm 21 \quad \pm \quad 3$ 37 14F 4634 + 8 + 5-7 - 8<sup>11</sup> PAKHLOVA 08B BELL  $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$ 142 • • • We do not use the following data for averages, fits, limits, etc. • • • <sup>12</sup> ABLIKIM 22R BES3  $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$  $4647.9 \pm \ 8.6 \pm \ 0.8$ 17 RVUE  $e^+e^- \rightarrow \Lambda^+_c \Lambda^-_c$ 17B RVUE  $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ <sup>13</sup> DAI  $4652.5 \pm \ 3.4 \pm \ 1.1$ <sup>14</sup> ZHANG  $4645.2 \pm \ 9.5 \pm \ 6.0$ 17C RVUE  $e^+e^- \rightarrow \pi^+\pi^- J/\psi$  or <sup>15</sup> ZHANG  $4646.4 \pm \ 9.7 \pm \ 4.8$  $\psi(2S)$ 4661  $^+$   $^9$   $\pm$  6 08H RVUE 10.58  $e^+e^- \rightarrow \gamma \pi^+ \pi^- \psi(2S)$ <sup>16</sup> LIU BELL 10.58  $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ 4664  $\pm 11$   $\pm$  5 WANG 44 07D <sup>1</sup> Extracted in a fit that employs two BW resonances. The second one at about 4720 MeV NODE=M189M;LINKAGE=N shows low statistical significance of 2.7  $\sigma$ .  $^2$ Extracted from a fit with two BW functions. The second one located at about 4750 NODE=M189M;LINKAGE=O MeV show a low statistical significance of 4.3  $\sigma.$ <sup>3</sup>Seen as a peak in the c.m. energy dependence of the  $e^+e^- 
ightarrow K^+K^-J/\psi$  cross NODE=M189M;LINKAGE=M section using 5.85 fb $^{-1}$  of data at c.m. energies 4.61–4.95 GeV. Statistical significance is over  $5\sigma$ . <sup>4</sup> Fit model parameterized as the coherent sum of a Breit-Wigner resonance and a contin-NODE=M189M;LINKAGE=J uum amplitude term. <sup>5</sup> From a cross-section measurement of  $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$  between 4.189 and 4.951 NODE=M189M;LINKAGE=L GeV, assuming a coherent sum of 3 Breit-Wigner resonances plus a continuum amplitude. The two other resonances have masses (widths) 4209.6  $\pm$  7.5 (81.6  $\pm$  19.9) MeV and 4469.1  $\pm$  26.4 (246.3  $\pm$  37.9) MeV.  $^6\,{\sf From}$  a three-resonance fit to the Born cross section in the range  $\sqrt{s}\,=\,4.008{-}4.698$ GeV. <sup>7</sup> Using  $D^*_{s2}(2573)^- \rightarrow \overline{D}^0 K^-$  decays. <sup>8</sup>From a fit of a Breit-Wigner convolved with a Gaussian.  $^9$  From a two-resonance fit. Supersedes WANG 07D.  $^{10}$  From a two-resonance fit. <sup>11</sup>The  $\pi^+\pi^-\psi(2S)$  and  $\Lambda^+_c\Lambda^-_c$  states are not necessarily the same.  $^{12}\,{\rm From}$  a fit to the  $e^+\,e^ \rightarrow~\pi^+\,\pi^-\,\psi(3823)$  cross section between 4.23 and 4.70 GeV with two coherent Breit-Wigner resonances. The data is also consistent with a single peak with mass 4417.5  $\pm$  26.2  $\pm$  3.5 MeV and width 245  $\pm$  48  $\pm$  13 MeV.

 $^{13}\ensuremath{\,{\rm The}}$  pole parameters are extracted from the speed plot.

 $^{14}$  From a three-resonance fit.

 $^{15}$  From a combined fit of BELLE, BABAR and BES3  $e^+e^- 
ightarrow \pi^+\pi^- J/\psi$  and  $e^+e^- 
ightarrow$  $\pi^+\pi^-\psi(2S)$  data.

 $^{16}\,\mathrm{From}$  a combined fit of AUBERT 07S and WANG 07D data with two resonances.

NODE=M189

NODE=M189M

NODE=M189M;LINKAGE=G

NODE=M189M;LINKAGE=F NODE=M189M;LINKAGE=E NODE=M189M;LINKAGE=A NODE=M189M;LINKAGE=LE

NODE=M189M;LINKAGE=PA NODE=M189M;LINKAGE=I

NODE=M189M;LINKAGE=C NODE=M189M;LINKAGE=D NODE=M189M;LINKAGE=B

NODE=M189M;LINKAGE=LI



also known as Y(4660); was X(4660)

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$ 

See the reviews on the "Spectroscopy of Mesons Containing two

Heavy Quarks" and on "Heavy Non-qqbar Mesons."



