Neutrino Mixing

NODE=S067 NODE=S067200

With the possible exceptions of "short-baseline anomalies," such as LSND, all neutrino data can be described within the framework of a 3×3 mixing matrix between the mass eigenstates ν_1 , ν_2 , and ν_3 , leading to the flavor eigenstates ν_e , ν_{μ} , and ν_{τ} , as described in the review "Neutrino masses, mixing and oscillations."

The Listings are divided in the following sections:

(A) Neutrino fluxes and event ratios: shows measurements which correspond to various oscillation tests for Accelerator, Reactor, Atmospheric, and Solar neutrino experiments. Typically, ratios involve a measurement in a realm sensitive to oscillations compared to one for which no oscillation effect is expected.

(B) Neutrino mixing parameters: shows measurements of $\sin^2(\theta_{12}), \ \sin^2(\theta_{23}), \ \sin^2(\theta_{13}), \ \Delta m_{21}^2, \ \Delta m_{32}^2, \ \text{and} \ \delta_{CP}$ as extracted from the measured data in the quoted publications in the frame of the three-neutrino mixing scheme. The quoted averages are not the result of a global fit, as in the review "Neutrino masses, mixing, and oscillations," and, as a consequence, might slightly differ from them. In some cases, measurements depend on the mass order (normal when $\Delta m_{32}^2 > 0$ or inverted when $\Delta m_{32}^2 < 0$) or octant of θ_{23} (lower when $\theta_{23} < 45^\circ$ or upper when $\theta_{23} > 45^{\circ}$).

(C) Other neutrino mixing results:

The LSND anomaly [AGUILAR 01], reported a signal which is consistent with $\overline{\nu}_{\mu} \to \overline{\nu}_{e}$ oscillations. In a three neutrino framework, this would be a measurement of θ_{12} and Δm_{21}^2 . This does not appear to be consistent with the interpretation of other neutrino data. It has been interpreted as evidence for a 4th "sterile" neutrino. The following listings include results which might be relevant towards understanding this observation. They include searches for $\nu_{\mu} \rightarrow \nu_{e}$, $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$, sterile neutrino oscillations, and others.

(A) Neutrino fluxes and event ratios

Events (observed/expected) from accelerator ν_{μ} experiments.

Some neutrino oscillation experiments compare the flux in two or more detectors. This is usually quoted as the ratio of the event rate in the far detector to the expected rate based on an extrapolation from the near detector in the absence of oscillations.

TECN COMMENT

VALUE

DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • NODE=S067250

NODE=S067AER NODE=S067AER

NODE=S067AER

1.01 ± 0.10	¹ ABE	14B	T2K	ν_e rate in T2K near detect.
0.71 ± 0.08	² AHN	06A	K2K	K2K to Super-K
0.64 ± 0.05	³ MICHAEL	06	MINS	All charged current events
$0.71\substack{+0.08\\-0.09}$	⁴ ALIU	05	K2K	KEK to Super-K
$0.70 \substack{+0.10 \\ -0.11}$	⁵ AHN	03	K2K	KEK to Super-K

¹ The rate of ν_e from μ decay was measured to be 0.68 ± 0.30 compared to the predicted flux. From K decay 1.10 \pm 0.14 compared to the predicted flux. ² Based on the observation of 112 events when $158.1^{+9.2}_{-8.6}$ were expected without oscillations. Including not only the number of events but also the shape of the energy likely in the function. distribution, the evidence for oscillation is at the level of about 4.3 σ . Supersedes ALIU 05.

³This ratio is based on the observation of 215 events compared to an expectation of 336 \pm 14 without oscillations. See also ADAMSON 08.

 4 This ratio is based on the observation of 107 events at the far detector 250 km away from KEK, and an expectation of $151\substack{+12\\-10}$

 5 This ratio is based on the observation of 56 events with an expectation of 80.1 $\substack{+6.2\\-5.4}$

Events (observed/expected) from reactor $\overline{\nu}_e$ experiments.

The quoted values are the ratios of the measured reactor $\overline{\nu}_e$ event rate at the quoted distances, and the rate expected without oscillations. The expected rate is based on the experimental data for the most significant reactor fuels (235 U, 239 Pu, 241 Pu) and on calculations for 238 U.

A recent re-evaluation of the spectral conversion of electron to $\overline{\nu}_e$ in MUELLER 11 results in an upward shift of the reactor $\overline{\nu}_e$ spectrum by 3% and, thus, might require revisions to the ratios listed in this table.

VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S067RER					
● ● We do not use the following data for averages, fits, limits, etc. ● ●										
$0.948 \!\pm\! 0.008 \!\pm\! 0.033$	¹ ALMAZAN	20	RHF	RHF reactor at ILL						
0.952 ± 0.027	² ADEY	19	DAYA	DayaBay, Ling Ao/Ao II reactors						
	³ AN	16	DAYA	DayaBay, Ling Ao/Ao II reactors						
$1.08\ \pm 0.21\ \pm 0.16$	⁴ DENIZ	10	TEXO	Kuo-Sheng reactor, 28 m						
$0.658\!\pm\!0.044\!\pm\!0.047$	⁵ ARAKI	05	KLND	Japanese react. ~ 180 km						
$0.611\!\pm\!0.085\!\pm\!0.041$	⁶ EGUCHI	03	KLND	Japanese react. ~ 180 km						
$1.01 \ \pm 0.024 \pm 0.053$	⁷ BOEHM	01		Palo Verde react. 0.75–0.89 km						
$1.01 \ \pm 0.028 \!\pm\! 0.027$	⁸ APOLLONIO	99	CHOZ	Chooz reactors 1 km						
$0.987 \!\pm\! 0.006 \!\pm\! 0.037$	⁹ GREENWOOD	96 (Savannah River, 18.2 m						
$0.988\!\pm\!0.004\!\pm\!0.05$	ACHKAR	95	CNTR	Bugey reactor, 15 m						
$0.994\!\pm\!0.010\!\pm\!0.05$	ACHKAR	95	CNTR	Bugey reactor, 40 m	OCCUR=2					
$0.915\!\pm\!0.132\!\pm\!0.05$	ACHKAR	95	CNTR	Bugey reactor, 95 m	OCCUR=3					
$0.987 \!\pm\! 0.014 \!\pm\! 0.027$	¹⁰ DECLAIS	94	CNTR	Bugey reactor, 15 m	OCCUR=4					
$0.985\!\pm\!0.018\!\pm\!0.034$	KUVSHINN	91	CNTR	Rovno reactor						
$1.05 \ \pm 0.02 \ \pm 0.05$	VUILLEUMIER	R82		Gösgen reactor						
$0.955\!\pm\!0.035\!\pm\!0.110$	11 KWON	81		$\overline{\nu}_{e} p \rightarrow e^{+} n$						
0.89 ± 0.15	¹¹ BOEHM	80		$\tilde{\overline{\nu}_e} p \rightarrow e^+ n$						
				•						

 1 ALMAZAN 20 use the RHF research reactor at ILL to compare their measured antineutrino event rate to the calculation by HUBER 11. Reported 0.948 \pm 0.008 \pm 0.023 \pm 0.023 measurement with uncertainties from statistics, systematic, and model. Note that this result is obtained for highly enriched 235 U reactor fuel while most other reactor experiments utilize a low-enrichment mix of fissile nuclides.

² ADEY 19 present a re-analysis of 1230 days of Daya Bay near detector data with reduced systematic uncertainties on the neutron detection efficiency. Note that ADEY 19 report the measured to predicted antineutrino ratio using the reactor model of MUELLER 11 (Huber-Mueller model). The ratio using the older ILL-Vogel model is 1.001 \pm 0.015 \pm 0.027.

³AN 16 use 217 days of data (338k events) to determine the neutrino flux ratio relative to the prediction of Mueller-Huber and ILL-Vogel models (see AN 16 for details). The reported flux ratios were corrected for θ_{13} oscillation effect. The flux measurement is consistent with results from previous short-baseline reactor experiments. The measurement inverse beta decay yield is $(1.55 \pm 0.04) \times 10^{-18} \text{ cm}^2/(\text{GW day})$ or $\sigma_f = (5.92 \pm 10^{-10} \text{ cm}^2)$

0.14) \times 10 $^{-43}$ cm $^2/{\rm fission}.$ About 4 σ excess of events was observed in the 4–6 MeV prompt energy region.

⁴DENIZ 10 observe reactor $\overline{\nu}_e e$ scattering with recoil kinetic energies 3–8 MeV using CsI(TI) detectors. The observed rate is consistent with the Standard Model prediction, leading to a constraint on $\sin^2\theta_W = 0.251 \pm 0.031(\text{stat}) \pm 0.024(\text{sys})$.

 5 Updated result of KamLAND, including the data used in EGUCHI 03. Note that the survival probabilities for different periods are not directly comparable because the effective baseline varies with power output of the reactor sources involved, and there were large variations in the reactor power production in Japan in 2003.

NODE=S067AER;LINKAGE=A

NODE=S067AER;LINKAGE=AN

NODE=S067AER;LINKAGE=MI

NODE=S067AER;LINKAGE=AL

NODE=S067AER;LINKAGE=AH

NODE=S067RER NODE=S067RER

NODE=S067RER;LINKAGE=N

NODE=S067RER;LINKAGE=K

NODE=S067RER;LINKAGE=D

NODE=S067RER;LINKAGE=DE

NODE=S067RER;LINKAGE=AR

 6 EGUCHI 03 observe reactor neutrino disappearance at $\sim 180\,{\rm km}$ baseline to various Japanese nuclear power reactors.

⁷BOEHM 01 search for neutrino oscillations at 0.75 and 0.89 km distance from the Palo Verde reactors.

- ⁸APOLLONIO 99, APOLLONIO 98 search for neutrino oscillations at 1.1 km fixed distance from Chooz reactors. They use $\overline{\nu}_e p \rightarrow e^+ n$ in Gd-loaded scintillator target. APOLLONIO 99 supersedes APOLLONIO 98. See also APOLLONIO 03 for detailed description.
- $^9\,{\rm GREENWOOD}$ 96 search for neutrino oscillations at 18 m and 24 m from the reactor at _____ Savannah River.
- 10 DECLAIS 94 result based on integral measurement of neutrons only. Result is ratio of measured cross section to that expected in standard V-A theory. Replaced by ACHKAR 95.
- $^{11}\,\rm KWON$ 81 represents an analysis of a larger set of data from the same experiment as BOEHM 80.

— Atmospheric neutrinos —

Neutrinos and antineutrinos produced in the atmosphere induce μ -like and e-like events in underground detectors. The ratio of the numbers of the two kinds of events is defined as μ/e . It has the advantage that systematic effects, such as flux uncertainty, tend to cancel, for both experimental and theoretical values of the ratio. The "ratio of the ratios" of experimental to theoretical μ/e , $R(\mu/e)$, or that of experimental to theoretical $\mu/total$, $R(\mu/total)$ with total = $\mu+e$, is reported below. If the actual value is not unity, the value obtained in a given experiment may depend on the experimental conditions. In addition, the measured "up-down asymmetry" for μ ($N_{up}(\mu)/N_{down}(\mu)$) or e ($N_{up}(e)/N_{down}(e)$) is reported. The expected "up-down asymmetry" is nearly unity if there is no neutrino oscillation.

$R(\mu/e) = (Measured Ratio \ \mu/e) \ / \ (Expected Ratio \ \mu/e) \qquad NODE=S067DU0$									
VALUE	DOCUMENT ID		TECN	COMMENT	NODE=S067DU0				
\bullet \bullet We do not use the follow	ing data for average	s, fits,	, limits, e	etc. • • •					
$0.658\!\pm\!0.016\!\pm\!0.035$	¹ ASHIE	05	SKAM	sub-GeV					
$0.702^{+0.032}_{-0.030}{\pm}0.101$	² ASHIE	05	SKAM	multi-GeV	OCCUR=2				
$0.69 \pm 0.10 \pm 0.06$	³ SANCHEZ ⁴ FUKUDA 5 DAMM	03 96в	KAMI	Calorimeter raw data Water Cherenkov					
$1.00 \pm 0.15 \pm 0.08$	⁵ DAUM	95	FREJ	Calorimeter					
$0.60 \begin{array}{c} +0.06 \\ -0.05 \end{array} \pm 0.05$	⁶ FUKUDA	94	KAMI	sub-GeV	OCCUR=2				
$0.57 \begin{array}{c} +0.08 \\ -0.07 \end{array} \pm 0.07$	⁷ FUKUDA	94	KAMI	multi-Gev	OCCUR=3				
	⁸ BECKER-SZ	. 92 в	IMB	Water Cherenkov					
¹ ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super- Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring e-like events with 0.1 GeV/c $< p_e$ and μ -like events 0.2 GeV/c $< p_{\mu}$,									

Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring e-like events with 0.1 GeV/c < p_e and μ -like events 0.2 GeV/c < p_{μ} , both having a visible energy < 1.33 GeV. These criteria match the definition used by FUKUDA 94.

² ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring events with visible energy > 1.33 GeV and partially-contained events. All partially-contained events are classified as μ -like.

³SANCHEZ 03 result is based on an exposure of 5.9 kton yr, and updates ALLISON 99 result. The analyzed data sample consists of fully-contained *e*-flavor and μ -flavor events having lepton momentum > 0.3 GeV/c.

⁴ FUKUDA 96B studied neutron background in the atmospheric neutrino sample observed in the Kamiokande detector. No evidence for the background contamination was found.

⁵ DAUM 95 results are based on an exposure of 2.0 kton yr which includes the data used by BERGER 90B. This ratio is for the contained and semicontained events. DAUM 95 also report $R(\mu/e) = 0.99 \pm 0.13 \pm 0.08$ for the total neutrino induced data sample which includes upward going stopping muons and horizontal muons in addition to the contained and semicontained events.

⁶ FUKUDA 94 result is based on an exposure of 7.7 kton yr and updates the HIRATA 92 result. The analyzed data sample consists of fully-contained e-like events with 0.1 < $p_e < 1.33 \text{ GeV}/c$ and fully-contained μ -like events with 0.2 < $p_{\mu} < 1.5 \text{ GeV}/c$.

⁷ FUKUDA 94 analyzed the data sample consisting of fully contained events with visible energy > 1.33 GeV and partially contained μ -like events.

⁸ BECKER-SZENDY 92B reports the fraction of nonshowering events (mostly muons from atmospheric neutrinos) as $0.36 \pm 0.02 \pm 0.02$, as compared with expected fraction $0.51 \pm 0.01 \pm 0.05$. After cutting the energy range to the Kamiokande limits, BEIER 92 finds $R(\mu/e)$ very close to the Kamiokande value.

NODE=S067RER;LINKAGE=GE

NODE=S067RER;LINKAGE=BH

NODE=S067RER;LINKAGE=RA

NODE=S067RER;LINKAGE=GW

NODE=S067RER;LINKAGE=C

NODE=S067RER;LINKAGE=B

NODE=S067RFX

NODE=S067RFX

NODE=S067DU0;LINKAGE=AA

NODE=S067DU0;LINKAGE=AH

NODE=S067DU0;LINKAGE=SA

NODE=S067DU0;LINKAGE=E

NODE=S067DU0;LINKAGE=C

NODE=S067DU0;LINKAGE=F

NODE=S067DU0;LINKAGE=BS

7/16/2025 12:18 Page 4

 $R(\nu_{\mu}) = (Measured Flux of \nu_{\mu}) / (Expected Flux of \nu_{\mu})$ NODE=S067DU1 NODE=S067DU1 DOCUMENT ID TECN COMMENT \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ¹ ADAMSON MINS MINOS atmospheric 06 0.84 ± 0.12 ² AMBROSIO 01 MCRO upward through-going $0.72\!\pm\!0.026\!\pm\!0.13$ ³ AMBROSIO $0.57\!\pm\!0.05\ \pm0.15$ 00 MCRO upgoing partially contained $0.71 \pm 0.05 \pm 0.19$ ⁴ AMBROSIO MCRO downgoing partially contained OCCUR=2 00 + upgoing stopping ⁵ AMBROSIO $0.74\!\pm\!0.036\!\pm\!0.046$ 98 MCRO Streamer tubes ⁶ CASPER 91 IMB Water Cherenkov ⁷ AGLIETTA 89 NUSX ⁸ BOLIEV 0.95 ± 0.22 81 Baksan 0.62 ± 0.17 CROUCH 78 Case Western/UCI

 $^1\mathrm{ADAMSON}$ 06 uses a measurement of 107 total neutrinos compared to an expected rate of 127 \pm 13 without oscillations.

²AMBROSIO 01 result is based on the upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration, is 6.17 years. The first error is the statistical error, the second is the systematic error, dominated by the theoretical error in the predicted flux.

 $^3\,{\rm AMBROSIO}$ 00 result is based on the upgoing partially contained event sample. It came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.

⁴AMBROSIO 00 result is based on the combined samples of downgoing partially contained events and upgoing stopping events. These two subsamples could not be distinguished due to the lack of timing information. The result came from 4.1 live years of data taking with the full detector, from April 1994 to February 1999. The average energy of atmospheric muon neutrinos corresponding to this sample is 4 GeV. The first error is statistical, the second is the systematic error, dominated by the 25% theoretical error in the rate (20% in the flux and 15% in the cross section, added in quadrature). Within statistics, the observed deficit is uniform over the zenith angle.

 $^5\,\mathrm{AMBROSIO}$ 98 result is for all nadir angles and updates AHLEN 95 result. The lower cutoff on the muon energy is 1 GeV. In addition to the statistical and systematic errors, there is a Monte Carlo flux error (theoretical error) of ± 0.13 . With a neutrino oscillation hypothesis, the fit either to the flux or zenith distribution independently yields $\sin^2 2\theta = 1.0$ and $\Delta(m^2) \sim$ a few times 10^{-3} eV^2 . However, the fit to the observed zenith distribution gives a maximum probability for χ^2 of only 5% for the best oscillation hypothesis.

 6 CASPER 91 correlates showering/nonshowering signature of single-ring events with parent atmospheric-neutrino flavor. They find nonshowering ($\approx \nu_{\mu}$ induced) fraction is 0.41 \pm 0.03 \pm 0.02, as compared with expected 0.51 \pm 0.05 (syst).

⁷AGLIETTA 89 finds no evidence for any anomaly in the neutrino flux. They define $\rho = (\text{measured number of } \nu_e \text{'s})/(\text{measured number of } \nu_\mu \text{'s})$. They report ρ (measured)= ρ (expected) = 0.96 $^{+0.32}_{-0.28}$

 8 From this data BOLIEV 81 obtain the limit $\Delta(m^2)~\leq~6 imes 10^{-3}~{
m eV}^2$ for maximal mixing, $u_{\mu} \not\rightarrow
u_{\mu}$ type oscillation.

, ,				
$R(\mu/total) = (Measured R)$	NODE=S067DU9			
VALUE	DOCUMENT ID	TECN	COMMENT	NODE=S067DU9
\bullet \bullet We do not use the follow	ng data for averages, fi	ts, limits,	etc. • • •	
$1.1^{+0.07}_{-0.12}{\pm}0.11$	¹ CLARK 97	' IMB	multi-GeV	
¹ CLARK 97 obtained this res events in the IMB water-Ch				NODE=S067DU9;LINKAGE=F

VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	wing data for average	es, fits,	limits, e	etc. • • •
0.71 ± 0.06	¹ ADAMSON	12B	MINS	contained-vertex muons
$0.551^{+0.035}_{-0.033} {\pm} 0.004$	² ASHIE	05	SKAM	multi-GeV

 $N_{\rm up}(\mu)/N_{\rm down}(\mu)$

NODE=S067DU1;LINKAGE=AD

NODE=S067DU1;LINKAGE=RS

NODE=S067DU1;LINKAGE=K1

NODE=S067DU1;LINKAGE=K2

NODE=S067DU1;LINKAGE=D1

NODE=S067DU1;LINKAGE=D

NODE=S067DU1;LINKAGE=C

NODE=S067DU1;LINKAGE=B

=K

NODE=S067UDM NODE=S067UDM

 1 ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of 37.9 kton yr). This result is obtained with a sample of high resolution contained-vertex muons. The quoted error is statistical only. 2 ASHIE 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained single-ring μ -like events with visible energy > 1.33 GeV and partially-contained events. All partially-contained events are classified as μ -like. Upward-going events are those with $-1 < \cos(ext{zenith angle}) < -0.2$ and downward-going events are those with 0.2 < $\cos(\text{zenith angle}) < 1$. The μ -like up-down ratio for the multi-GeV data deviates from 1 (the expectation for no atmospheric ν_μ oscillations) by more than 12 standard deviations. $N_{\rm up}(e)/N_{\rm down}(e)$ NODE=S067UDE NODE=S067UDE VALUE DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $0.961^{+0.086}_{-0.079} \pm 0.016$ ¹ ASHIE 05 SKAM multi-GeV $^1\mathrm{ASHIE}$ 05 results are based on an exposure of 92 kton yr during the complete Super-Kamiokande I running period. The analyzed data sample consists of fully-contained

single-ring e-like events with visible energy > 1.33 GeV. Upward-going events are those with $-1 < \cos(\text{zenith angle}) < -0.2$ and downward-going events are those with 0.2 $< \cos(\text{zenith angle}) < 1$. The *e*-like up-down ratio for the multi-GeV data is consistent with 1 (the expectation for no atmospheric ν_e oscillations).

$R(up/down; \mu) = (Measured up/down; \mu) / (Expected up/down; \mu)$

DOCUMENT ID TECN COMMENT VALUE • • We do not use the following data for averages fits limits etc. • •

	the following data for	averag	ses, mis,	
$0.62\!\pm\!0.05\!\pm\!0.02$	¹ ADAMSON	12B	MINS	contained-vertex muons
$0.62^{+0.19}_{-0.14}{\pm}0.02$	² ADAMSON	06	MINS	atmospheric $\boldsymbol{\nu}$ with far detector

 1 ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of 37.9 kton yr). This result is obtained with a sample of high resolution contained-vertex muons. The expected ratio is calculated with no neutrino oscillation.

 2 ADAMSON 06 result is obtained with the MINOS far detector with an exposure of 4.54 kton yr. The expected ratio is calculated with no neutrino oscillation.

DOCUMENT ID TECN COMMENT

$N(\mu^+)/$	′N(μ ⁻)
VALUE	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.46 \substack{+ 0.05 \\ - 0.04}$	1,2 ADAMSON	12B MINS	contained-vertex muons
$0.63 \substack{+ \ 0.09 \\ - \ 0.08}$	^{1,3} ADAMSON	12B MINS	u-induced rock-muons

¹ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of 37.9 kton·yr). The muon charge ratio $N(\mu^+)/N(\mu^-)$ represents the $\overline{
u}_\mu/
u_\mu$ ratio.

 2 This result is obtained with a charge-separated sample of high resolution contained-vertex muons. The quoted error is statistical only.

 $^3\,{\rm This}$ result is obtained with a charge-separated sample of high resolution neutrino-induced rock-muons. The quoted error is statistical only.

$\begin{array}{l} \mathsf{R}(\mu^{+}/\mu^{-}) = (\text{Measured } \mathsf{N}(\mu^{+})/\mathsf{N}(\mu^{-})) / (\text{Expected } \mathsf{N}(\mu^{+})/\mathsf{N}(\mu^{-})) \\ \hline \mathsf{VALUE} & \mathsf{DOCUMENT ID} & \mathsf{TECN} & \mathsf{COMMENT} \end{array}$

• • • We do not use	the following data for	avera	ges, fits,	limits, etc. • • •	
$0.93 {\pm} 0.09 {\pm} 0.09$	1,2 ADAMSON	12 B	MINS	contained-vertex muons	
$1.29^{+0.19}_{-0.17}\pm0.16$	^{1,3} ADAMSON	12 B	MINS	ν -induced rock-muons	OCCUR=
$1.03 \pm 0.08 \pm 0.08$	^{1,4} ADAMSON	12 B	MINS	contained	OCCUR=
$1.39^{+0.35+0.08}_{-0.46-0.14}$	⁵ ADAMSON	07	MINS	Upward and horizontal μ with far detector	
$0.96^{+0.38}_{-0.27}\pm0.15$	⁶ ADAMSON	06	MINS	atmospheric $ u$ with far detector	

¹ADAMSON 12B reports the atmospheric neutrino results obtained with MINOS far detector in 2,553 live days (an exposure of 37.9 kton·yr). The muon charge ratio ${\sf N}(\mu^+)/{\sf N}(\mu^-)$ represents the $\overline{\nu}_{\mu}/\nu_{\mu}$ ratio. As far as the same oscillation parameters are used for ν s and $\overline{\nu}$ s, the expected $\overline{\nu}_{\mu}/\nu_{\mu}$ ratio is almost entirely independent of any input oscillations.

 2 This result is obtained with a charge-separated sample of high resolution contained-vertex muons

³This result is obtained with a charge-separated sample of high resolution neutrino-induced rock-muons.

Page 5

NODE=S067UDM;LINKAGE=AD

7/16/2025 12:18

NODE=S067UDM;LINKAGE=AS

NODE=S067UDE;LINKAGE=AS

NODE=S067MER NODE=S067MER

NODE=S067MER;LINKAGE=AM

NODE=S067MER;LINKAGE=AD

NODE=S067MPM NODE=S067MPM

OCCUR=2

NODE=S067MPM;LINKAGE=AD

NODE=S067MPM;LINKAGE=AN

NODE=S067MPM;LINKAGE=AM

NODE=S067RPM NODE=S067RPM

=2

=3

NODE=S067RPM;LINKAGE=AA

NODE=S067RPM;LINKAGE=AO NODE=S067RPM:LINKAGE=AP

⁴The charge-separated samples of high resolution contained-vertex muons and neutrino-NODE=S067RPM;LINKAGE=AQ induced rock-muons are combined to obtain this result which is consistent with unity. 5 ADAMSON 07 result is obtained with the MINOS far detector in 854.24 live days, based on neutrino-induced upward-going and horizontal muons. This result is consistent with CPT conservation ⁶ ADAMSON 06 result is obtained with the MINOS far detector with an exposure of 4.54 kton yr, based on contained events. The expected ratio is calculated by assuming the same oscillation parameters for neutrinos and antineutrinos. Solar neutrinos -NODE=S067SLR Solar neutrinos are produced by thermonuclear fusion reactions in the NODE=S067SLR Sun. Radiochemical experiments measure particular combinations of fluxes from various neutrino-producing reactions, whereas water-Cherenkov experiments mainly measure a flux of neutrinos from decay of ⁸B. Solar neutrino fluxes are composed of all active neutrino species, ν_e, ν_μ , and u_{τ} . In addition, some other mechanisms may cause antineutrino components in solar neutrino fluxes. Each measurement method is sensitive to

ν_{e} Capture Rates from Radiochemical Experiments

fluxes

1 SNU (Solar Neutrino Unit) = 10^{-36} captures per atom per second. NODE=S067SNU VALUE (SNU) DOCUMENT ID TECN COMMENT NODE=S067SNU \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet $73.4 \begin{array}{c} +6.1 \\ -6.0 \\ -4.1 \end{array} +3.7$ ¹ KAETHER 10 GALX reanalysis ² KAETHER 67.6 ±4.0 ±3.2 GNO+GALX reanalysis combined 10 OCCUR=2 $\begin{array}{rrrr} 65.4 & +3.1 & +2.6 \\ & -3.0 & -2.8 \end{array}$ ³ ABDURASHI... 09 $\mathsf{SAGE} \quad {}^{71}\mathsf{Ga} \rightarrow ~{}^{71}\mathsf{Ge}$ $62.9 \begin{array}{c} +5.5 \\ -5.3 \end{array} \pm 2.5$ $^{71}\text{Ga} \rightarrow ^{71}\text{Ge}$ ⁴ ALTMANN GNO 05 ⁵ ALTMANN $69.3 \pm 4.1 \pm 3.6$ GNO GNO + GALX combined 05 OCCUR=2 77.5 $\pm 6.2 \begin{array}{c} +4.3 \\ -4.7 \end{array}$ ⁶ HAMPEL 99 $\mathsf{GALX} \quad ^{71}\mathsf{Ga} \rightarrow \ ^{71}\mathsf{Ge}$ HOME 37 Cl \rightarrow 37 Ar ⁷ CLEVELAND 98 $2.56 \!\pm\! 0.16 \!\pm\! 0.16$

 1 KAETHER 10 reports the reanalysis results of a complete GALLEX data (GALLEX I+II+III+IV, reported in HAMPEL 99) based on the event selection with a new pulse shape analysis, which provides a better background reduction than the rise time analysis adopted in HAMPEL 99.

a particular component or a combination of components of solar neutrino

 2 Combined result of GALLEX I+II+III+IV reanalysis and GNO I+II+III (ALTMANN 05).

³ABDURASHITOV 09 reports a combined analysis of 168 extractions of the SAGE solar neutrino experiment during the period January 1990 through December 2007, and updates the ABDURASHITOV 02 result. The data are consistent with the assumption that the solar neutrino production rate is constant in time. Note that a $\sim 15\%$ systematic uncertainty in the overall normalization may be added to the ABDURASHITOV 09 result, because calibration experiments for gallium solar neutrino measurements using intense 51 Cr (twice by GALLEX and once by SAGE) and 37 Ar (by SAGE) result in an average ratio of 0.87 \pm 0.05 of the observed to calculated rates.

 4 ALTMANN 05 reports the complete result from the GNO solar neutrino experiment (GNO I+II+III), which is the successor project of GALLEX. Experimental technique of GNO is essentially the same as that of GALLEX. The run data cover the period 20 May 1998 through 9 April 2003.

⁵ Combined result of GALLEX I+II+III+IV (HAMPEL 99) and GNO I+II+III.

⁶HAMPEL 99 report the combined result for GALLEX I+II+III+IV (65 runs in total), which update the HAMPEL 96 result. The GALLEX IV result (12 runs) is 118.4 \pm 17.8 ± 6.6 SNU. (HAMPEL 99 discuss the consistency of partial results with the mean.) The GALLEX experimental program has been completed with these runs. The total run data cover the period 14 May 1991 through 23 January 1997. A total of 300 ⁷¹Ge events were observed. Note that a $\sim 15\%$ systematic uncertainty in the overall normalization may be added to the HAMPEL 99 result, because calibration experiments for gallium solar neutrino measurements using intense ⁵¹Cr (twice by GALLEX and once by SAGE) and ^{37}Ar (by SAGE) result in an average ratio of 0.87 \pm 0.05 of the observed to calculated rates.

⁷CLEVELAND 98 is a detailed report of the 3^7 Cl experiment at the Homestake Mine. The average solar neutrino-induced ³⁷Ar production rate from 108 runs between 1970 and 1994 updates the DAVIS 89 result.

NODE=S067SNU;LINKAGE=MC

NODE=S067SNU;LINKAGE=AB

NODE=S067SNU;LINKAGE=KE

NODE=S067SNU;LINKAGE=KA

NODE=S067SNU:LINKAGE=AL

NODE=S067SNU;LINKAGE=AT NODE=S067SNU;LINKAGE=HP

7/16/2025 12:18 Page 6

NODE=S067RPM:LINKAGE=AM

NODE=S067RPM;LINKAGE=AD

NODE=S067SNU

NODE=S067SES

NODE=S067SES

φ_{ES} (⁸B)

 $^8{\rm B}$ solar-neutrino flux measured via $\nu\,e$ elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to $\nu_\mu, \, \nu_\tau$ due to the cross-section difference, $\sigma(\nu_{\,\mu,\tau}\,e)\sim 0.16\sigma(\nu_e\,e)$. If the $^8{\rm B}$ solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of $\nu_e.$

-					
<u>VALUE (10⁶ cm^{-2s^{-1})}</u>	DOCUMENT ID		TECN	COMMENT	NODE=S067SES
$\bullet \bullet \bullet$ We do not use the	e following data for	r aver	ages, fits	, limits, etc. • • •	
$\begin{array}{c} 2.314 \!\pm\! 0.014 \!\pm\! 0.040 \\ 2.336 \!\pm\! 0.011 \!\pm\! 0.043 \end{array}$	¹ ABE ² ABE			SK-IV average flux SK-I+II+III+IV average flux	OCCUR=2
$2.32 \begin{array}{c} +0.18 \\ -0.17 \end{array} \begin{array}{c} +0.07 \\ -0.05 \end{array}$	³ ALLEGA	24	SNO+	Water phase; average flux	
$2.57 \begin{array}{c} +0.17 \\ -0.18 \end{array} \begin{array}{c} +0.07 \\ -0.07 \end{array}$	⁴ AGOSTINI	20A	BORX	average flux	
$2.53 \begin{array}{c} +0.31 \\ -0.28 \end{array} \begin{array}{c} +0.13 \\ -0.10 \end{array}$	⁵ ANDERSON	19	SNO+	Water phase; average flux	
$2.57 \begin{array}{r} +0.17 \\ -0.18 \end{array} \begin{array}{r} +0.07 \\ -0.07 \end{array}$	⁶ AGOSTINI	18 B	BORX	average flux	
$2.345 \!\pm\! 0.014 \!\pm\! 0.036$	⁷ ABE	16 C	SKAM	SK-I+II+III+IV average flux	
$2.308 \!\pm\! 0.020 \!+\! 0.039 \!\!-\! 0.040$	⁸ ABE	16C	SKAM	SK-IV average flux	OCCUR=2
$2.250^{+0.030}_{-0.029}{\pm}0.038$	⁸ ABE	16 C	SKAM	SK-IV day flux	OCCUR=3
$2.364 \!\pm\! 0.029 \!\pm\! 0.040$	⁸ ABE	16 C	SKAM	SK-IV night flux	OCCUR=4
$2.404 \!\pm\! 0.039 \!\pm\! 0.053$	⁹ ABE	16 C	SKAM	SK-III average flux	OCCUR=5
$2.41 \ \pm 0.05 \ \begin{array}{c} +0.16 \\ -0.15 \end{array}$	¹⁰ ABE	11	SKAM	SK-II average flux	OCCUR=2
$2.38 \pm 0.02 \pm 0.08$	¹¹ ABE	11	SKAM	SK-I average flux	OCCUR=3
$2.77 \ \pm 0.26 \ \pm 0.32$	¹² ABE	11 B	KLND	average flux	
$2.4 \pm 0.4 \pm 0.1$	¹³ BELLINI	10A	BORX	average flux	
$\begin{array}{rrrr} 1.77 & +0.24 & +0.09 \\ & -0.21 & -0.10 \end{array}$	¹⁴ AHARMIM	08	SNO	Phase III	
$2.38 \ \pm 0.05 \ +0.16 \\ -0.15$	¹⁵ CRAVENS	08	SKAM	average flux	
$2.35 \ \pm 0.02 \ \pm 0.08$	¹⁶ HOSAKA	06	SKAM	average flux	
$2.35 \ \pm 0.22 \ \pm 0.15$	¹⁷ AHARMIM	05A	SNO	Salty D ₂ O; ⁸ B shape not con- strained	
$2.34 \ \pm 0.23 \ +0.15 \\ -0.14$	¹⁷ AHARMIM	05A	SNO	Salty D ₂ O; ⁸ B shape con- strained	OCCUR=2
$2.39 \begin{array}{c} +0.24 \\ -0.23 \end{array} \pm 0.12$	¹⁸ AHMAD	02	SNO	average flux	
$2.39 \ \pm 0.34 \ \begin{array}{c} +0.16 \\ -0.14 \end{array}$	¹⁹ AHMAD	01	SNO	average flux	
$2.80 \ \pm 0.19 \ \pm 0.33$	²⁰ FUKUDA	96	KAMI	average flux	
2.70 ± 0.27	²⁰ FUKUDA	96	KAMI	day flux	OCCUR=2
$2.87 \begin{array}{c} +0.27 \\ -0.26 \end{array}$	²⁰ FUKUDA	96	KAMI	night flux	OCCUR=3
¹ ABE 24 ^B reports the 2008 to May 2018.	The electron kine 3 live days of wate	tic en er con	ergy thre vection s	or 2970 live days from September eshold for most of this period was itudies, the electron kinetic energy	NODE=S067SES;LINKAGE=H
² ABE 24B reports the				sults for 5805 live days. Supersedes	NODE=S067SES;LINKAGE=I
from the SNO+ dete	ctor's initial water µ	phase.	The eve	scattering rate using the full data ents over the reconstructed electron upersedes ANDERSON 19.	NODE=S067SES;LINKAGE=J
⁴ AGOSTINI 20A obta	ined this result from	m the	$\nu_e e$ elas	stic scattering rate over the period	NODE=S067SES;LINKAGE=C

⁴AGOSTINI 20A obtained this result from the $\nu_e e$ elastic scattering rate over the period between January 2008 and December 2016. Uses the same data as AGOSTINI 18B, but the analysis technique is significantly improved.

⁵ ANDERSON 19 reports this result from the $\nu_e e$ elastic scattering rate using a 69.2 kton-day (or 114.7 days) of exposure from May through December, 2017 during the SNO+ detector's water commissioning phase. The events over the reconstructed electron kinetic energy range of 5–15 MeV were analyzed. Superseded by ALLEGA 24.

 6 AGOSTINI 188 obtained this result from the $\nu_e\,e$ elastic scattering rate over the period between January 2008 and December 2016.

⁷ ABE 16C reports the combined results of the four phases of the Super-Kamiokande average flux measurements. Here the revised Super-Kamiokande-III result is used. Superseded by ABE 24B.

⁸ABE 16C reports the Super-Kamiokande-IV results for 1664 live days from September 2008 to February 2014. The analysis threshold is total electron energy of 4.0 MeV. Superseded by ABE 24B.

