See the rel Dynamical the H^0	NODE=S057					
The latest unpublished results are described in "Dynamical Electroweak Symmetry Breaking" review.						NODE=S057200
in Mo	odels of	MASS LIMITS fo Dynamical Electi	or Res owea	ionanco k Symi	es metry Breaking	NODE=S057DSB
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	NODE=S057DSB
• • • We do not i	use the fo	llowing data for ave	rages,	fits, lim	 its, etc. ● ● ●	
>3900	95	¹ AAD ² AAD ³ AAD	20an 20w 16w	ATLS ATLS ATLS	top-color Z' $ ho_T ightarrow W \pi_T ightarrow \ell u q \overline{q}$ color octet vector resonance	
>2400	95	⁴ KHACHATRY ⁵ AAD	16e 15ae	CMS ATLS	top-color Z' $h \rightarrow \pi_V \pi_V$	
>1800	95	⁶ AAD ⁷ AAD ⁸ AAD 9 AAU	15AC 15BE 15Q	ATLS ATLS ATLS	top-color Z' $pp \rightarrow \rho_T / a_{1T} \rightarrow Wh \text{ or}$ Zh $h \rightarrow \pi_V \pi_V$ $h \rightarrow \pi_V \pi_V$	
>1140	95	¹⁰ KHACHATRY ¹¹ KHACHATRY	15C 15W	CMS CMS	$\begin{array}{l} n \to \pi_V \pi_V \\ \rho_T \to WZ \\ H \to \pi_V \pi_V \end{array}$	
none 200–700,	95	¹² AAD	14AT	ATLS	$pp \rightarrow \omega_T \rightarrow Z\gamma$	
750–890 none 275–960	95	¹² AAD 13 AAD	14AT 14V	ATLS	$pp \rightarrow a_T \rightarrow W\gamma$ color singlet techni-vector	OCCUR=2
> 703		¹⁴ AAD	13AN	ATLS	$pp \rightarrow a_T \rightarrow W\gamma$	
> 494		¹⁵ AAD	13AN	ATLS	$pp \rightarrow \omega_T \rightarrow Z\gamma$	OCCUR=2
none 500–1740	95	¹⁰ AAD	13AG	ATLS	top-color Z'	
>1300	95	¹⁰ CHATRCHYA	N 13AF	CMS	top-color Z'	
>2100	95	¹⁸ BAAK	12 N 13BN	RVUF	QCD-like technicolor	
none 167–687	95	¹⁹ CHATRCHYA	N 12AF	CMS	$\rho_T \rightarrow WZ$	
> 805	95	¹⁶ AALTONEN	11AC	CDF	top-color Z'	
> 805	95	 ¹⁶ AALTONEN ²⁰ CHIVUKULA ²¹ CHIVUKULA ²² AALTONEN 	11ae 11 11a 10i	CDF RVUE RVUE CDF	top-color Z' top-Higgs techini- π $p\overline{p} \rightarrow \rho_T / \omega_T \rightarrow W \pi_T$	
none 208–408	95	²³ ABAZOV ²⁴ ABAZOV	10A 07I	D0 D0	$ \begin{array}{l} \rho_T \to WZ \\ p_{\overline{p}} \to \rho_T / \omega_T \to W \pi_T \end{array} $	
> 280	95	²⁵ ABULENCIA ²⁶ CHEKANOV	05А 02в	CDF ZEUS	$ ho_T ightarrow e^+ e^-$, $\mu^+ \mu^-$ color octet techni- π	
> 207	95	²⁷ ABAZOV	01 B	D0	$ ho_T ightarrow e^+ e^-$	
none 90–206.7	95	²⁸ ABDALLAH ²⁹ AFFOLDER	01 00F	DLPH CDF	$e^+e^- \rightarrow \rho_T$ color-singlet techni- ρ , $\rho_T \rightarrow W \pi_T$, $2\pi_T$	
> 600	95	³⁰ AFFOLDER	00K	CDF	color-octet techni- ρ , $\rho_{T8} \rightarrow 2\pi_{LQ}$	
none 350–440	95	³¹ ABE	99F	CDF	$ \begin{array}{c} \text{color-octet techni-}\rho,\\ \rho_{T8} \rightarrow \ \overline{b} b \end{array} $	
000 400	05	32 ABE	99N	CDF	techni- ω , $\omega_T \rightarrow \gamma \overline{b} b$	
none 200–480	95	ST ARE	97G	CDF	color-octet techni- $ ho$, $ ho_{T8} ightarrow 2 {\rm jets}$	

Technicolor

¹ AAD 20AM search for a top-color Z' decaying to $t\bar{t}$ in pp collisions at $\sqrt{s} = 13$ TeV. The quoted limit is for $\Gamma_{Z'}/M_{Z'} = 0.01$. The limit becomes $M_{Z'} > 4700$ GeV for $\Gamma_{Z'}/M_{Z'} = 0.03$.

