Charge	ed Hig	gs Bosons	$s~(H^{\pm}$ a	and $H^{\pm\pm})$,		
Jearch	es iui					NODE=S064
H^\pm (chai $H^{\pm\pm}$ (do	rged Higgs) rged Higgs) oubly-charge	mass limits for m _H mass limits for m _H ed Higgs boson) maa	$_+ > m(top)$			NODE=S064CNT NODE=S064CNT
— Lir — Lir	nits for H^\pm nits for H^\pm	\pm with $T_3 = \pm 1$ \pm with $T_3 = 0$			_	NODE=S064CNT
	H [±] (charg	ged Higgs) mass	limits for m	_{H+} < m(top) ———		NODE=S064HGC
<i>c</i> ₅)=1 weak i	, and hold sospin of <i>T</i>	for all values of B($H^+ ightarrow au^+$ lowing, tan eta	$ ightarrow au^+ u) + B(H^+ ightarrow$ $ u_{ au}$), and assume H^+ is the ratio of the two 2HDM).		NODE=S064HGC
of tech		see the Review of	•	ions. For a discussion lectroweak Symmetry		
Limits see CA	obtained at ARENA 13, a	the LHC are given and hold for all tan	in the m $_h^{mod-}$ 3 values.	benchmark scenario,		
quark,	and based rements, see	on the top mass \boldsymbol{v}	alues inconsis	observation of the top tent with the current 1 (1996)) Edition of		
				pole have conclusively gion $m_{H^+} \lesssim$ 45 GeV,		
and are lisions in this	e meanwhile at LEP. Res compilation	superseded by the soults that are by now	earches in hig v obsolete are n a previous E	her energy e^+e^- col- therefore not included Edition (The European		
ments study o	(ALEPH, D of the e ⁺ e ⁻	ELPHI, L3, and OP $^- ightarrow H^+ H^-$ proce	AL) are assun ss. Limits fro	from the LEP experi- ned to derive from the m $b \rightarrow s\gamma$ decays are persymmetric models.		
VALUE (GeV) none 80–140 none 90–155 > 80 > 76.3 > 74.4 > 76.5 > 79.3 • • • We do no		DOCUMENT ID 1 AAD 2 KHACHATRY 3 LEP 4 ABBIENDI ABDALLAH ACHARD HEISTER 0 HAYRAPETY 7 AAD 8,9 AAD 9,10 AAD	13 LEP 12 OPAL 04I DLPH 03E L3 02P ALEP erages, fits, lin 25 ATLS 24AV CMS 23AH ATLS	$ \begin{array}{cccc} \hline t \rightarrow b H^+ \\ t \rightarrow b H^+, H^+ \rightarrow \tau^+ \nu \\ e^+ e^- \rightarrow H^+ H^-, E_{\rm cm} \leq \\ 209 {\rm GeV} \\ e^+ e^- \rightarrow H^+ H^-, E_{\rm cm} \leq \\ 209 {\rm GeV} \\ E_{\rm cm} \leq 209 {\rm GeV} \\ E_{\rm cm} \leq 209 {\rm GeV} \\ E_{\rm cm} \leq 209 {\rm GeV} \\ e^+ e^- \rightarrow H^+ H^-, H^+ \rightarrow c \overline{b} \\ \end{array} $	-	NODE=S064HGC
		¹¹ TUMASYAN ¹² TUMASYAN	23AV CMS 22B CMS	$H^{\pm} \rightarrow H_2^0 W^{\pm}$		

21v ATLS $\overline{t}bH^+$, $H^+ \rightarrow t\overline{b}$ 21w CMS $H^+ \rightarrow W^+ Z$

20W ATLS $H^+ \rightarrow t \overline{b}$

¹³ _{AAD} ¹⁴ SIRUNYAN

¹⁵ AAD ¹⁶ SIRUNYAN ¹⁷ SIRUNYAN

		¹⁸ SIRUNYAN	20BE CMS	$t ightarrow ~bH^+$, $H^+ ightarrow ~c\overline{s}$	
		¹⁹ SIRUNYAN		$H^+ \rightarrow \tau^+ \nu$	
		²⁰ SIRUNYAN	19BP CMS	$H^+ \rightarrow W^+ Z$	
		²¹ SIRUNYAN	19cc CMS	$t \rightarrow bH^+, H^+ \rightarrow W^+A^0, A^0 \rightarrow \mu^+\mu^-$	
		²² SIRUNYAN	19cq CMS	$H^+ \rightarrow W^+ Z$	
		²³ AABOUD	18BWATLS	$ar{t}bH^+ ext{ or } t ightarrow bH^+, \ H^+ ightarrow au^+ u$	
		²⁴ AABOUD	18cd ATLS		
		²⁵ AABOUD		$H^{\pm} \rightarrow W^{\pm} Z$	
		²⁶ HALLER	18 RVUE		
		²⁷ SIRUNYAN	18D0 CMS	$t \rightarrow bH^+, H^+ \rightarrow c\overline{b}$	
		²⁸ MISIAK	17 RVUE	$b ightarrow s(d) \gamma$	
		²⁹ SIRUNYAN	17AE CMS	$H^{\pm} \rightarrow W^{\pm} Z$	
		³⁰ AABOUD	16A ATLS	t(b) H ⁺ , H ⁺ \rightarrow $ au^+ u$	
		³¹ AAD	16aj ATLS	$t(b) H^+, H^+ \rightarrow t \overline{b}$	
		³² AAD	16aj ATLS	$q q \rightarrow H^+, H^+ \rightarrow t \overline{b}$	OCCUR=2
		³³ AAD	15AF ATLS		OCCUR=2
		³⁴ AAD	15M ATLS	$H^{\pm} \rightarrow W^{\pm} Z$	
		³⁵ KHACHATRY.	15AX CMS	$tH^+, H^+ \rightarrow t\overline{b}$	OCCUR=2
		³⁶ KHACHATRY.	15AX CMS	$t H^{\pm}, H^{\pm} ightarrow au^{\pm} u$	OCCUR=3
		³⁷ KHACHATRY.	15bf CMS	$t \rightarrow bH^+, H^+ \rightarrow c\overline{s}$	
		³⁸ AAD	14M ATLS	$H_2^0 \rightarrow H^{\pm} W^{\mp} \rightarrow$	
				$^{2}H^{0}W^{\pm}W^{\mp}, H^{0} \rightarrow b\overline{b}$	
		³⁹ AALTONEN	14A CDF	t ightarrow b au u	
		⁴⁰ AAD	13AC ATLS	$t \rightarrow bH^+$	
		⁴¹ AAD	13V ATLS	$t ightarrow bH^+$, lepton non- universality	
		⁴² AAD		$t \rightarrow bH^+$	
		⁴³ CHATRCHYAN	12AA CMS	$t \rightarrow bH^+$	
		⁴⁴ AALTONEN	11P CDF	$t ightarrow ~ b H^+$, $H^+ ightarrow ~ W^+ A^0$	
>316	95	⁴⁵ DESCHAMPS		Type II, flavor physics data	
		⁴⁶ AALTONEN	09AJ CDF	$t \rightarrow bH^+$	
		⁴⁷ ABAZOV	09AC D0	$t \rightarrow bH^+$	
		⁴⁸ ABAZOV	09AG D0	$t \rightarrow bH^+$	
		⁴⁹ ABAZOV	09AI D0	$t \rightarrow bH^+$	
		⁵⁰ ABAZOV	09P D0	$H^+ \rightarrow t \overline{b}$	
		⁵¹ ABULENCIA	06E CDF		
> 92.0	95	ABBIENDI		$B(\tau\nu)=1$	
> 76.7	95	⁵² ABDALLAH	04I DLPH		OCCUR=2
		⁵³ ABBIENDI		$ au ightarrow \mu \overline{ u} u$, $e \overline{ u} u$	
		⁵⁴ ABAZOV		$t ightarrow ~ b H^+$, $H ightarrow ~ au u$	
		55 BORZUMATI	02 RVUE	-	
		⁵⁶ ABBIENDI	01Q OPAL	$B \rightarrow \tau \nu_{\tau} X$	
		57 BARATE	01E ALEP		
>315	99	58 GAMBINO		$b ightarrow s \gamma$	
> F0 F	05	⁵⁹ AFFOLDER		$t \rightarrow bH^+, H \rightarrow \tau \nu$	
> 59.5	95	ABBIENDI ⁶⁰ ABBOTT	99E OPAL 99E D0	$E_{cm} \leq 183 \text{ GeV}$ $t \rightarrow bH^+$	
		⁶¹ ACKERSTAFF			
		⁶² ACCIARRI		$\tau \rightarrow e \nu \nu, \mu \nu \nu$ $B \rightarrow \tau \nu_{\tau}$	
		⁶³ AMMAR	97F L3 97B CLEO		
		⁶⁴ COARASA		$B \rightarrow \tau \nu_{\tau} X$	
		⁶⁵ GUCHAIT		$b \rightarrow \nu_{\tau} \chi$ $t \rightarrow bH^+, H \rightarrow \tau \nu$	
		⁶⁶ MANGANO	97 RVUE	$B_{u(c)} \rightarrow \tau \nu_{\tau}$	
		⁶⁷ STAHL	97 RVUE	$\tau \rightarrow \mu \nu \nu$	
>244	95	68 ALAM		$ \begin{array}{cccc} \mu & \nu & \nu \\ b & \rightarrow & s\gamma \end{array} $	
. =		⁶⁹ BUSKULIC		$b \rightarrow \tau \nu_{ au} X$	
1 AAD 15AE soor	ch for ti			$H^+ H^+ \rightarrow \tau^+ \nu$ in 19.5 fb ⁻¹	

¹ AAD 15AF search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow \tau^+ \nu$ in 19.5 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on B($t \rightarrow bH^+$) B($H^+ \rightarrow \tau \nu$) between 2.3×10^{-3} and 1.3×10^{-2} (95% CL) are given for $m_{H^+} = 80$ -160 GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM. The region $m_{H^+} < 140$ GeV is excluded for tan $\beta > 1$ in the considered scenarios.

