Neutral Higgs Bosons, Searches for

CONTENTS:

Mass Limits for Neutral Higgs Bosons in Supersymmetric Models

- Mass Limits for heavy neutral Higgs bosons (H_2^0, A^0) in the MSSM
- Mass Limits for H_1^0 (Higgs Boson) in Supersymmetric Models Mass Limits for Neutral Higgs Bosons in Extended Higgs Models
 - Mass Limits in General two-Higgs-doublet Models
 - Mass Limits for H^0 with Vanishing Yukawa Couplings
 - Mass Limits for H^0 Decaying to Invisible Final States
 - Mass Limits for H^2 Decaying to invisible Final State - Mass Limits for Light A^0

 - Other Mass Limits

Electroweak Constraints on the Standard Model Higgs Boson Mass

MASS LIMITS FOR NEUTRAL HIGGS BOSONS IN SUPERSYMMETRIC MODELS

The minimal supersymmetric model has two complex doublets of Higgs bosons. The resulting physical states are two scalars $[H_1^0 \text{ and } H_2^0$, where we define $m_{H_1^0} < m_{H_2^0}]$, a pseudoscalar (A^0) , and a charged Higgs pair (H^{\pm}) . H_1^0 and H_2^0 are also called h and H in the literature. There are two free parameters in the Higgs sector which can be chosen to be m_{A^0} and $\tan\beta = v_2/v_1$, the ratio of vacuum expectation values of the two Higgs doublets. Tree-level Higgs masses are constrained by the model to be $m_{H_1^0} \leq m_Z$, $m_{H_2^0} \geq m_Z$, $m_{A^0} \geq m_{H_1^0}$, and $m_{H^{\pm}} \geq m_W$. However, as described in the review on "Status of Higgs Boson Physics" in this Volume these relations are violated by radiative corrections.

The observed signal at about 125 GeV, see section "H", can be interpreted as one of the neutral Higgs bosons of supersymmetric models. Unless otherwise noted, we identify the lighter scalar H_1^0 with the Higgs discovered at 125 GeV at the LHC (AAD 12AI, CHATRCHYAN 12N).

Unless otherwise noted, the experiments in $e^+\,e^-$ collisions search for the processes $e^+\,e^- \rightarrow \ H^0_1 Z^0$ in the channels used for the Standard Model Higgs searches and $e^+\,e^- \rightarrow \ H^0_1 A^0$ in the final states $b \overline{b} b \overline{b}$ and $b \overline{b} \tau^+ \tau^-$. Unless otherwise stated, the following results assume no invisible H^0_1 or A^0 decays. Unless otherwise noted, the results are given in the m^{max}_{m} scenario, CARENA 13.

In $p\overline{p}$ and pp collisions the experiments search for a variety of processes, as explicitly specified for each entry. Limits on the A^0 mass arise from these direct searches, as well as from the relations valid in the minimal supersymmetric model between m_{A^0} and $m_{H_1^0}$. As discussed in the review on "Status of Higgs Boson Physics" in this Volume, these relations depend, via potentially large radiative corrections, on the mass of the t quark and on the supersymmetric parameters, in particular those of the stop sector. These indirect limits are weaker for larger t and \tilde{t} masses. To include the radiative corrections to the Higgs masses, unless otherwise stated, the listed papers use theoretical predictions incorporating two-loop corrections and beyond (SLAVICH 21), and the results are given for the M_h^{125} benchmark scenario, see BAGNASCHI 19.

Mass Limits for heavy neutral Higgs bosons (H_2^0, A^0) in the MSSM

Mass Limits to	NODE=S055HAD					
The limits	NODE=S055HAD					
(sufficiently	y) mass d	egenerate. The limit	ts dep	end on	taneta.	
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	NODE=S055HAD
> 835	95	¹ TUMASYAN		CMS	$ aneta=10{ m GeV}$	
>1240	95	¹ TUMASYAN	23S	CMS	$ aneta=20{ m GeV}$	OCCUR=2
>1605	95	¹ TUMASYAN	23S	CMS	aneta= 30 GeV	OCCUR=3
>1820	95	¹ TUMASYAN	23S	CMS	aneta= 40 GeV	OCCUR=4
>1950	95	¹ TUMASYAN	23S	CMS	aneta= 50 GeV	OCCUR=5
/1930	90	TOWASTAN	200	CIVIS	$an\rho = 30 \text{ GeV}$	OCCOR=5

NODE=S055

NODE=S055CNT NODE=S055CNT

NODE=S055CNT

NODE=S055250

NODE=S055250

>2062	95	¹ TUMASYAN	235 CM	5 tan $eta=$ 60 GeV	OCCUR=6
>1121	95	² AAD	20aa AT		
>1475	95 05	² AAD ² AAD	20AA AT	,	OCCUR=2
>1677 >1826	95 95	² AAD	20AA AT 20AA AT		OCCUR=3 OCCUR=4
>1937	95 95	² AAD	2044 AT		OCCUR=5
>2033	95	² AAD	20AA AT		OCCUR=6
• • • We do not ι	ise the fo	ollowing data for av	erages, fit		
		³ AAD	24ap AT	S $H_2^0, A^0 \rightarrow t \overline{t}$	
		⁴ AAD	24CB AT		
		⁵ AAD	24H AT	2	
		⁶ AAD ⁷ AAD	20 AT		
		⁸ AAD	20c AT	2	
		⁹ SIRUNYAN	20L ATT 20AC CM	2	
		¹⁰ SIRUNYAN	20AC CIM 20AF CM		
		¹¹ SIRUNYAN	20Y CM	4	
		¹² SIRUNYAN	19CR CM	2	
> 377	95	¹³ AABOUD	18G AT		
> 863	95	¹³ AABOUD	18G AT		OCCUR=2
>1157	95	¹³ AABOUD	18G AT		OCCUR=3
>1328	95	¹³ AABOUD	18G AT		OCCUR=4
>1483 >1613	95 95	¹³ AABOUD ¹³ AABOUD	18G AT		OCCUR=5 OCCUR=6
>1015	95	¹⁴ SIRUNYAN	18A CM		000000
		¹⁵ SIRUNYAN	18BP CM		
				$H_2^0/A^{\overline{0}} \rightarrow b\overline{b}$	
> 389	95	¹⁶ SIRUNYAN	18cx CM	2	
> 832	95	¹⁶ SIRUNYAN	18cx CM		OCCUR=2
>1148	95	¹⁶ SIRUNYAN	18cx CM		OCCUR=3
>1341 >1496	95 95	¹⁶ SIRUNYAN ¹⁶ SIRUNYAN	18CX CM 18CX CM		OCCUR=4 OCCUR=5
>1613	95 95	¹⁶ SIRUNYAN	18CX CM		OCCUR=6
/		¹⁷ AABOUD	16AA AT	S $A^0 \rightarrow \tau^+ \tau^-$	
		¹⁸ KHACHATRY.	16A CM		
		¹⁹ KHACHATRY.	16P CM		
		²⁰ KHACHATRY.	15AY CM		OCCUR=4
				$H_{1,2}^0/\overline{A^0} \rightarrow b\overline{b}$	
		²¹ AAD	14AW AT	-,- 0	
				$H_{1,2}^{0}/A^{0} \rightarrow \tau\tau$	
		22 КНАСНАТРУ	14M CM	$5 pp \to H_{1,2}^0 / A^0 + X,$	
		KHACHATKT.			
		22		$H_{1,2}^0/A^0 \rightarrow \tau \tau$	
		²³ AAD	130 AT	S $pp \to H_{1,2}^0 / A^0 + X$,	
				$H^0_{1,2}/A^0 o \ au^+ au^-$,	
		24		$ \begin{array}{ccc} & \mu^{+}\mu^{-} \\ B & \rho\rho \rightarrow & H_{1,2}^{0} / A^{0} + X, \end{array} $	
		²⁴ AAIJ	13⊤ LH		
				$H^{0}_{1,2}/A^{0} \rightarrow \tau^{+} \tau^{-}$	
		²⁵ CHATRCHYAN	13AG CM	$5 pp \to H^0_{1,2}/A^0 + b + X,$	
				$H_{1,2}^0 / A^0 \rightarrow b\overline{b}$	
		²⁶ AALTONEN	12AQ TE	$A p\overline{p} \to H_{1,2}^0 / A^0 + b + X,$	
				$H_{1,2}^0/\dot{A^0} \rightarrow b\overline{b}$	
		²⁷ AALTONEN	12x CD	$p \overline{p} \rightarrow H^0_{1,2}/A^0 + b + X,$	
				$H_{1,2}^0 / A^0 \rightarrow b\overline{b}$	
		²⁸ ABAZOV		$p\overline{p} \to H_{1,2}^0/A^0 + X,$	
		ABALUV	126 DU	=,=	
		29		$H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-$	
		- CHATRCHYAN	N12K CM	$5 pp \to H^{0}_{1,2} / A^{0} + X,$	
				$H^{0}_{1,2}/A^{0} \rightarrow \tau^{+}\tau^{-}$	

		³⁰ ABAZOV	11ĸ D0	$p\overline{p} \rightarrow H^0_{1,2}/A^0 + b + X,$	
			IIK DU	$H^{0}_{1,2}/\overline{A^{0}} \rightarrow b\overline{b}$	
		³¹ ABAZOV	11W D0	$p\overline{p} \rightarrow H^{0}_{1,2}/A^{0} + b + X,$ $H^{0}_{1,2}/A^{0} \rightarrow \tau^{+}\tau^{-}$	
		³² AALTONEN	09AR CDF	$p\overline{p} \rightarrow H_{1,2}^{0}/A^{0} + X,$ $H_{1,2}^{0}/A^{0} \rightarrow \tau^{+}\tau^{-}$	
> 90.4		³³ ABDALLAH		$E_{\rm cm} \le 209 \; {\rm GeV}$	
> 93.4	95	³⁴ SCHAEL ³⁵ ACOSTA	06B LEP 05Q CDF	$E_{\rm cm} \le 209 {\rm GeV} \\ p \overline{p} \to H_{1,2}^0 / A^0 + X$	
> 85.0	95	^{36,37} ABBIENDI ³⁸ ABBIENDI	04M OPAL 03G OPAL	$E_{\rm cm} \le 209 {\rm GeV}$ $H_1^0 \to A^0 A^0$	
> 86.5	95	^{36,39} ACHARD ⁴⁰ AKEROYD	02н L3 02 RVUE	$E_{ m cm}^{-} \leq$ 209 GeV, tan $eta >$ 0.4	
> 90.1	95	^{36,41} HEISTER	02 ALEP	${\it E_{cm}} \le$ 209 GeV, tan $eta >$ 0.5	
¹ TUMASYA	N 235 se	earch for production o	$f H_2^0/A^0 \rightarrow$	$ au^+ au^-$ by gluon fusion and <i>b</i> -	NODE=S055HAD;LINKAGE=N
				$E_{\rm cm} = 13$ TeV. See their Fig.	····
13 for exclu	ided regio	ons in the m_{A^0} -tan β p	lane in M_h^{125}	and M_{hEFT}^{125} MSSM scenarios.	
		A^0 < 350 GeV is excluded on the second s			
		<u> </u>		by gluon fusion or <i>b</i> -associated	NODE=S055HAD;LINKAGE=G
production excluded re	using 13 gion in t	9 tb ⁻¹ ot pp collision he M^{125} scenario of N	ns at <i>E</i> _{cm} = 455M Values	13 TeV. See their Fig. 2(c) for s of tan β > 8 (21) are excluded	
for $m_{A0} =$	1.0 (1.5)) TeV at 95%CL.	NOOTVI. Values	(21) are excluded	
			$V H_0^0$ and A^0	decaying to $t \overline{t}$ in 140 fb $^{-1}$ of	
<i>pp</i> collisior	ns at E _{cn}	$_{\sf n}=13$ TeV. See their	Fig. 13(b) fo	or excluded parameter regions in	NODE=S055HAD;LINKAGE=P
				$^{-1}$ of <i>H</i> production cross sections eir Figs. 22 and 23 for excluded	NODE=S055HAD;LINKAGE=T
regions in v	arious M	SSM scenarios.			
AAD 24H c	ombine s sions at <i>B</i>	earches for a scalar res = $= 13$ TeV from A	onance decayı AAD 22F AA	ing to HH using up to 139 fb $^{-1}$ D 23Z, and AAD 22Y. See their	NODE=S055HAD;LINKAGE=O
				T_{L} and $M_{h,EFT}^{125}(\tilde{\chi})$ benchmark	
				tion has been taken into account	
in the signa					
				decay using data taken in years = 13 TeV. See their Fig. 19 for	NODE=S055HAD;LINKAGE=F
excluded re	gion in tl	he hMSSM parameter	space.		
⁷ AAD 20C	combine	searches for a scalar	resonance de	caying to HH in 36.1 fb ⁻¹ of	NODE=S055HAD;LINKAGE=C
<i>p p</i> collision AABOUD 1	ns at <i>E</i> cr 19T. AAB	_n = 13 TeV from AA OUD 18CW. and AAB(BOUD 19A, A DUD 18BU. Se	ABOUD 190, AABOUD 18cQ, e their Fig. 7(b) for the excluded	
region in th	ne hMSSI	M parameter space.			1
				aying to $b\overline{b}$ in 27.8 fb ⁻¹ of pp	NODE=S055HAD;LINKAGE=L
collisions at	$E_{\rm cm} =$	13 TeV. See their Fig	;. 9 for exclud	led regions in hMSSM, m $_h^{mod+}$	
		ios of MSSM. earch for gluon-fusion	and <i>b</i> -associa	ated production of A^0 decaying	NODE=S055HAD;LINKAGE=J
to ZH in 3	85.9 fb ⁻¹	¹ of <i>p p</i> collisions at <i>E</i>	$T_{\rm cm} = 13 {\rm Te}^{1}$	V. See their Fig. 6 for excluded	NODE_3035HAD,EINRAGE_J
regions in t	he M ¹²⁵ hEF	T and hMSSM scena	rios of the MS	SSM.	
¹⁰ SIRUNYAN	20AF se	arch for $H_2^0/A^0 \rightarrow t^2$	t with one or	two charged leptons in the final	NODE=S055HAD;LINKAGE=I
state using their Fig. 8 1.0–1.5 are	kinemat for exclu excludec	ic variables in 35.9 fb uded region in the hMS I for $m_{A^0} = 0.4$ –0.75	SM scenario TeV at 95%C	llisions at $E_{\rm cm}=13$ TeV. See of MSSM. Values of tan β below L.	
				on-fusion production of H_2^0 de-	NODE=S055HAD;LINKAGE=K
caying to V	v^+w^-	in the final states $\ell \nu \ell$	ν and $\ell \nu q q$	in 35.9 fb ^{-1} of <i>pp</i> collisions at	NODE-SUSSIAD, EINRAGE-R
$E_{cm} = 13$ 12 SIRUNYAN	iev.See 19CR se	e meir Figs. 8 and 9 fo earch for production o	f excluded reg f H_0^0 / A^0 in	ions in various MSSM scenarios. gluon fusion and in association	
				collisions at $E_{\rm cm} = 13$ TeV. See	NODE=S055HAD;LINKAGE=D
their Fig. 5	5 for the	excluded region in the	MSSM para	meter space in the $m_h^{\text{mod}+}$ and	
hMSSM sc	enarios			$ au^+ au^-$ by gluon fusion and b-	
					NODE=S055HAD;LINKAGE=A
for exclude	d regions	in the m_{A0}^{-} tan β pla	ine in several	_{cm} = 13 TeV. See their Fig. 10 MSSM scenarios.	
¹⁴ SIRUNYAN	l 18A sea	arch for production o	f a scalar res	sonance decaying to $H^0 H^0 \rightarrow$	NODE=S055HAD;LINKAGE=V
$b\overline{b}\tau^+\tau^-$	in 35.9 f	b^{-1} of pp collisions	at $E_{\rm cm} = 13$	B TeV. See their Fig. 5 (lower) MSSM scenario.	
	a regions	$M = m A^0 - tan \beta p$	ane in the fil		

	7/16/2025 12:16 Page 4
¹⁵ SIRUNYAN 18BP search for production of $H_2^0/A^0 \rightarrow b\overline{b}$ by <i>b</i> -associated prodution in 35.7 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for the limits on cross section times branching ratio for $m_{H_2^0}^{0, m}, m_{A^0} = 0.3$ –1.3 TeV, and Fig. 7 for excluded	NODE=S055HAD;LINKAGE=Y
regions in the $m_{A^0}^-$ tan(β) plane in several MSSM scenarios. ¹⁶ SIRUNYAN 18CX search for production of $H^0_{1,2}/A^0 \rightarrow \tau^+ \tau^-$ by gluon fusion and	NODE=S055HAD;LINKAGE=B
<i>b</i> -associated prodution in 35.9 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 9 for excluded regions in the m_{A0}^{-} tan(β) plane in several MSSM scenarios. ¹⁷ AABOUD 16AA search for production of a Higgs boson in gluon fusion and in association with a $b\bar{b}$ pair followed by the decay $A^0 \rightarrow \tau^+ \tau^-$ in 3.2 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5(a, b) for limits on cross section times branching ratio for $m_{A0}^{-} = 200$ -1200 GeV, and Fig. 5(c, d) for the excluded region in the MSSM parameter space in the $m_{b}^{\rm mod+}$ and hMSSM scenarios.	NODE=S055HAD;LINKAGE=U
¹⁸ KHACHATRYAN 16A search for production of a Higgs boson in gluon fusion and in association with a $b\bar{b}$ pair followed by the decay $H_{1,2}^0/A^0 \rightarrow \mu^+\mu^-$ in 5.1 fb ⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and 19.3 fb ⁻¹ at $E_{\rm cm} = 8$ TeV. See their Fig. 7 for the	NODE=S055HAD;LINKAGE=Q
excluded region in the MSSM parameter space in the $m_h^{\text{mod}+}$ benchmark scenario and Fig. 9 for limits on cross section times branching ratio. ¹⁹ KHACHATRYAN 16P search for gluon fusion production of an H_2^0 decaying to $H^0 H^0 \rightarrow b\overline{b}\tau^+\tau^-$ and an A^0 decaying to $ZH^0 \rightarrow \ell^+\ell^-\tau^+\tau^-$ in 19.7 fb ⁻¹ of pp collisions	NODE=S055HAD;LINKAGE=R
at $E_{cm} = 8$ TeV. See their Fig. 12 for excluded region in the tan $\beta - \cos(\beta - \alpha)$ plane for $m_{H_2^0}^0 = m_{A^0} = 300$ GeV.	
²⁰ KHACHATRYAN 15AY search for production of a Higgs boson in association with a <i>b</i> quark in the decay $H_{1,2}^0 / A^0 \rightarrow b \overline{b}$ in 19.7 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 8$ TeV and combine with CHATRCHYAN 13AG 7 TeV data. See their Fig. 6 for the limits on cross section times branching ratio for $m_{A^0} = 100-900$ GeV and Figs. 7–9 for the excluded region in the MSSM parameter space in various benchmark scenarios.	NODE=S055HAD;LINKAGE=S
²¹ AAD 14AW search for production of a Higgs boson followed by the decay $H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-$ in 19.5–20.3 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 11 for the limits on cross section times branching ratio and their Figs. 9 and 10 for the excluded region in the MSSM parameter space. For $m_{A^0} = 140$ GeV, the region $\tan\beta > 5.4$ is multiple to 05% CL in the $\pi^{\rm max}$ as example.	NODE=S055HAD;LINKAGE=E
excluded at 95% CL in the m_h^{max} scenario. ²² KHACHATRYAN 14M search for production of a Higgs boson in gluon fusion and in association with a <i>b</i> quark followed by the decay $H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-$ in 4.9 fb ⁻¹ of	NODE=S055HAD;LINKAGE=H
pp collisions at $E_{\rm cm} = 7$ TeV and 19.7 fb ⁻¹ at $E_{\rm cm} = 8$ TeV. See their Figs. 7 and 8 for one- and two-dimensional limits on cross section times branching ratio and their Figs. 5 and 6 for the excluded region in the MSSM parameter space. For $m_{A^0} = 140$ GeV, the region tan $\beta > 3.8$ is excluded at 95% CL in the $m_h^{\rm max}$ scenario.	
23 AAD 130 search for production of a Higgs boson in the decay $H^0_{1,2}/A^0 o ~ au^+ au^-$ and	NODE=S055HAD;LINKAGE=GA
$\mu^+\mu^-$ with 4.7–4.8 fb ⁻¹ of pp collisions at $E_{\rm CM} =$ 7 TeV. See their Fig. 6 for the excluded region in the MSSM parameter space and their Fig. 7 for the limits on cross section times branching ratio. For $m_{A^0} = 110-170$ GeV, $\tan\beta \gtrsim 10$ is excluded, and for $\tan\beta = 50$, m_{A^0} below 470 GeV is excluded at 95% CL in the $m_h^{\rm max}$ scenario.	
²⁴ AAIJ 13T search for production of a Higgs boson in the forward region in the decay $H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-$ in 1.0 fb ⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 2 for the limits on cross section times branching ratio and the excluded region in the MSSM	NODE=S055HAD;LINKAGE=AI
parameter space. ²⁵ CHATRCHYAN 13AG search for production of a Higgs boson in association with a <i>b</i> quark in the decay $H_{1,2}^0/A^0 \rightarrow b\overline{b}$ in 2.7–4.8 fb ⁻¹ of <i>pp</i> collisions at $E_{cm} = 7$ TeV. See their Fig. 6 for the excluded region in the MSSM parameter space and Fig. 5 for the library production of the excluded region in the MSSM parameter space and Fig. 5 for the	NODE=S055HAD;LINKAGE=CR
limits on cross section times branching ratio. For $m_{A0} = 90-350$ GeV, upper bounds on $\tan\beta$ of 18-42 at 95% CL are obtained in the m_h^{max} scenario with $\mu = +200$ GeV. ²⁶ AALTONEN 12AQ combine AALTONEN 12X and ABAZOV 11K. See their Table I and Fin 2 for the upper bounds of the product of th	NODE=S055HAD;LINKAGE=OC
Fig. 1 for the limit on cross section times branching ratio and Fig. 2 for the excluded region in the MSSM parameter space. ²⁷ AALTONEN 12x search for associated production of a Higgs boson and a <i>b</i> quark in the decay $H_{1,2}^0 / A^0 \rightarrow b\bar{b}$, with 2.6 fb ⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Table 11.2 for the decay $H_{1,2}^0 / A^0 \rightarrow b\bar{b}$, with 2.6 fb ⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their	NODE=S055HAD;LINKAGE=TA
Table III and Fig. 15 for the limit on cross section times branching ratio and Figs. 17, 18 for the excluded region in the MSSM parameter space. ²⁸ ABAZOV 12G search for production of a Higgs boson in the decay $H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-$	NODE=S055HAD;LINKAGE=VM
with 7.3 fb ⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV and combine with ABAZOV 11W and ABAZOV 11K. See their Figs. 4, 5, and 6 for the excluded region in the MSSM parameter space. For $m_{A^0} = 90$ –180 GeV, $\tan\beta \gtrsim 30$ is excluded at 95% CL. in the $m_h^{\rm max}$ scenario.	

 29 CHATRCHYAN 12K search for production of a Higgs boson in the decay $H^0_{1,2}/A^0 o$ NODE=S055HAD;LINKAGE=CT $\tau^+\tau^-$ with 4.6 fb⁻¹ of pp collisions at $E_{\rm cm}$ = 7 TeV. See their Fig. 3 and Table 4 for the excluded region in the MSSM parameter space. For m_{A^0} = 160 GeV, the region taneta~> 7.1 is excluded at 95% CL in the $m_h^{ ext{max}}$ scenario. Superseded by KHACHATRYAN 14M. ³⁰ABAZOV 11K search for associated production of a Higgs boson and a *b* quark, followed by the decay $H_{1,2}^0 / A^0 \rightarrow b\overline{b}$, in 5.2 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV. See NODE=S055HAD;LINKAGE=A2 their Fig. 5/Table 2 for the limit on cross section times branching ratio and Fig. 6 for the excluded region in the MSSM parameter space for $\mu=-200$ GeV. $^{31}\mathrm{ABAZOV}$ 11W search for associated production of a Higgs boson and a b quark, followed NODE=S055HAD;LINKAGE=A1 by the decay $H_{1,2}^0/A^0 \rightarrow \tau \tau$, in 7.3 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Fig. 2 for the limit on cross section times branching ratio and for the excluded region in the MSSM parameter space. $^{32}{\rm AALTONEN}$ 09AR search for Higgs bosons decaying to $\tau^+\tau^-$ in two doublet models NODE=S055HAD:LINKAGE=TN in 1.8 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. See their Fig. 2 for the limit on $\sigma \cdot B(H_{1,2}^0/A^0 \rightarrow \tau^+ \tau^-)$ for different Higgs masses, and see their Fig. 3 for the excluded region in the MSSM parameter space. 33 ABDALLAH 08B give limits in eight *CP*-conserving benchmark scenarios and some *CP*-NODE=S055HAD;LINKAGE=AD violating scenarios. See paper for excluded regions for each scenario. Supersedes AB-DALLAH 04. 34 SCHAEL 06B make a combined analysis of the LEP data. The quoted limit is for the NODE=S055HAD;LINKAGE=SH m_h^{max} scenario with $m_t = 174.3$ GeV. In the CP-violating CPX scenario no lower bound on $m_{H_1^0}^0$ can be set at 95% CL. See paper for excluded regions in various scenarios. See Figs. 2–6 and Tabs. 14–21 for limits on $\sigma(ZH^0)$ · B($H^0 \rightarrow b\overline{b}, \tau^+\tau^-$) and $\sigma(H_1^0H_2^0)$ · $\mathsf{B}(H_1^0, H_2^0 \to b \overline{b}, \tau^+ \tau^-).$ 35 ACOSTA 05Q search for $H_{1,2}^0/A^0$ production in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV with NODE=S055HAD;LINKAGE=AC $H^0_{1.2}/A^0
ightarrow ~ au^+ au^-.$ At m_{A^0} = 100 GeV, the obtained cross section upper limit is above theoretical expectation. ³⁶Search for $e^+e^- \rightarrow H_1^0 A^0$ in the final states $b\overline{b}b\overline{b}$ and $b\overline{b}\tau^+\tau^-$, and $e^+e^- \rightarrow$ NODE=S055HAD;LINKAGE=HL H_1^0 Z. Universal scalar mass of 1 TeV, SU(2) gaugino mass of 200 GeV, and $\mu = -200$ GeV are assumed, and two-loop radiative corrections incorporated. The limits hold for m_t =175 GeV, and for the m_h^{max} scenario. ¹⁷ ABBIENDI 04M exclude 0.7 $< \tan\beta < 1.9$, assuming $m_t = 174.3$ GeV. Limits for other MSSM benchmark scenarios, as well as for *CP* violating cases, are also given. ³⁸ ABBIENDI 03G search for $e^+ e^- \rightarrow H_1^0 Z$ followed by $H_1^0 \rightarrow A^0 A^0$, $A^0 \rightarrow c\bar{c}$, gg, NODE=S055HAD;LINKAGE=HO NODE=S055HAD;LINKAGE=AB or $\tau^+\,\tau^-.$ In the no-mixing scenario, the region $m_{H^0_1}=$ 45-85 GeV and $m_{{\cal A}^0}=$ 2-9.5 GeV is excluded at 95% CL. ³⁹ ACHARD 02H also search for the final state $H_1^0 Z \rightarrow 2A^0 q \overline{q}$, $A^0 \rightarrow q \overline{q}$. In addition, the MSSM parameter set in the "large- μ " and "no-mixing" scenarios are examined. NODE=S055HAD;LINKAGE=RH $^{40}\,{\rm AKEROYD}$ 02 examine the possibility of a light ${\rm A}^0$ with tan β <1. Electroweak mea-NODE=S055HAD;LINKAGE=SY surements are found to be inconsistent with such a scenario. $^{41}\,{\sf HEISTER}$ 02 excludes the range 0.7 $<\!{\sf tan}\beta$ < 2.3. A wider range is excluded with NODE=S055HAD;LINKAGE=HN different stop mixing assumptions. Updates BARATE 01C. Mass Limits for H_1^0 (Higgs Boson) in Supersymmetric Models NODE=S055HSS TECN COMMENT NODE=S055HSS VALUE (GeV) CL% DOCUMENT ID ¹ ABDALLAH 08B DLPH $E_{cm} \leq 209 \text{ GeV}$ >89.7 ² SCHAEL >92.8 95 06B LEP $E_{\rm cm} \leq 209~{\rm GeV}$

02 ALEP $E_{\rm cm}^{\rm cm} \leq$ 209 GeV, tan β > 0.5 • • • We do not use the following data for averages, fits, limits, etc. • • •

^{3,4} ABBIENDI

^{3,5} ACHARD

^{3,6} HEISTER

95

95

95

>84.5

>86.0

>89.8

AALTONEN 12AQ TEVA
$$p\overline{p} \rightarrow H^0_{1,2}/A^0 + b + X$$
,
 $H^0_{1,2}/A^0 \rightarrow b\overline{b}$

04M OPAL $E_{\rm cm}^{\rm orm} \leq 209 \; {\rm GeV}$

 $E_{\rm cm} \leq 209 \; {\rm GeV}, \; {\rm tan}\beta > 0.4$

 1 ABDALLAH 08B give limits in eight *CP*-conserving benchmark scenarios and some *CP*violating scenarios. See paper for excluded regions for each scenario. Supersedes AB-DALLAH 04.

02H L3

 2 SCHAEL 06B make a combined analysis of the LEP data. The quoted limit is for the m_h^{\max} scenario with $m_t = 174.3$ GeV. In the CP-violating CPX scenario no lower bound on $m_{H_1^0}$ can be set at 95% CL. See paper for excluded regions in various scenarios. See

Figs. 2–6 and Tabs. 14–21 for limits on $\sigma(ZH^0)$ · B($H^0 \rightarrow b\overline{b}, \tau^+\tau^-$) and $\sigma(H^0_1H^0_2)$ · $\mathsf{B}(H_1^0, H_2^0 \to b \overline{b}, \tau^+ \tau^-).$

 3 Search for $e^+e^-
ightarrow \ H^0_1 A^0$ in the final states $b \overline{b} b \overline{b}$ and $b \overline{b} au^+ au^-$, and $e^+e^-
ightarrow$ H_1^0 Z. Universal scalar mass of 1 TeV, SU(2) gaugino mass of 200 GeV, and $\mu = -200$ NODE=S055HSS;LINKAGE=AD

NODE=S055HSS;LINKAGE=SH

NODE=S055HSS;LINKAGE=HL

GeV are assumed, and two-loop radiative corrections incorporated. The limits hold for $m_t{=}175$ GeV, and for the $m_h^{\rm max}$ scenario.

- ⁴ ABBIENDI 04M exclude 0.7 $\overset{\sim}{\leftarrow}$ tan $\beta < 1.9$, assuming $m_t = 174.3$ GeV. Limits for other MSSM benchmark scenarios, as well as for *CP* violating cases, are also given.
- ⁵ACHARD 02H also search for the final state $H_1^0 Z \rightarrow 2A^0 q \overline{q}$, $A^0 \rightarrow q \overline{q}$. In addition, the MSSM parameter set in the "large- μ " and "no-mixing" scenarios are examined.
- 6 HEISTER 02 excludes the range 0.7 $<\!\!tan\beta<$ 2.3. A wider range is excluded with different stop mixing assumptions. Updates BARATE 01c.

⁷ AALTONEN 12AQ combine AALTONEN 12X and ABAZOV 11K. See their Table I and Fig. 1 for the limit on cross section times branching ratio and Fig. 2 for the excluded region in the MSSM parameter space.

MASS LIMITS FOR NEUTRAL HIGGS BOSONS IN EXTENDED HIGGS MODELS

This Section covers models which do not fit into either the Standard Model or its simplest minimal Supersymmetric extension (MSSM), leading to anomalous production rates, or nonstandard final states and branching ratios. In particular, this Section covers limits which may apply to generic two-Higgs-doublet models (2HDM), or to special regions of the MSSM parameter space where decays to invisible particles or to photon pairs are dominant (see the review on "Status of Higgs Boson Physics"). Concerning the mass limits for H^0 and A^0 listed below, see the footnotes or the comment lines for details on the nature of the models to which the limits apply.

The observed signal at about 125 GeV, see section "H", can be interpreted as one of the neutral Higgs bosons of an extended Higgs sector.

Mass Limits in General two-Higgs-doublet Models

VALUE (GeV) DOCUMENT ID COMMENT CL% TECN • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AAD 24AB ATLS $A^0 \rightarrow Z H_0^0$ 2 AAD 24AP ATLS $H_2^0, A^0 \rightarrow t\bar{t}$ ³ AAD 24CB ATLS H properties ⁴ AAD 24H ATLS $H_2^0 \rightarrow HH$ ⁵ HAYRAPETY...24H CMS flavor changing H_2^0 , A^0 ⁶ AAD 23AD ATLS $A^0 \rightarrow Z H_2^0, H_2^0 \rightarrow H H$ 23BG ATLS $t \overline{t} H_2^0 / A^0$ ⁷ AAD ⁸ AAD 230 ATLS $A^0 \rightarrow ZH$ 21AF ATLS $H_2^0 \rightarrow ZZ$ ⁹ AAD 10 AAD 21AI ATLS $A^{0} \rightarrow ZH_{2}^{0}$ ¹¹ AAD 20 ATLS H^0 properties 12 AAD 20L ATLS $H_2^0 \rightarrow b\overline{b}$ 20AA CMS $H_2^{\bar{0}} \rightarrow Z A^0 \text{ or } A^0 \rightarrow Z H_2^0$ ¹³ SIRUNYAN ¹⁴ SIRUNYAN 20Y CMS $H_0^{\overline{0}} \rightarrow W^+ W^+$ ¹⁵ SIRUNYAN 19AE CMS $A^{\overline{0}} \rightarrow \tau^+ \tau^-$ ¹⁶ SIRUNYAN 19AV CMS $A^0 \rightarrow Z H^0$ ¹⁷ AABOUD 18AH ATLS $A^0 \rightarrow ZH_0^0$ ¹⁸ AABOUD 18AI ATLS $A^0 \rightarrow Z H^{\overline{0}}$ ¹⁹ AABOUD 18bf ATLS $H_2^0 \rightarrow ZZ$ ²⁰ AABOUD 18CE ATLS $p \bar{p} \rightarrow H_2^0 / A^0 t \bar{t}$, $H_2^0/A^{\overline{0}} \rightarrow t\overline{t}$ ²¹ HALLER 18 RVUE global fits $pp \rightarrow H_2^0/A^0 + b + X$ ²² SIRUNYAN 18BP CMS $H_2^0/A^{\overline{0}} \rightarrow b\overline{b}$ 18ED CMS $A^0 \xrightarrow{2} Z H^0$ ²³ SIRUNYAN ²⁴ AABOUD 17AN ATLS $H_0^0, A^0 \rightarrow t \bar{t}$ ²⁵ SIRUNYAN 17AX CMS $A^{0}b\overline{b}, A^{0} \rightarrow \mu^{+}\mu^{-}$ ²⁶ AAD 16AX ATLS $H_0^0 \rightarrow ZZ$ ²⁷ KHACHATRY...16^P CMS $H_0^{\circ} \rightarrow H^0 H^0$, $A^0 \rightarrow Z H^0$ ²⁸ KHACHATRY...16W CMS $A^{0}b\overline{b}, A^{0} \rightarrow \tau^{+}\tau^{-}$ ²⁹ KHACHATRY...16Z CMS $H_2^0 \rightarrow ZA^0$ or $A^0 \rightarrow ZH_2^0$ ³⁰ AAD $H_2^{0} \rightarrow H^0 H^0$ 15bk ATLS

NODE=S055HSS;LINKAGE=HO

NODE=S055HSS:LINKAGE=RH

NODE=S055HSS;LINKAGE=HN

NODE=S055HSS;LINKAGE=OC

NODE=S055245

NODE=S055245

NODE=S055H2D NODE=S055H2D

$$\begin{array}{c} 33 \text{ AAD} & 155 \text{ ATLS} & A^{-1} \rightarrow 2P^{0} \\ 33 \text{ KHACHATKY}. Jose CMS & P^{-1} \rightarrow 2P^{0} \\ 34 \text{ AAD} & 1aM \text{ ATLS} & P^{0}_{0} \rightarrow P^{-1} \rightarrow 0 \\ 34 \text{ AAD} & 1aM \text{ ATLS} & P^{0}_{0} \rightarrow P^{-1} \rightarrow 0 \\ 35 \text{ KHACHATKY}. Jose CMS & P^{0}_{0} \rightarrow P^{-1} \rightarrow 0 \\ 36 \text{ ALTONEN} & 0 \text{ BACTONEN} & 0 \text{ BACTONEN} & 0 \text{ BACTONEN} & 0 \\ 36 \text{ ALTONEN} & 0 \text{ BACTONEN} & 0 \text{ BACTONEN} & 0 \text{ BACTONEN} & 0 \\ 36 \text{ ALTONEN} & 0 \text{ BACTONEN} & 0 \text{ BACTONEN} & 0 \text{ BACTONEN} & 0 \\ 36 \text{ ALTONEN} & 0 \text{ BACTONEN} & 0 \text{ BACTONEN} & 0 \text{ BACTONEN} & 0 \\ 37 \text{ ABBIENDI & 0 \text{ COPULA} & P^{0}_{0} \rightarrow P^{-1}_{0} & P^{0}_{0} \text{ AD} \\ 38 \text{ ABDALLAH} & 0 \text{ COPULA} & P^{0}_{0} \rightarrow P^{-1}_{0} & P^{0}_{0} \text{ AD} \\ 38 \text{ ABDALLAH} & 0 \text{ COPULA} & P^{0}_{0} \rightarrow P^{0}_{0} \text{ AD} \\ 38 \text{ BADBALLAH} & 0 \text{ COPULA} & P^{0}_{0} \rightarrow P^{0}_{0} \text{ AD} \\ 48 \text{ ABBENDI & 0 \text{ COPULA} & P^{0}_{0} \rightarrow P^{0}_{0} \text{ AD} \\ 48 \text{ ABBENDI & 0 \text{ SO} OPAL & P^{0}_{0} \rightarrow P^{0}_{0} \text{ AD} \\ 48 \text{ BBENDI & 0 \text{ SO} OPAL & P^{0}_{0} \rightarrow P^{0}_{0} \text{ AD} \\ 49 \text{ ROEL} & 99 \text{ SO} \text{ BUPH } Z \rightarrow P^{0}_{0} Z^{+} P^{0}_{0} \text{ AD} \\ 49 \text{ COLUM} & 49 \text{ BOLL} & 100 \text{ D} & 10 P^{0}_{0} \text{ AD} \\ 40 \text{ COULE & VPULAH Higgs \\ 13 \text{ ADD 24M search for gluon-fusion and 05 associated production of A^{0} deckying to A^{0} \rightarrow SCHON \\ 40 \text{ BOLL} & 100 \text{ BOLL} = 100 \text{ BOLL} & 100 \text{ D} & 10 P^{0}_{0} \text{ D} \text{ AD} \\ 40 \text{ DOEL} = 50059120110\text{ KKAGE} = \text{ A} \\ NODE = 50059120110\text{ KKAGE} = \text{ A} \\ 10 \text{ ADD 24M search for grooticition of a Rave PL, P^{0}_{0} A^{0}_{0} \text{ AD} \text{ AD} \\ 40 \text{ ADD 24M search for grooticition of a Rave PL, P^{0}_{0} A^{0}_{0} \text{ AD} \\ 40 \text{ ADD 24M search for grooticition of a Rave PL, P^{0}_{0} A^{0}_{0} \text{ AD} \\ 40 \text{ ADD 24M search for grooticition of P^{0}_{0} A^{0}_{0} \text{ AD} \\ 40 \text{ ADD 24M search for grooticition of a Rave PL, P^{0}_{0} \text{ AD} \text{ AD} \\ 40 \text{ ADD 25M search for grooticition of P$$