## ψ(4660) WIDTH

TECN

COMMENT

DOCUMENT ID

VALUE (MeV)

EVTS

NODE=M189W

NODE=M189W

| 55 $\pm$ 9 OUR AVERAGE                                                            | Error includes so                                                          | cale factor of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.9. See the ideogram below.                                                                                        |   |                      |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---|----------------------|
| $57 \pm 12 \pm 219$                                                               | <sup>1</sup> ABLIKIM 2                                                     | 24BN BES3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $e^+e^- \rightarrow D_c^+ D_{s1}(2536)^-$                                                                           |   |                      |
| $45.2\pm~5.7\pm~0.7$                                                              | <sup>2</sup> ABLIKIM 2                                                     | 24BN BES3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $e^+e^- \rightarrow D_s^+ D_{s2}^* (2573)^-$                                                                        | I | OCCUR=2              |
| $126 \begin{array}{r} +27\\ -23\end{array} \pm 30$                                | <sup>3</sup> ABLIKIM 2                                                     | 23BI BES3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $e^+e^- \rightarrow K^+K^-J/\psi$                                                                                   |   |                      |
| $30.5\pm22.3\pm$ 14.6<br>218.3 $\pm$ 72.9 $\pm$ 9.3<br>155.4 $\pm$ 24.8 $\pm$ 0.8 | <sup>4</sup> ABLIKIM 2<br><sup>5</sup> ABLIKIM 2<br><sup>6</sup> ABLIKIM 2 | 23н BES3<br>23х BES3<br>21ат BES3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $e^+e^- \rightarrow \phi \chi_{C^2}$ $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$ $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ |   |                      |
| $47.0^{+31.3}_{-14.8} \pm 4.6$ 66                                                 | <sup>7</sup> JIA 2                                                         | 20 BELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $e^+e^- \rightarrow \gamma D_s^+ D_{s2}^* (2573)^-$                                                                 |   |                      |
| $49.8^{+13.9}_{-11.5}\pm$ 4.0 89                                                  | <sup>8</sup> JIA 1                                                         | 19A BELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $e^+e^- \rightarrow \gamma D_s^+ D_{s1}(2536)^-$                                                                    |   |                      |
| $68 \pm 11 \pm 5 \qquad 279$                                                      | <sup>9</sup> WANG 1                                                        | 15A BELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $10.58 \ e^+ e^- \rightarrow \\ \gamma \pi^+ \pi^- \psi(2S)$                                                        |   |                      |
| $104 \pm 48 \pm 10$ 37                                                            | <sup>10</sup> LEES 1                                                       | l4f BABR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $10.58 e^+ e^- \rightarrow \gamma \pi^+ \pi^- \psi(2S)$                                                             |   |                      |
| 92 $\begin{array}{rrrr} +40 & + & 10 \\ -24 & - & 21 \end{array}$ 142             | <sup>11</sup> PAKHLOVA 0                                                   | )8в BELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$                                                                        |   |                      |
| $\bullet$ $\bullet$ We do not use the following                                   | owing data for ave                                                         | erages, fits, li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mits, etc. • • •                                                                                                    |   |                      |
| $33.1 \pm 18.6 \pm 4.1$                                                           | <sup>12</sup> ABLIKIM 2                                                    | 22R BES3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$                                                                      |   |                      |
| $62.6\pm~5.6\pm~4.3$                                                              | <sup>13</sup> DAI 1                                                        | 17 RVUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $e^+e^- \rightarrow \Lambda^+_c \Lambda^c$                                                                          |   |                      |
| $113.8 \pm 18.1 \pm 3.4$                                                          | <sup>14</sup> ZHANG 1                                                      | l7в RVUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$                                                                             |   |                      |
| $103.5 \pm 15.6 \pm 4.0$                                                          | <sup>15</sup> ZHANG 1                                                      | 17c RVUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $e^+e^-  ightarrow \pi^+\pi^- J/\psi$ or $\psi(2S)$                                                                 |   |                      |
| $42 \begin{array}{c} +17 \\ -12 \end{array} \pm  6 \qquad 44$                     | <sup>16</sup> LIU 0                                                        | 08н RVUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $10.58 \ e^+ e^- \rightarrow \\ \gamma \pi^+ \pi^- \psi(2S)$                                                        |   |                      |
| $48  \pm 15  \pm  3 \qquad \qquad 44$                                             | WANG 0                                                                     | 07D BELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $10.58 e^+ e^- \rightarrow \gamma \pi^+ \pi^- \psi(2S)$                                                             |   |                      |
| <sup>1</sup> Extracted from a fit with<br>MeV show a low statistica               | two BW function<br>al significance of 4                                    | ns. The second | ond one located at about 4750                                                                                       |   | NODE=M189W;LINKAGE=M |
| <sup>2</sup> Extracted in a fit that emp<br>shows low statistical signi           | ploys two BW reso ficance of 2.7 $\sigma$ .                                | onances. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | second one at about 4720 MeV                                                                                        |   | NODE=M189W;LINKAGE=N |

<sup>3</sup>Seen as a peak in the c.m. energy dependence of the  $e^+e^- \rightarrow K^+K^-J/\psi$  cross section using 5.85 fb<sup>-1</sup> of data at c.m. energies 4.61–4.95 GeV. Statistical significance is over  $5\sigma$ .