NODE=S067SES;LINKAGE=B

NODE=S067SES;LINKAGE=F

NODE=S067SES;LINKAGE=D

NODE=S067SES;LINKAGE=A

H

G

						7/16/2025	12:18	Pag
⁹ ABE 16C revised the Super-Kamiokande-III results are for analysis threshold is 5.0 MeV energy range has a total live	[,] 548 live days from /, but the event sa	Augus Augus	st 4, 200 in the 5	6 to August 18, 2008. The .0–6.5 MeV total electron		NODE=S0675	ES;LINKAG	E=C
$^{10}\mathrm{ABE}$ 11 recalculated the S					•	NODE=S0675	ES;LINKAG	E=A2
 TER 06A. ¹¹ ABE 11 recalculated the Superator 12 ABE 11B use a 123 kton·dator to measure the ⁸B solar neurophysical solar neurophysical	ay exposure of the utrino flux. They Id of 5.5 MeV, cor	Kaml utilize respor	$_AND$ li $\nu - e$ iding to	quid scintillation detector elastic scattering above a 5 MeV electron recoil en-		NODE=S0675 NODE=S0675	,	
 ¹³BELLINI 10A reports the Be electrons. The data correspo July 15, 2007 and August 23 	nd to 345.3 live da	n 3 Me ays wit	eV energ h a targ	gy threshold for scattered et mass of 100 t, between		NODE=S067S	ES;LINKAG	E=BE
¹⁴ AHARMIM 08 reports the re ³ He proportional counters to the period between Novembe live days. A simultaneous fir proportional counters and the where the spectral distributio shape.	esults from SNO F o measure the rate r 27, 2004 and Nov t was made for the e numbers of NC, C	of NC ember e num C, and	interac 28, 200 ber of N I ES even	tions in heavy water, over 6, corresponding to 385.17 IC events detected by the nts detected by the PMTs,		NODE=S0675	ES;LINKAG	E=HA
¹⁵ CRAVENS 08 reports the Su 2002 to October 2005. The p 40% of that of Super-Kamiol for the average flux is 7 MeV	hotocathode cover kande-I due to an a	age of	the dete	ector is 19% (reduced from		NODE=S0675	ES;LINKAG	E=CR
¹⁶ HOSAKA 06 reports the final May 31, 1996 and July 15, 20 is 5 MeV except for the first	results for 1496 liv 01, and replace FU	KUDA	02 resu	per-Kamiokande-I between Its. The analysis threshold		NODE=S0675	ES;LINKAG	E=HO
17 AHARMIM 05A measuremen heavy water over the period to 391.4 live days, and update separated. In one method, t method, the constraint of an	nts were made with between July 26, 2 AHMED 04A. The he ⁸ B energy spec	h disso 001 an e CC, E ctrum v	olved Na Id Augus ES, and I was not	st 28, 2003, corresponding VC events were statistically constrained. In the other		NODE=S0675	ES;LINKAG	E=AR
with AHMAD 02 results. 18 AHMAD 02 reports the ⁸ B s the kinetic energy threshold o between November 2, 1999 a	of 5 MeV. The data	corres	spond to	306.4 live days with SNO		NODE=S067S	ES;LINKAG	E=AH
¹⁹ AHMAD 01 reports the ⁸ B s the kinetic energy threshold SNO between November 2, 1	olar-neutrino flux of 6.75 MeV. The	measui e data	red via $ u$ corresp	e elastic scattering above		NODE=S0675	ES;LINKAG	E=SA
20 FUKUDA 96 results are for January 1987 through Februa $\rm E_e > 9.3~MeV$ (first 449 days days). These results update to and HIRATA 91 result for the data sample was also analyzed strong correlation of the sola	ary 1995, covering s), > 7.5 MeV (min the HIRATA 90 res day-night variatio ed for short-term v	the er ddle 79 ult for n in th ariatio	ntire sola 94 days) the aver e ⁸ B sol ns: with	ar cycle 22, with threshold and > 7.0 MeV (last 836 rage 8B solar-neutrino flux ar-neutrino flux. The total in experimental errors, no		NODE=S0675	ES;LINKAG	E=XF
ϕ_{CC} (⁸ B) ⁸ B solar-neutrino flux mean clusively to ν_e .	asured with charge	d-curre	ent reac	tion which is sensitive ex-		NODE=S0675 NODE=S0675		
<u>VALUE</u> $(10^{6} \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT		NODE=S067S	SCC	
\bullet \bullet \bullet We do not use the following	ng data for average	es, fits,	limits,	etc. • • •				
$1.67 \substack{+ 0.05 + 0.07 \\ - 0.04 - 0.08}$	¹ AHARMIM	08	SNO	Phase III				
$1.68 \!\pm\! 0.06 \!+\! 0.08 \!-\! 0.09$	² AHARMIM	05A	SNO	Salty D ₂ O; ⁸ B shape				
$1.72\!\pm\!0.05\!\pm\!0.11$	² AHARMIM	05A	SNO	not const. Salty D ₂ O; ⁸ B shape constrained		OCCUR=2		
$1.76^{+0.06}_{-0.05}\!\pm\!0.09$	³ AHMAD	02	SNO	average flux				
$1.75\pm0.07{+0.12\atop-0.11}\pm0.05$	⁴ AHMAD	01	SNO	average flux				
¹ AHARMIM 08 reports the re ³ He proportional counters to the period between Novembe live days. A simultaneous fir proportional counters and the where the spectral distributio shape.	o measure the rate r 27, 2004 and Nov t was made for the numbers of NC, C	of NC ember e num C, and	interac 28, 200 ber of N I ES even	tions in heavy water, over 6, corresponding to 385.17 IC events detected by the nts detected by the PMTs,		NODE=S0675	CC;LINKAG	iЕ—НА

²AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically

NODE=S067SCC;LINKAGE=AR

Page 8

					7/16/202	25 12:18	Page 9
method, the constraint o with AHMAD 02 results. ³ AHMAD 02 reports the S current reaction on deut 5 MeV. The data corresp	f an undistorted ⁸ B SNO result of the ⁸ E erium, $\nu_e d \rightarrow p_F$ bond to 306.4 live of	energy 3 solar- 9 e [—] , a 1ays wi	/ spectru neutrino bove the ith SNO	ot constrained. In the other m was added for comparison flux measured with charged- e kinetic energy threshold of between November 2, 1999	NODE=S06	57SCC;LINKA	AGE=AH
SNO Phase I data set is ⁴ AHMAD 01 reports the f charged-current reaction	given in AHARMIM irst SNO result of t on deuterium, $\nu_e d$ ta correspond to 24	107. he ⁸ B∶ → <i>pp</i>	solar-neu 0e [—] , abc	complete description of the atrino flux measured with the ove the kinetic energy thresh- a SNO between November 2,	NODE=S06	57SCC;LINKA	AGE=SA
φ _{NC} (⁸ B)					NODE=S06	575NC	
⁸ B solar neutrino flux r	neasured with neutr	al-curr	ent react	ion, which is equally sensitive	NODE=S06		
to ν_e , ν_μ , and ν_τ .						STENC	
<u>VALUE (10⁶ cm⁻²s⁻¹)</u> <u>CL%</u>			<u>TECN</u>	COMMENT	NODE=S06)/SNC	
 We do not use the fol +3.6 							
$4.7 \begin{array}{c} +3.6 \\ -2.3 \end{array}$	¹ APRILE			$CE\nu NS$, liquid Xe detector			
8.4 ± 3.1 <9.0 90	² во ³ ма	24 23A		$CE\nu NS$, liquid Xe detector $CE\nu NS$, liquid Xe detector			
5.25 $\pm 0.16 \ {+0.11 \atop -0.13}$	⁴ AHARMIM	13	SNO	All three phases combined			
$5.140 \substack{+0.160 + 0.132 \\ -0.158 - 0.117}$	⁵ AHARMIM	10	SNO	Phase I+II, low threshold			
$5.54 \begin{array}{c} -0.158 \\ -0.33 \\ -0.31 \end{array} \begin{array}{c} -0.36 \\ -0.34 \end{array}$	⁶ AHARMIM	08	SNO	Phase III, prop. counter + PMT			
$4.94 \ \pm 0.21 \ +0.38 \\ -0.34$	⁷ AHARMIM	05A	SNO	Salty D ₂ O; ⁸ B shape not			
$4.81 \ \pm 0.19 \ +0.28 \\ -0.27$	⁷ AHARMIM	05A	SNO	const. Salty D ₂ O; ⁸ B shape con- strained	OCCUR=2		
$5.09 \begin{array}{c} +0.44 \\ -0.43 \end{array} \begin{array}{c} +0.46 \\ -0.43 \end{array}$	⁸ AHMAD	02	SNO	average flux; ⁸ B shape			
$6.42 \ \pm 1.57 \ \begin{array}{c} +0.55 \\ -0.58 \end{array}$	⁸ AHMAD	02	SNO	const. average flux; ⁸ B shape not const.	OCCUR=2		
				through coherent scattering	NODE=S06	57SNC;LINK	AGE=H
² BO 24 reports measurer xenon nuclei in the com	ments of ⁸ B solar missioning run and	neutrin	os throu	the XENONnT experiment. gh coherent scattering with e run of the PandaX-4T ex-	NODE=S06	57SNC;LINK	AGE=G
commissioning phase of t	B solar neutrinos e the PANDAX-4T ex is dedicated to da	perime rk mat	ent with ter direc	ered off xenon nuclei in the an effective exposure of 0.48 ct search using a dual-phase	NODE=S06	57SNC;LINK	AGE=E
⁴ AHARMIM 13 obtained phases, SNO-I, II, and II	this result from a c I. The measuremen	ombine t of the	ed analys e ⁸ B flux	sis of the data from all three mostly comes from the NC	NODE=S06	67SNC;LINK	AGE=A
"effective electron kineti "binned-histogram uncor	is result from a joir c energy" threshold nstrained fit" where vables were used w	it analy of 3.5 binned	/sis of SI MeV. T d probab	NO Phase I+II data with the This result is obtained with a ility distribution functions of del constraints on the shape	NODE=S06	57SNC;LINK	AGE=AA
⁶ AHARMIM 08 reports tl ³ He proportional counte the period between Nove live days. A simultaneou proportional counters and where the spectral distrib	he results from SNG rs to measure the r mber 27, 2004 and N us fit was made for d the numbers of NG	ate of Noveml the nu C, CC, a	NC inter per 28, 2 umber of and ES e	asurement using an array of ractions in heavy water, over 006, corresponding to 385.17 F NC events detected by the vents detected by the PMTs, are not constrained to the ⁸ B	NODE=S06	67SNC;LINK	AGE=HA
heavy water over the per to 391.4 live days, and up separated. In one metho method, the constraint o	iod between July 26 date AHMED 04A. d, the ⁸ B energy s f an undistorted ⁸ B	5, 2001 The <i>CC</i> pectru	and Aug C, <i>ES</i> , and m was n	NaCl (0.195% by weight) in gust 28, 2003, corresponding d NC events were statistically ot constrained. In the other m was added for comparison	NODE=S06	57SNC;LINKA	AGE=AR
the neutral-current react reaction threshold of 2.2	first SNO result of tion on deuterium, MeV. The data corr May 28, 2001. The	$\nu_\ell d$ – espond	$\rightarrow n p \nu_{\ell}$ to 306.4	neutrino flux measured with above the neutral-current live days with SNO between cription of the SNO Phase I	NODE=S06	57SNC;LINK	AGE=AH

 $\phi_{
u_{\mu}+
u_{\tau}}$ (⁸B) NODE=S067SB8 Nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) in the ⁸B solar-neutrino NODE=S067SB8 NODE=S067SB8 $VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$ DOCUMENT ID TECN COMMENT \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet $3.26 \pm 0.25 \substack{+0.40 \\ -0.35}$ ¹ AHARMIM 05A SNO From ϕ_{NC} , ϕ_{CC} , and ϕ_{ES} ; ⁸B shape not const. OCCUR=2 $3.09 \pm 0.22 + 0.30$ ¹ AHARMIM 05A SNO From ϕ_{NC} , ϕ_{CC} , and ϕ_{ES} ; ⁸B shape constrained $3.41 \pm 0.45 \substack{+0.48 \\ -0.45}$ ² AHMAD 02 SNO From $\phi_{NC}\text{, }\phi_{CC}\text{, and }\phi_{ES}$ ³ AHMAD 3.69 ± 1.13 Derived from SNO+SuperKam, 01 water Cherenkov 1 AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in NODE=S067SB8;LINKAGE=AR heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results. ²AHMAD 02 deduced the nonelectron-flavor active neutrino component (ν_{μ} and ν_{τ}) NODE=S067SB8;LINKAGE=AH in the ^{8}B solar-neutrino flux, by combining the charged-current result, the $\nu \, e$ elasticscattering result and the neutral-current result. The complete description of the SNO Phase I data set is given in AHARMIM 07. 3 AHMAD 01 deduced the nonelectron-flavor active neutrino component (ν_μ and $\nu_\tau)$ in NODE=S067SB8;LINKAGE=MH the ⁸B solar-neutrino flux, by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01). Total Flux of Active pp Solar Neutrinos NODE=S067PPT Total flux of active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$. NODE=S067PPT NODE=S067PPT $VALUE (10^{10} \text{ cm}^{-2} \text{s}^{-1})$ DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $6.1 \pm 0.5 \substack{+0.3 \\ -0.5}$ ¹ AGOSTINI 18B BORX $\nu_e e$ scattering rate ¹AGOSTINI 18B obtained this result from the measured $\nu_e e$ elastic scattering rate over NODE=S067PPT;LINKAGE=A the period between December 2011 and May 2016, assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17. Assuming a high-metalicity standard solar model, the electron neutrino survival probability for the pp solar neutrino is calculated to be $0.57\,\pm\,0.09.$ Total Flux of Active ⁷Be Solar Neutrinos NODE=S067B7T Total flux of active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$. NODE=S067B7T NODE=S067B7T $VALUE (10^9 \text{ cm}^{-2} \text{s}^{-1})$ DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • OCCUR=3 $4.99 \pm 0.11 \substack{+0.06 \\ -0.08}$ ¹ AGOSTINI 18B BORX $\nu_{\rho} e$ scattering rate ¹AGOSTINI 18B obtained this result from the measured $\nu_e e$ elastic scattering rate over NODE=S067B7T;LINKAGE=C the period between December 2011 and May 2016, assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17. Assuming a high-metallicity standard solar model, the electron neutrino survival probability for the 7 Be solar neutrino is calculated to be $0.53 \pm 0.05.$ Total Flux of Active pep Solar Neutrinos NODE=S067PET Total flux of active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$. NODE=S067PET NODE=S067PET $VALUE (10^8 \text{ cm}^{-2} \text{s}^{-1})$ DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $1.27 \pm 0.19 \substack{+0.08 \\ -0.12}$ ¹ AGOSTINI 18B BORX $\nu_{\rho} e$ scattering rate ¹AGOSTINI 18B obtained this result from the measured $\nu_e e$ elastic scattering rate over NODE=S067PET;LINKAGE=A

the period between December 2011 and May 2016, assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17 and a high-metalicity standard solar model. The electron neutrino survival probability for the pep solar neutrino is calculated to be 0.43 \pm 0.11.

NODE=S067SBT;LINKAGE=HA

NODE=S067SBT;LINKAGE=AR

NODE=S067SBT:LINKAGE=AH

NODE=S067SBT;LINKAGE=MH

NODE=S067SBT

Total Flux of Active ⁸B Solar Neutrinos

Total flux of active neutrinos (ν_{e} , ν_{μ} , and ν_{τ}).

Total flux of active	NODE=S067SBT							
$VALUE (10^6 \text{ cm}^{-2} \text{s}^{-1})$	DOCUMENT ID		TECN	COMMENT	NODE=S067SBT			
• • • We do not use the	following data fo	r aver	ages, fi	ts, limits, etc. ● ● ●				
$5.95 \begin{array}{c} +0.75 \\ -0.71 \end{array} \begin{array}{c} +0.28 \\ -0.30 \end{array}$	¹ ANDERSON	19	SNO+	Water phase; $\nu_e e$ scattering rate	OCCUR=3			
$5.68 \begin{array}{c} +0.39 \\ -0.41 \end{array} \begin{array}{c} +0.03 \\ -0.03 \end{array}$	² AGOSTINI	18 B	BORX	From $\nu_e e$ scattering rate				
$5.25 \ \pm 0.16 \ +0.11 \\ -0.13$	³ AHARMIM	13	SNO	All three phases combined				
$5.046 \substack{+0.159 + 0.107 \\ -0.152 - 0.123}$	⁴ AHARMIM	10	SNO	From ϕ_{NC} in Phase I+II, low threshold				
$5.54 \begin{array}{c} +0.33 \\ -0.31 \end{array} \begin{array}{c} +0.36 \\ -0.34 \end{array}$	⁵ AHARMIM	08	SNO	ϕ_{NC} in Phase III				
$\begin{array}{rrr} 4.94 \ \pm 0.21 \ \begin{array}{r} + 0.38 \\ - 0.34 \end{array}$	⁶ AHARMIM	05A	SNO	From ϕ_{NC} ; ⁸ B shape not const.				
$\begin{array}{r} 4.81 \ \pm 0.19 \ \begin{array}{c} + 0.28 \\ - 0.27 \end{array}$	⁶ AHARMIM	05A	SNO	From ϕ_{NC} ; ⁸ B shape constrained	OCCUR=2			
$5.09 \begin{array}{c} +0.44 \\ -0.43 \end{array} \begin{array}{c} +0.46 \\ -0.43 \end{array}$	⁷ AHMAD	02	SNO	Direct measurement from $\phi_{\it NC}$				
5.44 ±0.99	⁸ AHMAD	01		Derived from SNO+SuperKam, water Cherenkov				
¹ ANDERSON 19 repor 69.2 kton day (or 114. SNO+ detector's wat given in PDG 16 and	NODE=S067SBT;LINKAGE=E							
² AGOSTINI 18B obtain period between Janua parameters derived by	NODE=S067SBT;LINKAGE=C							
the electron neutrino survival probability for the 8 B solar neutrino is calculated to be _0.37 \pm 0.08.								
³ AHARMIM 13 obtain	ed this result from	nac	ombined	l analysis of the data from all three ⁸ B flux mostly comes from the NC	NODE=S067SBT;LINKAGE=A			
signal, however, CC c								
⁴ AHARMIM 10 report	NODE=S067SBT;LINKAGE=AA							

⁴AHARMIM 10 reports this result from a joint analysis of SNO Phase I+II data with the "effective electron kinetic energy" threshold of 3.5 MeV. This result is obtained with the assumption of unitarity, which relates the NC, CC, and ES rates. The data were fit with the free parameters directly describing the total ⁸B neutrino flux and the energy-dependent ν_e survival probability.

⁵ AHARMIM 08 reports the results from SNO Phase III measurement using an array of ³He proportional counters to measure the rate of NC interactions in heavy water, over the period between November 27, 2004 and November 28, 2006, corresponding to 385.17 live days. A simultaneous fit was made for the number of NC events detected by the proportional counters and the numbers of NC, CC, and ES events detected by the PMTs, where the spectral distributions of the ES and CC events were not constrained to the ⁸B shape.

⁶ AHARMIM 05A measurements were made with dissolved NaCl (0.195% by weight) in heavy water over the period between July 26, 2001 and August 28, 2003, corresponding to 391.4 live days, and update AHMED 04A. The CC, ES, and NC events were statistically separated. In one method, the ⁸B energy spectrum was not constrained. In the other method, the constraint of an undistorted ⁸B energy spectrum was added for comparison with AHMAD 02 results.

⁷ AHMAD 02 determined the total flux of active ⁸B solar neutrinos by directly measuring the neutral-current reaction, $\nu_{\ell} d \rightarrow n p \nu_{\ell}$, which is equally sensitive to ν_{e} , ν_{μ} , and ν_{τ} . The complete description of the SNO Phase I data set is given in AHARMIM 07.

⁸ AHMAD 01 deduced the total flux of active ⁸B solar neutrinos by combining the SNO charged-current result (AHMAD 01) and the Super-Kamiokande νe elastic-scattering result (FUKUDA 01).

⁴ AGOSTINI

Total Flux of Active CNO So					NODE=S067CNT
Total flux of active neutrino	s ($ u_{e}$, $ u_{\mu}$, $ u_{ au}$).				NODE=S067CNT
<u>VALUE (10⁸ cm⁻² s⁻¹)</u> <u>CL%</u>	VALUE (10 ⁸ cm ⁻² s ⁻¹) CL% DOCUMENT ID			COMMENT	NODE=S067CNT
• • • We do not use the following	g data for average	s, fits,	limits, o	etc. • • •	
$6.7^{+1.2}_{-0.8}$	¹ BASILICO	23	BORX	$ u_e e ext{ directional } + ext{ spec-} $ tral information	
$6.6^{+2.0}_{-0.9}$	² APPEL	22		$\nu_e e$ scattering rate	
$7.0^{+3.0}_{-2.0}$	³ AGOSTINI	20 D	BORX	$\nu_e e$ scattering rate	

18B BORX $\nu_{\rho} e$ scattering rate

I Thur of Active CNO Salar Neutrices

95

<7.9

³AGOSTINI 20D obtained this result from the measured $\nu_e e$ elastic scattering rate over the period between July 2016 to February 2020, assuming the MSW-LMA oscillation parameters derived by CAPOZZI 18.

⁴ AGOSTINI 18B obtained this result from an upper limit of the $\nu_e e$ elastic scattering rate for the CNO neutrinos over the period between December 2011 and May 2016, assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17.

Total Flux of Active hep Solar Neutrinos

Total flux of ac	tive neutrine	os ($\nu_e, \nu_\mu, \nu_ au$).			
<u>VALUE ($10^5 \text{ cm}^{-2}\text{s}^{-1}$)</u>	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
\bullet \bullet \bullet We do not use	the followin	g data for average	s, fits,	limits, e	etc. • • •
<1.8	90	¹ AGOSTINI	20A	BORX	$\nu_e e$ scattering and
		2			¹² C(<i>ν</i> , <i>ν</i> ') ¹² C*
<0.3	90	² AHARMIM	20	SNO	CC, NC, $\nu_e e$ scattering
<2.2	90	³ AGOSTINI	18 B	BORX	$\nu_{e} e$ scattering rate

¹AGOSTINI 20A obtained this result from an upper limit of the $\nu_e e$ elastic scattering rate and NC-mediated inelastic scattering on carbon nuclei with 15.1 MeV deexcitation γ -ray for the hep neutrino. The dataset corresponds to an effective exposure of 0.745 kt-yr from November 2009 to October 2017. A FADC DAQ system, optimized for the acquisition of high-energy events was used for data collection. The MSW-LMA oscillation parameters derived by ESTEBAN 17 were assumed.

 2 AHARMIM 20 uses the entire SNO dataset, corresponding to 2.47 kton-yrs of exposure after fiducialization. With the D_2O target, SNO was sensitive to charged current, neutral current, and elastic scattering channels.

³AGOSTINI 18B obtained this result from an upper limit of the $\nu_e e$ elastic scattering rate for the hep neutrino using the dataset corresponding to an exposure of 0.8 kt yr and assuming the MSW-LMA oscillation parameters derived by ESTEBAN 17.

Day-Night Asymmetry (⁸B)

						NODE-SOOTSDIN
$A = (\phi_{night} - \phi_{c})$	$_{ m lay}) \; / \; \phi_{ m average}$					NODE=S067SDN
<u>VALUE</u> (units 10 ⁻²)	DOCUMENT ID		TECN	COMMENT		NODE=S067SDN
$2.86 \pm 0.85 \pm 0.32$	¹ ABE	24B	SKAM	SK combined; Based on ϕ_{ES}		
\bullet \bullet \bullet We do not use the						
$2.62\!\pm\!1.07\!\pm\!0.30$	² ABE	24B	SKAM	SK-IV; Based on ϕ_{ES}		OCCUR=2
$3.3 \ \pm 1.0 \ \pm 0.5$	³ ABE			SK combined; Based on ϕ_{ES}	-	
$3.6\ \pm 1.6\ \pm 0.6$	⁴ ABE			SK-IV; Based on ϕ_{ES}		OCCUR=2
$3.2 \ \pm 1.1 \ \pm 0.5$	⁵ RENSHAW	14	SKAM	Based on ϕ_{ES}		
$6.3 \pm 4.2 \pm 3.7$	⁶ CRAVENS	80	SKAM	Based on $\phi_{ES}^{}$		
$2.1 \ \pm 2.0 \ +1.2 \\ -1.3$	⁷ HOSAKA	06	SKAM	Based on ϕ_{ES}		
$1.7\ \pm 1.6\ +1.2\ -1.3$	⁸ HOSAKA	06	SKAM	Fitted in the LMA region		OCCUR=2
$-$ 5.6 \pm 7.4 \pm 5.3	⁹ AHARMIM	05A	SNO	From salty SNO ϕ_{CC}		
$-$ 3.7 ± 6.3 ± 3.2	⁹ AHARMIM	05A	SNO			OCCUR=2
14.0 $\pm 6.3 \ +1.5 \\ -1.4$	¹⁰ AHMAD	02 B	SNO	Derived from SNO ϕ_{CC}		
7.0 \pm 4.9 $^{+1.3}_{-1.2}$	11 AHMAD	02 B	SNO	Const. of no $\phi_{\it NC}$ asymmetry		OCCUR=2
(5805 live days) of the Supersedes ABE 16C.	e Super-Kamiokande	meas	urement	etry results of the four phases s. Amplitude fit method is used.		NODE=S067SDN;LINKAGE=D
² ABE 24B reports the	day-night flux asymr	netry	of the S	uper-Kamiokande IV data (2970		NODE=S067SDN;LINKAGE=E

² ABE 24B reports the day-night flux asymmetry of the Super-Kamiokande IV data (2970 live days). Amplitude fit method is used. Supersedes ABE 16C.

³ABE 16C reports the combined day-night flux asymmetry results of the four phases of the Super-Kamiokande measurements. Amplitude fit method is used. See footnote to RENSHAW 14. Superseded by ABE 24B.

⁴ABE 16C reports the Super-Kamiokande-IV results for 1664 live days from September 2008 to February 2014. The analysis threshold for day-night flux asymmetry is recoil electron energy of 4.49 MeV (total electron energy of 5.0 MeV). Amplitude fit method is used. See footnote to RENSHAW 14. Superseded by ABE 24B.

NODE=S067CNT;LINKAGE=D

NODE=S067CNT;LINKAGE=B

NODE=S067CNT;LINKAGE=C

NODE=S067CNT;LINKAGE=A

NODE=S067HPT

NODE=S067HPT NODE=S067HPT

NODE=S067HPT;LINKAGE=B

NODE=S067HPT;LINKAGE=D

NODE=S067HPT;LINKAGE=A

NODE=S067SDN;LINKAGE=B

NODE=S067SDN;LINKAGE=C

NODE=S067SDN

```
^5 RENSHAW 14 obtains this result by using the "amplitude fit" introduced in SMY 04.
                                                                                                                  NODE=S067SDN;LINKAGE=A
    The data from the Super-Kamiokande(SK)-I, -II, -III, and 1306 live days of the SK-IV
    measurements are used. The analysis threshold is recoil-electron kinetic energy of 4.5
    MeV for SK-III, and SK-IV except for 250 live days in SK-III (6.0 MeV). The analysis
    threshold for SK-I and SK-II is the same as in the previous reports. (Note that in the
    previous SK solar-neutrino results, the analysis threshold is quoted as recoil-electron
    total energy.) This day-night asymmetry result is consistent with neutrino oscillations
    for 4 \times 10^{-5} eV<sup>2</sup> < \Delta m_{21}^2 < 7 \times 10^{-5} eV<sup>2</sup> and large mixing values of \theta_{12} at the
    68% CL.
  <sup>6</sup>CRAVENS 08 reports the Super-Kamiokande-II results for 791 live days from December
                                                                                                                  NODE=S067SDN;LINKAGE=CR
    2002 to October 2005. The photocathode coverage of the detector is 19% (reduced from
    40% of that of Super-Kamiokande-I due to an accident in 2001). The analysis threshold
    for the day and night fluxes is 7.5 MeV except for the first 159 live days (8.0 MeV).
  <sup>7</sup> HOSAKA 06 reports the final results for 1496 live days with Super-Kamiokande-I between
                                                                                                                  NODE=S067SDN;LINKAGE=HO
    May 31, 1996 and July 15, 2001, and replace FUKUDA 02 results. The analysis threshold
    is 5 MeV except for the first 280 live days (6.5 MeV).
  ^{8}\,\text{This} result with reduced statistical uncertainty is obtained by assuming two-neutrino
                                                                                                                  NODE=S067SDN:LINKAGE=HS
    oscillations within the LMA (large mixing angle) region and by fitting the time variation of
    the solar neutrino flux measured via \nu_e elastic scattering to the variations expected from neutrino oscillations. For details, see SMY 04. There is an additional small systematic
    error of \pm 0.0004 coming from uncertainty of oscillation parameters.
  ^9\mathrm{AHARMIM} 05A measurements were made with dissolved NaCl (0.195% by weight) in
                                                                                                                  NODE=S067SDN;LINKAGE=AR
    heavy water over the period between July 26, 2001 and August 28, 2003, with 176.5
    days of the live time recorded during the day and 214.9 days during the night. This
    result is obtained with the spectral distribution of the CC events not constrained to the
    <sup>8</sup>B shape.
 ^{10}\,\text{AHMAD} 02B results are based on the charged-current interactions recorded between
                                                                                                                  NODE=S067SDN;LINKAGE=AH
    November 2, 1999 and May 28, 2001, with the day and night live times of 128.5 and
    177.9 days, respectively. The complete description of the SNO Phase I data set is given
    in AHARMIM 07.
 ^{11}AHMAD 02B results are derived from the charged-current interactions, neutral-current
                                                                                                                  NODE=S067SDN;LINKAGE=AI
    interactions, and \nu e elastic scattering, with the total flux of active neutrinos constrained
    to have no asymmetry. The data were recorded between November 2, 1999 and May
    28, 2001, with the day and night live times of 128.5 and 177.9 days, respectively. The
    complete description of the SNO Phase I data set is given in AHARMIM 07.
\phi_{ES} (<sup>7</sup>Be)
                                                                                                                  NODE=S067PBE
      ^7{\rm Be} solar-neutrino flux measured via \nu_e elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to \nu_\mu,\,\nu_\tau due to the cross-
                                                                                                                  NODE=S067PBE
      section difference, \sigma(\nu_{\mu,\tau}\,e) \sim 0.2 \ \sigma(\nu_e\,e). If the <sup>7</sup>Be solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is \sim 0.2 times that
       of \nu_{\rho}.
                                                                                                                  NODE=S067PBE
VALUE (10^9 \text{ cm}^{-2} \text{ s}^{-1})
                                          DOCUMENT ID
                                                                  TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                        <sup>1</sup> GANDO
3.26 \pm 0.52
                                                            15
                                                                  KLND average flux
                                        <sup>2</sup> BELLINI
3.10 \pm 0.15
                                                            11A BORX average flux
  ^1GANDO 15 uses 165.4 kton·day exposure of the KamLAND liquid scintillator detector
                                                                                                                  NODE=S067PBE;LINKAGE=A
    to measure the 862 keV <sup>7</sup>Be solar neutrino flux via \nu - e elastic scattering
  ^2BELLINI 11A reports the ^7Be solar neutrino flux measured via 
u-e elastic scattering.
                                                                                                                  NODE=S067PBE;LINKAGE=EL
    The data correspond to 740.7 live days between May 16, 2007 and May 8, 2010, and
    also correspond to 153.6 ton year fiducial exposure. BELLINI 11A measured the 862 keV
    ^7Be solar neutrino flux, which is an 89.6% branch of the ^7Be solar neutrino flux, to be
    (2.78 \pm 0.13) 	imes 10^9 \text{ cm}^{-2} \text{ s}^{-1}. Supercedes ARPESELLA 08A.
\phi_{ES} (pep)
                                                                                                                  NODE=S067PEP
      pep solar-neutrino flux measured via \nu_e elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to \nu_\mu,\,\nu_\tau due to the cross
                                                                                                                  NODE=S067PEP
      section difference, \sigma(\nu_{\mu,\tau} e) \sim 0.2 \sigma(\nu_e e). If the pep solar-neutrino flux involves non-electron flavor active neutrinos, their contribution to the flux is \sim 0.2 times that
       of \nu_e.
                                                                                                                  NODE=S067PEP
VALUE (10^8 \text{ cm}^{-2} \text{s}^{-1})
                                          DOCUMENT ID
                                                                  TECN COMMENT
\bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet
                                        <sup>1</sup> BELLINI
                                                            12A BORX average flux
  ^{1}\,{\rm BELLINI} 12A reports 1.44 MeV p\,e\,p solar-neutrino flux measured via \nu_{e} elastic scattering.
                                                                                                                  NODE=S067PEP;LINKAGE=BE
    The data were collected between January 13, 2008 and May 9, 2010, corresponding to
    20,4009 ton day fiducial exposure. The listed flux value is calculated from the observed
    rate of pep solar neutrino interactions in Borexino (3.1 \pm 0.6 \pm 0.3 \text{ counts}/(\text{day}\cdot 100 \text{ counts}))
```

 1.0 ± 0.2

ton)) and the corresponding rate expected for no neutrino flavor oscillations (4.47 \pm 0.05 counts/(day 100 ton)), using the SSM prediction for the *pep* solar neutrino flux of $(1.441 \pm 0.012) \times 10^8 \text{ cm}^{-2}\text{s}^{-1}$. 7/16/2025 12:18

Page 13

	7/16/2025 12:18 Page 14
φ (CNO)	
ϕ_{ES} (CNO) CNO solar-neutrino flux measured via ν_e elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , ν_{τ} due to the cross section difference, $\sigma(\nu_{\mu,\tau} \ e) \sim 0.2 \ \sigma(\nu_e \ e)$. If the CNO solar-neutrino flux involves non-electron flavor active neutrinos, their contribution to the flux is ~ 0.2 times that of ν_e .	NODE=S067CNO NODE=S067CNO
$VALUE (10^8 \text{ cm}^{-2}\text{s}^{-1}) CL\%$ DOCUMENT ID TECN COMMENT	NODE=S067CNO
• • • We do not use the following data for averages, fits, limits, etc. • • •	
<7.7 90 ¹ BELLINI 12A BORX MSW-LMA solution assumed	
$^1\rm BELLINI$ 12A reports an upper limit of the CNO solar neutrino flux measured via ν_e elastic scattering. The data were collected between January 13, 2008 and May 9, 2010, corresponding to 20,409 ton day fiducial exposure.	NODE=S067CNO;LINKAGE=BE
$\phi_{ES}(pp)$	NODE=S067PPC
pp solar-neutrino flux measured via νe elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , ν_{τ} due to the cross section difference, $\sigma(\nu_{\mu,\tau}\ e)\sim~0.3\ \sigma(\nu_{e}\ e)$. If the pp solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is $\sim~0.3$ times of ν_{e} .	NODE=S067PPC
VALUE (10 ¹⁰ cm ⁻² s ⁻¹) <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	NODE=S067PPC
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet	
<23.3 90 ¹ LU 24 PNDX average flux	
4.4±0.5 ² BELLINI 14A BORX average flux	
¹ LU 24 searched for pp solar neutrinos via νe elastic scattering using PandaX-4T commissioning data. By fitting the measured energy spectrum of events in the 24–144 keV recoil electron kinetic energy, the number of $pp + {}^{7}Be$ neutrinos is measured to be $231 \pm 113 \pm 287$ events. The pp neutrino flux is estimated using the expected ratio of pp to ${}^{7}Be$ fluxes and their contributions to the measured energy range. ² BELLINI 14A reports pp solar-neutrino flux measured via νe elastic scattering. The data were collected between January 2012 and May 2013, corresponding to 408 days of	NODE=S067PPC;LINKAGE=A NODE=S067PPC;LINKAGE=BE
data. The <i>pp</i> neutrino interaction rate in Borexino is measured to be 144 ± 13 ± 10 counts/(day-100 ton) by fitting the measured energy spectrum of events in the 165–590 keV recoil electron kinetic energy window with the expected signal + background spec- trum. The listed flux value $\phi_{ES}(pp)$ is calculated from the observed rate and the number of $(3.307 \pm 0.003) \times 10^{31}$ electrons for 100 tons of the Borexino scintillator, and the $\nu_e e$ integrated cross section over the <i>pp</i> neutrino spectrum, $\sigma(\nu_e e) = 11.38 \times 10^{-46}$ cm ² .	
<i>ф_{СС}(рр</i>)	
<i>pp</i> solar-neutrino flux measured with charged-current reaction which is sensitive exclu-	NODE=S067PPF NODE=S067PPF
sively to ν_{e} .	
$\frac{VALUE (10^{10} \text{ cm}^{-2} \text{ s}^{-1})}{DOCUMENT ID} \frac{TECN}{COMMENT}$	NODE=S067PPF
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet	
3.38 \pm 0.47 ¹ ABDURASHI 09 FIT Fit existing solar- ν data	
¹ ABDURASHITOV 09 reports the pp solar-neutrino flux derived from the Ga solar neu- trino capture rate by subtracting contributions from ⁸ B, ⁷ Be, pep and CNO solar neu- trino fluxes determined by other solar neutrino experiments as well as neutrino oscillation parameters determined from available world neutrino oscillation data.	NODE=S067PPF;LINKAGE=AB
ϕ_{ES} (hep)	NODE=S067HEP
hep solar-neutrino flux measured via νe elastic scattering. This process is sensitive to all active neutrino flavors, but with reduced sensitivity to ν_{μ} , ν_{τ} due to the cross-section difference, $\sigma(\nu_{\mu,\tau} e) \sim 0.16\sigma(\nu_e e)$. If the hep solar-neutrino flux involves nonelectron flavor active neutrinos, their contribution to the flux is ~ 0.16 times of ν_e .	NODE=S067HEP
VALUE (10 ³ cm ⁻² s ⁻¹) CL% DOCUMENT ID TECN	NODE=S067HEP
• • • We do not use the following data for averages, fits, limits, etc. • •	
<73 90 ¹ HOSAKA 06 SKAM	
1 HOSAKA 06 result is obtained from the recoil electron energy window of 18–21 MeV,	
and updates FUKUDA 01 result.	NODE=S067HEP;LINKAGE=HO

NODE=S067EB8

NODE=S067EB8

$\phi_{\overline{\nu}_e}$ (⁸B)

Searches are made for electron antineutrino flux from the Sun. Flux limits listed here are derived relative to the BS05(OP) Standard Solar Model 8B solar neutrino flux (5.69 $\times\,10^6$ cm $^{-2}$ s $^{-1}$), with an assumption that solar $\overline{\nu}_e$ s follow an unoscillated 8B neutrino spectrum.

VALUE (%)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	NODE=S067EB8
$\bullet \bullet \bullet$ We do not use the	e following	g data for average	s, fits,	, limits, e	etc. • • •	
<0.0072	90	¹ AGOSTINI	21	BORX	$E_{\overline{ u}_{e}} > 1.8 \; MeV$	OCCUR=2
<0.013	90	² BELLINI	11		$E_{\overline{\nu}_{\alpha}}^{e} > 1.8 \text{ MeV}$	
<1.9	90	³ BALATA	06	CNTR	$1.8 < E_{\overline{ u}_{ m p}} < 20.0 \; MeV$	
<0.72	90	AHARMIM			$4.0 < E_{\overline{\nu}_{a}} < 14.8 \; MeV$	
<0.022	90	EGUCHI			$8.3 < E_{\overline{ u}_{ ho}}^{c} < 14.8 \; MeV$	
<0.7	90	GANDO	03		$8.0 < E_{\overline{\nu}_{a}} < 20.0 \; MeV$	
<1.7	90	AGLIETTA	96	LSD	$7 < E_{\overline{\nu}_{a}} < 17 \; MeV$	

¹AGOSTINI 21 derived this result relative to the Standard Solar Model ⁸B solar neutrino flux, under an assumption of high solar metallicity, of 5.46 (1 \pm 0.12) \times 10⁶ cm⁻²s⁻¹ (see VINYOLES 17).

²Superseded by AGOSTINI 21.

³BALATA 06 obtained this result from the search for $\overline{\nu}_e$ interactions with Counting Test Facility (the prototype of the Borexino detector).

(B) Three-neutrino mixing parameters

$\sin^2(\theta_{12})$

$\sin^2(\theta_{12})$					N	IODE=S06
If an experime	ent reports sin 2 (2 $ heta_{12}$) v	we co	nvert the	e value to sin ² ($ heta_{12}$).	Ν	IODE=S06
VALUE	<u>DOCUMENT ID</u>		TECN		• N	IODE=S06
0.307 ± 0.012	¹ ABE		FIT	KamLAND+global solar; 3ν		
• • • We do not us	se the following data for	avera	iges, fits	, limits, etc. ● ● ●	_	
$0.306 \!\pm\! 0.013$	² ABE	24B	FIT	global solar; 3 $ u$		OCCUR=2
$0.324 \substack{+0.027 \\ -0.023}$	³ ABE	24 B	FIT	SK-I+II+III+IV; 3ν	C	OCCUR=3
$0.318 \!\pm\! 0.016$	⁴ SALAS	21	FIT	global fit		
0.304 ± 0.012	⁵ ESTEBAN	20A	FIT	Global fit		
$0.320 \substack{+ 0.020 \\ - 0.016}$	DE-SALAS	18	FIT	Global fit		
$0.307\substack{+0.013\\-0.012}$	⁶ ABE	16 C	FIT	KamLAND+global solar; 3 $ u$		
$0.310\!\pm\!0.014$	⁷ ABE	16 C	FIT	SKAM+SNO; 3ν	C	OCCUR=2
$0.334\substack{+0.027\\-0.023}$	⁸ ABE	16 C	FIT	SK-I+II+III+IV; 3 <i>v</i>	C	OCCUR=3
$0.327^{+0.026}_{-0.031}$	⁹ ABE	16 C	FIT	SK-IV; 3 <i>ν</i>	С	OCCUR=4
0.323 ± 0.016	¹⁰ FORERO	14	FIT	3ν		
$0.304\substack{+0.013\\-0.012}$	¹¹ GONZALEZ	14	FIT	Either mass ordering; global fit		
$0.299\substack{+0.014\\-0.014}$	^{12,13} AHARMIM	13	FIT	global solar: $2 u$		
$0.307\substack{+0.016\\-0.013}$	^{13,14} AHARMIM	13	FIT	global solar: 3ν	C	OCCUR=3
$0.304\substack{+0.022\\-0.018}$	^{13,15} AHARMIM	13	FIT	$KamLAND+global\;solar:\;3 u$	C	OCCUR=5
$0.304\substack{+0.014\\-0.013}$	¹⁶ GANDO	13	FIT	${\sf KamLAND}+{\sf global \ solar}+{\sf SBL}+{\sf accelerator:}\ 3 u$		
$0.304\substack{+0.014\\-0.013}$	¹⁷ GANDO	13	FIT	KamLAND + global solar: 3 u	C	OCCUR=2
$0.325\substack{+0.039\\-0.039}$	¹⁸ GANDO	13	FIT	KamLAND: 3ν	C	OCCUR=3
$0.30 \ \begin{array}{c} +0.02 \\ -0.01 \end{array}$	¹⁹ АВЕ	11	FIT	$KamLAND+global\;solar:\;2 u$		
$0.30 \ \begin{array}{c} +0.02 \\ -0.01 \end{array}$	²⁰ ABE	11	FIT	global solar: 2ν	C	OCCUR=2
$0.31 \begin{array}{c} +0.03 \\ -0.02 \end{array}$	²¹ ABE	11	FIT	KamLAND+global solar: 3 $ u$	C	OCCUR=3
$0.31 \begin{array}{c} +0.03 \\ -0.03 \end{array}$	²² ABE	11	FIT	global solar: 3ν	C	OCCUR=4
$0.314\substack{+0.015\\-0.012}$	²³ BELLINI	11A	FIT	$KamLAND+global\;solar:\;2 u$		
$0.319 \substack{+0.017 \\ -0.015}$	²⁴ BELLINI	11A	FIT	global solar: $2 u$	C	OCCUR=2
$0.311 \substack{+0.016 \\ -0.016}$	²⁵ gando	11	FIT	KamLAND + solar: 3ν		

NODE=S067260

NODE=S067EB8;LINKAGE=B

NODE=S067EB8;LINKAGE=C

NODE=S067EB8;LINKAGE=BA

NODE=S067P12 NODE=S067P12 NODE=S067P12

$0.304 \substack{+ 0.046 \\ - 0.042}$	²⁶ gando	11	FIT	KamLAND: 3ν	OCCUR=2
$0.314\substack{+0.018\\-0.014}$	^{27,28} AHARMIM	10	FIT	KamLAND+global solar: $2 u$	
$0.314 \substack{+0.017 \\ -0.020}$	^{27,29} AHARMIM	10	FIT	global solar: $2 u$	OCCUR=2
$0.319^{+0.019}_{-0.016}$	27,30 AHARMIM	10	FIT	KamLAND $+$ global solar: $3 u$	OCCUR=3
$0.319^{+0.023}_{-0.024}$	^{27,31} AHARMIM	10	FIT	global solar: 3ν	OCCUR=4
$0.36 \begin{array}{c} +0.05 \\ -0.04 \end{array}$	³² ABE	08A	FIT	KamLAND	
$\begin{array}{ccc} 0.32 & \pm 0.03 \\ 0.32 & \pm 0.02 \end{array}$	³³ ABE ³⁴ AHARMIM	08A 08	FIT FIT	KamLAND + global fit KamLAND + global solar	OCCUR=2
$0.31 \begin{array}{c} +0.04 \\ -0.04 \end{array}$	³⁵ HOSAKA	06	FIT	KamLAND + global solar	
$0.31 \begin{array}{c} +0.04 \\ -0.03 \end{array}$	³⁶ HOSAKA	06	FIT	SKAM+SNO+KamLAND	OCCUR=2
$0.31 \begin{array}{c} +0.03 \\ -0.04 \end{array}$	³⁷ HOSAKA	06	FIT	SKAM+SNO	OCCUR=3
$0.31 \begin{array}{c} +0.02 \\ -0.03 \end{array}$	³⁸ AHARMIM	05A	FIT	KamLAND + global solar	
0.25–0.39	³⁹ AHARMIM	05A	FIT	global solar	OCCUR=2
$0.29 \ \pm 0.03$	⁴⁰ ARAKI	05	FIT	KamLAND + global solar	OCCUR=2
$0.29 \ {}^{+0.03}_{-0.02}$	⁴¹ AHMED	04A	FIT	KamLAND + global solar	
0.23–0.37	⁴² AHMED	04A	FIT	global solar	OCCUR=2
$0.31 \begin{array}{c} +0.04 \\ -0.04 \end{array}$	⁴³ SMY	04	FIT	KamLAND + global solar	
$0.29 \begin{array}{c} +0.04 \\ -0.04 \end{array}$	⁴⁴ SMY	04	FIT	global solar	OCCUR=2
$0.32 \begin{array}{c} +0.06 \\ -0.05 \end{array}$	⁴⁵ SMY	04	FIT	SKAM + SNO	OCCUR=3
0.19–0.33	46 AHMAD	0 2B	FIT	global solar	
0.19–0.39	⁴⁷ FUKUDA	02	FIT	global solar	

¹ ABE 24B obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13}) = 0.0218 \pm 0.0007$ coming from reactor neutrino experiments, using all solar and KamLAND data. The result includes the full Super-Kamiokande I to IV data. *CPT* invariance is assumed. Supersedes ABE 16C.

²ABE 24B obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13}) = 0.0218 \pm 0.0007$ coming from reactor neutrino experiments, using all solar data. *CPT* invariance is assumed. Supersedes ABE 16C.

- 3 ABE 24B obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13})=0.0218\pm0.0007$ coming from reactor neutrino experiments and a constraint on $^8B(hep)$ flux based on the SNO neutral current event rate, using full Super-Kamiokande (I+II+III+IV) data. *CPT* invariance is assumed. Supersedes ABE 16C.
- 4 SALAS 21 reports results of a global fit to neutrino oscillation data available at the time _ of the Neutrino 2020 conference.
- 5 ESTEBAN 20A reports results of a global fit to neutrino oscillation data available at the ctime of the Neutrino2020 conference.

⁶ ABE 16c obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13}) = 0.0219 \pm 0.0014$ coming from reactor neutrino experiments, using all solar data and KamLAND data. *CPT* invariance is assumed. Superseded by ABE 24B.

⁷ABE 16C obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13}) = 0.0219 \pm 0.0014$ coming from reactor neutrino experiments, using Super-Kamiokande (I+II+III+IV) and SNO data. Superseded by ABE 24B.

