NODE=MXXX020

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+ = u\overline{s}, \ K^0 = d\overline{s}, \ \overline{K}^0 = \overline{d}s, \ K^- = \overline{u}s,$ similarly for K^* 's

K±

$I(J^P) = \frac{1}{2}(0^-)$

 $\begin{array}{ll} {\sf Mass} \ m = 493.677 \pm 0.015 \ {\sf MeV} \ ^{[a]} & ({\sf S} = 2.8) \\ {\sf Mean} \ {\sf life} \ \tau = (1.2380 \pm 0.0020) \times 10^{-8} \ {\sf s} & ({\sf S} = 1.8) \\ & c\tau = 3.711 \ {\sf m} \end{array}$

CPT violation parameters (Δ = rate difference/sum)

 $\begin{array}{l} \Delta(K^{\pm} \rightarrow \ \mu^{\pm} \nu_{\mu}) = (-0.27 \pm 0.21)\% \\ \Delta(K^{\pm} \rightarrow \ \pi^{\pm} \pi^{0}) = (0.4 \pm 0.6)\% \ ^{[b]} \end{array}$

CP violation parameters (Δ = rate difference/sum)

 $\begin{array}{l} \Delta(K^{\pm} \rightarrow \ \pi^{\pm} \ e^{+} \ e^{-}) = (-2.2 \pm 1.6) \times 10^{-2} \\ \Delta(K^{\pm} \rightarrow \ \pi^{\pm} \ \mu^{+} \ \mu^{-}) = 0.010 \pm 0.023 \\ \Delta(K^{\pm} \rightarrow \ \pi^{\pm} \ \pi^{0} \ \gamma) = (0.0 \pm 1.2) \times 10^{-3} \\ \Delta(K^{\pm} \rightarrow \ \pi^{\pm} \ \pi^{+} \ \pi^{-}) = (0.04 \pm 0.06)\% \\ \Delta(K^{\pm} \rightarrow \ \pi^{\pm} \ \pi^{0} \ \pi^{0}) = (-0.02 \pm 0.28)\% \end{array}$

T violation parameters

$$\begin{split} & \mathcal{K}^+ \to \ \pi^0 \mu^+ \nu_\mu \quad \ \ P_T = (-1.7 \pm 2.5) \times 10^{-3} \\ & \mathcal{K}^+ \to \ \mu^+ \nu_\mu \gamma \quad \ \ P_T = (-0.6 \pm 1.9) \times 10^{-2} \\ & \mathcal{K}^+ \to \ \pi^0 \mu^+ \nu_\mu \quad \ \ \mathrm{Im}(\xi) = -0.006 \pm 0.008 \end{split}$$

Slope parameter $g^{[c]}$

(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi\pi$ scattering)

$$\begin{array}{rcl} \mathcal{K}^{\pm} \rightarrow & \pi^{\pm}\pi^{+}\pi^{-} \; g = -0.21134 \pm 0.00017 \\ & & (g_{+} - g_{-}) \; / \; (g_{+} + g_{-}) = (-1.5 \pm 2.2) \times 10^{-4} \\ \mathcal{K}^{\pm} \rightarrow & \pi^{\pm}\pi^{0}\pi^{0} \; g = 0.626 \pm 0.007 \\ & & (g_{+} - g_{-}) \; / \; (g_{+} + g_{-}) = (1.8 \pm 1.8) \times 10^{-4} \end{array}$$

K^{\pm} decay form factors [d,e]

Assuming μ -e universality

$$\begin{aligned} \lambda_{+}(K_{\mu3}^{+}) &= \lambda_{+}(K_{e3}^{+}) = (2.959 \pm 0.025) \times 10^{-2} \\ \lambda_{0}(K_{\mu3}^{+}) &= (1.76 \pm 0.25) \times 10^{-2} \quad (S = 2.7) \end{aligned}$$

Not assuming μ -*e* universality

$$\begin{split} \lambda_{+}(K_{e3}^{+}) &= (2.956 \pm 0.025) \times 10^{-2} \\ \lambda_{+}(K_{\mu3}^{+}) &= (3.09 \pm 0.25) \times 10^{-2} \quad (S = 1.5) \\ \lambda_{0}(K_{\mu3}^{+}) &= (1.73 \pm 0.27) \times 10^{-2} \quad (S = 2.6) \end{split}$$

NODE=S010

NODE=S010M;DTYPE=M NODE=S010T;DTYPE=T NODE=S010CTA;DTYPE=C;OUR EVAL

CLUMP=I

NODE=S010D1;DTYPE=s;CLUMP=I NODE=S010D4;DTYPE=s;CLUMP=I

CLUMP=C

NODE=S010CPE;DTYPE=s;CLUMP=C NODE=S010CP;DTYPE=s;CLUMP=C NODE=S010CPG;DTYPE=s;CLUMP=C NODE=S010D2;DTYPE=s;CLUMP=C NODE=S010D3;DTYPE=s;CLUMP=C

CLUMP=T

NODE=S010PTM;DTYPE=t;CLUMP=T

NODE=S010PT;DTYPE=t;CLUMP=T

NODE=S010IXI;DTYPE=t;CLUMP=T

CLUMP=S

```
NODE=S010GT;DTYPE=s;CLUMP=S
NODE=S010DG;DTYPE=s;CLUMP=S
NODE=S010GTP;DTYPE=s;CLUMP=S
NODE=S010DG0;DTYPE=s;CLUMP=S
```

CLUMP=F

NODE=S010L+E;DTYPE=f;CLUMP=F

 K_{e3} form factor quadratic fit

$$\begin{split} \lambda'_{+} & (K_{e3}^{\pm}) \text{ linear coeff.} = (2.59 \pm 0.04) \times 10^{-2} \\ \lambda''_{+} & (K_{e3}^{\pm}) \text{ quadratic coeff.} = (0.186 \pm 0.021) \times 10^{-2} \\ \lambda'_{+} & (\text{LINEAR } K_{\mu3}^{\pm} \text{ FORM FACTOR FROM QUADRATIC FIT}) \\ &= (24 \pm 4) \times 10^{-3} \\ \lambda''_{+} & (\text{QUADRATIC } K_{\mu3}^{\pm} \text{ FORM FACTOR}) = (1.8 \pm 1.5) \times 10^{-3} \\ M_{V} & (\text{VECTOR POLE MASS FOR } K_{e3}^{\pm} \text{ DECAY}) = 890.3 \pm 2.8 \\ \text{MeV} \\ M_{V} & (\text{VECTOR POLE MASS FOR } K_{\mu3}^{\pm} \text{ DECAY}) = 878 \pm 12 \\ \text{MeV} \\ M_{S} & (\text{SCALAR POLE MASS FOR } K_{\mu3}^{\pm} \text{ DECAY}) = 1210 \pm 50 \\ \text{MeV} \\ \Lambda_{+} & (\text{DISPERSIVE VECTOR FORM FACTOR IN } K_{e3}^{\pm} \text{ DECAY}) = (2.460 \pm 0.017) \times 10^{-2} \\ \Lambda_{+} & (\text{DISPERSIVE VECTOR FORM FACTOR IN } K_{\mu3}^{\pm} \text{ DECAY}) = (25.4 \pm 0.9) \times 10^{-3} \\ \ln(C) & (\text{DISPERSIVE SCALAR FORM FACTOR IN } K_{\mu3}^{\pm} \text{ decays}) \\ &= (182 \pm 16) \times 10^{-3} \\ K_{e3}^{\pm} & |f_{S}/f_{+}| = (-0.08^{+0.34}_{-0.40}) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{S}/f_{+}| = (0.2 \pm 0.6) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{S}/f_{+}| = (0.2 \pm 0.6) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{\mu3}^{\pm} & |f_{T}/f_{+}| = (-0.1 \pm 0.7) \times 10^{-2} \\ K_{$$

Charge radius

$$ig\langle {\it r} ig
angle = 0.560 \pm 0.031$$
 fm

Forward-backward asymmetry

$$\mathsf{A}_{FB}(K_{\pi\mu\mu}^{\pm}) = \frac{\Gamma(\cos(\theta_{K\mu})>0) - \Gamma(\cos(\theta_{K\mu})<0)}{\Gamma(\cos(\theta_{K\mu})>0) + \Gamma(\cos(\theta_{K\mu})<0)} < 0.9 \times 10^{-2}, \ \mathsf{CL} = 90\%$$