<sup>4</sup> Fit model parameterized as the coherent sum of a Breit-Wigner resonance and a continuum amplitude term.

<sup>5</sup> From a cross-section measurement of  $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$  between 4.189 and 4.951 GeV, assuming a coherent sum of 3 Breit-Wigner resonances plus a continuum amplitude. The two other resonances have masses (widths) 4209.6 ± 7.5 (81.6 ± 19.9) MeV and 4469.1 ± 26.4 (246.3 ± 37.9) MeV.

 $^{6}\,{\rm From}$  a three-resonance fit to the Born cross section in the range  $\sqrt{s}=$  4.008–4.698 GeV.

NODE=M189W;LINKAGE=H

NODE=M189W;LINKAGE=L

NODE=M189W;LINKAGE=J

NODE=M189W;LINKAGE=K

- <sup>7</sup> Using  $D^*_{s2}(2573)^- \rightarrow \overline{D}{}^0 K^-$  decays. <sup>8</sup> From a fit of a Breit-Wigner convolved with a Gaussian.

 $^9$  From a two-resonance fit. Supersedes WANG 07D.

 $^{10}\,\mathrm{From}$  a two-resonance fit.

<sup>11</sup> The  $\pi^+\pi^-\psi(2S)$  and  $\Lambda_c^+\Lambda_c^-$  states are not necessarily the same. <sup>12</sup> From a fit to the  $e^+e^- \rightarrow \pi^+\pi^-\psi(3823)$  cross section between 4.23 and 4.70 GeV with two coherent Breit-Wigner resonances. The data is also consistent with a single peak with mass 4417.5  $\pm$  26.2  $\pm$  3.5 MeV and width 245  $\pm$  48  $\pm$  13 MeV.

- $^{13}$  The pole parameters are extracted from the speed plot.
- 14 From a three-resonance fit.

 $^{15}$  From a combined fit of BELLE, BABAR and BES3  $e^+\,e^- \rightarrow \,\pi^+\,\pi^-\,J/\psi$  and  $e^+\,e^- \rightarrow$  $\pi^+\pi^-\psi(2S)$  data.

 $^{16}\,\mathrm{From}$  a combined fit of AUBERT 07S and WANG 07D data with two resonances.



# $\psi$ (4660) DECAY MODES

|                 | Mode                                          | Fraction $(\Gamma_i/\Gamma)$ |                                                           |
|-----------------|-----------------------------------------------|------------------------------|-----------------------------------------------------------|
| Γ <sub>1</sub>  | e <sup>+</sup> e <sup>-</sup>                 | not seen                     | DESIG=1;OUR EVAL; $\rightarrow$ UNCHECKED $\leftarrow$    |
| Γ2              | $\psi(2S)\pi^+\pi^-$                          | seen                         | DESIG=2;OUR EVAL; $\rightarrow$ UNCHECKED $\leftarrow$    |
| Г3              | $J/\psi\eta$                                  | not seen                     | DESIG=4;OUR EVAL; $\rightarrow$ UNCHECKED $\leftarrow$    |
| Γ <sub>4</sub>  | $D^0 D^{*-} \pi^+$                            | not seen                     | DESIG=3;OUR EVAL; $\rightarrow$ UNCHECKED $\leftarrow$    |
| Г <sub>5</sub>  | $D^{*0} D^{*-} \pi^+$                         | seen                         | $DESIG{=}15;\!OUR\;EVAL;\!\rightarrowUNCHECKED$           |
| Γ <sub>6</sub>  | $\psi_2(3823)\pi^+\pi^-$                      | seen                         | DESIG=10                                                  |
| Γ <sub>7</sub>  | $\chi_{c1}\gamma$                             | not seen                     | $DESIG{=}6; OUR \ EVAL; \rightarrow UNCHECKED \leftarrow$ |
| Г <sub>8</sub>  | $\chi_{c1}\phi$                               | not seen                     | $DESIG{=}13; OUR\ EVAL; {\rightarrow}\ UNCHECKED$         |
| Г9              | $\chi_{c2}\gamma$                             | not seen                     | DESIG=7;OUR EVAL; $\rightarrow$ UNCHECKED $\leftarrow$    |
| Γ <sub>10</sub> | $\chi_{c2}\phi$                               | not seen                     | $DESIG{=}14{;}OUR\;EVAL{;}{\rightarrow}\;UNCHECKED$       |
| $\Gamma_{11}$   | $\Lambda_{c}^{+}\Lambda_{c}^{-}$              | seen                         | DESIG=5;OUR EVAL; $\rightarrow$ UNCHECKED $\leftarrow$    |
| Г <sub>12</sub> | $D_{s}^{+}D_{s1}^{-}(2536)^{-}$               | seen                         | DESIG=8;OUR EVAL; $\rightarrow$ UNCHECKED $\leftarrow$    |
| Г <sub>13</sub> | $D_{s}^{+}D_{s2}^{*}(2573)^{-}$               | seen                         | DESIG=9;OUR EVAL; $\rightarrow$ UNCHECKED $\leftarrow$    |
| Г <sub>14</sub> | $\omega \pi^0$                                | not seen                     | DESIG=11                                                  |
| Γ <sub>15</sub> | $\omega \eta$                                 | not seen                     | DESIG=12                                                  |
| Г <sub>16</sub> | $\Sigma^+ \overline{\Sigma}^-$                | not seen                     | $DESIG{=}18; OUR\ EVAL; {\rightarrow}\ UNCHECKED$         |
| Γ <sub>17</sub> | <u>=0</u> <u>=</u> 0                          |                              | DESIG=21                                                  |
| Г <sub>18</sub> | <u>=</u> - <u>=</u> +                         | not seen                     | $DESIG{=}16;\!OUR\;EVAL;\!\rightarrowUNCHECKED$           |
| Г <sub>19</sub> | $pK^{-}\overline{\Lambda}$ + c.c.             | not seen                     | $DESIG{=}17; OUR\ EVAL; {\rightarrow}\ UNCHECKED$         |
| Γ <sub>20</sub> | $\Lambda \overline{\Xi}^+ K^- + \text{c.c.}$  | not seen                     | $DESIG{=}19; OUR\ EVAL; {\rightarrow}\ UNCHECKED$         |
| Γ <sub>21</sub> | $\Sigma^0 \overline{\Xi}^+ K^- + \text{c.c.}$ | not seen                     | $DESIG{=}20;\!OUR\;EVAL;\!\rightarrowUNCHECKED$           |