⁸ ABE 16C obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13}) = 0.0219 \pm 0.0014$ coming from reactor neutrino experiments, by combining the four phases of the Super-Kamiokande solar data. Superseded by ABE 24B.

⁹ABE 16C obtained this result by a three-neutrino oscillation analysis, with a constraint of sin²(θ_{13}) = 0.0219 ± 0.0014 coming from reactor neutrino experiments, using the Super-Kamiokande-IV data. Superseded by ABE 24B.

 10 FORERO 14 performs a global fit to neutrino oscillations using solar, reactor, long-baseline accelerator, and atmospheric neutrino data.

¹¹GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as $0.304 \substack{+0.013 \\ -0.012}$ for normal and $0.305 \substack{+0.012 \\ -0.013}$ for inverted mass ordering.

 $^{12}\,\text{AHARMIM}$ 13 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data.

¹³ AHARMIM 13 global solar neutrino data include SNO's all-phases-combined analysis results on the total active ⁸B neutrino flux and energy-dependent ν_e survival probability parameters, measurements of CI (CLEVELAND 98), Ga (ABDURASHITOV 09 which contains combined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)),

NODE=S067P12;LINKAGE=A

NODE=S067P12;LINKAGE=Q

NODE=S067P12;LINKAGE=R

NODE=S067P12;LINKAGE=S

NODE=S067P12:LINKAGE=P

NODE=S067P12;LINKAGE=O

NODE=S067P12;LINKAGE=K

NODE=S067P12:LINKAGE=L

NODE=S067P12;LINKAGE=M

NODE=S067P12;LINKAGE=N

NODE=S067P12;LINKAGE=B

NODE=S067P12;LINKAGE=J

NODE=S067P12;LINKAGE=I

NODE=S067P12;LINKAGE=C

NODE=S067P12;LINKAGE=E

NODE=S067P12;LINKAGE=F

NODE=S067P12;LINKAGE=H

NODE=S067P12;LINKAGE=G

NODE=S067P12;LINKAGE=B1

NODE=S067P12;LINKAGE=B2

and 7 Be (BELLINI 11A) rates, and 8 B solar-neutrino recoil electron measurements of SK-I (HOSAKA 06) zenith, SK-II (CRAVENS 08) and SK-III (ABE 11) day/night spectra, and Borexino (BELLINI 10A) spectra.

- ¹⁴AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^2 fixed to 2.45 × 10⁻³ eV², using global solar neutrino data.
- 15 AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to $2.45\times 10^{-3}~{\rm eV^2}$, using global solar neutrino and KamLAND (GANDO 11) data. CPT invariance is assumed.
- 16 GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND, global solar neutrino, short-baseline (SBL) reactor, and accelerator data, assuming CPT invariance. Supersedes GANDO 11.
- ¹⁷GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND and global solar neutrino data, assuming CPT invariance. Supersedes GANDO 11.
- ¹⁸ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND data. Supersedes GANDO 11.
- ¹⁹ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. CPT invariance is assumed.
- ²⁰ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, and SAGE data.
- 21 ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to 2.4 \times 10⁻³ eV², using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. The normal neutrino mass ordering and CPT invariance are assumed.
- $^{22}\,{\rm ABE}$ 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to $2.4\times 10^{-3}~{\rm eV}^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal neutrino mass ordering is assumed.
- ²³ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using KamLAND, Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal **743** 24 (2011)) with the exception that the ⁸B flux was left free. CPT invariance is assumed.
- ²⁴ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal **743** 24 (2011)) with the exception that the ⁸B flux was left free.
- 25 GANDO 11 obtain this result with three-neutrino fit using the KamLAND + solar data. Superseded by GANDO 13.
- $^{26}\,{\rm GANDO}$ 11 obtain this result with three-neutrino fit using the KamLAND data only. Superseded by GANDO 13.
- ²⁷ AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), CI (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08).
- ²⁸ AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data and KamLAND data (ABE 08A). CPT invariance is assumed.
- 29 AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data.
- ³⁰AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to 2.3 × 10⁻³ eV², using global solar neutrino data and KamLAND data (ABE 08A). *CPT* invariance is assumed.
- ³¹AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to $2.3 \times 10^{-3} \text{ eV}^2$, using global solar neutrino data.
- ³²ABE 08A obtained this result by a rate + shape + time combined geoneutrino and reactor two-neutrino fit for Δm_{21}^2 and $\tan^2 \theta_{12}$, using KamLAND data only. Superseded by GANDO 11.
- ³³ ABE 08A obtained this result by means of a two-neutrino fit using KamLAND, Homestake, SAGE, GALLEX, GNO, SK (zenith angle and E-spectrum), the SNO χ^2 -map, and solar flux data. *CPT* invariance is assumed. Superseded by GANDO 11. ³⁴ The result given by AHARMIM 08 is $\theta = (34.4 + 1.3)^{\circ}$. This result is obtained by
- ³⁴ The result given by AHARMIM 08 is $\theta = (34.4^{+1.5}_{-1.2})^{\circ}$. This result is obtained by a two-neutrino oscillation analysis using solar neutrino data including those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data (ABE 08A). *CPT* invariance is assumed.
- ³⁵ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using SK ν_e data, CC data from other solar neutrino experiments, and KamLAND data (ARAKI 05). *CPT* invariance is assumed.
- ³⁶ HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the data from Super-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05) experiments. CPT invariance is assumed.

NODE=S067P12;LINKAGE=B3

NODE=S067P12;LINKAGE=B4

NODE=S067P12;LINKAGE=SR

NODE=S067P12;LINKAGE=ER

NODE=S067P12;LINKAGE=GA

NODE=S067P12;LINKAGE=GN

NODE=S067P12;LINKAGE=A0

NODE=S067P12;LINKAGE=A1

NODE=S067P12;LINKAGE=A2

NODE=S067P12;LINKAGE=A3

NODE=S067P12;LINKAGE=A4

NODE=S067P12;LINKAGE=AB

NODE=S067P12;LINKAGE=BE

NODE=S067P12;LINKAGE=AH

NODE=S067P12;LINKAGE=HO

NODE=S067P12;LINKAGE=HS

	7/16/2025 12:18 Page 18
37 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data.	NODE=S067P12;LINKAGE=HK
³⁸ The result given by AHARMIM 05A is $\theta = (33.9 \pm 1.6)^{\circ}$. This result is obtained by a two-neutrino oscillation analysis using SNO pure deuteron and salt phase data, SK ν_{e} data, CI and Ga CC data, and KamLAND data (ARAKI 05). <i>CPT</i> invariance is	NODE=S067P12;LINKAGE=AI
assumed. AHARMIM 05A also quotes $\theta = (33.9^{+2.4}_{-2.2})^{\circ}$ as the error enveloping the 68% CL two-dimensional region. This translates into $\sin^2 2 \theta = 0.86^{+0.05}_{-0.06}$.	
³⁹ AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in figure 35a of AHARMIM 05A. AHARMIM 05A also quotes $\tan^2\theta = 0.45 \substack{+0.09 \\ -0.08}$ as the error enveloping the 68% CL two-dimensional region.	NODE=S067P12;LINKAGE=HA
This translates into $\sin^2 2 \theta = 0.86 + 0.05^{-0.07}$.	
⁴⁰ ARAKI 05 obtained this result by a two-neutrino oscillation analysis using KamLAND and solar neutrino data. <i>CPT</i> invariance is assumed. The 1σ error shown here is translated	NODE=S067P12;LINKAGE=AK
from the number provided by the KamLAND collaboration, $\tan^2\theta = 0.40 \stackrel{+0.07}{-}0.05$. The corresponding number quoted in ARAKI 05 is $\tan^2\theta = 0.40 \stackrel{+0.10}{-}0.05$ ($\sin^2 2 \theta = 0.82 \pm$	
0.07), which envelops the 68% CL two-dimensional region. ⁴¹ The result given by AHMED 04A is $\theta = (32.5 + 1.7)^{\circ}$. This result is obtained by a two-	
neutrino oscillation analysis using solar neutrino and KamLAND data (EGUCHI 03). <i>CPT</i> invariance is assumed. AHMED 04A also quotes $\theta = (32.5 + 2.4)^{\circ}$ as the error enveloping	NODE=S067P12;LINKAGE=AD
the 68% CL two-dimensional region. This translates into $\sin^2 2 heta = 0.82 \pm 0.06$.	
⁴² AHMED 04A obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-fit point is $\Delta(m^2) = 6.5 \times 10^{-5} \text{ eV}^2$, $\tan^2 \theta = 0.40$ ($\sin^2 2 \theta = 0.82$).	NODE=S067P12;LINKAGE=AE
⁴³ The result given by SMY 04 is $\tan^2 \theta = 0.44 \pm 0.08$. This result is obtained by a two- neutrino oscillation analysis using solar neutrino and KamLAND data (IANNI 03). <i>CPT</i> invariance is assumed.	NODE=S067P12;LINKAGE=SE
⁴⁴ SMY 04 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04.	NODE=S067P12;LINKAGE=SF
45 SMY 04 obtained this result by a two-neutrino oscillation analysis using the Super-Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σ errors are read from Fig. 6(a) of SMY 04.	NODE=S067P12;LINKAGE=SG
⁴⁶ AHMAD 02B obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best fit point is $\Delta(m^2) = 5.0 \times 10^{-5} \text{ eV}^2$ and $\tan \theta = 0.34$ ($\sin^2 2 \theta = 0.76$).	NODE=S067P12;LINKAGE=HM
⁴⁷ FUKUDA 02 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best fit point is $\Delta(m^2) = 6.9 \times 10^{-5} \text{ eV}^2$ and $\tan^2\theta = 0.38 (\sin^2 2 \theta = 0.80)$.	NODE=S067P12;LINKAGE=FU

		`		,	
Δm ² ₂₁					NODE=S067DM3
VALUE (10 ⁻⁵ eV ²)	DOCUMENT ID		TECN	COMMENT	NODE=S067DM3
$7.50^{+0.19}_{-0.18}$	¹ ABE	24 B	FIT	KamLAND $+$ global solar; 3 $ u$	
• • • We do not use	e the following data fo	r aver	ages, fit	s, limits, etc. ● ● ●	
$6.10^{+1.26}_{-0.86}$	² ABE	24 B	FIT	SK-I+II+III+IV; 3 <i>v</i>	OCCUR=2
$6.10^{+1.04}_{-0.75}$	³ ABE	24 B	FIT	SKAM+SNO; 3 $ u$	OCCUR=3
$6.9 \ +1.6 \ -1.2$	⁴ ABE	24 B	FIT	SK-IV; 3ν	OCCUR=4
$7.50^{+0.22}_{-0.20}$	⁵ SALAS	21	FIT	global fit	
$7.42^{+0.21}_{-0.20}$	⁶ ESTEBAN	20A	FIT	Global fit	
$7.55 \substack{+0.20 \\ -0.16}$	DE-SALAS	18	FIT	Global fit	
$7.49\substack{+0.19 \\ -0.18}$	⁷ ABE	16C	FIT	KamLAND+global solar; $3 u$	
$\begin{array}{c} \textbf{4.8} & +\textbf{1.3} \\ & -\textbf{0.6} \end{array}$	⁸ ABE	16 C	FIT	SKAM+SNO; 3ν	OCCUR=2
$\substack{4.8 + 1.5 \\ -0.8}$	⁹ ABE	16C	FIT	SK-I+II+III+IV; 3 <i>v</i>	OCCUR=3
$3.2 \ {}^{+2.8}_{-0.2}$	¹⁰ ABE	16C	FIT	SK-IV; 3 <i>ν</i>	OCCUR=4
$7.6 \begin{array}{c} +0.19 \\ -0.18 \end{array}$	¹¹ FORERO	14	FIT	3ν	
$7.50^{ig+0.19}_{-0.17}$	¹² GONZALEZ	14	FIT	Either mass ordering; global fit	
$5.13^{+1.29}_{-0.96}$	^{13,14} AHARMIM	13	FIT	global solar: $2 u$	

NODE=S067DM3;LINKAGE=Q

$5.13^{+1.49}_{-0.98}$	^{14,15} AHARMIM	13 FIT	global solar: 3ν	OCCUR=5					
$7.46\substack{+0.20\\-0.19}$	^{14,16} AHARMIM	13 FIT	KamLAND $+$ global solar: 3 $ u$	OCCUR=7					
7.53 ± 0.18	¹⁷ GANDO	13 FIT	${\sf KamLAND}+{\sf global\ solar}+{\sf SBL}+{\sf accelerator:\ }3 u$						
$7.53\substack{+0.19 \\ -0.18}$	¹⁸ GANDO	13 FIT	•	OCCUR=2					
$7.54\substack{+0.19 \\ -0.18}$	¹⁹ gando	13 FIT	KamLAND: 3ν	OCCUR=3					
7.6 ±0.2	²⁰ ABE	11 FIT	${\sf KamLAND}+{\sf global}$ solar: 2 $ u$						
$6.2 \begin{array}{c} +1.1 \\ -1.9 \end{array}$	²¹ ABE	11 FIT	global solar: $2 u$	OCCUR=2					
7.7 ±0.3	²² ABE	11 FIT	${\sf KamLAND}+{\sf global}$ solar: 3 $ u$	OCCUR=3					
$6.0 \ \begin{array}{c} +2.2 \\ -2.5 \end{array}$	²³ ABE	11 FIT	global solar: 3ν	OCCUR=4					
$7.50^{+0.16}_{-0.24}$	²⁴ BELLINI	11A FIT	KamLAND+global solar: 2 $ u$						
$5.2 \ {+1.5 \atop -0.9}$	²⁵ BELLINI	11A FIT	global solar: $2 u$	OCCUR=2					
$7.50^{+0.19}_{-0.20}$	²⁶ GANDO	11 FIT	KamLAND + solar: $3 u$						
7.49 ± 0.20	²⁷ GANDO	11 FIT	KamLAND: 3ν	OCCUR=2					
$7.59^{+0.20}_{-0.21}$	^{28,29} AHARMIM	10 FIT	KamLAND + global solar: 2 $ u$						
$5.89^{+2.13}_{-2.16}$	^{28,30} AHARMIM	10 FIT	global solar: $2 u$	OCCUR=2					
7.59 ± 0.21	^{28,31} AHARMIM	10 FIT	KamLAND + global solar: $3 u$	OCCUR=3					
$6.31^{+2.49}_{-2.58}$	^{28,32} AHARMIM	10 FIT	global solar: 3ν	OCCUR=4					
$7.58^{+0.14}_{-0.13}{\pm}0.15$	³³ ABE	08A FIT	KamLAND						
$7.59 \!\pm\! 0.21$	³⁴ ABE	08A FIT	KamLAND + global solar	OCCUR=2					
$7.59^{+0.19}_{-0.21}$	³⁵ AHARMIM	08 FIT	KamLAND + global solar						
$\begin{array}{ccc} 8.0 \ \pm 0.3 \\ 8.0 \ \pm 0.3 \end{array}$	³⁶ HOSAKA ³⁷ HOSAKA	06 FIT 06 FIT	. 0	OCCUR=2					
$6.3 \begin{array}{c} +3.7 \\ -1.5 \end{array}$	³⁸ HOSAKA	06 FIT	SKAM+SNO	OCCUR=3					
-1.5 5-12	³⁹ HOSAKA	06 FIT	SKAM day/night in the LMA region	OCCUR=4					
$8.0 \begin{array}{c} +0.4 \\ -0.3 \end{array}$	⁴⁰ AHARMIM	05A FIT	KamLAND + global solar LMA						
3.3–14.4	⁴¹ AHARMIM	05A FIT	global solar	OCCUR=2					
$7.9 \ {}^{+0.4}_{-0.3}$	⁴² ARAKI	05 FIT	KamLAND + global solar	OCCUR=3					
$7.1 \ +1.0 \ -0.3$	⁴³ AHMED	04A FIT	KamLAND + global solar						
3.2–13.7	⁴⁴ AHMED	04A FIT	global solar	OCCUR=2					
$7.1 \begin{array}{c} +0.6 \\ -0.5 \end{array}$	⁴⁵ SMY	04 FIT	KamLAND + global solar						
$6.0 \ +1.7 \ -1.6$	⁴⁶ SMY	04 FIT	global solar	OCCUR=2					
$6.0\begin{array}{c}+2.5\\-1.6\end{array}$	⁴⁷ SMY	04 FIT	SKAM + SNO	OCCUR=3					
2.8-12.0	⁴⁸ AHMAD	02B FIT	global solar						
3.2–19.1	⁴⁹ FUKUDA	02 FIT	global solar						
$sin^2(heta_{13}) = 0.0$ and KamLAND invariance is ass	¹ ABE 24B obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13}) = 0.0218 \pm 0.0007$ coming from reactor neutrino experiments, using all solar and KamLAND data. The result includes the full Super-Kamiokande I to IV data. <i>CPT</i> invariance is assumed. Supersedes ABE 16C.								
$\sin^2(heta_{13})=0.02$ on 8 B(hep) flux	218 \pm 0.0007 coming f	rom reactor neutral cur	oscillation analysis, with a constraint of r neutrino experiments and a constraint rent event rate, using the full Super-	NODE=S067DM3;LINKAGE=T					
³ ABE 24B obtained this result by a three-neutrino oscillation analysis, with a constraint NODE=S067DM3;LINKAGE=U									

 ^3ABE 24B obtained this result by a three-neutrino oscillation analysis, with a constraint of sin²(θ_{13}) = 0.0218 ± 0.0007 coming from reactor neutrino experiments, using SNO and full Super-Kamiokande I to IV data. Supersedes ABE 16C.

 $^4\,ABE$ 24B obtained this result by a three-neutrino oscillation analysis, with a constraint of NODE=S067DM3;LINKAGE=V $\sin^2(heta_{13}) = 0.0218 \pm 0.0007$ coming from reactor neutrino experiments and a constraint on ${}^8B(hep)$ flux based on the SNO neutral current event rate, using the full Super-Kamiokande IV data. Supersedes ABE 16C. NODE=S067DM3;LINKAGE=R

 5 SALAS 21 reports results of a global fit to neutrino oscillation data available at the time of the Neutrino 2020 conference.

 6 ESTEBAN 20A reports results of a global fit to neutrino oscillation data available at the time of the Neutrino2020 conference.

	7/16/2025 12:18 Page 20
⁷ ABE 16C obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13}) = 0.0219 \pm 0.0014$ coming from reactor neutrino experiments, using all solar data and KamLAND data. <i>CPT</i> invariance is assumed.	NODE=S067DM3;LINKAGE=L
data and KamLAND data. <i>CPT</i> invariance is assumed. ⁸ ABE 16C obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13}) = 0.0219 \pm 0.0014$ coming from reactor neutrino experiments, using Super-Kamiokande (I+II+III+IV) and SNO data. Superseded by ABE 24B.	NODE=S067DM3;LINKAGE=M
⁹ ABE 16C obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13}) = 0.0219 \pm 0.0014$ coming from reactor neutrino experiments, by combining the four phases of the Super-Kamiokande solar data. Superseded by ABE 24B.	NODE=S067DM3;LINKAGE=N
¹⁰ ABE 16C obtained this result by a three-neutrino oscillation analysis, with a constraint of $\sin^2(\theta_{13}) = 0.0219 \pm 0.0014$ coming from reactor neutrino experiments, using the Super-Kamiokande-IV data.	NODE=S067DM3;LINKAGE=P
¹¹ FORERO 14 performs a global fit to Δm_{21}^2 using solar, reactor, long-baseline accelerator, and atmospheric neutrino data.	NODE=S067DM3;LINKAGE=J
12 GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as $(7.50^{+0.19}_{-0.17})\times 10^{-5}~{\rm eV}^2$ for normal and $(7.50^{+0.18}_{-0.17})\times 10^{-5}~{\rm eV}^2$ for inverted mass ordering.	NODE=S067DM3;LINKAGE=K
13 AHARMIM 13 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data.	NODE=S067DM3;LINKAGE=A
¹⁴ AHARMIM 13 global solar neutrino data include SNO's all-phases-combined analysis results on the total active ⁸ B neutrino flux and energy-dependent ν_e survival probability parameters, measurements of CI (CLEVELAND 98), Ga (ABDURASHITOV 09 which contains combined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)), and ⁷ Be (BELLINI 11A) rates, and ⁸ B solar-neutrino recoil electron measurements of SK- I (HOSAKA 06) zenith, SK-II (CRAVENS 08), and SK-III (ABE 11) day/night spectra, and Borexino (BELLINI 10A) spectra.	NODE=S067DM3;LINKAGE=I
15 AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{31} fixed to 2.45 \times 10 ⁻³ eV ² , using global solar neutrino data.	NODE=S067DM3;LINKAGE=C
¹⁶ AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to 2.45 × 10 ⁻³ eV ² , using global solar neutrino and KamLAND data (GANDO 11). CPT invariance is assumed.	NODE=S067DM3;LINKAGE=E
¹⁷ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND, global solar neutrino, short-baseline (SBL) reactor, and accelerator data, assuming CPT invariance. Supersedes GANDO 11.	NODE=S067DM3;LINKAGE=F
¹⁸ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND and global solar neutrino data, assuming CPT invariance. Supersedes GANDO 11.	NODE=S067DM3;LINKAGE=G
¹⁹ GANDO 13 obtained this result by a three-neutrino oscillation analysis using KamLAND data. Supersedes GANDO 11.	NODE=S067DM3;LINKAGE=H
²⁰ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neu- trino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. CPT invariance is assumed.	NODE=S067DM3;LINKAGE=B1
²¹ ABE 11 obtained this result by a two-neutrino oscillation analysis using solar neu- trino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, and SAGE data.	NODE=S067DM3;LINKAGE=B2
22 ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{32} fixed to $2.4 \times 10^{-3} \ {\rm eV}^2$, using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. The normal neutrino mass ordering and CPT invariance are assumed.	NODE=S067DM3;LINKAGE=B3
²³ ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^2 fixed to 2.4 × 10 ⁻³ eV ² , using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal neutrino mass ordering is assumed.	NODE=S067DM3;LINKAGE=B4
²⁴ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using KamLAND, Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Jour- nal 743 24 (2011)) with the exception that the ⁸ B flux was left free. CPT invariance is accurated	NODE=S067DM3;LINKAGE=SR
 assumed. ²⁵ BELLINI 11A obtained this result by a two-neutrino oscillation analysis using Homestake, SAGE, Gallex, GNO, Kamiokande, Super-Kamiokande, SNO, and Borexino (BELLINI 11A) data and the SSM flux prediction in SERENELLI 11 (Astrophysical Journal 743 24 (2011)) with the exception that the ⁸B flux was left free. 	NODE=S067DM3;LINKAGE=ER
²⁶ GANDO 11 obtain this result with three-neutrino fit using the KamLAND + solar data. Superseded by GANDO 13.	NODE=S067DM3;LINKAGE=GA
²⁷ GANDO 11 obtain this result with three-neutrino fit using the KamLAND data only. Supersedes ABE 08A.	NODE=S067DM3;LINKAGE=GN
 ²⁸ AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), Cl (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08). 	NODE=S067DM3;LINKAGE=A0
20	

²⁹AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global solar neutrino data and KamLAND data (ABE 08A). CPT invariance is assumed. 30 AHARMIM 10 obtained this result by a two-neutrino oscillation analysis using global NODE=S067DM3;LINKAGE=A2 solar neutrino data. ³¹AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value NODE=S067DM3;LINKAGE=A3 of Δm^2_{31} fixed to 2.3×10^{-3} eV², using global solar neutrino data and KamLAND data (ABE 08A). CPT invariance is assumed. $^{32}\ensuremath{\check{}}\xspace$ AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value NODE=S067DM3;LINKAGE=A4 of Δm^2_{31} fixed to 2.3 imes 10⁻³ eV², using global solar neutrino data. ^{33}ABE 08A obtained this result by a rate + shape + time combined geoneutrino and reactor two-neutrino fit for Δm^2_{21} and $\tan^2\!\theta_{12}$, using KamLAND data only. Superseded NODE=S067DM3;LINKAGE=AB by GANDO 11. 34 ABE 08A obtained this result by means of a two-neutrino fit using KamLAND, Homestake, NODE=S067DM3;LINKAGE=BE SAGE, GALLEX, GNO, SK (zenith angle and E-spectrum), the SNO χ^2 -map, and solar flux data. CPT invariance is assumed. Superseded by GANDO 11. $^{35}\mathrm{AHARMIM}$ 08 obtained this result by a two-neutrino oscillation analysis using all solar NODE=S067DM3:LINKAGE=AH neutrino data including those of Borexino (ARPESELLA 08A) and Super-Kamiokande-I (HOSAKA 06), and KamLAND data (ABE 08A). CPT invariance is assumed. 36 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using solar neutrino NODE=S067DM3;LINKAGE=HO and KamLAND data (ARAKI 05). CPT invariance is assumed. 37 HOSAKA 06 obtained this result by a two-neutrino oscillation analysis using the data from NODE=S067DM3;LINKAGE=HS Super-Kamiokande, SNO (AHMAD 02 and AHMAD 02B), and KamLAND (ARAKI 05) experiments. CPT invariance is assumed. $^{38}\,\mathrm{HOSAKA}$ 06 obtained this result by a two-neutrino oscillation analysis using the Super-NODE=S067DM3;LINKAGE=HK Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. 39 HOSAKA 06 obtained this result from the consistency between the observed and expected NODE=S067DM3;LINKAGE=OS day-night flux asymmetry amplitude. The listed 68% CL range is derived from the 1σ boundary of the amplitude fit to the data. Oscillation parameters are constrained to be in the LMA region. The mixing angle is fixed at $\tan^2 \theta = 0.44$ because the fit depends only very weekly on it. 40 AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using solar NODE=S067DM3;LINKAGE=AI neutrino and KamLAND data (ARAKI 05). *CPT* invariance is assumed. AHARMIM 05A also quotes $\Delta(m^2) = (8.0^{+0.6}_{-0.4}) \times 10^{-5} \text{ eV}^2$ as the error enveloping the 68% CL twodimensional region. 41 AHARMIM 05A obtained this result by a two-neutrino oscillation analysis using the data NODE=S067DM3;LINKAGE=HA from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in figure 35a of AHARMIM 05A. AHARMIM 05A also quotes $\Delta(m^2) = (6.5^{+4.4}_{-2.3}) \times 10^{-5} \ {\rm eV}^2$ as the error enveloping the 68% CL twodimensional region. ⁴² ARAKI 05 obtained this result by a two-neutrino oscillation analysis using KamLAND and solar neutrino data. *CPT* invariance is assumed. The 1σ error shown here is provided NODE=S067DM3;LINKAGE=AK by the KamLAND collaboration. The error quoted in ARAKI 05, $\Delta(m^2) = (7.9 + 0.6) \times 10^{-10} \times 10^$ 10^{-5} , envelops the 68% CL two-dimensional region. 43 AHMED 04A obtained this result by a two-neutrino oscillation analysis using solar neu-NODE=S067DM3;LINKAGE=AD trino and KamLAND data (EGUCHI 03). CPT invariance is assumed. AHMED 04A also quotes $\Delta(m^2)=(7.1 + 1.2) \times 10^{-5}$ eV 2 as the error enveloping the 68% CL twodimensional region. ⁴⁴AHMED 04A obtained this result by a two-neutrino oscillation analysis using the data NODE=S067DM3:LINKAGE=AE from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 5(a) of AHMED 04A. The best-fit point is $\Delta(m^2) = 6.5 \times 10^{-5} \text{ eV}^2$, $\tan^2\theta = 0.40 (\sin^2 2\theta = 0.82)$. $^{45}\,\mathrm{SMY}$ 04 obtained this result by a two-neutrino oscillation analysis using solar neutrino NODE=S067DM3;LINKAGE=SD and KamLAND data (IANNI 03). CPT invariance is assumed. 46 SMY 04 obtained this result by a two-neutrino oscillation analysis using the data from NODE=S067DM3;LINKAGE=SF all solar neutrino experiments. The 1σ errors are read from Fig. 6(a) of SMY 04. $^{47}\,\mathrm{SMY}$ 04 obtained this result by a two-neutrino oscillation analysis using the Super-NODE=S067DM3;LINKAGE=SG Kamiokande and SNO (AHMAD 02 and AHMAD 02B) solar neutrino data. The 1σ errors are read from Fig. 6(a) of SMY 04. ⁴⁸ AHMAD 02B obtained this result by a two-neutrino oscillation analysis using the data NODE=S067DM3;LINKAGE=HM from all solar neutrino experiments. The listed range of the parameter envelops the 95% CL two-dimensional region shown in Fig. 4(b) of AHMAD 02B. The best fit point is $\Delta(m^2) = 5.0 \times 10^{-5} \text{ eV}^2$ and $\tan \theta = 0.34 (\sin^2 2 \theta = 0.76)$. ⁴⁹ FUKUDA 02 obtained this result by a two-neutrino oscillation analysis using the data from all solar neutrino experiments. The listed range of the parameter envelops the 95% NODE=S067DM3;LINKAGE=FU CL two-dimensional region shown in Fig. 4 of FUKUDA 02. The best fit point is $\Delta(m^2)$

 $= 6.9 \times 10^{-5} \text{ eV}^2$ and $\tan^2 \theta = 0.38 (\sin^2 2 \theta = 0.80)$.

7/16/2025 12:18 Page 21

					7/16/2025 12:18 Page 22
				e projection onto the sin $^2(heta_{23})$ axis of the $_2$ plane presented by the authors. Unless	NODE=S067P23 NODE=S067P23
otherwis	e specified, the limits	are 9	0% CL a	nd the reported uncertainties are 68% CL.	
VALUE	DOCUMENT ID		TECN	Next the value to $\sin^2(\theta_{23})$. <u>COMMENT</u> or of 1.2. Assuming inverted mass order-	NODE=S067P23
ing					
$0.534^{+0.015}_{-0.019}$	OUR FIT Assuming	norm	al mass	ordering	
$0.51 \begin{array}{c} +0.04 \\ -0.05 \end{array}$	¹ AIELLO	24	KM3N	Both mass orderings	
$0.45 \begin{array}{c} +0.06 \\ -0.03 \end{array}$	² WESTER	24	SKAM	Normal mass ordering, $ heta_{13}$ constrained	TYPE=NORMAL
$0.45 \begin{array}{c} +0.08 \\ -0.03 \end{array}$	² WESTER	24	SKAM	Inverted mass ordering, $ heta_{13}$ constrained	OCCUR=2;TYPE=INVERTED
$0.51\ \pm 0.05$	³ ABBASI	23	ICCB	Normal mass ordering	OCCUR=3;TYPE=NORMAL
$0.561\substack{+0.021 \\ -0.032}$	⁴ ABE	23F	T2K	Normal mass ordering	TYPE=NORMAL
$0.563\substack{+0.017\\-0.032}$	⁴ ABE	23F	T2K	Inverted mass ordering	OCCUR=2;TYPE=INVERTED
$0.57 \begin{array}{c} +0.03 \\ -0.04 \end{array}$	⁵ ACERO	22	NOVA	Normal mass ordering; octant II for $ heta_{23}$	TYPE=NORMAL
$0.56 \begin{array}{c} +0.04 \\ -0.03 \end{array}$	⁵ ACERO	22	NOVA	Inverted mass ordering; octant II for $ heta_{23}$	OCCUR=2;TYPE=INVERTED
$0.43 \begin{array}{c} +0.20 \\ -0.04 \end{array}$	⁶ ADAMSON	20A	MINS	Normal mass ordering	TYPE=NORMAL
$0.42 \begin{array}{c} +0.04 \\ +0.07 \\ -0.03 \end{array}$	⁶ ADAMSON	20A	MINS	Inverted mass ordering	OCCUR=2;TYPE=INVERTED
		data f		ges, fits, limits, etc. ● ●	
$0.468 \substack{+0.106 \\ -0.025}$	⁷ ABE	25	SKT2	Both mass orderings	
$0.56 \begin{array}{c} +0.025 \\ +0.03 \\ -0.12 \end{array}$	⁸ ACERO	24	NOVA	Normal mass ordering	TYPE=NORMAL
0.56 ± 0.01	⁸ ACERO	24		Inverted mass ordering	OCCUR=2;TYPE=INVERTED
$0.47 \ \begin{array}{c} +0.11 \\ -0.02 \end{array}$	⁹ ABE	23 D	T2K	$ u_{\mu}$ disappearance	
$0.45 \begin{array}{c} +0.16 \\ -0.04 \end{array}$	⁹ ABE	23 D	T2K	$\overline{ u}_\mu$ disappearance	OCCUR=2
$0.51 \begin{array}{c} +0.06 \\ -0.07 \end{array}$	¹⁰ ABE	21A	T2K	$ u_\mu$ disappearance	
$0.43 \begin{array}{c} +0.21 \\ -0.05 \end{array}$	¹⁰ ABE	21A	T2K	$\overline{ u}_{\mu}$ disappearance	OCCUR=2
$0.574 \!\pm\! 0.014$	¹¹ SALAS	21	FIT	Normal mass ordering, global fit	
$0.578\substack{+0.010\\-0.017}$	¹¹ SALAS	21	FIT	Inverted mass ordering, global fit	OCCUR=2
0.455	¹² AARTSEN	20	ICCB	For both mass orderings	
$0.53 \begin{array}{c} +0.03 \\ -0.04 \end{array}$	¹³ ABE	20F	T2K	Both mass orderings	
$0.573 \substack{+0.016 \\ -0.020}$	¹⁴ ESTEBAN	20A	FIT	Normal mass ordering, global fit	
$0.575\substack{+0.016\\-0.019}$	¹⁴ ESTEBAN	20A	FIT	Inverted mass ordering, global fit	OCCUR=2
${0.58} \begin{array}{c} +0.04 \\ -0.13 \end{array}$	¹⁵ AARTSEN	19 C	ICCB		
$0.56 \begin{array}{c} +0.04 \\ -0.03 \end{array}$	¹⁶ ACERO	19	NOVA	Normal mass order; octant II for θ_{23}	TYPE=NORMAL
$0.48 \begin{array}{c} +0.04 \\ -0.03 \end{array}$	^{16,17} ACERO	19	NOVA	Normal mass order; octant I for $ heta_{23}$	OCCUR=2;TYPE=NORMAL
	^{16,17} ACERO	19	NOVA	Inverted mass order; octant II for $ heta_{23}$	OCCUR=3;TYPE=INVERTED
$0.47 \begin{array}{c} +0.04 \\ -0.03 \end{array}$	^{16,17} ACERO	19	NOVA	Inverted mass order; octant I for θ_{23}	OCCUR=4
$0.49 \begin{array}{c} +0.30 \\ -0.28 \end{array}$	AGAFONOVA	19	OPER		
-0.28 0.50 + 0.20 -0.19	¹⁸ ALBERT	19	ANTR	Atmospheric $ u$, deep sea telescope	
$\begin{array}{r} 0.00 & -0.19 \\ 0.51 & +0.07 \\ -0.09 \end{array}$	¹⁹ AARTSEN		ICCB	Normal mass ordering	TYPE=NORMAL
$0.51^{-}-0.09$ $0.587^{+}0.036$ -0.069	²⁰ ABE			3ν osc: normal mass ordering, θ_{13} free	TYPE=NORMAL
	²⁰ ABE				OCCUR=3;TYPE=INVERTED
$0.551^{+0.044}_{-0.075}$				3ν osc: inverted mass ordering, θ_{13} free	OCCUR=5;TYPE=NORMAL
$0.588 +0.031 \\ -0.064 \\ +0.036 \\ -0.036 \\ +0.036 \\ -0.036 \\ +0.036 \\ -0.036 \\ +0.036 \\ -0.036 \\ +0.031 \\ +0.031 \\ +0.031 \\ +0.031 \\ +0.031 \\ +0.031 \\ +0.031 \\ +0.031 \\ +0.031 \\ +0.031 \\ +0.036 \\ +0.031 \\ +0.036 \\ +0$	²¹ ABE			Normal mass ordering, θ_{13} constrained	OCCUR=6;TYPE=INVERTED
$0.575 \substack{+0.036 \\ -0.073}$	²¹ ABE	18B	SKAM	Inverted mass ordering, θ_{13} constrained	

$0.526\substack{+0.032\\-0.036}$	²² ABE	18G	T2K	Normal mass ordering, $ heta_{13}$ constrained	TYPE=NORMAL
$0.530\substack{+0.030\\-0.034}$	²² ABE	18G	T2K	Inverted mass ordering, $ heta_{13}$ constrained	OCCUR=2;TYPE=INVERTED
$0.56\ \pm 0.04$	²³ ACERO	18	NOVA	Normal mass order; octant II for θ_{23}	TYPE=NORMAL
$\begin{array}{r} 0.47 \pm 0.04 \\ 0.547 {+} 0.020 \\ {-} 0.030 \end{array}$	²³ ACERO DE-SALAS	18 18	NOVA FIT	Normal mass order; octant I for θ_{23} Normal mass ordering, global fit	OCCUR=2;TYPE=NORMAL TYPE=NORMAL
		-			OCCUR=2;TYPE=INVERTED
$0.551 \substack{+0.018 \\ -0.030}$	DE-SALAS	18	FIT	Inverted mass order, global fit	TYPE=NORMAL
$0.532^{+0.061}_{-0.087}$	²⁴ ABE	17A	T2K	Normal mass ordering	
$0.534 \substack{+0.061 \\ -0.087}$	²⁴ ABE	17A	T2K	Inverted mass ordering	OCCUR=3;TYPE=INVERTED
$0.51 \begin{array}{c} +0.08 \\ -0.07 \end{array}$	ABE	17C	T2K	Normal mass ordering with neutrinos	TYPE=NORMAL
$0.42 \begin{array}{c} +0.25 \\ -0.07 \end{array}$	ABE	17C	T2K	Normal mass ordering with antineutrinos	OCCUR=2;TYPE=NORMAL
$0.52 \begin{array}{c} +0.075 \\ -0.09 \end{array}$	ABE	17C	T2K	normal mass ordering with neutrinos and antineutrinos	OCCUR=3;TYPE=NORMAL
$\substack{0.55 \\ -0.09}^{+0.05}$	²⁴ ABE	17F	T2K	Normal mass ordering	TYPE=NORMAL
$\substack{0.55 \\ -0.08}^{+0.05}$	²⁴ ABE	17F	T2K	Inverted mass ordering	OCCUR=2;TYPE=INVERTED
$0.404\substack{+0.022\\-0.030}$	²⁵ ADAMSON	17A	NOVA	Normal mass ordering; octant I for $ heta_{23}$	TYPE=NORMAL
$0.624 \substack{+ \ 0.022 \\ - \ 0.030}$	²⁵ ADAMSON	17A	NOVA	Normal mass ordering; octant II for $ heta_{23}$	OCCUR=2;TYPE=NORMAL
$0.398 \substack{+0.030 \\ -0.022}$	²⁵ ADAMSON	17A	NOVA	Inverted mass ordering; octant I for $ heta_{23}$	OCCUR=3;TYPE=INVERTED
$0.618 \substack{+0.022\\-0.030}$	²⁵ ADAMSON	17A	NOVA	Inverted mass ordering; octant II for $ heta_{23}$	OCCUR=4;TYPE=INVERTED
$0.45 \begin{array}{c} +0.19 \\ -0.07 \end{array}$	²⁶ ABE	16 D	T2K	3ν osc; normal mass ordering; $\overline{\nu}$ beam	TYPE=NORMAL
0.38 to 0.65	27 ADAMSON	16A		normal mass ordering	TYPE=NORMAL
0.37 to 0.64 $+0.09$	²⁷ ADAMSON ²⁸ AARTSEN	16A	NOVA ICCB	Inverted mass ordering	OCCUR=2;TYPE=INVERTED TYPE=NORMAL
$\begin{array}{r} 0.53 \begin{array}{c} +0.09 \\ -0.12 \end{array} \\ 0.51 \begin{array}{c} +0.09 \end{array}$	²⁸ AARTSEN		ICCB	Normal mass ordering	OCCUR=2;TYPE=INVERTED
-0.11	²⁹ ABE			Inverted mass ordering	TYPE=NORMAL
$0.514 ^{+0.055}_{-0.056}_{-0.055}$	²⁹ ABE ²⁹ ABE	14 14	Т2К Т2К	3ν osc.; normal mass ordering 3ν osc.; inverted mass ordering	OCCUR=2;TYPE=INVERTED
$0.41 \begin{array}{c} +0.23 \\ -0.06 \end{array}$	³⁰ ADAMSON	14	MINS	Normal mass ordering	TYPE=NORMAL
-0.06 0.41 $+0.26$ -0.07	³⁰ ADAMSON	14	MINS	Inverted mass ordering	OCCUR=2;TYPE=INVERTED
0.567+0.032	³¹ FORERO	14	FIT	Normal mass ordering	
0.507 - 0.128 0.573 + 0.025 - 0.043	³¹ FORERO	14	FIT	Inverted mass ordering	OCCUR=2
0.373 - 0.043 0.452 + 0.052 - 0.028	³² GONZALEZ		FIT	Normal mass ordering; global fit	TYPE=NORMAL
	³² GONZALEZ				OCCUR=2;TYPE=INVERTED
$0.579^{+0.025}_{-0.037}$ 0.24 to 0.76	³³ AARTSEN		FIT ICCB	Inverted mass ordering; global fit DeepCore, 2ν oscillation	OCCUR=2
0.514 ± 0.082	³⁴ ABE		T2K	3ν osc.; normal mass ordering	00001-2
$0.388\substack{+0.051\\-0.053}$	³⁵ ADAMSON	13 B	MINS	$Beam + Atmospheric; \ identical \ \nu \ \& \ \overline{\nu}$	
0.3 to 0.7 0.28 to 0.72	³⁶ ABE ³⁷ ADAMSON	12A 12	T2K MINS	Off-axis beam $\overline{ u}$ beam	
0.25 to 0.75 ³	^{8,39} ADAMSON		MINS	MINOS atmospheric	
0.27 to 0.73 ³	^{8,40} ADAMSON		MINS	MINOS pure atmospheric $ u$	OCCUR=2
	^{8,40} ADAMSON		MINS	MINOS pure atmospheric $\overline{\nu}$	OCCUR=3
0.15 to 0.85 0.39 to 0.61	⁴¹ ADRIAN-MAR ⁴² ABE			Atmospheric $ u$ with deep see telescope Super-Kamiokande	
0.39 to 0.61	ADAMSON	11C 11	MINS	Super-Namiokande 2ν osc.; maximal mixing	
0.31 +0.10	⁴³ ADAMSON	11 11в	MINS	$\overline{\nu}$ beam	
0.51 -0.07	⁴⁴ WENDELL			3ν osc. with solar terms; $\theta_{13}=0$	
0.41 to 0.59 0.39 to 0.61	⁴⁵ WENDELL	10 10		3ν osc. with solar terms; $\theta_{13}=0$ 3ν osc.; normal mass ordering	OCCUR=2
0.39 to 0.61	⁴⁶ WENDELL	10		3ν osc.; inverted mass ordering 3ν osc.; inverted mass ordering	OCCUR=3
0.31 to 0.69	ADAMSON		MINS	MINOS	
0.05 to 0.95	47 ADAMSON	06	MINS	Atmospheric ν with far detector	
0.18 to 0.82	⁴⁸ AHN 49 MIGUA EL	06A		KEK to Super-K	
0.23 to 0.77	⁴⁹ MICHAEL	06	MINS	MINOS	

0.18 to 0.82	⁵⁰ ALIU	05	K2K	KEK to Super-K	OCCUR=2			
0.18 to 0.82	⁵¹ ALLISON	05	SOU2					
0.36 to 0.64	⁵² ASHIE	05	SKAM	Super-Kamiokande				
0.28 to 0.72	⁵³ AMBROSIO	04	MCRO	MACRO	OCCUR=2			
0.34 to 0.66	⁵⁴ ASHIE	04	SKAM	L/E distribution	OCCUR=2			
0.08 to 0.92	⁵⁵ AHN	03	K2K	KEK to Super-K				
0.13 to 0.87	⁵⁶ AMBROSIO	03	MCRO	MACRO				
0.26 to 0.74	⁵⁷ AMBROSIO	03		MACRO	OCCUR=2			
0.15 to 0.85	⁵⁸ SANCHEZ	03	SOU2	Soudan-2 Atmospheric				
0.28 to 0.72	⁵⁹ AMBROSIO	01	MCRO	Upward μ				
0.29 to 0.71	⁶⁰ AMBROSIO	01	MCRO	Upward μ	OCCUR=2			
0.13 to 0.87	⁶¹ FUKUDA	99C	SKAM	Upward μ				
0.23 to 0.77	⁶² FUKUDA	99 D	SKAM	Upward μ				
0.08 to 0.92	⁶³ FUKUDA	99 D	SKAM	Stop μ / through	OCCUR=2			
0.29 to 0.71	⁶⁴ FUKUDA		SKAM	Super-Kamiokande				
0.08 to 0.92	⁶⁵ HATAKEYAM		KAMI	Kamiokande				
0.24 to 0.76	⁶⁶ HATAKEYAM	A98	KAMI	Kamiokande	OCCUR=2			
0.20 to 0.80	⁶⁷ FUKUDA	94	KAMI	Kamiokande				
1_{AIFLLO} 24	uses atmospheric ne	utrino	data me	asured between January 2020 and Novem-	NODE=S067P23;LINKAGE=YA			
ber 2021 wi	th the first six dete	ction L	inits of (DRCA, corresponding to 433 kton-yrs.	NODE=30071 23,EINRAGE=TA			
² WESTER 24	4 uses 484.2 kton∙ve	ears of	Super-K	amiokande I-IV atmospheric neutrino data	NODE=S067P23;LINKAGE=XA			
				r the three parameters, Δm_{32}^2 , sin ² (θ_{23}),				
) are fixed to $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5}$				
				$=$ 0.0220 \pm 0.0007. Supersedes ABE 18B.				
³ ABBASI 23	uses atmospheric	neutri	no data	measured between 2011 and 2019 with	NODE=S067P23;LINKAGE=RA			
		epCor	e of the	IceCube neutrino telescope. Supersedes				
AARTSEN 1			مالممغمط	between 2010 and 2020 in (anti)neutrino				
					NODE=S067P23;LINKAGE=VA			
	ersedes ABE 20F.	eam e	xposure	of $1.97 imes 10^{21}~(1.63 imes 10^{21})$ protons on				
	uses data from lun	20.2	016 + 5	eb 26, 2019 (12.5 $ imes$ 10 20 POT) and Feb				
	uses data from Jun	29, 2) DOT)	Best fit for octant I (lower octant) is 0.46	NODE=S067P23;LINKAGE=PA			
for both normal and inverted mass orderings. The uncertainties are reported relative to								

the global minima in normal mass ordering. Supersedes ACERO 19. ⁶ ADAMSON 20A uses the complete dataset from MINOS and MINOS+ experiments. The data were collected using a total exposure of 23.76×10^{20} protons on target and 60.75 kton yr exposure to atmospheric neutrinos. Supersedes ADAMSON 14.

