PHYSICS LETTERS

EDITORS

G.E. BROWN COPI NHAGEN P.M. ENDT UTRECHT R. GATTO ROME A.D. JACKSON STONY BROOK

L. MONTANET GENEVA E.J. SQUIRES DURHAM K. WINTER GENEVA

VOLUME 50B, 1974

NORTH-HOLLAND PUBLISHING COMPANY

AMSTERDAM

REVIEW OF PARTICLE PROPERTIES

Particle Data Group

Vladimir CHALOUPKA and Claude BRICMAN CERN, 1211 Genève 23, Switzerland

Angela BARBARO-GALTIERI, Denyse M. CHEW*, Robert L. KELLY, Thomas A. LASINSKI, Alan RITTENBERG, Arthur H. ROSENFELD, Thomas G. TRIPPE and Fumiyo UCHIYAMA

Lawrence Berkeley Laboratory[‡], University of California, Berkeley, California 94720, USA

Naomi BARASH-SCHMIDT

Brandeis University, Waltham, Massachusetts 02154, USA

Paul SÖDING

DESY, 2000 Hamburg 52, Germany

Matts ROOS

Department of Nuclear Physics, University of Helsinki, Helsinki 17, Finland

This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 45, No. 2, Part II, Supplement (1973)]. Data are evaluated, listed, averaged, and summarized in tables.

CONTENTS

	B. K-decay parameters	xi
	C. η -decay parameters	xiii
ii	D. Baryon-decay parameters	xiii
ü	VII. Statistical procedures	xv
iii	A. Confidence levels and errors	xv
iii	B. Unconstrained averaging, scale factors	xv
iv	C. Constrained fits	xv
vi vi	Acknowledgements References (for above sections)	xvi xvi
vii	Tables of particle properties	
viii	Stable particles	1
viii	Addendum	4
	Mesons	6
х	Baryons	10
х		
	ii ii iii iii iv vi vii viii viii viii	B. K-decay parameters C. η -decay parameters D. Baryon-decay parameters VII. Statistical procedures A. Confidence levels and errors A. Confidence levels and errors B. Unconstrained averaging, scale factors v C. Constrained fits vi Acknowledgements vi References (for above sections) vii Tables of particle properties viii Stable particles viii Addendum Mesons x Baryons x

* On leave of absence from University of Paris VI.

⁺ The Berkeley Particle Data Center is jointly supported by the U.S. Atomic Energy Commission, the Office of the Standard Reference Data of the National Bureau of Standards, and the National Science Foundation.

Miscellaneous tables, figures and formulae

Physical and numerical constants	15
Clebsch-Gordan coefficients, spherical harmonics and	
d functions (new)	16
SU(3) isoscalar factors	17
Probability and statistics (new)	18
Relativistic kinematics (new)	20
C.M. energy and momentum versus beam momentum	24
Particle detectors, absorbers and ranges (new)	25
Electromagnetic relations (new)	31
Radioactivity and radiation protection	32
Periodic table of the elements	32
Cross section plots	33

I. INTRODUCTION, CREDITS, CONSULTANTS

This review is an updating through January 1974 of our previous review (Particle Data Group, 1973). In this version of the text we concentrate on topics that are either new or essential. For complementary information on our standard procedures the reader is referred to our January 1970 article (Particle Data Group, 1970).

Again we wish to emphasize that we compile the experimental results of others. It is inappropriate to give us the credit for their countless hours of effort. We urge that references be given directly to the original data, and we provide complete references in the Data Card Listings for that purpose.

The responsibilities of the authors of this compilation can roughly be broken down as follows:

1) Stable particles: A. Barbaro-Galtieri, N. Barash-Schmidt and T.G. Trippe.

2) Meson resonances: V. Chaloupka, D.M. Chew, M. Roos and P. Söding.

3) Baryon resonances: A. Barbaro-Galtieri, C.

Bricman, R.L. Kelly, T.A. Lasinski and F. Uchiyama. *General:* All Berkeley authors.

Consultants: To overcome unavoidable gaps in our coverage, both intellectual and geographical, we have solicited the help of consultants:

• Chih-Yung Chien (Johns Hopkins University)

• Ronald Crawford (University of Glasgow)

• James E. Enstrom (Lawrence Berkeley Laboratory)

• Anatoli Kuznetsov (JINR, Dubna)

• R. Gordon Moorhouse (University of Glasgow)

• Horst Oberlack (Max Planck Inst. for Physics and Astrophysics, Munich)

Data card listings

Illustrative key	37
Stable particles, ordered by increasing mass	39
Mesons, $S = 0$	74
$S = \pm 1$	101
Baryons, $S = 0$	108
S = +1	147
S = -1	156
S = -2	188
S = -3	191
Appendix I. Test of $\Delta I = 1/2$ rule for K decays	192
Appendix II. SU(3) classification of resonances	193
Appendix III. Test of $\Delta I = 1/2$ rule for hyperon decays	196

• Oliver E. Overseth (University of Michigan)

• Mark Sakitt (Brookhaven National Laboratory).

The usefulness of this compilation depends in large part on the interaction between the users and authors and consultants. We appreciate comments, criticisms, and suggestions for improvements of all stages of data retrieval, processing, and presentation.

II. SELECTION OF DATA

All particles are considered to fall into one of the three groups:

1) Stable particles, immune to decay via the strong interaction

2) Meson resonances

3) Baryon resonances.

These groups are maintained within the two main parts of the compilation:

1) Tables of Particle Properties (also available in a separate data booklet)

2) Data Card Listings.

The Data Card Listings contain the original information (data, references etc.), weighted averages, comments and "mini-reviews". Immediately preceding the Data Card Listings is an Illustrative Key thereto. We attempt to give complete Data Card Listings up to our closing date (February 1, 1974) for all journals listed in the Illustrative Key. We also include preprints and unpublished conference reports which have come to our attention, but make no attempt at completeness.

Roughly 40% of our encoded results are not used for averaging. They are set off in parentheses: our reasoning is then often given in a footnote below the PHYSICS LETTERS

data. If the reason is not given, it is one of the following:

• The quantity was presented with no error stated.

• The result comes from a preprint or conference report. It is our experience that such results (and particularly the errors) often change before final publication. Accordingly we keep these new results in parentheses until they are published (or explicitly verified to us by the authors).

• It involves some assumptions that we do not wish to incorporate.

• It is of poor quality, e.g., bad signal-to-noise-ratio.

• The result is inconsistent with others, e.g., because of different methods employed, rendering averaging meaningless. See, for example, the entries listed under the S(1930) meson, which contain both a wide peak formed in $\overline{p}p$ interactions and narrow peaks reported in production experiments.

When the data for a particle have received special treatment or when they present special problems, this is noted in a mini-review in the Data Card Listings.

The Tables of Particle Properties represent the output of weighted averages and some critical judgement. The extent to which "blind" averaging has been tempered with judgement is explained in footnotes to the Tables. In general, however, the footnotes are less complete than is the collection of notes and minireviews in the Data Card Listings. The reader is therefore encouraged to familiarize himself with the Data Card Listings and, ultimately, with the original experiments.

III. NOMENCLATURE

A. Quantum numbers

The symbols $I^G(J^P)C$ represent:

- I = isospin
- G = G-parity
- J = spin
- P = space parity
- C = charge conjugation parity.

a) Mesons

The charge conjugation operator C turns particle into antiparticle and has eigenvalues ± 1 only for neutral states; so it is useful to define an extension Gwhich has eigenvalues for charged states too. It is usually* defined by

$$G = \mathcal{C} \exp\left(\mathrm{i}\pi I_{v}\right). \tag{1}$$

A neutral nonstrange state is an eigenstate of exp $(i\pi I_y)$ with eigenvalue $(-1)^I$. Then we can write the eigenvalue equation for the whole multiplet as

$$G = C_n (-1)^I, \tag{2}$$

where C_n (n for neutral) is the eigenvalue C would have if applied to the neutral member of the multiplet. Thus, for a π° . C has the eigenvalue + 1, and since I = 1, G = -1. For the charged pion there are no eigenvalues corresponding to C and to the isospin rotation, but eqs. (1) and (2) still give G = -1.

Consider a meson as a bound state of fermion-antifermion, e.g., $\overline{q}q$, with orbital angular momentum l, and with the two fermion spins coupling to give a spin S. Then one can show that the charge-conjugation eigenvalue [defined in eq. (2)] is

$$C_{\mathbf{n}} = (-1)^{l+S}. \tag{3}$$

Eqs. (2) and (3) combine to give

$$G = (-1)^{l+S+I}.$$
(4)

The parity is

$$P = -(-1)^l.$$
 (5)

Eqs. (3) and (5) combine to give

$$C_{n}P = -(-1)^{S} \tag{6}$$

so all singlet $({}^{1}S_{0}, {}^{1}P_{1}, ...)$ have $C_{n}P = -1$, and all triplet $({}^{3}S_{1}, ...)$ have $C_{n}P = +1$. For proofs of the above, see our 1969 text (Particle Data Group, 1969) and Appendix by C. Zemach.

If, instead of $\overline{q}q$, we consider the meson as a state of *boson-antiboson* (e.g., $A2 \rightarrow \overline{K}K$), it turns out that some signs cancel, and eqs. (3) and (4) [not (5)!] apply *unchanged*. Of course the mesons are usually spinless and S is zero, but the equations are more general. Eqs. (3) and (4) can be considered as selection rules forbidding many decays.

We now use eqs. (3) and (4) to introduce the concept of "Abnormal-C" mesons, i.e., mesons that cannot be composed of \overline{qq} .

* Most texts define it as in eq. (1); see, e.g., Gasiorowicz (1966); however, sometimes the rotation is taken about I_x . The difference between the two conventions is mentioned in a footnote in Källen (1964).

The unitary triplet of quarks is of course defined to have isospin and hypercharge properties such that \overline{qq} can combine (according to the SU(3) relations $\{3\} \otimes \{3\} = \{8\} \oplus \{1\}$) so as to form only unitary octets and singlets. The non-observation of "exotic" mesons (i.e., mesons in more complicated supermultiplets) is of course one of the bases of the naive quark model. But it is slightly less obvious that even some octets are forbidden by the model, namely those with $(J^P)C_n = (0^{\pm}) -, (1^{-}) +, (2^{+}) -, \dots$. Such states are also not observed, and this is an additional success of the naive quark model classification scheme.

In what follows, do not confuse "Abnormal-C" with Normal or Abnormal J^P , both of which are allowed by the quark model. The series $J^P = 0^+, 1^-, 2^+, \dots$ is called Normal because $P = (-1)^J$ as for normal spherical harmonics, and $J^P = 0^-, 1^+, \dots$ is called Abnormal.

The top part of table I shows all the low angular momentum states that can be formed from \overline{q} . Note that half of the J^P states can be formed by both a triplet and a singlet $\overline{q}q$ state, e.g., ${}^{3}P_{1}$, ${}^{1}P_{1}$ or ${}^{3}D_{2}$, ${}^{1}D_{2}$. Eq. (3) shows that ${}^{3}P_{1}$ and ${}^{1}P_{1}$ have opposite C_n , so the $\overline{q}q$ model allows both. But the states ${}^{3}P_{0}$ and ${}^{3}P_{2}$ have no ${}^{1}P$ counterparts. According to eq. (6) they have $C_nP = +1$, and with the $\overline{q}q$ model there is no way to form a state with a J^P of ${}^{3}P_{0,2}$ (i.e., $J^P =$ Normal) and with $C_nP = -1$. As mentioned, such octets have not shown up. With the help of table I one can also see that the special state ${}^{1}S_0$, $C_nP = +1$, cannot be formed, so has Abnormal C.

b) General remarks

Well-established quantum numbers are underlined in the Tables of Particle Properties (except for stable particles, where most of the quantum numbers are established). We have used flimsy evidence to guess many of the remaining ones, and we have indicated with "?" ones (in the baryon table) for which there is almost no evidence.

As is customary, we define antiparticles as the result of operating with CPT on particles, so both share the same spins, masses, and mean lives. Whenever there is a particularly interesting test of CPT invariance we include it in the Stable Particles Table.

B. Particle names

If a meson has a well-accepted colloquial name, we

use it. If not, we name it by a single symbol which specifies its baryon number B (= 0 for mesons), its isospin *I*, its hypercharge *Y*, and, for a nonstrange meson, its *G* parity. For convenience, we also list the strangeness *S*, which is related to *Y* and *B* by

S = Y - B.

The name conventions for mesons are given in the first parte of table II.

To crowd even more information onto the symbol, we sometimes add a subscript giving J^P . If J^P is not known, but must be "Normal" $(0^+, 1^-, 2^+, ...)$, e.g., because $K\pi$ decays are seen, we use the subscript N. If such modes are *not* seen (and are not otherwise forbidden), we guess that it is because J is "Abnormal", and we write, for example, K_A (1240).

For some pairs of mesons with supposedly identical quantum numbers, we also uses primes; e.g., η , η' ; f, f'.

For *baryons* no attempt has been made to attach a subscript about J and P. The name conventions are given in the second part of table II. For stable baryons of each I and Y we use the symbol standing alone; for resonances, the mass is in parentheses [i.e., N(1688), $\Lambda(1405)$, $\Sigma(1765)$, etc.]. The J^P assignments are reported in the Baryon Table

Table II Particle name conventions.

Name	Ι	Y	S	G	
		Me	sons		
η	0	0	0	+	
$\omega \text{ or } \phi^{a}$	0	0	0	_	
ρ	1	0	0	+	
π	1	0	0	_	
К ⁺ , К ^о	$\frac{1}{2}$	+1	+1		
K⁻, K̄°	Ĩ	-1	-1		
	2	Bar	yons		
N	$\frac{1}{2}$	+1	0		
Δ	3	+1	0		
Z_0, Z_1	Õ , 1	+2	+1		
۸	0	0	-1		
Σ	1	0	-1		
Ξ	$\frac{1}{2}$	-1	-2		
Ω	Õ	-2	-3		

a) Since 1973, we have used the symbol ω for those $I^G = 0^{-1}$ mesons that decay mainly into $3\pi [\omega(783), \omega(1670)]$; we reserve the symbol ϕ for $\phi(1019)$ and possible future higher-mass $I^G = 0^{-1}$ mesons that decay mainly into $\mathbf{K}\mathbf{K}$.

Table I. $I^{G}(J^{P})$ of non-strange mesons from qq model. For the distinction between abnormal J^{P} and abnormal C, see text following Eq. (6). K mesons share the same values of J^{P} as the I=0 and **1** states shown, but are not eigenstates of G. The middle column, which gathers together $(J^{P}) \underset{N \text{ or } A}{\longrightarrow} CP$, is a redundant intermediate step intended to make the table easier to read.

h -	qq State CP CP - +	(J ^P) CP Normal or abnormal	I ^G (J ^P)C _n	Examples and comments
Parity	¹ s ₀	(0 ⁻) _A -	{0 ⁺ (0 ⁻)+ 1 ⁻ (0 ⁻)+	η, η', Ε ? π
	³ s ₁	(1 ⁻) _N +	$\begin{cases} 0^{-}(1^{-}) - \\ 1^{+}(1^{-}) - \end{cases}$	ω, φ ρ
1	¹ _P	(1 ⁺) _A -	$\begin{cases} 0^{-}(1^{+}) - \\ 1^{+}(1^{+}) - \end{cases}$	В
ty +	³ P ₀	(0 ⁺) _N +	{0 ⁺ (0 ⁺)+ 1 ⁻ (0 ⁺)+	ε,5≉ δ ?
-Pari	³ P ₁	(1 ⁺) _A +	$\begin{cases} 0^{+}(1^{+}) + \\ 1^{-}(1^{+}) + \end{cases}$	D ? A1
	³ P ₂	(2 ⁺) _N +	0 ⁺ (2 ⁺)+ 1 ⁻ (2 ⁺)+	f, f' A2
1.	¹ D ₂	(2 ⁻⁾ A-	$ \begin{cases} 0^{+}(2^{-}) + \\ 1^{-}(2^{-}) + \end{cases} $	A3
ity -	³ D ₁	(1 ⁻) _N t	same as ${}^{3}S_{1}$	٥' ؟
Pari	³ D ₂	(2 ⁻) _A +	$\begin{cases} 0^{-}(2^{-}) - \\ 1^{+}(2^{-}) - \end{cases}$	Regge recurrence of the abnormal-C state $(J^{L})C_{n} = (0)$.
	³ D ₃	(3 ⁻) _N +	0 (3)- x (3)-	g
1	¹ F ₃	(3 ⁺) _A -	{J > 2	
ty + .	³ F ₂	(2 ⁺) _N +	same as ${}^{3}P_{2}$	
Pari	³ F ₃	(3 ⁺) _A +	J > 2	
	[°] F ₄	(4 ⁺) _N +	{etc.	
	ABNORM	ALC STATE	ES THAT CANNOT CO	DME FROM qq MODEL
	Abnormal C	(0 ⁻) _A +	0 ⁻ (0 ⁻)- 1 ⁺ (0 ⁻)-	All except
	states	(1 ⁻) _N -	0 ⁺ (1 ⁻)+ 1 ⁻ (1 ⁻)+	J ^P = 0 ⁻
(Have no qq	(0 ⁺) _N -	$\begin{cases} 0^{-}(0^{+}) - \\ 1^{+}(0^{+}) - \end{cases}$	are
	model	(2 ⁺) _N -	$\begin{cases} 0^{-}(2^{+}) - \\ 1^{+}(2^{+}) - \end{cases}$	J ^P = normal,
	l	(3 ⁻) _N -	$\begin{cases} 0^{+}(3^{-})+\\ 1^{-}(3^{-})+ \end{cases}$	CP = -1

v

Volume 50B, number 1

as $\frac{1}{2}^{+}$, $\frac{3}{2}^{-}$, $\frac{5}{2}^{+}$, etc., and also by the symbols P₁₁, D₁₃, F₁₅, which refer to the πp or Kp partial-wave amplitude in which the resonant state occurs (the first subscript refers to the isospin state: $2 \times I$ for N and Δ and just I for Z, Λ , and Σ). When two or more baryons have identical quantum numbers we warn the reader by adding primes to the spectroscopic symbol as explained in footnote a) of the Baryon Table.

IV. CONVENTIONS AND PARAMETERS FOR STRONG INTERACTIONS

A. Partial-wave amplitudes and resonance parameters

The vast majority of information concerning baryon resonances comes in the form of partial-wave analyses. In addition data concerning meson resonances $(\pi\pi, K\pi, \pi\pi\pi)$ are, with increasing frequency, being subjected to partial-wave analyses. We thus find it natural to introduce the resonance parameters which we compile in terms of a Breit-Wigner approximation for the partial-wave amplitude.

In general the elastic amplitude for a given angular momentum l may be written as

$$T_{11} = \frac{\eta \exp(2i\delta) - 1}{2i},$$
 (1)

where η is referred to as the absorption parameter $(0 \le \eta \le 1)$ and δ , as the phase shift. The subscripts 11 on T denote scattering from channel 1 to channel 1 (i.e., $\pi\pi \to \pi\pi$ or $\overline{K}N \to \overline{K}N$).

Fig. 1. Argand plots for the partial wave amplitude T_{11} . The outer circles are the unitarity bound ($\eta = 1$). The inner circles correspond to the Breit-Wigner approximation of eq. (2) for a) $x_1 = \Gamma_1/\Gamma = 0.75$ and b) $x_1 = 0.4$; $\epsilon = 2(M-E)/\Gamma$.

Consider the so-called non-relativistic Breit-Wigner approximation for T_{11} :

$$T_{11} = \frac{1}{2} \Gamma_1 / (M - E - \frac{1}{2} i \Gamma)$$
 (2)

where E is the c.m. energy of invariant mass, Γ_1 and Γ are the *elastic* and *total* widths, and M is called the *resonance mass.* Eq (2) is, of course, not the only possible description of a resonant amplitude; it suffices to illustrate the properties of partial-wave amplitudes which we associate with resonance behaviour in the absence of any background in the same partial wave (see, e.g., the π N D₁₅ and F₁₅ waves in the Baryon Data Card Listings). Usually the widths contain barrier-penetration factors which can vary rapidly with energy. Near threshold, $\Gamma_1(E)$ should start up as q^{2l+1} (also true for the inelastic width Γ_{β}). Various E dependences are then used for Γ_1 , mostly of the form

$$\Gamma_1(E) \propto \frac{(qR)^{2l+1}}{\text{const.} + ... + (qR)^{2l}},$$
 (3)

see Jackson (1964), Pišút and Roos (1968), and Barbaro-Galtieri (1968).

The BW-approximation to the amplitude for an inelastic process leading from channel 1 to channel β $(\pi\pi \rightarrow \overline{K}K \text{ or } KN \rightarrow \Sigma\pi, \text{ for example})$, is

$$T_{1\beta} = \frac{1}{2} (\Gamma_1 \Gamma_\beta)^{1/2} / (M - E - \frac{1}{2} i\Gamma) = (x_1 x_\beta)^{1/2} [\frac{1}{2} \Gamma / (M - E - \frac{1}{2} i\Gamma)];$$
(4)

where

$$\Gamma = \sum_{1}^{N} \Gamma_{\beta}, \quad x_{\beta} = \Gamma_{\beta} / \Gamma$$
(5)

and x_1 (called the elasticity) is often written x_e . (Note that in the Data Card Listings we use the symbol P_β rather than x_β .) The channel cross-section $\sigma_{1\beta}$ for the reaction $1 \rightarrow \beta$, for spin 0-spin 1/2 scattering, is

$$\sigma_{1\beta} = 4\pi \lambda^2 (J + \frac{1}{2}) |T_{1\beta}|^2, \tag{6}$$

where $J = l \pm \frac{1}{2}$.

Card Listings.

The important features of eq. (4) which characterize resonant behaviour in the Argand diagram (Im $T_{1\beta}$ versus Re $T_{1\beta}$) are

1) Energy variation given by circles with diameter $(x_1 x_R)^{1/2}$ and maximum amplitude at E = M of

$$T_{1\beta}^{\max} = i(x_1 x_{\beta})^{1/2}.$$
 (7)

2) A maximum in the speed near resonance, given approximately by

"Speed" (res) =
$$\left| dT_{1\beta} / dE \right|_{E=M} = \frac{2(x_1 x_\beta)^{1/2}}{\Gamma(E)},$$
 (8)

for slowly varying $\Gamma(E)$. These features may be related to the η , δ representation of $T_{.11}$. Thus when E = M, δ is either 90°($x_1 > 1/2$) or 0°($x_1 < 1/2$) and η dips to its minimum value.

These simple properties can be used to judge the presence or absence of resonance behaviour in an Argand plot. However, it must be kept in mind that eqs. (2) and (4) are only approximations to the "true" amplitude. The simple picture given above can be distorted by various effects:

• the presence of "background" in the same partial wave as the resonance

• two resonances in the same partial wave overlapping in energy

• the resonant energy *M* being close to an inelastic channel threshold, in which case a *K*-matrix-like parametrization is more appropriate.

B. SU(3) sign conventions for Λ and Σ resonances

Consider the partial width Γ_{β} of a resonance decaying into the channel β . We can always define a coupling constant such that

$$\Gamma_{\beta} \propto G_{\beta}^2.$$

In this case the inelastic amplitude in the Breit-Wigner approximation, eq. (4) will go as

$$T_{1\beta} \propto G_1 G_{\beta} / (M - E - \frac{1}{2} \mathrm{i}\Gamma),$$

where G_1 is the coupling constant for the elastic channel. In the context of exact SU(3) symmetry the relative signs of the product G_1G_β for different resonances are often useful as a consistency check on SU(3) assignment of Λ and Σ resonances. See appendix II for further details.

In the Data Card Listings for Λ and Σ resonances, we tabluate measured values for $(x_1 x_\beta)^{1/2} \propto G_1 G_\beta$. Whenever there is an explicit sign, it will be according to the convention advocated by Levi Setti (1969) and used in the table of SU(3) Isoscalar Factors presented in this review. Thus the signs multiplying the Breit-Wigner amplitudes for $\overline{K}N \rightarrow \Sigma(1385) \rightarrow \Sigma\pi$, $\Lambda\pi$ and

SU(3) RELATIVE SIGN OF RESONANT AMPLITUDES

Fig. 2. Plot adapted from Levi Setti (1969) showing the sign convention adopted here for the $\Sigma \pi$ and $\Lambda \pi$ amplitudes. Once the signs of one I = 0 and one I = 1 amplitude are fixed, the others can be measured relative to these two. Arrows here indicate signs predicted by SU(3); × marks indicate the observed phases; • indicates phase chosen according to sign convention described in text. The $\Sigma(1915)$ predictions have been changed from Levi Setti's original figure.

vii

 $\overline{KN} \rightarrow \Lambda(1405) \rightarrow \Sigma \pi$ are simply the product of the phases of the appropriate isoscalar factors. This convention is shown in fig. 2 from Levi Setti (1969).

C. Types of partial wave analyses

Partial-wave analyses (PWA) are classified into three categories in the Data Card Listings: energy-independent partial-wave analyses (IPWA) energy-dependent partial-wave analyses (DWPA) and model-dependent partial-wave analyses (MPWA) in increasing order of the number of explicit supplementary hypotheses that are used to extract the amplitudes from experimental data.

In an IPWA data at different energies are analyzed separately. Usually each partial wave included in the fit is allowed to vary freely (subject to unitarity constraints) over some large region, and waves whose angular momentum are above some cutoff value are assumed to be negligible. The sharp cutoff in angular momentum resolves continuum ambiguities in the solution (such as the overall phase ambiguity), but there remains a finite number of indistinguishable "best" solutions (i.e., solutions corresponding to identical physical observables) which have been codified by Barrelet (1972). In addition, there are generally some nearby solutions (and their associated Barrelet ambiguities) which have chi-squared values close to the minimum one.

At the end of the analysis a choice is made among these many solutions, usually on the basis of energy continuity. A popular criterion for making this choice is the shortest path technique in which the total "length" of the preferred solution is chosen to be a minimum. The definition of "length" used here is not universal but is usually closely related to the total geometrical length of the lines representing the various partial wave amplitudes in Argand plots (see the Baryon section of the Data Card Listings for examples of Argand plots). Various other criteria which are also used in some analyses are, e.g., matching with known solutions at low energies, the presence of known resonances in the final results, and limited inelasticity in high partial waves.

In a DPWA, data at different energies are fit simultaneously by using an energy dependent parametrization of the partial wave amplitudes. The parametrization is usually chosen to include both resonances and non-resonant background of some sort and an attempt is made to keep it as "model independent" as possible. Often the data are grouped into several energy bins which are fit separately rather than trying to fit the whole energy range under consideration simultaneously. One of the main advantages of DPWA over IPWA is that sparse data spread over many different energies can be analyzed, e.g., nearly all S = -1 analyses are DPWA. In addition, the built-in energy continuity helps to resolve the ambiguities that plague IPWA and eases the problems associated with resonance parameter extraction. The price one pays for these advantages lies in the danger of systematic error in the amplitudes and poor fits to the data if the parametrization is poorly chosen or insufficiently flexible.

An MPWA also uses an energy dependent parametrization, but one based on explicit model dependent theoretical assumptions such as Regge exchanges. This technique is usually applied to reactions where the data are incomplete. There is, of course, no sharp distinction between DPWA and MPWA, and a well chosen MPWA parametrization may actually be less biased than a model independent but poorly chosen DPWA parametrization.

D. Production of resonances

Hereby, we mean the observation of statistically significant peaks in invariant mass plots or, loosely, in integrated cross-sections. Many meson resonances are of this type. We expect most of these peaks to be associated with Breit-Wigner behaviour in appropriate Argand plots; thus the ρ meson peak in $\pi\pi$ mass plots is firmly related to the I = 1, $l = 1 \pi\pi$ phase shift passing through 90°.

From mass plots we can determine M, Γ and the approximate branching ratios

$$X_{\alpha}/X_{\beta} = \Gamma_{\alpha}/\Gamma_{\beta}.$$
 (9)

In the case of total cross sections, the peak above background gives us, using the optical theorem, the product $(J + \frac{1}{2})x_e$,

$$\sigma^{\text{tot}}(E=M) = 4\pi\lambda^2 (J + \frac{1}{2})x_e.$$
 (10)

V. CRITERIA FOR RESONANCES

An experimentalist who sees indications of a resonance in some energy (or mass) region will of course want to know what has been seen in that region in the past; hence, we strive to have the Data Card Listings serve as an archive for all substantial claims or evidences for resonances.

For the Tables of Particle Properties, on the other hand, we wish to be more conservative and to include only those peaks or resonances which we feel have a large chance of survival. An arrow (\rightarrow) at the left of the Tables of Particle Properties indicates that a questionable candidate has been omitted from the Table, but that it can be found in the corresponding part of the Data Card Listings. One's betting odds fur survival are of course subjective; therefore no precise criteria can be defined. In what follows we shall attempt to specify some guide lines.

a) When energy-independent partial-wave analyses are available (mostly for N*'s), approximate Breit-Wigner behaviour of the amplitude appears to us to be the most satisfactory test for a resonance. We can check that the Argand plot follows roughly a lefthand circle, and that the "speed" of the amplitude also shows a maximum near the resonance energy; further, there should be data well above the resonance, showing that the speed again decreases. Indeed proper behaviour of the partial-wave amplitude could accredit a resonance even if its elasticity is too small to make a noticeable peak in the cross-section.

Of course even if Argand plots are available, it may still be a matter of opinion as to what behaviour constitutes a resonance. Such an example is the $Z_0(1780)$ state seen in KN total cross-section experiments and in partial-wave analysis. The recent partial-wave analysis of Giacomelli (1973) finds a preferred class of solutions which exhibit a resonance-like loop in the P_{01} wave near 1740 MeV (see fig. 6 of the S = +1 mini-review in the Baryon Data Card Listings). However, Giacomelli points out that, despite the resonant-like appearance of the loop, the evidence for resonant energy dependence is inconclusive. Thus we omit the $Z_0(1780)$ from the Baryon Table. A similar quandary has existed for some time concerning the $Z_1(1900)$, and it too has been omitted from the Tables. In this case, however, the current evidence now seems to conclusively rule out the previously suspected resonant effect in the P13 partial wave.

b) When there are insufficient data to perform energy-independent analyses, one often resorts to energy-dependent partial-wave analyses (mostly for Y*'s). In this case Breit-Wigner behaviour is an input. We therefore require that resonance solutions be found by several different analyses, preferably in different channels ($\overline{K}N \rightarrow \overline{K}N$, $\pi\Sigma$, etc.), before putting the claim in the table.

c) Partial-wave analyses of three-body final states $(\pi N \rightarrow \pi \pi N)$ are becoming available. While these analyses are based on the isobar model $(\pi N \rightarrow \rho N, \pi \Delta,$ etc.) and are subject to theoretical objections of varying importance (triangle graphs, double counting, unitarity), they provide increasingly reliable information on inelastic decay modes of otherwise established resonances.

d) Most mesons, Ξ^* peaks, and high mass N* and Y* peaks fall into a category for which no partial wave analyses exist. In general we accept such peaks if they are experimentally reliable, of high statistical significance or if they are observed in several different production processes.

e) A special category of "diffractive mesons" consists of statistically significant peaks like A_1 , A_3 or Q, which are not far above the $\rho\pi$, $f\pi$ or $K^*\pi$ thresholds. Because the behaviour near threshold in these channels may be described by the Deck effect (double Regge exchange), the resonance interpretation is questionable. Several years ago we put these peaks into the Meson Table, but warned the reader not to include that we claim they are necessarily genuine resonances.

Partial-wave analyses of multimeson systems in reactions like $\pi N \rightarrow (\pi \pi \pi)$ are becoming available (Ascoli, 1973). There are several important aspects to such analyses:

i) for a given t, the $\pi\pi\pi$ vertex is assumed to be independent of the NN vertex;

ii) the $\pi\pi\pi$ decay is assumed to proceed through quasi-two-body states ($\rho\pi$, $\epsilon\pi$, etc.) in the spirit of the isobar model;

iii) in order to keep the number of parameters manageable, certain more or less plausible assumptions are made.

Through such an analysis, the A_2 peak has been confirmed to be a resonance with an observed Breit-Wigner-like phase change relative to other partial waves. In contrast, peaks like A_1 and A_3 show an enhancement in a "pure J^P " mass plot but reveal no relative 90° phase change. While this observation suggests that the A_1 and A_3 bumps to a larger part are due to non-resonant effects, mechanisms can still be invented that reproduce the A_1 "partial-wave" associating the A_1 with a pole on an unphysical sheet.

We now ask "How likely is it that the peaks of class (d) and (e) above (not checked by partial-wave analysis) will eventually be confirmed as Breit-Wigner resonances?" Most experimentally convincing peaks have been shown to be associated with resonances. But be warned of the sometimes drastic effects of thresholds (see, e.g., Solzhenitsyn, 1973); also, broad peaks may contain several resonances, or they may include a resonance narrower than the peak, plus some other complications; for example:

Before 1966 we might have tabulated the πp bumps at 1520 and 1688 MeV as single resonances, whereas partial-wave analysis shows that each contains several resonances.

Before the N'(1470, P₁₁) was confirmed in partialwave analyses, it was seen as a missing-mass or $p\pi\pi$ peak produced peripherally in high-energy pp collisions, and (like A₁, Q and A₃) was partly explained by the Deck effect and later by double-Regge-pole exchange.

Thus, we enter into the Tables of Particle Properties experimentally convincing peaks unless there is contradictory information; and we can expect that most of these peaks will eventually be confirmed as one or more resonances. But we can easily give examples of experimentally convincing peaks which in all likelihood have nothing to do with resonances: such are the K⁺p and pp total cross-section bumps near 1.2 and 3 GeV/c, respectively, and the low-energy ABC and DEF effects in the S-wave $\pi\pi$ system.

VI. CONVENTIONS AND PARAMETERS FOR WEAK AND ELECTROMAGNETIC DECAYS

A. Muon-decay parameters

The μ -decay parameters describe the momentum spectrum (ρ and η), the asymmetry (ξ and δ), and the helicity (h) of the electron in the process $\mu^{\pm} \rightarrow e^{\pm} + \nu + \overline{\nu}$. Assuming a local and lepton-conserving interaction, the matrix element may be written as

$$\sum_i \langle \overline{e} | \Gamma_i | \mu \rangle \langle \overline{\nu} | \Gamma_i (C_i + C_i' \gamma_5) | \nu \rangle,$$

where the summation is taken over i = S, V, T, A, P. Using the definitions and sign conventions of Kinoshita and Sirlin (1957), we have for the momentum parameters:

$$\begin{split} \rho &= \left[3 g_{\rm A}^2 + 3 g_{\rm V}^2 + 6 g_{\rm T}^2 \right] / D, \\ \eta &= \left[g_{\rm S}^2 - g_{\rm P}^2 + 2 g_{\rm A}^2 - 2 g_{\rm V}^2 \right] / D \end{split}$$

for the asymmetry parameters:

$$\xi = \frac{6g_{\rm S}g_{\rm P}\cos\phi_{\rm SP} - 8g_{\rm A}g_{\rm V}\cos\phi_{\rm AV} + 14g_{\rm T}^2\cos\phi_{\rm TT}}{D},$$

$$\delta = \left[-6g_{\rm A}g_{\rm V}\cos\phi_{\rm AV} + 6g_{\rm T}^2\cos\phi_{\rm TT}\right]/D\xi,$$

and for the parameter describing the helicity of the electron:

$$h = \frac{2g_{\rm S}g_{\rm P}\cos\phi_{\rm SP} - 8g_{\rm A}g_{\rm V}\cos\phi_{\rm AV} - 6g_{\rm T}^2\cos\phi_{\rm TT}}{D}.$$

Here

$$D = g_{\rm S}^2 + g_{\rm P}^2 + 4g_{\rm V}^2 + 6g_{\rm T}^2 + 4g_{\rm A}^2$$
$$g_i^2 = |C_i|^2 + |C_i'|^2,$$

and

$$\cos \phi_{ii} = \operatorname{Re}\left(C_i^* C_i' + C_i' C_i^*\right)$$

The quantities g_i are defined to be real non-negative numbers, and the ϕ_{ij} are phase angles between the *i*-type and *j*-type interactions. Under the assumption of two-component neutrinos, $C'_i = -C_i$ and $C'_j = -C_j$, the S, P, and T terms vanish, and ϕ_{AV} is the phase angle between C_A and C_V in the complex plane.

By using the above equations and the experimental determinations of ρ , η , ξ , δ , and h, limits can be placed on g_S/g_V , g_A/g_V , g_T/g_V , g_p/g_V , and ϕ_{AV} . The results, given in the Data Card Listings assume neither two-component neutrinos nor time-reversal invariance. If, however, two-component neutrinos are assumed, then $\sin \phi_{AV}$ is the amplitude of time-reversal violation. Note that most experiments study only the upper end of the spectrum where ρ and η are highly correlated, so they can only report ρ for $\eta \equiv 0$ and η for $\rho \equiv \frac{3}{4}$. The values for ρ and η we use here were obtained by combining measurements of both upper and lower ends of the spectrum and turn out to be nearly uncorrelated.

Note also that the radiative corrections are unam-

biguous only when $g_S = g_T = g_P = 0$. The same limits on g_A/g_V and ϕ_{AV} are obtained, however, as when g_S, g_T , and g_P are left free.

Current values for the asymmetry parameters as well as $|g_A/g_V|$ and ϕ_{AV} are given in the Addendum to the Stable Particle Table. In addition, upper limits on $|g_S/g_V|$, $|g_T/g_V|$ and $|g_P/g_V|$ are given in the μ section of the Stable Particle Data Card Listings.

B. K-decay parameters

B.1. Dalitz plot for $K \rightarrow 3\pi$ decays

The small deviation from uniformity of the Dalitz plot for the 3π decay of the K meson is usually described by a "slope parameter" (Dalitz, 1956). For the τ and τ' decays of the charged K's, and the τ^{o} decay mode of the K_{L}^{o} , we parametrize the Dalitz plot distribution by the expression

$$|M|^2 \propto 1 + g \frac{s_3 - s_0}{m_{\pi^+}^2} + h \left(\frac{s_3 - s_0}{m_{\pi^+}^2}\right)^2 + j \frac{s_2 - s_1}{m_{\pi^+}^2} + \dots \quad (1)$$

where m_{π}^2 has been introduced so as to make the coefficients g, h, and j dimensionless, and

$$s_{i} = (P_{K} - P_{i})^{2} = (m_{K} - m_{i})^{2} - 2m_{K}T_{i} \qquad i = 1, 2, 3$$

$$s_{0} = \frac{1}{3}\sum_{i} s_{i} = \frac{1}{3}(m_{K}^{2} + m_{1}^{2} + m_{2}^{2} + m_{3}^{2}).$$

Here the P_i are 4-vectors, m_i and T_i are mass and kinetic energy of the *i*th pion, and the index 3 is used for the odd pion.

The coefficient g is a measure of the slope in the variable s_3 (or T_3) of the Dalitz plot, while h measures the quadratic dependence on s_3 . The coefficient j is related to the asymmetry of the plot and must be zero if CP invariance holds. Note also that if CP is good, g must be the same for τ^+ and τ^- , and similarly for h.

At present there is no compelling experimental evidence for either the h or the j term (for upper limits on the j term, see section B.3(b) below). Thus we stop the above expansion at the first term and list only g. Since different experiments use different forms for $|M|^2$, in order to compare the experiments we have converted to g whatever coefficients have been measured. See the mini-review in the K[±] section of the Stable Particle Data Card Listings for details on this point. The results are given in the Addendum to the Stable Particle Table and in the K^{\pm} and K_{L}^{o} sections of the Stable Particle Data Card Listings.

Relations among τ^{\pm} , τ'^{\pm} , and τ° are predicted by the $\Delta I = \frac{1}{2}$ rule. See Appendix I for these relations and a discussion of this rule.

B.2. Form factors in K_{13} leptonic decays

Assuming that only the vector current contributes to these decays, we write the matrix element as

$$M \propto f_{+}(q^{2})[(P_{K}+P_{\pi})_{\mu}\bar{u}_{l}\gamma_{\mu}(1+\gamma_{5})u_{\nu}] + f_{-}(q^{2})[m_{l}\bar{u}_{l}(1+\gamma_{5})u_{\nu}], \qquad (2)$$

where $P_{\rm K}$ and P_{π} are the four momenta of K and π mesons; m_l is the lepton mass; f_+ and f_- are dimensionless form factors which can depend only on $q^2 = (P_{\rm K} - P_{\pi})^2$, the square of the momentum transfer to the leptons. The parameters we list are λ_{\pm} , the energy dependence of the $f_{\pm}(q^2)$ form factor, assuming the form

$$f_{\pm}(q^2) = f_{\pm}(0) [1 + \lambda_{\pm}(q/m_{\pi})^2]; \qquad (3)$$

and ξ , the ratio of the two form factors,

 $\xi = f_{-}/f_{+}$

The quantity ξ can be determined in different ways:

1) By measuring the $K_{\mu3}/K_{e3}$ branching ratio and comparing it with the theoretical ratio as given in terms of $\xi(0) = f_{-}(0)/f_{+}(0)$.

$$\Gamma(K_{\mu3}^{\pm})/\Gamma(K_{e3}^{\pm}) = 0.6457 + 0.1264 \text{ Re } \xi + 0.0192|\xi|^2$$

+ 1.4115 λ_+ + 0.4754 λ_- Re ξ + 0.0080 λ_+ Re ξ ,
 $\Gamma(K_{\mu3}^{o})/\Gamma(K_{e3}^{o}) = 0.6452 + 0.1246 \text{ Re } \xi + 0.0186|\xi|^2$
+ 1.3162 λ_+ + 0.4370 λ_- Re ξ + 0.0064 λ_+ Re ξ .

See Cabibbo (1966) and Fearing et al. (1970) (for the charge-dependent formulas). Note that the first constant has been changed to 0.6457; the earlier value was a misprint \dagger , which we copied from Cabibbo (1966).

2) By studying the Dalitz plot of the $K_{\mu3}$ decay. The K_{e3} Dalitz plot distribution is only dependent upon the λ_{+} parameter, whereas the $K_{\mu3}$ distribution

[†] We thank Drs. H.W. Fearing and J. Smith for calling this mistake to our attention.

is dependent upon λ_{-} , λ_{+} , ξ . Often experimenters have measured only the momentum spectrum of either the π or the lepton and compared it with the predicted spectrum. See the note on form factors in the K[±] Data Card Listings for a discussion of this method. For a formula relating the Dalitz plot variables to ξ , see for example Brene et al. (1961).

3) By measuring the muon polarization in $K_{\mu3}$ decay. In the rest frame of the K the μ is expected to be polarized in the direction A with P = A/|A|, where A is given (Cabibbo and Maksymowicz, 1964) by

$$A = \alpha_1(\xi) p_{\mu}$$

$$-a_{2}(\xi)\left\{\frac{\boldsymbol{p}_{\mu}}{m_{\mu}}\left[m_{\mathrm{K}}-E_{\pi}+\frac{\boldsymbol{p}_{\pi}\cdot\boldsymbol{p}_{\mu}}{|\boldsymbol{p}_{\mu}|^{2}}\left(E_{\mu}-m_{\mu}\right)\right]+\boldsymbol{p}_{\pi}\right\}$$
$$+m_{\mathrm{K}}\,\mathrm{Im}\,\xi(q^{2})(\boldsymbol{p}_{\pi}\times\boldsymbol{p}_{\mu}).$$

If time-reversal invariance holds, ξ is real, and thus there is no polarization perpendicular to the K-decay plane.

If we remove the assumption of a pure vector current, then the matrix element for the decay, in addition to the terms in eq. (2), would contain

+
$$2m_{\mathbf{K}}f_{\mathbf{S}}\bar{u}_{\varrho}(1+\gamma_{5})u_{\nu}$$

+ $(2f_{\mathbf{T}}/m_{\mathbf{K}})(P_{\mathbf{K}})_{\lambda}(P_{\pi})_{\mu}\bar{u}_{\varrho}\sigma_{\lambda\mu}(1+\gamma_{5})u_{\nu},$

where f_S is the scalar form factor and f_T is the tensor form factor. In the case of the K_{e3} decays where the f_- term can be neglected, experiments have yielded limits on $|f_S/f_+|$ and $|f_T/f_+|$.

The experimental results for ξ , λ_{\pm} , and the upper limits on $|f_S/f_+|$ and $|f_T/f_+|$ are given in the K[±] and K^o_L sections of the Stable Particle Data Card Listings. See the note on form factors in the K[±] Data Card Listings for discussions of these results.

B.3. CP violation in K^o decays

We list parameters for four different reactions in which *CP* can be tested (for details, see Okun and Rubbia (1967), Steinberger (1969), and Wolfenstein (1969)).

a) $K_S \rightarrow \pi^+ \pi^- \pi^0$. The quantity measured here is the ratio of amplitudes

$$A_{\rm S}({\rm K}_{\rm S} \rightarrow \pi^+ \pi^- \pi^0) / A_{\rm L}({\rm K}_{\rm L} \rightarrow \pi^+ \pi^- \pi^0) \equiv x + iy.$$
(4)

If *CPT* invariance holds and there is no I = 3 state

present, then x can be neglected and *CP* violation would be observed as a nonzero y. We give the result for eq. (4) in the K_L^0 section of the Stable Particle Table and under Branching Ratio R4 in the K_S^0 section of the Stable Particle Data Card Listings. Our procedure is to assume that x = 0, and to list $(A_S/A_L)^2$ in the form of a branching ratio.

b) Charge asymmetry in $K_L \rightarrow 3\pi$ decays. As mentioned above, the presence of a term in $(s_2 - s_1)$ in expression (1) describing the Dalitz plot distribution for τ^{\pm} , τ° decays of K mesons would be an indication of *CP* violation. Rather than listing values of the $(s_2 - s_1)$ coefficient *j* in eq. (1), we choose to list σ_{\pm} from the equivalent expression

$$|M|^{2} \propto 1 + \sigma_{\pm}(2/\sqrt{3})(T_{+} - T_{-})/T_{\pm \max} + (CP \text{ nonviolating terms}),$$
(5)

where T_{\pm} are the kinetic energies of the charged pions. We have momentarily abandoned the form involving the Mandelstam variables s_i in favour of eq.(5) because the latter has been consistently used by experimenters searching for *CP* violation. We list σ_{\pm} among the *CP*-violating parameters at the back of the K_L^0 section of the Stable Particle Data Card Listings. Note that only upper limits have been reported for this quantity.

c) Asymmetry in the $K_L \rightarrow \pi^{\mp} l^{\pm} \nu$ decays. The quantity measured and compiled here is

$$\delta = \frac{\Gamma(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{-} l^{+} \nu) - \Gamma(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} l^{-} \nu)}{\Gamma(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{-} l^{+} \nu) + \Gamma(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} l^{-} \nu)}$$

This asymmetry violates *CP* invariance. If *CPT* is good, for a pure K_L^o beam, δ can be written as

$$\delta = 2[(1-|x|^2)/(|1-x|^2)] \text{ Re }\epsilon,$$

where x is the $\Delta S = \Delta Q$ -violating parameter defined in section B.4, and ϵ is the parameter of the expansion

$$|\mathbf{K}_{\mathrm{L}}\rangle = [(1+\epsilon)|\mathbf{K}\rangle - (1-\epsilon)|\mathbf{\widetilde{K}}\rangle] / [2(1+|\epsilon|^2)]^{1/2}, \quad (6a)$$

$$|\mathbf{K}_{\mathbf{S}}\rangle = [(1+\epsilon)|\mathbf{K}\rangle + (1-\epsilon)|\overline{\mathbf{K}}\rangle] / [2(1+|\epsilon|^2)]^{1/2}.$$
 (6b)

We give δ in the Addendum to the Stable Particle Table. In addition, in the K_L^o *CP*-violation section of the Stable Particle Data Card Listings, we list δ separately for $K_L^o \rightarrow \pi \mu \nu$ and $K_L^o \rightarrow \pi e \nu$. d) $K_L \rightarrow 2\pi$ decay. The relevant parameters are

$$\eta_{+-} = A(K_L \to \pi^+ \pi^-) / A(K_S \to \pi^+ \pi^-) = |\eta_{+-}| \exp(i\phi_{+-}),$$

$$\eta_{oo} = A(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{o} \pi^{o}) / A(\mathbf{K}_{\mathrm{S}} \rightarrow \pi^{o} \pi^{o}) = |\eta_{oo}| \exp(i\phi_{oo}),$$

 ϵ , defined in eqs. (6) above, and

$$\epsilon' = \frac{1}{2} i \sqrt{2} \left[\exp i(\delta_2 - \delta_0) \right] \operatorname{Im} (A_2/A_0).$$

Here, A_i and δ_i are the amplitude and phase of $\pi\pi$ scattering at the K mass, defined by

$$\langle I = 0 | T | \mathbf{K} \rangle = \exp(i\delta_0) A_0,$$

$$\langle I = 2 | T | \mathbf{K} \rangle = \exp(i\delta_2) A_2.$$

Wu and Yang (1964) have derived the relationships

$$\eta_{+-} = \epsilon + \epsilon',$$

$$\eta_{00} = \epsilon - 2\epsilon'.$$

We give η_{+-} , η_{00} , ϕ_{+-} , and ϕ_{00} in the Addendum to the Stable Particle Table. The phases are measured directly, whereas the magnitudes η_{+-} and η_{00} are derived parameters. We use, as far as we can, the directly measured quantities as input and calculate η_{+-} and η_{00} from the values given by our constrained fits. Therefore, if one looks at the Data Card Listings, most of the $|\eta|$ measurements appear in the form of branching ratios, with appropriate comments. We then give the values of η_{+-} and $|\eta_{00}|^2$ in a separate list at the end of the *CP*-violating parameters section of the K_L^0 section of the Stable Particle Data Card Listings.

B.4. $\Delta S = \Delta Q$ rule in K^o decays

The relative amount of $\Delta S \neq \Delta Q$ component present is measured by the parameter x, defined as

$$x = A(\mathbf{K}^{\mathbf{o}} \to \pi^{-} l^{+} \nu) / A(\mathbf{K}^{\mathbf{o}} \to \pi^{-} l^{+} \nu).$$

We list Re $\{x\}$ and Im $\{x\}$ for both K_{e3} and K_{µ3} at the end of the Stable Particle Data Card Listings and give values in the Addendum to the Stable Particle Table.

C. n-decay parameters

As a test of possible C violation in electromagnetic interactions, a number of experiments have looked for possible charge asymmetries in the decays $\eta \rightarrow \pi^+\pi^-\pi^0$ and $\eta \rightarrow \pi^+\pi^-\gamma$. For both modes we use the convention

Asymmetry =
$$\frac{N^+ - N^-}{N^+ + N^-}$$

where N^{\pm} means the number of events with the $\pi^{(\pm)}$ energy greater than the $\pi^{(\mp)}$ energy in the η rest frame. We list the asymmetry parameters in the η section of the Stable Particle Data Card Listings and give average values in the Addendum to the Stable Particle Table.

D. Baryon-decay parameters

$$B_i \rightarrow B_f + \ell + \nu$$
.

Assuming V, A theory, neglecting "induced" scalar, "induced" pseudoscalar, and axial weak-magnetism terms, and neglecting the q^2 dependence of the form factors, the baryon part of the matrix element for these decays may be written (Goldberger and Treiman, 1958) as

$$\langle \mathbf{B}_{\mathbf{f}} | \boldsymbol{\gamma}_{\lambda} (\boldsymbol{g}_{\mathbf{V}} - \boldsymbol{g}_{\mathbf{A}} \boldsymbol{\gamma}_{\mathbf{S}}) + (\boldsymbol{g}_{\mathbf{W}} / \boldsymbol{m}_{\mathbf{B}_{\mathbf{i}}}) \sigma^{\lambda \nu} \boldsymbol{q}_{\nu} | \mathbf{B}_{\mathbf{i}} \rangle,$$

where B_i and B_f represent initial and final baryons, g_A and g_V the axial and vector coupling constant, g_W the weak magnetism coupling constant, and q_v the sum of the lepton momenta. Here the Pauli representation is used for the γ matrices. The definition of g_A/g_V is

$$g_{\rm A}/g_{\rm V} = |g_{\rm A}/g_{\rm V}| \exp{(\mathrm{i}\delta)},$$

where δ is $0 + n\pi$ if time-reversal invariance holds (see Jackson et al., 1957).

In neutron beta decay the measurements are consistent with time reversal, so g_A/g_V is nearly real and has been considered to be such in all the baryon leptonic decays. Notice that by using the above definition of the matrix element with the Pauli representations, the value of g_A/g_V in neutron beta decay is negative.

Due to statistical limitation the weak magnetism form factor g_W is usually assumed from CVC and SU(3), so only g_A and g_V are determined experimentally. This determination is accomplished in a variety of ways:

a) The lepton-neutrino angular correlation provides a measure of the absolute value of g_A/g_V (for relevant formulas, see, e.g., Albright, 1959).

b) The up-down asymmetry of the lepton from po-

D.1. A/V ratio for baryon leptonic decays Consider the decay

larized baryon decays provides a measure of g_A/g_V with its sign (for relevant formulas, see, e.g. Albright, 1959).

c) The lepton spectrum, given enough statistics, provides a measure of g_A/g_V with its sign (for relevant formulas, see, e.g., Bender, 1968).

d) The polarization of the decay baryon, from polarized or unpolarized initial baryon, also provides g_A/g_V with its sign (for formulas, see, e.g., Willis and Thompson, 1968).

We compile the ratio g_A/g_V with its sign, for those decays for which it has been measured. For the neutron beta decay we compile also the phase δ .

All the coupling constants and decay rates for baryon leptonic decays are related by Cabibbo's theory (Cabibbo, 1964). The latest fits to this theory can be found in Ebenhöh (1971) and Roos (1973).

D.2. Asymmetry parameters in nonleptonic hyperon decays

The transition matrix for the hyperon decay may be written as

$$M = s + p(\boldsymbol{\sigma} \cdot \boldsymbol{q}), \tag{7}$$

where s and p are the parity-changing and the parity conserving amplitudes, respectively; σ is the Pauli spin operator, and q is a unit vector along the direction of the decay baryon in the hyperon rest frame.

The asymmetry parameters are defined by the relations

$$\alpha = 2 \operatorname{Re} (s^*p)/(|s|^2 + |p|^2),$$

$$\beta = 2 \operatorname{Im} (s^*p)/(|s|^2 + |p|^2),$$

$$\gamma = (|s|^2 - |p|^2)/(|s|^2 + |p|^2).$$

With the transition matrix (7), the angular distribution of the decay baryon, in the hyperon rest system, is of the form

$$I = 1 + \alpha \boldsymbol{P}_{\mathbf{Y}} \cdot \boldsymbol{q},$$

where $P_{Y} = \langle Y | \sigma | Y \rangle$ is the hyperon polarization.

In the notation of Lee and Yang (1957) the polarization $P_{\rm B}$ of the decay baryon is [‡]

$$P_{\rm B} = \frac{(\alpha + P_{\rm Y} \cdot q)q + \beta(P_{\rm Y} \times q) + \gamma q \times (P_{\rm Y} \times q)}{1 + \alpha P_{\rm Y} \cdot q} ,$$

where $P_{\rm B}$ is defined in that rest system of the baryon obtained by a Lorentz transformation along q from the hyperon rest system in which q and $P_{\rm Y}$ are defined. Note that α is the helicity of the decay baryon for unpolarized hyperons.

The three parameters α , β , and γ satisfy the relation $\alpha^2 + \beta^2 + \gamma^2 = 1$.

It is then convenient to describe hyperon nonleptonic decays in terms of the two independent parameters α and the angle ϕ defined by

$$\beta = (1 - \alpha^2)^{1/2} \sin \phi, \gamma = (1 - \alpha^2)^{1/2} \cos \phi,$$

which has a more nearly Gaussian distribution than β or γ . Evidently

$$-\frac{1}{2}\pi \le \phi \le \frac{1}{2}\pi \quad \text{for} \quad \gamma > 0.$$

+
$$\frac{1}{2}\pi \le \phi \le \frac{3}{2}\pi \quad \text{for} \quad \gamma < 0.$$

In discussing time-reversal invariance, the quantity of interest is Δ , defined by

$$\alpha = 2|s||p| \cos \Delta/(|s|^2 + |p|^2),$$

$$\beta = -2|s||p| \sin \Delta/(|s|^2 + |p|^2);$$

that is Δ is the phase angle of s relative to p. Evidently

$$-\frac{1}{2}\pi \leq \Delta \leq \frac{1}{2}\pi \quad \text{for} \quad \alpha > 0,$$

+ $\frac{1}{2}\pi \leq \Delta \leq \frac{3}{2}\pi \quad \text{for} \quad \alpha < 0.$

Under the assumption of time-reversal invariance, the angle Δ must satisfy the relation

$$\Delta = \delta_s - \delta_p,$$

modulo π , where δ_s and δ_p are the pion-baryon scattering phase shifts at the appropriate energy and for the appropriate isospin state. For Λ decay, assuming the validity of the $|\Delta I| = \frac{1}{2}$ rule,

$$\Delta = \delta_s - \delta_p = (6.8 \pm 2.0) \text{ deg. } \ddagger$$

In the Stable Particle Data Card Listings we give α

[‡] This value for $\delta_s - \delta_p$ is derived from the phase-shift analyses by Roper et al. (1965). The error is our estimation of the uncertainty.

[‡] Note that Lee and Yang (1957) contains a misprint. The minus sign in the definition of β should be replaced by a 2. In addition, our unit vector q is the direction of the baryon, whereas their unit vector p is the direction of the pion.

and ϕ for each decay since they are the most closely related to the experiments and are essentially uncorrelated. Whenever necessary we have changed the signs of the reported values, so as to agree with our conventions. In the Stable Particle Table we give α , ϕ , and Δ with errors; and for convenience we also give the central value of γ , without an error.

VII. STATISTICAL PROCEDURES

This section is a much abbreviated version of section IX in the text of our January 1970 edition (Particle Data Group, 1970) to which the reader is referred for details. See also the mini-review on K* masses and mass differences in the K*(892) section of the Meson Data Card Listings.

A. Confidence levels and errors

Quoted errors represent one standard deviation (σ) . Upper and lower limits represent 68.3% confidence bounds (1σ) , unless otherwise stated. The errors in the Tables of Particle Properties and the errors of the averages in the Data Card Listings often include a scale factor S; see section VII.B. below.

Quantities that have changed more than 1σ since our April 1973 edition (Particle Data Group, 1973) are italicized in the Tables of Particle Properties. For a discussion see section V.B. in the text of the 1970 edition (Particle Data Group, 1970).

B. Unconstrained averaging, scale factors

In the absence of constraints, we calculate a weighted average

$$\overline{x} \pm \delta \overline{x} = \sum w_i x_i / \sum w_i \pm (\sum w_i)^{-1/2};$$

$$w_i = 1/(\delta \overline{x}_i)^2,$$
(1)

where the sums run over N experiments. We also calculate χ^2 and compare it with its expectation value of N-1. If $\chi^2 > N-1$, we increase the error $\delta \bar{x}$ in eq. (1) by a factor

$$S = [\chi^2/(N-1)]^{-1/2}.$$

It is easy to design statistical tests for determining whether one experiment (or a group of experiments) is consistent with the other experiments. However, statistics does not tell us who is wrong in case of contradictions. When $S \ge 1$, one can conclude either that: 1) some (or all) experiments are wrong, or

2) some (or all) experiments have underestimated their errors, or

3) the experiments do not measure the same quantity (systematic errors).

We do our best to resolve these cases. If we cannot, we assume that all experimentalists underestimated their errors by the same scale factor. If we scale up all input errors by this factor, χ^2 returns to N - 1, and of course the output error scales up by the same factor.

If all the experiments have errors of about the same size, the above procedure is straightforward. If, however, there are both precise and imprecise (large errors) measurements of a particular quantity, one must be very careful not to permit the imprecise ones to "dilute" the scale factor. See our January 1970 edition (Particle Data Group, 1970) for the prescription we use to handle this effect.

We often plot an ideogram to guide the reader in deciding which data he might reject before making his own selected average.

For further discussion of ideograms and scale factors, we refer the reader to section IX of our January 1970 edition (Particle Data Group, 1970).

C. Constrained fits

The information on partial-decay fractions P_i^{\ddagger} and partial widths $\Gamma_i = P_i \Gamma_{\text{total}}$ is frequently given by branching ratios R_j , say, $R_1 = P_1/(P_1+P_2)$, $R_2 = P_2/P_3$, $R_3 = P_1/P_2$, $R_4 = P_3/(P_1+P_2+P_3)$, etc.

The number of experimental inputs R_j is often greater than the number of decay modes. In these cases we fit all available information on the P_i , Γ_i , and R_j subject to the constraint $\Sigma P_i = 1$. When, in addition, the input R_j are contradictory so that scale factors may have to be introduced, one has to resort to iterative procedures.

The Data Card Listings give the values of the fitted R_i , P_i , and Γ_i , together with the error matrices of the P_i and of the Γ_i . For details about this procedure, the reader is referred to the text of the January 1970 edition (Particle Data Group, 1970), section IV.B.

^{*} We use the symbol P_i for partial-decay fractions throughout the Data Card Listings for stable particles, mesons, and baryons, although for baryons, x_i is the commonly accepted symbol. See eq. (IV.5).

ACKNOWLEDGMENTS

We thank Betty Armstrong for handling much of the data processing and physical composition of this publication, Mary Forman for writing our partial-wave plotting program, and Professor J.D. Jackson for his continuing useful comments and criticism. The European members of the Particle Data Group wish to acknowledge the generous support of CERN, in particular they thank Dr. R. Armenteros and Dr. A. Gunther.

REFERENCES

- C.H. Albright, Phys. Rev. 115 (1959) 750.
- G. Ascoli et al., Phys. Rev. D7 (1973) 669.
- A. Barbaro-Galtieri, Baryon resonances in: Advances in particle physics, eds. R.L. Cool and R.E. Marshak (Wiley, New York, 1968), Vol. 2. See specifically, Table IV and figs. 10 and 12.
- E. Barrelet, Nuovo Cim. 8A (1972) 331.
- I.Bender, V. Linke and H.J. Rothe, Z. Physik 221 (1968) 190.
- N. Brene, L. Egardt and B. Qvist, Nucl. Phys. 22 (1961) 553.
- N. Cabibbo, Phys. Rev. Lett. 10(1963) 531.
- N. Cabibbo and A. Maksymowicz, Phys. Lett. 9 (1961) 352.
- N. Cabibbo, Proc. 13th Intern. Conf. on High energy physics, Berkeley, 1966 (University of California Press, Berkeley, 1967) p. 34.
- R.H. Dalitz, Proc. Phys. Soc. (London) 69A (1956) 527.
- H. Ebenhöh, F. Eisele, H. Filthuth, W. Föhlisch, V. Hepp, E. Leitner, W. Presser, H. Schneider, T. Thouw and G. Zech, Z. Physik 241 (1971) 473.
- H.W. Fearing, E. Fischbach and J. Smith, Phys. Rev. D2 (1970) 512.
- S. Gasiorowicz, *Elementary particle physics* (Wiley, New York, 1966).
- M.L. Goldberger and S.B. Treiman, Phys. Rev. 11 (1958) 354.
- D.J. Herndon, A. Barbaro-Galtieri and A.H. Rosenfeld, *nN* partial-wave amplitudes – a compilation, Lawrence Radia-

tion Laboratory Report UCRL-20030 π N, Feb. 1972, p. 4, eq. (9).

- J.D. Jackson, S.D. Treiman and H.W. Wyld Jr., Phys. Rev. 106 (1957) 517.
- J.D. Jackson, Nuovo Cim. 34 (1964) 1644.
- G. Källén, *Elementary particle physics* (Addison-Wesley Publ. Co., Reading, Mass., 1964).
- T. Kinoshita and A. Sirlin, Phys. Rev. 108 (1957) 844.
- T.D. Lee and C.N. Yang, Phys. Rev. 108 (1957) 1615.
- R. Levi Setti, Rapporteur talk at the Lund Intern. Conf. on Particle physics (Lund, June 1969).
- L.B. Okun and C. Rubbia, Proc. Heidelberg Conf. on Elementary particles (1967), p. 301.
- Particle Data Group (1969): N. Barash-Schmidt, A. Barbaro-Galtieri, L.R. Price, A.H. Rosenfeld, P. Söding, C.G. Wohl, M. Roos and G. Conforto, Rev. Mod. Phys. 41 (1969) 109.
- Particle Data Group (1970): A. Barbaro-Galtieri, S.E. Derenzo, L.R. Price, A. Rittenberg, A.H. Rosenfeld, N. Barash-Schmidt, C. Bricman, M. Roos, P. Söding and C.G. Wohl, Rev. Mod. Phys. 42 (1970) 87.
- Particle Data Group (1973): T.A. Lasinski, A. Barbaro-Galtieri, R.L. Kelly, A. Rittenberg, A.H. Rosenfeld, T.G. Trippe, N. Barash-Schmidt, C. Bricman, V. Chaloupka, P. Söding and M. Roos, Rev. Mod. Phys. 45, No. 2, Part II, supplement (1973).
- J. Pišút and M. Roos, Nucl. Phys. B6 (1968) 325.
- L.D. Roper, R.M. Wright and B.T. Feld, Phys. Rev. 138 (1965) B190.
- M. Roos, Univ. of Helsinki report no. 66 (unpublished, 1973).
- A.I. Solzhenitsyn, *The Gulag Archipelago*, (YMCA-Press, 1973), p. 182.
- J. Steinberger, CERN Topical Conf. on Weak interactions, CERN 69-7 (1969) p. 291.
- W. Willis and J. Thompson, Leptonic decays of elementary particles, in: Advances in particle physics, eds. R.L. Cool and R.E. Marshak (Wiley, New York, 1968), Vol. 1, p. 295.
- L. Wolfenstein, in: *Theory and phenomenology in particle* physics, eds. A. Zichichi (Academic, New York, 1969), p. 218.
- T.T. Wu and C.N. Yang, Phys. Rev. Lett. 12 (1964) 380.

and ϕ for each decay since they are the most closely related to the experiments and are essentially uncorrelated. Whenever necessary we have changed the signs of the reported values, so as to agree with our conventions. In the Stable Particle Table we give α , ϕ , and Δ with errors; and for convenience we also give the central value of γ , without an error.

VII. STATISTICAL PROCEDURES

This section is a much abbreviated version of section IX in the text of our January 1970 edition (Particle Data Group, 1970) to which the reader is referred for details. See also the mini-review on K* masses and mass differences in the K*(892) section of the Meson Data Card Listings.

A. Confidence levels and errors

Quoted errors represent one standard deviation (σ) . Upper and lower limits represent 68.3% confidence bounds (1σ) , unless otherwise stated. The errors in the Tables of Particle Properties and the errors of the averages in the Data Card Listings often include a scale factor S; see section VII.B. below.

Quantities that have changed more than 1σ since our April 1973 edition (Particle Data Group, 1973) are italicized in the Tables of Particle Properties. For a discussion see section V.B. in the text of the 1970 edition (Particle Data Group, 1970).

B. Unconstrained averaging, scale factors

In the absence of constraints, we calculate a weighted average

$$\overline{x} \pm \delta \overline{x} = \sum w_i x_i / \sum w_i \pm (\sum w_i)^{-1/2};$$

$$w_i = 1/(\delta \overline{x}_i)^2,$$
(1)

where the sums run over N experiments. We also calculate χ^2 and compare it with its expectation value of N-1. If $\chi^2 > N-1$, we increase the error $\delta \bar{x}$ in eq. (1) by a factor

$$S = [\chi^2/(N-1)]^{-1/2}.$$

It is easy to design statistical tests for determining whether one experiment (or a group of experiments) is consistent with the other experiments. However, statistics does not tell us who is wrong in case of contradictions. When $S \ge 1$, one can conclude either that: 1) some (or all) experiments are wrong, or

2) some (or all) experiments have underestimated their errors, or

3) the experiments do not measure the same quantity (systematic errors).

We do our best to resolve these cases. If we cannot, we assume that all experimentalists underestimated their errors by the same scale factor. If we scale up all input errors by this factor, χ^2 returns to N - 1, and of course the output error scales up by the same factor.

If all the experiments have errors of about the same size, the above procedure is straightforward. If, however, there are both precise and imprecise (large errors) measurements of a particular quantity, one must be very careful not to permit the imprecise ones to "dilute" the scale factor. See our January 1970 edition (Particle Data Group, 1970) for the prescription we use to handle this effect.

We often plot an ideogram to guide the reader in deciding which data he might reject before making his own selected average.

For further discussion of ideograms and scale factors, we refer the reader to section IX of our January 1970 edition (Particle Data Group, 1970).

C. Constrained fits

The information on partial-decay fractions P_i^{\ddagger} and partial widths $\Gamma_i = P_i \Gamma_{\text{total}}$ is frequently given by branching ratios R_j , say, $R_1 = P_1/(P_1+P_2)$, $R_2 = P_2/P_3$, $R_3 = P_1/P_2$, $R_4 = P_3/(P_1+P_2+P_3)$, etc.

The number of experimental inputs R_j is often greater than the number of decay modes. In these cases we fit all available information on the P_i , Γ_i , and R_j subject to the constraint $\Sigma P_i = 1$. When, in addition, the input R_j are contradictory so that scale factors may have to be introduced, one has to resort to iterative procedures.

The Data Card Listings give the values of the fitted R_i , P_i , and Γ_i , together with the error matrices of the P_i and of the Γ_i . For details about this procedure, the reader is referred to the text of the January 1970 edition (Particle Data Group, 1970), section IV.B.

^{*} We use the symbol P_i for partial-decay fractions throughout the Data Card Listings for stable particles, mesons, and baryons, although for baryons, x_i is the commonly accepted symbol. See eq. (IV.5).

ACKNOWLEDGMENTS

We thank Betty Armstrong for handling much of the data processing and physical composition of this publication, Mary Forman for writing our partial-wave plotting program, and Professor J.D. Jackson for his continuing useful comments and criticism. The European members of the Particle Data Group wish to acknowledge the generous support of CERN, in particular they thank Dr. R. Armenteros and Dr. A. Gunther.

REFERENCES

- C.H. Albright, Phys. Rev. 115 (1959) 750.
- G. Ascoli et al., Phys. Rev. D7 (1973) 669.
- A. Barbaro-Galtieri, Baryon resonances in: Advances in particle physics, eds. R.L. Cool and R.E. Marshak (Wiley, New York, 1968), Vol. 2. See specifically, Table IV and figs. 10 and 12.
- E. Barrelet, Nuovo Cim. 8A (1972) 331.
- I.Bender, V. Linke and H.J. Rothe, Z. Physik 221 (1968) 190.
- N. Brene, L. Egardt and B. Qvist, Nucl. Phys. 22 (1961) 553.
- N. Cabibbo, Phys. Rev. Lett. 10(1963) 531.
- N. Cabibbo and A. Maksymowicz, Phys. Lett. 9 (1961) 352.
- N. Cabibbo, Proc. 13th Intern. Conf. on High energy physics, Berkeley, 1966 (University of California Press, Berkeley, 1967) p. 34.
- R.H. Dalitz, Proc. Phys. Soc. (London) 69A (1956) 527.
- H. Ebenhöh, F. Eisele, H. Filthuth, W. Föhlisch, V. Hepp, E. Leitner, W. Presser, H. Schneider, T. Thouw and G. Zech, Z. Physik 241 (1971) 473.
- H.W. Fearing, E. Fischbach and J. Smith, Phys. Rev. D2 (1970) 512.
- S. Gasiorowicz, *Elementary particle physics* (Wiley, New York, 1966).
- M.L. Goldberger and S.B. Treiman, Phys. Rev. 11 (1958) 354.
- D.J. Herndon, A. Barbaro-Galtieri and A.H. Rosenfeld, *nN* partial-wave amplitudes – a compilation, Lawrence Radia-

tion Laboratory Report UCRL-20030 π N, Feb. 1972, p. 4, eq. (9).

- J.D. Jackson, S.D. Treiman and H.W. Wyld Jr., Phys. Rev. 106 (1957) 517.
- J.D. Jackson, Nuovo Cim. 34 (1964) 1644.
- G. Källén, *Elementary particle physics* (Addison-Wesley Publ. Co., Reading, Mass., 1964).
- T. Kinoshita and A. Sirlin, Phys. Rev. 108 (1957) 844.
- T.D. Lee and C.N. Yang, Phys. Rev. 108 (1957) 1615.
- R. Levi Setti, Rapporteur talk at the Lund Intern. Conf. on Particle physics (Lund, June 1969).
- L.B. Okun and C. Rubbia, Proc. Heidelberg Conf. on Elementary particles (1967), p. 301.
- Particle Data Group (1969): N. Barash-Schmidt, A. Barbaro-Galtieri, L.R. Price, A.H. Rosenfeld, P. Söding, C.G. Wohl, M. Roos and G. Conforto, Rev. Mod. Phys. 41 (1969) 109.
- Particle Data Group (1970): A. Barbaro-Galtieri, S.E. Derenzo, L.R. Price, A. Rittenberg, A.H. Rosenfeld, N. Barash-Schmidt, C. Bricman, M. Roos, P. Söding and C.G. Wohl, Rev. Mod. Phys. 42 (1970) 87.
- Particle Data Group (1973): T.A. Lasinski, A. Barbaro-Galtieri, R.L. Kelly, A. Rittenberg, A.H. Rosenfeld, T.G. Trippe, N. Barash-Schmidt, C. Bricman, V. Chaloupka, P. Söding and M. Roos, Rev. Mod. Phys. 45, No. 2, Part II, supplement (1973).
- J. Pišút and M. Roos, Nucl. Phys. B6 (1968) 325.
- L.D. Roper, R.M. Wright and B.T. Feld, Phys. Rev. 138 (1965) B190.
- M. Roos, Univ. of Helsinki report no. 66 (unpublished, 1973).
- A.I. Solzhenitsyn, *The Gulag Archipelago*, (YMCA-Press, 1973), p. 182.
- J. Steinberger, CERN Topical Conf. on Weak interactions, CERN 69-7 (1969) p. 291.
- W. Willis and J. Thompson, Leptonic decays of elementary particles, in: Advances in particle physics, eds. R.L. Cool and R.E. Marshak (Wiley, New York, 1968), Vol. 1, p. 295.
- L. Wolfenstein, in: *Theory and phenomenology in particle* physics, eds. A. Zichichi (Academic, New York, 1969), p. 218.
- T.T. Wu and C.N. Yang, Phys. Rev. Lett. 12 (1964) 380.

TABLES OF PARTICLE PROPERTIES

April 1974

N. Barash-Schmidt, A. Barbaro-Galtieri, C. Bricman, V. Chaloupka, D. M. Chew,
 R. L. Kelly, T. A. Lasinski, A. Rittenberg, M. Roos, A. H. Rosenfeld
 P. Söding, T. G. Trippe, and F. Uchiyama

(Closing date for data: Feb. 1, 1974)

Stable Particle Table

For additional parameters, see Addendum to this table. Quantities in italics have changed by more than one (old) standard deviation since April 1973.

Particle	IG(J ^P)C	Mass	Mean Life	-	Partial decay mode	
	(MeV) Mass ² (GeV) ²		(sec) c τ (cm)	Mode	p or P _{max} b (MeV/c)	
$\overline{\gamma}$	0,1(1)	0(< 2)10 ⁻²¹	stable	stable		
ν ^ν e _{νμ}	$J = \frac{1}{2}$	0(< 60 eV) 0(< 1.2)	stable	stable		
е	$J = \frac{1}{2}$	0.5110034 ±.0000014	stable (>2×10 ²¹ y)	stable		
μ	$J = \frac{1}{2}$ $m_{\mu} - m_{\pi} \pm$	105.65948 ±.00035 n ² = 0.01116 =-33.909 ±.006	2.1994×10-6 ±.0006 S=1.1* cτ=6.593×10 ⁴	eνν eγγ 3e eγ	$\begin{array}{cccc} 100 & \frac{7}{0} & 5\\ (<1.6 &)10 & 9\\ (<6 &)10 & 9\\ (<2.2 &)10 & 8\end{array}$	53 53 53 53
π [±]	1 ⁻ (0 ⁻)	139.5688 ±.0064 n ² = 0.0195	2.6030×10 ⁻⁸ ±.0023 c τ =780.4 (τ^+ - τ^-)/ $\overline{\tau}$ = (0.05±0.07) $\frac{1}{70}$ (test of CPT)	μν εν π ⁰ εν ενγ ενε ⁺ ε ⁻	$\begin{array}{c} 100 & \frac{7}{0} - 4 \\ c & (1.24 \pm 0.03) 10 - 4 \\ (1.24 \pm 0.25) 10 - 4 \\ c & (1.02 \pm 0.07) 10 - 8 \\ c & (3.0 \pm 0.5) 10 - 8 \\ (<3.4) 10 - 8 \end{array}$	30 70 30 5 70 70
π°	$1^{-}(0^{-})^{+}$	$134.9645 \pm.0074 n2 = 0.0182 0 = 4.6043 ±.0037$	$0.84 \times 10^{-16} \\ \pm .10 \text{ S=} 2.1^{*} \\ \text{c} \tau = 2.5 \times 10^{-6} \\ \end{array}$	ΥΥ γe ⁺ e ⁻ ΥΥΥ e ⁺ e ⁻ e ⁺ e ⁻	$ \begin{array}{c} (98.83 \pm 0.05)\% \\ (1.17 \pm 0.05)\% \\ d_{(5)}^{(<5)} 10^{-6} \\ (3.47) 10^{-5} \\ (<6.1) 10^{-5} \end{array} $	67 67 67 67 67

		Stable	Particle]	able	(cont'd)	
Particle	I ^G (J ^P)Cn	Mass	Mean life		Partial decay mode	
		(MeV) Mass ² (GeV) ²	(sec) c र (cm)	Mode	Fractiona	por p _{max} b (MeV/c)
K [±]	1/2(0 ⁻)	493. 707 ±0. 037 m ² =0. 244	1.2371×10 ⁻⁸ ±.0026 S=1.9* $c\tau \approx 370.8$ $(\tau^+ - \tau^-)/\overline{\tau} =$ (.11±.09)% (test of CPT)	μν ππ ⁰ + ππ ⁰ π ⁰ μπ ⁰ ν επ ⁰ ν	$ \begin{array}{c} (63.54\pm0.19)\% \\ (21.12\pm0.17)\% \\ (5.59\pm0.03)\% S=1 \\ (1.73\pm0.05)\% S=1 \\ (3.20\pm0.09)\% S=1 \\ (4.82\pm0.05)\% S=1 \\ (4.82\pm0.05)\% S=1 \\ (5.50\pm0.05)\% S=1 \\ (5.50\pm0.05)$	236 205 .1* 125 .4* 133 .7* 215 .1* 228
	^m K [±] - ^m	K ^{0 = -3.99} ±0.13 S = 1.1*	5-1-2	$ \begin{array}{l} e^{\pi}\pi^{\pi}e^{\mu}e^{\pi}\mu^{\pi}e^{\mu}e^{\mu}e^{\pi}\mu^{\pi}e^{\mu}e^{\mu}e^{\pi}\mu^{\pi}e^{\mu}e^{\mu}e^{\mu}e^{\mu}e^{\mu}e^{\mu}e^{\mu}e^{\mu$	$ \begin{pmatrix} 1.6 & -0.6 \\ 3.7 & \pm 0.2 \end{pmatrix} 10^{-5} \\ (< 5) 10^{-7} \\ (0.9 & \pm 0.4) 10^{-5} \\ (< 3) 10^{-6} \\ (1.38 \pm 0.20) 10^{-5} \\ c(< 7) 10^{-5} \\ c(< 7) 10^{-5} \\ c(< 7) 10^{-5} \\ c(< 10 & \pm 4) 10^{-5} \\ c(< 10 & \pm 4) 10^{-5} \\ c(< 3.7 & \pm 1.4) 10^{-4} \\ (< 0.26) 10^{-6} \\ (< 1.5) 10^{-5} \\ c(< 3.5) 10^{-5} \\ c(< 3.5) 10^{-5} \\ c(< 3.5) 10^{-5} \\ c(< 3 & 10^{-6} \\ (< 1.4) 10^{-8} \\ (< 1.4) 10^{-8} \\ c(< 6) 10^{-6} \\ (< 1.4) 10^{-6} \\ c(< 6) 10^{-6} \\ (< 1.4) 10^{-8} \\ c(< 6) 10^{-6} \\ \end{pmatrix} $	203 203 151 151 247 205 125 215 228 227 227 227 227 227 227 227 227 227
ĸ°	$\frac{1}{2}(0^{-})$	497.70	50% K _{Short} ,	50% K _{Long}	- <u>-</u> · · - <u>-</u> · · · · · · · · · · · · · · · · · · ·	
Ks	1/2(0 ⁻)	S=1.1* m ² =0.248	0.886×10^{-10} ±.007 S=2.4* c τ =2.66	$ \begin{array}{c} \pi^{+}\pi^{-}\\ \pi^{0}\pi^{0}\\ \mu^{+}\mu^{-}\\ e^{+}e^{-}\\ \pi^{+}\pi^{-}\gamma\\ \gamma\gamma \end{array} $	$ \begin{pmatrix} 68.77\\ 31.23 \pm 0.26 \end{pmatrix} \% = 1 \\ (31.23 \pm 0.26) \% = 1 \\ (< 0.3) 10^{-6} \\ (< 35) 10^{-5} \\ c (2.0 \pm 0.4) 10^{-3} \\ (< 0.4) 10^{-3} \\ \end{pmatrix} $. 1* 206 209 225 249 206 249
Κ ^ο	1/2(0)		5.179×10^{-8} ±0.040 c7=1553	π ⁰ π ⁰ π ⁰ π ⁺ π ⁻ π ⁰ πμν πεν π <u>ε</u> νγ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1 [*] 139 .2 [*] 133 .1 [*] 216 .1 [*] 229 .229
	^m KL ^{-m}	$K_{S} = 0.5403 \times 1000$	10 fi sec -	π'π ⁻ π ⁰ π ⁰ π ⁰ ΥΥ ΥΥ eμ e ⁺ e ⁻ e ⁺ e ⁻ e ⁺ e ⁻ γ	$ \begin{array}{c} (0.177 \pm 0.018) \% 5 = 4 \\ (0.093 \pm 0.019) \% S = 1 \\ c (< 0.4) 10^{-3} \\ (< 2.4) 10^{-4} \\ (4.9 \pm 0.4) 10^{-4} \\ (< 1.6) 10^{-9} \\ i (< 1.6) 10^{-8} \\ (< 1.6) 10^{-9} \\ (< 2.8) 10^{-5} \end{array} $.9** 206 .5** 209 206 231 249 238 225 249 249
η	0+(0-)+	548.8 e ±0.6 S=1.4* m ² =0.301	Γ=(2.63±0.58)keV Neutral decays 71.1% Charged decays 28.9%	$\begin{cases} \gamma \gamma \\ \pi^{0} \gamma \gamma \\ 3\pi^{0} \\ \pi^{+}\pi^{-}\pi^{0} \\ \pi^{0} e^{+}e^{-} \\ \pi^{+}\pi^{-}e^{+}e^{+} \\ \pi^{+}\pi^{-}\pi^{-}e^{+}e^{-} \\ \pi^{+}\pi^{-}\pi^{-}\gamma \\ \pi^{+}\pi^{-}\pi^{-}\gamma \\ \mu^{+}\mu^{-} \\ \mu^{+}\mu^{-}\pi^{0} \end{cases}$. 2* 274 . 2* 258 . 1* 180 . 1* 175 236 258 236 236 236 236 236 236 236 236 236 236

Stable Particle Table (cont'd)

Particle	I ^G (J ^P)C	n Mass	Mean Life		Partial decay mode	
<u> </u>		(MeV) Mass ² (GeV) ²	(sec) c τ (cm)	Mode	Fraction ^a	p or p _{max} b (MeV/c)
р	$\frac{1}{2}(\frac{1}{2}^+)$	938.2796 ±0.0027 m ² =0.8804	stable (> 2×10 ²⁸ y)			
n	$\frac{1}{2}(\frac{1}{2}^{+})$ m _p -	$939.5731 \\ \pm 0.0027 \\ m^{2} = 0.8828 \\ m_{n} = -1.29344 \\ \pm 0.00007 $	918±14 cτ =2.75×10 ¹³	peັv	100 %	. 1
Λ	$0(\frac{1}{2}^{+})$	$1115.60 \pm 0.05 S = 1.2* m2 = 1.245$	$\begin{array}{c} 2.578 \times 10^{-10} \\ \pm .021 \\ \text{s}=1.6 \\ \text{c}\tau = 7.73 \end{array}$	pπ nπ ⁰ pe _ν pμ _ν pπ ⁻ γ	$ \begin{pmatrix} 64.2 \\ 35.8 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	100 104 163 131 100
Σ*	1(¹ / ₂ ⁺)	$1189.37\pm 0.06S = 1.8*m2 = 1.415$	0.800×10^{-10} ±.006 c τ =2.40	$p\pi^{0}_{+}$ $n\pi^{+}_{-}$ $p\gamma^{+}_{-}$	$ \begin{array}{c} (51.6 \\ (48.4 \pm 0.7) \% \\ (48.4 \pm 0.7) \% \\ (1.24 \pm 0.18) 10^{-3} S \\ c (0.93 \pm 0.10) 10^{-3} \end{array} $	189 185 1.4 [*] 225 185
•	^m Σ ^{+-m}	$\Sigma^{-} = -7.99$ ±.08 $S = 1.2^{*}$	$\frac{\Gamma(\Sigma^+ \to \ell^+ n \nu)}{\Gamma(\Sigma^- \to \ell^- n \nu)} < .035$		$(2.02\pm0.47)10^{-5}$ $(<2.4)10^{-5}$ $(<1.0)10^{-5}$ $(<7)10^{-6}$	72 202 224 225
Σ	$1(\frac{1}{2}^+)$	1192.48 ±0.08	$<1.0\times10^{-14}$ c7<3×10 ⁻⁴	Λ_{γ} Λe^+e^-	$100 \frac{\%}{100^{-3}}$	74 74
Σ¯	$1(\frac{1}{2}^+)$ $m_{\Sigma^0} - m_{\Xi^0}$	$m^{2}=1.422$ 1197.35 ± 0.06 $m^{2}=1.434$ $\Sigma^{-}=-4.87$	$\begin{array}{c} 1.482 \times 10^{-10} \\ \pm .017 \text{ S} = 1.5^{*} \\ \mathrm{c}\tau = 4.44 \end{array}$	$ \begin{array}{c} n\pi \\ ne \\ \nu \\ n\mu \\ \lambdae \\ \nu \\ n\pi \\ \gamma \end{array} $	$\begin{array}{c} 100 & \% \\ (& 1.08 \pm 0.04) 10 & 3 \\ (& 0.45 \pm 0.04) 10 & 3 \\ (& 0.60 \pm 0.06) 10 & 4 \\ (& 0.60 \pm 0.06) 10 & 4 \\ c (& 1.0 \pm 0.2) 10 & 4 \end{array}$	193 230 210 79 193
Ħ°	$\frac{1}{2}(\frac{1}{2}^+)^f$ m ₂₀ -m	$\begin{array}{r} \pm 06 \\ 1314.9 \\ \pm 0.6 \\ m^2 = 1.729 \\ \Xi^{-} = -6.4 \\ \pm .6 \end{array}$	2.96×10 ⁻¹⁰ ±.12 $c\tau$ =8.93		$\begin{array}{ccccccc} 100 & \% & -3 \\ (< 0.9 &)10 & -3 \\ (< 1.3 &)10 & -3 \\ (< 1.5 &)10 & -3 \\ (< 1.5 &)10 & -3 \\ (< 1.5 &)10 & -3 \\ (< 1.5 &)10 & -3 \\ (< 1.5 &)10 & -3 \\ (< 1.5 &)10 & -3 \\ (< 1.5 &)10 & -3 \end{array}$	135 299 323 119 112 64 49 309
₽-	$\frac{1}{2}(\frac{1}{2}^{+})^{f}$	1321.29 ±0.14 $m^2=1.746$	$\frac{1.652 \times 10^{-10}}{\pm .023 \text{S}=1.1}^{*}$ c $\tau = 4.95$	$ \begin{array}{c} \Lambda \pi^{-} \\ \Lambda e^{-} \nu \\ \Sigma^{0} e^{-} \nu \\ \Lambda \mu^{-} \nu \\ \Sigma^{0} \mu^{-} \nu \\ n \pi^{-} \\ n e^{-} \nu \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139 190 123 163 70 303 327
Ω¯	$0(\frac{3}{2}^{+})^{f}$	1672.2 ±. 4 m ² =2.797	$1.3^{+0.3}_{-0.2} \times 10^{-10}_{-10}_{c\tau=3.9}$	$\left. \begin{array}{c} \Xi^{\circ} \pi^{-} \\ \Xi^{-} \pi^{\circ} \\ \Lambda K^{-} \end{array} \right\}$	Total of 41 events seen	293 290

Stable Particle Table (cont'd)

ADDENDUM TO

Stable Particle Table

	Magnetic	momen	it 🕴					
е	1.001 159 + 000 000	6567 0035	$\frac{e\hbar}{2m}$		μ Decay pa	ametersj		
	1.001 166	16	e*	ρ = 0 . 752	±0.003 η=	- 0.12 ±0.21		
μ	±.000 000	31	2m _µ c	$\xi = 0.972$	$\pm 0.013 \delta = 0.04 + 0.33$	0.755 ± 0.009 h	$= 1.00 \pm 0.13$	
				g _A /g _V	^{≈0.86} -0.11	$\varphi = 180^{\circ} \pm 15$		
кt	Mode P	artial rat	te (sec ⁻¹)		$\Delta I = \frac{1}{2} ru$	le for K → 3π ^k		
	μν (5	1.36±0	19)10	S=1.2*	L ⁺ +-+	$-\frac{1}{2}$ $\alpha = -\frac{214+00}{2}$	5 S=1 7*	
	$\frac{\pi \pi^{*}}{\pi \pi^{*}} - (1)$	4.52±0	.02)10	S=1.1 S=1.1*	K-+π ⁻ π ⁺	$\pi = g =214 \pm .00$ $\pi = g =214 \pm .00$	7 S=2.7*	
	ππ ⁰ π ⁰ (1.40±0	.04)10 ⁶	S=1.4*	$K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$	π^{0} g= .522±.02	$0 S=1.3^*$	
	μπ°ν (eπ ⁰ ν (2.58±0 3.90±0	$(.07)10^{\circ}$ $(.04)10^{\circ}$	S=1.7* S=1.1*	<u>Γ</u> <u>Γ</u> <u>π</u> <u>π</u>	$\pi g = .610 \pm .02$	1 5-2,6	
10	_+ p/	0 776+	006110	S-1 8*	Form facto	rs for K _{<math>g3</math>} decays (se	e Data Card Listin	gs for ξ , λ^{μ}_{+} and λ^{μ}_{0})
r _s	$\pi^{0}\pi^{0}$ n($0.352 \pm$.004)1010	S=1.3*	$K_{e3}^{\dagger} \lambda_{+}^{e}$.029±.004	$\frac{K_{e3}^{0}}{k_{e3}^{0}}$	=.026±.004
0	π ⁰ π ⁰ π ⁰ (4.11 ±	0.13)10 ⁶	S=1.1*	CP violatio	n parameters ^{1,n}	1* n =12.25	+ 09)10-3 5-1 1*
KL	π ⁺ π ⁻ π ⁰ (2.31 ±	0.07)106	S=2.0*	$ \eta_{+-} = (2)$	$17 \pm 07 10 5^{\circ}$	$\phi = (4.9 \pm 1)$	31°
_	πμν (πεν ($5.31 \pm 7.53 \pm$	=0.12)10 ⁶	S=1.1 S=1.1*	$\phi_{+-} = (46.6)$	(2.5) $S=1.5$	$\varphi = (4.9 \pm 1)$	10-2 s-1 1*
	$\pi^{+}\pi^{-}$ n(3.42 ±	= 0.36)10 ⁴	S=4.6*	+-0 ⁻	0.12 η ₀₀₀ -< 1	.2 0=(.34±.01	.)10 5-1.1
	π°π°(1.80 ±	-0.36)10-	5=1.5	$\Delta S = -\Delta Q$ Be $x = .000$	+.022 S=1.5*	$Im x = .012 \pm .00$)30 S=1.2*
	Mode As	ymmetr	y parameter		1 100 1000			
ן יין	π ⁺ π ⁻ π°	(0.12±.	17)%					
1								
1	π ⁺ π ⁻ γ	(0.88±.	40)%					
	π ⁺ π ⁻ γ Magnetic	(0.88±.	40)%	D	ecay parameters	m		~ / ~
	π ⁺ π ⁻ γ Magnetic moment	(0.88±.	40)% Me	Deasured	ecay parameters	m Derived	g _A /g _V	g _V /g _A
	π ⁺ π ⁻ γ Magnetic moment (eħ/2mpc)	(0.88±.	40)% α	De easured <u>\$(de</u>	ecay parameters 	m Derived Δ(degree)	g _A /g _V	$g_{V}^{/g}A$
	$π^+π^-\gamma$ Magnetic moment (eħ/2m_pc) 2.7928456	(0.88±.	40)% Μe α	De easured <u>\$(de</u>	ecay parameters 	m Derived Δ(degree)	g _A /g _V	g _V /g _A
p	π+π-γ Magnetic moment (eħ/2m_c) 2.7928456 ±.0000011	(0.88±.	40)% Me α	Decasured	ecay parameters 	m Derived Δ(degree)	g _A /g _V	g _V /g _A
p n	π ⁺ π ⁻ γ Magnetic moment (eħ/2m _p c) 2.7928456 ±.0000011 -1.913148 ±.000066	(0.88±.	40)% α	D easured <u>¢(de</u>	ecay parameters gree) <u>Y</u>	m Derived Δ(degree)	$\frac{g_A/g_V}{-1.250\pm.09}$ $\delta = (181.1\pm 1.3)$	_g _V /g _A)°
p n	$\pi^{+}\pi^{-}\gamma$ Magnetic moment (eħ/2m c) 2.7928456 ±.0000011 -1.913148 ±.000066 -0.67	(0.88±.	40)% α	Dasured <u>\$\$</u> \$	ecay parameters gree) <u>ү</u> ±3.5)° 0.7	m <u>Derived</u> $\Delta(\text{degree})$ 6 $\left(7.6^{+4.0}_{-4.4}\right)^{\circ}$	$\frac{g_{A}/g_{V}}{-1.250\pm.09}$ $\delta = (181.1\pm1.3)$	g _V ∕g _A)°
р n Л	$\pi^{+}\pi^{-}\gamma$ Magnetic moment (eħ/2mpc) 2.7928456 ±.0000011 -1.913148 ±.000066 -0.67 ±.06	(0.88±.	40)% α	Dasured <u>\$\$</u> \$	ecay parameters 	$\frac{\text{Derived}}{\Delta(\text{degree})}$ $6 \left(7.6^{+4.0}_{-4.1}\right)^{\circ}$	$\frac{g_{A}/g_{V}}{-1.250\pm.09}$ $\delta = (181.1\pm1.3)$	<u>g_V/g_A</u>)°
р n Л	$\pi^{+}\pi^{-}\gamma$ Magnetic moment (eħ/2m_pc) 2.7928456 ±.0000011 -1.913148 ±.000066 -0.67 ±.06	(0.88±. pe ⁻ ν pπ ⁻ nπ ⁰ peν	40)% α 0.647±0.0 0.651±0.0	Dasured <u>\$\$\\$\$</u> \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	ecay parameters gree) γ ±3.5)° 0.7	$\frac{\text{Derived}}{\Delta(\text{degree})}$ $6 \left(7.6^{+4.0}_{-4.1}\right)^{\circ}$	$\frac{g_{A}/g_{V}}{-1.250\pm.09}$ $\delta = (181.1\pm1.3)$ -0.66 ± 0.05 S	$\frac{g_V/g_A}{2}$
р n Л	$\pi^{+}\pi^{-}\gamma$ Magnetic moment (eħ/2mpc) 2.7928456 ±.0000011 -1.913148 ±.000066 -0.67 ±.06	(0.88±. pe¯ν pπ¯ ηπ ⁰ peν pπ ⁰	40)% α 0.647±0.0 0.651±0.0 -0.979±0.0	Dasured <u>\$\phi(de</u>) 113 (-6.5: 145 016 (36±	ecay parameters <u>gree)</u> <u>Y</u> ±3.5)° 0.7 	$\frac{\text{Derived}}{\Delta(\text{degree})}$ $6 \left(7.6^{+4.0}_{-4.1}\right)^{\circ}$ $7 (187\pm 6)^{\circ}$ $(-1426)^{\circ}$	$\frac{g_{A}/g_{V}}{-1.250\pm.09}$ $\delta = (181.1\pm1.3)$ -0.66 ± 0.05 S	_g _V /g _A)° =1.2*
p n Λ Σ ⁺	$\pi^{+}\pi^{-}\gamma$ Magnetic moment (eħ/2m c) 2.7928456 ±.0000011 -1.913148 ±.000066 -0.67 ±.06 2.62 ±.41	(0.88±. pe ⁻ ν pπ ⁻ nπ ⁰ peν pπ ⁰ nπ ⁺	40)% <u>Me</u> α 0.647±0.0 0.651±0.0 -0.979±0.0 +0.066±0.0	Description of the second sec	ecay parameters <u>gree)</u> Y ±3.5)° 0.7 	$\frac{\text{Derived}}{\Delta(\text{degree})}$ $6 \left(7.6^{+4.0}_{-4.1}\right)^{\circ}$ $7 (187\pm6)^{\circ}$ $7 \left(-73^{+136}_{-10}\right)^{\circ}$	$\frac{g_{A}/g_{V}}{-1.250\pm.09}$ $\delta = (181.1\pm1.3)$ -0.66 ± 0.05 S	$\frac{g_V/g_A}{2}$
p n Λ Σ ⁺	$\pi^{+}\pi^{-}\gamma$ Magnetic moment (eħ/2mpc) 2.7928456 ±.0000011 -1.913148 ±.000066 -0.67 ±.06 2.62 ±.41	(0.88±. pe ⁻ ν pπ ⁻ nπ ⁰ peν pπ ⁰ nπ ⁺ pγ	<u>Me</u> <u>α</u> 0.647±0.0 0.651±0.0 -0.979±0.0 +0.066±0.0 -1.03 ^{+.52}	Description of the second sec	ecay parameters <u>gree</u>) <u>Y</u> ±3.5)° 0.7 	$\frac{\text{Derived}}{\Delta(\text{degree})}$ $6 \left(7.6^{+4.0}_{-4.1}\right)^{\circ}$ $7 (187\pm6)^{\circ}$ $7 \left(-73^{+136}_{-10}\right)^{\circ}$	$\frac{g_{A}/g_{V}}{-1.250\pm.09}$ $\delta = (181.1\pm1.3)$ -0.66 ± 0.05 S	$\frac{g_V/g_A}{2}$
p n Λ Σ ⁺	$\pi^{+}\pi^{-}\gamma$ Magnetic moment (eħ/2m_c) 2.7928456 ±.0000011 -1.913148 ±.000066 -0.67 ±.06 2.62 ±.41	(0.88±. pe ⁻ ν pπ ⁻ nπ ⁰ pe ^ν pπ ⁰ nπ ⁺ pγ	$40)\%$ $-Me$ α 0.647 ± 0.0 0.651 ± 0.0 -0.979 ± 0.0 $+0.066\pm0.0$ $-1.03^{+.52}_{42}$ -0.064 ± 0.0	Deasured $\phi(de)$	ecay parameters <u>gree</u>) <u>γ</u> ±3.5)° 0.7 =34)° 0.1 =20)° -0.9 .1* 5)° 0.9	$\frac{\text{Derived}}{\Delta(\text{degree})}$ $6 \left(7.6^{+4.0}_{-4.1}\right)^{\circ}$ $7 (187\pm6)^{\circ}$ $7 \left(-73^{+136}_{-10}\right)^{\circ}$ $8 \left(249^{+12}_{-1}\right)^{\circ}$	$\frac{g_{A}/g_{V}}{-1.250\pm.09}$ = (181.1±1.3 -0.66±0.05 S	$\frac{g_V/g_A}{2}$
p n Λ Σ ⁺ Σ ⁻	$\pi^{+}\pi^{-}\gamma$ Magnetic moment (eħ/2m c) 2.7928456 ±.0000011 -1.913148 ±.000066 -0.67 ±.06 2.62 ±.41	(0.88±. pe ⁻ ν pπ ⁻ nπ ⁰ pe ^ν pπ ⁰ nπ ⁺ pγ nπ ⁻ ne ⁻ ν	$40)\%$ Me α 0.647 ± 0.0 0.651 ± 0.0 -0.979 ± 0.0 $+0.066\pm0.0$ $-1.03^{+.52}_{42}$ -0.069 ± 0.0	Description of the second sec	ecay parameters <u>gree</u>) <u>Y</u> ±3.5)° 0.7 :34)° 0.1 :20)° -0.9 .1*	$\frac{\text{Derived}}{\Delta(\text{degree})} = \frac{\Delta(\text{degree})}{6} \left(7.6^{+4.0}_{-4.1} \right)^{\circ}$ $7 (187\pm6)^{\circ}$ $7 \left(-73^{+136}_{-10} \right)^{\circ}$ $8 \left(249^{+12}_{-115} \right)^{\circ}$	$\frac{g_{A}/g_{V}}{5 = (181.1\pm1.3)}$ -0.66±0.05 S	$\frac{g_V/g_A}{2}$
p n Λ Σ ⁺ Σ ⁻	$\pi^{+}\pi^{-}\gamma$ Magnetic moment (eħ/2m c) 2.7928456 ±.0000011 -1.913148 ±.000066 -0.67 ±.06 2.62 ±.41 -1.6 to 0.8	(0.88±. pe ⁻ ν pπ ⁻ nπ ⁰ pe ^ν pπ ⁰ nπ ⁺ pγ nπ ⁻ ne ⁻ ν Λe ⁻ ν	$40)\%$ $-Me$ α 0.647 ± 0.0 0.651 ± 0.0 -0.979 ± 0.0 $+0.066\pm0.0$ $-1.03^{+.52}_{42}$ -0.069 ± 0.0	Description of the second sec	ecay parameters <u>gree</u>) <u>Y</u> ±3.5)° 0.7 :34)° 0.1 :20)° -0.9 .1* .5)° 0.5	$\frac{\text{Derived}}{\Delta(\text{degree})} = \frac{\Delta(\text{degree})}{6} \left(7.6^{+4.0}_{-4.1} \right)^{\circ} \\ 7 \left(187\pm 6 \right)^{\circ} \\ 7 \left(-73^{+136}_{-10} \right)^{\circ} \\ 8 \left(249^{+12}_{-115} \right)^{\circ} \\ 8 \left(249^{+12}_{-115} \right)^{\circ} \\ 7 \left(-32^{+12}_{-115} \right)^{\circ} \\ 7 \left(-32^{+12}_{-15} \right)^{\circ} \\ 7 \left(-32^{+12}_{-115} \right)^{\circ} \\ 7 \left(-32^{+12}_{-15} \right)^{\circ} \\ 7 \left(-32^{+12}$	$\frac{g_{A}/g_{V}}{5 = (181.1\pm1.3)}$ -0.66±0.05 S	$\frac{g_{\rm V}/g_{\rm A}}{2}$
p n Λ Σ ⁺ Ξ ⁻	$\pi^{+}\pi^{-}\gamma$ Magnetic moment (eħ/2m_c) 2.7928456 ±.0000011 -1.913148 ±.000066 -0.67 ±.06 2.62 ±.41	$(0.88\pm.)$ $pe^{-}v$ $p\pi^{-}n\pi^{0}$ $p\pi^{0}$ $n\pi^{+}$ $p\gamma$ $n\pi^{-}v$ $Ae^{-}v$ $\Lambda\pi^{0}$	40)% $$	Decasured $\phi(de)$	ecay parameters <u>gree</u>) <u>Y</u> ±3.5)° 0.7 :34)° 0.1 :20)° -0.9 .1* .5)° 0.9 .2)° 0.8	$\frac{\text{Derived}}{\Delta(\text{degree})} = \frac{\Delta(\text{degree})}{(187\pm6)^{\circ}} = \frac{(187\pm6)^{\circ}}{(-73^{+136}_{-10})^{\circ}} = \frac{(249^{+12}_{-115})^{\circ}}{(216^{+13}_{-19})^{\circ}} = \frac{(216^{+13}_{-19})^{\circ}}{(216^{+13}_{-19})^{\circ}} = \frac{(216^{+13}_{-19})^{\circ}}{(216^{+13}_{-19})^{\circ}}} = \frac{(216^{+13}_{-19})^{\circ}}{(216^{+13}_{-19})^{\circ}}} = \frac{(216^{+13}_{-19})^{\circ}}{(216^{+13}_{-1$	<u>g_A/g_V</u> -1.250±.09 &=(181.1±1.3 -0.66±0.05 S See Data Cd	$\frac{g_{V}/g_{A}}{2}$ =1.2* s. 0.37±0.20

,

Stable Particle Table (cont'd)

*S = Scale factor = $\sqrt{\chi^2/(N-1)}$, where N \approx number of experiments. S should be ≈ 1 . If S > 1, we have enlarged the error of the mean, δx , i.e., $\delta x \rightarrow S \delta x$. This convention is still inadequate, since if S >> 1, the experiments are probably inconsistent, and therefore the real uncertainty is probably even greater than $S\delta x$. See text and ideogram in Stable Particle Data Card Listings.

- Quoted upper limits correspond to a 90% confidence level. a.
- In decays with more than two bodies, \mathbf{p}_{\max} is the maximum momentum that any particle ь. can have.
- See Stable Particle Data Card Listings for energy limits used in this measurement. с.
- d.
- е.
- Theoretical value; see also Stable Particle Data Card Listings for energy finits used in this measurement See note in Stable Particle Data Card Listings. P for Ξ and J^{P} for Ω not yet measured. Values reported are SU(3) predictions. Assumes rate for $\Xi \to \Sigma^{0} e^{-} \nu$ small compared with $\Xi \to \Lambda e^{-} \nu$. The direct emission branching ratio is $(1.56\pm .35) \times 10^{-5}$. f.
- h.
- and clark et al. (<0.19)×10⁻⁸.
 This upper limit is above the contradictory results of Carithers et al. (1.0^{+.7}/_{.35})×10⁻⁸, and Clark et al. (<0.19)×10⁻⁸. See note in Stable Particle Data Card Listings.
 |g_A/g_V| defined by g_A² = |C_A|² + |C'_A|², g_V² = |C_V|² + |C'_V|², and Σ(ē |Γ_i|µ) ⟨v̄ |Γ_i(C_i+C'_iγ₅)|ν⟩;
 φ defined by cos φ = -R_e(C^{*}_AC'_V+C'_AC^{*}_V)/g_Ag_V [for more details, see text Section VI A].
- The definition of the slope parameter of the Dalitz plot is as follows [see also text Section VI B.1]: $|M|^2 = 1 + g\left(\frac{s_3 s_0}{m_{\pi^+}}\right)$. k.
- The definition for the CP violation parameters is as follows [see also text Section l. VI B.3]:

$$\delta = \frac{\Gamma(\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \neq \ell^{+}) - \Gamma(\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \neq \ell^{-})}{\Gamma(\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \neq \ell^{+}) + \Gamma(\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \neq \ell^{-})} \qquad \left| \eta_{+-0} \right|^{2} = \frac{\Gamma(\mathbf{K}_{\mathbf{S}}^{\mathbf{0}} \Rightarrow \pi^{+}\pi^{-}\pi^{0})}{\Gamma(\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \Rightarrow \pi^{+}\pi^{-}\pi^{0})} \qquad \left| \eta_{0\,0\,0} \right|^{2} = \frac{\Gamma(\mathbf{K}_{\mathbf{S}}^{\mathbf{0}} \Rightarrow \pi^{0}\pi^{0}\pi^{0})}{\Gamma(\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \Rightarrow \pi^{0}\pi^{0}\pi^{0})}.$$

m. The definition of these quantities is as follows [for more details on sign convention, see text Section VI B]:

$$a = \frac{2|s||p|\cos\Delta}{|s|^2 + |p|^2}; \qquad \beta = \sqrt{1 - a^2} \sin\varphi; \qquad g_A/g_V \text{ defined by } \langle B_f|\gamma_\lambda(g_V - g_A\gamma_5)|B_i\rangle; \\ \beta = \frac{-2|s||p|\sin\Delta}{|s|^2 + |p|^2} \qquad \gamma = \sqrt{1 - a^2} \cos\varphi. \qquad \delta \text{ defined by } g_A/g_V = |g_A/g_V|e^{i\delta}.$$

The $K_S^0 \rightarrow \pi\pi$ and $K_L^0 \rightarrow \pi\pi$ rates (and branching fractions) are from independent fits and do not include results of K_L^0 - K_S^0 interference experiments. The $|\eta_{+-}|$ and $|\eta_{00}|$ values given in the addendum are these rates combined with the $|\eta_{+-}|$ and $|\eta_{00}|$ results from interference experiments. n.

Meson Table

April 1974

In addition to the entries in the Meson Table, the Meson Data Card Listings contain all substantial claims for meson resonances. See Contents of Meson Data Card Listings $^{(1)}$.

Quantities in italics have changed by more than one (old) standard deviation since April 1973.