^{*H*}^{*H*}² KHACHATRYAN 15AX search for $t\bar{t}$ production followed by $t \to bH^+$, $H^+ \to \tau^+ \nu$ in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on B($t \to bH^+$) B($H^+ \to \tau^+ \nu$) between 1.2 × 10⁻² and 1.5 × 10⁻³ (95% CL) are given for $m_{H^+} = 80$ -160 GeV.

NODE=S064HGC;LINKAGE=E

NODE=S064HGC;LINKAGE=F

	7/16/2025 12:17 Page 3
See their Fig. 11 for the excluded regions in different benchmark scenarios of the MSSM. The region m_{H^+} < 155 GeV is excluded for $\tan\beta > 1$ in the considered scenarios. ³ LEP 13 give a limit that refers to the Type II scenario. The limit for B($H^+ \rightarrow \tau \nu$) = 1 is 94 GeV (95% CL), and for B($H^+ \rightarrow cs$) = 1 the region below 80.5 as well as the region 83–88 GeV is excluded (95% CL). LEP 13 also search for the decay mode $H^+ \rightarrow A^0 W^*$ with $A^0 \rightarrow b\bar{b}$, which is not negligible in Type I models. The limit in Type I	NODE=S064HGC;LINKAGE=LE
models is 72.5 GeV (95% CL) if $m_{A^0} > 12$ GeV. ⁴ ABBIENDI 12 also search for the decay mode $H^+ \rightarrow A^0 W^*$ with $A^0 \rightarrow b\overline{b}$. ⁵ AAD 25 combine AAD 23AH and AAD 24AD and derive limits on the isotriplet contribution to the gauge boson masses in the Georgi-Machacek model. See their Fig. 5(c).	NODE=S064HGC;LINKAGE=AB NODE=S064HGC;LINKAGE=TA
⁶ HAYRAPETYAN 24AV search for production of scalar resonance decaying to $W^{\pm}\gamma$ with $W \rightarrow \ell \nu$ in 138 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for the mass range 0.3–2.0 TeV for a narrow and a broad width. Combined limits with TUMASYAN 22B are shown in Fig. 8.	NODE=S064HGC;LINKAGE=UA
⁷ AAD 23AH search for vector boson fusion production of H^{\pm} decaying to $H^{\pm} \rightarrow W^{\pm} Z \rightarrow \ell^{\pm} \nu \ell^{+} \ell^{-}$ in 139 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 9 for limits on cross section times branching ratio in the Georgi-Machacek model for $m_{H^{\pm}} = 0.2$ –1.0 TeV, and also for limits on the triplet vacuum expectation value fraction.	NODE=S064HGC;LINKAGE=MA
⁸ AAD 23BB search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow c\bar{b}$ in 139 fb ⁻¹ of pp collisions at $E_{cm} = 13$ TeV. See their Fig. 8 for limits on the product of branching ratios for $m_{H^+} = 60$ –160 GeV.	NODE=S064HGC;LINKAGE=NA
⁹ Charge conjugated states are also implied. ¹⁰ AAD 23BW search for $t \rightarrow bH^+$ from pair produced top quarks, with the decay chain $H^+ \rightarrow W^+ A^0$, $A^0 \rightarrow \mu^+ \mu^-$ using 139 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5(b)-(d) for limits on the product of branching ratios for $m_{H^+} = 120$, 140, 160 GeV, and $m_{A^0} = 15-72$ GeV.	NODE=S064HGC;LINKAGE=SA NODE=S064HGC;LINKAGE=RA
¹¹ TUMASYAN 23AV search for production of H^{\pm} in association with a top quark, decaying to $H_2^0 W^{\pm}$, $H_2^0 \rightarrow \tau^+ \tau^-$, using 138 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 9 for limits on production cross section times branching ratios for $m_{H^{\pm}} = 0.3$ –0.7 TeV and $m_{H_2^0}^0 = 0.2$ TeV.	NODE=S064HGC;LINKAGE=QA
¹² TUMASYAN 22B search for production of scalar resonance decaying to $W^{\pm}\gamma \rightarrow qq\gamma$ in 137 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for the mass range 0.7–6.0 TeV, assuming narrow width or $\Gamma/M = 0.05$.	NODE=S064HGC;LINKAGE=LA
¹³ AAD 21V search for $\bar{t}bH^+$ associated production followed by $H^+ \to t\bar{b}$ in 139 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 6 for upper limits on cross section times branching ratio for $m_{H^+} = 0.2$ -2 TeV. See also their Fig. 7 for the excluded region in the parameter space of the hMSSM and the following MSSM benchmark scenarios: $M_{h}^{125}, M_{h}^{125}(\tilde{\chi}), M_{h}^{125}(\tilde{\tau}), M_{h}^{125}({\rm alignment}), M_{h_{12}}^{125}({\rm CPV}).$	NODE=S064HGC;LINKAGE=JA
¹⁴ SIRUNYAN 21W search for vector boson fusion production of H^+ decaying to $H^+ \rightarrow W^+ Z \rightarrow \ell^+ \nu \ell^+ \ell^-$ in 137 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 for limits on cross section times branching ratio for $m_{H^+} = 0.2$ -3.0 TeV, and also for limits on the fraction of the triplet vev contribution to the W mass in the Georgi-Machacek model.	NODE=S064HGC;LINKAGE=KA
¹⁵ AAD 20W search for dijet resonances in events with isolated leptons using 139 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. As a byproduct, $H^+ \rightarrow t \bar{b}$ produced in association with $\bar{t}b$ is searched for. Limits on the product of cross section times branching ratio for $m_{H^+} = 0.6$ –2 TeV are given in their Fig. 5(c).	NODE=S064HGC;LINKAGE=HA
¹⁶ SIRUNYAN 20AO search for $H^+ \rightarrow t \overline{b}$ produced in association with $t(b)$ in all jet final states in 35.9 fb ⁻¹ of pp collisions at $E_{\rm Cm} = 13$ TeV. See their Fig. 6 for limits on the product of cross section times branching ratio for $m_{H^+} = 0.2-3$ TeV. Limits for s-channel production are also given for $m_{H^+} = 0.8-3$ TeV. See also Fig. 7 for the corresponding limits in scenarios in the minimal supersymmetric standard model. Cross section limits from combined results with SIRUNYAN 20AV are given in Fig. 8.	NODE=S064HGC;LINKAGE=GA
¹⁷ SIRUNYAN 20AV search for $H^+ \rightarrow t \overline{b}$ produced in association with $t(b)$ in final states with one or two leptons, in 35.9 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on the product of cross section times branching ratio for $m_{H^+} = 0.2$ -3 TeV, and their Fig. 6 for the corresponding limits in scenarios in the minimal supersymmetric	NODE=S064HGC;LINKAGE=FA
standard model. ¹⁸ SIRUNYAN 20BE search for $t \rightarrow bH^+$ followed by the decay $H^+ \rightarrow c\bar{s}$ in pair produced top quark events using 35.9 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. Limits on the branching ratio in the range 1.68–0.25% (95%CL) are given for $m_{H^+} = 80–160$ GeV, see their Fig. 4.	NODE=S064HGC;LINKAGE=IA
¹⁹ SIRUNYAN 19AH search for H^+ in the decay of a pair-produced t quark, or in associated tbH^+ or nonresonant $b\overline{b}H^+W^-$ production, followed by $H^+ \rightarrow \tau^+\nu$, in 35.9 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. Upper limits on cross section times branching ratio between 6 pb and 5 fb (95% CL) are given for $m_{H^+} = 80-3000$ GeV (including the non-resonant production near the top quark mass), see their Fig. 6 (left). See their Fig. 6 (right) for the excluded regions in the $m_h^{\rm mod-}$ scenario of the MSSM.	NODE=S064HGC;LINKAGE=Y