⁷ ABE 25 reports the results of a joint analysis of Super-Kamiokande atmospheric neutrino data and T2K beam neutrino data, using 3244.4 days of atmospheric data and a (anti)neutrino beam exposure of 1.97×10^{21} (1.63×10^{21}) protons on target.

⁸ACERO 24 reanalyzed the dataset first examined in ACERO 22 using an alternative statistical approach based on Bayesian Markov chain Monte Carlo.

 9 ABE 23D uses the same dataset as ABE 23F. The measurement of $\sin^2(\theta_{23})$ is performed independently for ν_μ and $\overline{\nu}_\mu.$

 10 ABE 21A results are based on 1.49×10^{21} POT in neutrino mode and 1.64×10^{21} POT in antineutrino mode.

 11 SALAS 21 reports results of a global fit to neutrino oscillation data available at the time of the Neutrino 2020 conference.

 12 AARTSEN 20 uses the data taken between May 2012 and April 2014 with the low-energy subdetector DeepCore of the IceCube neutrino telescope. The reconstructed energy range is between 4 (5) and 90 (80) GeV for the main (confirmatory) analysis. Though the observed best-fit is in the lower octant for both mass orderings, a substantial range of $\sin^2(\theta_{23}) > 0.5$ is still compatible with the observed data for both mass orderings.

 13 ABE 20F results are based on data collected between 2009 and 2018 in (anti)neutrino mode and include a neutrino beam exposure of 1.49×10^{21} (1.64 $\times10^{21}$) protons on target. Supersedes ABE 18G.

 15 AARTSEN 19C uses three years (April 2012 – May 2015) of neutrino data from full sky with reconstructed energies between 5.6 and 56 GeV, measured with the low-energy sub-detector DeepCore of the lceCube neutrino telescope. AARTSEN 19C adopts looser event selection criteria to prioritize the efficiency of selecting neutrino events, different from tighter event selection criteria which closely follow the criteria used by AARTSEN 18A to measure the ν_{μ} disappearance.

¹⁶ ACERO 19 is based on a sample size of 12.33×10^{20} protons on target. The fit combines both antineutrino and neutrino data to extract the oscillation parameters. The results favor the normal mass ordering by 1.9 σ and θ_{23} values in octant II by 1.6 σ . Supersedes ACERO 18.

 $^{17}\,{\rm Errors}$ are from normal mass ordering and θ_{13} octant II fits.

NODE=S067P23;LINKAGE=JA

NODE=S067P23;LINKAGE=GA

NODE=S067P23;LINKAGE=LA

NODE=S067P23;LINKAGE=ZA

NODE=S067P23;LINKAGE=BB

NODE=S067P23:LINKAGE=WA

NODE=S067P23;LINKAGE=OA

NODE=S067P23;LINKAGE=NA

NODE=S067P23;LINKAGE=IA

NODE=S067P23;LINKAGE=KA

NODE=S067P23;LINKAGE=MA

NODE=S067P23;LINKAGE=P

¹⁸ ALBERT 19 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2016 (2830 days of total live time). Supersedes ADRIAN-MARTINEZ 12.	NODE=S067P23;LINKAGE=U
¹⁹ AARTSEN 18A uses three years (April 2012 – May 2015) of neutrino data from full sky with reconstructed energies between 5.6 and 56 GeV, measured with the low-energy subdetector DeepCore of the lceCube neutrino telescope. AARTSEN 18A also reports the best fit result for the inverted mass ordering as $\Delta m_{32}^2 = -2.32 \times 10^{-3} \text{ eV}^2$ and $\sin^2(\theta_{23}) = 0.51$. Uncertainties for the inverted mass ordering fits were not provided.	NODE=S067P23;LINKAGE=Q
Supersedes AARTSEN 15A.	
²⁰ ABE 18B uses 328 kton-years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the four parameters, Δm_{32}^2 , $\sin^2\theta_{23}$, $\sin^2\theta_{13}$, and δ , while the solar parameters are fixed to $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5}$	NODE=S067P23;LINKAGE=R
eV ² and $\sin^2\theta_{12} = 0.304 \pm 0.014$. Superseded by WESTER 24. ²¹ ABE 18B uses 328 kton years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the three parameters, Δm_{32}^2 , $\sin^2(\theta_{23})$, and	NODE=S067P23;LINKAGE=X
δ , while the solar parameters and $\sin^2(\theta_{13})$ are fixed to $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5}$ eV ² , $\sin^2(\theta_{12}) = 0.304 \pm 0.014$, and $\sin^2(\theta_{13}) = 0.0219 \pm 0.0012$. Superseded by WESTER 24.	
²² ABE 18G data prefers normal mass ordering is with a posterior probability of 87%. Supersedes ABE 17F.	NODE=S067P23;LINKAGE=CA
23 ACERO 18 performs a joint fit to the data for ν_{μ} disappearance and ν_{e} appearance. The overall best fit favors normal mass ordering and θ_{23} in octant II. No 1σ confidence intervals are presented for the inverted mass ordering scenarios. Superseded by ACERO 19.	NODE=S067P23;LINKAGE=Z
²⁴ Errors are from the projections of the 68% contour on 2D plot of Δm^2 versus sin ² (θ_{23}). ABE 17F supersedes ABE 17A. Superseded by ABE 18G.	NODE=S067P23;LINKAGE=N
25 Superseded by ACERO 18. 26 ABE 16D reports oscillation results using $\overline{\nu}_{\mu}$ disappearance in an off-axis beam.	NODE=S067P23;LINKAGE=BA
27 ADAMSON 16A obtains sin ² (θ_{23}) in the 68% C.L. range [0.38, 0.65] ([0.37, 0.64]), with	NODE=S067P23;LINKAGE=M
two statistically degenerate best-fit values of 0.44 and 0.59 (0.44 and 0.59) for normal (inverted) mass ordering. Superseded by ADAMSON 17A.	NODE=S067P23;LINKAGE=L
²⁸ AARTSEN 15A obtains this result by a three-neutrino oscillation analysis using 10–100 GeV muon neutrino sample from a total of 953 days of measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope. Superseded by AARTSEN 18A.	NODE=S067P23;LINKAGE=I
²⁹ ABE 14 results are based on ν_{μ} disappearance using three-neutrino oscillation fit. The confidence intervals are derived from one dimensional profiled likelihoods. Superseded by	NODE=S067P23;LINKAGE=E
ABE 17A. 30 ADAMSON 14 uses a complete set of accelerator and atmospheric data. The analysis combines the ν_{μ} disappearance and ν_{e} appearance data using three-neutrino oscillation fit. The fit results are obtained for normal and inverted mass ordering assumptions. The best fit is for first θ_{23} octant and inverted mass ordering.	NODE=S067P23;LINKAGE=D
³¹ FORERO 14 performs a global fit to neutrino oscillations using solar, reactor, long-	NODE=S067P23;LINKAGE=F
baseline accelerator, and atmospheric neutrino data. ³² GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as 68% CL intervals of 0.433–0.496 or 0.530–0.594 for normal and 0.514–0.612 for inverted mass	NODE=S067P23;LINKAGE=J
ordering. ³³ AARTSEN 13B obtained this result by a two-neutrino oscillation analysis using 20–100 GeV muon neutrino sample from a total of 318.9 days of live-time measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope.	NODE=S067P23;LINKAGE=B
34 The best fit value is sin $^2(heta_{23})=0.514\pm0.082.$ Superseded by ABE 14.	NODE=S067P23;LINKAGE=C
³⁵ ADAMSON 13B obtained this result from $ u_{\mu}$ and $\overline{\nu}_{\mu}$ disappearance using $ u_{\mu}$ (10.71 ×	NODE=S067P23;LINKAGE=A
10^{20} POT) and $\overline{\nu}_{\mu}$ (3.36 × 10^{20} POT) beams, and atmospheric (37.88kton-years) data from MINOS The fit assumed two-flavor neutrino hypothesis and identical ν_{μ} and $\overline{\nu}_{\mu}$ oscillation parameters. Superseded by ADAMSON 14.	
³⁶ ABE 12A obtained this result by a two-neutrino oscillation analysis. The best-fit point is $sin^2(2\theta_{23}) = 0.98$.	NODE=S067P23;LINKAGE=AE
37 ADAMSON 12 is a two-neutrino oscillation analysis using antineutrinos. The best fit value is $\sin^2(2\theta_{23}) = 0.95 + 0.10 \pm 0.01$.	NODE=S067P23;LINKAGE=DA
 ³⁸ ADAMSON 12B obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 37.9 kton yr atmospheric neutrino data with the MINOS far detector. 	NODE=S067P23;LINKAGE=A0
³⁹ The best fit point is $\Delta m^2 = 0.0019 \text{ eV}^2$ and $\sin^2 2\theta = 0.99$. The 90% single-parameter confidence interval at the best fit point is $\sin^2 2\theta > 0.86$.	NODE=S067P23;LINKAGE=A1
⁴⁰ The data are separated into pure samples of ν s and $\overline{\nu}$ s, and separate oscillation parameters for ν s and $\overline{\nu}$ s are fit to the data. The best fit point is $(\Delta m^2, \sin^2 2\theta) = (0.0022 \text{ eV}^2, \sin^2 2\theta)$	NODE=S067P23;LINKAGE=A2
0.99) and $(\Delta \overline{m}^2, \sin^2 2\overline{ heta}) = (0.0016 \text{ eV}^2, 1.00)$. The quoted result is taken from the	

7/16/2025 12:18

Page 25

0.99) and $(\Delta \overline{m}^2, \sin^2 2\overline{\theta}) = (0.0016 \text{ eV}^2, 1.00)$. The quoted result is taken from the 90% C.L. contour in the $(\Delta m^2, \sin^2 2\theta)$ plane obtained by minimizing the four parameter log-likelihood function with respect to the other oscillation parameters.

	7/16/2025 12:18 Page 26
⁴¹ ADRIAN-MARTINEZ 12 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2010 (863 days of total live time). Superseded by ALBERT 19.	NODE=S067P23;LINKAGE=AT
⁴² ABE 11C obtained this result by a two-neutrino oscillation analysis using the Super- Kamiokande-I+II+III atmospheric neutrino data. ABE 11C also reported results under a two-neutrino disappearance model with separate mixing parameters between ν and $\overline{\nu}$,	NODE=S067P23;LINKAGE=EA
and obtained sin ² 2 θ > 0.93 for ν and sin ² 2 θ > 0.83 for $\overline{\nu}$ at 90% C.L. ⁴³ ADAMSON 11B obtained this result by a two-neutrino oscillation analysis of antineutrinos in an antineutrino enhanced beam with 1.71×10^{20} protons on target. This results is consistent with the neutrino measurements of ADAMSON 11 at 2% C.L.	NODE=S067P23;LINKAGE=AA
⁴⁴ WENDELL 10 obtained this result (sin ² $\theta_{23} = 0.407$ –0.583) by a three-neutrino oscilla- tion analysis using the Super-Kamiokande-I+II+III atmospheric neutrino data, assuming $\theta_{13} = 0$ but including the solar oscillation parameters Δm_{21}^2 and sin ² θ_{12} in the fit.	NODE=S067P23;LINKAGE=WE
⁴⁵ WENDELL 10 obtained this result (sin ² $\theta_{23} = 0.43-0.61$) by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2 = 0$) using the Super-Kamiokande- I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result.	NODE=S067P23;LINKAGE=WN
46 WENDELL 10 obtained this result (sin^2 $\theta_{23} = 0.44 - 0.63$) by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m^2_{21} = 0$) using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result.	NODE=S067P23;LINKAGE=WD
 ⁴⁷ ADAMSON 06 obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 4.54 kton yr atmospheric neutrino data with the MINOS far detector. ⁴⁸ Supercedes ALIU 05. 	NODE=S067P23;LINKAGE=AD
⁴⁹ MICHAEL 06 best fit is for maximal mixing. See also ADAMSON 08. ⁵⁰ The best fit is for maximal mixing.	NODE=S067P23;LINKAGE=MI
⁵¹ ALLISON 05 result is based upon atmospheric neutrino interactions including upward- stopping muons, with an exposure of 5.9 kton yr. From a two-flavor oscillation analysis the best-fit point is $\Delta m^2 = 0.0017 \text{ eV}^2$ and $\sin^2(2\theta) = 0.97$.	NODE=S067P23;LINKAGE=AI NODE=S067P23;LINKAGE=AL
⁵² ASHIE 05 obtained this result by a two-neutrino oscillation analysis using 92 kton yr atmospheric neutrino data from the complete Super-Kamiokande I running period.	NODE=S067P23;LINKAGE=AS
53 AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV, N_{low} and N_{high} , and the numbers of InDown + UpStop and InUp events. Here, N_{low} and N_{high} are the number of events with reconstructed neutrino energies $<$ 30 GeV and $>$ 130 GeV, respectively. InDown and InUp represent events with downward and upward-going tracks starting inside the detector due to neutrino interactions, while UpStop represents entering upward-going tracks which stop in the detector. The best fit is for maximal mixing.	NODE=S067P23;LINKAGE=AM
⁵⁴ ASHIE 04 obtained this result from the L(flight length)/E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data.	NODE=S067P23;LINKAGE=SH
⁵⁵ There are several islands of allowed region from this K2K analysis, extending to high values of Δm^2 . We only include the one that overlaps atmospheric neutrino analyses. The best fit is for maximal mixing.	NODE=S067P23;LINKAGE=AH
56 AMBROSIO 03 obtained this result on the basis of the ratio R = N_{low}/N_{high}, where N _{low} and N _{high} are the number of upward through-going muon events with reconstructed neutrino energy < 30 GeV and > 130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits.	NODE=S067P23;LINKAGE=AO
⁵⁷ AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given in the previous note and the angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits. The best fit is to maximal mixing.	NODE=S067P23;LINKAGE=MB
⁵⁸ SANCHEZ 03 is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L/E distribution for a selection μ flavor sample while the <i>e</i> -flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the allowed region. The best fit is $\sin^2(2\theta) = 0.97$.	NODE=S067P23;LINKAGE=SA
⁵⁹ AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits. The best fit is for maximal mixing.	NODE=S067P23;LINKAGE=AB
60 AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu}~>1$ GeV. See the previous footnote.	NODE=S067P23;LINKAGE=AR
⁶¹ FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux is $(1.74 \pm 0.07 \pm 0.02) \times 10^{-13}$ cm ⁻² s ⁻¹ sr ⁻¹ .	NODE=S067P23;LINKAGE=FU
The best fit is $\sin^2(2\theta) = 0.95$. ⁶² FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of	NODE=S067P23;LINKAGE=UK
minimum energy of 1.6 GeV measured between April 1996 and January 1998 is (0.39 \pm	

NODE=S067P23;LINKAGE=UU

NODE=S067P23;LINKAGE=FK

NODE=S067P23;LINKAGE=HA

NODE=S067P23;LINKAGE=HT

NODE=S067P23;LINKAGE=FD

NODE=S067DM1

NODE=S067DM1

 $0.04\pm0.02)\times10^{-13}~\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$. This is compared to the expected flux of (0.73 \pm 0.16 (theoretical error)) $\times10^{-13}~\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$. The best fit is to maximal mixing.

⁶³FUKUDA 99D obtained this result from the zenith dependence of the upwardstopping/through-going flux ratio. The best fit is to maximal mixing.

 64 FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data. The best fit is for maximal mixing.

 65 HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muons is $(1.94 \pm 0.10 {+}0.07) \times 10^{-0.06}$

 10^{-13} cm⁻²s⁻¹sr⁻¹. This is compared to the expected flux of (2.46±0.54 (theoretical error)) × 10⁻¹³ cm⁻²s⁻¹sr⁻¹. The best fit is for maximal mixing.

⁶⁶ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande contained events (FUKUDA 94) and upward going muon events. The best fit is $\sin^2(2\theta) =$ $c_7 0.95$.

67 FUKUDA 94 obtained the result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande. The best fit is for maximal mixing.

Δm_{32}^2

The sign of Δm_{32}^2 is not known at this time. If given, values are shown separately for the normal and inverted mass ordering. Unless otherwise specified, the ranges below correspond to the projection onto the Δm_{32}^2 axis of the 90% CL contours in the sin²(2 θ_{23}) – Δm_{32}^2 plane presented by the authors. If uncertainties are reported with the value, they correspond to one standard deviation uncertainty.

VALUE (10^{-3} eV^2)	DOCUMENT ID		TECN	COMMENT	NODE=S067DM1					
		ale fac		2. Assuming inverted ordering						
	2.451±0.026 OUR FIT Assuming normal ordering									
$2.10 \begin{array}{c} +0.25 \\ -0.35 \end{array}$	^{1,2} AIELLO	24	0	Normal mass ordering	TYPE=NORMAL					
-2.33 to -1.84	^{1,3} AIELLO	24	KM3N	Inverted mass ordering	OCCUR=2;TYPE=INVERTED					
$2.72 \begin{array}{c} +0.14 \\ -0.15 \end{array}$	⁴ AN	24A	DAYA	Normal mass ordering	TYPE=NORMAL					
$-2.83 \ \begin{array}{c} +0.15 \\ -0.14 \end{array}$	⁴ AN	24A	DAYA	Inverted mass ordering	OCCUR=2;TYPE=INVERTED					
$2.40 \begin{array}{c} +0.07 \\ -0.09 \end{array}$	⁵ WESTER	24	SKAM	Normal mass ordering, $ heta_{13}$ constrained	TYPE=NORMAL					
$-2.48 \begin{array}{c} +0.06 \\ -0.12 \end{array}$	⁵ WESTER	24	SKAM	Inverted mass ordering, θ_{13} constrained	OCCUR=3;TYPE=INVERTED					
2.41 ± 0.07	⁶ ABBASI	23	ICCB	Normal mass ordering	TYPE=NORMAL					
$2.494 \substack{+ 0.041 \\ - 0.058}$	⁷ ABE	23F	T2K	Normal mass ordering, $ heta_{13}$ constrained	TYPE=NORMAL					
$-2.54 \ +0.042 \ -0.056$	^{7,8} ABE	23F	T2K	Inverted mass ordering, θ_{13} constrained	OCCUR=2;TYPE=INVERTED					
2.47 ± 0.06	⁹ AN	23	DAYA	Normal mass ordering	TYPE=NORMAL					
-2.57 ± 0.06	⁹ AN	23	DAYA	Inverted mass ordering	OCCUR=2;TYPE=INVERTED					
$2.41 \hspace{0.1 in} \pm 0.07$	¹⁰ ACERO	22	NOVA	Normal mass ordering, octant II for θ_{23} , θ_{13} constrained	TYPE=NORMAL					
-2.45 ± 0.06	¹⁰ ACERO	22	NOVA	Inverted mass ordering, octant II for θ_{23} , θ_{13} constrained	OCCUR=2;TYPE=INVERTED					
$2.40 \begin{array}{c} +0.08 \\ -0.09 \end{array}$	¹¹ ADAMSON	20A	MINS	Accel., atmospheric, normal mass ordering	TYPE=NORMAL					
$-2.45 \ +0.08 \ -0.07$	¹¹ ADAMSON	20A	MINS	Accel., atmospheric, inverted mass ordering	OCCUR=2;TYPE=INVERTED					
2.63 ± 0.14	¹² BAK	18	RENO	Normal mass ordering	TYPE=NORMAL					
-2.73 ± 0.14	¹² BAK	18	RENO	Inverted mass ordering	OCCUR=2;TYPE=INVERTED					
• • • We do not use th	ne following data for a	average	es, fits, l	imits, etc. • • •						
$2.520 \substack{+0.048 \\ -0.058}$	¹³ ABE	25	SKT2	Normal mass ordering	TYPE=NORMAL					
$-2.555\substack{+0.048\\-0.052}$	^{13,14} ABE	25	SKT2	Inverted mass ordering	OCCUR=2;TYPE=INVERTED					
$2.39 \begin{array}{c} +0.07 \\ -0.06 \end{array}$	¹⁵ ACERO	24	NOVA	Normal mass ordering	TYPE=NORMAL					
-2.44 ± 0.03	¹⁵ ACERO	24	NOVA	Inverted mass ordering	OCCUR=2;TYPE=INVERTED					
$2.48 \begin{array}{c} +0.05 \\ -0.06 \end{array}$	¹⁶ ABE	23 D	T2K	$ u_{\mu}$ disappearance						
$2.53 \begin{array}{c} +0.10 \\ -0.11 \end{array}$	¹⁶ ABE	23 D	T2K	$\overline{ u}_{\mu}$ disappearance	OCCUR=2					
$2.47 \begin{array}{c} +0.08 \\ -0.09 \end{array}$	¹⁷ ABE	21A	T2K	$ u_{\mu}$ disappearance						
$2.50 \begin{array}{c} +0.18 \\ -0.13 \end{array}$	¹⁷ ABE		T2K	$\overline{ u}_{\mu}$ disappearance	OCCUR=2					
2.45 ±0.07	¹⁸ ABE	20F	T2K	Normal mass ordering, $ heta_{13}$ constrained	TYPE=NORMAL					

$-2.51 \ \pm 0.07$	^{18,19} ABE	20F	T2K	Inverted mass ordering, θ_{13} constrained	OCCUR=2;TYPE=INVERTED
$2.517 \substack{+0.026 \\ -0.028}$	²⁰ ESTEBAN	20A	FIT	Normal mass ordering, global fit	TYPE=NORMAL
$-2.498\substack{+0.028\\-0.028}$	²⁰ ESTEBAN	20A	FIT	Inverted mass ordering, global fit	OCCUR=2;TYPE=INVERTED
$2.55 \begin{array}{c} +0.12 \\ -0.11 \end{array}$	²¹ AARTSEN	19 C	ICCB		
$2.48 \begin{array}{c} +0.11 \\ -0.06 \end{array}$	²² ACERO	19	NOVA	Normal mass ordering, octant II for $ heta_{23}$	TYPE=NORMAL
$-2.54 \ {+0.06 \atop -0.11}$	²² ACERO	19	NOVA	Inverted mass ordering, octant II for θ_{23}	OCCUR=2;TYPE=INVERTED
< 4.1 at 90% CL	AGAFONOVA	19	OPER		
$2.0 \begin{array}{c} +0.4 \\ -0.3 \end{array}$	²³ ALBERT	19	ANTR	Atmospheric ν , deep sea tele- scope	
$2.31 \begin{array}{c} +0.11 \\ -0.13 \end{array}$	²⁴ AARTSEN	18A	ICCB	Normal mass ordering	TYPE=NORMAL
$2.50 \begin{array}{c} +0.13 \\ -0.31 \end{array}$	²⁵ ABE	18 B	SKAM	$3 u$ osc: normal mass ordering, $ heta_{13}$ free	TYPE=NORMAL
$-2.28 \ +0.33 \ -0.13$	²⁵ ABE	18B	SKAM	3ν osc: inverted mass order- ing, θ_{13} free	OCCUR=2;TYPE=INVERTED
$2.50 \begin{array}{c} +0.13 \\ -0.20 \end{array}$	²⁶ ABE	18 B	SKAM	Normal mass ordering, θ_{13} constrained	OCCUR=3;TYPE=NORMAL
$-2.58 \ \begin{array}{c} +0.08 \\ -0.37 \end{array}$	²⁶ ABE	18B	SKAM	Inverted mass ordering, θ_{13} constrained	OCCUR=4;TYPE=INVERTED
$2.463 \substack{+0.071 \\ -0.070}$	²⁷ ABE	18 G	T2K	Normal mass ordering, θ_{13}	TYPE=NORMAL
-2.507 ± 0.070	^{27,28} ABE	18 G	T2K	constrained Inverted mass ordering, θ_{13} constrained	OCCUR=2;TYPE=INVERTED
$2.44 \begin{array}{c} +0.08 \\ -0.07 \end{array}$	²⁹ ACERO	18	NOVA	Normal mass order, octant II for θ_{23}	TYPE=NORMAL
$2.45 \begin{array}{c} +0.07 \\ -0.08 \end{array}$	^{29,30} ACERO	18	NOVA	Normal mass order; octant I for θ_{23}	OCCUR=2;TYPE=NORMAL
$2.471 \substack{+ 0.068 \\ - 0.070}$	³¹ ADEY	18A	DAYA	Normal mass ordering	TYPE=NORMAL
$-2.575 \substack{+0.068\\-0.070}$	³¹ ADEY	18A	DAYA	Inverted mass ordering	OCCUR=2;TYPE=INVERTED
$2.7 \begin{array}{c} +0.7 \\ -0.6 \end{array}$	³² AGAFONOVA	18	OPER	OPERA ν_{τ} appearance	
$2.42 \hspace{0.1 cm} \pm 0.03$	DE-SALAS	18	FIT	Normal mass ordering, global fit	
$-2.50 \ \begin{array}{c} +0.03 \\ -0.04 \end{array}$	DE-SALAS	18	FIT	Inverted mass order, global fit	OCCUR=2
$2.57 \begin{array}{c} +0.21 \\ -0.23 \end{array} \begin{array}{c} +0.12 \\ -0.13 \end{array}$	³³ SEO	18	RENO	Normal mass ordering	TYPE=NORMAL
$\begin{array}{rrrr} -2.67 & +0.23 & +0.13 \\ -0.21 & -0.12 \end{array}$	³³ SEO	18	RENO	Inverted mass ordering	OCCUR=2;TYPE=INVERTED
$2.53 \begin{array}{c} +0.15 \\ -0.13 \end{array}$	ABE	17C	T2K	Normal mass ordering with neutrinos	
$2.55 \begin{array}{c} +0.33 \\ -0.27 \end{array}$	ABE	17C	T2K	Normal mass ordering with antineutrinos	OCCUR=2
$2.55 \begin{array}{c} +0.08 \\ -0.08 \end{array}$	ABE	17C	T2K	Normal mass ordering with neutrinos and antineutrinos	OCCUR=3;TYPE=NORMAL
$-2.63 \ {+0.08 \atop -0.08}$	ABE	17C	T2K	Inverted mass ordering with neutrinos and antineutrinos	OCCUR=4;TYPE=INVERTED
$2.54 \hspace{0.1in} \pm 0.08$	³⁴ ABE		T2K	Normal mass ordering; $ u+\overline{ u}$	TYPE=NORMAL
-2.51 ± 0.08	³⁴ ABE ³⁵ ADAMSON		T2K	Inverted mass ordering; $\nu + \overline{\nu}$	OCCUR=2;TYPE=INVERTED
$2.67 \pm 0.11 \\ -2.72 \pm 0.11$	³⁵ ADAMSON		NOVA	3ν osc; normal mass ordering 3ν osc; inverted mass ordering	TYPE=NORMAL OCCUR=2;TYPE=INVERTED
$2.45 \pm 0.06 \pm 0.06$	³⁶ AN		DAYA		TYPE=NORMAL
$-2.56 \pm 0.06 \pm 0.06$	36 _{AN}		DAYA	8	OCCUR=2;TYPE=INVERTED
$2.51 \begin{array}{c} +0.29 \\ -0.25 \end{array}$	37 _{ABE}	16 D	T2K	3ν osc.; normal mass ordering; $\overline{\nu}$ beam	TYPE=NORMAL
$2.52 \begin{array}{c} +0.20 \\ -0.18 \end{array}$	³⁸ ADAMSON	16A	NOVA	3ν osc; normal mass ordering	TYPE=NORMAL
-2.56 ± 0.19	³⁸ ADAMSON			3ν osc; inverted mass ordering	OCCUR=3;TYPE=INVERTED
$2.56 \begin{array}{c} \pm 0.13 \\ \pm 0.12 \\ -0.23 \end{array} \begin{array}{c} \pm 0.12 \\ \pm 0.12 \\ -0.13 \end{array}$	³⁹ CHOI	16		3ν osc; normal mass ordering	TYPE=NORMAL
2.60 + 0.23 + 0.13	³⁹ CHOI	16		3ν osc; inverted mass ordering	OCCUR=2;TYPE=INVERTED
-2.09 - 0.21 - 0.12	CHUI				
$2.72 \begin{array}{c} +0.19 \\ -0.20 \end{array}$	⁴⁰ AARTSEN	154	ICCB	Normal mass ordering	TYPE=NORMAL

$-2.73 \begin{array}{c} +0.21 \\ -0.18 \end{array}$	⁴⁰ AARTSEN	15A	ICCB	Inverted mass ordering	OCCUR=2;TYPE=INVERTED
2.0–5.0	⁴¹ ΑGΑΕΟΝΟVΑ	15a	OPER	90% CL, 5 events	
2.37 ± 0.11	⁴² AN	15		3ν osc.; normal mass ordering	TYPE=NORMAL
-2.47 ± 0.11	⁴² AN	15	DAYA		OCCUR=2;TYPE=INVERTED
2.51 ± 0.10	⁴³ ABE	14	T2K	3ν osc.; normal mass ordering	TYPE=NORMAL
-2.56 ± 0.10	⁴³ ABE	14	T2K	3ν osc.; inverted mass ordering	OCCUR=2;TYPE=INVERTED
2.37 ±0.09	⁴⁴ ADAMSON	14		Accel., atmospheric, normal	TYPE=NORMAL
			-	mass ordering	
$-2.41 \begin{array}{c} +0.09 \\ -0.12 \end{array}$	⁴⁴ ADAMSON	14	MINS	Accel., atmsopheric, inverted	OCCUR=2;TYPE=INVERTED
-2.41 -0.12				mass ordering	
$2.54 \begin{array}{c} +0.19 \\ -0.20 \end{array}$	⁴⁵ AN	14	DAYA	3ν osc.; normal mass ordering	TYPE=NORMAL
	45				OCCUR=2:TYPE=INVERTED
$-2.64 \ {+0.20 \atop -0.19}$	⁴⁵ AN	14	DAYA	3 u osc.; inverted mass ordering	
$2.48 \begin{array}{c} +0.05 \\ -0.07 \end{array}$	⁴⁶ FORERO	14	FIT	3ν ; normal mass ordering	
		1.			
$-2.38 \begin{array}{c} +0.06 \\ -0.05 \end{array}$	⁴⁶ FORERO	14	FIT	3ν ; inverted mass ordering	OCCUR=2
2.457±0.047	47,48 GONZALEZ	14	FIT	Normal mass ordering; global	TYPE=NORMAL
				fit	
$-2.449 \substack{+0.047 \\ -0.048}$	⁴⁷ GONZALEZ	14	FIT	Inverted mass ordering; global	OCCUR=2;TYPE=INVERTED
	40			fit	OCCUR=2
$2.3 \begin{array}{c} +0.6 \\ -0.5 \end{array}$	⁴⁹ AARTSEN	13B	ICCB	DeepCore, $2 u$ oscillation	OCCOR=2
$2.44 \begin{array}{c} +0.17 \\ -0.15 \end{array}$	⁵⁰ ABE	120	T2K	3ν osc.; normal mass ordering	TYPE=NORMAL
	ADE	120	12N	SV osc.; normai mass ordening	
$2.41 \begin{array}{c} +0.09 \\ -0.10 \end{array}$	⁵¹ ADAMSON	13 B	MINS	2ν osc.; beam + atmospheric;	
	⁵² ABE	10.	TOK	identical $\nu \& \overline{\nu}$	
2.2–3.1		12A	T2K	off-axis beam	
$2.62 \begin{array}{c} +0.31 \\ -0.28 \end{array} \pm 0.09$	⁵³ ADAMSON	12	MINS	$\overline{ u}$ beam	
1.35-2.55	^{54,55} ADAMSON	12B	MINS	MINOS atmospheric	
1.4-5.6	^{54,56} ADAMSON	12B	MINS	MINOS pure atmospheric $ u$	OCCUR=2
0.9–2.5	^{54,56} ADAMSON	12B	MINS	MINOS pure atmospheric $\overline{ u}$	OCCUR=3
1.8-5.0	⁵⁷ ADRIAN-MAR	12	ANTR	Atmospheric $ u$ with deep sea	
12.40	⁵⁸ ABE	110		telescope	
1.3-4.0		IIC		atmospheric $\overline{ u}$	
$2.32 \begin{array}{c} +0.12 \\ -0.08 \end{array}$	ADAMSON	11	MINS	2 u oscillation; maximal mixing	
$3.36 \begin{array}{c} +0.46 \\ -0.40 \end{array}$	⁵⁹ ADAMSON	11 _R	MINS	$\overline{ u}$ beam	
	⁶⁰ ADAMSON				
< 3.37	61 WENDELL		MINS	MINOS	
1.9–2.6 – 1.7– – 2.7	⁶¹ WENDELL	10 10		3ν osc.; normal mass ordering 3ν osc.; inverted mass ordering	OCCUR=2
-1.7 - 2.7 2.43 ±0.13	ADAMSON	-	MINS	MINOS	OCCOR=2
0.07-50	⁶² ADAMSON	06	MINS	atmospheric ν with far detec-	
				tor	
1.9-4.0	^{63,64} AHN		K2K	KEK to Super-K	
2.2-3.8	⁶⁵ MICHAEL	06	MINS	MINOS	
1.9-3.6	⁶³ ALIU	05	K2K	KEK to Super-K	OCCUR=2
0.3-12	⁶⁶ ALLISON ⁶⁷ ASHIE	05	SOU2		
1.5–3.4 0.6–8.0	68 AMBROSIO	05 04		atmospheric neutrino MACRO	OCCUR=2
1.9 to 3.0	⁶⁹ ASHIE	04 04		L/E distribution	OCCUR=2 OCCUR=2
1.5-3.9	⁷⁰ AHN	04	K2K	KEK to Super-K	OCCOR=2
0.25–9.0	⁷¹ AMBROSIO	03		MACRO	
0.6-7.0	⁷² AMBROSIO	03		MACRO	OCCUR=2
0.15–15	⁷³ SANCHEZ	03		Soudan-2 Atmospheric	000011-2
0.6–15	⁷⁴ AMBROSIO	01		upward μ	
1.0-6.0	⁷⁵ AMBROSIO	01		upward μ	OCCUR=2
1.0-50	⁷⁶ FUKUDA			upward μ	
1.5-15.0	⁷⁷ FUKUDA	99 D	SKAM	upward μ	
				stop μ / through	OCCUR=2
0.7–18	⁷⁸ FUKUDA	99 D	010 001		00001-2
0.7–18 0.5–6.0	⁷⁹ FUKUDA	98C	SKAM	Super-Kamiokande	00001-2
0.5–6.0 0.55–50	⁷⁹ FUKUDA ⁸⁰ HATAKEYAMA	98C 498	SKAM KAMI	Super-Kamiokande Kamiokande	
0.5–6.0 0.55–50 4–23	⁷⁹ FUKUDA ⁸⁰ HATAKEYAMA ⁸¹ HATAKEYAMA	98C 498 498	SKAM KAMI KAMI	Super-Kamiokande Kamiokande Kamiokande	OCCUR=2
0.5–6.0 0.55–50	⁷⁹ FUKUDA ⁸⁰ HATAKEYAMA	98C 498	SKAM KAMI	Super-Kamiokande Kamiokande	

	7/16/2025 12:18 Page 30
¹ AIELLO 24 uses atmospheric neutrino data measured between January 2020 and November 2021 with the first six detection units of ORCA, corresponding to 433 kton·yrs.	NODE=S067DM1;LINKAGE=WB
² AIELLO 24 reports $\Delta m_{31}^2 = (2.18 \substack{+0.25 \\ -0.35}) \times 10^{-3} \text{ eV}^2$ for normal mass ordering. We convert to Δm_{32}^2 using PDG 24 value of $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$.	NODE=S067DM1;LINKAGE=XB
3 AIELLO 24 reports $\Delta m^2_{31} = -2.25 imes 10^{-3}$ to $-1.76 imes 10^{-3}$ eV 2 at 68% CL for inverted	NODE=S067DM1;LINKAGE=YB
mass ordering. We convert to Δm_{32}^2 using PDG 24 value of $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$. The inverted mass ordering is disfavored with a p-value of 0.25.	
⁴ AN 24A report results from 1958 days of data taking with the Daya Bay experiment. This analysis makes use of neutron capture on protons and is independent of previous results in AN 23, utilizing neutron capture on Gd.	NODE=S067DM1;LINKAGE=BC
⁵ WESTER 24 uses 484.2 kton years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the three parameters, Δm_{32}^2 , $\sin^2(\theta_{23})$,	NODE=S067DM1;LINKAGE=UB
and δ , while the solar parameters and $\sin^2(\theta_{13})$ are fixed to $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5}$ eV ² , $\sin^2(\theta_{12}) = 0.307 \pm 0.013$, and $\sin^2(\theta_{13}) = 0.0220 \pm 0.0007$. Supersedes ABE 18B.	
⁶ ABBASI 23 uses atmospheric neutrino data measured between 2011 and 2019 with the low-energy subdetector DeepCore of the IceCube neutrino telescope. Supersedes AARTSEN 18A.	NODE=S067DM1;LINKAGE=QB
$^7{\rm ABE}$ 23F results are based on data collected between 2010 and 2020 in (anti)neutrino mode and include a neutrino beam exposure of $1.97\times10^{21}~(1.63\times10^{21})$ protons on target. Supersedes ABE 20F.	NODE=S067DM1;LINKAGE=RB
⁸ ABE 23F reports $\Delta m_{13}^2 = (2.463 \substack{+0.042 \\ -0.056}) \times 10^{-3} \text{ eV}^2$ for inverted mass ordering. We convert to Δm_{32}^2 using PDG 23 value of $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$.	NODE=S067DM1;LINKAGE=SB
⁹ AN 23 reports results derived from the complete data set collected by the Daya-Bay	NODE=S067DM1;LINKAGE=OB
experiment, corresponding to 3158 days of operation, resulting in $5.55 \times 10^6 \overline{\nu}_e$ candidate events. Solar oscillation parameters are fixed in the analysis to $\sin^2(\theta_{12}) = 0.307 \pm 0.013$, $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$ from PDG 20. Supersedes ADEY 18A.	
¹⁰ ACERO 22 uses data from Jun 29, 2016 to Feb 26, 2019 (12.5×10^{20} POT) and Feb 6, 2014 to Mar 20, 2020 (13.6×10^{20} POT). For normal mass ordering and θ_{23} octant	NODE=S067DM1;LINKAGE=KB
I (lower octant), best fit is 0.00239 eV ² ; for inverted mass ordering and octant I, best fit is -0.00244 eV^2 . Uncertainties are reported relative to the global minima in normal mass ordering. Supersedes ACERO 19.	
11 ADAMSON 20A uses the complete dataset from MINOS and MINOS+ experiments. The data were collected using a total exposure of 23.76 \times 10 ²⁰ protons on target and 60.75	NODE=S067DM1;LINKAGE=IB
kton yr exposure to atmospheric neutrinos. Supersedes ADAMSON 14. ¹² BAK 18 reports results of the RENO experiment using about 2200 live-days of data taken with detectors placed at 410.6 and 1445.7 m from reactors of the Hanbit Nuclear Power Plant. We convert the results to Δm_{32}^2 using the PDG 18 values of $\sin^2 \theta_{12} =$	NODE=S067DM1;LINKAGE=XA
$0.307^{+0.013}_{-0.012}$ and $\Delta m^2_{21} = (7.53 \pm 0.18) imes 10^{-5}$ eV 2 . Supersedes SEO 18.	
13 ABE 25 reports the results of a joint analysis of Super-Kamiokande atmospheric neutrino data and T2K beam neutrino data, using 3244.4 days of atmospheric data and a (anti)neutrino beam exposure of $1.97 \times 10^{21} \ (1.63 \times 10^{21})$ protons on target.	NODE=S067DM1;LINKAGE=ZB
¹⁴ ABE 25 reports $-\Delta m_{13}^2 = (2.480 + 0.052) \times 10^{-3} \text{ eV}^2$ for inverted mass ordering. We convert to Δm_{32}^2 using PDG 24 value of $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$.	NODE=S067DM1;LINKAGE=AC
¹⁵ ACERO 24 reanalyzed the dataset first examined in ACERO 22 using an alternative statistical approach based on Bayesian Markov chain Monte Carlo.	NODE=S067DM1;LINKAGE=DC
¹⁶ ABE 23D uses the same dataset as ABE 23F. The measurement of Δm_{32}^2 is performed independently for ν_{μ} and $\overline{\nu}_{\mu}$.	NODE=S067DM1;LINKAGE=TB
17 ABE 21A results are based on 1.49×10^{21} POT in neutrino mode and 1.64×10^{21} POT in antineutrino mode.	NODE=S067DM1;LINKAGE=LB
18 ABE 20F results are based on data collected between 2009 and 2018 in (anti)neutrino mode and include a neutrino beam exposure of $1.49\times10^{21}~(1.64\times10^{21})$ protons on target. Supersedes ABE 18G.	NODE=S067DM1;LINKAGE=GB
$^{19}{\sf ABE}$ 20F reports $\Delta {\sf m}^2_{13}{=}(2.43\pm0.07)\times10^{-3}~{\sf eV}^2$ for inverted mass ordering. We	NODE=S067DM1;LINKAGE=HB
convert to Δm_{32}^2 using PDG 20 value of $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$. ²⁰ ESTEBAN 20A reports results of a global fit to neutrino oscillation data available at the	NODE=S067DM1;LINKAGE=JB
time of the Neutrino2020 conference. ²¹ AARTSEN 19C uses three years (April 2012 – May 2015) of neutrino data from full sky with reconstructed energies between 5.6 and 56 GeV, measured with the low-energy sub- detector DeepCore of the lceCube neutrino telescope. AARTSEN 19C adopts looser event selection criteria to prioritize the efficiency of selecting neutrino events, different from tighter event selection criteria which closely follow the criteria used by AARTSEN 18A to measure the used in an advance.	NODE=S067DM1;LINKAGE=BB
to measure the ν_{μ} disappearance. ²² ACERO 19 is based on a sample size of 12 33 × 10 ²⁰ protons on target. The fit combines	

²² ACERO 19 is based on a sample size of 12.33×10^{20} protons on target. The fit combines both antineutrino and neutrino data to extract the oscillation parameters. The results favor the normal mass ordering by 1.9 σ and θ_{23} values in octant II by 1.6 σ . Superseded by ACERO 22.