NODE=S010LPE;DTYPE=f;CLUMP=H NODE=S010LQE;DTYPE=f;CLUMP=H NODE=S010LPM;DTYPE=f;CLUMP=H

NODE=S010LQM;DTYPE=f;CLUMP=H NODE=S010MVE;DTYPE=f;CLUMP=H

NODE=S010MVM;DTYPE=f;CLUMP=H

NODE=S010MSM;DTYPE=f;CLUMP=H

NODE=S010LAM;DTYPE=f;CLUMP=H

NODE=S010LMM;DTYPE=f;CLUMP=H

NODE=S010LLM;DTYPE=f;CLUMP=H

NODE=S010FS;DTYPE=f;CLUMP=H

NODE=S010FT;DTYPE=f;CLUMP=H

NODE=S010FSM;DTYPE=f;CLUMP=H

NODE=S010FTM;DTYPE=f;CLUMP=H NODE=S010F+E;DTYPE=f;CLUMP=H NODE=S010F+M;DTYPE=f;CLUMP=H NODE=S010F-E;DTYPE=f;CLUMP=H

NODE=S010F-M;DTYPE=f;CLUMP=H

 $\mathsf{CLUMP} = \mathsf{R}$

NODE=S010CR;DTYPE=r;CLUMP=R CLUMP=J

LOWF-J

NODE=S010AFB;DTYPE=s;CLUMP=J

NODE=S010225;NODE=S010

 ${\it K}^-$ modes are charge conjugates of the modes below.

			Sc	ale factor/	p	
K ⁺ DECAY MODES	Frac	tion (Γ _i /Γ)	Confi	dence level(I	MeV/ <i>c</i>)	
Leptonic	and sem	ileptonic mod	es			
$e^+ \nu_e$	(1.582 ± 0.007)	$\times 10^{-5}$		247	DESIG=11
$\mu^+ \nu_{\mu}$	(63.56 ± 0.11)	%	S=1.2	236	DESIG=1
$\pi^{0} e^{+} \nu_{e}$	(5.07 ±0.04)	%	S=2.1	228	DESIG=6
Called K_{a3}^+ .	(, •			
$\pi^{0}\mu^{+}\nu_{\mu}$	(3.352±0.034)	%	S=1.9	215	DESIG=5
Called $K_{\mu3}^+$.		,				
$\pi^0 \pi^0 e^+ \nu_e$	(2.55 ± 0.04)	imes 10 ⁻⁵	S=1.1	206	DESIG=24
$\pi^{0}\pi^{0}\mu^{+}\nu_{\mu}$	(3.45 ± 0.16)	imes 10 ⁻⁶		156	DESIG=124
$\pi^+\pi^-e^+\nu_e$	(4.247±0.024)	imes 10 ⁻⁵		203	DESIG=7
$\pi^+\pi^-\mu^+\nu_{\mu}$	(1.4 ± 0.9)	imes 10 ⁻⁵		151	DESIG=9
$\pi^0 \pi^0 \pi^0 e^+ \nu_e$	<	5.4	imes 10 ⁻⁸	CL=90%	135	DESIG=44
	Hadronic	modes				NODE=S010:CLUMP=B
$\pi^+\pi^0$	(20.67 ± 0.08)	%	S=1.2	205	DESIG=2
$\pi^+\pi^0\pi^0$	($1.760 \pm 0.023)$	%	S=1.1	133	DESIG=4
$\pi^+\pi^+\pi^-$	($5.583 \pm 0.024)$	%		125	DESIG=3
Leptonic and s	emilepton	ic modes with	photons	5		NODE=S010:CLUMP=C
$\mu^+ \nu_\mu \gamma$	[f,g] (6.2 ± 0.8)	$\times 10^{-3}$		236	DESIG=12
$\mu^+ \nu_\mu \gamma (SD^+)$	[d,h] ($1.33\ \pm 0.22$)	imes 10 ⁻⁵		_	DESIG=39
$\mu^+ \nu_\mu \gamma (\text{SD}^+ \text{INT})$	[d,h] <	2.7	imes 10 ⁻⁵	CL=90%	-	DESIG=81
$\mu^+ \nu_\mu \gamma (SD^- + SD^- INT)$	[d,h] <	2.6	imes 10 ⁻⁴	CL=90%	-	DESIG=40
$e^+ \nu_e \gamma$	(1.03 ± 0.14)	imes 10 ⁻⁵		247	DESIG=21
$\pi^0 e^+ \nu_e \gamma$	[f,g] ($2.698 \pm 0.033)$	$ imes 10^{-4}$		228	DESIG=18
$\pi^0 e^+ \nu_e \gamma (SD)$	[d,h] <	5.3	imes 10 ⁻⁵	CL=90%	228	DESIG=41
$\pi^0 \mu^+ \nu_\mu \gamma$	[f,g] ($1.25\ \pm 0.25$)	imes 10 ⁻⁵		215	DESIG=28
$\pi^0 \pi^0 e^+ \nu_e \gamma$	<	5	imes 10 ⁻⁶	CL=90%	206	DESIG=47
Hadronic me	odes with	photons or $\ell \bar{\ell}$, pairs			NODE=S010:CLUMP=D
$\pi^+\pi^0\gamma$ (INT)	(-	- 4.2 ±0.9)	$\times 10^{-6}$		_	DESIG=119
$\pi^+\pi^0\gamma(\text{DE})$	[f,i] (6.0 ±0.4)	imes 10 ⁻⁶		205	DESIG=38
$\pi^{+}\pi^{0}e^{+}e^{-}$	(4.24 ± 0.14)	imes 10 ⁻⁶		205	DESIG=120
$\pi^+\pi^0\pi^0\gamma$	[f,g] (4.0 ± 1.1)	imes 10 ⁻⁶		133	DESIG=37
$\pi^+\pi^+\pi^-\gamma$	[f,g] (7.1 ± 0.5)	imes 10 ⁻⁶		125	DESIG=14
$\pi^+ \gamma \gamma$	[f] (9.65 ± 0.16)	$ imes 10^{-7}$		227	DESIG=17
$\pi^+ 3\gamma$	[f] <	1.0	imes 10 ⁻⁴	CL=90%	227	DESIG=23
$\pi^+ e^+ e^- \gamma$	($1.19\ \pm 0.13$)	$ imes 10^{-8}$		227	DESIG=118
Lepto	nic modes	with $\ell \overline{\ell}$ pairs				NODE=S010:CLUMP=E
$e^+ \nu_e \nu \overline{\nu}$	<	6	imes 10 ⁻⁵	CL=90%	247	DESIG=33
$\mu^+ u_\mu u \overline{ u}$	<	1.0	imes 10 ⁻⁶	CL=90%	236	DESIG=27
$e^+ \nu_e e^+ e^-$	($2.48\ \pm 0.20$)	imes 10 ⁻⁸		247	DESIG=32
$\mu^+ u_\mue^+e^-$	(7.06 ± 0.31)	imes 10 ⁻⁸		236	DESIG=30
$e^+ \nu_e \mu^+ \mu^-$	(1.7 ± 0.5)	$\times 10^{-8}$		223	DESIG=48
$\mu^+ u_\mu \mu^+ \mu^-$	<	4.1	$ imes 10^{-7}$	CL=90%	185	DESIG=117

NODE=S010;CLUMP=F

Lepton family number (*LF*), Lepton number (*L*), $\Delta S = \Delta Q$ (*SQ*) violating modes, or $\Delta S = 1$ weak neutral current (*S1*) modes