 20 SIRUNYAN 19BP search for vector boson fusion production of H^+ decaying to H^+ ightarrowNODE=S064HGC;LINKAGE=BA $W^+ Z \rightarrow \ell^+ \nu \ell^+ \ell^-$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^+} = 0.3-2.0$ TeV, and also for limits on the fraction of the triplet vev contribution to the W mass in the Georgi-Machacek model. 21 SIRUNYAN 19CC search for $t
ightarrow bH^+$ from pair produced top quarks, with the decay NODE=S064HGC;LINKAGE=EA chain $H^+ \rightarrow W^+ A^0$, $A^0 \rightarrow \mu^+ \mu^-$ in 35.9 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 2 for limits on the product of branching ratios for $m_{A^0} = 15-75$ GeV. 22 SIRUNYAN 19CQ search for vector boson fusion production of H^+ decaying to H^+ ightarrowNODE=S064HGC;LINKAGE=CA $W^+Z \rightarrow \ell^+ \nu q \bar{q}$ or $q \bar{q} \ell^+ \ell^-$ in 35.9 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for $m_{H^+} = 0.6-2.0$ TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model. ²³ AABOUD 18BW search for $\overline{t} b H^+$ associated production or the decay $t \rightarrow b H^+$, followed NODE=S064HGC:LINKAGE=S by $H^+ \rightarrow \tau^+ \nu$, in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8(a) for upper limits on cross section times branching ratio for $m_{H^+} = 90-2000$ GeV, and Fig. 8(b) for limits on B(t $\rightarrow bH^+$) B($H^+ \rightarrow \tau^+ \nu$) for $m_{H^+} =$ 90–160 GeV. See also their Fig. 9 for the excluded region in the hMSSM parameter space. ²⁴AABOUD 18CD search for $\bar{t} b H^+$ associated production followed by $H^+ \rightarrow t \bar{b}$ in 36.1 NODE=S064HGC;LINKAGE=T fb⁻¹ of pp collisions at $E_{cm} = 13$ TeV. See their Fig. 8 for upper limits on cross section times branching ratio for $m_{H^+} = 0.2$ -2 TeV. See also their Fig. 9 for the excluded region in the parameter space of the $m_h^{\text{mod}-}$ and hMSSM scenarios of the MSSM. The theory predictions overlaid to the experimental limits to determine the excluded m_{H^+} range are shown without their respective uncertainty band. 25 AABOUD 18CH search for vector boson fusion production of H^\pm decaying to H^\pm \rightarrow NODE=S064HGC;LINKAGE=P $W^{\pm}Z \rightarrow \ell^{\pm}\nu\ell^{+}\ell^{-}$ in 36.1 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 7 for limits on cross section times branching ratio for $m_{H^{\pm}} = 0.2$ –0.9 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model. $^{26}\,{\rm HALLER}$ 18 give 95% CL lower limits on m_{H^+} of 590 GeV in type II two Higgs doublet NODE=S064HGC:LINKAGE=O model from combined data (including an unpublished BELLE result) for B($b \rightarrow s\gamma$). 27 SIRUNYAN 18DO search for $t \bar{t}$ production followed by $t \rightarrow b H^+$, $H^+ \rightarrow c \bar{b}$ in 19.7 NODE=S064HGC;LINKAGE=R fb $^{-1}$ of pp collisions at $E_{
m cm}$ = 8 TeV. See their Fig. 3 for upper limits on B(t ightarrow bH^+) for $m_{H^+} =$ 90–150 GeV assuming that $B(H^+ \rightarrow c \, \overline{b}) = 1$ and $B(t \rightarrow bH^+)$ $+ B(t \rightarrow bW^+) = 1.$ $^{28}\,\rm MISIAK$ 17 give 95% CL lower limits on m_{H^+} between 570 and 800 GeV in type II two NODE=S064HGC;LINKAGE=M Higgs doublet model from combined data (including an unpublished BELLE result) for $\mathsf{B}(b \rightarrow s(d)\gamma).$ 29 SIRUNYAN 17AE search for vector boson fusion production of H^\pm decaying to $H^\pm o$ NODE=S064HGC;LINKAGE=N $W^{\pm}Z \rightarrow \ell^{\pm}\nu\ell^{+}\ell^{-}$ in 15.2 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^{\pm}} = 0.2$ -2.0 TeV, and also for limits on the triplet vacuum expectation value fraction in the Georgi-Machacek model. 30 AABOUD 16A search for $t(b)~H^\pm$ associated production followed by $H^+ \rightarrow ~\tau^+ \nu$ in NODE=S064HGC;LINKAGE=L 3.2 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. Upper limits on $\sigma(t(b) H^{\pm}) B(H^+ \rightarrow \tau \nu)$ between 1.9 pb and 15 fb (95% CL) are given for $m_{H^+} = 200-2000$ GeV, see their Fig. 6. See their Fig. 7 for the excluded regions in the hMSSM scenario. ³¹AAD 16AJ search for t(b) H^{\pm} associated production followed by $H^{\pm}
ightarrow tb$ in 20.3 NODE=S064HGC;LINKAGE=J fb⁻¹ of *pp* collisions at $E_{cm} = 8$ TeV. See their Fig. 6 for upper limits on $\sigma(t(b) H^{\pm})$ $B(H^+ \rightarrow t b)$ for $m_{H^+} = 200-600$ GeV. ^{32}AAD 16AJ search for \textit{H}^{\pm} production from quark-antiquark annihilation, followed by NODE=S064HGC:LINKAGE=K $H^{\pm} \rightarrow tb$, in 20.3 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 10 for upper limits on $\sigma(H^{\pm})$ B(H^+ $\rightarrow~$ t b) for m_{H^+} = 400–3000 GeV. 33 AAD 15AF search for $t\,H^\pm$ associated production followed by $H^\pm o ~ au^\pm
u$ in 19.5 fb $^{-1}$ NODE=S064HGC;LINKAGE=D of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on $\sigma(tH^{\pm}) \ B(H^+ \to \tau\nu)$ between 760 and 4.5 fb (95% CL) are given for $m_{H^+} = 180{-}1000$ GeV. See their Fig. 8 for the excluded regions in different benchmark scenarios of the MSSM. 34 AAD 15M search for vector boson fusion production of H^\pm decaying to $H^\pm o W^\pm Z o$ NODE=S064HGC;LINKAGE=C $q\bar{q}\ell^+\ell^-$ in 20.3 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 2 for limits on cross section times branching ratio for $m_{H^{\pm}} = 200-1000$ GeV, and Fig. 3 for limits on thetriplet vacuum expectation value fraction in the Georgi-Machacek model. 35 KHACHATRYAN 15AX search for $t\,H^\pm$ associated production followed by $H^\pm
ightarrow\,t\,b$ in NODE=S064HGC;LINKAGE=G 19.7 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. Upper limits on $\sigma(tH^{\pm}) \ B(H^+ \rightarrow t\bar{b})$ between 2.0 and 0.13 pb (95% CL) are given for $m_{H^+} = 180-600$ GeV. See their Fig. $11 \mbox{ for the excluded regions in different benchmark scenarios of the MSSM.}$ 36 KHACHATRYAN 15AX search for $t\,H^\pm$ associated production followed by $H^\pm \to ~\tau^\pm\,\nu$ NODE=S064HGC;LINKAGE=H in 19.7 fb⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. Upper limits on $\sigma(tH^{\pm}) B(H^+ \to \tau \nu)$ between 380 and 25 fb (95% CL) are given for $m_{H^+} = 180-600$ GeV. See their Fig. 11

for the excluded regions in different benchmark scenarios of the MSSM.