Name					Partial decay mode				
<u>- ω/φ</u> π + η ρ	I ^G (J ^P)C _n ⊢−−−i estab.	Mass M (MeV)	Full Width F (MeV)	M² ±rM ^(a) (GeV)²	Mode	[Upper	Fraction (%) limits are 14	٥ (%)]	p or P _{max} ^(b) (MeV/c)
π [±] (140) π ⁰ (135)	<u>1 (0)+</u>	139.57 134.96	0.0 7.8 eV ±.9 eV	0.019483 0.018217	See S	Stable Pa	rticle Table		
ŋ(549)	<u>0⁺(0⁻)+</u>	548.8 ±0.6	2.63 keV ±.58 keV	0.301 ±.000	All neutral $\pi^+\pi^-\pi^0 + \pi^+\pi^-$	Ϋ́	71 See 29 Part	Stable ticle Ta	ble
ε Existence	$\frac{0^+(0^+)+}{0^+}$ e of pole n	≲ 700 ^(C) ot establis	≳600 ^(c) hed. See no	ote on ππ S	^{ππ} wave [¶] .				
ρ(770)	<u>1⁺(1⁻)-</u>	770 ±10 [§]	150 ±10 [§]	0.593 ±.116	ππ e ⁺ e ⁻ μ ⁺ μ ⁻ For upper lim	nits, see	≈100 0.0043±.000 0.0067±.001 e footnote (c))5 (d) 12 (d)	359 385 370
w(783)	<u>0 (1)-</u>	782.7 ±0.6 ^{\$}	10.0 ±.4	0.613 ±.008	<pre>π⁺π⁻π⁰ π⁺π⁻ π⁰Υ c⁺e⁻ For upper lim</pre>	nits, see	90.0±0.6 1.3±0.3 8.7±0.5 0.0076±.0017 e footnote (g)	S=1.2 [*] S=1.5 [*] S=1.9 [*]	327 366 380 391
→ n'(958) or X ⁰	$\frac{0^{+}(-)^{+}}{J=0 \text{ or } 2}$	957.6 ±0.3	< 1	0.917 <.001	nππ ρ ⁰ γ γγ For upper lim	nits, see	70.6±2.5 27.4±2.2 1.9±0.3 footnote (h)	S=1.4 [*] S=1.6 [*]	234 458 479
δ(970) Possibly	<u>1</u> (0 ⁺) <u>+</u> a virtual	976 ±10 [§] bound state	$50_{\pm 20}^{50}$ of the I =	0.953 ±.049 1 KK system	ក្នុπ ρπ រ¶		seen < 25		315 139
→ S [*] (993)	$\underline{0^{+}(0^{+})^{+}}$	∿ 993(c) ±5	40 ^(c) ±8	0.986 ±.040	Κ			near th	reshold 479
See note:	s on $\pi\pi$ and	KK S wave [¶]	•						
<pre>\$</pre>	<u>0⁻(1⁻)-</u>	1019.7 ±0.3 S=1.9*	4.2 ±.2	1.040 ±.004	K ⁺ K ⁻ KLKS π ⁺ π ⁻ π ⁰ (incl. ^{ηγ} e ⁺ e ⁻ μ ⁺ μ ⁻ For upper lim	ρπ) nits, see	46.6±2.5 34.6±2.2 15.8±1.5 3.0±1.1 .032±.002 .025±.003 footnote (i)	S=1.6* S=1.6* S=1.2* S=1.4*	127 111 462 362 510 499
↓ A ₁ (1100)	<u>1⁻(1⁺)+</u>	~ 1100	∿ 300	1.21 ±.33	ρπ		~ 100		253
Broad en	hancement i	n the $J^{P}=1^+$	om partial	wave; not	a Breit-Wigner	resonan	ice [¶] .		
→ B(1235)	<u>1⁺(1⁺)-</u>	1237 ±10 [§]	120 ±20§	1.53 ±.12	ωπ [D/S amplitud For upper lim	le ratio nits, see	only mode s = .24±.06] e footnote (j)	seen	352

Name						Par	tial decay m	10de	
<u>- ω/φ π</u> + η ρ	I ^G (J ^P)C _n ⊢−−−testab.	Mass M (MeV)	Full Width T (MeV)	M ² ±rM ^(a) (GeV) ²	Mode	[Upper	Fraction (%) limits are 1	lơ (%)]	p or Pmax ^(b) (MeV/c)
f(1270)	<u>0⁺(2⁺)+</u>	1270 ±10 [§]	170 ±30 [§]	1.61 ±.22	^{ππ} 2π ⁻ 2π ⁻ KK For upper	limits, se	83±5§ 4±1§ 4±3 ee footnote	S=1.5 [*] (f)	619 556 394
D(1285)	$\frac{0^{+}(A)_{+}}{J^{P} = 0^{-}},$	1286 ±10 [§] 1 ⁺ , 2 ⁻ , w	$30_{\pm 20}^{30}$ ith 1 ⁺ favoure	1.65 ±.03 d	ΚΚπ ηππ †[δ(970)π 2π⁺2π (p	rob. ρ ⁰ π ⁺ π ⁻	seen seen seen]) seen		305 484 245 565
A ₂ (1310)	<u>1⁻(2⁺)+</u>	1310 _{\$} ±10 ^{\$}	100 ±10 ^{\$}	1.72 ±.13	ρπ ηπ ωππ KK η'(958)π		71.5±1.8 15.2±1.2 8.6±1.8 4.7±0.6 <1	S=1.2* S=1.3*	413 529 354 428 280
E(1420)	<u>0⁺(A)+</u>	1416 ±10 [§]	60 ±20 [§]	2.01 ±.08	Kkπ +[K*k + k*k *,ππ +[δ(970)π		<pre>~ 40 ~ 20] ~ 60 possibly</pre>	seen]	421 130 564 352
f'(1514)	$0^{+}(2^{+})^{+}$	1516 ±3	40 ±10	2.29 ±.06	KK For upper	limits, se	only mode	e seen (k)	572
F ₁ (1540) Evidence	$\underline{1}$ (A) based on c	1540 ±5 mly one e:	40 ±15 kperiment	2.37 ±.06	к [*] к + к [*] ќ		only mode	e seen	321
ρ ' (1600)	<u>1⁺(1⁻)-</u>	∿ 1600	∿ 400	2.56 ±.64	4π †[ρπ ⁺ π ⁻ π <u>π</u> KK	se	dominant en with π ⁺ π ⁻ possibly < 8	in S-wave seen	738 575 788 629
A ₃ (1640) Broad enl	$\frac{1(2)+}{1}$	\sim 1640 n the J ^P :	∿ 300 = 2 fπ partia]	2.69 ±.49 L wave;	fπ not a Breit-	Wigner reso	nance. [¶]		305
ω(1675)	<u>0</u> (N) <u>-</u>	1666 ±10 [§]	142 ±20 ^{\$}	2.78 ±.24	ρπ 3π 5π †[ωππ		seen possibly possibly possibly	seen seen seen]	647 805 778 614
g(1680) J ^P , M and	$\frac{1^+(3^-)}{\Gamma}$	1686 ±20 [§] e 2π mode	180 ±30 [§] ^(£) .	2.84 ±.30	2π 4 <u>π</u> (incl. K <u>K</u> KKπ (incl.	ππρ,ρρ,Α ₂ π . K [*] K̄)	26±5§ ,ωπ) ~ 70 ~ 2 ~ 3	(1)	831 784 680 621
See note	(1) for po	ssible hea	wier states.						
K ⁺ (494) K ⁰ (498)	<u>1/2(0⁻)</u>	493.71 497.70		0.244 0.248	See Stable	e Particle '	Table		
K [*] (892)	<u>1/2(1⁻)</u>	892.2 ±0.5	49.8 ±1.1	0.796 ±.044	Κπ Κππ Κγ		≈ 100 < 0.2 < 0.16	* * *	288 216 310
		(Charged	mode; $m^{\circ} - m^{\pm}$	= 6.1±1	.5 MeV)				

			Meso	n Ta	ble	(co	nt'd)			
Name		Pai	rtial decay mod	e	·					
<u>- ω/φ π</u> + η ρ	I ^G (J ^P)C _n ⊢−−−−+estab.	Mass M (MeV)	Full Width T (MeV)	M ² ±ΓΜ ^{(a} (GeV)] 2	Mode	[Upper	Fraction (%) limits are lo	(%)]	p or P _{max} (^{b)} (MeV/c)
κ See note	$\frac{1/2(0^{+})}{\text{on } K\pi \text{ S wav}}$	·e¶.	δ_0^1 goes sl	owly thro	bugh 90°	near 1	300 MeV.			
$\int_{0}^{1} K_{A}(12)$	40)1/2(1+)	1242 ±10 seen in j	127 pp at rest	1.54 ±.16	Кππ †[К [*] π			only mode se large]	en	
$\begin{cases} K_A(12) \\ to 14 \\ See no$	80 <u>1/2</u> (1 ⁺) 00) ote (m).	1280 to 1400	· ·	}	† [Κρ † [Κ(ππ) _{l=0}		seen] possibly see	en]	
× (1420)	<u>1/2</u> (2 ⁺)	1421 ±5 [§] See note	100 ±10\$ (n).	2.02 ±.14	Κη Κ [*] π Κρ Κω Κη			55.0±2.7 29.5±2.5 9.2±2.4 4.4±1.7 2.0±2.0		616 414 319 306 482
→ L(1770)	<u>1/2</u> (A)	1765 ±10 [§]	140 ±50 [§]	3.11 ±.25	Κππ Κππτ +Γκ* (1	420)π a	nd other	dominant seen subreactions [¶]]		788 757
	J ^P =2 fav	oured, 1 ⁺ a	and 3 ⁺ not e	xcluded.				-		

See note (1) for possible heavier states.

(1) Contents of Meson Data Card Listings

	Strange $(Y = 1)$			
entry	$I^{G}(J^{P})C_{n}$	entry $I^{G}(J^{P})C_{n}$	entry $I^{G}(J^{P})C_{n}$	entry I (J ^P)
π (140) η (549) ε (600) ρ (770) ω (783) → M (940) → M (953) η' (958) δ (970) → H (990) s^* (993) φ (1019) → M (1033) α B (1040)	$\frac{1}{0} (0^{-}) + \frac{1}{0} (0^{-}) + \frac{1}{0} (0^{-}) + \frac{1}{1} (1^{-}) - \frac{1}{0} (1^{-}) - \frac{1}{1} (0^{-}) + \frac{1}{0} (0^{-}) + \frac{1}{0} (0^{-}) + \frac{1}{0} (0^{+}) + \frac{1}{0} (0^{+}) + \frac{1}{0} (0^{+}) + \frac{1}{0} (1^{-}) - \frac{1}{1} + \frac{1}{1} (0^{+}) + \frac{1}{0} (1^{-}) - \frac{1}{1} + \frac{1}{1} (0^{+}) + \frac{1}{0} $	$\begin{array}{c} & & & \\ & + & \eta_{N} & (1080) & 0^{+}(N) + \\ & & A_{1} & (1100) & 1^{-}(1^{+}) + \\ & + & M & (1150) \\ & + & A_{1,5}(1170) & 1^{-} \\ & & B & (1235) & 1^{+}(1^{+}) - \\ & + & \rho' & (1250) & 1^{+}(1^{-}) - \\ & f & (1270) & 0^{+}(2^{+}) + \\ & D & (1285) & 0^{+}(A) + \\ & A_{2} & (1310) & 1^{-}(2^{+}) + \\ & E & (1420) & 0^{+}(A) + \\ & + & X & (1430) & 0 \\ & + & X & (1440) & 1 \\ & f' & (1514) & 0^{+}(2^{+}) + \\ & & E & (1540) & 1 & (A) \end{array}$	$\rho' (1600) 1^{+}(1^{-}) - A_{3} (1640) 1^{-}(2^{-}) + \omega (1675) 0^{-}(N) - g (1680) 1^{+}(3^{-}) - X (1690) - X (1795) 1 + S (1930) 1 + A_{4} (1960) 1^{-} + p (2100) 1^{+} + T (2200) 1 + p (2275) 1^{+} + U (2360) 1 + p (2275) 1^{+} + U (2360) 1 + N\overline{N} (2375) 0 + Y(2500 3600)$	$\begin{array}{c} \text{K} (494) & 1/2 (0^{-}) \\ \text{K}^{*} (892) & 1/2 (1^{-}) \\ \text{K} & 1/2 (0^{+}) \\ \text{Q} & 1/2 (1^{+}) \\ \text{K}^{*} (1420) & 1/2 (2^{+}) \\ \text{+} \text{K}_{N} (1660) & 1/2 \\ \text{+} \text{K}_{N} (1760) & 1/2 \\ \text{L} (1770) & 1/2 (\text{A}) \\ \text{+} \text{K}_{N} (1850) \\ \text{+} \text{K}^{*} (2200) \\ \text{+} \text{K}^{*} (2800) \\ \end{array}$
				······································

8

Meson Table (cont'd)

- indicates an entry in Meson Data Card Listings not entered in the Meson Table. We do not regard these as established resonances.
- ¶ See Meson Data Card Listings.
- * Quoted error includes scale factor S = $\sqrt{\chi^2/(N-1)}$. See footnote to Stable Particle Table.
- + Square brackets indicate a subreaction of the previous (unbracketed) decay mode(s).
- § This is only an educated guess; the error given is larger than the error of the average of the published values. (See Meson Data Card Listings for the latter.)
- (a) $\ensuremath{\,\text{TM}}$ is approximately the half-width of the resonance when plotted against M^2 .
- (b) For decay modes into \geq 3 particles, p_{max} is the maximum momentum that any of the particles in the final state can have. The momenta have been calculated by using the averaged central mass values, without taking into account the widths of the resonances.
- (c) From pole position $(M i\Gamma/2)$. For both ε and S* the pole is on Riemann Sheet 2.
- (d) The e⁺e⁻ branching ratio is from e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}$ experiments only. The $\omega\rho$ interference is then due to $\omega\rho$ mixing only, and is expected to be small. See note in Meson Data Card Listings. The $\mu^{+}\mu^{-}$ branching ratio is compiled from 3 experiments; each possibly with substantial $\omega\rho$ interference. The error reflects this uncertainty; see notes in Meson Data Card Listings. If eµ universality holds, $\Gamma(\rho^{0} \rightarrow \mu^{+}\mu^{-}) = \Gamma(\rho^{0} \rightarrow e^{+}e^{-}) \times$ phase space correction.
- (e) Empirical limits on fractions for other decay modes of $\rho(765)$ are $\pi^{\pm}\gamma < 0.5$ %, $\pi^{\pm}\eta < 0.8$ %, $\pi^{\pm}\pi^{+}\pi^{-}\pi^{-} < 0.15$ %, $\pi^{\pm}\pi^{+}\pi^{-}\pi^{0} < 0.2$ %.
- (f) Empirical limits on fractions for other decay modes of f(1270) are $\eta\pi\pi < 15$ %; K⁰K⁻π⁺ + c.c. < 6%.
- (g) Empirical limits on fractions for other decay modes of $\omega(783)$ are $\pi^+\pi^-\gamma < 5$ %. $\pi^0\pi^0\gamma < 1$ %, n + neutral(s) < 1.5%, $\mu^+\mu^- < 0.2$ %, $\pi^0\mu^+\mu^- < 0.2$ %, $\eta\gamma < 0.5$ %.
- (h) Empirical limits on fractions for other decay modes of $\eta'(958): \pi^{+}\pi^{-} < 2$, $\pi^{+}\pi^{-}\pi^{0} < 5$, $\pi^{+}\pi^{+}\pi^{-}\pi^{-} < 1$, $\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0} < 1$, $6\pi < 1$, $\pi^{+}\pi^{-}\pi^{-}e^{-} < 0.6$, $\pi^{0}e^{+}e^{-} < 1.3$, $\eta e^{+}e^{-} < 1.1$, $\pi^{0}\rho^{0} < 4$, $\pi^{0}\omega + \gamma\omega < 8$.
- (i) Empirical limits on fractions for other decay modes of $\phi(1019)$ are $\pi^+\pi^- < 0.03$, $\pi^+\pi^-\gamma < 0.7$, $\omega\gamma < 5$, $\rho\gamma < 2$, $\pi^0\gamma < 0.35$, $2\pi^+2\pi^-\pi^0 < 1$.
- (j) Empirical limits on fractions for other decay modes of B(1235): $\pi\pi < 15$ %, $K\bar{K} < 2$ %, $4\pi < 50$ %, $\phi\pi < 1.5$ %, $\eta\pi < 25$ %, $(\bar{K}K)^{\pm}\pi^{0} < 8$ %, $K_{S}K_{S} \pi^{\pm} < 2$ %, $K_{S}K_{L} \pi^{\pm} < 6$ %.
- (k) Empirical limits on fractions for other decay modes of f'(1514) are $\pi^+\pi^- < 20$ %, $\eta\eta < 50$ %, $\eta\pi\pi < 30$ %, $K\bar{K}\pi + K^+\bar{K} < 35$ %, $2\pi^+2\pi^- < 32$ %.
- (1) We assume as a working hypothesis that peaks with $I^G = 1^+$ observed around 1.7 GeV all come from g(1680). For indications to the contrary see Meson Data Card Listings.
- (m) See Q-region note in Meson Data Card Listings. Some investigators see a broad enhancement in mass ($K^{\pi\pi}$) from 1250-1400 MeV (the Q region), and others see structure. The Kn, K ω , and K π modes are less than a few percent.
- (n) The tabulated mass of 1421 MeV comes from the $K\pi$ mode; the $K\pi\pi$ mode can be contaminated with diffractively produced $Q^{\pm}.$

Established Nonets, and octet-singlet mixing angles from Appendix IIB, Eq. (2'). Of the two isosinglets, the "mainly octet" one is written first, followed by a semicolon.

(J ^P)C _n	Nonet members	^θ lin.	⁰ quadr.
(0 ⁻)+ or: (0 ⁻)+	π, Κ, η; η' π, Κ, η; Ε	24 ± 1° 16 ± 1°	10 ± 1° 6 ± 1°
(1-)-	ρ, Κ*, φ; ω	36 ± 1°	39 ± 1°
(2 ⁺)+	A ₂ , K [*] (1420), f'; f	29 ± 2°	31 ± 2°

Baryon Table

April 1974

The following short list gives the status of all the Baryon States in the Data Card Listings. In addition to the status, the name, the nominal mass, and the quantum numbers (where known) are shown. States with three or four star status are included in the main Baryon Table, the others have been omitted because the evidence for the existence of the effect and/or for its interpretation as a resonance is open to considerable question.

N(939)	P11	****	∆(1232)	P33	****	Λ(1116)	P01	***	$\Sigma(1193)$	P11	****	불(1 317)	P11	****
N(1470)	P11	****	$\Delta(1650)$	S31	***	Λ(1330)		Dead	$\Sigma(1385)$	P13	****	Ξ(1530)	P13	****
N(1520)	D13	****	$\Delta(1670)$	D33	***	$\Lambda(1405)$	S01	***	$\Sigma(1440)$		Dead	Ξ(1630)		**
N(1535)	S11	****	$\Delta(1690)$	P33	*	Λ(1520)	D03	****	$\Sigma(1480)$		*	Ξ (1820)		***
N(1670)	D15	****	$\Delta(1890)$	F35	***	$\Lambda(1670)$	S01	****	$\Sigma(1620)$	S11	**	Ξ (1940)		***
N(1688)	F15	****	$\Delta(1900)$	S31	*	$\Lambda(1690)$	D03	****	$\Sigma(1620)$	P11	**	Ξ (2030)		**
N(1700)	S11	****	$\Delta(1910)$	P31	***	$\Lambda(1750)$	P01	**	$\Sigma(1670)$	D13	****	Ξ (2250)		*
N(1700)	D13	**	$\Delta(1950)$	F37	****	Λ(1815)	F05	****	$\Sigma(1670)$		**	Ξ(2500)		**
N(1780)	P11	***	$\Lambda(1960)$	D35	* *	Δ(1830)	D05	***	$\Sigma(1690)$		**			
N(1810)	P13	***	$\Delta(2160)$		**	Λ(1860)	P03	**	$\Sigma(1750)$	S11	***	$\Omega(1672)$	P03	****
N(1990)	F17	**	$\Delta(2420)$	H311	***	Λ(1870)	S01	**	$\Sigma(1765)$	D15	****			
N(2000)	F15	**	$\Delta(2850)$		***	Λ(2010)	D03	**	$\Sigma(1840)$	P13	*			
N(2040)	D13	**	$\Delta(3230)$		***	Λ(2020)	F07	**	$\Sigma(1880)$	P11	**		•	
N(2100)	S11	*	,			Δ(2100)	G07	****	Σ(1915)	F15	****			
N(2100)	D15	*	Z0(1780)	P01	*	Λ(2110)	?05	*	$\Sigma(1940)$	D13	***			
N(2190)	G17	***	Z0(1865)	D03	*	Λ(2350)		****	$\Sigma(2000)$	S11	*			
N(2220)	H19	***	Z1(1900)	P13	*	Λ(2585)		***	$\Sigma(2030)$	F17	****			
N(2650)	,	***	Z1(2150)		*				$\Sigma(2070)$	F15	*			
N(3030)		***	Z1(2500)		*				$\Sigma(2080)$	P13	**			
N(3245)		*							$\Sigma(2100)$	G17	**			
N(3690)		*							$\Sigma(2250)$		****			
N(3755)		*							$\Sigma(2455)$		***			
									$\Sigma(2620)$		***			
									$\Sigma(3000)$		**			
**** Good, clear, and unmistakable. *** Good, but in need of clarification or not absolutely certain.														

****** Needs confirmation.

n. * Weak.

[See notes on N's and Δ 's, on possible Z^{*} 's, and on Y^{*} 's and Ξ^{*} 's at the beginning of those sections in the Baryon Data Card Listings; also see notes on <u>individual</u> resonances in the Baryon Data Card Listings.]

$Particle^{a}$		<u>m or K Beam</u> b		Full	м ²		Partial decay mode			
	estab.	$p_{beam}(GeV/c)$ $\sigma = 4\pi\lambda^2 (mb)$	M ^C (MeV)	Width r ^c (MeV)	±ГМ ^b (GeV ²)	Mode	Fraction %	p or d p _{max} (MeV/c)		
p n	1/2(1/2 ⁺)		938.3 939.6		0.880 0.883	See	Stable Particl	le Table		
N(1470)	<u>1/2(1/2⁺)</u> P'11	p = 0.66 σ = 27.8	1400 to 1470	165 to 300 (250)	2.16 ±0.37	Νπ Νη Νππ [Δπ [Νρ ργf ηγf	~60 ~9 ~35 ~6] ^e ~16] ^e <5] ^e 0.12-0.32 <0.24	420 d 368 d 177 d 435 435		
N(1520)	<u>1/2(3/2⁻)</u> D' ₁₃	p = 0.74 σ = 23.5	1510 to 1540	105 to 150 (125)	2.31 ±0.19	Νπ Νππ [Νε [Νρ [Δπ Νη py f ny f	~55 ~45 <5]e ~18]e ~23]e 0.2-1.4 0.57-0.79 0.36-0.56	456 410 d 228 d 471 471		
N(1535)	<u>1/2(1/2⁻)</u> S' ₁₁	p = 0.76 σ = 22.5	1500 to 1600	50 to 160 (100)	2.36 ±0.15	Νπ Νη Νηπ [Νρ [Νε ργ ^f ηγ	~35 ~55 ~10 ~2] ^e ~2] ^e 0.04-0.32 0.04-0.12	467 182 422 d 481 481		

Particle ^a	$I (J^{\mathbf{P}})^{\mathbf{a}}$	<u>π or K Beam</u> ^b Mass		Full	м ²	Partial decay mode			
	— estab.	$p_{beam}(GeV/c)$ $\sigma = 4\pi \lambda^2 (mb)$	M ^C (MeV)	Width Г ^С (MeV)	±ΓΜ ^b (GeV ²)	Mode	Fraction %	p or p _{max} (MeV/c)	
N(1670) ^g	1/2(5/2 ⁻)D' ₁₅	p = 1.00 $\sigma = 15.6$	1670 to 1685	115 to 175 (140)	2.79 ±0.23	Νπ Νππ [Δπ ΛΚ Νη ΡΥ ^f ηΥ ^f	~40 ~60 ~50]e <1 <1h <0.04 0.01-0.13	560 525 360 200 368 572 572	
N(1688)g	1/2(5/2 ⁺)F' ₁₅	p = 1.03 $\sigma = 14.9$	1680 to 1690	105 to 180 (140)	2.85 ±0.24	Νπ Νππ [Νε [Δπ ΔΚ Νη Ργf ηγ ^f	~60 ~40 ~13]e ~12]e <0.1 <0.3h 0.20-0.44 <0.04	572 538 340 d 375 231 388 583 583	
N(1700)g	1/2(1/2 ⁻)S" 11	p = 1.05 σ = 14.3	1665 to 1765	100 to 300 (200)	2.89 ±0.34	Νπ Νππ [Νε [Δπ Δκ Σκ Νη ργ ^f ηγ ^f	~ 55 ~ 25 ~ 10]e ~ 10]e ~ 5 < 3 ~ 3h < 0.24 < 0.24	580 547 355 d 385 250 109 340 591 591	
N(1780) ^g	1/2(1/2 ⁺)P" 11	p = 1.20 σ = 12.2	1650 to 1860	50 to 350 (200)	3.17 ±0.36	Νπ Νππ [Νε [Δπ ΛΚ ΣΚ Νη ργ ^f ηγ ^f	~20 >40 16-40]e 20-45]e 8-20] <7 ~7 2-20h <0.08 <0.08	633 603 440 249 448 353 267 476 643 643	
N(1810)	1/2(3/2 ⁺)P ₁₃	p = 1.26 $\sigma = 11.5$	1770 to 1860	180 to 330 (250)	3.28 ±0.45	Νπ Νππ [Νρ ΛΚ Νη	~25 >50 45-55]e ~5 ~4h	652 624 297 386 503	
N(2190)	1/2(7/2 ⁻)G ₁₇	p = 2.07 $\sigma = 6.21$	2000 to 2260	150 to 325 (250)	4.80 ±0.55	Nπ	~25	888	
N(2220)	1/2(9/2 ⁺)H ₁₉	p = 2.14 $\sigma = 5.97$	2200 to 2245	260 to 330 (300)	4.93 ±0.67	Νπ	~15	905	
N(2650)	1/2(?)	p = 3.26 $\sigma = 3.67$	~2650	~360 (360)	7.02 ±0.95	Nπ	(J+1/2)x ~0.45j	1154	
N(3030)	1/2(?)	p = 4.41 $\sigma = 2.62$	~3030	~400 (400)	9.18 ±1.21	Nπ	(J+1/2)x ~0.05 ^j	1366	
Δ(1232) ^k	$3/2(3/2^{+})P'_{33}$	p = 0.30 $\sigma = 94.3$	1230 to 1236	110 to 122 (110) 4+1 7)	1.52 ±0.14	Νπ Νπ ⁺ π Ργ f	~99.4 - ~0 0.70-0.74	227 80 259	
Δ(1650)	$3/2(1/2^{-})S_{31}^{'}$	p=0.96 σ =16.4	1615 to 1695	140 to 200 (140)	2.72 ±0.23	Νπ Νππ [Νρ [Δπ pγ ^f 0	~30 ~70 10-26] ^e ~50] ^e .02-0.034	547 511 d 344 558	

Baryon Table (cont'd)

		Baryon	Table	(con	t'd)			
Particle ^a	$I (J^P)^a$	π or K Beam ^b	Mass	Full	M ²	Pa	rtial decay r	node
	estab.	$\sigma = 4\pi \lambda^2 \text{ (mb)}$	M ^C (MeV)	Width Γ^{c} (MeV)	±ΓΜ ^b (GeV ²)	Mode	Fraction %	p or c p _{max} (MeV/c)
<u>∆(1670)</u>	3/2(3/2 ⁻)D ₃₃	p = 1.00 $\sigma = 15.6$	1650 to 1720	190 to 270 (260)	2.79 ±0.43	Νπ Νππ [Νρ [Δπ ργf	~15 >60 ~ 30] ^e ~40] ^e 0.1-0.7	560 525 d 361 572
∆(1890)	3/2(5/2 ⁺)F ₃₅	p = 1.42 $\sigma = 9.88$	1840 to 1920	140 to 350 (250)	3.57 ±0.47	Νπ Νππ [Νρ [Δπ ΣΚ ΡΥ ^f	~ 17 >50 40-60] ^e 8-20] ^e <3 <0.3	704 677 403 531 400 712
∆(1910)	3/2(1/2 ⁺)P ₃₁	p = 1.46 $\sigma = 9.54$	1780 to 1935	200 to 340 (300)	3.65 ±0.57	Νπ Νππ [Δπ ΣΚ	~25 ? small] ^e small] ^e ~6	716 691 429 545 420
<u>∆(1950)</u>	3/2(7/2 ⁺)F ₃₇	p = 1.54 σ = 8.90	1930 to 1980	170 to 270 (230)	3.80 ±0.45	Νπ Νηπ [Δη ΣΚ Σ(138 pγ ^f	~40 > 25 8-14] ^e 16-26] ^e ~2 5)K ~1.4 0.16-0.34	741 716 471 574 ~60 232 749
∆(2420)	3/2(11/2 ⁺)	p = 2.64 $\sigma = 4.68$	2320 to 2450	250 to 350 (300)	5.86 ±0.73	Νπ Νππ	~11 >20	1023 1006
∆(2850)	3/2(? ⁺)	p = 3.85 $\sigma = 3.05$	~2850	~400 (400)	8.12 ±1.14	Νπ	(J+1/2)x ~0.25 ^j	1266
∆(3230)	3/2(?)	p = 5.08 $\sigma = 2.25$	~3230	~440 (440)	10.43 ±1.42	Nπ	(J+1/2)x ~0.05 ^j	1475
z*	Evidence for state discussion and dis	es with strangeness splay of data.	+1 is contr	oversial.	See the B	aryon Da	ta Card listi	ngs for
Λ	$\frac{0(1/2^{+})}{2}$		1115.6		1.245	See St	able Particl	e Table
Λ(1405)	0(1/2 ⁻)S' ₀₁	below K [*] p threshold	1405 ±5 ^ℓ	40±10 ^ℓ (40)	1.97 ±0.06	Σπ	100	142
Λ(1520)	0(3/2 ⁻)D' ₀₃	p = 0.389 $\sigma = 84.5$	1518 ±2 ^ℓ	16 ±2ℓ (16)	2.31 ±0.02	ΝΚ Σπ Δππ Σππ	45±1 41±1 10±.5 .8±.1	234 258 250 140
Λ(1670)	0(1/2 ⁻)S'' ₀₁	p = 0.74 $\sigma = 28.5$	1660 to 1680	23 to 40 (35)	2.79 ±0.06	$rac{N\overline{K}}{\Lambda\eta}$ $\Sigma\pi$	15-35 15-25 30-50	410 64 393
Λ(1690)	0(3/2 ⁻)D'' ₀₃	p = 0.78 $\sigma = 26.1$	1690 ±10¢	30 to 70 (60)	2.86 ±0.10	ΝΚ Σπ Λππ Σππ	20-30 30-50 <25 <25	429 409 415 352
Λ(1815)	0(5/2 ⁺)F' ₀₅	p = 1.05 $\sigma = 16.7$	1820 ±5¢	70 to 100 (85)	3.29 ±0.15	Ν <u>Κ</u> Σπ Σ(1385)	~61 ~11 π 15-20	542 508 362
Λ(1830)	0(5/2 ⁻)D' ₀₅	p = 1.09 $\sigma = 15.8$	1810 to 1840	70 to 120 (95)	3.35 ±0.17	ΝΚ Σπ Δη	~10 20-60 ~2	554 519 367
Λ(2100)	0(7/2 ⁻)G ₀₇	p = 1.68 $\sigma = 8.68$	2090 to 2120	80 to 140 (120)	4.41 ±0.25	ΝΚ Σπ Λη ΞΚ Λω	~30 ~5 < 3 < 3 < 3	748 699 617 483 443

Baryon	Table	(cont'd)
--------	-------	----------

	Particle ^a	$I (J^{\mathbf{P}})^{\mathbf{a}}$	π or K Beam ^k	Mass	Full	M ²	Partial decay		mode	
		estab.	$p_{beam}(GeV/c)$ $\sigma = 4\pi \lambda^2 (mb)$	M ^C (MeV)	Width	±ΓΜ ^b (GeV ²)	Mode	Fraction %	pord p _{max} (MeV/c)	
	Δ(2350)	<u>0(</u> ?)	$p = 2.29 \\ \sigma = 5.85$	~2350	140 to 320 (240)	5.52 ±0.56	NK	(J+1/2)x ~ 0.9j	913	
	Λ(2585)	<u>0(</u> ?)	p = 2.91 $\sigma = 4.37$	~2585	~300 (300)	6.68 ±0.78	NK	(J+1/2)x ~1.0j	1058	
	Σ	1(1/2 ⁺)		(+)1189.4 (0)1192.5 (-)1197.4		1.415 1.422 1.434	See Sta	able Particl	e Table	
* * * * *	Σ(1385)	1(3/2 ⁺)P' ₁₃	below K ⁻ p threshold	(+)1383±1 S=1.2 ^m (-)1387±1 S=2.4 ^m	(+)35±2 S=2.0m (-)42±5 S=3.5m (35)	1.92 ±0.05	Λπ Σπ	88±2 12±2	208 117	
++	Σ(1670) ⁿ	1(3/2 ⁻)D' ₁₃	p = 0.74 $\sigma = 28.5$	1670 ±10 ^ℓ	35 to 60 (50)	2.79 ±0.08	ΝΚ Σπ Δπ	~8 30-60 ~12	410 387 447	
	Σ(1750)	1(1/2 ⁻)S'' ₁₁	p = 0.91 $\sigma = 20.7$	1700 to 1790	50 to 100 (75)	3.06 ±0.13	Ν Κ Λπ Σπ Ση	12-45 5-18 6-19 11-44	483 507 450 54	
‡	Σ(1765)	1(5/2 ⁻)D ₁₅	p = 0.94 $\sigma = 19.6$	1765 ±5 ^ℓ	~120 (120)	3.12 ±0.21	Ν Κ Λπ Λ(1520 Σ(1385 Σπ	~ 41 ~ 13 $\pi \sim 15$ $\pi \sim 10$ ~ 1	496 518 187 315 461	
	Σ(1915) ^{g, ο}	1(5/2 ⁺)F' ₁₅	p = 1.25 $\sigma = 13.0$	1900 to 1930	50 to 120 (80)	3.67 ±0.15	ΝΚ Λπ Σπ	~14 ~6 ~6	612 619 568	
-+	Σ(1940) ⁱ	1(3/2 ⁻)D'' ₁₃	p = 1.32 $\sigma = 12.0$	1865 to 1950	110 to 280 (220)	3.76 ±0.43	ΝΚ Λπ Σπ	~21 ~4 < 7	678 680 589	
***	Σ(2030)	1(7/2 ⁺)F ₁₇	p = 1.52 $\sigma = 9.93$	2020 to 2040	120 to 170 (140)	4.12 ±0.28	$N\overline{K}$ $\Lambda \pi$ $\Sigma \pi$ ΞK	~20 ~20 ~4 < 2	700 700 652 412	
	∑(2250)	1(?)	$p = 2.04 \\ \sigma = 6.76$	2245 to 2280	100 to 230 (160)	5.06 ±0.36	NK	(J+1/2)x ~0.3 ^j	849	
	Σ(2455)	<u>1(</u> ?)	p = 2.57 $\sigma = 5.09$	~2455	~120 (120)	6.03 ±0.29	NK	(J+1/2)x ~0.2j	979	
•	Σ(2620)	1(?)	p = 2.95 $\sigma = 4.30$	~2620	~ 175 (175)	6.86 ±0.46	NK	(J+1/2)x ~0.3j	1064	
	Ιŧ	1/2(1/2 ⁺)		(0)1314.9 (-)1321.3		1.729 1.746	See Sta	ble Particle	e Table	
٠	≡(1530) ^p	$\frac{1/2(3/2^+)P_{13}}{2}$	(0)153 S= (-)153	1.8±0.3 (0) 1.3 ^m 5.1±0.7 (-)	9.1±0.5 10.6±2.6 (10)	2.34 ±0.02	Ξπ	100	144	
	Ξ(1820) ^{p,q}	1/2(?)		1795 to 1870	12 to 100 (60)	3.31 ±0.11	Λ Σ Ξ π Ξ(1530)	seen seen seen π seen	396 306 413 234	
:	문(1940)p,r	1/2(?)		1920 to 1960	40 to 140 (90)	3.76 ±0.17	Ξπ Ξ(1530) [,]	seen T seen	499 336	
	Ω-	0(3/2 ⁺)		1672.2		2.796	See Stab	le Particle	Table	

Baryon Table (cont'd)

- For convenience all Baryon States for which information exists in the Baryon Data Card Listings are listed at the beginning of the Baryon Table. States with only a one or two star (*) rating in that list have been omitted from the main Baryon Table; each omitted state is indicated by an arrow in the left-hand margin of the Table. In the Listings there is an arrow under the name of each state omitted from the Table.
- The names of the Baryon States in Col. 1 [such as N(1470)] contain a nominal mass which is a а. rounded average of the reported values in the Data Card Listings. The convention for using primes in the spectroscopic notation for the quantum numbers in Col. 2 [such as P'_{11}] is as follows: no prime is attached when the Data Card Listings include only one resonance of the given Argand diagram; when there is more than one resonance the first has been designated with a prime, the second with a double prime, etc. The name and the quantum numbers for each state are also given in large print at the beginning of the Data Card Listings for that state. The numbers in Col. 3 and Col. 6 are calculated using the nominal mass (see a. above) for M and
- ь. the nominal width (see c. below) for Γ
- For M and Γ of most baryons we report here an interval instead of an average. Averages are c. appropriate if each result is based on independent measurements, but inappropriate where the spread in parameters arises because different models or procedures have been applied to a common set of data. A single value with an approximation sign (~) indicates that there is not enough data to give a meaningful interval. A nominal width is included in parentheses in Col. 5; this nominal width is used to calculate the value of ΓM given in Col. 6.
- For two body decay modes we give the momentum, p, of the decay products in the decaying baryon rest frame. For decay modes into \geq 3 particles we give the maximum momentum, p_{max} , that any of the particles in the final state can have in this frame. The momenta are calculated using the nominal mass (see a. above) of the decaying baryon, and of any isobars in the final state. Some decays which would be energetically forbidden for the nominal masses actually occur because of the finite widths of the decaying Baryon and/or isobars in the final state. In these cases, the decay momentum is omitted from Col. 9 and replaced with a reference to this footnote.
- Square brackets around an isobar decay mode indicate that it is a sub-reaction of the previous unbracketed decay mode. In the case of N^* and Δ decays into isobar modes we have used the isobar model results of HERNDON 74 in addition to data from the listings (where available) to estimate the branching fractions. The results of HERNDON 74 are shown in Table III.1 of the mini-review preceding the N* Data Card Listings.
- The tabulated radiative fractions involve a sum over two helicities (1/2, 3/2). In the case of f. I = 1/2 resonances, there are two distinct isospin couplings, whence γp and γn . For conventions and further details, see the Mini-Review preceding the Baryon Data Card Listings.
- Only information coming from partial-wave analyses has been used here. For the production exg. Periments results see the Baryon Data Card Listings. Value obtained in an energy-dependent partial-wave analysis which uses a t-channel-poles-plus-
- h. resonance parametrization.
- There may be more than one state in this region. The only analysis which reports an elastic i. coupling (LEA 73) also finds unusually low mass and width values. Note that all branching fractions quoted here depend on the elasticity of LEA 73.

- This state has been seen only in total cross sections. J is not known; x is Γ_{el}/Γ . See note on $\Delta(1232)$ in the Baryon Data Card Listings. Values of mass and width are dependent k. upon resonance shape used to fit the data. The pole position appear to be much less dependent upon the parametrization used.
- The error given here is only an educated guess; it is larger than the error of the average of the l. published values (see the Baryon Data Card Listings for the latter).
- Quoted error includes an S (scale) factor. See first footnote to Stable Particle Table. m.
- In this energy region the situation is still confused. In addition to the effect at ~ 1670 MeV seen in n. both production and formation experiments, recent formation experiments have found evidence_for fairly narrow ($\Gamma \sim 50$ MeV) S₁₁ and/or P₁₁ states near 1620 MeV. A narrow bump in the I = 1 KN total cross section has also been seen recently at ~ 1590 MeV. It is not clear how many states really exist here. No one has reported a strong coupling of any of these states to $\bar{K}N$ but there is much disagreement about branching ratios into $\pi\Lambda$ and $\pi\Sigma$. See the mini-reviews preceding the $\Sigma(1620)$ and $\Sigma(1670)$ Data Card Listings for more information.
- Formation and production experiments do not agree on the $\Sigma\pi/\Lambda\pi$ ratio. ٥.
- Only $\Xi(1530)$ is firmly established; information on the other states comes from experiments that p. have poor statistics due to the fact that the cross sections for S = -2 states are very low. For Ξ states, because of the meager statistics, we lower our standards and tabulate resonant effects if they have at least a four-standard-deviation statistical significance and if they are seen by more than one group. So $\Xi(2030)$, with main decay mode $\Sigma \overline{K}$, reported as a 3.5-standard-deviation effect is not tabulated. See the Baryon Data Card Listings for the other states.
- All four decay modes shown have been seen. Branching ratios are not quoted because there may be q. more than one state here.
- This bump has been seen in both final states shown; it is not clear if one, or more, states are r. present.

PHYSICAL AND NUMERCAL CONSTANTS*

PHYSICAL CONSTANTS

		23	- 1	Unce	rt. (ppm)
N	= 6.022045(31)>	<10 n			5.1
с	= 2.99792458(1.	.2)×10 ¹	cm sec ⁻¹	0	0.004
e	= 4.803242(14)>	< 10 ⁻¹⁰	$esu = 1.6021892(46) \times 10^{-1}$	⁷ coulomb	2.9; 2.9
1 MeV	= 1.6021892(46)	$\times 10^{-6}$	erg	27	2.9
$\hbar = h/2\pi$	= 6.582173(17)>	< 10 ⁻²²	MeV sec = 1.0545887(57)×1	.0 ⁻² erg sec	2.6; 5.4
ħc	= 1.9732857(51)	×10 ⁻¹¹	MeV cm = 197.32857(51) N	1eV Fermi	2.6; 2.6
	= 0.6240078(16)	GeV m	$b^{1/2}$		2.6
α	$= e^2/\hbar c = 1/13^2$	7.03604	(11)		0.82
^k Boltzmann	= 1.380662(44)>	< 10 ⁻¹⁶	erg°K ⁻¹	3	32
	= 8.61735(27)×	10 ⁻¹¹ N	$4 e V ^{\circ}K^{-1} = 1 e V / 11604.50(3)$	36)°K 3	31; 31
me	= 0.5110034(14)	MeV =	9.109534(47) \times 10 ⁻³¹ kg		2.8; 5.1
mp	= 938.2796(27)	MeV =	$1836.15152(70)m_{p} = 6.7227$	0(31) m _{π±}	2.8; 0.38; 46
F	= 1.007276470(11)m ₁ (n	$m_1 = 1 \text{ amu} = \frac{1}{12} m_{C12} = 931.5$	016(26)MeV	0.011
md	= 1875.628(5) N	leV Î			3
r	$= e^2/m_e^2 = 2.8$	179380	(70) fermi (1 fermi = 10 ⁻¹³	′ cm)	2.5
λ <u></u>	$= \hbar/m_c = r_a$	· ¹ = 3.86	615905(64)×10 ⁻¹¹ cm		1.6
a _{∞Bohr}	$= \hbar^2/m_e^2 = r_e$	$\alpha^{-2} = 0$.52917706(44)A (1A = 10 ⁻⁸	cm)	0.82
σ _{Thompson}	$=\frac{8}{3}\pi r_{2}^{2}=0.6652$	2448(33)	$\times 10^{-24} \text{ cm}^2 (10^{-24} \text{ cm}^2)$	= 1 barn)	4.9
^µ Bohr	$= e\hbar/2m_c = 0.$	5788378	$(95) \times 10^{-14} \text{ MeV gauss}^{-14}$	1	1.6
^µ nucleon	$= e\hbar/2m_{p}c = 3.2$	1524515	$(53) \times 10^{-18} \text{ MeV gauss}^{-1}$		1.7
$\frac{1}{2}\omega^{e}$	$= e/2m_{c}^{P} = 8.7$	94023(2	5)×10 ⁶ rad sec ⁻¹ gauss ⁻¹		2.8
$\frac{1}{2}\omega^{p}$	$= e/2m_{p}c = 4.7$	89378(1	3)×10 ³ rad sec ⁻¹ gauss ⁻¹		2.8
Hydrogen-lik	e atom (nonrela	ativistic	;, $\mu = reduced mass$):		
	$\frac{\mathbf{v}}{\mathbf{z}}$ = $\frac{\mathbf{z}e^2}{\mathbf{z}}$ =		$2 = \frac{\mu z^2 e^4}{12}$; $a = \frac{n^2 h^2}{12}$		
4	c'rms nhc' *	'n - 2 '	⁻ 2(nħ) ^{2, "n –} μze ²		
$R_{\infty} = m_e e^4/2$	$2\hbar^2 = m_e c^2 \alpha^2 / 2$	= 13.60	5804(36) eV (Rydberg)		2.6
pc = 0.3 Hp (MeV, kilogauss	, cm);	0.3 (which is 10^{-11} c) ente	rs because	
there an	re ≈300 practica	l volts/	esu volt.	7	
1 year (sider	eal)	= 365.2	56 days = $3.1558 \times 10^{\prime}$ sec	(≈π×10′ se	c)
density of dr	y air	= 1.205	mg cm ⁻⁵ (at 20°C, 760 n	nm)	
acceleration	by gravity	= 980.6	2 cm sec^{-2} (sea level, 45	°)	
gravitational	constant	= 6.673	$2(31) \times 10^{-8} \text{ cm}^{3} \text{g}^{-1} \text{ sec}^{-2}$		
1 calorie (the	ermochemical)	= 4.184	joules		
1 atomosphe:	re	= 1033.	$2275 \text{ g cm}^{-2} = 1.01325 \text{ bas}$	r	
1 eV per par	ticle	= 11604	.50(36) $^{\circ}$ K (from E = kT)		
	<u>N</u>	IUMERI	CAL CONSTANTS		
π = 3.1	415927	1 rad	= 57.2957795 deg	$\sqrt{\pi} = 1.77$	24539
e = 2.7	182818	1/e	= 0.3678794	$\sqrt{2}$ = 1.41	42136
ln2 = 0.6	931472	ln10	= 2.3025851	$\sqrt{3} = 1.73$	20508
$\log_{10}^2 = 0.3$	010300	\log_{10}^{e}	= 0.4342945	$\sqrt{10} = 3.16$	22777

^{*}Prepared by Stanley J. Brodsky, based mainly on the adjustment of the fundamental physical constants by E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973). The figures in parentheses correspond to the 1 standard deviation uncertainty in the last digits of the main number. (Updated April 1974.)

Sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957), and Cohen (Tables of the Clebsch-Gordan Coefficients, Atomics International, Canoga Park, Calif., 1958). Note that the widely reproduced tables of Cohen have several typographical mistakes. The signs and numbers in the current tables have been calculated by computer programs written independently by Cohen and at LBL. (Table extended April 1974.)

SU(3) ISOSCALAR FACTORS

Adapted from J. J. de Swart, Rev. Mod. Phys. <u>35</u>, 916 (1963) The convention used here is: baryon first, meson second.

This factor is irrelevant if you are doing your own self-consistent calculations; it enters when you try to check someone else who chose $\mu_2 \bigotimes \mu_1$ instead of $\mu_4 \bigotimes \mu_2$.

 $[10] \otimes [8] = [35] \oplus [27] \oplus [10] \oplus [8].$

* Four single coefficient tables are omitted; only the $\{27\}$ is -1; the three with $\{35\}$ are +1.

PROBABILITY AND STATISTICS

 χ^2 Confidence Level vs. χ^2 for n_D Degrees of Freedom

A. PROBABILITY DISTRIBUTIONS AND CONFIDENCE LEVELS

We give here properties of the three probability distributions most commonly used in high energy physics: Normal (or Gaussian), Chi-squared, and Poisson. We <u>warn</u> the reader that there is no universal convention for the term "confidence level" as used by physicists; thus, explicit definitions are given for each distribution, and we have attempted to choose definitions that correspond to common usage. It is explained below how confidence levels for all three distributions can be extracted from the following figure.

A.1. Normal Distribution

The normal distribution with mean \overline{x} and standard deviation σ (variance $\sigma^2)$ is:

$$P(x)dx = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\bar{x})^2/2\sigma^2} dx.$$
 (1)

The <u>confidence level</u> associated with an observed deviation from the mean, δ , is the probability that $|\mathbf{x} \cdot \mathbf{x}| > \delta$, i.e.,

[The small figure in Eq. (2) is drawn with $\delta = 2\sigma$.] CL is given by the ordinate of the $n_D = 1$ curve in the figure at $\chi^{2} = (\delta/\sigma)^2$. The confidence level for $\delta = 1\sigma$ is 31.7%; 2σ , 4.6%; 3σ , 0.3%. The <u>central</u> confidence interval, 1-CL, (which is also sometimes called confidence level) for $\delta = 1\sigma$ is 68.3%; 2σ , 95.4%; 3σ , 99.7%. The <u>odds</u> against exceeding δ , (1-CL)/CL, for $\delta = 1\sigma$ are 2.15:1; 2σ , 21:1; 3σ , 370:1; 4σ , 16,000:1; 5σ , 1,700,000:1. Relations between σ and other measures of the width: probable error (CL = 0.5 deviation) = 0.67\sigma; mean absolute deviation = 0.80σ ; RMS deviation = σ ; half width at half maximum = 1.18σ .

A.2. Chi-squared Distribution

The chi-squared distribution for n_{D} degrees of freedom is:

$$P_{n_{D}}(\chi^{2}) d\chi^{2} = \frac{1}{2^{h_{\Gamma}}(h)} (\chi^{2})^{h-1} e^{-\chi^{2}/2} d\chi^{2} (\chi^{2} \ge 0), \qquad (3)$$

where h (for "half") = $n_D/2$. The mean and variance are n_D and $2n_D$, respectively. In evaluating Eq. (3) one may use Stirling's approximation: $\Gamma(h) = (h-1)! \approx 2.507 e^{-h} h(h-1/2)_X$ (1 + 0.0833/h) which is accurate to $\pm 0.1\%$ for all $h \ge 1/2$. The confidence level associated with a given value of n_D and an observed value of χ^2 is the probability of chi-squared exceeding the observed value, i.e.,

$$CL = \int_{\chi}^{\infty} d\chi^{2} P_{n_{D}}(\chi^{2}) \qquad 1-CL \qquad CL \qquad (4)$$

[The small figure in Eq. (4) is drawn with $n_D = 5$ and CL = 10%.] CL is plotted as a function of χ^2 for several values of n_D in the above figure. For large n_D , χ^2 becomes normally distributed about n_D . Thus,

$$y_1 = (\chi^2 - n_D) / \sqrt{2n_D}$$
 (5)

becomes normally distributed with unit standard deviation. A better approximation, due to Fisher, ¹ is that χ , not χ^2 , becomes normally distributed, specifically

$$y_2 = \sqrt{2\chi^2} - \sqrt{2n_D} - 1$$
 (6)

approaches normality with unit standard deviation. For small CL's in particular, y_2 is much more accurate than y_1 . Thus, for $n_D = 50$ and $\chi^2 = 80$, the true CL = 0.45%, but y_1 is 3.0 corresponding to a CL of 0.13%, while y_2 is 2.7 corresponding to a CL of 0.35%.

PROBABILITY AND STATISTICS (Cont'd)

A.3. Poisson Distribution

The Poisson distribution with mean \bar{n} is:

$$P_{\tilde{n}}(n) = \frac{e^{-(\tilde{n})}(\tilde{n})^{n}}{n!}(n = 0, 1, 2, \cdots).$$
(7)

The variance is equal to the mean. <u>Confidence levels</u> for Poisson distributions are usually defined in terms of quantities called "<u>upper limits</u>" as follows: The confidence level associated with a given upper limit N and an observed value n_0 of n is the probability that $n > n_0$ if $\overline{n} = N$, i.e.,

[The small figure in Eq. (8) is drawn with $n_0 = 2$ and CL = 90%.] A useful relation between Poisson and chi-squared confidence levels allows one to look up this quantity on the above figure. Specifically, the quantity 1-CL is given by the ordinate of the $n_D = 2(n_0+1)$ curve at $\chi^2 = 2N$. Thus, 90% confidence level upper limits for $n_0 = 0$, 1, and 2 are given by half the χ^2 value corresponding to an ordinate of 0.1 on the $n_D = 2.4$, and 6 curves, respectively; the values are N = 2.3, 3.9, and 5.3.

<u>Tables</u> of confidence levels for all three of these distributions, the relation between Poisson and chi-squared confidence levels, and numerous other useful tables and relations may be found in Ref. 2.

B. STATISTICS

We consider here the situation in which one is presented with N independent data, $y_n \pm \sigma_n$, and it is desired to make some <u>inference</u> about the "true" value of the quantity represented by these data. For this purpose we interpret each datum y_n as a single sample point drawn randomly (and independently of the other data) from a distribution having mean $\overline{y_n}$ (which we wish to estimate) and variance σ_n^2 . (Identification of the true σ_n with the σ_n datum is an <u>approximation</u> which may become seriously inaccurate when σ_n is an appreciable fraction of y_n .) Some methods of estimation commonly used in high energy physics are given below; see Ref. 3 for numerous applications. Section B.1. deals with the case in which $\overline{y_n} = \overline{y}(x_n)$, where x_n represents some set of independent variables, e.g., cross-section measurements at various values of energy and angle, $x_n = \{E_n, \theta_n\}$.

B.1. Single Mean and Variance Estimates

(1) If the y_n represent a set of values all supposedly drawn from a single distribution with mean \overline{y} and variance σ^2 (i. e., the σ_n are all the same, but their common value is unknown) then

$$\bar{y}_e = \frac{1}{N} \sum_{n} y_n$$
 and (9)

$$\sigma_{e}^{2} = \frac{1}{N-1} \sum_{n} (y_{n} - \overline{y}_{e})^{2}$$
(10)

are unbiased estimates of \overline{y} and σ^2 . The variance of \overline{y}_c is σ^2/N . If the parent distribution is normal and N is large, the variance of σ_c^2 is $2\sigma^4/N$.

(2) If the \overline{y}_n all have the common value \overline{y} and the σ_n are known, then the weighted average

$$\overline{y}_{e} = \frac{1}{w} \sum_{n} w_{n} y_{n}, \qquad (11)$$

where $w_n = 1/\sigma_n^2$ and $w = \Sigma w_n$, is an appropriate unbiased estimate of **y**. This choice of weighting factors in Eq. (11) minimizes the variance of the estimate; the variance is 1/w.

B.2. Linear Least Squares Fit

4

A least squares fit of the function $y(x) = \sum_i a_i f_i(x)$ to independent data $y_n \pm \sigma_n$ at points x_n (e.g., a Legendre fit in which the f_i are Legendre polynomials and the a_i are Legendre coefficients) gives the following estimates of the parameters a_i :

$$a_{e,i} = \sum_{j,n} V_{ij} f_j(x_n) y_n / \sigma_n^2.$$
 (12)

Here V is the covariance matrix of the fitted parameters

$$V_{ij} = \overline{(a_{e,i} - \bar{a}_{e,i})(a_{e,j} - \bar{a}_{e,j})},$$
 (13)

which is given by

$$\left(\nabla^{-1} \right)_{ij} = \sum_{n} f_i \left(\mathbf{x}_n \right) f_j \left(\mathbf{x}_n \right) / \sigma_n^2 .$$
 (14)

The variance of an interpolated or extrapolated value of y at point x, $y_e = \Sigma a_{e,i} f_i(x)$, is:

$$\left(\mathbf{y}_{e} - \overline{\mathbf{y}}_{e}\right)^{2} = \sum_{ij} V_{ij} f_{i}(\mathbf{x}) f_{j}(\mathbf{x}) .$$
(15)

For the case of a straight line fit, y(x) = a + bx, one obtains the following estimates of a and b,

$$a_{e} = (S_{y} S_{xx} - S_{x} S_{xy})/D,$$

$$b_{e} = (S_{1} S_{xy} - S_{x} S_{y})/D,$$
(16)

where

$$S_{1}, S_{x}, S_{y}, S_{xx}, S_{xy} = \Sigma (1, x_{n}, y_{n}, x_{n}^{2}, x_{n}y_{n}) / \sigma_{n}^{2},$$
(17)
$$D = S_{1} S_{xx} - S_{x}^{2}.$$

The covariance matrix of the fitted parameters is:

$$\begin{pmatrix} \mathbf{V}_{aa} & \mathbf{V}_{ab} \\ \mathbf{V}_{ab} & \mathbf{V}_{bb} \end{pmatrix} = \frac{1}{D} \begin{pmatrix} \mathbf{S}_{xx} & -\mathbf{S}_{x} \\ -\mathbf{S}_{x} & \mathbf{S}_{1} \end{pmatrix}$$
(18)

The variance of an interpolated or extrapolated value of y at point x is:

$$\overline{(y_e - \overline{y}_e)^2} = \frac{1}{S_1} + \frac{S_1}{D} \left(x - \frac{S_x}{S_1}\right)^2$$
 (19)

C. ERROR PROPAGATION

We consider here the situation in which one wishes to calculate the value and error of a function of some other quantities with errors, e.g., in a Monte Carlo program. Let $\{y\}$ be a set of random variables with means $\{\overline{y}\}$ and covariance matrix V. Then the mean and variance of a function of these variables are approximately (to second order in $\{y,\overline{y}\}$):

$$\overline{\mathbf{f}} \approx \mathbf{f}(\{\mathbf{y}\}) + \frac{1}{2} \sum_{mn} \mathbf{V}_{mn} \left(\frac{\partial^2 \mathbf{f}}{\partial \mathbf{y}_m \partial \mathbf{y}_n} \right)_{\{\mathbf{y}\} = \{\overline{\mathbf{y}}\}},$$
(20)

$$\overline{(f-\overline{f})^2} = \sum_{mn} V_{mn} \left(\frac{\partial f}{\partial y_m}\right)_{\{y\} = \{\overline{y}\}} \left(\frac{\partial f}{\partial y_n}\right)_{\{y\} = \{\overline{y}\}}.$$
 (21)

E.g., the mean and variance of a function of a single variable with mean \overline{y} and variance σ^2 are:

$$\frac{\overline{\mathbf{f}} \approx \mathbf{f}(\overline{\mathbf{y}}) + \frac{1}{2} \sigma^2 \mathbf{f}^{\prime\prime}(\overline{\mathbf{y}}), \qquad (22)$$

$$(\overline{\mathbf{f} - \overline{\mathbf{f}})^2} = \sigma^2 \mathbf{f}^{\prime}(\overline{\mathbf{y}})^2. \qquad (23)$$

Note that these equations will usually be applied by substituting some measured quantities, $\{\widetilde{y}\}$ say, for the true means, $\{\overline{y}\}$. If, as is often the case, $\widetilde{y}_n - \overline{y}_n$ is of order $\sqrt{V_{nn}}$, then there is no point in keeping the second order terms in Eq. (20) or (22) since the substitution itself introduces first order errors.

Revised and expanded April 1974.

^{1.} R. A. Fisher, <u>Statistical Methods for Research Workers</u> (Oliver and Boyd, Edinburgh and London, 1958).

M. Abramovitz and I. Stegun, eds., <u>Handbook of</u> <u>Mathematical Functions</u> (National Bureau of Standards, <u>Applied Mathematics Series</u>, Vol. 55, Washington, 1964).
 W. T. Eadie, D. Drijard, F. E. James, M. Roos, and

W. T. Eadie, D. Drijard, F. E. James, M. Roos, and P. Sadoulet, <u>Statistical Methods in Experimental Physics</u> (North-Holland, Amsterdam and London, 1971).

RELATIVISTIC KINEMATICS*

DEFINITIONS AND GENERAL FORMULAE		PARTICULAR CASES AND ASYMPTOTIC VALUES (2)	
Notation: We define any 4-vector n by its components:			
$(p_0 \equiv E \equiv \text{the energy})$			
$\mathbf{p} \equiv (\mathbf{p}_{0}, \vec{\mathbf{p}}) \text{ with } \left\{ \vec{\mathbf{p}} \equiv (\mathbf{P}_{\parallel}, \vec{\mathbf{P}}_{\perp}), \right.$			
where $\int P_{\parallel} \equiv$ the longitudinal momentum along a beam di	irection		
$P_{\perp} \equiv \text{the transverse momentum (2 components,} \\ along 2 axes perpendicular to the beam); \\ _ (r_{\perp} ab r_{\perp} ab r_{\perp} ab)$	(4)		
then $p^{\text{lab}} = (E_{\mu}, P_{\mu}, P_{\perp}),$	(1)		
$\mathbf{p}^{\mathrm{cm}} = (\mathbf{E}^{\mathrm{cm}}, \mathbf{P}_{\parallel}^{\mathrm{cm}}, \vec{\mathbf{P}}_{\perp}^{\mathrm{cm}}).$	(2)		
The 4-vector scalar products are defined by $\mathbf{A} \cdot \mathbf{B} = \mathbf{A}_0 \mathbf{B}_0 - \vec{\mathbf{A}} \cdot \vec{\mathbf{B}},$			
so that p^{lab} , $p^{lab} = p^{cm}$, $p^{cm} = m^2$.			
General Invariant Definitions and Related Formulae:			
For any 2 particles i and j, the most commonly used invariants are defined as follows:		If \mathbf{F} and \mathbf{F} are such that $\mathbf{F} \cong \mathbf{P}$ (>>m) and	
$ \sum_{i,j=m_{ij}^2 = (p_i + p_j)^2 = m_i^2 + m_j^2 + 2(E_iE_j - \vec{P}_j \cdot \vec{P}_j). $	(3)	$E_i \simeq P_i (>>m_i)$, for example in <u>colliding</u>	
Using the function $\Delta(x, y, z)$ defined by		$\beta = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \right] = $	3 = 1
$\Delta(x, y, z) \equiv x^{2} + y^{2} + z^{2} - 2xy - 2yz - 2zx$		$i_j = 1$, a,
$= \left[x - \left(\sqrt{y} + \sqrt{z} \right)^2 \right] \left[x - \left(\sqrt{y} - \sqrt{z} \right)^2 \right],$	(4)	the directions of particles i and j.	
We have the relations:		For the initial state a (beam)+b(target):	
• $\underline{in \text{ the particle } j \text{ rest frame } (\vec{P}_j = 0), \text{ the }$		• <u>in the lab frame</u> $(\vec{P}_a = \vec{P}_{inc}, \vec{P}_b = 0),$	
x axis being along \vec{P}_i ,		$s \equiv s_{ab} = m_a^2 + m_b^2 + 2 m_b E_a^{lab},$ (3)	-1)
$p_{i}^{(j)} = \begin{pmatrix} \frac{s_{ij} - m_{i}^{2} - m_{j}^{2}}{2m_{i}}, \frac{\sqrt{\Delta(s_{ij}, m_{i}^{2}, m_{j}^{2})}}{2m_{i}}, 0 \end{pmatrix};$	(5)	so that: $s \simeq 2 m_b P_{inc}$. (3 -	1a)
• in the particle ij rest frame $(\vec{P}_i = -\vec{P}_i)$, the		• in the center of mass frame $(\vec{P}_b = -\vec{P}_a)$,	
x axis being along \vec{P}_{i} ,		$\mathbf{s} \equiv \mathbf{s} = \left(\mathbf{E}^{\mathrm{cm}} + \mathbf{E}^{\mathrm{cm}}\right)^2 \tag{3}$	-2)
$p_{i}^{(ij)} = \left(\frac{s_{ij} + m_{i}^{2} - m_{j}^{2}}{2\sqrt{s_{ij}}}, \frac{\sqrt{\Delta(s_{ij}, m_{i}^{2}, m_{j}^{2})}}{2\sqrt{s_{ij}}}, 0\right).$	(6)	so that: $s \simeq 4 (P_a^{cm})^2$ (3-	2a)
From (5) and (6), $P_{i}^{(ij)} = \frac{m_{i}}{m_{i}} P_{i}^{(j)}$.	(7)	or $P_a^{cm} \simeq \frac{\sqrt{s}}{2}$; (3-	2b)
N ^s ij		$\left(s + m_{\mu}^2 - m_{\mu}^2 m_{\mu} \right)$	
Some useful relations involving s _j :		$P_{a} = \left(\frac{a}{2\sqrt{s}} \frac{b}{\sqrt{s}} + \frac{b}{\sqrt{s}} P_{inc}, 0 \right) (6)$	-1)
• for the Dalitz plot (3-body problem, $X \rightarrow 1 + 2 + 3$),		and $\left(\begin{array}{c} 2 & 2 \\ 2 & 2 \end{array} \right)$	
$\sum_{i < j} s_{ij} = \sum_{i} m_i^2 + m_{123}^2 = \text{const.} (i, j = 1, 2, 3)$	(8)	$P_{b} = \left(\frac{s + m_{b} - m_{a}}{2\sqrt{s}}, \frac{-m_{b}}{\sqrt{s}}P_{inc}, 0\right). (6)$	-2)
with $m_{123}^2 = (p_1 + p_2 + p_3)^2 = m_X^2;$		l	
• for the triangle plot (4-body problem, X-1+2+3+4),			
$\sum_{\substack{i < j \\ i < j}} s_{ij} = 2 \sum_{i} m_i^2 + m_{1234}^2 = \text{const.} (i, j=1, 2, 3, 4)$	(9)		
with $m_{1234}^2 = (p_1 + p_2 + p_3 + p_4)^2 = m_X^2$.			
 The <u>invariant momentum transfer</u> <u>squared</u> between pa i and k is 	rticles	If E_i and E_k are such that $E_i \simeq P_i$ (>> m_i) and $E_k \simeq P_k$ (>> m_k), then	
$t_{ik} \equiv (p_i - p_k)^2 = m_i^2 + m_k^2 - 2 (E_i E_k - \vec{P}_i \cdot \vec{P}_k).$	(10)	$\mathbf{t}_{ik} \approx -4 \mid \vec{\mathbf{P}}_{i} \mid \mid \vec{\mathbf{P}}_{k} \mid \sin^{2}\left(\frac{\theta_{ik}}{2}\right), \qquad (1)$	0a)
		$ heta_{ik}$ being the angle between particles i and k	

RELATIVISTIC KINEMATICS (Cont'd)

For the reaction $a + b \rightarrow c + d$,

$$s \equiv s_{ab} \equiv s_{cd};$$

$$t \equiv t_{ac} \equiv t_{bd} \equiv t_{min} - 4 P_a P_c \sin^2 \left(\frac{\theta_{ac}}{2}\right),$$

with $t_{min} \equiv (E_a - E_c)^2 - (P_a - P_c)^2$

$$= \left[\frac{m_a^2 - m_c^2 - m_b^2 + m_d^2}{2\sqrt{s}}\right]^2 - \left[\sqrt{\left(\frac{s + m_a^2 - m_b^2}{2\sqrt{s}}\right)^2 - m_a^2} - \sqrt{\left(\frac{s + m_c^2 - m_d^2}{2\sqrt{s}}\right)^2 - m_c^2}\right]^2;$$

$$u \equiv t_{ad} = t_{bc} \equiv u_{min} - 4P_a P_d \sin^2 \left(\frac{\theta_{ad}}{2}\right).$$

In the c.m.: dt = 2 $|\vec{P}_a| |\vec{P}_c| d(\cos\theta_{ac})$. (11a) (11) 1) If the masses are different $(m_c \neq m_a, m_d \neq m_b)$:

$$t_{\min}^{2} \simeq -\frac{(m_{a}^{2} - m_{c}^{2})(m_{b}^{2} - m_{d}^{2})}{s}$$
, (11-1a)

(11 - 1)

(15)

(19) (20) (21)

$$u_{\min} \simeq - \frac{(m_a^2 - m_d^2) (m_b^2 - m_c^2)}{s}$$
. (11-2a)

(11-2) 2) If
$$m_a = m_c$$
, $m_b \neq m_d$,
 $t_{min} \simeq -\frac{\frac{m_a^2(m_b^2 - m_d^2)^2}{s^2}}{s^2}$. (11-1b)

A general relation between the invariants is

$$s + t + u = m_a^2 + m_b^2 + m_c^2 + m_d^2$$
.

3) For elastic scattering (a + b
$$\rightarrow$$
 a'+b'),

$$t_{\min} = 0, \quad t_{aa'} = -4P^2 \sin^2\left(\frac{\theta_{aa'}}{2}\right) \quad (11b)$$
$$dt_{aa'} = 2P^2 d(\cos \theta_{aa'}) \quad (11c)$$
$$u_{\min} = \frac{(m_a^2 - m_b^2)^2}{s} \quad (11 - 2 - 1)$$

<u>Relations Between the Particle j and Particle ij Frames:</u> Lorentz Transformations

Defining, for
$$\begin{cases} P_{\pm}^{(j)} = E^{(j)} \pm P_{\parallel}^{(j)} \end{cases}$$
 (12)
any particle $\begin{cases} P_{\pm}^{(j)} = E^{(i)} \pm P_{\parallel}^{(j)} \end{cases}$ (13)
and $e^{\pm \xi_{ij}} = \frac{s_{ij} + m_{j}^{2} - m_{i}^{2} \pm \sqrt{\Delta(s_{ij}, m_{i}^{2}, m_{j}^{2})}}{2 m_{j} \sqrt{s_{ij}}}$ (14)

14)
$$e^{\xi_{ij}} \simeq \frac{\sqrt{s_{ij}}}{m_j} \quad (14a) \quad \text{and} \quad \xi_{ij} \simeq \ln \frac{\sqrt{s_{ij}}}{m_j} \quad (14b)$$

For the initial state a(beam) + b(target):

$$e^{\pm \xi} = \frac{s + m_b^2 - m_a^2 \pm \sqrt{\Delta(s, m_a^2, m_b^2)}}{2m \sqrt{s}} \quad (14-1)$$

(see formulae (14-b), (19), and (31) for other equivalent definitions of
$$\xi$$
),

then:

then:
$$\begin{cases} \mathbf{r} & \mathbf{r} \\ \mathbf{p}_{\perp}^{(ij)} = \mathbf{p}_{\perp}^{(j)}, \\ \mathbf{for a movement taking place along } \mathbf{\vec{p}}_{i}. \end{cases}$$
 (16)

The general Lorentz transformation has the matrix form

 $(p^{(ij)}_{=}e^{\mp \xi_{ij}}p^{(j)})$

$$\begin{pmatrix} \mathbf{E} & \begin{pmatrix} ij \end{pmatrix} \\ \mathbf{P}_{\parallel} \\ \vec{\mathbf{P}}_{\perp} \end{pmatrix}^{2} = \begin{pmatrix} \gamma - \eta & 0 \\ -\eta & \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{E} & \\ \mathbf{P}_{\parallel} \\ \vec{\mathbf{P}}_{\perp} \end{pmatrix}^{(j)} , \qquad (17)$$

characterized by $\vec{\beta} = \vec{P}_i^{(j)} / (E_i^{(j)} + m_j), \beta_{\parallel} = |\vec{\beta}|,$ $\gamma=1/\sqrt{1-\beta^2},$ and $\vec{\eta}=\vec{\beta}\gamma.$ The space part can be written in the vector form

$$\vec{\vec{P}}^{(ij)} = \vec{\vec{P}}^{(j)} - \vec{\vec{\eta}} \frac{\vec{E}^{(j)} + \vec{E}^{(ij)}}{\gamma + 1} \ . \label{eq:product}$$

Combining (15) and (17): $\begin{cases} \beta_{||} = \tanh \xi_{ij} \\ \gamma = \cosh \xi_{ij} \\ \eta = \sinh \xi_{ij} \end{cases}$

 ξ_{ii} is called the <u>boost parameter</u> of the Lorentz transformation that connects the particle ij rest frame to the particle j rest frame.

$$\int \mathbf{P}_{\pm}^{cm} = e^{\mp \frac{c}{2}} \mathbf{P}_{\pm}^{lab}, \qquad (15-1)$$

$$(16-1) \qquad \qquad \left[\vec{P}_{\perp}^{cm} = \vec{P}_{\perp}^{lab}; \qquad (16-1) \right]$$

$$\gamma = \frac{s + m_b^2 - m_a^2}{m_b \sqrt{s}} = \frac{m_b + E_a^{lab}}{\sqrt{s}}, \quad (20-1)$$

$$\eta = \frac{\sqrt{\Delta(s, m_a^2, m_b^2)}}{m_b \sqrt{s}} = \frac{P_{inc}}{\sqrt{s}} .$$
 (21-1)

To <u>Lorentz</u> transform any vector $p_1 = (E_1, \vec{P}_1)$, given in a frame containing some other vector $p_2 = (E_2, \vec{P}_2)$, into the frame where $p_2 = (m_2, 0)$ (i.e., the p_2 rest frame), one may use the re-(18) lations:

$$E'_{1} = \frac{E_{1}E_{2} - P_{1} \cdot P_{2}}{m_{2}} = \frac{P_{1} \cdot P_{2}}{m_{2}}, \quad (17-1)$$

$$\vec{P}_{1} = \vec{P}_{1} - \vec{P}_{2} \left(\frac{E_{1} + E_{1}}{E_{2} + m_{2}} \right),$$
 (18-1)

where $p'_1 = (E'_1, \vec{P}'_1)$ is the transformed vector, and $m_2^2 = p_2^2$. These are derived from (17) and (18) using $\gamma = E_2/m_2$ and $\vec{T} = \vec{P}_2/m_2$.

RELATIVISTIC KINEMATICS (Cont'd)

$$\begin{aligned} \frac{\text{Backlinty Variable: Definition: and Karamatic Relations}}{\text{Definition: any system. for specific of energy E and longitudial momentum $\mathbb{F}_{p}^{(1)}$: $y = \frac{1}{2} ta \left(\frac{p}{2} + \frac{p}{2}\right)^{-1} eta \left(\frac{1}{2} \frac{p}{2}\right) \\ &= \frac{1}{2} ta \left(\frac{p}{2} + \frac{p}{2}\right)^{-1} eta \left(\frac{1}{2} \frac{p}{2}\right)^{-1} + \left(\frac{p}{2}\right)^{-1} \right), \quad (22) \end{aligned}$
with the transverse mass $m_{1} = (m^{2} + p_{1}^{2})^{1/2}.$
From (15) and (22), $y^{1ab} = y^{0m} + \xi.$ (23)
$$\begin{aligned} &= \frac{p}{2} ta \left(\frac{p}{2} + \frac{m}{2}\right)^{-1} eta \left(\frac{m}{2} + \frac{p}{2}\right)^{1/2}. \quad (28 - 14) \end{aligned}$$
and the rapidity gap between the two particles ta dist is: $y_{1} + y_{2} = en^{1} e^{-\gamma}$ (25).
$$\begin{aligned} &= \frac{p}{2} ta \left(\frac{p}{2} + \frac{m}{2}\right)^{-1} e^{-\gamma} (25) \\ &= \frac{p}{2} ta \left(\frac{p}{2} + \frac{m}{2}\right)^{-1} e^{-\gamma} (25) \end{aligned}$$
From (13), $e_{12} = m_{1}^{2} + m_{2}^{2} + 2m_{11} m_{12} \cosh(y_{1} + y_{2}) - 2\tilde{2}_{11}^{-1} \tilde{1}_{12} \cdots (28 - 14) \\ &= \frac{p}{4} ta d^{-1} e^{-\gamma} (28 - 16) \end{aligned}$
From (14), $e_{12} = m_{1}^{2} + m_{2}^{2} + 2m_{11} m_{12} \cosh(y_{1} + y_{2}) - 2\tilde{2}_{11}^{-1} \tilde{1}_{12} \cdots (28 - 16) \end{aligned}$
From (14), $e_{12} = m_{1}^{2} + m_{2}^{2} + 2m_{11} m_{12} \cosh(y_{1} + y_{2}) - 2\tilde{2}_{11}^{-1} \tilde{1}_{12} \cdots (28 - 16) \end{aligned}$
From (14), $e_{12} = m_{1}^{2} + m_{2}^{2} - 2m_{11} m_{12} \cosh(y_{1} + y_{2}) - 2\tilde{2}_{11}^{-1} \tilde{1}_{12} \cdots (28 - 16) \end{aligned}$
From (14), $e_{12} = m_{1}^{2} + m_{2}^{2} - 2m_{11} m_{12} \cosh(y_{1} + y_{2}) - 2\tilde{2}_{11}^{-1} \tilde{1}_{12} \cdots (28 - 16) \end{aligned}$
From (14), $e_{12} = m_{1}^{2} + m_{2}^{2} - 2m_{11} m_{12} \cosh(y_{1} + y_{2}) - 2\tilde{2}_{11}^{-1} \tilde{1}_{12} \cdots (28 - 16) \end{aligned}$
From (14), $e_{13} = m_{12} \exp(y_{13} + m_{2}^{2} + m_{2}^{2} + 2m_{11} m_{12} \cosh(y_{1} + y_{2}) - 2\tilde{2}_{11}^{-1} \tilde{1}_{12} \cdots (28 - 16) \end{aligned}$
From (14), $e_{13} = \frac{p}{4} \exp(y_{13} + 2m_{12}^{2} + m_{2}^{2} + 2m_{1}^{2} + m_{2}^{2} + 2m_{1}^{2} + m_{2}^{2} + 2m_{1}^{2} + m_{2}^{2} + 2m_{1}^{2} + m_{1}^{2} + 2m_{1}^{2} + m_{1}^{2} + 2m_{1}^{2} + m_{2}^{2} + 2m_{1}^{2} + m_{1}^{2} + 2m_{1}^{2}$$$

RELATIVISTIC KINEMATICS (Cont'd)

Cross Sections and Decay Rates

For a system of n particles with overall four-momentum p and final four momenta $p_1, \dots, p_n[p_i = (E_i, \vec{P}_i)]$, Lorentz Invariant Phase Space is given by

d LIPS(s;p₁,...,p_n) =
$$(2\pi)^4 \delta^4(p - \sum_i p_i) \frac{1}{(2\pi)^3 n} \prod_{i=1}^n \frac{d^3 \vec{F}_i}{2E_i}$$
 (40)

For 2-body: d LIPS(s, p₁, p₂) =
$$\frac{1}{(2\pi)^2} \delta^4(p-p_1-p_2) d^4p \frac{|\vec{P}_1^{cm}|}{4\sqrt{s}} d\Omega_1^{cm}$$
. (40-1)

For 3-body:
$$d LIPS(s, p_1, p_2, p_3) = \frac{1}{(2\pi)^5} \delta^4(p - p_1 - p_2 - p_3) d^4p - \frac{1}{32s} ds_{12} ds_{23} d\alpha d\cos\beta d\gamma$$
, (40-2)

where α , β , and γ are Euler angles.

For a + b \rightarrow n particles or X \rightarrow n particles, in general $|i\rangle \rightarrow |f\rangle$,

$$\sigma_{if} = \frac{1}{4F} \int |\mathcal{M}_{if}|^2 dLIPS(s;p_1,\cdots,p_n), \qquad (41)$$

$$\Gamma_{if} = \frac{1}{2m_X} \int \left| \mathcal{M}_{if} \right|^2 \, d\, \text{LIPS}(m_X^2; \, p_1, \cdots, p_n), \qquad (42)$$

where \mathcal{M}_{if} is an invariant matrix element. F is Møller's invariant flux factor, $\mathbf{F}^2 = (\mathbf{p}_a \cdot \mathbf{p}_b)^2 - \mathbf{m}_a^2 \mathbf{m}_b^2$. If a is beam, b, target $(\vec{\mathbf{P}}_b^{1ab} = 0)$, then $\mathbf{F} = |\vec{\mathbf{P}}_a^{1ab}| \mathbf{m}_b = |\vec{\mathbf{P}}_a^{cm}| \sqrt{s}$.

For elastic scattering in c.m., $|\vec{P}_a^{cm}| = |\vec{P}_1^{cm}|$, and (40-1) and (41) yield

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\left|\mathcal{M}\right|^2}{\left(8\pi\right)^2 \mathrm{s}} \text{ or } \frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{\left|\mathcal{M}\right|^2}{64\pi\left|\vec{\mathcal{P}}_{\mathrm{a}}^{\mathrm{cm}}\right|^2 \mathrm{s}}.$$
(43)

The normalization is such that the optical theorem reads

$$\operatorname{Im} \mathcal{M} \big|_{t=0} = 2 \left| \vec{p}_{a}^{\,\mathrm{cm}} \right| \sqrt{s} \,\sigma_{\mathrm{tot}} \,. \tag{44}$$

The choice of Eq. (40) implies a particular normalization of any spinors that may occur in Mi. The advantage $\frac{1}{\left(2\pi\right)^3} \quad \frac{1}{2E}$ of this normalization is that it greatly simplifies the structure of $\mathcal M$ by putting factors such as $\frac{1}{\sqrt{2}}$ into the phase space where they really belong. In addition, the labels, i, f, refer to specific spin (helicity) states, so that the usual "average and sum" rule is implicit.

A useful invariant is $\int d^4p\delta(p^2-m^2) = \int \frac{d^3\vec{P}}{2E}$, so that the invariant cross section is $E \frac{d^3\sigma}{dP^3}$. The following table gives the value of the invariant cross section for different sets of variables useful for the study of the inclusive reaction $a + b \rightarrow c + X$.

Longitudinal variable of particle c	Transverse variable of particle c	Corresponding invariant cross section
$\mathbf{P}^{\mathbf{cm}}_{\parallel}$	Pl	$\frac{\mathbf{E}^{cm}}{\pi} \frac{\mathrm{d}^2 \sigma}{\mathrm{d} \mathbf{P}_{ }^{cm} \mathrm{d} \mathbf{P}_{1}^{2}} \left(\begin{array}{c} \mathrm{averaged} \\ \mathrm{over} \ \mathrm{azimuth} \end{array} \right)$
у	m	$\frac{1}{\pi} \frac{d^2 \sigma}{dy \ d \ P_{\perp}^2} \qquad \begin{pmatrix} averaged \\ over \ azimuth \end{pmatrix}$
x	\mathbf{P}_{\perp}	$\frac{\underline{\mathbf{E}}^{\mathrm{cm}}}{\underset{\mathrm{max}}{\mathrm{pcm}}} \cdot \frac{1}{\pi} \frac{\mathrm{d}^2 \sigma}{\mathrm{dx} \mathrm{dP}_{\perp}^2} \approx \frac{2\underline{\mathbf{E}}^{\mathrm{cm}}}{\pi \sqrt{s}} \frac{\mathrm{d}^2 \sigma}{\mathrm{dx} \mathrm{dP}_{\perp}^2} \left(\begin{array}{c} \mathrm{averaged} \\ \mathrm{over \ azimuth} \end{array} \right)$
P ^{lab}	θ^{lab}	$\frac{E^{lab}}{(P^{lab})^2} \frac{d^3\sigma}{dP^{lab}d\Omega^{lab}}$
$m_{X}^{2} = (p_{a} + p_{b} - p_{c})^{2}$	t _{ac}	$\frac{\sqrt{\Delta(s, m_a^2, m_b^2)}}{\pi} \frac{d^2\sigma}{d m_X^2 d t_{ac}} \begin{pmatrix} \text{averaged} \\ \text{over azimuth} \end{pmatrix}$

^{*}For more formulae and details, see, e.g.,

W. R. Frazer et al., Rev. Mod. Phys. <u>44</u>, 284 (1972). J. Kasman in M. E. Law et al., LBL-80 (1972), Part III. H. Pilkuhn, <u>The Interactions of Hadrons</u>, John Wiley & Sons, New York, 1967, Chaps. 1 and 2.

A memo on Relativistic Kinematics is available upon request from the Particle Data Group, LBL,

C.M. ENERGY AND MOMENTUM VS. BEAM MOMENTUM

$E_{cm}^{dE} dE_{cm} = m_p^{dT}_{beam} = m_p^{v}_{beam}^{dP}_{beam} \approx m_p^{dP}_{beam}$

EAM V/C)		C•M• E (ME	NERGY- V)		-MOME	NTUM (MEV	IN C. 7C)	۹	PBEAM (MEV/C)		C.M. E (ME	NERGY- V}		- MOME	ENTUM (MEV	IN C. //C)	, M.,	PBEAM (GEV/C	C.M	. ENER (gev)	GY	- MOMENT (UM IN GEV/C	C.M)
	үр ер	۳p	Кр	рр	үр ер	۳p	Кр	pp		γp ep	۳p	Kp	pp	үр ер	۳p	Kp	рр		үр ер ¶р	Kp	рр	ΥΡ ep πp	$\kappa_{\rm p}$	pp
0	939	1078	1432	1877	0	. 0	0	0	1500	1922	1930	2022	2254	732	729	696	624	3.0	2.56	2.61	2.77	1.10	1.08	1.02
20	958	10/9	1432	1877	20	35	26	20	1520	1932	1940	2031	2261	738	735	702	631	3.4	2.03	2.68	2.83	1.14	1.12	1.10
60	996	1089	1434	1877	56	52	39	30	1560	1951	1959	2048	2275	750	747	715	643	3.6	2.77	2.82	2.96	1.22	1.20	1.14
80	1015	1096	1436	1878	74	68	52	40	1580	1961	1969	2057	2282	756	753	721	650	3.8	2.83	2.88	3.02	1.26	1.24	1.18
00	1033	T(PI)	= PBE	AM -	59 MEV 01	85	65	50	1600	1970	T(PI)	= PBE	AM - 1	.33 ME\ 762	760	727	454	4.0	2.90	2,95	= PBEA	M137	GEV	1.22
20	1051	1116	1441	1880	107	101	78	60	1620	1980	1988	2074	2296	768	765	733	662	4.2	2.96	3.01	3.14	1.33	1.31	1.26
40	1069	1127	1445	1882	123	117	91	70	1640	1989	1997	2083	2304	773	770	739	668	4.4	3.03	3.07	3.19	1.36	1.34	1.29
60	1087	1139	1449	1883	138	132	104	80	1660	1999	2006	2091	2311	779	776	745	674	4.6	3.09	3+13	3,25	1.40	1.38	1.33
80	1104	T(P1)	= PBE	AM -	92 MEV	141	110	90	1000	2008	T(PI)	= PBE	AM - 1	34 MEV	, '82	751	680	4.0	3.15	T(PI)	= PBEA	M138	GEV	1.30
00	1121	1165	1457	1887	167	161	129	99	1700	2018	2025	2109	2325	791	788	756	686	5.0	3.21	3.25	3.36	1.46	1.44	1.40
20	1137	1178	1462	1889	182	175	141	109	1720	2027	2034	2117	2332	796	793	762	692	5.5	3.35	3.39	3.50	1.54	1.52	1.48
50	1170	1206	1400	1894	209	202	166	129	1760	2036	2043	2120	2346	807	805	774	704	6.5	3.62	3.65	3.75	1.69	1.67	1.63
30	1186	1219	1480	1897	222	215	178	138	1780	2054	2062	2143	2353	813	810	779	710	7.0	3.75	3.78	3.87	1.75	1.74	1.70
20	1201	T(PI)	= PBE	AM - 1	07 MEV	110	100	140	1000	2044	T(PI)	= PBE	AM - 1	.34 MEV	/ 014	745	714	7.5	3.87	T(PI)	= PBEA	M38	GEV	1 76
20	1217	1235	1493	1903	247	241	201	158	1820	2073	2080	2151	2367	824	821	791	721	8.0	3.99	4.02	4.11	1.88	1.87	1.83
40	1232	1261	1500	1906	259	253	213	167	1840	2082	2089	2168	2374	829	827	796	727	8.5	4.11	4.14	4.22	1.94	1.93	1.89
50	1247	1274	1507	1910	271	265	224	177	1860	2091	2098	2176	2381	835	832	802	733	9.0	4.22	4.25	4.33	2.00	1.99	1.95
80	1262	T(PI)	= PBE	1913 AM - 1	15 MEV	2/1	235	190	1990	2100	T(PI)	= PBE	AM - 1	34 MEV	1 831	808	139	7.5	4.35	T(PI)	= P8EA	M139	GEV	2.01
00	1277	1302	1522	1917	294	288	247	196	1900	2108	2115	2193	2395	845	843	813	744	10.0	4.43	4.46	4.54	2.12	2.10	2.07
20	1292	1315	1530	1921	305	300	258	205	1920	2117	2124	2201	2402	851	848	818	750	11.0	4.64	4.67	4.74	2.22	2.21	2.18
+0 50	1320	1342	1546	1929	327	322	279	224	1940	2135	2142	2209	2409	861	859	829	761	13.0	5.03	5.05	5.12	2.43	2.41	2.38
30	1335	1356	1554	1933	337	332	290	233	1980	2144	2150	2226	2423	867	864	835	767	14.0	5.21	5.24	5.30	2.52	2.51	2.48
20	1240	T(PI)	= PBE	AM - 1	20 MEV	24.2	300	24.2	20.00	2162	T(P1)	= PBE	AM - 1	35 MEV	/		770	15.0	5 30	T(PI)	= P8EA	M139	GEV	2 57
20	1349	1382	1572	1938	358	353	310	242	2020	2155	2159	2234	2430	877	874	840	778	16.0	5.56	5.58	5.64	2.70	2.69	2.66
+0	1376	1395	1580	1947	368	363	321	260	2040	2170	2176	2250	2444	882	879	851	783	17.0	5.73	5.75	5.81	2.79	2.78	2.75
50	1390	1408	1589	1952	378	373	331	269	2060	2179	2185	2258	2451	887	885	856	789	18.0	5.89	5.91	5.97	2.87	2.86	2.83
30	1405	T(PI)	= PBE	1957 AM - L	23 MEV	202	341	210	2080	2107	T(PI)	= P8E	2490 AH - 1	35 MEV	/ 890	891	794	17.0	0.05	T(PI)	= PBEA	M139	GEV	2.71
)0	1416	1434	1607	1962	397	393	350	287	2100	2196	2202	2274	2465	897	895	866	799	20.0	6.20	6.22	6.27	3.03	3.02	2.99
20	1430	1446	1616	1967	407	402	360	296	2120	2204	2211	2282	2472	902	900	872	805	22.0	6.78	6.51	6.84	3.18	3.17	3.14
,0	1445	1472	1634	1978	425	421	379	313	2160	2221	2227	2298	2486	912	910	882	815	26.0	7.05	7.07	7.11	3.46	3.45	3.43
30	1468	1484	1644	1984	434	430	388	322	2180	2230	2236	2306	2493	917	915	887	821	28.0	7.31	7.33	7.37	3.59	3.59	3.56
10	1481	T(PI)	= PBE	AM - 1 1000	25 MEV	430	307	330	2200	2220	T(P1)	= PBE	AM - 1	.35 MEN	/ a20	802	9.74	30.0	7.56	7.58	= PBEA	M139 3.72	GEV 3.71	3.69
20	1494	1509	1662	1995	452	448	406	339	2220	2246	2253	2322	2507	927	925	897	831	32.0	7.81	7.82	7.86	3.85	3.84	3.82
+0	1506	1521	1671	2001	461	457	415	347	2240	2255	2261	2330	2514	932	930	902	836	34.0	8.04	8.06	8.10	3.97	3.96	3.94
50	1519	1533	1681	2007	470	465	424	355	2260	2263	2269	2338	2520	937	934	907	841	36.0	8.27	8.29	8.55	4.08	4.08	4.06
	1951	T(PI)	= P8E	AM - 1	27 MEV	- 11	455	504	2200	2211	T(P1)	= PBE	AM - 1	.35 ME	1	712	040		0.00	T(PI)	= PBEA	M139	GEV	
10	1543	1557	1699	2019	486	482	442	372	2300	2280	2286	2353	2534	947	944	917	852	40.0	8.72	8.73	8.77	4.31	4.30	4.28
10	1555	1569	1709	2025	503	490	450	380	2320	2288	2294	2361	2548	951	949	922	857	44.0	9.14	9,15	9.18	4.52	4.41	4.59
.0	1579	1592	1728	2037	511	507	467	396	2360	2304	2310	2377	2555	961	959	932	867	46.0	9.34	9.35	9.39	4.62	4.62	4.60
10	1591	1604	1737	2043	519	515	475	404	2380	2312	2318	2384	2561	966	963	937	872	48.0	9.54	9.55	9.58	4.72	4.72	4.70
) O	1603	1615	= PBE	2049	29 MEV 527	523	483	412	2400	2320	2326	2392	2568	.35 MEN 970	968	941	877	50.0	9.73	9.74	9.78	4.82	4.81	4.80
:0	1615	1627	1756	2056	535	531	492	420	2420	2328	2334	2400	2575	975	973	946	882	55.0	10.20	10.21	10.25	5.06	5.05	5.04
.0	1626	1638	1765	2062	542	538	500	428	2440	2336	2342	2407	2582	980	977	951	887	60.0	10.65	10.66	10.69	5.28	5.28	5.26
10	1649	1661	1784	2009	558	554	515	443	2480	2352	2358	2415	2595	989	987	960	897	70.0	11.50	11.51	11.54	5.71	5.71	5.69
		T(PI)	= PBE	AM - 1	30 MEV						T(PI)	= PBE	AM - 1	36 MEV	/					T(PI)	= PBEA	M139	GEV	
10	1660	1672	1794	2082	565	561	523	451	2500	2360	2366	2430	2602	994	991	965	901	80-0	11,90	11.91	11.94	5.91	5.91	5.89
-0	1683	1694	1812	2095	580	576	538	466	2520	2376	2382	2445	2616	1003	1001	975	911	85.0	12.67	12.67	12.70	6.30	6.29	6.28
,0	1694	1705	1822	2102	587	583	546	473	2560	2384	2390	2453	2622	1007	1005	979	916	90.0	13.03	13.04	13.06	6.48	6.48	6.46
÷0	1705	1716	1831	2108	594 31 MEV	591	553	481	2580	2392	2398	2460	2629	1012	,1010	984	921	95.0	13+39	13.39 T(PT)	13.42 = PRFA	6.66 M139	6+65 GEV	6.64
10	1716	1726	1840	2115	601	598	561	488	2600	2400	2405	2468	2636	1017	1014	988	926	100.0	13.73	13.74	13.76	6.83	6.83	6.82
:0	1727	1737	1850	2122	609	605	568	495	2620	2408	2413	2475	2643	1021	1019	993	930	200.0	19.40	19.40	19.42	9.67	9.67	9.66
.0	1738	1748	1859	2129	616	612	575	502	2640	2415	2421	2483	2649	1025	1023	998	935	300.0	23.75	23.75	23.76	11.85 1	1.85	11.84
0	1759	1769	1877	2142	629	626	590	517	2680	2431	2436	2498	2663	1034	1032	1007	944	500.0	30.65	30.65	30.66	15.31 1	5.31	15.30
		T(P1)	= PBE	AM - 1	31 MEV						T(PI)	= PBE	AM - 1	36 MEV	·					T(PI)	= PBEA	M140	GEV	
0	1770	1780	1887	2149	636	633	597	524	2700	2439	2444	2505	2669	1039	1037	1011	949	700.0	33.57	35.26	33.58	18.12 1	6. (/ 8. 11	16.76
.0	1791	1800	1905	2163	650	646	611	538	2740	2454	2459	2520	2682	1048	1045	1020	958	800.0	38.76	38.76	38.77	19.37 1	9.37	19.36
0	1801	1811	1914	2170	656	653	618	545	2760	2462	2467	2527	2689	1052	1050	1025	963	900.0	41.11	41.11	41.12	20.54 2	0.54	20.54
10	1512	1821 T(PI)	1923 = PBE	21// AM - 1	32 MEV	660	024	572	2180	2469	24/4 T(PI)	2034 = PBE	2696 AM - 1	36 MEV	1054	1053	408	1000.0	+3+35	T(PI)	= PBEA	M140	GEV	21.00
0	1822	1831	1932	2184	669	666	631	559	2800	2477	2482	2542	2702	1061	1058	1034	972	1100.0	45.44	45.45	45.45	22.71 2	2.71	22.71
:0	1832	1841	1941	2191	676	673	638	565	2820	2484	2490	2549	2709	1065	1063	1038	977	1200.0	47.46	47.47	47.47	23-72 2	3.72	23.72
.0	1853	1862	1959	2205	689	685	651	579	2860	2499	2505	2563	2722	1074	1071	1047	986	1400.0	51.26	51.27	51.27	25.62 2	5.62	25.62
÷0	1863	1872	1968	2212	695	692	658	585	2880	2507	2512	2570	2728	1078	1076	1051	990	1500.0	53.06	53.07	53.07	26.52 2	6.52	26.52
łO	1873	T(PI) 1881	= PBE	AM - 1 2219	33 MEV 701	698	664	592	2900	2514	T(PI) 2520	= PBE 2578	AM - 1	36 MEV	1080	1054	995	1600-0	54.80	1(PI) 54.81	= P8EA	M ~ .140	GEV	27.39
ŏ	1883	1891	1986	2226	708	704	671	599	2920	2522	2527	2585	2742	1086	1084	1060	999	1700.0	56.49	56.49	56.50	28.24 2	8.24	28.23
-0	1893	1901	1995	2233	714	711	677	605	2940	2529	2534	2592	2748	1091	1088	1064	1004	1800.0	58.13	58.13	58.13	29.06 2	9.05	29.05
.0	1912	1921	2013	2240	726	723	690	618	2980	2544	2549	2606	2761	1099	1093	1073	1013	2000.0	61.27	61.27	61.28	30.63 3	0.63	30.62
		T(P1)	= PBE	AM - 1	33 MEV			-			T(PI)	= PBE	AM - 1	36 MEV	1			I		T(PĪ)	= PBEA	M140	GEV	-

.

PARTICLE DETECTORS, ABSORBERS, AND RANGES*

A. DETECTOR PARAMETERS

In this section we give various parameters for common detectors. The quoted numbers represent at best an order of magnitude useful only for preliminary design.

A.1 Scintillators: Photon yield $\approx 1\gamma/100$ eV in plastic scintillator¹ and $\approx \frac{1}{1\gamma/25}$ eV in Na I.¹,²

A.2 $\underline{\text{Cerenkov}^3}$: Half angle θ_c of cone aperture in terms of velocity β and index of refraction n:

$$\theta_{\rm c} = \arccos\left(\frac{1}{\beta n}\right) \sim \sqrt{2\left(1-\frac{1}{\beta n}\right)}$$
.

Threshold velocity: $\beta_t = 1/n$; $\gamma_t = 1/\sqrt{1-\beta_t^2}$. Number of photons N per cm:

$$N = \frac{\alpha}{c} \int \left(1 - \frac{1}{\beta^2 n^2}\right) 2\pi d\nu = \frac{\alpha}{c} \beta_t^2 \int \left(\frac{1}{\beta_t^2 \gamma_t^2} - \frac{1}{\beta^2 \gamma^2}\right) 2\pi d\nu$$

 $\approx 500 \sin^2 \theta_{\rm c}/\rm{cm}$ (visible spectrum)

A.3 <u>Photon Collection</u>: In addition to the photon yield, one should take into account the light collection efficiency ($\leq 10\%$ for typical 1 cm thick scintillator), attenuation length (≈ 1 to 4 m for typical scintillators⁴), and quantum efficiency of the photomultiplier cathode ($\leq 25\%$).

A.4 Bubble, Streamer, Wire Chambers:

Chamber Type	Accuracy(rms)	Resolution Time	Dead Time
Bubble	± 75μ	≈ 1 ms	≈1/20 s ^{a)}
Streamer	±300µ .	≈40 µs	≈180 ms
Optical Spark	±200μ ^{b)}	≈ 2 µs	≈ 10 ms
Magnetostrictive Spark	± 500μ	≈ 2 µs	≈ 10 ms
Proportional	≥ ± 300µ ^{c,d)}	≈50 ns	≈200 ns
Drift	± 50 to 300μ	≈ 2 ns ^{e)}	≈100 ns

a) Multiple pulsing time.

b) 60µ for high pressure.

c) 300µ is for 1 mm pitch.

d) Delay line cathode readout can give $\pm\,150\mu$ parallel to anode wire. e) For two chambers.

 $\frac{2\%}{E^{1/4}}$

(FWHM)

(FWHM)

A.5 <u>Shower Detectors</u>: Typical energy resolution for incident electron in the 1 GeV range, E in GeV.

Na I (20 rad. lengths)5:

Lead Glass (14 rad. lengths)⁶: $\frac{8-12\%}{\sqrt{E}}$ (FWHM) Lead Scintillator Sandwich (10 rad. lengths)⁷: $\frac{22\%}{\sqrt{E}}$

(10 lead plates, each 1 radiation length, and scintillators, each 1 cm in thickness).

A.6 <u>Proportional Chamber Wire Instability</u>: The limit on the voltage V for a wire tension T is given by 8

$$V \leq \frac{sT^{\frac{1}{2}}}{IC}$$

where s, l, and C are the wire spacing, length, and capacitance per unit length. An approximation to C for chamber half gap t and wire diameter d (good for $s \le t$) gives⁹

$$V \lesssim 59 T^{\frac{1}{2}} \left[\frac{t}{\ell} + \frac{s}{\pi \ell} \ln \left(\frac{s}{\pi d} \right) \right]$$

where \boldsymbol{V} is in $k\boldsymbol{V}\text{,}$ and \boldsymbol{T} is in grams.

B. COSMIC RAY FLUXES

The fluxes of particles of different types depend on the latitude, their energy, and on the conditions of measurement. Some typical sea-level values¹⁰ are given below:

Iv vertical flux

- J_1 total flux crossing a unit horizontal area
- J₂ total flux crossing a sphere of unit radius

	Total Intensity	Hard component	Soft component
I_v	1.14×10-2	0.83×10^{-2}	0.31×10^{-2} cm ⁻² sec ⁻¹ sterad
J	1.79×10^{-2}	1.27×10^{-2}	0.52×10^{-2} cm ⁻² sec ⁻¹
J2	2.41×10 ⁻²	1.68×10 ⁻²	$0.73 \times 10^{-2} \text{ cm}^{-2} \text{sec}^{-1}$

Very approximately, about 75% of all particles at sea-level are penetrating, and are μ mesons. The absolute flux of protons at sea-level, in a momentum range 700-1100 MeV/c, is 1.5×10^{-5} cm⁻²sec⁻¹sterad⁻¹, or ~0.1% of all particles.

C. PASSAGE OF PARTICLES THROUGH MATTER

C.1 <u>dE/dx¹¹</u>: Energy loss for particles heavier than an electron and having charge z |e|:

$$-\frac{\mathrm{dE}}{\mathrm{dx}} = z^2 D \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \left(\frac{2 m_e c^2 \beta^2 T_{\mathrm{max}}^1}{(1-\beta^2) T^2} \right) - 2\beta^2 - K \right]$$

where $D = 2\pi Nr_e^2 m_e c^2 = 0.1535$ MeV cm²/g, Z and A are charge and mass number of the material, $\beta = v/c$ for the incident particle, T_{max}^{i} is the maximum energy δ ray considered to be ionization loss, I is the mean ionization potential ($I \approx Z \times 10 \text{ eV}$), and K includes the shell correction (maximum $\approx 10\%$ around $\beta = 0.1$), density effect (important above ~ 5 GeV/c), and the z^3 correction¹² (important at low velocity, a few percent at $\beta \approx 0.1$). Figures are given below for energy loss and range in lead (with scaling indicated for copper, aluminum, and carbon) and in hydrogen, with T_{max}^{T} taken to be T_{max} as defined in Sec. C. 2 below.

C.2 $\frac{\delta \operatorname{rays}^{13}}{T}$: Number N per g/cm² per MeV of δ rays of kinetic energy T produced by an incident particle of momentum p and velocity β (Rutherford formula):

$$\frac{dN}{dTdx} = D\frac{Z}{A} \frac{1}{\beta^2 T^2}$$

where D is defined in the dE/dx section. This expression is valid for any unit charge incident particle if $T \ll T_{max}$. T_{max} is the maximum δ -ray energy, given by

 $T_{max} = \frac{2 m_e c^2 (pc)^2}{s} = \frac{2 \beta^2 \gamma^2 m_e c^2}{1 + 2\gamma \frac{m_e}{M} + \frac{m_e^2}{M^2}}$

where \mathbf{m}_{e} and M are the electron and incident particle masses and s is their center-of-mass energy squared.

C.3 <u>Multiple Coulomb Scattering</u>¹⁴: Sketched below are the multiple scattering angle θ , displacement y, and sagitta s, of a particle of charge z | e |, passing through a scatterer of thickness L. All quantities are rms projected:

For L \geq 1/10 L_{rad}, ϵ is generally < 1/10. The distribution of θ is not truly Gaussian.

C.4 <u>Electron Range in Lead, Copper, Carbon and Hydrogen:</u> See figure following.

C.5 Fractional Energy Loss for Electrons and Positrons in Lead: See figure following.

C.6 Contributions to Photon Cross Section in Lead: See figure following. See figure following.

C.7 Photon Cross Section: See figure following.

D. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

See table following.

^{*}Prepared April 1974 by Sherwood Parker and Bernard Sadoulet.

References for this section may be found after the following figures and the Atomic and Nuclear Properties Table.

XBL 743-2663

Range and energy loss in lead are calculated using the program written by Hans Bischel (UCRL-17538 + density correction). The excitation potential for Pb is assumed to be 820 eV (See Table I of the above reference for the other elements). Scaling to Cu, Al, and C are indicated. The dotted lines are for carbon. The energy losses above 5 GeV/c are also plotted as implied by arrows; note that the scale at the top of the plot should be used for this portion of the graph.

For other beam particles, see scaling law on next page.

26

Range and energy loss in liquid hydrogen bubble chamber, determined by a μ^+ range of 1.103 ± 0.003 cm from the $\pi^+ \rightarrow \mu^+ \nu$ decay. Liquid hydrogen conditions: T = 27.6 ± 0.1 °K; P = 48 ± 5 psia; $\rho = (5.86\pm0.06)10^{-2}$ g/cm³. (Data by Clark and Diehl, UCRL-3789, 1957.) Bubble chamber physicists: note that the number of bubbles per cm is proportional to $1/\beta^2$, not to dE/dx. For the more linear portions of the solid (range) curves, R $\propto p^{3.6}$. For other absorbers and more details, see UCRL-2426 Rev. (1966).

<u>Scaling law for particles of other mass or charge</u>: for a given medium, the range R_b of any beam particle with mass M_b , charge z_b , and momentum p_b is given in terms of the range R_a of any other particle with mass M_a , charge z_a , and momentum $p_a = p_b M_a / M_b$ (i.e., having the same velocity) by the expression

$$R_{b}(M_{b}, z_{b}, p_{b}) = \left[\frac{M_{b}/M_{a}}{z_{b}^{2}/z_{a}^{2}}\right] R_{a}(M_{a}, z_{a}, p_{a} = p_{b}M_{a}/M_{b})$$

PARTICLE DETECTORS, ABSORBERS, AND RANGES (Cont'd)

Electron Range in Lead, Copper, Carbon, and Hydrogen

Range of electrons. This range is the total path length; the practical range is shorter because of multiple Coulomb scattering. This scattering becomes increasingly important as the electron slows down. E.g., for a fast electron, the rms projected angle due to multiple Coulomb scattering reaches 1 radian by the time the electron has slowed to 0.4 MeV in hydrogen, 1.5 MeV in carbon, 9 MeV in copper, and 24 MeV (off scale) in lead. The "critical energy" (above which the energy loss due to bremsstrahlung exceeds that due to ionization and showering becomes important) is 400 MeV for hydrogen, 100 MeV for carbon, 25 MeV for copper, and 10 MeV for lead. See Berger and Seltzer, NASA SP-3012 (1964) and P. Trower, UCRL-2426, Vol. II Rev. (1966). 1-10 keV range was obtained by linear extrapolation.

Fractional Energy Loss for e⁺ and e⁻ in Lead

Fractional energy loss per radiation length in lead as a function of electron or positron energy. Electron (positron) scattering is considered as ionization when the energy loss per collision is below 0.255 MeV, and as Moller (Bhabha) scattering when it is above.

Contributions to Photon Cross Section in Lead

Photon cross section in lead in inverse radiation lengths as a function of photon energy. The intensity of photons can be expressed as $I = I_0 \exp(-\sigma x)$, where σ is read above and x is the path length in radiation lengths.

These figures are adapted from Fig. 3.2 and Fig. 3.3 from Messel and Crawford, <u>Electron-Photon Shower Distribution Function Tables for Lead</u>, Copper and Air Absorbers, Pergamon Press, 1970. Messel and Crawford use L_r (Pb) = 5.82 g/cm².

28

Photon Cross Sections

XBL 743-2662

The photon cross section as a function of photon energy for various substances. The solid curve for each substance gives the total cross section in (cm^2/g) . The dashed curve is the total cross section multiplied by the fraction of energy deposited by the photon (different from solid curve because of Compton scattering and bremsstrahlung of secondary electrons). See J. H. Hubbell, NSRDS-NBS 29 (1969).