NODE=M189W;LINKAGE=G NODE=M189W;LINKAGE=F NODE=M189W;LINKAGE=A NODE=M189W;LINKAGE=LE

NODE=M189W;LINKAGE=B NODE=M189W;LINKAGE=I

NODE=M189W:LINKAGE=D NODE=M189W;LINKAGE=E NODE=M189W;LINKAGE=C

NODE=M189W;LINKAGE=LI

NODE=M189215;NODE=M189

## $\psi(4660) \Gamma(i) \times \Gamma(e^+e^-)/\Gamma(total)$

| $\Gamma(\psi(2S)\pi^{+}\pi^{-}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} \qquad \Gamma_{2}\Gamma_{1}/\Gamma$ |           |                      |                |                                                      |  |  |
|---------------------------------------------------------------------------------------------------------------------|-----------|----------------------|----------------|------------------------------------------------------|--|--|
| VALUE (eV)                                                                                                          | EVTS      | DOCUMENT ID          | TECN           | COMMENT                                              |  |  |
| • • • We do no                                                                                                      | ot use th | e following data for | averages, fits | , limits, etc. ● ● ●                                 |  |  |
| 4.7±3.8                                                                                                             |           | <sup>1</sup> ABLIKIM | 21AJ BES3      | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$              |  |  |
| $11.2 \pm 3.2$                                                                                                      |           | <sup>2</sup> ABLIKIM | 21AJ BES3      | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$              |  |  |
| 4.7±4.2                                                                                                             |           | <sup>3</sup> ABLIKIM | 21AJ BES3      | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$              |  |  |
| $11.3 \pm 3.3$                                                                                                      |           | <sup>4</sup> ABLIKIM | 21AJ BES3      | $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$              |  |  |
| $2.0\!\pm\!0.3\!\pm\!0.2$                                                                                           | 279       | <sup>5</sup> WANG    | 15A BELL       | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |  |  |
| $8.1\!\pm\!1.1\!\pm\!1.0$                                                                                           | 279       | <sup>6</sup> WANG    | 15A BELL       | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |  |  |
| $2.7\!\pm\!1.3\!\pm\!0.5$                                                                                           | 37        | <sup>7</sup> LEES    | 14F BABR       | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |  |  |
| $7.5\!\pm\!1.7\!\pm\!0.7$                                                                                           | 37        | <sup>8</sup> LEES    | 14F BABR       | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |  |  |
| $2.2^{+0.7}_{-0.6}$                                                                                                 | 44        | <sup>9</sup> LIU     | 08H RVUE       | 10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$         |  |  |
| $5.9 \pm 1.6$                                                                                                       | 44        | <sup>10</sup> LIU    | 08H RVUE       | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |  |  |
| $3.0\!\pm\!0.9\!\pm\!0.3$                                                                                           | 44        | <sup>7</sup> WANG    | 07D BELL       | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |  |  |
| $7.6 \pm 1.8 \pm 0.8$                                                                                               | 44        | <sup>8</sup> WANG    | 07D BELL       | 10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$ |  |  |

<sup>1</sup>Solution I of four equivalent solutions in a fit using three interfering resonances.