² AAD 20W search for techni- ρ decaying to $\pi_T W$ in pp collisions at $\sqrt{s} = 13$ TeV. See their Fig. 5a for limits on $\sigma \cdot B$.

³AAD 16W search for color octet vector resonance decaying to *bB* in *pp* collisions at \sqrt{s} = 8 TeV. The vector like quark *B* is assumed to decay to *bH*. See their Fig.3 and Fig.4 for limits on $\sigma \cdot B$.

for limits on $\sigma \cdot B$. ⁴KHACHATRYAN 16E search for top-color Z' decaying to $t\bar{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'} = 0.012$. Also exclude $m_{Z'} < 2.9$ TeV for wider topcolor Z' with $\Gamma_{Z'}/m_{Z'}$ = 0.1. NODE=S057DSB;LINKAGE=Y

NODE=S057DSB;LINKAGE=W

NODE=S057DSB;LINKAGE=V

NODE=S057DSB;LINKAGE=T

NODE=S057DSB;LINKAGE=O

NODE=S057DSB:LINKAGE=P

NODE=S057DSB;LINKAGE=Q

NODE=S057DSB;LINKAGE=R

NODE=S057DSB;LINKAGE=S

NODE=S057DSB;LINKAGE=N

NODE=S057DSB:LINKAGE=U

NODE=S057DSB;LINKAGE=L

NODE=S057DSB;LINKAGE=J

NODE=S057DSB;LINKAGE=M

NODE=S057DSB;LINKAGE=AN

NODE=S057DSB;LINKAGE=LT

NODE=S057DSB;LINKAGE=K

NODE=S057DSB;LINKAGE=I

NODE=S057DSB;LINKAGE=CA

NODE=S057DSB;LINKAGE=CH

NODE=S057DSB;LINKAGE=CI

NODE=S057DSB;LINKAGE=AA

NODE=S057DSB;LINKAGE=AB

NODE=S057DSB;LINKAGE=VA

NODE=S057DSB;LINKAGE=BU

NODE=S057DSB;LINKAGE=KV

NODE=S057DSB;LINKAGE=BZ

NODE=S057DSB;LINKAGE=BD

NODE=S057DSB;LINKAGE=F

NODE=S057DSB;LINKAGE=G

NODE=S057DSB;LINKAGE=C

- ⁵ AAD 15AB search for long-lived hidden valley π_v particles which are produced in pairs by the decay of a scalar boson. π_v is assumed to decay into dijets. See their Fig. 10 for the limit on σB .
- ⁶ AAD 15AO search for top-color Z' decaying to $t\bar{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'} = 0.012$.
- ⁷ AAD 15BB search for minimal walking technicolor (MWT) isotriplet vector and axialvector resonances decaying to Wh or Zh. See their Fig. 3 for the exclusion limit in the MWT parameter space.
- ⁸ AAD 15Q search for long-lived hidden valley π_v particles which are produced in pairs by the decay of scalar boson. π_v is assumed to decay into dijets. See their Fig. 5 and Fig. 6 for the limit on σB .
- ⁹ AAIJ 15AN search for long-lived hidden valley π_V particles which are produced in pairs by the decay of scalar boson with a mass of 120GeV. π_V is assumed to decay into dijets. See their Fig. 4 for the limit on σB .
- ¹⁰ KHACHATRYAN 15C search for a vector techni-resonance decaying to WZ. The limit assumes $M_{\pi_T} = (3/4) M_{\rho_T} 25$ GeV. See their Fig.3 for the limit in $M_{\pi_T} M_{\rho_T}$ plane of the low scale technicolor model.
- ¹¹ KHACHATRYAN 15W search for long-lived hidden valley π_V particles which are produced in pairs in the decay of heavy higgs boson *H*. π_V is assumed to decay into $\ell^+ \ell^-$. See their Fig. 7 and Fig. 8 for the limits on σB .
- ¹² AAD 14AT search for techni- ω and techni-a resonances decaying to $V\gamma$ with $V = W(\rightarrow \ell\nu)$ or $Z(\rightarrow \ell^+\ell^-)$.
- ¹³AAD 14V search for vector techni-resonances decaying into electron or muon pairs in *pp* collisions at $\sqrt{s} = 8$ TeV. See their table IX for exclusion limits with various assumptions.
- ¹⁴ AAD 13AN search for vector techni-resonance a_T decaying into $W\gamma$.
- ¹⁵AAD 13AN search for vector techni-resonance ω_T decaying into $Z\gamma$.
- ¹⁶Search for top-color Z' decaying to $t\bar{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'} = 0.012$.