PARTICLE DETECTORS, ABSORBERS, AND RANGES (Cont'd)

Material	Z	А	Nuclear ^a cross section <i>o</i> [barns]	Nuclear length [g/cm ²]	collision L _{coll} . [cm]	Absorptio length λ ^b [cm]	$\int_{\frac{MeV}{g/cm^2}}^{m}$	$\begin{bmatrix} \min^{c} \\ \frac{MeV}{cm} \end{bmatrix}$	Radiat	ion length L _{rad} ²] [cm]	Density ^e [g/cm ³] () is for gas [g/l]	Refractive index n ^e ; () is (n-1)×10 ⁶ for gas
Ha	1	1.01	0.039	43.0	607.4	789.5	4.12	0.292	62.8	887	j 0.0708	<u>∫</u> 1.112
2 D-	1	2.01	0.074	45.1	273.3	341.7	2.07	0.342	126	764	((0.090)	(140)
-2 He	2	4 00	0 134	49.6	396.5	477 8	1 04	0.243	03 4	746	(0.125	(1.024
T:	2	4.00	0.245	53.6	400.4	420.4	4 4 5	0.002	73.1	145	(0.178)	((35)
Be	4	9.01	0.215	55.4	30.0	36.7	1.65	2.97	66.0	156	0.534	-
с	 6	12.01	0.340	58.7	≈ 37.8	49.9	1.78	≈ 2.76	43.3	≈ 67.0	=	·
N ₂	7	14.01	0.390	59.7	73.8	99.4	1.82	1.47	38.6	47.8	(0.808	(1.205
Ne	10	20.18	0.520	64.4	53.7	74.9	1.73	2.08	29.1	24.3	(1.207 (0.90)	(1.092 (67)
Al	13	26.98	0.650	68.9	25.5	37.2	1.62	4.37	24.3	9.0	2.70	-
Ar	18	39.95	0.890	74.5	53.2	80.9	1.51	2.11	19.7	14.1	$\begin{cases} 1.40 \\ (1.78) \end{cases}$	{1.233 (283)
Fe	26	55.85	1.160	79.9	10.2	17.1	1.48	11.6	13.9	1.77	7.87	
Cu	29	63.54	1.270	83.1	9.3	14.8	1.44	12.9	13.0	1.45	8.96	-
Sn	50	118.69	2.040	96.6	13.2	22.8	1.28	9.4	8.9	1.22	7.31	-
w Pb	82	207.19	3.080	111.7	9.8	18.5	1.17	12.8	6.8 6.4	0.35	19.3 11.35	-
 U	 92	238.03	3.380	1 16.9	≈6.2	12.0	1.09	≈ 20.7	6.1	≈ 0.32	 ≈ 18.95	
Air (gas a	t 20	°C)		60.2	50 000 ^g		1.82	0.0022 ^g	37.2	30 870 ^g	(0.001205 ^g	{ - -
H ₂ O				58.3	58.3		2.03	2.03	36.4	36.4	((1.29)	((293)
H ² (bubble	cha	amber 26	6°Κ) h	43.0	683		4.12	0.26	62.8	990	≈0.063 h	1.112
D ₂ (bubble	cha	amber 31	l°K) n	45.1	322		2.07	0.29	126	900	≈ 0.140 h	1.110
H-Ne mix	ture	(50 mol	e per cent)	62.9	154.5		1.84	0.75	29.9	73.5	0.407	1.092
Propane (с ₃ н	(8) ^j		55.0	134		2.28	0.98	45.9	110	$\begin{cases} 0.41 \ j \\ (2.0) \end{cases}$	(1.25 j (1005)
Freon 13E	31 (0	CF ₃ Br) ^j	(see other	74.3	49.5		1.52	≈2.3	16.7	≈ 11	(≈ 1.50 j (8.71)	(1.238 j
Ilford emu	lsid	on ^r	reons below	79.5	20.8		1.44	5.49	11.2	2.94	3.815	-
NaI				91.9	25.0		1.32	4.84	9.5	2.59	3.67	1.775
LiF				61.1	23.1		1.69	4.46	39.3	15.1	2.64	1.394
Polyethyle	ene	(CH ₂)		55.7	59.6		2.09	≈1.95	45.3	≈ 49	0.92-0.95	-
Mylar (C	H ₄ C	$(2)^{2}$	k k	58.5	42.1		1.91	2.65	40.5	29.2	1.39	-
Polystyre	ne; (C	scintilla H ()),	tor (CH)	57.0 57.7	55.2 48 9		2.03	1.97	44.3	43	1.032	1.581
	5	¹¹ 8 ² 2′′′	Lucite -								1.10-1.20	~ 1.49
Spark or p Shielding	or op conc	ortional crete ^m	chamber "	0 64.9	.5% 26.0	0.3%	- 1.70	0.073 4.25	26.6	2.7% 10.6	0.046 2.5	-
CO ₂ Freon 12 Freon 13	(CC) (CC)	$\left.\begin{array}{c} \mathbf{L}_{2}\mathbf{F}_{2} \\ \mathbf{L}_{\mathbf{F}_{3}} \end{array}\right\} (\mathbf{f})$	used in Čere	nkov co	unters)						(1.79) ⁿ (4.93) ⁿ (4.26) ⁿ	(420) ⁿ (1080) ⁿ (720) ⁿ

Atomic and Nuclear Properties of Materials*

* Table revised January 1974 by J. Engler and F. Mönnig. For details and references, see CERN NP Internal Report 74-1. ^a σ of neutrons ($\approx \sigma$ of protons) at 20 GeV from <u>Landolt-Bornstein</u>, New Series I, Vol. 5. Energy dependence for all nuclei $\approx \frac{1}{2}$ per cent/GeV (from 5-25 GeV).

b $L_{coll} = A/(N \cdot \sigma)$. In the absorption length the elastic scattering is subtracted. c From W. H. Barkas and M. J. Berger, <u>Tables of Energy Losses and Ranges of Heavy Charged Particles</u>, NASA SP-3013 (1964).

^d Mainly from O. I. Dovzhenko and A. A. Pomanskii, Soviet Phys. JETP <u>18</u>, 187 (1964); for some recent to-be-published results, see Y. Tsai, SLAC-PUB 1365 (1974).

e Values for solids, or the liquid phase at boiling point, except where noted. Values in parentheses for gaseous phase STP (0°C, 1 atm.), except where noted. ^f Density variable.

g Gas at 20°C.

 ¹ Density may vary about ±3%, depending on operation conditions.
 ¹ Values for typical working condition with H₂ target; 50 mole per cent, 29°K, 7 atm.
 ¹ Values for typical chamber working conditions: Propane ~ 57°C, 8-10 atm. Freon 13B1 ~ 28°C, 8-10 atm.
 ^k Typical scintillator; e.g. PILOT B and NE 102A have an atomic ratio H/C = 1.10.
 ^k Values for typical construction: 2 layers 50 µm Cu/Be wires, 8 mm gap, 60% argon, 40% isobutane or CO₂; 2 layers 50 µm Mylar/Aclar foils.

^m Standard shielding blocks, typical composition O₂ 52%, Si 32.5%, Ca 6%, Na 1.5%, Fe 2%, Al 4% plus reinforcing iron bars. Attenuation length *t* = 115±5 g/cm², also valid for earth (typical p = 2.15) from CERN-LHL-RHEL Shielding exp. UCRL-17841 (1968).

ⁿ At 26°C and 1 atm. Indices of refraction from E. R. Hayes, R. A. Schluter, and A. Tamosaitis, ANL-6916 (1964).

PARTICLE DETECTORS, ABSORBERS, AND RANGES (Cont'd)

References for Particle Detectors, Absorbers, and Ranges section above.

- 1. <u>Methods of Experimental Physics</u>, Yuan and Wu, editors, Academic Press, 1961, Vol. 5A, p. 127.
- R. K. Swank, Ann. Rev. Nuc. Sci. 4, 137 (1954) and G. Wright, Proc. Phys. Soc. <u>B68</u>, 929 (1955).
- 3. <u>Methods of Experimental Physics</u>, Yuan and Wu, editors, Academic Press, 1961, Vol. 5A, p. 163.
- 4. Nuclear Enterprises Catalogue.
- E. B. Hughes et.al., IEEE Transactions on Nuclear Science, NS-19, No. 3, 126 (1972).
- M. Holder e.al., Phys. Letters <u>40B</u>, 141 (1972) and J. S. Beale et. al., "A Lead-Glass Čerenkov Detector for Electrons and Photons," CERN Writeup, Intl. Conf. on Instrumentation in H.E.P., Frascati (1973).
- 7. J. K. Walker and T. R. Knasel, Rev. Sci. Instr. 37, 913 (1966).
- 8. T. Trippe, CERN NP Internal Report 69-18 (1969).
- S. Parker and R. Jones, LBL-797 (1972), and A. Morse and B. Feshbach, <u>Methods of Theoretical Physics</u>, McGraw-Hill, New York, 1953, p. 1236.
- 10. B. Rossi, Rev. Mod. Phys. 20, 537 (1948).
- H. Bichsel, Passage of Charged Particles Through Matter, American Institute of Physics Handbook, McGraw-Hill, 1972, Sec. 8, p. 142.
- H. H. Heckman et.al., Phys. Rev. Lett. <u>22</u>, 871 (1969) and J. D. Jackson et.al., Phys. Rev. B <u>6</u>, 41<u>31</u> (1972).
- 13. See B. Rossi, <u>High Energy Particles</u> (Prentice Hall, 1952), Section 2.3 for more accurate formulae.
- 14. Mainly from G. Z. Moliere, Naturforsch. 3(a), 78 (1948).
- See, for example, the experimental work of A. D. Hansen, L. H. Lanzl, E. M. Lyman, and M. B. Scott, Phys. Rev. <u>84</u>, 634 (1951).

ELECTROMAGNETIC RELATIONS

Maxwell's Equations

Quantity	CGS (statcoul., statamp., sec cm ⁻¹)	<u>MKSA</u> (coul., amp., ohm)
Potentials:	$V = \sum_{\text{charges } r} \frac{q}{r},$ $\vec{A} = \frac{1}{c} \sum_{\text{currents } r} \frac{\vec{I}}{r};$	$V = \frac{1}{4\pi\epsilon_0} \sum_{\text{charges}} \frac{q}{r},$ $\vec{A} = \frac{\mu_0}{4\pi} \sum_{\text{currents}} \frac{\vec{1}}{r};$
	c = speed of light in vacuum	$\epsilon_0 = \frac{1}{36\pi} \ 10^{-9} \text{ MKSA},$ $\mu_0 = 4\pi \ 10^{-7} \text{ MKSA}$
Fields:	$\vec{E} = -\vec{\nabla}V, \vec{B} = \vec{\nabla} \times \vec{A}$	Ē = -⊽v, B = ⊽×Ā
Materials:	$\vec{D} = \epsilon \vec{E}, \vec{B} = \mu \vec{H}$	$\vec{\mathbf{D}} = \epsilon \epsilon_0 \vec{\mathbf{E}}, \vec{\mathbf{B}} = \mu \mu_0 \vec{\mathbf{R}}$
Force:	$\vec{F} = q(\vec{E} + \frac{\vec{v}}{c} \times \vec{B})$	$\vec{\mathbf{F}} = \mathbf{q}(\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}})$
Maxwell:	$\vec{\nabla} \cdot \vec{E} = 4\pi\rho,$	₹·Ď=ρ,
	$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t},$	⊽×Ē = - <u>∂Ē</u> ,
	⊽ • B = 0,	⊽ • B = 0,
	$\vec{\nabla} \times \vec{B} = \frac{4\pi \vec{j}}{c} + \frac{1}{c} \frac{\partial \vec{E}}{\partial t}$	$\vec{\nabla} \times \vec{\mathbf{H}} = \vec{\mathbf{j}} + \frac{\partial \vec{\mathbf{D}}}{\partial t}$

Integral Forms (MKSA)

$$\int \vec{H} \cdot d\vec{l} = \int_{\text{surface}} \vec{j} \cdot \hat{n} \, dS$$
$$(\vec{j} = \text{surface current density})$$

Impedances: Alternating Currents (MKSA)

Ohm's law: V = ZI, $V = V_0 e^{i\omega t}$

- 1. Impedance of self-inductance of inductance $L : Z = i\omega L$
- 2. Impedance of a capacitor of capacitance C : Z = $\frac{1}{1+C}$
- 3. Impedance of a flat conductor of width w at high frequency: $Z = \frac{(1+i)p}{2}$

$$\rho = \text{resistivity} \begin{cases} \sim 1.7 \times 10^{-8} \Omega \text{ m for Cu} \\ \sim 2.8 \times 10^{-8} \Omega \text{ m for Al} \end{cases}$$

 δ = effective skin depth

$$= \sqrt{\frac{\rho}{\pi \nu_{\mu}\mu_{0}}} \approx \frac{6.6 \text{ cm}}{\sqrt{\nu(\text{sec}^{-1})}} \quad \text{for Cu}$$

i. For flat plates of width w, separated by $d \ll w$:

$$C = \frac{\epsilon \epsilon_0 w}{d}; \quad L = \mu \mu_0 \frac{d}{w}$$

2. For coax cable of interior and exterior radii r_1 and r_2 :

$$C = \frac{2\pi \epsilon \epsilon_0}{\ln(r_2/r_1)} ; \quad L = \frac{\mu \mu_0}{2\pi} \ln(r_2/r_1) ;$$
(2 to 6 for plastics)

- ϵ = dielectric constant $\begin{cases} 2 & 0 & 0 & 0 \\ 4 & to & 8 & for porcelain, glasses \end{cases}$
- μ = magnetic susceptibility

Transmission Lines (No Loss) (MKSA)

Velocity = $1/\sqrt{LC} = c/\sqrt{\mu\epsilon}$

Impedance = $\sqrt{L/C}$

L, C are inductance and capacitance per unit length <u>Synchrotron Radiation</u> (CGS) Energy loss/revolution = $\frac{4\pi}{3} \frac{e^2}{\rho} \beta^3 \gamma^4$, ρ = orbit radius. For electrons ($\beta \approx 1$), $\frac{\Delta E (MeV)}{rev}$ = 0.0885 [E(GeV)]⁴/ ρ (meter). Critical frequency: $\omega_c = 3\gamma^3 c/\rho$

See J.D. Jackson, <u>Classical Electrodynamics</u>, John Wiley & Sons, New York, 1962, for more formulae and details. (Prepared April 1974.)

PERIODIC TABLE OF THE ELEMENTS

·									······								
IA	IIA	_						1 1.0	1 H 908			IIIA	IVA	VA	VIA	VIIA	2 He 4.0026
3 Li 6.94	4 Be 9.0122											5 B 10.81	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.17
11 Na 22.9898	12 Mg 24.305	IIIB	IVB	VB	VIB	VIIB		- VIII		IB	IIB	13 Al 26.9815	14 Si 28.086	15 P 30.9738	16 S 32.06	17 Cl 35.453	18 A 39.948
19 K 39.102	20 Ca 40.08	21 Sc 44.956	22 Ti 47.90	23 V 50.941	24 Cr 51.996	25 Mn 54.9380	26 Fe 55.847	27 Co 58.9332	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.906	40 Zr 91.22	41 Nb 92.906	42 Mo 95.94	43 Tc 98.9062	44 Ru 101.07	45 Rh 102.905	46 Pd 106.4	47 Ag 107.868	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.9045	54 Xe 131.30
55 Cs 132.905	56 Ba 137.34	57–71 Rare Earths	72 Hf 178.49	73 Ta 180.947	74 W 183.85	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.09	79 Au 196.967	80 Hg 200.59	81 Tl 204.37	82 Pb 207.2	83 Bi 208.981	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89- Acti- nides	104	105									·	÷	<u> </u>		<u> </u>
	57 La 138.91	58 Ce 140.12	59 Pr 140.908	60 Nd 144.24	61 Pm (145)	62 Sm 150.4	63 Eu 151.96	64 Gd 157.25	65 Tb 158.925	66 Dy 162.50	67 Ho 164.930	68 Er 167.26	69 Tm 168.934	70 Yb 173.04	71 Lu 174.97	Rare e (Lanth serie	earths anide es)
	89 Ac (227)	90 Th 232.038	91 Pa 231.036	92 U 238.03	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (256)	102 No (254)	103 Lr (260)	Actinide	e series

Numbers in parentheses are mass numbers of most stable isotope of that element. Adapted from the Handbook of Chemistry and Physics, 1973-74. (Particle Data Group update, April 1974.)

RADIOACTIVITY AND RADIATION PROTECTION

CROSS SECTION PLOTS

Inelastic electroproduction form factors for a virtual space-like photon scattering on a proton, from SLAC-MIT, Phys. Rev. D5, 528 (1972). $R = \sigma_S/\sigma_T$, the ratio of the longitudinal to transverse cross sections. See L. Hand, Phys. Rev. 129, 1834 (1963).

 $\pi^\pm p$ total cross-section data from the Particle Data Group compilation "\piN Two-Body Scattering Data," LBL-63 (1973).

Interpolations of πN total cross sections for I=3/2 and 1/2, and the corresponding real parts of the forward amplitudes as calculated from dispersion relations by A. A. Carter and J. R. Carter (RHEL ppt, RL-73-024, 1973; labeled C above) and by G. Hohler and H. P. Jakob (priv, comm., 1972; labeled H above). The normalization of the curves for each value of I is such that the sum of their squares divided by 19.6 gives $d\sigma/dt$ at 0^e in mb/(GeV/c)².

 K^-p and K^-d total cross-section data compiled by Li et al., Proc. 1973 Purdue Conf. on Baryon Resonances. The solid curve passes through the Brookhaven data.

K⁻N total cross sections for I = 0 and I = 1 below 3.3 GeV/c. Compiled and unfolded by Li et al., Proc. 1973 Purdue Conf. on Baryon Resonances.

 $K^{-}p$ and $K^{-}d$ total cross-section data. Compilation sources: E. Bracci et al., CERN/HERA 72-2, $K^{-}p;$ G.R. Lynch, $K^{-}d$ (<3 GeV/c); Particle Data Group, $K^{-}d$ (>3 GeV/c). The new BNL data below 1 GeV/c are not included.

Phases of forward amplitudes for $K_{L}^{0} \rightarrow K_{S}^{0}(\Diamond,\Box)$ and $K_{L}^{0} \rightarrow K_{S}^{0}(*)$. The deuterium data are shifted 1 GeV/c higher to avoid overlap with the proton data. \Diamond -p, compiled by Particle Data Group, LBL-55; \Box -p, V. Birnlev et al; JINF-EI-6851 (1972); *-d, K.-F. Albrecht et al., Phys. Lett. <u>48B</u>, 257 (1974).

Total and elastic pp cross-section data compiled by U. Amaldi, CERN.

 $\overline{p}p,~pp,~\pi^{\tau}p,~and~K^{\mp}p$ total cross-section data versus s(* $2m_pp_{lab}),$ as compiled by U. Amaldi, CERN.

DATA CARD LISTINGS

Illustrative Key

Illustrative Key (cont'd)

Abbreviations

Journals		Measuremen	t techniques
APAH ADVP ANP ARNS BAPS JETP JETPL LNC NC NC NP PL PN PPSL PR PRL	Acta Phys. Acad. Hungarica Advances in Physics Annals of Physics Annual Reviews of Nuclear Science Bulletin of the American Physical Society English Translation of Soviet Physics JETP Letters to Soviet Physics JETP Letters to Nuovo Cimento Nuovo Cimento Nuclear Physics Physics Letters Particles and Nuclei Proceedings of the Physical Society of London Physical Review	A SPK CC CNTR DBC DPWA EMUL HBC HEBC HLBC IPWA MMS MPWA OSPK RVUE STRC	Automatic spark chambers Cloud chamber Counters, electronics Deuterium bubble chamber Energy-dependent partial wave analysis Emulsions Hydrogen bubble chamber Helium bubble chamber Heavy liquid bubble chamber Energy-independent partial wave analysis Missing mass spectrometer Model-dependent partial wave analysis Optical spark chambers Review of previous experimental data Streamer chamber
PRSL RMP SJNP ZPHY	Proceedings of the Royal Society of London Reviews of Modern Physics Soviet Journal of Nuclear Physics Zeitschrift für Physik	Conferences Conferences were held (e	ces are referred to by the location in which they .g., DUBNA, BOULDER, LUND, etc.).

Institutions

PHY Zeitschrift für Physik ions FECHNISCHE UNIV. AACHEM ATOMIC E MERGY RSS. ESTAL. WILLES AACHEN, GERMANY AACHEN GENTER AACHEN, GERMANY AACHEN AA AACH AERE AMST ANKA ANL ARIZ ATEN BARI BELG BERG BERL BERN BGNA BIRL BBNONNTN BBOOSANS BBOOSAN COLU CORN GRAC CUNY CURI DARE DART DESY DUKE DURH DUUC DEDIN EEDIN EEFIN FFLORS FFLORS GEEVASZ GELAZ GE TLL ILLC IND IND IOWA IPN IPNP IPPC IRAD ISU ITEP IUPU JAGL JHU JINR KANS KARL KARS LALO LASL LAUS LBL LEBD LEHI LEID LINZ LOIC LOUC LOUC LOWC LPNP

LOUISIANA STATE UNIV. UNIV. I LUNG MUTV. FIANDE MUTV. TENASLÉE UNIV. OF MASSACHUSETS MUTV. DE MASSACHUSETTS UNIV. OF MILANO UNIV. OF MILLANO UNIV. OF MOTEO DALL UNIV. OF NOTEE DALL UNIV. OF NOTEE DALL UNIV. OF NOTEE DALL UNIV. OF NOTEE DALL UNIV. OF MOTEE DALLANO UNIV. OF MOTEE DALLANO UNIV. OF MOTEE DALLANO UNIV. OF MOTEE DALLANO UNIV. OF MASSACHUSE UNIV. OF PARIS, FAC. DES SCI. SLOUMUV. OFO UNIV. ONTO UNIV. UNIV. OF PARIS, FAC. DES SCI. OSLO UNIV. OHIO UNIV. OF JORGO UNIV. UNIV. OF PARIS, FAC. DES SCI. OSLO UNIV. OHIO STATE UNIV. REGENS UNIV. ONTO UNIV. OF JORGO UNIV. UNIV. OF PITTSUGGH UNIV. OF PITTSUGGH UNIV. OF PITSUGGH UNIV. OF SIL UNIV. OF CLIF. AT SIL UNIV. OF CLIF. SIL UNIV. OF CLIF. AT SIL UNIV. OF CALIF. AT SIL UNIV. OF CALIF. AT SIL UNIV. OF CALIF. AT SANTA CAU UNI LSU LUND MANH MANH MASA MASA MASB MCHS MICH MICH MICH MICH MICH MICH MIT MODE MPIH MSNA NSNA MSU NAGO NAL NDAM NEAS NEVI NIJM NLJ NORD NORD NRL NWES ORIO OREG ORSLO OSLO OSLO OSLO OSLO OSLO OSLO PADO PADO PISA PPAG PPAG PCENO RHEL RISO ROCHA SACL SACL SACL SEATP SETO SEATP SETO STAN STON STON STON STUDA

BATCH ROUGE, LA., USA LUND, SWEDER MED YOR, SH. Y., USA MAINZ, GERMANY HANNERSTER, ANSJ., USA BOSTON, MASS., USA GOSTON, MASS., USA MONTREAL, CANADA MAMERSTER, ERGLAND MANNESTER, USA MADDI, TLALY METOELBERG, GERMANY MESSINA, ITALY METOELBERG, GERMANY MESSINA, METHEFLANDS IONGON, METHEFLANDS MASINGTON, N. J., USA METHEFLOND, USA MENNS, CHIC, USA ONGON, MENNS, USA MENNS, CHIC, USA ONGON, MESSI, USA MENNS, LIJ, WISA SIGNYARON, CALIFA, USA SIGNYARON, LIJ, WISA SIGNYARON, LIJ, WISA SIGNYARONG, KAL, USA SIGNYARONG, KAL, USA SIGNYARONG, KAL, USA SIGNYARONG, LIJ, WISA SIGNYARONG, KAL, USA SIGNYARONG, KAL, USA SIGNYARONG, LIJ, WISA SIGNYARONG, KAL, USA SIGNYARONG, KAL, USA SIGNYARONG, KAL, USA MENNS, CALIFA, USA SIGNYARONG, KALIFA, USA SIGNYARONG, KALIFA, USA SIGNYARONG, LIJ, WISA SIGNYARONG, KALIFA, USA SIGNYARONG, KALIFA, USA SIGNYARONG, LIJ, WISA SIGNYARONG, KALIFA, USA SIGNYARONG, LALF, USA SIGNYARONG, KAL

Stable Particles

γ, ν_e, ν_μ, e, μ

39

Stable Particles

 μ , π^{\pm}

Data Card Listings For notation, see key at front of Listings.

35	SCALAR COUPLING CONSTANT IN MUON DECAY (IN UNITS OF GV)	
35	(0.33) OR LESS DERENZO 69 RVUE	10769
ss	AXIAL VECTOR COUPLING CONSTANT IN MUON DECAY (IN UNITS OF GV)	
3 A	0.86 0.33 0.11 DERENZO 69 RVUE	10/69
FAV	PHASE RETWEEN VECTOR AND AXIAL VECTOR COUPLINGS (DEGREES)	
ΔV	180. 15. DERENZO 69 RVUE	10/69
5T	TENSOR COUPLING CONSTANT IN MUCH DECAY (IN UNITS OF GV)	
GT	(0.28) OR LESS DERENZO 69 RVUE	10/69
5P	PSEUDOSCALAR COUPLING CONSTANT IN MUON DECAY (IN UNITS OF GV)	
GP	(0.33) DR LESS DERENZO 69 RVUE	10/69

REFERENCES FOR MUON

74* 74* 73 73 73 73 73 73	COFFIN LUNDY BARDON DUDZIAK GARWIN PLAND ALI-ZADE KRUGER	58 59 59 60 61 61	PR 109 973 PRL 1 38 PRL 2 56 PR 114 336 PR 118 271 PR 119 1400 JETP 13 313 UCRL-9322 (UNPUB)	- COLUMBIA - SERVIN PENMAN, LEDERMAN, SACHS (COLUMBIA) - SERVIN, SMANSOM, TELEGDI, YOVANOVITCH (CHICARD) M BARONN, D BERLEY, L LEDERMAN (COLUMPIA) W DUDZIAK, R SAGANE, J VEDER GARNIN, HUTCHINSON, PENMAN, SHAPIRO (COLUMBIA) R J PIANO (COLUMBIA) R J PIANO (COLUMBIA) ALI-ZADE, GUREVICH, NIKOLSKI (USSR) H KRUGER (LRL)	
	ALIKHANO BLOCK Charpak Farley Lundy Parker	62 62 62 62 62	CERN CONF 423 NC 23 1114 PL 1 16 CERN CONF 415 PR 125 1686 NC 23 485	A I ALIKHANOV,A BARAEV + (ITEP MČSCON) BLOCK,FIDTINI,KIUCHI+(DUKE,BOLOGNA,HILANO) G CHARPAK,F J M FARLEY,R L GARVIN + (CERN) FARLEY,MASSAM,MULLEP,ZICHICHI (CERN) RICHARD A LUNDY (EFI) S PARKER,S PENMAN (EFI)	
	BABAEV BINGHAM BUHLEP DICK FCKHAUSE FEINBERG FRANKEL1 FRANKEL2 HUTCHINS MEYER	63 63 63 63 63 63 63 63 63 63	JETP 16 1397 NC 27 1352 PL 7 368 PL 7 150 PR 132 422 ARNS 13 431 NC 27 894 PR 130 351 PR 131 1351 PF 132 2693	ABBAEV, BALATS, KAFTANOV, LANDSBERG + (ITEP) G.MCD, BINGHAM (IEL) +CABIBBO, FIDECARO, MASSAM, MULLER+ (CERN) DICK, FEUVRAIS, SPIGHEL (GEN) M ECKHAUSE, T & FILIPPAS + (CARNEGTE) GERALD FEINGERG, L M LEDERMAN (COLUMRIA) S FRANKEL, W FRATI, J HALPERN + (PENN) HUTCHINSON, MEMES, PATIACH, SHAPIRO (COLUMRIA) S S FRANKEL, W FRATI, J HALPERN + (PENN) HUTCHINSON, MEMES, PATIACH, SHAPIRO (COLUMRIA) S S L MEYER, ANDERSON, BLESER, LEDERMAN+ (CCLU)	
72 72	BARLÓW BLDOM DUCLÚS GUREVICH PONTECOR PARKER	64 64 64 64 64	PPS 84 239 PL 8 87 PL 9 62 PL 11 185 CUBNA CONF PP 1338 768	+800TH,CAPROL,COUPT,DAVIES,EOWARDS+ (LIVP) +DICK,FEUWRAIS,HENRY,MACQ,SPICHEL (CERN) +HEINIZ,DE RUJULA,SDERGEL (CERN) GUREVICH,MAKARIYNA+ (KUPCHATOV,NOSCOW) PONTECORVO,SULYAEV (MOSCOW) S PARKER,H L ANDERSON,C REY (EFI)	
71	PEOPLES GUREVICH SCHWARTZ SHERWOOD BAILEY Also FRYBERGE	67 67 67 68 72 68	NEVIS-147 (UNPUB) IAE 1297 PR 162 1306 PR 156 1475 PL 28B 287 NC 9A 369 PR 166 1379	IJ PEDPLES (COLUMBIA) GUREVICH, MAKARIYNA, MISHAKOYA+ (KURCHATOV) D M SCHWAQTZ (EFI) B A SHERHOOD (FFI) +BARI, VON BOCHMANN, BROWN, FAQLEY+ (CEN) +BARI, VON BOCHMANN, BROWN, FAQLEY+ (CEN) D FRYBERGER (EFI)	
	DERENZO EHPLICH TAYLOR THOMPSON HAGUS HUTCHINS	69 69 69 70 70	PR 181 1854 PRL 23 513 RMP 41 375 PRL 22 163 PRL 25 628 PRL 24 1254	S DERENZO (EFI) +HOFER, MAGNON, STOWELL, SWANSON+ (CHICAGO) +PARKER, LANGENBERG (PRIN-UCI+PENN) +AMATO, CRAME, HUGHES, MOBLEY+ (YALE) +ATOHORERG, SCHENCK, WILLIAMS+ (WASH-DPL) HUTCHINSON, LARSON, SCHCEN, SOBER, + (PPA)	
69 69 69 69 69 69 69 69 69 69 69	CRANE DEVOS ALSO FAVART KORENCH1 KORENCH2 CROWE WILLIAMS CCHEN	71 71 71 71 71 71 72 72 73	PRL 27 474 PRL 25 1779(ER) PRL 26 213 PRL 27 1336 SJNP 13 190 SJNP 13 728 PR D5 2145 PR D5 2145 J.PHYS.CHEM.REF.C	CASPERSON.CRANF.FGAN.HUGHES+ (YALE) +HCINTORE,MAGNON.STONELL.SWANSON+ (CHICAGO) DEVDE.HCINTORE,MAGNON.STONELL- (CHICAGO) +HCINTYRE,STONELL.TELEGDI.DEVDE+ (CHICAGO) KORENCHENKO,KOSTIN.HIGELMACHER+ (JINE) +HAGUE.NOTHRERG,SCHENCH+ (LBL+WASH) R W WILLIAMS,D L WILLIAMS (WASHINGTON) JATA 2. P.663, E.R.CCMHEN,RAN.TAFULOR PAPERS NOT REFERRED TO IN DATA CARDS	
69 69 69 69 69 69 69	FISHER ASTBURY DEVONS LATHROP REITER TELEGDI CHARPAK HUTCHINS SHAPIRO FAIRLEY VOSSLER RICH	59 60 60 60 61 62 56 72	PRL 3 349 ROCH CONF 60 542 PRL 5 330 NC 17 NC 17 109 NC 17 114 PRL 5 22 PR 12 129 PRL 6 128 PRL 7 13 PRL 6 128 NC 453 423 PR 125 1022 NC 454 423 RMP 44 250	FISHER, LECNTIC, LUNDBY, HEUNIER, STPOOT (CERN) ASTBURY, HATTERSLEY, HUSSAIN + (LIVERPODL) OEVONS, GTDAL, LEDERMAN, SHAPIRO (COLUMBIA) J LATHROP, R A LUNDY, V L TELEGDI + (EFI) J LATHROP, R A LUNDY, S PENMAN + (REFI) REITER, ROMANDWSKI, SUTTON + (CARNEGIE) V L TELEGDI + (CERN) CHARPAK, FARLEY, GAPWIN, HULLER, SENS + (CENN) O P HUTCHINSON, J MENES + (COLUMBIA) G SHAPIRO, L M LEDERMAN (COLUMBIA) FAIBLEY, BALLEY, SORDW, GIESCH + (CEN) C VOSSLER (FTI) A RICH, J C WESLEY (MICH)	
69 69 69	π^{\pm}	****	***** ********** ** ***** ************	SED PION (140,JPG=0) 1=1	
69 69				GED PION MASS (MEV)	
69 69 69 69	M M S M S M S M S M S M M	SHAL	139.37 0.20 139.68 0.15 (139.577) (0.013) (139.549) (0.008) 139.566 0.013 139.566 0.008 FER 72 UPDATES SHA KENSTDSS 73 CORREC	CROWE 54 CNTR - BARKAS 55 ENUL + SHAFER 67 CNTR - MESONIC ATOMS 6/68 BACKENSTC 71 CNTR - MESONIC ATOMS 10/71 SHAFER 72 CNTR - MESONIC ATOMS 1/73 BACKENSTO 73 CNTR - MESONIC ATOMS 1/73 CTS BACKENSTO 51 WITH NEW VACUUM POL. CALC. 1/73	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
69	M AVG M FIT		139.5682 0.0064 139.5688 0.0064	8 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 4 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 3/74	*
69 69 69		.45	8 (P1+) 34.00 0.076 33.89 0.076 33.881 0.035 33.925 0.025) — (MU+) MASS DIFFERENCE (MEV) BARKAS 56 EMUL BARKAS 56 EMUL HYMAN 67 HEBC + K-HE 2/71 BOOTH 70 CHTR + MAGNETIC SPECT. 2/71	ì
	D D AVG D FIT		33.915 0.019 33.909 0.006	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 3/74	•

MMR THIS RATIO IS USED TO GBTAIN PRECISE VALUES OF THE MUON MASS.	
MMP SEE CRUME 72. MMR (3.1865) (.0022) COFFIN 58 CNTR + SPIN PESONANCE MHR (3.1883) (.0011) LUNDY 58 CNTR + PRECESSION STRO MHR (3.176) (.013) LUNDY 58 CNTR + PRECESSION STRO MHR (3.1834) (.0002) GARWIN 60 CNTR + PRECESSION STRO MHR (3.18336) (.00001) BINGHAM 63 CNTR + PRECESSION STRO MHR (3.18335) (.000014) HUTCHINS CNTR + PRECESSION PAGE MHR (3.18335) (.000014) HUTCHINS 70 CNTR + SSION PAGE MHR (3.18334) (.000013) LEVNE CNTR + SSION PAGE MHR (3.18334) (.000013) LEVNE TOR + SSION	3/72 3/72 2/72 2/72 2/72 2/72 2/72 2/72
4 MUON PARTIAL DECAY MODES	
P1 NUON INTO E (E-NEU) (NU-NEU) DECAY MASSES P2 MUON INTO E 200MMA .54 04 0 P3 MUON INTO 3ELECTRONS .54 .54 .5 P4 MUON INTO E GAMMA .54 0	_
4 MUON BRANCHING RATIDS RI MUON INTC E+2GAMMA (IN UNITS OF 10**-5) (P2)/(P1) RI (1.6) OR LESS CL=.90 FPANKELI 63 OSPK B2 MUON INTO 3E (IN UNITS OF 10**-7) (P3)/(P1)	
P2 F 5.0 OR LESS CL=.90 PARKER 62 CNTR	
R2 F 1.5 OR LESS CL=.90 FRANKELZ 63 CNTR R2 F 1.2 OR LESS CL=.90 BABAEV 63 OSPK	
R2 K 0.062 DR LESS CL≃.90 KORENCH2 71 DSPK R2 K KORENCHENKO2 71 ASSUMES A CONSTANT MATRIX ELEMENT.	2/72 2/72
R2 F FOUR ABOVE EXPERIMENTS FVALUATED UPPER LIMITS ASSUMING A SECOND R2 ORDER V-A NEUTRINO LOOP DIAGRAM. LIMITS NOT SIGNIFICANTLY CHANGED	3
R2 ASSUMING A CONSTANT MATRIX ELEMENT.	
R3 MUON INTO F+GAMMA (IN UNITS OF 10≉≉-8) (P4}/(P1) R3 4.3 OR LESS CL≖.90 FRANKEL1 63 OSPK	
R3 2.2 OR LESS CL≭.90 PARKER 64 OSPK R3 2.9 OR LESS CL≭.90 KCRENCH1 71 OSPK +	10/71
	-
4 MURN DECAY DADAMETERS	
4 HOUN DECAT FARAMETERS	
RELATED TEXT SECTION VI A	
RHO RHO PARAMETER (V-A THEORY PREDICTS RHO=0.75)	
PHO RHO PARAMETER (V-A THEORY PREDICTS RHG=0.75) RHO C (0.741) (0.027) DUDZIAK 59 CNTR + 20-53 MEV E+ RHO P9213 0.745) 0.025 PLANO 60 HBC + WHOLE SPECTRUM	10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RHO-0.751 RHO (0.741) (0.0271) DUDZIAK 59 CNTR 20-53 HEV E+ RHO P213 0.745 0.025 PLANO 60 HEC WHOLE SPECTRUM RHO P THO PARAMETER FIT TO RHO AND ETA. RHO C 2766 (0.751) (0.034) BLOK 62 HEBE WHOLE SPECTRUM	10/69 10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RHO-0.751 PRO RHO (0.741) (0.0271) DUDZIAK 59 CNTR 20-53 MEV E+ RHO P213 0.745 0.025 PLANO 60 HBC WHOLE SPECTRUM RHO P THO PARAMETER FIT TO RHO AND ETA. RHO P THO PARAMETER FIT TO RHO DETA. ENCON AND ESPECTRUM RHO D (0.641) (0.041) BARLOM 64 CNTR WHOLE SPECTRUM RHO D (0.641) (0.016) BARLOM 64 CNTR WHOLE SPECTRUM	10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RHO-0.751 RHO (0.741) (0.027) DUDZIAK 59 CNTR 20-53 MEY E+ RHO P3213 0.745 0.025 PLAND 60 HBC WHOLE SPECTRUM RHO P THO PARAMETER [11 TO RHO AND ETA- HHOLE SPECTRUM RHO D (0.641) (0.041) BLOCK 62 HEBC WHOLE SPECTRUM RHO D (0.641) (0.041) BLARLOM 64 CNTR HHOLE SPECTRUM RHO D (0.867) (0.035) PONTECORV 64 CC - RHO RESULTS IN DOUBTA DOUBTA STATE - -	10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RH-0-753 RHO (0.741) (0.027) DUDZIAK 59 CNT8 + 20-53 HEV E RHO P THO PARAMETER [11 TO RHO AND ETA. 60 HEC + 20-53 HEV E RHO P THO PARAMETER [11 TO RHO AND ETA. 60 HEC + 20-53 HEV E RHO P THO PARAMETER [11 TO RHO AND ETA. HO C PARAMETER HEVE HEVE HEVE HEVE FECTUM RHO 0 (0.661) (0.004) BARLOM 64 CNTR HHOLE SPECTRUM RHO 0 (0.661) (0.035) PONTECORV 64 CC - RHO 0 (0.661) (0.0026) PONTECORV 64 CC - RHO C 8000 (0.7503) (0.0026) PONTECORV 64 CC - RHO C 8000 (0.7503) (0.0026) <t< td=""><td>10/69 10/69 10/69 10/69 10/69 10/69 10/69</td></t<>	10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RND PARAMETER (J-A THEORY PREDICTS RH0-0.75) RND C (0.741) (0.021) DUDIAK 59 CNT8 + 20-53 MEV E+ RND P213 0.745 0.025 PLAND 60 HBC + WHOLE SPECTRUM RND C 276 (0.751) (0.034) BLOCK 62 HEBC - WHOLE SPECTRUM RND D (0.641) (0.041) BRUDM 64 CNTR - WHOLE SPECTRUM RND D (0.661) (0.034) BLOCK 62 HEBC - WHOLE SPECTRUM RND D (0.661) (0.016) BRUDM 64 CNTR - WHOLE SPECTRUM RND D (0.661) (0.035) PONTECORV 64 CC - RND D (0.867) (0.035) PONTECORV 64 CC - RND D RESULTS IN DOUBT. PROPLES 66 ASPK + 20-53 MEV E+ RND C 800K (0.7603) (0.0026) FREWEDOD 67 ASPK + 25-53 MEV E+ RND C 10.70K (0.722) (0.008) FREWERGER 68 ASPK + 25-53 MEV E+ RND C 110.007K THESE VALUES INCORPORATED INTO A THO PARAMETED THO PARAMETED	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RND PARAMETER (V=A THEORY PREDICTS RH0=0.75) RND C (0.741) (0.021) PLAND 60 HBC + 20-53 HEV E+ RND P213 0.745 0.025 PLAND 60 HBC + 20-53 HEV E+ RND P TWO PARAMETER FIT TO RND AND ETA. 0 0.745 0.025 PLAND 60 HBC + 20-53 HEV E+ RND C 276 (0.751) (0.034) BLOCK 62 HEBC - WHOLE SPECTRUM RHD D (0.661) (0.041) BRRLDM 64 CNTR - WHOLE SPECTRUM RHD D (0.661) (0.035) PONTECORV 64 CCT - - RHD D (8.651) (0.035) PONTECORV 64 CCT - - RHD D (0.0601) 0.00261 PONTECORV 64 CCT - - RHD C 800K (0.703) (0.00261) PONTECORV 64 CCT - - RHD C 0.0733) (0.00261) PONTECORV 64 CCT - - - RHD C 10.0753) (0.00261) PONTECORV 64 CCT - - - RHD C 10.7533)	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RND PARAMETER (U-A THEORY PREDICTS RH0-0.75) RND C (0.741) (0.021) DUDIAK 55 CNT8 + 20-53 MEV E+ RND PP213 0.745 0.025 PLAND 60 MBC + WHOLE SPECTRUM RND C 2276 (0.751) (0.024) BLOCK 60 MBC + WHOLE SPECTRUM RND D 10.641 (0.041) BLOCK 62 HEBC - WHOLE SPECTRUM RND D (0.661) (0.016) BARLDM 64 CNTR - WHOLE SPECTRUM RND D (0.661) (0.033) PONTECORV 64 CC - - RND D (0.651) (0.035) PONTECORV 64 CC - - RND D (0.651) (0.035) PONTECORV 64 CC - - RND C 8ESULTS IN DOUBT. FONESCORV 64 CC - - - RND C 0.0753) (0.0026) SHEWHOD G7 ASPK + 20-53 MEV E+ - RND C 10.7503) (0.0026) FAVEERGER 68 ASPK + 25-53 MEV E+ - RND C 110 CN TABL D- DO. THESE VALUES INCORPORATED INTO A THO PARAMETER NHO C - - RND	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RND PARAMETER (V-A THEORY PREDICTS RH0-0.75) RND C (0.745) (0.025) PLAND 60 HBC + WHOLE SPECTRUM RND P PILO 0.745 (0.025) PLAND 60 HBC + WHOLE SPECTRUM RND P TWO PARAMETER FIT TO RND AND ETA. 62 HBRC - WHOLE SPECTRUM HO 60 HBC + WHOLE SPECTRUM RND D (0.761) (0.034) BLOCK 62 HBRC - WHOLE SPECTRUM RND D (0.661) (0.041) BRRLOW 64 CNTR - WHOLE SPECTRUM RND D (0.661) (0.035) PONTECORV 64 CC - - RND D (0.6861) (0.036) PONTECORV 64 CC - - RND D (0.6861) (0.036) PONTECORV 64 CC - - RND C 800K (0.7503) (0.0026) FEMEWDD 67 ASFK + 20-53 MEV E+ RND C 100 KOUBT. FNDERGER 66 ASFK + 25-53 MEV E+ FND C EACONTRACHTED INTO A TWO PARAMETER RND C 110 KIO AND ETA BY DERENZO 60. FND EACONTACTED INTO A TWO PARAMETER FND C FND AND FTA BY DERENZO 69 RVUE RHD 0.7517 0.0026 DERENZO 69 RV	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RND PARAMETER (V-A THEORY PREDICTS RH0-0.75) RND C (0.745) (0.025) PLAND 60 HBC + WHOLE SPECTRUM RND P P TWO PARAMETER FIT TO RHO AND ETA. 60 HBC + WHOLE SPECTRUM 60 HBC + WHOLE SPECTRUM RND D (0.751) (0.026) PLAND 60 HBC + WHOLE SPECTRUM RND D (0.761) (0.026) BLOCK 62 HBBC - WHOLE SPECTRUM RND D (0.661) (0.041) BLOCK 62 HBBC - WHOLE SPECTRUM RND D (0.661) (0.016) BARLOW 64 CNTR - WHOLE SPECTRUM RND D (0.661) (0.016) BARLOW 64 CNTR - WHOLE SPECTRUM RND D (0.661) (0.016) BARLOW 64 CNTR - WHOLE SPECTRUM RND D (0.661) (0.016) BARLOW 64 CNTR - WHOLE SPECTRUM RND D (0.661) (0.003) PONTECORV 64 CC - - RND C 800K (0.7503) (0.0026) FREWDON 67 ASRK + 20-53 MEV E+ RND C 170K (0.7514) (0.0026) FREWDON 67 ASRK + 25-53 MEV E+ RND C	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RND PARAMETER (V=A THEORY PREDICTS RH0=0.75) RND C (0.745) (0.025) PUDZIAK 55 CNT6 + 20-53 MEV E+ RND PP213 0.745 (0.025) PUDZIAK 55 CNT6 + 20-53 MEV E+ RND P TWO PARAMETER FIT TO THO AND ETA. 60 HBC + WHOLE SPECTRUM 60 HBC + WHOLE SPECTRUM RND D (0.641) (0.041) BLOCK 62 HBBC - WHOLE SPECTRUM RND D (0.661) (0.016) BARLOM 64 CNTR - WHOLE SPECTRUM RND D (0.661) (0.035) PONTECORV 64 CC - RND D (0.68CT) (0.035) PONTECORV 64 CC - RND C 8ESULTS IN DOCUST. PONTECORV 64 CC - RND C 10.7503) (0.026) PONTECORV 64 CC - RND C 8ESULTS IN DOCUST. PONTECORV 64 CC - - RND C 200K (0.7503) 10.0026) PENEVED RND C 10.7503) 10.0026) PENEVEND - RND C 117 D RND AND TA BY DERENZO 69 RVUE - RND C <td>10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69</td>	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RND PARAMETER (V=A THEORY PREDICTS RH0=0.75) RND C (0.745) (0.025) PLAND 60 HBC + WHOLE SPECTRUM RND P P TWO PARAMETER FIT TO RHO AND ETA. 60 HBC + WHOLE SPECTRUM PHO P TWO PARAMETER FIT TO RHO AND ETA. 60 HBC + WHOLE SPECTRUM RND D (0.751) (0.025) PLAND 60 HBC + WHOLE SPECTRUM RND D (0.641) (0.041) BLOCK 62 HB3C - WHOLE SPECTRUM RND D (0.661) (0.016) BARLOW 64 CNTR - WHOLE SPECTRUM RND D (0.661) (0.035) PONTECORV 64 CC - - RND C RESULTS IN DOCUST. PONTECORV 64 CC - - RND C 10.753) (0.026) PONTECORV 64 CC - - RND C 8000K (0.7503) 10.0026) PONTECORV 64 CC - - RND C 10.0010K PONTECORV 64 CC - - - - RND C 10.00261 PEOPLES 64 ASPK + 20-53 MEV E + - - RND C 10.0026 VENEXDOD GT ASPK + 25-53 MEV E + - - <	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RHC=0.75) PHO C (0.741) (0.021) DUDZIAK SO SOTTA + 20-53 MEV E+ RHO P9213 0.745 0.025 PLANO 60 HEC +WHOLE SPECTRUM RHO P2213 0.745 0.025 PLANO 60 HEC +WHOLE SPECTRUM RHO P2213 0.745 0.025 PLANO 60 HEC +WHOLE SPECTRUM RHO P2216 (0.751) (0.034) BLOCK 62 HEG C -WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO C 0.0661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO C 0.0661) (0.0163) PODLES 64 ASPK + 20-53 MEV E+ RHO C 0.7630 (0.0026) PEOPLES 64 ASPK + 20-53 MEV E+ RHO C C TA CONSTRAINED -0.7TECORY 04	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RH0-0.75) PHO C (0.741) (0.021) DUDZIAK SO ENTR + 20-53 MEV E+ PHO P9213 0.745 0.025 PLANO 60 HEC +WHOLE SPECTRUM PHO P 213 0.745 0.025 PLANO 60 HEC +WHOLE SPECTRUM PHO P 2213 0.745 0.025 PLANO 60 HEC +WHOLE SPECTRUM RHO D (0.751) (0.034) BLOCK 62 HEG C -WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTR + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTR + WHOLE SPECTRUM RHO C 0.0661) (0.026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C 2180 (0.763) 0.0026) PEOPLES 64 ASPK + 20-53 MEV E+ RHO C 2180 (0.761) 0.0026 DERNZO 69 RUE RHO C	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V=A THEORY PREDICTS RHG-0.75) PHO C (0.741) (0.021) DUDIAK SO SOTA + 20-53 MEV E+ PHO P9213 0.745 0.025 PLANO 60 HEC - WHOLE SPECTRUM PHO P 213 0.745 0.025 PLANO 60 HEC - WHOLE SPECTRUM PHO P 2213 0.745 0.025 PLANO 60 HEC - WHOLE SPECTRUM PHO P 2216 (0.751) (0.034) BLOCK 62 HEG - WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO C 0.0651) (0.0163) PONTECORY 64 CC - - RHO C 0.0651) 0.01026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C C 70001 0.0026) DERENZO 69 RUE SHEW E+ RHO C C 710 0.0026 DERENZO 69 RUE SHEW E+<	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V=A THEORY PREDICTS RHG-0.75) PHO C (0.741) (0.021) DUDIAK SO ENTR + 20-53 MEV E+ PHO P213 (0.745) (0.025) PLAND 60 HEC - TO-53 MEV E+ PHO P213 (0.751) (0.034) BLOCK 62 HEG - WHOLE SPECTRUM PHO D (0.751) (0.034) BLOCK 62 HEG - WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNT + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNT + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNT + WHOLE SPECTRUM RHO C (0.661) (0.016) BARLOW 64 CNT + WHOLE SPECTRUM RHO C (0.661) (0.016) BARLOW 64 CNT + WHOLE SPECTRUM RHO C 0.06301 (0.0026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C C TACONSTRAINED -0.0 THESE VALUES INCORPCRATED INTO A THO PARAMETER RHO	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V=A THEORY PREDICTS RHC=0.75) PHO C (0.741) (0.021) DUDIAK SO ENTA + 20-53 MEV E+ PHO P213 (0.745) (0.025) PLAND 60 HEC - XHOLE SPECTRUM PHO P213 (0.751) (0.034) BLOCK 62 HEG - WHOLE SPECTRUM PHO P (0.751) (0.034) BLOCK 62 HEG - WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO C (0.661) (0.0026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C CTA (0.762) (0.0003) SHEBWODD 67 ASPK + 25-53 MEV E+ RHO C CTA (0.762) 0.0026 DERENZO 69 RUUE RHO PARAMETER RHO C CTA CONSTRAINED -0. THESEVCAN BERENCA 69 RUUE RHO PARAMETER	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V=A THEORY PREDICTS RHC=0.75) PHO C (0.741) (0.021) DUDIAK SO ENTA + 20-53 MEV E+ PHO P213 (0.745) (0.025) PLAND 60 HEC - MHOLE SPECTRUM PHO P213 (0.751) (0.034) BLOCK 62 HEG - WHOLE SPECTRUM PHO D (0.661) (0.016) BRLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO C (0.661) (0.026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C C100001 SHEBWODD 67 ASPK + 25-53 MEV E+ RHO C C1710 RHO AND ETA BY DERENZO 60. REW E+ RHO C C1710 RHO AND ETA BY DERENZO 60. REWO C1710 RHO AND ETA BY DERENZO 60. REWE	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RHC=0.75) PHO C (0.741) (0.021) DUDIAK SO ENTA + 20-53 MEV E+ PHO P213 (0.745) (0.025) PLANO 60 HEC - WHOLE SPECTRUM PHO P P10 PARAMETER FIT TO RHO AND ETA. 60 HEC - WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO C (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO C (0.661) (0.026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C CTA CONSTRAINED =0. THESE VALUES INCORPORATED INTO A THO PARAMETER 100 CTA CONSTRAINED =0. THESE VALUES INCORPORATED INTO A THO PARAMETER RHO C CTA CONSTRAINED =0. THESE VALUES INCORPORATED INTO A THO PARAMETER 100 CTA CONSTRAINED =0. THERENZO 60. RE	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RHC0.75) PHO C (0.741) (0.021) DUDIAK SO ENTA + 20-53 MEV E+ PHO P213 0.745 0.025 PLAND 60 HEC + WHOLE SPECTRUM PHO P PIATO PARAMETER FIT TO RHO AND ETA. 60 HEC + WHOLE SPECTRUM RHO D (0.661) (0.0034) BLOCK 62 HEG - WHOLE SPECTRUM RHO D (0.661) (0.0164) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.0165) PONTECORV 64 CC - - RHO C RESULTS IN DOUBT. FROPLES 66 ASPK + 20-53 MEV E+ RHO C C180K (0.760) 10.0026) PEOPLES 66 ASPK + 25-53 MEV E+ RHO C CTA CONSTRAINED =0. THESE VALUES INCORPCRATED INTO A THO PARAMETER FMO C 53 MEV E+ RHO C 0.7518 0.0026 DERENZO 69 RUUE FTA-0 FTA THO PARAMETER FMA HERNOD O ISSCUNTS VALUE FOR ETA FTA <td>10/69 10</td>	10/69 10
PHO RHO PARAMETER (V=A THEORY PREDICTS RH0=0.75) PHO C (0.741) (0.021) DUDZIAK SO CNTA + 20-53 MEV E+ PHO P213 (0.745) (0.025) PLANO 60 HEC - WHOLE SPECTRUM PHO P P10 PARAMETER FIT TO RHO AND ETA. 60 HEC - WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTA + WHOLE SPECTRUM RHO D (0.661) (0.0026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C C10.601 (0.0026) PEOPLES 66 ASPK + 25-53 MEV E+ RHO C C17518 0.0026 DERENZO 69 RUE E+ RHO C 0.7518 0.0026 DERENZO 69 RUE E+ RHO C 0.7518 0.0026 DERENZO 69 RUE E+ FA E E+ C E FA FA	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RH0-0.75) PHO C (0.741) (0.021) DUDIAK SO SOTA + 20-53 MEV E+ PHO P213 (0.745) (0.025) PLAND 60 HEC + WHOLE SPECTRUM PHO P P10 PARAMETER FIT TO RHO AND ETA. 60 HEC - WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTR + WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTR + WHOLE SPECTRUM RHO D (0.661) (0.0035) PONTECORV 64 CC - - RHO C RESULTS IN DOUBT. PEOPLES 66 ASPK + 20-53 MEV E+ RHO C C300K (0.7501) GO.0026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C C11 TO RHO AND ETA BY DERENZO 64. SEENTON 64 CC - - RHO C 0.7518 0.0026 DERENZO 69 RULE ETA CHARMETER RHO C 0.7518 0.0026 DERENZO 69 RULE ETA PARAMETER FIT PERANC 60 ASCA 29-53 MEV E+ RHO C 0.7518 0.0026 DERENZO 60 ASCA 29-53 MEV E+ FG CTOUNTS VALUE FOR ETA 610 FOR ETA <td>10/69 10/69</td>	10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RH0-0.75) PHO C (0.741) (0.021) DUDZIAK SO SOTTA + 20-53 MEV E+ PHO P213 (0.745) (0.025) PLANO 60 HEC + WHOLE SPECTRUM PHO P 213 (0.751) (0.034) BLOCK 62 HEGC - WHOLE SPECTRUM PHO D (0.751) (0.034) BLOCK 62 HEGC - WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTR + WHOLE SPECTRUM RHO D (0.661) (0.0035) PONTECORV 64 CC - RHO C RESULTS IN DOUBT. FMOC BARAMETER FTO PORTECORV 64 CC - RHO C C10.601 (0.0026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C C10.701 C0.0026 DERENZO 69 RVUE - RHO C C11 TO RHO AND ETA BY DERENZO 69. RHU - - RHO C 0.7518 0.0026 DERENZO 69 RVUE FTA P G213 (-2.0) (0.91 ETA P 2213 (-2.0) (0.91 PAD PARAMETER IV-A THEORY PREDICTS ETA=0) - <tr< td=""><td>10/69 10/69</td></tr<>	10/69 10/69
PHO RHO PARAMETER (V-A THEORY PREDICTS RHC=0.75) PHO C (0.741) (0.021) DUDZIAK SO SOTTA = 2.0-53 MEV E+ PHO P213 0.745 0.025 PLAND 60 HEC WHCLE SPECTRUM PHO P 213 0.745 0.025 PLAND 60 HEC WHCLE SPECTRUM PHO P C 2276 (0.751) (0.034) BLOCK 62 HEG C WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTR + WHOLE SPECTRUM RHO D (0.661) (0.0026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C RESULTS IN DOUBT. FMOREGRER 66 ASPK + 20-53 MEV E+ RHO C CTA (0.762) (0.0026) PEOPLES 66 ASPK + 25-53 MEV E+ RHO C CTA (0.751) (0.0026) DERENZO 69 RUE F RHO C CTA CONSTRAINED =0. THESE VALUES INCORPCRATED INTO A THO PARAMETER F F RHO C O.7518 0.002	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (U-A THEORY PREDICTS RHO-JTS) PHO C (0.741) (0.021) DUDZIAK SO SONTA + 20-53 MEV E+ PHO P213 (0.745) (0.025) PLAND 60 HEC + WHOLE SPECTRUM PHO P Z 276 (0.751) (0.034) BLOCK 62 HEGC - WHOLE SPECTRUM PHO D (0.661) (0.016) BARLOW 64 CNTR + WHOLE SPECTRUM RHO D (0.661) (0.0016) BARLOW 64 CNTR + WHOLE SPECTRUM RHO D (0.661) (0.0026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C C10.601) (0.0026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C C10.6010 0.0026 DERENZO 69 RVUE RHO C C11 TO RHO AND ETA BY DERENZO 60. RHO C TA DARAMETER RHO C RHO C RHO C RHO C	10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69 10/69
PHO RHO PARAMETER (U-A THEORY PREDICTS RHO-J75) PHO C (0.741) (0.021) DUDZIAK SO ENTA + 20-53 MEV E+ PHO P213 (0.745) (0.025) PLAND 60 HEC + WHOLE SPECTRUM PHO P Z276 (0.751) (10.034) BLOCK 62 HERC - WHOLE SPECTRUM PHO D (0.661) (0.016) BARLOW 64 CNTR + WHOLE SPECTRUM PHO D (0.661) (0.026) PEOPLES 66 ASPK + 20-53 MEV E+ PHO C (0.661) (0.0026) PEOPLES 66 ASPK + 20-53 MEV E+ PHO C RNO C (0.7501) (0.0027) SHEPMOD of ASPK + 25-53 MEV E+ RHO C C10.0031 FAUPRERGER 66 ASPK + 20-53 MEV E+ RHO C ETA CONSTRAINED -0. THESE VALUES INCORPCRATED INTO A THO PARAMETER RHO C RHO C RHO C RHO C <	10/69 10/69
PHO RHO PARAMETER (U-A THEORY PREDICTS RHO-J75) PHO C (0.741) (0.021) DUDZIAK SO ENTA + 20-53 MEV E+ PHO P213 0.745 (0.025) PLAND 60 HEC + WHOLE SPECTRUM PHO P213 0.745 (0.024) BLOCK 62 HERC - WHOLE SPECTRUM PHO P213 (0.751) (10.034) BLOCK 62 HERC - WHOLE SPECTRUM RHO D (0.661) (0.016) BARLOW 64 CNTR + WHOLE SPECTRUM RHO D (0.661) (0.0026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C RESULTS IN DOUBT. PROPERSON 66 ASPK + 25-53 MEV E+ PHO C 25-53 MEV E+ RHO C CTA (0.762) (0.0026) PEOPLES 66 ASPK + 20-53 MEV E+ RHO C CTA (0.751) 0.0026 DERENZO 69 RUE PMO C RHO C CTA (0.751) 0.0026 DERENZO 69 RUE PMO C ASPARMETER RHO C CTA ASPARTER FIT TO HO AND ETA PLAND 60 DISCUMTS VALUE FOR ETA 610 ETA FMO C FTA P TAVD PARAMETER FIT TO HO AND ETA PLAND 60 DISCUMTS VALUE FOR ETA 610 ETA RHO C O.7511	10/69 10/69

Stable Particles π^{\pm}, π^{0}

8 ((PI+) - DM 0.02 0.05 B CHARGED 1 T 25.6 0.5 () T 25.6 0.8 () T 8000 25.46 0.32 () T 26.02 0.04	(PI-))/AVG., MASS DIFFERENCE (PERCENT) AYRES 71 CNTR PION MEAN LIFE (UNITS 10**-9) 0.5 CROWE 57 RVUE .8 ANDERSON 60 CNTR 1.32 ASHKIN 60 CNTR + ECKHAUSE 65 CNTR +	3/71	BACKENST 71 PL 368 403 ALSO 70 THESIS BACKENSTOSS.DANIEL,KOCH+ (CERN,KARL,HEID) ALSO 70 THESIS C. VON DER MALSBURG (HEIDELBERG) (MEIDELBERG) KREWENCHE 71 SJNP 13 189 SHAFER, 72 PRIVATE COMM. KORENCHENKN,KOSTIN,MICELMACHER+ (JINP) R. SHAFER, 1972 (IAL) BACKENST 73 PL 438 539 BACKENST 73 PL 438 539 SAGERNETGSS.DANIEL,KOCH+ (CERN+KAPL+MUNICH) L. TAUSCHER (IAL) BACKENST 73 SUBMITTED TO NP DUNAITSE 73 SJNP 16 292 DUNAITSEV.PRXNOSHKIN,PAZUVAEV+ (SERP) PAPERS NOT REFERRED TO IN DATA CAROS MERRISON 62 ADVP 11 1 A W MERRISON SHAPIRO 62 PR 125 1022 G. SHAPIRO,L M LEDERMAN (CULUMBIA)
T 25.6 0.3 T 25.9 0.3 T N (26.40) (0.08) T N SYSTEMATIC EPRORS IN CAL T 26.67 0.24 T 26.02 0.05 T 26.02 0.08 T 26.02 0.08	BABDOM 66 CNTR DUMAITSEV 66 CNTR KINSEV 66 CNTR + IBR.IN THISEV 66 CNTR + LOBKOWICZ 66 CNTR NORDBERG 67 CNTR + ATRES 71 CNTR + DUMAITSEV 73 CNTR +	6/66 6/68 6/66 8/67 9/66 8/67 3/71 3/74*	CZIRR 63 PR 130 341 JOHN 6 CZIRR (LEL)
AVG 26.030 0.023 V. B ((PI+) - 0.000 0.000 DT 0.23 0.40 0.000 DT 0.23 0.40 0.000 DT 0.400 0.7 0.000 DT 0.40 0.7 0.7 DT -0.14 0.29 0.711 DT -0.055 0.0711 0.7 DT -0.053 0.068 4.7	(PI-))/AVG. AVERAGE LEWKGK INCL. SCILE FALTOR OF (PI-))/AVG., MEAN LIFE DIFFERENCE (PERCENT RE OF CPT INVARIANCE IN W.I. LOBKONICZ 66 CNTR SEE NOTE L /ATIVE VALUE QUOTED BY AUTHORS BARDON 66 CNTR PETRUKHIN 68 CNTR AVRES 71 CNTR VERAGE (FRROP INCLUDES SCALE FACTOR OF 1.0)	9/66 9/66 7/66 8/68 3/71	9 (PI+-) - (PI0) MASS DIFFERENCE (MEV) 0 (5.37) (1.0) PANDESKY 51 CNTR - 0 4.50 0.31 CHIMDMSKY 54 CNTR - 0 4.62 0.05 HADDOCK 59 CNTR - 0 4.60 0.06 HILMAN 59 CNTR 0 4.55 0.07 CASSELS 59 CNTR 0 4.6056 0.0055 CZIRR 63 CNTR - 0 4.6056 0.0055 CZIRR 63 CNTR - 0 4.6034 0.0052 VASILEVSK 66 CNTR - 0 4.6043 0.0037 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
8 CHARGED P1 CHAR, PION INTO MU (MU-NE P2 CHAR, PION INTO E (E-NEU P3 CHAR, PION INTO MJ (MU-ME P4 CHAR, PION INTO PIO E (E- P5 CHAR, PION INTO E NEU GAM P6 CHAR, PION INTO E NEU F+	PION PARTIAL DECAY MODES UI 105+ 0 UI 5+ 0 UI 5+ 0 UI 5+ 0 UI 6AMMA 105+ 0+ 0 VEUI 134+ .5+ 0+ AA .5+ 0+ .5+	5	9 NEUTRAL PION NEAN LIFE (UNITS 10++-16) T N 76 (1.9) (0.5) CLASSER 61 EMUL T N 45 (2.3) (1.1) (1.0) TEFTGE 62 EMUL T N 45 (2.3) (1.1) (1.0) TEFTGE 63 EMUL SEE STAMER 66 T N 63 (1.7) (0.5) SHME 64 EMUL 5/66 T N 75 (1.7) (0.5) SHME 64 EMUL 5/66 T N 67 (1.6) (0.6) 10.5) SEMUL 5/64 T N 67 (1.6) (0.6) 10.5) SELETITIN 65 CMTR 6/64 T N 67 (1.6) (0.6) VANS SE EMUL 8/61 T 0.56 0.06 BELETITIN TO CHTR PRIMADREF EFFECT 1/77 T 0.56 0.06
8 CHARGED R1 CHAR, PION INTO MU NEU GAI P1 26 1.24 0.25 R2 CHAR, PION INTO E NEU (UN P2 1.21 0.07 R2 1.247 0.028 R2 AVG 1.242 0.026 A	PICN BRANCHING RATIOS MAA (UNITS 104+-4) (P3)/(P1) CASTAGNOL 50 EMUL E(NU).LT.3.38 MV ITS 104+-4) (P2)/(P1) ANDERSON 60 CNTR DI CAPUA 64 CNTR VEPAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)		T N SHIFT TO LARGER MEAN LIFE VALUES. T K INCLUDES EVENTS OF KOLLER 63. T AVG 0.039 0.103 0.092 AVERAGE (ERROR INCL. SCALE FACTOR OF 2.1) (SEE IDEGGAAN BELOW) WEIGHTED AVERAGE = 1.19 ± 0.14 ERROR SCALED BY 2.1
R3 CHAR. PION INTO PIO E NEU P3 D 52 (1.15) (.22) R3 D 36 0.97 0.20 P3 D 38 1.07 0.21 R3 D 1.10 0.26 P3 D 1.10 0.26 P3 D 1.10 0.26 R3 AVG 1.023 0.069 R3 AVG 1.02 0.069 R3 D 0.07100 LERCENTS D R4 AVG 1.002 0.069 A D DEFORMER ASS ATES THAT D D D DEFORMER TOOLLARGE BEC D D D D DEGUENERS TION ACTION EFFICIENCE, TI D D D D COMMUNICATION, 1972. D COMMUNICATION, 1972.	(UNITS 10**-8) (P4)/(P1) DEPOMMII 63 CNTR + BARTLETT 64 OSFK + BERTARM 65 OSFK + DUNAITSEV 65 CNTR + D.10 DEPOMMIER 68 CNTP + VERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) THE RESULT OF DEPOMMIER 63 IS AT LEAST AUSE OF A SYSTEMATIC ERROR IN THE PIO HIS MAY BE TRUE OF ALL THE PREVIOUS D DEPOMMIER 68 AND V.SOERGEL, PRIVATE	2/72 6/66 7/66 3/68 2/72 2/72 2/72 2/72 2/72	
R4 CHAR. PION INTO E NEU GAM R4 143 3.0 0.5 85 CHAR. PION INTO E NEU E+ 85 3.4 DR LESS CL=	4A (UNITS 10**-8) (P5)/(P1) Depowniz 63 CNTR GAW KE 50-90 MEV E- (UNITS 10**-8) (P6)/(P1) -90 KORENCHEN 71 DSPK +	6766 10771	CHISO O.3 O.3 O.4 O.5 O.5 O.5 O.5 O.5 O.5 O.5 O.5
CROWE 54 PR 96 470 K BARKAS 56 PR 101 778 W CROWE 57 NC 5 541 K CASTAGNO 58 PR 112 1779 C	FERENCES FUR CHARGED PION M CROWE,R H PHILIPS (LRL) H BARKAS,W BIRNBAUM,F M SMITH (LRL) M CROWE (STANFORD HEPL) CASTAGNCI,M MUCHNIK (ROMA)		0 1 2 3 =0.004) NEUTRAL PI DECAY RATE (UNITS 10##16SEC-1)
ANDERSON BO NC 16 490 AS OPPOMMI 63 PL 5 61 OE DEPOMMI 263 PL 7 265 P BARTLETT 64 PR 1368 1452 BA DI CAPUA 64 PR 1388 1333 DI BACASTOW 65 PR 139 B407 4C BERTRAM 65 PR 139 B407 4C DUNAITSE 65 JFT PC 58 OU	L ANDERSON, I PUDILA, MOILLER + (EFL) NEIN, FAZZINI, FIDECAGLIPMAN + (CENN) DOMIER, HEINIZE, PUBBIA, SOERGEL (CENN) RTLETT, DEVONS, MEYER, MOSEN (COLUMBIA) RTLETT, DEVONS, MEYER, MOSEN (COLUMBIA) HE SQUIEPE, WIEGAND, LAPSEN (LRL+SLAC) RTFAM, MEYER, CARRIGAN+ (MICH-CARNEGIE) ATTSEV, PETRUKHIN, POKOSIKIKIN + (DUBNA)		9 NEGINAL PION PARTIAL DECAY MODES P1 P10 INTO 2GAMMA 0+ 0 P2 P10 INTO 2E E- GAMMA 0+ 0+ 0 P3 P10 INTO 4ELECTRONS .5+ .5+ .5 P4 P10 INTO 3 GAMMA 0+ 0+ 0 P5 P10 INTO 4 GAMMA 0+ 0+ 0
ECKHAUSE 65 PL 19 348 EC BARDON 66 PR.L 16 775 BA DUNATSE 66 PR.L 32.83 +K LCBKNIS 66 PR.L 14 132 KI LCBKNIS 66 PR.L 14 132 KI LCBKNIS 66 PR.L 14 132 KI HYMAN 67 PL 258 376 +L NOPDREAG 67 PL 248 594 NO SHAFER 67 PL 248 594 NO	KHAUSE,HARRIS,SHULER+ (WILLIAM AND MARY) RDOM,DDRE,DORFAN,KRIEGER + (COLUMBIA) NIYIN,PROKOSHKIN,94SUVAEV,SINONOV (DUBNA) NSEV,LOBKOMICZ,HOROBERG (ROCHESTER UNIV) BROWICZ,MEIISSINOS,NAGASHIMA+ (ROCHEMBL) JKEN,PEWIIT,DERRICK + (ANL+CARN+NNES) RDBERG,LOBKOMICZ,BURMAN (ROCHESTER UNIV) BERT E. SHAFER (LR)		9 NEUTRAL PION BRANCHING PATIOS R1 PIO INTO (GAMMA E+ E-)/(2GAMMA) (PERCENT) (P2)/(P1) R1 (1.196) THEORET. CALC. JOSEFN 60 OUANTUM ELECT. 9/6 R1 27 1.17 0.15 BUDAGOV 60 HBC R1 3071 1.166 0.047 SAMIOS 61 HBC PI-P TO PIO N R1 5 SAMIOS VALUE USES PANOFSKY RATIC = 1.62 R1 R1 AVG 1.166 0.045 AVEPAGE (ERROR TNCLUDES SCALE FACTOR OF 1.0)
ALSU 65 PKL 14 923 SH DEPOMMIE 68 NP 84 189 DE PFTQUKH 68 JINR-1-3862 PE ROTH TO PL 328 723 +JJ ARES 68 PKL 21 261 AV ALSO 69 UCRL-18369 DA ALSO 69 URL 23 1267 GR	AFER, UNDUE, JEMKINS (LPL) POMMIER, DUCLOS, HEINTZE, KLEINKNECHT (CERN) TRUKHIN, RYKALIN, KHAZINS, CISEK (DUBAA) DHNSON, WILLIAMS, MORMALD (LULY) PHACCALOREGUERGERERENE KENNEY, KURZ-1050) RES.COBMACK, GREENBERG, KENNEY+ (LRLUCSB) ZEDBERG, AYRES, CORMACK, KENNEY+ (LRL, UCSB)		R2 PI0 INTO (3 GAMMA)/(2 GAMMA) (UNITS 10**-6) (P4)/(P1) Q2 0 5.0 OR LESS CL=.90 DUCLOS 65 CNTR 6/6 R2 5.0 OR LESS CL=.90 DUCLOS 65 CNTR 6/6 R3 PI0 INTO (E+6+6-E-1/(2 GAMMA) (UNITS 10*+-5) (P3)/(P1) 74 74 R3 14.0 3.16 0.30 SAMIOS 62 HBC SEE NOTE N RELOW 6/6 R3 N ABOVE VALUE USES PANOFSKY RATIO = 1.62 R4 P10 INTO (4 GAMA)/(2 GAMA) (UNITS 10*+-5) (P5)/(P1) 8/7
			R4 0 6.1 OR LESS CL=.90 ABRAMS 73 ASPK 8/7

41

Stable Particles π^0 . K[±]

Data Card Listings For notation, see key at front of Listings.

REFERENCES FOR NEUTRAL PION W K H PANOFSKY;R L AAMODT,J HADLEY (LRL) W CHINDWSKY,J STEINBERGER (COLUMBIA) K KROLL,W MADA (COLUMBIA+WRL) CASSELS,JONES,HURPHY,O.NEILL (LIVERPOOL) HADDOCK,AGASHIAN,CROWE,CZIRR HILLMAN,HIDDELKOOP,YAMAGATA,ZAVATINI(CERN) PANDFSKY 51 PR 81 565 CHINOMSK 54 PR 93 586 KROLL 55 PR 98 1355 CASSELS 59 PPS 74 92 HADDOCK 59 PRL 3 478 HILLMAN 59 NC 14 887
 BUDAGOV
 60
 JETP
 11
 755

 JOSEPH
 60
 NC
 16
 997

 SAMIOS
 60
 NC
 18
 154

 GLASSER
 61
 PR
 123
 1014

 SAMIOS
 61
 PR
 123
 1014

 SAMIOS
 62
 PR
 166
 1844

 TIETGE
 62
 PR
 126
 1844
 RUDAGOV, VIKTOR, DZHELEPOV, ERMOLOV + (JINR)
 RUJAGUV, VIKIUK JLHELPUV, ENNULUV + (JIRN)

 OW JOSEPH

 (EFII

 N P SAMIDS

 G GLASER,N SEEMAN, B STILLER

 N P SAMIDS

 SAMIDS

 (COLUMBIA)

 SAMIDS

 (COLUMBIA)

 SAMIDS

 (COLUMBIA+BNL)

 J TIETGE,W PUESCHEL

 (MAX PLANCK INST)
 CZIPR 63 PR 130 341 KOLLER 63 NC 27 1405 ALSO 66 STAMER PERRUKH 63 SIENA CONF 208 VON DARD 63 PL 4 51 JOHN B CZIRR (LRL) E L KOLLER,S TAYLOR,T HUETTER (STEVENS) V I PETRUKHIN, YU D PROKOSHKIN (JINR) VON DARDEL, DEKKERS, MERMOD, VAN PUTTEN+(CERN)
 SHWE
 64
 PR
 136B
 1839

 BELLETTI
 65
 NC
 40
 A
 1139

 DUCLOS
 65
 PL
 19
 253

 EVANS
 65
 PR
 139
 B
 982

 KUTIN
 65
 JETP
 LETY
 2
 243
 H SHWE,F M SMITH,W H BARKAS (LRL) BELLETTINI,BEHPORAD,BPACCINI+(PISA+FIRENZE) DUCLOS,FREYTAG,HEINTZE + (CERN+EIDELBERG) D A EVANS (JINR) KUTIN,PETRUKHIN,PROKOSHKIN (JINR) STAMER 66 PR 151 1108 VASILEVS 66 PL 23 281 BELLETTI 70 NC 66A 243 KPYSHKIN 70 JETP 30 1037 ABRAMS 73 PL 458 66 STAMER,TAYLOR,KOLLER,HUETTER+ (STEVÉNS) VASILEVSKY,VISHNYAKOV,DUNAITSEV + (DUBANA BELLETTIN,BENPORAD,UBBLSMEY+ (PISA+BONN) +STERIGOV,USDV (TOMSK POLYTECH.INST.) (CARROLL-KYCIALI,MEICHAEL,MOCKETT + (BNL) K[±] 10 CHARGED K (494, JP=0-) I=1/2 _____ 10 CHAPGED K MASS (MEV)
 493.9
 0.2
 CCHEN
 57
 RVUE +

 493.7
 0.3
 BAPKAS
 63
 ENUL

 493.76
 0.17
 GREINER
 65
 ENUL

 (493.67)
 0.191
 GREINER
 65
 ENUL +

 493.661
 0.040
 BACKENSTO
 3.047
 ADNIC ATOMS

 493.662
 0.19
 KUNSELMAN
 74
 CNTA KADNIC ATOMS

 KUNSELMAN
 74
 UPDATES
 KUNSELMAN
 74
 CATOC ATOMS
 7/66 10/71 1/73 3/74* 3/74* A A 493.702 0.037 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.037 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG FIT 3/74* 10 (K+) - (K-) MASS DIFFERENCE (MEV) DM F 1.5M -0.032 0.090 FORD 72 ASPK +-DM F FORD 72 USES M(PI+)-M(PI-) = +28+-70 KEV. 4/72 10 CHARGED K MEAN LIFE (UNITS 10**-8) CHAR, K MEAN LIFE (0.95) (0.36) 52 (1.60) (0.3) 1.21 0.06 33 (1.38) (0.24) (1.25) (0.22) 51 (1.27) (0.36) 293 13) 0.08
 CHAR, K MEAN LIFE
 (0.25)
 ILOFF
 56
 EMUL

 52
 (1.60)
 (0.25)
 ILOFF
 56
 EMUL

 1.21
 0.06
 0.06
 BURROMES
 59
 CMTR

 33
 (1.38)
 (0.24)
 (0.24)
 FREDEN
 60
 EMUL

 [1.25]
 (0.22)
 (0.17)
 BARKAS
 61
 EMUL

 [1.25]
 (0.22)
 (0.17)
 BARKAS
 61
 EMUL

 51
 (1.27)
 (0.36)
 (0.23)
 BHOWHIK
 61
 EMUL

 293
 1.31
 0.08
 0.08
 NORDIN
 61
 HQC

 1.231
 0.010
 0.011
 BOYARSKI
 62
 CMTR +

 1.243
 0.0038
 FITCH
 65
 CMTR +
 1.2243
 0.0016
 CMTR +

 1.2212
 0.0011
 FORD
 67
 CMTR + 1.2272
 0.0036
 LOBKOWICZ 69
 CMTR +
 STOPTION K

 1.2380
 0.0016
 DTT
 T1
 <td 0 000 51 293 6/66 8/67 9/66 2/71 2/71 0 1.2370 0.0032 0.0032 AVERAGE (ERROR INCL. SCALE FACTOR OF 1.2371 0.0026 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.9) (SEE IDEOGRAM BELOW) 2.41 AVG F1T WEIGHTED AVERAGE = 0.8084 ± 0.0021 ERROR SCALED BY 2.4 <u>CHISQ</u> 71 CNTR 0.4 + · · · · · · · LOBKOWICZ 69 CNTR 7.3 67 CNTR -----FORD 3.7 •••••FITCH 65 CNTRBDYARSKI 62 CNTR · · · · · · NORDIN 61 HBC - BURRDWES 59 CNTR 11.4 (CONLEU =0.003) 0.75 0.80 0.85 0.90 0.95 0.70 CHARGED K DECAY RATE (UNITS 10**8 SEC-1)

10 ((K+) - (K-))/AVG., MEAN LIFE DIFFERENCE (PERCENT) OT N THIS QUANTITY IS A MEASURE OF CPT INVARIANCE IN W.1. 0.47 0.30 FCRD 67 CNTR 0.090 0.078 LOBKOWICZ 69 CNTR 0.114 0.093 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) OT OT 8/67 12/70 DT AVG ------------10 CHARGED K PARTIAL DECAY MODES CHARGED K PART CHAR, K INTO PI PIO CHAR, K INTO PIO NEU K*I NITO PI+ PI- E- NEU K*I NITO PI+ PI- E- NEU K*I NITO PI+ PI- MU+ NEU CHAR, K INTO PI PIO GAMMA CHAR, K INTO PI PIO GAMMA CHAR, K INTO PI PIO GAMMA CHAR, K INTO PI PI PI- GAMMA CHAR, K INTO PI PI PI- GAMMA CHAR, K INTO PI PI PI- GAMMA CHAR, K INTO PI GAMMA CHAR, K INTO PI GAMMA CHAR, K INTO PI SAMMA CHAR, K INTO PIO E NEU K*INTO PI- E+ MU-K*INTO PI- E+ MU-CHAR, K INTO PIO HU NEU SAMMA CHAR, K INTO PIO HU NEU SAMMA DECAY MASSES DECAY MASSE 105+ 0 139+ 134 139+ 134 139+ 134+ 134 105+ 134+ 134 05+ 134+ 0 15+ 134+ 0 139+ 139+ .5+ 139+ 139+ 05+ .5+ 0 K MU2 K P12 K PI2 TAU TAU PRIME K MU3 K E3 K E+ 4 K E- 4 0000 K+MU+ 4 K+MU- 4 K+NŪ- 4 K E2 K MU RAD K PI RAD PI E E PI MU MU PI GAM GAM PI E NEU GAM PI+E-E-PI NEU NEU K E2 RAD K PI GAM PI JGAM PI JGAM 0+ 0 0+ .5+ ō 139+ 139+ 0+ •5+ 0 PI 3GAM K E4 2PI0 PI-E+MU+ PI+E+MU-139+ 0+ 0 134+ 134+ .5 139+ .5+ 105 139+ .5+ 105 P27 MU 3NEU 105+ 0+ PI MU NEU GAM 134+ 105+ 0+ 0+ CHARGED K CONSTRAINED FIT OVERALL FIT OF MEAN LIFE, WIDTHS AND BRANCHING RATIDS USES 55 DATA POINTS TO DETERMINE SIX QUANTITIES, OVERALL FIT HAS CHISOF7.7. MAIN CONTRIBUTION (13.3) COMES FROM RIS OF HAIDT 71 (WE SEE NO REASON TO REJECT THIS EXPERIMENT AT THIS TIME) FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where $\delta P_i = \sqrt{\langle \delta P_i \delta P_i \rangle}$, while the off-diagonal elements are the normalized correlation coeffii $(1 - i - i)/(\delta P_i - \delta P_j)$. For the definitions of the individual P_i see the listings above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1. P 1 P 2 P 3 P 4 P 5 P 6 P 1 .6354+-.0019 P 2 -.7955 .2112+-.0017 P 3 -.1727 -.0170 .0559+-.0003 P 4 -.1826 .0614 .2053 .0173+.0005 P 5 -.210 -.2392 -.1238 -.3299 .0320+-.0009 P 6 -.3011 -.1254 .1257 .0157 .2273 .0482+-.0005 FITTED PARTIAL DECAY MODE RATES The matrix below is the branching fraction matrix above, transformed into rate The matrix below is the branching fraction matrix above, transformed into the space; i.e., $G_i = \Gamma_i = \Gamma_{total}P_i$, in appropriate units. In analogy to the matrix above, the <u>disgonal</u> elements are the <u>normalized</u> correlation coefficients $\langle \delta G_i \delta G_j \rangle / (\delta G_i \cdot \delta G_j)$. Note that, because of the error in Γ_{total} , the errors and correlations here are not directly derivable from those above. 61 62 63 64 65 6 61 5136+-.0019 .0120 .0452+-.0002 .0452+-.0002 .0452+-.0002 63 -.0986 .0120 .0452+-.0002 .0452+-.0004 .0264 .0264 65 -.1264 -.2074 .0140+-.0004 .0258+-.0007 .0258+-.0007 .0264 ..2264 ..2264 ..2264 ..2264 ..0258+-.0007 .0390+-.0004 .0212 .2347 .0390+-.0004 ..0004 ..0212 ..2347 ..0390+-.0004 ..0004</t 10 CHARGED K DECAY RATES CHAR. K INTO MU NEU (UNITS 10**6 SEC-1) (G1) 51.2 0.8 FORD 67 CNTR +-WI CHAR. K INTO MU NEU (UNITS 10**6 SEC-1) (GI) WI 51-2 0.8 FORD 67 CNTR +-WI FIT 51.36 0.19 FROM FIT (ERROR INCLUDES SCALE FACTOR DF 1.2) WI FIT 51.36 8/67 CHAR. K INTO PI PI+ PI- (UNITS 10++6 SEC-1) (G3) F (4.496) (0.030) FORD 67 CNTR +- SEE NOTE F F 3.2M (4.529) (0.032) FORD 70 ASPK SEE NOTE F 4.511 0.024 FORD 70 ASPK SEE NOTE F F THE LAST IS THE COMBINED RESULT OF FORD 67 AND FORD 70 11/70 W2 W2 W2 W2 4.516 0.023 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) FIT

- CHAR. K INTO (TAU) (TAU PRJME) (UNITS 10**6 SEC-1) (G3-G4) USED FOR DELTA I = 1/2 TEST.
- W3 FIT 3.117 0.039 FROM FIT
 - CHAR. K INTO (MU PIO NEU) + (E PIO NEU) (UNITS 10**6 SEC-1) (65+66)
 - USED FOR DELTA I = 1/2 TEST. FIT 6.484 0.092 FROM FIT
- W4 W4 W4 W4

10 ((K+) - (K-))/AVG., DECAY RATE DIFFERENCE (PERCENT) DIFFEPENCE IN K MU2 RATES -0.54 0.41 ((G1+)-(G1-))/G1 FORD 67 CN (PERCENT) 91 01 67 CNTR 8/67 DIFFERENCE IN TAU RATES ((G3+)-(G3-))/G3(PERCENT) DIFFERENCE IN TAU RATES ([G3+]-[G3-]]/G3 (PERCENT -0.50 0.90 FLETCHER 67 DSPK (-0.04) (0.21) FORD 67 CNTR SEE NOTE F 3.24 (0.10) (0.14) FORD 70 ASPK SEE NOTE F (-0.63) (0.14) FORD 70 ASPK SEE NOTE F 5.000 FORD 70 VALUE IS FIRST FORD 70 COM ASPK HTH FORD 67. SECOND FOD 70 VALUE IS FIRST FORD 70 COM SMITH 73 VALUE OF D3. 8/67 8/67 11/70 SEE NOTE F SEE NOTE F SEE NOTE F 5 F 5 11/73* 11/73+ 0.07 0.12 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG DIFFERENCE IN TAU PRIME RATES ((G4+)-(G4-))/AVERAGE (PERCENT) 1802 -1.1 1.8 HERZO 69 DSPK 0.08 0.558 SMITH 73 ASPK +-03 03 1802 5/70 11/73* 03 -0.03 0.55 03 AVG AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) DIFFERENCE IN K P12 RATES ((G2+)-(G2-))/AVERAGE (PERCENT) 0.8 1.2 HERZO 69 DSPK D4 D4 5/70 DIFFEPENCE IN K PI RAD RATSS ((G13+)-(G13-))/AVERAGE (PERCENT) 24 0.0 24-0 EDWARDS 72 USPK PI KE 50-90 MEV 8/72 4000 1.0 4-0 BARANS 73 ASPK +PI KE 51-100 MEV 3/74* 05 D5 D5 D5 D5 AVG 1.0 3.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 1.2 10 CHARGED K BRANCHING RATIOS OLD DATA EXCLUDED R n CHAR. K INTO (MU NEU)/TOTAL (UNITS 10**-2) (P1) (58.5) (3.0) BIRGE 56 EMUL + (56.9) (2.6) ALEXANDER 57 EMUL + OLD EXPERIMENTS NOT INCLUDED IN AVERAGING 62K 63.24 0.44 CHIANG 72 OSPK + 1.84 GEV/C K+ 81 91 81 0 0 0000 RĨ 1/71 9/72 • 63.54 0.44 CHIANG 72 USPK + 1.84 GEV/C K+ 63.54 0.19 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) Р1 91 FIT
 CHAR. K INTO (PI PIO)/TOTAL (UNITS 10**-2)
 (P2)

 (27.7)
 (2.7)
 BIRGE 56 EMUL +

 (23.2)
 (2.2)
 ALEXANDER 57 EMUL +

 EARLIER EXPETIMENTS NOT AVERAGED
 (21.0)
 (0.6)

 (21.0)
 0.6)
 CALLAHAN 65 HLBC

 SEE 1.8)
 0.28
 CHIANG 72 OSPK + 1.84 GEV/C K+
 R2222222222 0 0 86 86 000 16K FIT 6/66 21.12 0.17 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.01

 11
 21.12
 0.17
 FROM F11
 (ERROP INCLUDES SCALE FACTOR OF 1

 CHAR. K INTO (PI PI+PI-)/TOTAL (UNITS 10++-2)
 (P3)

 15.61
 (0.4)
 BIRGE 56
 ENUL +

 16.61
 (0.4)
 BIRGE 56
 ENUL +

 16.61
 (0.4)
 ALEXANDER 57
 ENUL +

 16.51
 (0.4)
 ALEXANDER 57
 ENUL +

 16.51
 (0.4)
 ALEXANDER 57
 ENUL +

 16.51
 (0.4)
 ALEXANDER 57
 ENUL +

 2325
 5.54
 0.12
 CALLATAN 64
 HISC +

 540
 5.1
 0.2
 SHAKLEE 64
 HISC +

 550
 5.1
 0.2
 SHAKLEE 65
 HIL +

 693
 5.34
 0.21
 PANDOULAS 70
 ENUL +

 2300
 (5.56)
 (0.20)
 CHIANG 72
 CHARG 72
 NIR2,R4,R5, AND 86

 INCLUDES EVENIS OF TAYLOR 59.
 INCERPRIME F0
 CHIANG 72
 R1,R2,R4,R5, AND 86
 INCLUDE 51

 AVG F1T 0000 CHAR. 9/66 R7 R7 R7 R7 R7 9/66 6/66 6/66 10/70 9/72 9/72 44 3 P 693 3 C 2330 1 C THI: P THI: AVG FIT 1 0.098 AVERAGE (EPROR INCLUDES SCALE FACTOR OF 1.3) 7 0.030 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) (SEE IDEOGRAM BELOW) 5.521 RB RB AVG F1T R9 R9 WEIGHTED AVERAGE = 5.521 ± 0.098 R10 R10 ERROR SCALED BY 1.3 R11 911 811 Values above of weighted average, R11 R11 error, and scale factor are for the reader's convenience only. The data were actually processed by a 912 R12 R12 R12 R12 R12 constrained fit program, which calculates its own values of \overline{x} , $\delta \overline{x}$, and scale factor, which are different from the values shown here. R13 R13 CHISO · · · · · PANDDULAS 70 EMUL 0.7 - · ·YOUNG 65 EMUL 1.4 + · · · · · DE MARCO 65 HBC 1.6 . . . · · · · · · SHAKLEE 64 HLBC 4.4 · · · · · CALLAHAN 64 HLBC _ . . 0.0 • • • • RDE 61 HLBC 0.4 8.6 CONLEY 7.0 4.5 5.0 5,5 6.0 6.5 R14 R14 R14 =0.127) CHAR.K TO (PI PI+ PI-)/TOTAL (UN 10##-2)
 CHAR. K [NTO (P[2PI0)/TOTAL (UNITS 10**-2)
 (P4)

 (2.1)
 (0.5)
 BIRGE
 56 EMUL +

 (2.2)
 (0.4)
 ALEXANDER 57 EMUL +

 (2.5)
 TAYLOR 57 EMUL +

 (1.5)
 0.2)
 TAYLOR 57 EMUL +

 EARLIER EXPERIMENTS NOT AVERAGED
 61 HLBC +

 108
 1.7
 0.2
 SHALEE 64 HLBC +

 198
 1.53
 0.11
 PANDOULAS 70 EMUL +

 1307
 1.04
 0.06
 CHING 72 OSPK + 1.
 R15 R15 R15 R15 R15 R15 R15 R15 R4 () R4 () R4 () R4 () R4 () R4 P R4 P R4 P R4 P R4 P 00000 11/67 11/67 10/70 9/72 1307 07 1.84 0.06 INCLUDES EVENTS OF TAYLOR 59. 1.84 GEV/C K+ R16 R16 R16 1.767 0.071 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.4) 1.732 0.045 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.4) (SEE IDEOGRAM BELOW)

Stable Particles

Κ±

Stable Particles ^{K[±]}

Data Card Listings For notation, see key at front of Listings.

CHAR.K INTO (E PIO NEU)/(MU2+PI2) (UNITS 10**-21/P6)/(P1+P2) 134 3.24 0.34 YOUNG 65 EMUL + 1045 3.96 0.15 CALLAHAN 66 FBC + ₽23 R23 R23 R23 R23 R17 1 R17 1 R17 10 R17 AVG R17 FIT · 8/66 8/67 3/68 134 3.24 1045 3.96 0.27 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.9) 0.037 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) (SEE IDEOGRAM BELOW) 3.84 3.780 0.27 R23 AVG R23 FIT R24 C R24 A45 R24 16 R24 A R24 R24 AVG R24 FIT CHAF, K INTO (PI P10)/(MU NEU) (P2)/(P1) 44517 0.3277 0.0065 AUERBACH 67 OSPK + 1/74* 1600 0.305 0.018 ZELLER 69 ASPK + 10769 A AUERBACH 67 CHANGED FROM .3253+∽.0065. SEE COMMENT WITH RATID R26. 1/74* WEIGHTED AVERAGE = 3.84 ± 0.27 ERROR SCALED BY 1.9 0.3251 0.0073 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) 0.3324 0.0036 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) CHAR. K INTO (E PIO NEU)/(MU NEU) (P6)/(P1) R25 CHAR, K INTO (E PIO NEU)/(MU NEU) (P6)/(P1) A 295 0.0791 0.0054 AUERPACH 67 059K + 960 .0775 .0033 BOTTERII 68 ASPK + 561 0.069 0.006 GARLAND 68 CSPK + 350 0.069 0.006 ZELLER 69 ASPK + A UGRBACH 67 CHANGED FOOM .0797+.0054. SEE COMMENT WITH RATID R26. A THE VALUE .0785+.0025 GIVEN IN AUERBACH 67 IS AN AVERAGE OF A AUERBACH 67 R25 AND CESTER 66 R23. 1/74* 5/68 4/68 10/69 1/74* 3/74* 3/74* R25 R25 R25 R25 R25 R25 R25 R25 R25 Values above of weighted average, Values above of Weighted average, error, and scale factor are for the reader's convenience only. The data were actually processed by a constrained fit program, which calculates its own values of $x_h \delta x_h$ and scale factor, which are differ-0.0752 0.0024 AVERAGE (EPROR INCLUDES SCALE FACTOR OF 1.0) 0.0753 0.00093 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) R25 AVG R25 FIT CMAR.K INTO (MU PIO NEU)/(MU NEU) CMAR.K INTO (MU PIO NEU)/(MU NEU) A 307 D.ORAG 0.0040 AUERBACH 67 05PK + 240 0.0560 0.0037 CARLAND 68 05PK + 240 0.0564 0.0037 ZELLER 69 ASPK + A UJERBACH 57 CHANGED FROM .0024-.0046 ACCORDING TO A REANALYSTS BY A W.K.MC FARLANE. PRIVATE COMMUNICATION. THE REANALYSTS BY A W.K.MC FARLANE.PRIVATE COMMUNICATION.THE REANALYSTS BY A W.K.MC FARLANE.PRIVATE COMMUNICATION.THE REANALYSTS BY A W.K.MC FARLANE PRIVATE BY A W.F.MC FARLANE BY A W.F.MC FARLANE BY A W.F.MC FARLANE BY A W.F 1/74* ent from the values shown here. 1/74* 10/69 1/74* 1/74* 1/74* CHISQ · CALLAHAN 66 FBC 0.6 1/74* . . . · ·YTUNG 65 EMUL 3.1 926 AVG 826 FIT 3.8 (CONLEY CHAR, K INTO (MU NEU)/TAU (P1)/(P3) 427 (10,38) (0,82) YOUNG 65 EMUL + DELETED FPOM OVERALL FIT BECAUSE YOUNG 65 CONSTRAINS HIS RESULTS. TO ADD UP TO 1. GNLY YOUNG MEASURED MUZ DIRECTLY. 5.0 4.5 3.5 2.5 3.0 4.0 =0.053) R27 R27 9/66 CHARGED K INTO (E PIO NEU)/(MU2+PI2) R27 R27 11.373 0.074 FROM FIT (P4)/(P3) 65 H+HL + 65 EMUL + R27 FIT CHAR. K INTO (PI 2PIO)/TAU 2027 0.303 0.009 17 0.393 0.099
 CHAR. K INTO IE NEU)/

 P28
 10
 1.9
 0.7

 P28
 8
 1.8
 0.8

 R28
 1.12
 2.42
 0.42

 R28
 2.42
 0.42

 R28
 2.14
 1.4
 P18 R18 R18 R18 CHAR. K INTO (E NEU)/(MU NEU) (UNITS 10**-5) (P11)/(P1) 10 1.9 0.7 0.5 BCTTER1LL 67 ASPK + 8 1.8 0.8 0.6 MACEK 69 ASPK + 112 2.42 0.42 CLARK 72 OSPK + 8151 YOUNG . 8/66 8/66 11/67 4/69 1/73 0.3037 0.0090 AVERAGE (EPROR INCLUDES SCALE FACTOR OF 1.0) 0.0079 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.3) R18 AVG R18 FIT 2.16 0.31 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
 R19
 CHAR. K
 INTO
 (HU
 PID
 NEUJ/TAU
 FIF

 R19
 2845
 0.432
 0.035
 YOUNG
 65
 FWL
 +

 R19
 38
 0.490
 0.16
 YOUNG
 65
 FWL
 +

 R19
 H.505
 (0.510)
 (0.017)
 FICHTEN
 68
 HL8C +

 R19
 H.505
 0.530
 0.019
 HIDT
 HL8C +

 R19
 H.410T
 T1
 IS A REAVALYSIS OF EICHTEN 64
 HL8C +

 R19
 H.410T
 T1
 IS A REAVALYSIS OF EICHTEN 64
 HL8C +

 R19
 H.410T
 T1
 IS A REAVALYSIS OF EICHTEN 64
 HL8C +
 MU PIC NEU}/TAU 0.035 0.16 (0.017) (P5)/(P3) R29 CHAR. X R29 C1509 R29 5601 R29 H 1398 (R29 H (R29 D3480 R29 L 554 R29 L 554
 K. INTO (MU PIO NEU)/(E PIO NEU)
 (P5)/(P6)

 0.703
 0.056
 CALLAHAI
 66 HLSC
 6/68

 0.667
 0.017
 BOTTERIZ
 68 ASPK +
 6/68

 (0.604)
 (0.022)
 EICHTEN
 68 HLBC
 10/68

 (0.5696)
 (0.022)
 HAIDT
 71 HLBC +
 12/70

 0.6598
 0.025
 CHIANG
 72 OSPK +
 1.84 GEV/C K+
 9/72

 0.705
 0.0663
 LUCAS2
 73 HBC DALITZ PRS ONLY 11/73*
 CHIANG 72 OSPK + 1.84 GEV/C K+ 9/72 0.705 0.063 LUCAS2 73 H9C - DALITZ PRS ONLY 11/73* 0.705 0.063 LUCAS2 73 H9C - DALITZ PRS ONLY 11/73* 0.705 0.063 LUCAS2 73 H9C - DALITZ PRS ONLY 11/73* 0.705 0.063 LUCAS2 73 H9C - DALITZ PRS ONLY 11/73* 0.705 0.063 0.015 HE AND AND DO NOT 11/68 0.000 H AND 100 LOCATA. 11/68 0.000 LOCATA 100 LOCATA 100 LOCATA 11/68 0.000 LOCATA 100 LOCATA 100 LOCATA 100 LOCATA 11/68 0.000 LOCATA 100 LOCATA 100 LOCATA 100 LOCATA 100 LOCATA 11/73* 0.000 LOCATA 100 LOCA 0.054 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 3.2) 0.016 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.8) (SEE IDEOGRAM BELOW) R19 AVG R19 FIT 0.536 WEIGHTED AVERAGE = 0.536 ± 0.054 ERROR SCALED BY 3.2
 CHAR. K INTO (PIO E NEU GAMMA)/(PIO E NEU) (UNITS 10*#-2)

 CHAR. K INTO (PIO E NEU GAMMA)/(PIO E NEU) (UNITS 10*#-2)

 (PIB)/(Pb)

 1.2
 0.8

 BELLOTI 67 HIGE + EGAM GT 30MEV

 (R) 13
 0.76

 0.23
 ROMANO 71 HIGE + EGAM GT 30MEV

 (R) 10.531
 0.720

 1.4
 0.464

 0.464
 0.201

 1.4
 0.464

 0.23
 ROMANO 71 HIGE + EGAM GT 30 MEV

 1.4
 0.464

 0.221
 ROMANO 71 HIGE + EGAM GT 30 MEV

 1.4
 0.464

 0.221
 ROMANO 73 HIGE + EGAM GT 30 MEV

 1.4
 0.464

 0.221
 (0.10) LJUNG 73 HIGE + EGAM GT 30 MEV

 1.5
 FOR COSCIELECT-GAMAJI.T. D.9. SECOND VALUE IS

 1.6
 FOR COMPARISION WITH ROMANO.

 2.7
 R SECOND VALUE IS FOR COMPARISON WITH ROMAND.

 3.8
 FOR COMPARISON WITH ROMAND ALUES ARE FOR COSCIELECT-GAMAJI BETW 0.6 AND 0.9.

 3.7
 R SECOND VALUE IS FOR COMPARISON WITH ROMAND ALUES ARE FOR COMPARISON WITH ROMAND ALUES ARE FOR COMPARISON WITH ROMAND FOR FGAN DEPEND.

 3.8
 K WE USE LOWEST EGAM CUT FOR TABLE VALUE. SEE P30 Values above of weighted average, error, and scale factor are for the reader's convenience only. The data were actually processed by a R30 R30 R30 R30 R30 R30 R30 R30 R30 11/67 11/67 10/71 9/73* 9/73* 9/73* 9/73* 9/73* constrained fit program, which calculates its own values of \overline{x} , $\delta \overline{x}$, and scale factor, which are differ-R 30 R30 R R30 R ent from the values shown here. 9/73 R 3 0 R30 AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) - INTO (PI+ E- E-)/TOTAL (UNITS 10**-5) TEST OF LEPTON NUMBER CONSERVATION. (1.5) OR LESS CHANG R31 R31 R31 (P19) <u>CHISQ</u> 68 H8C -3768 71 HLBC 3.1
 R32
 CHAR. K INTO (PI NEU NEU)/TOTAL (UNITS 10**-6)
 (P20)

 R32 C
 (1.4)
 CR LESS CL=*90
 KLENS
 T1 DSPK + T(PI) 117-127MEV

 P32 C
 (0.94)
 CR LESS CL=*90
 KLENS
 T1 DSPK + T(PI) 101-02-105 MEV

 P32 C
 0.56
 CR LESS CL=*90
 CABLE
 T3 CNTR + T(PI) 40-105 MEV

 R32 L
 0.50
 CR LESS CL=*90
 CABLE
 T3 CNTR + T(PI) 40-127 MEV

 R32 L
 0.50
 CR LESS CL=*90
 CABLE
 T3 CNTR + T(PI) 40-127 MEV

 R32 L
 0.50
 CR LESS CL=*90
 CABLE
 T3 CNTR + T(PI) 40-127 MEV

 R32 C
 C.KLEMS TI AND CABLE T3 ASSUME FOI SPECTRUM SAME AS KE3 DECAY.
 R32
 C SECOND CABLE LIMIT COMBINES CABLE AND KLEMS DATA FOR VECTOR INT.

 R32 L
 C
 SSUMES VECTOR INTERACTION.
 INTERACTION.
 65 EMUL -----— YOUNG 3/74* 2/74* 2/74* 9/73* 3/74* 2/74* 9/73* 7.5 · · · · · · · · · · BISI1 65 H+HL 10.5 (CONLEU =0.001) 0.6 1.0 1.4 0.2 CHARGED K INTO (MU PID NEU)/TAU CHAR. K INTO (E NEU GAMMA)/TOTAL (UNITS 10**-5) (P21) M (7.1) DR LESS MACEK 70 05PK + P(E) 234 TO 247 12/70 M ABOVE IS MEASUREMENT DE STRUCTURE-DEPENDENT DECAY DNLY-R33 933 P33
 100
 0.90
 0.06
 SORREANI
 64
 HBC
 +

 37
 0.90
 0.16
 YOUNG
 65
 EMUL +

 854
 0.94
 0.09
 BELLOTZ
 67
 HA

 H 4385
 (0.846)
 10.021
 EILOTTZ
 67
 HLBC +

 H4385
 0.850
 0.019
 HAIDT
 71
 15.4
 REMARYSIS
 06
 EILOTTZ
 14.86
 +

 AVG
 0.858
 0.018
 AVERAGE
 CHAR. K INTO (PI GAMMA)/TOTAL (UNITS 10**-6) (P22) 4.0 OR LESS CL=.90 KLEMS 71 OSPK + R34 R34 . 8/66 . 8/66 11/67 11/68 12/70 8/71 CHAR. K INTO (TAU)/(TAU PRIME) USED FOR DELTA I=1/2 TEST. R35 R35 193/94) 0.018 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.010 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) CHAR. K INTO (PI 3GAMMA)/TOTAL (UNITS 10**-4) (P23) 3.0 OR LESS CL=.90 KLEMS 71 OSPK + T(P1) GT 117MEV R36 R36 8/71 K+ INTO (P1+ P1- E+ NEU)/TAU (UNITS 10**-4) (P7)/(P3) 69 6.7 1.5 BIRGE 65 FBC + 269 5.83 0.63 ELY 69 HLBC + 500 7.36 0.68 BOURQUIN 71 ASPK 106 7.0 0.9 SCHMEINBE T1 HLBC + R21 921 R21 R21 R21 K+ INTO (PI+ PI+ E- NEU)/(PI+ PI- E+ NEU) (P8)/(P7) O 0.013 OR LESS CL=.95 BOURQUIN 71 ASPK 2/72 8/66 11/68 12/71 9/71 R37 R37 CHAR. K INTO (PIO PIO E NEU)/KE3 (UNITS 10**-4) (P24)/(P6) O 37.0 OR LESS CL=.90 ROMANO 71 HLBC + 2 3.8 5.0 1.2 LJUNG 73 HLBC + R38 R38 R38 12/71 9/73* R21 R21 AVG 6.64 0.40 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) K+ INTO (P1- E+ MU+)/TOTAL (UNITS 10**-8) (P25) K- INTO (P1+ E- MU-)/TOTAL IS ALSO INCLUDED HERE 2.8 OR LESS CL=.90 BEIER 72 OSPK +-NTO (PI+ PI- MU+ NEU)/TAU (UNITS 10**-4) (P (2.5) APPROX GREINER 64 EMUL + 2.57 1.55 BISI 67 DBC + K+ INTO (PI+ (P9)/(P3) R39 R39 R39 R22 P22 R22 8/66 11/67 17 9/72

K+ INTO (PI+ E+ MU-1/TOTAL (UNITS 10**-8) (P; K- INTO (PI- E- MU+1/TOTAL IS ALSO INCLUDED HERE 1.4 OR LESS CL=.90 BEIER 72 OSPK +-R40 R40 R40 9/72 CHAR. K INTO (MU 3NEU)/TOTAL (UNITS 10**-6) (P27) 0 (6.0) DR LESS CL=+90 PANG 73 CNTR + MU KE 60-100 MEV PANG 73 ASSUMES MU SPECTRUM PROM NEU-NEU INTERACTION OF BARDIN 70. 11/73* 3/74* R42 R42 CHAR. K INTO (PIO MU NEU GAM)/TOTAL(UNITS 10**-5)(P28) 0 6.1 DR LESS CL=.90 LJUNG 73 HLBC + EGAM GT 30 MEV 9/73* 9/73* CHAR. K INTO (E PIO NEU)/(PI PIJ) (P6)/(P2) L 786 0.221 0.012 LUCAS2 73 HBC - DALITZ PRS ONLY L LUCAS 73 GIVES N(E3)=786+-3.1PCT, N(P12)=3564+-3.1PCT, WE DIVIDE. 11/73* 11/73* R43 R43 0.2284 0.0033 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) CHAR. K INTO (PI 2PI0)/(PI PI0) L 574 0-081 0.005 TO ALLOS2 73 HBC - DALITZ PRS ONLY L LUCAS 73 GIVES N(PI 2PI0)=574+-5.9 PCT, N(PI2)=3564+-3.1 PCT. L WE QUDTE 0.5=N(PI 2PI0)/N(PI2) WHERE 0.5 IS BECAUSE ONLY DALITZ L PATR PIO'S WERE USED. 0.0820 0.0022 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.3) 844 FIT

Note on Slope Parameter for $K \rightarrow 3\pi$ Decays

As was discussed in Section VI B.1 of the text, for the 3π decays of the K mesons we list the slope parameter "g" which is defined, as in that section, by

$$|M|^2 \propto 1 + g \frac{(s_3 - s_0)}{m_{\pi^+}^2} + h \left(\frac{s_3 - s_0}{m_{\pi^+}^2}\right)^2 + j \frac{(s_2 - s_1)}{m_{\pi^+}^2}$$
(1)

where

$$s_i = (\underline{p}_K - \underline{p}_i)^2 = (m_K - m_i)^2 - 2m_K T_i$$
 (2)

$$\mathbf{s}_0 = \frac{1}{3} \sum_{i} \mathbf{s}_i = \frac{1}{3} (\mathbf{m}_K^2 + \mathbf{m}_1^2 + \mathbf{m}_2^2 + \mathbf{m}_3^2)$$
(3)

 $\underline{p}_{K}, \underline{p}_{i}$ are the four-vectors for the K and the ith pion, and the index 3 refers (4) to the odd pion, i.e., the third pion in the decays listed below.