•				· · · ·			
$\pi^+\pi^+e^-\overline{\nu}_e$	SQ	<	1.3	imes 10 ⁻⁸	CL=90%	203	DESIG=8
$\pi^+ \pi^+ \mu^- \overline{\nu}_\mu$	SQ	<	3.0	imes 10 ⁻⁶	CL=95%	151	DESIG=10
$\pi^+ e^+ e^-$	<i>S</i> 1	(3.00	± 0.09) $ imes 10^{-7}$		227	DESIG=15
$\pi^+ \mu^+ \mu^-$	<i>S</i> 1	(9.17	± 0.14) $\times 10^{-8}$	S=1.8	172	DESIG=16
$\pi^+ e^+ e^- e^+ e^-$	<i>S</i> 1	<	1.4	imes 10 ⁻⁸	CL=90%	227	DESIG=123
$\pi^+ \nu \overline{\nu}$	<i>S</i> 1	(1.14	$^{+0.40}_{-0.33}$) $\times10^{-10}$		227	DESIG=20
$\pi^+ \pi^0 \nu \overline{\nu}$	S1	<	4.3	imes 10 ⁻⁵	CL=90%	205	DESIG=50
$\mu^- \nu e^+ e^+$	LF	<	8.1	imes 10 ⁻¹¹	CL=90%	236	DESIG=31
$\mu^+ \nu_e$	LF	[j] <	4	imes 10 ⁻³	CL=90%	236	DESIG=34
$\pi^+\mu^+e^-$	LF	<	1.3	imes 10 ⁻¹¹	CL=90%	214	DESIG=29
$\pi^{0}\pi^{+}\mu^{+}e^{-}$	LF	<	5.0	imes 10 ⁻¹⁰	CL=90%	154	DESIG=127
$\pi^+\mu^-e^+$	LF	<	6.6	imes 10 ⁻¹¹	CL=90%	214	DESIG=25
$\pi^{0}\pi^{+}\mu^{-}e^{+}$	LF	<	3.1	imes 10 ⁻¹⁰	CL=90%	154	DESIG=126
$\pi^-\mu^+e^+$	L	<	4.2	$ imes$ 10 $^{-11}$	CL=90%	214	DESIG=45
$\pi^{0}\pi^{-}\mu^{+}e^{+}$	L	<	2.9	imes 10 ⁻¹⁰	CL=90%	154	DESIG=125
$\pi^{-}e^{+}e^{+}$	L	<	5.3	imes 10 ⁻¹¹	CL=90%	227	DESIG=19
$\pi^-\mu^+\mu^+$	L	<	4.2	imes 10 ⁻¹¹	CL=90%	172	DESIG=46
$\pi^{-}\pi^{0}e^{+}e^{+}$	L	<	8.5	imes 10 ⁻¹⁰	CL=90%	205	DESIG=121
$\mu^+ \overline{\nu}_e$	L	[j] <	3.3	imes 10 ⁻³	CL=90%	236	DESIG=35
$\pi^0 e^+ \overline{\nu}_e$	L	<	3	imes 10 ⁻³	CL=90%	228	DESIG=36
$\pi^+\gamma$		[<i>k</i>] <	2.3	imes 10 ⁻⁹	CL=90%	227	DESIG=22

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean square charge radius

 $\left< \mathit{r}^2 \right> = -0.077 \pm 0.010 \; \text{fm}^2$

T-violation parameters in K^0 - \overline{K}^0 mixing [e]

Asymmetry A_T in K^0 - \overline{K}^0 mixing = (6.6 \pm 1.6) imes 10⁻³

CP-violation parameters

 $\text{Re}(\epsilon) = (1.596 \pm 0.013) \times 10^{-3}$

CPT-violation parameters [e]

Tests of $\Delta S = \Delta Q$

Re(x_+), K_{e3} parameter = $(-0.9 \pm 3.0) \times 10^{-3}$

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life $\tau = (0.8954 \pm 0.0004) \times 10^{-10}$ s (S = 1.1) Assuming *CPT* Mean life $\tau = (0.89564 \pm 0.00033) \times 10^{-10}$ s Not assuming *CPT* $c\tau = 2.6844$ cm Assuming *CPT* NODE=S011

```
NODE=S011M;DTYPE=M
NODE=S011DM;DTYPE=D
CLUMP=R
NODE=S011SCR;DTYPE=r;CLUMP=R
CLUMP=C
NODE=S011AT;DTYPE=c;CLUMP=C
CLUMP=A
NODE=S011REP;DTYPE=v;CLUMP=A
CLUMP=K
NODE=S011DRE;DTYPE=k;CLUMP=K
NODE=S011DIM;DTYPE=k;CLUMP=K
NODE=S011YRE;DTYPE=k;CLUMP=K
NODE=S011XRM;DTYPE=k;CLUMP=K
NODE=S011DMM;DTYPE=D
NODE=S011DGM;DTYPE=D
CLUMP=Q
NODE=S011XRP;DTYPE=r;CLUMP=Q
```

NODE=S012 NODE=S012T;DTYPE=T

NODE=S012T1:DTYPE=t;OUR EVAL; \rightarrow UNCHECKED \leftarrow

NODE=S012CTA;DTYPE=C;OUR EVAL

CP-violation parameters [n]

 $Im(\eta_{+-0}) = -0.002 \pm 0.009$ $Im(\eta_{000}) = -0.001 \pm 0.016$ $|\eta_{000}| = |A(K_S^0 \to 3\pi^0)/A(K_L^0 \to 3\pi^0)| < 0.0088, CL =$ 90% *CP* asymmetry *A* in $\pi^+ \pi^- e^+ e^- = (-0.4 \pm 0.8)\%$

KS DECAY MODES	Fra	ction ([Γ _i /Γ)	Sc. Confid	ale factor/ dence level	р (MeV/c)
	Hadronic	mode	s			
$\pi^{0}\pi^{0}$	(1	30.69	±0.05)	%		209
$\pi^+\pi^-$	(69.20=	±0.05)	%		206
$\pi^+\pi^-\pi^0$	(3.5	$^{+1.1}_{-0.9}$)	× 10 ⁻⁷		133
Modes	with photo	ons o	r <i>ℓ</i> Īpa	nirs		
$\pi^+\pi^-\gamma$	[g,o] (1.79=	±0.05)	$\times 10^{-3}$		206
$\pi^+\pi^-e^+e^-$	(4.79=	±0.15)	imes 10 ⁻⁵		206
$\pi^0 \gamma \gamma$	[0] (4.9 =	±1.8)	imes 10 ⁻⁸		230
$\gamma \gamma$	(2.63=	±0.17)	imes 10 ⁻⁶	S=3.1	249
$\mu^+ \mu^- \mu^+ \mu^-$	<	5.1		imes 10 ⁻¹²	CL=90%	119
S	emileptoni	ic mo	des			
$\pi^{\pm} e^{\mp} \nu_e$	[p] (7.14=	±0.06)	imes 10 ⁻⁴		229
CP violating (CP) and A	$\Delta S = 1$ we	eak ne	eutral	current ((<i>S1</i>) mode	es
$3\pi^0$ CI	> <	2.6		× 10 ⁻⁸	CL=90%	139
$\mu^+\mu^-$ S1	<	2.1		$\times 10^{-10}$	CL=90%	225
e ⁺ e ⁻ S1	<	9		imes 10 ⁻⁹	CL=90%	249
$\pi^0 e^+ e^- \qquad \qquad$	[0] (3.0	$^{+1.5}_{-1.2}$)	imes 10 ⁻⁹		230
$\pi^0 \mu^+ \mu^-$ SI	(2.9	$^{+1.5}_{-1.2}$)	imes 10 ⁻⁹		177

 $I(J^P) = \frac{1}{2}(0^-)$

```
m_{K_l} - m_{K_S}
  = (0.5293 \pm 0.0009) \times 10<sup>10</sup> \hbar s<sup>-1</sup> (S = 1.3) Assuming CPT
  = (3.484 ± 0.006) × 10<sup>-12</sup> MeV Assuming CPT
  = (0.5289 \pm 0.0010) \times 10^{10} \ \hbar \ s^{-1} Not assuming CPT
    Mean life \tau = (5.116 \pm 0.021) \times 10^{-8} s (S = 1.1)
         c\tau = 15.34 \text{ m}
```

Slope parameters [c]

(See Particle Listings for other linear and quadratic coefficients)

 $K_I^0 \rightarrow \pi^+ \pi^- \pi^0$: $g = 0.678 \pm 0.008$ (S = 1.5) $\begin{array}{l} \kappa_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}; \ h = 0.076 \pm 0.006 \\ \kappa_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}; \ k = 0.0099 \pm 0.0015 \\ \kappa_{L}^{0} \rightarrow \pi^{0}\pi^{0}\pi^{0}; \ h = (0.6 \pm 1.2) \times 10^{-3} \end{array}$