7/16/2025 12:16 Page 8 15 SIRUNYAN 19AE search for a pseudoscalar resonance produced in association with a bbNODE=S055H2D;LINKAGE=V pair, decaying to $\tau^+ \, \tau^-$ in 35.9 fb $^{-1}$ of $p \, p$ collisions at $E_{\rm cm} =$ 13 TeV. See their Fig. 4 for cross section limits for $m_{A^0} = 25-70$ GeV and comparison with some representative 2HDMs. ¹⁶SIRUNYAN 19AV search for a scalar resonance produced by gluon fusion or b associated NODE=S055H2D;LINKAGE=W production, decaying to $ZH^0 \rightarrow \ell^+ \ell^- b \overline{b} \ (\ell = e, \mu)$ or $\nu \overline{\nu} b \overline{b}$ in 35.9 fb⁻¹ of ppcollisions at $E_{cm} = 13$ TeV. See their Figs. 6 and 7 for excluded regions in the parameter space of various 2HDMs. ¹⁷AABOUD 18AH search for production of an A^0 in gluon-gluon fusion and in association with a $b\overline{b}$, decaying to $ZH_2^0 \rightarrow \ell^+\ell^-b\overline{b}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ NODE=S055H2D;LINKAGE=P TeV. See their Fig. 6 for excluded regions in the parameter space of various 2HDMs. ¹⁸ AABOUD 18AI search for production of an A^0 in gluon-gluon fusion and in association NODE=S055H2D;LINKAGE=O with a $b\bar{b}$, decaying to ZH^0 in the final states $\nu \bar{\nu} b\bar{b}$ and $\ell^+ \ell^- b\bar{b}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Figs. 7 and 8 for excluded regions in the parameter space in various 2HDMs. $^{19}\mathrm{AABOUD}$ 18BF search for production of a heavy H^0_2 state decaying to ZZ in the final NODE=S055H2D;LINKAGE=R states $\ell^+ \ell^- \ell^+ \ell^-$ and $\ell^+ \ell^- \nu \overline{\nu}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Figs. 8 and 9 for excluded parameter regions in 2HDM Type I and II. ²⁰ AABOUD 18CE search for the process $p p \rightarrow H_2^0 / A^0 t \bar{t}$ followed by the decay $H_2^0 / A^0 \rightarrow$ NODE=S055H2D;LINKAGE=U $t\bar{t}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 12 for limits on cross section times branching ratio, and for lower limits on tan β for $m_{H_2^0}$, $m_{A^0} = 0.4$ –1.0 TeV in the 2HDM type II. 21 HALLER 18 perform global fits in the framework of two-Higgs-doublet models (type I, II, NODE=S055H2D;LINKAGE=S lepton specific, flipped). See their Fig. 8 for allowed parameter regions from fits to LHC H^0 measurements, Fig. 9 bottom and charm decays, Fig. 10 muon anomalous magnetic moment, Fig. 11 electroweak precision data, and Fig. 12 by combination of all data. ²²SIRUNYAN 18BP search for production of $H_2^0/A^0 \rightarrow b\bar{b}$ by *b*-associated prodution in NODE=S055H2D;LINKAGE=Q 35.7 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for the limits on cross section times branching ratio for $m_{H_2^0}$, $m_{A^0} = 0.3$ –1.3 TeV, and Figs. 8 and 9 for excluded regions in the parameter space of type-II and flipped 2HDMs. 23 SIRUNYAN 18ED search for production of an A^0 in gluon-gluon fusion and in association NODE=S055H2D;LINKAGE=T with a $b\overline{b}$, decaying to ZH^{0} in the final states $\nu\overline{\nu}b\overline{b}$ or $\ell^{+}\ell^{-}b\overline{b}$ in 35.9 fb⁻¹ of ppcollisions at $E_{\rm cm} = 13$ TeV. See their Fig. 9 for excluded regions in the parameter space in Type I and II 2HDMs. 24 AABOUD 17AN search for production of a heavy H^0_2 and/or A^0 decaying to $t\,\overline{t}$ in 20.3 NODE=S055H2D;LINKAGE=M fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 3 and Table III for excluded parameter regions in Type II Two-Higgs-Doublet-Models. ²⁵ SIRUNYAN 17AX search for $A^0 b\bar{b}$ production followed by the decay $A^0 \rightarrow \mu^+ \mu^-$ in NODE=S055H2D;LINKAGE=N 19.7 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}$ = 8 TeV. Limits are set in the range $m_{{\cal A}^0}$ = 25–60 GeV. See their Fig. 5 for upper limits on $\sigma(A^0 b \overline{b}) \cdot B(A^0 \rightarrow \mu^+ \mu^-)$. 26 AAD 16AX search for production of a heavy H^0 state decaying to ZZ in the final states NODE=S055H2D;LINKAGE=I $\ell^+\ell^-\ell^+\ell^-$, $\ell^+\ell^-\nu\overline{\nu}$, $\ell^+\ell^-q\overline{q}$, and $\nu\overline{\nu}q\overline{q}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Figs. 13 and 14 for excluded parameter regions in Type I and II models. 27 KHACHATRYAN 16P search for gluon fusion production of an H^0_2 decaying to $H^0 \, H^0 o$ NODE=S055H2D;LINKAGE=K $b\overline{b}\tau^+\tau^-$ and an A^0 decaying to $ZH^0 \rightarrow \ell^+\ell^-\tau^+\tau^-$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 11 for limits on tan β for $m_{A^0} = 230-350$ GeV. 28 KHACHATRYAN 16W search for ${\it A^0}\, b\, \overline{b}$ production followed by the decay ${\it A^0} \rightarrow ~\tau^+ \, \tau^-$ NODE=S055H2D;LINKAGE=J in 19.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}$ = 8 TeV. See their Fig. 3 for upper limits on $\sigma(A^0 b \overline{b}) \cdot B(A^0 \rightarrow \tau^+ \tau^-).$ ²⁹ KHACHATRYAN 16Z search for $H^0_2 \rightarrow ZA^0$ followed by $A^0 \rightarrow b\overline{b}$ or $\tau^+\tau^-$, and NODE=S055H2D;LINKAGE=L $A^0 \rightarrow ZH_2^0$ followed by $H_2^0 \rightarrow b\overline{b}$ or $\tau^+\tau^-$, in 19.8 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 4 for cross section limits and Fig. 5 for excluded region in the parameter space. ³⁰AAD 15BK search for production of a heavy H_2^0 decaying to $H^0 H^0$ in the final state NODE=S055H2D;LINKAGE=H $b\overline{b}b\overline{b}$ in 19.5 fb⁻¹ of pp collisions at $E_{\rm cm}=$ 8 TeV. See their Figs. 15–18 for excluded regions in the parameter space. ³¹AAD 15S search for production of A^0 decaying to $ZH^0 \rightarrow \ell^+ \ell^- b \overline{b}, \ \nu \overline{\nu} b \overline{b}$ and NODE=S055H2D;LINKAGE=D $\ell^+\ell^- \tau^+ \tau^-$ in 20.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}$ = 8 TeV. See their Figs. 4 and 5 for excluded regions in the parameter space. ³²KHACHATRYAN 15BB search for H_2^0 , $A^0 \rightarrow \gamma \gamma$ in 19.7 fb⁻¹ of *pp* collisions at NODE=S055H2D;LINKAGE=E $E_{\rm cm}$ = 8 TeV. See their Fig. 10 for excluded regions in the two-Higgs-doublet model parameter space. ³³KHACHATRYAN 15N search for production of A^0 decaying to $ZH^0 \rightarrow \ell^+\ell^- b\overline{b}$ in NODE=S055H2D;LINKAGE=C 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 5 for excluded regions in the tan $\beta - \cos(\beta - \alpha)$ plane for $m_{A^0} = 300$ GeV. ³⁴AAD 14M search for the decay cascade $H_2^0 \rightarrow H^{\pm} W^{\mp} \rightarrow H^0 W^{\pm} W^{\mp}$, H^0 decaying NODE=S055H2D;LINKAGE=A to $b\overline{b}$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm CM}$ = 8 TeV. See their Table IV for limits in a two-Higgs-doublet model for $m_{H_2^0}^{-0}$ = 325–1025 GeV and $m_{H^+}^{-1}$ = 225–825 GeV.

7/16/2025 12:16 Page 9

- 35 KHACHATRYAN 14Q search for $H^0_2 \rightarrow H^0 H^0$ and $A^0 \rightarrow Z H^0$ in 19.5 fb $^{-1}$ of ppcollisions at $E_{\rm cm} = 8$ TeV. See their Figs. 4 and 5 for limits on cross section times branching ratio for $m_{H_2,A^0} = 260-360$ GeV and their Figs. 7–9 for limits in two-Higgsdoublet models.
- 36 AALTONEN 09AR search for Higgs bosons decaying to $\tau^+\tau^-$ in two doublet models in 1.8 fb $^{-1}$ of $p\bar{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. See their Fig. 2 for the limit on $\sigma \cdot B(H^0_{1,2}/A^0 \rightarrow \tau^+ \tau^-)$ for different Higgs masses, and see their Fig. 3 for the excluded region in the MSSM parameter space.
- 37 ABBIENDI 05A search for $e^+\,e^ightarrow\,H_1^0A^0$ in general Type-II two-doublet models, with decays H_1^0 , $A^0 \rightarrow q \overline{q}$, g g, $\tau^+ \tau^-$, and $H_1^0 \rightarrow A^0 A^0$.
- ³⁸ABDALLAH 05D search for $e^+e^- \rightarrow H^0Z$ and H^0A^0 with H^0 , A^0 decaying to two jets of any flavor including gg. The limit is for SM H^0Z production cross section with $\mathsf{B}(H^0 \to jj) = 1.$
- ³⁹ABDALLAH 040 search for $Z \rightarrow b\overline{b}H^0$, $b\overline{b}A^0$, $\tau^+\tau^-H^0$ and $\tau^+\tau^-A^0$ in the final states 4b, $b\overline{b}\tau^+\tau^-$, and 4τ . See paper for limits on Yukawa couplings.
- states 4*b*, $bb\tau^+\tau^-$, and 4τ . See paper for limits on Tukawa couplings. 40 ABDALLAH 040 search for $e^+e^- \rightarrow H^0 Z$ and $H^0 A^0$, with H^0 , A^0 decaying to $b\bar{b}$, $\tau^+\tau^-$, or $H^0 \rightarrow A^0 A^0$ at $E_{\rm cm} = 189-208$ GeV. See paper for limits on couplings. 41 ABBIENDI 02D search for $Z \rightarrow b\bar{b}H_1^0$ and $b\bar{b}A^0$ with $H_1^0/A^0 \rightarrow \tau^+\tau^-$, in the range $4 < m_H < 12$ GeV. See their Fig. 8 for limits on the Yukawa coupling.
- ⁴² ABBIENDI 01E search for neutral Higgs bosons in general Type-II two-doublet models, at $E_{\rm cm} \leq 189$ GeV. In addition to usual final states, the decays H_1^0 , $A^0 \rightarrow q \overline{q}$, g g are
- searched for. See their Figs. 15,16 for excluded regions. ⁴³ ABBIENDI 99E search for $e^+e^- \rightarrow H^0 A^0$ and $H^0 Z$ at $E_{\rm cm} = 183$ GeV. The limit is with $m_H = m_A$ in general two Higgs-doublet models. See their Fig. 18 for the exclusion limit in the $m_H m_A$ plane. Updates the results of ACKERSTAFF 98S.
- $^{44}\,{\rm See}$ Fig. 4 of ABREU 95H for the excluded region in the m_{H^0} m_{A^0} plane for general two-doublet models. For tan $\beta>$ 1, the region $m_{H^0}+m_{A^0}\lesssim$ 87 GeV, $m_{H^0}<$ 47 GeV is excluded at 95% CL
- ⁴⁵ PICH 92 analyse $H^{\bar{0}}$ with $m_{H^{\bar{0}}} < 2m_{\mu}$ in general two-doublet models. Excluded regions in the space of mass-mixing angles from LEP, beam dump, and π^\pm , η rare decays are shown in Figs. 3,4. The considered mass region is not totally excluded.

Mass Limits for H^0 with Vanishing Yukawa Couplings

These limits assume that H^0 couples to gauge bosons with the same strength as the Standard Model Higgs boson, but has no coupling to quarks and leptons (this is often referred to as "fermiophobic").

<u>CL%</u>	<u>%</u> DOCUMENT ID		COMMENT
ot use	the following data for ave	rages, fits	, limits, etc. • • •
	¹ AALTONEN 13	CDF	$H^0 \rightarrow WW^{(*)}$
95	² AALTONEN 13	CDF	$H^0 ightarrow \gamma \gamma$, WW^* , ZZ^*
95	³ AALTONEN 13	л TEVA	$H^0 \rightarrow \gamma \gamma$, WW^* , ZZ^*
	⁴ ABAZOV 130	5 D0	$H^0 \rightarrow WW^{(*)}$
95	⁵ ABAZOV 13	H D0	$H^0 \rightarrow \gamma \gamma$
	⁶ ABAZOV 13I	D0	$H^0 \rightarrow WW^{(*)}$
	⁷ ABAZOV 13.	D0	$H^0 \rightarrow WW^{(*)}, ZZ^{(*)}$
95	⁸ ABAZOV 131	. D0	$H^0 ightarrow \gamma \gamma$, WW^* , ZZ^*
95	⁹ CHATRCHYAN 13/	AL CMS	$H^0 \rightarrow \gamma \gamma$
95	¹⁰ AAD 12	ATLS	$H^0 \rightarrow \gamma \gamma$
05	11 AALTONEN 10		$H^0 \rightarrow \gamma \gamma$
			$H^{\circ} \rightarrow \gamma \gamma$ $H^{0} \rightarrow \gamma \gamma, WW^{(*)}, ZZ^{(*)}$
			$H^{\circ} \rightarrow \gamma \gamma, WW^{(*)}, ZZ^{(*)}$ $H^{0} \rightarrow \gamma \gamma$
			$H^{\circ} \rightarrow \gamma \gamma$ $H^{0} \rightarrow \gamma \gamma$
		-	
			$e^+e^- \rightarrow H^0 Z, H^0 \rightarrow \gamma \gamma$
			$H^0 \rightarrow WW^*, ZZ^*, \gamma\gamma$
		-	2
•••		-	$H^0 \rightarrow \gamma \gamma$
			$p \overline{p} \rightarrow H^0 W / Z, H^0 \rightarrow \gamma \gamma$
			$e^+e^- \rightarrow H^0 Z, H^0 \rightarrow \gamma \gamma$
			$e^+e^- \rightarrow H^0 Z, H^0 \rightarrow \gamma \gamma$
			$e^+e^- \rightarrow H^0 Z, H^0 \rightarrow \gamma \gamma$
			$p\overline{p} \rightarrow H^0 W/Z, H^0 \rightarrow \gamma\gamma$
		-	
		52.11	$\gamma \gamma$
	95 95 95 95 95 95 95	Image: second	Det use the following data for averages, fits 1 AALTONEN 13K CDF 95 2 AALTONEN 13L CDF 95 2 AALTONEN 13L CDF 95 3 AALTONEN 13L CDF 95 3 AALTONEN 13M TEVA 4 ABAZOV 13G D0 95 5 ABAZOV 13H D0 6 ABAZOV 13I D0 95 8 ABZOV 13L D0 95 9 CHATRCHYAN 13AL CMS 95 10 AAD 12N ATLS 95 10 AAD 12N ATLS 95 10 AAD 12N ATLS 95 10 AAD 12N ATLS 95 13 AALTONEN 12AN CDF 95 13 AALTONEN 12AN CDF 95 13 AALTONEN 04N D0 05 15 SCHAEL 07 <td< td=""></td<>

NODE=S055H2D;LINKAGE=B

NODE=S055H2D:LINKAGE=TN

NODE=S055H2D;LINKAGE=AN

NODE=S055H2D;LINKAGE=AH

NODE=S055H2D;LINKAGE=AO

NODE=S055H2D;LINKAGE=AP

NODE=S055H2D;LINKAGE=DD

NODE=S055H2D;LINKAGE=EK

NODE=S055H2D:LINKAGE=EB

NODE=S055H2D;LINKAGE=G

NODE=S055H2D;LINKAGE=F

NODE=S055H2F NODE=S055H2F

NODE=S055H2F

NODE=S055H2F;LINKAGE=TT

NODE=S055H2F;LINKAGE=EE

NODE=S055H2F;LINKAGE=LL

NODE=S055H2F;LINKAGE=ZZ

- ¹AALTONEN 13K search for $H^0 \rightarrow WW^{(*)}$ in 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (1.3–6.6) times the expected cross section is given in the range $m_{H^0} = 110-200$ GeV at 95% CL.
- ²AALTONEN 13L combine all CDF searches with 9.45–10.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV.
- ³ AALTONEN 13M combine all Tevatron data from the CDF and D0 Collaborations of $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV.
- ⁴ABAZOV 13G search for $H^0 \rightarrow WW^{(*)}$ in 9.7 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A limit on cross section times branching ratio which corresponds to (2–9) times the expected cross section is given for $m_{H^0} = 100$ –200 GeV at 95% CL.
- ⁵ABAZOV 13H search for $H^0 \rightarrow \gamma \gamma$ in 9.6 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. ⁶ABAZOV 13I search for H^0 production in the final state with one lepton and two or more jets plus missing E_T in 9.7 fb⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The search is sensitive to WH^0 , ZH^0 and vector-boson fusion Higgs production with $H^0 \rightarrow WW^{(*)}$. A limit on cross section times branching ratio which corresponds to (8–30) times the expected cross section is given in the range $m_{H^0} = 100-200$ GeV at 95% CL.
- ⁷ ABAZOV 13J search for H^0 production in the final states $e e \mu$, $e \mu \mu$, $\mu \tau \tau$, and $e^{\pm} \mu^{\pm}$ in 8.6–9.7 fb⁻¹ of $p \bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The search is sensitive to $W H^0$, $Z H^0$ production with $H^0 \rightarrow W W^{(*)}$, $Z Z^{(*)}$, decaying to leptonic final states. A limit on cross section times branching ratio which corresponds to (2.4–13.0) times the expected cross section is given in the range $m_{H^0} = 100-200$ GeV at 95% CL.
- ⁸ABAZOV 13L combine all D0 results with up to 9.7 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV.
- ⁹ CHATRCHYAN 13AL search for $H^0 \rightarrow \gamma \gamma$ in 5.1 fb⁻¹ and 5.3 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 7$ and 8 TeV.
- ¹⁰ AAD 12N search for $H^0 \rightarrow \gamma \gamma$ with 4.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} =$ 7 TeV in the mass range $m_{H^0} =$ 110–150 GeV.
- ¹¹AALTONEN 12AN search for $H^0 \rightarrow \gamma \gamma$ with 10 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV in the mass range $m_{H^0} = 100$ -150 GeV.
- ¹² CHATRCHYAN 12A0 use data from CHATRCHYAN 12G, CHATRCHYAN 12E, CHATRCHYAN 12H, CHATRCHYAN 12I, CHATRCHYAN 12D, and CHATRCHYAN 12C.
- ¹³AALTONEN 09AB search for $H^0 \rightarrow \gamma \gamma$ in 3.0 fb⁻¹ of $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV in the mass range $m_{H^0} = 70$ -150 GeV. Associated $H^0 W$, $H^0 Z$ production and W W, Z Z fusion are considered.
- ¹⁴ABAZOV 08U search for $H^0 \rightarrow \gamma \gamma$ in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV in the mass range $m_{H^0} = 70$ -150 GeV. Associated $H^0 W$, $H^0 Z$ production and W W, ZZ fusion are considered. See their Tab. 1 for the limit on $\sigma \cdot B(H^0 \rightarrow \gamma \gamma)$, and see their Fig. 3 for the excluded region in the $m_{H^0} - B(H^0 \rightarrow \gamma \gamma)$ plane.
- ¹⁵SCHAEL 07 search for Higgs bosons in association with a fermion pair and decaying to WW^* . The limit is from this search and HEISTER 02L for a H^0 with SM production cross section.
- ¹⁶Search for associated production of a $\gamma\gamma$ resonance with a Z boson, followed by $Z \rightarrow q\overline{q}$, $\ell^+\ell^-$, or $\nu\overline{\nu}$, at $E_{\rm cm} \leq 209$ GeV. The limit is for a H^0 with SM production cross section.
- 17 Updates ABREU 01F.
- ¹⁸ ACHARD 03C search for $e^+e^- \rightarrow ZH^0$ followed by $H^0 \rightarrow WW^*$ or ZZ^* at $E_{cm}=$ 200-209 GeV and combine with the ACHARD 02C result. The limit is for a H^0 with SM production cross section. For B($H^0 \rightarrow WW^*$) + B($H^0 \rightarrow ZZ^*$) = 1, m_{H0} > 108.1 GeV is obtained. See fig. 6 for the limits under different BR assumptions.

¹⁹ For B($H^0 \rightarrow \gamma \gamma$)=1, $m_{H^0} >$ 117 GeV is obtained.

- ²⁰ ACHARD 02C search for associated production of a $\gamma\gamma$ resonance with a Z boson, followed by $Z \rightarrow q \bar{q}$, $\ell^+ \ell^-$, or $\nu \bar{\nu}$, at $E_{\rm cm} \leq 209$ GeV. The limit is for a H^0 with SM production cross section. For B($H^0 \rightarrow \gamma\gamma$)=1, m_{H^0} >114 GeV is obtained.
- ²¹AFFOLDER 01H search for associated production of a $\gamma\gamma$ resonance and a W or Z (tagged by two jets, an isolated lepton, or missing E_T). The limit assumes Standard Model values for the production cross section and for the couplings of the H^0 to W and Z bosons. See their Fig. 11 for limits with $B(H^0 \rightarrow \gamma\gamma) < 1$.
- ²² ACCIARRI 00S search for associated production of a $\gamma\gamma$ resonance with a $q\overline{q}$, $\nu\overline{\nu}$, or $\ell^+\ell^-$ pair in e^+e^- collisions at $E_{\rm cm}=$ 189 GeV. The limit is for a H^0 with SM production cross section. For B($H^0 \rightarrow \gamma\gamma$)=1, $m_{H^0} >$ 98 GeV is obtained. See their Fig. 5 for limits on B($H \rightarrow \gamma\gamma$) $\cdot\sigma(e^+e^- \rightarrow Hf\overline{f})/\sigma(e^+e^- \rightarrow Hf\overline{f})$ (SM).
- ²³ BARATE 00L search for associated production of a $\gamma\gamma$ resonance with a $q\overline{q}$, $\nu\overline{\nu}$, or $\ell^+\ell^-$ pair in e^+e^- collisions at $E_{\rm cm}=$ 88–202 GeV. The limit is for a H^0 with SM production cross section. For B($H^0 \rightarrow \gamma\gamma$)=1, $m_{H^0} >$ 109 GeV is obtained. See their Fig. 3 for limits on B($H \rightarrow \gamma\gamma$) $\cdot\sigma(e^+e^- \rightarrow Hf\overline{f})/\sigma(e^+e^- \rightarrow Hf\overline{f})$ (SM).

NODE=S055H2F;LINKAGE=OO NODE=S055H2F;LINKAGE=MM

NODE=S055H2F;LINKAGE=D0

NODE=S055H2F;LINKAGE=ZC NODE=S055H2F;LINKAGE=CY NODE=S055H2F;LINKAGE=AA NODE=S055H2F;LINKAGE=FL NODE=S055H2F;LINKAGE=CH NODE=S055H2F;LINKAGE=BA NODE=S055H2F;LINKAGE=BA

NODE=S055H2F;LINKAGE=HD NODE=S055H2F;LINKAGE=AC

NODE=S055H2F;LINKAGE=LA NODE=S055H2F;LINKAGE=HR

NODE=S055H2F;LINKAGE=AF

NODE=S055H2F;LINKAGE=PC

NODE=S055H2F;LINKAGE=PB

²⁴ABBIENDI 990 search for associated production of a $\gamma\gamma$ resonance with a $q\bar{q}$, $\nu\bar{\nu}$, or NODE=S055H2F;LINKAGE=DI $\ell^+\ell^-$ pair in e^+e^- collisions at 189 GeV. The limit is for a H^0 with SM production cross section. See their Fig. 4 for limits on $\sigma(e^+e^- \rightarrow H^0Z^0) \times B(H^0 \rightarrow \gamma\gamma) \times B(X^0 \rightarrow \gamma$ $f\overline{f}$) for various masses. Updates the results of ACKERSTAFF 98Y. $^{25}\mathrm{ABBOTT}$ 99B search for associated production of a $\gamma\gamma$ resonance and a dijet pair. NODE=S055H2F;LINKAGE=3C The limit assumes Standard Model values for the production cross section and for the couplings of the H^0 to W and Z bosons. Limits in the range of $\sigma(H^0 + Z/W) \cdot B(H^0 \rightarrow Z/$ $\gamma \gamma$)= 0.80–0.34 pb are obtained in the mass range m_{H^0} = 65–150 GeV. ²⁶ ABREU 99P search for $e^+e^- \rightarrow H^0\gamma$ with $H^0 \rightarrow b \overline{b}$ or $\gamma\gamma$, and $e^+e^- \rightarrow H^0q\overline{q}$ NODE=S055H2F;LINKAGE=PA with $H^0 \rightarrow \gamma \gamma$. See their Fig. 4 for limits on $\sigma \times B$. Explicit limits within an effective interaction framework are also given. Mass Limits for H^0 Decaying to Invisible Final States NODE=S055H2I These limits are for a neutral scalar H^0 which predominantly decays to invisible final NODE=S055H2I states. Standard Model values are assumed for the couplings of H^0 to ordinary particles unless otherwise stated. TECN COMMENT VALUE (GeV) DOCUMENT ID NODE=S055H2I <u>CL%</u> • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AABOUD 19AI ATLS WW/ZZ fusion ² AAD 15BD ATLS $pp \rightarrow H^0 WX, H^0 ZX$ ³ AAD 15BH ATLS jet + missing E_T ⁴ AAD 14BA ATLS secondary vertex ⁵ AAD 140 ATLS $pp \rightarrow H^0 ZX$ ⁶ CHATRCHYAN 14B CMS $pp \rightarrow H^0 Z X, qq H^0 X$ ⁷ AAD 13AG ATLS secondary vertex ⁸ AAD 13AT ATLS electron jets ⁹ CHATRCHYAN 13BJ CMS ¹⁰ AAD 12AQ ATLS secondary vertex ¹¹ AALTONEN 12AB CDF secondary vertex ¹² AALTONEN 120 CDF secondary vertex ¹³ ABBIENDI 10 OPAL >108.2 95 ¹⁴ ABBIENDI OPAL large width 07 ¹⁵ ACHARD 95 05 L3 >112.3 ¹⁵ ABDALLAH >112.1 95 04B DLPH ¹⁵ HEISTER 02 ALEP $E_{\rm cm} \leq$ 209 GeV >114.1 95 ¹⁵ BARATE 01C ALEP $E_{\rm cm} \leq 202 \, {\rm GeV}$ >106.4 95 ¹⁶ ACCIARRI > 89.2 95 00M L3 $^1 \rm AABOUD$ 19AI search for $H^0_{1,2}$ production by vector boson fusion and decay to invisible NODE=S055H2I;LINKAGE=F final states in 36.1 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6(b) for limits on cross section times branching ratios for $m_{H_{1,2}^0} = 0.1$ –3 TeV. 2 AAD 15BD search for $pp
ightarrow H^0WX$ and $pp
ightarrow H^0ZX$ with W or Z decaying NODE=S055H2I;LINKAGE=D hadronically and H^0 decaying to invisible final states in 20.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. See their Fig. 6 for a limit on the cross section times branching ratio for $m_{H^0} = 115-300$ GeV. 3 AAD 15BH search for events with a jet and missing ${\it E}_T$ in 20.3 fb $^{-1}$ of ${\it pp}$ collisions at NODE=S055H2I;LINKAGE=E $E_{\rm cm} = 8$ TeV. Limits on $\sigma(H'^0)$ B($H'^0 \rightarrow$ invisible) < (44–10) pb (95%CL) is given for $m_{H'^0} = 115$ -300 GeV. ⁴AAD 14BA search for H^0 production in the decay mode $H^0 \rightarrow X^0 X^0$, where X^0 is a NODE=S055H2I;LINKAGE=C long-lived particle which decays to collimated pairs of e^+e^- , $\mu^+\mu^-$, or $\pi^+\pi^-$ plus invisible particles, in 20.3 fb⁻¹ of pp collisions at $E_{cm} = 8$ TeV. See their Figs. 15 and 16 for limits on cross section times branching ratio. ⁵ AAD 140 search for $pp \rightarrow H^0 ZX$, $Z \rightarrow \ell \ell$, with H^0 decaying to invisible final states in 4.5 fb⁻¹ at $E_{\rm cm} = 7$ TeV and 20.3 fb⁻¹ at $E_{\rm cm} = 8$ TeV. See their Fig. 3 for a limit on the cross section times branching ratio for $m_{H^0} = 110-400$ GeV. NODE=S055H2I;LINKAGE=A ⁶CHATRCHYAN 14B search for $pp \rightarrow H^0 ZX$, $Z \rightarrow \ell \ell$ and $Z \rightarrow b \overline{b}$, and also $pp \rightarrow H^0 ZX$, $Z \rightarrow \ell \ell$ and $Z \rightarrow b \overline{b}$, and also $pp \rightarrow \ell \ell$ NODE=S055H2I;LINKAGE=B $q q H^0 X$ with H^0 decaying to invisible final states using data at $E_{\rm cm}=$ 7 and 8 TeV. See their Figs. 10, 11 for limits on the cross section times branching ratio for $m_{\mu 0} =$ 100-400 GeV. ⁷AAD 13AG search for H^0 production in the decay mode $H^0 \rightarrow X^0 X^0$, where X^0 is a NODE=S055H2I;LINKAGE=AA long-lived particle which decays to $\mu^+ \mu^- X'^0$, in 1.9 fb⁻¹ of pp collisions at $E_{cm} = 7$ TeV. See their Fig. 7 for limits on cross section times branching ratio. ⁸AAD 13AT search for H^0 production in the decay $H^0 \rightarrow X^0 X^0$, where X^0 eventually decays to clusters of collimated e^+e^- pairs, in 2.04 fb⁻¹ of *pp* collisions at $E_{cm} = 7$ NODE=S055H2I;LINKAGE=DA TeV. See their Fig. 3 for limits on cross section times branching ratio. 9 CHATRCHYAN 13BJ search for H^0 production in the decay chain $H^0 o ~X^0 X^0$, $X^0 o$ NODE=S055H2I;LINKAGE=AT $\mu^+\mu^- X'^0$ in 5.3 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 7 TeV. See their Fig. 2 for limits on

cross section times branching ratio.

7/16/2025 12:16

Page 11

- ¹⁰ AAD 12AQ search for H⁰ production in the decay mode H⁰ → X⁰X⁰, where X⁰ is a long-lived particle which decays mainly to bb in the muon detector, in 1.94 fb⁻¹ of pp collisions at E_{cm} = 7 TeV. See their Fig. 3 for limits on cross section times branching ratio for m_{H⁰} = 120, 140 GeV, m_{X⁰} = 20, 40 GeV in the cτ range of 0.5-35 m.
 ¹¹ AALTONEN 12AB search for H⁰ production in the decay H⁰ → X⁰X⁰, where X⁰
- ¹¹AALTONEN 12AB search for H^0 production in the decay $H^0 \rightarrow X^0 X^0$, where X^0 eventually decays to clusters of collimated $\ell^+ \ell^-$ pairs, in 5.1 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Cross section limits are provided for a benchmark MSSM model incorporating the parameters given in Table VI.
- incorporating the parameters given in Table VI. ¹² AALTONEN 12U search for H^0 production in the decay mode $H^0 \rightarrow X^0 X^0$, where X^0 is a long-lived particle with $c\tau \approx 1$ cm which decays mainly to $b\overline{b}$, in 3.2 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Figs. 9 and 10 for limits on cross section times branching ratio for $m_{H^0} = (130-170)$ GeV, $m_{X^0} = 20$, 40 GeV.
- ¹³ABBIENDI 10 search for $e^+e^- \rightarrow H^0 Z$ with H^0 decaying invisibly. The limit assumes SM production cross section and $B(H^0 \rightarrow \text{ invisible}) = 1$.
- ¹⁴ ABBIENDI 07 search for $e^+e^- \rightarrow H^0 Z$ with $Z \rightarrow q \overline{q}$ and H^0 decaying to invisible final states. The H^0 width is varied between 1 GeV and 3 TeV. A limit $\sigma \cdot B(H^0 \rightarrow \text{ invisible}) < (0.07-0.57) \text{ pb (95%CL)}$ is obtained at $E_{cm} = 206 \text{ GeV}$ for $m_{H^0} = 60-114 \text{ GeV}$.
- ¹⁵Search for $e^+e^- \rightarrow H^0 Z$ with H^0 decaying invisibly. The limit assumes SM production cross section and B($H^0 \rightarrow$ invisible) = 1.
- ¹⁶ ACCIARRI 00M search for $e^+e^- \rightarrow ZH^0$ with H^0 decaying invisibly at $E_{\rm cm}$ =183–189 GeV. The limit assumes SM production cross section and B($H^0 \rightarrow$ invisible)=1. See their Fig. 6 for limits for smaller branching ratios.

Mass Limits for Light A^0

These limits are for a pseudoscalar A^0 in the mass range below O(10) GeV. <u>VALUE (GeV)</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ ADACHI 23A BEL2 $\tau \rightarrow eA^0, \tau \rightarrow \mu A^0$ ² TUMASYAN 23AR CMS $H \rightarrow A^0 A^0 \rightarrow 4\gamma$ ³ ABLIKIM 22H BES3 $J/\psi \rightarrow A^0 \gamma$ ⁴ JIA 22 BELL $\Upsilon(1S) \rightarrow A^0 \gamma$ 20AE ATLS $H^0 \rightarrow Z A^0$ ⁵ AAD ⁶ AABOUD 18AP ATLS $H^0 \rightarrow A^0 A^0$ ⁷ KHACHATRY...17AZ CMS $H^0 \rightarrow A^0 A^0$ ⁸ ABLIKIM 16E BES3 $J/\psi \rightarrow A^0 \gamma$ ⁹ KHACHATRY...16F CMS $H^0 \rightarrow A^0 A^0$ ¹⁰ LEES 15H BABR $\Upsilon(1S)
ightarrow A^0_{-\gamma} \gamma$ ¹¹ LEES 13c BABR $\Upsilon(1S) \rightarrow A^0 \gamma$ ¹² LEES 13L BABR $\Upsilon(1S)
ightarrow A^0 \gamma$ ¹³ LEES 13R BABR $\Upsilon(1S) \rightarrow A^0 \gamma$ ¹⁴ ABLIKIM 12 BES3 $J/\psi \rightarrow A^0 \gamma$ ¹⁵ CHATRCHYAN 12V CMS $A^0 \rightarrow \mu^+ \mu^$ $t \rightarrow bH^+, H^+ \rightarrow W^+ A^0$ ¹⁶ AALTONEN 11P CDF 11A KTEV $K_L \rightarrow \pi^0 \pi^0 A^0$, $A^0 \rightarrow \mu^+ \mu^-$ ^{17,18} ABOUZAID ¹⁹ DEL-AMO-SA..11J BABR $\bar{\Upsilon(1S)} \rightarrow A^0 \gamma$ ²⁰ LEES 11H BABR $\Upsilon(2S, 3S) \rightarrow A^0 \gamma$ ²¹ ANDREAS 10 RVUE ^{18,22} HYUN BELL $B^0 \rightarrow K^{*0} A^0, A^0 \rightarrow \mu^+ \mu^-$ BELL $B^0 \rightarrow \rho^0 A^0, A^0 \rightarrow \mu^+ \mu^-$ 10 ^{18,23} HYUN 10 OCCUR=2 ²⁴ AUBERT 09P BABR $\Upsilon(3S) \rightarrow A^0 \gamma$ ²⁵ AUBERT 09z BABR $\Upsilon(2S) \rightarrow A^0 \gamma$ ²⁶ AUBERT 09z BABR $\Upsilon(3S) \rightarrow A^0 \gamma$ OCCUR=2 ^{18,27} TUNG 09 K391 $K_L \rightarrow \pi^0 \pi^0 A^0, A^0 \rightarrow \gamma \gamma$ ²⁸ LOVE 08 CLEO $\Upsilon(1S) \rightarrow A^0 \gamma$ ²⁹ BESSON 07 CLEO $\Upsilon(1S) \rightarrow \eta_{B}\gamma$ 05 HYCP $\Sigma^{+} \rightarrow \rho A^{0} A^{0} \rightarrow \mu^{+}\mu^{-}$ ³⁰ PARK ³¹ BALEST 95 CLE2 $\Upsilon(1S) \rightarrow A^0 \gamma$ 32 ANTREASYAN 90C CBAL $\Upsilon(1S) \rightarrow A^0 \gamma$

¹ADACHI 23A search for flavor-changing τ decays $\tau \rightarrow eA^0$ and $\tau \rightarrow \mu A^0$, with A^0 invisible, using 62.8 fb⁻¹ of e^+e^- collisions at $E_{\rm cm} = 10.58$ GeV. Limits on $B(\tau \rightarrow eA^0)/B(\tau \rightarrow e\nu\nu)$ in the range 1.1×10^{-3} – 9.7×10^{-3} (95% CL) and $B(\tau \rightarrow \mu A^0)/B(\tau \rightarrow \mu\nu\nu)$ in the range 0.7×10^{-3} – 12.2×10^{-3} (95% CL) are given for $m_{A^0} = 0$ –1.6 GeV. See their Fig. 2.