We refer to the three possible charged decays as τ , τ ', and τ^0 :

 $\kappa^{\pm} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$ ÷ K[±] → π⁰π⁰π[±] +,± $K_2^0 \rightarrow \pi^+ \pi^- \pi^0$.

There is no strong evidence so far (but see FORD 72 discussion below) that a second order term in (s_3-s_0) is needed in Eq. (1), nor that the term in (s_2-s_1) is present. A value of $j \neq 0$ indicates CP violation as would a value of g for τ^+ different from that for τ . The CP violation tests in τ decays are listed as $\frac{(g'-g^-)}{g_{average}}$ for charged K and as σ^{\pm} for neutral K (see Sec. VI B.3b in the text).

As for the coefficient h, most of the experimenters have fitted their data with a second order term, which turned out to be consistent with zero. We use the value of g obtained when the second order term was dropped from the fit. HEUSSE 70 have studied the $K_{T}^{0} \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decay where only a second order term could explain deviation from uniformity of

the Dalitz plot. They also get results consistent with a zero coefficient. ALBROW 70 have studied $K_{T}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ and found that the fit to the Dalitz plot improves if second and third order terms are added (CL goes from 24% to 48%), but the fit with no higher orders is a perfectly acceptable one (CL = 24%). FORD 72 have studied $K^{\pm} \rightarrow \pi^{\pm}\pi^{\mp}\pi^{\pm}$ and find that the χ^2 /DF goes from 1.38 to 1.20 for DF \approx 150 when the second order and the CP violation terms are added. However, the authors state that since their Coulomb correction is larger than the experimental errors and is not well known, it is difficult to interpret these results.

In the literature other definitions of slope parameters have appeared. We have converted to the definition of g in Eq. (1) whatever experimental quantity has been reported. We give the conversion to the definition (1) for two of the most widely used parametrizations and tabulate the conversion factors for the reader's convenience.

(a) For analysis of charged K's the expression often used is:

$$|M|^2 = 1 + a_y Y$$

with

$$Y = \frac{3T_3 - Q}{Q}$$
, $Q = m_K - \sum m_i$.

The relevant formulae are:

$$Y = -\frac{3}{2} \frac{s_3^{-s_0}}{m_K^Q} + \Delta, \text{ with } \Delta = \frac{m_1^{-m_3}}{Q} \quad (2 - \frac{m_3^{+m_1}}{m_K})$$

and

$$g = \frac{-c_y a_y}{1+a_x \Delta}$$
, with $c_y = \frac{3}{2} \frac{m_{\pi^+}^2}{m_K Q}$

(b) For the analysis of K⁰ decay the expression often used is:

$$|M|^2 = 1 + 2a_t \frac{m_K}{m_{\pi^+}^2} (2T_3 - T_{3 \max})$$

with

$$T_{3 \max} = \frac{m_{K}^{2} + m_{3}^{2} - 4m_{12}^{2}}{2m_{K}} - m_{3}$$

The relevant transformations are

$$T_{3} = -\frac{s_{3}^{-s_{0}}}{2m_{K}} + \frac{Q}{3} (1 + \Delta)$$

Stable Particles ^{K[±]}

and

$$g = \frac{-2a_t}{1+a_tc_t} , \text{ with } c_t = \frac{2m_K}{m_{r+1}^2} \left[\frac{2}{3}Q(1+\Delta) - T_{3\max}\right].$$

For the reader's convenience we give a table of numerical values for Q, $T_{3 \text{ max}}$, Δ , c_{y} and c_{t} , obtained using the masses from our August 1970 edition. The g values quoted in these Data Card Listings would not be changed if the current mass values were used.

	Q	T _{3 max}	Δ	сy	°t
τ^{\pm}	74.96	48.15	0	0.7894	0.0924
τ'^{\pm}	84.24	53 .2 7	-0.0789	0.7025	-0.0778
τ^0	83.54	53.92	0.0798	0.7028	0.3176

Some K⁰ authors use the above form of matrix element:

$$|M|^2 = 1 + 2a_u \frac{m_K}{m_{\pi^+}^2} (2T_3 - T_{3 \max})$$

but define

$$T_{3 \max} = \frac{2}{3}Q.$$

The relevant transformation is then

$$g = \frac{-2a_u}{1 + a_u c_u}$$
, with $c_u = \frac{4m_K}{3m_{\pi^+}} Q\Delta = 0.2272$.

Older K^0 analyses were done using

$$|M|^2 = 1 + a_v \frac{T_3}{m_K}$$

The relevant transformation is then

$$g = \frac{-c_v a_v}{1 + d_v a_v}$$

with

$$c_v = \frac{m_{\pi^+}^2}{2m_K^2} = 0.0393$$

and
$$d_v = \frac{Q}{3m_K} (1 + \Delta) = 0.0604$$
.

Data Card Listings For notation, see key at front of Listings.

Note on $K_{l,3}^{\pm}$ and $K_{l,3}^{0}$ Form Factors

The definitions of the parameters ξ , λ_+ , λ_- , $|f_S/f_+|$ and $|f_T/f_+|$ can be found in Sec. VI B.2 of the text. Many approximations are usually made to extract these or related parameters from the experimental data.

1) Scalar and tensor currents: there is no evidence for scalar or tensor currents, so pure vector current is usually assumed.

2) Im ξ so far is consistent with 0, and this is usually assumed in most of the experiments.

3) Radiative corrections are usually included. For corrections see GINSBERG 67, 70, 71, 73 (K_{L}^{0}) and BECHERRAWY 70, and for inner bremsstrahlung difficulties, see DONALDSON 73 (K_{L}^{0}) .

Ke3 Experiments

The f_ term of the matrix element assuming a pure vector current (Eq. 2, text Sec. VI B.2) can be neglected for K_{e3} because it is proportional to the lepton mass. The f₊ term is usually assumed to be linear in $t = q^2 = (P_K - P_\pi)^2$, the square of the fourmomentum transfer, i.e., the effective mass of the lepton pair. We quote the linear coefficient λ_+^e (L+E on the data cards). There has been some suggestion of departure from linearity [CHIEN 71 (K_{e3}^0) and Chounet, Gaillard, and Gaillard¹-Review] but no compelling evidence. The λ_+ results are fairly consistent and the average values are

$$\begin{aligned} \mathbf{K}_{e3}^{+}: & \lambda_{+} = 0.0285 \pm 0.0043 \\ \mathbf{K}_{e3}^{0}: & \lambda_{+} = 0.0257 \pm 0.0043 \ (S = 1.3) \end{aligned}$$

where the K_{e3}^0 error has been multiplied by the scale factor 1.3 to compensate for inconsistencies (see ideogram in K_{L}^0 section L + E).

$\underline{K}_{\mu3}$ Experiments

Stable Particles

K[±]

The matrix element for $K_{\mu3}$ decay is more complicated than in K_{e3} decay because the f_ term is present. Most experiments appear to be compatible with the assumption that f_+ depends linearly on t and that f_ is constant. Only DALLY 72 ($K_{\mu3}^0$) appears to require $\lambda_{\perp} \neq 0$ (by about 3 standard deviations). A single data bin at low q^2 seems to be responsible. The effect is not observed in the high statistics experiment of DONALDSON 73 (also $K_{\mu3}^0$).

 $\underline{\lambda}_+, \underline{\xi}(0)$ Parametrization: The type and number of parameters used to express the matrix element vary from experiment to experiment. In order to facilitate comparison between experiments, we take all experiments which are compatible with the above assumptions (f₊ linear, f₋ constant) and express their results in terms of the parameters λ_+ and $\underline{\xi}(0)$, i.e., with

$$f_{+}(t) = f_{+}(0)(1 + \lambda_{+} \frac{t}{m_{\pi}^{2}}) ,$$

$$\xi(t) = \frac{f_{-}(t)}{f_{+}(t)} = \frac{f_{-}(0)}{f_{+}(0)}(1 + \lambda_{+} \frac{t}{m_{\pi}^{2}})^{-1}$$

Our Data Card Listings also contain the one-standarddeviation errors $\Delta \lambda_+$ and $\Delta \xi(0)$ as well as the correlation $d\xi(0)/d\lambda_+$, all indicated on the $e^{-1/2}$ likelihood contour below. The correlations are given on the right side of the $\xi(0)$ data cards (sections XIA, XIC) and the λ_- data cards (section L0).

 λ_{+}, λ_{0} Parametrization: Recent experiments,

e.g. DBBPSS 73 (preliminary, AIX) and DONALDSON 73 (both $K_{\mu3}^0$) have parametrized in terms of the form factors f_+ and f_0 which are associated with vector and scalar exchange, respectively, to the lepton pair. f_0 is related to f_+ and f_- by

$$f_0(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$$

Stable Particles ^{K[±]}

Both DBBPSS and DONALDSON assume linear t dependence given by

$$f_0(t) = f_0(0) (1 + \lambda_0 \frac{t}{m_{\pi}^2}).$$

Unless $f_{0}(t)$ diverges at t = 0, $f_{0}(0)$ must equal $f_{+}(0)$. Preliminary reports of the DONALDSON et al. experiment indicated such a possibility, but with modified radiative corrections, they obtain $f_{0}(0)/f_{+}(0) = 1.06\pm0.03$, and obtain good fits when they assume $f_{0}(0) = f_{+}(0)$.

With the assumption that $f_0(0) = f_+(0)$, the two parametrizations, $(\lambda_+, \xi(0))$ and (λ_+, λ_0) are equivalent. The transformation from the first parametrization to the second is given by

$$\begin{split} \lambda_0 &= \lambda_+ + a\xi(0), \\ \Delta \lambda_0^2 &= (1 + 2 a \frac{d\xi(0)}{d\lambda_+}) \Delta \lambda_+^2 + a^2 \Delta \xi^2, \\ \frac{d\lambda_0}{d\lambda_+} &= 1 + a \frac{d\xi(0)}{d\lambda_+}, \\ a &= m_\pi^2 / (m_{k_1}^2 - m_\pi^2). \end{split}$$

where

 (λ_+, λ_0) correlations tend to be less strong than $(\lambda_+, \xi(0))$ correlations. However, as can be seen by the likelihood contours in Figs. 1 and 2, correlations cannot be ignored, even in the (λ_+, λ_0) parametrization.

<u>Dalitz plot experiments</u> (abbreviated DP on the data cards) and <u>pion spectrum experiments</u> (PI) frequently give their results in one of the above forms, or the authors have supplied us with such results.

The $\xi(0)$ results for these experiments are listed in section XIA.

If the error (but not the value) is parenthesized, e.g., CARPENTER 66 and PEACH 73 (both $K^0_{\mu3}$), the measurement is for a fixed value of λ_+ given in the footnotes. The same is true for λ_0 values (section L0). Such values and their correlations with λ_+ give rise to the bands in Figs. 1 and 2.

Unparenthesized values are associated with λ_{+} (L+M) measurements and give rise to the error ellipses in Figs. 1 and 2.

In some cases, we alter an error from its published value in order to obtain an error ellipse with a width which matches the error in $\xi(0)$ for fixed λ_+ . These adjustments are noted in the $\xi(0)$ data card footnotes, e.g., for CALLAHAN1 66 and HAIDT 71 (K⁺ section XIA), where the published errors and

Data Card Listings For notation, see key at front of Listings.

correlation violate the constraint $|C_{\lambda\xi}| < 1$ on the normalized correlation coefficient $C_{\lambda\xi}$ given by

$$C_{\lambda\xi} = \frac{\Delta\lambda_{+}}{\Delta\xi} \frac{d\xi(0)}{d\lambda_{+}}.$$

In some cases, e.g., ABBC1 73, the parametrization used is λ_+ , $\xi(0)$, $\xi(t^*)$, where t^* is the weighted average of t with weighting according to the sensitivity to ξ . In this case we do not use $\xi(0)$. It is a badly determined parameter comparable to $\lambda_$ or the slope of ξ (t). Instead, we use

$$\begin{split} \xi(0) &= \xi(t^{*}) \ (1 + \lambda_{+} t^{*}), \\ \frac{d\xi(0)}{d\lambda^{+}} &= \ \frac{d\xi(t^{*})}{d\lambda_{+}} \ (1 + \lambda_{+} t^{*}) + \xi(t^{*}) t^{*}, \end{split}$$

with their $\lambda_{+} = 0.027$ values: $\xi(6.6) = -0.34 \pm 0.20$ and $d\xi(6.6)/d\lambda_{+} = -14$. We obtain

$$\xi(0) = (-0.40 \pm 0.24) - 19(\lambda_1 - 0.027),$$

or for their fitted $\lambda_{+} = 0.025 \pm 0.017$ we get $\xi(0) = -0.36 \pm 0.40$.

<u>Branching ratio experiments</u> cannot determine λ_{+} and $\xi(0)$ simultaneously, but simply fix a relationship between them, given in Sec. VI B.2 of the text. Results are usually quoted as values of $\xi(0)$ at fixed λ_{+} . We list these results in section XIB, but we do not average them because the λ_{+} values differ. Instead, we use our fitted value of $\Gamma(K_{\mu3})/\Gamma(K_{e3})$ which includes the branching ratios from these experiments. The relations given in the text are then used to determine values of $\xi(0)$ and $d\xi(0)/d\lambda_{+}$ at $\lambda_{+} = 0.03$. $\xi(0)$ is given as the FIT value at the end of section XIB. The scale factor is the amount by which the error has been multiplied in order to compensate for discrepancies in the branching ratios.

The FIT value and correlation are converted to a λ_0 value at $\lambda_+ = 0.03$ and a (λ_+, λ_0) correlation, given as the KMU3/KE3 value in the L0 section.

<u>Polarization experiments</u> measure $\langle \xi(t) \rangle$, the weighted average of $\xi(t)$ over the t range of the experiment, where the weighting accounts for the variation with t of the sensitivity to $\xi(t)$. For small λ_{+} and assuming $\lambda_{-} = 0$, we have

$$\xi(0) \approx \langle \xi(t) \rangle (1 + \lambda_{+} \langle \frac{t}{m_{\pi}^{2}} \rangle),$$

$$\frac{\mathrm{d}\xi(0)}{\mathrm{d}\lambda_{+}} \approx \left\langle \xi(t) \right\rangle \left\langle \frac{t}{\mathrm{m}_{\pi}^{2}} \right\rangle.$$

The first relation shows that we can treat all polarization measurements as measurements of $\xi(0)$ assuming $\lambda_{+} = 0$. Since all have $\lambda_{+} = 0$, we can average them. From the second relation, the correlation with λ_{+} can be obtained if we know $\langle t/m_{\pi}^{2} \rangle$ weighted by $\xi(t)$ sensitivity. The $\langle t/m_{\pi}^{2} \rangle$ values from different experiments can also be averaged by weighting with the inverse square of the $\langle \xi(t) \rangle$ errors; see e.g. K⁺ section XIC.

We disregard those polarization measurements for which $d\xi(0)/d\lambda_+$ is not obtainable. Also we disregard MERLAN 73 because the signs of $\xi(0)$ and $d\xi(0)/d\lambda_+$ are opposite, whereas the above equation requires them to be the same (since t > 0).

<u>Comparison of Experiments</u>: Figures 1 and 2 show the likelihood contours in the $(\lambda_{+}, \lambda_{0})$ plane for $K^{+}_{\mu 3}$ and $K^{0}_{\mu 3}$ respectively.

The $K^+_{\mu3}$ Dalitz plot results (ellipses) shown are fairly consistent and appear to cluster between the $K^{}_{\mu3}/K^{}_{e3}$ result and the polarization results of BETTELS 68 and CUTTS 69. A χ^2 fit to all of the

Fig. 1. One-standard-deviation ($e^{-1/2}$) likelihood contours in the (λ_+, λ_0) plane for $K_{\mu3}^+$.

results in Fig. 1 yields

 $\xi(0) = -.44 \pm .11$

with corresponding values

 $\frac{\mathrm{d}\xi(0)}{\mathrm{d}\lambda} = -14.$

The largest contributors to the χ^2 are CHIANG 72 with 10.5 and the polarization results, BETTELS 68 with 5.4 and CUTTS 69 with 4.2.

The $K_{\mu3}^{0}$ results show little consistency. The overall χ^{2} is 59 for 9 degrees of freedom (the lower DBBPSS 73 solution was not included).

XBL 743-2669

Fig. 2. One-standard-deviation (e^{-1/2}) likelihood contours in the $(\lambda_{+}^{}, \lambda_{0}^{})$ plane for $K_{\mu3}^{0}$.

Stable Particles ^{K[±]}

The DONALDSON 73 result

$$\lambda_{+} = .030 \pm .003$$

 $\lambda_{-} = .020 \pm .003$

clearly dominates the statistics. Their λ_+ value is consistent with the K_{e3} value of λ_+ , and with the pole approximation

$$f_{+}(t) = f_{+}(0) - \frac{m_{K^{*}}^{2}}{m_{K^{*}}^{2} - t}$$

Their $f_0(t)$ extrapolates linearly to the Callan-Treiman point. It is less than two standard deviations from the $K_{\mu3}/K_{e3}$ result.

The new polarization result of SANDWEISS 73 brings the polarization λ_0 a less negative value than previous polarization results but is still three standard deviations below the DONALDSON value.

Many of the changes in this section were stimulated by the comments and criticism of L. M. Chounet, and by the excellent reviews of Gaillard and Chounet¹ and Chounet, Gaillard, and Gaillard.²

References

- M. K. Gaillard and L. M. Chounet, K₁₃ Form Factors, CERN 70-14 (May 1970), and Phys. Letters 32B, 505 (1970).
- L. M. Chounet, J. M. Gaillard, and M. K. Gaillard, Physics Reports <u>4C</u>, 199 (1972).

10 CHARGED K FORM FACTORS

```
8/67
```

RELATED TEXT SECTION VI B.2 AND MINI-REVIEW ABOVE. IN THE FORM FACTOR COMMENTS, THE FOLLOWING ABBREVIATIONS ARE USED. F+ AND F- ARE FORM FACTORS FOR THE VECTOR MATRIX ELEMENT. FS AND FT REFER TO THE SCALAR AND TENSOR TERM. FO = (f+) + (F-)st(UK**2-AP(1*2)) L+, L- AND LO ARE THE LINEAR EXPANSION COEFFS. OF F+, F- AND FO. L+ REFERS TO THE KMUS VALUE EXCEPT IN THE KES SECTIONS. DXI/DL IS THE CORRELATION BETWEEN LO AND L+ IN KMU3. DJI/DL IS THE CORRELATION BETWEEN LO AND L+ IN KMU3. T = MOMENTUM TRANSFER TO THE P1 IN UNITS OF MPI. DF = DALIT2 PLOT ANALYSIS P0 = MU POLARIZATION ANALYSIS P0 = RK= KMU3/KES BRACHING RATIO ANALYSIS B = KMU3/KES BRACHING RATIO ANALYSIS E = POSITROM OR ELECTRON SPECTRUM ANALYSIS C = RADIATIVE CORRECTIONS e RC RADIATIVE CORRECTIONS F-/F+ (DETERMINED FROM SPECTRA) ECTRA) BROWN 62 XEBC + GIACOMELL 64 EMUL + JENSEN 64 XEBC + 44 FRBC + DP+BR, L+=0 MU+BR RVUE, L DP+BR(KMU3,KE MU, L+=0, T U PI, 0XI/DL=-1 PI,L+=0,N0 DX 76 87 (0.5) L+=0 (1.1) (0.9) UNKN CALLAHAI 66 FRBC 68 HLBC DX/DL IJEWSKI 69 71 72 P1, DXI/DL= DP, DXI/DL= P1, DXI/DL= DP, DXI/DL= OSPK DX1/DL=-26 DX1/DL=-29 H3240 HLBC ASPK OSPK 44025 B3480 ABBC1 ARNOLD 490 I-U.O. 527 -0.57 0.24 JENSEN 64 GIVES L+M-L+E-.020+-.027. DXI/OL UNKNOWN. INLLUDES SHAKLE 64 KIB(KMJXKE3). CALLAHAN 66 TABLE 1 (PI ANAL) GIVES DXI/OL=(.72-.05)/(0-.04)=-17, ERROR RAISED FROM. 30 TO ACREE WITH DXIO-.37 FOR FIXED L+. KIJEWSKI 69 FIG. 17 WAS USED TO OBTAIN DXI/OL AND ERRORS. HAIOT 71 TABLE 8 (DP ANAL) GIVES DXI/OL-.1.1e0.51/(0.50-.029)=-29, ERROR RAISED FROM. 50 TO ACREE WITH DXIO-.20 FOR FIXED L+. ANKENRARANDT 72 FIG. 3 WAS USED TO OBTAIN DXI/OL. CHIANG 72 FIG. 10 WAS USED TO OBTAIN DXI/OL. CHIANG 72 FIG. 10 WAS USED TO OBTAIN DXI/OL. CHIANG 72 FIG. 10 WAS USED TO OBTAIN DXI/OL. CHIANG 72 FIG. 10 WAS USED TO OBTAIN DXI/OL. ABBCL 73 GIVES X1(1)-.34-.20, DXI(1)/DL+=-14 FOR L+=.027, T-6.6 AROULD 73 FIG. 3 WAS USED TO OBTAIN XIA AND DXI/OL. ARNOLD 73 FIG. 3 WAS USED TO OBTAIN DXI/OL. J C C K H H A & B D D Z M 0.20 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.5) (SEE IDEOGRAM BELOW) -0.32

WEIGHTED AVERAGE = -0.32 ± 0.20 ERROR SCALED BY 1.5 CHISQ MERLAN 74 ASPK 1.1 ABBC1 73 HLBC 0.0 CHIANG 72 **DSPK** 7.6 ANKENBRAN 72 ASPK 1.1 HATDT 71 HLBC 1.9 · · · KIJEWSKI 69 **DSPK** 0.0 ·CALLAHA1 66 FRBC 13.0 (CONLEV -3 -1 1 =0.042) XI(0) = F-/F+ FRDM SPECTRA XIB = F-/F+ (DETERNINED FROM KNU37KE3) THE KNU37KE3 BRANCHING RATIO FIXES A RELATIONSHIP BETWEEN XI(0) AND L+. WE QUOTE THE AUTHORS XI(0) AND ASSOCIATED L+ BUT DO NOT AVERAGE BECAUSE THE L+ VALUES DIFFERE. THE FIT RESULT AND SCALE FACTOR ARE DBTAINED DIRECTLY FROM THE FITTED KNU37KE3 RATIO (R29) (SEE TEXT SEC. VI B.2) WITH L+=0.03. THE CORRELATION OXI/UL=-11.9 -0.17 0.75 0.99 SHAKLEE 64 XEBC + BR, L+=0 +0.6 0.5 BISI 165 HBC + BR, L+=0 500 +0.8 0.6 CUTTS 65 DISFK + BR, L+=0 306 +0.75 0.50 AUFBRACH 67 DSPK + BR, L+=0 306 +0.75 0.50 AUFBRACH 67 DSPK + BR, L+=0 306 +0.03 (0.20) EICHTEN 68 HBC + BR, L=0.23+-0.08 E 1398 (-0.60) (0.20) EICHTEN 68 HBC + BR, L=0.23+-0.08 E 1398 (-0.60) (0.20) EICHTEN 68 HBC + BR, L=0.023+-0.08 5025 0.0 0.15 DOTTERLIZ 08 ASPK + BR, L=0.045+-015 E1505 -0.81 0.27 HAIDT 71 HBC + BR, L=0.05+-015 E1505 -0.81 0.27 HAIDT 71 HBC + BR, L=0.05+FIG.8 5025 0.0 0.15 CHIANG 72 DSPK + BR, L=0.03,FIG.8 5025 0.0 0.15 CHIANG 70 DF L-. REPL. BY HAIDT 71. AVERAGE MEANINGLESS (SCALE FACTOR = 1.6) XI(0) = F-/F+ FRDM SPECTRA XIB XIB B E MEANINGLESS (SCALE FACTOR = 1.6) -0.20 0.15 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.7) 1/74* AVERAGE XIC XIC T 2100 T 500 T 397 8/67 1/74* 8/67 xic 8/67 1/74* 1/74* X10 2950 B6000 C3133 T VALUE NOT GIVEN BETTELS 68 DXI/DL CUTTS 69 T=4.0 WA 3/74+ т В С М D DIVER. D DXI/DL=XI+T=-1.0+4.9=-4.9 . T=4.0 WAS CALCULATED FROM FIG.8. DXI/DL=XI+T=-.95+4=-3. POL DXI/DL(FIG.5) POSITIVE. WE DISREGARD THIS RESULT. XIC XIC XIC XIC XIC XIC 1/74*
3/74* OF T REVERSAL) CALLAMAI 66 FRBC + NU CALLAMAI 66 FRBC + TOTAL POL. CALLAMAI 66 FRBC + LONG. POL. BETTELS 68 HLBC + TOTAL POL. EUTTS 69 OSPK + TOTAL POL. FIG.7 IXI IXI IXI IXI IXI INAGINARY PART OF XT (TEST 2648 397 2950 0.0 +1.6 0.5 1.0 1.3 1.4 0.3 0.3 1/74* 1/74* 1/74* 1/74* 1/74* 0.5 1X1 60 1X1 60 1X1 31 1X1 1X1 AVG 6000 -0.1 0.4 -0.09 0.21 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) LAMBDA SEE AU XIC, J FOR RJ DA + (LINEAR ENERGY DEPENDENCE OF F+ IN KNU3 DECAY) ------ALSD THE CORRESPONDING ENTRIES AND FOOTNOTES IN SECTIONS XIA, , AND LO. RAD.COR. OF KMU3 DP SEE GINSBURG 70 AND BECHERRAWY 70. FOR RAD.COR. OF KMU3 DP SEE GINSBURG 70 AND BECHERRAWY 70. 444 0.0 0.05 CALLANAI 66 FRBC + PI 941 0.009 0.026 KIJEWSKI 69 OSPK + PI 240 0.050 0.018 HAIDT 71 HLBC + DP 947 0.005 0.013 ANKENBRAN 72 ASPK + PI 947 0.005 0.015 CHIANG 72 OSPK + PP 947 0.005 0.015 ANKENDA 73 HLBC + DP 947 0.0251 (0.030) AFNCLD 73 HLBC + DP 957 0.027 0.019 HERLAN 74 ASPK + DP ANKENBRANDT 72 L+ FROM FIG.3 TO MATCH DXI/OL. TEXT GIVES .024+-.022 444 2041 3240 4025 3480 1897 490 6527 L+M L+M 0.0200 0.0076 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG.
 USUBUS
 USUBUS< LO £0 L0 L0 L0 L0 L0 L0 444 6000 2041 3133 3240 4025
 PA
 DDT
 DI
 HEBC
 ↓
 DDC/DIL---0.30

 3
 ANKENBRAN
 TZ
 ASPK
 P)DL0/DIL---0.33

 14
 LOT
 TZ
 ASPK
 P)DL0/DIL---0.33

 14
 LOT
 TZ
 ASPK
 P)DL0/DIL---0.33

 14
 LOT
 TZ
 ASPK
 P)DL0/DIL---0.32

 15
 ANKENBRAN
 TZ
 ASPK
 P)DL0/DIL---0.32

 101
 ARNOLD
 TS
 HESC
 P)DL0/DIL---0.32

 101
 ARNOLD
 TS
 HESC
 P)DL0/DIL---0.34

 101
 ARNOLD
 TS
 HESC
 P)DL0/DIL---0.34

 121
 KMU3/KES
 TA
 ASPK
 P)DL0/DIL---0.34

 121
 KMU3/KES
 TA
 ASPK
 P)DL0/DIL---0.34

 123
 KMU3/KES
 TA
 ASPK
 P)DL0/DIL---0.34

 124
 KMU3/KES
 TA
 ASPK
 P)DL0/DIL---0.34

 125
 KEM
 TA
 ASPK
 TD
 TD

 126
 KEM
 TA</t D1897 +0.014 -0.019 CALCULATED (0.012) 6527 LO CALCI LO VALU ABBC1 7 (SEE SE KMU3/KE MERLAN · 7 4 CALCULATED BY US FROM XIA, L+N, -0.025+-0.012 AND NO DL0/DL+. M DX1/DL -THEIR LO AVG -0.004 0.011 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.6) (SEE IDEOGRAM BELOW)

Data Card Listings For notation, see key at front of Listings.

WEIGHTED RUERAGE = -0.004 ± 0.011 ERROR SCALED BY 1.6	AUERBACH 67 PP 155 1505 +DDBBS, MANN, MCFARLANE, WHITE+ [PENN, PPIN] RFLLOTT1 67 HEIDELBERG CONF BELLOTT1, FULLIA (MILAN) BELLOTT2 67 NC 524 1287 BELLOTT1, FURLIA (MILAN) ALSD 66 PL 20 690 BELLOTT1, FORNI, PULLIA (MILAN) BISI 67 PL 258 572 BISITCESILE ROMINGONE BUT, CULLEAN (MILAN) BOTERTIL BOTERTIL BOTERTIL BOTERTIL HONE, CONSENT, CULLEAN (UKFORD) BOMEN, MANN, MCFARLANE, HUGHES+ (PENN-PRINCETD) BOMEN, MANN, MCFARLANE, HUGHES+ (PENN-PRINCETD) BOMEN, MANN, MCFARLANE, HUGHES PENN
	CLINE1 67 HEIDELBERG CONF CLINE, HAGGERTY, SINGLETON, FRY+ (WISCONSIN) CLINE2 67 HERCEG NOVI TEL-4 D.CLINE, PROC.INTL, SCH.OM FLEM.PART, PHYSICS FLETCHER 67 PRL 98 FLETCHER PLERAEDAS.+ (ILLINOIS) FCRD 67 PRL 18 1214 +LEMONICK, NAUENBERG, PIROUE (PRINCETCN) IMLAY 67 PR 160 1203 IMLAY, ESCHSTRUTH, FPANKLIN+ (PRINCETON) KALMUS 67 PR 169 1187 KALMUS, KENNAN (IRL) ZINCHENK 67 RUTGERS) ZINCHENKO (RUTGERS)
	BETTELS 68 NG 56A 1106 AACHEN-BARI-BERGEN-CERN-EP-NIJMEGEN-ORSAY+ ALSO 1 HAIOT BOTTERIL 80 NG 1-85 CONSECT, CULIGAN+ (CXFORD) BOTTERIL 68 PR 171 1601 BOTTERIL, BROWN, CCRBETT, CULIGAN+ (CXFORD) BOTTERIZ 68 PR 171 1601 BOTTERIL, BROWN, CCRBETT, CULIGAN+ (CXFORD) BOTTERIZ 68 UCRL-18420 BOTTERILL, BROWN, CLEGG, CORBETT + (OXFORD) BOTTERIZ 68 UCRL-18420 BLAND, GOLOHABER, GIOLAMAER, MITATA+ (IRI) CHANG 68 PRL 20 510 CHANG, YODH, EHRLICH, PLAND+(MARYLAND, RUTGEPS)
-0.1 0.0 0.1 0.2 -0.22	CHEN 68 PR L 20 73 CHEN.(UTTS,KIJEHSKI,SITENING + (L0L,HIT) EICHTEN 08 PL 217 866 AACHEN-BAST-CERN-EPOCRSAP-ADQUA-VALENCIA EISLER 68 PR 169 1090 EISLER,FUNG,MARATECK,MEYER,PLANO (RUTGERS) ESCHSTRU 68 PR 165 1487 FSCHSTRUTH,FRANKLIN,HUGHES*(PRINCETON,PENN) GAPLAND 68 PR 167 1225 +TSTPIS,DEVONS,RCSEN+ (CCLUMBLA,RUTG,MISC) MOSCOSO 68 THESIS M L MOSCOSO (UNIV PARIS ORSAY)
LAMBDRO (LIN. EN. DEP. DF FO IN KMU3)	CUTTS 69 PR 184 1380 +STIENING,MIEGAND,DEUTSCH (LRL,MIT) ALSO 68 PRL 20 955 CUTTS,STIENING,MIEGAND,DEUTSCH (LRL,MIT) DAVISON 69 PR 180 1333 +BACASTON+BARKAS,EVANS,FUNG, PORTER+ (UCR) ELY 69 PR 180 1319 ELY:GIDAL+HAGOPIAN,KALMUS+ (LOUC+WISC+LRL) EMMERSON 69 PR 23 393 EMMERSON,QUIRK (DXFORD)
L+E FOR RAD.COR.OF K5 D0 SEE GINSBURG 6 T AND BECHERRAWY TO. 3/74+ L+E FOR RAD.COR.OF K5 D0 SEE GINSBURG 6 T AND BECHERRAWY TO. 3/74+ L+E 217 +0.036 .045 BEC GINSBURG 6 T AND BECHERRAWY TO. 3/74+ L+E 217 +0.036 .045 BROWN 62 XEBC + PI.N ORC 8/67 L+E 230 -0.04 .05 BORREANI 64 HBC + E+ NO RC 8/67 L+E 393 +0.016 .016 IMLAY 67 05PK + DP.NO RC 8/67 L+E 1393 +0.018 .016 IMLAY 67 05PK + DP.NO RC 8/67 L+E 1393 +0.018 .016 .016 IMLAY 67 05PK + DP.NO RC 8/67	HER20 69 PR 186 [403 +BANNER,BEIER,BERTRAM,EDMARDS + [1L] KIJFWSKI (LB] (LB] (LB] LOBKCMIC 69 PR 185 1676 +WELISSINOS,NAGASHIMA,TEWKSBURY (20CH+BNL) (LB) ALSO 66 PRL 17 548 (DARVDNIC,MELISSINOS,NAGASHIMA,TEWKSBURY (20CH+BNL) (ACCH+BNL) MACEK 69 PR 182 22 MACEK,MANN, 4C FARLANE,03BERTS+(PENN,TEMPLE) MAST 69 PR 182 1200 +GERSHIM,ALSTON-GARNIOST,BANGERTEA+ (LPL) ZELLER 69 PR 182 1420 ZELLEP,MADOOCK,HELLAND,PAHL+ (UCLA,LPL)
L+E 960 .08 .04 BOTTERILL 68 ASPK + E+. USES RC .6768 L+E 90 -0.02 0.08 0.12 EISLER 68 HLBC + PI. USES RC .6768 L+E 1458 .045 .015 BOTTERIL 70 OSPK PI. USES RC 10769 L+E 2707 0.027 0.010 STEINER 71 HLBC + DP. USES RC 11771 L+E 4017 0.029 0.011 CHIANG 72 OSPK + DP. RC NEGLIGELE 972 L+E A 0.027 0.008 ABBC2 73 HLBC + DP. NO RC 3774+ L+E A ABBC2 STATE THAT RC DF GINSPERG A7 MULL 0.108 L+E RV 0.002 BUT 3774+	BOTTERIL 70 PL 318 325 +BRONN,CLEGG,CORBETT,CULLIGAN+ (OXF) FORD TO PRL 25 1370 +PIROUE,REMMEL,SHITH,SCUDER (PRIN) GRAUMAN TO PR 01 1277 +KOLLER,TAYLOR,PANDOULAS+ (STEV,SETO,LEH1) ALSO 69 PRL 23 737 +KOLLER,TAYLOR,PANDOULAS+ (STEV,SETO,LEH1) MACEK 70 PR 01 1249 +HANN,MCERIANE,ROBERTS (PENN) PANDOULA 70 PR 02 1205 +TAYLOR,KOLLER,GRAUMAN + (STEV,SETO)
L+E A THAT RC OF BECHERRAWY 70 DISAGREES WITH GINSBERG 57. 3/74* L+E 4 THAT RC OF BECHERRAWY 70 DISAGREES WITH GINSBERG 57. 3/74* L+E 4VG 0.0285 0.0043 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) FS FS/F+ RATIO OF SCALAR TO F+ COUPLINGS FOR KE3 DECAY(ABS. VALUE) FS	BOURQUIN 71 PL 368 615 +BOYMOND,EXTERMANN,MARASCO+ IGFVA,SACLI HAIOT 71 PR 03 10 AACHENBARI+CERNEP*NIJMEGEN+DRSAY*PADDU4+ ALSO 69 PL 298 691 +IAACHBARI+CERNEP*NIJMEGEN+DRSAY*PADDU4+ KLEMS 71 PR 04 66 +HILDEBRAND,STEINING (LHIC,LRI) ALSO 70 PRL 24 1086 KLEMS+HILDEBRAND,STEINING (LRI,CHIC) ALSO 70 PRL 25 473 KLEMS+HILDEBRAND,STEINING (LRI,CHIC)
FS 0.23 OR LESS CL=:00 BCTTERIL 66 ASK 10/69 FS 2707 0.14 0.03 0.04 STETNER 11 HLBC L+:5,FT.PHI FIT 2/72 FS 4017 0.13 0.04 STETNER 11 HLBC L+:5,FT.PHI FIT 2/72 FT FT/F+ RATIO DF THNOR 70 STK 9/72 FT FT/F+ RATIO DF THNOR TO STK 9/72	KUNSELMA TI PL 348 485 P. KUNSELMAN (WYOMING) OTT TI PL 365 52 OTT.PRITCHAPD (UOM) ROMANO TI PL 366 525 +PENTON.AUBERT.BURBAN-LUTZ (BARI,CENN,DISA) SCHWEINB TI PL 368 246 AACHEN-BELGIUM-(CENN-MIJMEGEN+PADOVA CCULAB STEINER TI PL 366 521 AACHEN-BELGIUM-(CENN-MIJMEGEN+PADOVA CCULAB
FT 1.0 CR LESS CL=.95 BCLUI12 67 HLBC + 10/69 FT 0.58 CR LESS CL=.95 NALWUS G7 HLBC + 10/69 FT 2707 0.58 CR LESS CL=.95 NALWUS G7 HLBC + 10/69 FT 4016 0.14 STEINER 71 HLBC + L+FS,FT,PHI FIT 2/72 7/72 FT 4017 0.75 CR LESS CL=.90 CHIANG 72 OSPK + 9/72	ABRAMS 72 PRL 29 1118 +CAPROLL,KYCIA,LI,MEN ^C S,MICHAEL + (BNL) AMKENBRA 72 PRL 28 1472 AMKENBRANDT,LARSEN+ (BNL)+LASL+NAL+YALE) AUBERT 72 NC 12 SG SGASCAUD,VIALLE+ (BNL)+LASL+NAL+YALE) FETER 72 PRL 29 SG3 +BUCHHOLZ,MANN,PARKER (PENNSYLVANIA) CHIANG 72 PR DE 1254 +POSEN,SHAPTRO,HANDLER,OLSEN+ (IRCH+HISC)
REFERENCES FOR CHARGED K	CLARK 72 PRL 29 1274 +CORK.ELIOFF.KERTH.HCREYNOLDS.NENTCN+ (LBL) EDMARDS 72 PR 05 2720 +BEIER.BERTRAM.HERZO.KOESTER + (ILL) FDRD 72 PL 388 335 +PIROUE.REMMEL.SNITH.SOUDER (PPINCETCN) HOFFMASTER XQ HB 1 HOFFMASTER.KOLLER.TANDRAF STEVENSTIDIERH
BIRGE 56 NC 4 834 BIRGE, PERKINS, PETERSON, STORK, WHITEHEA (LRL) TLOFF 56 PR 102 927 ILOFF, GOLDHABER, LANNUTTI, GLIBERT + (LRL) ALEXANDE 57 NC 6 478 ALEXANDER, JOHNSTON, OCEALLAIGH (DUBLIN INST) CCHEM 57 FUND.CONS.PHYS. + CROWE JOUNDON (ATOMICS INTER. + RL+CIT) EISEMBER 58 NC 8 663 EISEMBERG, KOCH, LOHMMANN, NIKOLIC + (BERN) BURGWES 50 PRL 2 II7 BURGWES, CALDWELL, FRISCH, HILL + (MIT) TAYLOR 59 PR 114 359 S TAYLOR, HARRIS, OREAP, LEE, BAUMEL (COLUMBIA)	ABBC1 73 PL 478 182 AACHENEBARIEBRUSSELSACERN COLLABORATION 48BC2 73 PL 478 185 AACHENEBARIEBRUSSELSACERN COLLABORATION 48BCAM 37 PCL 30500 +CARROLLAKYCIALLIEBRUSSELSACERN COLLABORATION ABPAMS 37 PCL 3600 +CARROLLAKYCIALLIEBRUSSHESSINCERN COLLABORATION ABPAMS 73 PL 438 BACKENSTOSS, BANBERGER+(CERNEKARLEHEIDESTOH) ABCKENSTOSS, SABUBERGER+(CERNEKARLEHEIDESTOH) C LARNOLD, B P. NORLAIK CLARKE 73 PL 4831 BACKENSTOSS, BANBERGER+(CERNEKARLEHEIDESTOH) CLARKE 73 THESISS(UNPUBL.) D B <clarke< td=""> (HISCONSIN)</clarke<>
PRODUN DU PK 118 D54 S C FREDEN, F C GLLBERT, R S MHTTE (ICL) BAPKAS D PK 124 1209 BARKAS.DVFR, MAGON, MORTS, NICKOLS, SMIT (IRL) BHCWMIK 61 NC 20 857 B BHCWMIK, P C JAIN, P C MATHUR (DELHI UNIV) FERRO-LUZ 1087 FERRO-LUZ, MILER, MURRAY, ROSENFELD+ (IRL) NCRDIN 61 PR 123 2166 PERCO-LUZ, MILER, MURRAY, ROSENFELD+ (IRL) RCF 61 PR 123 2166 PAUL NOBOIN JR (IRL) NCHCHRL BOYARSKI 62 PR 128 2398 BOYARSKI, ICH, MILER, AL, MITSON (MIT) BRCMN 62 PR 128 2398 BOYARSKI, ADVK, TRILLING, RCE+ (IRL) BRCMN 62 PR 18 450 BROWN, KADYK, TRILLING, RCE+ (IRL)	LJUNG 73 PR D8 1307 D.LJUNG,D.CLINE (WISC) ALSO 72 PRL 28 523 D.LJUNG (WISC) ALSO 72 PRL 28 1287 D.CLINE,D.LJUNG (WISC) ALSO 69 PRL 23 326 CAMERINI,LJUNG,SHEAFF,CLINE (WISC) LUCAS1 73 PR 08 719 LUCAS1,TAFT,WILLIS (YALE) LUCAS1 73 PR 08 727 LUCAS1,TAFT,WILLIS (YALE) PANG 73 PR 08 1989 +HICDEGRAND,CABLE,STEINING (FFL+ABL-16BL) ALSO 72 PL 408 699 6405 499 CABLE,HILDBRAND,CAS,TEINING (FFL+ABL-16BL)
BORREANI 64 PL 12 123 G BORREANI,G RINAUDO,A WERBROUCK (TURIN) CALLAHAN 64 PR 136 B 1463 A CALLAHAN,R MARCH.R STARK (WISCONSIN) CAMPRINI 64 PRL 13 138 CAMPRINI, CURINF,FRY-POWEL (MISCONSIN+LRL) CLINE 64 PRL 13 101 D CLINE, W F FRY (MISCONSIN) GIACOMEL 6 HC 34 1134 GIACOMELIT, MONTI, QUARENI+ (BDLORNA, MUNICH) GPEINER 64 PRL 13 284 D GREINER, W OSBORNE, W BARKAS (LRL) SINSEN 64 PRL 13 284 D GREINER, W OSBORNE, W BARKAS (LRL)	SMITH 73 NP B60 411 +B00TH,RENSHALL,JONES+ (GLAS+LIVP+ÖX+APHEL) KMU3/KE3 74 THIS REVIEW CALCULATED BY US, SEE NOTES IN SEC, XIB, LO. KUNSELMA 74 PR (TO BE PUBL) R.KUNSELMAN MERLAN 74 PR 09 107 +*KASHA,WANDERER,ADAIR+ (YALF+BAL+LASL) QUANTUM NUMBER DETERMINATIONS NOT REFERED TO IN THE DATA CAROS BLOCK 62 CERN CONF 371 BLOCK,LENDINARA,MONARI (NWES+BOLOGNA)
ALLOS 64 PAL 13 99 + KERNAN, PU, POWELL, DOWD (LR, 4HISC) SNAKLEE 64 PA 136 B 1423 SHAKLEE, JERSEN, RGE, SINCLAIR (MICH) BIPCE 65 PR 139 B 1600 BIRGE, ELY, GIDAL, CAMERINI, CLINE + (LR, 4HISC) BIST 65 NC 38 C 48 TAB BIEL PODEAU COPYER INT, CLINE + (LR, 4HISC)	PAPERS NOT REFERRED TO IN DATA CARDS BREME 61 NP 22 553 BRENE, EGAPOT, OVIST (NURD)
8151 1 65 PR 139 B 1068 BORREANI, MARIARI-CHIESA, RINAUDO+ ITORINO) BORREANI 65 PR 140 B1686 BORREANI, GIDAL, RINAUDO, CAFORIO+ (BARI, TORI) CALLAHAN 65 PR 15 129 A CALLAMAN, D CLINE (WISCONSINI) CAMERINI 65 NC 37 1795 +CLINE, GIDAL, KALWUS, KERNAN (WISCONSINI) CLINE 65 PL 15 293 A CLINE, W F FRY (WISCONSINI) CUTTS 65 PR 138 B969 CUTTS, ELIOFF, STIENING (LRL)	ADATR 64 PL 12 67 ADATR (LPUNER (LP(+WIGC+BART)) CABIBBO 64 PL 9 352 CABIBBO, MAKSYMOVICZ (CERN) ALSO 64 PL 13 60 CABIBBO, MAKSYMOVICZ (CERN) ALSO 64 PL 13 CABIBBO, MAKSYMOVICZ (CERN) ALSO 65 PL 14 72 CABIBBO, MAKSYMOVICZ (CERN) CABIBBO 66 BERKELEV CONF 33 CABIBBO, MAKSYMOVICZ (CERN) GINSBERG 67 PR 162 1570 EDWARD S GINSBERG (U. MASS BOSTON)
DE MARCO 65 PR 140 B 1430 DE MARCO, GROSSO, RINAUDO (TORINO+CERN) FITCH 65 PR 140 B 1088 FITCH, QUARLES, WILKINS(PRINCETON+NT HOLVOKE) GREINER 65 PR 138 B 440 STAMER, HUETTER, KOLLER, TAYLOR, GRAUMAN (STEV) TRILLING 65 UCRL 16473 GEORGE H TRILLING (ULL) UPDATED FROM 1965 ARGONYE CONF., PAGE 5. YOUNG 65 UCRL 1645 PO-SYIDUNG (THESIS, BERKELEY) (LRL) ALSO 67 PR 156 1464 P-S YDUNG, M.Z.OSBORNE, M.N.DARKAS (LRL)	MILLIS Of MEIDLUBENG 2/3 W J WILLIS -RAPPORTEUR TALK (YALE) CRONIN 68 VIENNA COMP 241 APPORTEUR TALK (PRINCETON) HAIDT 2 69 PL 298 696 + (AACH-BARI, CEN, EPOL, NIJM, ORSA, PADD, TOT) BARDIN 70 PL 328 121 BARDIN, BLENKY, PONTECORVO (JINR) BECHERRA 70 PR DL 1452 T, BECHERRAWY (ROCH) FEARING 70 PR D3 542 + FISCHBACK, SMITH (STON+BOHP) GINSBERG 70 PR D1 229 E S GINSBERG (IIT HAIFA) GINSBERG 71 PP 04 2893 E S GINSBERG (MIT)
CALLAMA1 66 PR 150 1153 CALLAMAN,CAMERINI+(WISC,LRL,RIVERSIDE,BARI) CALLAMAN 66 NC 44A 90 A C CALLAMAN (HISCONSIN) CESTER 66 PL 21 43 ALSO 67 AUERBACH, FOOTNOTE 1.	CHOUNEY IS PL 40 LYY (PHYS. REPTS.)CHOUNET,24GAILLARD(ORSA+CEPN)

Stable Particles

K±

Stable Particles K⁰, K^g

Data Card Listings For notation, see key at front of Listings.

R3 K	OS IN	TO (PI+	P1-)/(P1	(019 C		(P1}/(P2)		
R3 G 30	16	(2.285)	(0.055)		GOBB1	69 DSPK	K+N TO	KOP	5/70
R3 G 79	44	2.282	0.06		MORFETT	TO OSPK	K+N TO	KOP	2/72
R3 A 30	68	2.22	0.095		ALITTI	71 HBC K 72 HBC	-P TO KO K+P TO	+NEUTPALS P1+ P KO	12/71 6/72
P3 63. P3 № 7	80 01	2.22 2.10	0.08		MORSE NAGY	72 DBC 72 HL8C	K+N TO K+N TO	K 0 P K 0 P	2/72 1/73
R3 47 R3 N	99 NAGY	2.16 72 IS A	0.08 FINAL RE	SULT WHI	HILL CH INCLUDE	73 DBC S BDZOKI 6	K+D TC 9.	КОРР	9/73* 11/73*
R3 G	MOFFE THE D	TT 70 I IPECTLY	S A FINAL MEASURED	RESULT N	WHICH INCL / IS KS TO	UDES GOBBI PI+PI+/AL	69. L KOBAR=.	345+005	2/72
R3 A	THE D	IRECTLY	MEASURED	QUANTITY	IS KOS T	0 PI+ PI-/	ALL KO=.3	45+005	6/72
R3 AVG R3 FIT		2.207	0.030	AVERAGE	E (ERROR 1	NCLUDES SC	ALE FACTO	R OF 1.1)	
۹4 (I	KOS TI	NTO PI+	PI- PI0,	CP VIOL	TING)/(KO	L INTO PI+	PI- PI0)		
R4 .	TEST (CPT A	OF CP V SSUMED	VALID - (- SEE TE	T SECTION	VI 8.34 F	OR DEFINI	TIONS	
R4 R4	18	(3.8)	OR LESS	CL=.90	ANDERSON	65 HBC			10/69
R4 C	53 71	(1.7)	DR LESS	CL= 90	WEBBER	70 HBC			8/70
R4 .	99 98	1.2	OR LESS	CL=.90	CHO	71 DBC			4/71
R4 M R4 J 1	50 80	(1.2)	OR LESS	CL=.95	MEISNER	71 HBC	CL≖.9 N	DT AVAIL.	2/71
R4 3	99 84	1.2	OR LESS	L=.90	JONES	72 OSPK			10/72
R4 1 R4 C	48 THIS	0.71	OR LESS	CL=.90	MALLARY	73 OSPK	RE(A)=-	.05+17	8/73*
R4 J R4 M	JAMES	72 IS	A FINAL R	SULT WH	ICH INCLUD	ES JAMES 7	1.	1-0	11/73*
P5 #	05 11			ACED (100)	TE 10++-E	ABOVE VALU	C 41 KELA	/-0	2711
R5	03 11	10.0	OR LESS	CL=.90	BOTT-BODE	67 OSPK	P317(P1)		8/67
R5		1.07	OR LESS	CL=.90	HYAMS	69 OSPK			10/69
R5		0.047	OR LESS	CL=.90	GJESDAL	73 ASPK			5/69 7/73*
	VALUE	CALLUL	AIEU ST U	S, USING	2.3 INSTE	AU UF I EV	ENT, 90 P	ERC.CL	
R6 K	OS IN	TO (PI+	PI- GAMM	A)/(PI+ F	1-) (UN.1	0**-3) (P51/(P1)		
R6	10	3.3	1.2	EN	WEBBER	66 HBC 70 HBC	PG GT 5	D MEV/C D MEV/C	10/69 10/69
R6 B	BURGUN	2.8 N 73 ES	0.6 TIMATES TH	AT DIREC	BURGUN T EMISSIO	73 HBC N CONTRIBU	PG GT 5	D MEV/C 3+6 .	11/73* 11/73*
R6 R6 AVG	•	2.90	0.54	AVERAGE	E (ERROR I	NCLUDES SC	ALE FACTO	R OF 1.01	
P7 K	05 IN	TO (E+	E-)/CHARG	ED (UNITS	10**-5}	(P4)/(P1)		
7	9	50.0	OR LESS (CL≐.90	всни	69 DSPK			2/71
RB K(RBR	05 1N	TO 2 GA 21.0	MMA/TOTAL OR LESS ((UNITS 1 L=.90	BANNER	69 OSPK (P6)		12/71
R8 R R8 R	0	2.2 0.71	OR LESS (OR LESS (L=.90 L=.90	REPELLIN BANNER	71 OSPK 72 OSPK			12/71 8/72
R8 78	0	2.0	OR LESS (CR LESS (L=.90	MORSE BARMIN2	72 DBC 73 HLBC			2/72 2/74*
RBR	THESE	LIMITS	ARE FOR M	MAXIMUM N	INTERFEREN	CE IN KS-K	L TO 2 GAM	AMA S	12/71
R9 (1 R9 31	KOS 11 84	NTO PI+ 0.42	PI- PIO, CR LESS (CP CONSE	RVING]/(K METCALF	OL INTO PI 72 ASPK	+ PI- PIO)	11/72
R10 ()	kos tr	NTO 3PT	0,CP V10L	ATING)/(#	OL INTO 3	P101			
10 50	EE COM 22 (4MENTS (1.2)	UNDER BRAN OR LESS (NCHING R∦ CL≖.90	TIO R4 BARMIN1	73 HLBC			11/73*
***** **	*****	** ***	***** ***	****** *	******	********	********	*******	
				REFERENC	ES FOR KO	5			
BOLDT	58 PF	RL 1	150	E BOLDT,	D O CALDW	ELL,Y PAL		(MIT)	
PAWFORD	59 PF	RL 2	266	CRAWFORD	,CRESTI,D	OUGLASS, GO	DD.TICHO 4	+ (LRL)	
BAGLIN BOWEN COLUMBIA	60 NC 60 PF 60 RC	C 18 R 119 DCH CON	1043 2030 F 727	BAGLIN, B BOWEN, HA M SCHWAR	LOCH,BRIS RDY,REYND	SON + HENNES LDS + SUN + MO	SY + DRE+ (PR) (COE	(EPOL) (N+BNL) LUMBIA)	
BROWN	61 N	19	1155	BROWN + BR	YANT, BURN	STE IN, GLAS	EP,KADYK+	(MICH)	
BERTANZA	62 CE 62 F	RN CON REPRIN	F 836 T D105	J A ANDE BERTANZA	RSON, F S	CRAWFORD + ,CULWICK,E	ISLER +	(LRL) (BNL)	
UNPUE	BLISHE	D, BUT	RECERTIFI	ED BY AL	THORS, AU	GUST 66.			
CHRETIEN BROWN	63 PF	2 131 2 130	2208 769	CHPETIEN BROWN,KA	I+ {8R DYK,TRILL	ANDEIS+BRO ING,ROE +	N+HARVARI	+ MIT) +NICHI	
ANDERSON	64 PF	? 136 RL 14 4	B 1074 75	M KREISL +CRAWFOR	.EP,0 OVER	SETH.J CRO TERN.BINFO	NIN (PRIN RD + (LRI	(CETON) +WISC)	
LFF-STE	66 PL	. 21 59	5	ALFF-STE	INBERGER.	HEUER,KLEI	WKNECHT +	(CERN)	
AUERBACH ALSO	65 AL	R 149 1 JERBACH	052	AUERBACH	DOBBS+LA	NDE, MANN, SI	CTULLI+	(PENN)	
BALTAY BEHR	66 PR	142	932 540	BALTAY,S BEHR,BRI	ANDWEISS, SSON+PETI	STONEHILL -	H (YAL	E+BNL)	
BELLOTTI BOTT-80D	66 NC	245A 7	37 77	+PULLIA, BOTT-BOD	BALDO-CEO	LIN + DE BOUARD -	(MILAN)	PADUA1	
IRSCH	66 P9	147	939	L KIRSCH	P SCHMID	т	(COL	UMBIA)	
BOTT-BOD DONALD HILL	67 PL 68 PL 68 PF	248 1 278 171 1	94 58 418	BOTT-BOD DONALD, E HILL, ROB	ENHAUSEN, DWARDS,NI INSON,SAK	DE BOUARD; SAR+ (LIVP) ITT +	CASSEL+ CERN,IPNP (BNL,CAF	(CERN) (CDEF) (NEGIE)	
ANNER	69 PR	188 2	033	+CRONIN.	LIU,PILCH	ER	(PRIN	CETON	
SOHM SOZOK I	69 TH 69 PL	ESIS 308 4	98	A. BOHM +FENYVES	,GOMBOSI.	NAGY , SUR AN	(1+ (BUD	(AACH)	
OYLE OBBI	69 UC 69 PR	FL 181	39-THESIS 82	J.C. DOY GOBBI,GR	LE EEN, HAKEL	MOFFETT,R	SEN+(ROCH	(LPL) ESTER)	
IYAMS IORFIN	69 PL 69 PR	298 L 23	521 660	+KOCH, PO MORFIN, S	TTER,VON I INCLAIR	LINDERN, LOF	ENZ+ CERN	(MPIM) (MICH)	
TUTZKE	69 PR	177	2009	+ABASHIA	N, JONES, M	ANT SCH, ORR.	SMITHCILL	INDISI	
EBBER	70 BA 70 PR	D1 19	51Z 67	+GOBBI.G +SOLMITZ	REEN, HAKEI	, ROSEN	(ROCH	(LRL)	
ALSO	69 UC 71 PR	KL 192	26 THESIS	B R WEBB +BRIDGEW	ER ATER+CODPI	ER.GERSHWI	,HABIBI+	(LRL) (COLU)	
AL SO	71 NE 71 PR	VIS-18 D3 15	7 THESIS 57	WILLIAM +DRALLE,	A. CODPER CANTER,EN	SLER.FISK+	(COL (CARN+BNL	UMBIA) +CASE)	
EISNER	71 PL 71 PR	. 358 2 D3 59	65	+MONTANE +MANN, HE	T, PAUL, PAU RTZBACH, KI	JLI+ (CERN+SACL (MASA+BNL	+OSLO}	
EPELLIN	71 PL	. 368 60	33	+WOLFF,C	HOLLET, GA	ILLARD, JANS	+ (ORSA	+CERN]	

Stable Particles

K⁰_S, K⁰_L

- -------

ALITTI BANNER JAMES JONES	72 PL 398 568 72 PRL 29 237 72 NP 849 1 72 NC 9A 151	J ALITTI,E LESQUOY,A MULLER (SACLAY) +CRONIN,HOFFMAN,KNAPP,SHOCHET (PRINCETON) +MONTANET,PAUL,SAETRE+ [CERN+SACL+JSLO] +ABASHIAN,GRAHAM,MANTSCH,ORR,SMITH+ (ILL)	
METCALF MORSE NAGY ALSO SKJEGGES	72 PL 408 703 72 PRL 28 368 72 NP 847 94 69 PL 308 498 72 NP 848 343	+NEUMOFER.NIEBERGALL+ (CERN+IPN+WIEN) +NAUENBERG,BIEPMAN,SAGER+ (COLC+PRIN+UMO) +TELBISZ,VESZTERGORBI,AGY+ (RUDAPESI) BOZOKI,FFNYVES,GOMBOSI,NAGY+ (RUDAPESI) SAJEGGESTAD,JAMES,MOTANCT+IOSLO+CERN+SALL)	
BARMIN1 BARMIN2 BUPGUN FACKLER GJESDAL HILL MALLARY GEWENIGE	73 PL 468 465 73 PL 478 463 73 PL 468 481 73 PL 31 847 73 PL 31 847 73 PL 34 8217 73 PR D8 1290 73 PR D8 1290 73 PR D7 1953 74 SUBMITTED TO PL	+BARYLOV, DAVIDENKD, DEMIDOV+ (ITEP) +BARYLOV, DAVIDENKD, DEMIDOV+ (ITEP) +BARTANET, LESDUDV, MULER, PAULI+(SACL+CERN) +FRISCH, MARTIN, SMOOT, SOMPAYRAC (MIT) +PRESSER, STEFFEN, STEINBERGER+ (CERN+HEID) +SAKITT, SAMIDS, BUPRIS, ENGLER+ (CERN+HEID) +BINNIE, GALLIVAN, GOMEZ, PECK, SCIULI+ (CEN) BINNIE, GALLIVAN, GOMEZ, PECK, SCIULI+ GEWENIGFR, GJESDAL, PRESSER+ (CERN+HEID)	
		PAPERS NOT REFERRED TO IN DATA CARDS	
BIRGE MULLER FITCH GDDD CRAWFORD AUERBACH TRILLING UPDA	60 ROCH CONF 601 60 RRL 4 418 61 NC 22 1160 61 PR 124 1223 62 CERN CONF 827 65 PRL 14 192 65 UCRL 16473 TED FROM 1965 APGONNE	R W BIRGE,P P ELY + (LRL+HISCONSIN) MULLER,BIRGE,FOWLER,GODD,PICCIONI+(LRL+BNL) V FITCH,P PIROUE,R PERKINS GODD,HAISEN,MULLER,PICCIONI + (LRL) F S CRAHFORD (LRL) AUERBACH,LANDE,MANN,SCIULLI,UTO + (PENN) GEORGE H TRILLING (LRL) CONF., PAGE 115.	
****** *	******** ********** ***	****** ********* ******* ******* ******	
K.	13 LONG-1		
WE	13 (KOL) GIVE (KOL-KOS MASS DI	- (KOS) MASS DIFFERENCE IFFERENCE / HBAR) IN UNITS OF LO**10 SEC-1	
D T D	(2.20) (0.35) 0.84 0.29	FITCH 61 CNTR 0.22 GOOD 61 HEBC	
o c v	1.02 0.23 ALUE CHANGED FROM 1.7	CAMERINI 62 HLBC SEE NOTE C BELOW (SEE TABLE 1 OF CAMERINI 66)	8/67 8/67
	0.55 0.24 0.26 0.36	AUBERT 65 HLBC 0.26 BALDO-CEO 65 HLBC ASSUMES CP CONS.	6/66
	HRISTENSON 65 HAS BEEN	CORRECTED FOR INTERFERENCE BY FITCH 65 FINOT	1/71
	30 (0.89) (0.15) ISHNEVSKY 65 NOT CORRE	VISHNEVSK 65 OSPK CU AND AL REGEN	8/67
D	0.514 0.039	ALFF-STEI 66 OSPK	6/66
0 9 0 T	(0.531) (0.027)	BOTT-BODE 66 CSPK C REGEN	9/66
	72 (+ 0.64) (0.18) FRRDR IGNORES UNCERTAL	CANTER 66 DBC KO SCATTER IN D2	11/66
DN	USED IN HILL 71. 95 0.62 0.10	0-16 CHANG 66 HBC KO+P INTO HYPER.	8/67
D	0.81 0.17	FUJII 66 CSPK IRON REGENERATOR METSNERI 66 HBC SEE NOTE MI	9/66
D M1 D	+ SIGN FAVORED 0.38 0.16	MEISNER2 66 HBC	9/66
ОТ 13 0	36 + 0.64 0.19 0.65 0.11	CANTER 67 DBC KO+D INTO HYPER.	11/67
D 54	90 0.59 0.13	BALATZ 68 OSPK AL REGENERATOR	3/68
D T	+0.487 0.046	MELHOP 68 OSPK ST.STEEL REGEN	3/68
0 8 D 8 90	0.547 0.024 DTT-BOD 69 IS A REEVAL	BOTT-BOD 69 OSPK C REGEN UATION OF BOTT-BOD 66	1/71
DF E	0.555 0.020 STIMATED ADDITIONAL SY	FAISSNER 69 ASPK REGEN IN CU STEMATIC UNCERTAINTY LESS THAN TWO PERCENT	10/69
D 0	0.542 0.006	CULLEN 70 CNTR	1/71
0	0.481 0.052	0.075 BALATS 71 DSPK	9/71
D TH 1	19 (+ 0.67) (0.14)	HILL 71 DBC	10/71
р н т	THE MAGNITUDE MAY HAVE	AN ADDITIONAL SYSTEMATIC ERROR OF ABOUT 0.12	10/71
D T 17	57 0.557 0.038 A KOS MEAN LIFE OF 0.8	FACKLER 73 OSPK 62 10**-10 SEC WAS USED IN CONVERTING THE	11/73
	ASS DIFFERENCE FROM U INITS. VALUES NOT BEAR	INITS OF INVERSE KOS MEAN LIVES TO ABSOLUTE	1/71
	ABSOLUTE UNITS OR WERE	CONVERTED USING THE AUTHORS' VALUE OF THE	1/71
D AVG	0.5403 0.0035	AVERAGE (EDROR INCLUDES SCALE SACTOR OF 1 AL	1771
		The second second second of 1407	
_	13 KOL ME	AN LIFE (UNITS 10**-8 SEC)	
т т з	KOL MEAN LIFE 84 8.1 3.2	2.4 BARDON 58 CNTR	
т <i>4</i> т 1	SSUMED DS=DQ AND DELT	A 1=1/2 CRAWFORD 59 HBC 1.3 DARMON 62 FRC	
т т 174	5.3 0.6	FUJII 64 OSPK	
т 1/1	5.15 0.14	DEVLIN 67 CNTR	
, L 7 .4	(5.0) (0.5) M 5.154 0.044	LOWYS 67 HLBC Vosburgh 72 CNTR	2/71
T L S	UM OF PARTIAL DECAY R	ATES.	

0.042 0.042 AVERAGE (ERROR INCL. SCALE FACTOR OF 1.0) 0.040 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)

53

AVG FIT

5.158 5.179
Stable Particles K⁰_L

13 KOL PARTIAL DECAY MODES

			UELAY MASSES
P1	KOL INTO 3PIO	TAU O PRIME	134+ 134+ 134
P2	KOL INTO PI+ PI- PIO	TAU O	139+ 139+ 134
P3	KOL INTO PI MU NEUTRINO	KL MU3	139+ 105+ 0
P4	KOL INTO PI E NEUTRINO	KL E3	139+ .5+ 0
P5	KOL INTO PI+ PI-	KL PI+ PI-	139+ 139
Po	KOL INTO MU+ MU-	KL 2MU	105+ 105
P7	KOL INTO E+ E-	KL 2E	.5+ .5
P8	KOL INTO E MU	KL EMU	.5+ 105
P9	KOL INTO TWO GAMMAS	KL 2GAMMA	0+ 0
P10	KOL INTO PI+ PI- GAMMA	KL PI+-G	139+ 139+ 0
P11	KOL INTO PIO PIO	KL 2PIO	134+ 134
P12	KOL INTO PI E NEU GAMMA	KL E3GAM	139+ .5+ 0+ 0
P13	KOL INTO PIO TWO GAMMAS	KL PI2GAMMA	134+ 0+ 0
P14	KOL INTO E+ E- GAMMA	KL 2EGAM	.5+ .5+ 0

	NEUTR	AL K CONS	TRAIN	NED FIT
VERAL	L FIT	OF MEAN	LIFE,	WIDTHS AND BRANCHING
ATICS	USES	65 DATA	POINT	TS TO DETERMINE SIX
UANTI	TITES	 OVERAL 	L FIT	T HAS CHISQ=102.
THE LA	RGEST	CONTRIBU	ITION	TO THE CHISQ COMES FROM
ESSNE	R 73	(15.0).	THIS	EXPERIMENT IS
CONSIS	TENT	WITH THE	MOST	RECENT ETA+- RESULTS.

FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS

The matrix below is derived from the error matrix for the fitted partial decay mode branching fractions, P_{i} , as follows: The <u>diagonal</u> elements are $P_{i}\pm\delta P_{i}$, where $\delta P_{i}=\sqrt{\langle\delta P_{i}\delta P_{j}\rangle}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coefficients ($\delta P_{i}\delta P_{j}\rangle/(\delta P_{i}\cdot\delta P_{j})$. For the definitions of the individual P_{i} , see the listings above; only those P_{i} appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1.

		Ρ1	P 2	P 3	P 4	P 5	PII	
Ρ	1	.2126+0	061					
Ρ	2	0616	.1194+0	037				
Ρ	3	4760	2958	.2751+0	054			
Ρ	4	5712	2783	2445	.3902+0	05 B		
Ρ	5	1984	7035	.3295	.3233	.0018+0	002	
P	11	.1357	0097	0791	0948	0348	.0009+00	02

FITTED PARTIAL DECAY MODE RATES

The matrix below is the branching fraction matrix above, transformed into rate space; i.e., $G_i \equiv \Gamma_i = \Gamma_{total} P_i$, in appropriate unite. In analogy to the matrix above, the diagonal elements are $G_i \pm \delta G_i$, where $\delta G_i = \sqrt{\langle \delta G_i \, \delta G_i \rangle}$, while the <u>off-diagonal</u> elements are the <u>mormalized</u> correlation coefficients $\langle \delta G_i \, \delta G_j \rangle / (\delta G_i \cdot \delta G_j)$. Note that, because of the error in Γ_{total} , the errors and correlations here are not directly derivable from those above.

	G 1	G 2	G 3	G 4	G 5	G11
G 1	.0411+04	013				
6 2	.0247	.0231+00	700			
GЗ	3010	1853	.0531+001	11		
G 4	3447	1459	0633 .	0753+00	12	
G 5	1694	6709	.3240	.3115	• 0003+-•000	00
GII	.1447	.0034	0551	0631	0319 .	.0002+0000

13 KOL DECAY RATES

- ----

₩1	KOL	INTO PIO	PTO PTO (JNITS 10*	**6 SEC-1		G1)	
₩1	54	5.22	1.03	0.84	BEHR	66 HLBC	ASSUMES CP	0/00
W1		• • . • . •	•••				ALE EACTOR OF 1 11	
W1	F11	4.11	0.13	FROM FIL	TERROR	INCLUDES SU	ALE FACTOR OF 1.11	
			07-00 (1)		4 SEC-1		(62)	
W2	KUC	INTO PI+	PI- PU (U	1115 10+4			621	8/66
w2	18	3+20	0.17		EDAN 7TM	AS HRC		6/66
WZ.	14	1.4	0.20	A 27	acup		ASSUMES CP	8/66
WZ.	150	2+02	0.26	0.21	UCODEP	73 HBC	ASSUMES CP	10/71
WZ.	22	2.20	0.35		ACDOLK	71 DBC	ASSUMES CP	. 4/71
W 2	1 09	12 51	(0.3)		IAMES	71 HBC	ASSUMES CP	6/71
*2	J 78	2.17	0.33		METSNER	71 HBC	ASSUMES CP	10/71
W2	. 100	2 - 12	0.30		IAMES	72 HBC	ASSUMES CP	1/73
112	J 180	TUE OVER	ALL ETT TH			STERMINED I	BY THE MEAN LIFE AN	
w.c	10	DRANCHT	NC DATID P	1 5 KAIL I	UTC DEAS	IN THE DISCH	EPANCY BETWEEN THE	
WZ.	191	S BRANCHI	ENTS DOES	NOT ARES	TT THE S	ALE EACTOR	OF THE OVERALL FIT	
WZ.		MEASUREM	A ETNAL N	EACHDENE?	NT AND T	ALLINES IAM	=\$ 71.	11/73*
W2	J JAI	153 12 13	A FINAL P	CASONEPEI		ICEODED UNIN		
W/2		••••••	• • • • •	AVERACI		INCLUDES SI	ALE FACTOR OF 1.3)	
#2	AVG	2.50	0.15	EDOM ET	T (EPPOP	INCLUDES SI	ALE FACTOR DE 2.01	
WΖ	ET1	2.500	10.014	DECORAN		INCLOUED D		
			1366 1	DEGGRAN	occow ,			
	K 01	INTO PI		CHNTTS	10##6 SE	11-11	(64)	
u 2	NOL.	7.52	0.85	0.72	AUBERT	65 HLBC	DS=DQ.CP ASSUMED	8/67
22	620	7.81	0.56		CHAN	71 HBC		2/72
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	010							
53	AVG	7.71	0.46	AVERAG	F (ERROR	INCLUDES S	CALE FACTOR OF 1.0)	
ũ3	FIT	7.53	0.12	EROM ET	T LERROR	INCLUDES S	CALE FACTOR OF 1.1)	
",								
₩4	KOL	INTO CHA	RGED (3-80	DY) (UNT	TS 10**6	SEC-1)	(G2+G3+G4)	
W4	98	15.1	1.9		AUERBAC	H 66 OSPK		8/67
W4								
W4	FIT	15.15	0.16	FROM FI	T (ERROR	INCLUDES S	CALE FACTOR OF 1.03	
W5	KOL	INTO LEP	TONIC (KMU	3+KE3) (I	UNITS 10	**6 SEC-1)	(G3+G4)	
₩5	D 109	9.85	1.15	1.05	FRANZIN	I 65 HBC		2/72
W5	C 335	(10.3)	(0.8)		HILL	67 DBC	K+N TO KO P	8/67
W5	D 393	11.6	0.9		сно	70 DBC	K+N TO KOP	10/70
W5	D 252	13.1	1.3		WEBBER	71 HBC	K- P TO KOBAR N	2/72
W5	D 410	12.4	0.7		BURGUN	72 HBC	K+P TO KOPPI+	1/73
₩5	D 126	8.47	1.69		MANN	72 HBC	K- P TO KOBAR N	9/72
₩5	C CH0	70 INCLU	JDES EVENTS	OF HILL	67			
₩5	D AS	SUMES DS=	DQ RULE					
₩5								
w5	AVG	11.60	0.65	AVERAG	E (ERROR	INCLUDES S	CALE FACTOR OF 1.51	

FIT 12.85 0.16 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2) (SEE IDEOGRAM BELOW)

Data Card Listings For notation, see key at front of Listings.

Stable Particles

 K_L^0

9166

R15 R15 R15 R15	0 894 (0.99) (0.023) KULYUKINA 66 CC 0 1539 (1.06) (0.05) VERHEY 66 CSPK 0 LOW PRECISION EXPISION AVERAGED. FOR MORE PRECISE VALUE, 0 SEE SI342 (BENNETT 70, MARX 70)	9/66 8/67
R16 916 916	KOL INTO (MU+ PI- NEU)/(MU- PI+ NEU) IM 1.0081 0.0027 DORFAN 67 CSPK SEE ALSO S13A2 AND S13AL IN THE CP VIOLATION SECTION	11/67 2/71
R17 R17 R17 R17 R17 R17 R17	KOL INTO (PIO PIO)/TOTAL (UNITS 10**-3) (P11) C 7 (1.5) (1.2) CRIEGEE 60 OSPK C CRIEGEE EXPT NOT DESIGNED TO MEASURE 2 PIO DECAY MODE G 189 (2.5) (0.8) G ALLLARD 69 OSPK E00=3.6*-0.6 G LATEST RESULT CONTINUE THIS EXPERIMENT GIVEN BY FAISSNER 70 R19 FIT 0.93 0.19 FROM FIT	7/66 5/69 1/71
R18 R18 R18 R18 R18 R18 R18	KOL INTO (3PI0)/(PI+PI-PI0) (P1)/(P2) 188 2.0 0.6 ALEKSANYA 64 BEC 1010 1.80 0.13 BUDAGOV 68 HLBC 883 (1.651 (0.07) BARMINZ 72 HLBC ERROR STAT. CNLY AVG 1.81 0.13 AVERACE (ERROR INCLUDES SCALE FACTOR OF 1.0) FIT 1.700 0.070	9/66 10/68 3/74*
R19 R19 R19 R19 R19 R19 R19 R19 R19 R19	KOL INTO (2P10)/(3P10) (UNITS 10*-2) (P11)/(P1) C 109 (1.89) (0.31) CRONIN 167 057 ETA00=4.9*-0.5 C (1.36) (0.31) CPONIN 267 057 ETA00=3.92*-0.5 C (1.36) (0.18) CPONIN 267 057 ETA00=3.92*-0.5 C RONINZ IS FURTHER ANALYSIS OF CROMINI .NOW BOTH WITHDRAWN BATLETT 60 057K ETA00=2.2*-0.3 133 1.31 0.31 CFNCE 69 057K ETA00=2.2*-0.5 29 0.37 0.08 BARMER 70 052 02-0.2*-0.5 30 0.32 0.15 BUDAGOV 70 HLBC ETA00=1.9*-0.5 F FA15SNER 70 0.05 FA15SNER 70.05 5 F FA15SNER 70 0.32 2.2*-0.5 5 F FA15SNER 70 0.5 5 7	8/67 11/67 11/68 11/68 2/72 10/69 12/70 10/70 12/70
R19	AVG 0.439 0.098 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.7) 0.439 0.088 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.5) (SEE IDECGRAM BELOW) WEIGHTED AVERAGE = 0.439 ± 0.098	
	Values above of weighted average, error, and scale factor are for the reader's convenience only. The data were actually processed by a constrained fit program, which calculates its own values of \mathbf{x} , $\delta \mathbf{x}$, and scale factor, which are differ- ent from the values shown here.	
R 20 R 20 R 20 R 20 R 20 R 20 R 20 R 20	KOL INTD (P1+ PI- /(KE3+ KMU3) (UNITS 10**-31 (P5)/(P3+P4) 309 2.51 0.23 DEBOUARD 67 0SPK 525 2.35 0.19 FITCH 67 OSPK ETA+-=1.91+06 AVG 2.41 0.15 AVFRAGE ERROR INCLUDES SCALE FACTOR OF 1.0) FIT 2.67 0.26 FROM FIT ERGR INCLUDES SCALE FACTOR OF 1.0)	6/68 6/68
R21 R21 R21 R21 R21 R21 R21 R21	KOL INTO (2GAMMA)/(3 PTO) (UNITS 10**-3) (P9)/(P1) 16 2.5 0.7 AFNOLD 68 HLBC VACUUM DECAY 5 BANNER 69 IS NEW RAPT. NOT TO BE CONF WITH RB DE CRONIN 67 115 2.24 0.28 BANNER 69 OSPK 28 2.13 0.43 BANNER 11 HLBC 14.43 29 2.24 0.22 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	11/68 2/72 11/68 8/71
No	ote on the $K_{L}^{0} \rightarrow \mu^{+}\mu^{-}$ Controversy	

NEU) NEAGU

61 CC

The $K_L^0 \rightarrow \mu^+ \mu^-$ branching ratios (R22) given by CLARK 71 and CARITHERS(1 and 2) 73 are incompatible.

CARITHERS2 73 uses the same basic spectrometer as CARITHERS1 (three X-Y proportional chambers, hydrogen Čerenkov for electrons, and muon counters) with several modifications: an extra muon hodoscope was added to improve background rejection, some concrete was moved further downstream from the last chamber to reduce backscattering, and the

Stable Particles K⁰_L

spectrometer magnet bending was increased from 210.6 to 240 MeV/c transverse momentum to improve the separation between the signal and the background process $K_L^0 \rightarrow \pi \mu \nu \rightarrow \mu \mu \nu \overline{\nu}$. CARITHERS(1 and 2) find 6 and 3 events, respectively, and give consistent rates for $K_L^0 \rightarrow \mu^+ \mu^-$.

CLARK 71 observe no events but would expect around 11 based on the combined CARITHERS 73 rate.

The theoretical lower limit for $\Gamma(K_{L}^{0} \rightarrow \mu^{+}\mu^{-})/\Gamma(K_{L}^{0} \rightarrow \pi^{+}\pi^{-})$ based on unitarity considerations is 3×10^{-6} , ¹ in agreement with the CARITHERS(1 and 2) 73 value: $(5.8_{-2}^{+4}) \times 10^{-6}$ and considerably above the CLARK 71 upper limit: $< 1.2 \times 10^{-6}$ (90% confidence level).

We know of no basis on which to reject either experiment. We therefore raise the upper limit to encompass the results of both experiments until the discrepancy is resolved. The 90% confidence level upper limit for the combined CARITHERS result is $\Gamma(K_{L}^{0} \rightarrow \mu^{+}\mu^{-})/\Gamma(K_{L}^{0} \rightarrow \pi^{+}\pi^{-}) < 9 \times 10^{-6}$ or $\Gamma(K_{L}^{0} \rightarrow \mu^{+}\mu^{-})/\Gamma(K_{L}^{0} \rightarrow all) < 1.6 \times 10^{-8}$, where we have used $\Gamma(K_{L}^{0} \rightarrow \pi^{+}\pi^{-})/\Gamma(K_{L}^{0} \rightarrow all) = (1.8 \pm 0.2) \times 10^{-3}$, our 1974 value.

Reference

1. C. Quigg and J. D. Jackson, UCRL-18487 (1968).

R22	KOL	INTO (MU+	MU-)/(P[+P	[-] (UN1	TS 10**+	5)	(P6)/(P5)	
R22	0	14.0	OR LESS C	.=.90	FOETH	69 ASPK		5/70
R22	0	1.8	OR LESS C	.=.90	DARR IULA	T 70 ASPK		11/70
R22	0	0.12	OR LESS CI	= 90	CLARK	71 ASPK		6/71
R22	C 6	(0.67)	(0.61)	(0.31)	CARITHE1	73 ASPK		6/73
R22	с 3	[0.45]	(0.6)	(0.3)	CARITHE2	73 ASPK		10/73
R22	C 9	0.58	0.4	0.2	CARITHE2	73 ASPK		10/73
R22	C SE	COND CARIT	HE2 VALUE	IS COME	INED AVG	OF THE TI	WO CARITHERS EXPTS	10/73
R22	C ER	RORS REPRE	SENT 90 PE	CENT CO	N. LEV.	15 PERCEN	T IN EACH TAIL).	10/73
R23	KOL	INTO (E+	E- 1/(PI+P	(-) (UN1	TS 10**-	5)	(P7)/(P5)	
₽23	0	10.0	OR LESS CI	=.90	FOETH	69 ASPK		5/70
R23		0.10	OR LESS C	 90	CLARK	71 ASPK		6/71
R24	KOL	INTO (F. M	U)/(PT+PT-		10**~51		(PA)/(P5)	
P 2 4		0.10	OR LESS C	=.90	CLARK	71 ASPK		6/71
825	K01	INTO (PI	E NEU GAM)		NINTS	0**-21	(012)/(03)	
R25	10	3.3	2.0		PEACH	71 HLBC	GAM KE GT 15 MEV	6/71
0.24	* 01					10-+-21	(0) 3) ((0))	
0.26		1.1	09 1555 (1	- 00	BANNED	40 0504	(*15)/(*1)	2173
-20	0		04 6235 6		DANNER	0 7 03FK		27.12
R27	KOL	INTO (PI+	PI-)/TAU	UNITS 1	0**-21		(P5)/(P2)	6/73
R27	4200	1.64	0.04		MESSNER	73 ASPK	ETA +- = 2.23	6/73
R27								
R27	FIT	1.49	0.19	ROM FIT	(ERROR)	INCLUDES	SCALE FACTOR OF 6.2)	
R28	K OL	INTO LE+	E- GAMMAJ/	(3P10) (UNITS 10	**-4)	(014)/(01)	
R28	0	1.3	OR LESS C	=.90	BARMIN1	72 HLBC		3/74
					ENDENCE (PLOT	
			LJ NUL EN	. NOT DEF	CHUCKUCE (OFLITZ	r Loi	

RELATED TEXT SECTION VI 8.1, APPENDIX I, AND MINI-REVIEW ON SLOPE PARAMETERS IN THE CHARGED K SECTION OF THE DATA CARD LISTINGS ABOVE MATRIX ELEMENT SQUARED = 1 + G (S3-SO)/(MPI+**2)

KLONG INTO PI+ PI- P 4 HBC AV=-7.6 +- 1.7 4 HBC AV=-7.3 +- 1.6 5 CC AV=-5.5 +- 1.5 TAU DECAYS KLONG INTO P1+ P1- P10 ADAIR 64 MBC AV--7.6 \leftarrow 1.7 LUERS 64 MBC AV--7.3 \leftarrow 1.6 ASTBURY1 65 CC AV--5.8 \leftarrow 1.5 ASTBURY1 65 CC AV--(7.3 \leftarrow 6-.8] ANIKINA 66 CC AV--(7.3 \leftarrow 6.7 ANIKINA 66 HBC AV--(7.3 \leftarrow 6.7 ANIKINA 66 HBC AV-8.6 \leftarrow 0.7 MCPKINS 67 HBC AT=-0.294 \leftarrow 0.18 MCFKENS 67 OSPK AI=-0.204 \leftarrow 0.25 ASILE2 68 OSPK AT=-0.88 \leftarrow 0.22 ALBROW 70 ASPK AV--0.862 \leftarrow 0.15 BUCHANAN 70 ASPK AV--0.862 \leftarrow 0.15 BUCHANAN 70 ASPK AV--0.261 \leftarrow 0.015 MITH 70 OSPK AT=-0.217 \leftarrow 0.014 METCALF 72 ASPK AT=-0.31 \leftarrow 0.03 ALEXANDER 72 HBC LINEAR ENERGY DEPENDENCE (G) FOR TAU DECAYS 79 77 3/71 3/71 3/71 3/71 3/71 3/71 0.55 0.23 66 310 280 126 1350 1198 2446 29000 8 36K 4400 0.13 0.09 0.17 3/71 10/69 3/71 3/71 1/71 3/71 3/71 1/73 0.50 0.11 1486 0.688 0.619 0.032 3200

Data Card Listings For notation, see key at front of Listings.

GTO	в	BUCHANAN 70 GIVES A=0.257 +005 FOR A QUADRATIC FIT WITH	3/71
GTO	8	STATISTICAL EPRORS ONLY. THE A VALUE USED HERE IS FOR A LINEAR	3/71
GTO	в	FIT AND INCLUDES SYSTEMATIC ERRORS. QUADRATIC FIT DOES NOT	1/73
GTO	8	IMPROVE CHI SQUARED PROBABILITY.	1/73
GTO			
GTO	AVG	0.610 0.021 AVERAGE (FRROR INCLUDES SCALE FACTOR OF 2.6)	

VG 0.610 0.021 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.6) (SEE IDEOGRAM BELOW)

2/72 8/67 5/69 1/74* 1/74* LONGO 69 T=3.3 CALC. FROM DXI/OL=-6.0 (TABLE 1) DIVIDED BY XI=-1.81 SANDWFISS 73 IS FOR L+=0 AND T=0. LS 1/744 -0.49 0.37 AVERAGE (ERPOR INCLUDES SCALE FACTOR OF 3.6) XIC AVG
 IMAGINARY
 PART OF XI
 (TEST OF T REVERSAL)

 -0.2
 0.6
 ABRAMS
 68
 0.59K

 -0.02
 0.08
 LUNGO
 69
 CNTR

 -0.060
 0.045
 SANDWEISS 73
 CNTR
 1X1 1X1 1X1 1X1 1X1 POLARIZATION PDL. T=3.3 POL, T=0 10/69 11/69 1/74* 2.2M -0.051 0.039 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) IXI IXI AVG
 IAN
 IAVE
 IAVERAGE
 (EPROR INCLUDES SCALE FACTOR OF 1.0)

 L+M
 LAMBDA +
 (LINEAP ENERGY DEPENDENCE OF F+ IN KMU3 DECAY)

 L+M
 SEE ALSO THE CORRESPONDENCE OF F+ IN KMU3 DECAY)

 L+M
 FOR RAD.COR. OF KNU3 OP SEE GINSBURG 70 AND BECHERRAWY 70.

 L+M
 FOR RAD.COR. OF KNU3 OP SEE GINSBURG 70 AND BECHERRAWY 70.

 L+M
 CHEN
 TO ASPK

 L+M
 DECA
 CO.040

 L+M
 DECA
 CO.051

 L+M
 DECA
 CO.040

 L+M
 DECA
 CHEN

 L+M
 DECA
 CHEN

 L+M
 CHEN
 TO VALUE AND EROR HAVE BECH CHANGE PROF CHAMACE BEND HAVE

 L+M
 CHEN
 TO VALUE AND EROR HAVE BECH 3/74* 1/74* 1/74* 3/74* 3/74* 3/74* 3/74* 3/71 3/71 1/74* 3/74* LO L0 L0 1/74* 1/74* 1/74* 1/74* 3/74* 3/74* 3/74* 1/74* 1/74* 3/74* ιο L0 L0 3/744 L0 0.0198 0.0030 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) ΔVG
 0.0199
 0.0030
 AVERAGE
 LERKOG
 INLUDOES
 SLALE
 FALTOR

 LANDDA +
 LLINEAR ENERGY DEPENDENCE OF + IN KD E30 DECAYI
 FOR RAD_COR.
 CF KE3 DP SEE GINSUNG GF AN D ECCHERANY 70.

 FOR RAD_COR.
 CF KE3 DP SEE GINSUNG AF AND ECCHERANY 70.
 LLRS AN D ECCHERANY 70.

 577
 +0.15
 -00
 LLRS A HEC
 DP MD R

 577
 +0.15
 -00
 FIESTONE 65 THEC
 DP MD R

 577
 +0.15
 -00
 LLRS A HEC
 DP MD R

 572
 +0.15
 -00
 LLRS A HEC
 DP MD R

 572
 +0.15
 -00
 LLPYS
 67 THEC
 DP ND R

 574
 +0.01
 -015
 KAOYK
 67 THEC
 DP ND R

 5740
 +0.023
 -0.012
 BASILE
 68 CSPK
 DP ND R

 500
 +0.023
 -0.012
 BASILE
 68 CSPK DP ND R

 510
 -0.022
 -0.014
 ALEPOW 73 ASPK DP, VSES
 S71

 501
 -0.014
 ALEPOW 73 ASPK DP, VSES
 S71
 DP, USES

 571< UECAY) LAWY 70. DP, ND RC DP, ND RC DP, NO RC E, PI, ND RC PI, USES RC PI DP L + E L3/74* 153 577 762 531 8/67 8/67 8/67 5/69 3/68 12/71 6/71 1/73 9/73* 1/74* 3/74* 3/74* 531 +0.01 240 +0.08 1000 0.02 4800 +0.023 16K 0.023 1910 0.022 5600 0.045 1871 0.019 500K (0.031) 26K (0.044) PRELIMINARY. PI DP, NO RC DP, USES RC DP, NO RC PI, USES RC DP, USES RC PI TRANSV-, OP DP, USES RC USES RC TRANSV., PC 0.0257 0.0043 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) (SEE IDEOGRAM BELOW) WEIGHTED AVERAGE = 0.0257 ± 0.0043 ERROR SCALED BY 1.3 CHISQ · · · · · · BRANDENBU 73 HBC 0.3 73 ASPK · · · · · · · ALBROW 1.9 · · · · · NEUHDFER 72 ASPK 0.1 -CHIEN 71 ASPK 5.9 71 ASPK 0.3 BISI BASILE 68 OSPK 0.1 ARONSON 68 OSPK 0.2 · · · · · I INYS 67 FBC 67 HBC ·KADYK 1.1 FIRESTONE 67 HBC 3.2 FISHER 65 DSPK LUERS 64 HBC 13.0 (CONLEV =0.113)

0.3

-0.1

0.0

0.1

LAMBDA+ FOR KE3 DECAY OF KOL

0.2

RATIO OF TENSOR TO F+ COUPLINGS 1.0 OR LESS CL=.68 KULYUKIN 1.0 OR LESS CL=.95 ALBROW KULYUK INA ALBROW 67 CC 73 ASPK 5600 13 CP VIOLATION PAPAMETERS IN KOL DECAYS RELATED TEXT SECTION VI B.3 AND MINI-REVIEW BELOW TEXT SECTION VI 8.3 B SEF SCRIBAND 70 FOR DEFINITION (HIS SIGMA+-). A=L FOR MAX ASYMMFTRY (M)**2 = 1+ SIG+- (2/SQRT(3) *((T+)-(T-))/ TMAX) AS SCRIBAND 70 PARAMETER FOR PI+ PI- PIO (UNITS 10**-2) DECAY ASYMMETRY 0.95 0.2 0.050 BLANPIED 68 CNTR SCRIBAND 70 CNTR SMITH 70 OSPK • 3M 3M 0.2 . 4/70 .12/70 .10/70 4400 0,000 0.063 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) (SEE IDEOGRAM BELOW) AVG 0.016 WEIGHTED AVERAGE = 0.016 ± 0.063 ERROR SCALED BY 1.3 CHISE · · · · SMITH 70 DSPK 0.1 - · · · · · · · SCRIBAND 70 CNTR 1.6 BLANPIED 68 CNTR 1.7 (CONLEV 2 -1 n 1 =0.190) DECAY ASYMMETRY FOR KOL INTO PI+ PI- PIO TEXT SECTION VI 8.3 C CHARGE ASYMMETRY IN LEPTONIC DECAYS (PERCENT)-----SUCH ASYMMETRY VIOLATES CP . IT IS RELATED TO REAL(EPSILON).

RATIO OF SCALAR TO F+ COUPLINGS FOR KE3 DECAY(ABS, VALUE)----

0.15 OR LESS CL=.68 KULYUKINA 67 CC 0.19 OR LESS CL=.95 ALBROW 73 ASPK

(PERCENT) DERIVED FROM R16 11/67 1/73 1/73 6/73 KOL INTO (MU+PI-NU)-{MU-PI+NU}/(MU+PI-NU)+(MU-PI+NU) JL INIU LMU+PI-NUI-(MU-PI+NUJ/(MU+PI-NUI+(MU-PI+NU) IM (0.403) (0.134) DORRAM 67 OSPK DERIVED FRI IM 0.571 0.17 PACLOTTI 69 OSPK 7.M 0.278 0.051 PICCIDNI 72 ASPK IM 0.60 0.14 MCCARTHY 73 CNTR ISM 0.323 0.026 GEWENIGI 74 ASPK ISM 0.323 0.026 GEWENIGI 74 ASPK MU+ MU- RANGE DIFFERENCE IN MC CARTHY 72. KOL I 1M 7.7M 4.1M Ð 15 0.326 0.023 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG
 KOL
 INC
 IEPI-NUJ-(E-PI-NUJ)+(E-PI+NUJ)

 8
 L0M
 10.224
 10.0361
 BENNET
 67
 CNTR

 9
 L0M
 0.224
 10.0361
 BENNET
 67
 CNTR

 9
 L0M
 0.2246
 0.059
 SAAL
 69
 CNTR

 600K
 0.346
 0.033
 MARX
 70
 CNTR

 600K
 0.366
 0.18
 ASHFGND
 72
 ASPK

 40M
 0.318
 0.038
 FITCH
 73
 ASPK

 34M
 0.365
 0.017
 GEWNETT
 67

 8
 SAAL
 69
 IS A
 REANALYSIS
 GENNETT
 67
 (PERCENT) 8 8 11/67 10/70 10/70 2/72 12/73 0.349 0.017 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) AVG
 NUM
 OULT
 AVERAGE (

 KOL
 INTO ((L+)-(L-1)/((L+)+(L-1))
 INTO (0.059
 SA

 10M
 0.246
 0.059
 SA

 10M
 0.346
 0.033
 MA

 600K
 0.346
 0.033
 MA

 600K
 0.346
 0.038
 FI

 40M
 0.318
 0.038
 FI

 40M
 0.318
 0.038
 FI

 40M
 0.333
 0.050
 MI

 15M
 0.323
 0.026
 GE

 34H
 0.345
 0.017
 GE

 34H
 0.365
 0.017
 GE
 1) (COMBINED A1 AND A2) (PERCENT) SAAL 69 CNTR KE3 PACIOTI 69 CSPK KMU3 MARX 70 CNTR KE3 ASHFORD 72 ASPK KE3 PICCIONI 72 ASPK KMU3 FITCH 73 ASPK KE3 MCCAATHY 73 CNTR KMU3 MILLLAWS 73 ASPK KMU3 GEWENGI 74 ASPK KMU3 AND A2 ADMY4 SSPK KE3 2/71 1/73 2/71 2/72 1/73 12/73* 6/73* 12/73* 3/74* AL AL 8 0 4M 0.365 0.017 GEWENIGL 74 SEE FOOTNOTES IN SECTIONS A1 AND A2 ABOVE. 3/14 0.012 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) (SEE IDEOGRAM BELOW) 0.343

57

FS FS FS

FT FT

FS/F+

FT/F+

5600

Stable Particles K⁰

KE3 DECAY (ABS. VALUE)----

10/69 9/73*

10/69 9/73*

Note on $K_1^0 \rightarrow 2\pi$ and K_s Regeneration

Some experiments obtain ϕ_{+-} (the phase of η_{+-}) using K_S , $K_L \rightarrow \pi^+\pi^-$ interference behind a regenerator. In these interference experiments the measured quantity is the difference of ϕ_{+-} and the regeneration phase ϕ_R , as shown in the expression below. After the regenerator, the intensity of the $\pi^+\pi^-$ decays in the forward direction is

$$I(t, p) = S(p) [|R(p)|^{2} e^{-\Gamma_{S}t} + |\eta_{+-}|^{2} e^{-\Gamma_{L}t} + 2|R(p)||\eta_{+-}|$$
(1)

$$\times e^{-(\Gamma_{S}+\Gamma_{L})t/2} \cos (\Delta m t + \phi_{R}(p) - \phi_{+-})],$$

where:

t is the decay time in the K⁰ rest frame,

 $\Delta m = m_L^{-m}S, \text{ and } m_L, \Gamma_L, m_S, \Gamma_S \text{ are the masses} \\ \text{ and decay rates of the long- and short-lived } K^0, \\ \eta_{+-} = |\eta_{+-}| e^{i\phi_{+-}} \text{ is the ratio of decay amplitudes} \\ A (K_L \rightarrow \pi^+\pi^-)/A(K_S \rightarrow \pi^+\pi^-),$

S(p) is proportional to the K_L momentum spectrum,

 $R(p) = |R(p)|e^{i\phi_R(p)}$ is the transmission-regenerated K_S amplitude (relative to the K_I):

$$R(p) = \pi N \Lambda i \frac{\left[f_{0}(p) - \overline{f}_{0}(p)\right]}{p} \left\{ \frac{1 - e^{-\frac{1}{2}\Gamma_{S} l(p)\left[1 - 2i\Delta m/\Gamma_{S}\right]}}{\frac{1}{2}\Gamma_{S}\left[1 - 2i\Delta m/\Gamma_{S}\right]} \right\}$$
(2)

where

- l(p) is the thickness of regenerator measured in units of the mean decay length of K_c ,
- N is the number of nuclei per cubic centimeter,
- Λ is the K_S mean decay length, and

Data Card Listings For notation, see key at front of Listings.

 $f_0(p), \overline{f}_0(p)$ are the forward scattering amplitude of K^0 and \overline{K}^0 .

From (1) above it is clear that the value of φ_{+-} is correlated with the value of Δm and φ_R . Usually Δm is a parameter of the fit and φ_R is determined by some other means (optical model calculations, time dependence of the charge asymmetry in K_{e3} decay, etc.).

We list ϕ_{+-} and give in comment cards both the value of ϕ_R used by the authors and the Δm dependence of ϕ_{+-} .

TEXT SECTION VI 8.3 D

ETA+- = A(KL TO PI+PI-)/A(KS TO PI+PI-) ETA00 = A(KL TO PIOPIO)/A(KS TO PIOPIO)

THE FITTED VALUES OF ETA+- AND ETAOG GIVEN RELOW ARE DERIVED PRIMARILY FROM THE FITTED BRANCHING RATIOS FOR THE TWO PION DECAY MODES OF KOL AND KOS. FOR THE QUANTITIES MEASURED BY INDIVIDUAL EXDERIMENTS SEE THE KOL BRANCHING RATIOS R9 AND R20 LETA+-) AND R417 AND R419 (ETAOD). FOR THE READER'S CONVERNECE WE LIST THE DERIVED QUANTITIES ETA+- (CALLED E+- BELDM) AMD (ETAOD)**2 (CALLED E50 SELOM). HOWEVER, THE FIT FOR ETA+- AND ETAODUS**2 THOSE VALUES BELOM WHICH ARE INDEPENDENT OF BRANCHING RATIO MEASUREMENTS-- ETAOL OF CHOLET A' AND HOLDER 72, AND ETA+- OF GEWENIGER2 74.

EOS	(ETA00)**2 = [A(KL TO 2PI0)/A(KS TO 2PI0))**2 (UNITS 10**-6)	-
E0\$	X 0 (-2.) (7.0) BARTLETT 68 DSPK	10/69
E0 S	X 57 (4.9) (1.2) BANNER 69 DSPK	2/72
EOS	X 133 (14-1) (3-4) CENCE 69 OSPK	10/69
505	XF 180 (13.) (4.) GATLLARD 69 CSPK	10/69
FOS	X 29 (4-00) (0-9) BARMIN 70 HEBC	12/70
EOS	C B.7 3.7 CHOILET 70 DSPK CH REG. 4 GAMMA	\$ 2/72
EOS	XF 172 (9.9) (3.4) FAISSNER 70 OSPK	12/70
EOS	C 56 7.4 2.0 WOLFF 71 DSPK CU REG., 4GAMMAS	12/71
EOS	X SEE NOTE ABOVE REGARDING FITTED VALUES OF ETA+- AND ETA00.	
EDS	C CHOLLET 70 GIVES ET400=(1.23+-0.24)*(REGEN AMPL,2GEV/C CU)/1000CMB	2/72
EOS	C WOLFF 71 GIVES ETA00=(1.13+-0.12)*(REGEN AMPL,2GEV/C CU)/10000MB	2/72
EOS	C WE COMPUTE BOTH FTADO**2 VALUES FOR (REGEN AMPL,2GEV/C CU)=24+→2MB	. 2/72
E05	C THIS REGEN AMPL RESULTS FROM AVERAGING OVER FAISSNER 69,	2/72
505	C DI 378 EDE LIGARI AND THE DATA OF BALATE THE DATA OF BALATE	2/72
EOS	C PRIVATE CONVINTIATIONS	2/12
EOS	F FAISSNER TO CONTAINS SAME 2PTO EVENTS AS GATLIARD AS	2712
EOS	• • • • • • • • • •	
EOS	AVG 7.7 1.8 AVERAGE (ERROR INCLUDES SCALE FACTOR DF 1.0	,
EOS	FIT 5.06 0.40 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1	3/74
EOS	THIS FIT VALUE CORRESPONDS TO ETADO=2.25+0.09	3/74
EA.	$r_{1} = r_{1} r_{1} = r_{1} $	-
5+-		10/69
F+		10/69
E+	X (1.935) BOTT-BODE 66 OSPK	10/69
E+	X 525 (1.91) (.06) FITCH 67 OSPK	10/69
Ē+	2.30 0.035 GEWENIG2 74 ASPK	3/74
E+-	X SEE NOTE ABOVE REGARDING FITTED VALUES OF ETA+- AND ETADO.	
Ê+		
£+-	FIT 2.17 0.07 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 3.4	3/74
c 0		
60	RATIO UT ETADU UVER ETAT- 124 1 03 0 07 BANNED1 73 DEDV	0 / 70
59		9/72
ER		0772
ER	AVG 1.013 0.046 AVERAGE LERROR INCLUDES SCALE FACTOR OF 1.0)
ER	FIT 1.038 0.038 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0	3/74
-		
F+-	PHASE DF ETA +- (DEGREES)	-
	DM IS (ROL-ROS MASS DIFFERENCE / HBAR) IN UNITS DF 10**10 SEC-1	2/71
	SEE SECTION O UN ROL LISTINGS FUR LATEST VALUE	2 / 7 1
F+-	USING DWED SIGNATION OF THE MASS DEPENDENCE AND PROPAGATED THE ERROR IN UM	2/11
F+-	JENSEN 70. AND BALATS 71. THE APRIL 1972 DM(0.5402+0.0035) WOULD	3/72
F+	NOT MAKE A SIGNIFICANT CHANGE IN THE PHASE.	3/72
F+	45+0 50+0 FITCH 65 CSPK BE REGEN	11/67
F+-	30.0 45.0 FIPESTONE 66 HBC	11/67
F+~	70+0 21+0 BOTT-BODE 67 OSPK C REGEN	11/67
F+	25-0 35-0 MISCHKE 67 OSPK CU REGEN	7/68
E	N (51.0) (11.0) BENNETTZ 68 CNTR CU REG. USES	8/68
F+-	C 24-2 10-0 BEINE 11 69 CNTR CUREGEN B 47-6 12-1 BOWN 40 OSDV VACUUM BECCA	2/71
F+-	F 46.2 7.4 FAISSNER 49 ASPK CIL RECEN	2/11
F+-	J 43.4 4.4 JENSEN 70 ASPK VACUUM REGEN	2/71
F+	D 38.0 12.0 BALATS 71 CSPK CU REGEN	9/71
F+	P 36-2 6-1 CARNEGIE 72 ASPK CU REGEN	1/73
F+-	G 49+3 2+1 GEWENIGZ 74 ASPK VACUUM REGEN	3/74*
F+-	• • • • • • • • •	
F+	AVG 46.6 1.8 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1	
	COMMENTS	3714
F+-	N BENNETT 69 IS A REEVALUATION OF BENNETT2 68-	11/69
F+-	C BENNET 69 USES MEASUREMENT OF (F+-)-(PHIF) OF ALFF-STEI 66	2/71
F+	C BENNETT 69 F+-= 34.9+-10.0, NOT INCLUDING ERROR IN DM	2/71
F+-	C DM DEPENDENCE OF BENNETT 69 IS 69*(DM-0.545) DEG. FR=-49.9+-5.4DEG	2/71
F+-	B BOHM 69 F+-=41+-12, NOT INCLUDING ERROR IN DM.	2/71
F+	B UM DEPENDENCE OF BOHM 69 IS 479*(DM-0.526) DEG.	2/71
F 4	E FAISSNER OF ERROR ENLARGED TO INCLUDE ERROR IN REGENERATOR PHASE.	11/69
F+-	F DM DEPENDENCE DE ENISSNED AG IS DOSHOM-O SESS DEC. ED- (3.7. SOLO	2//1
F+-	J JENSEN 70 E+-=42.4+-4.0. NOT INCLUDING ERROR IN CH	2/11
F+-	J DM DEPENDENCE OF JENSEN 70 IS 576*(DM-0.538) DEG.	2/71
F+-	D BALATS 71 F+-=39+-12, NOT INCLUDING ERROR IN DM. FR=-43+-4 DEG.	9/71
F+-	D DM DEPENDENCE OF BALATS 71 IS 198*(DM544) DEG.	9/71
F+	P CARNEGIE 72 INSENSITIVE TO DM. FR=-56.2+-5.2 DEG	1/73
F + -	U DEWENIGERZ (4 F+-=49.4+-1.0 NOT INCLUDING ERROR IN DM.	3/74
	S ON DEFENDENCE OF SEMENIOEKZ (* 15 383FLDF-U-340) DEG.	31 (4)

F00			PHAS	SE I	DF E	TΑ	00		(0	EG	REE	S)		-													
F 00		F	IRSI	େ ହା	JADR	ANT	P	REFI	RR	ED			G	088	t -		69	OSP	ĸ							11/69	
F00	c	:		5	ι.		- 30	3.					C	HOL	LET		70	DSP	ĸ		cυ	REG		4 G.	AMMAS	10/70	
F00		•	56	3	8.0		2	5.0					W	OLF	ff -		71	OSP	ĸ		cu	REG		4GAI	MMAS	12/71	
F00				• •		٠	•	• •	•																		
F00	A٧	/G		- 43	3.3		14	9.2			AVE	RAG	E	(ER	ROR	IN	CLI	UDES	5	CAL	Ē	FACT	OR	DF	1.0)		
F00	F	11		- 4'	9.1		13	3.2		F	ROM	F I	т	(ER	ROR	IN	ICLI	UDES	5	CAL	E	FACT	OR	OF	1.0)	3/74*	ł
F00	c		CHO	.се	T 70	US	εs	RE	GEN	ER.	A TO	R P	HA	SE	FR=	~46	• 5 ·	+-4.	4	DEG	•					1/73	
F00	N	1	MOLI	÷ F	71	US	ES	RE	GEN	ER.	A TO	R PI	HA	SE	FR=	-48	• 2 •	+-3.	5	DEG	•					1/73	
0 E							~~			-																	
	-	۲	THA 31	: 0	ILLE	REN	νE.				+-			106	GRE	e 53											
01-6	5				1.6		- 14	9.0					6	ARB	IEL	LI	73	ASP	ĸ							7/73*	
DFE	3		INDE	PE	NDEN	то	FI	REG	INE	R٨	TOR	ME	сн	ANI	SM,	DM,	ANI	D LI	FE	TIM	ES					7/73*	6
DF	F	- 1 7			2.5		13	3.2		F	ROM	₽t	τ	(ER	ROR	IN	CLI	UDES	. 5	CAL	e	FACT	GR	OF	1.0}	3/74+	

Superweak Model Predictions for $\phi_{\eta_{+}} = \frac{\text{and } \phi_{\eta_{+}}}{-} \frac{\phi_{\eta_{+}}}{-} \frac{\phi_{\eta_{$

The superweak model of Wolfenstein, Phys. Letters 13, 562 (1964) predicts that

and

$$\phi_{+-} = \phi_{00} = \tan^{-1} \left(\frac{2\Delta m \tau_s}{\hbar} \right)$$

Re $\epsilon = \left| \eta_{+-} \right| \left[1 + \left(\frac{2\Delta m \tau_s}{\hbar} \right)^2 \right]^{-1/2}$

The K_L^0 - K_S^0 mass difference, the K_S lifetime, and $|\eta_{+}|$ given in the Stable Particle Table result in the predictions that

and

RELATED

$$Re \in = (1.567 \pm 0.051) \times 10^{-3}$$

 $\phi_{+-} = \phi_{00} = (43.76 \pm 0.28)^{\circ}$

These can be compared with the experimental values

$$\phi_{+-} = (46.6 \pm 2.5)^{\circ}$$

$$\phi_{00} = (49 \pm 13)^{\circ}$$

Re $\epsilon = (1.72 \pm 0.10) \times 10^{-3}$

where ϵ has been computed from δ , the charge asymmetry parameter for leptonic K_{L}^{\bullet} decays, and (Re x, Im x), the $\Delta S = -\Delta Q$ amplitude, using Eq. (34) of the text.