NODE=S067DM1;LINKAGE=FB

²³ ALBERT 19 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2016 (2830 days of total live time). Supersedes ADRIAN-MARTINEZ 12.	NODE=S067DM1;LINKAGE=DB
24 AARTSEN 18A uses three years (April 2012 – May 2015) of neutrino data from full sky with reconstructed energies between 5.6 and 56 GeV, measured with the low-energy subdetector DeepCore of the IceCube neutrino telescope. AARTSEN 18A also reports the best fit values for the inverted mass ordering as $\Delta m^2_{32} = -2.32 \times 10^{-3} \ eV^2$ and	NODE=S067DM1;LINKAGE=GA
$\sin^2(\theta_{23}) = 0.51$. Uncertainties for the inverted mass ordering fits were not provided. Supersedes AARTSEN 15A.	
²⁵ ABE 18B uses 328 kton years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the four parameters, Δm_{32}^2 , $\sin^2\theta_{23}$,	NODE=S067DM1;LINKAGE=IA
$\sin^2 heta_{13}$, and δ , while the solar parameters are fixed to Δm^2_{21} = (7.53 \pm 0.18) \times 10 ⁻⁵ eV ² and $\sin^2 heta_{12}$ = 0.304 \pm 0.014.	
26 ABE 18B uses 328 kton·years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the three parameters, Δm_{32}^2 , $\sin^2(\theta_{23})$, and	NODE=S067DM1;LINKAGE=LA
δ , while the solar parameters and sin ² (θ_{13}) are fixed to $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5}$	
eV ² , $\sin^2(\theta_{12}) = 0.304 \pm 0.014$, and $\sin^2(\theta_{13}) = 0.0219 \pm 0.0012$. Superseded by WESTER 24.	
²⁷ ABE 18G data prefers normal ordering with a posterior probability of 87%. Supersedes ABE 17F.	NODE=S067DM1;LINKAGE=WA
²⁸ ABE 18G reports $\Delta m_{13}^2 = (2.432 \pm 0.070) \times 10^{-3} \text{ eV}^2$ for inverted mass ordering. We convert to Δm_{32}^2 using PDG 18 value of $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$.	NODE=S067DM1;LINKAGE=YA
²⁹ ACERO 18 performs a joint fit to the data for ν_{μ} disappearance and ν_{e} appearance. The overall best fit favors normal mass ordering and θ_{23} in octant II. No 1σ confidence intervals are presented for the inverted mass ordering scenarios. Superseded by	NODE=S067DM1;LINKAGE=OA
ACERO 19. 30 The error for octant I is taken from the result for octant II. 31 ADEY 18A reports results from analysis of 1958 days of data taking with the Daya-	NODE=S067DM1;LINKAGE=RA NODE=S067DM1;LINKAGE=TA
Bay experiment, with $3.9 \times 10^6 \ \overline{\nu}_e$ candidates. The fit to the data gives $\Delta m_{ee}^2 = 0.068$	
$(2.522 + 0.068) \times 10^{-3} \text{ eV}^2$. Solar oscillation parameters are fixed in the analysis using	
the global averages, $\sin^2(\theta_{12}) = 0.307^{+0.013}_{-0.012}$, $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$, from PDG 18. Supersedes AN 17A.	
³² AGAFONOVA 18 assumes maximal θ_{23} mixing.	NODE=S067DM1;LINKAGE=NA
³³ SEO 18 reports result of the RENO experiment from a rate and shape analysis of 500 days of data. A simultaneous fit to θ_{13} and Δm_{ee}^2 yields $\Delta m_{ee}^2 = (2.62 + 0.21 + 0.12) \times 10^{-3}$	NODE=S067DM1;LINKAGE=Z
eV ² . We convert the results to Δm_{32}^2 using the PDG 18 values of $\sin^2\theta_{12}$ and Δm_{21}^2 . SEO 18 is a detailed description of the results published in CHOI 16, which it supersedes. Superseded by BAK 18	
³⁴ ABE 17F confidence intervals are obtained using a frequentist analysis including θ_{13} constraint from reactor experiments. Bayesian intervals based on Markov Chain Monte Carlo method are also provided by the authors. Superseded by ABE 18G.	NODE=S067DM1;LINKAGE=QA
³⁵ Superseded by ACERO 18.	NODE=S067DM1;LINKAGE=PA
³⁶ AN 17A report results from combined rate and spectral shape analysis of 1230 days of data taken with the Daya Bay reactor experiment. The data set contains more than 2.5×10^6 inverse beta-decay events with neutron capture on Gd. The fit to the data gives $\Delta_{ee}^2 = (2.50 \pm 0.06 \pm 0.06) \times 10^{-3}$ eV. Superseded by ADEY 18A.	NODE=S067DM1;LINKAGE=S
$^{37}\mathrm{ABE}$ 16D reports oscillation results using $\overline{ u}_{\mu}$ disappearance in an off-axis beam.	NODE=S067DM1;LINKAGE=O
38 Superseded by ADAMSON 17A. 39 CHOI 16 reports result of the RENO experiment from a rate and shape analysis of 500	NODE=S067DM1;LINKAGE=T NODE=S067DM1;LINKAGE=N
days of data. A simultaneous fit to θ_{13} and Δm_{ee}^2 yields $\Delta m_{ee}^2 = (2.62 \substack{+0.21 \\ -0.23 \atop -0.13} + 0.12) \times 10^{-3}$ eV. We convert the results to Δm_{32}^2 using PDG 18 values of sin ² (θ_{12}) and Δm_{21}^2 .	
⁴⁰ AARTSEN 15A obtains this result by a three-neutrino oscillation analysis using 10–100 GeV muon neutrino sample from a total of 953 days of measurements with the low-energy subdetector DeepCore of the IceCube neutrino telescope. Superseded by AARTSEN 18A.	NODE=S067DM1;LINKAGE=I
⁴¹ AGAFONOVA 15A result is based on 5 $\nu_{\mu} \rightarrow \nu_{\tau}$ appearance candidates with an expected background of 0.25 \pm 0.05 events. The best fit is for $\Delta m_{32}^2 = 3.3 \times 10^{-3} \text{ eV}^2$.	NODE=S067DM1;LINKAGE=P
⁴² AN 15 uses all eight identical detectors, with four placed near the reactor cores and the remaining four at the far hall to determine prompt energy spectra. The results correspond to the exposure of 6.9×10^5 GW _{th} -ton-days. They derive $\Delta m_{ee}^2 = (2.42 \pm 0.11) \times 10^{-3}$ eV ² . Assuming the normal (inverted) ordering, the fitted $\Delta m_{32}^2 = (2.37 \pm 0.11) \times 10^{-3}$	NODE=S067DM1;LINKAGE=H
$((2.47 \pm 0.11) \times 10^{-3}) \text{ eV}^2$. Superseded by AN 17A.	
⁴³ ABE 14 results are based on ν_{μ} disappearance using three-neutrino oscillation fit. The confidence intervals are derived from one dimensional profiled likelihoods. In ABE 14 the	NODE=S067DM1;LINKAGE=G
inverted mass ordering result is reported as $\Delta m_{13}^2 = (2.48 \pm 0.10) \times 10^{-3} \text{ eV}^2$ which we converted to Δm_{32}^2 by adding PDG 14 value of $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$.	
Superseded by ABE 17C.	

Page 31

7/16/2025 12:18

	7/16/2025 12:18 Page 32
⁴⁴ ADAMSON 14 uses a complete set of accelerator and atmospheric data. The analysis combines The analysis combines the ν_{μ} disappearance and ν_{e} appearance data using three-neutrino oscillation fit. The fit results are obtained for normal and inverted mass	NODE=S067DM1;LINKAGE=F
ordering assumptions. ⁴⁵ AN 14 uses six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 512 and 561 m) and the remaining three at the far hall (at the flux averaged distance of 1579 m from all six reactor cores) to determine prompt energy spectra and derive $\Delta m_{ee}^2 = (2.59^{+0.19}_{-0.20}) \times 10^{-3} \text{ eV}^2$. Assuming the normal (inverted) ordering, the fitted $\Delta m_{32}^2 = (2.54^{+0.19}_{-0.20}) \times 10^{-3} ((2.64^{+0.19}_{-0.20}) \times 10^{-3}) \text{ eV}^2$. Superseded by	NODE=S067DM1;LINKAGE=E
AN 15. ⁴⁶ FORERO 14 performs a global fit to Δm_{31}^2 using solar, reactor, long-baseline accelerator,	NODE=S067DM1;LINKAGE=B
and atmospheric neutrino data. ⁴⁷ GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as $(2.460 \pm 0.046) \times 10^{-3} \text{ eV}^2$ for normal and $(2.445 \substack{+0.047 \\ -0.045}) \times 10^{-3} \text{ eV}^2$ for inverted mass ordering.	NODE=S067DM1;LINKAGE=K
⁴⁸ The value for normal mass ordering is actually a measurement of Δm_{31}^2 which differs from Δm_{32}^2 by a much smaller value of Δm_{12}^2 .	NODE=S067DM1;LINKAGE=M
 ⁴⁹ AARTSEN 13B obtained this result by a two-neutrino oscillation analysis using 20–100 GeV muon neutrino sample from a total of 318.9 days of live-time measurement with the low-energy subdetector DeepCore of the IceCube neutrino telescope. 	NODE=S067DM1;LINKAGE=D
⁵⁰ Based on the observation of 58 ν_{μ} events with 205 ± 17(syst) expected in the absence of neutrino oscillations. Superseded by ABE 14.	NODE=S067DM1;LINKAGE=C
⁵¹ ADAMSON 13B obtained this result from ν_{μ} and $\overline{\nu}_{\mu}$ disappearance using ν_{μ} (10.71 × 10 ²⁰ POT) and $\overline{\nu}_{\mu}$ (3.36 × 10 ²⁰ POT) beams, and atmospheric (37.88 kton-years) data from MINOS. The fit assumed two-flavor neutrino hypothesis and identical ν_{μ} and $\overline{\nu}_{\mu}$ oscillation parameters.	NODE=S067DM1;LINKAGE=A
52 ABE 12A obtained this result by a two-neutrino oscillation analysis. The best-fit point is $\Delta m^2_{32} = 2.65 \times 10^{-3} \ eV^2$.	NODE=S067DM1;LINKAGE=AE
 ⁵³ ADAMSON 12 is a two-neutrino oscillation analysis using antineutrinos. ⁵⁴ ADAMSON 12B obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 37.9 kton-yr atmospheric neutrino data with the MINOS far detector. 	NODE=S067DM1;LINKAGE=DA NODE=S067DM1;LINKAGE=A0
55 The 90% single-parameter confidence interval at the best fit point is $\Delta m^2 = 0.0019 \pm 0.0004 \mbox{ eV}^2$.	NODE=S067DM1;LINKAGE=A1
⁵⁶ The data are separated into pure samples of ν s and $\overline{\nu}$ s, and separate oscillation parameters for ν s and $\overline{\nu}$ s are fit to the data. The best fit point is $(\Delta m^2, \sin^2 2\theta) = (0.0022 \text{ eV}^2, 0.99)$ and $(\Delta \overline{m}^2, \sin^2 2\overline{\theta}) = (0.0016 \text{ eV}^2, 1.00)$. The quoted result is taken from the 90% C.L. contour in the $(\Delta m^2, \sin^2 2\theta)$ plane obtained by minimizing the four parameter log-likelihood function with respect to the other oscillation parameters.	NODE=S067DM1;LINKAGE=A2
 ⁵⁷ ADRIAN-MARTINEZ 12 measured the oscillation parameters of atmospheric neutrinos with the ANTARES deep sea neutrino telescope using the data taken from 2007 to 2010 (863 days of total live time). Superseded by ALBERT 19 	NODE=S067DM1;LINKAGE=EB
⁵⁸ ABE 11C obtained this result by a two-neutrino oscillation analysis with separate mixing parameters between neutrinos and antineutrinos, using the Super-Kamiokande-I+II+III atmospheric neutrino data. The corresponding 90% CL neutrino oscillation parameter range obtained from this analysis is $\Delta m^2 = 1.7-3.0 \times 10^{-3} \text{ eV}^2$.	NODE=S067DM1;LINKAGE=EA
⁵⁹ ADAMSON 11B obtained this result by a two-neutrino oscillation analysis of antineutrinos in an antineutrino enhanced beam with 1.71×10^{20} protons on target. This results is consistent with the neutrino measurements of ADAMSON 11 at 2% C L	NODE=S067DM1;LINKAGE=AA
⁶⁰ ADAMSON 11C obtains this result based on a study of antineutrinos in a neutrino beam and assumes maximal mixing in the two-flavor approximation.	NODE=S067DM1;LINKAGE=MS
⁶¹ WENDELL 10 obtained this result by a three-neutrino oscillation analysis with one mass scale dominance ($\Delta m_{21}^2 = 0$) using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result.	NODE=S067DM1;LINKAGE=WE
62 ADAMSON 06 obtained this result by a two-neutrino oscillation analysis of the L/E distribution using 4.54 kton yr atmospheric neutrino data with the MINOS far detector.	NODE=S067DM1;LINKAGE=AD
63 The best fit in the physical region is for $\Delta m^2 = 2.8 \times 10^{-3} \text{ eV}^2$. 64 Supercedes ALIU 05.	NODE=S067DM1;LINKAGE=AI NODE=S067DM1;LINKAGE=AN
65 MICHAEL 06 best fit is 2.74×10^{-3} eV ² . See also ADAMSON 08. 66 ALLISON 05 result is based on an atmospheric neutrino observation with an exposure of 5.9 kton yr. From a two-flavor oscillation analysis the best-fit point is $\Delta m^2 = 0.0017$	NODE=S067DM1;LINKAGE=MI NODE=S067DM1;LINKAGE=AL
eV ² and sin ² 2 θ = 0.97. 67 ASHIE 05 obtained this result by a two-neutrino oscillation analysis using 92 kton yr atmospheric neutrino data from the complete Super-Kamiokande I running period. The	NODE=S067DM1;LINKAGE=AS
best fit is for $\Delta m^2 = 2.1 \times 10^{-3} \text{ eV}^2$. 68 AMBROSIO 04 obtained this result, without using the absolute normalization of the neutrino flux, by combining the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV, N_{low} and N_{high} , and the numbers of InDown + UpStop and InUp events. Here, N_{low} and N_{high} are the number of events with reconstructed neutrino energies < 30 GeV and > 130 GeV, respectively. InDown and InUp represent events with downward and upward-going tracks starting inside the detector due to neutrino	NODE=S067DM1;LINKAGE=AM

NODE=S067DM1;LINKAGE=SH

NODE=S067DM1;LINKAGE=AH

NODE=S067DM1;LINKAGE=AO

NODE=S067DM1;LINKAGE=MB

NODE=S067DM1;LINKAGE=SA

NODE=S067DM1;LINKAGE=AB

NODE=S067DM1:LINKAGE=AR

NODE=S067DM1;LINKAGE=FU

NODE=S067DM1;LINKAGE=UA

NODE=S067DM1;LINKAGE=UU

NODE=S067DM1;LINKAGE=FK

NODE=S067DM1;LINKAGE=HA

NODE=S067DM1;LINKAGE=HT

NODE=S067DM1;LINKAGE=FD

NODE=S067P13

NODE=S067P13

interactions, while UpStop represents entering upward-going tracks which stop in the detector. The best fit is for $\Delta m^2 = 2.3 \times 10^{-3} \text{ eV}^2$.

- detector. The best fit is for $\Delta m = 2.5 \wedge 10^{-10} = 0.1 \times 10^{-10}$ 69 ASHIE 04 obtained this result from the L(flight length)/E(estimated neutrino energy) distribution of ν_{μ} disappearance probability, using the Super-Kamiokande-I 1489 live-day atmospheric neutrino data. The best fit is for $\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$.
- ⁷⁰ There are several islands of allowed region from this K2K analysis, extending to high values of Δm^2 . We only include the one that overlaps atmospheric neutrino analyses. ______ The best fit is for $\Delta m^2 = 2.8 \times 10^{-3} \text{ eV}^2$.
- ⁷¹AMBROSIO 03 obtained this result on the basis of the ratio $R = N_{low}/N_{high}$, where N_{low} and N_{high} are the number of upward through-going muon events with reconstructed neutrino energy < 30 GeV and > 130 GeV, respectively. The data came from the full detector run started in 1994. The method of FELDMAN 98 is used to obtain the limits. The best fit is for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$.
- ⁷² AMBROSIO 03 obtained this result by using the ratio R and the angular distribution of the upward through-going muons. R is given in the previous note and the angular distribution is reported in AMBROSIO 01. The method of FELDMAN 98 is used to obtain the limits. The best fit is for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$.
- obtain the limits. The best fit is for $\Delta m^2 = 2.5 \times 10^{-3} \mbox{ eV}^2$. 73 SANCHEZ 03 is based on an exposure of 5.9 kton yr. The result is obtained using a likelihood analysis of the neutrino L/E distribution for a selection μ flavor sample while the e-flavor sample provides flux normalization. The method of FELDMAN 98 is used to obtain the allowed region. The best fit is for $\Delta m^2 = 5.2 \times 10^{-3} \mbox{ eV}^2$.
- ⁷⁴ AMBROSIO 01 result is based on the angular distribution of upward through-going muon tracks with $E_{\mu} > 1$ GeV. The data came from three different detector configurations, but the statistics is largely dominated by the full detector run, from May 1994 to December 2000. The total live time, normalized to the full detector configuration is 6.17 years. The best fit is obtained outside the physical region. The method of FELDMAN 98 is used to obtain the limits.
- 75 AMBROSIO 01 result is based on the angular distribution and normalization of upward through-going muon tracks with $E_{\mu} > 1$ GeV. See the previous footnote.
- ⁷⁶ FUKUDA 99C obtained this result from a total of 537 live days of upward through-going muon data in Super-Kamiokande between April 1996 to January 1998. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux is $(1.74 \pm 0.07 \pm 0.02) \times 10^{-13}$ cm⁻²s⁻¹sr⁻¹. The best fit is for $\Delta m^2 = 5.9 \times 10^{-3}$ eV².
- ⁷⁷ FUKUDA 99D obtained this result from a simultaneous fitting to zenith angle distributions of upward-stopping and through-going muons. The flux of upward-stopping muons of minimum energy of 1.6 GeV measured between April 1996 and January 1998 is $(0.39 \pm 0.04 \pm 0.02) \times 10^{-13} \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$. This is compared to the expected flux of $(0.73 \pm 0.16 \text{ (theoretical error)}) \times 10^{-13} \text{ cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$. The best fit is for $\Delta m^2 = 3.9 \times 10^{-3} \text{ eV}^2$.
- ⁷⁸ FUKUDA 99D obtained this result from the zenith dependence of the upwardstopping/through-going flux ratio. The best fit is for $\Delta m^2 = 3.1 \times 10^{-3} \text{ eV}^2$.
- ⁷⁹ FUKUDA 98C obtained this result by an analysis of 33.0 kton yr atmospheric neutrino data. The best fit is for $\Delta m^2 = 2.2 \times 10^{-3} \text{ eV}^2$.
- ⁸⁰ HATAKEYAMA 98 obtained this result from a total of 2456 live days of upward-going muon data in Kamiokande between December 1985 and May 1995. With a threshold of $E_{\mu} > 1.6$ GeV, the observed flux of upward through-going muons is $(1.94 \pm 0.10 + 0.07) \times 10^{-13}$ cm⁻²s⁻¹sr⁻¹. This is compared to the expected flux of $(2.46 \pm 0.54 \text{ (theoretical error)}) \times 10^{-13}$ cm⁻²s⁻¹sr⁻¹. The best fit is for $\Delta m^2 = 2.2 \times 10^{-3}$ eV².
- ⁸¹ HATAKEYAMA 98 obtained this result from a combined analysis of Kamiokande contained events (FUKUDA 94) and upward going muon events. The best fit is for $\Delta m^2 =$ $13 \times 10^{-3} \text{ eV}^2$.
- ⁸² FUKUDA 94 obtained the result by a combined analysis of sub- and multi-GeV atmospheric neutrino events in Kamiokande. The best fit is for $\Delta m^2 = 16 \times 10^{-3} \text{ eV}^2$.

$\sin^2(\theta_{13})$

At present time direct measurements of $\sin^2(\theta_{13})$ are derived from the reactor $\overline{\nu}_e$ disappearance at distances corresponding to the Δm^2_{32} value, i.e. L $\sim\,$ 1km. Alternatively, limits can also be obtained from the analysis of the solar neutrino data and accelerator-based $\nu_{\mu} \rightarrow\,\nu_e$ experiments.

If an experiment reports $\sin^2(2\theta_{13})$ we convert the value to $\sin^2(\theta_{13})$.

<u>VALUE (units 10⁻²)</u> <u>CL%</u>	DOCUMENT ID		TECN	COMMENT		NODE=S067P13
2.16 \pm 0.06 OUR AVERAGE		cale fa	actor of	1.2.	_	
2.2 \pm 0.5	¹ ACERO	24	NOVA	Both mass orderings		
2.128 ± 0.057	² AN	24A	DAYA	DayaBay, Ling Ao/Ao II reactors		OCCUR=2
$2.80 \ + \ 0.28 \ - \ 0.65$	³ ABE	23F	T2K	Normal mass ordering		TYPE=NORMAL
$2.70~\pm~0.37$	⁴ DE-KERRET	20	DCHZ	Chooz reactors		
$2.22 ~\pm~ 0.21 ~\pm 0.37$	⁵ SHIN	20	RENO	Yonggwang reactors		
$2.29~\pm~0.18$	⁶ BAK	18	RENO	Yonggwang reactors		

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

• • • We do not use the f	ollowing data for average	ges, fits, limits	, etc. ● ● ●	
$1.94~\pm~0.13$	⁷ AN	24A DAY	A DayaBay, Ling Ao re- actors	I
$3.10 \ + \ 0.30 \ - \ 0.69$	³ ABE	23F T2K	Inverted mass ordering	OCCUR=2;TYPE=INVERTED
$2.170\pm~0.063$	⁸ AN	23 DAY	A DayaBay, Ling Ao/Ao	
$2.41~\pm~0.45$	⁹ ABRAHAO	21 DCł	II reactors IZ Chooz reactors	OCCUR=2
$2.200 \stackrel{+}{-} \begin{array}{c} 0.069 \\ 0.062 \end{array}$	¹⁰ SALAS	21 FIT	Normal mass ordering, global fit	
$2.225 \stackrel{+}{_{-}} \begin{array}{c} 0.064 \\ 0.070 \end{array}$	¹⁰ SALAS	21 FIT	Inverted mass ordering, global fit	OCCUR=2
$2.219 \stackrel{+}{-} \begin{array}{c} 0.062 \\ 0.063 \end{array}$	¹¹ ESTEBAN	20A FIT	Normal mass ordering, global fit	
$2.238 \stackrel{+}{_{-}} \begin{array}{c} 0.063 \\ 0.062 \end{array}$	¹¹ ESTEBAN	20A FIT	Inverted mass ordering, global fit	OCCUR=2
	68 AGAFONO	/A 19 OPE	R	
$1.8 \begin{array}{c} + & 2.9 \\ - & 1.3 \end{array}$	¹² ABE	188 SKA	.M 3ν osc: normal mass ordering, $ heta_{13}$ free	TYPE=NORMAL
$0.8 + 1.7 \\ - 0.7$	¹² ABE	188 SKA	M 3ν osc: inverted mass ordering, $ heta_{13}$ free	OCCUR=3;TYPE=INVERTED
2.188 ± 0.076	¹³ ADEY	18A DAY	A DayaBay, LingAo/Ao II reactors	
	90 ¹⁴ AGAFONO	/A 18A OPE	ER OPERA: ν_e appear- ance	
$2.160 ^+ \begin{array}{c} 0.083 \\ 0.069 \end{array}$	DE-SALAS	18 FIT	Normal mass ordering, global fit	TYPE=NORMAL
$2.220 \stackrel{+}{-} \begin{array}{c} 0.074 \\ 0.076 \end{array}$	DE-SALAS	18 FIT	Inverted mass ordering, global fit	OCCUR=2;TYPE=INVERTED
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	¹⁵ SEO ¹⁶ ABE	18 REN 17F T2K	Normal mass ordering,	TYPE=NORMAL
$2.149 \pm \ 0.071 \pm 0.050$	¹⁷ AN	17A DAY	T2K only A DayaBay, LingAo/Ao II reactors	
$2.25 \ + \ 0.87 \ - \ 0.86$	¹⁸ ABE	16B DCH	IZ Chooz reactors	
1.81 ± 0.29	¹⁹ AN	16A DAY	A DayaBay, Ling Ao/Ao II reactors	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	²⁰ CHOI ²¹ AN	16 REM 15 DAY	IO Yonggwang reactors	
$2.6 \begin{array}{c} + 1.2 \\ - 1.1 \end{array}$	²² ABE	14A DCH	IZ Chooz reactors	
$3.0 \begin{array}{c} + 1.3 \\ - 1.0 \end{array}$	²³ ABE	14c T2k	Inverted mass ordering	
$3.6 \ \ + \ \ 1.0 \ \ - \ \ 0.9$	²³ ABE	14C T2K	Normal mass ordering	OCCUR=2
$2.3 \ \ + \ \ 0.9 \ \ - \ \ 0.8$	²⁴ ABE	14H DCH	IZ Chooz reactors	
$2.3 \hspace{0.1in} \pm \hspace{0.1in} 0.2$	²⁵ AN	14 DAY	A DayaBay, Ling Ao/Ao	
$2.12~\pm~0.47$	²⁶ AN	14B DAY	II reactors A DayaBay, Ling Ao/Ao II reactors	
2.34 ± 0.20	²⁷ FORERO ²⁷ FORERO	14 FIT	Normal mass ordering	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	²⁸ GONZALEZ	14 FIT 14 FIT	Inverted mass ordering Normal mass ordering; global fit	OCCUR=2 TYPE=NORMAL
$2.19 \ + \ 0.11 \\ - \ 0.10$	²⁸ GONZALEZ	14 FIT	Inverted mass ordering; global fit	OCCUR=2;TYPE=INVERTED
$2.5 \hspace{0.2cm} \pm \hspace{0.2cm} 0.9 \hspace{0.2cm} \pm 0.9$	²⁹ ABE	13C DCH	IZ Chooz reactors	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	³⁰ ABE	13E T2K	Normal mass ordering	
$2.8 \begin{array}{c} + 1.6 \\ - 1.2 \end{array}$	³⁰ ABE	13E T2K	Inverted mass ordering	OCCUR=3
$1.6 \begin{array}{c} + 1.3 \\ - 0.9 \end{array}$	³¹ ADAMSON	13A MIN	S Normal mass ordering	
$3.0 \begin{array}{c} + 1.8 \\ - 1.6 \end{array}$	³¹ ADAMSON		6	OCCUR=2
	90 AGAFONOV 95 ³² AHARMIM			OCCUR=2
$< 3.6 \ 2.3 \pm 0.3 \pm 0.1$	95 ³² AHARMIM ³³ AN	13 FIT 13 DAY	global solar: 3 $ u$ ʿA DayaBay, LIng Ao/Ao	
$2.2 \pm 1.1 \pm 0.8$	³⁴ ABE		II reactors IZ Chooz reactors	
$2.8 \hspace{0.2cm} \pm \hspace{0.2cm} 0.8 \hspace{0.2cm} \pm 0.7$	³⁵ ABE	12B DCH	IZ Chooz reactors	
$2.9 \hspace{0.2cm} \pm \hspace{0.2cm} 0.3 \hspace{0.2cm} \pm 0.5$	³⁶ AHN	12 REN	IO Yonggwang reactors	

NODE=S067P13;LINKAGE=JA NODE=S067P13;LINKAGE=W

2.4	\pm 0.4 \pm 0).1	³⁷ AN	12	DAYA	DayaBay, Ling Ao/Ao II reactors				
2.5	$^{+}$ 1.8 $^{-}$ 1.6		³⁸ ABE	11	FIT	KamLAND + global				
< 6.1		95	³⁹ ABE	11	FIT	solar Global solar	OCCUR=2			
1.3 1.5	to 5.6 to 5.6	68 68	⁴⁰ ABE ⁴¹ ABE		T2K T2K	Normal mass ordering Inverted mass ordering	OCCUR=2			
0.3 0.8	to 2.3 to 3.9	68 68	⁴² ADAMSON ⁴³ ADAMSON		MINS MINS	Normal mass ordering Inverted mass ordering	OCCUR=2			
8	\pm 3	00	⁴⁴ FOGLI	11	FIT	Global neutrino data	000000-2			
7.8	± 6.2		⁴⁵ GANDO	11	FIT	${\sf KamLAND}+{\sf solar:}\ 3 u$				
12.4 3	± 13.3 + 9	90	⁴⁶ GANDO ⁴⁷ ADAMSON	11 10A	FIT MINS	KamLAND: 3ν	OCCUR=2			
	-7 + 14		⁴⁸ ADAMSON			Normal mass ordering	OCCUR=2			
6	- 6	90 4		10A	MINS	Inverted mass ordering				
8	+ 8 - 7		^{9,50} AHARMIM ^{9,51} AHARMIM	10	FIT	KamLAND + global solar: 3ν				
$< 30 \\ < 15$		95 ⁴ 90	⁵² WENDELL	10 10	FIT SKAM	global solar: 3ν 3ν osc.; normal <i>m</i> or-	OCCUR=2			
< 33		90	⁵² WENDELL	10	SKAM	dering 3ν osc.; inverted <i>m</i>	OCCUR=2			
	+11		53 45 446 64			ordering				
11	$-\frac{1}{8}$ +15		⁵³ ADAMSON	09	MINS	Normal mass ordering	OCCUR=2			
18	-11		⁵⁴ ADAMSON ⁵⁵ FOGLI	09 08	MINS FIT	Inverted mass ordering Global neutrino data	00000-2			
6 8	\pm 4 \pm 7		⁵⁶ FOGLI	08 08	FIT	Solar + KamLAND	OCCUR=2			
5	\pm 5		⁵⁷ FOGLI	08	FIT	data Atmospheric + LBL +	OCCUR=3			
< 36		90	58 YAMAMOTO	06	K2K	CHOOZ Accelerator experiment				
< 48 < 36		90 90	⁵⁹ AHN ⁶⁰ BOEHM	04 01	K2K	Accelerator experiment Palo Verde react.				
< 30 < 45		90 90	⁶¹ BOEHM	00		Palo Verde react. Palo Verde react.				
< 15		90	⁶² APOLLONIO	99	CHOZ	Reactor Experiment				
¹ ACE	ERO 24 reana	lyzed the NO	OvA dataset of 13.6	6 imes 10	²⁰ POT	in neutrino beam node	NODE=S067P13;LINKAGE=RA			
and repo	12.5 × 10 ²⁰ orted value sir	POT in ant 1 ² (2θ12)=0.	tineutrino mode usir $087 \substack{+0.020\\-0.016}$ margina	ng Ba Ilized	yesian st over bot	tatistical approach. The				
						ya Bay experiment. 1958	NODE=S067P13;LINKAGE=QA			
days	s use neutron	capture on	protons, 3158 days	neutro	on captu	re on Gd, as reported in				
AN 23. Combining these data sets results in 8% error reduction compared to AN 23. ³ ABE 23F results are based on data collected between 2010 and 2020 in (anti)neutrino mode and include a neutrino beam exposure of 1.97×10^{21} (1.63×10^{21}) protons on										
targ	get.									
⁴ DE- data	KERRET 20 with both no	uses 481 days ear and far d	s of data from single etectors operating.	detect A rate	tor opera and sha	ition and also 384 days of ape analysis is performed	NODE=S067P13;LINKAGE=KA			
on c	combined neu	tron capture	s on H and Gd. Sup	ersed	es ABE :	16в.				
⁵ SHIN 20 uses the RENO detector and 1500 live days of data. The near (far) detector observed 567,690 (90,747) $\bar{\nu}_e$ candidate events with a delayed neutron capture on NODE=S067P13;LINKAGE=EA										
hydrogen. The extracted value of sin $^2 heta_{13}$ is consistent with the previous analysis with neutron capture on Gd in BAK 18.										
⁶ BAł	K 18 reports r	esults of the	RENO experiment u	sing a	bout 220	00 live-days of data taken ne Hanbit Nuclear Power	NODE=S067P13;LINKAGE=CA			
Plar	nt. Supersede	s SEO 18.								
⁷ AN 24A report results from 1958 days of data taking with the Daya Bay experiment. This analysis makes use of neutron capture on protons and is independent of previous										
	results in AN 23, utilizing neutron capture on Gd. ⁸ AN 23 reports results derived from the complete data set collected by the Daya-Bay NODE=S067P13;LINKAGE=MA									
expe	experiment, corresponding to 3158 days of operation, resulting in $5.55 imes 10^6~{\overline u}_e$ candidate									
events. Solar oscillation parameters are fixed in the analysis to sin $^2(heta_{12})$ = 0.307 \pm 0.013, Δm^2_{21} = (7.53 \pm 0.18) × 10 ⁻⁵ eV ² from PDG 20. Supersedes ADEY 18A.										
9 ABRAHAO 21 uses 865 days of data collected in both near and far detectors with at NODE=S067P13;LINKAGE=IA										
least one reactor in operation. The analysis is based on a background model independent approach, so called Reactor Rate Modulation, to determine the mixing angle θ_{13} . Adding										
the	background r	nodel reduce	s the uncertainty to	0.004	1. Supe	rsedes ABE 16B.				
of tl	AS 21 report he Neutrino 2	NODE=S067P13;LINKAGE=LA								
11 FST	FBAN 20A re	ports results								

¹¹ESTEBAN 20A reports results of a global fit to neutrino oscillation data available at the time of the Neutrino2020 conference.
 ¹²ABE 18B uses 328 kton-years of Super-Kamiokande I-IV atmospheric neutrino data to obtain this result. The fit is performed over the four parameters, Δm²₃₂, sin²θ₂₃,

 $sin^2\theta_{13},$ and $\delta,$ while the solar parameters are fixed to $\Delta m^2_{21} =$ (7.53 \pm 0.18) \times 10 $^{-5}$ eV² and $\sin^2 \theta_{12} = 0.304 \pm 0.014$.

¹³ADEY 18A reports results from analysis of 1958 days of data taking with the Daya-Bay experiment, with $3.9 \times 10^6 \ \overline{\nu}_e$ candidates. The fit to the data gives $\Delta m_{ee}^2 =$ $(2.522^{+0.068}_{-0.070}) \times 10^{-3} \text{ eV}^2$. Solar oscillation parameters are fixed in the analysis using the global averages, $\sin^2(\theta_{12}) = 0.307^{+0.013}_{-0.012}$, $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$, from PDG 18. Supersedes AN 17A.

- ¹⁴AGAFONOVA 18A reports $\sin^2(2\theta_{13}) < 0.43$ at 90% C.L. The result on the sterile neutrino search in the context of 3+1 model is also reported. A 90% C.L. upper limit on $\sin^2(2\theta_{\mu\,e}) = 0.021$ for $\Delta m_{41}^2 \ge 0.1 \text{ eV}^2$ is set.
- $^{15}\,{\rm SEO}$ 18 reports results of the RENO experiment using about 500 days of data, performing a rate and shape analysis. Compared to AHN 12, a significant reduction of the systematic uncertainties is reported. A 3% excess of events near 5 MeV of the prompt energy is observed. SEO 18 is a detailed description of the results published in CHOI 16, which it supersedes. Superseded by BAK 18.
- 16 Using T2K data only. For inverted mass ordering, all values of θ_{13} are ruled out at 68% CL.
- 17 AN 17A reports results from combined rate and spectral shape analysis of 1230 days of data taken with the Daya Bay reactor experiment. The data set contains more than 2.5×10^6 inverse beta-decay events with neutron capture on Gd. A simultaneous fit to θ_{13} and Δm^2_{ee} is performed. Superseded by ADEY 18A.
- 18 ABE 16B uses 455.57 live days of data from a detector 1050 m away from two reactor cores of the Chooz nuclear power station, to determine the mixing parameter $\sin^2(2\theta_{13})$. This analysis uses 7.15 reactor-off days for constraining backgrounds. A rate and shape analysis is performed on combined neutron captures on H and Gd. Supersedes ABE 14H and ABE 13C.
- ¹⁹AN 16A uses data from the eight antineutrino detectors (404 days) and six antineutrino detectors (217 days) runs to determine the mixing parameter $sin^2(2\theta_{13})$ using the neutron capture on H only. Supersedes AN 14B.
- 20 CHOI 16 reports results of the RENO experiment using about 500 days of data, performing a rate and shape analysis. Compared to AHN 12, a significant reduction of the systematic uncertainties is reported. A 3% excess of events near 5 MeV of the prompt energy is observed. Supersedes AHN 12.
- $^{21}\mathrm{AN}$ 15 uses all eight identical detectors, with four placed near the reactor cores and the remaining four at the far hall to determine the mixing angle θ_{13} using the $\overline{\nu}_e$ observed interaction rates with neutron capture on Gd and energy spectra. The result corresponds to the exposure of $6.9\times10^{5}~\text{GW}_{th}\text{-ton-days}.$ Superseded by AN 17A.
- $^{22}\mathrm{ABE}$ 14A uses 467.9 live days of one detector, 1050 m away from two reactor cores of the Chooz nuclear power station, to determine the mixing parameter $\sin^2(2 \theta_{13})$. The Bugey4 data (DECLAIS 94) is used to constrain the neutrino flux. The data set includes 7.24 reactor-off days. A "rate-modulation" analysis is performed. Supercedes ABE 12B. ²³ ABE 14C result is for ν_e appearance and assumes $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2(\theta_{23})$
- = 0.5, and δ = 0.
- $^{24}\mathrm{ABE}$ 14H uses 467.9 live days of one detector, 1050 m away from two reactor cores of the Chooz nuclear power station, to determine the mixing parameter $\sin^2(2 \theta_{13})$. The Bugey4 data (DECLAIS 94) is used to constrain the neutrino flux. The data set includes 7.24 reactor-off days. A rate and shape analysis is performed. Superceded by ABE 16B.
- 25 AN 14 uses six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 512 and 561 m) and the remaining three at the far hall (at the flux averaged distance of 1579 m from all six reactor cores) to determine the mixing angle θ_{13} using the $\overline{\nu}_e$ observed interaction rates with neutron capture on Gd and energy spectra. Supersedes AN 13 and superseded by AN 15.
- 26 AN 14B uses six identical anti-neutrino detectors with flux-weighted baselines of ~ 500 m and ~ 1.6 km to six power reactors. This rate analysis uses a 217-day data set and neutron capture on protons (not Gd) only. $\Delta m^2_{31} = 2.32 \times 10^{-3} \text{ eV}^2$ is assumed. Superseded by AN 16A.
- ²⁷ FORERO 14 performs a global fit to neutrino oscillations using solar, reactor, longbaseline accelerator, and atmospheric neutrino data.
- ²⁸ GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding Bayesian global fit to the same data results are reported in BERGSTROM 15 as $(2.18 + 0.10 + 0.12) \times 10^{-2} \text{ eV}^2$ for normal and $(2.19 + 0.12) \times 10^{-2} \text{ eV}^2$ for inverted mass ordering.
- 29 ABE 13C uses delayed neutron capture on hydrogen instead of on Gd used previously. The physical volume is thus three times larger. The fit is based on the rate and shape analysis as in ABE 12B. The Bugey4 data (DECLAIS 94) is used to constrain the neutrino flux. Superseded by ABE 16B.
- $^{30}{\rm ABE}$ 13E assumes maximal θ_{23} mixing and CP phase $\delta=$ 0.
- ³¹ADAMSON 13A results obtained from u_e appearance, assuming $\delta=$ 0, and $\sin^2(2 \ heta_{23})$ = 0.957.
- 32 AHARMIM 13 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^2 fixed to 2.45 × 10⁻³ eV², using global solar neutrino data. AHARMIM 13 global solar neutrino data include SNO's all-phases-combined analysis results on the

NODE=S067P13;LINKAGE=AA

NODE=S067P13:LINKAGE=DA

NODE=S067P13;LINKAGE=V

NODE=S067P13;LINKAGE=T

NODE=S067P13;LINKAGE=R

NODE=S067P13;LINKAGE=P

NODE=S067P13;LINKAGE=O

NODE=S067P13;LINKAGE=Q

NODE=S067P13;LINKAGE=J

NODE=S067P13;LINKAGE=D

NODE=S067P13;LINKAGE=E

NODE=S067P13;LINKAGE=K

NODE=S067P13;LINKAGE=B

NODE=S067P13;LINKAGE=I

NODE=S067P13;LINKAGE=H

NODE=S067P13;LINKAGE=N

NODE=S067P13;LINKAGE=F

NODE=S067P13;LINKAGE=C NODE=S067P13;LINKAGE=A

NODE=S067P13;LINKAGE=G

NODE=S067P13:LINKAGE=NA

NODE=S067P13;LINKAGE=AB

NODE=S067P13;LINKAGE=AE

NODE=S067P13;LINKAGE=HA

NODE=S067P13;LINKAGE=AN

total active ^{8}B neutrino flux and energy-dependent ν_{e} survival probability parameters, measurements of CI (CLEVELAND 98), Ga (ABDURASHITOV 09 which contains combined analysis with GNO (ALTMANN 05 and Ph.D. thesis of F. Kaether)), and ⁷Be (BELLINI 11A) rates, and ⁸B solar-neutrino recoil electron measurements of SK-I (HOSAKA 06) zenith, SK-II (CRAVENS 08) and SK-III (ABE 11) day/night spectra, and Borexino (BELLINI 10A) spectra. AHARMIM 13 also reported a result combining global solar and KamLAND data, which is $\sin^2(2 \ \theta_{13}) = (9.1 + 2.9) \times 10^{-2}$.