7/16/2025 12:17

Page 4

³⁷ KHACHATRYAN 15BF search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow c\bar{s}$ in 19.7 fb ⁻¹ of pp collisions at $E_{cm} = 8$ TeV. Upper limits on B($t \rightarrow bH^+$) B($H^+ \rightarrow c\bar{s}$) between 1.2×10^{-2} and 6.5×10^{-2} (95% CL) are given for $m_{L+} = 90$ -160 GeV.	NODE=S064HGC;LINKAGE=I
cs̄) between 1.2×10^{-2} and 6.5×10^{-2} (95% CL) are given for $m_{H^+} = 90$ –160 GeV. ³⁸ AAD 14M search for the decay cascade $H_2^0 \rightarrow H^\pm W^\mp \rightarrow H^0 W^\pm W^\mp$, H^0 decaying to $b\overline{b}$ in 20.3 fb ⁻¹ of pp collisions at $E_{\rm cm} = 8$ TeV. See their Table III for limits on cross section times branching ratio for $m_{H_2^0}^{-2} = 325$ –1025 GeV and $m_{H^+}^{-2} = 225$ –925 GeV.	NODE=S064HGC;LINKAGE=A
³⁹ AALTONEN 14A measure $B(t \rightarrow b\tau\nu) = 0.096 \pm 0.028$ using 9 fb ⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. For $m_{H^+} = 80$ –140 GeV, this measured value is translated to a	NODE=S064HGC;LINKAGE=B
limit B($t \rightarrow bH^+$) < 0.059 at 95% CL assuming B($H^+ \rightarrow \tau^+ \nu$) = 1. ⁴⁰ AAD 13AC search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow c\bar{s}$ (flavor uniden- tified) in 4.7 fb ⁻¹ of pp collisions at E_{cm} = 7 TeV. Upper limits on B($t \rightarrow bH^+$) between 0.05 and 0.01 (95%CL) are given for m_{H^+} =90–150 GeV and B($H^+ \rightarrow c\bar{s}$)=1.	NODE=S064HGC;LINKAGE=GD
⁴¹ AAD 13V search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow \tau^+ \nu$ through violation of lepton universality with 4.6 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 7$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.032 and 0.044 (95% CL) are given for $m_{H^+} = 90$ –140 GeV	NODE=S064HGC;LINKAGE=AD
and B($H^+ \rightarrow \tau^+ \nu$) = 1. By combining with AAD 12BH, the limits improve to 0.008 to 0.034 for m_{H^+} = 90–160 GeV. See their Fig. 7 for the excluded region in the m_h^{max} scenario of the MSSM.	
⁴² AAD 12BH search for $t\bar{t}$ production followed by $t \to bH^+$, $H^+ \to \tau^+ \nu$ with 4.6 fb ⁻¹ of pp collisions at $E_{\rm cm} = 7$ TeV. Upper limits on B($t \to bH^+$) between 0.01 and 0.05 (95% CL) are given for $m_{H^+} = 90-160$ GeV and B($H^+ \to \tau^+ \nu$) = 1. See their Fig. 8	NODE=S064HGC;LINKAGE=DA
for the excluded region in the m_h^{max} scenario of the MSSM. ⁴³ CHATRCHYAN 12AA search for $t\bar{t}$ production followed by $t \rightarrow bH^+$, $H^+ \rightarrow \tau^+ \nu$ with 2 fb ⁻¹ of pp collisions at $E_{\text{cm}} = 7$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.019 and 0.041 (95% CL) are given for $m_{H^+} = 80$ –160 GeV and B($H^+ \rightarrow \tau^+ \nu$)=1.	NODE=S064HGC;LINKAGE=CH
⁴⁴ AALTONEN 11P search in 2.7 fb ⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV for the decay chain $t \rightarrow bH^+$, $H^+ \rightarrow W^+A^0$, $A^0 \rightarrow \tau^+\tau^-$ with m_{A^0} between 4 and 9 GeV. See their Fig. 4 for limits on B($t \rightarrow bH^+$) for 90 $< m_{H^+} < 160$ GeV.	NODE=S064HGC;LINKAGE=A5
⁴⁵ DESCHAMPS 10 make Type II two Higgs doublet model fits to weak leptonic and semileptonic decays, $b \rightarrow s \gamma$, B , B_s mixings, and $Z \rightarrow b \overline{b}$. The limit holds irrespective	NODE=S064HGC;LINKAGE=DE
of $\tan\beta$. ⁴⁶ AALTONEN 09AJ search for $t \rightarrow bH^+$, $H^+ \rightarrow c\overline{s}$ in $t\overline{t}$ events in 2.2 fb ⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.08 and 0.32 (95% CL) are given for $m_{H^+} = 60-150$ GeV and B($H^+ \rightarrow c\overline{s}$) = 1.	NODE=S064HGC;LINKAGE=AA
⁴⁷ ABAZOV 09AC search for $t \rightarrow bH^+$, $H^+ \rightarrow \tau^+ \nu$ in $t\bar{t}$ events in 0.9 fb ⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Upper limits on B($t \rightarrow bH^+$) between 0.19 and 0.25 (95% CL) are given for $m_{H^+} = 80$ –155 GeV and B($H^+ \rightarrow \tau^+ \nu$) = 1. See their Fig. 4 for an excluded region in a MSSM scenario.	NODE=S064HGC;LINKAGE=OZ
⁴⁸ ABAZOV 09AG measure $t\bar{t}$ cross sections in final states with ℓ + jets ($\ell = e, \mu$), $\ell\ell$, and $\tau\ell$ in 1 fb ⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV, which constrains possible $t \rightarrow bH^+$ branching fractions. Upper limits (95% CL) on B($t \rightarrow bH^+$) between 0.15 and 0.40 (0.48 and 0.57) are given for B($H^+ \rightarrow \tau^+ \nu$) = 1 (B($H^+ \rightarrow c\bar{s}$) = 1) for m_{H^+}	NODE=S064HGC;LINKAGE=VO
⁴⁹ ABAZOV 09AI search for $t \rightarrow bH^+$ in $t\bar{t}$ events in 1 fb ⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} =$ 1.96 TeV. Final states with ℓ + jets ($\ell = e, \mu$), $\ell\ell$, and $\tau\ell$ are examined. Upper limits on B($t \rightarrow bH^+$) (95% CL) between 0.15 and 0.19 (0.19 and 0.22) are given for B($H^+ \rightarrow \tau^+ \nu$) = 1 (B($H^+ \rightarrow c\bar{s}$) = 1) for $m_{H^+} =$ 80–155 GeV. For B($H^+ \rightarrow \tau^+ \nu$) = 1	NODE=S064HGC;LINKAGE=VZ
also a simultaneous extraction of B($t \rightarrow bH^+$) and the $t\bar{t}$ cross section is performed, yielding a limit on B($t \rightarrow bH^+$) between 0.12 and 0.26 for $m_{H^+} = 80-155$ GeV. See their Figs. 5–8 for excluded regions in several MSSM scenarios.	
⁵⁰ ABAZOV 09P search for H^+ production by $q\bar{q}'$ annihilation followed by $H^+ \rightarrow t\bar{b}$ decay in 0.9 fb ⁻¹ of $p\bar{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. Cross section limits in several two-doublet models are given for $m_{H^+} = 180{-}300$ GeV. A region with $20 \lesssim \tan\beta \lesssim$	NODE=S064HGC;LINKAGE=ZV
70 is excluded (95% CL) for 180 GeV $\lesssim m_{H^+} \lesssim$ 184 GeV in type-I models.	
⁵¹ ABULENCIA 06E search for associated $H^0 W$ production in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. A fit is made for $t\overline{t}$ production processes in dilepton, lepton + jets, and lepton + τ final states, with the decays $t \to W^+ b$ and $t \to H^+ b$ followed by $H^+ \to \tau^+ \nu$, $c\overline{s}$, $t^*\overline{b}$, or $W^+ H^0$. Within the MSSM the search is sensitive to the region $\tan\beta < 1$ or	NODE=S064HGC;LINKAGE=UL
$>$ 30 in the mass range $m_{H^+}=$ 80–160 GeV. See Fig. 2 for the excluded region in a costain MSSM cooparia	
certain MSSM scenario. ⁵² ABDALLAH 04I search for $e^+e^- \rightarrow H^+H^-$ with H^{\pm} decaying to $\tau\nu$, <i>cs</i> , or W^*A^0 in Type-I two-Higgs-doublet models. ⁵³ ABBIENDL 03 give a limit $m \rightarrow 1.28 \tan \beta$ GeV (95%CL) in Type II two-doublet	NODE=S064HGC;LINKAGE=AL
53 ABBIENDI 03 give a limit $m_{H^+} > 1.28$ tan eta GeV (95%CL) in Type II two-doublet models.	NODE=S064HGC;LINKAGE=NB

 54 ABAZOV 02B search for a charged Higgs boson in top decays with $H^+ o ~ au^+
u$ at NODE=S064HGC;LINKAGE=VB $E_{\rm cm}{=}1.8$ TeV. For $m_{H^+}{=}75$ GeV, the region tan $\beta>32.0$ is excluded at 95%CL. The excluded mass region extends to over 140 GeV for tan β values above 100. 55 BORZUMATI 02 point out that the decay modes such as $b \overline{b} W$, $A^0 W$, and supersym-NODE=S064HGC;LINKAGE=RZ metric ones can have substantial branching fractions in the mass range explored at LEP II and Tevatron. 56 ABBIENDI 01Q give a limit tan $\beta/m_{H^+} < 0.53~{\rm GeV}^{-1}$ (95%CL) in Type II two-doublet NODE=S064HGC;LINKAGE=BQ models. 57 BARATE 01E give a limit tan $\beta/m_{H^+} <$ 0.40 GeV $^{-1}$ (90% CL) in Type II two-doublet NODE=S064HGC:LINKAGE=CB models. An independent measurement of $B
ightarrow au
u_{ au} X$ gives $\tan \beta / m_{H^+} < 0.49$ GeV $^{-1}$ (90% CL). 58 GAMBINO 01 use the world average data in the summer of 2001 B($b \rightarrow \ s \, \gamma) = (3.23 \, \pm \,$ NODE=S064HGC;LINKAGE=GB $0.42) \times 10^{-4}$. The limit applies for Type-II two-doublet models. $^{59}{\rm AFFOLDER}$ 001 search for a charged Higgs boson in top decays with $H^+ \rightarrow ~\tau^+ \nu$ in NODE=S064HGC;LINKAGE=PA $p\,\overline{p}$ collisions at $E_{\rm CM}{=}1.8\,{\rm TeV}.$ The excluded mass region extends to over 120 GeV for tan β values above 100 and B($\tau \nu$) = 1. If B($t \rightarrow bH^+$) \gtrsim 0.6, m_{H^+} up to 160 GeV is excluded. Updates ABE 97L. 60 ABBOTT 99E search for a charged Higgs boson in top decays in $p \, \overline{p}$ collisions at $E_{\rm cm}{=}1.8$ NODE=S064HGC:LINKAGE=A4 TeV, by comparing the observed $t\bar{t}$ cross section (extracted from the data assuming the dominant decay $t \rightarrow b W^+$) with theoretical expectation. The search is sensitive to regions of the domains $an\beta \lesssim 1$, 50 $< m_{H^+}(\text{GeV}) \lesssim 120$ and $an\beta \gtrsim 40$, 50 $< m_{H^+}$ (GeV) \lesssim 160. See Fig. 3 for the details of the excluded region. ⁶¹ACKERSTAFF 99D measure the Michel parameters ρ , ξ , η , and $\xi\delta$ in leptonic τ decays NODE=S064HGC:LINKAGE=A3 from $Z \rightarrow \tau \tau$. Assuming $e_{-\mu}$ universality, the limit $m_{H^+}^{} >$ 0.97 tan β GeV (95%CL) is obtained for two-doublet models in which only one doublet couples to leptons. $^{62}\,{\rm ACCIARRI}$ 97F give a limit $m_{H^+}^{}>$ 2.6 tan β GeV (90% CL) from their limit on the NODE=S064HGC;LINKAGE=ZA exclusive $B \rightarrow \tau \nu_{\tau}$ branching ratio. $^{63}{\rm AMMAR}$ 97B measure the Michel parameter ρ from $\tau \rightarrow ~e\nu \nu$ decays and assumes e/μ NODE=S064HGC;LINKAGE=V universality to extract the Michel η parameter from $\tau \to \ \mu \nu \nu$ decays. The measurement is translated to a lower limit on m_{H^+} in a two-doublet model $m_{H^+} > 0.97~{
m tan}eta$ GeV (90% CL). 64 COARASA 97 reanalyzed the constraint on the $(m_{H^\pm}, \tan\beta)$ plane derived from the NODE=S064HGC;LINKAGE=Z inclusive $B
ightarrow au
u_{ au} X$ branching ratio in GROSSMAN 95B and BUSKULIC 95. They show that the constraint is quite sensitive to supersymmetric one-loop effects. 65 GUCHAIT 97 studies the constraints on m_{H^+} set by Tevatron data on $\ell\tau$ final states in NODE=S064HGC;LINKAGE=U $t \,\overline{t} \rightarrow (W \, b)(H \, b), W \rightarrow \ell \nu, H \rightarrow \tau \nu_{\tau}$. See Fig. 2 for the excluded region. 66 MANGANO 97 reconsiders the limit in ACCIARRI 97F including the effect of the poten-NODE=S064HGC;LINKAGE=ZB tially large ${\it B_{c}} \rightarrow ~\tau \nu_{\tau}$ background to ${\it B_{u}} \rightarrow ~\tau \nu_{\tau}$ decays. Stronger limits are obtained. $^{67}\,{\rm STAHL}$ 97 fit τ lifetime, leptonic branching ratios, and the Michel parameters and derive NODE=S064HGC;LINKAGE=W limit $m_{H^+} > 1.5 \tan\beta$ GeV (90% CL) for a two-doublet model. See also STAHL 94. ⁶⁸ALAM 95 measure the inclusive $b \rightarrow s\gamma$ branching ratio at $\Upsilon(4S)$ and give B($b \rightarrow s\gamma$ NODE=S064HGC;LINKAGE=X $s\gamma)$ < 4.2 × 10⁻⁴ (95% CL), which translates to the limit m_{H^+} >[244 + 63/(tan β)^{1.3}] GeV in the Type II two-doublet model. Light supersymmetric particles can invalidate this bound. 69 BUSKULIC 95 give a limit m_{H^+} > 1.9 tan β GeV (90% CL) for Type-II models from NODE=S064HGC;LINKAGE=Q $b \rightarrow \tau \nu_{\tau} X$ branching ratio, as proposed in GROSSMAN 94. - H^{\pm} (charged Higgs) mass limits for $m_{H^{+}} > m(top)$ NODE=S064HGT Limits obtained at the LHC are given in the m_h^{mod-} benchmark scenario, NODE=S064HGT see CARENA 13, and depend on the tan β values. NODE=S064HGT DOCUMENT ID TECN COMMENT VALUE (GeV) CL% > 181 95 ¹ AABOUD 18BWATLS $\tan\beta = 10$ $^1\,\mathrm{AABOUD}$ > 249 95 18BWATLS $tan\beta = 20$ OCCUR=2 1 AABOUD > 390 95 18BWATLS $\tan\beta = 30$ OCCUR=3 ¹ AABOUD > 894 95 18BWATLS $\tan\beta = 40$ OCCUR=4 >1017 95 ¹ AABOUD 18BWATLS $\tan\beta = 50$ OCCUR=5 >1103 ¹ AABOUD 18BWATLS $\tan\beta = 60$ 95 OCCUR=6