13	X =	{DS=-00	AMPLITUDE)/(DS=+DQ	AMPLITUDE)
TEXT SE	CTIO	VT B.4		

REX		RE/	AL PART O	FX						
REX	C	152	0.06	0.18	0.44	BALDO-CE	65	HLBC	K+ CHARGE EXCHNG	11/67
REX		196	0.035	0.11	0.13	AUBERT	65	HLBC	K+ CHARGE EXCHNG	11/67
REX	F	109	-0.08	0.16	0.28	FRANZINI	65	HBC	PBAR P	11/67
REX		116	0.17	0.16	0.35	FELDMAN	67	OSPK	PI-P TO KO LMODA	11/67
REX	N	335	(0.17)	(0.10)		HILL	67	OBC	K+D YIELDS KOPP	11/67
REX	6		(0.03)	(0.03)		8ENNETT1	68	CNTR		7/6B
REX		121	0.09	0.07	0.09	JAMES	68	HBC	PBAR P	5/69
REX	в		-0.020	0.025		BENNETT	69	CNTR	CHAR ASYM+ CU RE	10/69
REX		686	0.09	0.14	0.16	LITTENBER	69	OSPK	K+N TO KOP	4/69
REX	N	215	0.12	0.09		сно	70	DBC	K+D TO KOPP	10/70
REX	u	222	(0.04)	(0.07)	(0.08)	BURGUN	71	нвс	K+P TO KOPPI+	2/72
REX		252	0.25	.07	.09	WEBBER	71	HBC	K-P TO KBAR N	10/69
REX	U	410	0.03	0.06	0.06	BURGUN	72	HBC	K+P TO KOPPI+	1/73
REX		126	0.26	0.10	0.14	MANN	72	нвс	K-P TO KOBAR N	9/72
REX	G	342	(-0.13)	(0.11)		MANTSCH	72	OSPK	KE3 FROM KO LMB	2/72
REX	G	100	(0.04)	(0.10)	(0.13)	GRAHAM	72	OSPK	KMU3 FROM KO LMB	2/72
REX	G	442	-0.05	0.09		GRAHAM	72	OSPK	PI-P TO KO LMBDA	2/72
REX	1	1757	-0.008	0.044		FACKLER	73	OSPK	KE3 FROM KO	9/73*
REX		1367	+0.03	0.07		HART	73	OSPK	KE3 FROM KO LMB	2/74*
REX		1079	-0.070	0.036		MALLARY	73	OSPK	KE3 FROM KO LM +	6/73*
REX	с	BAL	00-CE 65	GIVES X AN	D THETA	CONVERTED.	BY	US TO R	EX AND IMX.	11/67
REX	F	FRA	NZINI 65	GIVES X AN	D THETA.	FOR REX A	ND 1	IMX SEE	SCHMIDT 67.	11/67
REX	N	СНО	TO IS AN	ALYSIS OF	UNAMBIG	JOUS EVENT	S II	N NEW DA	TA AND HILL 67.	
REX	U	BUR	GUN 72 IS	A FINAL R	ESULT W	HICH INCLU	DES	BURGUN	71.	11/73*
REX	в	BEN	NETT 69 1	S A REANAL	YSIS OF	BENNETT1	68			
REX	G	SEC	OND GRAHA	M 72 VALUE	IS FIR	ST GRAHAM	72 1	VALUE CO	MBINED WITH	2/72
REX	G	MAN	TSCH 72.							2/72
REX										
REX	AV	G	-0.000	0.022	AVERAG	E (ERROR I	NCLU	UDES SCA	LE FACTOR OF 1.5)	

-0.000	0 0 2 2	AVERACE	160000	TNCLIDES	CLUIE	EACTOR	ne.	1.51
-0.000	v.vzz	ATCANGE	I CRAOR	INCLODED	JOHLL	1 ACTOR	. .	****
	ISEE 10	EBGRAM B	ELOW 1					

K⁰ WEIGHTED AVERAGE = -0.000 ± 0.022 ERROR SCALED BY 1.5 <u>CHISE</u> · · · · · · · · MALLARY 73 DSPK 3.8 HART 73 DSPK 0.2 73 0SPK ·FACKLER 0.0 GRAHAM 72 DSPK 0.3 MANN 72 HBC 4.7 72 HBC 0.3 BURGUN 71 HBC 9,8 ·HEBBER 70 DBC сно 1.8 ·LITTENBER 69 DSPK 0.4 69 CNTR BENNETT 0.6 JAMES 68 HBC 1.3 · · · FELDMON 67 DSPK · · · · · FRANZINI 65 HBC · · AUBERT 65 HLBC 0.1 · ·BALDD-CE 65 HLBC 23.1 0.4 0.8 0.0 (CONLEV =0.017) IMAGINARY PART OF X (ASSUMES M(KLI-M(KS) POSITIV C 152 -0.44 0.32 0.19 BALDO-CE 65 HLBC 196 -0.21 0.11 0.15 AUBERT 65 HLBC 196 -0.21 0.11 0.15 AUBERT 65 HLBC 109 +0.24 0.40 0.30 FRANZINI 65 HEC 116 0.0 0.25 FELDMAN 67 05PK 121 +0.22 0.37 0.29 JAMES 68 HBC 68 -0.11 0.10 0.11 ITTREER 9 05PK 121 +0.22 0.37 0.29 JAMES 68 HBC 122 0.0.21 (G.061 (G.063) BURGUN 71 HBC 122 0.21 (G.061 (G.043) BURGUN 71 HBC 123 0.21 1.51 0.12 MANKEHT 72 HSC 124 0.211 REAL PART OF X (DELTA S = -DELTA & AMP) -- SEE SI3D) K+ CHARGE EXCHNG K+ CHARGE EXCHNG PBAR P PI-P TO KO LMBDA K+D YIELDS KOPP 69 70 71 72 72 72 72 73 73 73 KOF τα K+D K+P K-P 07 TD TD KOPPI KBAR M KOPPI TO OBAR KE3 FROM GIVES X AND GIVES X AND HILL 67 SHO NALYSIS OF U 0.074 MALLARY 73 USPK RE3 FROM R D THETA.GOWRENTED BY US TO REX AND IMX. AND THETA.FOR REX AND IMX SEE SCHMIDT 67. SHOULD READ +0.58. NOT -0.58 (PRIV.COMM-F UNAMBIGUOUS EVENTS IN NEW DATA AND HILL RESULT HHICH INCLUDES BURGUN 71. UE IS FIRST SRAMAM 72 VALUE COMBINED WITH NZINI 65 10 I S _ 15 A GRAHAM 1 H 72 SECOND GRAH MANTSCH 72. 72 2/12 0.012 0.030 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) (SEE IDEOGRAM BELOW) WEIGHTED AVERAGE = 0.012 ± 0.030 ERROR SCALED BY 1.2 CHISE MALLARY 73 DSPK 1.3 HORT 73 DSPK 1.2 FACKLER 73 DSPK 0.2 GRAHAM 72 DSPK 0.1 -MANN 72 HBC 2.1 BURGUN 72 HBC 0.8 71 HBC ·WEBBER 0.0 DBC CHO 70 1.7 LITTENBER 69 DSPK 1.4 JAMES 68 нвс · ·FELDMAN 67 DSPK 0.0 FRANZINI 65 HBC · · · · OUBERT 65 HLBC 2.9 -BALDD-CE 65 HLBC 3.1 15.0

Stable Particles

CONLEY -0.5 0.0 0.5 1.0 -1.0 =0.183) IMAG. PART OF X (DELTA S = -DELTA & AMP) REFERENCES FOR KOL M BARDON,K LANDE,L LEDERMAN (COLUMBIA+BNL) CRAWFORD,CRESTI,DOUGLASS,GOOD + (LRL) ASTIER,BLASKOVIC,RYVET,SIAUD + (FPOL) V FITCH,P PIROUE,R PERKINS (PRINCETON) GOD,MATSEN,MULLER,PICCIDNI,PONELL + (LRL) NEAGU,OKONOV,PETROV,ROSANOVA,RUSAKOV (JINR) BARDON 58 ANP 5 156 CRAMFORD 59 PRL 2 361 ASTIER 61 AIX CONF 1 227 FITCH 61 NC 22 1160 GODD 61 PR 124 1223 NEAGU 61 PRL 6 552 CAMERINI 62 PR 128 362 DARMON 62 PL 3 57 CAMERINI+FRY,GAIDOS,BIRGE,ELY + (WISC+LRL) J DARMON+A ROUSSET,J SIX (EPOL) ADAIR 64 PL 12 67 ALEKSANY 64 DUBNA 2 102 ALSO 64 JETP 19 1019 ANIKINA 64 JETP 19 42 CHRISTEN 64 PRL 13 138 FUJII 64 DUBNA 2 146 LUERS 64 PR 133 8 127

BNA 2 146 133 8 1276

R K AQAIR,L B LEIPUNER (YALE+BNL) ALEKSANYAN,ALIKHANYAN,VARTAZARYAN+ (EREVAN) ALEKSANYAN+ (LEBEDEY+MOS END PHYS+EREVAN) ANIKINA,ZUNRAVLEVA+ (GEGRG ALCAD SCI+ DUBNA) CHRISTENSON,CRONIN,FITCH-IVBLAY (PRINCETON) FJJII,JOURANOVICH-JUKKOT+ (GNL,NARYLANO,HIT) LUERS,MITTRA,WILLIS,YAMAMOTO (GNL)

-0.4

IMX U IMX G IMX G υ BURGUN

IMX IMX AVG

Stable Particles K_L^0

ANIKINA ANDERSON ASTRURYI ALSO	65 65 65	J1NR P 2488 PRL 14 475 PL 16 80 HELV-PH-46-39 523	ANIKINA,VARDENGA,ZHURAVLEVA,KOTLYA+ (DUBNA) ANDERSON,CRAWFORD,GOLDEN,STERN + (LRL+HISC) ASTBURY,FINDCCHIARO,BEUSCH + (CERN+ZURICH) M PEPIN
ASTBURY2 ASTBURY3 AUBERT	65 65 65	PL 18 175 PL 18 178 PL 17 59	ASTBURY,MICHELINI,BEUSCH + (CERN+2URICH) ASTBURY,MICHELINI,BEUSCH + (CERN+ZURICH) AUBERT,BEHR,CANAVAN,CHDUNET+ (EPOL+ORSAY)
BALDO-CE	65	NC 38 684	BALDO-CEDLIN,CALIMANI,CIAMPOLILLO + (PADO)
CHRISTEN FISHER FITCH FPANZINI GALBRAIT GUIDONI HOPKINS VISHNEVS	65 65 65 65 65 65 65 65 65	PR 140 B 74 ANL 7130 83 PRL 15 73 PRL 14 383 ARGONNE CONF 49 ARGONNE CONF 67 PL 18 339	CHRISTENSON-CRONIN,FITCH,TURLAY (PRINCETON) FISHER,ABASIANA ABRANS,CAPPENTER (ILL) FITCH,POTH,FUSS,VEENON (PRINCETON) FANZINI,KISCH,PLANON (COLUMBIAFRUIGERS) GALBAITH,MANNING,JONES + (AERE-BRISHREL) FARNESE, CHSCH,FEREL,FIRESTON (BNLTWALE) H W K MOPKINS,BACON,FISLER (VANDFRUIGERS) VISHNEVSKY,GALANINA,SMEMONY (ITFP)
AL EE-STC	**	01 21 595	ALEE-STEINBERGER.HEIJER.RUBBIA + (CERN)
AUERBACH AUERBACH AUERBACH ALSO BALDO-CE BASILE	66 66 66 65 66 66	SJNP 2 339 PRL 17 980 PR 149 1052 PRL 14 192 NC 454 733 BALATON CONF	ACT-SILIDGCANFLOCKANFLANFLOCKANFLOCKANFLANFLANFLANFLANFLANFLANFLANFLANFLANFL
BEHR	66	PL 22 540	+BRISSON, BALDO-CEOLIN, AUBERT+ (PADO, EPOL)
BELLOTTI BOTT-BOD CAMERINI CANTER CARPENTE CHANG	66 66 66 66 66	NC 45A 737 PL 23 277 PR-150 1148 PRL 17 942 PR 142 871 PL 23 702	BELCOTTI,PULLIA,BALDO-ECCIIM+ IMILAN,ADUAI BOTT-BODENHAUSEN,DE BOUARO,CASSIC CAMERINI,CLINE,ENGLISH,FISCHBEIN+HISCONSIN CHO:EMBLER,FISK,MILL+ CAMEGHERSKAND,KINCHLA+ CAMEGHERSKAND,KINCHLA,ODDH+ (SYRACUSE,BHL)
CRIEGEE	66 66	PRL 17 150	+FOX, FRAUENFELDER, HANSON, MOSCAT+ (ILLINDIS)
FIRESTON FUJIT FUJIT HAWKINS	66 66 66 66	PRL 17 116 PRL 13 253 5 IS THE CORRECTED PL 21 238 PR 156 1444	FIRESTONE KIH, LACH, SANDWEISS+ (YALE, BNL) FUJI, JOVANOVICH, TUPKOT, ZORN (BNL MMARYLAND) VALUE GIVEN BY JOVANOVICH+ 66 C J B HANKINS (YALE) C J B HANKINS (YALE)
		PPI 17 1075	IOVANOVICH, EULIT, TURKOT, ZORN, +(BNI +)(MD+HIT)
KULYUK IN MEISNER1 MEISNER2 NEFKENS VERHEY	66 66 66 66	BERKELEY 28 PRL 16 278 PRL 17 492 PL 19 706 PRL 17 669	KULYUKINA.MESTVIRISHVILI,MEAGUJPETA+(JJNRI G WEISMER,B B CRAWFORD,F CRAWFORD [LRL] G NEISMER,B CRAWFORD,F CRAWFORD [LRL] NEFKENS,ABASHIAN,ABRANS,CARPENTER+ (ILL) VERHEY,NEFKENS,ABASHIAN+ (ILL)
BENNETT	67 67	PRL 19 993 PL 248 194	BENNETT, NYGREN, SAAL, STEINBERGER + (COLUMBIA) BOTT-BODENHAUSEN, DEBOUARD, CASSEL + (CERN)
BOTT-BOD	67	PL 248 438	BOTT-BODENHAUSEN, DEBOUAPO, DEKKERS+ (CERN) BOTT-BODENHAUSEN, DEBOUAPO, DEKKERS+ (CERN)
ALSO	66 67	PL 23 277	BOTT-BODENHAUSEN, DEBOUARD, CASSEL+ (CERN)
CRONIN 1	67	PRL 18 25 PRINC CONF(11/67)	+KUNZ,RISK,WHEELER (PRINCETON) +KUNZ,RISK,WHEELER (PRINCETON)
DEBOUARD	67	NC 52A 662	DEBOUARD, DEKKERS, JCRDAN, MERMOD + (CERN) DE BOUARD, DEKKERS, SCHARFE+ (CERN+ORSA+MPIN)
	67	PRL 18 54	DEVLIN-SDLCMON-SHEPARD-BEALL+ (PRIN+UMD)
ALSO DORFAN	68 67	PR 169 1045 PRL 19 987	SAYER, BEALL, DEVLIN, SHEPHARD+ (UMD+PPA+PRIN) DORFAN, ENSTROM, RAYMOND, SCHWARTZ + (SLAC+LRL)
FELOMAN	67 67	PR 155 1611 PRL 18 176	FELDMAN, FRANKEL, HIGHLAND, SLOAN (PENN) FIRESTONE, KIM, LACH, SANDWEISS, + (YALE, BNL)
FITCH	67 67	PR 164 1711 PR 156 1444	FITCH, ROTH, RUSS, VERNON (PRINCETON) C J B HAWKINS (YALE)
HILL	67	PRL 19 668	HILL, LUERS, ROBINSON, CANTER+ (BNL, CARNEGIE)
HOPKINS KADYK	67 67	PRL 19 185 PRL 19 597	HOPKINS, BACON, EISLER (BNL) KADYK, CHAN, DRIJARD, OREN, SHELDON (LRL)
KULYUKIN LOWYS	67 67	PREPRINT PL 248 75	KULYUKINA+MESTVIRISHVILI+NEAGU + (JINK) LOWYS+AUBERT+CHOUNET+PASCAUD+ (EPOL+ORSA)
MISCHKE	67	PRL 18 138 PR 157 1233	MISCHKE, ABASHIAN, ABRAMS+ (ILLINUIS) +ABASHIAN, ABRAMS, CARPENTER, FISHER+ (ILL)
TODOROFF	67		JOHN & TODOROFF (ILLINUIS)
APNOLD	68	PL 288 56	ARNOLD, BUDAGOV, CUNDY, AUBERT+ (CERN+ORSAY)
AL SD BAL AT 7	69	PR 175 1708	S H ARONSON, K W CHEN (PRINCETON) BALATZ- AFRETIN, VISHNEVSKY, GALANINA+ (ITEP)
BARTLETT	68	PRL 21 558	BARTLETT,CARNEGIE,FITCH+ (PRINCETON)
BASILE BASILE2	68 68	PL 268 542 PL 288 58	BASILE,CRONIN,THEVENET,TURLAY+ (SACLAY) +CRONIN,THEVENET,TURLAY,ZYLBERAJCH+(SACLAY)
BENNETT1 BENNETT2	68 68	PL 278 244 PL 278 248	BENNETT,NYGREN,STEINBERGER+ (COLUMBIA+CERN) BENNETT,NYGREN,STEINBERGER+ (COLUMBIA+CERN)
BLANPTED BUDAGOV	68 68	PRL 21 1650 NC 57A 182	BLANPIED, LEVIT, ENGELS+ (CASE+HARV+MCGI) BUDAGOV, BURMEISTER, CUNDY+ (CERN, ORSA, IPNP)
ALSO	68	PL 288 215	+CUNDY, MYATT, NEZRICK+ (CERN, ORSA, EPOL)
JANES	68	NP 88 365	F JAMES, H BRIAND (IPNP, CERN)
KULYUK IN	68	JETP 26 20	KULYUKINA, MESTVIRISHVILI, NEAGU+ (JINR)
MELHOP	68 68	PR 172 1613 PR 174 1674	MELHOP MURTY BOWLES, BURNETT+ (LA JOLLA) THATCHER, ABASHIAN, ABRAMS, CARPENTER + (ILL)
BANNER	69	PR 188 2033	+CRONIN+LIU,PILCHER (PRINCETON)
ALSO ALSO	68 68	PRL 21 1103 PRL 21 1107	BANNER, CRONIN, LIU, PILCHER (PRINCETON) BANNER CRONIN, LIU, PILCHER (PRINCETON)
BENNETT	69 69	PL 308 202 PL 298 317	HANGREN, SAAL, STEINBERGER+ (COLU, BNL)
ALSO	68	PL 27B 321	BOHM, DARRIULAT, GROSSO, KAFTANDV (CERN)
BOTT-BOD CENCE	69 69	CERN 69-7 329 PRL 22 1210	BOTT-BODENHAUSEN,DE BCUARD,CASSEL+ (CEPN) CENCE,JONES,PETERSON,STENGER+ (HAWAII.LRL)
EVANS FAISSNER	69 69	PRL 23 427 PL 308 204	EVANS, GOLDEN, NUIR, PEACH+ (EDINBURGH, CERN) +FOETH, STAUDE, TITTEL+ (AACH, CERN, TORI)
FOETH	69	PL 30B 282	+HOLDER, RADERMACHER + (AACHEN, CERN, TORINO)
GATLLARD ALSO	69 67	NC 594 453 PRL 18 20	+GALBRAITH, HUSSRI, JANE+ (CERN, RHEL, AACHEN) +KRIENEN, GALBRAITH, HUSSRI+ (CERN+RHEL+AACH)
GOBBI LITTENBE	69 69	PRL 22 685	+GREEN, HAKEL, MUFFETT, ROSEN, GOZ+ (ROCH+RUTG) LITTENBERG, FIELD, PICCIONI, MEHLHOP+ (UCSD)
PACIDITI	69 69	THESIS,UCRL 19446	M J LUNGU,K K TUUNG,J A MELLAND (MICH,UCLA) M A PACIDITI (LRL)
	69 70	PL 338 516	H J SAAL (CULUMBIA)
ARONSON BARMIN BASILE	70 70 70	PRL 25 1057 PL 338 377 PR 02 78	+EHRLICH, HOFER, JENSEN+ (EFI, ILLC, SLAC) +BARYLON, BORISOV, BYSHEVA+ (ITEP, JINR) +CRONIN, THEVENT, TURLAY, ZYLBERAJCH + (SACL)

Data Card Listings For notation, see key at front of Listings.

BUCHANAN ALSO BUDAGOV ALSO	70 PR 70 68	PL 338 623 IVATE COMMUNICATION PR D2 815 PL 288 215	+DRICKEY,RUDNICK,SHEPARD+ (SLAC,JHU,UCLA) 1. B. COX, FEB. 71 +CUNOY,HYATT,NEZRICK+ (CERN, ORS4,EPOL) +CUNOY,HYATT,NEZRICK+ (CERN,ORSA,EPOL)
CHIEN ALSO CHO ALSO CHOLLET CULLEN	70 PR 70 67 70 70	PL 338 627 IVATE COMMUNICATION PR D1 3031 PRL 19 668 PL 318 658 PL 328 523	C-Y.CHIEN,COX,ETTLINGER + (JHU+SLAC+UCLA) 4. B. COX, FEB. 71. + PAALLE,CANTER,FNGLER,FISK+ (CARN,BNL,CASE) HILL,LUERS,ROBINSON,SAKITT + (BNL,CARN) + GAILLARD,JANE,RATCLIFFF,REPELIN + (CERN) + DARRIULAT,DEUTSCH,FOETH + (AACH,CERN,TORI)
DARRIULA FAISSNER JENSEN ALSO MARX ALSO	70 70 70 69 70 70	PL'330 249 NC 70A 57 THESIS PRL 23 615 PL 320 219 THESIS.NEVIS 179	+FERRERO,GROSSO,HOLDEP + (AACH,CEPN,TORI) +REITHLER,THOME,GAILLARCH (AACH,CERN,PHEL) O.A. JENSEN (EFI) JENSEN, ARONSON,EHRLICH,FRYBERGEF+(FFI,ILL) +NYGFEN,PEOPLES,STEINBERGE+(COLU,HARY,CEPN) JAY MARX
SCRIBAND SMITH WEBBER ALSD	70 70 70 69	PL 328 224 PL 328 133 PR D1 1967 UCRL 19226 THESIS	+MANNELLI,PIERAZZINI,MARX+ (PISA,COLU,HARV) +WANG,WHATLEY,ZORN,HORNBOSTEL (UMD,BNL) +SOLMITZ,GRAWFORD,ALSTON-GARNJOST (LRL) B R WEBBER (LPL)
BALATS BARMIN BISI BURGUN CARNEGIE CHAN CHIEN ALSO	71 71 71 71 71 71 71 71 72	SJNP 13 53 PL 358 604 PL 368 533 UNC 2 1169 PR 04 1 UBL-350 THESIS PL 358 261 DALLY	+BEREZIN, VISHNEVSKII, GALANINA+ (ITEP) +DARYLUA, VESELVSKY, DAVIDENKOG- (ITEP) +DARYLUAT, FERREOR, RUBBIA+ (AACH, CENN, TORI) +LESQUOY, MULLER, PAULI+ (SACL+CENN+OSLO) CESTER, FITCH, STROVINK, SULAK (PRIN) J.HIONG-SING CHAN (LAL) +COX, ETTLINGER, RESVANIS+ (JHU, SLAC, UCLA)
CHO CLARK ALSO ALSO ENSTROM ALSO	71 71 70 71 71 79	PP D3 1557 PRL 26 1667 UCPL 19709-THESIS UCPL 20264-THESIS PR D4 2629 THESIS (SLAC 125)	+DRALLE,CANTER,FUGLER,FISK+ (CARN,BNL,CASE) +ELIOFF,FIELD,FRISCH,JOHNSON,KERTH+ (LRL) ROLLAND JOHNSON (LRL) HENRY FRISCH (LRL) HARVIA,COMBES,DORFAN+ (LRL) J E ENSTROM (STANFORD)
HILL JAMES MEISNER PEACH	71 71 71 71	PR D4 7 PL 358 265 PR D3 59 PL 358 351	+SAKITT,SKJEGGESTAD,CANTER+ (BNL,CARN,CASE) +MONTANET,PAULIPAULI+ (CERN+SACL+OSLO) +MANN,HERTZBACH,KOFLER + (MASA+RNL+YALE) +EVANS,MUIR,BUDAGUV,HOPKINS+ (EDIN,CERN)
REPELLIN WEBBER ALSO ALSO WOLFF	71 71 68 69 71	PL 368 603 PR D3 64 PRL 21 498 UCRL 19266-THESIS PL 368 517	+WOLFF.CHOLLET.GAILLARD.JANE+ (ORSA.CEPN) +SOLWITZ.CRAWFORD.ALSTON-GARNJOST (LRL) WEBBER.SOLWITZ.CRAWFORD.ALSTONGANJOST(LRL) B R WEBGER (LRL) +CHOLLET.FEPFLLIN.GAILLARD+ (DRSA.CERN)
ALBROW ASHFORD BANNER1 BANNER2 BARMIN1 BARMIN2 BURGUN CARNEGIE	72 72 72 72 72 72 72 72 72	NP 844 1 PL 388 47 PRL 28 1597 PRL 29 237 SJNP 15 636 SJNP 15 638 NP 850 194 PR 06 2335	+ASTON, BAPER, BIPD, ELLISON+ (HCHS+DARE) HERDIN, NASEK, MAUGA, HILLER, RUDERMAN+ (UCSD) +CRONIN, HOFFMAN, KNAPP, SHOCHET (PRINCETON) +CRONIN, HOFFMAN, KNAPP, SHOCHET (PRINCETON) +DAVIDENKO, DEMIDOV, DCLGOLENKO+ (ITEP) +BARYLGY, DAVIDENKO, DEMIDOV+ (ITEP) +LESQUGY, HULLER, PAULI,+ (SACL+CERN+OSLC) +CESTER,+TICH, STROVINK, SULAK (PRINCETON)
DALLY ALSO GRAHAM HOLDER JAMES KRENZ	72 70 71 72 72 72 72	PL 41B 647 CHTEN CHTEN NC 9A 166 PL 40B 141 NP 849 1 LNC 4 213	+INNOCENTI,SEPPI,CHIEN,COX+ (SLAC+JHU+UCLA) +ABASHIAN,JONES,MANTSCH,ORR+ (ILL+NEAS) +RADERMACHER,STAUDE+ (AACH+CERN+TORI) +MONTANET,PAUL,SAETRE+ (CERN+SACL+OSLO) +HOPKINS,EVANS,MUER,PEACH (AACH+CERN+EDI)
MANN MANTSCH METCALF NEUHOFER PICCIONI VOSBURGH ALSO	72 72 72 72 72 72 72 71	PR D6 137 NC 9A 160 PL 40B 703 PL 41B 642 PRL 29 1412 PR D6 1834 PRL 26 866	+KOFLEP, MEISNER, HERTZBACH+ (MASA+BNL+YALE) +ABASHIAN, GRAHAM, JONES, ORR+ (ILL+NEAS) HEUMOFER, NIEBERGALL+ (CERN+DRSA+VIEN) +NIEBERGALL, REGLER, STIER+ (CERN+DRSA+VIEN) +OOMBES, DONALDSCN, HONFAN, FRYBERGER+ (SLAC) +OEVLIN, ESTERLING, GOZ, BYMAN + (RUTG, HASA) VOSBURGH, DEVLIN, ESTERLING, GOZ + (RUTG, HASA)
ALBROW ALEXANDE BARBIELL BRANDENB CARITHE1 CARITHE2 DBBPSS DONALOSD EVANS ALSO	73 73 73 73 73 73 73 73 73 73	NP 858 22 NP 865 301 PL 438 529 PR 08 1978 PRL 30 1336 PRL 31 1025 KFK1-73-46(BUDA) 2 PRL 736 PRL 23 427	+ASTON, BARBER, BIRD, ELLISON+ (MCHS+DARE) ALEXANDER, BENARY, BOROWITZ, LANDE+(TELA+HELD) BARBIELLINI, JOARFIULAT, FAINBERG+ (CERN) BRANDENBURG, JOHNSON, LEITH, LDOS+ (SLACH HODIS, NYGREN, FUN, SCHNARTZ+ (CDLU+CERN+NYU) CARITHERS, NYGREN, GOROON+ (CDLU+CEN+SOFI COLU-STRH, SCHNARTZ+ (CDLU+CEN) DONALDSON, FRYBERGER, HITLIN, LIJ+ (SLAC+UCSC) +NUIA, VEACH, BUDAGOV+ (FDINBURGH+CERN) EVANS, GOLDEN, MUIR, PEACH+ (FDINBURGH+CERN)
FACKLER FITCH GJESDAL HART MALLARY ALSO	73 73 72 73 73 73 70	PRL 31 847 PRL 31 1524 COO-3072-13 2ND AIX CONF NP 866 317 PR D7 1953 PRL 25 1214	+FRISCH, MARTIN, SMOOT, SCMPAYRAC (MIT) +HEPP, JENSEN, STRUVINK, WEBB (PRINCETON) R.C. WEBB (THESIS) +KAMAG, PRESSEN, STEIFEN, STEINBER+(CERN+HEID) +HUTTON, FIELD, SHARF, BLACKMORE+(CAVFAHEL) +BINNIE, GALLIVAN, GOMEZ, FCK, SCIULLI + (CIT) SCIULLI, GALLIVAN, BINNIE, GOMEZ + (CIT)
MCCARTHY ALSO ALSO MESSNER PEACH SANDWEIS WILLIAMS ZDANIS	73 72 71 73 73 73 73 73	PR D7 687 PL 428 291 THESIS L6L-550 PRL 30 876 PL 438 441 PRL 30 1002 PRL 31 1521 2ND AIX CONF.	+BRFWER,BUDNITZ,ENTIS,GRAVEN,MILLER+ (LBL) MCCARTHY,BREWER,BUDNITZ,ENTIS,GRAVEH+ (LBL) +MGRSF,NAUENBEG,HITLIN + (COLO+SLAC+UGSC) +YANS,MUTR,HOPKINS,KRENZ (EDIN+CERN+AACH) +SUNDERLAND,TURNFR,WILLIS,KELLER (YALE+ANL) +LARSEN,LEIPUNER,SAPP.SESSOMS+ (PNL+YALE) +FSVANIS,PVSNER,MADANSKY+ (JHU+SLAC+UCLA)
GEWENIGI ALSO GEWENIG2 KMU3/KE3	74 74 74 74	SUBMITTED TO PL CERN INT. REPT. SUBMITTED TO PL THIS PEVIEW	GEWENIGER, GJESDAL, KAMAE, PRESSER+(CERN+HEID) VERA LUTH (THESIS-INT. REPT. 74-4) (HEID) GEWENIGER, GJESDAL, PRESSER+ (CERN+HEID) CALCULATED BY US. SEE NOTES IN SEC. XI8, LO.
ALEXANDE JOVANOVI STERN BEHR MESTVIRI TRILLING UPDA GINSBERG	62 63 64 65 65 65 7ED 67	PRL 9 69 BNL CONF 42 PRL 12 459 ARGONNE CONF 59 JINR P 2449 UCRL 16473 FROM 1965 ARGONNE PR 162 1570	PAPERS NOT REFERRED TO IN DATA CARDS G ALEXANDER,S ALMEIDA,F CRAWFORD (LRL) JOVANOVIC,FISCHER,BURRIS + (BNLEMARYLAND) STERN,BINFORD,LIND,ANDERSON + (WISC4LRL) BEHR,BRISSON,BELLDTI+ (EPOL,MICA,PADD) MESTVIRISWYILI,NYAGU,PETROV,RUSAKOV+(JIAR) GONGE H TAGELLI COMPARD FAGELLI COMPARD S GINSBERG (U. MASS BOSTON)
RUBBIA ALSO 1 ALSO 2 ALSO 3 SCHMIDT CRONIN	67 66 66 67 68	PL 248 531 PL 20 207 PL 21 595 PL 23 167 NEVIS 160(THESIS) VIENNA CONF P.281	C.RUBBIA.J.STEINBERGER (CERN+COLU) ALFF-STEINBERGER, HEUER, KLEINKNECHT+ (CERN) ALFF-STEINBERGER, MEUER, KLEINKNECHT+ (CERN) C.RUBBIA.J.STEINBERGER (CERN+COLU) P. SCHMIDT (COLUMBIA) CRONIN.RAPPORTEURS TALK (PRINCETON)

cleast $\langle \delta P_i \delta P_j \rangle / \langle \delta P_j \cdot \delta P_j \rangle$. For the definitions of the individual P_i , see the listing above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1.

	P 1	P 2	P 3	04	9 7	
P 1	.3800+0	098				
P 2	2753	.3000+01	07			
Р3	3378	2108	.2391+004	6		
Ρ4	2976	1878	.8103	0496+00	1 2	
P 7	4163	5941	0942	0797	.0313+0111	

Stable Particles

 K_{L}^{0} , η

7/66

11/67

clude DIGIUGNO 66, FELDMAN 67 or the upper

limit measurements. See page 43 of "Review of Particle Properties", Physics Letters 39B, No. 1

(1972) for more discussion.

Stable Particles

η

Data Card Listings For notation, see key at front of Listings.

A7 401 1.72 .25 BAGLIN 69 MLBC R7	7/69
R8 CTA INTO NEUTRAL/(PI+ PIO) (PI+P2+PT)/(P3) R8 50 3.6 0.6 KRAEMER 64 DEC R8 50 3.6 1.1 PAULI 64 DEC R8 2.89 0.56 ALFF-STEI 66 HBC R8 2.4 3.6 0.6 FLATTE2 67 HBC R8 2.4 3.6 0.6 FLATTE2 67 HBC R8 2.9 0.4 1.1 AGUILAR-B 72 HBC R8 70 2.83 0.80 BLODOWDRT 72 HBC R8 7 2.83 0.80 BLODOWDRT 72 HBC R8 7 2.82 0.31 AVERAGE (PROR INCLUDES SALE FACTOR 0F 1.0) 8 FIT 2.975 0.907 FRCM FIT FROP INCLUDES SALE FACTOR 0F 1.0) 8 FIT 2.975 0.907 FROM INCLUDES SALE FACTOR 0F 1.0)	7/66 9/66 1/68 11/72 11/72 1/73
R9 ETA INTO (E+E-PIO)/(PI+PI-PIO) (UNITS 10++-2) (P5)/(P3) R9 1.1 CR LESS PRICE 65 MBC R9 0.77 CR LESS FDSTER2 65 HBC R9 0.47 CR LESS L=00 BAGLINI 67 HLBC R9 -42 CR LESS CL=>00 BAGLINI 67 HLBC	8/67 11/67
RIO ETA INTO (E+E-PI+PI-)/TOTAL (UNITS 10**-2) (P6) RIO (0+7) DR LESS RITTENBER 65 HBC	6/66
R11 ETA INTO (E+E-PI+PI-)/(PI+PI-GAMMA) (P6)/(P4) R11 1 0.026 0.026 GROSSMAN 66 MBC	6/66
R12 ETA INTO 2 GAMMA/NEUTRALS (P1)/(P1+P2+P7) R12 S 10.6161 (0.044) DIGIUGNO 66 CTR ERROR DOUBLED R12 S (.579) (.052) FELDMAN 66 CTPK ERROR DOUBLED R12 S (.579) (.052) FELDMAN 67 CSPK R12 S (.039) (.0.66) JONES 66 CMTR R12 T HO.391 (.0.66) JONES 66 CMTR R12 T HS RESULT FROM COMBINING CPOSS SECTIONS FROM THE DIFFERENT EXPTS. R12 R12 THIS RESULT FROM COMBINING CPOSS SECTIONS FROM THE DIFFERENT EXPTS. R12 R12 .635 .033 BUNIATOW 67 OSPK R12 .486 .036 CCX 70 HEC R12 .486 .036 CCX 70 HEC R12 .635 .0.018 AVEPAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) R12 .655 .0.013 AVEPAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) R12 .554 .0	6/66 8/67 8/67 11/67 12/70 6/70 5/71
WEIGHTED AVERAGE = 0.535 ± 0.018 ERRDR SCALED BY 1.3	
0.3 0.4 0.5 0.6 0.7 0.8 =0.157 ETA INTO (2 GAMMA)/NEUTRALS 70.8 =0.157 =0.157	
R13 ETA INTO 3P10/NEUTRALS PUTRALS PUTRALS PUTRALS R13 ETA INTO 12 GARMA) / NEUTRALS DIGIUGNO 66 USPK 0.8 0.6 0.7 0.8 0.6 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.6 0.7 0.8 0.6 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.6 0.7 0.7 0.	6/66 8/67 8/67 11/67 12/70 6/70 5/71
R13 ETA INTO 3PIO/NEUTRALS FIGUMADUS 66 DSPK 2.8 0.3 0.4 0.5 0.6 0.7 0.8 ETA INTO 12 GAMMA)/NEUTRALS FIGUMADUS 66 DSPK 0.5 0.6 0.7 0.8 R13 ETA INTO 12 GAMMA)/NEUTRALS FIGUMADUS 66 DSPK 0.8 0.5 0.6 0.7 0.8 R13 C1.2091 (0.054) DIGIUGNO 66 CNTR FROM DOUBLED 6.6 R13 C1.2091 (0.054) DIGIUGNO 66 CNTR FROM DOUBLED 6.6 R13 C1.2091 (0.054) DIGIUGNO 66 CNTR FROM DOUBLED 6.6 R13 C1.2091 (0.051) FELDMAN 67 OSFK 6.9 6.6 R13 C1.2171 (.035) FELDMAN 67 OSFK 6.9 6.7 6.8 R13 R C1.2171 (.035) FRUMATION FOR THIS EXPERIMENT. 6.8 6.7 6.8 6.7 R13 R C1.201 BUTTRAM 70 OSFK 6.3 6.32 6.00 6.6 6.7 6.6 6.7 6.7 6.8 6.7 6.7 6.7 6.7 </td <td>6/66 8/67 8/67 11/67 12/70 5/71 1/67</td>	6/66 8/67 8/67 11/67 12/70 5/71 1/67
R13 ETA INTO 3P10/NEUTRALS PUTRALS (CDN TO SPK 2.8) R13 ETA INTO 12 GAMMA)/NEUTRALS GRUNHAUS 66 DSPK 2.8 R13 C.2001 (0.054) DIGIUGNO 66 CMTR R13 S (.2001) (0.054) DIGIUGNO 66 CMTR R13 S (.2011) (0.054) FELDMAN 60 OSPK R13 S (.2011) FROM THIS SCHEMADYE. SCHEMADYE. R13 R COX TO MBC DISPK R13 R 0.026 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R13 0.322 0.09 STRUGALSK 71 HLBC R13 0.322 0.09 STRUGALSK 71 HLBC R13 0.322 0.09 STRUGALSK 71 HLBC R13 0.322 0.03 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R14 ETA INTO PIO (2 GAMMA)/2GAMMA GYD/(P1)	6/66 8/67 8/67 11/67 11/67 11/67 11/67 11/67
R13 ETA INTO 3PIO/NEUTRALS FL GRUNHAUS GG DSPK 2.8 0.3 0.4 0.5 0.6 0.7 0.8 6.6 6.6 0.3 0.4 0.5 0.6 0.7 0.8 6.6 6.6 0.3 0.4 0.5 0.6 0.7 0.8 6.6 6.6 0.3 0.4 0.5 0.6 0.7 0.8 6.6 6.6 0.3 0.4 0.5 0.6 0.7 0.8 6.6 6.6 0.3 0.4 0.5 0.6 0.7 0.8 6.6 6.6 13 C12091 10.054/1 DIGIUGNO 66 CNT ERGR DOUBLED 6.6 13 R 1.291 (1.01 CRUMHAUS 64 DSPK 1.8 1.8 1.6 1.5 1.6	6/66 8/67 11/67 12/70 6/70 5/71 11/67 11/67 11/67 11/67
R13 ETA INTO 3PIO/NEUTRALS FIA INTO 12 GAMMA)/SQAMA GRUNHAUS GG DSPK 2.8 0.3 0.4 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 ETA INTO 12 GAMMA)/NEUTRALS FTA INTO 12 GAMMA)/NEUTRALS (CONLEV ETA INTO 12 GAMMA)/NEUTRALS (P2)/(P1+P2+P7) ERROP DOUBLED R13 C1.2091 (0.051) FTE DAMA 67 OSPK 0.8 0.9 R13 C1.2091 (0.051) FTE DAMA 67 OSPK 0.9 0.157 R13 C1.211 (0.35) FTE DAMA 67 OSPK 0.9 0.9 0.157 R13 SEE THE MOTE ON ETA DECAY INTO NEUTRALS ABOVE. .033 .04 0.051 FTA DECAY INTO NEUTRALS ABOVE. .039K .040K .035K .041K .041K .041K .041K .041K .041K .041K .041K .041K .041K	6/66 8/67 11/67 12/70 6/70 5/71 11/67 11/67 11/67 11/67 11/67 11/67
R13 ETA INTO 3PIO/NEUTRALS PUTRALS (CONHAUS 66 DSPK 2.8 BUNIATDU 67 DSPK 2.8 CO.3 0.4 0.5 0.6 0.7 0.8 ETA INTO (2 GAMMA)/NEUTRALS (CONHAUS 66 DSPK 1.6 6.6 CO.3 0.4 0.5 0.6 0.7 0.8 ETA INTO (2 GAMMA)/NEUTRALS (CONHAUS 66 DSPK 2.8 6.6 CO.3 0.4 0.5 0.6 0.7 0.8 ETA INTO (2 GAMMA)/NEUTRALS (CONHAUS 66 DSPK 2.8 6.6 R13 C.2091 (0.054) DIGIUGNO 66 CNTR ERAOR DOUBLED R13 C.2091 (0.054) DIGIUGNO 66 DSPK 2.8 R13 C.2091 (0.054) DIGIUGNO 66 CNTR ERAOR DOUBLED R13 C.2091 (0.054) DUTTAN 70 DSPK 7.8 R13 C.2091 STRUGALSK 71 HIBC 70 MBC R13 -322 0.04 COX 70 MBC R13 0.32 0.09 STRUGALSK 71 HIBC R13 0.32 0.09 STRUGALSK 71 HIBC R14 C.51 CR ESS CL=-30 MAHLIG 66 SPRK	6/66 8/67 11/67 11/67 11/67 11/67 11/67 7/66 6/68 7/66 6/68 7/66 6/73*

R20 920

R23 R23

R24 R24

R25 R25

R26 P26 R26 R26 R26 R26 R26

R27 R27

しし

-- ---------

(P2)/(P3) 67 HL8C 68 HL8C 69 HL8C R19 8 R19 R19 1 R19 1 R19 R19 AVG R19 FIT ETA INTO 3PIO/(PI+ PI- PIO) 1.3 .4 1.47 0.20 0.1 199 1.50 .15 .2 REFERENCES FOR ETA PIO) BAGLIN2 0.17 BULLOCK .29 BAGLIN .4 0.20 .15 8/67 9/68 7/69 PEVSNER 61 PRL 7 421 PEVSNER, KRAEMER, NUSSBAUM, PICHARDSON + (JHU) ALFF 62 PRL 9 322 BASTIEN 62 PRL 8 114 CHRETIEN 62 PRL 9 127 PICKUP 62 PRL 8 329 SHAFER 62 CERN CONF 307 ALFF,BERLEY,COLLEY,BRUGGEP + (COLU+RUTGERS) BASTIEN,BERGE,DAHL,FERG-LUZZI + [LR] Chrefien + (Branebonn-Harvard-Mit+Paddva) E Pickup-Robinson,Salant (Correbnu) J Shafer,Ferg-Luzzi,Murray + (UCB-LFL) ö.i3 1.46 0.13 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.058 FRDM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) ETA INTO 2GAMMA/((3PIO)+2/3(PIO 2GAMMA)) (P1)/(P2+2/3P7) 1.10 0.5 MULLER 63 CBC 7/66 8ACCI 63 PRL 11 37 BUSCHBEC 63 SIENA CONF 1 166 CRAMFORD 63 PRL 10 546 ALSO 66 PRL 16 907 DELCOURT 63 PL 7 215 MULLER 63 SIENA CONF 99 BACCI,PENSO,SALVINI + (ROMA+FRAS) BUSCNBECK-CZAPP,COCPER + (VIENA,CERN,AMSI) F SCRAMFCRO,LLOYO,FOMLER (IRL+DUKE) F SCRAMFCRO,L LLOYO,E FOMLER (IRL+DUKE) DELCOURT,LEFRANCOIS,PEREZ Y JORBA+ (ORSAY) MULLEF,PAULT + (SACL+ROMA) 1.184 0.058 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2) R20 FIT R21 ETA R21 L6K R21 L6K R21 R21 R21 AVG R21 FIT (P1+P2+P7) BUNIATOV 67 OSPK BASILE 71 CNTR MM SPECTROMETER FTA INTO NEUTRALS/TOTAL .79 .08 16K .705 .008 11/67 0.7058 0.0080 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.7113 0.0067 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) H W FDELSCHE,H L KRAYBILL (YALE) KRAEMER,MADANSKY,FIELDS + (JHU+NWES+WODD) E PAULI,A MULLER (SACLAY) FOELSCHE 64 PR 134 8 1138 KRAEMER 64 PR 136 8 496 PAULI 64 PL 13 351 R22 ETA INTO (PIO 2GAMMA)/TOTAL R22 .12 OR LESS CL=.95 JACQUET R22 R22 FIT 0.031 0.011 FROM FIT (P7) 69 HLBC FOSTER1 65 PR 138 8 652 FOSTER2 65 ATHENS FOSTER3 65 THESIS PRICE 65 PRL 15 123 RITTENBE 65 PRL 15 556 FOSTER.PETERS.MEER.LOEFFLER + (WISC+PURDUE) FOSTER.GODD.MEER (WISCONSIN) W.C.FOSTER (WISCONSIN) L.R.PRICE.F.S.CRAWFORD (LRL) RITTENBERG.KALBFLEISCH (LL+PNL) 6/70 ETA INTO MU+MU-/TOTAL (UNITS 10**-5) 0 2. OR LESS CL=.95 HEHMANN (P12) 68 CSPK ALFF-STE 66 PR 145 1072 BALTAY 66 PR 146 1224 CPAWFQRD 66 PR 16 1224 DTGUGND 66 PR 16 333 DTGUGND 66 PR 164 993 GRUNHAUS 66 TH515 JAMES 66 PR 142 896 JONES 66 PR 142 597 WAHLIG 66 PR 17 221 4/68 ALTF-STEINBERGER.BEPLEY+ (COLUMBIA+RUTGERS) ALFF-STEINBERGER.BEPLEY+ (COLUMBIA+RUTGERS) FRANZINI KIM,KIRSCH+(COLUMBIA+STONY BROCK) F.S.CRAMFORD,L.R.PRICE DIGIUGNO,GIDRGI,SILVESTRI+ (NAPL,TOST,FPAS) GRUNANAUS (COLUMBIA) JGRUNANAUS (COLUMBIA) JORES,BINNIE, PARCE,F CRAMFORO (LQUMBIA) JORES,BINNIE, VARAUS (COLUMBIA) JONES,BINNIE, PARCEN, HORSEY,MASON, (LDIC, AREL) WAHLIG, SHIBATA,MANNELLI ETA INTO MU+MU-PIO/TOTAL (UNITS 10**-4) 5. OR LESS WEHMANN (P14) 68 OSPK 4/68 574 INTO MU+MU+/2GAMMA (UNITS 10**-5) 5.9 2.2 Hyamş (P12)/(P1) 69 OSPK 7/69 ETA INTO (PIO 2GAMMA)/(3PIO + PIO 2GAMMA) (PT)/(P2+P7) N 0.1 0.3 KANCESKY 70 OSPK N WE HAVE CHANGED THE ERROR NO THIS EXPOPIMENT FROM +0.3,-0.1 N TO THE ABOVE +0.3,-0.3 SINCE IT IS CLEAR FROM FIGURE 7 IN THE N ARTICLE THAT A CENTRAL VALUE OF 0.0 IS ABOUT AS PROBABLE AS THE N QUOTED VALUE OF 0.1. 2/71 2/71 2/71 MARLIS 66 PRL 17 221 BAGLINI 67 PL 248 637 BAGLIN2 67 BAPS 12 567 BALTAY1 67 PRL 19 1495 BALTAY2 67 PRL 19 1498 BEMPORAD 67 PL 258 380 ALSO PRIVATE CCMMUNICA BILLING 67 PL 258 435 BONAMY 67 PL 258 435 BONAMY 67 PL 258 560 CENCE 67 PRL 19 1393 FELDMAN 67 PRL 18 868 FLATTE 67 PRL 18 976 FLATTE 67 PRL 18 976 PRICE 67 PRL 18 1207 BAGLIN, REZAGUET, DEGRANGE, + (EPOL+UCB) BAGLIN, BEZAGUET, DEGRANGE, + (EPOL+UCB) BALTAY, FRANZINI, KIM, NEWMAN+ (COLU+BRAN) BALTAY, FRANZINI, KIM, NEWANA+ (COLU+BRAN) BALTAY, FRANZINI, KIM, NEWANA+ (COLU+STON) BEMORDAD, DERACINI, FOLA, LUBELSMEY+IDISA, BONN) 2/71 2/71 R26 FIT 0.094 0.032 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2) TION TION BILLING, BULLOCK, ESTEN, GUYAN, + (LOUC, CXF) BONANY, SONDEREGGER (SACLAY) BUNIATOV, ZAVATTINI, DEINET, + (CERN+KARL) CENCE, PETERSON, STENGER, CHIU- (HAAAII+CRL) FELDMAN, FRATI, GLEESON, HALPEPN, + (PENN) S.M.FLATTE (LESON, HALPEPN, + (PENN) S.M.FLATTE AND C.G.WOHL (LRL) LITCHFIELO, RANGAN, SEGAR, SMITH+(PHEL+SACLAY) L.R.PRICE, F.S.CRAWFORD (LRL) ETA INTO (PI+ PI-)/TOTAL (UNITS 10++-2) (PI5) 6/73+ 0 (0+15) CR LESS THALER 73 ASPK CON. LEV. MOT GIVEN 6/73* 14 FTA C-NONCONSERVING DECAY PARAMETER RELATED TEXT SECTION VI C AND MINI-REVIEW BELOW DECAY ASYMMETRY PARAMETER FOR PI+ PI- PIO (UNITS 10**-2) DECAY ASYMMETRY PARAMETER FOR PI+ PI- PIO (UNITS 10**-2) 1351 7-2 2.8 BALTAY 66 DBC 1300 5.8 3.4 CLEMY 66 MBC 1300 5.8 3.4 CLEMY 66 MBC 1360 5.8 0.2 LARPIBE 66 MBC 63800 (1.5) (.5) GCRMLEY3 68 ASPK 63800 (1.5) (.5) GCRMLEY3 68 ASPK 1338 -1.4 3. CLAPPENTR 70 HBC 349 3.4 CAPPENTR 70 HBC 340 1330 -1.4 3. CAPPENTR 70 HBC 1330 -1.4 3. CAPPENTR 70 HBC 1331 -1.4 3. CAPPENTR 70 HBC 1331 -1.4 3. CAPPENTR 70 HBC 1354 0.25 0.22 LAYTER 72 ASPK 165K 0.26B 0.26B 8/66 8/67 8/67 6/68 9/69 6/70 2/71 8/72 3/74* ARNOLD 68 PL 278 466 BAZIN 58 PRL 20 895 BULLOCK 68 PL 278 402 WEHMANN 68 PRL 20 748 +PATY,BAGLIN,BINGHAM+ (STRR+MADR+EPOL+UCB) BAZIN,GOSHAW,JACHER,+ (PRINCETON,QUEENS) FESTEN,FLEMING,GOVAN,HHENDERSON,OMEN+ (LOUC) WEHMANN,ENGELS,+ (HARV+CASE+SLAC+CORN+MCGI) . BAGLIN 69 PL 298 445 ALSD 70 NP B22 66 HYAMS 69 PL 298 128 JACQUET 69 NC 58 743 BAGLIN,BEZAGUET,+ (EPOL,UCB,MADQ,STRB) +BEZAGUET,DEGRANGE,MUSSET +(EPOL,MADQ,STRB) HYAMS,KOCH,POTTEN,VON LINDEN,+ (CERN,MPIM) JACQUET,NGUYEN-KHAC,HAATUFT+ (EPOL,BEPG) BUTTRAM 70 PQL 25 1358 COX 70 PQL 24 534 DEVONS 70 PR D1 1936 GORMLEY 70 PR D2 501 ALSO 70 PVIS 181 174 KANDFSKY 70 FC 64 413 SCHMITT 70 PL 328 638 +KPEISLER,MISCHKE (PRIN) COX,FORTNEY,GOLSCN (OUKE) FRUMHAUS,KOZLOVSKI,NEMETHY + (COLU,SYRA) GOYMLEY,HYMAN,LEE,NASH,PEOPLES+ (COLU-FALL) MICHAEL GOMLEY (COLU) 3/74* 0.12 0.17 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) (SEE IDEOGRAM BELOW) AVG A. KANDFSKY (LEHI) +BUNIATOV,ZAVATTINI,DEINET+ (CERN,KARL) BASILE 71 NC 34 796 STRUGALS 71 NP B27 429 AGUILAR 72 PR D6 29 BLOODWOP 72 NP B39 525 THALER 73 PR D7 2569 +BOLLINI,DALPIAZ,FRABETTI+ (CERN,BGNA,STRA) +CHUVILO,GEMESY,IVANOVSKAYA+ (JINA) AUULAN-BENTEZ,CHUNG,EISNEF,SAMIOS (BNL) BLDDWDRTH,JACKSON,PRENTICE,YDON (TORONTO) +APPEL,KOTLEMSKI,LAVTER,IEE,STEIN (COLU) WEIGHTED AVERAGE = 0.12 ± 0.17 ERROR SCALED BY 1.0 QUANTUM NUMBER DETERMINATIONS NOT REFERRED TO IN THE DATA CARDS BASTIEN 62 PRL 8 114 CARMONY 62 PRL 8 117 ROSENFEL 62 PRL 8 293 BASTIEN,BERGE,DAHL,FERRO-LUZZI,MILLER+(LRL) D CARMONY,A ROSENFELD,VAN DE WALLE (LRL) A ROSENFELD,D CARMONY,VAN DE WALLE (LRL) REFERENCES ON ETA ASYMMETRY PARAMETERS BALTAY 66 PRL 16 1224 CNDPS 66 PL 22 546 CRANFORD 66 PRL 16 333 CLPNY 66 PR 149 1044 LARRIBE 66 PL 23 600 BALTAY, FRANZINI, KIM, KIRSCH+ (CCLU+STCN) CNDPS, FINOCCHIARS, LASSALLE, (CERN, FITA, SACL) FS, CRAHFORO, L.R. PRICE (IRL) COLUMBIA, IRL, PURDUE, WISCONSIN, YAL LARRIBE, LEVEQUE, WILLER, PAULI, + (SACL+RHEL) LARK IDFLEVEQUERULER,FAULER,FAULIST (SALETAILE) BOMEN, GNOSS - FINOCCHIARO,+ (CERNETH/ESALEA) IOTNIESH-NANGAN,SEGAP.SMITH+(9HEL+SALEA) ARMAND MULLER CARPENTER, BINKLEY, CHAPMAN, COX, DAGAN+ (DUKE) +ABOLINS, DAHL, DAVIES, HOCH, KIRZ,+ (LRL) +ABOLINS, DAHL, DAVIES, HOCH, KIRZ,+ (LRL) +APPEL, KOTLEWSKI, LEG, STEIN, THALER (COLU) +APPEL, KOTLEWSKI, LEGE, STEIN, THALER (COLU) +APPEL, KOTLEWSKI, LEPENTSY+ (RHEL+LOWC+SUSS) +JONES, LIPMAN, OWEN, PENNEY+ (RHEL+LOWC+SUSS) EDWEN 67 PL 246 206 LITCHFIE 67 PL 246 306 CORM EY3 60 PRL 21 402 MULLER 60 FHESIS CARPENTR 70 PR 01 1303 DANBURG 70 PR 02 2564 THALER 72 PRL 29 313 JANEI 74 PL 488 265 CHISQJANE1 74 DSPK 0.4 · · · · · · · · · · LAYTER 72 ASPK 0.6 - · · · · DANBURG 70 DBC · · · · · · · · · · · CARPENTR ZO HRC · · · · · · · · · · MULLER 69 **DSPK** 0.0 ········· 66 HBC -----CLPWY 66 HBC 66 D8C 1.0 CONLEV P -15 -5 5 15 25 16 PROTON (938.J=1/2) 1=1/2 =0.607) ETA INTO PI+PI-PIO ASYMMETRY PARAMETER 16 PROTON MASS (MEV) (938.256) (0.005) COHEN (938.2592) (0.0052) TAYLOR 938.2796 0.0027 COHEN 65 RVUE 69 RVUE 73 RVUE 7/66 7/70 3/74* USING NEW E/H DECAY ASYMMETRY PARAMETER FOR PI+ PI- GAMMA (UNITS 10**-2) 33 -2. 17. CRAWFORD 66 HBC -4. 6. LITCHFIEL 67 DBC N 1620 1.5 2.5 MULLER 69 DSPK N ABOVE EXPERIMENT IS SENSITIVE ONLY TO UPPER -4.0F GAMMA-RAY SPECTRUM 7257 1.22 1.56 GOMNLEY 70 ASPK 36K 0.5 0.6 THALER 72 ASPK 35K 1.2 0.6 JANEZ 74 DSPK 11/66 8/67 9/69 16 PROTON MEAN LIFE CUNITS 10**26 YRL (.000001)00 MDRE GOLDHABE 54 TH 232 FISS.MODE INDEPEN (0.002)00 MORE FLEPOV 57 TH 232 FISS.MODE INDEPEN (1.5) DR MORE BACKENSTO 60 CMTR (60.0) DR MORE KROPP 65 CMTR (200.0) DR MORE GURR 67 CMTR DEP. ON DECAY MODE KROPP AND BACKENSTOSS SENSITIVE TO PARTICULAR DECAY MODES OF FROT 6/70 8/72 3/74* B 0.88 0.40 AVERAGE (ERPOR INCLUDES SCALE FACTOR OF 1.0) AVG

в

Stable Particles

η, p

Stable Particles

p, n, A

Data Card Listings For notation, see key at front of Listings.

	16 PROTON MAGN	ET. MOMENT(E/2	MP)		REFERENCES FOR NEUTRON
MM MM	(2.792763)(.000030) (2.792782)(.000017)	COHEN 6 TAYLOR 6	5 RVUE 9 RVUE USING NEW E/H	7/70	COMEN 56 PR 104 283 V W COMEN, CORNGOLD, RAMSEY (BNL+HARVARD) Sosnovsk 59 jetp 9 717 Sosnovskii,spivak,prokofev + (tae moscow)
MM 	2.7928456 .0000011 16 ANTIPROTON	COHEN 7 MAGNETIC MOMEN	3 RVUF T (E/2MP)	3/74*	NATTAUCH 65 NP 67 I +THIELE,WAPSTRA (MAX PLANCK INST.CHEM.) CHRISTEN 67 PL 26B 11 CHRISTENSEN,NIELSON,BAHNSEN,PROWN+ (RISC) CONFORTD 67 APAH 22 15 G. CONFORTO (CERN) GRIGGREV 68 SNP 6 239 +GRISHIN,VLADIMIRSKII,NIKOLAFVSKII + (ITEP)
MM1	-2.83 0.10	FOX 7	2	11/72	BAIRD 69 PR 179 1285 +HILLER,DRESS,RAMSEY (ORNL,HARV) Tayi dr 69 RMP 41 375 +PARKER,LANGENBERG (PRIN+UCI+PENN)
	16 PROTON ELEC Nonzero Value implies VI	TRIC DIPOLE MO OLATION OF T A	MENT (UNITS 10**-23 E CM) ND P IN EM INTERACTION		CHRISTEN 70 PR C1 1693 CHRISTENSEN, KRÖHN, RINGO (ANL) EPOZOLIM 70 SANP 11 583 EROZOLIMSKI, BONDARENKO, + (KURC MOSCOW) ALSO PL 278 557 EROZOLIMSKI, BONDARENKO, + (KURC MOSCOW) EROZOLIM 71 JETPL 13 252 EROZOLIMSKI, BONDARENKO, + (KURC MOSCOW) UNDETENSEN, RESON,
EDM	1G 700. 900.	HARRISON 6	9 MBR	10/69	COMEN 73 J.PHYS.CHEM.REF.DATA 2, P.663, E.R.COMEN,B.N.TAYLOR DRESS 73 PR D7 3147 DRESS,MILLER,RAMSEY (ORNL+HARV)
*****	******* ******** *******	* ********* **	****** ******** *******		KROPF 73 ZPHY 10 BE PUBL. A KRUPF,H PAUL (L1NZ) ALSO 70 NP A154 160 H PAUL (VIEN) COHEN 74 PRIVATE COMM. E.R.COMEN(NORTH AMER. AVIATION SCI. CENTER)
	REFER	ENCES FOR PROT	ON		PAPERS NOT REFERRED TO IN DATA CAROS
GOLDHAB FLEROV BACKENS BUTTON	E 54 PR 96 1157 FNOTE2 GOLDH 57 SOV PHYS DOK 3 79 FLERO 7 60 NC 16 749 BACKE 62 PR 127 1297 J BUT	ABER,F REINES+ V,KLOCHKOV,SKO NSTOSS,FRAUENF TON,B MAGLIC	(LOS ALAMOS,BNL) BKIN,TERENTEV (USSR) ELDER,HYAMS + (CERN) (LBL)		JACKSON 57 PR 106 517 JACKSON,TREIMAN,WYLD (PRINCETON) COMEN 65 RMP 37 537 +DUMOND (N.AMER.AVIATION SCIENCE CENT.CITI BHALLA 66 PL 19 691 C P BHALLA (ALABAMA)
COHEN KROPP GURB	65 RMP 37 537 +DUMO 65 PR 137 8 740 W R K 67 PR 158 1321 GURR.	ND (N.AMER.AVI ROPP.F REINES KROPP.REINES.M	ATION SCIENCE CENT.,CIT) (CASE INST TECHNOLOGY) EYER (CASE,JDHANNESBURG)		****** ********* ********* ******** ****
HARRISO TAYLOR FCX COHEN	N 69 PRL 22 1263 HARRI 69 PMP 41 375 +PARK 72 PRL 29 193 FOX,8 73 J.PHYS.CHEM.REF.DATA 2.	SON, SANDARS, WR ER, LANGENBERG ARNES, EISENSTE P.663, E.R.CO	IGHT (CLARENDON OXFORO) (PRIN+UCI+PENN) IN+ (CARN+VPI+WILL+WYOM) HEN,8.N.TAYLOR		18 LAMBDA (1115, JP=1/2+) 1=0
******	********* *****************************	* ********* ** * *********	****** ******** ********		18 LAMBDA MASS (MEV)
n	17 NEUTRON (93	9,J=1/2) I=1/2			M N SINCE OUR FINAL VALUES FOR THE SIGMA AND LAMBOA MASSES COME FROM M N DOING AN OVERALL FIT TO ALL MEASURED MASSES AND MASS DIFFERENCES, M N WE MAVE USED THE UNCORRELATED MEASUREMENTS FROM SCHWIDT 65 RATHER M N THAN THE ONES COMING FROM THE OVERALL FIT REPORTED IN THAT PAPER. M N SINCE THERE SEEMS TO BE NO CONVINCING ASCHIMENT AS IT ONLY THAT SHOULD D
	17 NEUTRON MAS	S (MEV)			N IGNORE DATA USING RANGE MEASUREMENTS, WE HAVE INCLUDED HERE VALUES M N DEPENDING ON PROTON AND PION RANGES. THE SCHWIDT 65 MASSES HAVE N DEPENDING ON PROTON AND PION RANGES. THE SCHWIDT 65 MASSES HAVE
M T M T	(939.5527) (0.0052) 939.5731 0.0027	TAYLOR 6 COHEN 7	9 RVUE USING NEW E/H 3 RVUE	7/70 3/74*	M N BEEN REPYFLUATED USING OUR AFRIL 1975 FRUTUN AND CHARGED N AND FI M N MASSES. P. SCHMIDT, PRIVATE COMMUNICATION, (1974).
мт	THESE DETERMINATIONS OF NEU NEUTRON-PROTON MASS DIFFERE	NCE MEASUREMEN	INDEPENDENT OF Its Below.	7/70	M 115.44 0.12 BHOMMIK 63 RVDE + SEE NOTE L BELOW M L ABOVE LAMBOA MASS HAS BEEN RAISED 35 KEV TO ACCOUNT FOR 46 KEV M L INCREASE IN PROTON MASS AND LI KEV DECREASE IN CHARGED PION MASS.
	17 (NEUTRON) -	(PROTON) MASS	DIFFERENCE (MEV)		M S 635(1115-86) (0.09) BALTAY 65 MBC ERROR IS STATIS. 6/66 M 488 1115-65 0.07 SCHMIDT 65 MBC SEE NOTE N 3/74 M S 1147(1115-74) (0.04) CHIEN 66 MBC 6-9 PBAR P 9/67
D M	(1.29344) (0.00007)	MATTAUCH 6	5 RVUE	3/71	M S 972(1115.69) (0.05) CHIEN 66 HBC 6.9 PBAR PANTIL 9/67 M 1115.6 0.4 LONDON 66 HBC 6/9 PBAR PANTIL 9/67 (1115.6 0.4 LONDON 66 HBC 6/9 PBAR PANTIL 9/67
0 M 0 M 0 M	WE HAVE CONVERTED MATTAUCH NEUTRON-PROTON MASS DIFFERE AND A HYDROGEN BINDING ENER	NEUTRON-HYDROG NCE USING CURR GY DF 13.6 EV.	EN MASS DIFFERENCE TO ENT VALUE OF ELECTRON MASS	3/71 3/71 3/71	M 195 1115.39 0.12 MAYEUR 67 EMUL 11/67 M 8 1524(1115.52) (0.03) 80HM 70 EMUL 3/72 M 935 1115.59 0.08 HYWAN 72 HEBC 11/71 H 8 AVERAGE OF VERY INCONSISTENT DATA. ERROR STATISTICAL ONLY. AUTHORS 3/72
	17 NEUTRON MAG	NETIC MOMENT (MAGNETONS,938.2 MEV)		M B DEFECT SYSTEMATIC EFFECT OF ABOUT 15 MEV, WHICH THEY ATTRIBUTE 37/2 M B TO ERROR IN PANGE-ENERGY RELATIONS, IN REGION BETA=0.6-0.7. 3/72 M B THIS EFFECT, IF CONFIRMED, WOULD AFFECT VERY LITTLE THE VALUES OF 3/72
HM	-1.913148 0.000066	COHEN 5	66 RVUE	7/66	M B BHOWMICK 63 AND MAYEUR 67. M S Error Purely Statistical.
	17 NEUTRON ELE TEST CF CP OR T VIOL	CTRIC DIPOLE M ATION IN THE E	IDMENT (UNITS 10**-23 E CM) M INTERACTION		M AVG 1115.566 0.056 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) M FIT 1115.599 0.048 FROM FIT LERROR INCLUDES SCALE FACTOR OF 1.2) 3/74 (SEF IDEOGRAM BELOW)
EDM EDM	(5.) OR LESS 0.32 0.75	BAIRD 6 DRESS 7	9 MBR INCLUDED IN DRESS73 3 MBR .LT.10**-23 CL=.80	10/69 6/73*	
					WEIGHTED AVERAGE = 1115.566 ± 0.056 FORDE SCOLED BY 1.3
	17 NEUTRON MEA	IN LIFE (UNITS	10**3 SECI		
	RECENT RESULT OF CHRISTEN RECENT RESULT OF CHRISTEN RIVED FROM THE NEW VALUE GA/GV VALUE OBTAINED FROM	IT DISAGREES W ISEN 67. 2. T OF THE MEAN LI THE FREE NEUT	TH THE BETTER AND MORE THE VALUE OF GA/GV DE- THE AGREES WELL WITH THE TRON DATA.		Values above of weighted average, error, and scale factor are for the
T T T	(1.012) (0.021) (0.935) (0.014) 0.918 0.014 ERROR CHANGED BECAUSE ERROR	SOSNOVSKI 5 CHRISTENS 6 CHRISTENS 7 IN CROSS SECT	9 PILE SEE NOTE E 57 PILE REPL BY CHRISTENS72 12 PILE 110N FOR NEUTRON ABSORPTION	7/68 3/68 6/72	reader's convenience only. The data were actually processed by a constrained fit program, which calculates its own values of X. bX.
Ē	IN GOLD HAS BEEN REDUCED.				and scale factor, which are differ- ent from the values shown here.
	17 NEUTRON BET	A DECAY COUPLI	ING CONSTANTS		
	RELATED TEXT SECTION VI D.1				CHISO
AV AV C AV EP	GA/GV (SEE TEXT FOR SIGN ((-1.250) (0.044) (-1.23) (0.01)	CONFORTO 6 CONFORTO 6 CHRISTENS 6	57 RVUE SEE NOTE C BELOW 57 CNTR N DECAY FT VALUE	11/68	
AV P AV P AV EP	(-1.22) (0.08) (-1.26) (0.02) (-1.27) (0.025)	GRIGOREV 6 CHRISTENS 7 EROZOLIMS 7	58 CNTR E-NEU ANG CORREL 70 CNTR PE+NEUT SPIN CORREL 71 CNTR PE+NEUT SPIN CORREL	10/71 10/71 10/71	
	(-1.239) (0.011) (-1.263) (0.016) +1.250 0.009	CHRISTENS 7 KROPF 7 KROPF 7	72 CNTR N DEC.+ FT VALUE 73 RVUE N DECAY ALONE 73 RVUE N DEC.+ FT VALUE	1/73 1/73 1/73	
	CONFORTO 67 COMBINES FREE N THESE EXPERIMENTS MEASURE 1	HEUTRON DATA TO	1967. REPL. BY KROPF 73.	1/73	1115.0 1115.4 1116.8 1116.2 =0.188) Lambda mass (mey)
AV P	PHASE ANGLE OF GA RELATIVE	TO GV (DEGREE	S)	1773	
F C F P F P	(176.1) (6.4) (181.3) (1.3) 181.1 1.3	CONFORTO 6 EROZOLIMS 7 KROPF 7	TO CNTR POLAR, NEUTRON 73 RVUE N DECAY	10/69	18 LAMDA - ANTILAMBDA NASS DIFFERENCE (MEV) DN 0.05 0.06 (HEN) 6(HEN)
F C F P	CONFORTO 67 COMBINES FREE N KROPF 73 VALUE OBTAINED BY	EUTRON DATA TO FITTING ALL DA	1967. REPL. BY KROPF 73. MTA THROUGH 1972.	1/73	DM 0.29 0.15 BADIER 67 HBC 2.4 PBAR P 9/67 DM 0.29 0.15 BADIER 67 HBC 2.4 PBAR P 8/67
******	******** ********* *******	** ********* **	******** ********* ********		

IN PIO)) (P2)/(P1+P2) EISLER 57 HLBC CRAMFORD 59 HBC BAGLIN 60 HLBC BROWN 63 HLBC CHRETIEN 63 HLBC E (PACT LAMBDA INTO (N PIO)/((P PI-)+(N PIO)) 0.23 0.09 EISLER 0.43 0.14 CRAWFOR 0.28 0.08 BAGLIN 18 LAMBDA MEAN LIFE (UNITS 10**-10) R2 0.21 BCLOT 58 CC 0.16 CRAMFORD 59 HBC 0.27 BOWEN 60 CC 0.20 CHANG 62 HBC 0.11 HUMPHREY 62 HBC 0.06 BLOCK 63 HEGC CHRETIEN 63 HEGC HUBBARD 64 HBC KRETSLER 64 OSPK SCHWARTZ 64 HBC BALTAY 65 HBC CHIEN 66 HBC 6.9 PBAR P.ANTI 9/67 0.054 ENGELMANN 66 HLBEC 6.9 PBAR P.ANTI 9/67 0.054 ENGELMANN 66 HBC 6.9 PBAR P.ANTI 10/67 BADTER 07 HBC 2.4 PBAR P.ANTI 6/68 BOTHER 06 HBC 2.4 PBAR P.ANTI 6/68 BOTHER 07 HBC 2.4 PBAR P.ANTI 1/2/70 BATTAY 71 HBC K-P AT REST 6/71 ALTHOFEZ 73 N5PK PI-N T0 K+LAMBDA 2/74+ POULARD 73 HBC K-P,KMOM -4T02.3 9/73+ L. 0.21 188 825 140 186 799 2239 705 794 0.16 0.29 0.28 0.11 0.35 0.05 75 0.291 . 0.025 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.0049 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG F[T 0.304 0.06 LANDA INTO (P E - NEU)/TOTAL (UNITS 100+4-2003 SOCIE (PADAGA ON TIO) LANDA INTO (P E - NEU)/TOTAL (UNITS 100+4-2) S (2-0) (1.5) (1.2) AUBERT 62 FBC 150 (0.82) (0.12) (2.1) 24 AUBERT 62 FBC 150 (0.78) (0.12) (0.13) BAGLIN 64 FBC K- AT REST 102 (0.78) (0.12) (0.13) BAGLIN 64 FBC (0.78) (0.12) (0.13) BAGLIN 64 FBC 143 (0.80) (0.08) MALONEY 69 HBC 86 (0.78) (0.20) CANTER 71 HBC K-P AT REST 218 (0.88) (0.10) LINOQUIST 71 CSFK PI-P TO KO LAM THESE VALUES HAVE BEEN CHANGED BY US INTO RATICS TO PROTON PI-, BECAUSE THAT IS THE DIRECTLY MEASURED CUANTITY. SEE R5 BELOM LOW STATISTICS EXPERIMENTS, NOT AVEPAGED 2260 1378 0.10 0022022220 635 2534 916 1147 972 2213 585 K- AT REST K- AT 1.45 GEV/C 0.16 0.1 0.09 (0.14) (0.20) 0.056 0.13 0.15 0.15 0.035 10/69 4/71 2/72 3/72 8342 2600 1059 4572 6582 LAMBDA INTO (P MU- NEU)/TOTAL (UNITS 10**-4) (P3)/(P1+P2) 0.08 (UNITS 10**-4) GOOD 62 HBC ALSTON 63 HBC KERNAN 64 FBC LIND 64 HBC LIND 64 RBC LIND 64 RWUE RONNE 64 FBC CANTERI 71 HBC BAGGETT2 72 HBC 1 (0.2) OR MORE 1 (1.0) OR LESS 2 (1.0) OR LESS 0.10 0.04 2.69 0.05 2 (1.0) OR LESS BETWEEN 1.3 AND 6.0 3 1.3 0.7 2 1.5 1.2 9 2.4 0.8 14 1.4 0.5 SOK 2.626 0.020 ERROR PURELY STATISTICAL. s 2.578 0.021 0.021 AVERAGE (FRROR INCL. SCALE FACTOR OF 1.6) (SEE IDEOGRAM BELON) AVG STOPPED K-P 4 . . AVG STOP K-0.35 AVERAGE (EPROR INCLUDES SCALE FACTOR OF 1.0) 1.57 LAMBOA INTO (P E-) RUJ/(P PI-) (UNITS 10**3) Charlon (P C) (UNITS 10**3) Charlon (P C) (P C) (UNITS 10**3) 1500 1.23 0.20 ELY 63 FEC 120 1.7 0.18 BAGLIN 64 FEC 143 1.20 0.12 MALONEY 69 HBC 1078 1.31 0.06 ALTHOFF 171 D5PK C 86 1.17 0.13 CANTER 71 HBC K-P AT REST C 218 1.32 0.15 LINDQUIST 71 D5PK F1-P TO KO LAM C CALCULATED BY US FARM P3 ASSUMING THE AUTHOPS USED (P PI-)/TOT=2/3 15 CANTER 71 HBC K-P AT REST WEIGHTED AVERAGE = 0.3879 ± 0.0031 ERROR SCALED BY 1.6 PDULARD 73 HBC ALTHDFF2 73 DSPK BALTHDFF2 73 DSPK BALTAY 71 HBC DEATDDU 70 HBC -BALTAY 71 HBC -BALTAY 71 HBC -GENTDU 70 HBC -GENTAN 68 HBC -BADIER 67 HBC -BAUERBACH 67 DSPK -BURAN 66 HBC -BURAN 66 HBC -BURAN 66 HBC -BURAN 66 HBC -SCHUARTZ 64 HBC -SCHUARTZ 63 HBC -HUBBARD 64 HBC -HURPHREY 62 HBC -HURPHREY 62 HBC -HURPHREY 64 HBC -HURPHREY 64 HBC -HURPHREY 64 HBC -HURPHREY 64 HB <u>CHISQ</u> 5.9 5,4 0.9 0.9 3.0 1.7 1.5 0.0 AVG 1.267 0.044 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) LAMBDA INTO (P PI- GAMMA)/(P PI-) (UNITS 10**-3) (P51/(P1) 72 1.32 0.22 BAGGETT3 72 HBC PI- MOM LT 95 MEV/C РЬ 96 1/73 + 0.8 0.8 ----------4.8 5.3 ::: 18 LAMBDA DECAY PARAMETERS . RELATED TEXT SECTION VI D AND APPENDIX III ALPHA LAMBDA (LAMBDA INTO PI PPOTONI 1156 0.62 0.07 CRONIN 63 CNTR LAMBDA FROM PI-P (0.663) (0.022) EERGE 66 RVUE INCLUDES ABOVE 10130 0.665 0.017 OVERSETH 67 CSFK LAMBDA FROM PI-P 12529 (0.747) (0.086) MERRILL 68 HBC REPM PI-P 3520 0.67 0.06 DAUBER 69 HBC CRVM TICLAY 10325 0.669 0.023 CLELAND 72 OSPK LAMBDA FROM PI-P 5.8 0.0 ALPPA LAMBDA - (LAMBDA INTO PI-1156 0.62 0.07 (0.663) (0.022) 10130 0.645 0.017 M 2529 (0.747) (0.086) 3520 0.67 0.06 10325 0.649 0.023 8/67 9/66 8/67 6/68 6/68 5/72 . 0.9 10130 M 2520 11.1 AVG 0.647 0.9 0.013 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) ALPHA0 / ALPHA- FOR LAMBDA (L INTO PIO N/L INTO PI- P) A0 1.10 0.27 CORK 60 CMR A0 4.000 0.068 OLSEN 70 OSPK PI+N TO K+ LAMBDA A0 4.006 0.068 OLSEN 70 OSPK PI+N TO K+ LAMBDA A0 0.006 AVERAGE (ERROR INCLUDES SCALE FACTOR DE 1 OS 50.1 0.40 0.45 0.30 0.35 0.50 0.55 CONLEV =0.000) LAMBDA DECAY RATE (UNITS 10##10 SEC-1) 1000 0.066 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) DONE BY COMPARING PROTON DISTA.WITH N DISTR. FPCM LAMBDA DECAY. A0 0 _____ F-F-PHI ANGLE (SIN(PHI)/COS(PHI)=BETA/GAMMA) [DEGREES] PHI ANGLE ISIN(PHI//USI/PTI/-0LIN/SUMMA) CONTACT 1150 13.0 17.0 CRONIN 63 CSPK LAMBDA FROM PI-P 10130 -8.0 6.0 OVERSETH 67 CSPK LAMBDA FROM PI-P 7377 (-9.2) 15.2) CLELAND 67 CSPK LELAND 72 10325 -7.0 4.5 CLELAND 72 CSPK LAMBDA FROM PI-P AVG -6.5 3.5 AVERAGE LERROR INCLUDES SCALE FACOP OF 1.0) IT-0. CRONIN 63 CSPK LAMBDA FROM PI-P 11/67 6.0 OVERSETH 67 CSPK LAMBDA FROM 91-P 11/67 6.0 OVERSETH 67 CSPK LAMBDA FROM 91-P 11/67 6.0 OVERSETH 67 CSPK LAMBDA FROM 91-P 11/67 6.1 OVERSETH 67 CSPK FLAMD 72 72 4.5 CLELAND 72 CSPK LAMBDA FROM PI-P 5/72 18 (LAMBDA - ANTILAMBDA)/AVG., MEAN LIFE DIFFERENCE 0.044 0.085 BADIER 67 HBC 2.4 PBAR P 8/67 _____ F AVG -6.5 3.5 AVERAGE LERROR INCLUDES SCALE FACTOP OF 1.0) AV GA/GV FOR LAMBDA BETA DECAY (SEE TEXT SEC. VI D.1 FOR SIGN CONV.) AV C 22 (-1.03) AV C C 22 (-1.03) LIND 64 MBC AVEND AV C 102 (0.6) OR MORE BACIN 65 HBC NO SIGN GIVEN AV C DETH O. AND -1.1 BARLOW 65 OSPK AVEND AVEND AV C DETH O. AND -1.1 BARLOW 65 OSPK AUE AVENDED TO K MORE CL=.95 FLV AV C DETH O. AND -1.1 BARLOW 65 OSPK AUE AVENDED TO K MORE CL=.95 FLV AV C EXPERIMENTS INCLUDED IN CONFORTO 65, RVUE AUE -1.14 0.23 CONFORTO 65 RVUE AV M 148 -0.72 0.14 0.19 ALTOFFRT 10 SK POLARIZED LAMBDA AVENDER AV M 143 -0.72 0.16 0.10 ST 10 SK PDEAMIZED LAMBDA AV 173 -0.06 0.13 CINDUIST 71 OSK PDEAMIZED LAMBDA AV M 1173 -0.060 18 LAMBDA MAGNETIC MOMENT (MAGNETONS,938.26 MEV) 5/58 1/71 6/68 1/71 6/68 11/67 10/69 COOL 62 05PK KERNAN 63 CC ANDERSON 64 HBC CHARRIERE 65 EMUL 0.37 BARKOV 71 EMUL ANH.JENSE 71 EMUL HILL 71 CSPK 0.5 $\begin{array}{r} -1.5\\ 0.0\\ 8553 & -1.39\\ 151 & -0.5\\ 49 & -0.67\\ 1300 & -0.66\\ 3868 & -0.73\end{array}$ 0.5 0.6 0.72 0.28 0.31 0.07 0.18 2/72 PRELIM. RESULT MAG FIELD=200KG 6/71 10/71 -0.672 . 0.061 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG _____ 18 LAMRDA ELECTRIC DIPOLE MOMENT (UNITS 10**-14 E CM) NONZERO VALUE IMPLIES VIOLATION OF T AND P EDM 5.0 OR LESS CL=.95 GIBSON 66 EMUL EDM B 1.0 OR LESS CL=.95 BARONI 71 EMUL EDM B BARONI MEASURES (−5.9+−2.9)+10**−15 E CM 2/12 2/12 2/72 AVG -0.658 0.054 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) (SEE IDEOGRAM BELOW) 18 LAMBDA PARTIAL DECAY MODES DECAY MASSES LAMBDA INTO PROTON PI-LAMBDA INTO NEUTRON PIO LAMBDA INTO PROTON MU- NEUTRINO LAMBDA INTO PROTON E- NEUTRINO LAMBDA INTO PROTON PI- GAMMA DECAY MASSI 938+ 139 939+ 134 938+ 105+ 0 938+ •5+ 0 938+ 139+ 0 P1 P2 P3 P4 P5 _____ 18 LAMBDA BRANCHING RATIOS R1 0.627 0.031 CRAMFORD 59 HBC R1 0.627 0.031 CRAMFORD 59 HBC R1 0.65 0.05 CDLUMBIA 60 HBC R1 0.633 0.015 ANDERSON 62 HBC R1 903 0.643 0.016 HUMPHREY 62 HBC R1 973 0.663 0.016 HUMPHREY 62 HBC R1 973 0.6643 0.016 HUMPHREY 62 HBC R1 974 0.6645 0.007 DOYLE 69 HGC PI-P TO LAM. KO R1 4572 0.666 0.008 BALTAY 71 HBC K-P AT REST R1 ANDERSON PESULT NOT PUBLISHED, EVENTS ADDED TO DOYLE SAMPLE. R1 ANG 0.6399 0.0049 AVERACE (ERROR INCLIDES COLLER TO THE REST R1 FIT 0.6419 0.0049 REST R1 R1 R1 R1 R1 R1

2/71 6/71 2/71

0.6399 0.0049 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.6419 0.0049 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)

65

٨

3/72

7/6E

2/72
2/72
2/72

2/72

3/72

3/72

5/70

7/73* 4/71 9/71

9/71 9/71 2/72 7/73* 7/73* 7/73*

Stable Particles

Stable Particles

Data Card Listings

For notation, see key at front of Listings.

	19 SIGMA+ PARTIAL DECAY MODES		R9 (SIGMA+ INTO N MU+ NEL R9 2 0.06 0.045))/(SIGMA- INTO N MU- NEU) 0.03 EISELE2 69 HBC +- STOP K-	10/69
P1 P2 P3	SIGMA+ INTO PROTON PIO SIGMA+ INTO NEUTRON PI+ SIGMA+ INTO NEUTRON PI+ GAMMA	DECAY MASSES 938+ 134 939+ 139 939+ 139+ 0	R9 5.3 0.095 OR LESS R9 NUMBER OF EVENTS INCR	CL=.90 DUR AVERAGE USING R6 REASED TO 5.3 FOR 90PC CONFIDENCE LEVEL	2/71 2/71
P4 P5 P6 P7 P8	SIGMA+ INTO LAMBDA E+ NEU SIGMA+ INTO PROTON GAMHA SIGMA+ INTO NEUTRON MU+ NEUTRINO SIGMA+ INTO NEUTRON E+ NEUTRINO SIGMA+ INTO PROTON E+ E-	1115+ .5+ 0 938+ 0 939+ 105+ 0 939+ 15+ 0 939+ .5+ 0 938+ .5+ .5	R10 (SIGMA+ INTO N E+ NEU) R10 E 0 0.033 OR LESS R10 0 0.019 OR LESS R10 0 0.12 OR LESS R10 0 0.12 OR LESS R10 0 0.18 OR LESS R10 0 0.018 OR LESS R10 ESS R10 0 0.018 OR LESS R10 0 0.018 OR LESS R10 ESS R10 R10	/(SIGHA- INTC N E- NEU) CL=.90 EISELE2 69 HBC +- STOP K- CL=.90 EISENHOH 70 HBC STOP K- CL=.95 COLE 71 HBC STOP K- CL=.95 SECHIZORN 73 HBC STOP K-,POISSON Y EBENHCH 70	10/69 •12/70 10/71 8/73*
	19 SIGMA+ BRANCHING RATIOS		RIO 4.0 0.016 OR LESS RIO NUMBER OF EVENTS INCR	CL=.90 OUR AVERAGE USING R5 EASED TO 4.0 FOR 90PC CONFIDENCE LEVEL	2/71 2/71
R1 R1 R1 R1 R1 R1 R1 A	SIGMA+ INTO INEUTRON PI+//INUCLEON PI 308 0.490 0.024 HUMPHREY 62 534 0.460 0.02 CHANG 66 1331 0.488 0.010 BARLOUTAU 69 537 0.484 0.015 TCVEE 71 76 0.4435 0.0073 AVERAGE (ERROR INCLUD)	(P2)/(P1+P2) BC 6/66 BC 6/66 BC K-P .4-1.2 GEV/C 11/69 MU 12/71 ES SCALE FACTOR OF 1.01	19 SIGMA RELATED TEXT SECTION A+0 ALPHA+/ALPHA0 FOP SIG	+ DECAY PARAMETERS VI D AND APPENDIX 111 MA+ (SIG+ TO PI+ N)/(SIG+ TO PIO P)	
P2 R2 R2 P2 P2 P2	SIGMA+ INTO (NEUT PI+ GAM)/(PI+N) (UNITS 10++ (1.8) ABOUT BAZINZ 65 H 2005 ANG 69 H 180 0.93 0.10 EBENNCH 73 H FRAGE WEANNOLESS (SCALE EACTOR - 5.0)	-3) (P3)/P2) BC PI+ LT 116 MEV/C 8/67 BC PI+ LT 110 MEV/C 11/68 BC PI+ LT 150 MEV/C 3/74*	A+0 +0.04 0.11 A+0 (+0.20) [0.24] A+0 0 3500 (014) (0.052) A+0 2600 (047) (.07) A+0 0 0LD 05.0LTS, HAVE	CORK 60 CNTR SIG+ FRCM PI+P TRIPP 62 HBC + REPLAC.BY BANGER BANGERTER 66 HBC + SIG+ FROM K-P EBERLEY 66 HBC + SIG+ FROM K-P BELACED . SEE BELOW -	9/66 9/66
R3 R3 R3 W R3 R3 R3 R3 R3 R3 R3	SIGMA+ INTO (LAMBOA E+ NEU)/TOTAL (UNITS 10*+ 4 (3.3) (1.7) WILLIS 64 H EVENTS FPON THIS EXPERIMENT.IN 6 2.0 0.8 BARASH 67 H 5 1.6 0.7 BALTAY 69 H 10 2.9 1.0 EISELEI 69 H	-5) (P4) BC STOP.K- 9/66 CLUDED IN EISELEI 69 11/69 BC STOP K- 8/67 BC STOP K- 11/69 BC STOP K- 10/69	A+ ALPTA SIGNA+1510+10 A+ 35000 0.069 0.017 A+ 4101 0.027 0.049 A+ - - - A+ AVG 0.066 0.016 A0 ALPHA SIGMAO (SIG+ INT A0 -0.80 0.16 A0 (-0.90) (0.25) -	PIFNI BANGERTER 69 HBC K-P AT 400 MEV/C BERLEY 70 HBC AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) D PIO PROTON) BFALL 62 CNTR TRIPP 62 HBC REPLAC. BY BANGE	11/69 12/70
F3 A1 R4 R4 R4 R4 R4 R4 R4 R4	SIGMA+ INTO (P GAMMA)/(P PIO) (UNITS L0**-21 1 (0.68) DR LESS CARRARA 64 H 24 0.37 0.08 BAZIN 65 H 4 (0.17) QUARENI 65 H 45 0.21 0.03 ANG 69 H 31 0.276 0.051 GERSHWIN 69 H	ES SCALE FACTOR OF 1.0) (P5)/(P1) BC BC BC 5TOP K- 10/69 BC 10/69	AC 0 5200 (-0.986) (0.072) AO 32000 -0.999 0.022 AO H 1335 -0.98 0.05 AO 16K -0.940 0.045 AO L 1259 -0.945 0.055 AO L DECAY PROTONS SCATTER AO AVG -0.979 0.016	BANGERTER 66 HBC K-P TO SIG+ PI- BANGERTER 69 HBC 0.02 HARRIS 70 OSPK PI+P TO SIG+ K+ 0.042 LIAMNY 72 ASPK PI+P TO SIG+ K+ 0.042 LIPMAN 73 CSPK PI+P TO SIG+ K+ 0.042 LIPMAN 73 CSPK PI+P TO SIG+ K+ D OFF ALUMINUM. E0 OFF GABON. AVERAGE FREDRIN INCLUDES SCALE FACTOR DE	7/66 10/69 5/70 11/72 7/73* 7/73*
R4 A1	G 0.240 0.035 AVERAGE (ERROR INCLUD) (SEE IDEOGRAM BELDW) HEIGHTED RVERAGE = 0.24(ERROR SCALED BY 1	ES SCALE FACTOR OF 1.4) D ± 0.035 .4	F+ PHI+ ANGLE (SIG+ INTO F+ O 370 (180.) (30.) F+ 550 143. 29. F+ Close 184. 24. F+ C CHANGED FROM 176 TO 1 176. TO 1. F+ F+	N PI) SINIPHIJ/COS(PHIJ=BETA/GAMMA (DEGREE) BERLEY 66 HBC + NEUTRON RESCATT. BANGERI 69 HBC BERLEY 70 HBC K-P AT 400 MEV/C 84 TO AGREE WITH SIGN CONVENTION. AVERAGE (EPROR INCLUDES SCALE FACTOR OF 1.1)	9/66 10/69 11/69
	0.1 0.2 0.3 0.4 0.5 0 SIGHA+ INTO (P GAMMA)/(P PIO)	IIN 69 HBC 0.5 69 HBC 1.0 65 HBC <u>2.6</u> 4.1 (CDNLEU 1.6 =0.126)	AG ALPHA SIGHAG (SIG+ IN AG 61 -1.03 0.52 FO PHIO ANGLE (SIG+ IN 7.0 0.52 0.52 FO PHIO ANGLE (SIG+ IN 7.0 0.52 FO H 22.0 90.0 FO H 22.0 90.0 FO H 22.0 90.0 FO L 125.9 38.1 35.7 FO L DECAY PROTON SCATTERE FO ************************************	TO PROTON GAMMAI 0.42 GERSHWIN 69 HBC K-P TO SIG PI PID PROTON SIN(PHI)/CCS(PHI)-BETA/GAMAA (DEG) HARRIS TO OSPK PI+P TO SIG+K+ 37.1 LIPMAN TO OSPK PI+P TO SIG+K+ D OFF ALUMINUM. ED OFF CARBON. AVERAGE (ERROR INCLUDES SCALE FACTOR OF L.O) ************************************	11/69 5/70 7/73* 7/73*
R5555 U E E E U R R555 U U U E A R5555 R5555 R R5555 R R5555 R R5555 R R5555 R R55555 R R5555 R R5555 R R5555 R R5555 R R5555 R5555 R R5555 R R5555 R R55557 R R5555 R 8 8 8 8	SIGMA+ INTO (N E+ NEU)/(N PI+) (UNITS 10**-5) 0 16220 EFFECTIVE DENDM. 0 2720 EFFECTIVE DENDM. 0 2720 EFFECTIVE DENDM. 0 2720 EFFECTIVE DENDM. 0 2720 EFFECTIVE DENDM. 0 32403 EFFECTIVE DENDM. 1 3040 EFFECTIVE DENDM. 1 30000 EFFECTIVE DENDM. 1 10200 EFFECTIVE DENDM. 10 10200 EFFECTIVE DENDM.	(P7)/(P2) IBC SEE NOTE E 11/67 IBC SEE NOTE E 5/68 IBC SEE NOTE E 6/68 IBC + STOP K- 6/68 IBC + STOP K- 12/70 IBC STOP K- 12/70 IBC STOP K- 12/70 ING ALL ABOVE 12/71 (PD1/(P2))	ALSD 61 UCRL 24450 BHCHWHIK 64 NP 53 22 CARRARA 64 PL 12 7 72 CUURANT 64 PR 136 B 1791 MURPHY 64 PR 136 B 1791 MURDHSER 64 PRL 12 679 WILLIS 64 PRL 12 679 WILLIS 64 PRL 13 291 BALTAY 65 PR 140 B 1027 BAZIN 65 PR 140 B 1027 BAZIN 65 PR 140 B 1328	JOHN DYRS IT NOTEN IN DIEN IN DIEN IN DIEN IN DIEN AND SERVELY (LLL) B BOUWNIK,P JAIN,P MATHUR,LAKSHMI (DELHI) COURANT,FCRSTI,GRIGOLETTO,PERUZZO+ (PACOVA) COURANT,FLITHITH+ (CERN+HEID+UM)+RL4ENLI CTHORNTON HURPHY MILLIS,COURANT,ERGELMAN+(BNL,CERN,HEID,UMD) BALTAY,SANDWEISS,COLHICK,KOPP + (YALESNL) BALTAY,SANDWEISS,COLHICK,KOPP + (YALESNL) BAZIN,PLUMENFELD,NAUENBERG + (PRIN+COLU) BAZIN,BLUMENFELD,NAUENBERG + (PRIN+COLU) BAZIN,BLUMENFELD,	
R6 E R6 E R6 E R6 U R6 E R6 R6 R6 R6 R6 R6	1 1201ANTYSOF CONTACT CONTS LOWED 1 1201ANTYSOF CONTACT SALTIER 162 E 0 10150 EFFECTIVE DENOM. COURANT 64 1700 EFFECTIVE DENOM. HAUENBERG 64 2 62000 EFFECTIVE DENOM. EISELE2 69 33800 EFFECTIVE DENOM. BAGGET 69 H 33800 EFFECTIVE DENOM. TAKEN FROM EIS 5.3 4.9 OR LESS CL.90 DUR AVERAGE US NUMBER OF EVENTS INCREASED TO 5.3 FOR 90PC CL	MUL NO RATIO QUOTED 11/67 BC SEE NOTE E 11/67 BC SEE NOTE E 11/67 BC 66 BC 67 BC 11/68 ELE 67 11/67 ING ALL ABOVE 11/69 ONFIDENCE LEVEL 2/71	BANGERTE 66 PRL 17 495 BERLEY & 60 PRL 17 1071 CHANG 66 PR 151 1061 ALSD 65 NEVIS 145 THESIS CHIEN 66 PR 152 1171 COOK 66 PR 152 1171 COOK 66 PR 152 1171 COOK 66 PR 152 3171 BAGGETT 67 PRL 19 1458 ALSD 68 VIENNA ABS. 374 ALSD 68 PEINER FORM	BANGERTER,GALTIERI,BERGE,MURRAY- (LRL) HERZBACH.KOFLER,YAMAMOTO + (BNL+MASAHYALE) CHUNG YUN CHANG CHUNG YUN CHANG CHUNG YUN CHANG CHUNG YUN CHANG CHUNG YUN CHANG CHUNG YUN CHANG CHUNG YUN CHANG SAGETT,DAY,GLASSER,KEHCE,KNDP+ (MARYLAND) BAGGETT,CHOE N. BAGETT N. BAGETT	
R7 R7 R7 R7 R7 R7 R7 R7 R8 R8	ISIGMA+ INTO LEPTONSJ/(SIGMA- INTO LEPTONS) 0 0.034 CR LESS 0 0.034 CR LESS 0 0.035 CR LESS 0 0.035 CR LESS 0 0.035 CR LESS 0 0.035 CR LESS 0 0.04 AVERAGE 0 0.035 CR LESS 0 0.04 AVERAGE 0 0.04 CR 0 0.05	BC 6/68 BC 10/69 SING R5 AND R6 2/71 ONFIDENCE LEVEL 2/71 61 (P8) BC STOP K- 10/69	BARASH 67 PRL 19 181 EISELE 67 2PHYS 205 409 HYMAN 67 PL 25 B 376 KOTELCHU 67 PRL 18 1166 SULLIVAN 67 PRL 18 1163 ALSO 64 PRL 13 246 BIERMAN 68 PRL 20 1459 COMBE 68 NC 57A 54 MAST 64 PRL 01 1312	BARASH, DAY, GLASSER, KEHDE, KNOP + (MARYLAND) ENGELMANN, FILTHUTH, FOLISH, HEPP+ (HEID) +LOKEN, PEHITT, MCKNZIE,+ (ANL+CARN+NWES) KOTELCHUCK, GOZA, SULLIVAN, ROSS (VANDERBILT) SULLIVAN, MCINTURFF, KOTELCHUCH (VANDERBILT) A D MCINTURFF, CE ROOS (VANDERBILT) BIERMAN, KCUNOSU, NAUENBERG + (PRINCETON) CERN-BRISTOL-LAUSANNE-MCNICH-ROME-COLLABOC	
R8 #	AND DY FILINII A FARM LUCATE IN ADDEEDENT				

Stable Particles Σ+

Stable Particles

Σ^+ , Σ^-

+EBENHOH,EISELE,ENGELMANN,FILTHUTH+ (HEID) N V BAGGETT (THESIS) (UMD) BALTAY,FRANZINI,TEMMAN,NORTON+ (COLU,STON) (COLU,STON) ROGER ODELL BANGERTER (THESIS) LANGARANDAT,GALTERI,GERSHWINL+ (LRL) BARLOUTAUD,BELLEFON,GRANET+(SACL+CEN+HEID) +ENGELMANN,FILTHUTH,FOHISCH,HEPP+ (HEID) +ENGELMANN,FILTHUTH,FOHISCH,HEPP+ (HEID) +ALSTON-GAPNJOST,BANGERTER + (LRL) LAWRENCE K GERSHWIN (LRL)) HERBERT NORTON (COLUMBIA) ANG 59 ZPHYS 228 151 BAGGETT 69 MODP-TR-973 BALTAY 69 PPL 22 615 BANGERTE 69 UCRL-19244 BANGERTI 69 PR 187 1821 BARLOUTA 69 NP B14 153 EISELE1 69 ZPHYS 221 401 EISELE2 69 ZPHYS 221 401 GERSHWIN 69 PR 188 2077 ALSO UCRL 19246 THI ALSO UCRL 19246 THESIS 69 NEVIS 175 (THESIS) NORTON +YAMIN,HERTZBACH,KOFLER + (BNL.HASA,YALE) +EISELE,ENGELMANN,FILTHUTH,FOHLISCH+(HEID) +FILTHUTH,HEPP,PRESSER,ZECH (HEIDEBERG) +OVERSETH,PONDROM,DETTMANN (MICH.WISC) BERLEY 70 PR D1 2015 EBENHOH 70 KIEV CONF EISELE 70 ZPHY 238 372 HARRIS 70 PRL 24 165 ALLEY 71 PR D3 75 BAKKER 71 LNC 1 37 COLE 71 PR D4 631 TUVEE 71 NP B33 493 BELLAMY 72 PL 398 299 BOHM 72 NP 488 1 ALSO 73 IIHE-73.2 NOV +BENBROOK,COOK,GLASS,GREEN,HAGUE + (WASH) +,SABRE COLLAB. (ZEEM+SACL+BGNA+REHO+EPOL) +LEE-FRANZINI,LOVELESS,BALTAY+ (STON,COLU) LOUC,BELGRADE,BECH,BRUX,DUBLIN,HARS COLLAB +ANDERSON,CRAMFORD,DSMON+ (LOWC+RHFL+SUSS) BERLIN-BELGRADE+BRUXHOBLIN+LOUG+HARSAN BRUSSELS BULLETIN, SAME COLLABORATION +EISELE,FILTHUTH,HEPP,LEITNER,THOUW+ (HEID) +UTO,MALKER,MONTGOMERY+ (RHEL+SUSS+LDWC) +FETKOVICH,HEINTZELMAN,MELTZER + (CARN) B.SECHI-ZORN,G.SNOW (MDD) EBENHOH 73 ZPHY 264 413 LIPMAN 73 PL 438 89 SAHA 73 PR 07 3295 SECHIZOR 73 PR 08 12 PAPERS NOT REFERRED TO IN DATA CARDS GLASER, GOOD, MORRISON (MICH+LRL) GLASER 58 CERN CONF 270 QUANTUM NUMBER DETERMINATIONS NOT REFERRED TO IN THE DATA CARDS TRIPP 62 PRL 8 175 R TRIPP, W WATSON, M FERRO-LUZZI (LRL) P ALFF 63 SIENA CONF 1 205 ALFF, AUENDERG, KIRSCH,+ (COLU+RUTG+80K) ALSO 65 PR 137 B 105 ALFF, GELFAND, BRUGGER, DERLEY+ (COLU-RUTG+80K) COURANT, 63 SIENA CONF 1 73 COURANT, FILTHUTH, BURNSTEIN, DAY+ Σ 20 SICMA- (1198, JP=1/2+) I=1 ____ 20 SIGMA- MASS (MEV) N SEE NOTE PRECEDING LAMBDA MASS LISTINGS 0.08 SCHMIDT 65 HBC SEE NDTE N 3/74* 3000 1197.43 1197.35 0.06 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 3/74* EIT 20 (SIGMA-) - (SIGMA+) MASS DIFFERENCE (MEV) BARKAS 63 EMUL -DOSCH 65 HBC BOHM 72 EMUL 0.40 0.25 0.23 87 2500 86 8.25 8.25 7.91 000000 1/73 0.16 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.08 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.2) 3/74* 8.09 AVG FIT 20 (STGMA-1 - (LAMBDA) MASS DIFFERENCE (MEV) DL N SEE NOTE PRECEDING LAMBDA MASS LISTINGS. BURNSTEIN 64 HBC SCHMIDT 65 HBC SEE NOTE N HEPP 68 HBC 0.19 0.13 0.09 81.70 9/66 3/74* 8/68 DL DL DL DL DL DL 81.80 81.64 2279 . . 0.069 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.054 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 3/74* 81.693 81.755 AVG FIT 20 SIGNA- MEAN LIFE (UNITS 10**-10) NEWN LIFE LUMITS 10%-101 0.28 BROWN 58 HLBC 0.25 EISLE 58 HLBC 0.17 CHIESA 61 EMUL 0.00 HUMPAREY 62 HBC STOP. K-CHANG 66 HBC STOP. K-CHIEN 66 HBC + 0.9 PBAR P.ANTI 9/67 CHIEN 66 HBC + 0.9 PBAR P.ANTI 9/67 WHITESIDE 68 HBC STOP. K-6/68 BARLOUTAU 69 HBC K-P 4-1.2 GEV/C 11/69 EISELE 70 HBC K-P 4-1.2 GEV/C 11/69 EISELE 70 HBC K-P AT REST 2/71 0.08 TOVEE 71 EMUL ROBERTSON 72 EMUL ROBERTSON 72 HOL 12/71 0.03 SEE 1970 EDITION, RMP 42,123(1970) 1/73 UL-1.67 1.69 45 1.25 41 1.58 1.208 1.58 C 3267 1.658 C 3267 1.658 S 64 (1.461) 506 1.38 10253 1.472 .1M 1.485 1383 1.42 C CHANG ERROR QUARLY 0.40 0.33 0.32 0.39 0.06 0.075 41 1208 C 3267 S 61 S 64 506 (0.22) 0.07

0.016

1.482

AVC

U.U22 E1 0.05 BA 0.09 0.08 TO 0.039 RO 0.018 RAISED BY US. STATISTICAL.

0.017 0.017 AVERAGE (ERROR INCL. SCALE FACTOR OF 1.5) (SEE IDEOGRAM BELOW)

20 SIGMA- MAGNETIC MOMENT (MAGNETONS, 938, 26 MEV) BTWN -1.6 AND +0.8 FOX 73 CNTR SIG-ATOM FINE ST 3/74*

Data Card Listings For notation, see key at front of Listings.