- 33 AN 13 uses six identical detectors, with three placed near the reactor cores (flux-weighted baselines of 498 and 555 m) and the remaining three at the far hall (at the flux averaged distance of 1628 m from all six reactor cores) to determine the $\overline{\nu}_e$ interaction rate ratios. Superseded by AN 14.
- $^{34}\,{\rm ABE}$ 12 determines the $\overline{\nu}_e$ interaction rate in a single detector, located 1050 m from the cores of two reactors. A rate and shape analysis is performed. The rate normalization is fixed by the results of the Bugey4 reactor experiment, thus avoiding any dependence on possible very short baseline oscillations. The value of $\Delta m^2_{31} = 2.4 imes 10^{-3} \ {
 m eV}^2$ is used in the analysis. Superseded by ABE 12B.
- ³⁵ABE 12B determines the neutrino mixing angle θ_{13} using a single detector, located 1050 m from the cores of two reactors. This result is based on a spectral shape and rate analysis. The Bugey4 data (DECLAIS 94) is used to constrain the neutrino flux. Superseded by ABE 14A.
- 36 AHN 12 uses two identical detectors, placed at flux weighted distances of 408.56 m and 1433.99 m from six reactor cores, to determine the mixing angle θ_{13} . This rate-only analysis excludes the no-oscillation hypothesis at 4.9 standard deviations. The value of $\Delta m_{31}^2 = (2.32 \substack{+0.12\\-0.08}) \times 10^{-3} \text{ eV}^2$ was assumed in the analysis. Superseded by CHOI 16.
- ³⁷ AN 12 uses six identical detectors with three placed near the reactor cores (flux-weighted baselines of 470 m and 576 m) and the remaining three at the far hall (at the flux averaged baselines of 470 m and 570 m and the remaining three terms in the mixing angle θ_{13} using the $\overline{\nu}_e$ observed interaction rate ratios. This rate-only analysis excludes the no-oscillation hypothesis at 5.2 standard deviations. The value of $\Delta m_{31}^2 = (2.32 \pm 0.12) \times 10^{-3} \text{ eV}^2$ was assumed in the analysis. Superseded by AN 13.
- ³⁸ ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^2 fixed to 2.4 × 10⁻³ eV², using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, GALLEX/GNO, SAGE, and KamLAND data. This result implies an upper bound of $\sin^2\theta_{13} < 0.059$ (95% CL) or $\sin^2\theta_{13} < 100$ 0.22 (95% CL). The normal neutrino mass ordering and CPT invariance are assumed.
- ³⁹ABE 11 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{32}^2 fixed to 2.4 × 10⁻³ eV², using solar neutrino data including Super-Kamiokande, SNO, Borexino (ARPESELLA 08A), Homestake, and GALLEX/GNO data. The normal
- ⁴⁰ The quoted limit is for $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, $\theta_{23} = \pi/2$, $\delta = 0$, and the normal mass ordering. For other values of δ , the 68% region spans from 0.03 to 0.25, and the
- 90% region from 0.02 to 0.32. ⁴¹ The quoted limit is for $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, $\theta_{23} = \pi/2$, $\delta = 0$, and the inverted mass ordering. For other values of δ , the 68% region spans from 0.04 to 0.30, and the 20% of the form 0.02 to 0.20. 90% region from 0.02 to 0.39.
- ⁴² The quoted limit is for $\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{ eV}^2$, $\theta_{23} = \pi/2$, $\delta = 0$, and the normal mass ordering. For other values of δ , the 68% region spans from 0.02 to 0.12, and the 90% region from 0 to 0.16.
- ⁴³ The quoted limit is for $\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{ eV}^2$, $\theta_{23} = \pi/2$, $\delta = 0$, and the inverted mass ordering. For other values of δ , the 68% region spans from 0.02 to 0.16, and the 90% region from 0 to 0.21.
- $^{44}\,{\rm FOGLI}$ 11 obtained this result from an analysis using the atmospheric, accelerator long baseline, CHOOZ, solar, and KamLAND data. Recently, MUELLER 11 suggested an average increase of about 3.5% in normalization of the reactor $\overline{\nu}_{\rm P}$ fluxess, and using these fluxes, the fitted result becomes 0.10 \pm 0.03.
- 45 GANDO 11 report $\sin^2\!\theta_{13} = 0.020 \pm 0.016$. This result was obtained with three-neutrino fit using the KamLAND + solar data.
- 46 GANDO 11 report sin $^2\theta_{13} = 0.032 \pm 0.037$. This result was obtained with three-neutrino fit using the KamLAND data only.
- 47 This result corresponds to the limit of <0.12 at 90% CL for $\Delta m^2_{32}=2.43\times 10^{-3}$ eV², $\theta_{23} = \pi/2$, and $\delta = 0$. For other values of δ , the 90% CL region spans from 0 to 0.16. ⁴⁸ This result corresponds to the limit of <0.20 at 90% CL for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$,
- $\theta_{23} = \pi/2$, and $\delta = 0$. For other values of δ , the 90% CL region spans from 0 to 0.21.
- ⁴⁹ AHARMIM 10 global solar neutrino data include SNO's low-energy-threshold analysis survival probability day/night curves, SNO Phase III integral rates (AHARMIM 08), Cl (CLEVELAND 98), SAGE (ABDURASHITOV 09), Gallex/GNO (HAMPEL 99, ALT-MANN 05), Borexino (ARPESELLA 08A), SK-I zenith (HOSAKA 06), and SK-II day/night spectra (CRAVENS 08).
- ⁵⁰AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm_{31}^2 fixed to $2.3 \times 10^{-3} \text{ eV}^2$, using global solar neutrino data and KamLAND data

NODE=S067P13;LINKAGE=A1

NODE=S067P13;LINKAGE=B2

NODE=S067P13;LINKAGE=B1

NODE=S067P13;LINKAGE=E1

NODE=S067P13;LINKAGE=E2

NODE=S067P13;LINKAGE=D1

NODE=S067P13;LINKAGE=D2

NODE=S067P13;LINKAGE=OG

- NODE=S067P13;LINKAGE=GA
- NODE=S067P13;LINKAGE=GN
- NODE=S067P13;LINKAGE=AS
- NODE=S067P13;LINKAGE=AO

NODE=S067P13;LINKAGE=A0

NODE=S067P13;LINKAGE=A2

NODE=S067P13;LINKAGE=WE

NODE=S067P13;LINKAGE=AD

NODE=S067P13;LINKAGE=AM

NODE=S067P13;LINKAGE=FO

NODE=S067P13;LINKAGE=FG

NODE=S067P13;LINKAGE=FL

NODE=S067P13:LINKAGE=YA

NODE=S067P13;LINKAGE=AH

NODE=S067P13;LINKAGE=BH

NODE=S067P13;LINKAGE=BO

NODE=S067P13:LINKAGE=AP

NODE=S067CPP

NODE=S067DEL

NODE=S067DEL

(ABE 08A). CPT invariance is assumed. This result implies an upper bound of $\sin^2 \theta_{13} < 1$ 0.057 (95% CL) or $\sin^2 2\theta_{13} < 0.22$ (95% CL).

- 51 AHARMIM 10 obtained this result by a three-neutrino oscillation analysis with the value of Δm^2_{31} fixed to $2.3 imes 10^{-3}$ eV², using global solar neutrino data.
- 52 WENDELL 10 obtained this result by a three-neutrino oscillation analysis with one mass scale dominance $(\Delta m_{21}^2 = 0)$ using the Super-Kamiokande-I+II+III atmospheric neutrino data, and updates the HOSAKA 06A result. ⁵³ The quoted limit is for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, $\theta_{23} = \pi/2$, and $\delta = 0$. For other values of δ , the 68% CL region spans from 0.02 to 0.26. ⁵⁴ The quoted limit is for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$, $\theta_{23} = \pi/2$, and $\delta = 0$. For other values of δ , the 68% CL region spans from 0.02 to 0.26.
- values of δ , the 68% CL region spans from 0.04 to 0.34.
- ⁵⁵ FOGLI 08 obtained this result from a global analysis of all neutrino oscillation data, that is, solar + KamLAND + atmospheric + accelerator long baseline + CHOOZ.
- $^{56}\,\mathrm{FOGLI}$ 08 obtained this result from an analysis using the solar and KamLAND neutrino oscillation data.
- 57 FOGLI 08 obtained this result from an analysis using the atmospheric, accelerator long baseline, and CHOOZ neutrino oscillation data.
- ⁵⁸ YAMAMOTO 06 searched for $\nu_{\mu} \rightarrow \nu_{e}$ appearance. Assumes 2 sin²(2 $\theta_{\mu e}$) = sin²(2 θ_{13}). The quoted limit is for $\Delta m_{32}^2 = 1.9 \times 10^{-3} \text{ eV}^2$. That value of Δm_{32}^2 is the one- σ low value for AHN 06A. For the AHN 06A best fit value of 2.8 imes 10⁻³ eV², the sin²($2\theta_{13}$) limit is < 0.26. Supersedes AHN 04.
- ⁵⁹AHN 04 searched for $\nu_{\mu} \rightarrow \nu_{e}$ appearance. Assuming 2 sin²(2 $\theta_{\mu_{e}}$) = sin²(2 θ_{13}), a limit on sin²(2 θ_{μ_e}) is converted to a limit on sin²(2 θ_{13}). The quoted limit is for Δm_{32}^2 $= 1.9 \times 10^{-3} \text{ eV}^{5}$. That value of Δm_{32}^2 is the one- σ low value for ALIU 05. For the
- ALIU 05 best fit value of $2.8 \times 10^{-3} \text{ eV}^2$, the sin²(2 θ_{13}) limit is < 0.30. ⁶⁰ The quoted limit is for $\Delta m_{32}^2 = 1.9 \times 10^{-3} \text{ eV}^2$. That value of Δm_{32}^2 is the 1- σ low value for ALIU 05. For the ALIU 05 best fit value of 2.8×10^{-3} eV², the sin²2 θ_{13} limit is < 0.19. In this range, the θ_{13} limit is larger for lower values of $\Delta m^2_{32},$ and smaller for higher values of Δm_{32}^2 .
- 61 The quoted limit is for $\Delta m_{32}^2 = 1.9 \times 10^{-3} \text{ eV}^2$. That value of Δm_{32}^2 is the 1- σ low value for ALIU 05. For the ALIU 05 best fit value of $2.8 \times 10^{-3} \text{ eV}^2$, the sin²2 θ_{13} limit is < 0.23.
- 62 The quoted limit is for $\Delta m_{32}^2 = 2.43 \times 10^{-3} \text{ eV}^2$. That value of Δm_{32}^2 is the central value for ADAMSON 08. For the ADAMSON 08 1- σ low value of 2.30 \times 10⁻³ eV², the sin²2 θ_{13} limit is < 0.16. See also APOLLONIO 03 for a detailed description of the experiment.

----- CP violating phase -

δ , CP violating phase

Measurements of δ come from atmospheric and accelarator experiments looking at $\nu_{\rm p}$ appearance. We encode values between 0 and 2π , though it is equivalent to use $-\pi$

••						
to π . <u>VALUE (π rad)</u> <u>CL%</u>	DOCUMENT ID		TECN	COMMENT		NODE=S067DEL
$1.21^{+0.19}_{-0.22}$ our aver	AGE Error include	es sca	le factor	of 1.2.		
$1.44\substack{+0.24\\-0.40}$	¹ WESTER	24	SKAM	Normal mass ordering, $ heta_{13}$ constrained	I	TYPE=NORMAL
$1.37^{+0.31}_{-0.20}$	² ABE	23F	T2K	Normal mass ordering, $ heta_{13}$ constrained		TYPE=NORMAL
$0.82^{+0.27}_{-0.87}$	^{3,4} ACERO	22	NOVA	Normal mass ordering, octant II for θ_{23} , θ_{13} constrained		TYPE=NORMAL
• • • We do not use t	he following data fo	r aver	ages, fits			
$1.44\substack{+0.23 \\ -0.30}$	⁵ ABE	25	SKT2	Both mass orderings, θ_{13} constrained	I	
$1.52^{+0.27}_{-0.30}$	^{3,6} ACERO	22	NOVA	Inverted mass ordering, octant II for θ_{23} , θ_{13} constrained		OCCUR=2
$1.08 \substack{+0.13 \\ -0.12}$	⁷ SALAS	21	FIT	Normal mass ordering, global fit		
$1.58 \substack{+0.15 \\ -0.16}$	⁷ SALAS	21	FIT	Inverted mass ordering, global fit		OCCUR=2
$1.40^{+0.22}_{-0.18}$	⁸ ABE	20F	T2K	Normal mass ordering		TYPE=NORMAL
$1.09\substack{+0.15\\-0.13}$	⁹ ESTEBAN	20A	FIT	Normal mass ordering, global fit		
$1.57\substack{+0.14 \\ -0.17}$	⁹ ESTEBAN	20A	FIT	Inverted mass ordering, global fit		OCCUR=2
$0.0 \ \begin{array}{c} +1.3 \\ -0.4 \end{array}$	¹⁰ ACERO	19	NOVA	Normall mass ordering, octant II for θ_{23}		

NODE=S067DEL;LINKAGE=U NODE=S067DEL;LINKAGE=S

$1.33 \substack{+0.46 \\ -0.53}$	11 ABE	18 B	SKAM	$3 u$ osc: normal mass ordering, $ heta_{13}$ free	TYPE=NORMAL
$1.22\substack{+0.76\\-0.67}$	¹¹ ABE	18 B	SKAM	3ν osc: inverted mass ordering, θ_{13} free	OCCUR=2;TYPE=INVERTED
$1.33 \substack{+0.45 \\ -0.51}$	¹² ABE	18 B	SKAM	Normal mass ordering, θ_{13} con- strained	OCCUR=3;TYPE=NORMAL
$1.33 \substack{+0.48 \\ -0.53}$	¹² ABE	18 B	SKAM	3ν osc: inverted mass ordering, θ_{13} constrained	OCCUR=4;TYPE=INVERTED
1.40 ± 0.20	¹³ ABE	18G	T2K	Normal mass ordering, θ_{13} con- strained	TYPE=NORMAL
$1.54^{+0.14}_{-0.12}$ 95	¹³ ABE	18G	T2K	Inverted mass ordering, θ_{13} constrained	OCCUR=2;TYPE=INVERTED
$1.21\substack{+0.91 \\ -0.30}$	¹⁴ ACERO	18	NOVA	Normal mass ordering, octant II for $ heta_{23}$	TYPE=NORMAL
$1.46\substack{+0.56\\-0.42}$	¹⁴ ACERO	18	NOVA	Normal mass order; octant I for θ_{23}	OCCUR=2;TYPE=NORMAL
$1.32\substack{+0.21\\-0.15}$	DE-SALAS	18	FIT	Normal mass ordering, global fit	TYPE=NORMAL
$1.56\substack{+0.13 \\ -0.15}$	DE-SALAS	18	FIT	Inverted mass ordering, global fit	OCCUR=2;TYPE=INVERTED
$1.45 \substack{+0.27 \\ -0.26}$	¹⁵ ABE	17F	T2K	Normal mass ordering	
$1.54 \substack{+0.22 \\ -0.23}$	¹⁵ ABE	17F	T2K	Inverted mass ordering	OCCUR=2;TYPE=INVERTED
$1.50\substack{+0.53 \\ -0.57}$	¹⁶ ADAMSON	17 B	NOVA	Inverted mass ordering; θ_{23} in octant II	TYPE=NORMAL
$0.74 \substack{+0.57 \\ -0.93}$	¹⁶ ADAMSON	17 B	NOVA	Normal mass ordering; θ_{23} in octant II	OCCUR=2;TYPE=NORMAL
$1.48\substack{+0.69\\-0.58}$	¹⁶ ADAMSON	17в	NOVA	Normal mass ordering; θ_{23} in octant I	OCCUR=3;TYPE=NORMAL
0.0 to 0.1, 0.5 90 16 to 2.0	5,17 ADAMSON	16	NOVA	Inverted mass ordering	TYPE=INVERTED
0.0 to 2.0 90 0 to 0.15, 0.83 90	¹⁷ ADAMSON ABE	16 15D	NOVA T2K	Normal mass ordering Normal mass ordering	OCCUR=2;TYPE=NORMAL TYPE=NORMAL
to 2 1.09 to 1.92 90 0.05 to 1.2 90	ABE ¹⁸ ADAMSON	15D 14	T2K MINS	Inverted mass ordering Normal mass ordering	OCCUR=2;TYPE=INVERTED
$1.34 \substack{+0.64 \\ -0.38}$	FORERO	14	FIT	Normal mass ordering	
$1.48 \substack{+0.34 \\ -0.32}$	FORERO	14	FIT	Inverted mass ordering	OCCUR=2
$1.70^{+0.22}_{-0.39}$	¹⁹ GONZALEZ	14	FIT	Normal mass ordering; global fit	TYPE=NORMAL
$1.41 \substack{+0.35 \\ -0.34}$	¹⁹ GONZALEZ	14	FIT	Inverted mass ordering; global fit	OCCUR=2;TYPE=INVERTED
0 to 1.5 or 1.9 90 to 2	²⁰ ADAMSON	13A	MINS	Normal mass ordering	
to obtain this result	. The fit is perform	ned ov	er the th	inde I-IV atmospheric neutrino data mee parameters, Δm_{32}^2 , $\sin^2(\theta_{23})$,	NODE=S067DEL;LINKAGE=BA
				ed to $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5}$ 220 ± 0.0007. Supersedes ABE 18B.	
² ABE 23F results are	e based on data co	llected	d betwee	n 2010 and 2020 in (anti)neutrino	NODE=S067DEL;LINKAGE=AA
				$7 imes 10^{21}~(1.63 imes 10^{21})$ protons on It is $1.54^{+0.18}_{-0.19}~\pi$ rad. Supersedes	
ABE 20F.				019 (12.5 $ imes$ 10 ²⁰ POT) and Feb 6,	NODE=S067DEL:LINKAGE=X
2014 to Mar 20, 202 and θ_{23} octant I an	20 (13.6×10 ²⁰ PO	T). Re	sults for	normal and inverted mass ordering,	
⁴ For the octant I (low	ver octant), the 68%			egion is discontinuous, and all delta	NODE=S067DEL;LINKAGE=Y
values are allowed a ⁵ ABE 25 reports the trino data and T2K	e results of a joint beam neutrino da	analy: ta, us	sis of Su ing 3244	per-Kamiokande atmospheric neu- 4.4 days of atmospheric data and a	NODE=S067DEL;LINKAGE=CA
(anti)neutrino beam	1 exposure of 1.97	$\times 10^{21}$	^L (1.63 >	< 10 ²¹) protons on target. e error bars are reported relative to	
the global minima i			υυ. ING	e enor pars are reported relative to	NODE=S067DEL;LINKAGE=Z

The inverted mass ordering is rejected at 1.0 σ . The error bars are reported relative to the global minima in normal mass ordering.

⁷SALAS 21 reports results of a global fit to neutrino oscillation data available at the time of the Neutrino 2020 conference. ⁸ABE 20F results are based on data collected between 2009 and 2018 in (anti)neutrino mode and include a neutrino beam exposure of 1.49×10^{21} (1.64×10^{21}) protons on target. For inverted mass ordering, the quoted result is $1.56^{+0.15}_{-0.17} \pi$ rad. Supersedes ABE 18G ABE 18G.

 $^9\,{\sf ESTEBAN}$ 20A reports results of a global fit to neutrino oscillation data available at the NODE=S067DEL;LINKAGE=T time of the Neutrino 2020 conference. 10 ACERO 19 is based on a sample size of 1.33×10^{20} protons on target with combined NODE=S067DEL;LINKAGE=R antineutrino and neutrino data. Superseded by ACERO 22. $^{11}\mathrm{ABE}$ 18B uses 328 kton years of Super-Kamiokande I-IV atmospheric neutrino data to NODE=S067DEL;LINKAGE=J obtain this result. The fit is performed over the four parameters, Δm_{32}^2 , $\sin^2 \theta_{23}$, $sin^2\theta_{13},$ and $\delta,$ while the solar parameters are fixed to $\Delta m^2_{21} = (7.53\pm0.18)\times10^{-5}$ eV² and $\sin^2\theta_{12} = 0.304 \pm 0.014$. Superseded by WESTER 24. $^{12}\mathrm{ABE}$ 18B uses 328 kton years of Super-Kamiokande I-IV atmospheric neutrino data to NODE=S067DEL;LINKAGE=L obtain this result. The fit is performed over the three parameters, Δm_{32}^2 , $\sin^2\theta_{23}$, and δ , while the solar parameters and $\sin^2\theta_{23}$ are fixed to $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$, $\sin^2\theta_{12} = 0.304 \pm 0.014$, and $\sin^2\theta_{13} = 0.0219 \pm 0.0012$. Superseded by WESTER 24. $^{13}\mathrm{ABE}$ 18G confidence intervals are marginalized over both mass orderings. Normal order NODE=S067DEL;LINKAGE=P preferred with a posterior probability of 87%. The 1-sigma result for normal mass ordering used in the average was provided by the experiment via private communications. Supersedes ABE 17F. ¹⁴ ACERO 18 performs a joint fit to the data for ν_{μ} disappearance and ν_{e} appearance. The overall best fit favors normal mass ordering and θ_{23} in octant II. No 1σ confidence intervals are presented for the inverted mass ordering scenarios. Superseded by NODE=S067DEL;LINKAGE=N ACERO 19. $^{15}\mathrm{ABE}$ 17F confidence intervals are obtained using a frequentist analysis including θ_{13} NODE=S067DEL;LINKAGE=O constraint from reactor experiments. Bayesian intervals based on Markov Chain Monte Carlo method are also provided by the authors. Superseded by ABE 18G. $^{16}\,{\rm Errors}$ are projections of 68% C.L. curve of δ_{CP} vs. $\sin^2\!\theta_{23}.$ NODE=S067DEL;LINKAGE=F 17 ADAMSON 16 result is based on a data sample with 2.74×10^{20} protons on target. The likelihood-based analysis observed 6 ν_e events with an expected background of NODE=S067DEL;LINKAGE=E 0.99 ± 0.11 events. ¹⁸ ADAMSON 14 result is based on three-flavor formalism and $\theta_{23} > \pi/4$. Likelihood as a NODE=S067DEL LINKAGE=AD function of δ is also shown for the other three combinations of hierarchy and θ_{23} octants; all values of δ are allowed at 90% C.L. ¹⁹GONZALEZ-GARCIA 14 result comes from a frequentist global fit. The corresponding NODE=S067DEL;LINKAGE=D Bayesian global fit to the same data results are reported in BERGSTROM 15 as 68% CL intervals of 1.24-1.94 for normal and 1.15-1.77 for inverted mass ordering. $^{20}\mathrm{ADAMSON}$ 13A result is based on ν_e appearance in MINOS and the calculated NODE=S067DEL;LINKAGE=A

 $\sin^2(2\theta_{23})=0.957, \theta_{23}>\pi/4$, and normal mass hierarchy. Likelihood as a function of δ is also shown for the other three combinations of hierarchy and θ_{23} octants; all values of δ are allowed at 90% C.L.

(C) Other neutrino mixing results

The LSND collaboration reported in AGUILAR 01 a signal which is consistent with $\overline{\nu}_{\mu} \rightarrow ~\overline{\nu}_{e}$ oscillations. In a three neutrino framework, this would be a measurement of θ_{12} and Δm^2_{21} . This does not appear to be consistent with most of the other neutrino data. The following listings include results from $\nu_{\mu} \rightarrow \nu_{e}, \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance and $\nu_{\mu}, \overline{\nu}_{\mu}, \nu_{e},$ and $\overline{\nu}_{e}$ disappearance experiments, and searches for *CPT* violation.

$\Delta(m^2)$ for $\sin^2(2\theta) = 1$ $(\nu_\mu \rightarrow \nu_e)$

VALUE (eV	²)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We	e do not use	the followi	ng data for averag	ges, fit	ts, limits	, etc. • • •
0.03	to 0.55	90				MiniBooNE $\nu, \overline{\nu}$ combined
0.03	to 0.05	90	² AGUILAR-AR	.18C	MBNE	MiniBooNE $\nu, \overline{\nu}$ combined
0.015	to 0.050	90	³ AGUILAR-AR	.13A	MBNE	MiniBooNE
<0.34		90	⁴ MAHN	12	MBNE	MiniBooNE/SciBooNE
< 0.034		90	AGUILAR-AR	.07	MBNE	MiniBooNE
<0.0008		90	AHN	04	K2K	Water Cherenkov
<0.4		90	ASTIER	03	NOMD	CERN SPS
<2.4		90	AVVAKUMOV	02	NTEV	NUTEV FNAL
			⁵ AGUILAR	01	LSND	$ \nu \mu \rightarrow \nu_e \text{ osc.prob.} $
0.03	to 0.3	95	⁶ ATHANASSO	.98	LSND	$\nu_{\mu} \rightarrow \nu_{e}$
<2.3		90	⁷ LOVERRE	96		CHARM/CDHS
<0.9		90	VILAIN	94C	CHM2	CERN SPS
< 0.09		90	ANGELINI	86	HLBC	BEBC CERN PS

NODE=S067D1

NODE=S067270

NODE=S067270

NODE=S067D1

¹ AGUILAR-AREV			
region does not e	×10 ²⁰ PO7 extend to lar	It is based on a total of 18.75×10^{20} POT in neutrin in anti-neutrino mode. Best fit at 0.043 eV ² . The allowe ge Δm^2 . The quoted value is the entire allowed region of ues of sin ² (2 θ). Supersedes AGUILAR-AREVALO 18C.	d
² AGUILAR-AREV The best fit value	ALO 18C res e is $\Delta m^2 =$	ult is based on $ u_{\mu} \rightarrow \nu_{e}$ appearance of 460.5 \pm 99.0 events 0.041 eV ² . Superseded by AGUILAR-AREVALO 21.	
		ult is based on $ u_\mu o \ u_e$ appearance of 162.0 ± 47.8 events woneutrino oscillations. The best fit value is $\Delta m^2=3.1$	
eV ² .			
⁴ MAHN 12 is a c the range of Am	ombined spe 2 up to 25 e	ectral fit of MiniBooNE and SciBooNE neutrino data wit vV^2 . The best limit is 0.04 at 7 eV ² .	h NODE=S067D1;LINKAGE=MA
⁵ AGUILAR 01 is	the final an	alysis of the LSND full data set. Search is made for th $ u_{\mu}$ from π^+ decay in flight by observing beam-on electro	e NODE=S067D1;LINKAGE=AG n
in the $60 < E_e < 0.10 \pm 0.16 \pm 0.0$ of ATHANASSO criteria developed	< 200 MeV 04%. This is POULOS 98 d for the de	Present analysis results in $8.1 \pm 12.2 \pm 1.7$ excess event energy range, corresponding to oscillation probability of consistent, though less significant, with the previous resul 8, which it supersedes. The present analysis uses selection ecay at rest region, and is less effective in removing the nan ATHANASSOPOULOS 98.	vf t n
⁶ ATHANASSOPC	OULOS 98 is	a search for the $\nu_\mu \to \nu_e$ oscillations using ν_μ from π^+ rved beam-on electron events are consistent with ν_e C –	⊢ NODE=S067D1;LINKAGE=F1 →
an oscillation sign Although the sign cross check of AT	nal correspor nificance is c HANASSOF	and is 21.9 ± 2.1. Authors interpret this excess as evidence for adding to oscillations with probability $(0.26 \pm 0.10 \pm 0.05)\%$ only 2.3 σ , this measurement is an important and consisten POULOS 96 who reported evidence for $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillation	j. t
⁷ LOVERRE 96 u	ses the cha	also ATHANASSOPOULOS 98B. rged-current to neutral-current ratio from the combine CDHS (ABRAMOWICZ 86) data from 1986.	d NODE=S067D1;LINKAGE=LV
$\sin^2(2\theta)$ for "Larg	ge" $\Delta(m^2)$	$(u_{\mu} ightarrow u_{e})$	NODE=S067S1
ALUE (units 10 ⁻³)	<u>CL%</u>	DOCUMENT ID <u>TECN</u> COMMENT	NODE=S067S1
• • We do not use	e the following	ng data for averages, fits, limits, etc. • • •	
6 to 1000	90	¹ AGUILAR-AR21 MBNE MiniBooNE; $\nu + \overline{\nu}$	
5 7.2	90 90	² AGUILAR-AR18C MBNE MiniBooNE; $\nu + \overline{\nu}$ AGAFONOVA 13 OPER $\Delta(m^2) > 0.1 \text{ eV}^2$	
0.8 to 3	90	³ AGUILAR-AR13A MBNE MiniBooNE	
	00	⁴ ANTONELLO 13 ICAR $ u_{\mu} ightarrow u_{e}$	
11	90	μ e	
	90 90	⁵ ANTONELLO 13A ICAR $\nu_{\mu} ightarrow u_{e}$	
6.8		⁵ ANTONELLO 13A ICAR $\nu_{\mu} \rightarrow \nu_{e}$ ⁶ MAHN 12 MBNE MiniBooNE/SciBooNE	
6.8 100 1.8	90 90 90	5 ANTONELLO 13A ICAR $ν_{μ} → ν_{e}$ 6 MAHN 12 MBNE MiniBooNE/SciBooNE 7 AGUILAR-AR07 MBNE MiniBooNE	
6.8 100 1.8 110	90 90 90 90	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
6.8 100 1.8 110 1.4	90 90 90		
6.8 100 1.8 110 1.4 1.6	90 90 90 90 90 90		
6.8 100 1.8 110 1.4 0.5 to 30	90 90 90 90 90		
6.8 100 1.8 110 1.4 1.6 0.5 to 30 3.0	90 90 90 90 90 90 95		
 6.8 100 1.8 110 1.4 1.6 0.5 to 30 3.0 9.4 5.6 	90 90 90 90 90 90 95 90 90 90		OCCUR=2
< 6.8 <100 < 1.8 <110 < 1.4 < 1.6 0.5 to 30 < 3.0 < 9.4 < 5.6 ¹ AGUILAR-AREV and 11.27 × 10 ² The allowed regined allowed regined 18c	90 90 90 90 90 90 95 90 90 4LO 21 resu ⁰ POT in a ion does no f sin ² (2θ) at	⁵ ANTONELLO 13A ICAR $\nu_{\mu} \rightarrow \nu_{e}$ ⁶ MAHN 12 MBNE MiniBooNE/SciBooNE ⁷ AGUILAR-AR07 MBNE MiniBooNE ⁸ AHN 04 K2K Water Cherenkov ASTIER 03 NOMD CERN SPS AVVAKUMOV 02 NTEV NUTEV FNAL ⁹ AGUILAR 01 LSND $\nu_{\mu} \rightarrow \nu_{e}$ osc.prob. ¹⁰ ATHANASSO98 LSND $\nu_{\mu} \rightarrow \nu_{e}$ ¹¹ LOVERRE 96 CHARM/CDHS VILAIN 94C CHM2 CERN SPS ¹² VILAIN 94C CHM2 CERN SPS ¹² VILAIN 94C CHM2 CERN SPS ¹⁴ tis based on a total of 18.75×10 ²⁰ POT in neutrino mode nti-neutrino mode. The best fit value is sin ² (2θ)=0.807 t extend to large Δm^{2} . The quoted value is the entir ¹³ Supersedes AGUILAR	e, NODE=S067S1;LINKAGE=F 7. e 2-
 < 1.6 0.5 to 30 < 3.0 < 9.4 < 5.6 ¹ AGUILAR-AREV and 11.27 × 10² The allowed regin allowed region of AREVALO 18c. ² AGUILAR-AREV The best fit value 	90 90 90 90 90 90 95 90 90 74LO 21 resu 0 POT in a ion does no f sin ² (2 θ) at 74LO 18C resu e is sin ² (2 θ)	⁵ ANTONELLO 13A ICAR $\nu_{\mu} \rightarrow \nu_{e}$ ⁶ MAHN 12 MBNE MiniBooNE/SciBooNE ⁷ AGUILAR-AR07 MBNE MiniBooNE ⁸ AHN 04 K2K Water Cherenkov ASTIER 03 NOMD CERN SPS AVVAKUMOV 02 NTEV NUTEV FNAL ⁹ AGUILAR 01 LSND $\nu_{\mu} \rightarrow \nu_{e}$ osc.prob. ¹⁰ ATHANASSO98 LSND $\nu_{\mu} \rightarrow \nu_{e}$ ¹¹ LOVERRE 96 CHARM/CDHS VILAIN 94C CHM2 CERN SPS ¹² VILAIN 94C CHM2 CERN SPS ¹⁴ textend to large Δm^2 . The quoted value is the entir ¹⁵ 90% C.L. for all values of Δm^2 . Supersedes AGUILAR ¹⁶ 40.5±99.0 events ¹⁷ 0.92. The quoted limit for the two-neutrino mixing angle	e, NODE=S067S1;LINKAGE=F e e - ^{S;} NODE=S067S1;LINKAGE=D
< 6.8 <100 < 1.8 <110 < 1.4 < 1.6 0.5 to 30 < 3.0 < 9.4 < 5.6 ¹ AGUILAR-AREV and 11.27 × 10 ² The allowed regin allowed region of AREVALO 18C. ² AGUILAR-AREV The best fit value θ is valid above A ³ AGUILAR-AREV	90 90 90 90 90 90 90 90 ALO 21 resu 0 POT in a ion does no f sin ² (2 θ) at ALO 18C ress e is sin ² (2 θ) $\Delta m^{2} = 0.59$ ALO 13A res	⁵ ANTONELLO 13A ICAR $\nu_{\mu} \rightarrow \nu_{e}$ ⁶ MAHN 12 MBNE MiniBooNE/SciBooNE ⁷ AGUILAR-AR07 MBNE MiniBooNE ⁸ AHN 04 K2K Water Cherenkov ASTIER 03 NOMD CERN SPS AVVAKUMOV 02 NTEV NUTEV FNAL ⁹ AGUILAR 01 LSND $\nu_{\mu} \rightarrow \nu_{e}$ osc.prob. ¹⁰ ATHANASSO98 LSND $\nu_{\mu} \rightarrow \nu_{e}$ ¹¹ LOVERRE 96 CHARM/CDHS VILAIN 94c CHM2 CERN SPS ¹² VILAIN 94c CHM2 CERN SPS ¹² VILAIN 94c CHM2 CERN SPS ¹⁴ is based on a total of 18.75×10 ²⁰ POT in neutrino mode nti-neutrino mode. The best fit value is sin ² (2θ)=0.807 t extend to large Δm^2 . The quoted value is the entir ¹⁵ 90% C.L. for all values of Δm^2 . Supersedes AGUILAR ¹⁶ eV ² . Superseded by AGUILAR-AREVALO 21. ¹⁷ ult is based on $\nu_{\mu} \rightarrow \nu_{e}$ appearance of 162.0±47.8 events	e, NODE=S067S1;LINKAGE=F e e s; NODE=S067S1;LINKAGE=D e s; NODE=S067S1;LINKAGE=A
< 6.8 <100 < 1.8 <110 < 1.4 < 1.6 0.5 to 30 < 3.0 < 9.4 < 5.6 ¹ AGUILAR-AREV and 11.27 × 10 ² The allowed regined AREVALO 18C. ² AGUILAR-AREV The best fit value θ is valid above a 3 AGUILAR-AREV marginally comp. 0.002. ⁴ ANTONELLO 13	90 90 90 90 90 90 90 90 ALO 21 resu 0 POT in a ion does no f sin ² (2 θ) at ALO 18C ress e is sin ² (2 θ) at ALO 18C ress e is sin ² (2 θ) at ALO 18C ress at sin ² (2 θ) at ALO 18C ress at sin ² (2 θ) at at sin ² (2 θ) at a sin ² (2 θ) at a sin ² (2 θ) at a sin ² (2 θ) at a sin ² (2 θ) at a sin ² (2 θ) at a sin ² (2 θ) at a sin ² (2 θ) at a si	⁵ ANTONELLO 13A ICAR $\nu_{\mu} \rightarrow \nu_{e}$ ⁶ MAHN 12 MBNE MiniBooNE/SciBooNE ⁷ AGUILAR-AR07 MBNE MiniBooNE ⁸ AHN 04 K2K Water Cherenkov ASTIER 03 NOMD CERN SPS AVVAKUMOV 02 NTEV NUTEV FNAL ⁹ AGUILAR 01 LSND $\nu_{\mu} \rightarrow \nu_{e}$ osc.prob. ¹⁰ ATHANASSO98 LSND $\nu_{\mu} \rightarrow \nu_{e}$ ¹¹ LOVERRE 96 CHARM/CDHS VILAIN 94c CHM2 CERN SPS ¹² VILAIN 94c CHM2 CERN SPS ¹² VILAIN 94c CHM2 CERN SPS ¹² VILAIN 94c CHM2 CERN SPS ¹⁴ textend to large Δm^2 . The quoted value is the entir ¹⁵ 90% C.L. for all values of Δm^2 . Supersedes AGUILAR ¹⁶ eV ² . Superseded by AGUILAR-AREVALO 21. ¹⁷ ult is based on $\nu_{\mu} \rightarrow \nu_{e}$ appearance of 162.0±47.8 events ¹⁶ wo neutrino oscillations. The best fit value is sin ² (2θ) = 4ARUS T600 detector at LNGS and ~ 20 GeV beam of ν_{μ}	e, NODE=S067S1;LINKAGE=F e s; NODE=S067S1;LINKAGE=D e s; NODE=S067S1;LINKAGE=A = u NODE=S067S1;LINKAGE=C
< 6.8 <100 < 1.8 <110 < 1.4 < 1.6 0.5 to 30 < 3.0 < 9.4 < 5.6 ¹ AGUILAR-AREV and 11.27 × 10 ² The allowed region of AREVALO 18C. ² AGUILAR-AREV The best fit value θ is valid above a 3 AGUILAR-AREV marginally comp. 0.002. ⁴ ANTONELLO 13 from CERN 730 with 3.7 ± 0.6 et the parameter sp ⁵ Based on four ev	90 90 90 90 90 90 90 90 90 7ALO 21 resu 90 90 7ALO 21 resu 90 90 7ALO 21 resu 10 POT in a ion does no f sin ² (2 θ) at 7ALO 18C ress e is sin ² (2 θ) $\Delta m^2 = 0.59$ ALO 13A ress atible with t 3 use the IC. km away to xpected from acc expected ents with a	⁵ ANTONELLO 13A ICAR $\nu_{\mu} \rightarrow \nu_{e}$ ⁶ MAHN 12 MBNE MiniBooNE/SciBooNE ⁷ AGUILAR-AR07 MBNE MiniBooNE ⁸ AHN 04 K2K Water Cherenkov ASTIER 03 NOMD CERN SPS AVVAKUMOV 02 NTEV NUTEV FNAL ⁹ AGUILAR 01 LSND $\nu_{\mu} \rightarrow \nu_{e}$ osc.prob. ¹⁰ ATHANASSO98 LSND $\nu_{\mu} \rightarrow \nu_{e}$ ¹¹ LOVERRE 96 CHARM/CDHS VILAIN 94C CHM2 CERN SPS ¹² VILAIN 94C CHM2 CERN SPS ¹² VILAIN 94C CHM2 CERN SPS ¹⁴ textend to large Δm^2 . The quoted value is the entire ¹⁵ 90% C.L. for all values of Δm^2 . Supersedes AGUILAR ¹⁶ eV ² . Superseded by AGUILAR-AREVALO 21. ¹⁷ value is $\sin^2(2\theta) = 0.000$	e, NODE=S067S1;LINKAGE=F e s; NODE=S067S1;LINKAGE=D e s; NODE=S067S1;LINKAGE=A = NODE=S067S1;LINKAGE=C d

7/16/2025 12:18 Page 41

- 8 The limit becomes sin $^22 heta\,< 0.15$ at $\Delta m^2 = 2.8 imes 10^{-3}$ eV 2 , the bets-fit value of the ν_{μ} disappearance analysis in K2K.
- 9 AGUILAR 01 is the final analysis of the LSND full data set of the search for the $u_\mu
 ightarrow$ ν_e oscillations. See footnote in preceding table for further details.
- 10 ATHANASSOPOULOS 98 report (0.26 \pm 0.10 \pm 0.05)% for the oscillation probability; the value of ${\rm sin}^2 2\theta$ for large Δm^2 is deduced from this probability. See footnote in preceding table for further details, and see the paper for a plot showing allowed regions. If effect is due to oscillation, it is most likely to be intermediate $\sin^2 2\theta$ and Δm^2 . See also ATHANASSOPOULOS 98B.

¹¹LOVERRE 96 uses the charged-current to neutral-current ratio from the combined CHARM (ALLABY 86) and CDHS (ABRAMOWICZ 86) data from 1986.

 $^{12}\,{\rm VILAIN}$ 94C limit derived by combining the ν_{μ} and $\overline{\nu}_{\mu}$ data assuming CP conservation.

$\Delta(m^2)$ for sin²(2heta) = 1 $(\overline{ u}_{\mu} \rightarrow \overline{ u}_{e})$

VALUE (eV ²)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	NODE=S
• • • We do not use $\frac{1}{2}$	the followi	ng data for averages,	fits, limits, e	etc. • • •	
0.023 to 0.060	90	¹ AGUILAR-AR1	13A MBNE	MiniBooNE	
<0.16	90			MiniBooNE/SciBooNE	
0.03-0.09	90	³ AGUILAR-AR1	LO MBNE	${\sf E}_{ u}>$ 475 MeV	
0.03-0.07	90	⁴ AGUILAR-AR1		E_{ν} > 200 MeV	OCCUR=
<0.06	90	AGUILAR-AR(MiniBooNE	
<0.055	90	⁵ ARMBRUSTER	02 KAR2	Liquid Sci. calor.	
<2.6	90	AVVAKUMOV (D2 NTEV	NUTEV FNAL	
0.03-0.05		⁶ AGUILAR (01 LSND	LAMPF	
0.05-0.08	90	⁷ ATHANASSO9	96 LSND	LAMPF	OCCUR=
0.048-0.090	80	⁸ ATHANASSO9	95		
<0.07	90	⁹ HILL 9	95		
<0.9	90	VILAIN 9	94c CHM2	CERN SPS	
<0.14	90	¹⁰ FREEDMAN	93 CNTR	LAMPF	
-				0	

 1 Based on $\overline{
u}_\mu o ~ \overline{
u}_e$ appearance of 78.4 \pm 28.5 events. The best fit values are $\Delta m^2 =$ 0.043 eV² and $\sin^2 2\theta = 0.88$.