 $^2$ Solution II of four equivalent solutions in a fit using three interfering resonances.

 $^3$ Solution III of four equivalent solutions in a fit using three interfering resonances.

 $\frac{4}{5}$  Solution IV of four equivalent solutions in a fit using three interfering resonances.

 <sup>5</sup> Solution I of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D.
 <sup>6</sup> Solution II of two equivalent solutions from a fit using two interfering resonances. Su-

<sup>o</sup> Solution II of two equivalent solutions from a fit using two interfering resonances. Su-\_ persedes WANG 07D.

<sup>7</sup>Solution I of two equivalent solutions in a fit using two interfering resonances.

 $^{8}$ Solution II of two equivalent solutions in a fit using two interfering resonances.

 $^9$  Solution I in a combined fit of AUBERT 07S and WANG 07D data with two resonances.  $^{10}$  Solution II in a combined fit of AUBERT 07S and WANG 07D data with two resonances.

| $\Gamma(J/\psi\eta) \times \Gamma($ | $(e^+e^-)/\Gamma_{tota}$ | I                       |             |            | $\Gamma_3\Gamma_1/\Gamma$ |
|-------------------------------------|--------------------------|-------------------------|-------------|------------|---------------------------|
| VALUE (eV)                          | CL%                      | DOCUMENT ID             | TECN        | COMMENT    |                           |
| • • • We do not                     | use the followin         | g data for averages, fi | ts, limits, | etc. • • • |                           |
|                                     |                          |                         |             |            |                           |

| <0.94 | 90 | WANG | <b>13</b> B | BELL | $e^+e^-$ | $\rightarrow$ | $J/\psi \eta \gamma$ |
|-------|----|------|-------------|------|----------|---------------|----------------------|
|       |    |      |             |      |          |               |                      |

| $\Gamma(D^{*0}D^{*-}\pi^+)$ | $\times \Gamma(e^+e^-)$ | /Γ <sub>total</sub> |      |         | $\Gamma_5\Gamma_1/\Gamma$ |
|-----------------------------|-------------------------|---------------------|------|---------|---------------------------|
| VALUE (eV)                  |                         | DOCUMENT ID         | TECN | COMMENT |                           |
|                             |                         |                     |      |         |                           |

 $\bullet$   $\bullet$   $\bullet$  We do not use the following data for averages, fits, limits, etc.  $\bullet$   $\bullet$ 

19 to 2005 <sup>1</sup> ABLIKIM 23X BES3  $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$ 

<sup>1</sup> From a cross-section measurement of  $e^+e^- \rightarrow D^{*0}D^{*-}\pi^+$  between 4.189 and 4.951 GeV, assuming a coherent sum of 3 Breit-Wigner resonances plus a continuum amplitude. Depending on solutions I – VIII with same fit qualities.

| $\Gamma(\chi_{c1}\gamma) \times \Gamma(e^+)$  | e <sup>-</sup> )/Γ <sub>tota</sub> | l                |    |      |                            | Γ <sub>7</sub> Γ <sub>1</sub> /Γ |
|-----------------------------------------------|------------------------------------|------------------|----|------|----------------------------|----------------------------------|
| VALUE (eV)                                    | <u>CL%</u>                         | DOCUMENT ID      |    | TECN | COMMENT                    |                                  |
| <0.45                                         | 90                                 | <sup>1</sup> HAN | 15 | BELL | 10.58 $e^+e^- \rightarrow$ | $\chi_{c1\gamma}$                |
| $^1$ Using B( $\eta  ightarrow \gamma \gamma$ | ) = (39.41                         | $\pm$ 0.21)%.    |    |      |                            |                                  |

| $\Gamma(\chi_{c1}\phi) \times \Gamma(e^{-})$ | $^+e^-)/\Gamma_{total}$ | l                       |               |            | Γ <sub>8</sub> Γ <sub>1</sub> /Γ |
|----------------------------------------------|-------------------------|-------------------------|---------------|------------|----------------------------------|
| VALUE (eV)                                   | <u>CL%</u>              | DOCUMENT ID             | TECN          | COMMENT    |                                  |
| • • • We do not us                           | e the followin          | g data for averages, fi | ts, limits, o | etc. • • • |                                  |

<0.04</p>
90
<sup>1</sup> ABLIKIM
23H BES3  $e^+e^- \rightarrow \phi \chi_{c1}$ 

<sup>1</sup> Fit model parameterized as the coherent sum of a Breit-Wigner resonance and a continuum amplitude term.