68

 GA/GV FOR SIGMA TO NEUTRON BETA DECAY(TEXT SEC VI D.1 FOR SIGN CONV)

 57
 (0.05)
 (0.23)
 (0.32) GERSHWIN 68 HBC REPLACED BY GER.69
 6/68

 49
 0.23
 0.16
 COLLERAIN 69 HBC NEUTRON SCATTER. 10/69

 30
 0.37
 0.26
 0.19
 EISELE2
 69 HBC NEUTRON SCATTER. 10/69

 61
 +0.19
 0.20
 0.17
 GERSHWIN 69 HBC POLARIZED SIGMAS
 10/69

 63
 -0.33
 0.30
 0.85 BOGERT
 70 HBC K-P AT 400 MEV/C
 10/70

 -0.20
 0.28
 EBENHOH
 70 HBC K-P AT 400 MEV/C
 10/71

 60.29
 0.28
 0.29 BALTAY 72 HBC NEUTRON SCATTER. 10/11
 40/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11
 60/11

 AV1

 c c s C c AVI AV 1 AV1 E AV1 E AV1 S AVI AV1 AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) REFERENCES FOR SIGMA-BROWN,GLASEP,GRAVES,PERL,CRONIN + (MICH) EISLER,BASS1,CONVERSI+ (COLU,BNL,BGNA,PISA) BROWN 58 CERN CONF 270 EISLER 58 NC SERIO 10 150 AARKAS BARKAS 61 PR 124 1209 CHIESA 61 NC 19 1171 HUMPHREY 62 PR 127 1305 TRIPP 62 PRL 9 66 BARKAS,DYER,MASON,NICKOLS,SMITH A N CHIESA,B QUASSIATI,G RINAUDO W E HUMPHREY,R R ROSS R D TRIPP,M WATSCN,M FERRO-LUZZI (LRL) (TURIN) (LRL) {LRL) BARKAS 63 PRL 11 26 BURNSTEI 64 PPL 13 66 COURANT 64 PR 136 B 1791 MILLER 64 PL 11 262 MURPHY 64 PR 134 B 188 NAUENBER 64 PRL 12 679 N H BARKAS,J N DYER,H H HECKMAN (LRL) BURNSTEIN,DAY,KEHDE,SECHI ZORN,SNOM (UMD) COURANT,FILTHUTHH (CERN,HEID-HUMDANQL&BNL) MILLER,STANNARD,BEZAGUET+ (LDUC,FPOL+BERG) C THORNTON HURPHY ANUENBERG,SCHMIDT,MARATECK+(COLU+RUTG+PRIN) BAZIN-PLAND,SCHWIDT + (PRIN+RUTG+COLU) DOSCH,ENGELMANN,FILTHUTH,HEPP,KLUGE+ (HEID) CHUNG YUN CHANG (COLUMBIA) BANGEPTER,GALTIERI,BERGE,MURRAY+ (LRL) CHUNG YUN CHANG (COLUMBIA) +LACH,SANDWEISS,TAFT,YEH,OREN + (YALE+BNL)
 BAZIN
 65
 PR
 140
 B
 1358

 DUSCH
 65
 PL
 14
 239
 ALSO
 66
 PR
 151
 1081

 ALSO
 65
 PR
 164
 B
 1328
 BANGERTE
 66
 PR
 174
 B
 1328

 CHANG
 66
 PR
 151
 1081
 CHANG
 66
 PR
 151
 1081

 CHIEN
 66
 PR
 152
 1171
 CHIEN
 60
 PR
 152
 1171
 BARASH 67 PRL 19 181 BERLEY 67 PRL 19 979 BIERMAN 68 PRL 20 1459 GERSHWIN 68 PRL 20 1270 HEPP 68 ZPHY 214 WHITESID 68 NC 54A 537 BARASH,DAY,GLASSER,KEHOE,KNOP + (MARYLAND) BERLEY,HERTZBACH,KOFLER + (BNL,MASA,YALE) BIERMAN,KOUNOSU,NAUENBERG + (PRINCETON) GERSMWIN,ALSTON-GARNJOST,BANGERTER + (LRL) V.HEPP,H.SCHLEICH (HEIDELBERG) H. WHITESIDE,J. GOLLUB (DBERLIN) ANG 1 69 ZPHY 223 103 ANG 2 69 ZPHY 228 151 BAGGETT 69 PRL 23 249 BALTAY 69 PRL 22 615 BANGERTE 69 UCRL-19244 BANGERT1 69 PR 187 1821 ANG,EISELE,ENGELMANN,FILTHUTH + (HEID) +EBENHOR,EISELE,ENGELMANN,FILTHUTH + (HEID) BAGETT,KENDE,SNOM (UNIV MARYLAND) BALTAY,FRANZINI,NEWMAN,NORTON+ (COLU,STON) RGGER ODELL BANGERTER (THESIS) BANGERTER,GARNJOST,GALTIERI,GERSHWIN+ (LPL) BARLOUTA 69 NP B14 153 COLLERAI 69 PRL 23 198 EISELE1 69 ZPHY 221 1 EISELE2 69 ZPHY 223 487 GERSHWIN 69 UCRL-19246 BARLCUTAUD,BELLEFON,GRANET+(SACL+CERN+HEID) COLLERAINE,DAY,GLASSER,KNDP+(UNIY MARYLAND) FNGELMANN,FILTHUTH,FOHLSCH+HEPP+ (HEID) EISELE,ENGEMANN,FILTHUTH,FOHLSCH+ (HEID) LAMRENCE KENNETH GERSWHIN (THESIS) (LRL) RERLEY 70 PR D1 2015 BOGERT 70 PR D2 6 EBENHOH 70 KIEV CONF EISELE 70 ZPHY 238 372 +YAMIN,HERTZRACH,KOFLER + (BNL,HASA,YALE) +LUCAS,TAFT,HILLIS,BERLEY + (BNL,MASA,YALE) +EISELE,ENGELMANN,FILTHUTH,FOHLISCH+ (HEID) +FILTHUTH,HEPP,PRESSER,ZECH (HEIDEBRG) EISCLE 10 LPH 258 5/2 BAKKER 7 1 LPC 137 CCLE 71 PR D4 631 ALSO 60 HEYIS-175 THESIS TOVEE 71 NP 833 463 BALTAY 72 PR D5 1566 BOHM 72 NP 848 1 FLLIS 72 NP 848 1 FRANZINI 72 PR D6 2417 ROBERTSO 72 THESIS E8ENHOH 73 ZPHY 264 413 FOX 73 PRL 31 1084 SECHIZOR 73 PR D8 12 *.SARE COLLAB. (ZEN+SACLBENAREMORFPOL)
*.SARE COLLAB. (ZEN+SACLBENAREMORFPOL)
*LEE-FRANZINI.LUVELESS.BALTAY+ (STON.COLU)
MERBERT NORTON (CCLUNE)
#ESINAN.FRANZINI.AUHMAN.YEH+ (COLU+STON)
BERLIN+BELGRADE+BRUX+DUBLIN+LOC+VHSTON)
BERLIN+BELGRADE+BRUX+DUBLIN+LOC+VHSTON)
BERLIN+BELGRADE+BRUX+DUBLIN+LOC+VHSTON
BERLIN+BELGRADE+BRUX+DUBLIN+LOC+VHSTON
BERLIN+BELESEBG+MARYLAND+STONY BROCK
COLUMBIA+HEIDELBERG+MARYLAND+STONY BROCK
COLUMBIA+HEIDELBERG+MARYLAND+STONY BROCK
LINT
*EISELF.FILTHUTH.HEPP.LEITNER.THOUH+ (HEID)
LAM.BARNES.EISESTEN IN (BNL+VPI+WILL+VYOM)
B.SECHI-ZORN.G.SNOW (UMD) PAPERS NOT REFERRED TO IN DATA CARDS J BROWN, D GLASER, M PERL (MICH+BNL) M NIETO (STON) 57 PR 108 1036 68 RMP 40 140 ΣΟ 21 SIGMAO (1193, JP=1/2+1 1=1 21 (SIGMA-) - (SIGMAO) MASS DIFFERENCE (MEV) SEE NOTE PRECEDING LAMBDA MASS LISTINGS. D1 N D1 D1 D1 D1 D1 AVG D1 FIT 18 37 12 4.75 4.87 5.01 0.1 0.12 0.12 BURNSTEIN 64 HBC DOSCH 65 HBC SCHMIDT 65 HBC SEE NOTE N 0.12 SCHMIDT 65 HBC SLL... 0.12 SCHMIDT 65 HBC SLL... 0.0.076 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) 4.0.063 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 3/74* 1SEE IDEDGRAM BELOW) _____ 21 (SIGMAO) - (LAMBDA) MASS DIFFERENCE (MEV) OL N SEE NOTE PRECEDING LAMBDA MASS LISTINGS. DL 208 76-63 0.28 SCHMIDT 65 HBC SEE NOTE N DL 71 76-88 0.08 FRDM FIT (ERROR INCLUDES SCALE FACTOR I 6/68 0.08 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 3/74*

Stable Particles

 $\Sigma^{-}, \Sigma^{0}, \Xi^{-}$

Stable Particles Ξ⁻, Ξ⁰

Data Card Listings

For notation, see key at front of Listings.

22 XI- MAGNETIC MOMENT (MAGNETONS)	938.26 MEV)	F PHI ANGLE (SIN(PHI)/COS(PHI)=BETA/GAMMA) (DEGREES)
MM 2724 -0.1 2.1 BINGHAM TO DSPI MM 1134 -2.2 0.8 COOL 72 DSPI MM -1.93 0.75 AVERAGE (ERROR INCLUDES	- 1.8 GEV/C K-P 2/71 - 1.8 GEV/C K-P 1/73 SCALE FACTOR OF 1.0)	F O (1-8.0) (1-9.0) JADNEAU 0-5 FBC SEE NOTE D BLUM 0-708 F 0 62 (45.0) (36.0) SCHNEIDER 63 HBC SEE NOTE D BLUM 0-708 F 350 54.0 30.0 CARMONY 0-4 HBC SEE NOTE D BLUM 0-708 F 1004 0. 12. BERGE 66 HBC SEE NOTE D BLUM 6/68 F 1364 0.0 20.4 LONDON 66 HBC SEE NOTE D BLUM 6/68 F 2529 (9.8) (11.6) MERRILL 68 HBC SEE NOTE D 6/68 F 2731 -14. 11. DAUBER 69 HBC SEE NOTE A BLUM 6/68
22 XI- MEAN LIFE (UNITS 10**-10) T H 11 (3.5) (3.4) (1.23) MANG 61 MLBC T H 18 (1.24) (0.25) FOWLER 61 MLBC T H 18 (1.24) (0.25) FOWLER 61 MLBC T H 1.80 0.15 0.41 JAUMEAU 63 FRUC T 517 1.80 0.15 0.41 JAUMEAU 63 FRUC T 366 1.771 0.012 CAMMONY 64 HBC T 746 1.69 0.017 PUERBOU 64 HBC T S 6 (1.371) (0.51) CHER 64 HBC T S 10.016 LONDON 64 HBC S 546 HBC S 546 HC S 5436 (1.637) G S 540	ION OF J R HUBBARD) REP BY PJERROU 65 11/67 - 6.9 PBAR P 9/67 6/60 K-P AT 1.3-1.8 2/71 6/68 1.74-1.87 GEV/C K-P 11/73* 2.1 GEV/C K- 1/73 1.75 GEV/C K- 3/74* NCL. SCALE FACTOR OF 1.1)	F 2724 - 22.0 30.0 BINGHAM TO CSEK 10/70 F A 033 11.0 9.0 BLTAY TA HBC 1.75 GEV/C K- 3/744 F A USED ALPHA LAMBDA = 0.647 + 0.020. BLTAY TA HBC 1.75 GEV/C K- 3/744 F D EKRORS MULTPLIED BY 1.2 DUE TO APPROXIMATIONS USED FOR XI F 0 POLARIZATION. (SEE DAUBER 66 FOR DETAILED DISCUSSION) F L LONDON 66 USES ALPHA-LAMBDA = 0.622 F M 0ATA 0F MERFILL 68 INCLUDE IN DAUBER 68. 0 C OLD DATA NOT INCLUDED IN AVERAGE. B.622 F AVG 1.6 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) F AVG 1.6 NERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) (SEE IDEOGRAM BELOW) WEIGHTED AVERAGE = 1.6 ± 6.6 ERROR SCALED BY 1.2
22 ANTI-XI+ MEAN LIFE (UNITS 10**- T1 S 5 (1.51) (0.55) CHIEN 66 HBC T1 S 5 (1.51) (0.55) CHIEN 66 HBC T1 S 12 (1.9) (0.7) (0.5) SHEN 67 HBC T1 S 4 1.6 0.3 STONE 70 HEC T1 S 5 (1.55) (0.35) (0.20) VOTPUBA 72 HBC T1 S THE ERROR IS STATISTICAL ONLY CHIEN 54 1.6 54	-10) + 6.9 PBAR P.ANTI 9/67 ANTI-XI- 10/67 10/70 10 GEV/C K+ P 11/72	
22 XI- PARTIAL DECAY MODES P1 XI- INTO LAMBDA PI- P2 XI- INTO LAMBDA E- NEUTRINO P3 XI- INTO LAMBDA H0- NEUTRINO P4 XI- INTO LAMBDA H0- NEUTRINO P5 XI- INTO SIGMAO E- NEUTRINO P6 XI- INTO SIGMAO H0- NEUTRINO P7 XI- INTO NEUTRON E- NEUTRINO	DFCAY MASSES 1115+ 139 1115+ .5+ 0 939+ 139 1115+ 105+ 0 1192+ .5+ 0 1192+ 105+ 0 939+ .5+ 0	CHISG
22 XI- BRANCHING RATIOS		-100 -50 0 50 100 150 (CONLEV -100 -50 0 50 100 150 =0.219) PHI ANGLE FOR XI- (IN DEGREES)
R1 XI- INTO (LAMBDA E- NEU)/LLAMBDA PI-) (UNITS 10* R1 1 (155)FFFECTIVE DENOM. JAUNEAU 63 HBC R1 0 (20)FFFECTIVE DENOM. JAUNEAU 63 HBC R1 0 (20)FFFECTIVE DENOM. JAUNEAU 64 HBC R1 0 (20)FFFECTIVE DENOM. JAUNEAU 64 HBC R1 0 (20)FFFECTIVE DENOM. JAUNEAU 64 HBC R1 0 (20)FFFECTIVE DENOM. JEONOM 64 HBC R1 0 (71)FFFECTIVE DENOM. JEONOM 68 HBC R1 2 (176)FFFECTIVE DENOM. JEONOM 68 HBC R1 3 1.15 0.90 0.55 HUBBARD 68 HBC R1 4 1.15 0.90 0.55 HUBBARD 68 HBC R1 HUBBARD 68 (RVUE) INCLUDES ALL ABOVE EVENTS 2 XI- INTO (NEUTRON PI-)/(LAMBDA PI-) (UNITS 10****	**3) [P2]/(P1) 11/67 11/67 11/67 11/67 1/67 6/68 6/68	REFERENCES FOR XI- FCWLER 61 PRL 6 134 FCWLER 61 PRL 6 134 WANG 61 JETP 13 512 BROWN 62 PRL 8255 BROWN-GULWICK,FOWLER,GALLQUO + (BWL+YALE)
R2 5.0 OR LESS FFRRO-LUZ 63 H6C R2 1.1 OR LESS DAUBER 69 H6C R3 XI- INTO (LAMBDA MU- NEUTRINO)/TOTAL (UNITS 10** R3 12.0 OR LESS DAUBER 69 H6C R3 12.0 OR LESS DAUBER 69 H6C R3 12.0 OR LESS DAUBER 69 H6C	6/68 6/68 (P4) 6/68 6/68	CARMONY 63 PRL 10 381 FERRO-LU 63 PR 130 1568 FERRO-LUZ2I+ALSTON, ROSENFELD, WOJCICKI (LRL) JAUNEAU FERRO-LUZ2I+ALSTON, ROSENFELD, WOJCICKI (LRL) JAUNEAU FERD-LUZ2I+ALSTON, ROSENFELD, WOJCICKI (LRL) ALSD 63 PL 5 261 JAUNEAU FERDER CARMONY 64 PRL 12 482 CARMONY, PJERRGU, SCHLEIN, SLATER, STORK+(UCLA) J
R4 X1- INTO (SIGMAO E- NEUTRINO)/TOTAL (UNITS 10**- R4 R4 3.0 DR LESS BERGE 66 HBC R4 0.5 DR LESS DAUBER 69 HBC	3) (P5) 6/68 6/68	BADIER1 64 DUBNA CONF 1 593 BADIER1 DENGOLIN, BARLOUTAUD+LEPDL, SACL_ZEEM) HUBBARD 66 PR 135 B 183 HUBBARD BERGE, KALBELEISCH, SHAFER + (LRL) BINGHAM 65 PRSL 285 202 H H BINGHAM (CEFN) PJERROU 65 PRSL 285 202 H H BINGHAM (CEFN) PJERROU 65 PRSL 14 275 + SCHLEIN, SLATER, SMITH, STORK, TICHO (UCLA)
R5 XI- INTO (SIGMAO MU- NEUTRINO)/TOTAL R5 0.005 OR LESS BERGE 66 HBC R6 XI- INTO (N E- NEUTRINO)/(LAMBDA PI-) R6 0.01 OR LESS CL==00 BINGHAM 65 RVUS P7 XI- INTO (SIGMAO E- NEU + LAMBDA E- NEU)/TOTAL ((P6) 7/66 (P7)/(P1) 9/66 10**-3)	BERGE 66 PR 147 945 BERGE,EBERHARD,HUBBARD,MERRILL + (LRL) BEPGE 2 66 RERKELEY COMF 46 SERGE,CABIBBD LRL,CERN(RNUE)1 LONDON,RAU,GOLDEREG,LICHTMAN-(BNL-SYRACUSE) LONDON,RAU,GOLDEREG,LICHTMAN-(BNL-SYRACUSE) CHIEN 66 PR 152 1171 +LACH,SANDMEISS,TAFT,VEH,OREN + (YALE+SNL) SHEN 67 PL 25 843 B.C.SMEN,A.FIRESTONE,G.GOLDHABER (UCEHCL) TRIPPE TRIPPE 67 PRIV. COMM. T. TRIPPE (UCLA)
R7 R7 L7 0.66 0.22 DUCLOS 71 DSP R7 D THIS EXPERIMENT CANNOT DISTINGUISH SIGMAO FROM R7 D THEORY PREDICTS SIGMAO RATE ABOUT A FACTOR 6 S R7 D LAMBOA. TO GET A VALUE FOR THE TABLE R7 HAS BE	(P2+P5) SEE NOTE D 10/71 LAMBDA. THE CABIBBO Ialler Than The En Averaged with R1.	BURGUN 68 NP 88 447 +MEYER,PAULI,TALLINI, + (SACL+COEF+RHEL) HUBBARD 68 PR 20 465 HUBBARD,BERGE,DAUBER (LPL) MERRILL SA PR 20 465 HUBLARD,BERGE,DAUBER (LPL) MERRILL,SHAFER (LPL)J AEEDCE,WEARD,DERDERD,MEDDILL WILLED (LPL)J
22 XI- DECAY PARAMETERS		BINGHAM 70 PR DI 3010 GOLDWASS 70 PR DI 1960 GOLDWASSER, SCHULTZ (1LL) STONE 70 PL 328 515 HBERLINGHIERI,BRCMBERG,COHEN,FERBEL +IROCH)
RELATED TEXT SECTION VI D AND APPENDIX 111 A ALPHA XI- A A D 10-144 (0.12) JAUNEAU 63 FBC A D 62 (-0.73) (0.23) SCHMEIDER 63 HBC A D 62 (-0.73) (0.23) SCHMEIDER 63 HBC A D 62 (-0.73) (0.23) SCHMEIDER 64 HBC A 356 -0.65 0.668 BERGE 66 HBC A 104 -0.47 0.13 LONDON 66 HBC A 104 -0.375) (0.051) MERREL 68 HBC A 2529 (-0.375) (0.051) MERRIL 68 HBC	SEE NOTE D BELOW 6/68 SEE NOTE D BELOW 6/68 INCLUDES ALL ABOVE 9/66 SEE NOTE A BELOW	DUCLOS 71 NP B32 493 +FREYTAG.HEINTZE.HEINZELMAN.JONES* (CERNI GIACOMELIT.JENKINSKYCIA.LEONITG.LI+ (BNL) +VAN BINST.WILQUET* (BRUX+CEAN+TUFTIGUC) VOTRUBA.SAFDER.RATCLIFFE (BINX+CEAN+TUFTIGUC) HILQUET 72 PL 428 372 WILQUET 72 NP 847 333 HILQUET 12 NP 847 333 VOTRUBA.SAFDER.RATCLIFFE (BINX+CEAN+TUFTIGUC) BALTAY BINST.WILQUET* (BRUX+CEAN+TUFTIGUC) HEBIOECHATER.CODPER.GERSHNIN ELO 23 XIO (1314, JP=1/2) 1=1/2
A 2724 -0.383 0.065 BINGHAM 70 CSP A 820 -0.42 0.11 MAYEUR 72 HL80 A 4303 -0.376 0.038 BALTAY 74 HBC A USED ALPHA LAMBDA $= 0.667 \leftrightarrow 0.020$.	10/70 2.1 GEV/C К- 1/73 1.75 GEV/C К- 3/74*	23 XIO MASS (MEV)
A D POLARIZATION ISEE OAUBER 69 FOR DETAILED DISC A L LONDON 66 USES ALPHA-LANDDA = 0.62 A M DATA OF MERRILL 68 INCLUDED IN DAUBER 68. A O OLD DATA NOT INCLUDED IN AVERAGE. A AVG -0.393 0.023 AVERAGE (ERROR INCLUDES	SCALE FACTOR OF 1.0)	M 1 1313.4 1.8 PALMER 68 HBC 368 M 49 1315.2 0.92 WILQUET 72 HLBC 1/73 H AVG 1314.3 0.82 AVERAGE (REROR INCLUDES SCALE FACTOR OF 1.0) 1/73 H FIT 1314.90 0.55 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 3/744

00000

P1 P2 P3 P5 P5 P5 P5 P5 P5

R1 R1

RI

R 2 R2 R2 R2 R2

R3 R3 R3 R3 R3

R4 P4 R4 R4

R5 P5 R5

R 6 R 6 R 6

23 (XI-) - (XIO) MASS DIFFERENCE (MEV) REP BY PJERROU 65 11/67 6/66 JAUNEAU CARMONY PJERROU 63 FBC 64 HBC 65 HBC 66 HBC 6.8 (6.1) 6.1 6.9 1.6 88 0.9 LONDON AVG FIT 6.34 0.74 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.55 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 3/74* --- ------ ------23 XIO MEAN LIFE (UNITS 10**-10)
 24
 3-9
 1-4
 0-80
 JAUNEAU
 53
 FGC

 45
 (3.5)
 (1.0)
 (0.8)
 CARNONY
 64
 HBC

 101
 2-5
 0.4
 0.3
 JUSBARD
 64
 HBC

 80
 3-0
 0.5
 PJERROU
 65
 HBC
 64
 BC

 80
 3-07
 0-22
 0.20
 DAUBER
 69
 HBC
 69
 HBC

 450
 3-07
 0-22
 0.20
 DAUBER
 69
 HBC
 65
 10
 10
 8ALTAY
 74
 HBC
 MAYEUR
 72
 HLB
 64
 69
 HBC
 652
 2.88
 0.21
 0.19
 8ALTAY
 74
 HBC

 MAYEUR
 72
 VALUE
 BUDIFIED
 BY ERRATUM.
 8ALTAY
 74
 HBC
 REP BY PJERROU 65 11/67 6/68 1/73 1/74* 3/74* 1/74* 3/74* 1.75 GEV/C K-P 2.1 GEV/C K-1.75 GEV/C K-M B M B AVG 2.96 0.12 0.11 AVERAGE (SROR INCL. SCALE FACTOR OF 1.0) 23 XIO PARTIAL DECAY MODES DECAY MASSES XIO INTO LAMBDA PIO XIO INTO PROTON PI-XIO INTO PROTON PI-XIO INTO SIGMA- E- NEU XIO INTO SIGMA- EH NEU XIO INTO SIGMA- MU- NEUTRINO XIO INTO SIGMA- MU- NEUTRINO XIO INTO PPOTON MU- NEUTRINO DECAY M 1115+ 134 938+ 139 938+ .5+ 1189+ .5+ 1189+ 105+ 1197+ 105+ 938+ 105+ -1.5 0000 0 23 XIO BRANCHING RATIOS XIO INTO (PROTON PI-)/(LAMBDA PIO) (UNITS 10**-3) 27-0 DR LESS TICHO 63 HBC 5-0 DR LESS HUBBARD 66 HBC 0-9 DR LESS DAUBER 69 HBC 6/68 6/68 6/68 XIO INTO (PROTON E- NEU)/(LAMBDA PIO) (UNITS 10**-3) (P3)/(P1) TICHO HUBBAR DAURES 27.0 OR LESS 6.0 DR LESS 1.3 OR LESS TICHO 63 HBC HUBBARD 66 HBC DAUBER 69 HBC 6/68 6/68 6/68 1.3 UN LESS XIO INTO (SIGMA+ E- NEU)/(LAMBDA PIO) (UNITS 10++-3) (P4)/(P1) 13-0 OR LESS TICHO 63 HBC 7-0 OR LESS TICHO 66 HBC 1.5 OR LESS DAUBER 69 HBC 6/68 6/68 6/68 1+2 UN 2222 XIO INTO (SIGMA- E+ NEU]/(LAMBDA PIO) (UNITS 10**-3) (P5)/(P1) HUBBARD 66 HBC DAUBER 69 HBC 6.0 OR LESS 1.5 OR LESS XIO INTO (SIGMA+ MU- NEU)/TOTAL (UNITS 10**-3) (P6) 7.0 DR LESS HUBBARD 66 HBC 1.5 DR LESS DAUBER 69 HBC 6/68 6/68 XIO INTO (SIGMA- MU+ NEU)/TOTAL (UNITS LO++-3) (P7) 6.0 OR LESS HUBBARD 66 HBC 1.5 DR LESS DAUBER 69 HBC 6/68 XIO INTO (PROTON MU- NEU)/TOTAL (UNITS 10**-3) 6.0 OR LESS HUBBARD 66 HBC 1.3 OR LESS DAUBER 69 HBC (98) 6/68 -----23 XIO DECAY PARAMETER RELATED TEXT SECTION VI D AND APPENDIX III
 ALPHA XI 0
 -0.09
 0.46
 PJERROU
 65 HBC
 SEE NOTE

 146
 -0.13
 0.17
 BERGE
 66 HBC
 SEE NOTE

 446
 -0.2
 0.4
 LONDON
 66 HBC
 SEE NOTE

 490
 (-0.33)
 (0.11)
 MERRILL
 66 HBC
 SEE NOTE

 440
 (-0.2
 0.4
 LONDON
 60 HBC
 SEE NOTE

 470
 (-0.33)
 (0.11)
 MERRILL
 66 HBC
 SEE NOTE

 440
 (-0.52)
 (0.09)
 BRIDGEWAT 72 HBC
 1.75 GEV

 130
 -0.84
 0.27
 MAYEUR 72 HBC
 1.75 GEV

 0520
 -0.54
 0.647 +
 -0.020.
 ERRORS MULTIPLED BY 1.1 DUE TO APPROXIMATIONS USED FOR XI

 USED ALPHA LAMBDA = 0.647 +
 -0.020.
 ERRORS MULTIPLED BY 1.1 DUE TO APPROXIMATIONS USED FOR XI
 UNON 66 SEE ALPHA-LAMBDA = 0.62

 MERRILL 60 SES ALPHA-LAMBDA = 0.62
 MERRILLE D ISCUSSICN)
 LUNOCN 66 SEE ALPHA-LAMBDA = 0.62

 MERRILL 60 SES ALPHA-LAMBDA E STATISTICAL BALTAY 74 I NCLUDES BRIDGEWATER 72.

 MALTAY 74 I NCLUDES BRIDGEWATER 72.
 -0.441
 SEE NOTE D BELOW SEE NOTE D BELOW SEE NOTE D BELOW SEE NOTE D BELOW SEE NOTE A BELOW 1.75 GEV/C K--1.75 GEV/C K--6/68 6/68 6/68 6/68 Ω-Ľ Å -----1/73 1/73 3/74* e F F 1/73 3/74* в -0.441 0.078 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) ISEE IDEOGRAM BELON) AVG

Stable Particles

Ξ⁰. Ω⁻

Stable Particles Ω^- , PARTICLE SEARCHES

24 OMEGA- MEAN LIFE (UNITS 10**-10 SEC)

PARTICLE SEARCHES

Heavy Leptons

Two types of searches for heavy leptons have been made. The first type uses the fact that we can calculate the transition rate for the decay of a heavy lepton to states involving other leptons, with or without pions. Production mechanisms are also considered to be well known, proceeding via the electromagnetic interaction. BERNARDINI 73 and BARISH 73 are of this type.

The second method (BUSHNIN 73) is to look for charged, weakly interacting, long-lived particles.

Data Card Listings For notation, see key at front of Listings.

Intermediate Bosons ($W^{\frac{1}{0}}$ and Φ^{0})

Experimentally, W bosons could be produced by hadrons, muons, or neutrinos. They can decay into leptons or into hadrons. At present, there is no positive evidence for the existence of W bosons, although there have been several searches. We list upper limits on the mass and on production cross section.

All gauge theories postulate, in addition to the vector boson W, at least one scalar boson (Higgs' scalar), Φ^0 . The couplings of the Higgs' scalar are model-dependent, and limits on its mass depend on M_W . We list these limits and add in comment cards the assumptions made.

Quarks

Three main techniques have been used in the experimental search for quarks: accelerators, cosmic rays, and searches in stable matter. The most recent limits using each of these techniques are given in the Data Card Listings. Accelerator experiments generally measure quark production cross sections (we quote these in Section C) and differential cross sections (D). Cosmic ray experiments measure quark flux (F), and searches in stable matter measure quark concentration (RHO). Some of the accelerator and cosmic ray experiments have looked for fractionally charged particles, and some have looked for high-mass, low-velocity particles. We give the fractional charge, mass ranges, velocity ranges, and other information in the notes on the right hand side of the card and below the data cards.

Magnetic Monopoles

Two main techniques have been used in the search for magnetic monopoles: accelerator and stable matter searches.

In accelerator searches strong magnetic fields are used to extract magnetic monopoles trapped in beam dumps. Cross-section limits are calculated using the reaction $pp \rightarrow pp$ MM.

Searches in matter have been made on sediments at the bottom of the Atlantic Ocean (FLEISCHER 69) and at the bottom of the Pacific Ocean (KOLM 71). Both experiments used high magnetic fields in attempting to extract monopoles from the matter. ROSS 73 searched a lunar rock sample using an electromagnetic detector which measures a current change induced in a superconducting circuit when traversed by a magnetically charged object.

We list the cross-section limits from these experiments with the range of Dirac charges to which each experiment is sensitive.

HEAVY LEPTON SEARCHES

HEAVY LEPTON MASS LIMITS (GEW) C 0 (2.0) OR MORE CL=.90 BARISH 73 ASPK + 50.145GEV NEU,NAL 2774-D 0 (1.4) OR MORE CL=.95 BERNARDIN 73 ASPK + 50.145GEV NEU,NAL 2774-NONE DIVENDED TO THE CL=.95 BERNARDIN 73 ASPK E+E-, FRASCATI 2774-NONE BTWN 0.55 AND AS (L=.95 BERNARDIN 73 ASPK E+E-, FRASCATI 2774-NONE DIVENDES CL=.90 ELCYTEM 73 HLBC + 1-D0 GEV NEU 3774-0 (1.5) OR MORE CL=.90 ELCYTEM 73 HLBC + 1-D0 GEV NEU 3774-0 ELCYTEM 73 HLBC + 100 ELCYTEM 73 HLBC + 1-D0 GEV NEU 3774-0 BARISH 73 LOCKED FCR DECAY TO ONLY SNUKTSAN COUPLING TO DRD MARY 2774-D BERNARDINI 73 FRST VALUE ASSUMES MULTINERSING COUPLING TO DRD MARY 2774-0 EVENTN 73 HASSE ASSUME HEAN 11FE ASSUMES MULTING TO ADDONS. 410 EVENTN 73 HASSE ASSUME HEAN 11FE ASSUMES MULTING TO ADDONS. 410 EVENTN 73 HASSE ASSUME HEAN 11FE ASTON COUPLING TO ADDONS. 410 EVENTN 73 HASSE ASSUME HEAN 11FE ASTON COUPLING TO ADDONS. 410 EVENTN 73 HASSE DER HEAN 11FE ADDONS OF HUON DATA-9 RSPCTVLY. 410 EVENTN 73 HASSE DER HEAN 11FE ADDONS OF HUON DATA-9 RSPCTVLY. 410 EVENTN 73 HASSE DER HEAN 11FE ADDONS OF HUON DATA-9 RSPCTVLY. 410 EVENTN 73 HASSED FOR HEAN 11FE ADDONS OF HUON DATA-9 RSPCTVLY. 410 EVENTN 73 HASSE DER HEAN 11FE ADDONS OF HUON DATA-9 RSPCTVLY. 410 EVENTN 73 HASSED FOR HEAN 11FE ADDONS OF HUON DATA-9 RSPCTVLY. 410 EVENTN 73 HASSED FOR HEAN 11FE ADDONS OF HUON DATA-9 RSPCTVLY. 410 EVENTN 73 HASSED FOR HEAN 11FE ADDONS OF HUON DATA-9 RSPCTVLY. 410 EVENTN 73 HASSED FOR HEAN 11FE ADDONS OF HUON DATA-9 RSPCTVLY. 410 EVENTN 73 HASSED FOR HAVEN NOD RCAN GENT HED HUMMEU, 3774 410 EVENTN 73 HASSED FOR HAVEN DATA MARY LEPTON WITH DATA LOWED ADDONS OF HUON DATA 9 AND 000 ASSUMED FOR HEAPTN ATHEORED ADDONS ASSUMED FOR HEAPTN HEAPTN WITH OWN AND MEEN. 5174 5174 ELCYTENTIAL HEAVY LEPTON WITH DATA LOWEDE. 5174 ELCYTENTIAL HEAVY LEPTON WITH DORS CETTAR ADDONS ASSUMED ADDON ASSUMED FOR HEAPTN HEAPTN ATH ADDON ASSUMED FOR HEAPTN HEAPTN ATH ADDON ASSUMED FOR HEAPTN HEAPTN ATH ADDONS ASSUMED FOR HEAPTN HEAPTN ATH ADDONS AND ADDONS ASSUMED FOR HEAPTN HE ********** в B B DIFFERENTIAL HEAVY LEPTON PRODUCTION CROSS SEC(10**-38 CM**2/SR-GEV) 0 (4-0) OR LESS CL=-90 BUSHNIN 73 CMTR 70 GEV P. SERPUKOV BUSHNIN 73 HEAVY LEPTON PATH TRAVERSES 400 GM/CM*22 ABSORBER. DIFFERENTIAL CROSS-SECTION MEASURED AT P=30 GEV/C THETA= 2 MRAO. 0000 9 8 8 REFERENCES FOR HEAVY LEPTON SEARCHES BARISH 73 PRL 31 410 BERNARDI 73 NC 17A 383 ALSO 70 LNC 4 1156 BUSHNIN 73 NP 858 476 ALSO 72 PL 428 136 EICHTEN 73 PL 468 281 ORITO 74 PL 488 165 +BARTLETT, BUCHHOLZ, HUNPHREY+ (CIT+NAL) +BOLLINI, BRUNINI+ (CER+BORNAFFAS) ALLES-BORELII, BERNARDINI, BOLLINI+ (CERN) +OUNAYTZEV, GOLDVKIN, KUBAROVSKY + (SERP) GOLDVKIN, GRACHEV, SHODYREV + (SERP) +DEDEN+(AACH+BELG+CERN+EPOL+MILA+LAL0+LOUC) +VISENTIN,CERADINI,CONVERSI + (FRAS+ROMA) INTERMEDIATE BOSON SEARCHES W BOSON MASS LIMITS (GEV)
 W BOSON MASS LIMITS (GEV)
 2/744

 0
 0.1.71 CR NORE CL=.99
 BERNARDIN 65 HYBR + NEU N, CERN
 2/744

 0
 0.12.01 CR NORE CL=.99
 BURNS
 65 05PK + NEU N, BNL
 2/744

 0
 0.12.01 CR NORE CL=.90
 BARISH
 73 ASPK + N+T DLEPHEUE.2
 2/744

 0
 0.46.51 CR NORE CL=.90
 BARISH
 73 ASPK + N+T DLEPHEUE.2
 2/744

 0
 0.46.71 CR NORE CL=.90
 BARISH
 73 ASPK + N+T DLEPHEUE.3
 2/744

 0
 0.46.71 CR NORE CL=.90
 BARISH
 73 ASPK + N+T DLEPHEUE.3
 2/744

 1
 DOKED FOP (NEU N) TO (H+ MU- N), N+T O (MU> NEU, CH NORS) 2/744
 C
 BARISH T3 LOKED FOR (NEU N) TO (H+ MU- N), N+TO (MU> NEU, ANL.2
 2/744

 C
 BARISH T3 LOKED FOR (NEU N) TO (H+ MU- N), N+TO (LUPTON NEU)/ALL.2
 2/744
 C
 W BOSON PRODUCTION CPOSS SECTION (10+*-36 CM+*2) A 0 (6-0) OR LESS ANKENBRAN 71 CNTR +- W TO(MU NEU)=1.0 A ANKENBRADD 71 LOOKED GOR (P N)TO(W HADRONS), W TO (MU NEU) AT BNL. A THIS ASSUMES BR OF W TO MU NEU IS 1. IN GENERAL THIS VALUE IS A G_0/BR , where BR=(W TO MU NEU)/(W TO ALL). c c 2/74 2/74 2/74 с с с SCALAR BOSON MASS LIMITS (GEV) C 0 (10.0) OR MORE CL+.90 CONVERSI 73 ASPK 0 E+E- FRASCATI C CONVERSI 73 LODKED FOR GED VIOLATION IN E+E- SCATTERING AT 2.8 GEV C AND ASSUMED W BOSON MASS=10 GEV. FOR MW=15 GEV, MS LIMIT= 6.5 GEV š ***** ******* REFERENCES FOR INTERMEDIATE BOSON SEARCHES +BIENLEIN, BOHM, DARDEL, FAISSNER+ +GRULIANDS, HYMAN, LEDERMAN, LEE + ANXENBRANDT, LARSEN, LEIPUNER+ +BARTLET, BUCHHOLZ, HUMPHREY+ +D. ANGELO, GATTO, PAOLUZZI BERNARDI 65 NC 38 608 BUPNS 65 PRL 15 42 ANKENBRA 71 PR D3 2582 BARISH 73 PPL 31 180 CONVERSI 73 PL 46B 269 CERN) + (COLU+BNL) (BNL+YALE) (CIT+NAL) (ROME) QUARK SEARCHES -----QUARK PRODUCTION CRGSS SECT. FROM ACCELEMATOR EXPTS [10#*-34 CM*3] 0.0.004/DR LESS CL=-90 ANTIPOV 09 CNTR 0= -2/3 M-0-505Y 0.10.01 DR LESS BOTT-BODE 72 CNTR 0=-2/3 M-0-22CEW 0.10.10 DR LESS BOTT-BODE 72 CNTR 0=-2/3 M-0-13CEW 0.10.10 DR LESS LEIPUNER 73 CNTR 0= 2/3 M-0-12CEW 0.10.11 DR LESS LEIPUNER 73 CNTR 0= 2/3 M-0-12CEW 0.10.01 DR LESS LEIPUNER 73 CNTR 0= 2/3 M-0-12CEW 0.10.01 DR LESS LEIPUNER 73 CNTR 0= 2/3 M-0-12CEW 0.10.01 DR LESS LEIPUNER 73 CNTR 0= 2/3 M-0-12CEW 0.10.01 DR LESS LEIPUNER 73 CNTR 0= 2/3 M-0-12CEW ANTIPOV 09 IS A SERPUKHOV 70 GEV/C P EXPT. MASS LIMIT FROM NN=NNQQ. BOTT-BODENHAUSEN 72 IS A CERN ISR 26/26 GEV P+P EXPERIMENT. LEIPUNER 73 IS AN NAL 300 GEV P EXPERIMENT. 2/74* 2/74* 2/74* 2/74* 2/74* 2/74* 2/74* 2/74* DIFFERENTIAL QUARK PROD.CROSS SEC. ACCL.EXPTS.(10**-36 CM**2/SR-GEV) 0 (1.5) OR LESS DORFAN 65 CNTR BE TARG M=3-TGEV 0 (3.0) OR LESS DORFAN 65 CNTR FE TARG M=3-TGEV DORFAN 65 IS A 30 GEV/C P EXPERIMENT AT BNL. 2/74* 2/74* 2/74* 2/74* 0000 000

Stable Particles PARTICLE SEARCHES

F QUARK FLUX FROM COSMIC RAY EXPERIMENTS (10**-10/CM**2-SR-SEC) F 4 2 MCCUSKER 62 CC Q=2/3 9 F 0 (3.0) OR LESS BJORNBOE 68 CNTR M=SGEV DR MORE F 0 (220.0) OR LESS FAMZINI 68 CNTR V=.5-9C MHORE F 0 (220.0) OR LESS FAMZINI 68 CNTR V=.5-9C MHORE F 0 (240.0) OR LESS CL=.90 FAMANCHINA 69 CNTR Q=1/3 SEA LEVEL F 0 (1.5) OR LESS CL=.90 FAUKUSHIMA 69 CNTR Q=1/3 SEA LEVEL F 0 (1.0) OR LESS CL=.90 BOHM 72 CNTR Q=1/3 SEA LEVEL F 0 (1.0) OR LESS CL=.90 BOHM 72 CNTR Q=1/3 SEA LEVEL F 0 (1.0) OR LESS CL=.90 BOHM 72 CNTR Q=1/3 SEA LEVEL F 0 (1.0) OR LESS CL=.90 BOHM 72 CNTR Q=1/3 SEA LEVEL F 0 0 (1.0) OR LESS CL=.90 BOHM 72 CNTR Q=1/3 SEA LEVEL F MCCUSKER 62 CLAIMS 2 CANDIDATES. LATER SIMILAR EXPTS. SEE NONE. CUSKER 64 DOKE FOR DELAYED PARTICLES AFTER AIR SHOWERS. F B JORNBOE 66 LOOKED FOR DELAYED PARTICLES AFTER AIR SHOWERS. B BOHM 72 IS FLUX IN 10**14 TO 10**15 EV AIR SHOWERS.	2/74* 2/74* 2/74* 2/74* 2/74* 2/74* 2/74* 2/74* 2/74* 2/74* 2/74* 2/74*
RHO QUARK CONCENTRATION IN MATTER QUARK CONCENTRATION IN MATTER QUARK SERMATER RHO 0 3 2-29 CR DESS CHUPKA 66 CNTR SERMATER RHO 0 1 E-29 CR DESS CALLINARD 66 CNTR SERMATER RHO 0 1 E-19 CR LESS STOVER 67 CNTR TRON RHO 0 1 E-20 CR LESS STOVER 67 CNTR TRON RHO 0 1 E-20 CR LESS COOK 69 CNTR SEAMATER RHO 0 1 E-24 OR LESS COOK 69 CNTR SEAMATER RHO 0 1 E-23 OR LESS COOK 69 CNTR ROCK SAMPLES	2/74* 2/74* 2/74* 2/74* 2/74* 2/74*
REFERENCES FOR QUARK SEARCHES MCCUSKER 62 PRL 23 658 MCCUSKER, CAIRNS (SYDNEY) DORFAN 65 PRL 14 999 +EADES.LEDERMAN,LEE,TING (COLU) CHURKA 66 PRL 14 999 +EADES.LEDERMAN,LEE,TING (COLU) CHURKA 66 PRL 14 999 +EADES.LEDERMAN,LEE,TING (GOLU) CHURKA 66 PRL 17 90 +EADES.LEDERMAN,LEE,TING (COLU) STOVER 67 PR 123 609 GALLINARC,HORPURGO (GENO) BURNBOG 68 NC 82 241 +MGAAD,HANSCH,CHATTERJEE+ (BCH+MAEFNA) (COLU) RANK 66 PR 121 1013 +BMGAAD,HANSCH,CHATTERJEE+ (BCH+MAEFNA) (COLU) KASHA 68 PR 176 1635 D.M.RANK (MIL+YALE) (SEP) CODK 69 PR 186 2092 +DEPASQUALI,FRAUENFELDER,PEACOCK (SEP) CODK 69 PR 188 2092 +DEPASQUALI,FRAUENFELDER,PEACOCK (SEP) CODK 69 PR 188 2092 +DEPASQUALI,FRAUENFELDER,PEACOCK (SEP) CODK 69 PR 188 2092 +DEPASQUALI,FRAUENCAUCANDA,KONDIA,KI (CENNAL*AL (AACH) BOTT-MOD 72 PL 408 693 +CALOVEL,FRAUAN,G	
MAGNETIC MONOPOLE SEARCHES C MONOPOLE PROD. CRDSS SECTION - ACCELERATOR EXP. (10**-43 CM**21/NUCL C G 0 (4.0) DR LESS CL-*95 GURRYUCH 72 EMUL MAO-56 GEV C G 0 (4.0) DR LESS CL-*95 GURRYUCH 73 CMTR GHO-24 DIRAC CHAR	3/74 * 3/74*
C G GUREVILH 22 IS A SEMPLORADY 70 GEV7C P EXP. MASS LIMIT FROM PP=PPHM C G CARRIGAN 73 IS NAL 300 GEV P EXP. MASS LIMIT 0-12 GEV FROM PP=PPHM CS MONOPOLE PROD. CROSS SECTION - SEARCH IN MATTER (CM+*2)/NUCLEON CS F 0 I E-40 OR LESS CL=-00 FLEISCHER 69 CNTR M=1 GEV CS F 0 I E-40 RLESS CL=-00 FLEISCHER 69 CNTR M=1000 GEV CS F 0 I E-40 RLESS CL=-00 FLEISCHER 69 CNTR M=1000 GEV CS F 0 I E-20 OR LESS CL=-00 FLEISCHER 69 CNTR M=1000 GEV CS F 0 I E-20 OR LESS CL=-00 FLEISCHER 69 CNTR M=10000 GEV CS F 0 I E-20 OR LESS CL=-90 FLEISCHER 69 CNTR M=10000 GEV CS K 0 I E-42 OR LESS CL=-95 KOLM 71 CNTR M=10 GEV CS K 0 I E-42 OR LESS CL=-95 KOLM 71 CNTR M=10 GEV CS K 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS K 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS K 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS K 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS R 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS R 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS R 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS R 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS R 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS R 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS R 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS R 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS R 0 I E-31 OR LESS CL=-95 KOLM 71 CNTR M=1000 GEV CS R 0 I E-31 OR LESS CL=-95 KOLS 73 ELEC M=100 GEV CS R 0 I E-31 OR LESS CL=-95 KOLS 73 ELEC M=100 GEV CS R 0 I E-31 OR LESS CL=-95 KOLS 73 ELEC M=100 GEV CS R 0 S E-41 OR LESS CL=-95 KOLS 73 ELEC M=100 GEV CS R 0 S E-31 OR LESS CL=-95 KOLS 73 ELEC M=100 GEV CS R 0 S E-31 OR LESS CL=-95 KOLS 73 ELEC M=100 GEV CS R 0 S E-31 OR LESS CL=-95 KOLS 73 ELEC M=100 GEV CS R 0 S E-31 OR LESS CL=-95 KOLS 73 ELEC M=100 GEV CS F FLEISCHER 69 LOOKED FOR MONOPOLES IN SEDIMENTS AT BOTTOM 05 CEAM CS F DEPOSITIED UNING THE LAST 16 MILLION VERAS. GECO DIACC CHAR-DR LESS	3/74* 3/74* 3/74* 3/74* 3/74* 3/74* 3/74* 3/74* 3/74* 3/74* 3/74* 3/74* 3/74*
CS K KULM 71 TRIED TO EXTRACT MONDP. IN DEEP SEAWATER Q=.2-27 DIRAC CHAR CS R ROSS 73 TRIED TO EXTRACT MONDP. IN LUNAR USST Q=.4-30 DIRAC CHAR CS R OR LARGER CHARGES EXCEPT FOR G= N#36#GO, WITH N INTEGER. THEY ALSO CS R DEPORT I UNIT OF FILLY IN LUNAR MATERIAL AS I TAINATE ANNOD (COMM CS R DEPORT I UNIT OF FILLY IN LUNAR MATERIAL AS I TAINATE ANNOD (COMM)	3/74* 3/74* 3/74* 3/74*

Mesons

 $\pi^{\pm}, \pi^{0}, \eta, \epsilon$

(a)

250

200

S=0 MESON STATES

******** ******** ******* 8 CHARGED PION (140, JPG=0--) I=1 π^{\pm} SEE STABLE PARTICLE DATA CARD LISTINGS π^{0} 9 NEUTRAL PION (135, JPG=0--) 1=1 SEE STABLE PARTICLE DATA CARD LISTINGS 14 ETA (549, JPG=0-+) I=0 η SEE STABLE PARTICLE DATA CARD LISTINGS 14 PI PI S WAVE, CALLED EPSILON ε

BATON 70

BAILLON 72

SONDEREGGER 69

Data Card Listings For notation, see key at front of Listings.

S-Wave ππ Interactions in the Region 280 - 1900 MeV

In this note, we discuss information on the isoscalar $\pi\pi$ S wave in terms of its phase shift δ_0^0 from threshold to 1900 MeV.

The threshold behavior of elastic $\pi\pi$ scattering involves S and P waves which can be sufficiently well described by the scattering lengths a_0^0 , a_1^1 and a_0^2 . In spite of many attempts (see PILKUHN 73), these parameters can still not be unambiguously determined from present experimental information (BASDEVANT 73). The parameters \mathbf{a}_0^0 and \mathbf{a}_0^2 are strongly correlated and must lie in a narrow band in the (a_0^0, a_0^2) -plane (MORGAN2 70). Thus if a_0^0 is fixed, a_0^2 and a_1^1 are determined within small uncertainties (BASDEVANT 72). However, all one knows is a

> HYAMS 73 (See also OCHS 73)

PROTOPOPESCU 73 (case1)

PROTOPOPESCU 73 (case 3)

(b)

250

200

are S-wave phase shifts obtained by fitting the data of PROTOPOPESCU 72 (the values used for the scattering length are -0.05, 0.16, and 0.6, respectively).

Fig. 2. Amplitudes for $\pi\pi$ elastic scattering in the S₀₀, P₁₁, D₀₂, and F₁₃ waves from OCHS 73 (thesis), published in HYAMS 73. The data points with error bars are the results of the energy-independent analysis of OCHS 73; the curves and Argand plots are from the energy-dependent analysis. The energy dependence of each Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 50 MeV and a base-to-tip length of 5 MeV. Arrows occurring at multiples of 200 MeV are wider than the rest, and a few of these are labeled explicitly. All the energy axes run from 600 to 1900 MeV. Established resonances in these waves are the ϵ and S^{*}(993) in the S₀₀ wave, the $\rho(770)$ and $\rho'(1600)$ in the P₁₁ wave, the f(1270) and f' (1514) (which, however, has not been observed to decay into two pions) in the D₀₂ wave, and the g(1680) in the F13 wave.

75

region of finite extent within which a_0^0 must lie. It is therefore not established whether, e.g., the Weinberg predictions are supported by experiment.

Near threshold the S wave shows no resonant behavior. The so-called ABC and DEF effects (BOOTH 63, HALL 69, BRODY 70, 72, BANAIGS 71, 73) occur only on nuclear targets (d, H^3 , He^3) and move when kinematic conditions change. Thus they must be kinematic effects (DUBAL 71, BRODY2 72, RISSER 73, ANJOS 73).

The region of elastic $\pi\pi$ scattering is known to extend from threshold to about 990 MeV, near the $K\bar{K}$ threshold (BATON 70, CARROLL 72, PROTOPOPESCU 73, HYAMS 73). Up to the p meson mass region, δ_0^0 is (qualitatively) uniquely determined; it rises monotonically and reaches a value of 60° to 70° near 700 MeV (SONDEREGGER 69, BATON 70, BAILLON 72, CARROLL 72, FRENKIEL 72, GAIDOS 72, PROTOPOPESCU 73, HYAMS 73).

In the mass region of 700 to 900 MeV, all energyindependent phase-shift analyses using the constraint $\eta_0^0 = 1$ find two solutions ("up-down ambiguity"). This ambiguity was resolved in favor of the "down" solution by the observation of a very rapid decrease in the S-wave amplitude between 950 and 980 MeV (FLATTE 72, GAIDOS 72, HYAMS 73, BINNIE 73). The size of the observed drop corresponds to a change from nearly the unitarity limit to zero, i.e., to a phase-shift change from about 90° at 900 MeV to 180°.

In accordance with this, energy-dependent phaseshift analyses (PROTOPOPESCU 73, HYAMS 73) using two-channel ($\pi\pi$ and $K\overline{K}$) effective range parametrization, find a (qualitatively) unique solution from 550 MeV to 1900 MeV. After having reached 180° near the $K\overline{K}$ threshold, inelasticity sets in and δ_0^0 continues to rise through 270° near 1200 MeV, reaching about 400° at 1900 MeV (HYAMS 73). (Note, however, that a twochannel analysis may no longer be adequate at the highest energies).

Independent evidence for the correctness of this ("down") solution comes from experiments on $\pi^0 \pi^0$ scattering (APEL 72, SKUJA 73, BRAUN 73). They observe a wide $\pi^0 \pi^0$ enhancement at ~ 800 MeV which is much better described by the "down" solution than the "up" solution. Furthermore, indirect information from elastic $\pi\pi$ scattering in the crossed channel (ELVEKJAER 72, NIELSEN 72) is compatible with the "down" but not with the "up" solution.

It is clear that the behavior of δ_0^0 is much too com-

Data Card Listings For notation, see key at front of Listings.

plicated to allow a description in terms of one or several Breit-Wigner resonances. We therefore list the positions of the poles of the T matrix, found by searching in the complex energy plane, using the bestfit parameters of the K-matrix or M-matrix. The best fit of PROTOPOPESCU 73 obtains two poles on the second sheet, the S^{*}(993) and the ϵ (600). The S^{*}(993) is connected with the rapid variation of δ_0^0 near the $K\overline{K}$ threshold discussed above, and is also responsible for the large $K\overline{K}$ I = 0 S-wave scattering length. The ϵ (600) pole is very far from the real axis and therefore much less certain; it is inferred from the large size and slow variation of the S-wave amplitude between 600 and 900 MeV, but PROTOPOPESCU 73 can fit this behavior also without an ϵ pole. HYAMS 73 region". This includes the $S^{*}(993)$ and two new poles at energies (1049 + 250i) MeV and (1537 + 233i) MeV. In addition HYAMS 73 find 9 unspecified distant poles. Thus they confirm that the ϵ (600) pole (or poles) is far from the real axis. This agrees also with BASDEVANT 72, who present a set of $\pi\pi$ amplitudes consistent with crossing, unitarity, and analyticity and with the $\pi\pi$ phase shifts up to 1100 MeV; their amplitude has a very wide ϵ (Γ > 650 MeV).

We list the S^* parameters separately under S-wave I = 0 KK interactions.

For a recent review see BASDEVANT 73 and GRAYER 74.

	14 REAL	PART OF POLE POSITION (MEV)
M M	(650.0) OR LESS 660.0 100.0	8ASDEVANT 72 RVUE SHEET 2 1/ PROTOPOPE 73 HBC SHEET 2 7. PI+P 1/
	14 NEGAT Correspon	TIVE IMAG. PART OF POLE POSITION (MEV) NDS TG HALF WIDTH, NOT FULL WIDTH.
¥	(325.0) OR MORE 320.0 70.0	BASDEVANT 72 RVUE 17 PROTOPOPE 73 HBC 7. PI+ P 17
***** *	******* *********	******* ********* *********************
		REFERENCES FOR EPSILON
SANTOS	62 PRL 9 139	+BACHMAN,LEA+ (BNL+CUNY+COLU+KNTY)
BLOKHINT	63 JETP 17 80	BLOKHINTSEVA, GREIBINNIK, ZHUKOV + (DUBNA)
BOOTH	63 PR 132 2314	+ ABASHIAN (LPL)
KIRZ	63 PR 130 2481	+SCHWARTZ + TRIPP (LRL)
BARISH	64 PR 135 B 416	BARISH, KURZ, PEREZ-MENDEZ, SOLOMON (LRL)
CRAWFORD	64 PRL 13 421	+GROSSMAN,LLOYD,PRICE,FOWLER (LRL)
KALMUS	64 PRL 12 674 64 PRL 13 99	DEL FABRO, DE PRETIS, JONES+ (FRASCATI) +KERNAN, PU, POWELL, DDWD (LRL+WISCONSIN)
BATON	65 NC 36 1149	J.P.BATON, J.REGNIER (SACLAY)
BIRGE	65 PR 139 B 1600	+ELY+GIDAL+KALMUS+CAMERINI+ (LRL+WISC)
BROWN	65 CORAL GABLES 219	BROWN+FAIER (NORTHWESTERN)
DURAND	65 PRL 14 329	L. DURAND AND Y.T. CHIU (YALE)
JACOBS	66 PRL 16 669	+SELOVE (LRL)
KOPELMAN	66 PL 22 118	+ALLEN, GODDEN, MARSHALL + (COLORADO+IOWA)
LOVELACE	66 PL 22 332	LOVELACE, HEINZ, DONNACHIE (CERN)
ANDER SON	67 PRL 18 89	+FUKUI+KESSLER+ (CHIC+ANL+CNRC+MCGILL+LOOM)
CLEGG	67 PR 163 1664	A.B.CLEGG (LANCASTER)
CORBETT	67 PR 156 1451	+DAMERELL+MIDDLEMAS+NEWTON (OXF+RHEL)
GUTAY	67 PRL 18 142	+JOHNSON+LOEFFLER+MCILWAIN+ (PURDUE+LRL)
JOHNSON	67 PR 163 1497	+GUTAY, EISNER, KLEIN, PETERS, SAHNI, YEN+ (PURD)
MALAMUD	67 PRL 19 1056	E.MALAMUD + P.E.SCHLEIN (UCLA)
WALKER	67 PRL 18 630	#+U+WALNEK (WISCONSIN) +CARROLL+GARFINKEL+DH (WISCONSIN)
BANDER	68 PR 168 1679	+SHAW-FULCO (UC 1RVINE+S-BARBARA)
BISWAS	68 PL 27 8 513	+CASON+JOHNSON+KENNEY-POIRIER+ (NDAM)
BRAUN	68 PRL 21 1275	BRAUN, CLINE, SCHERER (WISCONSIN)
DUTTA-RD	68 PR 169 1357	B. DUTTA-ROY, I.R. LAPIDUS (STEV)

EISENHAN FOSTER	68 68	PRL 20 NP 8 6	758 107	EISENHAM +GAVILLE	DLER,MISTE T+LABROSSE	Y, MOSTEK	+ r+ : to	(CORNELL) CERN+COEF)	
HYAMS JONES JOHNSON	68 68 68	NP 87 1 PR 166 PR 176	1405 1651	+KOCH,PO +CALDWEL +POIRIER	DTTER,VON L+ZACHARON R,BISWAS,GU	N LINDERN /+HARTING JTAY+	LOREN() +BLEULE1 {NDAM+1	CERN+MPIM) (+ (CERN) PURD+SLAC)	
LOVELACE MARATECK	68 68	PL 28 B PRL 21	264 1613	C.LOVELA +HAGOPIA	ACE AN,+ (PEN	N+LRL+COL	0+PURD+	(CERN) INTO+WISC)	
BIZZARRI DAVISON	69 69	NP 814 PR 180	169(SEE P.1 1333	1901+F051 +BACAST(FER.GAVILLI DW.BARKAS.	ET, GHE SQU	[ERE+ ()	(UCR+UCB)	
DE INET ELY FELDMAN	69 69	PL 30 B PR 180	359 1319 316	+MENZION +GIDAL+H	HAGOPIAN++	PERN-NUS	IER++ (I (UCB+I SBAIIM++	(ARL+CERN) DUC+WISC)	
GUTAY	69 69	NP B 12 NP B 12	31 573	+CARMON	.CSONKA,LI	DEFFLER,M	EIERE (B	(PURDUE) (RMINGHAM)	
HOPKINSO MALAMUD MORGAN	69 69	ARGONNE	181 CONF.P.93 261	J.HOPKIN E.MALAMU	NSON, R.G. RU JD, P.SCHLI	DBERTS		(CERN) (UCLA)	
ROBERTS SCHAREN1	69 69	PL 29 B ARGONNE	368 CONF.306	R.G. ROE	GUIVEL	AGNER		(CERN) (PURDUE)	
SCHAREN2 SMITH	69 69	PR 186 PRL 23	1387 335 SDEVANT 73	SCHARENO G.A.SMIT	GUIVEL(PUR TH, R.J.MAN	D+LRL+CERI NNING	N+COLO+I	PENN+TNTO) (MSU+LRL)	
STRUGALS	69 70	PL 29 B	518 358	+CHUVILO	J, FENYVES,	D,FENYVES	(WARS+	JINR+BUDA) + (DUBNA)	
WAGNER BARTSCH	69 70	NC 64 A	189	F.WAGNE	R GENSCH.MO		(AACH+	(CERN) SERL+CERN)	
BATON	70 70	PL 33 8 PRL 24	528 948	+LAURENS +GROVES	S.REIGNIER	AGLIC+(PE	NN+RUTG	(SACLAY) UPNJ+ANL)	
DIAZ HYAMS	70	NP B 16 PHILAD	239 CONF.P.41	+GAVILLE +SCHLEIN	ET,LABROSSI	E,MONTANE (CERN+MPI	T+ (4 M+ETHZ+1	CERN+CDEF)	
MORGANI MORGAN 2	70 70	SPRINGE PR D 2	R TRACTS MO	DD.PHYS.	VOL.55.P.	L. MORGAN	PISUT	(RHEL)	
NIELSEN SCHARENG	70 70	NP B 22 NP B 22	525 16	+LYNG-PE	ETERSEN.PII	ETAR INEN AY, MILLER	,+ ti	(NORDITA) PURD+PENN)	
OH Shibata	70 70	PR D 1 . PRL 25	2494 1227	+GARFINE +FRISCH	KEL,MORSE, WAHLIG	WALKER, PR	ENTICE(AISC+TNTD) (MIT)	
ALSTON-G BANAIGS	71 71	PL 36 8 NP B 28	152 509	ALSTON-0 +BERGER	GARNJOST, BARNJOST, B	ARBARO-GA	LTIERI, TEREA+(► (LBL) SACL+CAEN]	
BENSINGE	71	NP 8 28 PL 36 8	77	+DEUTSCH BENSING	HMANN, GRAE	SSLER++ HOMPSON+W	.D.WALK	BERL+CERN} ER (WISC)	
GUILLOU	71	NC 5 A	659 486	LE GUILI	LOU,MOREL.	NAVELET	S-MILLE	(CERN)	
HANILTON KIM	71	SPRINGE PR D 4	R TRACTS MO	+BANDER	VCL. 57,P	.41 J.HAM	ILTON	(NORDITA) (UCI)	
APEL	71	PHYS.RE	542 PRTS 2	J.LYNG I	DETERSEN (I	REVIEW)	CT.+ ()	(CERN)	
BAILLON BASDEVAN	72 72	PL 38 8 PL 41 8	555 178	+CARNEG	IE, KLUGE, L	EITH,LYNC	H,RATCL	(CERN)	
BRODY 1 BRODY 2	72	PRL 28 PRL 28	1215	+GROVES	MAGLICH, NO	DREM,+	(PENN+) (PENI	NUTG+UPNJ) NSYLVANIA)	
ELVEKJAE	72	NP B 43 PL 36 B	445 232	F.ELVEK.	JAER -GARNJOST.I	BARBARD-G	ALTIERI	(AARHUS)	
FRENKIEL GAIDOS	72 72	NP B 47 NP B 46	61 449	+GHESQU +MCILWA	IERE,LILLE IN,THOMPSO	STOL, CHUN N, WILLMAN	G,+ () N	(PURDUE)	
PRASAD WHITEHEA	72	PR D 6	3216	+BREHM WHITEHE	AD, AULD, +	(UNIV. (AER	OF MASS E+RHEL+	ACHUSETTS) SHMP+LOUC)	
ZYLBERSZ	72	PL 38 8	457	ZYLBERS	ZTEJN, BAS I	LE, BOURQU	EN++ (GEVA+SACL)	
ANJOS BANAIGS1	73	NP B 67 PL 43 B	37 535	+D.LEVY +COTTERI	A.SANTORO	+	(SACL+	(SACLAY) CAEN+FRAS)	
BASDEVAN	73	AIX CO AIX CON	NF.PAPER F.P.220	BASDEVAI	NT,BONNIER DEVANT RAP	+ (PAR PORTEUR T	IS VI +	GLAS+NORD)	
BEIER BINNIE	73	PRL 30 PRL 31	399 1534	+BUCHHOI +CARR,DI	LZ, MANN, PA	RKER,ROBE ANE,GARBU	RTS TT++ ((PENN) LOIC+SHMP)	
HYAMS FOR	73 73 0TH	NP 8 64 ER RESUL	134 134 TS DN SAME	+U.CLIN +JONES, EXPERIM	E WEILHAMMER ENT SEE GR	,BLUM,DIE AYER 74	TL,+ ()	CERN+MPIM)	
DCHS PILKUHN	73 73	THESIS NP 8 65	460	THESIS +SCHMID	T, MARTIN, +	(KAR	L+CERN+	(MPIM) LOUC+NIJM)	
PROTOPOP	73	PR D 7 PL 43 8	1280 68	PROTOPOI T.PISSE	PESCU,GARN.	JOST,GALT Ter	IERI+FL	ATTE+(LBL) (SACL)	
VILLET	73	PREPRI	NT	+DAVID,	AYED, BAREY	RE, BORGEE	AUD,+	(SACL)	
GRAYER	74	CERN PR	EPRINT	+HY 4MS .	JONES, BLUM	,DIETL	()	CERN+MPIM)	
	***		****** **	******	*******	*******	******	*** *******	
ρ(7'	70))	9 RHO ()	770. JPG	= 1++} [=	1			
			9 RHO M/	ASS (MEV)				
M	WE Com	BINATORI	R LIST S-W AL BACKGROU	avt BREI UND, AND	I-WIGNER F	LIS, PBAR CANT OR D	P DATA OUBTFUL	WIIH HIGH DATA.	
M MIXE M 2 M 2	D C 40 90	HARGES (752.0) (755.0)			ALITTI	63 HBC	-0 1.6	PI-P PRAR P	
	СНА	RGED ONL	Y						
M I M R	30	(775.0) (760.0)	(9.0)		GUIRAGOSS CARMONY	62 H8C 63 HBC 64 HBC	- 1.2 - 3.3 + 3.5	PI-P PI-P PI+P.TCUT 4	
M R M R		(768.0)	(5.0)		BLIEDEN ALFF-STEI	65 MMSP 66 HBC	- 3-5 + 2-3	P1- P P1+ P	6/66 6/66
MR MR M277	75	(760.0) (765.0) (753.5)	(5.0) (5.0)		HAGOPIAN1 HAGOPIAN2	66 HBC 66 HBC	- 3.0	P1- P 4 P1-+TCUT12 P1+-T_CUT_20	6/66 9/67
M R M R	.,	(758.0)	(10.0)		JAMES	66 HBC 66 HBC	+ 2.1	PI+,TCUT2.5	8/66 10/66
MZ9 MR	00	767.	6.		EISNER MILLER	67 HBC 67 HBC	- 4.2	PI-,T CUT10 PI-,T CUT20	1/73
M 17 M 96	00 50	(782.)	(5.)	1.8	FOSTER PISUT	68 HBC 68 RVUF	- 2.8 +- P8A - 1.7	PI-+ CUT13 R P AT REST -3.2P1+.CT10	1/59 1/73 6/68
M A 96	50	(764.3)	(19.2)	(3.3)	PISUT	68 RVUE	- 1.7	-3.2PI-,CT10	6/68

AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.4)

 100
 777.0
 5.0
 REVNOLDS 60 HBC
 2.28 PI

 100
 766.7
 70 DSFK
 5.9 PI-P

 SYSTEMATIC ERRORS ADDED CORRESP. TO STREAD OF DIFERENT FISC.

 765.9
 2.2
 AVERAGE (ERROR INCLUDES SCALE FACTOR OF

.........

AVG

1/73 2/74*

â

100 R R R F R F R F R F R F R F R F R F R	IEUTRAI 190 160 500 4207 4207 4207 4207 4207 4207 1700 2250 13300 13300 54 1700 2250 11200 6800 45 11200 54 50 11200 50 50 50 50 50 50 50 50 50	L ONLY (750.0) (770.0) (775.0) (770.0) (770.0) (775.0) (775.0) (775.0) (775.0) (765.1) (765.1) (765.1) (765.1) (765.1) (775.0) (775.0) (775.0) (775.0) (775.0) (775.0) (775.0) (775.0) (775.0) (775.0) (775.0) (775.0) (775.0) (766.7) (775.1) (765.4) 772.3 (775.1) ((20.0) (10.0) (10.0) (5.0) (5.0) (5.0) (5.0) (5.0) (5.0) (2.) CDARES	SAMIDS AMDLINS ADDLINS GUIRAGOSS GUIRAGOSS GUIDHABERS HAGOPIAN2 JACOBS JAMES WEST ASBURY 2 BACON HUWE BACON HUWE FOSTER HYAMS SCHORENER BAIGN BALLAM BENAKSAS BAILON BALLAM BENAKSAS JACOBS RATCLIFF GLADDING HYAMS	62 HBC 63 HBC 64 HBC 66 HBC 66 HBC 66 HBC 66 HBC 66 HBC 67 HBC 67 HBC 67 HBC 67 HBC 67 HBC 68 BRVUE 69 RVUE 69 RVUE 69 RVUE 69 RVUE 69 RVUE 71 HBC 70 ChTR 70 ChTR 72 HBC 72 CSPK 73 CSPK 73 CSPK 73 ASPK	0 4.7 PI-T 0 3.5 PI+H 0 3.3 PI-H 0 3.7 PI+H 0 3.0 PI- 0 2.1 PI- 0 2.2 PI- 0 2.4 PI- 0 2.8	, , , , , , , , , , , , , ,	6/66 6/66 6/68 6/68 6/68 6/68 6/68 6/68
MO MO MO		(777.1)	(0.5) 1.		ROOS GRAYER	73 RVUE 74 ASPK	O PHASE SH O 17 PI-P,	IFTS N PI+PI-	2/74* 2/74*
MO 4	AVG	770.32	0.91 (SEE 1DE	AVERAGE OGRAM	E (ERPOR I Below)	NCLUDES S	SCALE FACTOR	OF 1.4)	
			HEIGHTE	D AVER	AGE = 7	70.32 ±	0.91		
M ()	75 F		GO 77C RSS (MEU)			AYER OTOPOPE TCLIFF CDBS NAKSAS LLAM LLAM LLAM G6S HAREN YNOLDS SUT AMS	74 ASPK 73 HBC 72 ASPK 72 HBC 72 RULE 72 HBC 72 HBC 72 HBC 72 ASPK 70 CNTR 69 HBC 69 HBC 68 RUUE 68 DSPK	CHISQ 0.5 1.4 4.4 3.5 0.1 0.0 0.7 3.5 1.9 2.6 0.1 1.7 2.4 22.8 CONLEU =0.030)	
M E M Z	B IN P FR ER	CLUDED IN OM PHOTON RORS INCH	BENAKSAS 7 RODUCTION, PRODUCTION, PRODUCTION, PROVINCE	REVUE	VALUE PENDENT.	ON K* MAS	ss.		
D		2.4	9 (RHOO) 2.1	- (RHO4	PISUT	68 RVUE	PINTO	RHO N	6/6B
 H	 SE 41×ED	E NOTE OF	9 RHO WII N RHO MASS AN	DTH (ME) BOVE					
-	290 CH	ARGED ONI	.Y		GITPACOL	63 HBL	- 3.3 DI-	p	
E E E E E E E E E E E E E E E E E E E	130 98 R R R R 2775 R R 2775 R R 2775 R 900 R R 1700 9650 1300 6500 1300 6500	(125.0) (90.0) (180.0) (177.0) (127.0) (135.0) (135.0) (137.1) (147.0) (149.0) 146. (153.0) (153.0) (150.0) (145.0) (145.0) (147.3) 154.0 (146. STEMATIC	(10.0) (20.0) (20.0) (20.0) (20.0) (20.0) (13.0) (13.0) (13.0) (13.0) (10.0) 4.0 13.0 12. ERRORS ADDE	3.9 D CORRF	GUIRAGOSS SACLAY BONDAR CARMONY ALFF-STEI BLIEDEN HAGOPIANI JACOBS JACOBS JACOBS JAMES WEST EISNER MILLER BATON FOSTER PISUT REYNOLDS BYERLY SP. TO SPI	5 63 HBC 63 HBC 64 HBC 64 HBC 64 HBC 66 HBC 66 HBC 66 HBC 66 HBC 66 HBC 66 HBC 66 HBC 66 HBC 66 HBC 67 HBC 68 HBC 68 HBC 69 HBCK 73 OSPK 73 OSPK	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	P P P P P T CUT 20 T CUT 20 T CUT 20 T CUT 20 P T CUT 20 T CUT 20 T S CUT 20 T S CUT 20 T S CUT 20 T S S S S	6/66 6/66 6/68 8/66 10/66 9/67 9/66 7/69 1/73 2/74*
W î	AVG	147.6	3.5	AVERAG	E (ERROR	INCLUDES	SCALE FACTOR	OF 1.0)	

Mesons ε, ρ(770)

Mesons

7

P1 P2 P3 P4 P5 P7

R1

- -

WO	N	EUTRA	LONLY						
WO		190	(150.0)	(20.0)	201842	42	uer		
HO	R	300	(90.0)	(10.0)	ABOLITAS	42	HEC		
WO		160	(175.0)		GULPACOS		HDC	0 3.3 PI+P	
WO	R	500	(130.0)		GOI DHARES	5 6 5		0 3.3 PI-P	
wo	R		(100.0)		AL EE-STET	44	100	0 3.7 PI+P	
WO	R		(120.0)	(10.0)	HACODIAN	1 44	HBC	0 2-3 PI+ P	6/6
WO	R		(135.0)	(20.0)	HACODIANS	2 44	HDC		6/6
wo	R	4207	(122.2)	(15.0)	IACOBS		UPC	0 2.14 PI-P, COW T	9/6
WO	R		(103.0)	(13.0)	JANES	00	HOL	0 2-391-11 001 20	6/61
WO	R		(173.0)	(13.0)	WEST	44	HOL	0 2.1 91+ 9	6/60
WO	Р	4000	(130.1	(5.)	ASBURY 2	17	CNTO		10/60
WO	R		(148.0)	(8.0)	BACON	47	LINC	U GAMMA + PB	1/12
WO	R		(152.)	(15.1	HUNE	47	HDC	0 1.7 PI-P	976
WO	R		(160.0)	(15.0)	MILLER	47	LIPC	0 2.4 PI- P	(/6)
WO	R		(167.0)	(6-01	ADMENTCE	40	DBC	0 2.7 PI-+1 LU120	9760
WO		1900	(132.)	(10.1	ENSTER	40	000	0 5.1 PI+0	6/68
WO	z	2250	145.0	12-0	LIVANC	40	OFOR	U PBAR P AT REST	1/73
wo	P		(160.0)	(10.0)	LANTEDOTT		CNTO	011.2 PI- P	1/7
wö	в		(105.0)	(20.0)	AUGI ENDER	40	OFF	U GAMMA P	1/73
WO	Ř		(132.0)	(13.0)	MALANIO		DUSPK	O E+E- LULL.BEAMS	2/74
WO	x	1700	135.0	16.0	PEYNOLDS	40	HPC	0 2-4 91-9	1/73
WO	х	SY	STEMATIC	FRRDRS ADDE	D CORRESP. TO SPO	540	05 0		1/73
WO	c		119.0	20.0	CURRESP. TU SPR	CAU 40	UP U	IFFERENT FITS.	
WO	P		(140-0)	(5.0)	ALVENCIES	70	CHITC	0 2-4 PI- P	1/73
WO	CI	2630	(131.0)		RATON	70	LIPC	U GAMMA A, ICUI.01	1/73
WÓ		140K	146-1	2.9	BICCS	10	CNTD	0 2.8 PI- P	1/71
WO	с		108.0	20.0	BATLL ON	20	LINIK	OPHUTOPRODUCTION	1/73
WO	ż	2430	155-0	12.0	BALLAN	72	ASPA	0 15. PI- P	1/73
WO	ž	1930	145.0	13.0	DALLAM	14	HOU	U 4.7 GAMMA P	1/73
wo	- B		(149.6)	123.21	BENAKCAC	12	HBC OCON	U 2.8 GAMMA P	1/73
WO			135.8	15-1	BENAKCAC	12	DVUE	0 E+E- COLL.BEAMS	2/74
wo	1	1200	(178.35)	(2.5)	DEWAKSAS	12	RACE	U E+E- COLL.BEAMS	2/74
WO		6800	157.0	8.0	BATCI ICE	12	ACON	0 2.8 PI- P	1/73
WO	P		(147.)	(11.1	GLADDING	12	CHTR	0 15. PI-P, TCUT.3.	2/74
wo	Ĥ.		(152.)	(2)	GLADDING	73	UNIR	0 2.9-4.7 GAMMA P	2/74
wo	н	ERC	M PHASE	SHIET ANALY	11 AMS		ASPK	0 17 PI-P+N PI+PI-	1/74
NO	ເິ່	2000	160-0	10.0	BOTOOODE	0 A I A			
WO		2000	(150.3)	(1-0)	PROTUPUPE	22	HBC	0 /.1 PI+P,TCUT.4	2/74
WO			161.	4.		70	R VUE	U PHASE SHIFTS	2/74
wo					GRATER	14	ASPK	O IT PI-P+N PI+PI-	2/74
wo	Δ٧	G	150.4	2.9	AVERACE / EDBOD				
		-			COCRAM BELOW 1	ICLU	DE2 3	CALE FACIUR OF 1.41	
					CONAR DELUN I				

			/ \ / / / / / / / / / / / / / / / / / /	
RI		(0.026) OR LESS	BLIEDEN 66 P	MMSP - 3-5 PI- P 6/66
R1		(0.01) OR LESS	DEUTSCHMA 66 H	HBC + 8.0 PI+ P 6/66
R 1		(0.002)OR LESS	FERBEL 66 H	HBC +- PI+- P ABOVE 2.5 10/66
R 1		0.0035 0.004	JAMES 66 P	HBC + 2.1 PI+P 11/66
R1		RHOD INTO (PI+ PI- PI+ PI-) /	(PI+ PI-)	
R 1		(0.008)OR LESS	JAMES 66 H	HBC 0 2.1 PI+P 6/66
Rl		(0.002)OR LESS	CHUNG 68 F	HBC 0 3.2.4.2 PI-P 7/67
R1		(0.002)OR LESS CL=.90	HUSON 68 H	HLBC 0 16.0 PI- P 1/71
Rl		(0.0015)OR LESS CL=.90	GERMAN CO 69 H	HBC 0 2.5-5.8 GAMMA P 10/67
R2		RHO INTO PI GAMMA/2PI		(P3)/(P1)
R2	м	(0.02) DR LESS	LANZEROTT 65 0	CNTR GAMMA P(BREMS) 11/66
RZ		(0.005)OR LESS CL=.97	FIDECARD 66 0	DSPK - 10/66
R 2		(0.007)OR LESS	HUSON 66 H	HLBC ~ 15 PI-PB 6/66
R2	M	(0.002)OR LESS CL=.90	GERMAN CO 69 H	HBC
R 2	м	ONE PION EXCHANGE MODEL	USED IN THIS E	ESTIMATION

Data Card Listings For notation, see key at front of Listings.

Note on $\rho^0 \rightarrow e^+e^-$

Extraction of a ratio for $\rho^0 \rightarrow e^+e^-$ is complicated by interference with ω^0 decay. In photoproduction, $\gamma A \rightarrow e^+e^- A$, there is substantial interference between the allowed $(\rho^0, \omega) \rightarrow e^+e^-$ decays. The interference in the colliding-beam reaction $e^+e^- \rightarrow \pi^+\pi^-$ is due to G parity violating mixing of the overlapping ρ^0 and ω resonances; it alters the results for the rate $\Gamma(\rho^0 \rightarrow e^+e^-)$ only by a small amount. Therefore we use at present, for the average, only the values from the $e^+e^- \rightarrow \pi^+\pi^-$ experiments.

23	RH	ρı	NTDE	E+ E-)	/[P1+P1-	-) [UNITS 10##-4] [P4]/(P1] ACRUMN 1 47 CNTD DUDTOPRODUCTION 9//	67
3	P 9	4	0.0	657 657 R I V	1 APCE 5	RHD-DMEGA INTERFERENCE	,,
23	ĥ		(0.	65)	(1.1)	(0.5) HERTZBACH 67 OSPK ASSUME SU(3)+HIXING.10/0	56
3	н		NO	τ ςερά	RATED F	ROM OMEGA DECAY.	
23	A 3	3	(0.	53)	(0.11) BATED E	ASTVACATU 68 OSPK ASSUME SU(3)+MIXING 6/0	58
23	A		0.	1 35PA 50	0.10	AUSLENDER 69 OSPK E+E- COLLID.BEAM 9/0	68
23	F		(0.	491	(0.12)	(0.15) BIGGS TO CNTR PHOTOPRODUCTION 6/1	7(
3	F		AS	SUMING	RHOWI	DTH 140 MEV. ERROR STATISTICAL ONLY.	.
23				41	0.05	BENAKSAS 12 USPK EVE- CULL-BEAHS 127	"
13	AVG	•	0.	428	0.045	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
24	RH	0 1	NTO	(PI ET	A)/(2PI) (P5)/(P1) DEUTSCHHA 66 HBC 6 8.0 PT+ 9 6//	
4			10.	00810R	LESS	FERBEL 66 HBC +- PI+- P ABOVE 2.5 11/0	61
15	RH	0 1	NTO	(MU+ M	U-)/(PI	+ PI-) (UNITS 10**-4) (P6)/(P1)	
85			55			RHO INTO F+F- ABOVE	
R5			90		0.000		
25	н		0.	97	0.31	0.33 HYAMS 67 USPK 11 PI-LI H 6/	6
25	н		HY	AMS MA	SS RESO	L. IS 20 MEV. THE OMEGA REGION WAS EXCLUDED.	71
K9 85	R		P0	02 SSIBLY	LARGE	RHO-DMEGA INTERFERENCE LEADS US TO INCREASE	
R.5	R		TH	E MINU	S ERROR		
R5			٥.	56	0.15	WEHMANN 69 CSPK 12 PI- ON C.FE 7/1	6'
R5	W		86	SULT C		(11 +- 11) PER CENT CURRECTION USING SU(3)	
R5	÷.		OF	POSSI	BLE RHO	-OMEGA INTERFERENCE AND THE UPPER LIMIT AGREES	
R5	Ŵ		WI	TH THE	UPPER	LIMIT OF (DMEGA INTO MU+ MU-) FROM THIS EXPT.	
R 5		•	• •				
R5	AVG		٥.	67	0.12	AVERAGE (ERRUR INCLUDES SCALE FACIOR OF 1.07	
R6	RH	00	INT	Q. (PI+	PI- P1	0)/(PI+ PI-) (P7)/(P1)	
R6	G		(0.	01) DR	LESS	CL=.84 ABRAMS 71 HBC 0 3.7 PI+ P 11/	7
R6	G	۲	IODEL	DEPEN	IDENT . AS	SSUMES I = 1,2,0R 3 FOR THE 3PI SYSTEM 11/	7
***	*** **	***	****	*****	**** **	******	
• • •							
						REFERENCES FOR RHO	
ANU Cou	TN	61	DOI	6 628		A.B. R. MARCH.W.D.WALKER.F.WEST (WISC)	
KEN	NEY	62	PR 1	26 736	,	V P KENNEY, W D SHEPHARD, C D GALL (KENTUCKY)	
SAM	105	62	PRL	9 139		SAMIDS, BACHMAN, LEA+ (BNL+CUNY+COLU+KNTY)	
xuo	NG	62	PR 1	28 184	9	NGUYEN HUU XUONG,GERALD R LYNCH (LRL)	
	1.7.15	63	001	11 391		ABOLINS JANDER MEHLHOP, NOUVEN, VAGER (UCSD)	
AL I	TTI	63	NC 2	9 515		ALITTI, BATON, ARMENISE+(SACL+ORSA+BARI+BGNA)	
CHA	DWICK	63	PRL	10 62		CHADWICK, DAVIES, DERRICK, CRESTI + {OXF+PADD}	
GUI	RAGOS	63	PRL	11 85		ZAVEN GUIRAGOSSIAN (LRL)	
SAC	LAY	63	STEN	A CONF	1 239	SACLAY+ORSAY+BAR1 + BULUGNA- CULLABURATION	
BON	DAR	64	NC 3	1 729		BONDAR+ (AACHEN+BIRM+BONN+DESY+LOIC+MPIM)	
CAR	MONY	64	DUBN	A CONF	1 486	CARMONY, HDA, LANDER, NG. H. XUONG, YAGER (UCSD)	
GOL	DHABE	64	PRL	12 336	5	GOLDHABER+BRCWN,KADYK,SHEN+ (LRL+UCB)	
	E A	65	01 1	5 82		ALVEA.CRITTENDEN.MARTIN.RHODS + (INDIANA)	
ARM	ENISE	65	NC 3	7 361		SACLAY+ORSAY+BARI+BOLOGNA COLLABORATION	
BL 1	EDEN	65	PL 1	9 444		CERN MISSING MASS SPECTROMETER GROUP (CERN)	
CLA	RK	65	PR 1	39 B I	556	A CLARK, CHRISTENSON, CRONIN, TURLAY (PRINCETO)	
GUT	AY 25 POT	65	NC 3	15 210	`	GUTAT,LANNUTTT,PULT (FSU) 1 ANZEROTTT, BLUMENTHAL, EHN, EATSSLER + (HARV)	
ZDA	NIS	65	PRL	14 721		ZDANIS, MADANSKY, KRAEMER + (JHU+BNL)	
ACC	ENSI	66	PL 2	0 557		ACCENSI, ALLES-BORELLI, FRENCH, FRISK+ (CERN)	
RAI	TAY	66	PR 1	45 110	3	+FRANZINI.LUTJENS.SEVERINS.TYCKO+(COLUMBIA)	
BLI	EDEN	66	NC 4	3 71		CERN MISSING MASS SPECTROMETER GROUP (CERN)	
CAM	BRIDG	66	PR	146 9	994	CAMBRIDGE BUBBLE CHAMBER GROUP (MIT+HARV+)	
CAS	ON	66	PR	148 1	282	N M CASON (WISCONSIN)	
FFD	REI	66	PL 2	0 82		EFRBEI (ROCHESTER)	
FID	ECARO	66	PL	23 16	53	G+M FIDECARD, J POIRIER, P SCHIAVON (CERN)	
HAG	OPIANI	66	PR 1	45 112	28	HAGOPIAN, SELOVE, ALITTI, BATON+ (PENN+SACLAY)	
HAG	OP I ANZ	266	PR	152 1	183	HAGOPIAN, PAN (PENNSYLVANIA, LRL-BERKELEY)	
HUS	OBS	66	UCPI	-16871	,	L.D. JACOBS	
JAH	ES	66	PR 1	42 896	5	F E JAMES KRAYBILL (YALE+BROOKHAVEN)	
WES	т	66	PR 1	49 108	39	WEST, BOYD, ERWIN, WALKER (WISCONSIN)	
	ES-80	67	NC -	50 A 7	76	ALLES-BORELLIT.ERENCH.ERISK.+ (CERN+BONN)	
ASR	URY 1	67	PRL	19 869	, ,	+BECKER+BERTRAM+JOOS+JORDAN+ (DESY+COLU)	
ASB	URY 2	67	PRL	19 86	5	+BECKER+BERTRAM+JOOS+JORDAN+ (DESY+COLU)	
BAC	ON	67	PR 1	57 124	53	+FICKINGER,HILL,HOPKINS,RCBINSON+ (BNL)	
BAD	INER LOV	61	NC -	25 8	500	+ TILESTAL+MANTANET+ (CERN+CAEF+ ISAULAT+UAEN)	
BAT	ON	67	PLZ	25 8 41	19	J.BATON, G.LAURENS, J.REIGNIER (SACLAY)	
	ALSO	67	NP E	3 3 3	49	J.BATON, G.LAURENS, J.REIGNIER (SACLAY)	
CLE	AR	67	NC 4	94 39	9	+JOHNSTON+COOPER+MANNER+ (TNTO+ANL+WISC)	
FIS	NER	67	PR 1	DIA 80	99	+JOHNSON+KLEIN+PETERS+SAHNI+YEN+ (PURDUE)	
FRE	NCH	67	NC S	52A 44	2	+KINSON+MCDONALD+PIDDIFORD+ (CERN+BIRM)	
	TZBAC	67	PR 1	155 1	461	HERTZBACH, KRAEMER, MADANSKI, ZDANIS+(JHU+BNL)	
HER							

+MARQUIT+OPPENHEIMER+SCHULTZ+WILSON (COLU) +KOCH+PELLETT+PDTTER+VONLINDERN+(CERN+MPIM) MILLER,GUTAY,JGHNSGN,LOEFFLER + (PURDUE] +BISWAS,CASON,DERADO,KENNEY+ (NDAM+PENN) HUWE 67 PL 24B 252 HYAMS 67 PL 24B 634 MILLER 67 PR 153 1423 POIRIER 67 PR 163 1462 PUTRIER 67 PR 163 1462 ABC COLL 68 NP 84 501 ARRENTSE 68 NC 544 999 ASTVACAT 68 PL 27 B 45 BATON 68 PR 176 1574 BLECKSCH 68 NC 53 A 1045 ALSO 68 PR 176 1574 BLECKSCH 68 NP 85 A 1049 CHUNG 68 PR 165 1491 DONALD 68 NP 8 6 174 FOSTER 68 NP 8 6 174 FOSTER 68 NP 8 6 174 HYANS 68 PR 166 1405 JOHNSON 68 PR 176 1651 LANSE 68 PR 166 1365 HARATECK 68 PR 2 8 A 508 HOLD 68 NP 8 6 325 HAUGUST 16 PL 28 A 508 AACHEN+BERLIN+CERN COLLABORATION+ +GHIDINI,FORINO+ (BARI+BGNA+FIRZ+ORSAY) ASTVACATUROV,AZIMOV,BALDIN+ (JINR+MOSCOW) J.P. BATON, G. LAURENS (SACLAY) BACENSCHWEDT,OUON-ELSWER,+ (DESY+MCHS) SUCCHNORO, OLIOAN, LISMEN, Y (UISTANDA) SUJACHNORO, OLIOANL, JKIRZ, OH-MILLER (LRL) *EDNARDS, FRODESEN, BETTINI+ (LIY+OSLO+ADO) GAVILLET, LABROSSE+NONTANET+ (CERN+COEF) +LUBATTI-SIX, VEILLET,+ (DRSA+MILA+UCLA) *KCCH, POTTER, WILSON, VON LINDERN+(CERN+PIN) *BLEULER, CALOWELL, ELSNER, HARTING *OIAIEN, BISMAS, GUTAY (NON+PURD+SLAC) *PRENTICE*CODPER *HANNER+ (INTD*AML+HISC) *AGOPHADISMAS+DERADOH-GROVES+ (NOTREDAME) LANZERDTTI, BLUMENTHAL, FEN, FAISSLER + (HARY) HAGOPIAN.+ (PEN+LRL+COL0+PURD+TNTO+HISC) J.PISUT, M.ROOS (CERN) AUGUSTI 60 PL 28 6 508 AUGUSTI2 69 LR 2 6 508 AUGUSTI2 69 LR 2 8 508 AUGUSTI2 69 LR 2 8 508 AUGUSTI2 69 LR 2 8 508 AUGUSTI2 69 SJNP 9 69 GERHAN C 69 PR 188 2060 HAISSINS 69 PR 184 1461 MILLER 69 PR 178 2061 MILLER 69 PR 178 2061 REYNOLDS 69 PR 178 2061 REYNOLDS 69 PR 178 205 ROTT 69 PR 178 205 SCHAREN 69 A RCONNE CONF. 306 WEHMANN 69 PR 178 2095 +BIZOT+BUON+HAISSINSKI+LALANNE+ (ORSAY) +LEFRANCOIS.LEHMANN,MARIN.+ (ORSAY) AUSLENDER,BUDKER,PANTUSOVA.PESTOV+ (NOVO) GERMAN BUBBLE CHAMBER COLL. (DESY) (NOVO) (DESY) (DRSAY) J.AAISSINSKI CHARDER GOLLT (1085AV) +LEACDCK.RHODE.KOPELMAN.LIBBY,+ (ISUSCOL) E.MALAMUD, P.SCHLEWIN R.MILLER.LICHTMAN.WILLMANN (PURDUE) +AMDAR,DAVIS.KROPAC,SLATE,DAGAN+ (NWESFANL) +ALBRIGHT,BRADLEY,BRUCKER,HARNS+ (FSU) N:ODS,J.PISUT (CENN-BRATISLAVA) +CHASE,EAPLES,GETTNER,GLASS,WEINSTEI+(NEAS) SCHARENGUIVEL (PURDUE) +ENGELS,WILSON,+ (HARV+CASE+SLAC+CORN+MCGI) ALVENSLEBEN, BECKER, BERTRAM, CHEN, COHEN(DESY) +LAVENS, REIGNIER +BRABEN, CIFFI, GAAATHULER, KITCHIN+ +FRETTER, MOFFEIT, BALLAM+ +MOTT, ALVA, LEE, MARTIN, PRICKETT (IND) ALVENSLE 70 PRL 24 786 BATON 70 PL 33 8 528 BIGGS 70 PRL 24 1197 BINGHAM 70 PRL 24 955 GALLOWAY 70 PR D 1 3077 +BARNHAM,BUTLER,COYNE,GOLDHABER,HALL,+(LBL) BLOODWORTH,JACKSON,PRENTICE,YOON (TORONTC) +BISWAS,CASON,GROVES,JOHNSON,+ (NOTRE DAME) ABPAMS 71 PR D 4 653 BLOODWOR 71 NP B 35 133 DEERY 71 PR D 3 635 *BISMAS,LASUN,GKUVES,JUHASUN,*KINUFRE DARE) +CARNEGIE,KLUGE,LEITH,LYNCH,RAICLIFF+(SLAC) +CHADWICK,BINGHAN,MILBUNN,* (SLAC+LB+TUFT) BASOEVANT,FROGGATT,PETERSEN (CERN) +COSME,JEAH-MARE,JULIAN,LAPLANCHE,+(DRSA) +HEINLOTH,HOHNE,HOFMANN,ØATHJE,+(DESY+HAMB) EISENBERG,BALLAM,DAGAN,* (REHD+SLAC+TELA) +HYAMS,JONES,WELLHANMER,BLUM+ (CERN+MPIN) L.D.JACOBS TAKAHASHI,BARISH.+ (TOHO+PENN+NDAM+ANL) BATLLON 72 PL 38 B 555 BALLAM 72 PR 0 5 545 BASOEVAN 72 PL 0 5 545 BASOEVAN 72 PL 39 B 289 DRIVER 72 NP 39 18 GRAVER 72 PR 0 5 15 GRAVER 72 PR 0 5 15 GRAVER 72 NP B 50 29 JACOBS 72 PR 0 6 1291 TAKAHASH 72 PR 0 6 1266 +ANTHONY,COFFIN,MEANLEY,HEYER,RICE,+ (MICH) CHARLESMORTH,EMMS,BELL,+ (RHEL+BIRM+OURH) FUSSEL,TANNENBAUM,MEISS,THOMSON (HARV) +JONES,WEILHAMMER,BLUM,DIETL,+ (CERN+MPIM) PROTOPOPESCU,GARNJOST,GALTIERI,FLATTE+(LBL) HELSINKIJ BYERLY 73 PR D 7 637 CHARLESW 73 NP B 65 253 GLADDING 73 PR D 8 3721 HYAMS 73 NP B 64 134 PROTOPOP 73 PR D 7 1280 RODS 73 PREPRINT 63 GRAYER 74 NP G.GRAYER, HYAMS, BLUM, DIETL,+ (CERN+MPIM) ω(783) 1 OMEGA (783, JPG=1---) 1=0 1 OMEGA MASS (MEV) 0.0 PBAR P K1K1. 2/74* 2.3-2.9 P1+P . 2/74* 0.0 PBAR P . 2/74* 1.2 P1+0 . 2/74* 5EN W1TH K+K- . 2/74* 2.1 P1+P . 2/74* 0.0 PBAR P . 2/74* 0.0 PBAR P . 2/74* 0.9 PBAR P . 2/74* 2/74* 2/74* 2/74* 2/74* 2/74* 2/74* 9/69 2/74*

1 OMEGA MASS (MEY) 64 (779.4) (1.4) ARMENTERO 62 MBC 0.0 PBAR P K1K1.1 800 (782.0) (1.0) ALFF 62 MBC 2.3-2.9 P14P 34 (784.0) (1.0) ALFF 62 MBC 2.3-2.9 P14P 220 (781.0) (2.0) KRAPER 64 MBC 2.2 P140 170 (785.6) (1.2) MILLSD 66 MBC 1.2 P140 170 (778.6) (1.2) MILLSD 66 MBC 2.2 P140 155 (779.5) (1.5) BARASH 67 MBC 0.0 PBAR P 155 (779.5) (1.5) BARASH 67 MBC 0.0 PBAR P 2400 782.4 0.5 BIZZARRI 69 MBC 3.6 PBAR P, 7 P1. 750 784.1 1.2 ABRAMOVIC 70 HBC 3.6 PBAR P, 7 P1. 760 782.4 0.5 BIZZARRI 69 MBC 3.6 PBAR P, 7 P1. 750 784.1 1.2 ABRAMOVIC 70 HBC 3.6 PBAR P, 7 P1. 760 781.0) (2.0) CASIN 70 MBC 3.6 PBAR P, 7 P1. 760 781.0) (2.0) CASIN 70 MBC 3.6 PBAR P, 7 P1. </t 2/74* 8.0 PI-P.4PI . 2/74* 1.2 PI+ D . 2/74* 1.4 PI+ D . 2/74* 1.7 PI+ D . 2/74* 1.7 PI+ D . 2/74* 2.1 PI+ D . 2/74* 2.1 PI+ D . 2/74* 2.3 PI+ D . 2/74* 0.0 P PBAR KKL 11/71 3.7 PI* P . 11/71 NTANT 000000 11/71 11/71 • 2/74* 12/72 1/74*

0.32 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.4) (SEE IDEOGRAM BELOW) AVG 782.66

Mesons ρ(770), ω(783)

FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS

The matrix below is derived from the error matrix for the fitted partial decay mode

branching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where $\delta P_i = \sqrt{\langle \delta P_i \rangle} \delta P_i \rangle$, while the off-diagonal elements are the normalized correlation coeffi- $Dr_i = V_i v_i r_j v_i r_j$, while the the transmission of the individual P_i , see the listings above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and are thus constrained to add to 1.

- P 1 P 2 P 3 P 1 .8999+-.0056 P 2 -.5698 .0130+-.0027 P 3 -.8760 .1028 .0872+-.0046

1 OMEGA BRANCHING RATIOS

1	OMEGA	INTO NEU	TRAL/(PI+	PI~ PI0	,			{P3+}/[P1)	
i.		0.17	0.04		ARMENTERC	63	HBC	0.0 PBAR P	
ú.	20	0.11	0.02		BUSCHBECK	63	HBC	1.5 K-P	
1	35	0.08	0.03		KRAEMER	64	DBC	1.2 P1+D	
ū.	65	0.10	0.04		ALFF-STE 1	66	нвс	CORP.BY SCHULTZ(COL)	9/66
ū.	850	0.134	0.026		DIGIUGNO	66	CNT	1.4 PI-P	9/66
1	348	0.097	0.016		FLATTE	66	нвс	1.8 K-P	9/66
ii -		0.06	0.05	0.02	JAMES	66	нвс	2.1 PI+P	6/66
1	19	0.10	0.03		BARASH	67	HBC	0.0 PBAR P	7/67
1	46	0.15	0.04		AGUILAR	72	HBC	3.9,4.6 K- P	12/72
۱.									
۱	AVG	0.1065	0.0088	AVERAGE	(ERRCR]	NCL	UDES	SCALE FACTOR OF 1.0)	
1	ETT	0 0040	0 0057	EDON ETT	(EPPOP 1	NCL	INES	SCALE FACTOR OF 1.11	

79

Mesons $\omega(783), M(940)$

Data Card Listings For notation, see key at front of Listings.

 OMEGA INTO (P1+ P1-)/(P1+ P1- P10). SEE ALSO R15 (P2)/(P1) (0.011)0R MORE C1=.95 ABRAMOVIC 70 HBC 3.9 P1- P (0.035)0R MORE C1=.95 B122ARR1 70 DBC P6AR N AT REST (0.019)0R MORE C1=.95 CHAPMAN 70 HBC 1.6-2.2 PBAR (.00210R MORE C1=.90 FLATTE 70 HBC 1.6-2.2 PBAR (.00210R MORE C1=.90 FLATTE 70 HBC 1.6-2.2 PIEAR (.00206) MORE C1=.90 FLATTE 70 HBC 2.3 P1- P (0.04010R LESS C1=.84 HAG0PIAN 70 HBC 2.3 P1- P 0.022 0.009 0.01 R0DS 70 RVUE R0DS 70 COMENTES ABRAMOVICH 70 AND B122ARR1 70 0.028 0.006 BEHREND 71 ASPK PHOTOPRODUCTION 0.028 0.006 BEHREND 73 HBC .6-1.1 PBAR P COMESTRAPOLATION. (0.013)

 G
 0.025 0.0049 AVERAGE (ERROR INCLUDES SCALE FACTOR 0F 1.0) 0.0214 0.0031 FROM FIT (ERROR INCLUDES SCALE FACTOR 0F 1.5)
 A1 A1 . 6/70 11/71 6/70 8/69 1/71 1/71 6/70 11/71 12/72 12/72 s P2 š 12/72 R2 R2 1/74* R2 R2 AVG
 OMEGA
 INTO
 (PIO
 GAMMA)
 / (PI+
 PI PIO

 (0.125)
 (0.025)OR
 GRTA.
 BARMIN
 64
 PXBC

 (0.13
 (0.04)
 JACQUE+
 69
 HLBC

 (0.081
 (0.020)
 BALDIN
 71
 HLBC

 (0.109
 (0.025)
 BENANSAS2
 72
 OFK

 (0.079
 (0.012)
 BINNIE
 73
 CNTR
 R3 (P3)/(P1) 2.8 PI-P 10/67 11/71 2/73 1/74* 2.9 PI+ P E+E- COLL.BEAMS PI-P, OMEGA N 0.0863 0.0093 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.0969 0.0057 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) AVG FIT
 OMEGA
 INTO
 (PI+
 PI GAMMA}/(PI+
 PI PIO}
 (P4)/(P1)

 (0.05)
 OR
 LESS
 FLATTE
 66
 HBC
 1.8
 K-P
 R4 R4 9766
 CMEGA INTO (MU+ MU-)/(PI+ PI- PIO)(UNITS 10**-3) (P8)/(PI)

 (1.2) DR LESS
 GALTIERI 65 MBC
 2.7 K-P

 (1.7) DR LESS
 FLATTE 66 MBC
 1.8 K-P

 (0.2) DR LESS
 WILSON
 69 DSPK
 12 PI- DN C,FE
 R6 R6 P6 R6 9/66 9/69 DMEGA INTO (2PIO GAMM)/(PIO GAMMA) (0.1) OR LESS BARNIN 64 PXBC (0.45) (0.33) STRUGALSK 69 HLBC (0.14) PR LESS BALDIN 71 HLBC (0.15) OR LESS CL=-90 BENAKSAS2 72 OSPK R7 R7 (P5)/(P3) 1.3-2.8 PI-P 2.34 PI+ N 2.9 PI+ P E+E+ COLL. BEAMS R R7 R7 2/73 DMEGA INTO (ETA PIO + ETA GAMMA)/(P1+ PI- PIO) (P9+P6)/(P1) 10.017)DR LESS FLATTE 66 HBC 1.8 K-P (0.065)DR LESS CL=.95 JACQUET 69 HLEC Р 8 R 8 R 8 9/66 4/70
 OMEGA INTO (NEUTRALS) / (CHARGED)
 (P3+...)/(P1+P2...)

 0.124
 0.021
 FELDMAN
 67 OSPK
 1.2 PI- P

 1
 0.0955
 0.0056 FR0.1 FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)
 R9 3/67 89 89 89 Fit OMEGA INTO (2PIO GAMMA)/(PI+PI-PIO) {P5}/(P1) (0.08) DR LESS CL=.95 JACQUET 69 HLBC R10 R10 4/70 OMEGA INTO (ETA GAMMA)/(PIO GAMMA) (P6)/(P3) (0.58) (0.30) STRUGALSK 69 HLBC 2.36 PI+ N (0.40) OR LESS BALDIN 71 HLBC 2.4 PI+ P 0.010 0.045 APEL 72 OSPK 4-8 PI- P.N 3GAM (0.27) OR LESS CL=+00 BEMAKSAS2 72 OSPK E+F− COLL. BEAMS R11 R11 R11 R11 R11 8/69 11/71 2/73 912 R12 OMEGA INTO (PIO MU+ MU-) / TOTAL (UNITS 10**-3) (P11) (2.) OR LESS WEHMANN 68 OSPK 12 PI- FE 6/68 (2.) OR LESS MEHMANN 68 OSPK 12 P1-FE 6/68
 OMEGA INTO (E+ E-)/TOTAL (UNITS 10**-4) (P7)
 2. 1.2 BINNIE 65 OSPK P1-P NEAR THLD. 6/66
 MASS RESOLUTION OF BINNIE 65 IS ABOUT 15 MEV.
 (1.0) (1.7) (0.75) HERTZBACH 67 OSPK ASSUME SU(3)+MIXING.10/66
 NOT RESOLVED FROM RHO DECAY.
 (3.6) (0.13) ASTVACATU 68 OSPK ASSUME SU(3)+MIXING 6/68
 NOT RESOLVED FROM RHO DECAY.
 (0.65) (0.13) BOLLINI 168 CMTR 1.7P1-PNOTE Z 9/68
 MASS RESOLVED FROM RHO DECAY. ERROR STATISTICAL ONLY.
 (0.40) 0.21 BOLLINI 168 CMTR 1.7P1-PNOTE Z 9/68
 MASS RESOLUTION OF BOLLINI 1 IS +-10 MEV.HIS ERROR 15 +-15
 WITHOUT RHO-OMEGA INTERFERENCE. COMPLETE INTERFERENCE WOULD CHANGE VALUE BY +-35 PER CENT. THEREFORE WE INCREASED ERROR.
 (0.76) (0.14) AUGUSTI1 69 OSPK SEE NOTE 2/72
 FROM E+E - COLLIDING BEAMS, ASSUMING OMEGA WIDT 12.2+-1.3 MEV 4/69
 0.83 0.10 BEMAKSASI 72 OSPK E+E COLL.BEAMS 2/73 R13 R13 R13 B R13 H R13 H R13 H R13 A R13 A R13 Z R13 Z R13 Z R13 Z R13 E R13 E R13 E R13 E 0.76 0.17 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.9) R13 AVG R14 C R14 R14 R14 R14 R14 R14 AVG R14 FIT OMEGA INTO NEUTRALS / TOTAL 0.084 0.015 0.079 0.019 0.075 0.025 (P3+...) BOLLINI 68 CMTR 2.1 PI- P DEINET 69 OSPK 1.5 PI- P BIZZARRI 71 HBC 0.0 P PBAR BASILE 72 CMTR 1.67 PI- P 6/68 9/69 11/71 2/73 42 0.073 0.018 • 0.0788 0.0092 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.0872 0.0046 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) OMEGA INTO (PI PI)/(TOTAL). SEE ALSO R2 0.032 0.028 0.019 AUGUSTI2 69 DSPK (0.003)OR NORE CL=-95 GLDHABER 69 HBC 0.00310R NORE CL=-95 ALLISON 70 HBC 0.0080 0.0028 0.0022BIGGS 70 CNTR 0.0122 0.0030 ALVENSLEB 71 CNTR 0.013 0.012 0.009 MOFFEIT 71 HBC 0.036 0.024 0.018 BENAKSAS 72 DSPK (P2) E+E- COLL.BEAMS 8/69 3.7-4.0 P1+P 11/69 1.3-1.7 PBAR P. 6/70 PHOTOPRODUCTION 11/71 2.84.4.7 GAMNA P 11/71 E+E- COLL.BEAMS 12/72 R15 R15 R15 R15 R15 R15 R15 R15 0.0102 0.0019 AVERAGE LERROR INCLUDES SCALE FACTOR OF 1.01 0.0130 0.0027 FOM FIT LERROR INCLUDES SCALE FACTOR OF 1.51 R15 AVG R15 FIT R16 R16 R16 OMEGA INTO (ETA GANMA) / (ALL NEUTRALS) (P6)/(P3+...) (0.24) OR LESS (L=.90 DEINET 69 OSPK (0.36) OR LESS (L=.90 DAKIN 72 OSPK 1.4 PI- P.1 9/69 1.4 PI- P.N MMO 12/72 CMEGA INTO (2 PIO GAMMA) / (ALL NEUTRALS) (P5)/(P3+...) (0.19) OR LESS CL=.90 DEINET 69 OSPK 9/69 (0.22) (0.07) DAKIN 72 OSPK 1.4 PI- P.N MMO 12/72 SEE RI8 R17 R17 D R17 D DMEGA INTO (PIO GAMMA) / (ALL NEUTRALS) (P3)/(P3+...) (0.31) OR MORE CL=.90 DEINET 69 OSPK (0.78) (0.07) DAKIN 72 OSPK 1.4 PI- P.N.M ERROR STATISTICAL ONLY.AUTHOPS OBTAIN GOOD FIT ALSO ASSUMING PIO GAMMA AS THE ONLY MEUTRAL DECAY. R18 R18 R18 D R18 D R18 D MMO 12/72 G 11/71 11/71 REFERENCES FOR OMEGA MAGLIC 61 PRL 7 178 PEVSNER 61 PRL 7 421 XUONG 61 PRL 7 327 B MAGLIC,ALVAREZ,ROSENFELD,STEVENSON (LR PEVSNER,KRAEMER,NUSSBAUM,RICHARD+(JHU+NWE NGUYEN HUU XUONG,GERALD R LYNCH (LR (LRL) (LRL)

TEVENSO	62	PR 125 687	ARMENTEROS - EDWARDS - IACCOSEN+	D (LRL)
ARMIN USCHBEC ELFAND URRAY	63 63 63 63	SIENA CONF I 296 SIENA CONF I 207 SIENA CONF I 166 PRL 11 436 PL 7 358	BARMIN, DOLGOLENKC, KRESTNIKOV+ BUSCHBECK, CZAPP+ (VIENNA+CERN+ GELFAND, MILLER, NUSSBAUM, RATAU+ (MURRAY, FERROLUZZI, HUWE, SHAFER, SOL	(ITEP) AMSTERDAM) COLU+RUTG) MITZ+(LRL)
ARMIN 9AEMER	64 64	JETP 18 1289 PR 136 B 496	BARMIN, DOLGOLENKC, KRESTNIKOV + KRAEMER, MADANSKY, MEER+ (JHU+	(ITEP) NWES+WOOD)
INNIE ALTIERI ILLER D INGLU LFF-STE DANIS	65 65 05 0E 65	PL 18 348 PRL 14 279 CU-237(NEVIS 131) S DATA OF GELFAND 6 PR 145 1072 PRL 14 721	BINNIE, DUANE, JANE, H JONES+ (A BARBARO GALTIERI, R D TRIPP DAVID C MILLER (THESIS) 3 ABOVE ALFF-STEINBERGER, BERLEY, BRUGGER+f ZDANIS, MADANSKY, KRAEMER, HERTZBACH	LOIC+MCHS) (LRL) (COLUMBIA) COLU+RUTG) +{JHU+BNL)
IGTUGNO LATTE AMES	66 66 66	NC 444 1272 Pr 145 1050 Pr 142 896	DI GIUGNO, PERUZZI, TROISE+ (NAPL+ +HUWE, MURRAY, BUTTON-SHAFER, SOLMIT F E JAMES, KRAYBILL (YALE+B	FRAS+TRST Z+ (LRL) RCOKHAVEN)
ALTAY ARASH ELDMAN IERTZBAC ALSO	67 67 67 67	PRL 18 93 PR 156 1399 PR 159 1219 PR 155, 1461 ZDANIS	+FRANZINI, SEVERIENS, YEH, ZANELLO BARASH, KIRSCH, MILLER, TAN +FRATI, GLEESON, HALPERN, NUSSBAUM+ HERTZBACH, KRAEMER, MADANSKI, ZDANIS	(COLUMBIA) (COLUMBIA) (PENN) +(JHU+BNL)
STVACAT OLLINI OLLINI EY ISUT IEHMANN	68 68 68 68 68 68	PL 27 B 45 NC 56 A 531 NC 57 A 404 PR 166 1430 NP B 6 325 PRL 20 748	ASTVACATUPOV,AZIMOV,BALDIN+ (JI +BUHLER,DALPIAZ,MASSAM+ (CERN+ BUHLER,DALPIAZ,MASSAM+ (CERN+ +PRENTICS+COOPER+MANNER (INTC J)FISUT,M.ROOS +ENGELS+ (HARVARD+CASE+SLAC+CORNE	NR+MDSCOW) BGNA+STRB) BGNA+STRB) I+ANL+WISC) (CERN) CLL+MCGILL)
UGUSTIL UGUSTI2 IZZARRI ANBURG ALSO	69 69 69 59	PL 28 B 513 LNC 2 214 NP B 14 169 UCRL-19275 NBURG 70	+BENAKSAS, BUDN, GRACCO, HAISSINSKI, +LEFRANCOIS, LEHMANN, MARIN, + +FOSTER, GAVILLET, MONTANET, + JEROME S. DANBURG, THESIS	+ (ORSAY) (ORSAY) CERN+CDEF) (LRL)
ILLER TRUGALS TRUGALS	69 69 69 69 69 69 69	PL 30 B 426 PRL 23,1351 NC 63 A 743 PR 178 2061 PL 29 B 532 PRIVATE COMM.	+MENRICHER, BURLER, BURLER, BURLER, GUNSCH +BUTLER, COYNE, HALL, MACNAUGHTON, TH +BUTLER, LICHTMAN, WILLMANN +CHUVILO, FENVYES, + (HARS4) RICHARD WILSON (SEE ALSO PR 178 2	HARCHCERAND HILING(LRL) HILING(LRL) HOROUE) HJINR+BUDA) 2095) (HARV)
BRAMOVI DIZZARRI MLLISON NTHERTON DIGGS CASON CHAPMAN DANBURG LATTE SOLDHABE HAGOPIAN ROOS	70 70 70 70 70 70 70 70 70 70	NP B 20 209 PRL 25 1385 PRL 24 613 NP B 18 221 PR 24 1201 PR D 1 851 NP B 24 445 PR D 2 2564 PR D 1 PHILA.CONF.P.59 PRL 25 1050 ONPL/R7 P.173	ABRAMOVICH, BLUMENFELD, BRUYANT, + <ciapetildore, +<br="" gaspero,="" guidoni,="">+COOPER, FIELDS, RHINES +BLAIR, CELNIKER, DOMINGO, FRENCH+ +CLIFFI, GABATHULEN, KITCHING, RAND +ANDERWS, BISMAS, GROVES, HARRINGTO HOAVIDSON, GREEN, LYS, ROE, VANDER VI +ABDLINS, DAHL, DAVIES, HOCH, KIPZ, MI STANLEY M. FLAITE GERSON GOLDHABER, PEVIEM S. AND V. HAGOFIAN, BOGART, SELOVE PROC. DARESBURY STUDY WEEKEND NO</ciapetildore,>	(CERN) (ROMA+SYPA) (ANL) (CERN+IPN) (DARE) (LARE) (ICH) (LER+(IRL) (LRL) (LRL) (FSU+PFNN) 1. (CERN)
ABRAMS ALVENSLE ANGELOW BALDIN BARDADIN BEHREND BIZZARRI BLODDWOR CHAPMAN CHAPMAN FIELDS MATTHEWS MOFFEIT	$71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\$	$\begin{array}{c} \mbox{PR} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	+BARNHAM, BUTLER, COYNE, GOLDHABER, H ALVENSLEBEN, BECKEP, BUSZA, CHEN, CO +GRAMENITSKY, KANASIB'SKY, KERATSCH YERGAKOV, TREBUKHOVSKY, SHISHEV BARDADIN-DTWINOWSKA, HOFNOKL, HITCH LEE, NORDBERG, MEHAMA, H (ROCL HODINGHER, MEHAMA, H ELODOHORTH, JACKSON, PAENTICE, YOON HOTMEY, FOMLER BUTLER, FANC-LANDAU, MACHAUGHTON +PRENTICE, YOON; CARROLL, WALKER, + HBINGHAM, FRETTER, BALLAW-LIKE, HUGB-	ALL,+(LBL) HEN,+(DESY) HEN,+(DINP) (ITEP) JOA+(WARS) H+CORN+NAL) (CERN+COEF) (TORONTO) (OUKE) (LRL) (ANL+CXF) (ANL+CXF) +SLAC+TUFT)
AGUILAR APEL BASILE BENAKSAS BENAKSAS BENAKSAS BROWN DAKIN EISENBER RATCLIFF	72 72 72 72 172 272 72 72 72 72	PR D 6 29 PL 41 8 234 PHIL.CONF.PRCC153 PL 39 8 289 PL 42 8 507 PL 42 6 511 PL 42 6 117 PR D 6 2321 PR D 5 15 PL 38 8 345	AGUILAR-BENITEZ, CHUNG, EISNER, SAM +AUSLANDER, MULLER, BERTOLUCCI,+ +BOLLINI, BROGLIN, OALP IAZ, FRABETT +COSME, JEAN-MARIE, JULLIAN, LAPLAN +COSME, JEAN-MARIE, JULLIAN, LAPLAN EISENBERG, BALLAM, DAGAN,+ +BULOS, CARNEGIE, KLUGE, LEITH, LYNC.	10S (BNL) (KARL+PISA) I++ (CERN) CHE+(ORSA) CHE+(ORSAY) CHE+(ORSAY) +(ILL+ILLC) (PRINCETON) +SLAC+TELA) H,+ (SLAC)
BINNIE BURNS	73 73	AIX CONF.PAPER PR D 7 1310	+CARR,DEBENHAM,DUANE,GARBUTT,+ +CONDON,KIM,MANDELKERN,PRICE,SCH	(LDIC+SHMP) ULTZ (UCI)
R005	74	PREPRINT 72	M.RODS+J.ROUSKU	(HELSINKI)
******	***	*****	******* ******** ********* *****	**** *******

.