¹AABOUD 18BW search for $\bar{t}bH^+$ associated production in 36.1 fb⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See also their Fig. 9 for the excluded region in the hMSSM parameter space.

NODE=S064HGT;LINKAGE=S

7/16/2025 12:17

Page 6

NODE=S064HDC

NODE=S064HDC

$H^{\pm\pm}$ (doubly-charged Higgs boson) mass limits

This section covers searches for a doubly-charged Higgs boson with couplings to lepton pairs. Its weak isospin T_3 is thus restricted to two possibilities depending on lepton chiralities: $T_3(H^{\pm\pm}) = \pm 1$, with the coupling $g_{\ell\ell}$ to $\ell_L^- \ell_L'^-$ and $\ell_R^+ \ell_R'^+$ ("left-handed") and $T_3(H^{\pm\pm}) = 0$, with the coupling to $\ell_R^- \ell_R'^-$ and $\ell_L^+ \ell_L'^+$ ("right-handed"). These Higgs bosons appear in some left-right symmetric models based on the gauge group $SU(2)_L \times SU(2)_R \times U(1)$, the type-II seesaw model, and the Zee-Babu model. The two cases are listed separately in the following. Unless noted, one of the lepton flavor combinations is assumed to be dominant in the decay.

Limits for $H^{\pm\pm}$ with $T_3 = \pm 1$

Limits for $H^{\pm\pm}$ v	with T_3	$=\pm 1$			NODE=S064HD1
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	NODE=S064HD1
>1020	95	¹ AAD 2	23AI ATLS	$\ell\ell$	
> 220	95	² AABOUD 1	19K ATLS	$W^{\pm}W^{\pm}$	
> 768	95		18BC ATLS	ee	
> 846	95		18bc ATLS	$\mu\mu$	OCCUR=2
> 468	95	-	15ag ATLS	$e \mu$	OCCUR=2
> 400	95	-	15ap ATLS	eτ	
> 400	95		15ap ATLS	μau	OCCUR=2
> 169	95	⁶ CHATRCHYAN 1		au au	
> 300	95	⁶ CHATRCHYAN 1		μau	OCCUR=2
> 293	95	⁶ CHATRCHYAN 1		eτ	OCCUR=3
> 395	95 05	⁶ CHATRCHYAN 1 ⁶ CHATRCHYAN 1		$\mu\mu$	OCCUR=4
> 391 > 382	95 95	⁶ CHATRCHYAN 1		е µ е е	OCCUR=5 OCCUR=6
> 98.1	95 95	-	DI DLPH		OCCOR=0
> 99.0	95 95		DEFIN		
		llowing data for avera			
			25 ATLS	$W^{\pm}W^{\pm}$	
		10	25 ATLS 24AD ATLS	W = W = $W^{\pm} W^{\pm}$	
> 250	95		24AD ATLS 210 ATLS	W = W = W $W^{\pm} W^{\pm}$	
> 350		10		$H^{\pm\pm}H^{\mp}$ associated produc-	OCCUR=2
> 230	95		210 ATLS	tion, $H^{\pm\pm} ightarrow W^{\pm}W^{\pm}$, $H^{\pm} ightarrow W^{\pm}Z$	OCCOR=2
			21W CMS	$w^{\pm}w^{\pm}$	
			19cq CMS	$w^{\pm}w^{\pm}$	
			18cc CMS	$W^{\pm}W^{\pm}$	
> 551	95	4	15ag ATLS	ee	
> 516	95		15AG ATLS	$\mu\mu$	OCCUR=3
			15 RVUE		
		¹⁷ KHACHATRY1		$W^{\pm}W^{\pm}$	
			14 RVUE	$W^{(*)\pm}W^{(*)\pm}$	
> 330	95	10	13Y ATLS	$\mu\mu$	
> 237	95		13Y ATLS	μau	OCCUR=2
> 355	95		12AY ATLS	$\mu\mu$	
> 398	95 05	01	12CQ ATLS	$\mu\mu$	
> 375	95 05	01	12CQ ATLS	eμ	OCCUR=2
> 409 > 128	95 95	22	12cq ATLS 12a D0	ee	OCCUR=3
> 128	95 95		12A D0 12A D0	au au μau	OCCUR=2
> 245	95 95	00	LIAF CDF	μ μ	00001-2
> 210	95	00	LIAF CDF	μμ eμ	OCCUR=2
> 225	95 95	00	LIAF CDF	ee	OCCUR=3
> 114	95		08AA CDF	eτ	
> 112	95		08AA CDF	$\mu \tau$	OCCUR=2
> 168	95	05	08v D0	$\mu \mu$	
			06A H1	single $H^{\pm\pm}$	
> 133	95	²⁷ ACOSTA	05L CDF	stable	
> 118.4	95		04e D0	$\mu\mu$	
			03Q OPAL	$H^{\pm\pm}$	
		21	97 SPEC	muonium conversion	
	05	20	95 THEC		
> 45.6	95 95	00	92M OPAL		
> 30.4 none 6.5-36.6	95 95	0.4	92м OPAL 90 MRK2		OCCUR=2
1016 0.5-50.0	90	SWARTZ S			