²TUMASYAN 23AR search for the decay $H \rightarrow A^0 A^0$ with $A^0 \rightarrow \gamma \gamma$ (detected as a merged photonlike object) using 136 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. Limits

NODE=S055H2A;LINKAGE=Q

NODE=S055H2A;LINKAGE=R

NODE=S055H2I;LINKAGE=HM

NODE=S055H2A NODE=S055H2A NODE=S055H2A

NODE=S055H2I;LINKAGE=AN

NODE=S055H2I;LINKAGE=AD

NODE=S055H2I;LINKAGE=AL

NODE=S055H2I;LINKAGE=BB

NODE=S055H2I;LINKAGE=BI

on B($H \rightarrow A^0 A^0$)·B²($A^0 \rightarrow \gamma \gamma$) in the range 0.9 × 10⁻³–3.3 × 10⁻³ (95% CL) are given for $m_{\Delta 0} = 0.1-1.2$ GeV. See their Fig. 2. ³ABLIKIM 22H search for the process $J/\psi \rightarrow A^0 \gamma$ with A^0 decaying to $\mu^+ \mu^-$ in $9 \times 10^9 J/\psi$ events and give limits on $B(J/\psi \rightarrow A^0 \gamma) \cdot B(A^0 \rightarrow \mu^+ \mu^-)$ in the range 1.2×10^{-9} -7.78 × 10⁻⁷ (90% CL) for 0.212 GeV $\leq m_{A^0} \leq 3.0$ GeV. See their Fig. NODE=S055H2A;LINKAGE=O ⁴ JIA 22 search for the process $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^- \rightarrow A^0\gamma\pi^+\pi^-$ with A^0 de-NODE=S055H2A·LINKAGE=P caying to $au^+ au^-$ or $\mu^+ \mu^-$ in 158 imes 10⁶ au(2S) events and give limits on B(au(1S)
ightarrow $A^{0}\gamma$)·B $(A^{0} \rightarrow \tau^{+}\tau^{-})$ in the range 3.8×10⁻⁶-1.5×10⁻⁴ (90% CL) for $m_{A^{0}} = 3.6$ -9.2 GeV, and B($\Upsilon(1S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \mu^+ \mu^-$) in the range 3.1×10^{-7} -1.6 × 10⁻⁵ (90% CL) for $m_{A^0} = 0.21$ -9.2 GeV. See their Fig. 4. ⁵ AAD 20AE search for the decay $H^0 \rightarrow ZA^0$, $Z \rightarrow \ell^+ \ell^-$, A^0 decaying hadronically $(A^0 \rightarrow gg \text{ or } s\bar{s})$, in 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. Limit on the product NODE=S055H2A;LINKAGE=N of production cross section and the $H^0 \rightarrow Z A^0$ branching ratio in the range 17–340 pb (95% CL) is given for $m_{A^0} = 0.5$ –4.0 GeV, see their Table I. ⁶AABOUD 18AP search for the decay $H^0 \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ in 36.1 fb⁻¹ of NODE=S055H2A:LINKAGE=M pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 10(b) for limits on B($H^0 \rightarrow A^0 A^0$) in the range $m_{A^0} = 1-2.5$, 4.5–8 GeV, assuming a type-II two-doublet plus singlet model with $tan(\beta) = 5$. ⁷ KHACHATRYAN 17AZ search for the decay $H^0 \rightarrow A^0 A^0 \rightarrow \tau^+ \tau^- \tau^+ \tau^-$, $\mu^+ \mu^- b \overline{b}$, NODE=S055H2A;LINKAGE=K and $\mu^+ \mu^- \tau^+ \tau^-$ in 19.7 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Figs. 4, 5, and 6 for cross section limits in the range $m_{A^0} = 5-62.5$ GeV. See also their Figs. 7, 8, and 9 for interpretation of the data in terms of models with two Higgs doublets and a singlet. ⁸ABLIKIM 16E search for the process $J/\psi
ightarrow A^0 \gamma$ with A^0 decaying to $\mu^+ \mu^-$ and give NODE=S055H2A;LINKAGE=I limits on B($J/\psi \rightarrow A^0\gamma$)·B($A^0 \rightarrow \mu^+\mu^-$) in the range 2.8×10^{-8} - 5.0×10^{-6} (90% CL) for 0.212 $\leq m_{A^0} \leq 3.0$ GeV. See their Fig. 5. ⁹KHACHATRYAN 16F search for the decay $H^0 \rightarrow A^0 A^0 \rightarrow \tau^+ \tau^- \tau^+ \tau^-$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 8 for cross section limits for $m_{A^0} =$ NODE=S055H2A;LINKAGE=H 4–8 GeV. ¹⁰LEES 15H search for the process $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^- \rightarrow A^0\gamma\pi^+\pi^-$ with A^0 NODE=S055H2A;LINKAGE=B decaying to $c\overline{c}$ and give limits on B($\Upsilon(1S) \rightarrow A^0\gamma$)·B($A^0 \rightarrow c\overline{c}$) in the range 7.4 × 10^{-5} –2.4 \times 10^{-3} (90% CL) for 4.00 $\leq m_{A^0} \leq$ 8.95 and 9.10 $\leq m_{A^0} \leq$ 9.25 GeV. See their Fig. 6. ¹¹LEES 13C search for the process Υ (2S, 3S) \rightarrow Υ (1S) $\pi^+\pi^- \rightarrow A^0\gamma\pi^+\pi^-$ with A^0 NODE=S055H2A;LINKAGE=LE decaying to $\mu^+\mu^-$ and give limits on B($\Upsilon(1S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \mu^+\mu^-$) in the range $(0.3-9.7) \times 10^{-6}$ (90% CL) for 0.212 $\leq m_{A^0} \leq$ 9.20 GeV. See their Fig. 5(e) for limits on the $b - A^0$ Yukawa coupling derived by combining this result with AUBERT 092. ¹²LEES 13L search for the process $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^- \rightarrow A^0\gamma\pi^+\pi^-$ with A^0 NODE=S055H2A;LINKAGE=E decaying to gg or $s\overline{s}$ and give limits on $B(\Upsilon(1S) \rightarrow A^0\gamma) \cdot B(A^0 \rightarrow gg)$ between 1×10^{-6} and 2×10^{-2} (90% CL) for $0.5 \leq m_{A^0} \leq 9.0$ GeV, and $B(\Upsilon(1S) \rightarrow A^0\gamma) \cdot B(A^0 \rightarrow s\overline{s})$ between 4×10^{-6} and 1×10^{-3} (90%CL) for $1.5 \leq m_{A^0} \leq 9.0$ GeV. See their Fig. 4. ¹³LEES 13R search for the process $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^- \rightarrow A^0\gamma\pi^+\pi^-$ with A^0 NODE=S055H2A;LINKAGE=F decaying to $\tau^+ \tau^-$ and give limits on B($\Upsilon(1S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \tau^+ \tau^-$) in the range 0.9–13 × 10⁻⁵ (90% CL) for 3.6 $\leq m_{A^0} \leq$ 9.2 GeV. See their Fig. 4 for limits on the $b - A^0$ Yukawa coupling derived by combining this result with AUBERT 09P. ¹⁴ABLIKIM 12 searches for the process $\psi(3686) \rightarrow \pi \pi J/\psi$, $J/\psi \rightarrow A^0 \gamma$ with A^0 decaying NODE=S055H2A;LINKAGE=J to $\mu^+ \mu^-$. It gives mass dependent limits on B($J/\psi \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \mu^+ \mu^-$) in the range 4 \times 10⁻⁷–2.1 \times 10⁻⁵ (90% C.L.) for 0.212 $\leq m_{\Delta 0} \leq$ 3.0 GeV. See their Fig. 15 CHATRCHYAN 12V search for ${\it A}^0$ production in the decay ${\it A}^0 \rightarrow ~\mu^+ \, \mu^-$ with 1.3 fb $^{-1}$ NODE=S055H2A:LINKAGE=CA of pp collisions at $E_{\rm cm} = 7$ TeV. A limit on $\sigma(A^0) \cdot B(A^0 \rightarrow \mu^+ \mu^-)$ in the range (1.5–7.5) pb is given for $m_{A^0} = (5.5-8.7)$ and (11.5–14) GeV at 95% CL. 16 AALTONEN 11P search in 2.7 fb $^{-1}$ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV for the decay NODE=S055H2A;LINKAGE=A5 chain $t \rightarrow bH^+$, $H^+ \rightarrow W^+A^0$, $A^0 \rightarrow \tau^+ \tau^-$ with m_{A^0} between 4 and 9 GeV. See their Fig. 4 for limits on B(t $ightarrow bH^+$) for 90 $< m_{H^+} <$ 160 GeV. ¹⁷ABOUZAID 11A search for the decay chain $K_L \rightarrow \pi^0 \pi^0 A^0$, $A^0 \rightarrow \mu^+ \mu^-$ and give a NODE=S055H2A;LINKAGE=AB limit B($K_L \rightarrow \pi^0 \pi^0 A^0$) · B($A^0 \rightarrow \mu^+ \mu^-$) < 1.0 × 10⁻¹⁰ at 90% CL for $m_{\Delta 0} =$ 214.3 MeV. $^{18}\,\mathrm{The}$ search was motivated by PARK 05. NODE=S055H2A;LINKAGE=PA 19 DEL-AMO-SANCHEZ 11J search for the process $\Upsilon(2S)$ o $\Upsilon(1S)\pi^+\pi^-$ oNODE=S055H2A;LINKAGE=D1 $A^0\gamma\pi^+\pi^-$ with A^0 decaying to invisible final states. They give limits on B($\Upsilon(1S) o$ $(A^0\gamma)\cdot B(A^0 \rightarrow \text{invisible})$ in the range (1.9–4.5) imes 10⁻⁶ (90% CL) for 0 $\leq m_{\Delta^0} \leq$

8.0 GeV, and (2.7–37) $\times\,10^{-6}$ for 8.0 $\,\leq\,\,m_{A^0}\,\,\leq\,\,$ 9.2 GeV.

²⁰ LEES 11H search for the process $\Upsilon(2S, 3S) \rightarrow A^0 \gamma$ with A^0 decaying hadronically and give limits on B($\Upsilon(2S, 3S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow$ hadrons) in the range 1×10^{-6} - 8×10^{-5} (90% CL) for 0.3 $< m_{A^0} < 7$ GeV. The decay rates for $\Upsilon(2S)$ and $\Upsilon(3S)$ are assumed to be sumpling to the decay rates Γ .	NODE=S055H2A;LINKAGE=L1
to be equal up to the phase space factor. See their Fig. 5. ²¹ ANDREAS 10 analyze constraints from rare decays and other processes on a light A^0 with $m_{A^0} < 2m_{\mu}$ and give limits on its coupling to fermions at the level of 10^{-4} times the Standard Model value.	NODE=S055H2A;LINKAGE=AN
²² HYUN 10 search for the decay chain $B^0 \rightarrow K^{*0}A^0$, $A^0 \rightarrow \mu^+\mu^-$ and give a limit on B($B^0 \rightarrow K^{*0}A^0$) \cdot B($A^0 \rightarrow \mu^+\mu^-$) in the range (2.26–5.53) $\times 10^{-8}$ at 90%CL for $m_{A^0} = 212$ -300 MeV. The limit for $m_{A^0} = 214.3$ MeV is 2.26 $\times 10^{-8}$.	NODE=S055H2A;LINKAGE=HY
²³ HYUN 10 search for the decay chain $B^{0} \rightarrow \rho^{0} A^{0}$, $A^{0} \rightarrow \mu^{+} \mu^{-}$ and give a limit on $B(B^{0} \rightarrow \rho^{0} A^{0}) \cdot B(A^{0} \rightarrow \mu^{+} \mu^{-})$ in the range $(1.73-4.51) \times 10^{-8}$ at 90%CL for $m_{A^{0}} = 212$ -300 MeV. The limit for $m_{A^{0}} = 214.3$ MeV is 1.73×10^{-8} .	NODE=S055H2A;LINKAGE=HU
^{A°} ^{A°} ^{A°} ^{A°} ^{A°} ^{A°} ^{A°} ^{A°}	NODE=S055H2A;LINKAGE=BR
²⁵ AUBERT 09Z search for the process $\Upsilon(2S) \rightarrow A^0 \gamma$ with $A^0 \rightarrow \mu^+ \mu^-$ for 0.212 $< m_{A^0} < 9.3$ GeV and give limits on B($\Upsilon(2S) \rightarrow A^0 \gamma$)·B($A^0 \rightarrow \mu^+ \mu^-$) in the range	NODE=S055H2A;LINKAGE=UB
$(0.3-8) \times 10^{-6}$ (90% CL). ²⁶ AUBERT 09Z search for the process $\Upsilon(3S) \to A^0 \gamma$ with $A^0 \to \mu^+ \mu^-$ for 0.212 < $m_{A^0} < 9.3$ GeV and give limits on B($\Upsilon(3S) \to A^0 \gamma$)·B($A^0 \to \mu^+ \mu^-$) in the range	NODE=S055H2A;LINKAGE=AU
$(0.3-5) \times 10^{-6}$ (90% CL). ²⁷ TUNG 09 search for the decay chain $K_L \to \pi^0 \pi^0 A^0$, $A^0 \to \gamma \gamma$ and give a limit on $B(K_L \to \pi^0 \pi^0 A^0) \cdot B(A^0 \to \gamma \gamma)$ in the range (2.4–10.7) $\times 10^{-7}$ at 90% CL for m_{A^0}	NODE=S055H2A;LINKAGE=NG
= 194.3-219.3 MeV. The limit for $m_{A^0} = 214.3$ MeV is 2.4×10^{-7} . ²⁸ LOVE 08 search for the process $\Upsilon(1S) \rightarrow A^0 \gamma$ with $A^0 \rightarrow \mu^+ \mu^-$ (for $m_{A^0} < 2m_{\tau}$) and $A^0 \rightarrow \tau^+ \tau^-$. Limits on $B(\Upsilon(1S) \rightarrow A^0 \gamma) \cdot B(A^0 \rightarrow \ell^+ \ell^-)$ in the range	NODE=S055H2A;LINKAGE=LO
$10^{-6}-10^{-4}$ (90% CL) are given. ²⁹ BESSON 07 give a limit B($\Upsilon(1S) \rightarrow \eta_b \gamma$) · B($\eta_b \rightarrow \tau^+ \tau^-$) < 0.27% (95% CL), which constrains a possible A^0 exchange contribution to the η_b decay.	NODE=S055H2A;LINKAGE=BE
³⁰ PARK 05 found three candidate events for $\Sigma^+ \rightarrow p\mu^+\mu^-$ in the HyperCP experiment. Due to a narrow spread in dimuon mass, they hypothesize the events as a possible signal of a new boson. It can be interpreted as a neutral particle with $m_{A^0} = 214.3 \pm 0.5$ MeV and the branching fraction B($\Sigma^+ \rightarrow pA^0$)·B($A^0 \rightarrow \mu^+\mu^-$) = $(3.1^{+2.4}_{-1.9} \pm 1.5) \times 10^{-8}$.	NODE=S055H2A;LINKAGE=H5
³¹ BALEST 95 give limits B($\Upsilon(1S) \rightarrow A^0 \gamma$) i 1.5×10^{-5} at 90% CL for $m_{A^0} < 5$ GeV.	
The limit becomes $< 10^{-4}$ for $m_{\Delta 0} < 7.7$ GeV.	NODE=S055H2A;LINKAGE=D
³² ANTREASYAN 90C give limits B($\Upsilon(1S) \rightarrow A^0 \gamma$) i 5.6 × 10 ⁻⁵ at 90% CL for $m_{A0} <$	
7.2 GeV. A^0 is assumed not to decay in the detector.	NODE=S055H2A;LINKAGE=G
Other Mass Limits We use a symbol H_1^0 if mass < 125 GeV or H_2^0 if mass > 125 GeV. The notation H	NODE=S055H2O
is reserved for the 125 GeV particle.	NODE=S055H2O
VALUE (GeV) CL% DOCUMENT ID TECN COMMENT	NODE=S055H2O
● ● We do not use the following data for averages, fits, limits, etc. ● ●	
¹ HAYRAPETY25A CMS $H_1^0 ightarrow \gamma \gamma$	
2 AAD 24A ATLS $H^0_2 \rightarrow Z\gamma$	
³ AAD 24AP ATLS $H_2^{\overline{0}}, A^0 \rightarrow t\overline{t}$	
$\begin{array}{c} 4 \text{ AAD} \\ 5 \text{ AAD} \\ 7 \text{ AAD} \\$	
⁵ AAD 24BV ATLS $H_2^0 \rightarrow HH$ ⁶ AAD 24BWATLS $H_2^0 \rightarrow H_2^0H$	
⁷ AAD 24BX ATLS $H_4^{0} \rightarrow H_2^{0} H_3^{0}$ ⁸ AAD 24BX ATLS $A^{0} \rightarrow H_2^{0} Z$	OCCUR=2
	OCCOR=2
3 1,2	
$\begin{array}{cccc} 10 \text{ AAD} & 24\text{cD ATLS} & H_2^0 \rightarrow ZA \\ 11 \text{ AAD} & 24\text{cF ATLS} & A^0 \rightarrow \tau^+ \tau^- \end{array}$	
$\begin{array}{ccc} 11 \text{ AAD} & 24 \text{ CF ATLS} & A^0 \rightarrow \tau^+ \tau^- \\ 12 \text{ AAD} & 24 \text{ CI ATLS} & H_0^0, A^0 \rightarrow \text{ invisible} \end{array}$	
$\begin{array}{ccc} 13 \text{ AAD} & 24 \text{Cr ATLS} & H_2, A^2 \rightarrow \text{Invisible} \\ 13 \text{ AAD} & 24 \text{Cr ATLS} & \text{two doublet } + \text{pseudoscalar} \end{array}$	
+ Dirac DM	
¹⁴ AAD 24H ATLS $H_2^0 \rightarrow HH$ ¹⁵ AAD 24K ATLS $H \rightarrow ZA^0$	
$\begin{array}{ccc} {}^{15} \text{ AAD} & {}^{24\text{K}} \text{ ATLS } H \rightarrow ZA^0 \\ {}^{16} \text{ ADACHI} & {}^{24\text{F}} \text{ BEL2 } H^0_1 \rightarrow \mu^+ \mu^- \end{array}$	
¹⁰ ADACHI 24F BEL2 $H_1^{\circ} \rightarrow \mu^{+} \mu^{-}$ ¹⁷ HAYRAPETY24AA CMS $H \rightarrow A^0 A^0$	
$\Pi A \Pi A \Pi L \Pi I I 24AA CIVIS \Pi \rightarrow A^{+}A^{+}$	

7/16/2025 12:16 Page 14

¹⁸ HAYRAPETY	24AE CMS	$H_2^0 \rightarrow HH$
¹⁹ HAYRAPETY	24AF CMS	
²⁰ HAYRAPETY		
²¹ HAYRAPETY	24AJ CMS	$H_2^0 \rightarrow \gamma \gamma$
²² HAYRAPETY	24AZ CMS	$A^{\circ}A^{\circ}, A^{\circ} \rightarrow \mu^{+}\mu^{-}$
²³ HAYRAPETY		$H, H_{1,2}^0 \rightarrow A^0 A^0, A^0 \rightarrow OCCUR=2$
²⁴ HAYRAPETY	241 CMS	$ \begin{array}{c} \mu^+ \mu^- \\ H \to Z A^0 \end{array} $
²⁵ TUMASYAN	24A CMS	$H^0_{1.2} ightarrow e^+ e^-$, $\mu^+ \mu^-$,
²⁶ TUMASYAN	24B CMS	$H_0^{\tau+\tau-}$
²⁷ TUMASYAN	24B CMS	$H_3^{\bar{0}} \rightarrow H_{1,2}^0 H$ OCCUR=2
²⁸ AAD	23AD ATL	-,-
²⁹ AAD	23AD ATL	É a
³⁰ AAD	23AJ ATL	2
³¹ AAD	23BD ATL	2
³² AAD	23BE ATL	a ''
³³ AAD	23BG ATL	
³⁴ AAD	23BWATL	
35 AAD		5 H + invisible A^0
³⁶ AAD	23CA ATL	
³⁷ AAD	23CR ATL	5 flavor changing H_2^0
³⁸ AAD	230 ATL	$A^0 \rightarrow ZH$
³⁹ AAD	23R ATL	
⁴⁰ AAD	230 ATL	$H_2^0 \rightarrow Z\gamma$
⁴¹ AAD	23z ATL	$5 H_2^{0} \rightarrow HH$
⁴² HAYRAPETY	23C CMS	$H^{igc(1)}_{oldsymbol{1},2} o \ e\mu$
⁴³ HAYRAPETY	23G CMS	
⁴⁴ TUMASYAN	23 CMS	$H_3^0 \rightarrow H_{1,2}^0 H$
⁴⁵ TUMASYAN	23M CMS	
⁴⁶ TUMASYAN	230 CMS	2
⁴⁷ TUMASYAN	23s CMS	$H_{1,2}^{\acute{0}} ightarrow au^+ au^-$
⁴⁸ AAD	22A ATL	
⁴⁹ AAD	22D ATL	
⁵⁰ AAD	22F ATL	0
⁵¹ AAD	22i ATL	$ \stackrel{\sim}{H} \xrightarrow{\sim} \tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{2}^{0} \rightarrow A^{0} \tilde{\chi}_{1}^{0}, $
50		$A^0 \rightarrow b\overline{b}$
52 AAD	22J ATL	$5 H \rightarrow Z A^{0}$
⁵³ AAD	22J AILS	$5 H \to A^0 A^0, H^0_1 H^0_1 \qquad \qquad \text{OCCUR}=2$
⁵⁴ AAD	22P AILS	$H_1^0, H_2^0 \rightarrow \text{invisible}^1$
⁵⁵ AAD	22Y AILS	$H_{2}^{0} \rightarrow H_{H}$
50 ABRATENKO	22A MCE	$ \begin{array}{cccc} & H_2 \rightarrow H_1^0 \\ N & K^+ \rightarrow & H_1^0 \pi^+ \\ & H_3^0 \rightarrow & H_1^0 H_1^0 \\ & H_2^0 \rightarrow & W^+ W^- \\ S & H_2^0 \rightarrow & Z Z \\ S & A^0 \rightarrow & Z H_2^0 \end{array} $
58 TUMASYAN	22AK CMS	$H_3^{\circ} \rightarrow H_1^{\circ} H_1^{\circ}$
50 IUMASYAN	22D CMS	$H_2^{\circ} \rightarrow W^+ W^-$
⁵⁹ AAD	21AF ATL	$H_2^{\circ} \rightarrow ZZ$
61	21AI AILS	$A^0 \rightarrow Z H_2^0$
61 AAD	21AY ATL	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
62 AAD	21AZ ATL	$A_2^0 \rightarrow HA_1^0$
63 AAD	21BB ATL	$A_2^0 \rightarrow HA_1^0$
⁶⁴ AAD	21BE ATL	
⁰⁵ ABRATENKO	21 MCE	$\begin{array}{rcl} N & {\mathcal{K}^+} \to & H^0_1 \pi^+ \\ H^0_2 \to & Z A^0, \ A^0 \to invisible \end{array}$
SIRUNYAN	21A CMS	$H_2^{\circ} \rightarrow Z A^{\circ}, A^{\circ} \rightarrow \text{invisible}$
⁶⁷ TUMASYAN	21F CMS	$H_{3}^{\acute{0}} \rightarrow HH_{1,2}^{\acute{0}}$
⁶⁸ AAD	20AA ATL	$5 H_2^0/A^0 \rightarrow \tau^+ \tau^-$
⁶⁹ AAD	20AL ATL	$5 H \rightarrow A^0 A^0$
⁷⁰ AAD		$H_2^0 \rightarrow HH$
⁷¹ AAD		$5 H_2^{0} \rightarrow HH$
⁷² AAD		0 –
		$b H_2^{\bar{0}} \rightarrow b \overline{b}$
73 AAD		$ \begin{array}{rcl} & H_2^0 \to b \overline{b} \\ & 5 & H_2^0 \to HH \end{array} $

⁷⁴ AAIJ 20AL LHCB $A^0 \rightarrow \mu^+ \mu^-$ 75 SIRUNYAN $H \rightarrow A^0 A^0$ 20 CMS $H_2^0 \rightarrow Z A^0 \text{ or } A^0 \rightarrow Z H_2^0$ ⁷⁶ SIRUNYAN 20AA CMS 77 SIRUNYAN 20AC CMS $A^{\overline{0}} \rightarrow ZH$ 78 SIRUNYAN 20AD CMS $H^0_2
ightarrow \mu au$, e au $H_2^{\overline{0}}/A^0 \rightarrow t \, \overline{t}$ ⁷⁹ SIRUNYAN 20AF CMS $H, H_2^0 \rightarrow A^0 A^0$ ⁸⁰ SIRUNYAN 20AP CMS ⁸¹ SIRUNYAN $H_2^0 \rightarrow W^+ W^-$ 20Y CMS ⁸² SIRUNYAN $t\,\overline{t}\,\textit{H}_{1,2}^{0}$ or $t\,\overline{t}\,\textit{A}^{0},\,\textit{H}_{1.2}^{0}/$ 20z CMS $A^{0} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$ ⁸³ AABOUD $H_2^0 \rightarrow HH$ 19A ATLS $H \rightarrow A^0 A^0$ ⁸⁴ AABOUD 19AG ATLS ⁸⁵ AABOUD $H_2^0 \rightarrow HH$ 190 ATLS ⁸⁶ AABOUD $H_2^{\overline{0}} \rightarrow HH$ OCCUR=2 19⊤ ATLS 87 AABOUD 19∨ ATLS two doublet + pseudoscalar OCCUR=2 $H_2^0 \rightarrow \mu^+ \mu^-$ ⁸⁸ AABOUD 19Y ATLS ⁸⁹ AALTONEN $H_{1,2}^{\overline{0}} \rightarrow b\overline{b}$ CDF 19 ⁹⁰ SIRUNYAN $H_2^0 \rightarrow HH$ 19 CMS ⁹¹ SIRUNYAN $A^{\bar{0}} \rightarrow \tau^+ \tau^-$ 19AE CMS ⁹² SIRUNYAN $A_2^0 \rightarrow HA_1^0$ 19AN CMS 93 SIRUNYAN $A^{\overline{0}} \rightarrow ZH$ 19AV CMS ⁹⁴ SIRUNYAN $H^0_{1,2}/A^0 \rightarrow b\overline{b}$ 19B CMS 95 SIRUNYAN 19BB CMS $H_1^0 \rightarrow \gamma \gamma$ ⁹⁶ SIRUNYAN $H \rightarrow A^0 A^0$ 19BD CMS 97 SIRUNYAN $H_2^0 \rightarrow HH$ 19BE CMS $H_{1,2}^{0} \rightarrow A^{0}A^{0}$ 98 SIRUNYAN 19BQ CMS $H_{2}^{0,-}/A^{0} \to \mu^{+}\mu^{-}$ 99 SIRUNYAN 19CR CMS ¹⁰⁰ SIRUNYAN $H_{2}^{0} \rightarrow HH$ 19н CMS ¹⁰¹ AABOUD 18AA ATLS $H_2^{\overline{0}} \rightarrow Z\gamma$ ¹⁰² AABOUD 18AG ATLS $H \rightarrow A^0 A^0$ ¹⁰³ AABOUD $A^0 \rightarrow Z H_2^0$ 18AH ATLS ¹⁰⁴ AABOUD 18AI ATLS $A^0 \rightarrow ZH$ ¹⁰⁵ AABOUD 18bf ATLS $H_2^0 \rightarrow ZZ$ ¹⁰⁶ AABOUD $H_{2}^{0} \rightarrow HH$ 18BU ATLS ¹⁰⁷ AABOUD $H \rightarrow A^0 A^0$ 18_{BX} ATLS ¹⁰⁸ AABOUD $H_2^0 \rightarrow HH$ 18cq ATLS ¹⁰⁹ AABOUD $H_2^{0} \rightarrow W^+ W^-, ZZ$ 18F ATLS $H_{1,2}^{\acute{0}} \rightarrow \mu \tau$ ¹¹⁰ AAIJ 18AM LHCB ¹¹¹ AAIJ $A^{0} \rightarrow \mu^{+} \mu^{-}$ 18AQ LHCB 112 AAIJ 18AQ LHCB $H \rightarrow A^0 A^0, A^0 \rightarrow \mu^+ \mu^-$ OCCUR=2 ¹¹³ SIRUNYAN $H_2^0 \rightarrow HH$ 18AF CMS ¹¹⁴ SIRUNYAN $H_2^0 \rightarrow ZZ$ 18BA CMS ¹¹⁵ SIRUNYAN $H_2^{\overline{0}} \rightarrow HH$ 18cwCMS ¹¹⁶ SIRUNYAN 18DK CMS $H_2^{\overline{0}} \rightarrow Z\gamma$ ¹¹⁷ SIRUNYAN $H \rightarrow A^0 A^0$ 18DT CMS ¹¹⁸ SIRUNYAN $H_2^0 \rightarrow \gamma \gamma$ 18DU CMS ¹¹⁹ SIRUNYAN $A^{\bullet} \rightarrow ZH$ 18ED CMS ¹²⁰ SIRUNYAN $H \rightarrow A^0 A^0$ 18EE CMS ¹²¹ SIRUNYAN pp, 13 TeV, $H_2^0 \rightarrow HH$ 18F CMS 122 AABOUD $H_2^0 \rightarrow Z\gamma$ 17 ATLS ¹²³ AABOUD $H_2^{\overline{0}} \rightarrow \gamma \gamma$ 17AP ATLS ¹²⁴ AABOUD $H_2^{\overline{0}} \rightarrow Z\gamma$ 17AW ATLS ¹²⁵ KHACHATRY...17AZ CMS $H \rightarrow A^0 A^0$ 126 KHACHATRY...17D CMS pp, 8, 13 TeV, $H_2^0 \rightarrow Z\gamma$ ¹²⁷ KHACHATRY...17R CMS $H_2^0 \rightarrow \gamma \gamma$ ¹²⁸ SIRUNYAN 17CN CMS pp, 8 TeV, $H_2^0 \rightarrow HH$ ¹²⁹ SIRUNYAN pp, 8, 13 TeV, $H_2^0 \rightarrow Z\gamma$ 17Y CMS ¹³⁰ AABOUD $H \rightarrow A^0 A^0$ 16AB ATLS ¹³¹ AABOUD $H_2^0 \rightarrow W^+ W^-$, ZZ 16AE ATLS

					_	
		¹³² AABOUD			$H_2^0 \rightarrow \gamma \gamma$	
		¹³³ AABOUD	161	ATLS	$H_2^{\overline{0}} \rightarrow HH$	
		¹³⁴ AAD			$H \rightarrow ZZ$	
		¹³⁵ AAD			$H \rightarrow W^+ W^-$	
		¹³⁶ AAD	16L	ATLS	$H \rightarrow A^0 A^0$	
		¹³⁷ AAD	16L	ATLS	$H_2^0 \rightarrow A^0 A^0$	OCCUR=2
		¹³⁸ AALTONEN	16C	CDF	$H_1^{ar 0}H^\pm o H_1^0H_1^0W^*$,	
		¹³⁹ KHACHATRY	16 BG	CMS	$H_0^0 \xrightarrow{1} HH$	
		¹⁴⁰ KHACHATRY.	16 BQ	CMS	$pp, 8 \text{ TeV}, H_2^0 \rightarrow HH$	
		¹⁴¹ KHACHATRY		CMS	$H \rightarrow H_1 H_1$	
		¹⁴² KHACHATRY	16M	CMS	$H_0^0 \rightarrow \gamma \gamma$	
		¹⁴³ KHACHATRY.				
		¹⁴⁴ KHACHATRY				OCCUR=2
		145 ΔΔΔ		ΔΤΙ C	и0 🔪 и и	
		¹⁴⁶ AAD	15 _{B7}	ATLS	$ \begin{array}{ccc} H_2 \rightarrow & HH \\ H \rightarrow & A^0 A^0 \\ H_2^0 \rightarrow & A^0 A^0 \end{array} $	
		¹⁴⁷ AAD	15bz	ATLS	$H_0^0 \rightarrow A^0 A^0$	OCCUR=2
		¹⁴⁸ AAD	15CE	ATLS	$H_2^0 \rightarrow HH$	
		¹⁴⁹ AAD		ΔΤΙ S	$H_2^0 \rightarrow HH$	
		150 _{AAD}	150		$A^0 \rightarrow ZH$	
					$H_2^0 \rightarrow W^+ W^-, ZZ$	
		¹⁵² KHACHATRY.				
		¹⁵³ KHACHATRY.				OCCUR=2
		¹⁵⁴ KHACHATRY				
		¹⁵⁵ KHACHATRY				
		¹⁵⁶ AAD			$H \xrightarrow{2} \gamma \gamma$	
		¹⁵⁷ AAD	14M	ATLS	$H_{2}^{0} \rightarrow H^{\pm} W^{\mp} \rightarrow$	
					$ \begin{array}{c} {}^{2} HW^{\pm}W^{\mp}, H \rightarrow b\overline{b} \\ H \rightarrow WW^{(*)} \end{array} $	
		¹⁵⁸ CHATRCHYA	V14 G	CMS	$H \rightarrow WW^{(*)}$	
			1/0	CNAC		
		¹⁶⁰ AALTONEN	13P	CDF	$ \begin{array}{ccc} H^{\prime 0} \rightarrow & H^{\pm} W^{\mp} \rightarrow \\ H^{\prime 0} \rightarrow & H^{\pm} W^{\mp} \rightarrow \\ H^{\prime 0} + W^{-} & H^{-} & H^$	
		¹⁶¹ CHATRCHYAI	V 13BJ	CMS	$H \rightarrow A^0 A^0$	
		¹⁶² AALTONEN	11P	CDF	$t \rightarrow bH^+, H^+ \rightarrow W^+ A^0$	
		¹⁶³ ABBIENDI			$H \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$	OCCUR=2
		¹⁶⁴ SCHAEL	10	ALEP	$H \rightarrow A^{\dagger}A^{\dagger}$	
		¹⁶⁵ ABAZOV	09v	D0	$H \rightarrow A^0 A^0$	
none 3–63	95	166 ABBIENDI			A ⁰ , Type II model	OCCUR=2
>104	95	167 ABBIENDI	04K		H ightarrow 2 jets	
		168 ABDALLAH	04		HVV couplings	
>110.3	95	¹⁶⁹ ACHARD ¹⁷⁰ ACHARD		L3 L3	$H \rightarrow 2$ jets	
		¹⁷¹ ABBIENDI			Anomalous coupling $e^+e^- ightarrow HZ$, $H ightarrow$ any	
		¹⁷² ABBIENDI			$H_1^0 \rightarrow A^0 A^0$	
>105.4	₉₅ 17	^{3,174} HEISTER			$H_1^0 \rightarrow \gamma \gamma$	
>109.1	95	¹⁷⁵ HEISTER	021		$H_1 \rightarrow 2$ jets or $\tau^+ \tau^-$	
none 12–56	95 95	¹⁷⁶ ABBIENDI	02101 01F	OPAL	A^0 , Type-II model	OCCUR=2
	55	¹⁷⁷ ACCIARRI		L3	$e^+e^- \rightarrow H\gamma$ and/or $H \rightarrow$	
					$e^{\gamma\gamma}e^{\gamma}e^{-} \rightarrow e^{+}e^{-}H$	
		¹ / ^o ACCIARRI	00R	L3	$e^+e^- \rightarrow e^+e^-H$	OCCUR=2
		¹⁷⁹ GONZALEZ ¹⁸⁰ KRAWCZYK	98B 07	RVUE	Anomalous coupling $(\pi, 2)$	
		¹⁸¹ ALEXANDER	91	RVUE	$(g-2)_{\mu}$	
1	/A B I					OCCUR=2
+ HAYRAPETY	AN 25A	search for the decay	$/H_{1}^{0}$ -	$\rightarrow \gamma \gamma$	in 132 fb ^{-1} of <i>pp</i> collisions at ection times branching ratio for	NODE=S055H2O;LINKAGE=GF
$E_{\rm cm} = 13$ T $m_{H_1^0} = 70-1$	ev. See 10 GeV	their Fig. 5 for limi	ts on	cross se	ection times branching ratio for	
1				_	I	
					ying to e^+e^- or $\mu^+\mu^-$ using	NODE=S055H2O;LINKAGE=QE
140 fb $^{-1}$ of cross section	<i>pp</i> collis times br	sions at $E_{\rm cm}=13$ T ranching ratios for <i>m</i>	eV. Se	ee their 0.22–3.4	Fig. 4 for limits on production 4 TeV.	

140 fb⁻² of *pp* collisions at $E_{cm} = 13$ FeV. See their Fig. 4 for limits on production cross section times branching ratios for $m_{H_2^0}^0 = 0.22-3.4$ TeV. ³AAD 24AP search for production of a heavy H_2^0 or A^0 decaying to $t\bar{t}$ in 140 fb⁻¹ of *pp* collisions at $E_{cm} = 13$ TeV. See their Figs. 15 and 16 for limits on the Yukawa coupling for m_{A^0} , $m_{H_2^0}^0 = 0.4-1.4$ TeV for different assumptions on width over mass.

NODE=S055H2O;LINKAGE=FF

7/16/2025 12:16 Page 18 ⁴AAD 24BQ search for the decay chain $H \rightarrow A^0 A^0 \rightarrow b \overline{b} \tau^+ \tau^-$, produced by gluon NODE=S055H2O;LINKAGE=HF fusion, vector boson fusion, or in association with a weak vector boson, in 140 ${\rm fb}^{-1}$ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 10 for limits on the product of branching ratios in the range $m_{A^0} = 12-60$ GeV. ⁵ AAD 24BV search for H_2^0 produced by vector-boson fusion, decaying to $HH \rightarrow b\overline{b}b\overline{b}$, NODE=S055H2O;LINKAGE=TF using 140 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 for limits on the product of production cross section times branching ratios for $m_{H_2^0}^0 = 1-5$ TeV. ⁶AAD 24BW search for production of H_3^0 decaying to H_2^0H , $H_2^0 \rightarrow W^+W^-$ or ZZ, and NODE=S055H2O;LINKAGE=KF $H \rightarrow \gamma \gamma$ using 140 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Figs. 6–8 for limits on production cross section times branching ratios in the ranges $m_{H_3^0} = 0.3-1.0$ TeV and $m_{H_2^0} = 0.17$ –0.5 TeV. ⁷ AAD 24_{BX} search for production of H_4^0 decaying to $H_2^0 H_3^0$, $H_2^0 \rightarrow$ invisible, and $H_3^0 \rightarrow$ NODE=S055H2O;LINKAGE=LF $ZZ \rightarrow 4\ell$, using 139 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 (a), (b) for limits on production cross section times branching ratios in the ranges $m_{H^0_{\star}}$ 0.39–1.3 TeV, $m_{H_3^0} = 0.22$ –1.0 TeV, and $m_{H_2^0} = 160$ GeV. ⁸AAD 24BX search for production of A^0 decaying to $H_2^0 Z$, $H_2^0 \rightarrow ZZ$, resulting in 4ℓ NODE=S055H2O:LINKAGE=MF final states, using 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 (c), (d) for limits on production cross section times branching ratios in the ranges $m_{A^0} =$ 0.32–1.3 TeV and $m_{H_2^0} = 0.22$ –1.0 TeV. 9 AAD 24CA search for production of H^0_3 decaying to $H^0_{1,2}\,H,\;H^0_{1,2}\,\rightarrow~~b\,\overline{b},$ and H \rightarrow NODE=S055H2O;LINKAGE=NF $\gamma\gamma$ using 140 fb⁻¹ of pp collisions at $E_{\rm cm}$ = 13 TeV. See their Fig. 4 for limits on production cross section times branching ratios in the ranges $m_{H_2^0}^0 = 0.17$ -1.0 TeV and $m_{H^0_{1,2}} = 0.015 - 0.5$ TeV. 10 AAD 24CD search for production of H^0_2 decaying to ZA, A $ightarrow\,$ invisible, using 140 fb $^{-1}$ NODE=S055H2O;LINKAGE=OF of pp collisions at $E_{\rm cm} = 13$ TeV. See their Figs. 8–12 for excluded parameter regions in two-Higgs-doublet plus singlet pseudoscalar model. ¹¹AAD 24CF search for gluon-fusion production of A^0 decaying to $\tau^+ \tau^-$ in 140 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times NODE=S055H2O;LINKAGE=JF branching ratio in the range $m_{A^0}=$ 20–90 GeV, and Fig. 8 for A^0 coupling with the top quark. $^{12}\,{\rm AAD}$ 24Cl search for production of $H^0_2,\,A^0$ decaying to invisible final states, in various NODE=S055H2O;LINKAGE=QF channels including $t\bar{t}$ + missing E_T and $t\bar{t}t\bar{t}$, using up to 140 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 for cross section limits in a simplified model with fixed Dark Matter mass and couplings to quarks and Dark Matter. 13 AAD 24CK combines published ATLAS data up to 139 $\rm fb^{-1}$ to constrain two-Higgs-doublet plus singlet pseudoscalar model with A^0_1 decaying to invisibly into Dirac Dark NODE=S055H2O;LINKAGE=RF Matter final states. See their Figs. 4-9 for excluded parameter regions. $^{14}\,\rm AAD$ 24H combine searches for a scalar resonance decaying to HH using up to 139 fb $^{-1}$ NODE=S055H2O;LINKAGE=YE of pp collisions at $E_{\rm cm} = 13$ TeV from AAD 22F, AAD 23Z, and AAD 22Y. See their Fig. 1 for limits on cross section times branching ratio for $m_{H_2^0} = 0.251-5.0$ TeV. 15 AAD 24K search for the decay $H \rightarrow~Z \, A^0$ with $A^0 \rightarrow~\gamma \gamma$ and $Z \rightarrow~\ell^+ \, \ell^-$ in 139 NODE=S055H2O;LINKAGE=AF fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. Merged $\gamma\gamma$ events as well as resolved ones are looked for. See their Fig. 3 for limits on the product of the branching ratios for $m_{\Delta 0} =$ 0.1-33 GeV. ¹⁶ADACHI 24F search for H_1^0 , which couples preferentially to muon pairs, in the process NODE=S055H2O;LINKAGE=CF $e^+e^- \rightarrow \mu^+\mu^-H_1^0 \rightarrow \mu^+\mu^-\mu^+\mu^-$ using 178 fb⁻¹ of e^+e^- collisions at $E_{\rm cm} = 10.58$ GeV. See their Fig. 13 (lower) for limits on cross section times branching ratio for $m_{H_1^0} = 0.212$ -9.0 GeV. Limits on the model parameter are given in Fig. 14 (lower). ¹⁷ HAYRAPETYAN 24AA search for the decay chain $H \rightarrow A^0 A^0 \rightarrow b \overline{b} b \overline{b}$, produced in NODE=S055H2O;LINKAGE=WE association with W^{\pm} or Z, in 138 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 for limits on the product of branching ratios in the range $m_{A^0} = 15-60$ GeV. ¹⁸ HAYRAPETYAN 24AE search for $H_2^0 \rightarrow HH$ in the final state $b\overline{b}W^+W^-$ using 138 NODE=S055H2O;LINKAGE=VE fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 19 (upper) for limit on the product of production cross section times branching ratios for $m_{H_2^0}^0 = 0.25 - 0.9$ TeV. 19 HAYRAPETYAN 24AF search for $H \to ~A^0 A^0$ in the final state $b \, \overline{b} \mu^+ \, \mu^-$ and $b \, \overline{b} \tau^+ \, \tau^-$ NODE=S055H2O;LINKAGE=BF in 138 fb⁻¹ of pp collisions at $E_{\rm cm}=$ 13 TeV. See their Figs. 10, 11, and 12 for limits on the product of branching ratios in the range $m_{A^0} = 12$ -60 GeV. Interpretation of the limits in terms of two Higgs doublet plus singlet models is given in their Figs. 13 and 14.