EVIDENCE NOT COMPELLING.OMITTED FROM TABLE.

				66	MC	940)	MA	S S	(MEN	n								
;	N.	55 NO T	940.5		1.7	72	АТ		CHE	SHIRE	72	MMS	0	2.4	P1-	P,N	мм	12/72
,	Ň	NOT	SEEN BY	BIN	INIE	74	AT	2 GE	EV/C									2/74
				66	Mts	40)	WI	DTH	(ME	V)								
ľ	N	55	(10.4)	OR	LES	s c	L=.'	90	СНЕ	SHIRE	72	MMS	0	2.4	P I -	P , N	MM	12/72
				66	MIS	9401	BR	ANCH	ING	RATIO	s							
L		M(940) INTO	(NEL	JTRAL	.)/(TWO	-сни	RGE	/(FOU	R-CH	ARGE)						
			A 12									****	~				****	

R1 R1 0.12 0.02 CHESHIRE 72 MMS 0 2.4 PI- P.N MM 12/72 0.86

1

REFERENCES FOR M(940) CHESHIRE 72 PRL 28 520 BINNIE 72 PL 39 B 275 BINNIE 74 PRL 32 392 +HOFFMAN,GARFINKEL,+ (IOWA+ANL+PURD) +CAMILLERI,DUANE,GARBUTT,BURTON+(LOIC+SHMP) +CAMILLERI,CARR,DEBENHAM,+ (LOIC+SHMP) M(953) *→γ*π⁺π΄ <u>/γ</u>ρ⁰ 59 M (953,JPG= +) WHILE MASS AND WIDTH ARE CONSISTENT WITH THOSE OF THE ETA PRIME(958), THE (PI+ PI- GAMMA) DECAY DDES NOT SHOM A RHOD SIGNAL, UNLIKE THE ETA PRIME. THIS IS TAKEN AS EVIDENCE FOR A NEW PARTICLE, WHILE THIS DIFFERENCE IN OALITZ PLOT DISTRIBUTIONS APPEARS SIGNIFICANT, IT STILL NEEDS FURTHER CONFIRMATION TO BE REGARDED AS WELL ESTABLISHED. POSSIBLY SEEN IN MMS. OMITTED FROM TABLE. 59 M MASS (MEV) 68 953.0 2.0 AGUILAR 70 HBC 3.9-4.6K-P,P K-M 1/71 (953.4) (1.51 (3.8) MAGLICH 71 MMS 3.8 P 0.HE3 X0 2/72 MISSING MASS SPECTRUM SHOMEO THIS PEAK AT 953.4 INSTEAD OF ETA PRIME (958). PEAK LISTED UMDER M BECAUSE OF MASS COINCIDENCE. THE 1.5 NEV ERROR MAY BE UNDERESTIMATED BY A FACTOR OF 2 (SEE BRODY 72, TABLE 11). OBSERVED PEAK COULD THEN WELL CORRESPOND TO ETA PRIME. 59 M WIDTH (NEV) 68 (10.0) OR LESS CL≖.95 AGUILAR 70 HBC M (15.) OR LESS MAGLICH 71 MMS 3.9-4.6K-P,P K-M 1/71 3.8 P D,HE3 X0 2/72 ----- ----- ------59 M PARTIAL DECAY MODES DECAY MASSES 139+ 139+ 0 770+ 0 139+ 139+ 548 134+ 548 139+ 139+ 134 M INTO PI+ PI- GAMMA M INTO RHOO GAMMA M INTO PI+ PI- ETA M INTO PIO ETA M INTO PI+ PI- PIO P1 P2 P3 P4 P5 59 M BRANCHING RATIDS M INTO (RHOO GAMMA)/(ALL PI+ PI- GAMMA) (P2)/(P1) 58 0.05 0.1 AGUILAR 70 HBC 3.9-4.6K-P.P K-M 1/71 R1 R1 M INTO (PI+ PI- GAMMA)/(PI+ PI- ETA NEUTR.) 58 1.2 0.3 AGUILAR 70 HBC R 2 R 2 (P1)/(P3N) 3.9-4.6K-P.P K-M 1/71 R3 R3 M INTO (PI+ PI- PIO)/TOTAL 58 NOT OBSERVED (P5) AGUILAR 70 HBC 3.9-4.6K-P,P K-M 1/71 M INTO (PIO ETA NEUTR.)/TOTAL 58 NOT OBSERVED (P4N) 3.9-4.6K-P.P K-M 1/71 AGUILAR 70 HBC REFERENCES FOR M AGUILAR-BENITEZ, BASSAND, SAMIOS, BARNES+(BNL) AGUILAR 70 PRL 25 1635 +OOSTENS,BRODY,CV1JANOVICH {RUTG+PENN+UPNJ} J.L.ROSNER,E.W.COLGLAZIER (MINN+CIT} MAGLICH 71 PRL 27 1479 ROSNER 71 PRL 26 933 AGUILAR 72 PR D 6 29 AGUILAR-BENITEZ, CHUNG, EISNER, SAM1DS (BNL) BRDDY 72 UPR-3E.SUBM.TO PR +GROVES, NOREM, CVIJANGVICH, + (PENN+RUTG+UPN)} η'(958) 2 ETA PRIME (958, JPG=0++) I=0 KNOWN ALSO AS XO 2 ETA PRIME MASS (MEV) ONLY EXPERIMENTS GIVING ERROR LESS THAN 3 MEV KEPT FOR AVERAGING 85 (957.0) OBUBER 64 HBC 1.95 K-P (956.0) (1.0) KALBFLEIS 64 HBC 2.7 K-P KALBFLEISCH 64 SUPERSEDE BY RITTENBERG 69 957.0) (3.0) BADIER 65 HBC 3.0 K-P 8 960.0 2.0 TRILLING 65 HBC 3.05 PI+P 7 1955.0) (10.0) CDHN 66 DBC 3.3 PI+D (9594.0) (3.0) LONDON 66 HBC 2.2 K-P (9590.0) (5.0) MTT 1000 CDHN 0 12/72 ************* (1.0) ;CH 64 S (3.0) (10.0) (3.0) (5.0) 1. 2.0 1.1 1.4 0.5 6/66 K K O 3.0 K-P 3.65 PI+ P 3.3 PI+D 2.2 K-P 4.1-5.5 K-P 1.7-2.7 K-P 3.9-4.6K-P 1.6 PI- P.N X0 2.2 K-P.LAM X0 PI- P.N MM 9/66 9/66 6/66 7/69 9/69 1/71 11/71 11/71 2/74* 1/74* 000 1960.01 957. 956.0 956.1 957.4 958.2 958. 957.46 3415 535 1414 400 0.33 . . 0.24 M 957.59 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG 2 ETA PRIME WIDTH (MEV) (4.0) OR LESS DAUBER 64 HBC (7.0) OR LESS KALBFLEIS 64 HBC KALBFLEISCH 64 SUPERSEDED BY RITTENBERG 69 (30.0) OR LESS BADTER (15.0) OR LESS LONDON 66 HBC (15.0) OR LESS LONDON 66 HBC (30.0) OR LESS RITTENBER 69 HBC (30.0) OR LESS RITENBER 69 HBC (30.0) OR LESS AGUILAR 70 HBC 1.95 K-P 2.7 K-P 6/66 3.0 K-P 2.2 K-P 1.7-2.7 K- P 3.9-4.6K-P

H	3415 (8	.) OR LESS CL=.90	BASILE1	71 CNTR	1.6	P1-	P.N XO	11/71
Ĥ.	514 (4	.8) OR LESS CL=.95	DUANE	74 MMS	2.2 P1-	К-Р, Р,N	LAM XO Mm	2/74
								-
•		2 ETA PRIME P	ARTIAL DECAN	MODES				
					D	ECAY	MASSES	
P1	ETA PRIM	E INTO PI+ PI- ETA P1(N) ETAS DECAY	INTO ALL NEU	TRALS	139+	139+	548	
		PI(C) ETAS DECAY	CHARGED					
P2	ETA PRIM	E INTO PIO PIO ETA			134+	134+	548	
		P2(N) ETAS DECAY P2(C) ETAS DECAY	INTO ALL NEU CHARGED	TRALS				
P3	ETA PRIM	E INTO PI+ PI- GAMMA			139+	130+	0	
		(INCLUDING RHD GAM	MA)		1394	1374	0	
P4	ETA PRIM	E INTO GAMMA GAMMA			0+	0		
P6	ETA PRIM	E INTO RHOD GAMMA			0+	770		
P10	ETA PRIM	E INTO PI+ PI- E+ E-			139+	139+	. 5+	- 5
P11	ETA PRIM	E INTO 2 PI			139+	139	• • •	•••
P12	ETA PRIM	E INTO 3 PI			139+	139+	134	
P13	ETA PRIM	E INTO 4 PI			139+	139+	139+ 1	39
P14	ETA PRIM	E INTO 5 PI						
P15	ETA PRIM	E INTO 6 PI						
P16	ETA PRIM	E INTO PIO E+ E- (VI	DLATES C IN BORN APPR	(X.)	134+	• 5+	• 5	
P17	ETA PRIM	E INTO ETA E+ E- LVI	OLATES C IN		548+	- 5+	.5	
			BORN APPR	0X.)			••	
P18	ETA PRIM	E INTO PIO RHO O (VII	OLATES C)		134+	770		
P19	ETA PRIM	E INTO PIO OMEGA (VI	OLATES C)		134+	782		
P20	ETA PRIM	E INTO GAMMA OMEGA			0+	782		
								-
FITT	ED PARTIA	L DECAY MODE BRAN	CHING FRACT	TIONS				
	The matrix h	elow is derived from th	e error matri	x for the fitt	ed par	tial de	cay mo	de
bran	hing fractio	ns, P,, as follows: The	diagonal eler	nents are P,	±δΡ,,	wher	B	
δP _i :	$\sqrt{\langle \delta P_i \delta P_j \rangle}$, while the off-diagonal	elements are	the normali:	zed co:	rrelat	ion coef:	fi-
cient	s (δPiδPi)/	$(\delta P_i \cdot \delta P_i)$. For the def	initions of the	individual F	, see	the li	stings	
above	; only those	P appearing in the mat	trix are assum	ned in the fit	to be :	nonze	ro and	
are t	nus constrai	ned to add to 1.						

 AP6 Thus Constrained to add to 1.

 P1

 P2

 P3

 P4

 P4

 P4

 P5

 P6

 P7

 P8

 P8

 P9

 P4

 P5

 P4

 P4

 P5

 P4

 P4

 P4

 P4

 P5

 P4

 P5

 P5

 P4

 P5

 P5

 P5

 P5

 P4

 P5

 P5

 P4

 P5

 P5

 P5

 P4

 P5

 P5

 P5

 P5<

2 ETA PRIME BRANCHING RATIOS

Note on n¹ (958) Branching Fractions

In our calculation of the branching fractions of the η' (958) we assume the decay modes $\eta \pi \pi$ (including $\eta \pi^0 \pi^0$, 71% of the η 's have neutral decays), $\rho^0 \gamma$, and yy.

In the fit we do not use the constraint

 $\mathbf{R} = \Gamma \left(\eta^{\dagger} \rightarrow \eta \pi^{\dagger} \pi^{-} \right) / \Gamma \left(\eta^{\dagger} \rightarrow \eta \pi^{0} \pi^{0} \right) = 2$

from I-spin conservation. The result of the fit is in agreement with it, $R = 1.9 \pm 0.2$.

P 1	ETA	PRIME INTO (PI+ PI-ETA (NEUTRAL DEC.))/TOTAL (PIN)	
R1	K 68	(0.36) (0.05) KALBFLE2 64 HBC 2.7 K-P	10/66
K 1	K DOL	KALBFLEISCHZ 64 SUPERSEDED BY RITTENBERG 69	
K 1 D 1	281	0.314 0.026 RITTENBER 69 HBC 1.7-2.7 K-P	9/69
R1	FIT	0.328 0.016 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.4)	
R 2	ETA	PRIME INTO (PI+ PI- NEUTRALS) / TOTAL (PIN+P2C)	
R2	33	0.35 0.06 BADIER 65 HBC 3.0 K-P	10/66
R 2	39	0.4 0.1 LONDON 66 HBC 2.2 K-P	10/66
R2		•••••••••	
R2	AVG	0.363 0.051 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
R2	FIT	0.399 0.014 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.7)	
R3	ETA	PRIME INTO (PI+ PI- ETA (CHRGD.DECAY))/TOTAL (PIC)	
R 3	K 44	(0.12) (0.02) KALBFLE2 64 HBC 2.7 K-P	10/66
R3	ĸ	KALBFLEISCH2 64 SUPERSEDED BY RITTENBERG 69	
R 3	7	0.07 0.04 BADIER 65 HBC 3.0 K-P	10/66
R3	10	0.1 0.04 LONDON 66 HBC 2.2 K-P	10/66
R3	107	0.123 0.014 RITTENBER 69 HBC 1.7-2.7 K-P	9/69
R 3			
RЭ	AVG	0.116 0.013 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
R 3	FIT	0.1335 0.0066 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.4)	
R 4	ETA	PRIME INTO (PI+ PI- NEUTRALS (EXCLUDING (P2C)	
R4		PI+ PI- ETA (NEUTR.DEC.))) / TOTAL	
R4	K 10	(0.05) (0.04) KALBFLE2 64 HBC 2.7 K-P	10/66
R4	ĸ	KALBFLEISCH2 64 SUPERSEDED BY RITTENBERG 69	
R 4	42	0.045 0.029 RITTENBER 69 HBC 1.7-2.7 K-P	9/69
R 4			
R 4	FIT	0.0707 0.0060 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1)	
P 5	ETA	PRIME INTO (NEUTRALS) / TOTAL (P2N+P4)	
R5	K 54	(0.25) (0.05) KALBFLE2 64 HBC 2.7 K-P	10/66
R 5	ĸ	KALBFLEISCH2 64 SUPERSEDED BY RITTENBERG 69	
R 5	16	0.24 0.17 BADTER 65 HBC 3.0 K-P	10/66
R5	32	0.3 0.L LONDON 66 HBC 2.2 K-P	10/66
R 5	123	0.189 0.026 RITTENBER 69 HBC 1.7-2.7 K-P	9/69
R5	535	0-185 0-022 BASILE1 71 CNTR 1-6 PI- P-N XO	11/71
R5		•••••	
R5	AVG	0.190 0.016 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
25	FIT	0.193 0.014 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)	

Mesons $M(940), M(953), \eta'(958)$

1

6/66 1/71

From the Dalitz plot analyses of the $\eta' \rightarrow \pi \pi \eta$ and $\eta' \rightarrow \pi^+ \pi^- \gamma$ decays, and from the observation of a $\eta' \rightarrow \gamma \gamma$ decay mode, all assignments except $J^{PC} = 0^{-+}$ and 2^{-+} are excluded. The Dalitz plot analyses favor spin 0 but cannot rule out spin 2. On the other hand, the observation of KALBFLEISCH 73 of an anisotropy in the decays of very forward produced η' would imply J = 2, if confirmed; although the effect is seen in the largest single data sample available (the BNL-University of Michigan experiment with ~ 1400 η' decays from the reaction $K^{-}p \rightarrow \Lambda \eta'$ at 2.2 GeV/c), its statistical significance is only ~ 3 standard deviations.

****** **	***	***** ******	** **	******	***1	***	**	***4	****	***	****	****	****	***
				REFERE	NCES	FOR	ЕT	A PF	IME					
DAUBER	64	PRL 13 449		DAUBER	SLA	TER.	SMI	тн. 9	TOR	. т і	сно		(UCLA	() JP
ALSD	64	DUBNA CONF 1	418	DAUBER	SLA	TER.	ĹΤ	SMI	TH.	TOP	K .TI	СНО	IUCL	0
GOLDBERG	64	PRL 12 546		+GUND Z	IK+L	снт	MAN	.00	NOLI		ART.	+(SYP	A+BN)
GOLDBERG	64	PRL 13 249		+GUNDZ	IK,L	EITN	ER,	CONN	IOLLY	(,Ĥ/	ART, 4	1546	A+BNI	.)
KALBFLE1	64	PRL 12 527		KALBFL	EISCI	4, AL	VAR	EZ, E	ARB	RO	GALT	TERI	,+(LRI) JP
KAL8FLE2	64	PRL 13 349		G.R.KA	LOFLI	EISC	н, о	+DAH	IL,A	.R I 1	TENE	ERG	(LRI	JJP
BADIER	65	PL 17 337		BADIER	, DEMI	DULI	Ν,Β	ARLO	DUTA	10+1	EPOL	+SACI	L+ZEEP	0
KIENZLE	65	PL 19 438		KIENZL	E,MA	GL 1 C	+L E	VRA	, LEI	EB	RES	+	(CERI	43
RITTENBE	65	PRL 15 556		RITTEN	BERG	KAL	BFL	EISC	н			(L)	RL+BNI	.)
TRILLING	65	PL 19 427		+BROWN	, GOLI	DHAB	ERS	, KA(DYK - :	SCAN	10		(LAI	.)
								~~ /	-					
COHN	55	PL 21 347		CURNAR		LUCH	, 80	6646	DDC		UKNI	TIEN		
LUNDON	66	PR 143 1034		LUNDUN	, KAU	SAH	105	, 601	DBEI	(G 1		1.1.0	ACUS	11.38
MARTIN	66	PL 22,352		MARTIN	CKI	TEN	DEN	+ 201	INDEL	JEK		(INU.	IANA	
	4.9	DD1 20 340			0-64	TIE	PT.	мат	SON		TENE	FRG+	(L R I	11=0
BADI OUTA	4.8	DI 26 B 676		BARLOIL	TAUD		16	ACI	¥+4	IST.	BONA	+REH	1+5001	11=0
BOULTNE	68	NC 58 & 289		+ BUHI F	R.DAI	PTA	7.8	1224	M+		CERN	+ BGN	A+STRI	
DAVIS	68	DI 27 B 532		+ANNAR	MOT	T. DA	CAN	DE	RICI	(. F	FID	LNW	S+ANI	i .
	•••													
DUFEY	69	PL 29 8 605		+G0881	, POU	CHON	, CN	OPS	+	1	ЕТН2	+CERI	N+SACI	L)IJP
MOTT	69	PR 177 1966		+AMMAR	DAV	15+K	ROP	AC,	SLATI	E, D/	GAN	- (NW	ES+AN	L)
RITTENBE	69	UCRL-18863		ALAN R	TTE	NBER	G (THE	5151				(LRI	L)[=0
AGUILAR	70	PRL 25 1635		AGUILA	RFBE	NILE	2,8	A55/	INU,	SAM	105.0	SARNE	5+ (BN	
BENSINGE	10	PL 33 8 505		DENSIN	GER .		N .	HOHI	SUN). HAL	N CR	1.413	
BARDADIN	71	99 04 2711		BARDAD	1N-0	TWTN	nws	K & . I		. ואר	MICH	E.IDA	+ (WAR:	53
BASTIFI	-	NC 3 4 371		+80111	NT.D		47.	FRAS	FTT	1.+	CERM	+ BGN	A+STR	Ří
BASTLE2	71	NP B 33 29		+BOLL I	NI D	ALPI	AZ.	FRAI	BETT		CERM	+BGN	A+STR	B)
HARVEY	71	PRL 27 885		+MARQU	IT.P	ETER	SON	.RH	ADE	\$.+	· · ·	(MIN	N+MICI	4)
OGIEVETS	71	PL 25 B 69		OGIEVE	TSKY	TYB	OR.	ŻASI	AVSI	(Y			(DUBN	4.1
AGUILAR	72	PR D 6 29		AGUILA	R→BEI	NITE	z,c	HUN	3,EI	SNEI	R . SAP	105	(BN	L)
APEL	72	PL 40 8 680		+AUSLA	NDER	MUL	LER	, BE	TOL	ncc	1,+	(KAR	L+PIS.	A)
BINNIE	72	PL 39 B 275		+CAMIL	LERI	,DUA	NE.	GAR	BUTT	• BU1	RTON	(101	C+SHM	P)
8LOODWOR	72	NP B 39 525		BLOODW	ORTH	, JAC	KSC	N, PI	RENT	ICE	, YOOP	N (T	ORONT	
DALPIAZ	72	PL 42 B 377		+FRABE	TTI,	MASS	AM .	NAV	ARRI	A . Z	сніс	HI	ICER	N
RADER	72	PR D 6 3059		+ABOL I	NS+D	AHL,	DAN	BUR	5, DA	VIE	5,HD0	.H.+	ILB.	.,
	73	00 0 0 3744					-	NCT		-		AFRN		
LACOBS	73			ACHANC	. 6 40	TH T F	B.+	131	1111	REAL		+SAB		11 1
KALBELET	73	PRI 31 333		KALAFI	FISC	HACH	APH	6N.	. '		181	NI +MT	CH+I B	
					-196						. 31			
DUANE	74	PRL 32 425		+BINN1	E,CA	MILL	ERI	, C A	R, D	EBE	NHAM	(LOI	C+SHM	P)
******	***	***** ******	** **	******	***	****	**	***	****	**	****	****	****	****
******	***	***** *******	** **	******	***	****		***		** :			****	****

FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.6) (P16)

10/66

10/66 10/66 9/69

10/66

R 8		(0.013)OR LESS	RITTENBER 65 HBC		2.7 K-P	10/66
R 9	ETA	PRIME INTO (ETA E+ E+)	/TOTAL	(P17)		
R9		(0.011)DR LESS	RITTENBER 65 HBC		2.7 K-P	10/66
R10	ETA	PRIME INTO (PIO RHOO)/	TOTAL	(P18)		
R10		(0.04) DR LESS	RITTENBER 55 HBC		2.7 K-P	10/66
R11	ETA	PRIME INTO (PIO OMEGA	+ GAMMA DMEGA1/TOTAL	(P19+P20)		
P11		(0.08) OR LESS	RITTENBER 65 HBC		2.7 K-P	10/66
R12	ETA	PRIME INTO (PI+ PI- E+	E-1/TOTAL	(P10)		
R12		(0.006)DR LESS	RITTENBER 65 HBC		2.7 K-P	10/66

ETA PRIME INTO (PI+ PI- GAMMA (INCLUDING RHO GAMMA))/TOTAL

2) (0.04) KALBFLE2 64 HBC SFLEISCH2 64 SUPERSEDED BY RITTENBERG 4) (0.09) BADIER 65 HBC 0.1 LONDON 66 HBC 29 0.033 RITTENBER 69 HBC

(P 3)

69

0.038 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2) 0.022 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.6)

(PI+ PI- GAMMA (INCLUDING RHO GAMMA))/(PI PI ETA)

DAUBER 64 HBC

2.7 K-P

(P3)/(P1+P2) 1.95 K-P

3.0 K-P 2.2 K-P 1.7-2.7 K-P

Mesons $\eta'(958)$

42

35

20 298

ETA

(0.22)

(0.34)

PRIME INTO

0.25

0.388

3.14

0.044

FTA PRIME INTO (PIO E+ E-)/TOTAL

0.2 . 0.316

86666666666666666

R7 R7 R7 R7 R7

...

ĸ

AVG Fit

FTT

R13 R13	ETA	PRIME INTO (2 PI)/TOTAL (0.07) OR LESS	LONDON	66 HBC	(P11) COMPILATION	10/66
R14	ETA	PRIME INTO (3 PI)/TOTAL			(P12)	
R14		(0.07) OR LESS	LONDON	66 HBC	COMPILATION	10/66
P15	ETA	PRIME INTO (4 PI)/TOTAL			(P13)	
R15		(0.01) CR LESS	LONDON	66 HBC	COMPILATION	10/66
R16	ETA	PRIME INTO (6 PI)/TOTAL			(215)	
R16		(0.01) DR LESS	LONDON	66 HBC	COMP IL AT ION	10/66
R18	ETA	PRIME INTO (RHOO GAMMA)	(PI PI ETA)		(P6)/(P1+P2)	
R18		0.31 0.15	DAVIS	68 HBC	5.5 K- P	9/68
R18						,,,,,,
R18	FIT	0.388 0.044 FROM	FIT (ERROR	INCLUDES	SCALE FACTOR OF 1.	6)

R19		ETA PR	IME INTO	(2 GAMMA	J/TOTAL			(24)		
P19		5	0.055	0.036	0.030	BOLLINI	68 CI	NTR 1.9	P1- P	12/7
R19		7	0.126	0.075		BENSINGE	R 70 DI	3C 2.2	PI+ D	12/7
R19	s	41	(0.017)	(0.004)		BASTLE2	71 CI	NTR 1.6	PI- P,N XO	12/7
P19	Ş	SUPER	SEDED BY	DALPIAZ	72					
R19		31	0.020	0.008	0.006	HARVEY	71 0	SPK 3.65	PI- P.N XO	11/7
R19		68	0.0171	0.0033		DALPIAZ	72 CI	NTR 1.6	P1- P+N X0	12/7
R19										
R19	AVG		0.0181	0.0030	AVERAGE	ELERROR	INCLUD	ES SCALE FA	CTOR OF 1.0)	
R19	FIT		0.0194	0.0029	FROM FIT	I ERROR	INCLUD	ES SCALE FA	CTOR OF 1.0)	

R20	ETA	PRIME INTO (PI+PI-)/TOTA	L	(P11)	
820		(0.02) OR LESS	RITTENBER 69 HBC	1.7-2.7 K-P	9/69
RZO		(0.08) OR LESS CL=.95	DANBURG 73 HBC	2.2 K-P.LAM XO	2/74
P21	ETA	PRIME INTO (PI+PI-PIO)/TO	DTAL	(P12)	
P21		(0.05) OR LESS	RITTENBER 69 HBC	1.7-2.7 K-P	9/69
R21		(0.09) OR LESS CL=.95	DANBURG 73 HBC	2.2 K-P+LAM XO	2/74
R22	ETA	PRIME INTO (PI+PI+PI-PI+	/TOTAL	(P13)	
822		(0.01) OR LESS	RITTENBER 69 HBC	1.7-2.7 K-P	9/69
R22		(0.01) OR LESS CL=.95	DANBURG 73 HBC	2.2 K-P,LAM XO	2/74
R23	ETA	PRIME INTO (PI+PI+PI-PI-	PIO)/TOTAL	(P14)	
R23		(0.01) OR LESS	RITTENBER 69 HBC	1.7-2.7 K-P	
924	ETA	PRIME INTO (PI+PI+PI-PI-	NEUTRALS // TOTAL	(P16+)	
R24		(0.01) OR LESS	RITTENBER 69 HBC	1.7-2.7 K-P	9/69

R25	ET	A P	RIME I	NTO	(RHO0	GAMMA)	ALL !!	P1+ 1	PI- G	AMMA)	(P6)/	(P3)		
R25			0.94		0.20		A	GUILAP	2 7	O HBC	3.	9-4. AK-P		1/71
R25	E 47	3	1.15		0.10		0.	ANBUR		3 HBC	2	2 8-0.14	M XO	2/74
R 2 5	E 47	3	(0.95	1 08	MORE	C1 = - 91	5 0.	ANBUR	: ;	3 HAC	2	2 8-0.14	H YO	2/76
R25	EE	ŌUT	VALENT	STA	TEMENT	s			•••	5		2 8-1164		27 14
R25	13	7	1.01		0.15	5		ACO85	,	3 UBC		0 K-0.14	M YA	1 / 74
R25		۰.								5 100	2.	7 K-FILA	M AU	17 14
R25	AVG	-	1.08	2	0.077	AVE	AGE	ERROF	R INC	LUDES	SCALE	FACTOR 0	F 1.0)	
R26	ET	A P	RIME I	NTO	(PI0 P	10 ETA	INTO	3 PI())/TO	TAL	(P 2N (3P10))		
R26		4	0.11		0.06		8	ENSIN	ER 7	O DBC	2.	2 P1+ D		1/71
R26														
R26	FIT		0.07	34	0.006	2 FROM	FIT	ERROF		LUDES	SCALE	FACTOR O	f 1.1)	

R27	- ETA	PRIME INTO	(PI+ PI- GA	MMA]/(PI+ PI-	- ETA(NEUTRAL	DEC.))	
R27					(P	3)/(P1N)	
R27		0.54	0.10	AGUILAR	72 HBC	3.9.4.6 K- P	12/72
R27	473	0.92	0.14	DANBURG	73 HBC	2.2 K-P.LAM XO	2/744
R27	192	1.11	0.18	JACOBS	73 HBC	2.9 K-P.LAM XO	1/744
R27							
R27	AVG	0.74	0.16 AV	ERAGE (ERROR	INCLUDES SCA	LE FACTOR OF 2.2)	
R27	FIT	0.834	0.099 FRC	M FIT (ERROR	INCLUDES SCAT	LE FACTOR OF 1.8)	
			ISEE 10FOG	RAM BELOW)			
R 2 8	ETA	PRIME INTO	(2 GAMMA)/{	PTO PTO ETAC	NEUTRAL DEC.1)	
R2B					(P)	4)/(P2(N))	
R28	16	0.188	0.058	APEL	72 OSPK	3.8 PI- P.N XO	1/73
R28							
R28	FIT	0.112	0.021 FRO	FIT (ERROR	INCLUDES SCA	LE FACTOR OF 1.1)	

82

δ(970) *→η*π,···

36 DELTA(970+JPG=0+-} I=1

Under this entry, we list three types of I = 1 peaks near $K\bar{K}$ threshold.

- Missing-mass peaks, some of them controversial.
- 2) η_{π} decays, peaking slightly below KK threshold. This defines $I^{G} = 1^{-}$ and $J^{P} = Normal$.
- 3) Threshold enhancements in the $(K\vec{K})^{\pm}$ system with I = 1. The Q value is low and J^{P} therefore probably 0^{\pm} .

In listing them together under a common entry we do not imply that they are necessarily all related. However, the $K\vec{K}$ threshold enhancement may be due to a virtual bound state that could also be responsible for the $\eta\pi$ peaks (ASTIER 67). More complete studies of the mass dependence of the $K\vec{K}$ threshold effect, using coupled channel analysis, are needed to clarify this question.

36 DELTA(970) MASS (MEV)
 PEAKS SEEN IN MISSING MASS EXPERIMENTS

 K 262 (962.0)
 (5.0)
 KIENZLE
 65 MMS
 - 3-5 PI- P
 9/66

 K NOT SEEN BY BANNERI 67 (1.8 PI- P)
 00STENS
 66 MMS
 + 3.8 PP TO D + MM
 9/66

 0 (966.0)
 (8.0)
 00STENS
 66 MMS
 + 3.8 PP TO D + MM
 9/66

 0 NOT SEEN BY BANNER2 67 AND ANDERSON 71
 975.0
 6.0
 ABDLINS 70 MMS
 + 3.8-6.3 PP--D+MM
 1/71

 N 215 (962.9)
 (1.7)
 CHESHIRE 72 MMS
 0 2.4 PI- P+N MM
 12/72

 N NOT SEEN BY BINNIE 72 AT THRESHOLD.
 NOT SEEN BY BINNIE 74 AT 2 GEV/C
 NOT
 SEEN BY BINNIE 74 AT 2 GEV/C
 PI FINAL STATE ONLY. 30 980.0 10.0 SEE ALSO AMMAR 70. 10 (960.) APPRO: 80 (975.0) ETA S S AMMAR 68 HBC +--15.5K-,ETA PI 2/73 CHUNG S 68 HBC - 3.2 PI-P DEFOIX 68 HBC +- 1.2 PB P,ETA PI BARNES 69 HBC - 4-5 K-P,PT-ETA CAMPBELL 69 HBC - 4-5 K-P,PT-ETA MILLER 69 HBC - 4.5 K-N+ETA PI BARDADIN 71 HBC +- B PI+P,P DO PI DEFOIX 72 HBC +- 0.7 PBAR P,7 PI CONFORTO 73 OSPK - 4.5 PI-P,P X-APPROX. 5/70 3/69 9/69 1/73 7/69 2/72 1/73 1/74 15.0 10. (10.0) (7.0) 10. 20 970.0 980. 15 1980.0) 21 948.0 21 948.0 150 972. 47 (980.) 976.4 5.4 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG. . 8/66 8/66 . 7/67 67 HBC +- 0-1.2 PBAR P 7/67 ----- 7/67 72 HBC 1.2 PBAR P, 3P12K 12/72 12/72 ----36 DELTA(970) WIDTH (MEV) SEEN IN MISSING MASS EXPERIMENTS 62 IS-00 OR LESS XIENZLE 65 MMS - 3-5 PI- P (10-00 OR LESS 00STENS 66 MMS + 3.8 PP TO D + MM 60-0 16-0 100 ABDLINS 70 MMS + 3.8-6-3 PP--D+MM 15- 15-97 DR LESS CL--90 CHESHIRE 72 MMS 0 2.4 PI- P-M MM PEAKS KS SEEN IN MISSING MASS CAPERING 262 (5.0) OR LESS (10.0) OR LESS 60.0 L6.0 10.0 215 (5.9) OR LESS CL=.90 SEE NOTES ON DELTA MASS ABOVE s

W ETA PI FINAL STATE ONLY W ETA PI FINAL STATE ONLY 30 80.0 30.0 AMMAR 68 HBC + ,5.5K-,ETA PI 2/73 80 (25.0) DEFOIX 68 HBC + 1.2 P0 P.ETA PI 3/69 20 (50.0) OR LESS BARNES 69 HBC - 4.5 K-,ETA PI 3/69 90 40. 15. CAMPBELL 69 HBC - 4.5 K-N.ETA PI 2/74 15. 60.0 30.0 MILLER 69 HBC - 4.5 K-N.ETA PI 2/74 415. 60.0 30.0 MILLER 69 HBC - 4.5 K-N.ETA PI 2/74 415. (50.0) 28.0 BARDAIN 71 HBC + 0.5 PI+P,P DO PI 2/74 415. (50.1) (30.1) COMPGATO 72 HBC + 0.7 PBAR P.7 PI 2/74 44.6 150.1 (30.1) COMPGATO 70 OSFA - 4.5 P1+P,P P.7 PI 2/74 1/74 45.7 11.2 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) HK KBAR ONLY, SEE THE TYPED NOTE ABOVE 8/66 40.0 (25.) APPROX. ASTIER 67 HBC + 8/66 <

 DELTA(970)
 INTO ETA PI
 568+134

 DELTA(970)
 INTO 3 PI
 700+134

 DELTA(970)
 INTO RNO PI
 770+134

 DELTA(970)
 INTO K KBAR
 770+134

 SEE THE TYPED NOTE ABOVE
 770+134

s s

Mesons δ(970), H(990), S^{*}(993)

DELTA(970) BRANCHING RATIOS

	36 DELTA(970) BRANCHING RATIUS
	R1 DELTA(970) INTO (RHO PI)/(ETA PI) (P3)/(P2) R1 (0.25) OR LESS CL=.70 AMMAR 70 HBC +- 4.1,5.5K-,ETA PI. 5/7
	RIO CHARGED DELTA DE KIENZLE 65 INTO (1 CHARGED)/(3 CR MORE CHARGED) RIO 1.3 0.9 0.7 KIENZLE 65 MMS - 3-5 PI- P 9/6
	R11 DELTA OF CHESHIRE T2 INTO (NEUTRAL)/(TWQ-CHARGE)/(FOUR-CHARGE) R11 (0.10) (0.82) (0.08) CHESHIRE 72 MMS 0 2.4 PI~ P.N MM 12/7
	****** ******** ********* ********* ****
1	REFERENCES FOR DELTA
	ADMENTED AS DI 17 344 ADMENTERDS, FUJII, KEMPP (URAN CONF)
	GARASH 65 PR 135 B 1659 +FRANZINI,KIRSCH,HILLER,STEINBERGER (COLUI Kienzle 65 Pl 19 438 + Magilc,Levrat,Lefebvres + (CEPNI Rrsenfel 65 Oxford Conf 58 A H Rosenfeld (IRLRvue)
	ALLEN D 66 PL 22 543 +GP FISHER,G GODCEN,L MARSHALL,SEARS (COLDIG=+ BALTAY 66 PR 142 B 932 +LACH,SANDWEISS,TAFT,YEH,STONEHILL+ (YALE) FOCACCI 66 PRL 17 890 + KIENZLE,LEVRAT,MAGLIC,MARTIN (CERN) OOSTENS 66 PL 22 708 +CHAVANON,CROZON,TOCQUEVILLE (SACLAY,COEF,I=1
	ALLISON 67 PL 258 619 +CRUZ+ (OXF+MPIM+BIRM+RHEL+GLAS+LOIC) ASTIER 67 PL 25 B 294 +MONTANET,BAUBILLIER,DUBOC+(CDEF+CERN+IRAD)
	ASTIER 67 INCLUDES DATA OF BARLOW 67,CONFORTO 67,ARMENTEROS 65. BATLLON 67 NC 50A 393 +EDWARDS+D.ANDLAU+ASTIER+ [CERN+CDEF+IRAD]
	BANNER 1 67 PL 25 8 300 +FAYOUX;HAMEL,ZSEMBERY,CHEZE+ (SACLAY+CAEN) BANNER 2 67 PL 25 8 569 +CHEZE;HAMEL,MAREL,TEIGER+ (CDEF+SACL)
	BARLOW 67 NC 50 A 701 +HUNIANEI+U;ANDLAU+ (CERN+CDEF+IRAU+LIVP) CONFORTO 67 NP B3 469 CONFORTO+MARECHAL+ (CERN+CDEF+IPNP+LIVP)
	AMMAR 68 PRL 21 1832 +DAVIS.KROPAC.DERRICK.FIELDS.+ (NWES+ANL) Chung 5 68 PR 165 1491 +D.DAML. J. KIRZ, D.H.MILLER (LRL)
	DEFDIX 68 PL 28 B 253 +RIVET,SIAUD,CONFORTO+ (CDEF+IPNP+CERN) GALTIERI 68 PRL 20 349 BARBAPO-GALTIERI,MATISON,RITTENBERG+ (LRL)
	JUHALA 68 PL 27 B 257 +LEACOCK,RHODE,KOPELMAN,LIBBY+ (IOWA+COLO) SABRE CO 68 PL 26 B 674 BARLOUTAUD+ (SACL+AMST+BGNA+REHO+EPOL)
	BARNES 69 PRL 23 610 +CHUNG,EISNER,BASSAND,GOLDBERG+ (BNL+SYRA) Campbril 69 PRL 22 1204 J.H.Campbril.LICHTMAN.LOEFFLER.+ (PURDUE)
	CRENNELL 69 PRL 22 1398 +KARSHON,KWAN WU LAI,+ (BNL+NYU) JUHALA 69 PR 184 1461 +LEACOCK,RHODE,KOPELMAN,LIBBY,+ (ISU+COLD)
	KRUSE 69 PR 177 1951 KRUSE,LOOS,GOLDWASSER (ILLINOIS) MTILER 69 PL 29 R 255 D.H.MILLER.S.L.KRAMER.D.D.CARMONY.+(PURDUE)
	ALSO 69 PR 188 2011 YEN, AMMANN, CARMONY, ELSNER, + (PURDUE) SCHROEDE 69 PR 188 2081 SCHROEDER, KERNAN, FISHER, LIBBY, + (ISU+COLO)
	ABGLINS 70 PR 25 469 +GRAVEN,MCCARTHY,G_SMITH,L_SMITH*(LREHUGD) AMMAR 70 PR 0 2 430 +KROPAC,DAVIS,DERRICK+(KANS+NHES+ANL+WISC) CODPER 70 NP 23 605 +HANNER,MUSGRAVE,POLLARD,VOYVODIC (ANL) YIOU 70 THESIS, A 646 TCHIU-PUNG YIOU (ORSAY)
	ANDERSON 71 PRL 26 108 +DIXIT,+ (CHIC+ANL+CARL+LASL+CNRC+NAGOYA) BARDADIN 71 PR D4 2711 BARDADIN-DTWINGWSKA,HDFMOKL,MICHEJDA+(WARS)
	BINNIE 72 PL 39 B 275 +CAMILLERI, DUANE, GARBUTT, BURTON+(LOIC+SHMP)
	CHESHIRE 72 PRL 28 520 +HOFFMAN,GARFINKEL+ (IDWA+AHLHPURD) DEFDIX 72 NP 84 125 +NASCIMENTGBIZZARIL+ (COEF+CERNI DUBDC 72 NP 846 429 +GOLDBERG,MARKNSKI.DDNALD+ (LPNP+LIVP) HOLLDNAY 72 PHILLCONF.PROCH.33+HULD,KGETZ,KRUSEBERSTSTEIN+ (ILL+ILLC)
	ATHERTON 73 PL 43 B 249 +FRANEK,FPENCH,GHIDINI,HILPERT,+ (CERN) CONFORTO 73 AIX CONF.PAPER +KEY.+ (TNTO+RHEL+8NL+LBL+ROCH+SLAC+WISC)
	BINNIE 74 PRL 32 392 +CAMILLERI,CARP,DEBENHAM,+ (LOIC+SHMP)
•	****** ******** ********* ******** *****
	35 H (990.JPG=4 -) I=0
	H(990) THE EVIDENCE OF BENSON 66 HAS DISAPPEARED AFTER
	RE-ANALYSIS ICHAUDHARY 70). NO SIGNIFICANT Other evidence has been published. Onitted from table.
	****** ******** ********* *************
	REFERENCES FOR H
	BAPTSCH 64 PL 11 167 AACHEN-ZEUTHEN-BIRM-BUNN-HAMB-MUNCHEN CULL GOLDHABE 65 CORAL GABLES P.76 G. GOLDHABER ILR.) BENERN 64 DDI 17 1234 +NAPOLIT.BOE.SINCLAIR.VANDER VELDE (MICHILIP
	COHN 67 NP B1 57 +MC CULLOCH, BUGG, CONDO (ORL +UNIV.TENN) ROSENFEL 67 RMP 39 1, APPENDIX ROSENFELD, BARBARO-GALTIERI+(LRL+CERN+YALE)
	ARMENISË 60 PL 266 336 +GHIDINI,FORINO+ (BARI+BGNA+FIRZ+ORSAY) BARBARO- 68 PHILAD.CONF.P.137 A.BARBARO-GALTIERI,P.SODING (LRL)
	FUNG 68 PRL 21 47 +JACKSON+PU+BROWN+GIDAL (U.C.RIVERS+LRL) GOLDHABE 69 LUND CONF.P.271 G.GOLDHABER QUOTED BY 8.MAGLIC (LRL)
	GORDON TO COD 1195 179 THESIS, ILLINOIS (ILL) HICHAEL 72 PRI 28 1475 W. MICHAEL G. GIDAL (ILL)
	****** ********* ********* ******** ****
	****** ******** ********* ******** *****
*	3 S* (993, JPG=0++) I=0
*	S'(993) WE ONLY LIST DETERMINATIONS OF POLE POSITION.
	LENGTH PARAMETRIZATION IN FITS TO THE (K KBAR) MASS Spectrum see Reference Section and Our 1972 Edition.
	Under this entry we list parameters of the s^* pole
	in the isoscalar S wave. [Possible evidence of
	D-wave $\pi\pi$ interactions in the S [*] region is listed
	separately under n (1080)]
	separatery under (N(1000)).

As noted under the entry ϵ ("S-wave $\pi\pi$ Interactions"), near the beginning of these Meson Data Card

Mesons $S^*(993), \phi(1019)$

Listings, the S^{*} is associated with a very rapid drop in the $\pi\pi$ S-wave elasticity. The inelastic channel responsible for this drop is $\pi\pi \rightarrow K\overline{K}$. Thus the $K\overline{K}$ isoscalar S-wave scattering length comes out very large, and the reason is the strong coupling of the $S^*(993)$ to the KK system.

							1
		3 REAL	PART OF	THE S* POL	E POSITION	(MEV)	
н	970.	30.	130.	HOANG	69 OSPK	4. PI-P,KS KS N	1/73
н Н	CALCULATED	BU. FROM SCATT	ERING LE	NGTH FIT O	F HOANG 69	5. PI-P,KS KS N	1773
IB IB	(965.) CALCULATED	FROM SCATT	ERING LE	BEUSCH NGTH FIT D	70 OSPK F BEUSCH 7	4,6 PI-P .	1/73
	(996.0)			BASDEVANT	72 RVUE	SHEET 2 T DIA D	1/73
s	987.	7.		BINNIE	73 CNTR	PI- P.S* N	1/74*
5	S-CHANNEL E	FFECTS.	-CRU551N	G TECHNIQU	E. PUSSIBL	Y IMPURIANT	
	1007.	20.		HYAMS	73 ASPK	O 17 PI-P.N PI+PI-	1/74*
AVG	993.2	4.4	AVERAG	E LERROR I	NCLUDES SC	ALE FACTOP OF 1.0)	
		3 NEGAT CORRESPON	IVE IMAG DS TO HA	. PART OF LF-WIDTH,	THE S* POL NOT FULL W	E POSITION (MEV) IDTH.	
н	40.	40.	60. 70-	HOANG	69 OSPK	4. PI-P.KS KS N 5. PI-P.KS KS N	1/73
в	(13.)	500		BEUSCH	70 DSPK	4.6 P1-P	1/73
P	27.	8.		PROTOPOPE	72 KVUE 73 HBC	7. PI+ P	1/74*
s S	ANDTHER SOLI	JTION HAS ! 7.	52 MEV A	ND NO EPSI BINNIE	TON POLE.	PI- P,S* N	1/74*
	15.	5.		HYAMS	73 ASPK	0 17 PI-P,N PI+PI-	1/74*
AVG	20.0	3.7	AVERAG	E (ERROR I	NCLUDES SC	ALE FACTOR OF 1.0)	6
**** *	******* **	****** **	******	*******	********	******** *******	
			REFEREN	CES FOR S*			a
ANG	61 JETP 13	323	WANG TS	U-TSENG.VE	KSLER, VRAN	A,+ (JINR)	
1GI Ingham	62 CERN CO 62 CERN CO	NF 247 NF 240	A BIGI.	S BRANDT. IGHAM.M BLC	K LAFRARA CH +	+ (CERN) (EPOL+CERN)	
RNIN ALTAY	62 PRL 9 3	4 ONF 1 409	ERWIN.H BALTAY.	OYER, MARCH	+WALKER + WA	NGLER [WISC+BNL]	
	64 DUBNA C	ONF 1 433	BARMIN	DOLGOLENKO	.YEROFEEV.	KRESTNI+ (ITEP)	
ESS S	66 PRL 17	1109	+DAHL+H	ARDY+KIRZ+	MILLER	(LRL)	
ARLOW	67 NC 504	701	+LILLES	TOL+MONTAN	ET+ (CERM	+CDEF+1RAD+LIVP)	
EUSCH AHL	67 PL 25 B	357 1377	+FISCHE +HARDY4	R,GOBBI,AS HESS+KIP7+	TBURY+ MILLER	(ETHZ+CERN) (LRL)	
ITTI	68 PRL 21	1705 CONE B 203	+BARNES	CRENNELL.	FLAMINIC,G	OLDBERG.+ (BNL)	
HELAN	68 THESIS	CUNF + P - 303	JAMES J	PHELAN	(41	L+ST.LOUIS UNIV)	
ALSC GUILAR-) 68 PRL 21 • 69 PL 29 B	316 241	HOANG, E M. AGUIL	ARTLY, PHEL AR-BENITEZ	AN, ROBERTS	+ (CERN+CDEF)	
AL SC AL SC) 67 BARLOW 1 69 NP B 14	195	N.AGUTI	AR-BENITE?		+ (CERN+COEE)	
DANG	69 NC 61 A	325	T.F.HOA	NG	BEDTS	(ANL)	i f
CANG	09 FK 104	1505	TEARTER			(ANE) TEECT	
ADIER ATON	70 NP 8 22 70 PL 33 8	512 528	+BONNET +LAUREN	S, REIGNIER	,BAUNILLIE	(SACLAY)	
FUSCH	70 PHILA.C	ONF.P.185	#.8EUSC +KOCH.E	H EUSCH++	(CERN+MPIN	(ETHZ+CERN) (+ETHZ+LOIC+HAWA)	
ALSO	70 NP B 22	189	HYANS	OCH , POTTER	VON LINDE	RN,+ (CERN+MPIM)	я я
LSTON-G	5 71 PL 36 B	152	AL STON-	GARNJOST, B	ARBARD-GAL	TIERI,+ (LBL)	9
ASDEVAN	1 72 PL 41 B	178	BASDEVA	NT + FROGGAT	T.PETERSE#	(CERN)	
AMERI UBOC	72 NC 9 A 72 NP 8 44	429	+80RZA1 +601.08F	TA, GOUSSU, RG, MAKOWSK	+	(GENO+MILA+SACL) (LPNP+LIVP)	F
ATTE	72 PL 38 B	232	+ALSTON	-GARNJOST	BARBARD-GA	LTIERI,+ (LBL)	- P
LLIAMS	72 PR 0 6	3178	P.K.WIL	LIAMS	- IN OLONAL	(FSU)	P
INNTE	73 PRL 31	1534	+CARR .C	EBENHAM, DU	ANE, GARBUT	T,+ (LOIC+SHMP)	P
LAMOND JJII	73 PR D 7 73 NC 13 A	1977 311	+BINKLE Y.FUJII	Y,+ ,M.KATO	IWISC+DUKE	+COLO+TNTO+OHIO) (TOKYO)	j P
AMS FOR	73 NP B 64	134 TS ON SAME	+JONES	WEILHAMMER	AVER 74	L++ (CERN+MPIM)	R
CHS	73 THESIS	1200	THESIS			(MPIM)	8
ILLET	73 PREPRI	1280 NŤ	+DAVID,	AYED, BAREY	RE.BORGEEA	WD++ (SACL)	
AYEP	74 CERN PR	EPRINT	+HYAMS,	JONES, BLUM	, DIETL	(CERN+MPIM)	
**** *	******** **	****** **	******	*******	********	********	
***** *	********	****** **	******	*******	*******	******** *******	
d (1	019)						R
714	/	4 PHI (1019,JP0	=1) I=0	r.		R
							8
		4 PHI M	ASS (MEV	1			R
	1019.0	2.0		SCHLEIN	63 HBC	2.0 K- P	Î Â
	1018.6	0.5		MILLER D	65 HBC 66 HBC	0.0 PBAR P 2.2 K-P	8/66 R
	1021.5	0.8		ABRAMS	67 HBC	4.2 K- P	11/67 R
	1021.0	4.0		DAHL	67 HBC	1-4 PI- P	9/66
1	1022.	1.5	0.35	MUSTEK HYAMS	68 USPK 70 OSPK	1+8 GAMMA + C 11- PI- P	6/68 R
	1021.0	1.5		ALVENSLE	71 CSPK 71 DBC	GAMMA+C 4.93 K- N	1/72 R
4	10(1019.9)	(0.3)		STOTTLENY	71 HBC	2.9 K-P.Y K KBAR	11/71 8
1	20 1019.6	0.4		AGUILAR	72 HBC	3.9.4.6 K- P	12/72 R

Data Card Listings For notation, see key at front of Listings.

PARTIAL DECAY MODE BRANCHING FRACTIONS

matrix below is derived from the error matrix for the fitted partial decay mode ing fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where $\langle \delta P_i \delta P_j \rangle$, while the off-diagonal elements are the normalized correlation coeffi- $(\delta P_i \delta P_i) / (\delta P_i \cdot \delta P_i)$. For the definitions of the individual P_i , see the listings only those P_i appearing in the matrix are assumed in the fit to be nonzero and constrained to add to 1.

P P P P 3 P 4 4659+-.0252 -.7434 .3458+-.0225 -.4493 -.1047 .1580+-.0155 -.1644 -.1976 -.1687 .0304+-.0107

			4 PHI 6	BRANCHING	RATIOS			•
R 1	PHI	INTO (K+	K-J/TOTAL				(P1)	
R1	6 27	(0.26)	(0.06)		BADIER	65 H8C		10/66
R1	252	0.48	0.04		LINDSEY	66 HBC	2.7 K-P	10/66
R1	c	(0.493)	(0.044)		BIZOT	70 OSP#	E+ E- COLL.BEAMS	11/71
R1	C SUPE	RSEDED BY	CHATELUS	71				11/71
R1		0.540	0.034		BALAKIN	71 OSP#	E+ E- COLL.BEAM	11/71
RI		0.486	0.044		CHATELUS	5 71 OSPM	E+ E- COLL.BEAMS	11/71
81								
R1	AVG	0.507	0.022	AVERAGE	ERROR (INCLUDES	SCALE FACTOR OF 1.0)	
R 1	FIT	0.466	0.025	FROM FIT	(ERROR	INCLUDES	SCALE FACTOR OF 1.6)	
R2	PHI	INTO (KL	K\$)/TOTAL				(P2)	
RZ	8 25	(0.23)	(0.06)		BADIER	65 HBC		10/66
R2	167	0.40	0.04		LINDSEY	66 HBC	2.7 K-P	10/66
R2		0.257	0.038		BALAKIN	71 OSPK	E+ E- COLL.BEAMS	. 1/73
R 2								
R2	AVG	0.325	0.071	AVERAGE	(ERROR	INCLUDES	SCALE FACTOR OF 2.6)	
R2	FIT	0.346	0.022	FROM FIT	(ERROP	INCLUDES	SCALE FACTOR OF 1.6)	
R3	PHI	INTO (PI+	PI- PIO	(INCL.RHC	PI))/TO	TAL	(P3)	
RЗ	30	0.12	0.08		LINDSEY	66 HBC	2.7 K-P	.10/66
R3								
R3	FIT	0.158	0.015	FROM FIT	(ERROR	INCLUDES	SCALE FACTOR OF 1.2)	
R5	PHI	INTO (KL	KS)/(K KB	AR }			(P2)/(P1+P2)	
R5	10	0.40	0.10		SCHLEIN	63 HBC	2.0 K-P	10/66
R 5	52	0.48	0.07		BADIER	65 HBC	3.0 K-P	11/67
85		0.44	0.07		LONDON	66 HBC	2.2 K-P	.10/66
R5								
85	AVG	0.448	0.044	AVERAGE	(ERROR	INCLUDES	SCALE FACTOR OF 1.0)	
95	FIT	0.426	0.027	FROM FIT	(ERROR	INCLUDES	SCALE FACTOR OF 1.7)	
• ·								
К6	PHI	INTO (PI+	PI- PI0	(INCL.RHC	PI))/(K	(KBAR)	(P3)/(P1+P2)	
NO.		0.30	0.15		LONDON	66 HBC	2.2 K-P	10/66
80	e 1 +	• • • • • • • • •	• • • • •					
RD	F11	0.145	0.023	FROM FIT	(ERROR	INCLUDES	SCALE FACTOR OF 1.2)	
07	047							
	PHI	1410 (21+	P1- P10	LINCE. KHU	P1337(K	LKSI	(P3)/(P2)	
24		(0.5)	UN LESS		BERLEY	65 HBC	2.9 PI+P	10/66
07		0.69	0.14		512011	TU USPK	E+ E- CULL.BEAM	1/11
87		0.41	0.08		COSME I	74 USPK	E+E- CULL.BEAMS	2/14#
07	AVC			AVEDACE	150000	11/21 110000		
27	FIT	0.004	0.054	EDOM ETT	(ERRUR	INCLUDES	SCALE FACTOR OF 1.41	
		0.437	0.056	FROM FLI	LEKKUK	INCLODES	SCALE FACTOR OF 1.27	
RA	PHT	INTO (PI+	PT-1/1K			101	(00)((0)+02)	
RB		(0.2)		NOART (SC		101 AA HAC	2 2 8-0	10/44
			CR EC33		LONDON	00 100	2.2 8-4	10/60
R9	PHI	INTO (E+	F-1/(K+ K	-) (UNITS	10**-41		(05)/(0))	
89	150	E ALSO BI	A1	,	10		(F3)/(F1/	
89	40	6.1	1.7		RECKER	AR CNTR	CANNA C	0/48
			•••		SCORER	OD CHIR	GARDA C	9/00
810	PHI	INTO (MU+	MU-)/TOT	AL CUNITS	10**-41		(26)	
R10		3.5	3.5	1.8	WEHMANN	68 DSPK	12 K- C	6768
R10		2.34	1.01		MOY	69 CNTR	PHOTOPROD.	11/70
R10		2.17	0.60		EARLES	70 CNTR	6-0 BREMSSTR.	11/70
R10		2.69	0.46		HAYES	71 CNTR	PHOTOPROD.	11/71
F10								
R10	AVG	2.50	0.34	AVERAGE	(ERROR	INCLUDES	SCALE FACTOR DF 1.01	

84

R11 R11 R11 R11 R11 R11 R11 R12 R12 R12 R13 R14 R15 R14	РНІ 27 25 37 РНІ РНІ РНІ	INTO (ETA GAHMA)/TOTAL (P4) (0.2) OR LESS BADIER 65 HBC 3.0 K-P 10/66 (0.08) OR LESS LINDSEY 66 HBC 2.7 K-P 10/66 0.017 0.019 BASILE 72 CNTR 1.8 PI-P 12/72 0.020 0.007 BENAKSASZ 72 OSPK E4E- COLLBEAMS. 2/73 0.032 0.015 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.3) 0.011 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.3) 0.030 0.011 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.3) 2.7 K-P 2/744 (0.04) OR LESS LINDSEY 65 HBC 2.7 K-P 2/744 INTO (ETA NEUTRALS)/(K KBAR) COSME 1 74 OSPK E4E- COLLBEAMS 2/744 INTO (ETA NEUTRALS)/(K KBAR) LINDSEY 66 HBC 2.7 K-P 10/66 INTO (OMEGA GAMMA) / TOTAL LINDSEY 66 HBC 2.7 K-P 10/66 INTO (RHO GAMMA) / TOTAL LINDSEY 66 HBC 2.7 K-P 10/66 INTO (RHO GAMMA) / TOTAL LINDSEY 66 HBC 2.7 K-P 10/66 INTO (RHO GAMMA) / TOTAL LINDSEY 66 HBC 2.7 K-P 10/66	R18 (50.) DR LESS CL=.95 BIZOT2 70 OSPK E+ E- COLL.BEAMS 11/71 R18 (80.) OR LESS CL=.95 BALAKIN 71 OSPK E+ E- COLL.BEAMS 11/71 R18 (2.71 OR LESS CL=.95 BALAKIN 71 OSPK E+ E- COLL.BEAMS 11/71 R19 PHI INTO (KL KS)/(K+ K-) (P2)/(P1) 172 DSPK R19 144 0.89 0.10 AGUILAR 72 HBC 3.9(4.6 K- P 12/72 R19 144 0.89 0.10 AGUILAR 72 HBC 3.9(4.6 K- P 12/72 R19 144 0.49 0.10 AGUILAR 72 HBC 3.9(4.6 K- P 12/72 R19 1.5 0.12 AVERAGE (ERROR INCLUDES SCALE FACTOP OF 1.4) R19 FT 0.742 0.083 FROM FTT (ERROR INCLUDES SCALE FACTOR OF 1.71 R20 PHI INTO (PI+ PI- PIO(INCL.RHO PI)/(K+ K-) (P3)/(P1) 3.9(4.6 K- P 12/72 R20 FIT 0.339 0.045 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.21 R21 R21 PHI INTO (2PI+ 2PI- PIO)/(K+ K-) 3.9(4.6 K- P .12/72 12/72 R21 0.021 OR LESS CL=0.95
R16 R16 A R16 A R16 R16 C R16 C R16 R16 R16 R16 R16 A V	G	INTO (E* E=/)/IOIAL (UNLIS (D****)) (195) E ALSO R9) (4.4) (2.8) ASTVACATU 68 OSPK 4 PI- P 6/68 R7.2 3.9 BINNIE 68 OSPK 1.6 PI- P 6/68 7.2 3.9 BINNIE 68 OSPK 1.6 PI- P 6/68 7.2 3.9 BINNIE 68 OSPK 1.6 PI- P 6/68 7.2 3.9 BINNIE 70 OSPK E+ E- COLL.BEAMS 1//11 2.6 0.57 BALKIN 71 OSPK E+ E- COLL.BEAMS 11//11 3.3 0.3 COSME 1 74 OSPK E+ E- COLL.BEAMS 2/744 3.19 0.21 AVERAGE (EROR INCLUDES SCALE FACTOR OF 1.4) (SEE IDEOGRAM BELOW) WEIGHTED RUERGEE = 3.19 ± 0.21 ERROR SCALED BY 1.4	BERTANZA 62 PRI 9 180 BERTANZA 64 PRI 530N.(LONKULLY, HARI'* (ENKL-STRAI) GELFAND 63 PRI 1 438 GELFAND 71LLER, NUSSAUM.(KIRSCH+ (COLU+RUTG)) GELFAND 63 PRI 10 368 SCHLEIN, SLATER, SMITH, STORK, TICHO (UCLA) BADIER 65 PL 17 337 BADIER, DEMCULIN, BARLOUTAUD+ (SACL+ZEEM) BADIER 65 PL 17 337 BADIER, DEMCULIN, BARLOUTAUD+ (SACL+ZEEM) BADIER 65 PRI 19 8 1097 D BENEY, N GELFAND GALTIERI 65 PRI 14 219 A BARBAY CALTERI, RD TRIPP (LRL) LINDSEY 65 PRI 15 221 JAMES S. LINDSEY, GERALD A SMITH (IRL) LINDSEY 65 DATA INCLUDED IN LINDSEY FOR BALD A SMITH (IRL) (IRL) MILLER 05 COLUMBIA GERALD A SMITH LINDSEY 65 DATA INCLUDED IN LINDSEY (FRALD A SMITH) (IRL) MILLER 05 COLUMBIA GERALD A SMITH GERAL 16 520 JAMES S. LINDSEY, GERALD A SMITH COLUMBIA GERAL A SMITH GRAY, L 66 PRL 17 501 +HAGERTY, BIZARRI, ICLAPETTI + (SYRA+RCMA)PG LINDSEY 66 PR 147 913 JAMES S. LINDSEY, GERALD A SMITH (LEL) LINDSEY 66 PR 147 913 JAMES S. LINDSEY, GERALD A SMITH (LEL) LINDSEY 66 PR 147 913 JAMES S. LINDSEY, GARDYE LINDSEY 66 PR 147 913 JAMES S. LINDSEY, GARDYE LINDSEY 16 66 DATA INCLUDED IN LINSEY 66 ABOVE
		CHIS9 • · <td>ABRAMS 67 MD TECH REP 720 GERALD ABRAMS THESIS (MARVLAND) BARLOW 67 NG 370 ILLLESTOL+MONTANET*I (CERN-CERADELIVP) CHASE 67 PR. 18 1377 ILLESTOL+MONTANET*I (CERN-CERNEASI) DAHL 67 PR. 18 1377 IHARDY+HESSX+RIZ-WILLER. (LRL) HERTZBAC 67 PR. 155 1461 HERTZBACH, KRAEMER, MADANSKI, ZDANISKI, JUHUBALI KHACHATURG'N, AZIMOV-BALDIN+EDUSOV+(DUBNA) ASTVACAT 06 PR. 21 1504 ASTVACATUROV, AZIMOV-BALDIN+EDUSOV+(DUBNA) ASSUX, SECKER, BERTAM, SINKLEY, JORDAN, KNASSEL+ (DESY+GOLUMAGIA) BINNIE 68 PR. 21 1504 +BERTAM, BINKLEY, JORDAN, KNASSEL+ (DESY+GOLUMAGIA) BINNIE 68 PR. 20 1057 +EIST 106 +DUANETARADICA, MACEXAR, MISTAN, HISTEY+ (LOCARTEL) BOLLIN 68 PR. 20 1037 +EISTARA, BINKLEY, JORDAN, KNASSEL+ (DESY+GOLUMAGIA) BOLLIN 68</td>	ABRAMS 67 MD TECH REP 720 GERALD ABRAMS THESIS (MARVLAND) BARLOW 67 NG 370 ILLLESTOL+MONTANET*I (CERN-CERADELIVP) CHASE 67 PR. 18 1377 ILLESTOL+MONTANET*I (CERN-CERNEASI) DAHL 67 PR. 18 1377 IHARDY+HESSX+RIZ-WILLER. (LRL) HERTZBAC 67 PR. 155 1461 HERTZBACH, KRAEMER, MADANSKI, ZDANISKI, JUHUBALI KHACHATURG'N, AZIMOV-BALDIN+EDUSOV+(DUBNA) ASTVACAT 06 PR. 21 1504 ASTVACATUROV, AZIMOV-BALDIN+EDUSOV+(DUBNA) ASSUX, SECKER, BERTAM, SINKLEY, JORDAN, KNASSEL+ (DESY+GOLUMAGIA) BINNIE 68 PR. 21 1504 +BERTAM, BINKLEY, JORDAN, KNASSEL+ (DESY+GOLUMAGIA) BINNIE 68 PR. 20 1057 +EIST 106 +DUANETARADICA, MACEXAR, MISTAN, HISTEY+ (LOCARTEL) BOLLIN 68 PR. 20 1037 +EISTARA, BINKLEY, JORDAN, KNASSEL+ (DESY+GOLUMAGIA) BOLLIN 68
*****************	16 150 111 122 100 13 100 VG	2 2 5 1U 14 =0.152) PHI INTO E+E- (UNITS 10#=-4) 4 PHI WIDTH (MEV) 3.5 1.0 NILLER D 65 HBC 0.0 PBAR P 8/66 6.0 4.0 LONDON 66 HBC 2.2 K-P 6/66 1.8 3.0 1.5 ABRAMS 67 HBC 4.2 K-P 6/66 1.8 3.0 1.5 ABRAMS 67 HBC 4.2 K-P 6/66 4.2 0.9 AUGUSTIN 69 OSPK E+E COLL.BEAMS 12/72 3.3 1.5 0.9 HYAMS 70 OSPK E+E COLL.BEAMS 12/72 3.3 1.5 0.9 HYAMS 70 OSPK E+E COLL.BEAMS 12/72 5.5 1.3 1.1 10BIANCA 71 DBC 4.93 K-N K KBAR 11/71 0.4.5 1.3 1.0 BOUTLAR 72 HBC 3.9.4.6 K-P 12/77 0.4.6 1.0 0.8 ADUTLAR 72 HBC 3.9.4.6 K-P 12/77 0.4.6 1.0 0.8 ADUTLAR 72 HBC	BIDD12 TO PRI 4 1073 TO ELCOURT, JEANJEAN, LALANNE, + (053AY) BIDD12 TO PRI 25 1312 TAISLER, GETTMEN, LUTZ, MOX, TAGL+ (NEASI) HYARS TO NP B 25 132 TAISLER, GETTMEN, LUTZ, MOX, TAGL+ (NEASI) ALVENSLE 71 PRL 27 441 ALVENSLEBEN, BECKER, BUS2A, CHEN+ + (NITHOESY) BALAKIN 71 PL 36 8 328 BUDKER, PAKHTUSOVA, SIODAOV, SKRINSKY, +(NOVO) DISIANCA 71 NP 8 35 13 HUNSCHLAG, FNODRF, ENGLER, FISK, + (CORN) CHATELUS 71 LAL 12471THESIS V. CHATELUS (STPASBOURG) (STPASBOURG) HAYES 71 PR 0 6 29 AGUILAR-BENITEZ, CHUNG, EISNER, SANIOS (BNL) (ARYLAND) ALVENSLE 72 PRI 28 66 ALVENSLEBEN, BECKER, BIGGS, BINKLEY+(HITHDESY) GALAKIN 72 PL 40 6 431 ALVENSLE 72 PRI 28 66 ALVENSLEBEN, BECKER, BIGGS, BINKLEY+(HITHDESY) GALAKIN 72 PL 40 6 431 BASILE 72 PRI 28 66 ALVENSLEBEN, BECKER, BIGGS, BINKLEY+(HITHDESY) GALAKIN 72 PL 40 8 431 BASILE 72 PRI 28 61 SOLPARKITUSOVA, FLORENTI, ZICHICHI+(CERN+BGRAN-STRB) BBNL) BASILE 72 NP 8 44 605 +DALPIAZ, FRABETTI, ZICHICHI+(CERN+BGRAN-STRB) BBNKAS3272 PL 42 8 511 +COSM, DALPIAZ, FRABETTI, ZICHICHI+(CERN+BGRAN-STRB) BALLAM 73 PR D 7 3150 +CHADWICK, EISENBERG, BINGHAM++ (SIACH-LBL) COSME 1
P1 P2 P3 P4 P5 P5 P5 P10 P11 P12 P12 P12 P14 R17 R17	РНИН РНИ РНИ РНИ РНИ РНИ РНИ РН РН	4 PHI PARTIAL DECAY MODES 4 PHI PARTIAL DECAY MODES 41 INTO K+ K- 493+ 493 41 INTO KL KS 497+ 497 41 INTO PI+ PI- PIO (INCLUDING RHO PI) 139+ 139+ 134 11 NITO E+ E- -5+ .5 11 INTO BUH MU- 105+ 105 11 INTO PIO GAMMA 134+ 0 11 NTO PIPI-GAMMA 139+ 139 11 NTO PIPI-GAMMA 139+ 139 11 NTO PIPI-GAMMA 134+ 0 11 NTO PIPI-GAMMA 139+ 139 11 NTO PIGGA GAMAA (VICLATES C) 782+ 134 11 NTO BEGA GAMAA (VICLATES C) 782+ 134 11 NTO TO GAMAA (VICLATES C) 770+ 0 11 NTO SPI 11 11 NTO SPI 11 NTO (PIO GAMMA)/(TOTAL) (P7) (.003510R LESS BENPORAD 69 CNTR 5.5 GAMMA N 7 (0.0025) (0.0012) BENAKSASZ 7Z 0SPK E+E- COLL. BEAMS 2/7	M(1033) 67 H1033) 67 H1033) EVIDENCE NOT COMPELLING.OMITTED FROM TABLE. 67 M1033) MASS (MEV) M N 240 1032.6 2.3 GAREINKEL 72 MMS' 0 2.4 FI- P.N MM 1/74* N NOT SEEN BY BINNIE 74 AT 2 GEV/C. 67 M(1033) MIDTH (MEV) M 240 16.2 67 M(1033) MIDTH (MEV) REFERENCES FOR M(1033)
P18 R18 R18	PF (HI INTO (PI+ PI−)/(TDTAL) (UNITS 10++−4) (P8) (SEE ALSO R8) (500-) DR LESS LINDSEY2 65 HBC 1-7−2-7 K−P -	GARFINKE 72 PRL 29 1477 GARFINKEL, HOFFMAN, JACOBEL, + (PURD-ANN, + TOWA) BINNIE 74 PRL 32 392 + CAMILLERI, CARF, DEBENMAN, + (LOIC+SMMP)

Mesons φ(1019), M(1033)

-

Mesons $B_1(1040), \eta_N(1080), A_1(1100)$

$\xrightarrow{B_1(1040)}_{\rightarrow\omega\pi}$	B1(1040) IG=1+ Dence not compelling. Omitted from table.
48 M S (1040.) M S SEEN IN DECAY C	B1(1040) MASS (MEV) DEFDIX 73 HBC +- 0.7 PBAR P,7 PI 1/74 F A2 INTO B1 PI. NOT SEEN BY DIAZ 74.
48	B1(1040) WIDTH (MEV)
W S (55.)	DEFOIX 73 HBC +- 0.7 PBAR P,7 PI 1/74
48	BI(1040) PARTIAL DECAY MODES
P1 81(1040) INTO OM	EGA PI DECAY MASSES 139+ 782
****** ******** ******	*** ******** ********** ******** ******
	REFERENCES FOR 81(1040)
DEFOIX 73 PL 43 8 141 DIAZ 74 PRL 32 260	+DOBRZYNSKI,ESPIGAT,NASCIMENTO,+ (CDEF) +DIBIANCA,FICKINGER,ANDERSON,+ (CASE+CARN)
***** ******** ******	*** ********* ********* ********* ******
$\eta_{\rm N}(1080)$ $\rightarrow \pi\pi$	ETA N (1080, JPG=N +) I=O J GREATER THAN 1 Some experiments suggest j=2. Omitted from table

Note on $\pi^{\dagger}\pi^{-}$ Peaks Called $\eta_{N}(1080)$

The $\eta_N(1080)$ is seen in $\pi^- p \rightarrow \pi^+ \pi^- n$ predominantly at backward decay angles, $\cos \theta < -0.75$. OH 70 state that this "bump is almost certainly the result of P-D interference."

Note that the selection made in some HBC experiments to reduce the background under the $\eta_N(1080)$ in the reaction $\pi^-p \rightarrow \pi^+\pi^-n$ may lead to a sample of events ambiguous with $\pi^-p \rightarrow p\pi^-\pi^0\pi^0$. This is so because selection on small momentum transfer to the $\pi^+\pi^-$ system, together with large $\pi^-n\sigma_{out}$ scattering angle, leads to rather high lab momenta of the π^+ , so that ionization cannot be used to discriminate between the two hypotheses (BATON 70, footnote, p. 525; and private communications from G. Laurens).

			30 ETA N	MASS (MEV)			
4		1060.0	15.0		MILLER 68	в нвс	4.0 PI- P	9/68
۹.		70 1085.0	10.0		WHITEHEAD 68	B ASPK	3.1-3.6 P1-P	10/61
		1120.0	100.0	40.0	OH 69	э нвс	7.PI- P+PI+ D	9/69
L .		1112.0	16.0		CLAYTON 70	э нвс	2.5 PBAR P,4 PI	1/7
L		(1080.0)			DIAZ 70	HBC	O. PBAR P. 4 PI	5/70
١.		1070.0	20.0		REYNOLDS 70) HBC	2.26-2.36 PI- P	1/71
	AVG	1083.3	9.8	AVERA	GE (ERROR INCL	UDES S	CALE FACTOR OF 1.4)	
_								
		(70.0)	30 ETA N	WEDTH	(MEV)			
		(70.0)	30 ETA N OR LESS	WIDTH	(MEV) MILLER 68	а нвс	4.0 PI- P	9/68
		(70.0) (25.0)	30 ETA N OR LESS OR LESS	WIDTH	(MEV) MILLER 68 WHITEHEAD 66	B HBC B ASPK	4.0 PI- P 3.1-3.6 PI-P	9/68
		(70.0) (25.0) 150.0	30 ETA N OR LESS OR LESS 100.0	WIDTH 40.0	(MEV) MILLER 68 WHITEHEAD 66 OH 65	В НВС В АЗРК Э НВС	4.0 PI- P 3.1-3.6 PI-P 7.PI- P.PI+ D 7.010 - 0.000	9/68 10/61 9/69
1		(70.0) (25.0) 150.0 (80.0)	30 ETA N OR LESS OR LESS 100.0	WIDTH 40.0	(MEV) MILLER 68 MHITEHEAD 66 OH 65 CLAYTON 70	В НВС В АЗРК 9 НВС 0 НВС	4.0 PI- P 3.1-3.6 PI-P 7.PI- P.PI+ D 2.5 PBAR P.4 PI	9/68 10/61 9/69 1/71
		(70.0) (25.0) 150.0 (80.0) (80.0)	30 ETA N OR LESS DR LESS 100.0	WIDTH 40.0	(MEV) MILLER 66 WHITEHEAD 66 OH 65 CLAYTON 70 DIAZ 70 REVMOLOS 70	3 НВС 3 АЗРК 3 НВС 0 НВС 0 НВС 0 НВС	4.0 PI- P 3.1-3.6 PI-P 7.PI- P.PI+ D 2.5 PBAR P.4 PI 0. PBAR P. 4 PI 2.2.3 PI- P	9/68 10/67 9/69 1/71 5/70
		(70.0) (25.0) 150.0 (80.0) (80.0) 85.0	30 ETA N OR LESS DR LESS 100.0 35.0	WIDTH 40+0	(MEV) MILLER 66 MHITEHEAD 66 OH 65 CLAYTON 70 DIAZ 70 REYNOLDS 70	3 HBC 3 ASPK 3 HBC 3 HBC 3 HBC 3 HBC 3 HBC	4.0 PI- P 3.1-3.6 PI-P 7.PI- P.PI+ D 2.5 PBAR P.4 PI 0. PBAR P.4 PI 2.26-2.36 PI- P	9/68 10/67 9/69 1/71 5/70 1/71
	AVG	(70.0) (25.0) 150.0 (80.0) (80.0) (80.0) 85.0	30 ETA N OR LESS DR LESS 100.0 35.0 	WIDTH 40.0	(MEV) MILLER 66 WHITEHEAD 66 OH 65 CLAYTON 70 DIAZ 77 REYNOLDS 70 GE (ERROR INCL	B HBC B ASPK B HBC D HBC D HBC D HBC UDES SI	4.0 PI- P 3.1-3.6 PI-P 7.PI- P.PI+ D 2.5 B&AR P.4 PI 0. PBAR P.4 PI 2.26-2.36 PI- CALE FACTOR OF 1.0	9/68 10/67 9/69 1/71 5/70 1/71
	AVG	(70.0) (25.0) 150.0 (80.0) (80.0) 85.0 	30 ETA N OR LESS DR LESS 100.0 35.0 	WIDTH 40+0 Averat	(MEV) MILLER 66 WHITEHEAD 66 OH 66 CLAYTON 77 CLAYTON 77 DIAZ 77 REYNOLDS 70 GE (ERROR INCL	B HBC B ASPK B HBC D HBC D HBC D HBC LUDES SI	4.0 PI- P 3.1-3.6 PI-P 7.PI- P.PI+ D 2.5 PBAR P.4 PI 0. PBAR P.4 4 PI 2.26-2.36 PI- P CALE FACTOR OF 1.0)	9/68 10/67 9/69 1/71 5/70 1/71

Data Card Listings For notation, see key at front of Listings.

$A_1(1$	1	00	D)		10	AI		00.	JP	3=1+	-) 1	= 1									
***** **	***	****	**	**	****	***	*** ***	***	*** ***	*** ***	****	** **	****	****	*** ***	***	***	****	** **	*** ***	**
1 AMOND	73	PR	D	7	1977			+BI	NKL	EY,+			(MIS	SC+0	UKI	e+co	DL O	FTNT	0+0	HIO	1
HITEHEA	72	NP	в	48	365			WHT	TEH	EAD,	AULD	• +		- (4	AER!	E+RI	IEL.	+SHM	P+L	ouc	ł
EVNOLDS	70	NP	в	21	77			+AL:	BRI	GHT 🖡	BRAD	LEY	• +		OH:	10+6	su.	+MIN	N+C	OLD)
TAZ	70	NP	в	16	239			+GA'	VIL	.67,	LABR	oss	E,MC	DN T/	NE:	Γ,+		(CER	N+C	DEF	١.
LAYTON	70	NP	в	22	85			+MA	SON	MUI	RHEA	D, P	1606	ועסי	.05	+		(LTV	P+A	TEN	١.
ATON	70	PL	33	в	528			+1.AI	UREI	NS+Z	EIGN	IER						(SAC	LAY)
н	69	PRL	. 2	3	331			+₩4	LKE	R.CA	RRDŁ	L,F	IREE	AUG	эн,	۶.		WIS	C+T	NTO)
HITEHEA	68	NC	53		817			C . WI	41 T I	EHEA	D +					(45	RE	+ SHM	P+L	010	1
ILLER	68	PRI	. 2	1	L 489			+GU	TAY	, JOH	NSON	,KE	NNEY	+	0	PURE	νE	+NDA	M+S	LAC	1
								REFI	ERE	ICES	FOR	ΕT	AN								

The $A_1 \rightarrow \rho \pi$ bump has been mainly observed in the diffraction-like process $\pi N \rightarrow (\pi \pi \pi)N$ without quantum number exchange and at small momentum transfer. There are also observations of structure in the A_1 mass region in reactions with production of additional mesons, in backward production from pions, and in pp annihilations (see Data Card Listings).

The dominant effect in the A₄ mass region is a broad $J^{P}=1^{+}\rho\pi$ S-wave enhancement starting from $\rho\pi$ threshold; it has a maximum at \sim 1100 MeV and a width of the order of 300 MeV. In partial-wave analyses of the three-pion system (ASCOLI 72, ANTIPOV1 73), one finds very little phase variation of the $J^{P} = 1^{+} (\ell = 0) \rho \pi$ amplitude relative to various other ("background") amplitudes. Though not completely model-independent, these results suggest that at most a small part of the A_1 enhancement corresponds to a $J^P = 1^+$ resonance. In fact ASCOLI1 73 show that the observed behavior of the partial waves of the $\pi\pi\pi$ system is qualitatively reproduced by a Reggeized pion exchange model (so-called Deck model). Complete solution of the A₄ problem will probably come from partial-wave analyses of the 3π system from non-diffractive reactions.

	1	O A1 MASS (MEV)					
PRODUCED	8Y P1 +						
(1)	080.01		ADERHOLZ	64	HBC	4.0 PI+P	
t i	080.) A	PPROX.	BOESEBECK	68	HBC +	8 P1+ P	6/68
(1	040.0)		ARMENISE	70	нвс с	9 PI+ N A1 P	1/71
PRODUCED	8Y PI -						
(1)	060.1		ASCOLI	68	HBC -C) 5 PI-P	6/68
(1)	089.01	(12.0)	BALLAM	68	нвс -	16.0 PI- P	9/68
(1)	090.) A	PPROX.	CHUNG	68	нвс –	3.2.4.2 PI-P	2767
(1	055.01	(6.0)	JUNKMANN	68	нвс -	16. PI- P, 5PI	9/69
S (1	119.1	(30.)	KEY	68	нвс –	3 PI-P	9/68
S SI	HOULDER O	N A2 ONLY					
(1)	069.01	(7.0)	CASO	70	нвс –	11.2PI-P	5/70
(1	120.01		CRENNELL	70	нас –	6. PI- P,F PI	5/70
τ (1	150.)		ANTIPOV1	73	CNTR -	25.,40. PI- P	1/74
T MASS	AND WIDT	H SEEN TO DEPEND	ON T, UNIO	IUE	DET. IMP	POSSIBLE	1/74
PRODUCED	BY PIUNS	BACKWARDS SCATT.					
	115.01	(20.0)	ANDERSON	59	MMS -	16 PI- P,BALKWY	8/69
(1	046.1	(10.)	BOHL	11	ныс -	2.5 PI- P	14/71
PRODUCED	BY PBARS	. SEE TYPED NOTE.					
(1	054.)	(7.)	DANYSZ	67	HBC '+-	3.3.6 PBAR P .	7/67
(1	042.1	(21.)	FRIDMAN	68	HBC +-	5.7 PBAR P	6/68
A (1	076.1	(5.)	ATHERTON	73	HBC +-	5.7 PBAR P	1/74
A JP A	NALYSIS G	IVES SOME EVIDENC	E FOR RHO	PI	D-WAVE		1/73
PRODUCED	BY K-, S	EE TYPED NOTE.					
(1	111.)	(10.)	ALLISON	67	HBC +	6 K-P,LAM +5 PI	1/68
(1	117.)	(30.)	ALLISON	67	HBC +	6 K-P,LAM +4 PI	1/68
(1	060.)	(15.)	JUHALA	67	нвс () 4.6-5 K-P.5BODY	1/68
-							
PRODUCED	BT K+, 5	LE ITPED NOTE.					~ / / ~
	000.01	(20.0)	ALEXANDER	27		9 NTP	3/69
NT (1	050.07	120.01	DEKLINGHI	07	TYDED NO	1 12.1 NT P	9/69
K+ FOR C	UNIKADICT	URY EVIDENCE SEE	KA81N 70 A	IND	ITPED NO	116.	
<u>.</u>							
• •	VERAGING	NUI MEANINGPUL					

WI OF BUILD REAL OF BUILD

10 A1 WIDTH (MEV)

	•• •• ••	0.00 (0.00)		
W PROD	UCED BY PIONS, RESONA	NCE INTERP. CONFU	SED BY DECK EFFECT	
W PROD W W W F W F W W	UCED BY PI + (80.0) {130.1 APPROX. (50.0) OR LESS (300.1 APPROX. FOR JP=1+ (RHO PI)	ADERHOLZ BOESEBEC ARMENISE RINAUDO STATE	64 HBC 4.0 PT+P K 68 HBC + 8 PT+P 6/6 70 HBC 0 9 PT+N 41 P 1/7 71 HBC + 5. PT+P,P (3PT)+ 1/7 11/7	58 71 71
W PROD W W W K W K	UCED BY PI - [140.0] (31.3) (125.) APPROX. (77.0] (17.0] (76.] (46.) SHOULDER ON A2 ONL	BALLAM Chung Junkmann Key Y	68 HBC - 16.0 PI- P 9/6 68 HBC - 3.2.4.2 PI-P 2/6 68 HBC - 16. PI- P, 5PI 9/6 68 HBC - 3.0 PI- P 11/6	58 57 59 57
н н т н т н	(99.0) (15.0) (300.) MASS AND WIDTH SEEN T	CASD ANTIPOVI O CEPEND ON T, UN	70 HBC - 11.2PI-P 5/7 73 CNTR - 25.,40. PI- P 1/7 IQUE DET. IMPOSSIBLE 1/7	'0 '4* '4*
W PROD W W	UCED BY PIONS,BACKWAR (98.0) (45.0)	DS SCATT. (20.0) ANDERSON	69 MMS - 16 PI- P+BACKW9 8/6	9
W PRDD W W A W A W A	UCED RY PBARS, SEE TY (33.) (19.) (130.) APPROX. (36.) (20.) JP ANALYSIS GIVES SOM	PED NOTE. DANYSZ Fridman {15.} Atherton E Evidence for RH	67 HBC +- 3,3.6 PBAR P 7/6 68 HBC +- 5.7 PBAR P 6/6 73 HBC +- 5.7 PBAR P 1/7 0 PI O-WAVE 1/7	,7 ,8 ,4* 73
W PROD W W W	UCED BY K-, SEE TYPED (50.) (50.) (50.) (25.) (120.) (15.)	ALLISON ALLISON ALLISON JUHALA	67 HBC + 6 K-P,LAM +4 PI 1/6 67 HBC + 6 K-P,LAM +5 PI 1/6 67 HBC 0 4.6-5 K-P,5800Y 1/6	8 8 8 8
W PROD W B W K+FI W A	UCED BY K+, SEE TYPED (160.0) (20.0) (120.0) (30.0) OR CONTRADICTORY EVID (130.0) (20.0)	ALEXANDE BERLINGH ENCE SEE RABIN 70 BERLINGH	R 69 HBC + 9 K+P 9/6 I 69 HBC 12.7 K+ P 8/6 AND TYPED NOTE. I 69 HBC + 0 12.7 K+ P 9/6	,9 ,9 ,9
W A	AVERAGING NOT MEAN	INGFUL	A	
P1 A P2 A P3 A P4 A	10 A1 PA 1 INTO RHO PI 1 INTO KBAR K 1 INTO ETA PRIME PI 1 INTO ETA PRIME PI	RTIAL DECAY MODES	DECAY MASSES 770+ 139 493+ 497 548+ 139 9474 139	
P5 A	1 INTO 3 PI		139+ 139+ 139	
	10 A1 BR	ANCHING RATIOS		
R1 ▲	1 INTO (KBAR K)/(RHO (0.0025)OR LESS	PI) DAHL	(P2)/(P1) 67 HBC - 4.0 PI- P .10/6	6
*****	******* ********	******* ********	********* ********* ********	
RELINT	63 NC 29 896	REFERENCES FOR A	1	
ADERHOLZ GOLDHABE LANDER	64 PL 10 226 64 PRL 12 336 64 PRL 13 346 A	AACH+BERL+BIRM+BO GOLDHABER, BROWN, I LANDER, ABOLINS, C	ONN+DESY+HANBURG+LOIC+MPIN KADYK,SHEN+ (LRL+UCB) ARMONY,HENORICKS + (UCSD) JP	
ABOLINS ALITTI	65 ATHENS(OHIO)CONF. 65 PL 15 69	+CARMONY+LANDER+	XUONG,YAGER (LA JOLLA)I=1 ER,CRUSSARD+ (SACL+BGNA)	
ALLARD DEUTSCHM HESS	66 NC 464 737 66 PL 20 82 66 UCRL-16832	+DRIJARD+HENNESS DEUTSCHMANN,STEI R I HESS (THESIS	Y+ (ORSAY+MILAN+SACL+UCB) NBERG + (AACH+BERLIN+CERN) • BERKELEY) (LRL}	
ALLISON DAHL DANYSZ JUHALA SLATTERY	67 PL 258 619 67 PR 163 1377 67 NC 51 4 801 67 PRL 19 1355 67 NC 50A 377	+CRUZ+ (OX +HARDY+HESS+KIRZ- DANYSZ+FRENCH+SI +LEACOCK+RHODE+KI +KRAYBILL+FORMAN	F+MPTM+BIRM+RHEL+GLAS+LOIC) +MILLER (LRL) MAK (CERN) DPELMAN+ (IOWA+COLD) +FERBEL (YALE+ROCH) JP	
ARMENISE ASCOLI BALLAM BOESEBEC CASO CHUNG CHUNG CNOPS FRIDMAN JUNKMANN KEY	68 PL 26 B 336 68 PRL 21 113 68 PRL 21 934 68 PR 4 501 68 PC 54 4 983 68 PR 165 1491 68 PR 167 1268 68 PR 167 1268 68 PR 8 471 68 PR 166 1430	+FORIND+CARTACCI +CRAWLEY,KRUSE,MI +BPDDY,CHADWICK,H BOESSBECK,DEUTSCI +CONTE+COROS+DIA S.U.CHUNG,O.CAHL +HOUGH,COHN,BUGG +MAURER,MICHALON +COCCONI+ +PRENTICE+COOPER	 + (BAR 1+8GNA+FIRZ+ORSAY) DRTARA,SCHAFER,+ (1LLINOIS) PRIES,GUTRGOSSIAN- (SLAC)JP HMANN,+(AACHEN+BERLIN+CERN) Z+ (GENOYAHABG+HILAFSACL) J-KIRZ,D-H-HILLER (LRL) + (BNL-GNR-HUCHON+DENN) OUDET+ (HEID-STRASGOURG) (AACH-BERL+GONH-CERN+BARS) +MANNER+ (TNTD+ANL+WISC) 	
 ALEXANDE ALLABY ANDERSON BERLINGH DONALD FAYOLLE JUHALA KENYON	69 PR 183 1168 69 PL 298 198 69 PRL 22 1390 69 PRL 22 42 69 NP B 11 551 69 NP B 13 40 69 PR 184 1461 69 PRL 23 146	G.ALEXANDER,A.FIT +BINON+DIDDENS+DU +COLLINS,+ BERLINGHIERI,FAR +DEWARDS,BURAN,BU +DE MONTAIGNAC,MC +LEACOCK,RHODE,KC +KINSON,SCARR,+	RESTONE.G.GOLDMABER (LRL) UTEIL+KLOVNING+ (CERN) BRN,+ (ARN) BER,+ (ROCH) ETINI,+ (LIV+OSLOLPADO) DRAND,STRACHMAN+ (PARIS) DPELMAN,LIBBY,+ (ISU+COLD) (BNL+UCN0+DRNL)	
ARMENISE BRANDENB CASO	70 LNC 4 199 70 NP 816 369 70 LNC 3 707	+GHIDINI,FORING,(+BRENNER,IDFFRED(+CORDS,COSTA+	CARTACCI,+ (BARI+BGNA+FIRZ) 3.JOHNSON,KIM+ (HARVARD) (GENO+DESY+HAMB+MILA+SACL)	
ALSO CRENNELL CHIEN1 CHIEN2 GARELICK RABIN SHIH	CASU 70 PRL 24 781 70 TOPONTO PREPRINT 70 JHU 7011 70 PHILAD.CONF.P.205 70 PRL 24 925 70 BNL 14059-REV	+KARSHON,LAI,SCAF +CHAO,JOHNSTON,PF C.Y.CHIEN D.A.GARELICK,REV1 +GALTIERI,DERENZC +YOUNG	RR,SIMS (BNL) RENTICE,WALKER (TNTO+WISC) (JOHNS HOPKINS) IEW (NORTHEASTERN) J,FLATTE,FRIEDMAN+ (LRL) (BNL)	
 ASCOLI BEMPORAD BERGER BUHL AMSA RINAUDO	71 PRL 26 929 71 NP 8 33 397 71 PHENOMENOLOGY IN 71 PREPRINT 71 PREPRINT 71 NC 5 A 239	ILLINDIS+GEND+HAM +BEUSCH,MELISSING PARTICLE PHYSICS, +CLINE,TERREL +EZELL,GAIDOS,WIL +BDECKMANN,MAJDR+	NB+MIL+SACL+HARV+TNTO+WISC DS.+ (CERN+ETHZ+LOIC+MILA) , CALTECH 1971 (IRL) (VISCONSIN) JP +TORI+BONN+DURH+HIJM+EPOL) JP	

A₁(1100), M(1150), A_{1.5}(1170), B(1235)

Mesons

BERENYI 72 NP 8 37 621 BLOODWOR 72 NP 8 46 402 DIEBOLD 72 BATAV-CONF- LAMSA 72 NP 8 41 388 MORSE 72 NP 8 43 77	+PRENTICE,STEENBERG,YCON,WALKER (TNTO+WISC) BLOODWORTH,JACKSON,PRENTICE,YOON (TCRONTO) R.OIEBOLO RAPPORTEUR TALK (ANL) +EZELL,GAIDOS,WILLMANN (PUROUE) +OH,WALKER,JOHNSTON,YOON (WISC+TNTO)	
ANTIPOVI 73 NP 8 63 153 ANTIPOVZ 73 NP 8 63 141 ARNOLD 73 NC 17 A 393 ASCOLI 1 73 PR 131 795 ASCOLI 1 73 PR 131 795 ASCOLI 2 73 PR 0 8 3894 ATHEPTON 73 PL 43 8 249 RFAD 73 NP 8 64 511	*ASCOLI,BUSNELLO,FOCACCI,+ (CERN+SERP) JP +ASCOLI,BUSNELLO,FOCACCI,+ (CERN+SERP) JP +ENGEL,ESCOUBES,GEMESY,JANDSSY,+(STRB+BUDA) +CHAPIN,CUTLER,HOLLOWAY,KOESTER,KRUSE+IILL) +JONES,WEINSTEIN,WYLD IILL +FRAMEK,FRENCH,GHIDINI,HILPEPT,+ (CEPN) BJ,JREAD (DESY)	
****** ********* ********* ******** ****		
14(1150)		
	1150)	
EVIDEN	CE NOT COMPELLING.OMITTED FROM TABLE.	
68 M(11	50) MASS (MEV)	
M 65 1148.3 3.3	JACOBEL 72 MMS 0 2.4 PI- P+N MM 12/72	
68 M(11	.50) WIDTH (MEV)	
W 65 15.0 9.0 11.7 JACOBEL 72 MMS 0 2.4 PI- P.N MM 12/72		
****** ******** ******** ******** ******		
JACOBEL 72 PRL 29 671	+GARFINKEL.HOFFMAN.+ (IOWA+PUPD+ANL)	
***** ******** *********	******** ********** ********* *********	
$A_{4,r}(1170)$		
$\rightarrow 3\pi$	1.5 (1170, JPG= -) I=1	
	CONTECEANCE IN THE 3 PL SYSTEM BETWEEN THE AL AND 2. OMITTED FROM TABLE.	
****** ******** *********	******** *****************************	
BUTTERWO 67 HEIDELB.CONF.P.2	REFERENCES FUR A 1.5 B REVIEW TALK ON MESONS AT HEIDELBERG CONF.	
CASON 67 PRL 18 880 ASCOLI 68 PRL 21 113 DONALD 68 PI 26 B 327	+LAMSA, BISWAS, DERADO, GROVES, + INOTREDAME] +CRAWLEY, KRUSE, MORTARA, SCHAFER, + (ILLINOIS) +EPODESEN, BETTINT, + ILLINGEN, COLORIDA	
VON KROG 68 PL 278 253 JUNKMANN 68 NP 88 471	+MIYASHITA,KOPELMAN,MARSHALL LIBBY (COLD) +COCCONI+ (AACH+BERL+BONN+CERN+WARS)	
GALLOWAY 70 PR D 1 3077 MORSE 72 NP B 43 77	+GHIDINI,FORINO,CARTACCI+ (BARI+BGNA+FIRZ) +MOTT,ALYEA,LEE,MARTIN,PRICKETT (INO) +OH,WALKER,JOHNSTON,YCON (WISC+TNID)	
****** ********************************		
B(1235)		
	235+JPG=1++) I=1	
FOR A POSSIBLE JPEI- STATE IN THIS MASS REGION SEE ENTRY RHO PRIME(1250).		
11 B MAS	55 (MEV)	
M 60(1220.0) M (1220.0)	ABOLINS 63 HBC + 3.5 PI+P GOLDHAREP 65 HBC 3.7 PI+ 01-D	
M 376 1200. 20. M 25(1250.) ESTIMATED	BALTAY 67 HBC +− 0.0 PBAR P 2/67 LEE 67 HBC − 3.6 PI− ⊅ 1/68	
M 1220. 20. M B 300(1245.) (10.)	BUESEBECK 68 HBC + 8.0 PI+ P 10/67 CHUNG 68 HBC - 3.2,4.2 PI- P 9/67 BIZZARRI 69 HBC +- 0 PBAR P 12/72	
M B SUPERSEDED BY FRENKIE M 1240.0 20.0 M C (1265.0) (19.0)	L 72 ANDERSON 70 CNTR 0 5-18 GAMMA P 11/70	
M C SUPERSEDED BY AFZAL 7 M (1272.0) (15.0)	3 CASON 70 HBC - 8.0 PI-P,4PI	
M 1225.0 (10.0) M 1225.0 22.0 M 1236.0 15.0	EROFEEV 70 HBC ~ 3.25 PI- P 1/71 HONES 70 HBC + 18.5 PI+ P 11/70 HONELAD 70 DBC - 3.0 K- D 2/71	
M 1200.0 15.0 M P (1230.) (10.) M P HANDORAHN BACKCROUND	HIYASHITA 70 HBC - 6.7 PI-P,4PI POLS 70 HBC + 5. PI+ P 11/71	
M V {1228.) (5.) M W FIT REQUIRES AN ADDIT	FRENKIEL 72 HBC +- 0. PBAR PI,5 PI 12/72 IONAL JP=1- RESONANCE	
M W AT 1256 MEV, WIDTH 12 M O 1163 1243. 6. M O FROM FIT OF THE MASS	9 MEV. OTT 72 MBC + 7+1 PI+ P,P B+ 2/73 SPECTRUM	
M A (1252.) (6.) M A FROM FIT OF MASS SPEC	OTT 72 HBC + 7.1 PI+ P.P B+ 2/73 TRUM AND MOMENTS DISTRIBUTION WITH A STRONG	
M 1235. 15. M 1268. 16.	DALKUKUUND. AFZAL 73 HBC + 11.7 PI+ P 2/73 AFZAL 73 HBC - 11.2 P1- P 2/73	
M AVG 1236.8 5.6 (SEE I	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) DEOGRAM BELOW)	

Mesons B(1235), ρ'(1250), f(1270)

Data Card Listings For notation, see key at front of Listings.