	7/16/2025 12:17 Page 8
¹ AAD 23AI search for $H^{++}H^{}$ production using 139 fb ⁻¹ of pp collisions at $E_{\rm cm} =$ 13 TeV. Decay branching ratios B($H^{++} \rightarrow \ell^+ \ell'^+$) for the six flavor combinations are assumed to be equal, adding up to unity. If the T ₃ = 0 states are degenerate with the T ₃ = ±1 states, the limit becomes 1080 GeV.	NODE=S064HD1;LINKAGE=Q
² AABOUD 19K search for pair production of $H^{++}H^{}$ followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 36.1 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. The search is interpreted in a doublet-triplet extension of the scalar sector with a vev of 0.1 GeV, leading to B($H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$) = 1. See their Fig. 5 for limits on the cross section for $m_{H^{++}}$ between 200	NODE=S064HD1;LINKAGE=J
and 700 GeV. ³ See their Figs. 11(b) and 13 for limits with smaller branching ratios. ⁴ AAD 15AG search for $H^{++}H^{}$ production in 20.3 fb ⁻¹ of <i>pp</i> collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Fig. 5 for limits for arbitrary branching ratios.	NODE=S064HD1;LINKAGE=G NODE=S064HD1;LINKAGE=F
⁵ AAD 15AP search for $H^{++}H^{}$ production in 20.3 fb ⁻¹ of pp collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state.	NODE=S064HD1;LINKAGE=I
⁶ CHATRCHYAN 12AU search for $H^{++}H^{}$ production with 4.9 fb ⁻¹ of pp collisions at $E_{cm} = 7$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 6 for limits including associated $H^{++}H^{-}$ production or assuming different	NODE=S064HD1;LINKAGE=CH
scenarios. ⁷ ABDALLAH 03 search for $H^{++}H^{}$ pair production either followed by $H^{++} \rightarrow \tau^+ \tau^+$, or decaying outside the detector.	NODE=S064HD1;LINKAGE=CD
⁸ ABBIENDI 02C searches for pair production of $H^{++}H^{}$, with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ ($\ell,\ell' = e,\mu,\tau$). The limit holds for $\ell = \ell' = \tau$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for	NODE=S064HD1;LINKAGE=X2
$g(H\ell\ell) \gtrsim 10^{-7}$. ⁹ AAD 25 combine AAD 23AH and AAD 24AD and derive limits on the isotriplet contribu- tion to the gauge boson masses in the Georgi-Machacek model. See their Fig. 5(c).	NODE=S064HD1;LINKAGE=S
¹⁰ AAD 24AD search for production of $H^{\pm\pm}$ by $W^{\pm}W^{\pm}$ fusion, in the decay to $W^{\pm}W^{\pm}$, using 139 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 12 for limits on cross section times branching ratio for $m_{H^{\pm\pm}}$ between 0.2 and 3.0 TeV. Limits on the isotriplet contribution to the gauge-boson masses in the Georgi-Machacek model are also	NODE=S064HD1;LINKAGE=R
shown. ¹¹ AAD 21U search for pair production of $H^{++}H^{}$ followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 139 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 13$ TeV. The search is interpreted in a triplet extension of the SM Higgs sector with a triplet vev of 0.1 GeV, leading to $B(H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}) = 1$. See their Fig. 9(a) for limits on the cross section for $m_{H^{++}}$	NODE=S064HD1;LINKAGE=N
between 200 and 600 GeV. ¹² AAD 21U search for associated production of $H^{\pm\pm}H^{\mp}$ followed by the decays $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$, $H^{\pm} \rightarrow W^{\pm}Z$ in 139 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. $H^{\pm\pm}$ and H^{\pm} are assumed to be degenerate in mass within 5 GeV. The search is interpreted in a triplet extension of the SM Higgs sector with a triplet vev of 0.1 GeV, leading to B($H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$) = 1. See their Fig. 9(b) for limits on the cross section for $m_{H^{++}}$ between 200 and 600 CeV	NODE=S064HD1;LINKAGE=O
200 and 600 GeV. ¹³ SIRUNYAN 21W search for vector boson fusion production of $H^{\pm\pm}$ decaying to $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu$ in 137 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 8 for limits on cross section times branching ratio for $m_{H^{++}} = 0.2$ -3.0 TeV.	NODE=S064HD1;LINKAGE=P
¹⁴ SIRUNYAN 19CQ search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow qq\ell\nu$ in 35.9 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 5 for limits on cross section times branching ratio for $m_{H^{\pm\pm}}$ between 0.6 and 2 TeV.	NODE=S064HD1;LINKAGE=M
¹⁵ SIRUNYAN 18CC search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 35.9 fb ⁻¹ of pp collisions at $E_{\rm cm} = 13$ TeV. See their Fig. 3 for limits on cross section times branching ratio for $m_{H^{\pm\pm}}$ between 200 and 1000 GeV	NODE=S064HD1;LINKAGE=H
¹⁶ KANEMURA 15 examine the case where H^{++} decays preferentially to $W^{(*)}W^{(*)}$ and estimate that a lower mass limit of ~ 84 GeV can be derived from the same-sign dilepton data of AAD 15AG if H^{++} decays with 100% branching ratio to $W^{(*)}W^{(*)}$.	NODE=S064HD1;LINKAGE=K
¹⁷ KHACHATRYAN 15D search for $H^{\pm\pm}$ production by vector boson fusion followed by the decay $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in 19.4 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm} = 8$ TeV. See their Fig. 4 for limits on cross section times branching ratio for $m_{H^{++}}$ between 160 and 800	NODE=S064HD1;LINKAGE=L
GeV. ¹⁸ KANEMURA 14 examine the case where H^{++} decays preferentially to $W^{(*)}W^{(*)}$ and estimate that a lower mass limit of ~ 60 GeV can be derived from the same-sign dilepton that is 6 ADD 12000	NODE=S064HD1;LINKAGE=E
data of AAD 12CY. ¹⁹ AAD 13Y search for $H^{++}H^{}$ production in a generic search of events with three charged leptons in 4.6 fb ⁻¹ of <i>pp</i> collisions at $E_{cm} = 7$ TeV. The limit assumes 100% branching ratio to the specified final state.	NODE=S064HD1;LINKAGE=GA
²⁰ AAD 12AY search for $H^{++}H^{}$ production with 1.6 fb ⁻¹ of pp collisions at $E_{cm} = 7$ TeV. The limit assumes 100% branching ratio to the specified final state. ²¹ AAD 12C0 sparsh for $H^{++}H^{}$ production with 4.7 fb ⁻¹ of an collisions at $E_{cm} = 1000$	NODE=S064HD1;LINKAGE=AD
²¹ AAD 12CQ search for $H^{++}H^{}$ production with 4.7 fb ⁻¹ of pp collisions at $E_{cm} =$ 7 TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.	NODE=S064HD1;LINKAGE=DA

NODE=S064HD1;LINKAGE=A1

NODE=S064HD1:LINKAGE=A2

NODE=S064HD1;LINKAGE=AA

NODE=S064HD1;LINKAGE=AV

NODE=S064HD1;LINKAGE=KT

NODE=S064HD1;LINKAGE=AO

NODE=S064HD1;LINKAGE=AZ

NODE=S064HD1;LINKAGE=AB

- ²²ABAZOV 12A search for $H^{++}H^{--}$ production in 7.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{cm} =$ 1.96 TeV.
- ²³AALTONEN 11AF search for $H^{++}H^{--}$ production in 6.1 fb⁻¹ of $p\overline{p}$ collisions at E_{cm} = 1.96 TeV.
- ²⁴ AALTONEN 08AA search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ²⁵ABAZOV 08v search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV. The limit is for B($H \rightarrow \mu\mu$) = 1. The limit is updated in ABAZOV 12A.
- $^{26}\,\rm AKTAS$ 06A search for single ${\it H}^{\pm\pm}$ production in $\it ep$ collisions at HERA. Assuming that H^{++} only couples to $e^+\mu^+$ with $g_{e\,\mu}=$ 0.3 (electromagnetic strength), a limit $m_{H^{++}}~>$ 141 GeV (95% CL) is derived. For the case where H^{++} couples to $e\,\tau$ only the limit is 112 GeV.
- ²⁷ ACOSTA 05L search for $H^{++}H^{--}$ pair production in $p\overline{p}$ collisions. The limit is valid for $g_{\rho\rho\prime} < 10^{-8}$ so that the Higgs decays outside the detector.
- ²⁸ABAZOV 04E search for $H^{++}H^{--}$ pair production in $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$. The limit is valid for $g_{\mu\mu} \gtrsim 10^{-7}$.
- ²⁹ABBIENDI 03Q searches for single $H^{\pm\pm}$ via direct production in $e^+e^- \rightarrow e^{\mp}e^{\mp}H^{\pm\pm}$, and via t-channel exchange in $e^+e^-
 ightarrow e^+e^-$. In the direct case, and assuming B($H^{\pm\pm} \rightarrow ~\ell^{\pm} \ell^{\pm}$) = 1, a 95% CL limit on $h_{ee}~<$ 0.071 is set for $m_{H^{\pm\pm}}~<$ 160 GeV (see Fig. 6). In the second case, indirect limits on h_{ee} are set for $m_{H^{\pm\pm}}$ < 2 TeV (see Fig. 8).
- 30 GORDEEV 97 search for muonium-antimuonium conversion and find ${\it G}_{M\,\overline{M}}/{\it G}_{F}<0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}}$ > 210 GeV if the Yukawa couplings of H^{++} to ee and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muoniumantimuonium conversion, see the muon Particle Listings.
- $^{31}\mathrm{ASAKA}$ 95 point out that H^{++} decays dominantly to four fermions in a large region of parameter space where the limit of ACTON 92M from the search of dilepton modes does not apply.
- 32 ACTON 92M limit assumes $H^{\pm\pm} \rightarrow ~\ell^{\pm} \ell^{\pm}$ or $H^{\pm\pm}$ does not decay in the detector. Thus the region $g_{\ell \ell} \approx 10^{-7}$ is not excluded.
- 33 ACTON 92M from $\Delta\Gamma_Z$ <40 MeV.
- ³⁴SWARTZ 90 assume $H^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\pm}$ (any flavor). The limits are valid for the Higgslepton coupling $g(H\ell\ell) \gtrsim 7.4 \times 10^{-7} / [m_H/GeV]^{1/2}$. The limits improve somewhat for ee and $\mu\mu$ decay modes.