- ¹⁷ CHATRCHYAN 13AP search for top-color leptophobic Z' decaying to $t\bar{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'} = 0.012$.
- ¹⁸BAAK 12 give electroweak oblique parameter constraints on the QCD-like technicolor models. See their Fig. 28.
- ¹⁹CHATRCHYAN 12AF search for a vector techni-resonance decaying to WZ. The limit assumes $M_{\pi_T} = (3/4) M_{\rho_T} 25 \text{ GeV}$. See their Fig. 3 for the limit in $M_{\pi_T} M_{\rho_T}$ plane of the low scale technicolor model.
- 20 Using the LHC limit on the Higgs boson production cross section, CHIVUKULA 11 obtain a limit on the top-Higgs mass > 300 GeV at 95% CL assuming 150 GeV top-pion mass.
- ²¹Using the LHC limit on the Higgs boson production cross section, CHIVUKULA 11A obtain a limit on the technipion mass ruling out the region 110 GeV $< m_P < 2m_t$. Existence of color techni-fermions, top-color mechanism, and $N_{TC} \geq 3$ are assumed.
- ²² AALTONEN 10I search for the vector techni-resonances (ρ_T, ω_T) decaying into $W \pi_T$ with $W \to \ell \nu$ and $\pi_T \to b\overline{b}$, $b\overline{c}$, or $b\overline{u}$. See their Fig. 3 for the exclusion plot in $M_{\pi_T} - M_{\rho_T}$ plane.
- 23 ABAZOV 10A search for a vector techni-resonance decaying into WZ. The limit assumes $M_{\rho_T} < M_{\pi_T} + M_W$.
- ²⁴ ABAZOV 07I search for the vector techni-resonances (ρ_T , ω_T) decaying into $W \pi_T$ with $W \rightarrow e\nu$ and $\pi_T \rightarrow b\overline{b}$ or $b\overline{c}$. See their Fig. 2 for the exclusion plot in $M_{\pi_T} M_{\rho_T}$ plane.
- ²⁵ ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p\bar{p}$ collisions. at $\sqrt{s} = 1.96$ TeV. The limit assumes Technicolor-scale mass parameters $M_V = M_A = 500$ GeV.
- ²⁶ CHEKANOV 02B search for color octet techni- πP decaying into dijets in ep collisions. See their Fig. 5 for the limit on $\sigma(ep \rightarrow ePX) \cdot B(P \rightarrow 2j)$.
- ²⁷ABAZOV 01B searches for vector techni-resonances (ρ_T, ω_T) decaying to $e^+ e^-$. The limit assumes $M_{\rho_T} = M_{\omega_T} < M_{\pi_T} + M_W$.
- ²⁸ The limit is independent of the π_T mass. See their Fig. 9 and Fig. 10 for the exclusion plot in the M_{ρ_T} - M_{π_T} plane. ABDALLAH 01 limit on the techni-pion mass is $M_{\pi_T} > 79.8$ GeV for N_D =2, assuming its point-like coupling to gauge bosons.
- ²⁹ AFFOLDER 00F search for ρ_T decaying into $W \pi_T$ or $\pi_T \pi_T$ with $W \to \ell \nu$ and $\pi_T \to \overline{b}b$, $\overline{b}c$. See Fig. 1 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the exclusion plot in the $M_{\rho_T} M_{\pi_T}$ plane.
- ³⁰ AFFOLDER 00K search for the ρ_{T8} decaying into $\pi_{LQ}\pi_{LQ}$ with $\pi_{LQ} \rightarrow b\nu$. For $\pi_{LQ} \rightarrow c\nu$, the limit is $M_{\rho_{T8}} > 510$ GeV. See their Fig. 2 and Fig. 3 for the exclusion plot in the $M_{\rho_{T8}} M_{\pi_{LQ}}$ plane.
- ³¹ ABE 99F search for a new particle X decaying into $b\overline{b}$ in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.8 TeV. See Fig. 7 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the upper limit on $\sigma(p\overline{p} \rightarrow X) \times B(X \rightarrow b\overline{b})$. ABE 99F also exclude top gluons of width Γ =0.3*M* in the mass interval 280 < *M*< 670 GeV, of width Γ =0.5*M* in the mass interval 340 < *M*< 640 GeV, and of width Γ =0.7*M* in the mass interval 375 < *M*< 560 GeV.