| $\Gamma(\chi_{c2}\gamma) \times \Gamma(\epsilon)$ | $(+ e^{-})/\Gamma_{total}$          | l                |    |      |                                     | Γ9Γ1/Γ                            |
|---------------------------------------------------|-------------------------------------|------------------|----|------|-------------------------------------|-----------------------------------|
| VALUE (eV)                                        | <u>CL%</u>                          | DOCUMENT ID      |    | TECN | COMMENT                             |                                   |
| <2.1                                              | 90                                  | <sup>1</sup> HAN | 15 | BELL | 10.58 e <sup>+</sup> e <sup>-</sup> | $\rightarrow \chi_{c2}\gamma$     |
| $^1$ Using B( $\eta  ightarrow$                   | $\gamma\gamma) = (39.41$ :          | $\pm$ 0.21)%.    |    |      |                                     |                                   |
| $\Gamma(\chi_{c2}\phi) \times \Gamma(\epsilon)$   | $(e^+ e^-) / \Gamma_{\text{total}}$ | I                |    |      |                                     | Г <sub>10</sub> Г <sub>1</sub> /Г |
| VALUE (eV)                                        |                                     | DOCUMENT ID      |    | TECN | COMMENT                             |                                   |

ullet ul

0.13±0.13 <sup>1</sup> ABLIKIM 23H BES3  $e^+e^- \rightarrow \phi \chi_{c2}$ 

 $^1$  Fit model parameterized as the coherent sum of a Breit-Wigner resonance and a continuum amplitude term. Constructive solution of the interference. Destructive solution gives 0.66  $\pm$  0.41 eV.

NODE=M189230

NODE=M189G1 NODE=M189G1

| OCCUR=2<br>OCCUR=3<br>OCCUR=4 |
|-------------------------------|
| OCCUR=2                       |
| OCCUR=2                       |
|                               |

OCCUR=2

OCCUR=2

NODE=M189G1;LINKAGE=C NODE=M189G1;LINKAGE=D NODE=M189G1;LINKAGE=E NODE=M189G1;LINKAGE=F NODE=M189G1;LINKAGE=A NODE=M189G1;LINKAGE=B