 2 CHENG 12 is a combined fit of MiniBooNE and SciBooNE antineutrino data.

³This value is for a two neutrino oscillation analysis for excess antineutrino events with ${\sf E}_{
m
u}$ > 475 MeV. The best fit is at 0.07. The allowed region is consistent with LSND reported by AGUILAR 01. Supercedes AGUILAR-AREVALO 09B.

 4 This value is for a two neutrino oscillation analysis for excess antineutrino events with $E_{\nu} > 200$ MeV with subtraction of the expected 12 events low energy excess seen in the neutrino component of the beam. The best fit value is 0.007 for $\Delta(m^2) = 4.4 \text{ eV}^2$.

 $^5\, {\sf ARMBRUSTER}$ 02 is the final analysis of the KARMEN 2 data for 17.7 m distance from the ISIS stopped pion and muon neutrino source. It is a search for $\overline{\nu}_e,$ detected by the inverse β -decay reaction on protons and ¹²C. 15 candidate events are observed, and 15.8 ± 0.5 background events are expected, hence no oscillation signal is detected. The results exclude large regions of the parameter area favored by the LSND experiment.

 6 AGUILAR 01 is the final analysis of the LSND full data set. It is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly for π^+ decay at rest. $\overline{\nu}_{e}$ are detected through $\overline{\nu}_e p \rightarrow e^+ n \ (20 < E_{e^+} < 60 \text{ MeV})$ in delayed coincidence with $np \rightarrow d\gamma$. Authors observe 87.9 $\pm 22.4 \pm 6.0$ total excess events. The observation is attributed to $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_e$ oscillations with the oscillation probability of 0.264 $\pm 0.067 \pm 0.045\%$, consistent with the previously published result. Taking into account all constraints, the most favored allowed region of oscillation parameters is a band of $\Delta(m^2)$ from 0.2–2.0 eV 2 . Supersedes ATHANASSOPOULOS 95, ATHANASSOPOULOS 96, and ATHANASSOPOULOS 98.

- ⁷ATHANASSOPOULOS 96 is a search for $\overline{\nu}_e$ 30 m from LAMPF beam stop. Neutrinos originate mainly from π^+ decay at rest. $\overline{
 u}_e$ could come from either $\overline{
 u}_\mu o \ \overline{
 u}_e$ or $\nu_e \to ~\overline{\nu}_e;$ our entry assumes the first interpretation. They are detected through $\overline{\nu}_e \, p \to$ $e^+ n$ (20 MeV $< E_{e^+} <$ 60 MeV) in delayed coincidence with $np \rightarrow d\gamma$. Authors observe $51 \pm 20 \pm 8$ total excess events over an estimated background 12.5 \pm 2.9. ATHANASSOPOULOS 96B is a shorter version of this paper.
- 8 ATHANASSOPOULOS 95 error corresponds to the 1.6 σ band in the plot. The expected background is 2.7 \pm 0.4 events. Corresponds to an oscillation probability of $(0.34 \substack{+ \ 0.20 \\ - \ 0.18} \pm 0.07)\%.$ For a different interpretation, see HILL 95. Replaced by ATHANASSOPOULOS 96. 9 HILL 95 is a report by one member of the LSND Collaboration, reporting a different con-
- clusion from the analysis of the data of this experiment (see ATHANASSOPOULOS 95). Contrary to the rest of the LSND Collaboration, Hill finds no evidence for the neutrino oscillation $\overline{\nu}_{\mu} \rightarrow ~\overline{\nu}_{e}$ and obtains only upper limits.
- $^{10}\,{\rm FREEDMAN}$ 93 is a search at LAMPF for $\overline{\nu}_e$ generated from any of the three neutrino types $\nu_\mu,\,\overline{\nu}_\mu$, and ν_e which come from the beam stop. The $\overline{\nu}_e$'s would be detected by the reaction $\overline{\nu}_e p \rightarrow e^+ n$. FREEDMAN 93 replaces DURKIN 88.

NODE=S067S1;LINKAGE=AH

NODE=S067S1;LINKAGE=AG

NODE=S067S1;LINKAGE=F1

NODE=S067S1;LINKAGE=LV

NODE=S067S1;LINKAGE=E

NODE=S067D2 NODE=S067D2

=2

=2

NODE=S067D2;LINKAGE=A

NODE=S067D2;LINKAGE=CH NODE=S067D2;LINKAGE=AI

NODE=S067D2;LINKAGE=AL

NODE=S067D2;LINKAGE=BR

NODE=S067D2;LINKAGE=AG

NODE=S067D2;LINKAGE=AK

NODE=S067D2:LINKAGE=C

NODE=S067D2;LINKAGE=D

NODE=S067D2;LINKAGE=B

NODE=S067NUS NODE=S067NUS

			7/10/2025 12.10 Tag
· 2(00) c · ···			
$\sin^2(2\theta)$ for "Large	$^{\prime\prime} \Delta(m^2)$	$(\overline{ u}_{\mu} ightarrow\ \overline{ u}_{m{e}})$	NODE=S067S2
VALUE (units 10^{-3})	<u>CL%</u>	DOCUMENT ID TECN COMMENT	NODE=S067S2
• • • We do not use t	he followin	ig data for averages, fits, limits, etc. $ullet$ $ullet$	
<640	90	¹ ANTONELLO 13A ICAR $\overline{ u}_e$ appearance	OCCUR=2
<150	90	² CHENG 12 MBNE MiniBooNE/SciBooNE	
0.4-9.0	99	3 AGUILAR-AR10 MBNE E $_{ m m m e}$ > 475 MeV	
0.4-9.0	99	⁴ AGUILAR-AR10 MBNE $E_{\nu} > 200$ MeV	OCCUR=2
< 3.3	90	⁵ AGUILAR-AR09B MBNE MiniBooNE	
< 1.7	90	⁶ ARMBRUSTER02 KAR2 Liquid Sci. calor.	
< 1.1	90	_ AVVAKUMOV 02 NTEV NUTEV FNAL	
$5.3\!\pm\!1.3\!\pm\!9.0$		⁷ AGUILAR 01 LSND LAMPF	
$6.2 \pm 2.4 \pm 1.0$		⁸ ATHANASSO96 LSND LAMPF	OCCUR=2
3–12	80	⁹ ATHANASSO95	
< 6	90	¹⁰ HILL 95	
¹ ANTONELLO 13A	obtained t	he limit by assuming $\overline{ u}_{\mu} o ~ \overline{ u}_{m{e}}$ oscillation from the $\sim 2\%$	
of $\overline{\nu}_{\mu}$ evnets containing	mination i	n the CNGS beam.	NODE=S067S2;LINKAGE=A
		of MiniBooNE and SciBooNE antineutrino data.	NODE=S067S2;LINKAGE=CH
³ This value is for a	two neutr	ino oscillation analysis for excess antineutrino events with	NODE=S067S2;LINKAGE=AI
E. > 475 MeV.	At 90% CL	. there is no solution at high $\Delta(m^2)$. The best fit is at	NODE-500752,EINRAGE-AI
maximal mixing. T	he allowed	region is consistent with LSND reported by AGUILAR 01.	
Supercedes AGUIL	AR-AREV/	ALO 09B.	
⁴ This value is for a	two neutr	ino oscillation analysis for excess antineutrino events with	NODE=S067S2;LINKAGE=AL
		ion of the expected 12 events low energy excess seen in the	
neutrino componei	nt of the be	eam. At 90% CL there is no solution at high $\Delta(m^2)$. The	
best fit value is 0.0			
⁵ This result is incor	clusive wit	h respect to small amplitude mixing suggested by LSND.	NODE=S067S2;LINKAGE=AU
		al analysis of the KARMEN 2 data. See footnote in the	NODE=S067S2;LINKAGE=BR
		tails, and the paper for the exclusion plot.	
		sis of the LSND full data set. The deduced oscillation prob-	NODE=S067S2;LINKAGE=AG
		5%; the value of sin ² 2 $ heta$ for large $\Delta(m^2)$ is twice this proba-	
		re excluded by other constraints). See footnote in preceding	
		the paper for a plot showing allowed regions. Supersedes THANASSOPOULOS 96, and ATHANASSOPOULOS 98.	
⁸ ATHANASSOPOL	LOS 96 re	ports $(0.31 \pm 0.12 \pm 0.05)\%$ for the oscillation probability;	NODE=S067S2;LINKAGE=AK
the value of sin ² 2	θ for large	$\Delta(m^2)$ should be twice this probability. See footnote in	NODE-300752,EINRAGE-AR
preceding table for	further de	tails, and see the paper for a plot showing allowed regions.	
⁹ ATHANASSOPOL	LOS 95 e	rror corresponds to the 1.6σ band in the plot. The ex-	NODE=S067S2;LINKAGE=C
		0.4 events. Corresponds to an oscillation probability of	,
$(0.34^{+0.20}_{-0.18} \pm 0.0$	07)%. Fo	r a different interpretation, see HILL 95. Replaced by	
ATHANASSOPOL	LOS 96.		
		mber of the LSND Collaboration, reporting a different con-	NODE=S067S2;LINKAGE=D
		e data of this experiment (see ATHANASSOPOULOS 95).	
		SND Collaboration, Hill finds no evidence for the neutrino cains only upper limits.	
ν_{μ}	e una obr		
-		Sterile neutrino limits ———	NODE=S067STL
	• (
$\Delta(m^2)$ for $\sin^2(2\theta)$	$= 1 (\nu_{\mu}$	$\rightarrow \nu_{s}$)	NODE=S067DU4
$ u_{s}$ means $ u_{ au}$ or	any sterile	(noninteracting) ν .	NODE=S067DU4
VALUE (10^{-5} eV^2) C	L% L	DOCUMENT ID TECN COMMENT	NODE=S067DU4
		g data for averages, fits, limits, etc. ● ●	
<3000 (or <550) 9	1	DYAMA 89 KAMI Water Cherenkov	
< 4.2 or > 54. 9	-		
		$\mu^{,}$ $\mu^{,}$ $\epsilon^{,}$ ϵ	
argue that the reg	a range of ion $\Delta(m^2)$	limits, depending on assumptions in their analysis. They = (100–1000) \times 10 $^{-5}~{\rm eV}^2$ is not ruled out by any data	NODE=S067DU4;LINKAGE=A
for large mixing.			
- · ·			

Search for ν_{μ} or ν_{e} -	$\rightarrow \nu_{s}$			
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
\bullet \bullet \bullet We do not use the	following	g data for average	s, fits, limits	, etc. ● ● ●
<0.01	95	¹ AN	24	DayaBay
< 0.033-0.108	90	² AUGIER	24	100 Mo $2 uetaeta$ decay
$< 5 \times 10^{-4}$	95	³ AKER	23	T β decay
<0.05	95	⁴ ALMAZAN	23	STEREO
<0.02	95	⁵ AKER	22A SPEC	$\Box \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
< 0.0035	95	⁶ ATIF	22	RENO, NEOS
$\begin{array}{rrr} 0.42 & +0.15 \\ -0.17 \end{array}$	68	⁷ BARINOV	22A	BEST
<0.05	95	⁸ ANDRIAMIR	. 21	PROSPECT

NODE=S067NUS;LINKAGE=GA

NODE=S067NUS;LINKAGE=HA

< 0.005		95	⁹ SEREBROV	21		Neutrino-4	,
<0.008		95	¹⁰ SKROBOVA	20		DANSS	
< 0.01		90	¹¹ ALEKSEEV	18		DANSS	
<0.06		90	¹² ALMAZAN	18		STEREO	
<0.1		95	¹³ ASHENFELT	18		PROSPECT	
<0.4		90	¹⁴ AARTSEN	17 B	ICCB	IceCube-DeepCore	
<8	imes 10 ⁻³	95	¹⁵ ABDURASHI	. 17		T β decay	
<1	imes 10 ⁻²	90	¹⁶ KO	17	NEOS		
<2	imes 10 ⁻²	90	¹⁷ AARTSEN	16	ICCB	IceCube	
<4.5	imes 10 ⁻⁴	95	¹⁸ ADAMSON	16 B		MINOS, DayaBay	
<8.6	imes 10 ⁻²	95	¹⁹ ADAMSON	16 C	MINS		
<1.1	imes 10 ⁻²	95	²⁰ AN	16 B	DAYA		
			²¹ AMBROSIO	01	MCRO	matter effects	
			²² FUKUDA	00	SKAM	neutral currents + mat- ter effects	

 1 AN 24 use the full data set of the Daya Bay reactor experiment, corresponding to 3158 days of detector operation, to place a limit on $\overline{\nu}_e \rightarrow \overline{\nu}_s$ oscillations. The result is in terms of sin²(2 θ_{14}) for 0.01 eV² $< \Delta m^2_{41} < 0.1$ eV². A 3+1 mixing model is assumed.

² AUGIER 24 use of 1.47 kg·yr of ¹⁰⁰Mo exposure of the CUPID-Mo scintillating cryogenic calorimeter, operated at the Laboratoire Souterrain de Modane, to place a range of limits on the admixture of sterile neutrinos. Two different $2\nu\beta\beta$ spectral analysis approaches are used. $\sin^2(\theta_{14})$ is given for sterile neutrino masses ranging from 0.5 to 1.5 MeV. The limit above is for 0.5 MeV mass.

³ AKER 23 assume a 3+1 neutrino mixing model, use low-rate commissioning data of the KATRIN tritium β decay experiment to place a limit on sin²(θ_{14}) for a admixture sterile neutrino mass m₄ of ~ 300 eV.

⁴ ALMAZAN 23 use inverse beta decay data collected by the STEREO experiment, placed 9 to 11 m from the ILL research reactor, to search for $\bar{\nu}_e \rightarrow \bar{\nu}_s$ oscillations. The ILL research reactor uses highly enriched ²³⁵U fuel. No indication of the oscillation to sterile neutrinos is found, the stated limit on $\sin^2(2\theta_{14})$ correspond to $\Delta m^2_{41} \sim 1 \text{ eV}^2$ where the exclusion is maximal. Supersedes ALMAZAN 18.

⁵ AKER 22A uses the first two science runs of the KATRIN tritium β decay neutrino mass experiment to search for an admixture of sterile neutrinos. No evidence is found for a spectral anomaly, indicating such admixture. The resulting limit is on $\sin^2(2\theta_{14})$ for sterile neutrino masses $m_4 < 40$ eV. It is most restrictive at $\Delta m_{41}^2 \sim 400$ eV². A _3+1 model is assumed.

⁶ ATIF 22 report results from the combined analysis of the RENO (419 m) and NEOS (24 m) experiments data, collected at the Hanbit Nuclear Power Plant. Results, in terms of $\sin^2(2\theta_{14})$, constrain for $\overline{\nu}_e \rightarrow \overline{\nu}_s$ oscillations. The authors report both excluded and allowed parameter combinations. The exclusion result reported here is based on the Feldman-Cousins method and for $\Delta m_{41}^2 \simeq 0.55 \text{ eV}^2$. Part of the allowed area is excluded by the STEREO and PROSPECT experiments.

⁷ BARINOV 22A report an event deficit observed using the segmented Baksan Ga neutrino detector, exposed to a 3.4 MCi ⁵¹Cr source. Equal suppression factors are observed for the inner and outer segments. The deficit is interpreted as evidence for oscillations to sterile neutrinos. The result is in terms of $\sin^2(2\theta_{14})$, for a best fit of $\Delta m_{41}^2 = 3.3 + \infty - 2.3$ eV². Some, but not all, of the allowed neutrino parameter space conflicts with other

ever. Some, but not all, of the allowed neutrino parameter space conflicts with othe experiments.

⁸ ANDRIAMIRADO 21 reports a search for $\bar{\nu}_e \rightarrow \bar{\nu}_s$ oscillations at the HFIR research reactor, at baselines from 6.7 to 9.2 m. The reactor has a ²³⁵U core. 4 tons of ⁶Li-doped liquid scintillator are used in a segmented detector. Oscillations into sterile neutrinos are disfavored. The stated limit for $\sin^2(2\theta_{14})$ is for $\Delta m_{41}^2 \sim 2 \text{ eV}^2$ where the sensitivity is maximal.

⁹ SEREBROV 21 searches for $\overline{\nu}_e \rightarrow \overline{\nu}_s$ oscillations with a moveable detector with baseline 6-12 m from the SM-3 research reactor with highly enriched ²³⁵U fuel. Analyzing the L/E dependence a χ^2 minimum is found at $\Delta m_{41}^2 = 7.3 \pm 0.13 \pm 1.16 \text{ eV}^2$ and $\sin^2(2\theta_{14}) = 0.36 \pm 0.12$. The quoted limit of 0.005 for $\sin^2(2\theta_{14})$ corresponds to $\Delta m_{41}^2 \sim 2 \text{ eV}^2$. This is the result from 720 days of reactor ON and 860 days of reactor OFF measurements. The significance of the χ^2 minimum is 2.9 σ . Supersedes SEREBROV 20, SEREBROV 19 and SEREBROV 18A.

 10 SKROBOVA 20 searches for $\overline{\nu}_e - \overline{\nu}_s$ oscillations using the DANSS detector at 10.7, 11.2, and 12.7 m from the 3.1 GW_{th} power reactor. The DANSS detector is highly segmented and moveable; the positions are changed usually 3 times a week. The analysis is based on the ratio of the events at top and bottom position; the middle position is used for checks of consistency. No evidence for sterile neutrinos is found. The quoted limit 0.008, the smallest excluded sin^2(2\theta_{14}), corresponds to $\Delta m^2_{41} \sim 1.0 \ eV^2$. Supersedes ALEKSEEV 18.

¹¹ALEKSEEV 18 searches for $\bar{\nu}_e \rightarrow \bar{\nu}_s$ oscillations using the DANSS detector at 10.7, 11.2, and 12.7 m from the 3.1 GW_{th} power reactor. The DANSS detector is highly segmented

OCCUR=2

NODE=S067NUS;LINKAGE=FA NODE=S067NUS;LINKAGE=EA NODE=S067NUS;LINKAGE=BA NODE=S067NUS;LINKAGE=DA NODE=S067NUS;LINKAGE=CA NODE=S067NUS;LINKAGE=X

NODE=S067NUS;LINKAGE=AA

and moveable; the positions are changed usually 3 times a week. The analysis is based on the ratio of the events at top and bottom position; the middle position is used for checks of consistency. The best fit point is at $\Delta m^2_{41}=1.4~\text{eV}^2$ and $\sin^2(2\theta_{14})=0.05$ with $\Delta\chi^2=13.1$ (statistical errors only) compared to the fit with 3 active neutrinos only. The quoted limit of 0.01 for $\sin^2(2\theta_{14})$ corresponds to $\Delta m^2_{41}\sim 1.0~\text{eV}^2$. Superseded by SKROBOVA 20.

¹² ALMAZAN 18 searches for the $\overline{\nu}_e \rightarrow \overline{\nu}_s$ oscillations with baseline from 9.4 to 11.1 m from the ILL research reactor with highly enriched ²³⁵U fuel. The STEREO detector consists of six separated cells with Gd loaded scintillator, with 15 m water equivalent overburden. The detected rate is 396.3 ± 4.7 $\overline{\nu}_e$ /day with signal to background ratio of about 0.9. The reported results corresponds to 66 days of reactor-on. The analysis uses the relative rates normalized to the cell number 1. No indication of the oscillation to the sterile neutrinos is found, the stated limit on sin²(2 θ_{14}) correspond to $\Delta m_{41}^2 \sim$

 3.5 eV^2 where the exclusion is maximal. Superseded by ALMAZAN 23.

- 13 ASHENFELTER 18 searches for the $\overline{\nu}_e \rightarrow \overline{\nu}_s$ oscillations at baseline from 6.7 to 9.2 m from the 85 MW research reactor with pure 235 U core. The segmented 4 ton 6 Li-doped liquid scintillator is operated with about 1 m water equivalent overburden and recorded 25461 \pm 283 IBD events. No indication of oscillations into sterile neutrinos was observed. The stated limit for sin^2(2\theta_{14}) is for $\Delta m^2_{41} \sim 2$ eV² where the sensitivity is maximal.
- ¹⁴ AARTSEN 17B uses three years of upward-going atmospheric neutrino data in the energy range of 10-60 GeV to constrain their disappearance into light sterile neutrinos. The reported limit $\sin^2\theta_{24} < 0.11$ at 90% C.L. is for $\Delta m_{41}^2 = 1.0 \text{ eV}^2$. We convert the result to $\sin^2 2\theta_{24}$ for the listing. AARTSEN 17B also reports $\cos^2\theta_{24} \cdot \sin^2\theta_{34} < 0.15$ at 90% C.L. for $\Delta m_{41}^2 = 1.0 \text{ eV}^2$.
- ¹⁵ABDURASHITOV 17 use the Troitsk nu-mass experiment to search for sterile neutrinos with mass 0.1 2 keV. We convert the reported limit from $U_{e4}^2 < 0.002$ to $\sin^2 2\theta_{14} < 0.008$ assume $U_{e4} \sim \sin\theta_{14}$. The stated limit corresponds to the smallest U_{e4}^2 . The exclusion curve begins at U_{e4}^2 of 0.02 for m₄ = 0.1 keV.
- ¹⁶ KO 17 reports on short baseline reactor oscillation search ($\overline{\nu}_e \rightarrow \overline{\nu}_s$), motivated be the so-called "reactor antineutrino anomaly". The experiment is conducted at 23.7 m from the core of unit 5 of the Hanbit Nuclear Power Complex in Korea. the reported limited on $\sin^2(2\theta_{41})$ for sterile neutrinos was determined using the reactor antineutrino spectrum determined by the Daya Bay experiment for Δm_{14}^2 around 0.55 eV² where the sensitivity is maximal. A fraction of the parameter space derived from the "reactor antineutrino anomaly" is excluded by this work. Compared to reactor models an event excess is observed at about 5 MeV, in agreement with other experiments.
- 17 AARTSEN 16 use one year of upward-going atmospheric muon neutrino data in the energy range of 320 GeV to 20 TeV to constrain their disappearance into light sterile neutrinos. Sterile neutrinos are expected to produce distinctive zenith distribution for these energies for 0.01 $\leq \Delta m^2 \leq 10 \text{ eV}^2$. The stated limit is for $\sin^2 2\theta_{24}$ at Δm^2 around 0.3 eV².
- ¹⁸ ADAMSON 16B combine the results of AN 16B, ADAMSON 16C, and Bugey-3 reactor experiments to constrain ν_{μ} to ν_{e} mixing through oscillations into light sterile neutrinos. The stated limit for $\sin^{2}2\theta_{\mu e}$ is at $|\Delta m_{41}^{2}| = 1.2 \text{ eV}^{2}$.
- ¹⁹ ADAMSON 16C use the NuMI beam and exposure of 10.56×10^{20} protons on target to search for the oscillation of ν_{μ} dominated beam into light sterile neutrinos with detectors at 1.04 and 735 km. The reported limit $\sin^2(\theta_{24}) < 0.022$ at 95% C.L. is for $|\Delta m_{41}^2| = 0.5 \text{ eV}^2$. We convert the result to $\sin^2(2\theta_{24})$ for the listing.

²⁰ AN 16B utilize 621 days of data to place limits on the $\overline{\nu}_e$ disappearance into a light sterile neutrino. The stated limit corresponds to the smallest $\sin^2(2\theta_{14})$ at $|\Delta m_{41}^2| \sim 3 \times 10^{-2} \text{ eV}^2$ (obtained from Figure 3 in AN 16B). The exclusion curve begins at $|\Delta m_{41}^2| \sim 1.5 \times 10^{-4} \text{ eV}^2$ and extends to $\sim 0.25 \text{ eV}^2$. The analysis assumes $\sin^2(2\theta_{12}) = 0.846 \pm 0.021$, $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$, and $|\Delta m_{32}^2| = (2.44 \pm 0.06) \times 10^{-3} \text{ eV}^2$.

- eV². ²¹AMBROSIO 01 tested the pure 2-flavor $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis using matter effects which change the shape of the zenith-angle distribution of upward through-going muons. With maximum mixing and Δm^{2} around 0.0024 eV², the $\nu_{\mu} \rightarrow \nu_{s}$ oscillation is disfavored with 99% confidence level with respect to the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis.
- 22 FUKUDA 00 tested the pure 2-flavor $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis using three complementary atmospheric-neutrino data samples. With this hypothesis, zenith-angle distributions are expected to show characteristic behavior due to neutral currents and matter effects. In the Δm^{2} and $\sin^{2}2\theta$ region preferred by the Super-Kamiokande data, the $\nu_{\mu} \rightarrow \nu_{s}$ hypothesis isrejected at the 99% confidence level, while the $\nu_{\mu} \rightarrow \nu_{\tau}$ hypothesis consistently fits all of the data sample.

NODE=S067NUS;LINKAGE=I

NODE=S067NUS;LINKAGE=J

NODE=S067NUS;LINKAGE=G

NODE=S067NUS;LINKAGE=F

NODE=S067NUS;LINKAGE=E

NODE=S067NUS;LINKAGE=B

NODE=S067NUS;LINKAGE=A

NODE=S067NUS;LINKAGE=C

NODE=S067NUS;LINKAGE=D

NODE=S067NUS;LINKAGE=AB

NODE=S067NUS;LINKAGE=FU

— CPT tests ———

7/16/2025 12:18 Page 46

-0.24

² ADAMSON

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

90

 $0.6 \ +2.4 \ -0.8$

 $^1\!\!\!\!$ ADAMSON 13B quotes this difference as a negative of our convention.

² The quoted result is the single-parameter 90% C.L. interval determined from the 90% C.L. contour in the $(\Delta m^2, \Delta \overline{m}^2)$ plane, which is obtained by minimizing the four parameter log-likelihood function with respect to the other oscillation parameters.

12B MINS MINOS atmospheric

REFERENCES FOR Neutrino Mixing

				-
ABE	25	PRL 134 011801	K. Abe <i>et al.</i>	(Super-Kamiokande Collab.+)
ABE	24B	PR D109 092001	K. Abe <i>et al.</i>	(Super-Kamiokande Collab.)
ACERO	24	PR D110 012005	M.A. Acero et al.	NOvA Collab.)
AIELLO	24	JHEP 2410 206	S. Aiello <i>et al.</i>	(KM3Net Collab.)
ALLEGA	24	PR D110 122003	A. Allega <i>et al.</i>	(SNO+ Collab.)
AN	24	PRL 133 051801	F.P. An et al.	(Daya Bay Collab.)
AN	24A	PRL 133 151801	F.P. An et al.	(Daya Bay Collab.)
APRILE	24A	PRL 133 191002	E. Aprile et al.	(XENON Collab.)
AUGIER	24	EPJ C84 925	C. Augier et al.	(CUPID-Mo Collab.)
BO	24	PRL 133 191001	Z. Bo et al.	(PandaX-4T_Collab.)
LU	24	CP C48 091001	X. Lu et al.	(PandaX-4T Collab.)
PDG	24	PR D110 030001	S. Navas et al.	(PDG Collab.)
WESTER	24	PR D109 072014	T. Wester <i>et al.</i>	(Super-Kamiokande Collab.)
ABBASI ABE	23 23D	PR D108 012014 PR D108 072011	R. Abbasi <i>et al.</i> K. Abe <i>et al.</i>	(IceCube Collab.)
ABE	23D 23F	EPJ C83 782	K. Abe <i>et al.</i>	(T2K Collab.) (T2K Collab.)
AKER	23	EPJ C83 763	M. Aker <i>et al.</i>	(KATRIN Collab.)
ALMAZAN	23	NAT 613 257	H. Almazan <i>et al.</i>	(STEREO Collab.)
AN	23	PRL 130 161802	F.P. An et al.	(Daya Bay Collab.)
BASILICO	23	PR D108 102005	D. Basilico <i>et al.</i>	(Borexino Collab.)
MA	23A	PRL 130 021802	W. Ma et al.	(PandaX-4T Collab.)
PDG	23	RPP 2023 at pdg.lbl.gov		(PDG Collab.)
ACERO	22	PR D106 032004	M.A. Acero et al.	(NOvA Collab.)
AKER	22A	PR D105 072004	M. Aker <i>et al.</i>	(KÀTRIN Collab.)
APPEL	22	PRL 129 252701	S. Appel <i>et al.</i>	(Borexino Collab.)
ATIF	22	PR D105 L111101	Z. Atif et al.	(RENO and NEOS Collab.)
BARINOV	22A	PR C105 065502	V.V. Barinov et al.	(BEST Collab.)
Also		PRL 128 232501	V.V. Barinov <i>et al.</i>	(BEST Collab.)
ABE	21A	PR D103 L011101	K. Abe <i>et al.</i>	(T2K Collab.)
ABRAHAO	21	JHEP 2101 190	T. Abrahao <i>et al.</i>	(Double Chooz Collab.)
AGOSTINI	21	ASP 125 102509	M. Agostini et al.	(Borexino Collab.)
AGUILAR-AR		PR D103 052002	A.A. Aguilar-Arevalo et al.	(MiniBooNE Collab.)
ANDRIAMIR		PR D103 032001	M. Andriamirado et al.	(PROSPECT Collab.)
SALAS	21	JHEP 2102 071	P.F. de Salas <i>et al.</i>	(STOH, VALE, INFN+)
SEREBROV	21	PR D104 032003	A.P. Serebrov et al.	(Neutrino-4 Collab.)
AARTSEN	20	EPJ C80 9	M.G. Aartsen et al.	(IceCube Collab.)
ABE	20F	NAT 580 339	K. Abe <i>et al.</i>	(T2K Collab.)
Also ADAMSON	20A	PR D103 112008 PRL 125 131802	K. Abe <i>et al.</i>	(T2K Collab.)
AGOSTINI	20A 20A	PRL 125 131802 PR D101 062001	P. Adamson <i>et al.</i> M. Agostini <i>et al.</i>	(MINOS+ Collab.) (Borexino Collab.)
AGOSTINI	20A	NAT 587 577	M. Agostini <i>et al.</i>	(Borexino Collab.)
AHARMIM	200	PR D102 062006	B. Aharmim <i>et al.</i>	(SNO Collab.)
ALMAZAN	20	PRL 125 201801	H. Almazan <i>et al.</i>	(STEREO Collab.)
DE-KERRET	20	NATP 16 558	H. de Karret <i>et al.</i>	(Double Chooz Collab.)
ESTEBAN	20A	JHEP 2009 178	I. Esteban <i>et al.</i>	(NuFIT Collab.)
PDG	20	PTEP 2020 083C01	P.A. Zyla <i>et al.</i>	(PDG Collab.)
SEREBROV	20	JETPL 112 199	A.P. Serebrov, R.M. Samoil	ov (PNPI)
		Translated from ZETFP 1	.12 211.	
SHIN	20	JHEP 2004 029	C.D. Shin et al.	(RENO Collab.)
SKROBOVA	20	IJMP A35 2044015	N. Skrobova	(DANSS Collab.)
AARTSEN	19C	PR D99 032007	M.G. Aartsen <i>et al.</i>	(IceCube Collab.)
ACERO	19	PRL 123 151803	M.A. Acero et al.	(NOvA Collab.)
ADEY AGAFONOVA	19 19	PR D100 052004	D. Adey <i>et al.</i>	(Daya Bay Collab.) (OPERA Collab.)
ALBERT	19	PR D100 051301 JHEP 1906 113	N. Agafonova <i>et al.</i> A. Albert <i>et al.</i>	(ANTARES Collab.)
ANDERSON	19	PR D99 012012	M. Anderson <i>et al.</i>	(SNO+ Collab.)
SEREBROV	19	JETPL 109 213	A.P. Serebrov <i>et al.</i>	(Neutrino-4 Collab.)
AARTSEN	18A	PRL 120 071801	M.G. Aartsen <i>et al.</i>	(IceCube Collab.)
ABE	18B	PR D97 072001	K. Abe <i>et al.</i>	(Super-Kamiokande Collab.)
ABE	18G	PRL 121 171802	K. Abe et al.	(T2K Collab.)
ACERO	18	PR D98 032012	M.A. Acero <i>et al.</i>	(NOvA Collab.)
ADEY	18A	PRL 121 241805	D. Adey et al.	(Daya Bay Collab.)
AGAFONOVA	18	PRL 120 211801	N. Agafonova et al.	(ÓPERĂ Collab.)
AGAFONOVA	18A	JHEP 1806 151	N. Agafonova et al.	(OPERA Collab.)
AGOSTINI	18B	NAT 562 505	M. Agostini et al.	(Borexino Collab.)
AGUILAR-AR		PRL 121 221801	A.A. Aguilar-Arevalo et al.	(MiniBooNE Collab.)
ALEKSEEV	18	PL B787 56	I. Alekseev et al.	(DANSS Collab.)
ALMAZAN	18	PRL 121 161801	H. Almazan et al.	(STEREO Collab.)
ASHENFELT		PRL 121 251802	J. Ashenfelter <i>et al.</i>	(PROSPECT Collab.)
BAK	18	PRL 121 201801	G. Bak <i>et al.</i>	(RENO Collab.)

NODE=S067CPT NODE=S067CPT

NODE=S067CPT;LINKAGE=DE

NODE=S067CP2 NODE=S067CP2

NODE=S067CP2;LINKAGE=A NODE=S067CP2;LINKAGE=AD

NODE=S067

NOL	E=5007
	$\begin{array}{l} D = 63162 \\ D = 62796 \\ D = 62822 \\ D = 63132 \\ D = 63132 \\ D = 63053 \\ D = 63059 \\ D = 63059 \\ D = 63058 \\ D = 63155 \\ D = 62297 \\ D = 61749 \\ D = 61748 \\ D = 61248 \\ D = 61248 \\ D = 61248 \\ D = 60285 \\ D = 60079 \\ D = 60079 \\ D = 60076 \\ D = 60083 \\ D = 60076 \\ D = 60076 \\ D = 60083 \\ D = 60076 \\ D = 60076 \\ D = 60076 \\ D = 60083 \\ D = 60083 \\ D = 60085 \\$
	$\begin{array}{l} D = 60487 \\ D = 61394 \\ D = 59828 \\ D = 59928 \\ D = 59992 \\ D = 599958 \\ D = 59692 \\ D = 59960 \\ D = 599201 \\ D = 599201 \\ D = 599201 \\ D = 59527 \\ D = 59528 \\ D = 59538 \\ D = 59538 \\ D = 59533 \\ D = 59533 \\ D = 59540 \\ D = 59530 \\ \end{array}$

REFID=62013 REFID=59029

REFID=59304 REFID=59304 REFID=58958 REFID=59273 REFID=57994 REFID=58160

REFID=58160 REFID=58008 REFID=58008 REFID=58009 REFID=58969 REFID=57923 REFID=57933 REFID=57933 REFID=57980 REFID=57940 REFID=61427 REFID=57200 REFID=57200 REFID=57215 REFID=57431

REFID=57315 REFID=57431 REFID=5745 REFID=57184 REFID=57545 REFID=57545 REFID=57547 REFID=57179 REFID=57190 REFID=57140 REFID=57140

REFID=57190 REFID=57140 REFID=56563 REFID=56566 REFID=56917 REFID=56970 REFID=56875 REFID=56875 REFID=55660 REFID=55666 REFID=55766 REFID=55813

REFID=55221 REFID=55092

REFID=55092 REFID=55169 REFID=55491 REFID=55205 REFID=55215 REFID=55038 REFID=55204 REFID=55204 REFID=55122 REFID=55005

REFID=55005 REFID=55419

REFID=53419 REFID=55179 REFID=54076 REFID=54393 REFID=54607 REFID=54235

REFID=54233 REFID=54608 REFID=54202 REFID=54078 REFID=54077 REFID=54205

REFID=54077 REFID=54077 REFID=54011 REFID=16501 REFID=16501 REFID=16503 REFID=53789 REFID=16619 REFID=16619 REFID=53811 REFID=53807 REFID=53807 REFID=53873 REFID=61055 REFID=61055 REFID=61055 REFID=53788 REFID=54085 REFID=53483

REFID=55766 REFID=55813 REFID=55829 REFID=56165 REFID=56614 REFID=55661 REFID=55657 REFID=556139 REFID=56139 REFID=556154 REFID=55154 REFID=55687 REFID=55836 REFID=55221