	7/16/2025 12:16 Page 19
²⁰ HAYRAPETYAN 24AI search for $H \rightarrow H_1^0 H_1^0$, with long-lived H_1^0 decaying in the muon detectors to $\gamma\gamma$, e^+e^- , $\pi^0\pi^0$, $\pi^+\pi^-$, K^+K^- , K^0K^0 , $d\overline{d}$, $\tau^+\tau^-$, or $b\overline{b}$, using 138 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Figs. 13–17 for limits on B($H \rightarrow 0$).	NODE=S055H2O;LINKAGE=EF
$H_1^0 H_1^0$) in the mass range between 0.4 and 55 GeV for each of the decay modes. ²¹ HAYRAPETYAN 24AJ search for production of a scalar resonance decaying to $\gamma \gamma$ in 138 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 (right) for limits on production cross section times branching ratio for $m_{H_2^0}^0 = 0.6-5.0$ TeV, and Fig. 4 (lower) for their	NODE=S055H2O;LINKAGE=XE
dependence on the width. ²² HAYRAPETYAN 24AZ search for pair production of A^0 decaying to $\mu^+\mu^-$ using 101–137 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for $m_{A^0} = 0.21$ -60 GeV.	NODE=S055H2O;LINKAGE=IF
²³ HAYRAPETYAN 24AZ search for <i>H</i> or $H^0_{1,2}$ decaying to $A^0 A^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ using	NODE=S055H2O;LINKAGE=SF
101–137 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm}$ = 13 TeV. See their Fig. 8 for limits on cross section times branching ratio for m_{A^0} = 0.5–2.7 GeV and several choices of $m_{H_{1,2}^0}$ in a	
NMSSM scenario. ²⁴ HAYRAPETYAN 24I search for the decay $H \rightarrow ZA^0$ with $A^0 \rightarrow \gamma\gamma$ and $Z \rightarrow \ell^+ \ell^-$ in 138 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on the product of cross section times the branching ratios for $m_{A^0} = 1$ -30 GeV.	NODE=S055H2O;LINKAGE=ZE
²⁵ TUMASYAN 24A search for production of $H_{1,2}^0$ in association with W, Z, or $t\bar{t}$, decaying	NODE=S055H2O;LINKAGE=DF
to e^+e^- , $\mu^+\mu^-$, or $\tau^+\tau^-$, using 138 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 13 for limits on cross section times branching ratio for $m_{\mu_{1,2}^0} = 15-350$ GeV.	NODE-SUSSIZO, LINKAGE-DI
See also Figs. 16 and 17 for limits on the mixing with the Standard Model Higgs boson. ²⁶ TUMASYAN 24B search for $H_2^0 \rightarrow HH$ in the final state $\gamma\gamma b\bar{b}$ using 138 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 (upper) for limit on the product of production cross section times branching ratios for $m_{H_2^0}^0 = 0.26$ -1.0 TeV.	NODE=S055H2O;LINKAGE=TE
²⁷ TUMASYAN 24B search for production of H_3^0 decaying to $H_{1,2}^0 H \rightarrow b \overline{b} \gamma \gamma$ using 138	
fb ⁻¹ of <i>pp</i> collisions at $E_{cm} = 13$ TeV. See their Fig. 7 for limits on production cross section times branching ratios for $m_{H_3^0} = 0.3-1.0$ TeV and $m_{H_{1,2}^0} = 0.09-0.8$ TeV.	NODE=S055H2O;LINKAGE=UE
²⁸ AAD 23AD search for associated production of W/ZH_2^0 with the decay chain $H_2^0 \rightarrow$	NODE=S055H2O;LINKAGE=BE
$HH \rightarrow b\overline{b}b\overline{b}$ using 139 fb ⁻¹ of <i>pp</i> collisions at $E_{cm} = 13$ TeV. See their Fig. 9 for limits on cross section times branching ratios for $m_{H_2^0} = 260-1000$ GeV.	
²⁹ AAD 23AD search for gluon fusion production of A^0 with the decay chain $A^0 \rightarrow Z H_2^0$,	NODE=S055H2O;LINKAGE=CE
$H_2^0 \rightarrow HH \rightarrow b\overline{b}b\overline{b}$ using 139 fb ⁻¹ of <i>pp</i> collisions at $E_{cm} = 13$ TeV. See their Fig. 10 for limits on cross section times branching ratios for $m_{A^0} = 350-800$ GeV and $m_{H_2^0}$	
= 260-400 GeV. 30 AAD 23AJ search for production of H^{\pm} in association with a top quark, followed by $H^{\pm} \rightarrow W^{\pm} A^{0}, A^{0} \rightarrow$ invisible, using 139 fb ⁻¹ of <i>pp</i> collisions at $E_{cm} = 13$ TeV. See their Fig. 10 for excluded parameter regions of 2HDM + <i>CP</i> -odd singlet model.	NODE=S055H2O;LINKAGE=GE
³¹ AAD 23BD search for a top quark decaying to $qH_{1,2}^0$ ($q = u, c$), $H_{1,2}^0 \rightarrow b\overline{b}$, using	NODE=S055H2O;LINKAGE=YD
139 fb ⁻¹ of pp collisions at $E_{cm} = 13$ TeV. See their Fig. 9 for limits on production cross section times branching ratios for $m_{H_{1,2}^0} = 20-160$ GeV.	
³² AAD 23BE search for associated production of $H_2^0 W$ and decay $H_2^0 \rightarrow W^+ W^-$ assuming the presence of higher dimensional $H_2^0 W^+ W^-$ interactions, using 139 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for excluded parameter region of higher	NODE=S055H2O;LINKAGE=FE
dimensional operators, and Fig. 7 for limits on cross section times branching ratio for $m_{H_2^0} = 0.3-1.5$ TeV.	
³³ AAD 23BG search for production of H_2^0/A^0 in association with a $t\bar{t}$ pair, decaying to $t\bar{t}$,	NODE=S055H2O;LINKAGE=EE
using 139 fb ⁻¹ of pp collisions at E_{cm}^{-} = 13 TeV. See their Fig. 7 for limits on cross section times branching ratios for $m_{H_2^0}^{-} = m_{A^0}^{-} = 0.4$ –1.0 TeV.	
³⁴ AAD 23BW search for A^0 production in association with a $t\bar{t}$ pair, decaying to $\mu^+\mu^-$, using 139 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5(a) for limits on production cross section times branching ratio for $m_{A^0} = 15-72$ GeV.	NODE=S055H2O;LINKAGE=RE
³⁵ AAD 23BX search for production of $H \rightarrow \tau^+ \tau^-$ with missing transverse momentum using 139 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 for interpretation of the data in terms of 2HDM + a model.	NODE=S055H2O;LINKAGE=LE
³⁶ AAD 23CA search for production of H_3^0 decaying to H_2^0H , $H_2^0 \rightarrow W^+W^-$ or ZZ, and $H \rightarrow \tau^+ \tau^-$ using 140 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Figs. 4, 5 for limits on production cross section times branching ratios in the ranges $m_{H_3^0}^0 = 0.5-1.5$	NODE=S055H2O;LINKAGE=KE
TeV and $m_{H_2^0} = 0.2-0.5$ TeV.	

 37 AAD 23CR search for H_2^0 having flavor-violating couplings to tc or tu, produced in NODE=S055H2O;LINKAGE=OE association with top quark(s), using 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 14 for limits on production cross section times branching ratios for $m_{H_0^0} =$ $0.2{-}1.5~{\rm TeV}$ with various assumptions on the flavor-changing couplings. $^{38}\,\mathrm{AAD}$ 230 search for production of an A^0 in gluon-gluon fusion and in association with NODE=S055H2O;LINKAGE=XD a $b\overline{b}$, decaying to ZH in the final states $\nu\overline{\nu}b\overline{b}$ and $\ell^+\ell^-b\overline{b}$ using 139 fb⁻¹ of ppcollisions at $E_{\rm cm} = 13$ TeV. See their Fig. 9 for limits on cross section times branching ratio for $m_{A^0} = 0.22-2.0$ TeV, and Fig. 11 for limits with both production components. $^{39}\rm AAD$ 23R search for the decay ${\it A}^0 \rightarrow ~\gamma\gamma$ in 138 fb $^{-1}$ of $\it pp$ collisions at ${\it E}_{\rm cm}$ = 13 NODE=S055H2O;LINKAGE=RD TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{A^0} = 10-70$ GeV. ⁴⁰ AAD 23U search for the decay $H_2^0 \rightarrow Z\gamma$ with Z decaying hadronically in 139 fb⁻¹ of NODE=S055H2O;LINKAGE=TD pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8(a) for limits on production cross section times branching ratios for $m_{H_2^0} = 1.0-6.8$ TeV. ⁴¹AAD 23Z search for the decay chain $H_2^0 \rightarrow HH \rightarrow b\overline{b}\tau^+\tau^-$ using 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 10 for limits on the product of production cross section times branching ratios for $m_{H_2^0}^0 = 0.251$ -1.6 TeV. NODE=S055H2O;LINKAGE=WD $^{42}\,{\rm HAYRAPETYAN}$ 23C search for $H^0_{1,2} \rightarrow ~e\,\mu$ using 138 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}$ NODE=S055H2O;LINKAGE=SE = 13 TeV. See their Fig. 7 for limits on production cross section times branching ratio for $m_{H_{1,2}^0} = 110-160$ GeV. 43 HAYRAPETYAN 23G search for dimuon resonance in the mass range 1.1–2.6 or 4.2–7.9 NODE=S055H2O;LINKAGE=JE GeV in 96.6 fb⁻¹ of pp collisions at $E_{cm} = 13$ TeV, in inclusive and high p_T selections. See their Fig. 5 for cross section times branching ratio limits and Fig. 7 for mixing angle limits in two Higgs doublet plus singlet model (at 90% CL). ⁴⁴ TUMASYAN 23 search for production of H_3^0 decaying to $H_{1,2}^0 H \rightarrow b \overline{b} b \overline{b}$ using 138 NODE=S055H2O;LINKAGE=DE fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 4 for limits on production cross section times branching ratios for $m_{H_3^0} = 0.9$ –4.0 TeV and $m_{H_{1,2}^0} = 60$ –600 GeV, and their interpretation in the NMSSM and the Two Real Singlet Model (TRSM). ⁴⁵TUMASYAN 23M search for the decay chain $H \rightarrow A^0 A^0 \rightarrow \gamma \gamma \gamma \gamma \gamma$ in 132 fb⁻¹ of pp NODE=S055H2O;LINKAGE=SD collisions at $E_{\rm cm}=$ 13 TeV. See their Fig. 6 for limits on cross section times branching ratio in the range $m_{A^0}=$ 15–62 GeV. 46 TUMASYAN 230 search for $H^0_2
ightarrow ~HH$, each H decaying to either WW^* or $au^+ au^-$ NODE=S055H2O;LINKAGE=UD using 138 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 14 (upper) for limit on the product of production cross section times branching ratios for $m_{H_0^0} = 0.25-1.0$ TeV. 47 TUMASYAN 23S search for gluon fusion and *b*-associated production of $H_{1,2}^0$ decaying NODE=S055H2O;LINKAGE=ZD to $\tau^+ \tau^-$ using 138 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 10 for limits on production cross section times branching ratios for $m_{H^0_{1,2}} = 0.06-3.5$ TeV. ⁴⁸AAD 22A search for the decay chain $H \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- b \overline{b}$ in 139 fb⁻¹ of ppNODE=S055H2O:LINKAGE=CD collisions at $E_{\rm cm}=$ 13 TeV. See their Fig. 9 for limits on the overall branching fraction in the range m_{A^0} = 16–62 GeV. See also Fig. 11 for limits without assuming A^0 is pseudoscalar. ⁴⁹ AAD 22D search for Z A^0 associate production with Z $\rightarrow \ell^+ \ell^-$, A^0 decaying invisibly, NODE=S055H2O;LINKAGE=JD in 139 fb $^{-1}$ of $p\,p$ collisions at $E_{\rm cm}=$ 13 TeV. See their Fig. 5 for excluded regions in the mass parameter space of two Higgs doublet plus singlet $(2HDM+A^0)$ model with a certain choice of the model parameters. 50 AAD 22F search for gluon fusion production of H^0_2 decaying to $HH \rightarrow ~b \, \overline{b} \, b \, \overline{b}$ using NODE=S055H2O;LINKAGE=ID 126–139 fb⁻¹ of pp collisions at $E_{cm} = 13$ TeV. $B(H \rightarrow b\overline{b}) = 0.582$ is assumed. See their Fig. 14 for limit on the product of production cross section times branching ratios for $m_{H_2^0} = 0.251 - 5.0$ TeV. ⁵¹ AAD 22I search for Z H associate production with the decay chain $H \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_2^0 \rightarrow$ NODE=S055H2O;LINKAGE=KD $A^0 \widetilde{\chi}^0_1$, $A^0 \rightarrow b\overline{b}$, and $Z \rightarrow \ell^+ \ell^-$, in 139 fb⁻¹ of *pp* collisions at $E_{\sf cm} = 13$ TeV. See their Figs. 3 and 4 for limits on the product of cross section times the branching ratios for $m_{A^0} = 20-65$ GeV with various choices of NMSSM model parameters. ⁵² AAD 22J search for the decay $H \rightarrow ZA^0$ with $A^0 \rightarrow \mu^+\mu^-$ and $Z \rightarrow e^+e^-$, $\mu^+\mu^-$ in 139 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV assuming SM gluon-gluon fusion production of the *H*. See their Fig. 17(b) for limits on the product of cross section times the branching ratios for $m_{A^0} = 15-30$ GeV. NODE=S055H2O;LINKAGE=LD ⁵³AAD 22J search for the decay $H \rightarrow A^0 A^0$ with $A^0 \rightarrow \mu^+ \mu^-$ in 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV assuming SM gluon-gluon fusion production of the H in the range of $m_{A^0} = 1$ -60 GeV. See their Fig. 14(b) for limits on the product of cross NODE=S055H2O;LINKAGE=MD section times the branching ratios for $m_{{\cal A}0}$ = 1.5–60 GeV (excluding ψ and Υ regions).

7/16/2025 12:16

Page 20

The limit also applies to the decay $H \rightarrow H_1^0 H_1^0$.

7/16/2025 12:16 Page 21 54 AAD 22P search for invisibly decaying H_1^0 , H_2^0 produced by vector boson fusion in 139 NODE=S055H2O;LINKAGE=ND fb⁻¹ of pp collisions at $E_{\rm cm}=$ 13 TeV. Limit on the product of cross section times branching ratio in the range 0.1–1 pb (95% CL) is given for the mass range 0.05–2 TeV. See their Fig. 14. ⁵⁵ AAD 22Y search for gluon fusion production of H^0_2 decaying to $HH \rightarrow b\overline{b}\gamma\gamma$ in 139 NODE=S055H2O;LINKAGE=PD fb⁻¹ of pp collisions at $E_{\rm cm}$ = 13 TeV. See their Fig. 15 for limit on the product of production cross section times branching ratios to HH for $m_{H_2^0}$ = 0.251–1.0 TeV. 56 ABRATENKO 22A search for a singlet scalar boson H^0_1 having a small mixing with the SM NODE=S055H2O;LINKAGE=QD Higgs boson in the decay chain $K^+ \rightarrow H_1^0 \pi^+$, $H_1^0 \rightarrow \mu^+ \mu^-$ from data corresponding to 7.01×10^{20} protons on NuMI target. See their Fig. 13 (right) and Table V for limits on the SM Higgs component of H_1^0 for $m_{H_1^0} = 212-279$ MeV. 57 TUMASYAN 22AK search for gluon-fusion production of H^0_3 decaying to $H^0_1 H^0_1
ightarrow b \, \overline{b} \, b \, \overline{b}$ NODE=S055H2O;LINKAGE=OD in 138 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for $m_{H_3^0} = 1$ -3 TeV, $m_{H_1^0} = 25$ -100 GeV. 58 TUMASYAN 22D search for production of an H_2^0 (denoted radion in the paper) in gluon NODE=S055H2O:LINKAGE=HE fusion and vector boson fusion, decaying to W^+W^- in the final states $\ell \nu$ + hadrons, using 137 fb⁻¹ of pp collisions at $E_{cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H_2^0} = 1.0-4.5$ TeV. $^{59}\,{\rm AAD}$ 21AF search for production of a heavy H^0_2 state decaying to $Z\,Z$ in the final states NODE=S055H2O:LINKAGE=XC $\ell^+ \ell^- \ell'^+ \ell'^-$ and $\ell^+ \ell^- \nu \overline{\nu}$ in 139 fb⁻¹ of \overline{pp} collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 4 for upper limits on cross section times branching ratio for $m_{H_2^0} = 0.2$ -2.0 TeV assuming ggF or VBF with narrow width approximation, and Fig. 5 for upper limits on cross section times branching ratio for $m_{H_2^0} = 0.4-2.0$ TeV assuming ggF, and with several assumptions on its width. 60 AAD 21Al search for production of an ${\it A}^0$ in gluon-gluon fusion and in association with NODE=S055H2O;LINKAGE=YC a $b\overline{b}$, decaying to $ZH_2^0 \rightarrow \ell^+ \ell^- b\overline{b}$ or $\ell^+ \ell^- W^+ W^-$ in 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Figs. 9 and 13 for cross section limits for $m_{A^0} = 230-800$ GeV and $m_{H_2^0} = 130-700$ GeV. ⁶¹AAD 21AY search for production of a scalar resonance decaying to $\gamma\gamma$ in 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5(a) for limits on fiducial cross section times branching ratio for $m_{H_2^0} = 0.16$ -3 TeV with narrow width approximation, and Table 2 NODE=S055H2O;LINKAGE=ZC with several assumptions on the width. ⁶²AAD 21AZ search for production of A_2^0 decaying to HA_1^0 followed by $H \rightarrow \gamma \gamma$, $A_1^0 \rightarrow$ NODE=S055H2O;LINKAGE=FD invisible in 139 fb⁻¹ of pp collisions at $E_{\rm cm}=$ 13 TeV. See their Figs. 10–12 for limits in terms of two-Higgs-doublet model plus singlet pseudoscalar and a fermionic Dark Matter particle. ⁶³AAD 21BB search for production of A_2^0 by gluon fusion or associated $A_2^0 b \overline{b}$ production, NODE=S055H2O;LINKAGE=GD decaying to HA_1^0 followed by $H \rightarrow b\bar{b}, A_1^0 \rightarrow \text{invisible in 139 fb}^{-1} \text{ of } pp$ collisions at $E_{\text{cm}} = 13$ TeV. See their Fig. 8 for limits in terms of two-Higgs-doublet plus singlet pseudoscalar model. 64 AAD 21BE search for production of A_1^0 associated with a single top quark and either a NODE=S055H2O·LINKAGE=HD light quark or a W boson, decaying to invisible final states, in 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Figs. 13–15 for limits in terms of two-Higgs-doublet model plus singlet pseudoscalar, which is assumed to decay to a pair of Dark Matter particles. ⁶⁵ABRATENKO 21 search for a singlet scalar boson H_1^0 having a small mixing with the SM NODE=S055H2O;LINKAGE=DD Higgs boson in the decay chain $K^+ \rightarrow H_1^0 \pi^+$, $H_1^0 \rightarrow e^+ e^-$ from data corresponding to 1.93×10^{20} protons on NuMI target. See their Fig. 2 for limits on the SM Higgs component of H_1^0 for $m_{H_1^0} = 3-210$ MeV. 66 SIRUNYAN 21A search for $H^0_2 \rightarrow Z A^0$ with $Z \rightarrow \ell^+ \ell^-$, A^0 decaying invisibly, in 137 NODE=S055H2O;LINKAGE=VC $\rm fb^{-1}$ of pp collisions at $E_{\rm cm}=13$ TeV. See their Fig. 8 for excluded regions in the mass parameter space of two Higgs doublet plus singlet model with a certain choice of the model parameters. 67 TUMASYAN 21F search for gluon fusion production of H^0_3 decaying to $HH^0_{1.2}$ \rightarrow NODE=S055H2O;LINKAGE=ED $\tau^+ \tau^- b\overline{b}$ in 137 fb⁻¹ of pp collisions at $E_{\rm cm} =$ 13 TeV. See their Figs. 5 and 6 for limits on cross section times branching ratios for $m_{H_{1,2}^0} = 0.06$ –2.8 TeV and $m_{H_3^0}$ = 0.24-3.0 TeV. 68 AAD 20AA search for H^0_2/A^0 \rightarrow $~\tau^+\tau^-$ produced by gluon fusion or *b*-associated NODE=S055H2O;LINKAGE=LC production using 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 2(a), 2(b) for limits on the product of cross section and branching ratio for $m_{H_2^0}$, $m_{A^0} = 0.2-2.5$ TeV.

⁶⁹AAD 20AI search for Z H production followed by the decay $H \rightarrow A^0 A^0 \rightarrow b \overline{b} b \overline{b}$ in NODE=S055H2O;LINKAGE=TC 36 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. The search looks for collimated $A^0 \rightarrow b\overline{b}$ decays and is complementary to AABOUD 18BX. See their Fig. 10 for limits on the product of production cross section and branching ratios in the range $m_{A^0}\,=\,15{-}30$ GeV. 70 AAD 20A0 search for gluon fusion production of H^0_2 decaying to $HH o ~ au^+ au^ b\,\overline{b}$ (with NODE=S055H2O;LINKAGE=UC hadronically decaying $\tau^+ \tau^-$) using 139 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. Limit on the product of production cross section times branching ratios in the range 28–817 fb (95% CL) is given for $m_{A^0} = 1.0$ –3.0 TeV, see their Fig. 13. ⁷¹AAD 20C combine searches for a scalar resonance decaying to *HH* in 36.1 fb⁻¹ of *pp* collisions at *E*_{cm} = 13 TeV from AABOUD 19A, AABOUD 19O, AABOUD 18CQ, AABOUD 19T, AABOUD 18CW, and AABOUD 18BU. See their Fig. 5(a) for limits on NODE=S055H2O;LINKAGE=WB cross section times branching ratio for $m_{H_2^0} = 0.26$ –3 TeV. ⁷² AAD 20L search for *b*-associated production of H_2^0 decaying to $b\overline{b}$ in 27.8 fb⁻¹ of ppNODE=S055H2O;LINKAGE=RC collisions at $E_{\rm CM}=13$ TeV. See their Fig. 8 for İmits on the product of cross section and branching ratio for $m_{H^0_2}=0.45$ –1.4 TeV. ⁷³AAD 20X search for vector-boson-fusion production of H_2^0 decaying to HH using 126 NODE=S055H2O;LINKAGE=QC $\rm fb^{-1}$ of pp collisions at $E_{\rm CM}=$ 13 TeV. See their Fig. 5 for limits on the product of cross section and branching ratio for the assumptions of a narrow- and broad-width resonance. ⁷⁴ AAIJ 20AL search for dimuon resonance in the mass range 0.2–60 GeV in 5.1 fb⁻¹ of ppNODE=S055H2O;LINKAGE=WC collisions at $E_{\rm cm} = 13$ TeV, in inclusive and b quark associated production. Displaced decays are searched for for masses below 3 GeV. See their Figs. 7-9 for cross section limits and Fig. 10 for limits for mixing angle in two Higgs doublet plus singlet model (at 90% CL). ⁷⁵SIRUNYAN 20 search for the decay $H \rightarrow A^0 A^0 \rightarrow \tau^+ \tau^- \tau^+ \tau^-$ or $\tau^+ \tau^- \mu^+ \mu^-$ in NODE=S055H2O;LINKAGE=GC 35.9 fb⁻¹ of pp collisions at $E_{\rm cm}=$ 13 TeV. See their Fig. 10 for limits on the product of production cross section (normalized to the SM) and branching ratios in the range $m_{A^0} = 4-15$ GeV. ⁷⁶SIRUNYAN 20AA search for $H_2^0 \rightarrow ZA^0$, $A^0 \rightarrow b\overline{b}$ or $A^0 \rightarrow ZH_2^0$, $H_2^0 \rightarrow b\overline{b}$ in NODE=S055H2O;LINKAGE=NC 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on the product of cross section and branching ratio for $m_{H_2^0} = 0.12$ -1 TeV and $m_{A^0} = 0.03$ -1 TeV. ⁷⁷ SIRUNYAN 20AC search for gluon-fusion production of A^0 decaying to ZH in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on the product of cross section and branching ratios for $m_{A^0} = 220-400$ GeV. NODE=S055H2O;LINKAGE=OC $^{78}{\rm SIRUNYAN}$ 20AD search for lepton-flavor violating decays ${\it H}^0_2 \rightarrow ~\mu \tau,~~e \tau$ of gluon-NODE=S055H2O;LINKAGE=KC fusion-produced H_2^0 in 35.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 (9) and Table 5 (6) for limits on production cross section times branching ratio for $m_{H_2^0}^0$ = 0.2–0.9 TeV for the $\mu \tau$ ($e \tau$) final state. 79 SIRUNYAN 20AF search for $H^0_2/A^0 \rightarrow ~t\, \bar{t}$ with one or two charged leptons in the final NODE=S055H2O;LINKAGE=MC state using kinematic variables in 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}$ = 13 TeV. See their Figs. 5 and 6 for limits on top Yukawa coupling of H_2^0 and $A_2^{0.1}$ for $m_{H_2^0}$, $m_{A^0} =$ 0.4-0.75 TeV for various width assumptions. ⁸⁰ SIRUNYAN 20AP search for the decay H or $H_2^0 \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- \tau^+ \tau^-$ (for $m_{H_2^0}$ NODE=S055H2O;LINKAGE=JC = 300 GeV) with boosted final-state topology in 35.9 fb⁻¹ of pp collisions at E_{cm} = 13 TeV. See their Fig. 7 for limits on the product of production cross section (normalized to the SM) and branching ratios in the range $m_{A0} = 3.6-21$ GeV, and Figs. 8 and 9 for its interpretation in terms of models with two Higgs doublets plus a singlet. 81 SIRUNYAN 20Y search for gluon-fusion and vector-boson-fusion production of H_2^0 de-NODE=S055H2O;LINKAGE=PC caying to W^+W^- in the final states $\ell\nu\ell\nu$ and $\ell\nu qq$ in 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for limits on the product of cross section and branching ratio for $m_{H_2^0} = 0.2$ -3 TeV. ⁸²SIRUNYAN 20Z search for $H_{1,2}^0$ or A^0 production in association with a $t\bar{t}$ pair, decaying NODE=S055H2O;LINKAGE=IC to e^+e^- or $\mu^+\mu^-$, in 137 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 12 for limits on production cross section times branching ratio for $m_{{\cal H}^0_{1,2}}$, $m_{{\cal A}^0} = 15-75$ GeV and 108–340 GeV. ⁸³AABOUD 19A search for a narrow scalar resonance decaying to $HH \rightarrow b\bar{b}b\bar{b}$ in NODE=S055H2O;LINKAGE=FB 27.5–36.1 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 9(a) for limits on cross section times branching ratios for $m_{H_2^0} = 0.26$ –3 TeV. ⁸⁴AABOUD 19AG search for the decay $H \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- b\bar{b}$ in 36.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 (a) for limits on the product of production cross section (normalized to the SM) and branching ratios in the range $m_{A^0} = 20$ -60 NODE=S055H2O;LINKAGE=AC GeV.

7/16/2025 12:16 ⁸⁵ AABOUD 190 search for a scalar resonance decaying to $HH \rightarrow b\overline{b}WW^*$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 12 (left) for limits on cross section times branching ratio for $m_{H_2^0} = 0.5$ –3 TeV. NODE=S055H2O;LINKAGE=VB $^{86}\text{AABOUD 19T}$ search for a scalar resonance decaying to $HH \rightarrow~W\,W^*\,W\,W^*$ in 36.1 NODE=S055H2O;LINKAGE=FC fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H_2^0} = 260-500$ GeV, assuming SM decay rates for the *H*. ⁸⁷ AABOUD 19V combine published ATLAS data to constrain two-Higgs-doublet plus singlet pseudoscalar model with A_1^0 decaying to invisible final states. See their Fig. 19 for NODE=S055H2O;LINKAGE=EC excluded parameter regions. $^{88}\operatorname{AABOUD}$ 19Y search for a narrow scalar resonance produced by gluon fusion or b asso-NODE=S055H2O;LINKAGE=SB ciated production, decaying to $\mu^+ \mu^-$ in 36.1 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Figs. 4 and 5(a) for cross section limits for $m_{H_2^0} = 0.2$ -1.0 TeV. 89 AALTONEN 19 search for b associated production of a scalar particle decaying to bb in NODE=S055H2O;LINKAGE=XB 5.4 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H_{1,2}^0}^{0} = 100-300$ GeV. $^{90}\,{\rm SIRUNYAN}$ 19 search for a narrow scalar resonance decaying to $HH \rightarrow ~\gamma\gamma b\,\overline{b}$ in 35.9 NODE=S055H2O;LINKAGE=CB fb⁻¹ of *pp* collisions at $E_{cm} = 13$ TeV. See their Fig. 9 (left) for limits on cross section times branching ratios for $m_{H_2^0} = 260$ –900 GeV. 91 SIRUNYAN 19AE search for a scalar resonance produced in association with a bb pair, NODE=S055H2O;LINKAGE=TB decaying to $\tau^+ \tau^-$ in 35.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 4 for cross section limits for $m_{A^0} = 25-70$ GeV. 92 SIRUNYAN 19AN search for production of A_2^0 decaying to HA_1^0 followed by $H \rightarrow b \overline{b}$, NODE=S055H2O;LINKAGE=CC $A_1^0 \rightarrow \text{invisible in 35.9 fb}^{-1}$ of pp collisions at $E_{cm} = 13$ TeV, in the mass range $m_{A_2^0} = 0.2$ -1.6 TeV, $m_{A_1^0} = 0.15$ -0.5 TeV. See their Fig. 6 for limits in terms of two-Higgs-doublet plus singlet pseudoscalar model. 93 SIRUNYAN 19AV search for a scalar resonance produced by gluon fusion or b-associated NODE=S055H2O;LINKAGE=YB production, decaying to $ZH \rightarrow \ell^+ \ell^- b\overline{b} \ (\ell = e, \mu)$ or $\nu \overline{\nu} b\overline{b}$ in 35.9 fb⁻¹ of ppcollisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for cross section limits for $m_{A0} = 0.22-1.0$ TeV. 94 SIRUNYAN 19B search for gluon fusion production of narrow scalar resonance with large NODE=S055H2O;LINKAGE=QB transverse momentum, decaying to $b\overline{b}$, in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Figs. 7 and 8 for limits on cross section times branching ratio for the resonance mass of 50-350 GeV. 95 SIRUNYAN 19BB search for the decay $H^0_1 \rightarrow \gamma \gamma$ in 19.7 fb $^{-1}$ of pp collisions at $E_{\rm cm}$ NODE=S055H2O;LINKAGE=RB = 8 TeV and 35.9 fb⁻¹ at $E_{\rm cm} = 13 \text{ TeV}$. See their Figs. 4–6 for limits on cross section times branching ratio for $m_{H_1^0} = 80-110 \text{ GeV}$ (some results in Fig. 5 for $m_{H_1^0} = 70-110$ GeV). ⁹⁶ SIRUNYAN 19BD search for the decay $H \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- b\bar{b}$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on the product of cross section times branching ratios in the range $m_{A^0} = 20$ -62.5 GeV. See also their Figs. 6 and 7 NODE=S055H2O;LINKAGE=ZB for interpretation of the data in terms of models with two Higgs doublets and a singlet. $^{97}{\rm SIRUNYAN}$ 19BE combine searches for $H^0_2 \rightarrow ~HH$ in 35.9 fb $^{-1}$ of pp collisions at NODE=S055H2O;LINKAGE=UB $E_{\rm cm}=13~{\rm TeV}$ in various H decay modes, from SIRUNYAN 18A, SIRUNYAN 18AF, SIRUNYAN 18CW, SIRUNYAN 19, and SIRUNYAN 19H. See their Fig. 3 for limits on cross section times branching ratios for $m_{H_{2}^{0}} = 0.25-3$ TeV. 98 SIRUNYAN 19BQ search for production of $H^0_{1,2}$ decaying to $A^0 A^0 o \ \mu^+ \ \mu^- \ \mu^+ \ \mu^-$ in NODE=S055H2O;LINKAGE=BC 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 2 for limits on cross section times branching ratio for $m_{H_{1,2}^0} = 90-150$ GeV, $m_{A^0} = 0.25-3.55$ GeV. 99 SIRUNYAN 19CR search for production of H_2^0/A^0 in gluon fusion and in association with NODE=S055H2O;LINKAGE=HC a $b\bar{b}$ pair, decaying to $\mu^+\mu^-$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for limits on cross section times branching ratio. 100 SIRUNYAN 19H search for a narrow scalar resonance decaying to $HH \rightarrow \ b \overline{b} b \overline{b}$ in 35.9 NODE=S055H2O;LINKAGE=KB fb⁻¹ of *pp* collisions at $E_{cm} = 13$ TeV, where one $b\overline{b}$ pair is resolved and the other not. Limits on cross section times branching ratios for $m_{H_2^0} = 0.75$ –1.6 TeV are obtained and combined with data from SIRUNYAN 18AF. See their Fig. 5 (right). $101\,{\rm AABOUD}$ 18AA search for production of a scalar resonance decaying to $Z\,\gamma,$ with ZNODE=S055H2O;LINKAGE=TA decaying hadronically, in 36.1 fb⁻¹ of pp collisions at $E_{cm} = 13$ TeV. See their Fig. 8(a) for limits on cross section times branching ratio for $m_{H_0^0} = 1.0-6.8$ TeV. ¹⁰² AABOUD 18AG search for the decay $H \rightarrow A^0 A^0 \rightarrow \gamma \gamma g g$ in 36.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 2 and Table 6 for cross section limits in the range m_{A^0} NODE=S055H2O;LINKAGE=YA = 20-60 GeV. 103 AABOUD 18AH search for production of an A^0 in gluon-gluon fusion and in association NODE=S055H2O:LINKAGE=SA with a $b\overline{b}$, decaying to $ZH_2^0 \rightarrow \ell^+ \ell^- b\overline{b}$ in 36.1 fb⁻¹ of pp collisions at $E_{cm} =$

Page 23

13 TeV. See their Fig. 5 for cross section limits for $m_{A^0}=$ 230–800 GeV and $m_{H^0_{*}}=$ 130-700 GeV. 100-100 GeV. 104 AABOUD 18AI search for production of an A^0 in gluon-gluon fusion and in association NODE=S055H2O;LINKAGE=RA with a $b\overline{b}$, decaying to ZH in the final states $\nu\overline{\nu}b\overline{b}$ and $\ell^+\ell^-b\overline{b}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for cross section limits for $m_{A0} = 0.2-2$ TeV. See also AABOUD 18CC. ¹⁰⁵ AABOUD 18BF search for production of a heavy H_2^0 state decaying to ZZ in the final NODE=S055H2O;LINKAGE=VA states $\ell^+ \ell^- \ell^+ \ell^-$ and $\ell^+ \ell^- \nu \overline{\nu}$ in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for upper limits on cross section times branching ratio for $m_{H_0^0} = 0.2$ -1.2 TeV assuming ggF or VBF with the NWA. See their Fig. 7 for upper limits on cross section times branching ratio for $m_{H_2^0} = 0.4$ –1.0 TeV assuming ggF, and with several assumptions on its width. $^{106}\,{\rm AABOUD}$ 18BU search for a narrow scalar resonance decaying to $HH \rightarrow ~\gamma\gamma\,W\,W^*$ in NODE=S055H2O;LINKAGE=EB 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 4 for limits on cross section times branching ratios for $m_{H_2^0} = 260-500$ GeV. $^{107}\,{\rm AABOUD}$ 18BX search for associated production of $W\,H$ or $Z\,H$ followed by the decay NODE=S055H2O;LINKAGE=PB $H \rightarrow A^0 A^0 \rightarrow b \overline{b} b \overline{b}$ in 36.1 fb⁻¹ of pp collisions at $E_{cm} = 13$ TeV. See their Fig. 9 for limits on cross section times branching ratios for $m_{A^0} = 20$ -60 GeV. See also their Fig. 10 for the dependence of the limit on A^0 lifetime. $^{108}\,{\sf AABOUD}$ 18CQ search for a narrow scalar resonance decaying to $HH \rightarrow ~b\overline{b}\tau^+\tau^-$ in NODE=S055H2O;LINKAGE=DB 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 2 (above) for limits on cross section times branching ratios for $m_{H_2^0} = 260{-}1000$ GeV. 109 AABOUD 18F search for production of a narrow scalar resonance decaying to $W^+ W^-$ NODE=S055H2O;LINKAGE=UA and ZZ, followed by hadronic decays of W and Z, in 36.7 fb⁻¹ of pp collisions at $E_{\rm cm}$ = 13 TeV. See their Fig. 5(c) for limits on cross section times branching ratio for $m_{H_0^0}^{(0)}$ = 1.2 - 3.0 TeV. ¹¹⁰ AAIJ 18AM search for gluon-fusion production of $H_{1,2}^0$ decaying to $\mu\tau$ in 2 fb⁻¹ of ppNODE=S055H2O;LINKAGE=BB collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 2 for limits on cross section times branching ratio for $m_{H_{1,2}^0} = 45$ –195 GeV. 111 AAIJ 18AQ search for gluon-fusion production of a scalar particle A^0 decaying to $\mu^+\mu^-$ NODE=S055H2O;LINKAGE=NB in 1.99 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV and 0.98 fb⁻¹ at $E_{\rm cm} = 7$ TeV. See their Fig. 4 for limits on cross section times branching ratio for $m_{A^0} = 5.5$ –15 GeV (using the $E_{\rm cm} = 8$ TeV data set). $^{112}\,{\sf AAIJ}$ 18AQ search for the decay $H \rightarrow ~{\it A}^0 {\it A}^0$, with one of the ${\it A}^0$ decaying to $\mu^+ \, \mu^-$, NODE=S055H2O;LINKAGE=OB in 1.99 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV and 0.98 fb⁻¹ at $E_{\rm cm} = 7$ TeV. See their Fig. 5 (right) for limits on the product of branching ratios for $m_{A^0} = 5.5$ –15 GeV (using the $E_{\rm cm}$ = 8 TeV data set). ¹¹³SIRUNYAN 18AF search for a narrow scalar resonance decaying to $HH \rightarrow b \overline{b} b \overline{b}$ in 35.9 NODE=S055H2O;LINKAGE=WA fb⁻¹ of *pp* collisions at $E_{cm} = 13$ TeV, where both $b\overline{b}$ pairs are not resolved. See their Fig. 9 for limits on cross section times branching ratios for $m_{H_2^0} = 0.75$ –3 TeV. 114 SIRUNYAN 18BA search for production of a heavy H^0_2 state decaying to ZZ in the final NODE=S055H2O;LINKAGE=XA states $\ell^+ \ell^- \ell^+ \ell^-$, $\ell^+ \ell^- q \overline{q}$, and $\ell^+ \ell^- \nu \overline{\nu}$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} =$ 13 TeV. See their Figs. 10 and 11 for upper limits on cross section times branching ratio for $m_{H_2^0}^0 = 0.13$ -3 TeV with several assumptions on its width and on the fraction of Vector-Boson-Fusion of the total production cross section. $^{115}{\rm SIRUNYAN}$ 18CW search for a narrow scalar resonance decaying to $HH \rightarrow ~b \overline{b} b b$ in NODE=S055H2O;LINKAGE=QA 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV, where both $b\overline{b}$ pairs are resolved. See their Fig. 9 for limits on cross section times branching ratios for $m_{H_2^0} = 260-1200$ GeV. $^{116}\,{\rm SIRUNYAN}$ 18DK search for production of a scalar resonance decaying to $Z\,\gamma,$ with ZNODE=S055H2O;LINKAGE=JB decaying to $\ell^+\ell^-$ or hadronically, in 35.9 fb $^{-1}$ of pp collisions at $E_{\rm cm}=$ 13 TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H_0^0} = 0.35-4$ TeV for different assumptions on the width of the resonance. ¹¹⁷ SIRUNYAN 18DT search for the decay $H \rightarrow A^0 A^0 \rightarrow \tau^+ \tau^- b \overline{b}$ in 35.9 fb⁻¹ of ppNODE=S055H2O;LINKAGE=LB collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on the product of branching ratios in the range $m_{A^0} = 15-60$ GeV. See also their Fig. 8 for interpretation of the data in terms of models with two Higgs doublets and a singlet. $^{118}\,{\rm SIRUNYAN}$ 18DU search for production of a narrow scalar resonance decaying to $\gamma\gamma$ in NODE=S055H2O;LINKAGE=IB 35.9 fb⁻¹ (taken in 2016) of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 (right) for limits on cross section times branching ratio for $m_{H_2^0}^0 = 0.5$ –5 TeV for several values of its width-to-mass ratio. 119 SIRUNYAN 18ED search for production of an A^0 in gluon-gluon fusion and in association NODE=S055H2O;LINKAGE=AB with a $b\overline{b}$, decaying to ZH in the final states $\nu\overline{\nu}b\overline{b}$ or $\ell^+\ell^-b\overline{b}$ in 35.9 fb⁻¹ of pp

collisions at $E_{\rm cm}$ = 13 TeV. See their Fig. 8 for cross section limits for m_{A^0} = 0.8–2

TeV.