K_I decay form factors ^[e]

Linear parametrization assuming μ -e universality

$$\begin{split} \lambda_{+}(\mathcal{K}^{0}_{\mu3}) &= \lambda_{+}(\mathcal{K}^{0}_{e3}) = (2.82 \pm 0.04) \times 10^{-2} \quad (\mathsf{S} = 1.1) \\ \lambda_{0}(\mathcal{K}^{0}_{\mu3}) &= (1.38 \pm 0.18) \times 10^{-2} \quad (\mathsf{S} = 2.2) \end{split}$$

NODE=S013

NODE=S013D;DTYPE=D;CLUMP=D NODE=S013D1;DTYPE=D;CLUMP=D;OUR EVAL EVAL NODE=S013D2;DTYPE=D;CLUMP=D;OUR EVAL; \rightarrow UNCHECKED \leftarrow NODE=S013T;DTYPE=T NODE=S013CTA;DTYPE=C;OUR EVAL

CLUMP=S

NODE=S013GT0:DTYPE=s:CLUMP=S NODE=S013HT0;DTYPE=s;CLUMP=S NODE=S013KT0;DTYPE=s;CLUMP=S NODE=S013HTZ;DTYPE=s;CLUMP=S

CLUMP=F

NODE=S013L+M;DTYPE=f;CLUMP=F NODE=S013L0;DTYPE=f;CLUMP=F

CLUMP=V NODE=S012E+;DTYPE=v;CLUMP=V NODE=S012E0;DTYPE=v;CLUMP=V NODE=S012AE0:DTYPE=v:CLUMP=V

NODE=S012DPA:DTYPE=v:CLUMP=Y

NODE=S012210;NODE=S012;CLUMP=A DESIG=2 DESIG=1 DESIG=8

NODE=S012;CLUMP=B DESIG=5 DESIG=13 DESIG=14 DESIG=6 DESIG=16 NODE=S012;CLUMP=C DESIG=11

NODE=S012;CLUMP=F DESIG=7 DESIG=3 DESIG=4 DESIG=10 DESIG=15

Quadratic parametrization assuming μ -e universality

$$\begin{split} \lambda'_{+}(K^{0}_{\mu3}) &= \lambda'_{+}(K^{0}_{e3}) = (2.40 \pm 0.12) \times 10^{-2} \quad (\text{S} = 1.2) \\ \lambda''_{+}(K^{0}_{\mu3}) &= \lambda''_{+}(K^{0}_{e3}) = (0.20 \pm 0.05) \times 10^{-2} \quad (\text{S} = 1.2) \\ \lambda_{0}(K^{0}_{\mu3}) &= (1.16 \pm 0.09) \times 10^{-2} \quad (\text{S} = 1.2) \end{split}$$

Pole parametrization assuming μ -e universality

$$\begin{split} M_V^{\mu} & (\mathcal{K}_{\mu 3}^0) = M_V^e & (\mathcal{K}_{e3}^0) = 878 \pm 6 \text{ MeV} \quad (\mathsf{S} = 1.1) \\ M_S^{\mu} & (\mathcal{K}_{\mu 3}^0) = 1252 \pm 90 \text{ MeV} \quad (\mathsf{S} = 2.6) \end{split}$$

Dispersive parametrization assuming μ -*e* universality

$$\begin{split} &\Lambda_{+} = (2.51 \pm 0.06) \times 10^{-2} \quad (S = 1.5) \\ &\ln(C) = (1.75 \pm 0.18) \times 10^{-1} \quad (S = 2.0) \\ &\mathcal{K}_{e3}^{0} \quad \left| f_{S} / f_{+} \right| = (1.5^{+1.4}_{-1.6}) \times 10^{-2} \\ &\mathcal{K}_{e3}^{0} \quad \left| f_{T} / f_{+} \right| = (5^{+4}_{-5}) \times 10^{-2} \\ &\mathcal{K}_{\mu3}^{0} \quad \left| f_{T} / f_{+} \right| = (12 \pm 12) \times 10^{-2} \\ &\mathcal{K}_{L} \to \ \ell^{+} \ell^{-} \gamma, \ \mathcal{K}_{L} \to \ \ell^{+} \ell^{-} \ell'^{+} \ell'^{-} \colon \alpha_{K^{*}} = -0.205 \pm \\ &0.022 \quad (S = 1.8) \\ &\mathcal{K}_{L}^{0} \to \ \ell^{+} \ell^{-} \gamma, \ \mathcal{K}_{L}^{0} \to \ \ell^{+} \ell^{-} \ell'^{+} \ell'^{-} \colon \alpha_{DIP} = -1.69 = \\ &0.08 \quad (S = 1.7) \\ &\mathcal{K}_{L} \to \ \pi^{+} \pi^{-} e^{+} e^{-} \colon a_{1} / a_{2} = -0.737 \pm 0.014 \text{ GeV}^{2} \\ &\mathcal{K}_{L} \to \ \pi^{0} 2\gamma \colon a_{V} = -0.43 \pm 0.06 \quad (S = 1.5) \end{split}$$

CP-violation parameters [n]

$$\begin{aligned} A_L &= (0.332 \pm 0.006)\% \\ |\eta_{00}| &= (2.220 \pm 0.011) \times 10^{-3} \quad (S = 1.8) \\ |\eta_{+-}| &= (2.232 \pm 0.011) \times 10^{-3} \quad (S = 1.8) \\ |\epsilon| &= (2.228 \pm 0.011) \times 10^{-3} \quad (S = 1.8) \\ |\eta_{00}/\eta_{+-}| &= 0.9950 \pm 0.0007 \ ^{[q]} \quad (S = 1.6) \\ \text{Re}(\epsilon'/\epsilon) &= (1.66 \pm 0.23) \times 10^{-3} \ ^{[q]} \quad (S = 1.6) \end{aligned}$$

Assuming CPT

$$\begin{split} \phi_{+-} &= (43.51 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \phi_{00} &= (43.52 \pm 0.05)^{\circ} \quad (\mathsf{S} = 1.2) \\ \phi_{\epsilon} &= \phi_{\mathsf{SW}} = (43.52 \pm 0.04)^{\circ} \quad (\mathsf{S} = 1.2) \\ \mathsf{Im}(\epsilon'/\epsilon) &= -(\phi_{00} - \phi_{+-})/3 = (-0.002 \pm 0.005)^{\circ} \quad (\mathsf{S} = 1.7) \end{split}$$

Not assuming CPT

```
\begin{split} \phi_{+-} &= (43.4 \pm 0.5)^{\circ} \quad (\text{S} = 1.2) \\ \phi_{00} &= (43.7 \pm 0.6)^{\circ} \quad (\text{S} = 1.2) \\ \phi_{\epsilon} &= (43.5 \pm 0.5)^{\circ} \quad (\text{S} = 1.3) \\ CP \text{ asymmetry } A \text{ in } K_{L}^{0} \to \pi^{+}\pi^{-}e^{+}e^{-} = (13.7 \pm 1.5)\% \\ \beta_{CP} \text{ from } K_{L}^{0} \to e^{+}e^{-}e^{+}e^{-} = -0.19 \pm 0.07 \\ \gamma_{CP} \text{ from } K_{L}^{0} \to e^{+}e^{-}e^{+}e^{-} = 0.01 \pm 0.11 \quad (\text{S} = 1.6) \\ j \text{ for } K_{L}^{0} \to \pi^{+}\pi^{-}\pi^{0} = 0.0012 \pm 0.0008 \\ f \text{ for } K_{L}^{0} \to \pi^{+}\pi^{-}\pi^{0} = 0.004 \pm 0.006 \\ |\eta_{+-\gamma}| &= (2.35 \pm 0.07) \times 10^{-3} \\ \phi_{+-\gamma} &= (44 \pm 4)^{\circ} \\ |\epsilon_{+-\gamma}'|/\epsilon < 0.3, \text{ CL} = 90\% \\ |g_{E1}| \text{ for } K_{L}^{0} \to \pi^{+}\pi^{-}\gamma < 0.21, \text{ CL} = 90\% \end{split}
```