NODE=M189G1;LINKAGE=WA NODE=M189G1;LINKAGE=WN NODE=M189G1;LINKAGE=LI NODE=M189G1;LINKAGE=LU

NODE=M189G01 NODE=M189G01

#### NODE=M189R10 NODE=M189R10

NODE=M189R10;LINKAGE=A

NODE=M189G02 NODE=M189G02

NODE=M189G02;LINKAGE=A

NODE=M189R08 NODE=M189R08

#### NODE=M189R08;LINKAGE=A

NODE=M189G03 NODE=M189G03

NODE=M189G03;LINKAGE=A

NODE=M189R09 NODE=M189R09

| $\Gamma(D_s^+ D_{s1}(2536)^-) \times \Gamma(e^+ e^-) / \Gamma_{\text{total}} \qquad \Gamma_{12} \Gamma_1 / \Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NODE=M189R00<br>NODE=M189R00    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <b>14.3<sup>+2.8</sup></b> ±1.5 89 <sup>1</sup> JIA 19A BELL $e^+e^- \rightarrow \gamma D^+ D_{-1}(2536)^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| <sup>1</sup> Assuming $B(D_{s1}(2536)^- \rightarrow \overline{D}^{*0}K^-) = 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NODE=M189R00:LINKAGE=A          |
| $\Gamma(D^+ D^* a^{(2573)^-}) \times \Gamma(e^+ e^-) / \Gamma_{\text{testal}} \qquad \Gamma_{12} \Gamma_1 / \Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| VALUE (eV) = VTS DOCUMENT ID TECN COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NODE=M189R04<br>NODE=M189R04    |
| <b>14.7<sup>+5.9</sup><sub>-4.5</sub>±3.6</b> 66 <sup>1</sup> JIA 20 BELL $e^+e^- \rightarrow \gamma D_s^+ D_{s2}^* (2573)^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| <sup>1</sup> Assuming B( $D^*_{s2}(2573)^- \rightarrow \overline{D}{}^0 \kappa^-) = 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=M189R04;LINKAGE=A          |
| $\Gamma(\Sigma^+\overline{\Sigma}^-) \times \Gamma(e^+e^-)/\Gamma_{total}$ $\Gamma_{16}\Gamma_1/\Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=M189R14                    |
| VALUE (eV)     CL%     DOCUMENT ID     TECN     COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=M189R14                    |
| <49.6 × 10 <sup>-3</sup> 90 <sup>1</sup> ABLIKIM 24AH BES3 $e^+e^- \rightarrow \Sigma^+\overline{\Sigma}^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| <sup>1</sup> Interference effect between resonance and continuum amplitudes is considered. Two solutions from the fit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NODE=M189R14;LINKAGE=A          |
| $\Gamma(\Xi^{0}\overline{\Xi}^{0}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} \qquad \Gamma_{17}\Gamma_{1}/\Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=M189R17                    |
| VALUE (eV)         CL%         DOCUMENT ID         TECN         COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=M189R17                    |
| <b>&lt;45.0 × 10<sup>-3</sup></b> 90 <sup>1</sup> ABLIKIM 24cd BES3 $e^+e^- \rightarrow \psi(4660)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| $^1$ From a fit to $e^+e^-  ightarrow ~ \Xi^0 \Xi^0$ cross sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NODE=M189R17;LINKAGE=A          |
| $\Gamma(\Xi^{-}\overline{\Xi}^{+}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} \qquad \Gamma_{18}\Gamma_{1}/\Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=M189R11                    |
| VALUE (eV)         CL%         DOCUMENT ID         TECN         COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=M189R11                    |
| <b>&lt;19.9 × 10<sup>-3</sup></b> 90 <sup>1</sup> ABLIKIM 23BK BES3 $e^+e^- \rightarrow \psi$ (4660)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| <sup>1</sup> From a fit to $e^+e^-  ightarrow \overline{\Xi}^+ \overline{\Xi}^+$ cross sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NODE=M189R11;LINKAGE=A          |
| $\Gamma(pK^{-}\overline{\Lambda}+\text{c.c.}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} \qquad \Gamma_{19}\Gamma_{1}/\Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NODE=M189R13                    |
| VALUE (eV)         CL%         DOCUMENT ID         TECN         COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=M189R13                    |
| <b>&lt;2.8 × 10<sup>-3</sup></b> 90 <sup>1</sup> ABLIKIM 23BL BES3 $e^+e^- \rightarrow \psi(4660)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| <sup>1</sup> From a fit to $e^+e^- \rightarrow pK^-\overline{\Lambda}+$ c.c. cross sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NODE=M189R13;LINKAGE=A          |
| $\Gamma(\Lambda \overline{\Xi}^+ K^- + \text{c.c.}) \times \Gamma(e^+ e^-) / \Gamma_{\text{total}} \qquad \Gamma_{20} \Gamma_1 / \Gamma$ VALUE (eV) CL% DOCUMENT ID TECN COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NODE=M189R15<br>NODE=M189R15    |
| <b>&lt;13.0 × 10<sup>-3</sup></b> 90 <sup>1</sup> ABLIKIM 24AL BES3 $e^+e^- \rightarrow \Lambda \overline{\Xi}^+ K^- + c.c.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
| <sup>1</sup> A fit to the Born cross section of $e^+e^- \rightarrow \Lambda \overline{\Xi}^+ K^- + c.c.$ including interference with the continuum. Two solutions from the fit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NODE=M189R15;LINKAGE=A          |
| $\Gamma(\Sigma^{0}\overline{\Xi}^{+}K^{-}+c.c.) \times \Gamma(e^{+}e^{-})/\Gamma_{total} \qquad \Gamma_{21}\Gamma_{1}/\Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| VALUE (eV) CL% DOCUMENT ID TECN COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE = M189R16 $NODE = M189R16$ |
| <77.3 × 10 <sup>-3</sup> 90 <sup>1</sup> ABLIKIM 24AL BES3 $e^+e^- \rightarrow \Sigma^0 \overline{\Xi}^+ K^- + c.c.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| <sup>1</sup> A fit to the Born cross section of $e^+e^- \rightarrow \Sigma^0 \overline{\Xi}^+ K^- + c.c.$ including interference with the continuum. Two solutions from the fit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NODE=M189R16;LINKAGE=A          |
| $\psi$ (4660) Γ(i) × Γ( $e^+e^-$ )/Γ <sup>2</sup> (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NODE=M189235                    |
| $\Gamma(D^0 D^{*-} \pi^+) / \Gamma_{\text{total}} \times \Gamma(e^+ e^-) / \Gamma_{\text{total}} \qquad \Gamma_4 / \Gamma \times \Gamma_1 / \Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| VALUE <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u><br>$\sim 0.37 \times 10^{-6}$ 00 1 PAKHLOVA 00 PELL $2^+ 2^- \times 10^{-6}$ $0^{-+} -^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NUDE=M189K02                    |
| <b>1</b> Using 4664 $\pm$ 11 $\pm$ 5 MeV for the mass of $\psi$ (4660).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE=M189R02·LINKAGE=PA         |
| $\Gamma(A^+A^-)/\Gamma$ $\Gamma(A^+A^-)/\Gamma$ $\Gamma(A^+A^-)/\Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| $ (\Lambda_c \Lambda_c)/ _{\text{total}} \times  (e^+e^-)/ _{\text{total}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NODE=M189R03                    |
| VALUE (units 10 °)     EVIS     DOCUMENT ID     TECN     COMMENT       1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |
| <b>0.68</b> +0.15+0.29 142 1 PAKHLOVA 08B BELL $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| <sup>1</sup> The $\pi^+\pi^-\psi(2S)$ and $\Lambda^+_c\Lambda^c$ states are not necessarily the same.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NODE=M189R03;LINKAGE=A          |
| $\psi$ (4660) BRANCHING RATIOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NODE=M189225                    |
| $\Gamma(D^0 D^{*-} \pi^+) / \Gamma(\psi(2S) \pi^+ \pi^-) \qquad \Gamma_4 / \Gamma_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NODE=M189R01                    |
| <b>COMMENT ID COMMENT ID COMMENT COMMENT</b> |                                 |