7/16/2025 12:16 Page 25

¹²⁰ SIRUNYAN 18EE search for the decay $H \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- \tau^+ \tau^-$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 4 for limits on the product of branching ratios in the range $m_{A^0} = 15$ -62.5 GeV, normalized to the SM production cross section. See also their Fig. 5 for interpretation of the data in terms of models with two Higgs deviates and a circulate NODE=S055H2O;LINKAGE=MB doublets and a singlet. 121 SIRUNYAN 18F search for a narrow scalar resonance decaying to HH
ightarrow WWbb or NODE=S055H2O;LINKAGE=LA $ZZb\overline{b}$ in the final state $\ell\ell\nu\nu b\overline{b}$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratios for $m_{H_2^0} = 250-900$ GeV. 122 AABOUD 17 search for production of a scalar resonance decaying to Z γ in 3.2 fb $^{-1}$ of NODE=S055H2O:LINKAGE=IA pp collisions at $E_{\rm cm}=13$ TeV. See their Fig. 4 for the limits on cross section times branching ratio for $m_{H^0_2}=0.25\text{--}3.0$ TeV. ¹²³ AABOUD 17AP search for production of a scalar resonance decaying to $\gamma\gamma$ in 36.7 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 4(a) for limits on fiducial cross section times branching ratio for $m_{H_2^0} = 0.2-2.7$ TeV with narrow width approximation. NODE=S055H2O;LINKAGE=BD ¹²⁴ AABOUD 17AW search for production of a scalar resonance decaying to $Z\gamma$ in 36.1 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H_2^0}^0 = 0.25$ -2.4 TeV. NODE=S055H2O;LINKAGE=KA ¹²⁵ KHACHATRYAN 17AZ search for the decay $H \rightarrow A^0 A^0 \rightarrow \tau^+ \tau^- \tau^+ \tau^-$, $\mu^+ \mu^- b\overline{b}$, and $\mu^+ \mu^- \tau^+ \tau^-$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Figs. 4, 5, and 6 for cross section limits in the range $m_{A^0} = 5$ -62.5 GeV. See also their Figs. 7, 8, NODE=S055H2O:LINKAGE=ZA and 9 for interpretation of the data in terms of models with two Higgs doublets and a singlet. $^{126}\,\rm KHACHATRYAN$ 17D search for production of a scalar resonance decaying to $Z\,\gamma$ in 19.7 NODE=S055H2O;LINKAGE=OA fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV and 2.7 fb⁻¹ at $E_{\rm cm} = 13$ TeV. See their Figs. 3 and 4 for the limits on cross section times branching ratio for $m_{H_2^0} = 0.2$ –2.0 TeV. $^{127}\,\rm KHACHATRYAN$ 17R search for production of a narrow scalar resonance decaying to $\gamma\,\gamma$ NODE=S055H2O;LINKAGE=JA in 12.9 fb⁻¹ (taken in 2016) of *pp* collisions at $E_{\rm cm}$ = 13 TeV. See their Fig. 2 for limits on cross section times branching ratio for $m_{H_2^0}$ = 0.5–4.5 TeV for several values of its width-to-mass ratio. Limits from combination with KHACHATRYAN 16M are shown in their Figs. 4 and 6. $^{128}{\rm SIRUNYAN}$ 17CN search for a narrow scalar resonance decaying to $HH \rightarrow ~b \bar{b} \tau^+ \tau^-$ NODE=S055H2O:LINKAGE=NA in 18.3 fb⁻¹ of pp collisions at $E_{\rm cm}$ = 8 TeV. See their Fig. 5 (above) and Table II for limits on the cross section times branching ratios for $m_{H_2^0}^0$ = 0.3–1 TeV, and Fig. 6 (above) and Table III for the corresponding limits by combining with data from KHACHATRYAN 16BQ and KHACHATRYAN 15R. ¹²⁹ SIRUNYAN 17Y search for production of a scalar resonance decaying to $Z\gamma$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV and 2.7 fb⁻¹ at $E_{\rm cm} = 13$ TeV. See their Figs. 3, 4 and Table 3 for limits on cross section times branching ratio for $m_{H_2^0} = 0.7$ -3.0 TeV, NODE=S055H2O;LINKAGE=MA and Fig. 5 for the corresponding limits for $m_{H^0_2}=$ 0.2–3.0 TeV from combination with KHACHATRYAN 17D data. ¹³⁰ AABOUD 16AB search for associated production of WH with the decay $H \rightarrow A^0 A^0 \rightarrow$ NODE=S055H2O;LINKAGE=FA $b \overline{b} b \overline{b}$ in 3.2 fb⁻¹ of pp collisions at $E_{cm} = 13$ TeV. See their Fig. 8 for limits on cross section times branching ratios for $m_{A^0} = 20-60$ GeV. 131 AABOUD 16AE search for production of a narrow scalar resonance decaying to $W^+\,W^-$ NODE=S055H2O;LINKAGE=EA and ZZ in 3.2 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 4 for limits on cross section times branching ratio for $m_{H_2^0} = 0.5$ -3 TeV. $^{132}{\rm AABOUD}$ 16H search for production of a scalar resonance decaying to $\gamma\gamma$ in 3.2 fb $^{-1}$ NODE=S055H2O:LINKAGE=DA of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 12 for limits on cross section times branching ratio for $m_{H_2^0} = 0.2-2$ TeV with different assumptions on the width. $^{133}\text{AABOUD}$ 161 search for a narrow scalar resonance decaying to $HH \rightarrow \ bbbb$ in 3.2 NODE=S055H2O;LINKAGE=T fb⁻¹ of pp collisions at $E_{cm} = 13$ TeV. See their Fig. 10(c) for limits on cross section times branching ratios for $m_{H_2^0} = 0.5$ –3 TeV. ¹³⁴ AAD 16AX search for production of a heavy *H* state decaying to *ZZ* in the final states $\ell^+ \ell^- \ell^+ \ell^-$, $\ell^+ \ell^- \nu \overline{\nu}$, $\ell^+ \ell^- q \overline{q}$, and $\nu \overline{\nu} q \overline{q}$ in 20.3 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ NODE=S055H2O;LINKAGE=R TeV. See their Fig.12 for upper limits on $\sigma(H) B(H \rightarrow ZZ)$ for m_H ranging from 140 GeV to 1000 GeV $^{135}\mathrm{AAD}$ 16C search for production of a heavy H state decaying to $W^+\,W^-$ in the final NODE=S055H2O;LINKAGE=K states $\ell \nu \ell \nu$ and $\ell \nu q q$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}$ = 8 TeV. See their Figs. 12, 13, and 16 for upper limits on $\sigma(H) \ B(H \rightarrow W^+ W^-)$ for m_H ranging from 300 GeV to 1000 or 1500 GeV with various assumptions on the total width of H. ¹³⁶ AAD 16L search for the decay $H \rightarrow A^0 A^0 \rightarrow \gamma \gamma \gamma \gamma \gamma$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 4 (upper right) for limits on cross section times branching ratios (normalized to the SM H cross section) for $m_{A^0} = 10-60$ GeV. NODE=S055H2O;LINKAGE=Z ¹³⁷ AAD 16L search for the decay $H_2^0 \rightarrow A^0 A^0 \rightarrow \gamma \gamma \gamma \gamma \gamma$ in 20.3 fb⁻¹ of *pp* collisions at NODE=S055H2O;LINKAGE=BA

 $E_{\rm cm} = 8$ TeV. See their Fig. 4 (lower right) for limits on cross section times branching

ratios for $m_{H_{\alpha}^0} = 600$ GeV and $m_{A^0} = 10-245$ GeV, and Table 5 for limits for $m_{H_{\alpha}^0} = 10-245$ GeV, and Table 5 for limits for $m_{H_{\alpha}^0} = 10-245$ GeV, and Table 5 for limits for $m_{H_{\alpha}^0} = 10-245$ GeV, and Table 5 for limits for $m_{H_{\alpha}^0} = 10-245$ GeV, and Table 5 for limits for $m_{H_{\alpha}^0} = 10-245$ GeV, and Table 5 for limits for $m_{H_{\alpha}^0} = 10-245$ GeV, and Table 5 for limits for $m_{H_{\alpha}^0} = 10-245$ GeV, and Table 5 for limits for $m_{H_{\alpha}^0} = 10-245$ GeV. 300 and 900 ĞeV. ¹³⁸ AALTONEN 16C search for electroweak associated production of $H_1^0 H^{\pm}$ followed by the NODE=S055H2O;LINKAGE=S decays $H^{\pm} \rightarrow H_1^0 W^*$, $H_1^0 \rightarrow \gamma \gamma$ for $m_{H_1^0} = 10-105$ GeV and $m_{H^{\pm}} = 30-300$ GeV. See their Fig. 3 for excluded parameter region in a two-doublet model in which H_1^0 has no direct decay to fermions. $^{139}\,\rm KHACHATRYAN$ 16BG search for a narrow scalar resonance decaying to $HH \rightarrow~bbbb$ NODE=S055H2O;LINKAGE=V in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm}$ = 8 TeV. See their Fig. 6 for limits on the cross section times branching ratios for $m_{H_2^0}$ = 1.15–3 TeV. ¹⁴⁰ KHACHATRYAN 16BQ search for a resonance decaying to $HH \rightarrow \gamma \gamma b \overline{b}$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 9 for limits on the cross section times branching ratios for $m_{H_2^0} = 0.26$ -1.1 TeV. NODE=S055H2O;LINKAGE=PA ¹⁴¹ KHACHATRYAN 16F search for the decay $H \rightarrow H_1^0 H_1^0 \rightarrow \tau^+ \tau^- \tau^+ \tau^-$ in 19.7 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 8 for cross section limits for $m_{H_1^0} =$ NODE=S055H2O;LINKAGE=P 4–8 GeV. ⁴⁻⁶ GeV. ¹⁴² KHACHATRYAN 16M search for production of a narrow resonance decaying to $\gamma\gamma$ in NODE=S055H2O;LINKAGE=CA 19.7 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV and 3.3 fb⁻¹ at $E_{\rm cm} = 13$ TeV. See their Fig. 3 (top) for limits on cross section times branching ratio for $m_{H_2^0} = 0.5$ -4 TeV. 143 KHACHATRYAN 16P search for gluon fusion production of an H^0_2 decaying to $HH \rightarrow$ NODE=S055H2O;LINKAGE=X $b\bar{b}\tau^+\tau^-$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm CM} = 8$ TeV. See their Fig. 8 (lower right) for cross section limits for $m_{H_2^0} = 260-350$ GeV. 144 KHACHATRYAN 16P search for gluon fusion production of an A^0 decaying to ZH ightarrowNODE=S055H2O;LINKAGE=Y $\ell^+ \ell^- \tau^+ \tau^-$ in 19.7 fb⁻¹ of *pp* collisions at $E_{cm} = 8$ TeV. See their Fig. 10 for cross section limits for $m_{H_2^0} = 220-350$ GeV. ¹⁴⁵ AAD 15BK search for production of a heavy H_2^0 decaying to HH in the final state $b\overline{b}b\overline{b}$ NODE=S055H2O;LINKAGE=M in 19.5 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 14(c) for $\sigma(H_2^0) \ B(H_2^0 \rightarrow HH)$ for $m_{H_2^0} = 500-1500$ GeV with $\Gamma_{H_2^0} = 1$ GeV. ¹⁴⁶AAD 15BZ search for the decay $H \rightarrow A^{\bar{0}}A^{0} \rightarrow \mu^{+}\mu^{-}\tau^{+}\tau^{-}$ (m_{H} = 125 GeV) in NODE=S055H2O;LINKAGE=H 20.3 fb⁻¹ of pp collisions at $E_{\rm cm}=$ 8 TeV. See their Fig. 6 for limits on cross section times branching ratio for $m_{A^0}=$ 3.7–50 GeV. ¹⁴⁷ AAD 15BZ search for a state H_2^0 via the decay $H_2^0 \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- \tau^+ \tau^-$ in 20.3 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 6 for limits on cross section times branching ratio for $m_{H_2^0} = 100-500$ GeV and $m_{A^0} = 5$ GeV. NODE=S055H2O;LINKAGE=I 148 AAD 15CE search for production of a heavy H^0_2 decaying to HH in the final states NODE=S055H2O;LINKAGE=O $b \overline{b} \tau^+ \tau^-$ and $\gamma \gamma W W^*$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} =$ 8 TeV and combine with data from AAD 15H and AAD 15BK. A limit $\sigma(H_2^0)$ B $(H_2^0 \rightarrow HH)$ < 2.1–0.011 pb (95% CL) is given for $m_{H_2^0} =$ 260–1000 GeV. See their Fig. 6. ¹⁴⁹ AAD 15H search for production of a heavy H_2^0 decaying to HH in the finalstate $\gamma \gamma b \overline{b}$ in NODE=S055H2O;LINKAGE=N 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV.A limit of $\sigma(H_2^0) B(H_2^0 \rightarrow HH) < 3.5-0.7$ pb is given for $m_{H_2^0} = 260-500$ GeV at 95% CL. See their Fig. 3. ¹⁵⁰AAD 15S search for production of A^0 decaying to $ZH \rightarrow \ell^+ \ell^- b\overline{b}, \ \nu \overline{\nu} b\overline{b}$ and NODE=S055H2O:LINKAGE=J $\ell^+\ell^-\tau^+\tau^-$ in 20.3 fb⁻¹ of *pp* collisions at $E_{\rm cm}$ = 8 TeV. See their Fig. 3 for cross section limits for $m_{A^0} = 200 - 1000$ GeV. $^{151}\rm KHACHATRYAN$ 15AW search for production of a heavy state H^0_2 of an electroweak NODE=S055H2O;LINKAGE=Q singlet extension of the Standard Model via the decays of H^0_2 to $W^+ W^-$ and ZZ in up to 5.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV and up to 19.7 fb⁻¹ at $E_{\rm cm} = 8$ TeV in the range $m_{H_2^0} = 145-1000$ GeV. See their Figs. 8 and 9 for limits in the parameter space of the model. 152 KHACHATRYAN 15BB search for production of a resonance H decaying to $\gamma\gamma$ in 19.7 NODE=S055H2O:LINKAGE=L fb⁻¹ of pp collisions at $E_{\rm cm}=$ 8 TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H}=$ 150–850 GeV. ¹⁵³KHACHATRYAN 15N search for production of A^0 decaying to $ZH \rightarrow \ell^+ \ell^- b \overline{b}$ in 19.7 NODE=S055H2O;LINKAGE=G fb⁻¹ of pp collisions at $E_{\rm cm}=$ 8 TeV. See their Fig. 3 for limits on cross section times branching ratios for $m_{A^0}=$ 225–600 GeV. ¹⁵⁴ KHACHATRYAN 150 search for production of a high-mass narrow resonance A^0 decaying to $ZH \rightarrow q\bar{q}\tau^+\tau^-$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 6 for limits on cross section times branching ratios for $m_{A^0} = 800-2500$ GeV. NODE=S055H2O;LINKAGE=F 155 KHACHATRYAN 15R search for a narrow scalar resonance decaying to $HH \rightarrow ~b \, \overline{b} \, b \, \overline{b}$ NODE=S055H2O;LINKAGE=GA in 17.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 5 (top) for limits on cross section times branching ratios for $m_{H_2^0} = 0.27$ -1.1 TeV.

	7/16/2025 12:16 Page 27
¹⁵⁶ AAD 14AP search for a second H state decaying to $\gamma\gamma$ in addition to the state at about 125 GeV in 20.3 fb ⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 4 for limits on cross section times branching ratio for $m_{\rm H} = 65$ -600 GeV.	NODE=S055H2O;LINKAGE=C
¹⁵⁷ AAD 14M search for the decay cascade $H_2^0 \rightarrow H^{\pm}W^{\mp} \rightarrow HW^{\pm}W^{\mp}$, <i>H</i> decaying to $b\overline{b}$ in 20.3 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 8$ TeV. See their Table III for limits on cross section times branching ratio for $m_{H_2^0}^{-2} = 325-1025$ GeV and $m_{H^+}^{-2} = 225-925$ GeV.	NODE=S055H2O;LINKAGE=D
¹⁵⁸ CHATRCHYAN 14G search for a second <i>H</i> state decaying to $WW^{(*)}$ in addition to the observed signal at about 125 GeV using 4.9 fb ⁻¹ of <i>pp</i> collisions at $E_{cm} = 7$ TeV and 19.4 fb ⁻¹ at $E_{cm} = 8$ TeV. See their Fig. 21 (right) for cross section limits in the mass	NODE=S055H2O;LINKAGE=B
range 110–600 GeV. ¹⁵⁹ KHACHATRYAN 14P search for a second <i>H</i> state decaying to $\gamma\gamma$ in addition to the observed signal at about 125 GeV using 5.1 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 7$ TeV and 19.7 fb ⁻¹ at $E_{\rm cm} = 8$ TeV. See their Figs. 27 and 28 for cross section limits in the	NODE=S055H2O;LINKAGE=A
mass range 110–150 GeV. 160 AALTONEN 13P search for production of a heavy Higgs boson H'^0 that decays into a charged Higgs boson H^{\pm} and a lighter Higgs boson H via the decay chain $H'^0 \rightarrow$ $H^{\pm} W^{\mp}, H^{\pm} \rightarrow W^{\pm} H, H \rightarrow b\overline{b}$ in the final state $\ell \nu$ plus 4 jets in 8.7 fb ⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Fig. 4 for limits on cross section times branching ratio in the $m_{H^{\pm}} - m_{H'^0}$ plane for $m_H = 126$ GeV.	NODE=S055H2O;LINKAGE=EN
¹⁶¹ CHATRCHYAN 13BJ search for <i>H</i> production in the decay chain $H \rightarrow A^0 A^0$, $A^0 \rightarrow \mu^+ \mu^-$ in 5.3 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 7$ TeV. See their Fig. 2 for limits on cross section times branching ratio.	NODE=S055H2O;LINKAGE=AT
¹⁶² AALTONEN 11P search in 2.7 fb ⁻¹ of $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV for the decay chain $t \rightarrow bH^+$, $H^+ \rightarrow W^+ A^0$, $A^0 \rightarrow \tau^+ \tau^-$ with m_{A^0} between 4 and 9 GeV. See their Fig. 4 for limits on B($t \rightarrow bH^+$) for 90 $< m_{H^+} < 160$ GeV.	NODE=S055H2O;LINKAGE=A5
¹⁶³ ABBIENDI 10 search for $e^+e^- \rightarrow ZH$ with the decay chain $H \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$, $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 + (\gamma \text{ or } Z^*)$, when $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ are nearly degenerate. For a mass difference of 2 (4) GeV, a lower limit on m_H of 108.4 (107.0) GeV (95% CL) is obtained for SM ZH cross section and B($H \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$) = 1.	NODE=S055H2O;LINKAGE=IE
¹⁶⁴ SCHAEL 10 search for the process $e^+e^- \rightarrow HZ$ followed by the decay chain $H \rightarrow A^0 A^0 \rightarrow \tau^+\tau^-\tau^+\tau^-$ with $Z \rightarrow \ell^+\ell^-$, $\nu\overline{\nu}$ at $E_{\rm cm} = 183$ -209 GeV. For a HZZ coupling equal to the SM value, B($H \rightarrow A^0 A^0$) = B($A^0 \rightarrow \tau^+\tau^-$) = 1, and $m_{A^0} =$	NODE=S055H2O;LINKAGE=SC
4-10 GeV, m_H up to 107 GeV is excluded at 95% CL. ¹⁶⁵ ABAZOV 09V search for H production followed by the decay chain $H \rightarrow A^0 A^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ or $\mu^+ \mu^- \tau^+ \tau^-$ in 4.2 fb ⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. See their Fig. 3 for limits on $\sigma(H)$ ·B($H \rightarrow A^0 A^0$) for $m_{A0} = 3.6$ -19 GeV.	NODE=S055H2O;LINKAGE=VO
¹⁶⁶ ABBIENDI 05A search for $e^+e^- \rightarrow H_1^0 A^0$ in general Type-II two-doublet models, with decays H_1^0 , $A^0 \rightarrow q \overline{q}$, $g g$, $\tau^+ \tau^-$, and $H_1^0 \rightarrow A^0 A^0$.	NODE=S055H2O;LINKAGE=AN
¹⁶⁷ ABBIENDI 04K search for $e^+e^- \rightarrow HZ$ with <i>H</i> decaying to two jets of any flavor including <i>gg</i> . The limit is for SM production cross section with B($H \rightarrow jj$) = 1.	NODE=S055H2O;LINKAGE=AE
¹⁶⁸ ABDALLAH 04 consider the full combined LEP and LEP2 datasets to set limits on the Higgs coupling to W or Z bosons, assuming SM decays of the Higgs. Results in Fig. 26.	NODE=S055H2O;LINKAGE=AD
¹⁶⁹ ACHARD 04B search for $e^+e^- \rightarrow HZ$ with H decaying to $b\overline{b}$, $c\overline{c}$, or gg . The limit is for SM production cross section with $B(H \rightarrow jj) = 1$.	NODE=S055H2O;LINKAGE=AR
¹⁷⁰ ACHARD 04F search for H with anomalous coupling to gauge boson pairs in the processes $e^+e^- \rightarrow H\gamma$, e^+e^-H , HZ with decays $H \rightarrow f\overline{f}$, $\gamma\gamma$, $Z\gamma$, and W^*W at $E_{\rm cm} = 189-209$ GeV. See paper for limits.	NODE=S055H2O;LINKAGE=AA
¹⁷¹ ABBIENDI 03F search for $H \rightarrow$ anything in $e^+e^- \rightarrow HZ$, using the recoil mass spectrum of $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$. In addition, it searched for $Z \rightarrow \nu\overline{\nu}$ and $H \rightarrow e^+e^-$ or photons. Scenarios with large width or continuum H mass distribution are considered. See their Figs. 11–14 for the results.	NODE=S055H2O;LINKAGE=A3
¹⁷² ABBIENDI 03G search for $e^+e^- \rightarrow H_1^0 Z$ followed by $H_1^0 \rightarrow A^0 A^0$, $A^0 \rightarrow c \overline{c}$, $g g$, or $\tau^+\tau^-$ in the region $m_{H_1^0} = 45-86$ GeV and $m_{A^0} = 2-11$ GeV. See their Fig. 7 for	NODE=S055H2O;LINKAGE=AI
the limits. 173 Search for associated production of a $\gamma\gamma$ resonance with a Z boson, followed by $Z \rightarrow q \bar{q}$, $\ell^+ \ell^-$, or $\nu \bar{\nu}$, at $E_{\rm cm} \leq 209$ GeV. The limit is for a H with SM production cross section and B($H \rightarrow f \bar{f}$)=0 for all fermions f.	NODE=S055H2O;LINKAGE=HA
¹⁷⁴ For B($H \rightarrow \gamma \gamma$)=1, $m_H > 113.1$ GeV is obtained. ¹⁷⁵ HEISTER 02M search for $e^+e^- \rightarrow HZ$, assuming that H decays to $q\bar{q}$, gg , or $\tau^+\tau^-$ only. The limit assumes SM production cross section.	NODE=S055H2O;LINKAGE=LH NODE=S055H2O;LINKAGE=MH
¹⁷⁶ ABBIENDI 01E search for neutral Higgs bosons in general Type-II two-doublet models, at $E_{\rm cm} \leq 189$ GeV. In addition to usual final states, the decays H_1^0 , $A^0 \rightarrow q \bar{q}$, $g g$ are searched for. See their Figs. 15,16 for excluded regions.	NODE=S055H2O;LINKAGE=EK
177 ACCIARRI OOR search for $e^+e^- \rightarrow H\gamma$ with $H \rightarrow b\overline{b}$, $Z\gamma$, or $\gamma\gamma$. See their Fig. 3 for limits on $\sigma \cdot B$. Explicit limits within an effective interaction framework are also given, for which the Standard Model Higgs search results are used in addition.	NODE=S055H2O;LINKAGE=PE

				7/16/2025 12:16 Page 28
¹⁷⁸ ACCIARRI 00R search for the $b \overline{b}$ or $\gamma \gamma$. See their Fig. 4 for GeV.	e two-photon type r limits on $\Gamma(H ightarrow$	proces: $\gamma\gamma$)·B	ses $e^+ e^- \rightarrow e^+ e^- H$ with $H \rightarrow (H \rightarrow \gamma \gamma \text{ or } b \overline{b})$ for $m_H = 70 - 170$	NODE=S055H2O;LINKAGE=PF
¹⁷⁹ GONZALEZ-GARCIA 98B us (ABBOTT 98) to constrain $H \rightarrow \gamma \gamma$ decay which is indu- for limits on the anomalous	NODE=S055H2O;LINKAGE=W			
¹⁸⁰ KRAWCZYK 97 analyse the	muon anomalous i	magnet g no <i>H</i>	tic moment in a two-doublet Higgs 0_1 Z Z coupling and obtain $m_{{\cal H}^0_1}$ \gtrsim	NODE=S055H2O;LINKAGE=U
	aneta > 50. Othe	r Higg	s bosons are assumed to be much	
heavier. 181 ALEXANDER 96H give B(Z $H\gamma$)×B($H \rightarrow b\overline{b}$) < 0.7–2	$ ightarrow H\gamma) imes B(H ightarrow$ $ imes 10^{-5}$ (95%CL)	$q\overline{q}) <$ in the	1–4 $ imes$ 10 $^{-5}$ (95%CL) and B(Z $ ightarrow$ range 20 $<$ m_H $<$ 80 GeV.	NODE=S055H2O;LINKAGE=O2
Electroweak Constrain	its on the Stand	ard M	lodel Higgs Boson Mass	NODE=S055HEW
	bservables, assumi	ng the	boson derived from fits to minimal Standard Model of fermions.	NODE=S055HEW
VALUE (GeV)	DOCUMENT ID)		NODE=S055HEW
90 ⁺²¹ -18	¹ HALLER	18	RVUE	
• • • We do not use the followi	ng data for averag	es, fits	, limits, etc. ● ● ●	
91^{+30}_{-23}	² BAAK	12	RVUE	
94^{+25}_{-22}	³ BAAK	12A	RVUE	
91^{+31}_{-24}	⁴ ERLER	10A	RVUE	
129^{+74}_{-49}	⁵ LEP-SLC	06	RVUE	
¹ HALLER 18 make Standard and Γ _W measurements avai not used in the fit.	Model fits to Z ar lable in 2018. The	nd neut direct	tral current parameters, m_t , m_W , mass measurement at the LHC is	NODE=S055HEW;LINKAGE=W
² BAAK 12 make Standard Mo Γ _W measurements available obtained from a fit that doe	in 2010 (using als s not include the l	o prelii imit fro	current parameters, m_t , m_W , and minary data). The quoted result is om the direct Higgs searches. The	NODE=S055HEW;LINKAGE=BA
result including direct search GeV.	n data from LEP2	, the I	Fevatron and the LHC is $120 {+12 \atop -5}$	
³ BAAK 12A make Standard I and Γ _W measurements ava	ilable in 2012 (us hat does not inclu o no limits from d	ing als de the	ral current parameters, m_t , m_W , to preliminary data). The quoted measured mass value of the signal iggs searches.	NODE=S055HEW;LINKAGE=BK

⁴ ERLER 10A makes Standard Model fits to Z and neutral current parameters, m_t , m_W measurements available in 2009 (using also preliminary data). The quoted result is obtained from a fit that does not include the limits from the direct Higgs searches. With direct search data from LEP2 and Tevatron added to the fit, the 90% CL (99% CL) interval is 115–148 (114–197) GeV.

⁵LEP-SLC 06 make Standard Model fits to Z parameters from LEP/SLC and m_t , m_W , and Γ_W measurements available in 2005 with $\Delta \alpha_{had}^{(5)}(m_Z) = 0.02758 \pm 0.00035$. The 95% CL limit is 285 GeV.