NODE=S013LPM;DTYPE=f;CLUMP=G NODE=S013LQM;DTYPE=f;CLUMP=G NODE=S013LZ;DTYPE=f;CLUMP=G

NODE=S013MVM;DTYPE=f;CLUMP=J NODE=S013MS1;DTYPE=f;CLUMP=J;OUR EVAL: \rightarrow UNCHECKED \leftarrow

NODE=S013LAM;DTYPE=f;CLUMP=L NODE=S013LCM;DTYPE=f;CLUMP=L NODE=S013FS;DTYPE=f;CLUMP=H NODE=S013FT;DTYPE=f;CLUMP=H NODE=S013ALA;DTYPE=f;CLUMP=H

NODE=S013ADA;DTYPE=f;CLUMP=H

 $\mathsf{NODE}{=}\mathsf{S013A12}; \mathsf{DTYPE}{=}\mathsf{f}; \mathsf{CLUMP}{=}\mathsf{H}$

NODE=S013AV;DTYPE=f;CLUMP=H

CLUMP=V

NODE=S013AL;DTYPE=v;CLUMP=V NODE=S013E00;DTYPE=v;CLUMP=V NODE=S013E+-;DTYPE=v;CLUMP=V NODE=S013EP;DTYPE=v;CLUMP=V NODE=S013ER;DTYPE=v;CLUMP=V NODE=S013EPS;DTYPE=v;CLUMP=V

```
NODE=S013F+-;DTYPE=v;CLUMP=Z
NODE=S013FOO;DTYPE=v;CLUMP=Z
NODE=S013EPH;DTYPE=v;CLUMP=Z
NODE=S013EPI;DTYPE=v;CLUMP=Z
```

```
\label{eq:solar} \begin{split} &\mathsf{NODE} = \mathsf{Sol3F} + 2;\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{W};\\ &\mathsf{OUR} \;\mathsf{EVAL}; \rightarrow \mathsf{UNCHECKED} \leftarrow \\ &\mathsf{NODE} = \mathsf{Sol3FO2};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{W};\\ &\mathsf{OUR} \;\mathsf{EVAL}; \rightarrow \mathsf{UNCHECKED} \leftarrow \\ &\mathsf{NODE} = \mathsf{Sol3EP1};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{W};\\ &\mathsf{OUR} \;\mathsf{EVAL}; \rightarrow \mathsf{UNCHECKED} \leftarrow \\ &\mathsf{NODE} = \mathsf{Sol3DPA};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{Y} \\ &\mathsf{NODE} = \mathsf{Sol3BCP};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{Y} \\ &\mathsf{NODE} = \mathsf{Sol3GCP};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{Y} \\ &\mathsf{NODE} = \mathsf{Sol3JT0};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{Y} \\ &\mathsf{NODE} = \mathsf{Sol3FT0};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{Y} \\ &\mathsf{NODE} = \mathsf{Sol3E} + \mathsf{G};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{Y} \\ &\mathsf{NODE} = \mathsf{Sol3E} + \mathsf{G};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{Y} \\ &\mathsf{NODE} = \mathsf{Sol3P} + \mathsf{G};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{Y} \\ &\mathsf{NODE} = \mathsf{Sol3P} + \mathsf{G};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{Y} \\ &\mathsf{NODE} = \mathsf{Sol3BPG};\mathsf{DTYPE} = \mathsf{v};\mathsf{CLUMP} = \mathsf{Y} \\ &\mathsf{NODE} = \mathsf{Sol3GE1};\mathsf{DTYPE} = \mathsf{v};\mathsf{USUP} = \mathsf{V} \\ &\mathsf{NODE} = \mathsf{SOl3GE1};\mathsf{DTYPE} = \mathsf{v};\mathsf{NDDE} = \mathsf{NODE} \\ &\mathsf{NODE} = \mathsf{SOl3GE1};\mathsf{DTYPE} = \mathsf{V};\mathsf{NDDE} \\ &\mathsf{NODE} = \mathsf{NODE} \\ &\mathsf{NODE} \\ &\mathsf{NO
```

CLUMP=T

NODE=S013IXI;DTYPE=f;CLUMP=T CLUMP=X

CLUMP=Q NODE=S013REX;DTYPE=Q;CLUMP=Q NODE=S013IMX;DTYPE=Q;CLUMP=Q

K ⁰ _L DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level(I	<i>р</i> MeV/c)	
$\pi^{\pm}e^{\mp}\nu_{e}$	Semileptonic modes [p] (40.55 ±0.11)	% S=1.7	229	NODE=S013215;NODE=S013;CLUMP=A DESIG=4
Called κ_{e3}° . $\pi^{\pm}\mu^{\mp}\nu_{\mu}$ Called K^{0}	$[p]$ (27.04 ± 0.07)	% S=1.1	216	DESIG=3
$(\pi \mu \operatorname{atom}) \nu$ $\pi^{0} \pi^{\pm} e^{\mp} \nu$ $\pi^{\pm} e^{\mp} \nu e^{+} e^{-}$	(1.05 ± 0.11) $[p]$ (5.20 ± 0.11) $[p]$ (1.26 ± 0.04)		188 207 229	DESIG=19 DESIG=18 DESIG=51
Hadronic modes, inclu	uding Charge conjugation×Par	ity Violating (CPV)	modes	
$3\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}$ $\pi^{0}\pi^{0}$	(19.52 ± 0.12) (12.54 ± 0.05) $CPV [r] (1.967\pm 0.010)$ $CPV (8.64 \pm 0.06)$	% S=1.6 % $\times 10^{-3}$ S=1.5 $\times 10^{-4}$ S=1.8	139 133 206 209	DESIG=1 DESIG=2 DESIG=5 DESIG=11
		× 10 5=1.0	205	
$ \begin{array}{l} \pi^{\pm} \mathbf{e}^{\mp} \nu_{\mathbf{e}} \gamma \\ \pi^{\pm} \mu^{\mp} \nu_{\mu} \gamma \end{array} $	$[g,p,s] (3.79 \pm 0.06) \\ (5.65 \pm 0.23)$	$ \begin{array}{c} \times 10^{-3} \\ \times 10^{-4} \end{array} $	229 216	NODE=S013;CLUMP=C DESIG=12 DESIG=34
Ha $ \begin{array}{c} & \\ \pi^{0}\pi^{0}\gamma \\ \pi^{+}\pi^{-}\gamma \\ \pi^{+}\pi^{-}\gamma (DE) \\ \pi^{0}2\gamma \\ \pi^{0}\gamma e^{+}e^{-} \end{array} \end{array} $	dronic modes with photons or < 2.43 [g,s] (4.15 ±0.15) (2.84 ±0.11) [s] (1.273±0.033) (1.62 ±0.17)	$ \begin{array}{c} \ell \bar{\ell} \text{ pairs} \\ \times 10^{-7} & \text{CL} = 90\% \\ \times 10^{-5} & \text{S} = 2.8 \\ \times 10^{-5} & \text{S} = 2.0 \\ \times 10^{-6} \\ \times 10^{-8} \end{array} $	209 206 206 230 230	NODE=S013;CLUMP=D DESIG=33 DESIG=10 DESIG=50 DESIG=13 DESIG=46
Ċ)ther modes with photons or (Ī nairs		
2γ 3γ $e^{+}e^{-}\gamma$ $\mu^{+}\mu^{-}\gamma$ $\mu^{+}\mu^{-}\mu^{+}\mu^{-}$ $e^{+}e^{-}\gamma\gamma$ $\mu^{+}\mu^{-}\gamma\gamma$	$\begin{array}{c} (\ 5.47 \ \pm 0.04 \) \\ < \ 7.4 \\ (\ 9.4 \ \pm 0.4 \) \\ (\ 3.59 \ \pm 0.11 \) \\ < \ 2.3 \\ [s] \ (\ 5.95 \ \pm 0.33 \) \\ [s] \ (\ 1.0 \ \begin{array}{c} +0.8 \\ -0.6 \ \end{array}) \end{array}$	$\begin{array}{c} \times 10^{-4} & \text{S}{=}1.1 \\ \times 10^{-8} & \text{CL}{=}90\% \\ \times 10^{-6} & \text{S}{=}2.0 \\ \times 10^{-7} & \text{S}{=}1.3 \\ \times 10^{-9} & \text{CL}{=}90\% \\ \times 10^{-7} & \times 10^{-8} \end{array}$	249 249 225 119 249 225	NODE=S013;CLUMP=E DESIG=9 DESIG=45 DESIG=14 DESIG=15 DESIG=56 DESIG=23 DESIG=47
Charge conjuga violating mod	tion × Parity (<i>CP</i>) or Lepton les. or $\Delta S = 1$ weak neutral c	Family number (<i>LF</i>) urrent (<i>S1</i>) modes		NODE=S013;CLUMP=F
$\mu^+ \mu^-$ $e^+ e^-$	$\begin{array}{c} S1 & (6.84 \pm 0.11) \\ S1 & (9 + 6 \\ -4 \end{array}) \end{array}$	$\times 10^{-9}$ $\times 10^{-12}$	225 249	DESIG=6 DESIG=7
$ \begin{array}{c} \pi^{+}\pi^{-}e^{+}e^{-} \\ \pi^{0}\pi^{0}e^{+}e^{-} \\ \pi^{0}\pi^{0}\mu^{+}\mu^{-} \\ \mu^{+}\mu^{-}e^{+}e^{-} \\ e^{+}e^{-}e^{+}e^{-} \end{array} $	$\begin{array}{cccccccc} S1 & [s] & (\ 3.11 \ \pm 0.19 \) \\ S1 & < \ 6.6 \\ S1 & < \ 9.2 \\ S1 & (\ 2.69 \ \pm 0.27 \) \\ S1 & (\ 3.56 \ \pm 0.21 \) \end{array}$	$\begin{array}{c} \times 10^{-7} \\ \times 10^{-9} \\ \times 10^{-11} \\ \times 10^{-9} \\ \times 10^{-9} \\ \times 10^{-8} \end{array} CL=90\%$	206 209 57 225 249	DESIG=17 DESIG=48 DESIG=54 DESIG=21 DESIG=22
$\pi^{0} \mu^{+} \mu^{-}$ $\pi^{0} e^{+} e^{-}$ $\pi^{0} \nu \overline{\nu}$ $\pi^{0} \pi^{0} \nu \overline{\nu}$ $e^{\pm} \mu^{\mp}$ $e^{\pm} e^{\pm} \mu^{\mp} \mu^{\mp}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	177 230 230 209 238 225	DESIG=16 DESIG=20 DESIG=43 DESIG=52 DESIG=8 DESIG=24
$ \frac{e}{\pi^{0}} \frac{\mu^{+}}{\mu^{\pm}} \frac{\mu^{+}}{e^{\mp}} $ $ \frac{\pi^{0}}{\pi^{0}} \frac{\mu^{\pm}}{\mu^{\pm}} e^{\mp} $	LF [p] < 4.12 LF [p] < 7.6 LF < 1.7	$\begin{array}{c} \times 10 & \text{CL} = 90\% \\ \times 10^{-11} & \text{CL} = 90\% \\ \times 10^{-10} & \text{CL} = 90\% \end{array}$	225 217 159	DESIG=24 DESIG=36 DESIG=53