Limits for $H^{\pm\pm}$ with	$T_{3} = 0$	D			NODE=S064HD0
VALUE (GeV)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	NODE=S064HD0
>900	95	¹ AAD	23AI ATLS	ll	
> 58	95	² AABOUD	18BC ATLS	ee	
>723	95	² AABOUD	18BC ATLS	$\mu\mu$	OCCUR=2
>402	95	³ AAD	15AG ATLS	eμ	OCCUR=2
>290	95	⁴ AAD	15ap ATLS	eτ	
>290	95	⁴ AAD	15ap ATLS	μau	OCCUR=2
> 97.3	95	⁵ ABDALLAH	03 DLPH	au au	
> 97.3	95	⁶ ACHARD	03F L3	au au	
> 98.5	95	⁷ ABBIENDI	02C OPAL		
$\bullet \bullet \bullet$ We do not use the	e followin	ng data for averages	s, fits, limits,	etc. • • •	
>374	95	³ AAD	15AG ATLS	ee	
>438	95	³ AAD	15AG ATLS	$\mu\mu$	OCCUR=3
>251	95	⁸ AAD	12AY ATLS	$\mu\mu$	
>306	95	⁹ AAD	12cq ATLS	$\mu\mu$	
>310	95	⁹ AAD	12cq ATLS	$e\mu$	OCCUR=2
>322	95	⁹ AAD	12cq ATLS	ee	OCCUR=3
>113	95	¹⁰ ABAZOV	12A D0	μau	
>205	95	¹¹ AALTONEN	11AF CDF	$\mu\mu$	
>190	95	¹¹ AALTONEN	11AF CDF	$e\mu$	OCCUR=2
>205	95	¹¹ AALTONEN	11AF CDF	ee	OCCUR=3
>145	95	¹² ABAZOV	08v D0	$\mu\mu$	
		¹³ AKTAS	06A H1	single $H^{\pm\pm}$	
>109	95	¹⁴ ACOSTA	05L CDF	stable	
> 98.2	95	¹⁵ ABAZOV	04E D0	$\mu\mu$	
		¹⁶ ABBIENDI	03Q OPAL	$E_{ m cm} \leq$ 209 GeV, single $H^{\pm\pm}$	
		¹⁷ GORDEEV	97 SPEC	muonium conversion	
> 45.6	95	¹⁸ ACTON	92M OPAL		
> 25.5	95	¹⁹ ACTON	92M OPAL		OCCUR=3
none 7.3-34.3	95	²⁰ SWARTZ	90 MRK2		OCCUR=2

. .

NODE=S064HD1;LINKAGE=U

NODE=S064HD1:LINKAGE=D

NODE=S064HD1;LINKAGE=B

NODE=S064HD1;LINKAGE=C NODE=S064HD1;LINKAGE=A

- ¹ AAD 23AI search for $H^{++}H^{--}$ production using 139 fb⁻¹ of *pp* collisions at $E_{cm} =$ 13 TeV. Decay branching ratios B($H^{++} \rightarrow \ell^+ \ell'^+$) for the six flavor combinations are assumed to be equal, adding up to unity.
- 2 See their Figs. 12(b) and 14 for limits with smaller branching ratios.
- ³ AAD 15AG search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of *pp* collisions at $E_{\rm cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state. See their Fig. 5 for limits for arbitrary branching ratios.
- ⁴ AAD 15AP search for $H^{++}H^{--}$ production in 20.3 fb⁻¹ of *pp* collisions at $E_{cm} = 8$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ⁵ABDALLAH 03 search for $H^{++}H^{--}$ pair production either followed by $H^{++} \rightarrow \tau^+ \tau^+$, or decaying outside the detector.
- ⁶ACHARD 03F search for $e^+e^- \rightarrow H^{++}H^{--}$ with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell'^{\pm}$. The limit holds for $\ell = \ell' = \tau$, and slightly different limits apply for other flavor combinations. The limit is valid for $g_{\ell\ell'} \gtrsim 10^{-7}$.
- ⁷ ABBIENDI 02C searches for pair production of $H^{++}H^{--}$, with $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ ($\ell,\ell' = e,\mu,\tau$). the limit holds for $\ell = \ell' = \tau$, and becomes stronger for other combinations of leptonic final states. To ensure the decay within the detector, the limit only applies for $g(H\ell\ell) \gtrsim 10^{-7}$.
- ⁸ AAD 12AY search for $H^{++}H^{--}$ production with 1.6 fb⁻¹ of pp collisions at $E_{cm} = 7$ TeV. The limit assumes 100% branching ratio to the specified final state.
- ⁹AAD 12CQ search for $H^{++}H^{--}$ production with 4.7 fb⁻¹ of pp collisions at $E_{cm} =$ 7 TeV. The limit assumes 100% branching ratio to the specified final state. See their Table 1 for limits assuming smaller branching ratios.
- ¹⁰ABAZOV 12A search for $H^{++}H^{--}$ production in 7.0 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV.
- ¹¹AALTONEN 11AF search for $H^{++}H^{--}$ production in 6.1 fb⁻¹ of $p\overline{p}$ collisions at $E_{\rm cm}$ = 1.96 TeV.
- ¹²ABAZOV 08V search for $H^{++}H^{--}$ production in $p\overline{p}$ collisions at $E_{cm} = 1.96$ TeV. The limit is for $B(H \rightarrow \mu\mu) = 1$. The limit is updated in ABAZOV 12A.
- ¹³ AKTAS 06A search for single $H^{\pm\pm}$ production in ep collisions at HERA. Assuming that H^{++} only couples to $e^+\mu^+$ with $g_{e\mu} = 0.3$ (electromagnetic strength), a limit $m_{H^{++}} > 141$ GeV (95% CL) is derived. For the case where H^{++} couples to $e\tau$ only the limit is 112 GeV.
- ¹⁴ ACOSTA 05L search for $H^{++}H^{--}$ pair production in $p\bar{p}$ collisions. The limit is valid for $g_{\ell\ell'} < 10^{-8}$ so that the Higgs decays outside the detector.
- ¹⁵ABAZOV 04E search for $H^{++}H^{--}$ pair production in $H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}$. The limit is valid for $g_{\mu\mu} \gtrsim 10^{-7}$.
- ¹⁶ ABBIENDI 03Q searches for single $H^{\pm\pm}$ via direct production in $e^+e^- \rightarrow e^\mp e^\mp H^{\pm\pm}$, and via *t*-channel exchange in $e^+e^- \rightarrow e^+e^-$. In the direct case, and assuming $B(H^{\pm\pm} \rightarrow \ell^\pm \ell^\pm) = 1$, a 95% CL limit on $h_{ee} < 0.071$ is set for $m_{H^{\pm\pm}} < 160$ GeV (see Fig. 6). In the second case, indirect limits on h_{ee} are set for $m_{H^{\pm\pm}} < 2$ TeV (see Fig. 8).
- ¹⁷ GORDEEV 97 search for muonium-antimuonium conversion and find $G_{M\overline{M}}/G_F < 0.14$ (90% CL), where $G_{M\overline{M}}$ is the lepton-flavor violating effective four-fermion coupling. This limit may be converted to $m_{H^{++}} > 210$ GeV if the Yukawa couplings of H^{++} to *ee* and $\mu\mu$ are as large as the weak gauge coupling. For similar limits on muonium-antimuonium conversion, see the muon Particle Listings.
- $^{18}\,\text{ACTON}$ 92M limit assumes $H^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\pm}$ or $H^{\pm\pm}$ does not decay in the detector. Thus the region $g_{\ell\ell} \approx 10^{-7}$ is not excluded.

 19 ACTON 92M from $\Delta\Gamma_Z$ <40 MeV.

²⁰SWARTZ 90 assume $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$ (any flavor). The limits are valid for the Higgslepton coupling g($H\ell\ell$) $\gtrsim 7.4 \times 10^{-7}/[m_H/\text{GeV}]^{1/2}$. The limits improve somewhat for *ee* and $\mu\mu$ decay modes.

H^{\pm} and $H^{\pm\pm}$ REFERENCES

AAD	25 PL B860 139137	G. Aad et al.	(ATLAS Collab.)
AAD			
	24AD JHEP 2404 026	G. Aad <i>et al.</i>	(ATLAS Collab.)
HAYRAPETY	24AV JHEP 2409 186	A. Hayrapetyan <i>et al.</i>	(CMS Collab.)
AAD	23AH EPJ C83 633	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23AI EPJ C83 605	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23BB JHEP 2309 004	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	23BW PR D108 092007	G. Aad et al.	(ATLAS Collab.)
TUMASYAN	23AV JHEP 2309 032	A. Tumasyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	22B PL B826 136888	A. Tumasyan <i>et al.</i>	(CMS Collab.)
AAD	21U JHEP 2106 146	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21V JHEP 2106 145	G. Aad <i>et al.</i>	(ATLAS Collab.)
SIRUNYAN	21W EPJ C81 723	A.M. Sirunyan et al.	(CMS Collab.)
AAD	20W JHEP 2006 151	G. Aad et al.	(ATLAS Collab.)
SIRUNYAN	20AO JHEP 2007 126	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	20AV JHEP 2001 096	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	20BE PR D102 072001	A.M. Sirunyan et al.	(CMS Collab.)
AABOUD	19K EPJ C79 58	M. Aaboud et al.	(ATLAS Collab.)
SIRUNYAN	19AH JHEP 1907 142	A.M. Sirunyan et al.	`(CMS_Collab.)