| = ( + (222                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | - /-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $1(\psi_2(382))$                                                                                                                                                                                                                                                                                     | $(23)\pi^+\pi^-)/ _{total}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TECN                   | I 6/I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NODE=M189R05                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| seen                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>1</sup> ABLIKIM 22R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BES3                   | $\frac{e^+e^-}{\pi^+\pi^-}\chi_{c1}\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NODE-M109K05                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <sup>1</sup> From a with tw                                                                                                                                                                                                                                                                          | i fit to the e <sup>+</sup> e <sup>-</sup> -<br>vo coherent Breit-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\rightarrow \pi^+ \pi^- \psi(3823)$ cross se igner resonances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ection be              | etween 4.23 and 4.70 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NODE=M189R05;LINKAGE=A                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\Gamma(\omega \pi^0)/2$                                                                                                                                                                                                                                                                             | Γ <sub>total</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | Г <sub>14</sub> /Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NODE=M189R06                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VALUE                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TECN                   | COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NODE=M189R06                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| not seen                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABLIKIM 22K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BES3                   | $e^+ e^-  ightarrow \omega \pi^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\Gamma(\omega\eta)/\Gamma_{\eta}$                                                                                                                                                                                                                                                                   | total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | Г <sub>15</sub> /Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NODE=M189R07                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VALUE                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DOCUMENT ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TECN                   | COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NODE=M189R07                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| not seen                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABLIKIM 22K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BES3                   | $e^+e^- \rightarrow \omega \eta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\psi$ (4660) REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ES                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NODE=M189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABLIKIM<br>ABLIKIM<br>ABLIKIM<br>ABLIKIM<br>ABLIKIM<br>ABLIKIM<br>ABLIKIM<br>ABLIKIM<br>ABLIKIM<br>ABLIKIM<br>ABLIKIM<br>ABLIKIM<br>JIA<br>JIA<br>JIA<br>JIA<br>JIA<br>JIA<br>JIA<br>JIA<br>ZHANG<br>ZHANG<br>ZHANG<br>ZHANG<br>ZHANG<br>UAIS<br>ZHANG<br>LEES<br>WANG<br>PAKHLOVA<br>AUBERT<br>WANG | 24AH JHEP 2405 02<br>24AL JHEP 2407 25<br>24BN PRL 133 1719<br>24CD JHEP 2411 06<br>23BI PRL 131 2119<br>23BK JHEP 2311 22<br>23BL JHEP 2312 02<br>23H JHEP 2301 13<br>23X PRL 130 1219<br>22K JHEP 2207 00<br>22R PRL 129 1020<br>21AJ PR D104 0520<br>20 PR D101 091:<br>19A PR D104 0520<br>20 PR D101 0191:<br>17 PR D96 05400<br>17C EPJ C77 727<br>15 PR D92 01200<br>15A PR D91 11200<br>14F PR D89 11110<br>13B PR D87 051110<br>09 PR D80 09110<br>08H PR D78 01400<br>08B PRL 101 1720<br>075 PRL 98 12200<br>07D PRL 99 14200 | 2         M. Ablikim et al.           18         M. Ablikim et al.           12         M. Ablikim et al.           13         M. Ablikim et al.           14         M. Ablikim et al.           15         M. Ablikim et al.           16         M. Ablikim et al.           17         M. Ablikim et al.           18         M. Ablikim et al.           19         M. Ablikim et al.           101         S. Jia et al.           101         LY. Dai, J. Haidenl           102         J. Zhang, J. Zhang           103         J. Zhang, J. Zhang           104         LY. Dai, J. Haidenl           105         J. Zhang, L. Yuan           11         Y.L. Wang et al.           12         Y.L. Wang et al.           13         J.P. Lees et al.           14         X.L. Wang et al.           15         Z.Q. Liu, X.S. Qin,           16         Aubert et al.           17         B. Aubert et al.           18         A | bauer, UC<br>C.Z. Yuan | (BESIII Collab.)<br>(BESIII Collab.)<br>(BELLE Collab.) | $\begin{array}{l} {\sf REFID=62688} \\ {\sf REFID=62693} \\ {\sf REFID=63015} \\ {\sf REFID=63037} \\ {\sf REFID=62434} \\ {\sf REFID=62438} \\ {\sf REFID=62050} \\ {\sf REFID=61648} \\ {\sf REFID=61648} \\ {\sf REFID=61644} \\ {\sf REFID=61644} \\ {\sf REFID=60301} \\ {\sf REFID=50377} \\ {\sf REFID=58704} \\ {\sf REFID=588463} \\ {\sf REFID=55838} \\ {\sf REFID=55938} \\ {\sf REFID=55938} \\ {\sf REFID=551734} \\ {\sf REFID=51724} \\ {\sf REFID=51959} \\ \end{array}$ |

Page 6