T-violation parameters

Im(ξ) in ${\cal K}^0_{\mu 3}=-0.007\pm 0.026$

CPT invariance tests

 $\begin{array}{l} \phi_{00} \ - \ \phi_{+-} = (0.34 \pm 0.32)^{\circ} \\ {\rm Re}(\frac{2}{3}\eta_{+-} \ + \ \frac{1}{3}\eta_{00}) - \frac{A_L}{2} = (-3 \pm 35) \times 10^{-6} \end{array}$

$\Delta S = -\Delta Q$ in $\mathcal{K}^0_{\ell 3}$ decay

 $\text{Re } x = -0.002 \pm 0.006$ $\text{Im } x = 0.0012 \pm 0.0021$

4/21/2025 15:40 Page 8

NODE=S013;CLUMP=H DESIG=55

NODE=M174

230

D

$$\begin{array}{l} \text{NODE}{=}\text{M174TMP;} \text{DTYPE}{=}\text{M;} \text{OUR EST;} \\ \rightarrow \text{UNCHECKED} \leftarrow \\ \text{NODE}{=}\text{M174M;} \text{DTYPE}{=}\text{M} \\ \text{NODE}{=}\text{M174W;} \text{DTYPE}{=}\text{G} \end{array}$$

NODE=M174215;DESIG=1;OUR EVAL; \rightarrow UNCHECKED \leftarrow

NODE=M018

 $\label{eq:starses} \begin{array}{l} \text{NODE}=\text{M018TMP;} DTYPE=\text{M;} OUR \ \text{EST;} \\ \rightarrow \text{UNCHECKED} \leftarrow \\ \text{NODE}=\text{M018M1;} DTYPE=\text{M} \\ \text{NODE}=\text{M018MCT;} DTYPE=\text{M} \\ \text{NODE}=\text{M018M2;} DTYPE=\text{G} \\ \text{NODE}=\text{M018W5;} DTYPE=\text{G} \\ \text{NODE}=\text{M018W2;} DTYPE=\text{G} \\ \text{NODE}=\text{M018W2;} DTYPE=\text{G} \\ \end{array}$

```
\begin{array}{l} \text{NODE}=\text{M018220;} \text{DESIG}=1; \text{OUR EVAL};\\ \overrightarrow{\text{DUSIG}}=4\\ \text{DESIG}=3\\ \text{DESIG}=2 \end{array}
```

NODE=M028

 $\begin{array}{l} \text{NODE}{=}\text{M028MX;} \text{DTYPE}{=}\text{M} \\ \text{NODE}{=}\text{M028WX;} \text{DTYPE}{=}\text{G;} \text{OUR EST;} \\ \rightarrow \text{UNCHECKED} \leftarrow \end{array}$

```
NODE=M028215;DESIG=2
DESIG=7
DESIG=1
DESIG=5
DESIG=8
DESIG=9;OUR EST;\rightarrow UNCHECKED \leftarrow
```

```
NODE=M064
NODE=M064M;DTYPE=M
NODE=M064W;DTYPE=G
```

Lorentz invariance violating modes $< 1.7 \times 10^{-7}$ CL=90%

 $I(J^P) = \frac{1}{2}(0^+)$

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV." Mass (T-Matrix Pole \sqrt{s}) = (630–730) – *i* (260–340) MeV Mass (Breit-Wigner) = 838 ± 11 MeV Full width (Breit-Wigner) = 463 ± 27 MeV

K [*] ₀ (700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	100 %	250

K*(892)

 $I(J^P) = \frac{1}{2}(1^-)$

Mass (T-Matrix Pole \sqrt{s}) = (890 ± 14) - *i* (26 ± 6) MeV $K^*(892)^{\pm}$ hadroproduced mass $m = 891.67 \pm 0.26$ MeV $K^*(892)^{\pm}$ in τ decays mass $m = 895.5 \pm 0.8$ MeV $K^*(892)^0$ mass $m = 895.55 \pm 0.20$ MeV (S = 1.7) $K^*(892)^{\pm}$ hadroproduced full width $\Gamma = 51.4 \pm 0.8$ MeV $K^*(892)^{\pm}$ in τ decays full width $\Gamma = 46.2 \pm 1.3$ MeV $K^*(892)^0$ full width $\Gamma = 47.3 \pm 0.5$ MeV (S = 2.0)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
Kπ	\sim 100	%	289
$\mathcal{K}^{0}_{\mathbf{\gamma}}\gamma$	(2.46 ± 0.21)	$\times 10^{-3}$	307
$K^{\pm}\gamma$	$($ 9.8 \pm 0.9 $)$	imes 10 ⁻⁴	309
$K\pi\pi$	< 7	$\times 10^{-4}$ 95%	223

<i>K</i> ₁ (1270)

 $I(J^P) = \frac{1}{2}(1^+)$

K ₁ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	р (MeV/c)
Κρ	(38 ±13)%	2.2	†
$K_0^*(1430)\pi$	(28 \pm 4) %		†
$\check{K^{*}(892)}\pi$	$(21 \pm 10)\%$	2.2	286
$K\omega$	$(11.0\pm~2.0)~\%$		†
$K f_0(1370)$	(3.0 \pm 2.0) %		†
$\gamma \mathcal{K}^{0}$	seen		528