NODE=S057DSB;LINKAGE=E

NODE=S057DSB;LINKAGE=B

- ³²ABE 99N search for the techni- ω decaying into $\gamma \pi_T$. The technipion is assumed to decay $\pi_T \rightarrow b \overline{b}$. See Fig. 2 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the exclusion plot in the $M_{\omega_T} M_{\pi_T}$ plane.
- ³³ABE 97G search for a new particle X decaying into dijets in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV. See Fig. 5 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the upper limit on $\sigma(p\overline{p} \rightarrow X) \times B(X \rightarrow 2j)$.

REFERENCES FOR Technicolor

AAD	20AM	JHEP 2010 061	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20W	JHEP 2006 151	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	16W	PL B758 249	G. Aad <i>et al.</i>	(ATLAS Collab.)
KHACHATRY	16E	PR D93 012001	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	15AB	PR D92 012010	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15AO	JHEP 1508 148	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15BB	EPJ C75 263	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	15Q	PL B743 15	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAIJ	15AN	EPJ C75 152	R. Aaij <i>et al.</i>	(LHCb Collab.)
KHACHATRY	15C	PL B740 83	V. Khachatryan <i>et al.</i>	(CMS Collab.)
KHACHATRY	15W	PR D91 052012	V. Khachatryan <i>et al.</i>	(CMS Collab.)
AAD	14AT	PL B738 428	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	14V	PR D90 052005	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	13AN	PR D87 112003	G. Aad <i>et al.</i>	(ATLAS Collab.)
Also		PR D91 119901 (errat.)	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	13AQ	PR D88 012004	G. Aad <i>et al.</i>	(ATLAS Collab.)
CHATRCHYAN	13AP	PR D87 072002	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	13BM	PRL 111 211804	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
Also		PRL 112 119903 (errat.)	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
BAAK	12	EPJ C72 2003	M. Baak <i>et al.</i>	(Gfitter Group)
CHATRCHYAN	12AF	PRL 109 141801	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AALTONEN	11AD	PR D84 072003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11AE	PR D84 072004	T. Aaltonen <i>et al.</i>	(CDF Collab.)
CHIVUKULA	11	PR D84 095022	R.S. Chivukula <i>et al.</i>	
CHIVUKULA	11A	PR D84 115025	R. S. Chivukula <i>et al.</i>	
AALTONEN	101	PRL 104 111802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	10A	PRL 104 061801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	071	PRL 98 221801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABULENCIA	05A	PRL 95 252001	A. Abulencia <i>et al.</i>	(CDF Collab.)
CHEKANOV	02B	PL B531 9	S. Chekanov <i>et al.</i>	(ŻEUS Collab.)
ABAZOV	01B	PRL 87 061802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABDALLAH	01	EPJ C22 17	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
AFFOLDER	00F	PRL 84 1110	T. Affolder <i>et al.</i>	(CDF Collab.)
AFFOLDER	00K	PRL 85 2056	T. Affolder <i>et al.</i>	(CDF Collab.)
ABE	99F	PRL 82 2038	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	99N	PRL 83 3124	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97G	PR D55 5263	F. Abe <i>et al.</i>	(CDF Collab.)

NODE=S057

REFID=60757
REFID=60507
REFID=5/22/
REFID=57017 REFID=56600
REFID=56645
REFID=56669
REFID=56498
REFID=56766
REFID=56269
REFID=50530
REFID=50129
REFID=55155
REFID=56591
REFID=55168
REFID=55139
REFID=55492
REFID=55841 REFID=54138
REFID = 54618
REFID=53801
REFID=53802
REFID=53924
REFID=54026
REFID=53272
REFID=53202 REFID=51810
REFID=51010
REFID=48937
REFID=48208
REFID=48505
REFID=47573
KEFID=4/752
REFID=40728 REFID=47211
REFID=45343