SEARCHES FOR NEUTRAL HIGGS BOSONS REFERENCES

NODE=S055

NODE=S055HEW;LINKAGE=ER

NODE=S055HEW;LINKAGE=LE

 NODE=5055

 REFID=63168

 REFID=62571

 REFID=62838

 REFID=63081

 REFID=63118

 REFID=63128

 REFID=63128

 REFID=63139

 REFID=63139

 REFID=63139

 REFID=63139

 REFID=63139

 REFID=63139

 REFID=63131

 REFID=63151

 REFID=62731

 REFID=62814

 REFID=62816

 REFID=62812

 REFID=62932

HAYRAPETY	. 24AJ	JHEP 2408 215	A. Hayrapetyan <i>et al.</i>
HAYRAPETY	. 24AZ	JHEP 2412 172	A. Hayrapetyan <i>et al.</i>
HAYRAPETY.	. 24H	PL B850 138478	A. Hayrapetyan <i>et al.</i>
HAYRAPETY.	. 241	PL B852 138582	A. Hayrapetyan <i>et al.</i>
	24A 24P	PR DI10 012013	A. Tumasyan <i>et al.</i>
	24D 23AD	EPI (83 510	G And et al
AAD	23A I	EP I C83 603	G Aad et al
AAD	23BD	JHEP 2307 199	G. Aad et al.
AAD	23BE	JHEP 2307 200	G. Aad et al.
AAD	23BG	JHEP 2307 203	G. Aad <i>et al.</i>
AAD	23BW	PR D108 092007	G. Aad <i>et al.</i>
AAD	23BX	JHEP 2309 189	G. Aad et al.
AAD	23CA	JHEP 2310 009	G. Aad et al.
	23CR	JHEP 2312 U81	G. Aad et al.
	230 23R	IHEP 2307 155	G And et al
AAD	230	JHEP 2307 125	G. Aad et al.
AAD	23Z	JHEP 2307 040	G. Aad et al.
ADACHI	23A	PRL 130 181803	I. Adachi <i>et al.</i>
HAYRAPETY	. 23C	PR D108 072004	A. Hayrapetyan et al.
HAYRAPETY	. 23G	JHEP 2312 070	A. Hayrapetyan <i>et al.</i>
	23	PL B842 137392 DDI 121 101901	A. Tumasyan <i>et al.</i>
TUMASVAN	23AN	IHEP 2307 148	A. Tumasyan et al. Δ. Tumasyan et al.
TUMASYAN	230	JHEP 2307 095	A. Tumasyan <i>et al.</i>
TUMASYAN	23S	JHEP 2307 073	A. Tumasyan <i>et al.</i>
AAD	22A	PR D105 012006	G. Aad et al.
AAD	22D	PL B829 137066	G. Aad et al.
AAD	22F	PR D105 092002	G. Aad <i>et al.</i>
	221	JHEP 2201 063	G. Aad et al.
	∠∠J วว⊡	JHEF 2203 041	G. Aad et al.
AAD	221° 22∨	PR D106 052001	G. Aau er al. G. Aad et al
ABLIKIM	22H	JHEP 2408 215 JHEP 2412 172 PL B850 138478 PL B852 138582 PR D110 012013 JHEP 2405 316 EPJ C83 519 EPJ C83 603 JHEP 2307 199 JHEP 2307 200 JHEP 2307 200 JHEP 2307 00 JHEP 2310 009 JHEP 2310 009 JHEP 2310 016 JHEP 2307 155 JHEP 2307 155 JHEP 2307 125 JHEP 2307 040 PR D108 072004 JHEP 2312 070 PR D108 072004 JHEP 2317 070 PR D108 072004 JHEP 2307 073 PR D105 012006 PL B829 137066 PR D105 012006 PL B829 137066 PR D105 012006 PL B829 137066 PR D105 012006 PL B829 137066 PR D105 012007 JHEP 2201 063 JHEP 2201 063 JHEP 2203 041 JHEP 2208 104 PR D105 012008 PR D105 012008 PR D105 012008 PR D105 032008 EPJ C81 332 EPJ C81 332 EPJ C81 333 (errat.) EPJ C81 450 JHEP 2111 057 PR D101 012002 PR L125 051801 PR D102 112006 JHEP 2111 057 PR D101 012002 PR L125 051801 PR L125 051801 PR L125 051801 PR L125 051801 PR L125 02106 JHEP 2111 163 PL B800 135103 PR D102 032004 JHEP 2101 145 (errat.) JHEP 2100 135 JHEP 2101 145 (errat.) JHEP 2101 145 (errat.) JHEP 2100 135 JHEP 2100 135 JHEP 2101 145 (errat.) JHEP 2100 135 JHEP 2101 145 (errat.) JHEP 2100 135 JHEP 2000 135 J	M. Ablikim <i>et al.</i>
ABRATENKO	22A	PR D106 092006	P. Abratenko <i>et al.</i>
JIA	22	PRL 128 081804	S. Jia <i>et al.</i>
TUMASYAN	22AK	PL B835 137566	A. Tumasyan <i>et al.</i>
TUMASYAN	22D	PR D105 032008	A. Tumasyan <i>et al.</i>
AAD	21AF	EPJ C81 332	G. Aad <i>et al.</i>
AAD	21AI	EPJ C81 390	G. Aad et al.
AAD	21AT	IHEP 2110 013	G. Add et al
AAD	21BB	JHEP 2111 209	G. Aad et al.
AAD	21BE	EPJ C81 860	G. Aad et al.
ABRATENKO	21	PRL 127 151803	P. Abratenko <i>et al.</i>
SIRUNYAN	21A	EPJ C81 13	A.M. Sirunyan et al.
Also	01	EPJ C81 333 (errat.)	A.M. Sirunyan <i>et al.</i>
	21 21E	EPJ C81 450 IHED 2111 057	P. Slavich et al.
AAD	20	PR D101 012002	G Aad et al
AAD	20AA	PRL 125 051801	G. Aad et al.
AAD	20AE	PRL 125 221802	G. Aad et al.
AAD	20AI	PR D102 112006	G. Aad <i>et al.</i>
AAD	20AO	JHEP 2011 163	G. Aad <i>et al.</i>
AAD	20C	PL B800 135103	G. Aad <i>et al.</i>
AAD	20L	PR D102 032004	G. Aad et al.
Also	207	IHEP 2101 145 (errat)	G. Add et al
Also		JHEP 2101 145 (errat.) JHEP 2105 207 (errat.)	G. Aad et al.
AAIJ	20AL	JHEP 2011 163 PL B800 135103 PR D102 032004 JHEP 2007 108 JHEP 2101 145 (errat.) JHEP 2105 207 (errat.) JHEP 2010 156	R. Aaij <i>et al.</i>
SIRUNYAN	20	PL B800 135087	A.M. Širunyan <i>et al.</i>
SIRUNYAN	20AA	JHEP 2003 055	A.M. Sirunyan et al.
SIRUNYAN	20AC	JHEP 2003 065	A.M. Sirunyan <i>et al.</i>
	20AD	JHEP 2003 103	A.IVI. SIRUNYAN et al.
SIRUNYAN	20AF	JILI 2004 1/1	A M Sirupyon at al
SIRUNYAN		IHEP 2008 139	A.M. Sirunyan et al. A.M. Sirunyan et al.
SIRUNYAN	20AP 20Y	JHEP 2008 139 JHEP 2003 034	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>
	20AP 20Y 20Z	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>
AABOUD	20AP 20Y 20Z 19A	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030	A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al.
AABOUD AABOUD	20AP 20Y 20Z 19A 19AG	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1	A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al.
AABOUD AABOUD AABOUD	20AP 20Y 20Z 19A 19AG 19AI	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B793 499 JHEP 104 002	A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al.
AABOUD AABOUD AABOUD AABOUD	20AP 20Y 20Z 19A 19AG 19AI 19O 10T	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B793 499 JHEP 1904 092 JHEP 1905 124	A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al.
AABOUD AABOUD AABOUD AABOUD AABOUD	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 124	 A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V 19Y	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 142 JHEP 1907 117	 A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V 19Y 19	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 142 JHEP 1907 117 PR D99 052001	 A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. T. Aaltonen et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V 19Y 19 19	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617	 A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. T. Aaltonen et al. E. Bagnaschi et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V 19Y 19 19	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1905 124 JHEP 1905 124 JHEP 1905 142 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7	 A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. E. Bagnaschi et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V 19Y 19 19 19 19 19	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 142 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210	 A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. T. Aaboud et al. T. Aaltonen et al. E. Bagnaschi et al. A.M. Sirunyan et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V 19Y 19 19 19 19 19 19 19AE 19AE	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 142 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 280 EPJ C79 280	 A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. T. Aaboud et al. T. Aaltonen et al. E. Bagnaschi et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V 19Y 19 19 19 19 19AE 19AN 19AV 19AV 19AV	JHEP 2008 139 JHEP 2003 034 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 142 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 280 EPJ C79 280 EPJ C79 564 PR D99 012005	 A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. T. Aaltonen et al. E. Bagnaschi et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN	20AP 20Y 20Z 19A 19AG 19AI 19O 19Y 19 19 19 19AE 19AN 19AV 19B 19BB	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 142 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 564 PR D99 012005 PL B793 320	 A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Soud et al. M. Aaboud et al. M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN	20AP 20Y 20Z 19A 19AG 19AI 19O 19Y 19 19 19AE 19AN 19AN 19AV 19B 19BB 19BD	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1905 124 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 280 EPJ C79 564 PR D99 012005 PL B793 320 PL B795 398	 A.M. Sirunyan et al. M. Aaboud et al. C. Aaboud et al. M. Sirunyan et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN	20AP 20Y 19A 19AG 19AI 19O 19T 19V 19Y 19 19 19AE 19AN 19AV 19B 19BBD 19BE	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 564 PR D99 012005 PL B793 320 PL B793 388 PRL 122 121803	 A.M. Sirunyan et al. M. Aaboud et al. M. Sirunyan et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN	20AP 20Y 19A 19AG 19AI 19AI 19V 19T 19V 19Y 19 19 19AE 19AN 19AV 19B 19BBD 19BE 19BBD	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 280 EPJ C79 280 EPJ C79 280 EPJ C79 564 PR D99 012005 PL B793 320 PL B793 320 PL B795 332 PL B795 131 PL D796 131	 A.M. Sirunyan et al. M. Aaboud et al. A.Aboud et al. M. Sirunyan et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V 19 19 19AE 19AV 19B 19BB 19BB 19BB 19BB 19BC 19C	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 142 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 280 EPJ C79 280 EPJ C79 564 PR D99 012005 PL B793 320 PL B795 398 PRL 122 121803 PL B796 131 PL B796 134992	 A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. A.Aboud et al. A.Aboud et al. A. Aaboud et al. A. Aaboud et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V 19 19 19 19AE 19BA 19BB 19BBB 19BBD 19BEQ 19CR 19CR 19A	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 142 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 280 EPJ C79 280 EPJ C79 544 PR D99 012005 PL B795 398 PRL 122 121803 PL B796 131 PL B796 134992 JHEP 1901 040 PR D98 032015	 A.M. Sirunyan et al. M. Aaboud et al. A. Aaboud et al. A. Aaboud et al. A. Aaboud et al. A. Asirunyan et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN	20AP 20Y 20Z 19A 19AG 19AI 19O 19T 19V 19 19 19AE 19AN 19AV 19BB 19BBD 19BE 19BBD 19BE 19BCR 19HA 18AAG	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 564 PR D99 012005 PL B793 320 PL B795 398 PRL 122 121803 PL B796 131 PL B796 134 PL B796 132 JHEP 1901 040 PR D98 032015 PL B782 750	 A.M. Sirunyan et al. M. Aaboud et al. M. Sirunyan et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN ABOUD	20AP 20Y 20Z 19A 19AI 19O 19T 19V 19Y 19 19AE 19AV 19B 19BB 19BB 19BBQ 19BEQ 19BQ 19C 19H 18AA 18AA 18AA	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 564 PR D99 012005 PL B793 320 PL B795 398 PRL 122 121803 PL B796 131 PL B796 131 PL B798 134992 JHEP 1901 040 PR D98 032015 PL B782 750 PL B783 392	 A.M. Sirunyan et al. M. Aaboud et al. A.M. Sirunyan et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN AABOUD AABOUD AABOUD	2004 207 207 207 19AG 19AI 190 197 199 194 199 194 194 198 1984 1984 1980 1980 1990 1990 1990 1990 1990 1990	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 564 PR D99 012005 PL B793 320 PL B795 398 PRL 122 121803 PL B796 131 PL B796 131 PL B796 131 PL B798 134992 JHEP 1901 040 PR D98 032015 PL B783 392 JHEP 1803 174	 A.M. Sirunyan et al. M. Aaboud et al. A.Aboud et al. A. Aaboud et al. A. Aaboud et al. A.M. Sirunyan et al. M. Aaboud et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN	2004 207 207 202 19AG 19AI 19O 19T 19V 19 19 19 19 19AE 19BQ 19BD 19BD 19BBQ 19BBQ 19BBQ 19BBQ 19BBQ 19BBQ 19BBQ 19BBQ 19BBQ 19BBQ 19BBQ 19ABA 19BBQ 19ABA 19BBQ 19ABA 19BBQ 19ABA 19BBQ 19ABA 19BBQ 19ABA 19BBQ 19BA 19BA 19BA 19BA 19BA 19BA 19BA 19BA	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 280 EPJ C79 280 EPJ C79 564 PR D99 012005 PL B793 320 PL B795 398 PRL 122 121803 PL B796 131 PL B796 131 PL B796 131 PL B796 131 PL B798 134992 JHEP 1901 040 PR D98 032015 PL B782 750 PL B783 392 JHEP 1803 174 JHEP 1811 051 (errat.)	 A.M. Sirunyan et al. M. Aaboud et al. A.M. Sirunyan et al. A.Aboud et al. M. Aaboud et al. M. Aaboud et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN	2027 2027 2027 19AG 19AG 19AG 19AT 19AT 19AT 19 19 19 19 19 19 19 19 19 19 19 19 19	JHEP 2105 207 (errat.) JHEP 2010 156 PL B800 135087 JHEP 2003 055 JHEP 2003 065 JHEP 2003 103 JHEP 2003 103 JHEP 2004 171 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B793 499 JHEP 1904 092 JHEP 1905 124 JHEP 1905 120 EPJ C79 561 PL B788 7 JHEP 1905 210 EPJ C79 564 PR D99 012005 PL B795 398 PRL 122 121803 PL B796 131 PL B796 131 PL B798 134992 JHEP 1901 040 PR D98 032015 PL B782 750 PL B783 392 JHEP 1801 3174 JHEP 1811 051 (errat.) JHEP 1806 166	 A.M. Sirunyan et al. A. Aaboud et al. M. Aaboud et al. T. Aaltonen et al. E. Bagnaschi et al. A.M. Sirunyan et al. A.M. Saboud et al. M. Aaboud et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN	2027 2027 2027 19AG 19AI 19AI 19AI 19D 19T 19 19 19AE 19BD 19BD 19BD 19BD 19BD 19BD 19BB 19BD 19BCR 19BCR 19BCR 18AAI 18AF 18AF	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1905 124 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 580 EPJ C79 580 PL B793 320 PL B795 398 PRL 122 121803 PL B796 131 PL B796 134 PL B798 134992 JHEP 1901 040 PR D98 032015 PL B783 392 JHEP 1803 174 JHEP 1803 174 JHEP 1810 51 (errat.) JHEP 1806 166 EPJ C78 293	 A.M. Sirunyan et al. M. Aaboud et al. M. Aitonen et al. E. Bagnaschi et al. A.M. Sirunyan et al. A.M. Saboud et al. M. Aaboud et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN AABOUD AABOUD AABOUD AABOUD	2004 2007 202 19AG 19AI 19AI 19AI 19AI 19D 19T 19P 19AV 19BE 19BD 19BE 19BD 19BE 19BD 19BE 19BB 19BB 19BB 19BB 19BB 19BB 19BB	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 564 PR D99 012005 PL B793 320 PL B795 398 PRL 122 121803 PL B796 131 PL B796 131 PL B788 7392 JHEP 1901 040 PR D98 032015 PL B782 750 PL B783 392 JHEP 1803 174 JHEP 1811 051 (errat.) JHEP 1810 031	 A.M. Sirunyan et al. M. Aaboud et al. A.M. Sirunyan et al. A.M. Saboud et al. M. Aaboud et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD	2004 2007 2007 19AG 19AI 19AI 19D 19AI 19D 19AV 19B 19BD 19BD 19BD 19BD 19BD 19BD 19BC 19BD 19BC 19H 18AA 18AA 18AA 18AA 18BF 18BL 18BX	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B793 499 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 564 PR D99 012005 PL B793 320 PL B795 398 PRL 122 121803 PL B796 131 PL B796 131 PL B798 134992 JHEP 1901 040 PR D98 032015 PL B783 392 JHEP 1803 174 JHEP 1810 051 (errat.) JHEP 1810 031 JHEP 1810 031	 A.M. Sirunyan et al. M. Aaboud et al. M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al.
AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AALTONEN BAGNASCHI SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN SIRUNYAN AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD AABOUD	2004 207 207 207 19AG 19AI 19AI 190 197 199 194 199 194 198 198D 198D 198D 198D 198D 198D 198C 198D 199C 199C 199C 199C 199C 199C 198C 198C	JHEP 2008 139 JHEP 2003 034 JHEP 2003 051 JHEP 1901 030 PL B790 1 PL B790 4092 JHEP 1905 124 JHEP 1905 124 JHEP 1907 117 PR D99 052001 EPJ C79 617 PL B788 7 JHEP 1905 210 EPJ C79 564 PR D99 012005 PL B793 320 PL B795 398 PRL 122 121803 PL B796 131 PL B796 131 PL B796 131 PL B798 134992 JHEP 1901 040 PR D98 032015 PL B783 392 JHEP 1901 040 PR D98 032015 PL B783 392 JHEP 1811 051 (errat.) JHEP 1810 031 JHEP 1811 051 (errat.)	 A.M. Sirunyan et al. M. Aaboud et al. A. Aaboud et al. A. Aaboud et al. A. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al.

(CMS (CMS (CMS (CMS (CMS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (CMS (CMS (CMS (CMS (CMS (CMS (ATLAS) (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS) (ATLAS (ATLAS (ATLAS) (ATLAS (ATLAS) (ATLAS (ATLAS) (ATLAS) (ATLAS (ATLAS) (ATLAS) (ATLAS) (ATLAS (ATLAS) (A	Collab.) Col
(CMS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (ATLAS (CMS (CMS (CMS (CMS (CMS (CMS (CMS (CM	Collab.) Collab.)
(CMS (CMS (CMS (CMS (CMS (CMS (CMS (CMS	Collab.) Collab.)

REFI	D=62948 D=63144
REF	D = 62747 D = 62751
REFI	D = 62823
REFI	D=62862 D=62169 D=62178 D=62391 D=62302
REF	D=62391 D=62392 D=62394 D=62501 D=62522
RFFI	D = 02532 D = 62537
REFI REFI REFI	D=62616 D=62136 D=62140
REFI REFI REFI	$D=62010 \\ D=62136 \\ D=62140 \\ D=62145 \\ D=62161 \\ D=62218 \\ D=62$
DEEL	D=02489
REFI REFI REFI	D=62101 D=62443 D=62141
REFI REFI RFFI	D=62141 D=62150 D=62157 D=61542
REF	D=02137 D=61542 D=61705 D=61741 D=61774
REF	D = 61770
REFI REFI REFI	$\begin{array}{c} D = 61779 \\ D = 61818 \\ D = 61938 \\ D = 61643 \\ D = 61956 \end{array}$
REFI REFI REFI	D=61657 D=61936 D=61720
REFI	$\begin{array}{c} D = 61956 \\ D = 61657 \\ D = 61936 \\ D = 61720 \\ D = 61333 \\ D = 61337 \\ \end{array}$
REFI	D=01547 D=61556 D=61558
DEE	D = 01509
REFI	$\begin{array}{c} D = 01500 \\ D = 60775 \\ D = 61322 \\ D = 62641 \\ D = 61562 \end{array}$
RFFI	1) = 60046
REFI REFI REFI	$\begin{array}{c} D = 60610 \\ D = 60697 \\ D = 60742 \\ D = 60760 \\ D = 60147 \end{array}$
REFI REFI REFI	D=60347 D=60511 D=61275 D=61301 D=60754
REF	D = 60134 D = 60146
REFI REFI	D = 60478 D = 60480
REFI REFI REFI	D=60489 D=60527 D=60474
REFI	D=00475
REFI REFI REFI REFI	D=59740 D=59755 D=59672 D=59684
RFFI	D = 59686
	$\begin{array}{c} D = 59698 \\ D = 59838 \\ D = 62642 \\ D = 59412 \\ D = 59690 \end{array}$
REFI	$\begin{array}{c} D{=}59690 \\ D{=}59716 \\ D{=}59733 \\ D{=}59516 \end{array}$
REFI	D=59516 D=59754 D=59759
REFI REFI REFI	$D=59759 \\ D=59768 \\ D=59930 \\ D=60137 \\ D=59630 \\ D=59650 \\ D=5960 $
REEL	I)—hxuxi
REFI REFI	D=59030 D=59037 D=59080
REFI	D=59360 D=50107
REFI REFI REFI	D=59172 D=59333 D=59349
REFI	D=59360