K₁(1400)

$$I(J^P) = \frac{1}{2}(1^+)$$

$$\begin{array}{l} \mbox{Mass} \ m = 1403 \pm 7 \ \mbox{MeV} \\ \mbox{Full width} \ \mbox{\Gamma} = 174 \pm 13 \ \mbox{MeV} \quad \mbox{(S} = 1.6) \end{array}$$

 $\pi^0 \gamma$

K ₁ (1400) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$K^{*}(892)\pi$	(94 ±6)%	402
Κρ	(3.0±3.0) %	293
$K f_0(1370)$	(2.0±2.0) %	ť
$K\omega$	(1.0±1.0) %	284
$K_0^*(1430)\pi$	not seen	†
$\gamma \check{K}^{0}$	seen	613
$K\phi$	seen	t

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

T-matrix pole $\sqrt{s} = (1368 \pm 38) - i (106^{+48}_{-59})$ MeV Mass $m = 1414 \pm 15$ MeV (S = 1.3) Full width $\Gamma = 232 \pm 21$ MeV (S = 1.1)

K*(1410) DECAY MODES	Fraction (Γ_i/Γ)		Confidence level	(MeV/ <i>c</i>)	
<i>K</i> *(892) <i>π</i>	> 40	%	95%	410	
$K\pi$	(6.6±1	.3) %		612	
Κρ	< 7	%	95%	306	
γK^0	< 2.3	imes 10	4 90%	619	
$K\phi$	seen			†	

K^{*}₀(1430)

 $I(J^P) = \frac{1}{2}(0^+)$

T-matrix pole $\sqrt{s} = (1431 \pm 6) - i (110 \pm 19) \text{ MeV}$ Mass $m = 1425 \pm 50 \text{ MeV} [v]$ Full width $\Gamma = 270 \pm 80 \text{ MeV} [v]$

K [*] ₀ (1430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κπ	(93 ±10)%	619
$K\eta$	(8.6 + 2.7) %	486
$K \eta'$ (958)	seen	†

K₂(1430)

 $I(J^P) = \frac{1}{2}(2^+)$

T-matrix pole $\sqrt{s} = (1424 \pm 4) - i (66 \pm 2) \text{ MeV}$ $K_2^*(1430)^{\pm} \text{ mass } m = 1427.3 \pm 1.5 \text{ MeV}$ (S = 1.3) $K_2^*(1430)^0 \text{ mass } m = 1432.4 \pm 1.3 \text{ MeV}$ $K_2^*(1430)^{\pm} \text{ full width } \Gamma = 100.0 \pm 2.2 \text{ MeV}$ (S = 1.1) $K_2^*(1430)^0 \text{ full width } \Gamma = 109 \pm 5 \text{ MeV}$ (S = 1.9)

K [*] (1430) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>р</i> (MeV/c)
Κπ	(49.9±1.2) %		620
$K^{*}(892)\pi$	(24.7 ± 1.5) %		420
$K^{*}(892)\pi\pi$	(13.4±2.2) %		373
$K\rho$	(8.7±0.8) %	S=1.2	320
$K\omega$	(2.9±0.8) %		313
$K^+\gamma$	$(2.4\pm0.5) imes 1$.0 ⁻³ S=1.1	628
$K\eta$	$(1.5^{+3.4}_{-1.0}) imes 1$	L0 ⁻³ S=1.3	488
$K \omega \pi$	< 7.2 × 1	-4 CL=95%	106
$\mathcal{K}^{0}\gamma$	< 9 × 1	.0 ⁻⁴ CL=90%	627
K(1460)	$I(J^P) = \frac{1}{2}(0)$)_)	

NODE=M064215;DESIG=1
DESIG=2
DESIG=8
DESIG=5
$DESIG{=}7;OUR\;EST;\toUNCHECKED\leftarrow$
$DESIG{=}9; OUR\;EST; {\rightarrow}\;UNCHECKED \leftarrow$

NODE=M094

p

DESIG=10

NODE=M094PP;DTYPE=p;OUR EST; NODE=M094W;DTYPE=M NODE=M094W;DTYPE=G

NODE=M094215;DESIG=2 DESIG=1 DESIG=3;OUR EST; \rightarrow UNCHECKED \leftarrow DESIG=4 DESIG=5

NODE=M019

NODE=M019PP:DTYPE=p;OUR EST; NODE=M019M:DTYPE=M;OUR EST; \rightarrow UNCHECKED \leftarrow NODE=M019W:DTYPE=G;OUR EST; \rightarrow UNCHECKED \leftarrow

```
NODE=M019215;DESIG=1
DESIG=2
```

DESIG=3

NODE=M022

 $\label{eq:node} \begin{array}{l} \text{NODE}=\text{M022PP;} DTYPE=p; OUR EST; \\ \overrightarrow{} UNCHECKED \overleftarrow{} \\ \text{NODE}=\text{M022M1;} DTYPE=M \\ \text{NODE}=\text{M022W4;} DTYPE=G \\ \text{NODE}=\text{M022W4;} DTYPE=G \\ \text{NODE}=\text{M022W4;} DTYPE=G \end{array}$

NODE=M022215;DESIG=1
DESIG=2
DESIG=6
DESIG=3
DESIG=4
DESIG=8
DESIG=5
DESIG=7 DESIG=10;OUR EVAL;→ UNCHECKED ←

NODE=M021

K(1460) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Κ *(892)π	seen	-
Κρ	seen	-
$K_0^*(1430)\pi$	seen	-
$oldsymbol{K} \phi$	seen	-

K₁(1650)

Mass $m = 1650 \pm 50$ MeV Full width $\Gamma = 150 \pm 50$ MeV

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

 $I(J^P) = \frac{1}{2}(1^+)$

 $\begin{array}{l} \mbox{Mass } m = 1718 \pm 18 \mbox{ MeV} \\ \mbox{Full width } \Gamma = 320 \pm 110 \mbox{ MeV} \quad (\mbox{S} = 4.2) \end{array}$

K*(1680) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Κπ	(38.7±2.5) %	782
Κρ	$(31.4^{+5.0}_{-2.1})$ %	571
K*(892)π	$(29.9^{+2.2}_{-5.0})$ %	618
$K\phi$	seen	387
$K\eta$	$(1.4^{+1.0}_{-0.8})\%$	683

K₂(1770) [×]

 $I(J^P) = \frac{1}{2}(2^-)$

Mass $m = 1773 \pm 8$ MeV Full width $\Gamma = 186 \pm 14$ MeV

K ₂ (1770) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Κππ		794
$K_{2}^{*}(1430)\pi$	seen	287
$K^*(892)\pi$	seen	654
K f ₂ (1270)	seen	53
K f ₀ (980)	possibly seen	466
$K\phi$	seen	441
$K\omega$	seen	607

K₃(1780)

 $I(J^P) = \frac{1}{2}(3^-)$

 $\begin{array}{l} \mbox{T-matrix pole } \sqrt{s} = (1754 \pm 13) - \ i \ (119 \pm 14) \ \mbox{MeV} \\ \mbox{Mass } m = 1779 \pm 8 \ \mbox{MeV} \quad (S = 1.2) \\ \mbox{Full width } \Gamma = 161 \pm 17 \ \mbox{MeV} \quad (S = 1.1) \end{array}$

$\begin{array}{l} \mathsf{NODE}{=}\mathsf{M021215}{:}\mathsf{DESIG}{=}1{;}\mathsf{OUR}\;\mathsf{EST}{;}\\ \overrightarrow{\mathsf{UNCHECKED}} \leftarrow\\ \mathsf{DESIG}{=}2{;}\mathsf{OUR}\;\mathsf{EST}{;}{\rightarrow}\;\mathsf{UNCHECKED} \leftarrow\\ \mathsf{DESIG}{=}3{;}\mathsf{OUR}\;\mathsf{EST}{;}{\rightarrow}\;\mathsf{UNCHECKED} \leftarrow \end{array}$