CAPOZZI	18	PPNP 102 48	F. Capozzi <i>et al.</i>		
DE-SALAS	18	PL B782 633	P.F. de Salas <i>et al.</i>		
PDG	18	PR D98 030001	M. Tanabashi <i>et al.</i>	(PDG Collab.)	
SEO	18	PR D98 012002	S.H. Seo <i>et al.</i>	(RENO Collab.)	
SEREBROV AARTSEN	18A 17B	PPN 49 701 PR D95 112002	A.P. Serebrov <i>et al.</i> M.G. Aartsen <i>et al.</i>	(Neutrino-4 Collab.)	
ABDURASHI		JETPL 105 753	J.N. Abdurashitov <i>et al.</i>	(IceCube Collab.) (Troitsk nu-mass Collab.)	
ABE	17A	PRL 118 151801	K. Abe <i>et al.</i>	(T2K Collab.)	
ABE	17C	PR D96 011102	K. Abe <i>et al.</i>	(T2K Collab.)	
ABE	17F	PR D96 092006	K. Abe <i>et al.</i>	(T2K Collab.)	
Also	1/1	PR D98 019902 (errat.)		(T2K Collab.)	
ADAMSON	17A	PRL 118 151802	P. Adamson <i>et al.</i>	(NOvA Collab.)	
ADAMSON	17B	PRL 118 231801	P. Adamson <i>et al.</i>	(NOvA Collab.)	
AN	17A	PR D95 072006	F.P. An <i>et al.</i>	(Daya Bay Collab.)	
ESTEBAN	17	JHEP 1701 087	I. Esteban <i>et al.</i>	(
KO	17	PRL 118 121802	Y.J. Ko <i>et al.</i>	(NEOS Collab.)	
VINYOLES	17	APJ 835 202	N. Vinyoles et al.	(),	
AARTSEN	16	PRL 117 071801	M.G. Áartsen <i>et al.</i>	(IceCube Collab.)	
ABE	16B	JHEP 1601 163	Y. Abe et al.	(Double Chooz Collab.)	
ABE	16C	PR D94 052010	K. Abe <i>et al.</i>	(Super-Kamiokande Collab.)	
ABE	16D	PRL 116 181801	K. Abe <i>et al.</i>	(T2K Collab.)	
ADAMSON	16	PRL 116 151806	P. Adamson <i>et al.</i>	(NOvA Collab.)	
ADAMSON	16A	PR D93 051104	P. Adamson <i>et al.</i>	(NOvA Collab.)	
ADAMSON	16B	PRL 117 151801	P. Adamson et al.	Daya Bay and MINOS Collab.)	
ADAMSON	16C	PRL 117 151803	P. Adamson et al.	(MINOS Collab.)	
AN	16	PRL 116 061801	F.P. An <i>et al.</i>	(Daya Bay Collab.)	
AN	16A	PR D93 072011	F.P. An et al.	(Daya Bay Collab.)	
AN	16B	PRL 117 151802	F.P. An et al.	(Daya Bay Collab.)	
CHOI	16	PRL 116 211801	J.H. Choi <i>et al.</i>	(RENO Collab.)	
PDG	16	CP C40 100001	C. Patrignani <i>et al.</i>	(PDG Collab.)	
AARTSEN	15A	PR D91 072004	M.G. Aartsen	(IceCube Collab.)	
ABE	15D	PR D91 072010	K. Abe <i>et al.</i>	(T2K Collab.)	
AGAFONOVA	15A	PRL 115 121802	N. Agafonova et al.	(OPERA Collab.)	
AN	15	PRL 115 111802	F.P. An <i>et al.</i>	(Daya Bay Collab.)	
BERGSTROM	15	JHEP 1509 200	J. Bergstrom et al.	(BARC, STON, MADU+)	
GANDO	15	PR C92 055808	A. Gando <i>et al.</i>	(KamLAND Collab.)	
ABE	14	PRL 112 181801	K. Abe <i>et al.</i>	(T2K Collab.)	
Also		PR D91 072010	K. Abe <i>et al.</i>	(T2K Collab.)	
ABE	14A	PL B735 51	Y. Abe et al.	(Double Chooz Collab.)	
ABE	14B	PR D89 092003	K. Abe <i>et al.</i>	(T2K Collab.)	
ABE	14C	PRL 112 061802	K. Abe <i>et al.</i>	(T2K Collab.)	
ABE	14H	JHEP 1410 086	Y. Abe et al.	(Double Chooz Collab.)	
Also		JHEP 1502 074 (errat.)	Y. Abe et al.	(Double Chooz Collab.)	
ADAMSON	14	PRL 112 191801	P. Adamson <i>et al.</i>	(MINOS Collab.)	
AN	14	PRL 112 061801	F.P. An et al.	(Daya Bay Collab.)	
AN	14B	PR D90 071101	F.P. An et al.	(Daya Bay Collab.)	
BELLINI	14A	NAT 512 383	G. Bellini et al.	(Borexino Collab.)	
FORERO	14	PR D90 093006	D.V. Forero, M. Tortola,		
GONZALEZ	14	JHEP 1411 052	M.C. Gonzalez-Garcia, M.		
PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)	
RENSHAW	14 12D	PRL 112 091805	A. Renshaw <i>et al.</i>	(Super-Kamiokande Collab.)	
AARTSEN	13B	PRL 111 081801	M.G. Aartsen <i>et al.</i>	(IceCube Collab.)	
ABE	13C	PL B723 66	Y. Abe <i>et al.</i> K. Abe <i>et al.</i>	(Double Chooz Collab.)	
ABE	13E	PR D88 032002 PRL 111 211803	K. Abe <i>et al.</i>	(T2K Collab.)	
ABE ADAMSON	13G 13A	PRL 111 211803 PRL 110 171801	P. Adamson <i>et al.</i>	(T2K Collab.)	
ADAMSON	13A 13B	PRL 110 251801	P. Adamson <i>et al.</i>	(MINOS Collab.) (MINOS Collab.)	
AGAFONOVA	130	JHEP 1307 004			
AGUILAR-AR		PRL 110 161801	N. Agafonova <i>et al.</i> A.A. Aguilar-Arevalo <i>et al</i>	(OPERA Collab.) . (MiniBooNE Collab.)	
AHARMIM	13	PR C88 025501	B. Aharmim <i>et al.</i>	(SNO Collab.)	
AN	13	CP C37 011001	F.P. An <i>et al.</i>	(Daya Bay Collab.)	
ANTONELLO	13	EPJ C73 2345	M. Antonello <i>et al.</i>	(ICARUS Collab.)	
ANTONELLO	13A	EPJ C73 2599	M. Antonello <i>et al.</i>	(ICARUS Collab.)	
GANDO	13	PR D88 033001	A. Gando <i>et al.</i>	(KamLAND Collab.)	
ABE	12	PRL 108 131801	Y. Abe <i>et al.</i>	(Double Chooz Collab.)	
ABE	12A	PR D85 031103	K. Abe et al.	(T2K Collab.)	
ABE	12B	PR D86 052008	Y. Abe et al.	(Double Chooz Collab.)	
ADAMSON	12	PRL 108 191801	P. Adamson et al.	(MINOS Collab.)	
ADAMSON	12B	PR D86 052007	P. Adamson <i>et al.</i>	(MINOS Collab.)	
ADRIAN-MAR		PL B714 224	S. Adrian-Martinez et al.	(ANTARES Collab.)	
AHN	12	PRL 108 191802	J.K. Ahn et al.	(RENO Collab.)	
AN	12	PRL 108 171803	F.P. An et al.	(Daya Bay Collab.)	
BELLINI	12A	PRL 108 051302	G. Bellini et al.	(Borexino Collab.)	
CHENG	12	PR D86 052009	G. Cheng et al.	(MiniBooNE/SciBooNE Collab.)	
MAHN	12	PR D85 032007	K.B.M. Mahn <i>et al.</i>	(MiniBooNE/SciBooNE Collab.)	
ABE	11	PR D83 052010	K. Abe et al.	Super-Kamiokande Collab.)	
ABE		PRL 107 041801	K. Abe <i>et al.</i>	(T2K Collab.)	
ABE	11A			(IZ LAND CILL)	
ABE	11B	PR C84 035804	S. Abe et al.	(KamLAND Collab.)	
	11B 11C	PR C84 035804 PRL 107 241801	K. Abe et al.	(Super-Kamiokande Collab.)	
ADAMSON	11B 11C 11	PR C84 035804 PRL 107 241801 PRL 106 181801	K. Abe <i>et al.</i> P. Adamson <i>et al.</i>	(Super-Ќamiokande Collab.) (MINOS Collab.)	
ADAMSON ADAMSON	11B 11C 11 11B	PR C84 035804 PRL 107 241801 PRL 106 181801 PRL 107 021801	K. Abe <i>et al.</i> P. Adamson <i>et al.</i> P. Adamson <i>et al.</i>	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.)	
ADAMSON ADAMSON ADAMSON	11B 11C 11 11B 11C	PR C84 035804 PRL 107 241801 PRL 106 181801 PRL 107 021801 PR D84 071103	K. Abe <i>et al.</i> P. Adamson <i>et al.</i> P. Adamson <i>et al.</i> P. Adamson <i>et al.</i>	(Super-Ќamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.)	
ADAMSON ADAMSON ADAMSON ADAMSON	11B 11C 11 11B 11C 11D	PR C84 035804 PRL 107 241801 PRL 106 181801 PRL 107 021801 PR D84 071103 PRL 107 181802	 K. Abe <i>et al.</i> P. Adamson <i>et al.</i> P. Adamson <i>et al.</i> P. Adamson <i>et al.</i> P. Adamson <i>et al.</i> 	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.)	
ADAMSON ADAMSON ADAMSON ADAMSON BELLINI	11B 11C 11 11B 11C 11D 11	PR C84 035804 PRL 107 241801 PRL 106 181801 PRL 107 021801 PR D84 071103 PRL 107 181802 PL B696 191	 K. Abe et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. G. Bellini et al. 	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (Borexino Collab.)	
ADAMSON ADAMSON ADAMSON ADAMSON BELLINI BELLINI	11B 11C 11 11B 11C 11D 11 11A	PR C84 035804 PRL 107 241801 PRL 106 181801 PRL 107 021801 PR D84 071103 PRL 107 181802 PL B696 191 PRL 107 141302	 K. Abe et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. G. Bellini et al. G. Bellini et al. 	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.)	
ADAMSON ADAMSON ADAMSON ADAMSON BELLINI BELLINI FOGLI	11B 11C 11 11B 11C 11D 11 11A 11A	PR C84 035804 PRL 107 241801 PRL 106 181801 PRL 107 021801 PR D84 071103 PRL 107 181802 PL B696 191 PRL 107 141302 PR D84 053007	 K. Abe et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. G. Bellini et al. G. Bellini et al. G.L. Fogli et al. 	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (Borexino Collab.) (Borexino Collab.)	
ADAMSON ADAMSON ADAMSON BELLINI BELLINI FOGLI GANDO	11B 11C 11 11B 11C 11D 11 11A 11 11 11	PR C84 035804 PRL 107 241801 PRL 106 181801 PRL 107 021801 PR D84 071103 PRL 107 181802 PL B696 191 PRL 107 141302 PR D84 053007 PR D83 052002	 K. Abe et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. G. Bellini et al. G. Bellini et al. G.L. Fogli et al. A. Gando et al. 	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (Borexino Collab.) (Borexino Collab.) (Borexino Collab.)	
ADAMSON ADAMSON ADAMSON ADAMSON BELLINI BELLINI FOGLI GANDO HUBER	11B 11C 11 11B 11C 11D 11 11A 11A	PR C84 035804 PRL 107 241801 PRL 106 181801 PRL 107 021801 PR D84 071103 PRL 107 181802 PL B696 191 PRL 107 141302 PR D84 053007 PR D84 052002 PR C84 024617	 K. Abe et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. G. Bellini et al. G.L. Fogli et al. P. Huber 	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (Borexino Collab.) (Borexino Collab.) (KamLAND Collab.) (VPI)	
ADAMSON ADAMSON ADAMSON BELLINI BELLINI FOGLI GANDO HUBER Also	11B 11C 11 11B 11C 11D 11 11A 11 11 11	PR C84 035804 PRL 107 241801 PRL 107 021801 PR 107 021801 PR D84 071103 PRL 107 181802 PL B696 191 PRL 107 141302 PR D84 053007 PR D83 052002 PR C85 029901 (errat.)	 K. Abe et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. G. Bellini et al. G. Bellini et al. G.L. Fogli et al. A. Gando et al. P. Huber P. Huber 	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (Borexino Collab.) (Borexino Collab.) (Borexino Collab.)	
ADAMSON ADAMSON ADAMSON BELLINI BELLINI FOGLI GANDO HUBER Also MUELLER	11B 11C 11 11B 11C 11D 11 11A 11 11 11 11	PR C84 035804 PRL 107 241801 PRL 107 021801 PRL 107 021801 PR D84 071103 PRL 107 181802 PL B696 191 PRL 107 141302 PR D84 053007 PR D83 052002 PR C84 024617 PR C85 029901 (errat.) PR C83 054615	K. Abe et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. G. Bellini et al. G. Bellini et al. G.L. Fogli et al. A. Gando et al. P. Huber P. Huber Th.A Mueller et al.	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (Borexino Collab.) (Borexino Collab.) (Borexino Collab.) (KamLAND Collab.) (VPI) (VPI)	
ADAMSON ADAMSON ADAMSON BELLINI BELLINI FOGLI GANDO HUBER Also MUELLER SERENELLI	11B 11C 11 11B 11C 11D 11 11A 11 11 11 11	PR C84 035804 PRL 107 241801 PRL 107 021801 PR 107 021801 PR D84 071103 PRL 107 181802 PL B696 191 PRL 107 141302 PR D84 053007 PR D83 052002 PR C84 024617 PR C85 029901 (errat.) PR C83 054615 APJ 743 24	K. Abe et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. G. Bellini et al. G. Bellini et al. G.L. Fogli et al. A. Gando et al. P. Huber P. Huber Th.A Mueller et al. A.M. Serenelli, W.C. Haxt	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (Borexino Collab.) (Borexino Collab.) (Borexino Collab.) (KamLAND Collab.) (VPI) (VPI)	
ADAMSON ADAMSON ADAMSON BELLINI BELLINI FOGLI GANDO HUBER Also MUELLER	11B 11C 11 11B 11C 11D 11 11A 11 11 11 11	PR C84 035804 PRL 107 241801 PRL 107 021801 PRL 107 021801 PR D84 071103 PRL 107 181802 PL B696 191 PRL 107 141302 PR D84 053007 PR D83 052002 PR C84 024617 PR C85 029901 (errat.) PR C83 054615	K. Abe et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. P. Adamson et al. G. Bellini et al. G. Bellini et al. G.L. Fogli et al. A. Gando et al. P. Huber P. Huber Th.A Mueller et al.	(Super-Kamiokande Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (MINOS Collab.) (Borexino Collab.) (Borexino Collab.) (Borexino Collab.) (KamLAND Collab.) (VPI) (VPI)	

AGUILAR-AR AHARMIM	10				
		PRL 105 181801	A.A. Aguillar-Arevalo et al.	(MiniBooNE	Collab)
ΑΠΑΚΙΝΗΝΙ					
	10	PR C81 055504	B. Aharmim <i>et al.</i>		Collab.)
BELLINI	10A	PR D82 033006	G. Bellini et al.	(Borexino	
DENIZ	10	PR D81 072001	M. Deniz <i>et al.</i>	(TEXONO	Collab.)
KAETHER	10	PL B685 47	F. Kaether <i>et al.</i>		
WENDELL	10	PR D81 092004	R. Wendell et al.	(Super-Kamiokande	Collab)
			J.N. Abdurashitov <i>et al.</i>		
ABDURASHI		PR C80 015807			Collab.)
ADAMSON	09	PRL 103 261802	P. Adamson <i>et al.</i>	(MINOS	
AGUILAR-AR	09B	PRL 103 111801	A.A. Aguilar-Arevalo et al.	(MiniBooNE	Collab.)
ABE	08A	PRL 100 221803	S. Abe et al.	(KamLAND	Collab.)
Also		PRL 101 119904E	S. Abe <i>et al.</i>	(KamLAND	
	00				
ADAMSON	08	PR D77 072002	P. Adamson <i>et al.</i>	(MINOS	
ADAMSON	08A	PRL 101 131802	P. Adamson <i>et al.</i>	(MINOS	Collab.)
AHARMIM	08	PRL 101 111301	B. Aharmim <i>et al.</i>	(SNO	Collab.)
Also		PR C87 015502	B. Aharmim <i>et al.</i>		Collab.)
	004				
ARPESELLA	08A	PRL 101 091302	C. Arpesella <i>et al.</i>	(Borexino	
CRAVENS	08	PR D78 032002	J.P. Cravens <i>et al.</i>	(Super-Kamiokande	Collab.)
FOGLI	08	PRL 101 141801	G.L. Fogli		,
ADAMSON	07	PR D75 092003	P. Adamson <i>et al.</i>	(MINOS	Collab)
AGUILAR-AR	07	PRL 98 231801	A.A. Aguilar-Arevalo et al.	(MiniBooNE	Collab.)
AHARMIM	07	PR C75 045502	B. Aharmim <i>et al.</i>	(SNO	Collab.)
ADAMSON	06	PR D73 072002	P. Adamson <i>et al.</i>	(MINOS	
AHN	06A	PR D74 072003	M.H. Ahn <i>et al.</i>		Collab.)
				(-	
BALATA	06	EPJ C47 21	M. Balata <i>et al.</i>	(Borexino	
HOSAKA	06	PR D73 112001	J. Hosaka <i>et al.</i>	(Super-Kamiokande	Collab.)
HOSAKA	06A	PR D74 032002	J. Hosaka <i>et al.</i>	(Super-Kamiokande	
MICHAEL	06	PRL 97 191801	D. Michael <i>et al.</i>	(MINOS	
				(10111005	conab.)
WINTER	06A	PR C73 025503	W.T. Winter <i>et al.</i>		
YAMAMOTO	06	PRL 96 181801	S. Yamamoto <i>et al.</i>	(K2K	Collab.)
AHARMIM	05A	PR C72 055502	B. Aharmim <i>et al.</i>	(SNO	Collab.)
ALIU	05	PRL 94 081802	E. Aliu <i>et al.</i>		Collab.)
ALLISON	05	PR D72 052005	W.W.M. Allison et al.	(SOUDAN-2	
ALTMANN	05	PL B616 174	M. Altmann <i>et al.</i>	(GNO	Collab.)
ARAKI	05	PRL 94 081801	T. Araki <i>et al.</i>	(KamLAND	Collab.)
ASHIE	05	PR D71 112005	Y. Ashie <i>et al.</i>	(Super-Kamiokande	
BAHCALL	05	APJ 621 L85	J.N. Bahcall, A.M. Serenelli,		(IAS+)
DEGOUVEA	05	PR D71 093002	A. de Gouvea, C. Pena-Garay		
AHARMIM	04	PR D70 093014	B. Aharmim et al.	(SNO	Collab.)
AHMED	04A	PRL 92 181301	S.N. Ahmed <i>et al.</i>		Collab.)
AHN	04	PRL 93 051801	M.H. Ahn <i>et al.</i>		Collab.)
AMBROSIO	04	EPJ C36 323	M. Ambrosio et al.	(MACRO	Collab.)
ASHIE	04	PRL 93 101801	Y. Ashie et al.	(Super-Kamiokande	Collab.)
EGUCHI	04	PRL 92 071301	K. Eguchi et al.	(KamLAND	
SMY	04	PR D69 011104	M.B. Smy et al.	(Super-Kamiokande	
AHN	03	PRL 90 041801	M.H. Ahn <i>et al.</i>	(K2K	Collab.)
AMBROSIO	03	PL B566 35	M. Ambrosio et al.	(MACRO	Collab.)
APOLLONIO	03	EPJ C27 331	M. Apollonio et al.	(CHOOZ	
ASTIER	03	PL B570 19	P. Astier <i>et al.</i>	(NOMAD	
EGUCHI	03	PRL 90 021802	K. Eguchi <i>et al.</i>	(KamLAND	Collab.)
		PRL 90 171302	Y. Gando <i>et al.</i>	(Super-Kamiokande	Collab.)
	03				
GANDO	03		A Janni	(INEN Cro	
GANDO IANNI	03	JP G29 2107	A. lanni	(INFN Grai	1 Sasso)
GANDO IANNI SANCHEZ	03 03	JP G29 2107 PR D68 113004	M. Sanchez <i>et al.</i>	(Soudan 2	n Sasso) Collab.)
GANDO IANNI	03 03	JP G29 2107 PR D68 113004 JETP 95 181	M. Sanchez <i>et al.</i> J.N. Abdurashitov <i>et al.</i>	(Soudan 2	1 Sasso)
GANDO IANNI SANCHEZ	03 03	JP G29 2107 PR D68 113004 JETP 95 181	M. Sanchez <i>et al.</i> J.N. Abdurashitov <i>et al.</i>	(Soudan 2	n Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI	03 03 02	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12	M. Sanchez <i>et al.</i> J.N. Abdurashitov <i>et al.</i> 2 211.	(Soudan 2 (SAGE	n Sasso) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD	03 03 02 02	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301	M. Sanchez <i>et al.</i> J.N. Abdurashitov <i>et al.</i> 2 211. Q.R. Ahmad <i>et al.</i>	(Soudan 2 (SAGE (SNO	n Sasso) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD	03 03 02 02 02B	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302	M. Sanchez <i>et al.</i> J.N. Abdurashitov <i>et al.</i> 2211. Q.R. Ahmad <i>et al.</i> Q.R. Ahmad <i>et al.</i>	(Soudan 2 (SAGE (SNO (SNO	n Sasso) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF	03 03 02 02 02B 02B	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001	M. Sanchez <i>et al.</i> J.N. Abdurashitov <i>et al.</i> 22 211. Q.R. Ahmad <i>et al.</i> Q.R. Ahmad <i>et al.</i> B. Armbruster <i>et al.</i>	(Soudan 2 (SAGE) (SNO) (SNO) (KARMEN 2	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV	03 03 02 02 02 02 02 02 02	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804	M. Sanchez <i>et al.</i> J.N. Abdurashitov <i>et al.</i> (2 211. Q.R. Ahmad <i>et al.</i> Q.R. Ahmad <i>et al.</i> B. Armbruster <i>et al.</i> S. Avvakumov <i>et al.</i>	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV	Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF	03 03 02 02 02B 02B	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al.	(Soudan 2 (SAGE) (SNO) (SNO) (KARMEN 2 (NuTeV) (Super-Kamiokande)	Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA	03 03 02 02 02B 02B 02 02 02 02	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al.	(Soudan 2 (SAGE) (SNO) (SNO) (KARMEN 2 (NuTeV) (Super-Kamiokande)	Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD ARMBRUSTER AVVAKUMOV FUKUDA AGUILAR	03 03 02 02 02 02 02 02 02 02 01	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007	M. Sanchez et al. J.N. Abdurashitov et al. 2 211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al.	(Soudan 2 (SAGE) (SNO (KARMEN 2 (NuTeV) (Super-Kamiokande (LSND)	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD	03 02 02 02B 02B 02 02 02 02 01 01	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR L89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. Q.R. Ahmad et al.	(Soudan 2 (SAGE) (SNO (KARMEN 2 (NuTeV (Super-Kamiokande) (LSND (SNO	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO	03 02 02 02B 02B 02 02 02 02 01 01 01	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PL 87 071301 PL B517 59	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al.	(Soudan 2 (SAGE) (SNO (KARMEN 2 (NuTeV) (Super-Kamiokande (LSND)	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM	03 02 02 02B 02 02 02 02 01 01 01 01 01	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al.	(Soudan 2 (SAGE) (SNO (KARMEN 2 (NuTeV) (Super-Kamiokande) (LSND (SNO (MACRO)	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO	03 02 02 02B 02B 02 02 02 02 01 01 01	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PL 87 071301 PL B517 59	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al.	(Soudan 2 (SAGE) (SNO (KARMEN 2 (NuTeV (Super-Kamiokande) (LSND (SNO	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA	03 02 02 02B 02 02 02 02 01 01 01 01 01 01	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 86 5651	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al.	(Soudan 2 (SAGE (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (LSND (SNO (MACRO (Super-Kamiokande	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO	03 02 02B 02B 02 02 02 01 01 01 01 01 01 01 00	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PL B517 59 PR D64 112001 PL 85651 PL B478 5	M. Sanchez et al. J.N. Abdurashitov et al. 2 211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. S. Fukuda et al. M. Ambrosio et al.	(Soudan 2 (SAGE) (SNO (KARMEN 2 (NuTeV) (Super-Kamiokande) (LSND (SNO (MACRO)	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM	03 02 02B 02B 02 02 02 01 01 01 01 01 01 01 00 00	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PL 85 7071301 PL B517 59 PR D64 112001 PRL 86 5651 PL B478 5 PRL 84 3764	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al. M. Ambrosio et al. F. Boehm et al. F. Boehm et al.	(Soudan 2 (SAGE (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (LSND (SNO (MACRO (Super-Kamiokande (MACRO	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA BOEHM FUKUDA	03 02 02B 2 02B 2 02 02 01 01 01 01 01 01 01 00 00 00	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 86 5651 PL B478 5 PRL 84 3764 PRL 85 3999	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. S. Fukuda et al. S. Fukuda et al.	(Soudan 2 (SAGE (SNO (SNO (KARMET 2 (MuTeV (Super-Kamiokande (SNO (MACRO (Super-Kamiokande (MACRO (Super-Kamiokande	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM	03 02 02B 202B 202 01 01 01 01 01 01 01 00 00	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PL 85 7071301 PL B517 59 PR D64 112001 PRL 86 5651 PL B478 5 PRL 84 3764	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al. M. Ambrosio et al. F. Boehm et al. F. Boehm et al.	(Soudan 2 (SAGE (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (LSND (SNO (MACRO (Super-Kamiokande (MACRO	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA BOEHM FUKUDA	03 02 02B 2 02B 2 02 02 01 01 01 01 01 01 01 00 00 00	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 86 5651 PL B478 5 PRL 84 3764 PRL 85 3999	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. S. Fukuda et al. S. Fukuda et al.	(Soudan 2 (SAGE (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (LSND (SNO (MACRO (Super-Kamiokande (Super-Kamiokande (Soudan 2	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALLISON APOLLONIO	03 02 02 02B 02 02 02 01 01 01 01 01 00 00 00 99	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 86 5651 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B466 415	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al. F. Boehm et al. F. Boehm et al. S. Fukuda et al. M. Mison et al. M. Mison et al. M. Applonio et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (SNO (Super-Kamiokande (MACRO (Super-Kamiokande (Soudan 2 (Soudan 2 (Soudan 2	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALISON APOLLONIO AISO	03 02 02B 02B 02 02 02 01 01 01 01 01 01 01 01 00 00 99 99	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 86 5651 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B464 115 PL B472 434 (errat.)	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Avvakumov et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. S. Fukuda et al. M. Ambrosio et al. M. Apollonio et al. M. Apollonio et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (MACRO (Super-Kamiokande (MACRO (Super-Kamiokande (Super-Kamiokande (Sudan 2 (CHOOZ (CHOOZ	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTER AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALLISON ALLISON Also FUKUDA	03 03 02 02B 202 02 02 01 01 01 01 01 01 01 01 00 00 99 999	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 85 5651 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B466 415 PL B472 434 (errat.) PRL 82 2644	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV) (Super-Kamiokande (LSND (Super-Kamiokande (MACRO) (Super-Kamiokande (Soudan 2 (CHOOZ (CHOOZ (CHOOZ (Super-Kamiokande	n Sasso) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALLISON APOLLONIO Also FUKUDA	03 03 02 02B 02B 02 02 01 01 01 01 01 01 00 00 00 99 99 99D	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR D65 112001 PR D65 112001 PR D64 112007 PR D64 112007 PR B4 112001 PL 8517 59 PR D64 112001 PL 8478 5 PRL 84 3764 PL 84 3764 PL 84 3764 PL 846 415 PL B472 434 (errat.) PR L 86 7 185	M. Sanchez et al. J.N. Abdurashitov et al. 2 211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. M. Ambrosio et al. J. Fukuda et al. M. Apollonio et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (LSND (SNO (MACRO (Super-Kamiokande (Soudan 2 (CHOOZ (CHOOZ (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande	n Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTER AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALLISON ALLISON Also FUKUDA	03 03 02 02B 202 02 02 01 01 01 01 01 01 01 01 00 00 99 999	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 85 5651 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B466 415 PL B472 434 (errat.) PRL 82 2644	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV) (Super-Kamiokande (LSND (Super-Kamiokande (MACRO) (Super-Kamiokande (Soudan 2 (CHOOZ (CHOOZ (CHOOZ (Super-Kamiokande	n Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALLISON APOLLONIO Also FUKUDA	03 03 02 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 00 00 00 99 99 99 99 99 99	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 86 5651 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B466 415 PL B472 434 (errat.) PRL 82 2644 PL B467 185 PL B447 127	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. W.W.M. Allison et al. M. Apollonio et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al. Y. Fukuda et al. W. Hampel et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (Super-Kamiokande (MACRO (Super-Kamiokande (Soudan 2 (CHOOZ (CHOOZ (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande	n Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA ALLISON	03 03 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00 00 99 99 99 99 99 99 99	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011301 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 86 5651 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B449 137 PL B449 137 PL B447 127 PL B471 127 PL B434 451	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Avvakumov et al. A. Aguilar et al. A. Aguilar et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. S. Fukuda et al. M. Apollonio et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al. Y. Fukuda et al. Y. Fukuda et al. M. Apollonio et al. M. Ambrosio et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (SNO (MACRO) (Super-Kamiokande (Soudan 2 (CHOOZ (CHOOZ (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande	n Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA ALLISON ALLISON ALLISON AISO FUKUDA FUKUDA FUKUDA ALLISON ASO FUKUDA FUKUDA ALLISON ASO FUKUDA FUKUDA AMBROSIO APOLLONIO	03 03 02 02 02 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 00 00 00 99 99 99 99 98 98	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR D65 112001 PR D65 112001 PR D65 112001 PR D64 112007 PR D64 112007 PR D64 112007 PR D64 112001 PRL 85759 PR D64 112001 PRL 84 5651 PL B478 5 PRL 84 3764 PL 844 3764 PL 847 185 PL B447 185 PL B447 127 PL B420 397	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. A. Aguilar et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. W.W.M. Allison et al. M. Apollonio et al. Y. Fukuda et al. Y. Fukuda et al. Y. Fukuda et al. M. Apollonio et al. Y. Fukuda et al. M. Ambrosio et al. M. Ambrosio et al. M. Apollonio et al. M. Ambrosio et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV) (Super-Kamiokande (LSND (Super-Kamiokande (MACRO (Super-Kamiokande (Soudan 2 (CHOOZ (CHOOZ (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (CHOOZ	 Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALLISON ALISON ALLI	03 03 02 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00 00 99 99 99 99 99 98 98 98	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PL 857 59 PR D64 112001 PL 847 6561 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B466 415 PL B472 434 (errat.) PRL 82 2644 PL B474 127 PL B434 451 PL B434 451 PL B432 0397 PRL 81 1774	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Fukuda et al. M. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. W.W.M. Allison et al. M. Apollonio et al. Y. Fukuda et al. Y. Fukuda et al. W. Hampel et al. M. Ambrosio et al. C. Athanassopoulos et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (Nu TeV (Super-Kamiokande (LSND (SNO (MACRO (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (GALLEX (MACRO (CHOOZ (CHOZ (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande) (CHOZ (LSND	n Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA ALLISON ALLISON ALLISON AISO FUKUDA FUKUDA FUKUDA ALLISON ASO FUKUDA FUKUDA ALLISON ASO FUKUDA FUKUDA AMBROSIO APOLLONIO	03 03 02 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00 00 99 99 99 99 99 98 98 98	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR D65 112001 PR D65 112001 PR D65 112001 PR D64 112007 PR D64 112007 PR D64 112007 PR D64 112001 PRL 85759 PR D64 112001 PRL 84 5651 PL B478 5 PRL 84 3764 PL 844 3764 PL 847 185 PL B447 185 PL B447 127 PL B420 397	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Fukuda et al. A. Aguilar et al. A. Aguilar et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. W.W.M. Allison et al. M. Apollonio et al. Y. Fukuda et al. Y. Fukuda et al. Y. Fukuda et al. M. Apollonio et al. Y. Fukuda et al. M. Ambrosio et al. M. Ambrosio et al. M. Apollonio et al. M. Ambrosio et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (Nu TeV (Super-Kamiokande (LSND (SNO (MACRO (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (GALLEX (MACRO (CHOOZ (CHOZ (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande) (CHOZ (LSND	 Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALLISON ALISON ALLI	03 03 02 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00 00 99 99 99 99 99 98 98 98	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PL 8517 59 PR D64 112001 PL 847 0551 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B466 415 PL B472 434 (errat.) PRL 82 2644 PRL 82 2644 PL B467 185 PL B447 127 PL B434 451 PL B434 451 PL B430 397 PRL 81 1774	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Fukuda et al. M. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. W.W.M. Allison et al. M. Apollonio et al. Y. Fukuda et al. Y. Fukuda et al. W. Hampel et al. M. Ambrosio et al. C. Athanassopoulos et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande) (CHOOZ (LSND)	n Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTER AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA ALLISON ALLISON ALLISON ALLISON ALLISON APOLLONIO Also FUKUDA FUKUDA HAMPEL AMBROSIO APOLLONIO ATHANASSO CLEVELAND	03 03 02 02 02 02 02 02 02 02 01 01 01 01 01 01 00 00 99 99 99 99 99 99 99 98 98 98 98 98 98	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 86 5651 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B464 415 PL B472 434 (errat.) PRL 82 2644 PL B467 185 PL B447 127 PL B434 451 PL B420 397 PRL 81 1774 PR C58 2489 APJ 496 505	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. A. Aguilar et al. A. Aguilar et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al. Y. Fukuda et al. M. Apollonio et al. M. Apollonio et al. M. Ambrosio et al. C. Athanassopoulos et al. B.T. Cleveland et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (Nu TeV (Super-Kamiokande (LSND (SNO (MACRO (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (GALLEX (MACRO (CHOOZ (CHOZ (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande) (CHOZ (LSND	n Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AHMAD AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALLISON APOLLONIO AIso FUKUDA FUKUDA FUKUDA FUKUDA ALLISON APOLLONIO ATHANASSO ATHANASSO ATHANASSO CLEVELAND FELDMAN	03 03 02 02 02 02 02 02 02 01 01 01 01 01 01 01 00 00 99 99 99 99 99 99 98 98 98 98 98 98	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR 05 112001 PR 05 112001 PR 05 112001 PR 054 112007 PR 054 112007 PR 054 112007 PR 054 112001 PR 87 071301 PL 8517 59 PR 054 112001 PR 48 5651 PL 847 6551 PL 847 6551 PL 847 434 (errat.) PR 846 415 PL 846 415 PL 8467 185 PL 847 127 PL 8434 451 PL 8434 451 PL 8430 397 PRL 81 1774 PR 258 2489 APJ 496 505 PR 057 3873	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Avvakumov et al. A. Aguilar et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. W.W.M. Allison et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al. Y. Fukuda et al. M. Ambrosio et al. M. Apollonio et al. M. Apollonio et al. M. Ambrosio et al. C. Athanassopoulos et al. C. Athanassopoulos et al. B.T. Cleveland et al. B.T. Cleveland et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (LSND (Super-Kamiokande (MACRO (Super-Kamiokande (Soudan 2 (CHOOZ (CHOOZ (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande) (CHOOZ (LSND (LSND (Homestake)	 Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AGUILAR AGUILAR AGUILAR AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALISON APOLLONIO AISO FUKUDA FUKUDA HAMPEL AMBROSIO APOLLONIO ATHANASSO ATHANASSO CLEVELAND FUKUDA	03 03 02 02B 02B 02 02 02 01 01 01 01 01 01 01 00 00 999 999 999	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PL 8517 59 PR D64 112001 PL 847 071301 PL 847 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B466 415 PL B472 434 (errat.) PRL 82 2644 PR B477 185 PL B447 127 PL B434 451 PL B434 451 PL B432 0397 PRL 81 1774 PR C58 2489 APJ 496 505 PR D57 3873 PRL 81 1562	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Apollonio et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al. W. Hampel et al. M. Ambrosio et al. C. Athanassopoulos et al. G. Athanassopoulos et al. B.T. Cleveland et al. B.T. Cleveland et al. G.J. Feldman, R.D. Cousins Y. Fukuda et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (Super-Kamiokande (MACRO (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (GALLEX (MACRO (CHOOZ (CHOOZ (CHOOZ (LSND (LSND (LSND (LSND (Homestake	n Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AMBROSIO BOEHM FUKUDA ALLISON	03 03 02 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 00 00 00 99 99 99 99 99 99 99 99 88 98 98 98 98	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 85 5651 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B466 415 PL B472 434 (errat.) PRL 82 2644 PL B467 185 PL B471 127 PL B454 451 PL B420 397 PRL 81 1774 PR C58 2489 APJ 496 505 PR D57 3873 PRL 81 2016	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Avvakumov et al. A. Aguilar et al. Q.R. Ahmad et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. W.W.M. Allison et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al. W. Hampel et al. M. Ambrosio et al. C. Athanassopoulos et al. C. Athanassopoulos et al. B.T. Cleveland et al. G.J. Feldman, R.D. Cousins Y. Fukuda et al. S. Hatakeyama et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (SNO (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (LSND (LSND (LSND (LSND (LSND (LSND) (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande	 Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AGUILAR AGUILAR AGUILAR AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALISON APOLLONIO AISO FUKUDA FUKUDA HAMPEL AMBROSIO APOLLONIO ATHANASSO ATHANASSO CLEVELAND FUKUDA	03 03 02 02B 02B 02 02 02 01 01 01 01 01 01 01 00 00 999 999 999	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PRL 89 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PL 8517 59 PR D64 112001 PL 847 071301 PL 847 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B466 415 PL B472 434 (errat.) PRL 82 2644 PR B477 185 PL B447 127 PL B434 451 PL B434 451 PL B432 0397 PRL 81 1774 PR C58 2489 APJ 496 505 PR D57 3873 PRL 81 1562	M. Sanchez et al. J.N. Abdurashitov et al. 2211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Apollonio et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al. W. Hampel et al. M. Ambrosio et al. C. Athanassopoulos et al. G. Athanassopoulos et al. B.T. Cleveland et al. B.T. Cleveland et al. G.J. Feldman, R.D. Cousins Y. Fukuda et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (SNO (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (LSND (LSND (LSND (LSND (LSND (LSND) (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande	n Sasso) Collab.)
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AMBROSIO BOEHM FUKUDA AMBROSIO BOEHM FUKUDA ALLISON APOLLONIO Also FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FUKUDA FULONIO ATHANASSO CLEVELAND FELDMAN FUKUDA HATAKEYAMA CLARK	03 03 02 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 00 00 00 99 99 99 99 99 99 99 99 88 98 98 98 98	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR D65 112001 PR D65 112001 PR D65 112001 PR D64 112007 PR D64 112007 PR D64 112007 PR D64 112001 PR B517 59 PR D64 112001 PR B47 071301 PL B478 5 PRL 84 3764 PL B478 5 PRL 84 3764 PL B478 5 PL B478 451 PL B479 434 (errat.) PR B467 185 PL B447 127 PL B434 451 PL B420 397 PRL 81 1774 PR C58 2489 APJ 496 505 PR D57 3873 PRL 81 1562 PRL 81 2016 PRL 81 2016 PRL 81 2016 PRL 9 345	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al. W.M. Allison et al. M. Apollonio et al. M. Apollonio et al. M. Ambrosio et al. C. Athanassopoulos et al. C. Athanassopoulos et al. G.J. Feldman, R.D. Cousins Y. Fukuda et al. G.J. Feldman et al. R. Clark et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Sudan 2 (CHOOZ (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (LEND (LEND (LEND (LSND (Homestake (Super-Kamiokande (Kamiokande (Kamiokande (IMB	 Sasso) Collab.) Colla
GANDO IANNI SANCHEZ ABDURASHI AHMAD AHMAD ARMBRUSTEF AVVAKUMOV FUKUDA AGUILAR AMBROSIO BOEHM FUKUDA ALLISON	03 03 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00 00 99 99 99 99 99 99 98 98 98 98 98 98 98	JP G29 2107 PR D68 113004 JETP 95 181 Translated from ZETF 12 PRL 89 011301 PR 011302 PR D65 112001 PRL 89 011804 PL B539 179 PR D64 112007 PRL 87 071301 PL B517 59 PR D64 112001 PRL 85 5651 PL B478 5 PRL 84 3764 PRL 85 3999 PL B449 137 PL B466 415 PL B472 434 (errat.) PRL 82 2644 PL B467 185 PL B471 127 PL B454 451 PL B420 397 PRL 81 1774 PR C58 2489 APJ 496 505 PR D57 3873 PRL 81 2016	M. Sanchez et al. J.N. Abdurashitov et al. 22 211. Q.R. Ahmad et al. B. Armbruster et al. S. Avvakumov et al. S. Avvakumov et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. M. Ambrosio et al. F. Boehm et al. S. Fukuda et al. W.W.M. Allison et al. M. Apollonio et al. M. Apollonio et al. Y. Fukuda et al. W. Hampel et al. M. Ambrosio et al. C. Athanassopoulos et al. B.T. Cleveland et al. B.T. Cleveland et al. B.T. Cleveland et al. S. J. Fukuda et al. B.T. Cleveland et al. C. Athanassopoulos et al. B.T. Cleveland et al. M. Apollonio et al. C. Athanassopoulos et al. C. Athanassopoulos et al. B.T. Cleveland et al. M. Apollonio et al. M. Apollonio et al. C. Athanassopoulos et al. C. Athanassopoulos et al. B.T. Cleveland et al. M. Apollonio et al. C. J. Feldman, R.D. Cousins Y. Fukuda et al. M. Aglietta et al.	(Soudan 2 (SAGE (SNO (SNO (KARMEN 2 (NuTeV (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Sudan 2 (CHOOZ (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (Super-Kamiokande (LEND (LEND (LEND (LSND (Homestake (Super-Kamiokande (Kamiokande (Kamiokande (IMB	 Sasso) Collab.)

REFID=49999 REFID=50075 REFID=49868 REFID=49868 REFID=49851 REFID=49851 REFID=499377 REFID=499377 REFID=49194 REFID=49194 REFID=49194 REFID=49358 REFID=49358 REFID=49358 REFID=49358 REFID=49358 REFID=49358 REFID=49358 REFID=493643 REFID=48861 REFID=48860 REFID=48872 REFID=48466 REFID=48466 REFID=48170 REFID=47511 REFID=47515 REFID=47575 REFID=47575 REFID=47575 REFID=47575 REFID=47575 REFID=47575 REFID=47575 REFID=47575 REFID=47575 REFID=47575 REFID=47575 REFID=47575 REFID=45866 REFID=45115 REFID=45866 REFID=46775 REFID=46775 REFID=46776 REFID=46776 REFID=46776 REFID=46776
REFID=46115 REFID=46470

	Collab.) Collab.) Collab.) SCUC) Collab.) Collab.) Collab.) Collab.) Collab.)
FUKUDA 96 PRL 77 1683 Y. Fukuda et al. (Kamiokande et al. FUKUDA 96B PL B388 397 Y. Fukuda et al. (Kamiokande et al. GREENWOOD 96 PR D53 6054 Z.D. Greenwood et al. (UCI, SVR, HAMPEL 96 PL B388 384 W. Hampel et al. (GALLEX et al. (G	Collab.) Collab.) SCUC) Collab.) COllab.) Collab.) Collab.) Collab.)
FUKUDA 96B PL B388 397 Y. Fukuda et al. (Kamiokande et al. GREENWOOD 96 PR D53 6054 Z.D. Greenwood et al. (UCI, SVR, (GALLEX et al. HAMPEL 96 PL B388 384 W. Hampel et al. (GALEX et al. LOVERRE 96 PL B370 156 P.F. Loverre ACHKAR 95 NP B434 503 B. Achkar et al. (SING, SACLD, CPPM, CACHER et al. AHLEN 95 PL B370 156 C. Athanassopoulos et al. (MACRO et al. ATHANASSO 95 PL 781 S.P. Ahlen et al. (LSND et al. DAUM 95 ZPHY C66 417 K. Daum et al. (FREJUS et al. HILL 95 PRL 75 2654 J.E. Hill	Collab.) SCUC) Collab.) CDEF+) Collab.) Collab.) Collab.)
GREENWOOD 96 PR D53 6054 Z.D. Greenwood et al. (UCI, SVR, (GALLEX) HAMPEL 96 PL B388 384 W. Hampel et al. (GALLEX) LOVERRE 96 PL B370 156 P.F. Loverre ACHKAR 95 NP B434 503 B. Achkar et al. (SING, SACLD, CPPM, C AHLEN 95 PL B357 481 S.P. Ahlen et al. (MACRO et al.) ATHANASSO 95 PRL 75 2650 C. Athanassopoulos et al. (LSND et al.) DAUM 95 ZPHY C66 417 K. Daum et al. (FREJUS et al.) HILL 95 PRL 75 2654 J.E. Hill	SCUC) Collab.) CDEF+) Collab.) Collab.) Collab.) Collab.)
HAMPEL 96 PL B388 384 W. Hampel et al. (GALLEX of Constraints) LOVERRE 96 PL B370 156 P.F. Loverre Constraints Co	Collab.) CDEF+) Collab.) Collab.) Collab.)
LOVERRE 96 PL B370 156 P.F. Loverre ACHKAR 95 NP B434 503 B. Achkar et al. (SING, SACLD, CPPM, C AHLEN 95 PL B357 481 S.P. Ahlen et al. (MACRO et al.) ATHANASSO 95 PRL 75 2650 C. Athanassopoulos et al. (LSND et al.) DAUM 95 ZPHY C66 417 K. Daum et al. (FREJUS et al.) HILL 95 PRL 75 2654 J.E. Hill (FREJUS et al.)	CDEF+) Collab.) Collab.) Collab.)
ACHKAR 95 NP B434 503 B. Achkar et al. (SING, SACLD, CPPM, C AHLEN 95 PL B357 481 S.P. Ahlen et al. (MACRO et al.) ATHANASSO 95 PRL 75 2650 C. Athanassopoulos et al. (LSND et al.) DAUM 95 ZPHY C66 417 K. Daum et al. (FREJUS et al.) HILL 95 PRL 75 2654 J.E. Hill (FREJUS et al.)	Collab.) Collab.) Collab.)
AHLEN 95 PL B357 481 S.P. Ahlen et al. (MACRO ATHANASSO 95 PRL 75 2650 C. Athanassopoulos et al. (LSND DAUM 95 ZPHY C66 417 K. Daum et al. (FREJUS HILL 95 PRL 75 2654 J.E. Hill (FREJUS	Collab.) Collab.) Collab.)
ATHANASSO 95 PRL 75 2650 C. Athanassopoulos et al. (LSND DAUM 95 ZPHY C66 417 K. Daum et al. (FREJUS HILL 95 PRL 75 2654 J.E. Hill (FREJUS	Collab.) Collab.)
DAUM 95 ZPHY C66 417 K. Daum et al. (FREJUS HILL 95 PRL 75 2654 J.E. Hill (FREJUS)	Collab.)
HILL 95 PRL 75 2654 J.E. Hill (
DECLAIS 04 DI D229 292 V Dadata et al	(PENN)
DECLAIS 94 PL B338 383 Y. Declais et al.	
FUKUDA 94 PL B335 237 Y. Fukuda et al. (Kamiokande et al.	Collab.)
VILAIN 94C ZPHY C64 539 P. Vilain et al. (CHARM II)	Collab.)
FREEDMAN 93 PR D47 811 S.J. Freedman et al. (LAMPF E645)	Collab.)
BECKER-SZ 92B PR D46 3720 R.A. Becker-Szendy et al. (IMB)	Collab.)
BEIER 92 PL B283 446 E.W. Beier <i>et al.</i> (KAM2 0	
Also PTRSL A346 63 E.W. Beier, E.D. Frank ((PENN)
HIRATA 92 PL B280 146 K.S. Hirata et al. (Kamiokande II et al.	Collab.)
	Collab.)
HIRATA 91 PRL 66 9 K.S. Hirata <i>et al.</i> (Kamiokande II)	Collab.)
	(KIAE)
BERGER 90B PL B245 305 C. Berger et al. (FREJUS	
HIRATA 90 PRL 65 1297 K.S. Hirata et al. (Kamiokande II et al.	
AGLIETTA 89 EPL 8 611 M. Aglietta et al. (FREJUS	
DAVIS 89 ARNPS 39 467 R. Davis, A.K. Mann, L. Wolfenstein (BNL, P	
OYAMA 89 PR D39 1481 Y. Oyama et al. (Kamiokande II e	
	Collab.)
DURKIN 88 PRL 61 1811 L.S. Durkin et al. (OSU, ANL,	
ABRAMOWICZ 86 PRL 57 298 H. Abramowicz et al. (CDHS)	
ALLABY 86 PL B177 446 J.V. Allaby et al. (CHARM	
ANGELINI 86 PL B179 307 C. Angelini et al. (PISA, ATHU, PA	
VUILLEUMIER 82 PL 114B 298 J.L. Vuilleumier et al. (CIT, SIN,	
	(INRM)
Translated from YAF 34 1418.	NALINII)
KWON 81 PR D24 1097 H. Kwon et al. (CIT, ISNG, DOELINA 20 DL 07D 210 E. Dull of the start (III.C. CIT, ISNG,	
BOEHM 80 PL 97B 310 F. Boehm et al. (ILLG, CIT, ISNG, CDOLICIU 70 PD P10 2020 ME. Could and the second and the se	
CROUCH 78 PR D18 2239 M.F. Crouch et al. (CASE, UCI, V	vviivv)