AABOUD IBCC JPRL 211 191801 M. Aaboud et al. AABOUD IBCQ PRL 211 191801 M. Aaboud et al. AABOUD IBF PL 8777 91 M. Aaboud et al. AABOUD IBG JHEP 1801 1055 M. Aaboud et al. AAJJ IBAM EPJ C78 105 M. Aaboud et al. AAJJ IBAM EPJ C78 101 A.M. Sirunyan et al. SIRUNYAN IBA PL B778 101 A.M. Sirunyan et al. SIRUNYAN IBAP JHEP 1808 122 A.M. Sirunyan et al. SIRUNYAN IBCW JHEP 1808 123 A.M. Sirunyan et al. SIRUNYAN IBCW JHEP 1809 142 A.M. Sirunyan et al. SIRUNYAN IBCW JHEP 1809 143 A.M. Sirunyan et al. SIRUNYAN IBC JHEP 1811 101 A.M. Sirunyan et al. SIRUNYAN IBC JHEP 1811 102 A.M. Sirunyan et al. SIRUNYAN IBC JHEP 175 105 M. Aaboud et al. AABOUD ITAP PL B775 105 M. Aaboud et al. AABOUD ITAP PL B775 105 M. Aaboud et al. AABOUD ITAP PL B775 105 M. Aaboud et al. AABOUD </th <th></th> <th></th> <th></th> <th></th>				
AABOUD 187 PLP 1811 040 M. Aaboud et al. AABOUD 186 JHEP 1801 055 M. Aaboud et al. AAU 18AM EPJ C78 1005 M. Aaboud et al. AAU 18AM EPJ C78 1005 M. Aabud et al. AAU 18AM EPJ C78 1075 J. Haller et al. SIRUNYAN 18A PL E778 101 A.M. Sirunyan et al. SIRUNYAN 18AP JHEP 1808 128 (erat.) A.M. Sirunyan et al. SIRUNYAN 18CV JHEP 1808 128 (erat.) A.M. Sirunyan et al. SIRUNYAN 18CV JHEP 1809 124 A.M. Sirunyan et al. SIRUNYAN 18DV JEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 18DV JEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 18DV JEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 18DV JEP 1809 120 A.M. Sirunyan et al. SIRUNYAN 18DV JEP 1801 120 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1801 120 A.M. Sirunyan et al.				
AABOUD 18F PL B77 91 M. Aaboud et al. AABOUD 18G HHEP 1801 05S M. Aaboud et al. AABU 13AQ JHEP 1809 147 R. Aaij et al. AALJ 13AQ JHEP 1809 147 R. Aaij et al. SIRUNYAN 13AP, PL B778 101 A.M. Sirunyan et al. SIRUNYAN 138A JHEP 1806 127 A.M. Sirunyan et al. SIRUNYAN 138B JHEP 1808 113 A.M. Sirunyan et al. SIRUNYAN 13BC JHEP 1809 128 (crrat.) A.M. Sirunyan et al. SIRUNYAN 13CX JHEP 1809 128 A.M. Sirunyan et al. SIRUNYAN 13CX JHEP 1811 121 A.M. Sirunyan et al. SIRUNYAN 13ED JHEP 1811 1012 A.M. Sirunyan et al. SIRUNYAN 13ED JHEP 1811 012 A.M. Sirunyan et al. SIRUNYAN 13ED JHEP 1811 012 A.M. Sirunyan et al. SIRUNYAN 13ED JHEP 1811 013 A.M. Sirunyan et al. SIRUNYAN 13ED JHEP 1710 076 V. Khachatryan et al. SIRUNYAN 17AP PL B775 105 M.			191801	
AAJ 18AQ JHEP 180 147 R. Aaij et al. HALLER 18 FPJ C78 675 J. Haller et al. SIRUNYAN 18A PL B781 244 A.M. Sirunyan et al. SIRUNYAN 18AP JHEP 1803 128 (errat.) A.M. Sirunyan et al. SIRUNYAN 18AP JHEP 1809 128 (errat.) A.M. Sirunyan et al. SIRUNYAN 18CV JHEP 1809 128 (errat.) A.M. Sirunyan et al. SIRUNYAN 18DZ JHEP 1809 007 A.M. Sirunyan et al. SIRUNYAN 18DT PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18DT PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18DT PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1811 172 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1810 1054 A.M. Sirunyan et al. AABOUD 17AN PL B775 105 M. Aaboud et al. AABOUD 17AN PLE 9170 076 V. Khachatryan et al. AABOUD 17AN PL B772 147 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1710 1076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1700 76 V. Khachatryan et al. AABOUD 16AE EPJ C76 605 M. Aboud et al. AABOUD 16AE EPJ C76 645 G. Aad	AABOUD 18	SCW JHEP 181		
AAJ 18AQ JHEP 180 147 R. Aaij et al. HALLER 18 FPJ C78 675 J. Haller et al. SIRUNYAN 18A PL B781 244 A.M. Sirunyan et al. SIRUNYAN 18AP JHEP 1803 128 (errat.) A.M. Sirunyan et al. SIRUNYAN 18AP JHEP 1809 128 (errat.) A.M. Sirunyan et al. SIRUNYAN 18CV JHEP 1809 128 (errat.) A.M. Sirunyan et al. SIRUNYAN 18DZ JHEP 1809 007 A.M. Sirunyan et al. SIRUNYAN 18DT PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18DT PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18DT PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1811 172 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1810 1054 A.M. Sirunyan et al. AABOUD 17AN PL B775 105 M. Aaboud et al. AABOUD 17AN PLE 9170 076 V. Khachatryan et al. AABOUD 17AN PL B772 147 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1710 1076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1700 76 V. Khachatryan et al. AABOUD 16AE EPJ C76 605 M. Aboud et al. AABOUD 16AE EPJ C76 645 G. Aad	AABOUD 10		91 055	
AAJ 18AQ JHEP 180 147 R. Aaij et al. HALLER 18 FPJ C78 675 J. Haller et al. SIRUNYAN 18A PL B781 244 A.M. Sirunyan et al. SIRUNYAN 18AP JHEP 1803 128 (errat.) A.M. Sirunyan et al. SIRUNYAN 18AP JHEP 1809 128 (errat.) A.M. Sirunyan et al. SIRUNYAN 18CV JHEP 1809 128 (errat.) A.M. Sirunyan et al. SIRUNYAN 18DZ JHEP 1809 007 A.M. Sirunyan et al. SIRUNYAN 18DT PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18DT PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18DT PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1811 172 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1810 1054 A.M. Sirunyan et al. AABOUD 17AN PL B775 105 M. Aaboud et al. AABOUD 17AN PLE 9170 076 V. Khachatryan et al. AABOUD 17AN PL B772 147 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1710 1076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1700 76 V. Khachatryan et al. AABOUD 16AE EPJ C76 605 M. Aboud et al. AABOUD 16AE EPJ C76 645 G. Aad	AAU 18	AM FPI C78		
Also JHEP 1908 113 A.M. Srunyan et al. SIRUNYAN 186W JHEP 1808 115 A.M. Sirunyan et al. SIRUNYAN 180X JHEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 180X JHEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 180T JHEP 1801 1172 A.M. Sirunyan et al. SIRUNYAN 180D JF PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1811 018 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1810 1054 A.M. Sirunyan et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B772 107 076 V. Khachatryan et al. SIRUNYAN 17CN PR P096 072004 A.M. Sirunyan et al. SIRUNYAN 17CN PR P096 072004 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 585 M. Aaboud et al. AABOUD 16AE EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1601 032 G. Aad et al. AAD 16C C JHEP 1601 032	AALI 18	AQ JHEP 180	9 147	
Also JHEP 1908 113 A.M. Srunyan et al. SIRUNYAN 186W JHEP 1808 115 A.M. Sirunyan et al. SIRUNYAN 180X JHEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 180X JHEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 180T JHEP 1801 1172 A.M. Sirunyan et al. SIRUNYAN 180D JF PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1811 018 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1810 1054 A.M. Sirunyan et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B772 107 076 V. Khachatryan et al. SIRUNYAN 17CN PR P096 072004 A.M. Sirunyan et al. SIRUNYAN 17CN PR P096 072004 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 585 M. Aaboud et al. AABOUD 16AE EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1601 032 G. Aad et al. AAD 16C C JHEP 1601 032	HALLER 18	EPJ C78	675	
Also JHEP 1908 113 A.M. Srunyan et al. SIRUNYAN 186W JHEP 1808 115 A.M. Sirunyan et al. SIRUNYAN 180X JHEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 180X JHEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 180T JHEP 1801 1172 A.M. Sirunyan et al. SIRUNYAN 180D JF PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1811 018 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1810 1054 A.M. Sirunyan et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B772 107 076 V. Khachatryan et al. SIRUNYAN 17CN PR P096 072004 A.M. Sirunyan et al. SIRUNYAN 17CN PR P096 072004 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 585 M. Aaboud et al. AABOUD 16AE EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1601 032 G. Aad et al. AAD 16C C JHEP 1601 032	SIRUNYAN 18	A PL B778	101	
Also JHEP 1908 113 A.M. Srunyan et al. SIRUNYAN 186W JHEP 1808 115 A.M. Sirunyan et al. SIRUNYAN 180X JHEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 180X JHEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 180T JHEP 1801 1172 A.M. Sirunyan et al. SIRUNYAN 180D JF PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1811 018 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1810 1054 A.M. Sirunyan et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B772 107 076 V. Khachatryan et al. SIRUNYAN 17CN PR P096 072004 A.M. Sirunyan et al. SIRUNYAN 17CN PR P096 072004 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 585 M. Aaboud et al. AABOUD 16AE EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1601 032 G. Aad et al. AAD 16C C JHEP 1601 032	SIRUNYAN 18	BAF PL B781	244	
Also JHEP 1908 113 A.M. Srunyan et al. SIRUNYAN 186W JHEP 1808 115 A.M. Sirunyan et al. SIRUNYAN 180X JHEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 180X JHEP 1809 148 A.M. Sirunyan et al. SIRUNYAN 180T JHEP 1801 1172 A.M. Sirunyan et al. SIRUNYAN 180D JF PL B785 462 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1811 018 A.M. Sirunyan et al. SIRUNYAN 18ED JHEP 1810 1054 A.M. Sirunyan et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AP PL B772 107 076 V. Khachatryan et al. SIRUNYAN 17CN PR P096 072004 A.M. Sirunyan et al. SIRUNYAN 17CN PR P096 072004 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 585 M. Aaboud et al. AABOUD 16AE EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1601 032 G. Aad et al. AAD 16C C JHEP 1601 032	SIRUNYAN 18	BA JHEP 180	06 127	
Sikunyawa IBDK JHEP 1809 148 A.M. Sirunyawa et al. Sikunyawa IBDU PR D98 092001 A.M. Sirunyawa et al. Sikunyawa IBEE JHEP 1811 018 A.M. Sirunyawa et al. Sikunyawa IBEE JHEP 1810 0164 A.M. Sirunyawa et al. AABOUD ITAN PRL B765 105 M. Aaboud et al. AABOUD ITAN PRL B775 106 W. Aaboud et al. AABOUD ITAN PRL B775 1076 V. Khachatryw. Khachatryw. ITAW JHEP 1710 1076 V. Khachatryw. Khachatryw. TRV SIRUNYAN ITAX JHEP 1700 1076 V. Khachatryw. RABOUD SIRUNYAN ITAX JHEP 1700 1076 V. Khachatryw. RABOUD ABOUD IAAB Sirunyawa et al. AABOUD IGAA EPJ C76 635 M. Aboud et al. AABOUD IAABOUD IGA EPJ C76 200 M. Aboud et al. AABO IGC JHEP	Also	JHEP 190)3 128 (errat.)	
Sikunyawa IBDK JHEP 1809 148 A.M. Sirunyawa et al. Sikunyawa IBDU PR D98 092001 A.M. Sirunyawa et al. Sikunyawa IBEE JHEP 1811 018 A.M. Sirunyawa et al. Sikunyawa IBEE JHEP 1810 0164 A.M. Sirunyawa et al. AABOUD ITAN PRL B765 105 M. Aaboud et al. AABOUD ITAN PRL B775 106 W. Aaboud et al. AABOUD ITAN PRL B775 1076 V. Khachatryw. Khachatryw. ITAW JHEP 1710 1076 V. Khachatryw. Khachatryw. TRV SIRUNYAN ITAX JHEP 1700 1076 V. Khachatryw. RABOUD SIRUNYAN ITAX JHEP 1700 1076 V. Khachatryw. RABOUD ABOUD IAAB Sirunyawa et al. AABOUD IGAA EPJ C76 635 M. Aboud et al. AABOUD IAABOUD IGA EPJ C76 200 M. Aboud et al. AABO IGC JHEP	SIRUNYAN 18	BP JHEP 180	08 113	
Sikunyawa IBDK JHEP 1809 148 A.M. Sirunyawa et al. Sikunyawa IBDU PR D98 092001 A.M. Sirunyawa et al. Sikunyawa IBEE JHEP 1811 018 A.M. Sirunyawa et al. Sikunyawa IBEE JHEP 1810 0164 A.M. Sirunyawa et al. AABOUD ITAN PRL B765 105 M. Aaboud et al. AABOUD ITAN PRL B775 106 W. Aaboud et al. AABOUD ITAN PRL B775 1076 V. Khachatryw. Khachatryw. ITAW JHEP 1710 1076 V. Khachatryw. Khachatryw. TRV SIRUNYAN ITAX JHEP 1700 1076 V. Khachatryw. RABOUD SIRUNYAN ITAX JHEP 1700 1076 V. Khachatryw. RABOUD ABOUD IAAB Sirunyawa et al. AABOUD IGAA EPJ C76 635 M. Aboud et al. AABOUD IAABOUD IGA EPJ C76 200 M. Aboud et al. AABO IGC JHEP	SIRUNYAN 10	CV JHEP 180	0 152	
Sikunyawi 18D/J PL B783 402 A.M. Sirunyan et al. Sikunyawi 18ED JHEP 1811 172 A.M. Sirunyan et al. Sikunyawi 18E JHEP 1810 1054 A.M. Sirunyan et al. AABOUD 17AN PL B764 11 M. Aaboud et al. AABOUD 17AP PL B764 11 M. Aaboud et al. AABOUD 17AP PL B764 11 M. Aaboud et al. AABOUD 17AP PL B767 107 V. Khachatryan et al. KHACHATRY 17A JHEP 1710 076 V. Khachatryan et al. SIRUNYAN 17XN PL B772 363 A.M. Sirunyan et al. SIRUNYAN 17XN PL B772 363 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 655 M. Aaboud et al. AABOUD 16AA EPJ C76 655 M. Aaboud et al. AABOUD 16AA EPJ C76 655 M. Aaboud et al. AABOUD 16AA EPJ C76 610 M. Aaboud et al. AAD 16C PL 954 052002 M. Aaboud et al. AAD 16C PL 953 052005 M. Ablikim et al. KHACHATRY.	SIRUNYAN 18	DK IHEP 180	9 148	
SIRUNYAN IBE JHEP 1811 018 A.M. Sirunyan et al. AABOUD 17 PL B764 11 M. Aboud et al. AABOUD 17AN PRL 119 191803 M. Aboud et al. AABOUD 17AN PRL 119 191803 M. Aaboud et al. KHACHATRY 17AV JHEP 1710 1076 V. Khachatryan et al. KHACHATRY 17A JHEP 1710 1076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1710 1076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1701 076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1609 07204 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 210 M. Aaboud et al. AAD 16C PR C93 052005 M. Abbud et al. AAD 16C PR C	SIRUNYAN 18	DT PL B785	462	
SIRUNYAN IBE JHEP 1811 018 A.M. Sirunyan et al. AABOUD 17 PL B764 11 M. Aboud et al. AABOUD 17AN PRL 119 191803 M. Aboud et al. AABOUD 17AN PRL 119 191803 M. Aaboud et al. KHACHATRY 17AV JHEP 1710 1076 V. Khachatryan et al. KHACHATRY 17A JHEP 1710 1076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1710 1076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1701 076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1609 07204 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 210 M. Aaboud et al. AAD 16C PR C93 052005 M. Abbud et al. AAD 16C PR C	SIRUNYAN 18		02001	
SIRUNYAN IBE JHEP 1811 018 A.M. Sirunyan et al. AABOUD 17 PL B764 11 M. Aboud et al. AABOUD 17AN PRL 119 191803 M. Aboud et al. AABOUD 17AN PRL 119 191803 M. Aaboud et al. KHACHATRY 17AV JHEP 1710 1076 V. Khachatryan et al. KHACHATRY 17A JHEP 1710 1076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1710 1076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1701 076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1609 07204 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 210 M. Aaboud et al. AAD 16C PR C93 052005 M. Abbud et al. AAD 16C PR C	SIRUNYAN 18	ED JHEP 181	1 172	
AABOUD 17AN PRL 119 191803 M. Aaboud et al. AABOUD 17AW JHEP 1710 112 M. Aaboud et al. KHACHATRY 17AZ JHEP 1710 076 V. Khachatryan et al. KHACHATRY 17AZ JHEP 1710 076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1710 076 V. Khachatryan et al. SIRUNYAN 17AX PL B772 33 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 605 M. Aaboud et al. AABOUD 16AA EPJ C76 605 M. Aaboud et al. AABOUD 16A JHEP 1609 101 M. Aaboud et al. AABOUD 16A EPJ C76 C. Aad et al. AAD 16C PLP 1601 032 C. Aad et al. AAD 16C PL 075 201 V. Khachatryan et al. AALTONEN 16C PL 075 201 V. Khachatryan et al. <td< td=""><td>CIDIINIVANI 10</td><td>DEE ILLED 101</td><td>1 010</td><td></td></td<>	CIDIINIVANI 10	DEE ILLED 101	1 010	
AABOUD 17AN PRL 119 191803 M. Aaboud et al. AABOUD 17AW JHEP 1710 112 M. Aaboud et al. KHACHATRY 17AZ JHEP 1710 076 V. Khachatryan et al. KHACHATRY 17AZ JHEP 1710 076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1710 076 V. Khachatryan et al. SIRUNYAN 17AX PL B772 33 A.M. Sirunyan et al. AABOUD 16AA EPJ C76 605 M. Aaboud et al. AABOUD 16AA EPJ C76 605 M. Aaboud et al. AABOUD 16A JHEP 1609 101 M. Aaboud et al. AABOUD 16A EPJ C76 C. Aad et al. AAD 16C PLP 1601 032 C. Aad et al. AAD 16C PL 075 201 V. Khachatryan et al. AALTONEN 16C PL 075 201 V. Khachatryan et al. <td< td=""><td>SIRUNYAN 18</td><td>BF JHEP 180</td><td>1 054</td><td></td></td<>	SIRUNYAN 18	BF JHEP 180	1 054	
AABOUD 17AP PL B775 105 M. Aaboud et al. AABOUD 17AW JHEP 1710 076 V. Khachatryan et al. KHACHATRY 17A JHEP 1701 076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1711 010 A.M. Sirunyan et al. SIRUNYAN 17AX JHEP 1711 010 A.M. Sirunyan et al. ABOUD 16AA EPJ C76 585 M. Aboud et al. AABOUD 16AA EPJ C76 605 M. Aaboud et al. AABOUD 16AE EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 645 G. Aad et al. AAD 16AE EPJ C76 210 G. Aad et al. AAD 16L EPJ C76 6371 V. Khachatryan et al. AALTONEN 16C PR D93 052005 M. Abbiud et al. AAL 16L EPJ C76 6371 V. Khachatryan et al. KHACHATRY 16A PL B752 217 V. Khachatryan et al. KHACHATRY 16B PL B752 217 V. Khachatryan et al. KHACHATRY 16P PL B755 217 V. Khachatryan et al.	AABOUD 17	AN DDI 110	11	
AABOUD 17AW JHEP 1710 112 M. Asboud et al. KHACHATRY 17D JHEP 1701 076 V. Khachatryan et al. KHACHATRY 17D JHEP 1701 076 V. Khachatryan et al. SIRUNYAN 17AX JHEP 1711 010 M. Sirunyan et al. SIRUNYAN 17AX JHEP 1711 010 M. Sirunyan et al. AABOUD 16AA EPJ C76 605 M. Aaboud et al. AABOUD 16AA EPJ C76 605 M. Aaboud et al. AABOUD 16A EPJ C76 605 M. Aaboud et al. AABOUD 16H JHEP 1600 032 G. Aad et al. AAD 16C JHEP 1601 032 G. Aad et al. AAD 16C PL 97 052 021 V. Khachatryan et al. AALTONEN 16C PL 930 052005 M. Aaboud et al. AAL 16C PL 97 052 021 V. Khachatryan et al. KHACHATRY 16B PL 765 221 V. Khachatryan et al. KHACHATRY 16B PL 755 217 V. Khachatryan et al. KHACHATRY 16P	44R0UD 17	AP PI 8775	105	
SIRUNYAN 17AX JHEP 1711 010 A.M. Sirunyan et al. SIRUNYAN 17Y PL B772 363 A.M. Sirunyan et al. AABOUD 16AB EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1609 01 M. Aaboud et al. AABOUD 16A JHEP 1609 01 M. Aaboud et al. AABOUD 16I PR D94 052002 M. Aaboud et al. AAD 16C FPJ C76 45 G. Aad et al. AALTONEN 16L EPJ C76 10 G. Aad et al. AALTONEN 16E PR D93<052005	AABOUD 17	AW IHEP 171	0 112	
SIRUNYAN 17AX JHEP 1711 010 A.M. Sirunyan et al. SIRUNYAN 17Y PL B772 363 A.M. Sirunyan et al. AABOUD 16AB EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1609 01 M. Aaboud et al. AABOUD 16A JHEP 1609 01 M. Aaboud et al. AABOUD 16I PR D94 052002 M. Aaboud et al. AAD 16C FPJ C76 45 G. Aad et al. AALTONEN 16L EPJ C76 10 G. Aad et al. AALTONEN 16E PR D93<052005	KHACHATRY 17	AZ JHEP 171	0 076	
SIRUNYAN 17AX JHEP 1711 010 A.M. Sirunyan et al. SIRUNYAN 17Y PL B772 363 A.M. Sirunyan et al. AABOUD 16AB EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1609 01 M. Aaboud et al. AABOUD 16A JHEP 1609 01 M. Aaboud et al. AABOUD 16I PR D94 052002 M. Aaboud et al. AAD 16C FPJ C76 45 G. Aad et al. AALTONEN 16L EPJ C76 10 G. Aad et al. AALTONEN 16E PR D93<052005	KHACHATRY 17	D JHEP 170	01 076	
SIRUNYAN 17AX JHEP 1711 010 A.M. Sirunyan et al. SIRUNYAN 17Y PL B772 363 A.M. Sirunyan et al. AABOUD 16AB EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1609 01 M. Aaboud et al. AABOUD 16A JHEP 1609 01 M. Aaboud et al. AABOUD 16I PR D94 052002 M. Aaboud et al. AAD 16C FPJ C76 45 G. Aad et al. AALTONEN 16L EPJ C76 10 G. Aad et al. AALTONEN 16E PR D93<052005	KHACHATRY 17	'R PL B767	147	V. Khachatryan <i>et al.</i>
Sikuwani, Try PL Br/2 503 A.M., Sikuwan et al. AABOUD 16AB EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1609 011 M. Aaboud et al. AABOUD 16A JHEP 1609 011 M. Aaboud et al. AABOUD 16A EPJ C76 45 G. Aad et al. AAD 16C JHEP 1601 032 G. Aad et al. AAD 16L EPJ C76 210 G. Aad et al. AAD 16L PR D93 052005 M. Abbud et al. AALTONEN 16E PR D76 211 V. Khachatryan et al. KHACHATRY 16BG EPJ C76 371 V. Khachatryan et al. KHACHATRY 16BQ PR D94 052012 V. Khachatryan et al. KHACHATRY 16BQ PR D94 052012 V. Khachatryan et al. KHACHATRY 16BV PL B755 217 V. Khachatryan et al. KHACHATRY 16DV PL B755 237 G. Aad et al. AAD 15BE PJ C75 408 (errat.) G. Aad et al. AAD 15BE PJ C75 299 G. Aad et al. AAD 15BE PJ C75 408 (errat.) G. Aad e	SIRUNYAN 17	AX JHEP 171	1 010	A.M. Sirunyan et al.
Sikuwani, Try PL Br/2 503 A.M., Sikuwan et al. AABOUD 16AB EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1609 011 M. Aaboud et al. AABOUD 16A JHEP 1609 011 M. Aaboud et al. AABOUD 16A EPJ C76 45 G. Aad et al. AAD 16C JHEP 1601 032 G. Aad et al. AAD 16L EPJ C76 210 G. Aad et al. AAD 16L PR D93 052005 M. Abbud et al. AALTONEN 16E PR D76 211 V. Khachatryan et al. KHACHATRY 16BG EPJ C76 371 V. Khachatryan et al. KHACHATRY 16BQ PR D94 052012 V. Khachatryan et al. KHACHATRY 16BQ PR D94 052012 V. Khachatryan et al. KHACHATRY 16BV PL B755 217 V. Khachatryan et al. KHACHATRY 16DV PL B755 237 G. Aad et al. AAD 15BE PJ C75 408 (errat.) G. Aad et al. AAD 15BE PJ C75 299 G. Aad et al. AAD 15BE PJ C75 408 (errat.) G. Aad e	SIRUNYAN 17	CN PR D96 (072004	
AABOUD 16AE EPJ C76 605 M. Aaboud et al. AABOUD 16AE JHEP 1609 001 M. Aaboud et al. AABOUD 16I PR D94 052002 M. Aaboud et al. AAD 166X EPJ C76 45 G. Aad et al. AAD 16C JHEP 1601 032 G. Aad et al. AAD 16 EPJ C76 210 G. Aad et al. AALTONEN 16 EPJ C76 210 G. Aad et al. AALTONEN 16E PR D93 10210 T. Aaltonen et al. ABLIKIM 16E PR D93 052005 M. Abbikim et al. KHACHATRY 16BQ PR D94 052012 V. Khachatryan et al. KHACHATRY 16BQ PR D94 052012 V. Khachatryan et al. KHACHATRY 16P PL B755 217 V. Khachatryan et al. KHACHATRY 16V PL B755 299 G. Aad et al. AAD 15BD EPJ C75 299 G. Aad et al. AAD 15BZ PR D92 052002 G. Aad et al. AAD 15BZ PR D92 052002 G. Aad et al. AAD 15BZ PR D92	AADOUD 16		505	
AADDUCEPR D3 05200G. Add et al.AALTONENI6CPR D93 112010T. Aaltonen et al.ABLIKIMI6EPR D93 052005M. Ablikim et al.KHACHATRY I6BGEPJ C76 371V. Khachatryan et al.KHACHATRY 16BGFP D94 052012V. Khachatryan et al.KHACHATRY 16BJHEP 1601 079V. Khachatryan et al.KHACHATRY 16PPL B755 217V. Khachatryan et al.KHACHATRY 16PPL B755 296V. Khachatryan et al.KHACHATRY 16VPL B759 369V. Khachatryan et al.AAD15BDEPJ C75 337G. Aad et al.AAD15BHEPJ C75 408 (errat.)G. Aad et al.AAD15BKEPJ C75 412G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BYPL B744 163G. Aad et al.AAD15BYPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.AAD14APPRL 113 071800G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071802C. Kachatryan et al.<		AA EPJ C/6	262 605	
AADDUCEPR D3 05200G. Add et al.AALTONENI6CPR D93 112010T. Aaltonen et al.ABLIKIMI6EPR D93 052005M. Ablikim et al.KHACHATRY I6BGEPJ C76 371V. Khachatryan et al.KHACHATRY 16BGFP D94 052012V. Khachatryan et al.KHACHATRY 16BJHEP 1601 079V. Khachatryan et al.KHACHATRY 16PPL B755 217V. Khachatryan et al.KHACHATRY 16PPL B755 296V. Khachatryan et al.KHACHATRY 16VPL B759 369V. Khachatryan et al.AAD15BDEPJ C75 337G. Aad et al.AAD15BHEPJ C75 408 (errat.)G. Aad et al.AAD15BKEPJ C75 412G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BYPL B744 163G. Aad et al.AAD15BYPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.AAD14APPRL 113 071800G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071802C. Kachatryan et al.<	AABOUD 10	AF IHEP 160	000	
AADDUCEPR D3 05200G. Add et al.AALTONENI6CPR D93 112010T. Aaltonen et al.ABLIKIMI6EPR D93 052005M. Ablikim et al.KHACHATRY I6BGEPJ C76 371V. Khachatryan et al.KHACHATRY 16BGFP D94 052012V. Khachatryan et al.KHACHATRY 16BJHEP 1601 079V. Khachatryan et al.KHACHATRY 16PPL B755 217V. Khachatryan et al.KHACHATRY 16PPL B755 296V. Khachatryan et al.KHACHATRY 16VPL B759 369V. Khachatryan et al.AAD15BDEPJ C75 337G. Aad et al.AAD15BHEPJ C75 408 (errat.)G. Aad et al.AAD15BKEPJ C75 412G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BYPL B744 163G. Aad et al.AAD15BYPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.AAD14APPRL 113 071800G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071802C. Kachatryan et al.<	AABOUD 10	H IHEP 160	9 001	
AADDUCEPR D3 05200G. Add et al.AALTONENI6CPR D93 112010T. Aaltonen et al.ABLIKIMI6EPR D93 052005M. Ablikim et al.KHACHATRY I6BGEPJ C76 371V. Khachatryan et al.KHACHATRY 16BGFP D94 052012V. Khachatryan et al.KHACHATRY 16BJHEP 1601 079V. Khachatryan et al.KHACHATRY 16PPL B755 217V. Khachatryan et al.KHACHATRY 16PPL B755 296V. Khachatryan et al.KHACHATRY 16VPL B759 369V. Khachatryan et al.AAD15BDEPJ C75 337G. Aad et al.AAD15BHEPJ C75 408 (errat.)G. Aad et al.AAD15BKEPJ C75 412G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BYPL B744 163G. Aad et al.AAD15BYPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.AAD14APPRL 113 071800G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071802C. Kachatryan et al.<	AABOUD 16	6 PR D94 (052002	
AADDUCEPR D3 05200G. Add et al.AALTONENI6CPR D93 112010T. Aaltonen et al.ABLIKIMI6EPR D93 052005M. Ablikim et al.KHACHATRY I6BGEPJ C76 371V. Khachatryan et al.KHACHATRY 16BGFP D94 052012V. Khachatryan et al.KHACHATRY 16BJHEP 1601 079V. Khachatryan et al.KHACHATRY 16PPL B755 217V. Khachatryan et al.KHACHATRY 16PPL B755 296V. Khachatryan et al.KHACHATRY 16VPL B759 369V. Khachatryan et al.AAD15BDEPJ C75 337G. Aad et al.AAD15BHEPJ C75 408 (errat.)G. Aad et al.AAD15BKEPJ C75 412G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BYPL B744 163G. Aad et al.AAD15BYPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.AAD14APPRL 113 071800G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071802C. Kachatryan et al.<	AAD 16	AX EPJ C76	45	G. Aad <i>et al.</i>
AADDUCEPR D3 05200G. Add et al.AALTONENI6CPR D93 112010T. Aaltonen et al.ABLIKIMI6EPR D93 052005M. Ablikim et al.KHACHATRY I6BGEPJ C76 371V. Khachatryan et al.KHACHATRY 16BGFP D94 052012V. Khachatryan et al.KHACHATRY 16BJHEP 1601 079V. Khachatryan et al.KHACHATRY 16PPL B755 217V. Khachatryan et al.KHACHATRY 16PPL B755 296V. Khachatryan et al.KHACHATRY 16VPL B759 369V. Khachatryan et al.AAD15BDEPJ C75 337G. Aad et al.AAD15BHEPJ C75 408 (errat.)G. Aad et al.AAD15BKEPJ C75 412G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15BYPL B744 163G. Aad et al.AAD15BYPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.AAD14APPRL 113 071800G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071801G. Aad et al.AAD14APPRL 113 071802C. Kachatryan et al.<	AAD 16	C JHEP 160	01 032	G. Aad <i>et al.</i>
KHACHATRY 16BGEPJ C76 371V. Khachatryan et al.KHACHATRY 16FJHEP 1601 079V. Khachatryan et al.KHACHATRY 16FPL B755 217V. Khachatryan et al.KHACHATRY 16PPL B758 296V. Khachatryan et al.KHACHATRY 16WPL B758 296V. Khachatryan et al.KHACHATRY 16VPL B758 296V. Khachatryan et al.AAD15BHEPJ C75 337G. Aad et al.AAD15BHEPJ C75 299G. Aad et al.AAD15BKEPJ C75 412G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15WJHEP 1510 144V. Khachatryan et al.KHACHATRY 15AWJHEP 1510 171V. Khachatryan et al.KHACHATRY 15BWJHEP 1510 171V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B749 560V. Khachatryan et al.AAD14APPR1 113 171801G. Aad et al.AAD	AAD 16	L EPJ C76	210	
KHACHATRY 16BGEPJ C76 371V. Khachatryan et al.KHACHATRY 16FJHEP 1601 079V. Khachatryan et al.KHACHATRY 16FPL B755 217V. Khachatryan et al.KHACHATRY 16PPL B758 296V. Khachatryan et al.KHACHATRY 16WPL B758 296V. Khachatryan et al.KHACHATRY 16VPL B758 296V. Khachatryan et al.AAD15BHEPJ C75 337G. Aad et al.AAD15BHEPJ C75 299G. Aad et al.AAD15BKEPJ C75 412G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15WJHEP 1510 144V. Khachatryan et al.KHACHATRY 15AWJHEP 1510 171V. Khachatryan et al.KHACHATRY 15BWJHEP 1510 171V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B749 560V. Khachatryan et al.AAD14APPR1 113 171801G. Aad et al.AAD	AALTONEN 16	C PR D93	112010	
KHACHATRY 16BGEPJ C76 371V. Khachatryan et al.KHACHATRY 16FJHEP 1601 079V. Khachatryan et al.KHACHATRY 16FPL B755 217V. Khachatryan et al.KHACHATRY 16PPL B758 296V. Khachatryan et al.KHACHATRY 16WPL B758 296V. Khachatryan et al.KHACHATRY 16VPL B758 296V. Khachatryan et al.AAD15BHEPJ C75 337G. Aad et al.AAD15BHEPJ C75 299G. Aad et al.AAD15BKEPJ C75 412G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 052002G. Aad et al.AAD15BZPR D92 092004G. Aad et al.AAD15WJHEP 1510 144V. Khachatryan et al.KHACHATRY 15AWJHEP 1510 171V. Khachatryan et al.KHACHATRY 15BWJHEP 1510 171V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15NPL B749 560V. Khachatryan et al.AAD14APPR1 113 171801G. Aad et al.AAD	ABLIKIM 16	E PR D93 (052005	
 KHACHATRY 16BQ PR D94 052012 KHACHATRY 16F JHEP 1601 079 V. Khachatryan et al. KHACHATRY 16P PL 177 051802 V. Khachatryan et al. KHACHATRY 16P PL B755 217 V. Khachatryan et al. KHACHATRY 16P PL B755 217 V. Khachatryan et al. KHACHATRY 16P PL B755 217 V. Khachatryan et al. KHACHATRY 16P PL B759 369 V. Khachatryan et al. AAD AAD 15BD EPJ C75 337 G. Aad et al. AAD AAD 15BK EPJ C75 412 G. Aad et al. AAD AAD 15BZ PR D92 052002 G. Aad et al. AAD AAD 15BV PR D92 052002 G. Aad et al. AAD AAD 15BV PR D92 052002 G. Aad et al. AAD AAD 15BV PR D92 052002 G. Aad et al. AAD AAD 15BV PR D92 052002 G. Aad et al. AAD AAD 15BV PL B744 163 G. Aad et al. AAD AAD 15H PR 1510 144 V. Khachatryan et al. KHACHATRY 15AW JHEP 1510 171 V. Khachatryan et al. KHACHATRY 15NP PL B748 221 V. Khachatryan et al. KHACHATRY 15NP PL B748 255 V. Khachatryan et al. KHACHATRY 15NP PL B749 560 V. Khachatryan et al. KHACHATRY 15NP PL B749 560 V. Khachatryan et al. AAD 14AP PRL 113 171801 G. Aad et al. AAD 14AP PRL 113 171801 G. Aad et al. AAD 14AP PR D89 032002 G. Aad et al. AAD 14AP PR D89 032002 G. Aad et al. AAD 14M PR D89 032002 G. Aad et al. AAD 14M PR D89 032002 G. Aad et al. AAD 14M PR D89 032002 G. Aad et al. AAD AAD 14D PFL		DA PL B/52	221	
 KHACHATRY 16F JHEP 1601 079 V. Khachatryan et al. KHACHATRY 16P PL B755 217 V. Khachatryan et al. KHACHATRY 16P PL B758 296 V. Khachatryan et al. KHACHATRY 16P PL B759 369 V. Khachatryan et al. AAD 15BD EPJ C75 337 G. Aad et al. AAD 15BK EPJ C75 408 (errat.) G. Aad et al. AAD 15BZ PR D92 052002 G. Aad et al. AAD AAD 15BZ PR D92 052002 G. Aad et al. AAD AAD 15B PL B744 163 G. Aad et al. AAD AAD 15B PL B744 163 G. Aad et al. AAD AAD 15B PL B744 163 G. Aad et al. AAD AAD TSP L B744 163 G. Aad et al. AAD AAD TSP L B744 163 G. Aad et al. AAD AAD TSP L B744 163 G. Aad et al. KHACHATRY 15AW JHEP 1510 144 V. Khachatryan et al. KHACHATRY 15N PL B748 221 V. Khachatryan et al. KHACHATRY 15N PL B748 255 V. Khachatryan et al. KHACHATRY 15N PL B748 255 V. Khachatryan et al. KHACHATRY 15N PL B749 560 V. Khachatryan et al. KHACHATRY 15N PL B749 560 V. Khachatryan et al. AAD 14AP PR D91 071102 J.P. Lees et al. AAD AAD 14AP PR D89 032002 G. Aad et al. AAD AAD AAD AAD PR D89 032002 G. Aad et al. AAD AAD AAD AAD PR D80 032002 G. Aad et al. AAD AAD AAD AAD AAD AAD AAD AAD AAD <li< td=""><td></td><td></td><td></td><td>V. Khachatryan <i>et al.</i></td></li<>				V. Khachatryan <i>et al.</i>
KHACHATRY16MPRL117051802V.Khachatryan et al.KHACHATRY16VPLB755217V.Khachatryan et al.KHACHATRY16ZPLB758296V.Khachatryan et al.AAD15BDEPJC75337G.Aad et al.AAD15BHEPJC75408 (errat.)G.Aad et al.AAD15BKEPJC75408 (errat.)G.Aad et al.AAD15BKEPJC75408 (errat.)G.Aad et al.AAD15BKPRD92052002G.Aad et al.AAD15SPLB744163G.Aad et al.AAD15SPLB744163G.Aad et al.AAD15SPLB744163G.Aad et al.KHACHATRY15AYJHEP1511071V.Khachatryan et al.KHACHATRY15AYJHEP1511071V.Khachatryan et al.KHACHATRY15AYJHEP1511071V.Khachatryan et al.KHACHATRY15APPLB748255V.Khachatryan et al.KHACHATRY15APPLB748256V.Khachatryan et al.KHACHATRY15APPLB748250V.Khachatryan et al.AAD14APPRL113171801G.Aad et al.AAD14APPRL112 </td <td>KHACHATRY 16</td> <td>F JHEP 160</td> <td>01 079</td> <td>V. Khachatrvan <i>et al.</i></td>	KHACHATRY 16	F JHEP 160	01 079	V. Khachatrvan <i>et al.</i>
 KHACHATRY 16W PL B758 296 KHACHATRY 16Z PL B759 369 AAD 15BD EPJ C75 337 G. Aad et al. AAD 15BH EPJ C75 299 G. Aad et al. AAD 15BK EPJ C75 408 (errat.) G. Aad et al. AAD 15BK EPJ C75 412 G. Aad et al. AAD 15BZ PR D92 052002 G. Aad et al. AAD 15BZ PR D92 092004 G. Aad et al. AAD 15BZ PR D92 092004 G. Aad et al. AAD 15BZ PR D92 092004 G. Aad et al. AAD 15BZ PR D92 092004 G. Aad et al. AAD 15S PL B744 163 G. Aad et al. AAD 15S PL B744 163 G. Aad et al. KHACHATRY 15AW JHEP 1510 144 KHACHATRY 15AW JHEP 1511 071 V. Khachatryan et al. KHACHATRY 15N PL B748 221 V. Khachatryan et al. KHACHATRY 15O PL B748 2255 V. Khachatryan et al. KHACHATRY 15O PL B748 255 V. Khachatryan et al. KHACHATRY 15O PL B748 255 V. Khachatryan et al. KHACHATRY 15N PL B748 255 V. Khachatryan et al. KHACHATRY 15P PL B749 560 V. Khachatryan et al. KHACHATRY 15P PL B749 560 V. Khachatryan et al. AAD 14AP PR L113 171801 G. Aad et al. AAD 14BA JHEP 1411 086 G. Aad et al. AAD 14BA JHEP 1411 086 G. Aad et al. AAD 140 PR L112 201802 G. Aad et al. AAD 140 PR L112 201802 G. Aad et al. CHATRCHYAN 14B EPJ C74 2980 S. Chatrchyan et al. KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. KHACHATRY 14P EPJ 071 302 G. Aad et al. AAD 130 JHEP 1302 095 G. Aad et al. AAD 130 JHEP 1302 095 G. Aad et al. AAD 130 JHEP 1302 095 G. Aad et al. AAD 130 JHEP 1302 095 G. Aad et al. AALTONEN 13H PR D88 052013 T. Aaltonen et al. AALTONEN 1	KHACHATRY 16	M PRL 117	051802	V. Khachatryan <i>et al.</i>
KHACHATRY16ZPLB759 369V.Khachatryan et al.AAD15BDEPJC75337G.Aad et al.AAD15BHEPJC75299G.Aad et al.AAD15BKEPJC75408 (errat.)G.Aad et al.AAD15BKEPJC75408 (errat.)G.Aad et al.AAD15EZPRD92092004G.Aad et al.AAD15CEPRD92092004G.Aad et al.AAD15FPLB744163G.Aad et al.AAD15SPLB744163G.Aad et al.KHACHATRY15AYJHEP1510144V.Khachatryan et al.KHACHATRY15AYJHEP1511071V.Khachatryan et al.KHACHATRY15APPLB748221V.Khachatryan et al.KHACHATRY15BPLB749560V.Khachatryan et al.KHACHATRY15BPLB749560V.Khachatryan et al.AAD14APPRL113171801G.Aad et al.AAD14APPRL113171801G.Aad et al.AAD14APPRL112201802G.Aad et al.AAD14APPRL112201802G.Aad et al.AAD14APPRL112201802G.Aad et al.	KHACHATRY 16	PL B755		V. Khachatryan et al.
AAD 15BD EPJ C75 337 G. Aad et al. AAD 15BH EPJ C75 299 G. Aad et al. AAD 15BK EPJ C75 412 G. Aad et al. AAD 15BK EPJ C75 412 G. Aad et al. AAD 15BZ PR D92 052002 G. Aad et al. AAD 15BZ PR D92 052004 G. Aad et al. AAD 15H PR L114 081802 G. Aad et al. AAD 15F PR D92 052004 G. Aad et al. AAD 15F PR D92 052004 G. Aad et al. AAD 15F PR D92 052004 G. Aad et al. AAD 15F PR D91 071104 V. Khachatryan et al. KHACHATRY 15AV JHEP 1510 1071 V. Khachatryan et al. KHACHATRY 15N PL B748 225 V. Khachatryan et al. KHACHATRY 15R PL B749 560 V. Khachatryan et al. KHACHATRY 15R PL B749 560 V. Khachatryan et al. AAD 14AP PRL 113 171801 G. Aad et al. AAD 14AP PR 1411 086 G. Aad et al. AAD 14AP PR D89 032002 G. Aad et al. AAD 14D PR L12 201802 G. Aad et al. CHATRCHYAN 14B EPJ C74 3076	KHACHATRY 16	W PL B758	296	V. Khachatryan et al.
AAD 15BH EPJ C75 299 G. Aad et al. Also EPJ C75 408 (errat.) G. Aad et al. AAD 15BK EPJ C75 412 G. Aad et al. AAD 15BZ PR D92 052002 G. Aad et al. AAD 15CE PR D92 092004 G. Aad et al. AAD 15F PL B744 163 G. Aad et al. AAD 15S PL B744 163 G. Aad et al. KHACHATRY 15AV JHEP 1510 144 V. Khachatryan et al. KHACHATRY 15AV JHEP 1510 144 V. Khachatryan et al. KHACHATRY 15N PL B748 221 V. Khachatryan et al. KHACHATRY 15N PL B748 255 V. Khachatryan et al. KHACHATRY 15N PL B749 560 V. Khachatryan et al. KHACHATRY 15N PL B749 560 V. Khachatryan et al. AAD 14AP PRL 113 171801 G. Aad et al. AAD 14AP PRL 113 171801 G. Aad et al. AAD 14AP PR 113 171801 G. Aad et al. AAD 14AP PRL 1141 088 G. Aad et al.			369	V. Khachatryan et al.
Also EPJ C75 408 (errat.) G. Aad et al. AAD 15BK EPJ C75 412 G. Aad et al. AAD 15BZ PR D92 052002 G. Aad et al. AAD 15CE PR D92 092004 G. Aad et al. AAD 15F PR L114 081802 G. Aad et al. AAD 15F PL B744 163 G. Aad et al. KHACHATRY I5AW JHEP 1510 144 V. Khachatryan et al. KHACHATRY I5AW JHEP 1511 071 V. Khachatryan et al. KHACHATRY I5AW PL B748 221 V. Khachatryan et al. KHACHATRY I5O PL B748 255 V. Khachatryan et al. KHACHATRY I5O PL B748 255 V. Khachatryan et al. KHACHATRY I5O PL B749 560 V. Khachatryan et al. AAD 14AW JHEP 1411 086 G. Aad et al. AAD 14AW JHEP 1411 088 G. Aad et al. AAD 14AD PR D89 032002 G. Aad et al. AAD 14D PR D89 032002 G. Aad et al.				
AAD 15BK EPJ C75 412 G. Aad et al. AAD 15BZ PR D92 052002 G. Aad et al. AAD 15CE PR D92 092004 G. Aad et al. AAD 15H PRL 114 081802 G. Aad et al. AAD 15H PRL 114 081802 G. Aad et al. KHACHATRY 15AV JHEP 1511 071 V. Khachatryan et al. KHACHATRY 15AB PL B748 221 V. Khachatryan et al. KHACHATRY 15D PL B748 255 V. Khachatryan et al. KHACHATRY 15D PL B748 255 V. Khachatryan et al. KHACHATRY 15D PL B748 255 V. Khachatryan et al. KHACHATRY 15D PL B748 255 V. Khachatryan et al. AAD 14AW JHEP 1411 056 G. Aad et al. AAD 14AW JHEP 1411 056 G. Aad et al. AAD 14W PR D89 032002 G. Aad et al. AAD 14W PR D89				
AAD15BZPRD92052002G. Aad et al.AAD15CEPRD92092004G. Aad et al.AAD15HPRL114081802G. Aad et al.AAD15SPLB744163G. Aad et al.AAD15SPLB744163G. Aad et al.KHACHATRY15AWJHEP1510144V. Khachatryan et al.KHACHATRY15BBPLB750494V. Khachatryan et al.KHACHATRY15NPLB748221V. Khachatryan et al.KHACHATRY15NPLB748255V. Khachatryan et al.KHACHATRY15RPLB749560V. Khachatryan et al.KHACHATRY15RPLB749560V. Khachatryan et al.AAD14APPRL113171801G. Aad et al.AAD14APPRL113171801G. Aad et al.AAD140PRL1201802G. Aad et al.AAD140PRL1201802G. Aad et al.CHATRCHYAN14GJHEP140106S. Chatrchyan et al.KHACHATRY14WJHEP140106S. Chatrchyan et al.KHACHATRY14QPRD9012013V. Khachatryan et al.AAD13AGPL872132G. Aad et al.AAD13AGPL1322G. Aad et al.AAD13AGPL1322R. Aaij et al.		EPJ C/5	408 (errat.)	
AAD15HPRL114081802G. Aad et al.AAD15SPLB744163G. Aad et al.KHACHATRY15AWJHEP1510144V. Khachatryan et al.KHACHATRY15AWJHEP1511071V. Khachatryan et al.KHACHATRY15BBPLB750494V. Khachatryan et al.KHACHATRY15NPLB748221V. Khachatryan et al.KHACHATRY15NPLB748225V. Khachatryan et al.KHACHATRY15NPLB749560V. Khachatryan et al.LEES15HPRD91<071102				
AAD15HPRL114081802G. Aad et al.AAD15SPLB744163G. Aad et al.KHACHATRY15AWJHEP1510144V. Khachatryan et al.KHACHATRY15AWJHEP1511071V. Khachatryan et al.KHACHATRY15BBPLB750494V. Khachatryan et al.KHACHATRY15NPLB748221V. Khachatryan et al.KHACHATRY15NPLB748225V. Khachatryan et al.KHACHATRY15NPLB749560V. Khachatryan et al.LEES15HPRD91<071102	AAD 15	CE PR D92 (092004	
AAD155PL B744 163G. Aad et al.KHACHATRY 15AWJHEP 1510 144V. Khachatryan et al.KHACHATRY 15AYJHEP 1511 071V. Khachatryan et al.KHACHATRY 15NPL B750 494V. Khachatryan et al.KHACHATRY 15NPL B748 221V. Khachatryan et al.KHACHATRY 15NPL B748 255V. Khachatryan et al.KHACHATRY 15RPL B749 560V. Khachatryan et al.KHACHATRY 15RPL B749 560V. Khachatryan et al.AAD14APPRL 113 171801G. Aad et al.AAD14AWJHEP 1411 056G. Aad et al.AAD14AWJHEP 1411 088G. Aad et al.AAD14WPR D89 032002G. Aad et al.AAD140PRL 112 201802G. Aad et al.CHATRCHYAN 14BEPJ C74 2980S. Chatrchyan et al.CHATRCHYAN 14GJHEP 1401 096S. Chatrchyan et al.KHACHATRY 14WJHEP 1401 096S. Chatrchyan et al.KHACHATRY 14PEPJ C74 3076V. Khachatryan et al.KHACHATRY 14PEPJ C74 3076V. Khachatryan et al.AAD13AGPL B721 32G. Aad et al.AAD13AGPL B721 32G. Aad et al.AAD13AGPL B720 2095G. Aad et al.AALTONEN13LPR D88 052013T. Aaltonen et al.AALTONEN13LPR D88 052013T. Aaltonen et al.AALTONEN13LPR D88 052006V.M. Abazov et al.ABAZOV13LPR D88 052007V.M. Abazov et		H PRL 114	081802	
KHACHATRY15AYJHEP1511V.Khachatryan et al.KHACHATRY15BPLB750494V.Khachatryan et al.KHACHATRY150PLB748221V.Khachatryan et al.KHACHATRY150PLB748255V.Khachatryan et al.LEES15HPRD91<071102		is PL B744	163	G. Aad <i>et al.</i>
KHACHATRY15BBPLB750494V.Khachatryan et al.KHACHATRY15NPLB748221V.Khachatryan et al.KHACHATRY15NPLB748255V.Khachatryan et al.KHACHATRY15RPLB748255V.Khachatryan et al.AAD14APPRL113171801G.Aad et al.AAD14AWJHEP1411056G.Aad et al.AAD14AWJHEP1411056G.Aad et al.AAD14WPRD89<032002	KHACHATRY 15	AW JHEP 151		
KHACHATRY15NPLB748221V.Khachatryan et al.KHACHATRY15OPLB748255V.Khachatryan et al.KHACHATRY15RPLB749560V.Khachatryan et al.LEES15HPRD91071102J.P.Lees et al.AAD14APPRL113171801G.Aad et al.AAD14APPRL111056G.Aad et al.AAD14MPRD89032002G.Aad et al.AAD14MPRD89032002G.Aad et al.AAD14MPRD89032002G.Aad et al.AAD14MPRD89032002G.Aad et al.CHATRCHYAN14BPLJ2742980S.Chatrchyan et al.CHATRCHYAN14GJHEP1410060S.Chatrchyan et al.KHACHATRY14MJHEP14101060V.Khachatryan et al.KHACHATRY14MJHEP1301V.Khachatryan et al.KHACHATRY14MPRD90112013V.AAD13AGPL B72132G.Aad et al.AAD13AGPL B72132G.Aad et al.AAD13AFNJP15043009G.Aad et al.AALTONEN13LPR D88052012T.Aaltonen et al.AALTONEN13LPR D88052				
KHACHATRY 150 PL B748 255 V. Khachatryan et al. KHACHATRY 15R PL B749 560 J.P. Lees et al. AAD 14AP PRL 113 171801 G. Aad et al. AAD 14AP PRL 113 171801 G. Aad et al. AAD 14AP PRL 113 171801 G. Aad et al. AAD 14AW JHEP 1411 086 G. Aad et al. AAD 14BA JHEP 1411 088 G. Aad et al. AAD 14M PR D89 032002 G. Aad et al. AAD 140 PRL 112 201802 G. Aad et al. CHATRCHYAN 14B EPJ C74 2980 S. Chatrchyan et al. KHACHATRY 14M JHEP 1401 096 S. Chatrchyan et al. KHACHATRY 14M JHEP 1410 160 V. Khachatryan et al. KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. KHACHATRY 14P PR D90 112013 V. Khachatryan et al. AAD 13AT NJP 15 043009 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AALTONEN 13K PR D88 052012 T. Aaltonen et al. AALTONEN 13K <				
KHACHATRY 15R PL B749 560 V. Khachatryan et al. AAD 14AP PR D1 071102 J.P. Lees et al. AAD 14AP PR 113 171801 G. Aad et al. AAD 14AW JHEP 1411 056 G. Aad et al. AAD 14AW JHEP 1411 056 G. Aad et al. AAD 14M PR D89<032002				
LEES 15H PR D91 071102 J.P. Lees et al. AAD 14AP PRL 113 171801 G. Aad et al. AAD 14AW JHEP 1411 056 G. Aad et al. AAD 14AW JHEP 1411 056 G. Aad et al. AAD 14M PR D89 032002 G. Aad et al. AAD 140 PRL 112 201802 G. Aad et al. CHATRCHYAN 14B EPJ C74 2980 S. Chatrchyan et al. KHACHATRY 14P PH D90 112013 V. Khachatryan et al. KHACHATRY 14Q PR D90 112013 V. Khachatryan et al. AAD 13AG PL B721 32 G. Aad et al. AAD 13AG PL B721 32 G. Aad et al. AAD 13O JHEP 1302 095 G. Aad et al.			560	V. Khachatryan et al.
AAD 14AP PRL 113 171801 G. Aad et al. AAD 14AW JHEP 1411 056 G. Aad et al. AAD 14BA JHEP 1411 088 G. Aad et al. AAD 14M PR D89 032002 G. Aad et al. AAD 14M PR D89 032002 G. Aad et al. AAD 14M PR D89 032002 G. Aad et al. CHATRCHYAN 14B EPJ C74 2980 S. Chatrchyan et al. KHACHATRY 14M JHEP 1401 096 S. Chatrchyan et al. KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. AAD 13AG PL B721 32 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AALTONEN	LEES 15	H PR D91 (071102	
AAD 14AW JHEP 1411 056 G. Aad et al. AAD 14BA JHEP 1411 088 G. Aad et al. AAD 14M PR D89 032002 G. Aad et al. AAD 14M PR D89 032002 G. Aad et al. CHATRCHYAN 14B EPJ C74 2980 S. Chatrchyan et al. CHATRCHYAN 14B EPJ C74 2980 S. Chatrchyan et al. KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. AAD 13AG PL B721 32 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AALTONEN 13K PR	AAD 14	AP PRL 113	171801	
AAD 14M PR D89 032002 G. Aad et al. AAD 140 PRL 112 201802 G. Aad et al. CHATRCHYAN 14B EPJ C74 2980 S. Chatrchyan et al. CHATRCHYAN 14G JHEP 1401 096 S. Chatrchyan et al. KHACHATRY 14M JHEP 1401 160 V. Khachatryan et al. KHACHATRY 14Q PR D90 112013 V. Khachatryan et al. KHACHATRY 14Q PR D90 112013 V. Khachatryan et al. AAD 13AG PL B721 32 G. Aad et al. AAD 13AJ JHEP 1302 095 G. Aad et al. AALTONEN 13K PR D88 052013 T. Aaltonen et al. AALTONEN 13M PR D88 052013 T. Aaltonen et al.	AAD 14	AW JHEP 141	1 056	G. Aad <i>et al.</i>
AAD140PRL 112 201802G. Aad et al.CHATRCHYAN 14BEPJ C74 2980S. Chatrchyan et al.CHATRCHYAN 14GJHEP 1401 096S. Chatrchyan et al.KHACHATRY 14MJHEP 1410 160V. Khachatryan et al.KHACHATRY 14PEPJ C74 3076V. Khachatryan et al.KHACHATRY 14PPR D90 112013V. Khachatryan et al.AAD13AGPL B721 32G. Aad et al.AAD13ATNJP 15 043009G. Aad et al.AAD13ATNJP 15 043009G. Aad et al.AAIJ13TJHEP 1305 132R. Aaij et al.AALTONEN13KPR D88 052012T. Aaltonen et al.AALTONEN13PPR L10 121801T. Aaltonen et al.AALTONEN13PPR 288 052006V.M. Abazov et al.ABAZOV13IPR D88 052007V.M. Abazov et al.ABAZOV13LPR D88 052009V.M. Abazov et al.ABAZOV13LPR D88 052009V.M. Abazov et al.ABAZOV13LPR D88 052001V.M. Abazov et al.ABAZOV13LPR D88 052001V.M. Abazov et al.ABAZOV13LPR D88 052001V.M. Abazov et al.CARENA13EPJ C73 2552M. Carena et al.CHATRCHYAN 13AGPL B725 36S. Chatrchyan et al.CHATRCHYAN 13AJPL B725 364S. Chatrchyan et al.				
CHATRCHYAN 14B EPJ C74 2980 S. Chatrchyan et al. CHATRCHYAN 14G JHEP 1401 096 S. Chatrchyan et al. KHACHATRY 14W JHEP 1410 160 V. Khachatryan et al. KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. AAD 13AG PL B721 32 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AAD 13AT JHEP 1302 095 G. Aad et al. AALTONEN 13K PR D88 052012 T. Aaltonen et al. AALTONEN 13L PR D88 052013 T. Aaltonen et al. AALTONEN 13P PR D88 052006 V.M. Abazov et al. ABAZOV 13G PR D88 052007 V.M.				
CHATRCHYAN 14G JHEP 1401 096 S. Chatrchyan et al. KHACHATRY 14P JHEP 1410 160 V. Khachatryan et al. KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. KHACHATRY 14Q PR D90 112013 V. Khachatryan et al. AAD 13AG PL B721 32 G. Aad et al. AAD 13O JHEP 1302 095 G. Aad et al. AAIJ 13T JHEP 1302 095 G. Aad et al. AALTONEN 13L PR D88 052012 T. Aaltonen et al. AALTONEN 13L PR D88 052013 T. Aaltonen et al. AALTONEN 13M PR D88 052014 T. Aaltonen et al. AALTONEN 13P PR D88 052006 V.M. Abazov et al. ABAZOV 13I PR D88 052007 V.M. Abazov et al. ABAZOV 13I PR D88 052008 V.M. Abazov et al. ABAZOV 13L PR D88 052011 V.M. Abazov et al. ABAZOV 13L PR D88 052011 V.M. Abazov et al.				
KHACHATRY 14M JHEP 1410 160 V. Khachatryan et al. KHACHATRY 14P PR D90 112013 V. Khachatryan et al. AAD 13AG PL D724 3076 V. Khachatryan et al. AAD 13AG PL B721 32 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AAD 13AT JHEP 1305 132 R. Aaij et al. AALTONEN 13K PR D88 052012 T. Aaltonen et al. AALTONEN 13L PR D88 052013 T. Aaltonen et al. AALTONEN 13L PR D88 052014 T. Aaltonen et al. AALTONEN 13P PRL 110 121801 T. Aaltonen et al. ABAZOV 13G PR D88 052006 V.M. Abazov et al. ABAZOV				
KHACHATRY 14P EPJ C74 3076 V. Khachatryan et al. KHACHATRY 14Q PR D90 112013 V. Khachatryan et al. AAD 13AG PL B721 32 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AAD 13AT JHEP 1302 095 G. Aad et al. AAIJ 13T JHEP 1302 095 G. Aad et al. AALTONEN 13K PR D88 052012 T. Aaltonen et al. AALTONEN 13L PR D88 052014 T. Aaltonen et al. AALTONEN 13P PR L10 121801 T. Aaltonen et al. AALTONEN 13P PR D88 052006 V.M. Abazov et al. ABAZOV 13J PR D88 052006 V.M. Abazov et al. ABAZOV 13J PR D88 052009 V.M. Abazov et al. ABAZOV 13L PR D88 052009 V.M. Abazov et al. ABAZOV 13L PR D88 052011 V.M. Abazov et al. ABAZOV 13L PR D88 052009				
KHACHATRY 14Q PR D90 112013 V. Khachatryan et al. AAD 13AG PL B721 32 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AAD 13O JHEP 1302 095 G. Aad et al. AAI 13T JHEP 1302 095 G. Aad et al. AALTONEN 13K PR D88 052012 T. Aaltonen et al. AALTONEN 13L PR D88 052013 T. Aaltonen et al. AALTONEN 13M PR D88 052006 V.M. Abazov et al. ABAZOV 13H PR D88 052006 V.M. Abazov et al. ABAZOV 13J PR D88 052009 V.M. Abazov et al. ABAZOV 13L PR D88 052001 V.M. Abaz	KHACHATRY 14	P EPJ C74	3076	V. Khachatryan et al.
AAD 13AG PL B721 32 G. Aad et al. AAD 13AT NJP 15 043009 G. Aad et al. AAD 13O JHEP 1302 095 G. Aad et al. AAI 13T JHEP 1302 095 G. Aad et al. AALTONEN 13K PR D88 052012 T. Aaltonen et al. AALTONEN 13L PR D88 052013 T. Aaltonen et al. AALTONEN 13M PR D88 052014 T. Aaltonen et al. AALTONEN 13P PRL D10 121801 T. Aaltonen et al. ABAZOV 13G PR D88 052006 V.M. Abazov et al. ABAZOV 13J PR D88 052007 V.M. Abazov et al. ABAZOV 13L PR D88 052011 V.M. Abazov et al. <td>KHACHATRY 14</td> <td>Q PR D90 1</td> <td>112013</td> <td>V. Khachatryan et al.</td>	KHACHATRY 14	Q PR D90 1	112013	V. Khachatryan et al.
AAD 13AT NJP 15 043009 G. Aad et al. AAD 13O JHEP 1302 095 G. Aad et al. AAI 13T JHEP 1302 095 G. Aad et al. AAIJ 13T JHEP 1305 132 R. Aaij et al. AALTONEN 13K PR D88 052012 T. Aaltonen et al. AALTONEN 13L PR D88 052013 T. Aaltonen et al. AALTONEN 13M PR D88 052014 T. Aaltonen et al. ABAZOV 13G PR D88 052006 V.M. Abazov et al. ABAZOV 13I PR D88 052007 V.M. Abazov et al. ABAZOV 13I PR D88 052009 V.M. Abazov et al. ABAZOV 13L PR D88 052011 V.M. Abazov et al.			32	G. Aad <i>et al.</i>
AAIJ 13T JHEP 1305 132 R. Aaij et al. AALTONEN 13K PR D88 052012 T. Aaltonen et al. AALTONEN 13L PR D88 052013 T. Aaltonen et al. AALTONEN 13M PR D88 052014 T. Aaltonen et al. AALTONEN 13M PR D88 052014 T. Aaltonen et al. AALTONEN 13P PR 110 121801 T. Aaltonen et al. ABAZOV 13G PR D88 052006 V.M. Abazov et al. ABAZOV 13I PR D88 052007 V.M. Abazov et al. ABAZOV 13J PR D88 052009 V.M. Abazov et al. ABAZOV 13L PR D88 052019 V.M. Abazov et al. ABAZOV 13L PR D88 052019 V.M. Abazov et al. CARENA 13 EPJ C73 2552 M. Carena et al. CHATRCHYAN 13AL			43009	G. Aad <i>et al.</i>
AALTONEN13KPRD88052012T.Aaltonen et al.AALTONEN13LPRD88052013T.Aaltonen et al.AALTONEN13MPRD88052014T.Aaltonen et al.AALTONEN13PPRL110121801T.Aaltonen et al.ABAZOV13GPRD88052006V.M.Abazov et al.ABAZOV13IPRD88052007V.M.Abazov et al.ABAZOV13IPRD88052009V.M.Abazov et al.ABAZOV13JPRD88052009V.M.Abazov et al.ABAZOV13LPRD88052011V.M.Abazov et al.ABAZOV13LPRD88052011V.M.Abazov et al.CARENA13EPJ C732552M.Carena et al.CHATRCHYAN13ALPLB72536S.Chatrchyan et al.CHATRCHYAN13BJPLB725564S.Chatrchyan et al.				
AALTONEN 13M PR D88 052014 T. Aaltonen et al. AALTONEN 13P PRL 110 121801 T. Aaltonen et al. ABAZOV 13G PR D88 052006 V.M. Abazov et al. ABAZOV 13H PR D88 052007 V.M. Abazov et al. ABAZOV 13I PR D88 052008 V.M. Abazov et al. ABAZOV 13J PR D88 052009 V.M. Abazov et al. ABAZOV 13L PR D88 052001 V.M. Abazov et al. ABAZOV 13L PR D88 052011 V.M. Abazov et al. CARENA 13 EPJ C73 2552 M. Carena et al. CHATRCHYAN 13AC PL B722 207 S. Chatrchyan et al. CHATRCHYAN 13AL PL B725 36 S. Chatrchyan et al. CHATRCHYAN 13BJ PL B726				
AALTONEN 13M PR D88 052014 T. Aaltonen et al. AALTONEN 13P PRL 110 121801 T. Aaltonen et al. ABAZOV 13G PR D88 052006 V.M. Abazov et al. ABAZOV 13H PR D88 052007 V.M. Abazov et al. ABAZOV 13I PR D88 052008 V.M. Abazov et al. ABAZOV 13J PR D88 052009 V.M. Abazov et al. ABAZOV 13L PR D88 052001 V.M. Abazov et al. ABAZOV 13L PR D88 052011 V.M. Abazov et al. CARENA 13 EPJ C73 2552 M. Carena et al. CHATRCHYAN 13AC PL B722 207 S. Chatrchyan et al. CHATRCHYAN 13AL PL B725 36 S. Chatrchyan et al. CHATRCHYAN 13BJ PL B726	AALTONEN 13	L PR D88 (052013	
AALTONEN 13P PRL 110 121801 T. Aaltonen et al. ABAZOV 13G PR D88 052006 V.M. Abazov et al. ABAZOV 13H PR D88 052007 V.M. Abazov et al. ABAZOV 13I PR D88 052008 V.M. Abazov et al. ABAZOV 13J PR D88 052009 V.M. Abazov et al. ABAZOV 13L PR D88 052010 V.M. Abazov et al. ABAZOV 13L PR D88 052011 V.M. Abazov et al. CARENA 13 EPJ C73 2552 M. Carena et al. CHATRCHYAN 13AD PL B725 S. Chatrchyan et al. Chatrchyan et al. CHATRCHYAN 13AL PL B725 S. Chatrchyan et al. Chatrchyan et al.				
ABAZOV 13G PR D88 052006 V.M. Abazov et al. ABAZOV 13H PR D88 052007 V.M. Abazov et al. ABAZOV 13I PR D88 052008 V.M. Abazov et al. ABAZOV 13J PR D88 052009 V.M. Abazov et al. ABAZOV 13J PR D88 052019 V.M. Abazov et al. ABAZOV 13L PR D88 052011 V.M. Abazov et al. CARENA 13 EPJ C73 2552 M. Carena et al. CHATRCHYAN 13AC PL B722 207 S. Chatrchyan et al. CHATRCHYAN 13AL PL B725 36 S. Chatrchyan et al. CHATRCHYAN 13BJ PL B726 564 S. Chatrchyan et al.				
ABAZOV 13I PR D88 052008 V.M. Abazov et al. ABAZOV 13J PR D88 052009 V.M. Abazov et al. ABAZOV 13L PR D88 052010 V.M. Abazov et al. CARENA 13 EPJ C73 2552 M. Carena et al. CHATRCHYAN 13AG PL B722 207 S. Chatrchyan et al. CHATRCHYAN 13AL PL B725 S. Chatrchyan et al. CHATRCHYAN 13BJ PL B726 564 S. Chatrchyan et al.	ABAZOV 13	G PR D88 (052006	V.M. Abazov <i>et al.</i>
ABAZOV 13J PR D88 052009 V.M. Abazov et al. ABAZOV 13L PR D88 052011 V.M. Abazov et al. CARENA 13 EPJ C73 2552 M. Carena et al. CHATRCHYAN 13AG PL B722 207 S. Chatrchyan et al. CHATRCHYAN 13AL PL B725 36 S. Chatrchyan et al. CHATRCHYAN 13BJ PL B726 564 S. Chatrchyan et al.				
ABAZOV 13L PR D88 052011 V.M. Abazov et al. CARENA 13 EPJ C73 2552 M. Carena et al. CHATRCHYAN 13AG PL B722 207 S. Chatrchyan et al. CHATRCHYAN 13AL PL B725 36 S. Chatrchyan et al. CHATRCHYAN 13BJ PL B726 564 S. Chatrchyan et al.				
CARENA 13 EPJ C73 2552 M. Carena et al. CHATRCHYAN 13AG PL B722 207 S. Chatrchyan et al. CHATRCHYAN 13AL PL B725 36 S. Chatrchyan et al. CHATRCHYAN 13BJ PL B726 564 S. Chatrchyan et al.				
CHATRCHYAN 13AG PL B722 207 S. Chatrchyan et al. CHATRCHYAN 13AL PL B725 36 S. Chatrchyan et al. CHATRCHYAN 13BJ PL B726 564 S. Chatrchyan et al.				
CHATRCHYAN 13AL PL B725 36 S. Chatrchyan <i>et al.</i> CHATRCHYAN 13BJ PL B726 564 S. Chatrchyan <i>et al.</i>				
CHATRCHYAN 13BJ PL B726 564 S. Chatrchyan et al.				
			564	S. Chatrchyan <i>et al.</i>