DESIG=4

NODE=M099

NODE=M099M;DTYPE=M NODE=M099W;DTYPE=G

NODE=M095 NODE=M095M;DTYPE=M NODE=M095W;DTYPE=G

NODE=M0952	15;DESIG=1
DESIG=3	
DESIG=2	
DESIG=4	
DESIG=6	

NODE=M023 ERROR=1 NODE=M023M;DTYPE=M NODE=M023W;DTYPE=G

NODE=M023215;DESIG=1;OUR EST;
$\overrightarrow{DESIG}_{2;0}^{\leftarrow} \overrightarrow{OUR} \overrightarrow{EST}_{;}^{\leftarrow} \overrightarrow{UNCHECKED} \leftarrow$
$DESIG{=}4;OUR\;EST{;}{\rightarrow}\;UNCHECKED\;\leftarrow$
$DESIG{=}9; OUR\;EST; \rightarrow UNCHECKED \leftarrow$
$\texttt{DESIG=11;} \texttt{OUR EVAL;} \rightarrow \texttt{UNCHECKED} \leftarrow$
DESIG=10
DESIG=8

NODE=M060

NODE=M060PP;DTYPE=p;OUR EVAL; → UNCHECKED ← NODE=M060M;DTYPE=M NODE=M060W;DTYPE=G

K [*] ₃ (1780) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
Κρ	(31 ± 9)%		616
$K^{*}(892)\pi$	$(20 \pm 5)\%$		657
$K\pi$	$(18.8\pm~1.0)~\%$		815
$K\eta$	(30 ±13)%		721
$K_{2}^{*}(1430)\pi$	< 16 %	95%	292

*K*₂(1820) ^[×]

 $I(J^P) = \frac{1}{2}(2^-)$

Mass $m = 1819 \pm 12$ MeV Full width $\Gamma = 264 \pm 34$ MeV

K2(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi\pi$	seen	819
$K_2^*(1430)\pi$	seen	328
$K^{\overline{*}}(892)\pi$	seen	683
$K f_2(1270)$	seen	191
$K\omega$	seen	640
$K\phi$	seen	483

K₀*(1950)

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass $m = 1957 \pm 14$ MeV Full width $\Gamma = 170 \pm 50$ MeV (S = 2.2)

K [*] ₀ (1950) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\overline{\kappa^-\pi^+}$	(52±14) %	911

K^{*}₂(1980)

$$I(J^P) = \frac{1}{2}(2^+$$

)

 $\begin{array}{l} {\sf Mass} \ m = 1990 {}^{+60}_{-50} \ {\sf MeV} \quad ({\sf S}=2.8) \\ {\sf Full \ width} \ {\sf \Gamma} = 348 {}^{+50}_{-30} \ {\sf MeV} \quad ({\sf S}=1.3) \end{array}$

K [*] ₂ (1980) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
<i>K</i> *(892) <i>π</i>	possibly seen	791
Κρ	possibly seen	762
$K f_2(1270)$	possibly seen	424
$K\phi$	seen	627
$K\eta$	seen	850

K₄(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass $m = 2048^{+8}_{-9}$ MeV (S = 1.1) Full width $\Gamma = 199^{+27}_{-19}$ MeV

K [*] (2045) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Κπ	(9.9±1.2) %	960
$K^*(892)\pi\pi$	(9 ±5)%	804
$K^*(892)\pi\pi\pi$	(7 ±5)%	770
$ ho K \pi$	(5.7±3.2) %	744
$\omega K \pi$	(5.0±3.0) %	740
$\phi K \pi$	(2.8±1.4) %	597
ϕ K*(892)	(1.4 ± 0.7) %	368

NODE=M060215;DESIG=3 DESIG=2 DESIG=1 DESIG=6 DESIG=4

NODE=M146

ERROR=2 NODE=M146M;DTYPE=M NODE=M146W;DTYPE=G

 $\begin{array}{l} \text{NODE}{=}\text{M146215;} \text{DESIG}{=}\text{5;} \text{OUR EVAL};\\ \text{DESIG}{=}\text{1;} \text{OUR EVAL}; \rightarrow \text{UNCHECKED} \leftarrow\\ \text{DESIG}{=}\text{2;} \text{OUR EVAL}; \rightarrow \text{UNCHECKED} \leftarrow\\ \text{DESIG}{=}\text{3;} \text{OUR EVAL}; \rightarrow \text{UNCHECKED} \leftarrow\\ \text{DESIG}{=}\text{6;} \text{OUR EVAL}; \rightarrow \text{UNCHECKED} \leftarrow\\ \text{DESIG}{=}\text{7} \end{array}$

NODE=M134

NODE=M134M;DTYPE=M NODE=M134W;DTYPE=G

NODE=M134215;DESIG=1

NODE=M104

NODE=M104M;DTYPE=M NODE=M104W;DTYPE=G

NODE=M104215;DESIG=2
DESIG=3
DESIG=4
DESIG=5
DESIG=6

NODE=M035 NODE=M035M;DTYPE=M

NODE=M035W;DTYPE=G

NODE=M035215;DESIG=1
DESIG=2
DESIG=5
DESIG=3
DESIG=4
DESIG=6
DESIG=7

LINKAGE=SZ

LINKAGE=CE

NOTES

[a] See the note in the \mathcal{K}^\pm Particle Listings.	LINKAGE=KM
[b] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. D12, 2744 (1975).	LINKAGE=CH
[c] The definition of the slope parameters of the $K \rightarrow 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \rightarrow 3\pi$ Decays" in the K^{\pm} Particle Listings): $ M ^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$	LINKAGE=SY
[d] See the review on "Form Factors for Radiative Pion and Kaon Decays" for definitions and details.	LINKAGE=SWK
[e] For more details and definitions of parameters see the Particle Listings.	LINKAGE=SXK
[f] See the K^{\pm} Particle Listings for the energy limits used in this measurement.	LINKAGE=KD+
[g] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.	LINKAGE=KX
[h] Structure-dependent part.	LINKAGE=SH
[i] Direct-emission branching fraction.	LINKAGE=SJ
[j] Derived from an analysis of neutrino-oscillation experiments.	LINKAGE=CL
[k] Violates angular-momentum conservation.	LINKAGE=AM
[/] Derived from measured values of ϕ_{+-} , ϕ_{00} , $ \eta $, $ m_{K^0_L} - m_{K^0_S} $, and $\tau_{K^0_c}$, as described in the introduction to "Tests of Conservation Laws."	LINKAGE=CG

[*n*] The *CP*-violation parameters are defined as follows (see also "Note on *CP* Violation in $K_S \rightarrow 3\pi$ " and "Note on *CP* Violation in K_L^0 Decay" in the Particle Listings):

$$\begin{split} \eta_{+-} &= \left| \eta_{+-} \right| e^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon \ + \ \epsilon' \\ \eta_{00} &= \left| \eta_{00} \right| e^{i\phi_{00}} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} = \epsilon \ - \ 2\epsilon' \\ \delta &= \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} , \\ \mathrm{Im}(\eta_{+-0})^2 &= \frac{\Gamma(K_S^0 \to \pi^+ \pi^- \pi^0)^{CP \ \mathrm{viol.}}}{\Gamma(K_L^0 \to \pi^+ \pi^- \pi^0)} , \\ \mathrm{Im}(\eta_{000})^2 &= \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^0 \pi^0 \pi^0)} . \end{split}$$

where for the last two relations *CPT* is assumed valid, *i.e.*, $\text{Re}(\eta_{+-0}) \simeq 0$ and $\text{Re}(\eta_{000}) \simeq 0$.

- [o] See the K_S^0 Particle Listings for the energy limits used in this measurement. LINKAGE=KDS
- [p] The value is for the sum of the charge states or particle/antiparticle states indicated.
 LINKAGE=SG
- [q] $\operatorname{Re}(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [r] This mode includes gammas from inner bremsstrahlung but not the direct LINKAGE=IBR emission mode $K_L^0 \rightarrow \pi^+ \pi^- \gamma$ (DE).
- [s] See the K_L^0 Particle Listings for the energy limits used in this measurement. LINKAGE=KDL
- [t] Allowed by higher-order electroweak interactions.

[u] Violates CP in leading order. Test of direct CP violation since the in- direct CP-violating and CP-conserving contributions are expected to be suppressed.	LINKAGE=CD	
[v] Our estimate. See the Particle Listings for details.	LINKAGE=BH	
[x] See our minireview under the $K_2(1770)$ in the 2004 edition of this <i>Review</i> .	LINKAGE=MBD	

4/21/2025 15:40

Page 13