NODE=S064HD0;LINKAGE=F

NODE=S064HD0;LINKAGE=E NODE=S064HD0;LINKAGE=D NODE=S064HD0;LINKAGE=G NODE=S064HD0;LINKAGE=CD NODE=S064HD0;LINKAGE=AC NODE=S064HD0;LINKAGE=X2 NODE=S064HD0:LINKAGE=AD NODE=S064HD0;LINKAGE=DA NODE=S064HD0;LINKAGE=A1 NODE=S064HD0;LINKAGE=A2 NODE=S064HD0;LINKAGE=AV NODE=S064HD0;LINKAGE=KT NODE=S064HD0;LINKAGE=AO NODE=S064HD0;LINKAGE=AZ NODE=S064HD0;LINKAGE=AB NODE=S064HD0;LINKAGE=U

NODE=S064HD0;LINKAGE=B

NODE=S064HD0;LINKAGE=C NODE=S064HD0;LINKAGE=A

NODE=S064

REFID=63165
REFID=62844
REFID=63124
REFID=62175
REFID=62177
REFID=62379
REFID=62501
REFID=62521
REFID=61700
REFID=61309
RFFID=61310
REFID=61385
REFID=60507
REFID=60515
REFID=60619
REFID=60726
REFID=59625
REFID=59625
REFID=59099

SIRUNYAN	19RP	PL B795 281	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PRL 123 131802	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PL B798 134985	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD		EPJ C78 199	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18BW	JHEP 1809 139	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1811 085	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		PL B787 68	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
HALLER	18	EPJ C78 675	J. Haller <i>et al.</i>	(Gfitter Group)
SIRUNYAN		PRL 120 081801 JHEP 1811 115	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN MISIAK		EPJ C77 201	A.M. Sirunyan <i>et al.</i> M. Misiak, M. Steinhauser	(CMS Collab.)
		PRL 119 141802	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
		PL B759 555	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1603 127	G. Aad et al.	(ATLAS Collab.)
AAD		JHEP 1503 088	G. Aad <i>et al.</i>	(ATLAS Collab.)
		JHEP 1503 041	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		JHEP 1508 138	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD		PRL 114 231801	G. Aad <i>et al.</i>	(ATLAS Collab.)
	15	PTEP 2015 051B02 JHEP 1511 018	S. Kanemura <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Callab)
		JHEP 1512 178	V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
KHACHATRY			V. Khachatryan <i>et al.</i>	(CMS Collab.)
		PR D89 032002	G. Aad <i>et al.</i>	(ATLAS Collab.)
		PR D89 091101	T. Aaltonen <i>et al.</i>	(CDF Collab.)
KANEMURA	14	PR D90 115018	S. Kanemura <i>et al.</i>	
		EPJ C73 2465	G. Aad <i>et al.</i>	(ATLAS Collab.)
		JHEP 1303 076	G. Aad et al.	(ATLAS Collab.)
		PR D87 052002 EPJ C73 2552	G. Aad <i>et al.</i> M. Carona <i>et al.</i>	(ATLAS Collab.)
	13 13	EPJ C73 2552 EPJ C73 2463	M. Carena <i>et al.</i> LEP Collabs (ALEPH, DEI	PHI, L3, OPAL, LEP)
		PR D85 032004	G. Aad <i>et al.</i> (ALEPH, DEI	(ATLAS Collab.)
		JHEP 1206 039	G. Aad et al.	(ATLAS Collab.)
		EPJ C72 2244	G. Aad <i>et al.</i>	(ATLAS Collab.)
		JHEP 1212 007	G. Aad <i>et al.</i>	(ATLAS Collab.)
ABAZOV	12A	PRL 108 021801	V.M. Abazov et al.) (D0 Collab.)
ABBIENDI	12	EPJ C72 2076	G. Abbiendi et al.	(OPAL Collab.)
		JHEP 1207 143	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN			S. Chatrchyan <i>et al.</i>	(CMS Collab.)
AALTONEN AALTONEN	11AF 11P	PRL 107 181801 PRL 107 031801	T. Aaltonen <i>et al.</i> T. Aaltonen <i>et al.</i>	(CDF Collab.)
	10	PR D82 073012		(CDF Collab.) CLER, ORSAY, LAPP)
AALTONEN		PRL 103 101803	T. Aaltonen <i>et al.</i>	(CDF Collab.)
		PR D80 051107	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV		PR D80 071102	V.M. Abazov et al.	(D0 Collab.)
		PL B682 278	V.M. Abazov et al.	(D0 Collab.)
	09P	PRL 102 191802	V.M. Abazov et al.	(D0 Collab.)
		PRL 101 121801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	08V 06E	PRL 101 071803 PRL 96 042003	V.M. Abazov <i>et al.</i> A. Abulencia <i>et al.</i>	(D0 Collab.)
ABULENCIA AKTAS	06E	PKL 90 042003 PL B638 432	A. Aktas <i>et al.</i>	(CDF Collab.) (H1 Collab.)
ACOSTA	05L	PRL 95 071801	D. Acosta <i>et al.</i>	(CDF Collab.)
ABAZOV	04E	PRL 93 141801	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABBIENDI	04	EPJ C32 453	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	04I	EPJ C34 399	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABBIENDI	03	PL B551 35	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	03Q	PL B577 93	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	03	PL B552 127	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ACHARD	03E	PL B575 208	P. Achard <i>et al.</i>	(L3 Collab.)
ACHARD ABAZOV	03F 02B	PL B576 18 PRL 88 151803	P. Achard <i>et al.</i> V.M. Abazov <i>et al.</i>	(L3 Collab.) (D0 Collab.)
ABBIENDI	02B 02C	PL B526 221	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
BORZUMATI	02	PL B549 170	F.M. Borzumati, A. Djouadi	(
HEISTER	02P	PL B543 1	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	01Q	PL B520 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
BARATE	01E	EPJ C19 213	R. Barate <i>et al.</i>	(ALEPH Collab.)
GAMBINO	01	NP B611 338	P. Gambino, M. Misiak	
AFFOLDER	001	PR D62 012004	T. Affolder <i>et al.</i>	(CDF Collab.)
	00 99E	EPJ C15 1	D.E. Groom <i>et al.</i> G. Abbiendi <i>et al.</i>	(PDG Collab.)
ABBIENDI ABBOTT	99E 99E	EPJ C7 407 PRL 82 4975	B. Abbott <i>et al.</i>	(OPAL Collab.) (D0 Collab.)
	99E 99D	EPJ C8 3	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ABE	97L	PRL 79 357	F. Abe <i>et al.</i>	(CDF Collab.)
ACCIARRI	97F	PL B396 327	M. Acciarri et al.	(L3 Collab.)
AMMAR	97B	PRL 78 4686	R. Ammar et al.	(CLEO Collab.)
COARASA	97	PL B406 337	J.A. Coarasa, R.A. Jimenez, J. So	
GORDEEV	97	PAN 60 1164	V.A. Gordeev <i>et al.</i>	(PNPI)
GUCHAIT	97	Translated from YAF 60 1 PR D55 7263	1291. M. Guchait, D.P. Roy	(TATA)
MANGANO	97	PL B410 299	M. Mangano, S. Slabospitsky	(1117)
STAHL	97	ZPHY C74 73	A. Stahl, H. Voss	(BONN)
PDG	96	PR D54 1	R. M. Barnett et al.	(PDG Collab.)
ALAM	95	PRL 74 2885	M.S. Alam <i>et al.</i>	(CLEO Collab.)
ASAKA	95	PL B345 36	T. Asaka, K.I. Hikasa	(TOHOK)
BUSKULIC	95 05 D	PL B343 444	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
GROSSMAN	95B 94	PL B357 630	Y. Grossman, H. Haber, Y. Nir V. Grossman, Z. Ligoti	
GROSSMAN STAHL	94 94	PL B332 373 PL B324 121	Y. Grossman, Z. Ligeti A. Stahl	(BONN)
ACTON	92M	PL B295 347	P.D. Acton <i>et al.</i>	(OPAL Collab.)
SWARTZ	90	PRL 64 2877	M.L. Swartz <i>et al.</i>	(Mark II Collab.)

REFID=59928 REFID=60059 REFID=60136 REFID=59166 REFID=59166 REFID=59363 REFID=59363 REFID=59202 REFID=59202 REFID=59364 REFID=59364 REFID=57324 REFID=56617 REFID=56618 REFID=56618 REFID=56646 REFID=56646 REFID=56646 REFID=55784 REFID=55803 REFID=55803 REFID=55784 REFID=55803 REFID=55784 REFID=55784 REFID=55784 REFID=55784 REFID=55784 REFID=55784 REFID=55784 REFID=55784 REFID=55784 REFID=55784 REFID=55784 REFID=55784 REFID=554354 REFID=554354 REFID=54463 REFID=54468 REFID=54468 REFID=54463 REFID=54624 REFID=54624 REFID=54624 REFID=54624 REFID=54624 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53032 REFID=53036 REFID=52400 REFID=52400 REFID=51202 REFID=50316 REFID=51202 REFID=51202 REFID=50316 REFID=49901 REFID=49151 REFID=49091 REFID=49091 REFID=49091 REFID=49091 REFID=49091 REFID=48060 REFID=48000 REFID=48000 REFID=48000 REFID=48000 REFID=48000 REFID=48000 REFID=48000 REFID=48000 REFID=48000 REFID=48000 REFID=48000 REFID=48135 REFID=48135 REFID=48135 REFID=48533
REFID=48960 REFID=48401 REFID=48135
REFID=45429 REFID=45903 REFID=45483 REFID=44495 REFID=44495 REFID=44192 REFID=44119 REFID=45901 REFID=45902 REFID=43986 REFID=43138 REFID=41183