(ATLAS (ATLAS (ATLAS	Collab.) Collab.) Collab.)
(ATLAS	Collab.)
(ATLAS (LHCb	Collab.) Collab.)
(LHCb	Collab.)
(Gfitter (CMS	r Group) Collab.)
(CMS	Collab.)
(CMS (CMS	Collab.) Collab.)
(CMS (CMS	Collab.) Collab.)
(CMS	Collab.)
(CMS (CMS	Collab.) Collab.)
(CMS	Collab.)
(CMS (CMS	Collab.) Collab.)
(CMS	Collab.)
(ATLAS (ATLAS	Collab.) Collab.)
(ATLAS (ATLAS	Collab.)
(ATLAS (CMS	Collab.) Collab.)
(CMS (CMS	Collab.) Collab.)
(CMS	Collab.)
(CMS (CMS	Collab.) Collab.)
(ATLAS	Collab.)
(ATLAS (ATLAS	Collab.) Collab.)
(ATLAS	Collab.)
(ATLAS (ATLAS	Collab.) Collab.)
(ATLAS	Collab.)
(ATLAS (CDF	Collab.) Collab.)
(BESIII	Collab.)
CMS (CMS	Collab.) Collab.)
(CMS (CMS	Collab.) Collab.)
(CMS	Collab.)
(CMS (CMS	Collab.) Collab.)
(CMS	Collab.)
(ATLAS (ATLAS	Collab.) Collab.)
ÀTLAS	Collab.) Collab.)
(ATLAS (ATLAS	Collab.)
(ATLAS (ATLAS	Collab.) Collab.)
(ATLAS	Collab.)
(CMS (CMS	Collab.) Collab.)
(CMS	Collab.)
(CMS (CMS	Collab.) Collab.)
(CMS (BABAR	Collab.)
(ATLAS	Collab.) Collab.)
(ATLAS (ATLAS	Collab.) Collab.)
(ATLAS	Collab.)
(ATLAS (CMS	Collab.) Collab.)
(CMS	Collab.)
(CMS (CMS	Collab.) Collab.)
(CMS (ATLAS	Collab.) Collab.)
(ATLAS	Collab.)
(ATLAS (LHCb	Collab.) Collab.)
(CDF	Collab.)
(CDF) (CDF and D0)	Collab.) Collabs.)
(CDF	Collab.) Collab.)
(D0 (D0	Collab.)
(D0 (D0	Collab.) Collab.)
(D0	Collab.)
(CMS	Collab.)
(CMS (CMS	Collab.) Collab.)
(BABAR	Collab.) Collab.)

-	_	_			_		_	_
R	탇	티	ID ID	=	59	93 36	0	9
R	F	F	ID	=	5	95	6	7
R	E	Η	ID	=	58	36	2	6
R	Ē	F		=	58	37	8	8
	F	F	טו חו	=	5	93 93	3 2	45
R	Ē	F١	ID	=	50	91	9	3
R	Ē	F	ĪD		58	86	2	7
R	Ē	F	ID	=	59	90	1	6
R	탇	티		=	5	91	1	1
R	F	F	ID		5	90 91	4	3
R	Ē	F	ĪD	=	5	92	4	ğ
R	Ē	F	ID	=	59	92	5	õ
R								
R		FI FI		=	5	94 24	.0	a
R		F١	ID	=	50	95	6	6
	Ē	F	D	=	59	95	6	8
R	Ē				58	31	8	6
R	F	F	in in	_	5	22	7	9 6
P	F	F	D	=	5	32	9	õ
R	Ē	F	D		58	33	3	5
R	Ē	F		!=	58	33	3	6
R	Ē	F	ID ID		5	11 78	с Я	4
R	Е	F١	ID	=	58	33	4	8
R	Ē	F	D	=	58	86	5	8
	Ë	F		=	5	32	3	3
R	E	F		=	5	76 76	7	/ 8
R	Ē	F	D		5	77	2	ğ
R	Ē	F	D	=	5	73	5	2
R	Ē	F	D	=	5	74	2	6
R	E	티			5	13 70	0	0 1
R	È	F	D	=	5	71	5	6
	Ē	F	D		5	72	9	6
R		F	D	=	5	72	6	5
R	E	티		=	50	59 72	0	1
R		F	ID		5	13 74	3	3
R		FI	ID	=	5	70	2	2
R		F	D	=	5	71	9	6
R	_	F			5	72	0	9
R		FI FI	ID ID	=	5	12 72	2	0 6
R	Е		Iυ	=	3	20	1	т
R	Ē	F١	ID	=	56	66	7	5
	E			=	5	71	7	7
		F			50	50 68	7	a
R	Ē	F	D	=	5	59	0	ğ
R	Ē	F	D		5	64	4	0
R	Ë			=	5	55	0	4
R	F	F	U ID	=	5	20 58	6	26
R	E	FI	ID		56	۶a	13	n
	Ē	F	D	=	5	65	2	7
R			n) == =	Ē.	25	2	1
R	_	F	U ID	=	5	20 65	6	1
	Ē	F	D	_	5	51	1	ŝ
R	Ē	FI	ID		56	۶1	6	a
R				=	5	52	0	2
R R		FI FI	U I D		5	57 58	٥ ۵	4 0
		F١	D	=	5	57	0	3
R	Ē	FI	ID	=	5	57	1	3
R	=	F		=	50		6	0
	E	ri F ⁱ	םו חו	=	5	57 57	8	3 7
		F	D	_	5	50	7	ż
R	Е	F	D	=	5	52	7	1
		FI E	D	=	54	49	3	3
R	E	FI FI	u U	=	5	50 51	3	0
R	Ē	F	D		5	51	ģ	ĭ
R	E	F	D		5	51	9	2
R	Ē	FI		=	5	51	9	7
R	E			=	5	21	8	4
R		F١	ID	=	5	51	8	6
R	E			_	5	J T	U	
R				=	E 1	- 6	7	2
R	E E	FI FI	U ID	=	5! 5!	50 50	7	3 4
R		F I		=	<u> </u>	วเม	ч	
R	Ē	F١	D	=	5	54	3	5
R	E	Fl	D	=	54	49	4	9

LEES	13L	PR D88 031701
LEES	13R	PR D88 071102
AAD	12AI	PL B716 1
AAD	12AQ	
AAD	12N	EPJ C72 2157
AALTONEN	12AB	PR D85 092001
AALTONEN	12AN	PL B717 173
AALTONEN	12AQ	PR D86 091101
AALTONEN	12U	PR D85 012007
AALTONEN	12X	PR D85 032005
ABAZOV	12G	PL B710 569
ABLIKIM	12	PR D85 092012
BAAK	12	EPJ C72 2003
BAAK	12A	EPJ C72 2205
CHATRCHYAN	12AO	JHEP 1209 111
CHATRCHYAN	12C	JHEP 1203 081
CHATRCHYAN	12D	JHEP 1204 036
CHATRCHYAN	12E	PL B710 91
CHATRCHYAN	12G	PL B710 403
CHATRCHYAN	12H	PRL 108 111804
CHATRCHYAN	121	JHEP 1203 040
CHATRCHYAN		PL B713 68
CHATRCHYAN		PL B716 30
CHATRCHYAN		PRL 109 121801
AALTONEN	11P	PRL 107 031801
ABAZOV	11K	PL B698 97
ABAZOV	11W	PRL 107 121801
ABOUZAID	11A	PRL 107 201803
DEL-AMO-SA		PRL 107 021804
LEES	11H	PRL 107 221803
ABBIENDI	10	PL B682 381
ANDREAS	10	JHEP 1008 003
ERLER	10A	PR D81 051301
HYUN	10	PRL 105 091801
SCHAEL	10	JHEP 1005 049
AALTONEN	09AB	PRL 103 061803
AALTONEN	09AR	
ABAZOV	09V	PRL 103 061801
AUBERT	09P	PRL 103 181801
AUBERT	09Z	PRL 103 081803
	09	PRL 102 051802
ABAZOV ABDALLAH	08U 08B	PRL 101 051801 EPJ C54 1
Also	UOD	EPJ C54 1 EPJ C56 165 (errat.)
LOVE	08	PRL 101 151802
ABBIENDI	07	EPJ C49 457
BESSON	07	PRL 98 052002
SCHAEL	07	EPJ C49 439
LEP-SLC	06	PRPL 427 257
SCHAEL	06B	EPJ C47 547
ABBIENDI	05A	EPJ C40 317
ABDALLAH	05D	EPJ C44 147
ACHARD	05	PL B609 35
ACOSTA	05Q	PR D72 072004
PARK	05	PRL 94 021801
ABBIENDI	04K	PL B597 11
ABBIENDI	04M	EPJ C37 49
ABDALLAH	04	EPJ C32 145
ABDALLAH	04B	EPJ C32 475
ABDALLAH	04L	EPJ C35 313
ABDALLAH	04O	EPJ C38 1
ACHARD	04B	PL B583 14
ACHARD	04F	PL B589 89
ABBIENDI	03F	EPJ C27 311
ABBIENDI	03G	EPJ C27 483
ACHARD	03C	PL B568 191
ABBIENDI	02D	EPJ C23 397
ABBIENDI	02F	PL B544 44 PL B534 28
ACHARD ACHARD	02C 02H	PL B534 28 PL B545 30
AKEROYD	0211	PR D66 037702
HEISTER	02	PL B526 191
HEISTER	02L	PL B544 16
HEISTER	02M	PL B544 25
ABBIENDI	01E	EPJ C18 425
ABREU	01F	PL B507 89
AFFOLDER	01H	PR D64 092002
BARATE	01C	PL B499 53
ACCIARRI	00M	PL B485 85
ACCIARRI	00R	PL B489 102
ACCIARRI	00S	PL B489 115
BARATE	00L	PL B487 241
ABBIENDI	99E	EPJ C7 407
ABBIENDI	990	PL B464 311
ABBOTT	99B	PRL 82 2244
ABREU	99P	PL B458 431
ABBOTT	98	PRL 80 442
ACKERSTAFF	98S	EPJ C5 19
ACKERSTAFF	98Y	PL B437 218
GONZALEZ	98B	PR D57 7045
KRAWCZYK	97	PR D55 6968
ALEXANDER	96H	ZPHY C71 1
ABREU	95H	ZPHY C67 69
BALEST	95	PR D51 2053
PICH ANTREASYAN	92 90C	NP B388 31 PL B251 204
ANTREASTAN	300	I L DZJI 204

J.P. Lees <i>et al.</i>	(BABAR Collab.)
J.P. Lees <i>et al.</i> G. Aad <i>et al.</i>	(BABAR Collab.) (ATLAS Collab.)
G. Aad et al.	(ATLAS Collab.)
G. Aad <i>et al.</i>	(ATLAS Collab.)
T. Aaltonen <i>et al.</i>	(CDF Collab.)
T. Aaltonen <i>et al.</i>	(CDF Collab.)
T. Aaltonen <i>et al.</i>	(CDF and D0 Collabs.)
T. Aaltonen <i>et al.</i>	(CDF Collab.)
T. Aaltonen <i>et al.</i> V.M. Abazov <i>et al.</i>	(CDF Collab.) (D0 Collab.)
M. Ablikim <i>et al.</i>	(BESIII Collab.)
M. Baak <i>et al.</i>	(Gfitter Group)
M. Baak <i>et al.</i>	(Gfitter Group)
S. Chatrchyan <i>et al.</i>	(CMS Collab.)
S. Chatrchyan <i>et al.</i>	(CMS Collab.)
S. Chatrchyan <i>et al.</i> S. Chatrchyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
S. Chatrchyan <i>et al.</i>	(CMS Collab.)
S. Chatrchyan <i>et al.</i>	(CMS Collab.)
S. Chatrchyan et al.	(CMS Collab.)
S. Chatrchyan <i>et al.</i>	(CMS Collab.)
S. Chatrchyan <i>et al.</i>	(CMS Collab.)
S. Chatrchyan <i>et al.</i> T. Aaltonen <i>et al.</i>	(CMS Collab.) (CDF Collab.)
V.M. Abazov <i>et al.</i>	(DP Collab.)
V.M. Abazov et al.	(D0 Collab.)
E. Abouzaid et al.	(KTeV Collab.)
P. del Amo Sanchez et al.	(BÀBAR Collab.)
J.P. Lees <i>et al.</i>	(BABAR Collab.)
G. Abbiendi <i>et al.</i>	(OPAL Collab.)
S. Andreas <i>et al.</i> J. Erler	(DESY) (UNAM)
H.J. Hyun <i>et al.</i>	(BELLE Collab.)
S. Schael <i>et al.</i>	(ALEPH Collab.)
T. Aaltonen et al.	(CDF Collab.)
T. Aaltonen <i>et al.</i>	(CDF Collab.)
V.M. Abazov et al.	(D0 Collab.)
B. Aubert <i>et al.</i>	(BABAR Collab.)
B. Aubert <i>et al.</i>	(BABAR Collab.)
Y.C. Tung <i>et al.</i> V.M. Abazov <i>et al.</i>	(KEK E391a Collab.) (D0 Collab.)
J. Abdallah <i>et al.</i>	(DELPHI Collab.)
J. Abdallah <i>et al.</i>	(DELPHI Collab.)
W. Love et al.	(CLEO Collab.)
G. Abbiendi <i>et al.</i>	(OPAL Collab.)
D. Besson <i>et al.</i>	(CLEO Collab.)
S. Schael <i>et al.</i> ALEPH, DELPHI, L3, OPAL,	(ALEPH Collab.)
S. Schael <i>et al.</i>	(LEP Collabs.)
G. Abbiendi et al.	(OPAL Collab.)
J. Abdallah <i>et al.</i>	(DELPHI Collab.)
P. Achard <i>et al.</i>	(L3 Collab.)
D. Acosta <i>et al.</i> H.K. Park <i>et al.</i>	(CDF Collab.)
G. Abbiendi <i>et al.</i>	(FNAL HyperCP Collab.) (OPAL Collab.)
G. Abbiendi <i>et al.</i>	(OPAL Collab.)
J. Abdallah <i>et al.</i>	(DELPHI Collab.)
J. Abdallah <i>et al.</i>	(DELPHI Collab.)
J. Abdallah <i>et al.</i>	(DELPHI Collab.)
J. Abdallah <i>et al.</i>	(DELPHI Collab.)
P. Achard <i>et al.</i> P. Achard <i>et al.</i>	(L3 Collab.) (L3 Collab.)
G. Abbiendi <i>et al.</i>	
G. Abbiendi et al.	(OPAL Collab.) (OPAL Collab.)
P. Achard <i>et al.</i>	(L3 Collab.)
G. Abbiendi <i>et al.</i>	(OPAL Collab.)
G. Abbiendi <i>et al.</i> P. Achard <i>et al.</i>	(OPAL Collab.) (L3 Collab.)
P. Achard <i>et al.</i> P. Achard <i>et al.</i>	(L3 Collab.)
A.G. Akeroyd <i>et al.</i>	
A. Heister et al.	(LS Collab.)
	(ALEPH Collab.)
A. Heister <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.)
A. Heister <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.)
A. Heister <i>et al.</i> G. Abbiendi <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.)
A. Heister <i>et al.</i> G. Abbiendi <i>et al.</i> P. Abreu <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.)
A. Heister <i>et al.</i> G. Abbiendi <i>et al.</i> P. Abreu <i>et al.</i> T. Affolder <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.)
A. Heister <i>et al.</i> G. Abbiendi <i>et al.</i> P. Abreu <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (ALEPH Collab.)
A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al.	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (ALEPH Collab.) (L3 Collab.) (L3 Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (ALEPH Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. R. Barate et al. R. Barate et al. 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (ALEPH Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Barate et al. G. Abbiendi et al. 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (ALEPH Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. G. Abbiendi et al. G. Abbiendi et al. 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (ALEPH Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Barate et al. G. Abbiendi et al. 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (ALEPH Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. G. Abbiendi et al. G. Abbiendi et al. B. Abbott et al. B. Abbott et al. 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (ALEPH Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.) (DD Collab.) (DELPHI Collab.) (DELPHI Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. G. Abbiendi et al. G. Abbiendi et al. B. Abbott et al. Abcust et al. 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (OPAL Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELCHI Collab.) (DAL Collab.) (DPAL Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. R. Barate et al. R. Barate et al. G. Abbiendi et al. G. Abbiendi et al. B. Abbott et al. P. Abreu et al. B. Abbott et al. K. Ackerstaff et al. K. Ackerstaff et al. 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (ALEPH Collab.) (L3 Collab.) (L3 Collab.) (J3 Collab.) (OPAL Collab.) (OPAL Collab.) (D0 Collab.) (D0 Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. G. Abbiendi et al. G. Abbiendi et al. B. Abbott et al. B. Abbott et al. B. Abbott et al. K. Ackerstaff et al. K. Ackerstaff et al. M.C. Gonzalez-Garcia, S.M. L 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (DAL Collab.) (DAL Collab.) (DAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. G. Abbiendi et al. G. Abbiendi et al. B. Abbott et al. B. Abbott et al. K. Ackerstaff et al. M. Ackerstaff et al. M. C. Gonzalez-Garcia, S.M. L M. Krawczyk, J. Zochowski 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (DPAL Collab.) (OPAL Collab.) (DPAL Collab.) (DELPHI Collab.) (DPAL Collab.) (OPAL Collab.) (MARS)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. G. Abbiendi et al. G. Abbiendi et al. B. Abbott et al. B. Abbott et al. B. Abbott et al. K. Ackerstaff et al. K. Ackerstaff et al. M. C. Gonzalez-Garcia, S.M. L M. Krawczyk, J. Zochowski G. Alexander et al. 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (DPAL Collab.) (OPAL Collab.) (DPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (DPAL Collab.) (OPAL Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. G. Abbiendi et al. G. Abbiendi et al. B. Abbott et al. B. Abbott et al. K. Ackerstaff et al. M. Ackerstaff et al. M. C. Gonzalez-Garcia, S.M. L M. Krawczyk, J. Zochowski 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (DPAL Collab.) (OPAL Collab.) (DPAL Collab.) (DPAL Collab.) (DPAL Collab.) (DPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (DAL Collab.) (DAL Collab.) (DAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. G. Abbiendi et al. G. Abbiendi et al. B. Abbott et al. B. Abbott et al. K. Ackerstaff et al. M. Ackierstaff et al. M. C. Gonzalez-Garcia, S.M. L M. Krawczyk, J. Zochowski G. Alexander et al. R. Balet et al. R. Balet et al. Abreu et al. Ackerstaff et al. M. C. Gonzalez-Garcia, S.M. L M. Krawczyk, J. Zochowski G. Alexander et al. R. Balet et al. A. Pich, J. Prades, P. Yepes 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (DPAL Collab.) (OPAL Collab.) (DPAL Collab.) (DPAL Collab.) (DPAL Collab.) (DPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (CERN, CPPM)
 A. Heister et al. G. Abbiendi et al. P. Abreu et al. T. Affolder et al. R. Barate et al. M. Acciarri et al. M. Acciarri et al. M. Acciarri et al. G. Abbiendi et al. G. Abbiendi et al. B. Abbott et al. B. Abbott et al. K. Ackerstaff et al. K. Ackerstaff et al. M.C. Gonzalez-Garcia, S.M. L. M. Krawczyk, J. Zochowski G. Alexander et al. P. Abreu et al. 	(ALEPH Collab.) (ALEPH Collab.) (ALEPH Collab.) (OPAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (CDF Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (DPAL Collab.) (OPAL Collab.) (DPAL Collab.) (DPAL Collab.) (DPAL Collab.) (DPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (DAL Collab.) (DAL Collab.) (DAL Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.) (DELPHI Collab.)

REFID=55167	
REFID=55451 REFID=54198	
REFID=54226	
REFID=54130 REFID=54367	
REFID=54507 REFID=54602	
REFID=54701	
REFID=54360 REFID=54363	
REFID=54162	
REFID=54265 REFID=54138	
REFID=54615	
REFID=54571 REFID=54087	
REFID=54088	
REFID=54093 REFID=54095	
REFID=54096	
REFID=54097 REFID=54178	
REFID=54181	
REFID=54253 REFID=16451	
REFID=16479	
REFID=53816 REFID=53842	
REFID=16495	
REFID=53877 REFID=53163	
REFID=53623	
REFID=53389 REFID=53372	
REFID=53342	
REFID=52933	
REFID=53081 REFID=52924	
REFID=53062	
REFID=52930 REFID=52872	
REFID=52399	
REFID=52480 REFID=52483	
REFID=52565	
REFID=51729 REFID=51620	
REFID=51728	
	ROR=1;ERROR=2
REFID=51219;ER REFID=51390 REFID=50673	ROR=1;ERROR=2
REFID=51219;ER REFID=51390 REFID=50673 REFID=50861	ROR=1;ERROR=2
REFID=51219;ER REFID=51390 REFID=50673 REFID=50861 REFID=50476 REFID=50890	ROR=1;ERROR=2
REFID=51219;ER REFID=51390 REFID=50673 REFID=50861 REFID=50476	ROR=1;ERROR=2
REFID=51219;ER REFID=51390 REFID=50673 REFID=50861 REFID=50476 REFID=50480 REFID=49983 REFID=49983 REFID=50150	ROR=1;ERROR=2
REFID=51219;ER REFID=51390 REFID=50673 REFID=50861 REFID=50476 REFID=50480 REFID=50480 REFID=49983 REFID=50150 REFID=49681	ROR=1;ERROR=2
REFID=51219;ER REFID=50673 REFID=50673 REFID=50861 REFID=50476 REFID=50480 REFID=49983 REFID=49981 REFID=49681 REFID=49843 REFID=49971	ROR=1;ERROR=2
REFID=51219;ER REFID=50673 REFID=50673 REFID=50861 REFID=50476 REFID=50480 REFID=49983 REFID=49983 REFID=49981 REFID=49843 REFID=49971 REFID=50304	ROR=1;ERROR=2
REFID=51219;ER REFID=51390 REFID=50861 REFID=50861 REFID=50480 REFID=50480 REFID=50480 REFID=49983 REFID=49981 REFID=499813 REFID=49971 REFID=50304 REFID=49904	ROR=1;ERROR=2
REFID=51219;ER REFID=50673 REFID=50673 REFID=50861 REFID=50476 REFID=50480 REFID=50480 REFID=49983 REFID=49981 REFID=49843 REFID=49971 REFID=49971 REFID=49819 REFID=49819 REFID=49975	ROR=1;ERROR=2
REFID=51219;ER REFID=50673 REFID=50673 REFID=50861 REFID=50480 REFID=50480 REFID=50480 REFID=49983 REFID=49681 REFID=499681 REFID=49971 REFID=49971 REFID=49978 REFID=49375 REFID=49378 REFID=49525	ROR=1;ERROR=2
REFID=51219;ER REFID=50673 REFID=506673 REFID=50861 REFID=50860 REFID=50480 REFID=49983 REFID=49983 REFID=499681 REFID=499681 REFID=49971 REFID=49971 REFID=49904 REFID=49375 REFID=49378 REFID=49378 REFID=49525 REFID=49741	ROR=1;ERROR=2
REFID=51219;ER REFID=50673 REFID=50673 REFID=50861 REFID=50476 REFID=50476 REFID=50480 REFID=49983 REFID=49983 REFID=49981 REFID=49971 REFID=49971 REFID=49904 REFID=49375 REFID=49375 REFID=49525 REFID=48741 REFID=4816	ROR=1;ERROR=2
REFID=51219;ER REFID=51390 REFID=50861 REFID=50861 REFID=50480 REFID=50480 REFID=50480 REFID=49983 REFID=49981 REFID=49681 REFID=49843 REFID=49971 REFID=49971 REFID=49974 REFID=49975 REFID=49378 REFID=49378 REFID=49525 REFID=48741 REFID=48946 REFID=48645 REFID=48645	ROR=1;ERROR=2
$\begin{array}{c} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}503673 \\ {\sf REFID}{=}503671 \\ {\sf REFID}{=}503661 \\ {\sf REFID}{=}50360 \\ {\sf REFID}{=}50480 \\ {\sf REFID}{=}50480 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}499843 \\ {\sf REFID}{=}499681 \\ {\sf REFID}{=}499681 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49975 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49376 \\ {\sf REFID}{=}493645 \\ {\sf REFID}{=}48902 \\ {\sf REFID}{=}48902 \\ {\sf REFID}{=}48902 \\ {\sf REFID}{=}48936 \\ {\sf REFID}{=}48530 \\ \end{array}$	ROR=1;ERROR=2
$\begin{array}{c} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50673 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}50480 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}499843 \\ {\sf REFID}{=}499681 \\ {\sf REFID}{=}499681 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49973 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48908 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48914 \\ \end{array}$	ROR=1;ERROR=2
$\begin{array}{c} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50673 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50876 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}50480 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}499843 \\ {\sf REFID}{=}499843 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49975 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}48741 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48962 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48914 \\ {\sf REFID}{=}48914 \\ {\sf REFID}{=}48914 \\ {\sf REFID}{=}48970 \\ {\sf REFID}{=}48070 \\ \end{array}$	ROR=1;ERROR=2
REFID=51219;ER REFID=51390 REFID=50861 REFID=50861 REFID=50476 REFID=50480 REFID=50480 REFID=49983 REFID=49983 REFID=49681 REFID=49843 REFID=49971 REFID=49971 REFID=49974 REFID=49974 REFID=49975 REFID=49375 REFID=49375 REFID=48916 REFID=48962 REFID=48914 REFID=48070 REFID=48071 REFID=48071 REFID=48071 REFID=48071	ROR=1;ERROR=2
$\begin{array}{l} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50673 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}50480 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}499843 \\ {\sf REFID}{=}499843 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49973 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48914 \\ {\sf REFID}{=}48914 \\ {\sf REFID}{=}48070 \\ {\sf REFID}{=}48392 \\ {\sf REFID}{=}48046 \\ \end{array}$	ROR=1;ERROR=2
$\begin{array}{c} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50673 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}499843 \\ {\sf REFID}{=}499681 \\ {\sf REFID}{=}499681 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49975 \\ {\sf REFID}{=}48919 \\ {\sf REFID}{=}48741 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48070 \\ {\sf REFID}{=}48070 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}48046 \\ {\sf REFID}{=}47719 \\ \end{array}$	ROR=1;ERROR=2
$\begin{array}{c} {\sf REFID}{=}51219; {\sf ER}\\ {\sf REFID}{=}50673\\ {\sf REFID}{=}50861\\ {\sf REFID}{=}50876\\ {\sf REFID}{=}50476\\ {\sf REFID}{=}50476\\ {\sf REFID}{=}50476\\ {\sf REFID}{=}49983\\ {\sf REFID}{=}49983\\ {\sf REFID}{=}49983\\ {\sf REFID}{=}499843\\ {\sf REFID}{=}49971\\ {\sf REFID}{=}49971\\ {\sf REFID}{=}49971\\ {\sf REFID}{=}49971\\ {\sf REFID}{=}49975\\ {\sf REFID}{=}49375\\ {\sf REFID}{=}48916\\ {\sf REFID}{=}48916\\ {\sf REFID}{=}48916\\ {\sf REFID}{=}48913\\ {\sf REFID}{=}48913\\ {\sf REFID}{=}48970\\ {\sf REFID}{=}48070\\ {\sf REFID}{=}48070\\ {\sf REFID}{=}48070\\ {\sf REFID}{=}48046\\ {\sf REFID}{=}47759\\ {\sf REFID}{=}47760\\ {\sf REFID}{=}4760\\ {\sf REFID}{=}4760\\ {\sf REFID}{=}4760\\ {\sf REFID}{=}47760\\ {\sf REFID}{=}4760\\ {\sf REFID}{$	ROR=1;ERROR=2
$\begin{array}{l} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50673 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}50480 \\ {\sf REFID}{=}50480 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49981 \\ {\sf REFID}{=}499819 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}48919 \\ {\sf REFID}{=}48942 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}47719 \\ {\sf REFID}{=}47759 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47722 \\ {\sf REFID}{=}46641 \\ {\sf REFID}{$	ROR=1;ERROR=2
$\begin{array}{c} {\sf REFID}{=}51219; {\sf ER}\\ {\sf REFID}{=}50673\\ {\sf REFID}{=}50861\\ {\sf REFID}{=}50861\\ {\sf REFID}{=}50476\\ {\sf REFID}{=}50480\\ {\sf REFID}{=}50480\\ {\sf REFID}{=}49983\\ {\sf REFID}{=}49983\\ {\sf REFID}{=}49983\\ {\sf REFID}{=}499681\\ {\sf REFID}{=}499681\\ {\sf REFID}{=}49971\\ {\sf REFID}{=}49971\\ {\sf REFID}{=}49971\\ {\sf REFID}{=}49978\\ {\sf REFID}{=}49975\\ {\sf REFID}{=}49378\\ {\sf REFID}{=}49378\\ {\sf REFID}{=}49378\\ {\sf REFID}{=}48916\\ {\sf REFID}{=}48962\\ {\sf REFID}{=}48913\\ {\sf REFID}{=}48913\\ {\sf REFID}{=}48913\\ {\sf REFID}{=}48070\\ {\sf REFID}{=}48392\\ {\sf REFID}{=}487759\\ {\sf REFID}{=}47760\\ {\sf REFID}{=}47760\\ {\sf REFID}{=}47722\\ {\sf REFID}{=}47641\\ {\sf REFID}{=}47240\\ \end{array}$	ROR=1;ERROR=2
$\begin{array}{l} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50673 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50876 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}499843 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49975 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}48741 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48370 \\ {\sf REFID}{=}48370 \\ {\sf REFID}{=}48370 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}47759 \\ {\sf REFID}{=}47750 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47240 \\ {\sf REFID}{=}47647 \\ {\sf REFID}{=}47240 \\ {\sf REFID}{=}47647 \\ {\sf REFID}{=}47240 \\ {\sf REFID}{=}47647 \\ {\sf REFID}{=}47240 \\ {\sf REFID}{=}47240 \\ {\sf REFID}{=}47240 \\ {\sf REFID}{=}47240 \\ {\sf REFID}{=}47647 \\ {\sf REFID}{=}47240 \\ {\sf REFID}{=}47647 \\ {\sf REFID}{=}47750 \\ {\sf REFID}{$	ROR=1;ERROR=2
$\begin{array}{l} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50673 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50480 \\ {\sf REFID}{=}50480 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49981 \\ {\sf REFID}{=}49981 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49975 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}48919 \\ {\sf REFID}{=}48942 \\ {\sf REFID}{=}48942 \\ {\sf REFID}{=}48942 \\ {\sf REFID}{=}48943 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47762 \\ {\sf REFID}{=}47762 \\ {\sf REFID}{=}47764 \\ {\sf REFID}{=}47764 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47740 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=$	ROR=1;ERROR=2
$\begin{array}{l} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50673 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}50890 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}499843 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}48919 \\ {\sf REFID}{=}48741 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48392 \\ {\sf REFID}{=}48070 \\ {\sf REFID}{=}48070 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}47759 \\ {\sf REFID}{=}47759 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47740 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}4760 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=$	ROR=1;ERROR=2
$\begin{array}{l} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50361 \\ {\sf REFID}{=}50361 \\ {\sf REFID}{=}50361 \\ {\sf REFID}{=}50380 \\ {\sf REFID}{=}50480 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}48741 \\ {\sf REFID}{=}48942 \\ {\sf REFID}{=}48946 \\ {\sf REFID}{=}48946 \\ {\sf REFID}{=}48946 \\ {\sf REFID}{=}48946 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}47759 \\ {\sf REFID}{=}47759 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47740 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}46641 \\ {\sf REFID}{=}46641 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}46153 \\ {\sf REFID}{=}46153 \\ {\sf REFID}{=}46198 \\ {\sf REFID}{=}46198 \\ \end{array}$	ROR=1;ERROR=2
$\begin{array}{l} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50861 \\ {\sf REFID}{=}50876 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}499843 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49975 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48918 \\ {\sf REFID}{=}48918 \\ {\sf REFID}{=}48913 \\ {\sf REFID}{=}48914 \\ {\sf REFID}{=}48070 \\ {\sf REFID}{=}48070 \\ {\sf REFID}{=}48070 \\ {\sf REFID}{=}48070 \\ {\sf REFID}{=}47750 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47740 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}46647 \\ {\sf REFID}{=}46153 \\ {\sf REFID}{=}46198 \\ {\sf REFID}{=}45466 \\ {\sf REFID}{=}45466 \\ {\sf REFID}{=}45466 \\ {\sf REFID}{=}4566 \\ {\sf REFID$	ROR=1;ERROR=2
$\begin{array}{l} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50361 \\ {\sf REFID}{=}50361 \\ {\sf REFID}{=}50361 \\ {\sf REFID}{=}50380 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}50390 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}499819 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}48741 \\ {\sf REFID}{=}48741 \\ {\sf REFID}{=}48942 \\ {\sf REFID}{=}48943 \\ {\sf REFID}{=}48645 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48392 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}47759 \\ {\sf REFID}{=}47779 \\ {\sf REFID}{=}47779 \\ {\sf REFID}{=}47770 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47740 \\ {\sf REFID}{=}47240 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=}454661 \\ {\sf REFID}{=}46153 \\ {\sf REFID}{=}46198 \\ {\sf REFID}{=}446198 \\ {\sf REFID}{=}44822 \\ {\sf REFID}{=}44368 \\ {\sf REFID$	ROR=1;ERROR=2
$\begin{array}{l} {\sf REFID=51219; ER} \\ {\sf REFID=50673} \\ {\sf REFID=50673} \\ {\sf REFID=50861} \\ {\sf REFID=50890} \\ {\sf REFID=50890} \\ {\sf REFID=50890} \\ {\sf REFID=49983} \\ {\sf REFID=49983} \\ {\sf REFID=49983} \\ {\sf REFID=499819} \\ {\sf REFID=49971} \\ {\sf REFID=49975} \\ {\sf REFID=49975} \\ {\sf REFID=49378} \\ {\sf REFID=49975} \\ {\sf REFID=48741} \\ {\sf REFID=48916} \\ {\sf REFID=48916} \\ {\sf REFID=48962} \\ {\sf REFID=48916} \\ {\sf REFID=48166} \\ {\sf REFID=44368} \\ {\sf REFID=44368} \\ {\sf REFID=44368} \\ {\sf REFID=44366} \\ {\sf REFID=44366} \\ {\sf REFID=443166} \\ {\sf REFID=443166} \\ {\sf REFID=443166} \\ {\sf REFID=443166$	ROR=1;ERROR=2
$\begin{array}{l} {\sf REFID}{=}51219; {\sf ER} \\ {\sf REFID}{=}50361 \\ {\sf REFID}{=}50361 \\ {\sf REFID}{=}50361 \\ {\sf REFID}{=}50380 \\ {\sf REFID}{=}50476 \\ {\sf REFID}{=}50390 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}49983 \\ {\sf REFID}{=}499819 \\ {\sf REFID}{=}49971 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}49375 \\ {\sf REFID}{=}48741 \\ {\sf REFID}{=}48741 \\ {\sf REFID}{=}48942 \\ {\sf REFID}{=}48943 \\ {\sf REFID}{=}48645 \\ {\sf REFID}{=}48916 \\ {\sf REFID}{=}48392 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}48071 \\ {\sf REFID}{=}47759 \\ {\sf REFID}{=}47779 \\ {\sf REFID}{=}47779 \\ {\sf REFID}{=}47770 \\ {\sf REFID}{=}47760 \\ {\sf REFID}{=}47740 \\ {\sf REFID}{=}47240 \\ {\sf REFID}{=}47040 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=}45800 \\ {\sf REFID}{=}454661 \\ {\sf REFID}{=}46153 \\ {\sf REFID}{=}46198 \\ {\sf REFID}{=}446198 \\ {\sf REFID}{=}44822 \\ {\sf REFID}{=}44368 \\ {\sf REFID$	ROR=1;ERROR=2