WEIGHTED AVERAGE = 1236.8 ± 5.6	REFERENCES FOR 8
ERROR SCALED BY 1.3	ABOLINS 63 PRL 11 301 ABOLINS,LANDER,MEHLHDP,XUONG,YAGER (USD) BCNDAR 63 PL 5 209 BONDAR,DODD+ LAGHEN+61RM+HAM6+LDIC+MPINI ADERHOLZ 64 PL 10 240 AACHEN+6ERLINEBIRM + BONN+HABURFLDIC+MPINI CARMONY 64 PRL 12 254 CARMONY,LANDER,RINDFLEISCH,XUONG,YAGER (UCB JP GOLDHABE 65 PRL 12 118 GOLDHABER,S GOLDHABER,KADK,SHEN (LRL)
	BALTAY 67 PRL 18 93 +SEVERIENS+YEH+ZANELLO (COLU+BNL) DAHL 67 PR 163 1377 +MARDY+HESS+KIRZ+HILLEP (LRL) LEE 67 PR 159 1156 +MOEBS,ROE,SINCLAIR,VANDERVELDE (MICH) SLATTERY 67 NC 50A 377 +KRAYBILL+FORMAN+FERBEL (YALE+ROCH)
CHISO CHISO	ASCOLI 68 PRL 20 1411 +CRAWLEY, MORTARA, SHAPIRO (ILL) JP B0ESEBECC 68 NC 94 501 B0ESEBECX, DEUTSCHMANN, +(AACHEN+BERLIN+CERN) CASD 68 NC 94 983 +CONTE+CCR05+0124' (GEN0VA+HAMB+HILA*SACL) CHUNG 68 PR 165 1491 SJUCCHUNG, O.DAHL, J.KTRZ, D.H.MILER (IRL) B1ZZARR'6 9 NB 14 169 +FOSTER4, SAVILET, MONTIANET, + (CERN+CDEF)
	ANDERSON 70 PR D 1 27 +GUSTAVSDN,JOHNSON,+ (SLAC+CIT+UCSB+NEAS) CASO 70 LNC 3 707 +CONTE,TOMASINI,CRDS+(GENO+HAMB+HILA+SACL) CASON 70 PR D 1 851 +ANDREWSBISINAS,GONE+HARSINGTON,+ (NDAH) EROFFEV 70 SNP 11 450 +VFTLITSKY,KLADIMIESKY,GRIGOREY,+ (NDAH) HONES 70 PR D 1 851 +NDREWSBISINAS,GONEN,KY,GRIGOREY,+ (NDAH) HONES 70 PR D 2 827 +CASON,BISWAS,HELLAND,KENNEY,MCAGHAN+(NDAH) HOOGLAND 70 PL 33 B 631 SABRE COLLABOR, 12EFM+SACL+BCMA+REHOFENL) HVSHITAVON KRCGH,MON,KENNEY,MCAGHAN+(NDAH) HOVES 70 NP B 25 109 +NDREKMANN,CIRRA,+ (BONN+DURH-EPOL-IORI) POLS 70 NP B 25 109 +KOECKMANN,CIRRA,+ (BONN+DURH-EPOL-IORI) POLS 70 NP B 27 1614 +KOZLOWSKI,HORWITZ,+ (COLU+SYRA)
1150 1200 1250 1300 1350 (COMLEU B MSSS (MEU)	FRENKIEL 72 NP 8 47 61 +GHESQUITERE_ILLESTOL.CHUNG.+ (COEF-ECENN.JP OTT 72 LBL-1547 R-LOTT THESIS (LBL)P SISTERSO 72 NP 8 48 493 SISTERSON.HARRISON.HEYDA.JOHNSON.+(HARVARD)
11 B WIDTH (MEV) W 60 100.0 20.0 ABOLINS 63 HBC + 3.5 PI+P W 680.01 GOLDHABER 65 HBC 3.7 PI+.PI-P W 376 100. 30. BALTAY 67 HBC + 0.0 PBAR P 2/67 W 25 (100.) ESTIMATED LEE 67 HBC - 0.6 PI-P 1/68	AF2AL 73 NCL 15 A 61 +BASSLER,+ (DURH+GEND+DESY+HILA-SACL) JP APMENISE 73 NC 17 A 707 +FORINO,CARTACCI,+ (BARI+BGNA+FIRZ) ARMENISE 73 LNC 6 425 +FORINO,CARTACCI,+ (BARI+BGNA+FIRZ) ARNOLD 73 LNC 6 707 +ENGEL,ESCOUBES,KURTZ,LLORET,PATY,+ (STRB) CASON 73 PR 0 7 1971 +EISVAS,KENNEY,MADDEN,SINDER,SINEPHARD(NDAM) CASON 1 73 PL 47 B 526 +PROTOPOPESCU,LYNCH,FLATE,+ (NDAM) CHUNG 73 PL 47 B 526 +FROBEL,SLATTERY (ROCHESTER) CHALOUPK 74 PL CHALOUPKA,FERRANDO,ALITTI,+ (CERN+SACL) JP
W 203. 75. BCESEBECK 68 HBC + 6. PI+ P 11/67 W 150. 20. CHUNG 68 HBC - 3.2/4.2 PI- P 9/67 W 8.00 (83.) (12.) BT77ABPT 69 HBC + 0. PBAB P 2/72	****** ********* ********* ************
W B SUPERSEDED By FRENKIEL T2 ANDERSON D CNTR 0 5.00 AMMA P 11/70 W (100.0) APPROX. ANDERSON 70 CNTR 0 5.18+GAMMA P 11/70 W C SUPERSEDED BY AFZAL 73 C 5.0 PI-P+4PI W 100.0 20.0 CASON 70 HBC - 3.25 PI-P 1/71 W 100.0 20.0 EROFEEV 70 HBC - 3.25 PI-P 1/71 W 132.0 20.0 HDOGLAND 70 DBC - 3.0 K-O 2/71 W 132.0 20.0 MUSCHITA 70 HBC - 3.0 K-O 2/71	ρ'(1250) EVIDENCE NOT COMPELLING. OWITTED FROM TABLE. FOR A REVIEW THROUGH 1972, SEE BRAMON T3
W P {120.} [20.] POLS 70 HBC + 5. PI+ P 11/71 W P HANDDRAWN BACKGROUND.ERRORS STATISTICAL ONLY. 11/71 W [126.] (10.) FEFNKIFI 72 HBC +- 0. PRAR PI.5 PI 12/72	69 PHC PRIME(1250) MASS (MEV)
W W SEE NOTE UNDER THE MASS ABOVE. W 0 1163 134. 23. 26. 0TT 72 HBC + 7.1 PI+ P.P 8+ 2/73	M 1256. 10. FRENKIEL 72 HBC +- 0.PBARP, OMEGA2PI 1/74*
W A (156.) (21.) (18.) OTT 72 HBC + 7.1 PI+ P.P B+ 2/73 W A SEE NOTE UNDER THE MASS ABOVE.	69 RHC PRIME(1250) WIDTH (MEV)
W 120. 50. AFZAL 73 HBC + 11.7 P1+ P 2/73 W 130. 50. AFZAL 73 HBC - 11.2 PT- P 2/73 W	W 130. 20. FRENKIEL 72 HBC 0.PBARP.DNEGA2PI 1/74*
W AVG 118.3 8.1 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	REFERENCES FOR RHO PRIME(1250)
11 B PARTIAL DECAY MODES	ANDERSON 70 PR D 1 27 +GUSTAVSON, JOHNSON, + (SLAC+CIT+UCSB+NEAS) PODDLSKY 71 UCRL 20128 W.J.PODDLSKY, PH.O. THESIS (LBL)
DECAY MASSES P1 8 INTO OMEGA+P1 782+ 139 P2 8 INTO 2014 201- 139+ 130	FRENXIEL 72 NP B 47 61 +GHESQUIERE,LILLESTOL,CHUNG,+ (CDEF+CERN)JP WOLF 72 ITHACA N-Y. CONF. G.WOLF,P.213 (CDEF+CERN)JP BALLAM 73 SLAC-PUB-1364 +CHADWICK,BINGHAM,FRETTER,+ (SLAC+LBL+MPIM)
P3 5 INTO K KABA ⁺ 493-493 P4 5 INTO P1 P1 139 P5 5 INTO P1 PH 139 P5 5 INTO P1 PH 134+1019 P6 5 INTO F1 PH 546-139 P7 5 INTO K KBAR P1 493+139	BRAMON 73 LNC 8 659 A.BRAMON (FRASCATI)
	f(1270) 5 F (1270, JPG=2++) 1=0
PIO D/S RATIO FOR B(1235) INTO OMEGA PI	WE AVERAGE ONLY THE MOST SIGNIFICANT 1/73 DETERMINATIONS OF MASS AND WIDTH. 1/73
RIO 0.21 0.07 CHUNG 73 HBC + 7.1 PI+P 1/74* PIO 0.3 0.1 CHALOUPKA 74 HBC - 3.9-7.5 PI-P 1/74*	
RIO AVG 0.240 0.057 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	5 F MASS (MEV) M (1250-0) (25-0) SELOVE 62 HAC 3-0 PT- P 1/73
R1 B INTO (4PII/(OMEGA PIF (P21/(PI) R1 (0.5) OR LESS ABOLINS 63 HBC + 3.5 PI+P	M 1416(1267.0) (10.0) JACOBS 66 HBC 2-3 PI-P,T CUT20 10/67 M 1276. 11. RABIN 67 HBC 8.5 PI-P 9/67 M 1276. 11. RABIN 67 HBC 8.5 PI-P 9/67 M 1276. 11. RABIN 67 HBC 8.5 PI-P 9/67
R2 B INTO (K KBAR)/(OMEGA 91) (P3)/(P1) R2 (0.02) OR LESS DAHL 67 HBC - 1.6-4.2 P1- P 10/66 R2 (0.10) OR LESS CL=.90 BALTAY 67 HBC +- 0.0 PBAR P 2/67 R2 (0.08) OR LESS CL=.95 B1ZZARRI 69 HBC +- 0 PBAR P 9/69	M T 360 1270. 10. ARMENISE 66 B0C 5.1 11 11 17 M J 1265. 8. B0ESEBECK 80 80 91 91 67 80 M J 1268.0 6.0 JOHNSON 68 HBC 3.7-4.2 91-9 6/68 M J JOHNSON 68 INCLUDES 80NDAR 63. LEE 64.0 DERADO 65. EISKER 67.
R3 B INTO (P1 P[]/(P[ONEGA) (P4)/(P[) R3 (0.3) OR LESS ADERHOLZ 64 HBC 4.0 DI+P 7/66 R3 (0.15) OR LESS L=.90 DIT 72 HBC +7.1 PI+P 12/72	M 1273-0 13.0 ARMENISE TO HBC 9 PI+N
R4 B INTO (P] PHI) / (P] OMEGA) (P5)/(P1) R4 (0.015)0R LESS DAHL 67 HBC 1.6-4.2 PI- P 10/66 R4 (0.04) OR LESS CL=.95 BIZZARRI 69 HBC ← Q PBAR P 9/69	M E (1273.0) (6.0) STUNTEBEC 70 HBC 8.0PL-P.5.4.8 Pt+D 11/71 M 5300(1272.0) 4.0 FLATTE 71 HBC 7.0 P1+ P 6/71 M E 300(1272.1) KEMP 72 DBC 11.7 P1+ N 12/72 M 2000 1261.0 10.0 JACOBS 72 HBC 2.8 P1-P 1/73 M 600 1258.0 10.0 TAKHASHI 72 HBC 8.0 F-P, P.2PE 1/73
R5 B INTO (ETA P1) / (P1 OMEGA) (P6)/(P1) P5 (0.25) OR LESS CL=.90 BALTAY 67 HBC +- 0.0 PBAR P 2/67	Н 1200 1274. 12. WHITEHEAD 72 ASPK 3.1-3.6 PI- P. 2/73 Н Н (1279.) (3.) HYANS 73 ASPK 0 17 PI-P.N P1+PI- 1/74* Н Н FROM PMASE SHIFT ANALYSIS OF GRAVER 74 DATA.
R6 8+- INTD ((K KBAR)+- PIO} / (PI OMEGA) R6 {0.08} OR LESS CL=.90 BALTAY 67 HBC +- 0.0 PBAR P 2/67	M 1258. 4. GRAYER 74 ASPK 0 17 PI-P.N PI+PI- 2/74* M É EVIDENCE FOR A STRUCTURE CLAIMED 12/72
R6 B+- INTO (KS KS PI+-) / (PI OMEGA) R6 (0.02) CR LESS CL≖.90 BALTAY 67 HBC +- 0.0 PBA- P 2/67	M T ERROR INCREASED BY US. SEE TYPEO NOTE ON K* MASS. M Avg 1267.2 2.2 Average (Error includes scale factor of 1.2)
R6 B+- INTO (KS KL PI+-) / (PI OMEGA) R6 (0.06) OR LESS CL=.90 BALTAY 67 H8C →- 0.0 PBAR P 2/67	(SEE IDEDGRAM BELOW)
****** ********* **********************]

т_т

Ţ

F

T

Ë

P1 P2 P3 P4 P5

Έ

ŭ

F INTO (2PI+ 2PI-1 / (PI PI) ASCOLI 68 SUGGEST DECAY PI S MAINLY RHO-RHO. 1/3 OF WHICH YIELD 2PI+ 2PI 0.08 0.06 0.06 RONDAR 63 HBC 4.0 PI-P D 0.04 0.05 CHUNG 65 HBC 3.2 PI-P D CORRECTED 89 0.05AH WEIGHTED AVERAGE = 1267.2 ± 2.2 ERROR SCALED BY 1.2 11/71 5 PI- P 8. PI+ P 1.26 PI- P.P F 6. PI+N.P FO 8. PI+N.P FO 3.9 PI- P ASCOLI 68 HBC 0.022 BARDADIN 71 HBC DH 70 HBC ANDERSON 73 DBC L.=.90 RUGG 73 DBC 0.017 LCUIE 74 HBC 1/71 6/68 2/72 2/73 1/74* 1/74* 1/74* CECTED BY 0.0AHL 0.07 0.04 0.022 0.045 0.037 0.013 0.037 0.007 (0.037) C.LESS C.L.=. 0.065 0.010 0.0 50 CHISQ 154 GRAYER 74 ASPK 5,3 285 ····WHITEHEAD 72 ASPK 0.3 0.0439 0.0057 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG · ·TAKAHASHI 72 HBC G 0.0439 0.0057 AVEPAGE (ERPOR INCLUDES SCALE FACTOR OF 1.0) F INTO (K KBAR)/(PI PI) (P3)/(PI) OPTEFMINATION DIFFICUT I GECAUSE PROXIMITY OF A 2WHICH HAAS SAME WEUTRAL (K KBAR) WODES, SINCE INTERFERENCE MAY BE CONSTRUCTIVE OF DESTRUCTIVE, EVEN UPPER LIMITS ANE DUBIOUS. SIME UPPER LIMITS (K CR LESS) HAVE BEEN PUNCHED AS 10 +-X) (0.00) (0.010) (0.00) (0.010) BARDIN 65 HHBC 2.8 PI (0.00) (0.021) BARDIN 65 HHBC 3.0 PI-P PROBALY SEEN BARLON 67 HBC 0.050 0.055 0.051 DANL 67 HBC 10.0471 (0.012)+ ADDERMOLZ 69 HBC 8 PI+ P.K+K-PI (K+K PEAK IS AT ABOUT 1260 MEV WHILE KKRARN+ PEAKS AT 1320. ALSO (CR05SECTION-BRANCHING RATION FOR A2 STATED FOR AVERAGING 0.031 0.012) ADDERMOLZ 69 HBC 8 PI+ P.K+K-PI K+K PEAK IS AT ABOUT 1260 MEV WHILE KKRARN+ PEAKS AT 1320. ALSO (CR05SECTION-BRANCHING RATION FOR A2 STATED FOR AVERAGING 0.032 0.3 SHEL (0.032) OR LESS CLE-SS HEL FACTOR HING RATION FOR A2 STATED FOR AVERAGING 0.032 0.25 0.9 JACODS 72 HBC 0.4 71 HBC FLATTE 5.9 · · · · **П**Н 70 HBC 0.6 0 +-X} 2.8 PI-3.0 PI-P 2/73 1.2 PBAR P--KIK 11/66 5.7,12 PI-P .9/67 1.6-4.2 PI- P 10/66 11/71 ~ K+K-PI- 8/69 ARMENISE 20 HBC 0.7 ARMENISE 20 HBC 0.4 JOHNSON 6B HBC 0.0 BOESEBECK 68 HBC 0.1 0 0 ARMENISE 68 DBC 0.1 A 4 A ARMENISE 68 DBC 1.6 1/73 12/72 12/72 12/72 1/73 12/72 1/74* RABIN 67 HBC 0.6 16.8 L (CDNLEV =0.155) 1240 1260 1280 1300 1320 F MASS (MEV) 0.036 0.025 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.5) (SEE IDEDGRAM BELOW) ------AVG 5 F WIDTH (NEV) 5 F HIDTH (HEV) (25.0) SELOVE 62 HBC 3.0 P1-P (10.0) JACOBS 66 HBC 2-3 P1-P,T CUT20 10/67 17. RABIN 67 HBC 8.5 P1+ P 9/67 20. ARMENISE 66 DBC 5.1 P1-N,P P1+ - 1/73 (40.1) ARMENISE 66 DBC 5.1 P1-N,P P1+ - 1/73 23. BOESBECK 68 HBC 8.1 P1-P 7/69 13.0 JOHNSON 68 HBC 3.7-4.2 P1- P 7/69 13.0 LUDES BONAR 3.1 LEE 64, DERADO 55, EISNER 67. 25.0 ARMENISE 70 HBC 9 P1+ N -- HN P 1/71 25.0 ARMENISE 70 HBC 9 P1+ N -- F 2/74* 20.0 OH 70 HBC 1.26 P1-P,P F 2/74* 20.0 OH 70 HBC 1.26 P1-P,P F 2/74* 28.0 TAKAMSHI 72 DBC 11.7 P1+N 12/72 25.0 JACOBS 72 HBC 2.8 P1-P 1/73 124.1 WHITEHEAD 72 ASPK 3.1-3.6 P1-P .2/74* (6.1 HYAWS 73 ASPK 0 17 P1-P,N P1+P1- 2/74* LET ANALYSIS OF GRAYER 74 DATA. 9. GRAYER 74 DATA. (25.0) (10.0) 17. 20. (40.) WEIGHTED AVERAGE = 0.036 ± 0.025 (100.0) (99.0) 155. 216. 1416 ERROR SCALED BY 1.5 1960 360 (188.) 128. 176.0 JOHNSON JOHNSON 131.0 173.0 120.0 (196.0) 183.0 (143.) 130.0 166.0 (217.) (202.) M PHASE 192. 68 600 (18.0) 15.0 5300 300 2000 600 1200 25+0 28+0 (24-) (6-) SHIFT ANALYSIS OF 9+ FRC EVIDENCE FOR A STRUCTUPE CLAIMED ERROR INCREASED BY US. SEE TYPED NOTE ON K# MASS. 172.5 8.4 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.7) (SEE IDEOGRAM BELOW 1 12/72 CHISQ AVG · · · TOET 73 HBC 0.1 · · ·BISWAS 72 HBC 3.5 · ·LIMIT ABOVE RESTA 0.8 HEIGHTED AVERAGE = 172.5 ± 0.4 4.4 ERROR SCALED BY 1.7 (CONLEU =0.109) 0.0 0.1 0.2 0.3 -0.1 F INTO (K KBAR)/(PI PI) F INTO (KO K- PI+ AND C.C.)/(PI PI) (0.07) DR LESS CL=.95 AGUILAR 72 HBC (P4)/(P1) 3.9,4.6 K- P РЗ РЗ CHISQ 12/72 · .680YF8 74 DSPK 4.7 INTO (ETA PI PI)/(PI PI) (0.19) OR LESS CL=.95 R4 P4 (P5)/(P1) 3.9.4.6 K- P · TAKAHASHI 72 HBC 0.1 AGUILAR 72 HBC 12/72 · · · · · JACOBS 72 HBC 2.9 · · ·FLATTE 71 HBC 0.5 • • •он 70 HBC 6.9 REFERENCES FOR F ···· ARMENISE 70 HBC 0.0 SELOVE 62 PRL 9 272 BONDAR 63 PL 5 153 GUIRAGOS 63 PRL 11 85 HAGOPIAN 63 PRL 10 533 VEILLET 63 PRL 10 29 SELQVE, HAGOPIAN, BRODY, BAKER, LEBOY (PENN) BONDAR+ (AACHEN+BIRH+BONN+DESY+LOIC+MPIM) Z.G.T. GUIRAGOSIAN (IPL) V HAGOPIAN-W SELOYE (PENN) VEILLET, HENNESSY BINGHAM, BLOCH+(EPOL+HILAN) . . · · · · · ARMENISE 70 HBC 2.8 · · · · · JOHNSON 68 HBC 0.1 · · · BDESEBECK 68 HBC 3.7 · · · ARMENISE 68 DBC 4.7 ADERHOLZ 64 PL 10 240 BRUYANT 64 PL 10 232 LEE 64 PRL 12 342 SODICKSO 64 PRL 12 485 AACHEN-BERLIN-BERLIN-BONN-HAMBURG-LDIC-MPI IJ BRUYANT.GCLDBERG.HOLDER.FLEURY+ (CERN+FPOL) I LEE.ROE.SINCLAIR.YANDERVELDE (HICH) SODICKSON.WAHLIG.MANNELLI.FRISCH+ (HIT) I RABIN 67 HBC 1.1 27.4 CONLEY +DOLGOLENKO, ELENSKY, ERDFEEY+ (ITEP MOSCOW) +DOLGOLENKO, ELENSKY, ERDFEEY+ (ITEP MOSCOW) +DOLGOLENKO, EROFEEY+KRESTNIKOV+ (ITEP MOSC) CHUNG, DAWL, HARDY, HESS, JACOBS, KKTRZ (LRL) DERADO, KENNEY, POIRIER, SHEPHARO (NOTRE DAME) Z G T QUIPAGOSSIAN P WANGLER, A R ERWIN, W WALKER (WISCONSIN) BARMIN 65 SJNP 1 230 BARMIN 65 SJNP 1 623 CHUNG 65 PRL 15 325 DERADO 65 PRL 14 872 GUIRAGOS 65 PRL 11 85 WANGLER 65 PR 137 B 414 150 250 350 60 =0.002) F WIDTH (MEV) __ __ *--- -------5 F PARTIAL DECAY MODES ACCENSI 66 PL 20 557 JACOBS 66 UCRL-16877 WAHLIG 66 PR 147 941 ACCENSI,ALLES-BORELLI,FRENCH,FRISK+ (CERN) DECAY MASSES L.D.JACOBS.THESIS (LRL) +SHIBATA,GORDON,FRISCH,MANNELLI (MIT+PISA) J INTO PI PI INTO 2PI+ 2PI-INTO K KBAR INTO K KBAR PI INTO ETA PI PI DECAT MASSES 1394 139 1394 1394 1394 139 4974 497 4974 497 5484 1394 139 +LILLESTOL+MONTANET+ (CERN+CDEF+18AD+LIVP) +FISCHER+GOBBIASTBURY+ (ETHZ-CERN) +HARDY+HESSKIRZ2+HILER (LRL) +JOHMSON+KLEIN+PETERS+SAHNI+YEN+ (NDAH+CEN) +BISWAS,CASON,DFRADO,KENNEY+ (NDAH+CEN) R RABIN (RUTGERS) 67 NC 50A 701 67 PL 25 B 357 67 PR 163 1377 67 PR 164 1699 67 PR 163 1462 67 THESIS BARLOW BEUSCH DAHL EISNER POIRIER (NDAM+PENN) (RUTGERS) RABIN 5 F BRANCHING RATIOS ARMENISE 68 NC 54 A 999 ASCOLI 68 PRL 21 1712 BOESEBEC 68 NP B 4 501 JCHNSON 68 PR 176 1651 ALSO 6380NDRA, LEE LANSA 68 PR 166 1395 ALSO 67 POIRIER WHITEHEA 68 NC 53A 817 +FORIND+CARTACCI+ (BAR1+BGNA+FIRENZE+ORSAY) G.ASCOLI,H.B.CRAMLEY.D.W.MOBTARA,+ (IL) BOESEBECK,DEUTSCHMANN,+(AACHEM+BERLIN+CERN) FAVILLET-LABROSSE+KONTANET+ (CERN+CDEF) +POIRIER,BISWAS,GUTAY+ (NDAM+PURD+SLAC) 7ADD 65. EISNER 87 +CASON+BISWAS+DERADC+GROVES+ (NDTREDAME)

+MCEWEN,OTT,AITKEN+

LAERE+SHMP+LOUC)

R10 70 HBC 01-26 PI+ P,P F 71 HBC 08 PI+ P,DELTA++F 73 ASPK 0 17 PI-P,N PI+PI-1/71 1/74* 0.834 0.017 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)

Mesons f(1270)
Mesons f(1270), D(1285), A₂(1310)

ADERHOLZ ACUILAR- ARMENISE CASO DONALD	69 69 69 69 69	NP E PL 2 LNC NC E	3 11 29 B 2 5 2 A 3 11	259 24 01 755 551	1	+BARTSCH M.AGUILA +GHIDINI +CONTE,B +EDWARDS	R-BENITEZ, FORINO,CAL SNZ,+ (1 BURAN,BET	ACH BAR TACC GENCH TINI	BERL+ LOW,+ CI+ (DESY+ + (CERN BARI HAMB LIVP	+JAGL+ {CERN+ +BGNA+ +MILA+ +OSLO+	WARS) CDEF1 FIRZI SACL) PADCI	
AGUILAR ARMENISE BADIER OH STUNTEBE	70 73 70 70 70	PRL LNC NP I PR I PL 3	25 4 22 1 32 B	58 199 512 2494 391		AGUILAR- +GHIDINI +BONNET, +GARFINK STUNTEBE	BENITEZ, BAI FORING, CAI DREVILLON, EL, MORSE, W CK, KENNEY,	RNES RTACO RAUBI ALKER DEERN	BASSA 11,+ (ILLIER 2,PREN 7,BISW	ND,+ BARI ,+ TICE AS,C	(BNL+ +BGNA+ (EPOL+ (WISC+ ASON+	SYPA FIPZ) IPNP) TNTOJ) NDAM)	
RARDADIN BEAUPRE FARBER FLATTE	71 71 71 71	PR 1 NP 1 NP 1 PL 3	04 2 3 28 3 29 34 R	711 77 237 551		BARDANIN +DEUTSCH +DE PINT +ALSTON-	H-OTWINOWSK IMANN,GRAES 10,81SWAS,C -GARNJOST,8	ATHON SLER ASON ARBAN	FMOKL, ,+ (,DEERY RD-GAL	+ AACH +KEN TIER	+8ERL4 NEY,+1 I,+	(WARS) (CERN) (NDAM) (LBL)	
AGUILAR BISWAS FCGLI GRAYER JACOBS KEMP SCARROTT TAKAHASH WHITEHEA	72 72 72 72 72 72 72 72 72 72	PR NC PHI PR NC LNC PR NP	D 6 B 4 L • C 0 D 6 B 4 B 48	29 1564 670 NF.P 1291 611 71 1266 365	PCC - 5	AGUILAR- +CASCN,H FOGLI-MU +HYAMS+, L.D.JACC +MAJOR,C SCARROT TAKAHASI WHITEHE	RENITEZ,CH HARRINGTON, JCIACCIA,PI JONES,SCHLE DBS CONTRI,+ (F,KEMP HI,BARISH,+ AD,AULD,+	UNG+I KENNI CCIAI IN+BI DURH	EISNER EY,SHE RELLI LUM,DI +GENO+ (TOHO (AERE+	+SAM PHAR ETL+ MILA +PEN RHEL	IOS D (CERN (S) +EPOL (DI N+NDAI +SHMP	(BNL) (NDAM) (BARI) +NP[M) ACLAY) +LPNP) JRHAM) M+ANL} +LOUC)	
ANDERSON BUGG CHARLESW HYAMS TOET	73 73 73 73 73	PRL PR NP NP NP	31 D 7 B 65 B 64 B 63	562 3264 253 134 248	2 2 3	+ENGLER +CONDO+1 CHARLES +JONES+1 +THUAN+1	,KPAEMER,TO HART,COHN,E WORTH,EMMS, WEILHAMMER, MAJOR,RINAU	AF,D NDOR BELL BLUM DO,+	IAZ,+ F,+ (,+ (,DIETU (NIJM+	TENP PHEL	(CARN HORNL HBIRM (CERN HDURH	+CASE) +CINC) +DURH] +MPIM] +TORI)	
GRAYER LOUIE	74 74	NP Pl				G.GRAYE +ALITTI	R,HYAMS,BLU ,GANDOIS,MA	M,DI Llet	ETL,+ ,*		(CERN (SACL	+MPIM) +CERN)	
****** *	****	***	* **	***	**** **	*******	*********	**** ****	**** *	****	****	*******	*
D(1	20	זבי	7	8	D (13	285.JPG=	+) 1=0						
	20	ງວ 	<u> </u>	(J	P=0-,14	+,2- WITH	1+ FAVORE).) 					-
				8	0 MA	SS (MEV)							
M M M M M M	(150	1290 1283 1290 1310 1270 1285 1303 1285).) 3.0).0)).0) 5. 3.0 3.0	Å₽	PROX. 5.0 7. 10.0 7. 8.0 6.0 10.		BARLOW DAHL D.ANDLAU DEFOIX CAMPBELL LORSTAD BARDADIN BOESEBECK DEFOIX	67 H 67 H 68 H 68 H 69 H 71 H 71 H 72 H	18C 18C 18C 18C 18C 08C 18C 08C 18C 18C	1. 1 2 P 1 2 .7 P 8 16	2 PBAR •6-4-2 BAR P+ •2 PB •7 PI+ B P+ 4 PI+ P+ •0 PI 7 PBAR	P, 4PF PI- P 5-6 PF P,7 PI 0 +5-B0DY P+6PI P,5 PI P,7 PI	5 5/67 10/66 5 6/68 3/69 8/69 9/69 9/69 6/71 1/73
M S S	180 5001	1286 1280 N TP	5. 5.) 4 TH	FMI	3. (3.) SSING	MASS SPEC	DUBOC THUN TRUM	72 H 72 M	18C 4MS	13	.4 PI-	• P.2K4P	12/72
M AVG		128	5.1	•••	2.2	AVEPAG	E (ERROR I	101.00	DES SC	ALE	FACTOR	0F 1.1	1
				 8	0 WI	 DTH (MEV)		67 1					-
พี่บั พับ	UNF	OLDI	5. ED B	Y D0	20. BRZYNS	KI 71	D.ANDLAU	68 1	4BC 1	•2 P	BAR P	5-6 PF	5 2/72
WR W WP		(4)	0.0) 0.0	,	15.0		CAMPBELL	69 1 69 1	48C DBC 48C 0	2 .7 P	•2 PD •7 P14 B P• 4	- D - 5-80DY	B/69 11/71
w ê W		(4-	4.0) 0.0	i	24.0)		BARDADIN BOESEBECK	71 1	HBC HBC	8 16	PI+ P.	P+6P1 P,5 P1	11/71 6/71
W R W R	150 180	(2)	8.1 5.1		(5.) (9.)		DEFOIX	72 1	НВС НВС	0.	7 PBAF	P.7 P9	0 1/73 01 12/72
W S W S	500 SEE	(3) N []	7.) N TH TON		(5.) SSING	MASS SPEC	THUN	72 1	MMS	13	.4 11-	- 1	12/72
W AVG		2	0.6	•••	9.6	AVERA	GE (ERROR I	NCLU	DES SC	ALE	FACTOR	R OF 1.3	11
										··			-
				9	0	PARTIAL E	DECAY MODES				DECAY	MASSES	
P1 P2	D IN D IN	10 TQ	к КВ РТ Р	AR P I RH	1					497 134	+ 497	+ 134 + 770	
P3 P4	D IN	TO TO	ETA DELT	PI P A PI	1					548 976	+ 134	+ 134	20
P5	D IN		2P1+	2P1 +-	-								
				£	B D BR	ANCHING	RATIOS						
21 RL R1 D R1 D	יו מ	1TO (((PI 2.0) 4.0) THIS		HD) / LESS LESS FOR (R	(K KBAR	PII DAHL DONALD PI-1/(K KBA	67 69 R PI	нвс НВС 0)	(P2)/ ((P1) HARGE	D PI ONU AR P,5P4	Y 10/66
R2 P2 K R	DIM	170 	(K #	BAR 6	P1)/(E	TA PI PI) DEFOIX	68	нвс	(P1)/ 1.	(P3) 2 P8A	R P	1/73
42 K 92 82 K 82 K 82 K 82 K	K	BAP	0-16 0-20 SYS	TEM	0.08 0.08 CHARAC	TERIZED DER DELTA	CAMPBELL DEFOIX BY THE I=1 (970)).	69 72 THRE	DBC HBC SHOLD	2.0	7 PI+ 7 PBA	0 R P.7 P	1/73 I 1/73
P2 P2 AVG	;	• •	0.1	3	0.039	AVERA	GE (ERROR I	NCLU	DES SO	CALE	FACTO	R OF 1.0	0)
R3 R3 R3	0 11	170		TA I	SEEN	TA PI PI)	AMMAR Otwingwsk	70 70	нвс нвс	(P4) 8	(P3) 4.1. PI+ P	5.5K-,E' , P+6PI	TA 5/70 9/69
R3	_	¢	0.8		(0.2)		DEFOIX	72	нвс	ŏ	7 PBA	R P.T P	1 . 1/73
84 84 84	0 1/ 50	OTV 1	(2P)	(+ 2) 5) 01	PI- (IM R MORE	NCL. RHO	PI PI))/(E) BOESEBECK	A PI 71	+ РІ- НВС) (P5) 1	/(2/3P 5. P1+	3) - P.P 5	PI 11/71
						********	********	****	*****	***	*****	******	**

Data Card Listings For notation, see key at front of Listings.

	REFERENCES FOR D
D.ANDLAU 65 PL 17 347	+BARLOW,ADAMSON,+ (CDEF+CERN+IRAD+LIVP)
MILLER 65 PRL 14 1074	+CHUNG,DAHL,HESS,HARDY,KIRZ,+ (LRL+UCB)
BARLOW 67 NC 50 A 701	+MONTANET,O-ANDLAU+ (CERN+CDEF+IRAD+LIVP)
DAHL 67 PR 163 1377	+HARDY+HESS+KIRZ+HILLER (CLRL)I JP
D.ANDLAU 68 NP 8 5 693	+ASTIER,BARLOM+ (CDFF+CERN+IRAD+LIVP)I JP
DEFRIX 68 PL 28 B 353	+QIVET,SIAD,CONFERTO+ (CDFF+CERN+IRAD+LIVP)I JP
CAMPBELL 69 PRL 22 1204	+LICHTMAN+ (PURD)
DRNALD 69 NP 8 11 551	+EDUARDS.BURAN,BETTINI.+ (LIVP+OSLOPADD)
LORSTAD 69 NP 8 14 63	B.LORSTAD.D.ANDLAU,ASTIER,+ (CDEF+CER) JP
OTWINDWS 69 PL 29 8 529	S.OTWINOWSKI (WARSAW)
AMMAR 70 PR D2 430	+KROPAC, DAVIS, DERRICK+ (KANS+NWES+ANL+WISC)
BARDADIN 71 PR D4 2711	BARDADIN-DTWINOWSKA, HOFMOKL, MICHEJDA+(WARS)
BCESEBEC 71 PL 34 8 659	(AACH+BERL+BONN+CERN+CRAC+HEID+WARS)
DUBRZYNS 71 PRIV-COMMUN.	L.DDBR2VNSKI (CERN+CDEF)
GOLDPERG 71 LNC 1 627	+MAKOUSKI, TJOUCHARD, DONALD,+ (IPN+LIVP) JP
BERENYI 72 NP B 37 621 CHAPMAN 72 NP B 42 1 DEFOIX 72 NP B 44 125 DUBOC 72 NP B 46 429 THUN 72 PR 28 1733	+PRENTICE,STEENBERG,YOON,WALKER (TNTD+WISC) +CHUPCH,LYS,MURPHY,RING,VANDER VELDE (MICH) +NASCIMENTO,BIZZART,+ +GOLDBERG,MAKOMSXI,ODNALD,+ (LPMP+LIYP) +BLIEDEN,FINOCCHIARO,BOWEN,+ (STON+NEAS)
CHAPMAN 12 NY B 42 1	+UNDYUGILIS,HUNPHI,HINYANUEY YELDE IAIUH)
DEFOIX 72 NP B 44 125	+NASCIMENTO,BIZZARTI.+ (LDEF+CERN)
DUBNC 72 NP B 46 429	+GOLDBERG,HAKONSKI,DUNALD,+ (LPNP+LIYP)
THUN 72 PRL 28 1733	+BLIEDEN,FINOCCHIARO,BOWEN,+ (STON+NEAS)

We list the A_2 as an ordinary Breit-Wigner resonance. For discussion of the reported splitting see our April 72 and April 73 editions.

12 A2 (1310, JPG=2++) I=1

					-			
		12	AZ MA33 1M	ENT SPI MODE	-			
м	(13	20.01		ADERHOLZ	64 H	BC	4.0 PI+P	
м	13	35.0	10.0	GOLDHABER	64 H	BC +-	3.7 P1+- P	
м	130(13	10.0}		FORINO	65 DE	BC + 0	4.5 P1+ D	10/66
M	1425 12	90.0	(5.0)	LEFEBVRES	65 MI	MSP -	5.6,6.0 PI-P	1/13
M	(13	00.0)		SEIDLITZ	65 DI	BC -	3.2 PI→D	2/72
M	(12	90.0) (10.01	BARNES	66 HI		3.65 DIAD	6/66
	1040 13	04	19.1	LEVDAT	66 M	us –	6-7 PI- P	1/73
2	4000 12	07	1.	CHIKOVANT	67 M	NS -	7 PT- P	8/67
M	260 13	11.0	6.0	ARMENISE	68 DI	BC 0	5.1 P1+D	9/67
м	120 13	20.	10.	BOESEBECK	68 HI	BC O	8 PI+ P	6/68
M	0 (13	10.) (20.)	CHUNG	68 HI	вс –	2.7-4.5 PI- P	5/68
м	(13	01.0)	(8.0)	VON KROGH	68 HI	вс –	6.7 PI- P	9/68
м	A (13	00.01	(4.0)	JUNKMANN	68 HI	BC –	16. PI~ P. 5PI	1/73
м	A (12	99.) (14.)	LAMSA	68 H	вс –	8 PI- P	1/71
м	0 (12	95.0) (20.01	ANDERSON	69 MI	MS -	16 PI- P,BACKWS	8/69
м	A 241(12	99.0) (12.0)	ARMENISE	69 DI	BC +	5.1 PI+0.3PI++-	- 5/70
M	13	10.0	14.0	EISENBERG	69 H	8C + 4	- 313.3 GAMMA P	1 (7)
M	13	05.	(3.)	ASCULI ALCTON-CA	70 1		0 0140 201 P	1/71
M	941 13	12.0	4.0	ALSTUN-GA	70 1			5/70
5	A 591/12	88.0) (10.01	CASO	70 14	8C - 1	1.2PT+P.PT RHO	1/73
m i	13	35.0	15.0	0147	70 H	BC +- 0	. PBAR P. 4 PI	5/70
M	0 (13	30.01 (15.01	GARE INKEL	70 D	BC -	4.5 K-D.LAMBDA	1/71
×.	(12	74.01 (22.0)	GORDON	70 D	BC O	4.2 PI+ D	. 1/71
M	360 13	04.0	4.5	BARNHAM	71 H	BC + 3	.7 P1+ P,(3PI)	11/71
м	10000 13	07.	5.	BINNIE1	71 M	MS – P	I-P NEAR A2 TH	11/71
м	5000 13	09.	5.	BINNIE1	71 M	MS – P	I-P NEAR A2 THE	11/71
м	28000 12	99.0	6.0	BOWEN	71 M	MS ~ 5	• PI- P	11/71
м	24000 13	00.	6.0	BOWEN	71 M	MS + 5	PI+ P	11/71
M	17000 13	09.0	4.0	BOWEN	71 M	MS - 7	· PI- P	11/11
M.	160 13		1.	ANTIDOVI	72 0		6 40 DT_ D	1/741
	1 500 13	15.	· ·		72 4	RC - 3	. 9 PT- P.P A2	2/73
m .	1980 19		·•					
M.	O ONLY	EXPERIMEN	TS GIVING ER	ROR LESS THAN	20 M	EV KEPT	FOR AVERAGING	12/72
M	D MAY B	E DIFFERE	NT OBJECT. A	LTHOUGH JPC=2	++. C	OMPARE C	RENNELL 69.	
M	A ANALY	SIS COMPL	ICATED BY NE	ARBY PEAK (A1	.5) A	ND/OR A1		
м	P FROM	A FIT TO	JP=2+ RHO PI					
м	•							
м	AVG 13	08.5	1.6 AVE	RAGE (ERROR I	NCLUD	ES SCALE	FACTOR OF 1.1	
								-
		12	AZ MASS (M	EVI, K KBAR M	ODE			
					-			
MK	80(13	17.0)	(3.0)	BARLOW	67 H	BC +-	1.2 PBAR P. KK	. 2/12
MK	60 13	33.0	13.0	BARLOW	67 H	BC +-	1.2 PBAR P. KK	9/6/
MK	N (13	44.0)	(7.) (6.	CONFORTO	61 U		O DRAD D IN KI	11/11
MIL	130 12	17 2	4.0	DAHL	67 H	BC +=	2.7-4.5 PI- P	8/67
MK	N (13	15.71 1	10.81	DAHL	67 H	BC 0	2.7-4.5 PI- P	11/71
MK	N (13	11.01	(5-0)	CRENNELL	68 H	BC 0	6.0 PI-P.K1K1	11/71
MK	12(13	15.01		ADERHOLZ	69 H	BC +	8 PI+ P+K+K0	8/69
MK	132 13	01.0	7.0	ALSTON-GA	70 H	BC + 7	-O PI+P,K+KS P	1/71
MK	190 13	13.0	7.0	CRENNEL	71 H	BC - 4	.5 P1- P.KSK-P	11/71
МΚ	S 1500 13	19.0	3.0	GRAYER	71 A	SPK - 1	17.2 PI-P.K-KS	P 2/72
MK	730 13	13.0	4.0	FOLEY	72 C	NIR - 2	20.5 PI- P+K- K	5 12/72
MK						604		
MK	N THE N	HUTRAL MO	OD TN MASE	CALE SUBTRACT		301		
MK MK	5 51516	MATL CKR	UN IN MASS :	SCALE SUDIRACI				
MK	AVG 13	15.0	3.1 AVE	RAGE (ERROR I	NCLUD	ES SCALE	FACTOR OF 1.7	,
			(SEE IDEOGR	AM BELOW)				

A₂(1310)

Mesons A₂(1310)

Mesons A₂(1310)

Data Card Listings For notation, see key at front of Listings.

R1		0.07	0.03	NEF 70 MM	- 7.0 PI- P	6/70	***** *****	**** ******** ***	***** ******** ******* *******	***
P1 R1	50	0.056	0.018	CHALOUPKA 73 HBC	- 3.9 PI- P,P A2	2/71 2/73			REFERENCES FOR A2	
R1 R1 R2	AVG FIT A2 IN	0.0677 0.0655	0.0089 AVERAG 0.0084 FROM FI	E (ERROR INCLUDES F (ERROR INCLUDES BAR + ETA PI)	5 SCALE FACTOR OF 1.0) 5 SCALE FACTOR OF 1.0) (P3)/(P1+P2+P3)		ADERHOLZ 64 CHUNG 64 GOLDHABE 64	PL 10 248 PRL 12 621 DUBNA CONF 1 480	(AACHEN+BERLIN+BIRN+BONN+HAMBURG+LOIC+MPIN) +DAHL,HARDY,HESS,KALBFLEISCH,KIRZ (LRL) G GCLDHABER,S GOLDHABER,OHALLGRAN,SHENILRL) ABDIINS,CARMONY,HENDRIKS,VUNDG+ (J. JOLIA))] }
R2 R2 R2 R2 R2 R2 R3 R3	34 AVG FIT A2 IN	0.15 0.13 0.140 0.166 TO (ETA PI 0.3	0.04 0.04 0.028 AVERAG 0.012 FROM FI) / (RHO PI) 0.2	BARNHAM 71 HBC ESPIGAT 72 HBC E (ERROR INCLUDES C (ERROR INCLUDES ADERHOLZ 64 HBC	+ 3.7 PI+ P +- 0.PBAR P, 5 SCALE FACTOR OF 1.0) 5 SCALE FACTOR OF 1.0) (P3)/(P1) (P3)/(P1) 4.0 PI+P	11/71 11/71	ABOLINS 65 ADERHOLZ 65 ALITTI 65 CHUNG 65 FORINO 65 LEFEBVRE 65 SEIDLITZ 65	ATHENS(OHIO)CONF. PR 138 B 897 PR 15 69 PRL 15 325 PL 19 68 PL 19 434 PRL 15 217	CARNONY, LANDER, XUDNG, YAGER (LA JOLLA) (AACHEN+BERL+BIRH+BONN+HAMB+LOIC+HPIM) XIITTI, BATON, DELER, CRUSSARD+ (SACLAY+BGNA) +DAHL, HARDY, HESS, JACOBS, KIRZ, HMILLER (LRL) CERN MISSING MASS SPECTROMETER GROUP (CERN) L SEIDLITZ, O I DAHL, D H MILLER (LRL)) I=1)) JP))
R3 R3 R3 R3 R3 R3 R3 R3 R3	22 D 15	0.22 0.23 0.12 (0.072) DR 0.16 (0.18) 0.3 0.25	0.09 0.08 0.08 LESS 0.10 (0.06) 0.13 0.09	CUNIE 67 867 ASCOLI 68 HBC CHUNG 68 HBC DONALD 68 HBC KEY 68 HBC VETLITSKY 69 HBC BBCKMANN 70 HBC	- 11.0 PI-P - 5 PI-P - 3.2 PI-P + 1.2 PBAR P - 3 PI-P - 3.3 PI-P - 3.9 PI-P + 5.0 PI+P	8/67 6/68 12/66 6/68 .11/67 9/68 . 1/71 9/69	BARNES 66 BENSON 66 ALSO 66 EHRLICH 66 FERBEL 66 LEVRAT 66	PRL 16 41 MICH COO+1112-4 PRL 16 1177 PR 152 1194 PL 21 111 PL 22 714	BARNES,FOWLER,LAI,ORENSTEIN + (BNL+CUNY) G.C.BENSON, THESIS (MICH G.BENSON,LOVELL,MARQUIT,ROE + (MICH R. EHRLICH,W.SELOVE,H.YUTA (PENN) FERBEL (ROCHESTER CERN MISSING MASS SPECTROMETER GROUP (CERN))) }
R3 R3 R3 R3 R3 R3 R3 R3	D 39 167 149 52 AVG	0.34 (0.18) 0.246 0.211 0.22 0.221	0.17 0.34 (0.07) 0.042 0.044 0.05 0.021 AVERAGI	BOCKMANN 70 HBC DZIERBA 70 HBC ALSTON-GA 71 HBC CHALOUPKA 73 HBC ANTIPOV 73 CN E (ERROR INCLUDES	0 5.0 PI+ P - 8. PI- P + 7.0 PI+ P - 3.9 PI- P,P A2 R - 40. PI-P,P A2- S SCALE FACTOR OF 1.0)	9/69 11/71 2/71 2/73 1/74*	ARMENISE 67 BALTAY 67 BARLOW 67 BARTSCH 67 BEUSCH 67 CASON 67 ALSO 68	PL 258 53 PL 258 160 NC 50A 701 PL 258 48 PL 25 8 357 PRL 18 880	ARMENISE,FORINO,+ LOARI+BGNA+FIRZ+ORSAY *KIRSCH+KUNG+YE+HABAIN (COLU+BNL+BUTCERS +LILLESTOL+MONTANET+ ICERN+CDEF+IRAD+LIVP +DEUTSCHMANN+GROTE+CDCCONI+(AACH+BERL+CERN +FISCHER,GOBBIASTBURY+ LETH2×CERN +LAMSA,BISWAS,DERADO,GROVES,+ (NOTREDAME))))
R3 R4 R4 R4 R4 R5 R5	F1T A2 IN S A2 IN S 14	0.212 ITO (ETA PR (0.1) DR 0.02 DR 0.0 ITO (ETA PR (0.07)	0.019 FROM F1 IME PI) / TOTAL LESS LESS CL=.97 0.01 IME PI)/(RHD PI (0.03)	CHUNG 65 HBG BARNHAM 71 HBG LIMIT ABOVE REST ASCOLI 68 HBG	(P8) - 3-2 P1-P - 3-2 P1-P - 4 3-7 P1+ P ATED FOR AVERAGING (P8)/(P1) - 5.0 P1-P	· 2/72 2/72 12/72	CHIKOVAN 67 CHUNG 67 ALSO 66 CDHN 67 CONFORTO 67 CONTE 67 DANUSZ 67 SLATTERY 67	PL 258 44 PRL 18 100 UCRL-16822 NP 81 57 NP 83 469 NC 51 A 175 PR 163 1377 NC 51 A 801 NC 50A 377	CERN MISSING MASS SPECTROMETER GROUP (CERN +DAHL, HARDY, HESS-, KIRZ, MILLER (LRI RICMARD I HESSTHESIS, BERKELEY (IRL +MCCULLOCH+BUGG+CONDO (ORNL+UNIY.TENN- HARECHAL-MONTANET+ (CERN+CDEF+IPN+LIVP, +TOMASINI, CORDS+IGENDVA+HAMB+MILANO+SACLAY +HARDY+HESS*K1RZ+MILLER (LRL DANYSZ+FRENCH+SIMAK (CERN) KRAYBILL+FRMAN+FERBEL (YALE+ROCH)]])))]]
R5 R5 R5 R5 R5 R5 R5 R5	S SUPE D 8 D S A2 IN	RSEDED BY 0.04 (0.15) TRONGLY DE (0.04) CR (0.011)CR TC (PI+ PI (0.17) CR	EISENSTEIN 73 0.03 0.04 (0.09) PENDENT ON BACK(LESS LESS CL=.90 - PIO) / (RHO P) LESS	BOCKMANN 70 HBC DZIERBA 70 HBC ROUND SUBTRACTIC ALSTON-GA 71 HBC EISENSTEI 73 HBC () BENSON 66 DBC	0 5.0 PI+ P - 8. PI- P N + 7.0 PI+ P - 5.PI- P.P 6PI (P5)/(P1) 0 3.7 PI+D	9/69 11/71 11/71 2/71 1/74*	ARMENISE 68 ASCOLI 68 BALLAM 68 BENZ 68 BOESEBEC 68 CASO 68 CHUNG 68	PL 26B 336 PRL 20 1321 PRL 21 934 PL 28 B 233 NP B 4 501 NC 54 A 983 PR 165 1491	ARMENISE, FORINO,+ (BARI+BGNA+FIRZ+ORSAY +CRAULEY, MORIARA, SHAPIRO, BRIDGES+(ILLINOIS BRODY, CHADNICK, FRIES, GUIRAGOSSIAN+ (SLAC CERN MISSING MASS SPECTROMETER GROUP (CERN BOSSBECK, DEUTSCHMANN,+ (AACHEN-BERLINA-SACL SJUCHUNG, OLDAHLJ, KIRZ, OLH, MILLER (IRL SJUCHUNG, OLDAHLJ, KIRZ, OLH, MILLER (IRL	9 1 JP 1 1 1
R7 R7 R7 R7 R7 R7 R7	A2 IN E SUPERS FIT A2 I	ITO (ЕТА РІ (3.0) CR EDED BY ES 3.24 NTO (К КВА)/(K KBAR) LESS PIGAT 72 (SEE U) 0.50 FROM FI R)/(RHO PI + K)	FOSTER 68 HBC NOER R2 AND R8)	(P3)/(P2) - PBAR P.PBA REST (P2)/(P1+P2+P3)	11/71 11/71	CRENNELL 58 DGNALD 68 FOSTER 68 FRIDMAN 68 JUNKMANN 68 LANSA 68 VON KROG 68	PRL 20 1318 PL 26 B 327 NP B B 174 PR 167 1268 NP 68 471 PR 166 1430 PR 166 1395 PL 27 B 253	<pre>+RARSHON+KMAN LAI,SCARH,SKILLIODRN (BML +RADESENBETINI+ (LIVERPODL+DSLD+PADUA +GAVILLET,LABRDSSE,HDNTANET,+ (CERN+CDET +AUDRER,MICHALDN,GUDET+(HEID +COCCONI,+ (AACH+DBERL+BON+CERN+MARS +RENTICE+COOPER+HANNEF+ (TNTO+ANL+WISC +CASON+BISWAS+DEFADD+GROVES+ (NOTREDAME) +MIYASHITA-KOPELMAN,MARSMALL LIBBY (COLD)</pre>	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
R8 88 88 88 88 88 88 88 88 88 88 88 88 8	17 A NOT A FROM 8 AVG FIT A2 IN	0.06 (0.020) AVERAGED 8 (K KBAR) 0.03 (0.05) (0.09) 0.039 0.0513	0.03 (0.004) ECAUSE OF DISCRI AND (RHD PI) 0.02 (0.02) (0.04) 0.017 AVERAGI 0.017 AVERAGI 0.0062 FROM FI - PI-)/(8HD0 PI-	BARNHAM 71 HBC ESPIGAT 72 HBC ESPIGAT 72 HBC MODES DAMERI 72 HBC TOET 73 HBC TOET 73 HBC E (ERROR INCLUDES -1	+ 3.7 PI+ P,KSK+P +- 0.PBAR P, SSES - 11. PI- P + 5. PI+ P,PK+ K0 0 5.PI+P,PI+P K K0 5 SCALE FACTOR OF 1.0) SCALE FACTOR OF 1.0) (P6C)/(PIC)	11/71 2/72 .12/72 .2/74* .2/74*	ADERHOLZ 69 AGUILAR 169 AGUILAR 269 ANDERSON 69 ARMENISE 69 CHIKOVAN 69 CRENNELL 69 DONALD 69 EISENBER 69 ALSO 67 VETLITSK 69	NP 8 11 259 PL 29 B 62 PRL 29 B 241 PRL 22 1390 LNC 2 501 PL 28 B 526 PRL 22 1327 NP 8 12 325 PRL 23 1322 BARLOW.67 CONFORTC SJNP 9 596	+ BARIDW, JACOBS, DELLA NEGRA+(CERN+ZDEF+LIVP HARLUM, JACOBS, DELLA NEGRA+(CERN+ZDEF+LIVP M.AGUILAR-BENITEZ, J.BARLUM+ (CERN+CDEF +COLLINS,+ CHTDINI,FORINC, CARTACCI+ (BARI+BGNA+FIRZ CERN MISSING MASS SPECTROMETER GROUP (CERN KARSHON,KMAN WU LAL,+ ±EDWARDS,+DSTEM,MODRE (LIVERPOOL EISENBERG,HABER,BALLAM,CHADWICK+(REHO-SLAC) VETLITSKY,GRIGOREYEV,GRISHIN,+ (ITEP))))))))))))))))))))
R9 R11 R11 R11 R12 R12 R12 R12 R12 R12 R12	A2 IN R R PION A2 IN D D D ERROI D OF CI 279	(0.23) DR (0.005) EXCHANGE TO (OMEGA 0.19 YS TO BI(1 R INCREASE OMPLICATED 0.08 0.10 0.28	LESS CL=.90 MA)/TOTAL (0.005) (0.003) MODEL USED IN TH PI PIJ/(RHO PI) 0.08 040) PI, B1 INT(0 TO ACCOUNT FOU ANALYSIS. 0.05 0.05	ABRAMOVIC 70 HBG VEISENBERG 72 HBG VIS ESTIMATION DEFDIX 73 HBG DORGA PI . POSSIBLE SYST. GARNJOST 72 HBG CHALDUPKA 73 HBG DIAL 00 FKA 73 HBG	 - 3.93 PI- P (P7) (P4)/(P1) 0 0.7 PBAR P.7 PI ERRORS 0 7.1 PI+ P 3.9 PI- P. A2 - 3.9 PI- P. A2 	1/71 11/71 11/71 1/74* 2/73 2/73 2/73	ABRAMOVI 70 ALSTON-GA70 ASCOLI 70 BASILE 70 BAUD1 70 BAUD2 70 BAUD2 70 BAUD3 70 BOCKMANN 70 BUTLER 70 CAROL 70 CAROL 70 DUTLER 70 DIAZ 70	NP 8 29 466 PL 33 8 607 PRL 25 962 LNC 4 838 PH 14B 397 PH 14B 397 PH 14B - CONF.P.311 PL 31 8 401 NP 8 16 221 UCRL 19845 PRL 25 1393 LNC 3 707 NP 8 16 239 PP D 2 2544	ABRANOVICH,BLUMENFELD,BRUVANT,+ (CERN, +BARBARD,BUHL,DERENZD,EPPERSON,FLATTE+(IRL +BOCKMAY-CRANLEY,EISENSTEIN,HANFT,+ (ILL +DALPIAZ,FRABETT,MASSAM,+ (CERN-BGNASSTRB) CERN BOSON SPECTROMETER GROUP (CERN CERN BOSON SPECTROMETER GROUP (CERN, +MAJOR,POLS,+ (BONN=DURH=NIJM+EDL=TORI THESIS +FIREBAUGH,GARFINKEL,MORSE,OH,+ (WISC+INTO) +CONTE,TCHASINI,CORDS+(GENO+HAMB-MILA+SACL) +GAVILLET,LABROSSE,MONTANET+ (CERN-COEF +SHEPHARD, BISMAS,CASON,JOHNSON,KENNEY(NDAM)	9U (9U (9U (9U (9U (9U) 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U 9U
R12 R12 R12 R12 R12 R12 R12 R12	K 140 K 60 K KARSI K TO DI K AND I	0.29 0.09 HON 74 SUG MEGA PI PI MASSES. 0.120	0.08 0.03 GEST AN ADDITIO COULD EXPLAIN 0.030 AVERAG	KARSHON 74 HBG KARSHON 74 HBG NAL I=O STATE, ST DISCREPANCIES IN	COLORAD PIAP, DEL+4A2 + 4-9 PIAP, DEL+4A2 PONGLY COUPLED I BRANCHING RATIOS SCALE FACTOR OF 1.4)	2 2/74* 2/74*	ALSO 68 GARFINKE 70 GORDON 70 JOHNSTON 70 KRUSE 70 NEF 70 SUTHERLA 70	LAMSA PL 33 B 536 COO 1195 179 NP B 24 253 PHILAD.CONF.P.359 THESIS+PRIV.COMM. PHILAD.CONF.P.369	GARFINKEL,AMMANN,CARMONY,YEN: (PUROUE. THESIS,ILLINDIS (ILL KEY,PRENICE,YOON,GARFINKEL,+ (TNTO+WISC. U.KRUSE, PARTIAL WAVE ANALYSIS (ILL) CERN BOSON SPECTROMETER GROUP (CERN) G.SUTHERLAND,INTERFERING RESONANCE(GLASGOW)))))))))
R12	FIT	0.120	0.027 FROM FI' ISEE IDEOGRAM I HEIGHTED RUN ERROR Valuerro read	(ERROR INCLUDES SELON) ERAGE = 0.120 SCALED BY 1 hes above of weight, and scale fac er's convenienc were actually of	<pre>> scale FACTOR OF 1.3) > ± 0.030 .4 sphed average, tor are for the ie only. The Tocessed by a</pre>		AGUILAR 71 ALSTON-GATI BARNHAM 71 BEKETOV 71 BINNIE1 71 BINNIE2 71 BUNNE2 71 BUNNE2 71 CRENNEL 71 FARBER 71 FOLEY 71 GRAYER 71 LYNCH 71	PR D 4 2583 PL 34 B 156 PRL 26 1494 SJNP 4 765 PL 36 B 257 PL 36 B 257 PL 36 B 257 PL 36 B 537 PL 26 1663 PL 35 B 185 NP B 29 237 PRL 26 413 PL 34 B 333 UCH 20022 AND 71	AGUILAR-BENITEZ, EISNER,KINSON (BNU + BARBARO,BUHL,DERENZO,EPPERSON,FLATTE+(LEL + ABRANS,BUTLER,COVNE,GGLDHABER,HALL+ (LEL + SOMBKOWSKY KONDANLOV, RUTJSCHININ,+ (LICIC-SHMP) + CAMILLER, DUANE,FARUGI,BURTON,+(LOIC-SHMP) + FARLES,FAISSLER,BLIEDEN,+ NEAS-STON + GORDON,KWAN-MU LAIS,CARR (BNL + DUF,DZAKI,PLATNES,LINDENBAUM,+ (BNL-CUNY) + HVANS,JONES,SCHLEIN,BLUM,DIETL+(CERN+MPIN + MATTERDAM,COMP,GCHYCH))))))))))
			adta cons calc and ent t	rained fit prog: ulates its own v: scale factor, wh rom the values 	CHI CHI aum, which . alues of x, 5x, . ich are differ- . shown here. . N 74 HBC 1. N 74 HBC 1. 74 DBC 3. PKA 73 HBC 0. 57 22 HBC 0.	<u>SQ</u> 0 5 2 2	RINAUDO 71 ANKENBRA 72 BERENYI 72 BLODUMOR 72 DAMGARAT2 DIEBOLD 72 EISENBER 72 ESPIGAT 72 FOLEY 72 GARNJOST 72 GETTNER 72 LASSILA 72 LASSILA 72 MORSE 72	NC 5 A 239 PRL 29 1688 NP B 37 621 NP B 37 203 NC 9 A 1 UNPUBLISHED MEMO BATAY.CONF. PR D 5 15 NP B 36 93 PR D 6 747 PRIV.COMMUNIC. PREPRINT NUB2145 UNPUBLISHED MEMO PRL 28 1491 NP 8 43 77	+ BUBECKMANN, MAJOR+(TORI+BONN+DURH+NIJN+EPOL ANKENBRANDT, BRABSON, CRITTENDEH, HEINZ, +(IND PARENTICE, STEENBERG, YOON, WALKER (INTO-WHISC) BLODDWORTH, JACKSON, PRENTICE, YOON (INTO) BORAJTA, GOUSSU,+ (GENO+HILA+SACL +BCHANDINE, MARTIN (BONR+GEWA) KADIEBOLD RAPPORTEUR TALK (ANL EISENBERG, BALLAM, DAGAN,+ (REHO+SLAC+TELA) +CHESQUIERE, ILLESTOL, HONTANET (CERN+COEF) +LOVE, 0ZAKI, PLATNER, LINDENBAUM,+ (BHL-CUNY) M.ALSTON-GARNJOST (NEA) M.GETTNER (NEAS) M.SIETNER (NEAS) M.SIENCE (NEAS) M.S	9 JP
	-0. Ai	1 2 INTO (0.1 0. Omega pi pi)	3 0.5	73 HBC 0.1 73 HBC <u>0.1</u> 10.1 (CONL) =0.0	9 2 EU 69)	AMMANN 73 ANKEBRAN 73 ANTIPOV 73 ANTIPOVI 73 ANTIPOV2 73 BLOODWOR 73 CASON 73	PR D 7 1345 PR D 8 2785 NP 8 63 175 NP 8 63 153 NP 8 63 141 AIX CONF. PAPER NP 8 64 14	+CARMONY, GAREINKEL, GUTAY, HILLER+(PURD-IUPU) ANKEBRANDT, BRABSON, CRITTENDEN, HEINZ+ (IND) +SCOLI, BUSNELLO, FOCACCI+ (CERN+SERP) +SCOLI, BUSNELLO, FOCACCI+ (CERN+SERP) +SCOLI, BUSNELLO, FOCACCI+ (CERN+SERP) BLODDNGTH, FRIDMAN, JACKSON, PATEL+ (IPPC) HADDEN, BISHOP, BISMAS, KENNEY+ (IPAC)))) JP) JP))

Data Card Listings Mesons For notation, see key at front of Listings. A2(1310). E(1420), X0(1430), X1(1440), f'(1514)

CHALOUPK 73 PL 46 8 211 CHALOUPKA,DOBRZYNSKI,FERRANDO,LOSTY,+(CERN) CONFORTO 73 PL 45 8 154 +MOBLEY,KEY,PERPOST.+ (EFI+NAL+TNTO+HISC)	29 X(1430) WIDTH (MEV)-
DEFDIX 73 PL 43 8 141 + DOBRZYNSKI,ESPIGAT,NASCIMENTO,+ (COFF) EISENSTE T3 PR D 7 278 EISENSTEINS,SCHULT2,FASCOLI,IDFRED0,+ (ILL) KEY 73 PRL 30 503 + CONFORTO,NOBLEY,+ (TATO-EFI+NAL+MISC) TIGET 73 NR 8.43 248 + TUNAN MICHO ECHANOR LINE MICHONENDIAL	WRHO0 MODE W (90.0) BETTINI 66 DBC 0 0. PBAR N.5 PI 2/74 W (100.) DEFDIX 73 HBC 0 0. PBAR P.5 PI 2/74
DIAZ 74 PRL 32 260 +DIBIANCA, FICK INGER, ANDERSON, + (CASE+CARN) KARSHON 74 PRE-UNIS 74/2 PH +MIKSMARE, DITIUT, FISKARGE, ONNAT, + (SECHAR)	W
****** ********* ******** ******** *****	W AVG 46.4 17.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
	****** ********* ********* ***********
E(1420) 6 E (1420, JPG=A +) I=0 BAILLON 67 FAVDR JP=0 DAHL 67 FAVOR 1+ BUT DD NOT	BETTINI 66 NC 42A 695 +CRESTI,LIMENTANI,LORIA,PERUZZO+(PADO+PISA) Abrams 67 Prl 18 620 +KEHOE,GLASSER,SECHI-ZORN,WOLSKY (MARYLAND)
EXCLUDE 2-, 0 LORSTAD 69 FIND 0- OR 1+.	BARLON 67 NC 50 A 701 +MONTANET,D-ANDLAU+ (CERN+CDEF+IRAD+LIVP) BEUSCH 67 PL 25 B 357 +FISCHER,GOBBI,ASTBU+ (ETH2+CERN) DONALD 69 NP B 11 551 +EDWARDS,BURAN,BETTINI,+ (LIVP+CSLOPPADD)
6 E MASS (NEV)	DEFOIX 73 AIX CONF.PAPER +ESPICAT,+ (CDEF+CERN)
M 1425- 7. BATLLON 67 HBC 0. OPBAR P 1 M 1420. 20. DAHL 67 HBC 1.6-4,2 PI-P M 1423.0 10.0 FRENCH 67 HBC 3-4 PBAR P M 310 1420. 7. LORSTAD 69 HBC 0.7 PB P, 4,5=60DY M 170 1398. 10. DEFOIX 72 HBC 0.7 PBAR P,7 PI M 280 1406. 7. DUBDC 72 HBC 1.2 PBAR P,7 KMPI 1 M 280 1406. 7. DUBDC 72 HBC 1.2 PBAR P,2K4PI 1 . M AVG 1415.5 4.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2)	$\begin{array}{c c} & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \end{array}$
	38 X(1440) MASS (MEV)
₩ 80. 10. BAILLON 67 HBC 0. PBAR P 1 ₩ 60.0 20.0 DAHL 67 HBC 1.6~4.2 PI-P 1	1/66 M B POSSIBLY SEEN ABPAMS 67 HBC 4.25 K- P 5/67 0/66 M B THE AUTHORS ASSOCIATE THE PEAK WITH THE F PRIME, BUT BACKGROUND
W 45. 20. FPENCH 67 HBC 3-4 PBAR P W 310 60. 20. LORSTAD 69 HBC 0.7 PB P, 4,5-BODY W 170 50. 10. DEFDIX 72 HBC 0.7 PBAR P,7 PI	6/67 M B ESTIMATION IS DIFFICULT 9/69 M 1412. 23. BARLON 67 HBC 1.2 PBAR P 5/67 1/73 M 1439.0 5.0 6.0 BEUSCH 67 DSPK 5,7,12 PT-P 9/67
W 280 50. 12. DUBDC 72 HBC 1.2 PBAR P,2K4PI 1. W AVG 59.8 6.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1)	2/72 M (1425.0) FOLEY 71 CNTR - 20.3 PI- P,K- KS 2/71 M (1405.) DEFOIX 73 HBC 0 0.7 PBAR P,7 PI 1/74
	M AVG 1437.5 5.3 AVERAGE (ERROR INCLUDES SCALE FACTOR DF 1.0)
DECAY MASSES	38 X(1440) WIDTH (MEV)
P2 E INTO K K#(892) 497+ 892 P3 E INTO K K#R PI 497+ 139 P3 E INTO P1 P1 RHO 134+ 134+ 770	M 100. 70. BARLOM 67 HBC 1.2 PEAR P 5/67 W 43.0 17.0 18.0 BEUSCH 67 OSPK 5,7,12 PI-P 9/67 W (20.0) DR LESS FOLEY 71 CNTR - 20.3 PI-P,K-KS 2/71
P4 E INIO DELLA PI P5 E INTO ETA PI PI 548+ 139+ 139	W (40.) DEFOIX 73 HBC 0 0.7 PBAR P.7 PI 1/74 W W AVG 46.4 17.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
é E BRANCHING RATIOS	****** ******** ******** ******** ******
R1 E INTO (KBAR K*(892) + C.C.)/(K KBAR PI) (P1)/(P2) R1 .50 .10 BAILLON 67 HBC 0.0 PBAR P 11	REFERENCES FOR X(1440) 1/66 ABRAMS 67 PRL 18 620 +KEHDE+GLASSER+SECHI-ZORN,WOLSKY (MARYLAND)
R2 E INTO (PI PI RHO) / (K KBAR PI) (P3)/(P2) R2 (2.0) OR LESS DAML 67 HBC 0 1.6-4.2 PI- P.10	BARLUM 67 NC 50 A 701 +*MONTANET,D'ANDLAU+ (CERN+ODEFFIRAD+LIVP) BEUSCH 67 PL 25 B 357 +FISCHER,GOBBI,ASTBURY+ (ETHZ+CERN) 0/66 FOLEY 71 PRL 26 413 +LOVE,OZAKI,PLATNER,LINDENBAUM++ (BNL+CUNY)
R3 5 INTO (ETA 2 PIJ/(K KBAR PI) R3 (1.5) OR LESS CL=.95 FOSTER 68 HBC - 0.0 PBAR P	DEFDIX /3 PL 43 B 141 +DOBRZYNSKI,ESPIGAT,NASCIMENTO,+ (CDEF) 9/69 ****** ******** ******** **********
P4 E INTO (DELTA PI)/(ETA PI PI) P4 = 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	[f'(1514)]
****** ******** ******** ********* *****	
REFERENCES FOR E	H 14(1680-0) CRENNELL 66 HBC 6.0 PI- P 8/66
DARASH 67 PR 156 1399 BARASH, KIRSCH, MILLER, TAN (COLUMBIA) DAHL 67 PR 153 1377 HARDYHESSKIRZ-MILLER (LRLII JP MILCA (S PR 164 1374) HILLER (LRLII JP	M B BACKROUND ESTIMATION DIFFICULT. M 1515-0 7.0 AMMAR 67 HBC 5.5 K-P 9/67
FPENCH 67 NC 52A 438 +KINSON+MCDONALD+RIDDIFORD+ ((CEN+BIRM)	M S SUPERSOED BY AGUILAR 72 M 100 1519-0 7. AGUILAR 72 HBC 3-9,4-6 K- P 12/72
LORSTAD 69 N 68 14 63 BEUTINI 69 N 62 A 1038 LORSTAD 69 N 68 14 63 BLORSTAD 04 NDLAL BETAUZA B	M 47 1521. 7. VIDEAU 72 HBC 10.K+P 12/72 M 47 1521. 7. VIDEAU 72 HBC 4.K-P,L FPRIME 12/72
CHAPMAN 72 NP B 42 1 CHAPMAN 72 NP B 42 1 CHAPMAN 72 NP B 42 1 DEFORT 72 ND B 44 125 CHAPMAN 72 ND B 44 125 CHAPMAN 72 ND B 74 125 CHAPMAN 72 ND 75 CHAPMAN 72 ND 75 CHAPMAN 75 C	AVG 1916.1 2.8 AVERAGE (EKROR INCLUDES SCALE FACTOR OF 1.0)
DUBOC 72 NP B 46 429 +GOLDBERG, MAKONSKI, DONALD,+ (LPNP+LIVP)	13 F PRIME WIDTH (NEV)
X (1420)	W B BACKGROUND ESTIMATION DIFFICULT. W BACKGROUND ESTIMATION DIFFICULT. W 35.0 25.0 AMMAR 67 HBC 5.5 K-P 9/67
$ \begin{array}{c} \Lambda_0(1430) \\ \rightarrow K_0 K_0 0 \\ \end{array} $	W S // (87.0) (15.0) BARNES 67 HBC 4.6, 5. K- P 12/72 W S SUPERSEDED BY AGUILAR 72 W 100 69. 22. AGUILAR 72 HBC 3.9,4.6 K- P 12/72
PEAKS SEEN IN (KSKS) SPECTRA QUOTED UNDER X(1440) (I=1) AS WELL.	W 46 28. 15. CCLLEY 72 HBC 10.K P 12/72 W E 47 40. 20. VIDEAU 72 HBC 4.K-P,L FPRIME 12/72 W E ERROR INCREASED BY US.SEE TYPED NOTE ON K* MASS. 12/72
	W AVG 39.9 9.7 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
29 X(1430) MASS (MEV) MRHOD RHOD MCDE	13 F PRIME PARTIAL DECAY MODES
m (1410-0) BETTINI 66 DBC 0 0. PBAR N.5 PI 2 M (1435-) DEFOIX 73 HBC 0 0. PBAR P.5 PI 2	/74* /74* PI F PRIME INTO PI+ PI- 139+ 139
M B POSSIBLY SEEN ABRAMS 67 HBC 4.25 K- P 5 M B THE AUTHORS ASSOCIATE THE PEAK WITH THE F PRIME, BUT BACKGROUND	P2 F P PRIME INTO K K B3 4 974 697 93 F PRIME INTO K 84 892 92 93 92 P3 F PRIME INTO K 84 892 P3 F PRIME INTO K 84 892 P3 892 P3 F PRIME INTO K 84 892 P3 892
то сълглятили із рітріїсції М 1412. 23. Вакіом 67 нвс. 1.2 рвак р 5 1439-0 5.0 6.0 BEUSCH 67 OSPK 5,7,12 рі-р 9	P> F PRIME INTO PI FIA 139+ 139+ 548 /67 P6 F PRIME INTO PI KBAR 139+ 497+ 497 /07 P7 F FRIME INTO PI+ PI+ PI- 139+ 139+ 139
M AVG 1437.5 5.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.4)	
	13 F PRIME BRANCHING RATIOS R1 F PRIME INTO (PI+ PI-)/(K KBAR) (P1)/(P2)
	R1 (0.2) OR LESS CL∞.67 AMMAR 67 HBC 5.5 K-P 9/67 R1 (0.36) OR LESS CL=.95 AGUILAR 72 HBC 3.9,4.6 K- P 12/72

 $f'(1514), F_1(1540), \rho'(1600), A_3(1640)$

Mesons

R3 R3 F PRIME INTO (ETA ETA)/(K KBAR) (0.50) OR LESS BARNES (P4)/(P2) 4.6, 5.0 K- P 67 HBC 10/67 F PRIME INTO (PI PI ETA)/(K KBAR) (0-3) OR LESS CL-6T AMMAR 67 HBC (0-25) (0.13) BAANES 67 HBC SUPERSEDED BY AGUILAR 72 (0.44) OR LESS CL-95 AGUILAR 72 HBC R4 R4 (P5)/(P2) 10/67 R4 R4 R4 4.6. 5.0 K- P 10/67 A A 3.9,4.6 K- P 12/72 F PRIME INTO (PI K KBAR + K K*(892))/(K KBAR) (0.4) DR LESS CL=.67 AMMAR 67 HBC (0.35) OR LESS CL=.95 AGUILAR 72 HBC R5 R5 R5 (P6+P3)/(P2) 67 HBC 72 HBC 10/67 3.9.4.6 K- F F PRIME INTO (PI+ PI+ PI- PI-)/(K KBAR) {0.32} OR LESS CL=.95 AGUILAR 72 HBC R6 R6 (P7)/(P2) 3.9,4.6 K- P 12/72 ******* REFERENCES FOR F PRIME BARNES 65 PRL 15 322 +CULWICK, GUIDONI, KALBFLEISCH, GOZ+(BNL+SYRA) CRENNELL 66 PRL 16 1025 + KALBFLEISCH,LAI,SCARR,SCHUMANN + (BNL)I 67 PRL 18 620 67 PRL 19 1071 67 PRL 19 964 68 PRL 21 1705 +KEHDE,GLASSER,SECHI-ZORN,WOLSKY (MARYLAND) +DAVIS,HWANG,DAGAN,DERRICK + (NMES+ANL) JP +DORNAN,GOLDBERG,LEITNER + (BNL+SYRACUSE)ICJP +DARNES,CRENWELL,FLAMINIO,GOLDBERG,+ (BNL) ABRAMS BARNES 8.LDRSTAD.D.ANDLAU,ASTIER.+ (CDEF+CERN) JP +ERSKINE,PALER.+ (BIRM+GLAS+LDIC+MPIM+OXF) LORSTAD 69 NP 8 14 63 SCOTTER 69 NC 62 A 1057 AGUILAR-BENITEZ,CHUNG,EISNER,SANIOS (BNL) +JOBES,RIDDIFORD,GRIFFITHS,+ (BIRM+GLAS) +VIDEAU,ROUGE,BARRELET,DEBRION,+(EPOL+SACL) AGUILAR 72 PR D 6 29 COLLEY 72 NP 8 50 1 VIDEAU 72 PL 41 8 213 ********* **** F₁(1540) 47 F1 (1540, JPG= 1 1=1 $\rightarrow KK\pi$ JP = 2-,1+ FAVOR5D 47 F1 MASS (MEV) ADERHOLZ 69 HBC + 8 PI+ P.KKBARPI.11/69 AGUILAR 69 HBC 0.7PBARP.KKBARPI 11/69 DUBOC 71 HBC 0 1.1-1.2 PBAR P . 2/72 10(1490.0) 142 1540.0 25(1543.0) (20.0) (3.0) 47 F1 WIDTH (MEV) ADERHOLZ 69 HBC + 8 PI+ P.KKBARPI 11/69 AGUILAR 69 HBC 0.7PBARP,KKBARPI 11/69 DUBOC 71 HBC 0 1.1-1.2 PBAR P 2/72 10 (85.0) (39.0) 142 40.0 15.0 25 (16.0) (10.0) 47 F1 PARTIAL DECAY MODES DECAY MASSES 134+ 497+ 497 892+ 497 F1 INTO K KBAR PI F1 INTO K*(892) KBAR ----- ------REFERENCES FOR F1 +BARTSCH,+ (AACH+BERL+CERN+CRAC+WARS) +BARLOW,JACOBS,D ANDLAU,ASTIER+ (CERN+CDEF) +BARLOW,JACOBS,D ANDLAU,ASTIER+ (CERN+CDFF) +GQLDBERG,MAKOWSKI,TOUCHARD,+ (IPNP+LIVP) ADERHOLZ 69 NP B 11 259 AGUILAR 69 PL 29 B 379 AGUILAR 69 NP B 14 195 DUBOC 71 PL 34 B 343 +CHURCH,LYS,MURPHY,RING,VANDER VELDE (MICH) +GOLDBERG,MAKONSKI,DONALD,+ (LPNP+LIVP) CHAPMAN 72 NP B 42 1 DUBOC 72 NP B 46 429

 $\rho'(1600)$ 65 RHD PRIME(1600, JPG=1-+) I=1 $\rightarrow 4\pi$

The ρ' was first seen in

 γ (real or virtual) $\rightarrow \rho'^0 \rightarrow \rho^0 \pi^+ \pi^-$

with the $\pi^+\pi^-$ pair apparently in an S wave (BINGHAM 72, SILVESTRINI 72, DAVIER 73). Evidence for a 2π decay comes from phase-shift analysis of $\pi^-p \rightarrow \pi^-\pi^+n$ data (HYAMS 73). This evidence has been characterized as "plausible, though not yet compelling" (GRAYER 74).

The mass and width values listed below are only indicative, because for such a broad peak they are extremely dependent on the parametrization chosen (SMADJA 72, ROOS 73). Note also that the mass dependence of the width will be strongly affected by the inelastic channels with their rather high thresholds.

Data Card Listings For notation, see key at front of Listings.

65 RH0	PRIME MASS (MEV)	
M (1600.) APPROX.	BARBARINO 72 OSP	0 E+ E- TO 4 PI 1/73
M \$ 400(1500.)	SMADJA 72 HBC SMADJA 72 HBC	0 9.3 GAM P.P 4P1 12/72
M N (1620.) (30.) M N FITTED VALUES DEPEND	DAVIER 73 STRO STRONGLY ON ASSUMED SHAPE	0 6-18 G P.P 4PI 1/74 OF RESONANCE,
M N BACKGROUND AND PHASE M 1590. 20.	SPACE HYAMS 73 ASPI	0 17 PI-P.N PI+PI- 1/74
M AVERAGE MEANINGLESS (SCA	LE FACTOR = 3.0)	
65 RHD	PRIME WIDTH (MEV)	
W 400 650. 100. W (350.) APPROX.	BINGHAM 72 HBO Silvestri 72 OSP	0 9.3 GAN P.P 4PI 12/72 0 E+ E- TO 4 PI 1/73
W S 400 (600.) W S EXPTL. FULL WIDTH AT	SMADJA 72 HBC HALF MAX. LATER FITS GIVE	: 0 9.3 GAM P,P 4PI 12/72 N BY BINGHAM 72
W N (310.) (70.) W N SEE NOTE N ABOVE	DAVIER 73 STRO	C 0 6-18 G P.P 4PI 1/74
W H (180.) (50.) W H QUESTIONABLE PARAMET	HYAMS 73 ASPH RIZATION OF MASS-DEP. WIDTH	0 17 PI-P,N PI+PI- 1/74
65 RHU	PRIME PARTIAL DECAY MODES	
P1 RHO PRIME INTO RHO PI P2 NEUTRAL SHO PRIME INT	PI D ATL & CHARGED RT MODES	139+ 139+ 770
P3 RHO PRIME INTO RHO RH P4 RHO DRIME INTO RI PI	0	770+ 770
P5 RHO PRIME INTO KBAR K	G A	493+ 493
P7 RHO PRIME INTO PI+ PI	- PIO PIO	139+ 139+ 134+ 134
	T+ PI-1/(4 PI. ALL CHARGED)	(91)/(92)
RIS DOMINANT	BARBARINO 72 OSP BINGHAM 72 HBC	0 E+E- TO 4 PI 1/73
RIS DOMINANT RIS THE PI PI SYSTEM IS	DAVIER 72 STR	0 4.5-18. G P.P4PI 1/73
R2 RHO PRIME INTO (RHO O	RH0 01/(RH0 0 PI+ PI-)	(P3)/(P1)
RZ NONE (FORBIDO	EN BY I=1)BINGHAM 72 HBC	0 9.3 GAM P.P 4PI 1/73
R3 RH0 PRIME INTO (PI+ P R3 (-2) OR LESS R3 (0.14) OR LESS	2 SIGMA BINGHAM 72 HB ESTIMATE DAVIER 73 STR	(P41/(P2) C 0 9.3 GAM P.P 2PI 1/73 C 0 6-18 G P.P 4PI 1/74
R4 RHO PRIME INTO (KBAR	K)/(4 PI, ALL CHARGED)	(P5)/(P2)
R5 RHO PRIME INTO (PI+PI	-1/TOTAL	(P4)
R5 0.25 0.05 R5 F (0.15) OR LESS	HYANS 73 ASP EISENBERG 73 HBC	0 17 PI-P+N PI+PI- 1/74
R5 E ESTIMATED USING OPE	MODEL.	
R6 RHO PRIME INTO (PI+ F R6	1- PIO PIO}/(4PI, ALL CHARC	GED) (P7)/(P2)
R6 (1.) CR LESS	ESTIMATE DAVIER 73 STR	C 0 6-18 G P.P 4P1 1/74
***** ******** *******	******** ******************************	** ********* *******
DAVIER 69 SLAC PUB 666	+DERADO. FRIES. LTU. MOZI	EV. ODIAN + (SLAC) G
ALVENSIE 71 PRI 26 273	ALVENSI EBEN-BECKER-BERTRI	M.CHEN.+(DESY+NIT) G
BRAUN 71 NP B30 213 BULIDS 71 PBL 26 149	+FRIDMAN, GERBER, GIVERNA +BUSZA-KEHOF-BENISTON-+	UD++ (STRASBOURB) G
DAVIER 71 CORNELL CONF.PA	P +DERADO, FRIES, LIU, MOZLEY	ODIAN, PARK, + (SLAC) .
BACCI 72 PL 388 551 Barbarin 72 LNC 3 689	+PENSO, SALVINI, STELLA, BAN BARBARINO, CERADINI, + (1	DINI-CE(ROMA+FRAS) JPC RAS+ROMA+PADO+UMD)IGJP
BARTOLI 72 PR D 6 2374 BINGHAM 72 PL 418 635	+FELICETTI,OGREN,+ +RABIN,ROSENFELD,SMADJA,	(FRAS+ROMA+NAPL)IGJP (OST+(LBL+UCB+SLAC)IGJP
BRAMON 72 LNC 3 693	+GRECO (THEORETICAL PAPE	(FRASCATI)
EISENBER 72 PR D 5 15	EISENBERG, BALLAM, DAGAN, +	(REHO+SLAC+TELA)
SILVESTR 72 BATAV.CONF.	V.SILVESTRINI RAPPORTEUR	TALK (FRASCATI)
CEDADINI 73 DI 43 D 341	ACONVERSI EKSTAND COTI	
DAVIER 73 NP 8 58 31	+DERADO+FRIES+LIU+MOZLEY	ODIAN,PARK++(SLAC)
HYAMS 73 NP B 64 134	+JONES,WEILHAMMER,BLUM,D	ETL++ (CERN+MPIM)
PARK 73 NP 8 58 45	H.J.KKEUZER, A.N.KAMAL J.C.H.PARK	(MPIN) JP
RUUS 73 PREPRINT 63	M.ROOS	(HELSINKI)
UN41ER 14 NP	0+988728+01845+8LUM+D181	
****** ******** ********	******* ******* ******	** ********

A3(1640) 34 A3 (1640, JPG=2--) 1 = 1

The $A_3(1640)$ is seen as a bump in the diffraction-like process $\pi N \rightarrow (\pi \pi \pi)N$. The dominant effect is a ~ 300 MeV wide enhancement in the $J^P = 2^- f \pi$ S-wave system, starting from $f \pi$ threshold. Neither additional (narrower) structure in the 3π mass distribution, nor other decay modes, have been clearly established. There appears to be little variation of

the $J^{P} = 2^{-} f \pi$ phase in the A₃ mass region (ANTIFOV 73, ASCOLI 73). The situation thus resembles that of the A_4 with however some additional complications:

• The A3 region is not well described by the Decklike model of ASCOLI2 73.

• THOMPSON 74 have performed a partial-wave analysis of the $\pi^+\pi^+\pi^-$ system from 13 GeV/c $\pi^+ p \rightarrow \pi^+ \pi^+ \pi^- p$. They claim evidence for a rotation of the 2⁻ $f\pi$ S wave in the Argand diagram.

• ANTIPOV1 73 observe some evidence for an enhancement in the 2^{+} fm P wave with M~1.75 GeV, Γ ~ 200 MeV. The relative phases are not inconsistent with a resonance interpretation.

34 A3 MASS (MEV)
 Dist Nass (NELT)

 Dist 600.0)
 FORINO
 65 DBC

 Disto.0
 VETLITSKY 66 HBC
 1640.0

 Disto.0
 District
 BALTAY

 Disto.0
 District
 BALTAY

 Disto.0
 District
 BALTAY

 Disto.0
 District
 BHC

 Disto.0
 District
 BHC

 Disto.0
 District
 BHC

 Disto.0
 District
 BHC

 Disto.0
 CASO
 69 HBC

 Disto.0
 CRENNELL
 70 HBC

 District
 District
 70 HBC

 District
 District
 70 HBC

 District
 District
 71 HBC

 District
 25.
 CASO
 72 HBC
 04.5 PI+ 0 - 4.7 PI- P + 7, 8.5 PI+ P + 8. PI+ P.3PI P - 8.0 PI-P, PI-F + 5.1 PI+0.3PI++ - 11 PI-P - 11 PI-P, PI-F - 6.7 PI-P,PI-F 30(1600.0) 20 1630.0 1630. 1660.0 1610. 10/66 6/68 8/69 8/69 11/67 5/70 5/70 5/70 5/70 1/71 297 1673.0 (1680.1 M 71 HBC 71 DBC 72 HBC 72 HBC - 4.45 PI- P 13.PI+ D.D(3PI)+ 11.7 PI+ P 13.,20. PI- P 11/71 (1672.0) 1600. 260 1660. 50. 25.
 1600.
 50.
 PALER
 71
 DBC
 +
 13.P1+
 D.(3P1)+

 1601.
 25.
 CASO
 72
 H8C
 +
 11.7
 P1+
 P.(1658.)

 16158.1
 (8.)
 HARRISON
 72
 H8C
 13..20.P1 P

 16158.3
 (8.)
 HARRISON
 72
 H8C
 13..20.P1 P

 EVIDENCE FOR A SUBSTANTIAL OECAY INTO 3PI CLATHED
 1650.
 30.
 ANTIPOVI
 73
 CATR
 25..40.P1 P

 1660.
 10.
 ASCOLI
 73
 H8C
 5.-25.P1 P.P
 A3

 1600.
 10.
 THOMPSON
 74
 H8C
 +
 13.P1+
 P.P
 A3

 1600.
 10.
 THOMPSON
 74
 H8C
 +
 13.P1+
 P.P
 A3

 FROM A FIT TO JP=2 F
 13.
 P
 P
 P
 P
 14.8
 P
 P
 P
 14.9
 P
 P
 P
 P
 P
 12/72 1/74* 1/74* 2/74* ρ AVG ----- ----20 (100.) VETLITSKY 66 HBC - 4.7 PI-P 170.) (40.) BALTAY 68 HBC - 7, 8.5 PI+ P 115.0 45.0 BALTAY 68 HBC + 7, 8.5 PI+ P 115.0 45.0 BALTAY 68 HBC + 7, 8.5 PI+ P 115.0 45.0 BALTAY 68 HBC - 8.0 PI-P PI-I 207 (240.0) (50.1) ARMSA 68 HBC - 8.0 PI-P PI-I 207 (240.0) (50.1) ARMSA 68 HBC - 8.0 PI-P PI-I 207 (240.0) (50.0) ARMENISE 69 DBC + 5.1 PI+0.3PI+I BACKGROUND SUBTRACTION MOLE-DEPENDENT, (130.0) CASO 69 HBC - 11.0 PI-P, PI - F (130.0) CASO 69 HBC - 11.0 PI-P, PI - F 137.0) BACKGROUND SUBTRACTION DIFFICITION HBC - 6.7 PI-P, PI-F BACKGROUND SUBTRACTION DIFFICITION HBC - 4.45 PI-P 200. T0 400. CASO 72 HBC + 13.7 PI + DOL3PI) 200. T0 400. CASO 72 HBC + 11.7 PI+P 153.0 (20.1) (10.1) HARRISON 72 HBC - 13.20.0 PI-P FIT ASSUMES AN ADDITIONAL PEAK AT 1830 MEV. EVIDENCE FOR A SUBSTANTIAL DECAY INTO 3PI CLAIMED 300. 50. ANTIPOVI 73 HBC - 5.-25.FI-P, PA 310. 40. THOMPSON 74 HBC + 13. PI+P, P A3+ EVIDENCE FOR A SUBSTANTIAL DECAY INTO 3PI CLAIMED 310. 40. THOMPSON 74 HBC + 13. PI+P, P A3+ EVIDENCE FOR A SUBTANTIAL DECAY INTO 3PI CLAIMED FROM A FIT T0 JP-2-F PI EXAGE MEANINGLESS (SCALE FACTOR = 1 * * 6/66 6/68 8/69 11/67 м 5/70 5/70 6/68 6/68 5/70 1/71 1/71 1 J 11/71 12/72 12/72 1/74* 1/74* 2/74* 5.-25.PI- P.P A3 13. PI+ P.P A3+ P AVERAGE MEANINGLESS (SCALE FACTOR = 1.6) 34 A3 PARTIAL DECAY MODES A3 INTO 3 PI A3 INTO RHO PI A3 INTO ETA PI A3 INTO 5 PI A3 INTO K K4(892) A3 INTO K KBAR PI A3 INTO K KBAR A3 INTO FPI A3 INTO OMEGA PI DECAY MASSES 134+ 134+ 134 134+ 770 134+ 548 P1 P2 P3 P5 P6 P8 P9 497+ 892 497+ 497+ 134 497+ 497 1270+ 134 782+ 134+ 134 INTO OMEGA PI PI

34 A3 BRANCHING RATIOS

R2 R2 R2 R2 R2

$A_3(1640), \omega(1675)$

R3 A3+- INTO (PI+- F)/(ALL	PI+- PI+ PI-)	(P8)/(P1C)
R3 (WITH F R3 INDICATION SEEN	LUBATTI 66 HLBC	16 PI- 11/66
R3 (0.59)FOR JP=2-	BARTSCH 68 HBC	+ 8. PI+ P,3PI P 8/69
R3 (0.20)FCR JP=0-	BARTSCH 68 HBC	+ 8. PI+ P.3PI P 8/69
R3 (0.35) (0.20)	BALTAY 68 HBC	+ 7-8.5 PI+P . 5/68
R3 (0.76) (0.24)	(0.34) ARMENISE 69 DBC	+ 5.1 PI+D.3PI++- 5/70
R3 CONSISTENT WITH	1.0 CRENNELL 70 HBC	- 6. PI- P,F PI . 5/70
R3 (+85) OR MORE C	La.95 PALER 11 DBC	• 13
P5 A3+- INTO (PI+- ETA)/(A	LL PI+- PI+ PI-)	(P3)/(P1C)
R5 (0.09) OR LESS	BALTAY 68 HBC	+ 7-8.5 PI+P 5/68
R5 (0.10) OR LESS	CRENNELL 70 HBC	- 6. PI- P.F PI 5/70
R6 A3+- INTO (PI+- 2PI+ 2P	I-)/(ALL PI+- PI+ PI-)	(P4C)/(P1C)
R6 (0.1) CR LESS	BALTAY 68 HBC	+ 7,8.5 PI+ P 6/68
R6 10.101 OK LESS	CRENNELL TO HOU	
RB A3+- INTO (RHO PI)/(F P	1)	(P2)/(P8) - 11 P1- P 5/70
K8 0.05 0.37	0.05 (430 87 P50	- 11
R9 A3+- INTO (PI+- PI+ PI-	-)/(F P1)	(P1C-P8)/(P8)
R9 0.06 0.47 R9 POSSIBLY SEEN	HARRISON 72 HBC	- 13.,20. PI- P 12/72
RIO A3+- INTO (UNCORREL.PI4 RIO M (.05) OR LESS O	PI+ PI-}/(ALL PI+- PI+ L=.95 PALER 71 DBC	+ 13, PI+D,D(3PI)+ 11/71
RIO M MODEL DEPENDENT FIT		11/71
****** ******** *********	****** ******** *******	* ******** *******
	REFERENCES FOR A3	
FORINO 65 PL 19 68	+GESSAROLI+ (BGNA+BA	RI+FIRZ+ORSA+SACL)
FOCACCI 66 PRL 17 890	CERN MISSING MASS SPECTRO	METER GROUP (CERN) METER GROUP (CERN)
LUBATTI 66 THESIS BERKELEY	H.J.LUBATTI	(LRL)1-2-
VETLITSK 66 PL 21 579	VETLITSKY, GUSZAVIN, KLIGER	,ZOLGANOV+ (ITEP)
DUBAL 67 Nº 83 435	CERN MISSING MASS SPECTRO	METER GROUP (CERN)
ALSO 68 THESIS 1456	L.DUBAL	(GENEVE)
BALTAY 68 PRL 20 887	+KUNG+YEH+FERBEL+ (CO	LU+ROCH+RUTG+YALE)I=1
BARTSCH 68 NP B 7 345	+KEPPEL,KRAUS,+	(AACH+BERL+CERN) JP
FERBEL 68 PHILA.CONF.335	T.FERBEL	(ROCHESTER)
10FFREDO 68 PRL 21 1212	+BRANDENBURG, BRENNER, EISE	NSTEIN+ (HARVARD)
LAMSA 68 PR 166 1395	+CASUN+BISWAS+DERADU+GRUV	ES+ (NUTREDAME)
ARMENISE 69 LNC 2 501	+GHIDIN1,FORINO,CARTACCI+	(BARI+BGNA+FIRZ)
BARNES 69 PRL 23 142 CASD 69 LNC 2 437	+CONTE.TOMASINI.CANTORE+	(GEND+MILA+SACL)
ALSO 68 CASD		
BRANDENB 70 NP 816 369	+BRENNER . I OF FREDO . JOHNSON	+KIM+ (HARVARD)
CRENNELL TO PRL 24 781	+KARSHON, LAI, SCARR, SIMS	(8NL)
CHIEN 70 PHILAD.CONF.P.275 NIVASHIT 70 PR D 1 771	C.Y.CHIEN, REVIEW MIYASHITA.VON KROGH-KOPEL	(JOHNS HUPKINS) MAN.LIBBY (COLO)
BEKETOV 71 SJNP 4 765 PALER 71 PRI 26 1675	+SOMBKOWSKY,KONOWALOV,KRU +BADEWITZ,BARTON,MILLFR.P	TSCHININ++ (ITEP] JP ALFREY+TEBES(PURD)
FREER TI THE ED TOTY		
ALEXANDE 72 NP B 45 29	ALEXANDER, BAR-NIR, BENARY, +EDRIND, CARTACCI.+	DAGAN,+ (TELA) (BARI+BGNA+FIRZ)
CASO 72 NP 8 36 349	+MADDOCK,BASSLER+(DURH+GE	NO+DESY+MILA+SACLI
HARRISON 72 PRL 28 775	+HEYDA, JOHNSON, KIM, LAW, MU	ELLER,+ (HARV)
SALLDERG 12 NP 8 41 397	THARE I SUN HE TUA JUHN SUN K	LOTLANT (MARV)
ANTIPOV1 73 NP 8 63 153	+ASCOLT, BUSNELLO, FOCACCI,	+ (CERN+SERP) JP
ANTIPUVZ 73 NP 8 63 141 ASCOLI 73 PR D 7 669	INTERNAT. COLLABORATION	T ILERNITSERPI JP (ILL+) JP
ASCOLI 2 73 PR D 8 3894	+JONES+WEINSTEIN+WYLD	(ILL) JP
THOMPSON 74 PRL 32 331	+BADEWITZ,GAIDOS,MCILWAIN	+PALER++ (PURD) JP
****** ******** ******* **	****** ******** *******	* ********* ********
******	****** ******** *******	······
lω(1675)		
	(1675.JPG= ~) [=0. FORME	RLY PHI(1675).
	GED 1973.	

This resonance overlaps in its 3π mode with the A₃, but in some experiments one can establish the decay mode $\rho^0 \pi^0$, i.e. I = 0. MATHEWS 71 suggest J^{P} = Normal. The decays into 5π and $\omega \pi^{+}\pi^{-}$ need further confirmation [see also the entry X(1690)].

			45 DMEGA(16	75) MASS (MEV)			
м		1636.0	0 20.0	ARMENISE	68 DBC	0 5.1 PI+D	9/68
M		1670.0	0 20.0	KENYON	69 DBC	8 PI+ D,3PI 2P	8/69
M		(1640-0	00)	ARMENISE	70 D8C	9. PI+ D	1/71
Ň	G	(1616.0	0) (30.0)	GORDON	70 D8C	0 4.2 PI+ D	1/71
H.	Ť 1	00 1679.0	0 17.0	MATTHEWS	71 HBC	06.95 PI D.2P 3PI	1/71
M	6	NOT CERT	ATN TE ONEGA(167	51 OBSERVED IN	THIS EXP	ERIMENT	
H.	0 1	50(1680.	(20.)	BI DODWORT	73 HBC	5.5 P1+P.P1+P(5P1)0	1/74*
м		00 1678.	14.	DIAZ	74 DBC	0 6.PI+N.P(3PI)0	1/74*
M	F	FROM (RH	D PT) MODE				
M		00 1660-	13.	D147	74 DBC	0 6.PI+N.P(5PI)0	1/74*
M	5.	FROM CON	EGA PI PI) MODE				
M	-						
M	AVG	1666.	3 7.2 A	VERAGE (ERROR)	INCLUDES	SCALE FACTOR OF 1.0)	

95

Mesons $\omega(1675), g(1680)$

Data Card Listings For notation, see key at front of Listings.

MATTHEWS 71 DBC 0 7. PI+ N

45 OMEG	A(1675) WIDTH (MEV)	
N 112.0 60.0 W 100.0 40.0 W 6 (188.0) (47.0) N 100 155.0 20.0 W G NOT CERTAIN FF OMEGAL 9 V G 100 155.0 20.0 W G NOT CERTAIN FF OMEGAL 9 0.0 W G 150 (130.) (60.) W F FOON (HND PI) MODE 39. W Q FROM (GMEGA PI PI) MO 30. W AVG 142.1 14.6	ARMENISE 68 DBC KENYON 69 DBC GRADON 70 OBC MATTHEWS 71 HBC 1675) OBSERVED IN THIS EXPE BLODDWORT 73 HBC DIAZ 74 DBC DIAZ 74 DBC AVERAGE (ERROR INCLUDES S	0 5.1 PI+D 9/68 8 PI+ 0.301 2P 80/69 0 4.2 PI+ 0 1/11 06.95 PI 0.2P 3PI 1/11 KIMENT 5.5 PI+P.PI+P(5PI)0 1/14 0 6.PI+N.P(5PI)0 1/14 0 6.PI+N.P(5PI)0 1/14 CALE FACTOR OF 1.0}
45 CMEGA	(1675) PARTIAL DECAY MODES	
P1 D4EGA(1675) INTO 3 P1 P2 D4EGA(1675) INTO 5 P1 P3 D4EGA(1675) INTO 800 P2 P4 D4EGA(1675) INTO 800 P4 P5 D4EGA(1675) INTO 800 P5	(INCL. RHO PI) (INCL. OMEGA PI+PI-) I PI+ PI- 5) PI	DECAY MASSES 134+ 134+ 134 134+ 134+ 134 134+ 134+ 134 770+ 134 782+ 134+ 134 1237+ 134
45 OMEGA	(1675) BRANCHING RATIOS	
R1 (MEGA(1675) INTO (5 PI R1 (0.10) (0.10) R1 200 0.97 0.28)/(3 PI) KENYON 69 DBC DIAZ 74 DBC	(P2)/(P1) 0 8. PI + D . 8/69 0 6.PI+N.P(5PI)0 1/744
R2 OMEGA(1675) INTO (RHO R2 G (0.75) (0.11) R2 100 (0.70) OR MORE R2 G NOT CERTAIN IF OMEGA(PI)/(3 PI) GORDON 70 DBC MATTHEWS 71 HBC 1675) OBSERVED IN THIS EXPE	(P3)/(P1) 0 4.2 PI+ D 1/71 0 6.95 PI D.2P3PI 11/71 RIMENT
R3 OMEGA(1675) INTO (OMEG R3 100 0.47 0.18	A PI+ PI-)/(RHO PI) DIAZ 74 DBC	(P4)/(P3) 0 6.PI+N.P(5PI)0 1/744
R4 OMEGA(1675) INTO (B(12 R4 POSSIBLY SEEN	35) PI)/(RHO PI) DIAZ 74 DBC	(P5)/(P3) 0 6.PI+N.P(5PI)0 1/74*
45 OMEGA	(1675) CROSS SECTIONS	+++
CS FOR A COMPILA	TION SEE MATTHEWS 71 HBC	06.95 PI D.2P 3PI 1/71
***** ******** ********	****** ******** *******	******** *******
	REFERENCES FOR DMEGA(1675)	
ARMENISE 68 PL 268 336 KENYON 69 PRL 23 146	+GHIDINI+FORINO+ (BARI+BGN +KINSON,SCARR,+	A +FIRZ +ORSAY) (BNL+UCND+ORNL)
APMENISE 70 LNC 4 199 Gordon 70 Coo 1195 179	+GHIDINI,FORINO,CARTACCI,+ THESIS,ILLINDIS	(BAR1+BGNA+FIRZ) (ILL)
MATTHEWS 71 PR D 3 2561 Matthew1 71 LNC 1 361	+PRENTICE,YOON,CARROLL,+ +PRENTICE,YOON,CARROLL,+	(TNTG+WISC) (TNTG+WISC)
BLOODWOR 73 AIX CONF. PAPER DIAZ 74 PRL 32 260	BLOODWORTH, FRIDMAN, JACKSON +DIBIANCA, FICKINGER, ANDERSI	,PATEL,+ (IPPC) DN,+ (CASE+CARN)
****** ********* **********************	******* *******************************	******** *******

|g(1680)| 15 G (1680, JPG = 3++) I≈1

This entry contains the 2π , 4π , $\omega\pi$, $K\overline{K}$, and $K\overline{K}\pi$ peaks in the region of 1700 MeV. The spin-parity determination and the mass and width in the Meson Table come from the 2π mode. An elasticity of 26% is found at resonance in the $\pi\pi$ elastic partial-wave analysis (HYAMS 73); this is consistent with the assumption that at least some of the effects listed are due to g decay into various channels. On the other hand, some discrepancies in masses, widths, and branching ratios reported indicate that there may be more than one $I^{G} = 1^{+}$ meson in this region (BARN-HAM 70, HOLMES 72). Although we have collected all the data here under a common entry, we do not imply that they are necessarily all related.

		15 G MASS (MEV)		
м	PI+ PI- MODE				
M	1700.0	100.0	BELLINT AS HERC	0.6.1.PT=P 6.	166
M	[1640.0]		FORINO 65 DBC	0 4.5 PI+D 6	/66
м	1670.0	30.0	GOLDBERG 65 HBC	0 6 PI+D, 8 PI-P	
м	(1683.)	(13.)	ARMENISE 68 DBC	0 5 1 PI+ D 6.	168
м	1720.0	20.0	CRENNELL 68 HBC	0 6.0 PI- P 12.	/68
м	{1655.0}	(10.0)	JOHNSTON 68 HBC	0 7.0 PI- P . 6	/68
м	(1750.0)		CASO 69 HBC	0 11. PI- P,N2PI 8.	169
4	1737.0	23.0	ARMENISE 70 DBC	0 9 PI+ N 1.	/71
4	1687.	21.	STUNTEBEC 70 HOBC	0 8. PI-P.5.4 PI+D 2.	/72

MMMM	1678. 12. 1652. 13. G (1713.) (4.) G FROM PHASE SHIFT ANALYSIS OF	MATTHEWS 71 DBC 0 7. PI+ N 2/ MATTHEWS 71 HBC 0 7. PI+ P 2/ HYANS 73 ASPK 0 17 PI-P, N PI+PI- 1/ GRAYER 74 DATA. 17 PI-P, N PI+PI- 1/	72
M	1693. 8. AVG 1686.5 8.6 AVERA	GRAYER 74 ASPK O 17 PI-P,N PI+PI- 2/ SE (ERROR INCLUDES SCALE FACTOR OF 1.6)	741
	(SEE IDEDGRAM	BELOW)	
	WEIGHTED AV	ERAGE * 1686.5 * 8.6 Scaled by 1.6	
		CHISQ GRAYER 74 ASPK 0.7 MATTHEWS 71 MBC 7.1 MATTHEWS 71 DBC 0.5	
м	(2PI)+- MODE		
M M M M M M M	1640.0 25.0 (1600.) 1221650.0 35.0 (1652.0) (15.0) AVG 1643.4 20.3 AVFPA	CRENNELL 68 H8C - 6.0 PI-P 12. BARISH 69 H8C - 8 PI-P 5. BARISH 70 H8C + 8 PI-P1 5. KPAMEK 70 H8C + 8 PI-P12 PI 11. GE (ERROR INCLUDES SCALE FACTOR OF 1.0)	/68 /70 /70 /70
M M M	K KBAR + K KBAR PI MODE	EHRI TCH 66 HRC + 7.9 PT-P.K KRAR 2	172
M	K (1700.) K OBSERVED IN NEUTRAL(K* KBAR)	FRENCH 67 HBC 0 3,3.6 PBAR P 7. MDDE (G-PARITY UNKNOWN)	/67
M	F SEE FIG. 9 DF FRENCH 67 1640.0 20.0 25.0	CRENNELL 68 HBC +- 6.0 PI-P,KBAR K 12	/68
	13(1650.0) 1690.0 16.0 AVG 1673.2 23.6 AVERA	ADERHOLZ 69 HBC + 8 PI+ P,K+KO 8, ADERHOLZ 69 HBC + 8 PI+ P,KKBARPI 8, GE (ERROR INCLUDES SCALE FACTOR OF 1.8)	/69 /69
M	(4PI)+- MODE		
	1720. 15. S (1710.) (23.) S SUPERSEDED BY CASON 73	BALTAY 68 HBC + 7, 8.5 PI+ P 6/ BISWAS 68 HBC - 8. PI- P 2/ 1/	/68 /72 /74
M	J (1675.0) (10.0) B (1627.) (12.) (17.)	JOHNSTON 68 HBC - 7.0 PI- P 6. BARNHAM 70 HBC + 10 K+ P,RHO PIPI 1.	/68 /73
M	B INCLODED IN HOLMES 72 144 1680.0 40.0 90(1640.0) (20.0)	BARTSCH 70 HBC + 8 PI+ P.4 PI 4, BARTSCH 70 HBC + 8 PI+ P.42 PI 4,	/71
M	102(1689.0) (20.0) 1705.0 21.0	BARTSCH 70 HBC + 8 PI+ P,2 RH0 4, CASD 70 HBC - 11,2PI-P,RH0 2PI 5,	(71 /70
M	(1700.) 300(1710.)	BALLAM 71 HBC - 16, PI- P 2, ARMENISE 72 HBC - 9.1 PI- P,P 4PI 12, HOLMES 73 HBC + 10, 12 F P	/72 /72
M	1687. 20. F (1685.) (14.)	CASON 73 HBC - 8.,18.5 PI- P 1. CASON 73 HBC - 8.,18.5 PI- P 1.	/74 /74
M M	F FROM RHO- RHOD MODE		
M	(4PI)0 MODE	GE (ERRUR INCLUDES SCALE FACTOR OF 2.2)	
M M M	R 80 1717. 7. R SEEN IN 2.5-3 PBAR P. 2PI+2P	DANYSZ 67 HBC OSEE NOTE R BELOW 5. I-,WITH 0,1,2 PI+PI- PAIRS IN RHOO BAND	67
M M M	M (1700.0) M (1700.0) M SEEN IN 2 RHCO. NGT IN 4 PI	MAURER 70 HBC 05.7 PBAR P.7 PI 2. Braun 71 HBC 05.7 PBAR P.7 PI 11. Dutside RHO Bands.	71
M	OMEGA PI MODE		
M	1654. 24. 1630.0 11.0	BARNHAM 70 HBC + 10 K+ P,0MEGA PI 6/ CASO 70 HBC - 11.2PI-P.PI 10MEG 5/	/70
M	(1666.) (50.)	CASON 73 HBC - 8.,18.5 PI- P 1	74
M	AVG 1634-2 10.0 AVERA R PEAKS ERDM MMS. (FOR DIFFIC	GE (ERROR INCLUDES SCALE FACTOR OF 1.0) UITIES WITH MMS EXPT SEE A2 MINIREVIEW) 1.	/73
м	NR1 (1632.) (15.)	FOCACCI 66 MMS - 7-12 PI-P,P MMS 12	/72
H H H	NR2 (1700.) (15.) NR3 (1748.) (15.) N NOT SEEN BY BOWEN 72	FOCACCI 66 MMS - 7-12 PI-P+P MMS 12, FOCACCI 66 MMS - 7-12 PI-P+P MMS 12,	/72
M 	P (1700.0) (47.0)	ANDERSON 69 MMS - 16 PI- P,BACKW B,	169
	15 G WIDTH (MEV	1	
W W	PI+ PI- MODE		
WW	(40.0) 180.0 40.0	FORINO 65 DBC 0 4.5 PI+D 6/ GOLDBERG 65 HBC 0 6 PI+D, 8 PI-P	66
A A	188. 49. 200.0 100.0	ARMENISE 68 DBC 0 5.1 PI+ D 6/ CRENNELL 68 HBC 0 6.0 PI- P 12/	/68 /68
2 2 3	(200.0) (200.0) 171.0 65.0	CASO 69 HBC 0 11. PI- P . 6. CASO 69 HBC 0 11. PI- P,N2PI 8. ARMENISE 70 DBC 0 9 PI+ D 1.	, 68 /69 /71

65.0 72.

96

1678.

12.

G INTO (PI+- PIO) / (ALL PI+- PI+ PI- PIO) (P1)/(P2C) (0.08) OR LESS BALTAY 68 HBC + 7-8.5 PI+ P USING DATA OF DEUTSCHMAIN 65 ON PI+ TO PI+ PIO P 0.8 0.2 JOHNSTON 68 HBC - 7. PI- P 0.8 0.15 BARTSCH 70 HBC + 8. PI+ P (0.12) OR LESS BALLAM 71 HBC - 16. PI- P (0.21) OR LESS HOLMES 72 HBC + 10.-12. K+ P 0.35 0.11 CASON 73 HBC - 8.,18.5 PI- P 156. 36. MATTHEWS 71 DEC 0 7. PI+N 2/72 72. 36. MATTHEWS 71 HBC 0 7. PI+N 2/72 (228.) 110.1 YAMS 73 ASPK 0 17 PI-P+N PI+PI 2/74 FROM PHASE SHIFT ANALYSIS GRAYER 74 ASPK 0 17 PI-P+N PI+PI 2/74* 200. 18. GRAYER 74 ASPK 0 17 PI-P+N PI+PI 2/74* R2 R2 D R2 D R2 R2 R2 R2 R2 R2 6/68 6/68 2/72 2/72 2/72 1/73 1/74* 33333: G G 18. GRAFER 74 ASPK 0 17 PI-P.N PI+PI-17.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3) (SEE IDEOGRAM BELOW) 178.2 AVG R2 R2 R2 R2 R2 0.35 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.0) AVG 0.16 WEIGHTED AVERAGE = 178.2 ± 17.0 G+- INTO (2PI)/(2RHO) (0.48) OR LESS SUPERSEDED BY CASON 73 R 3 R 3 R 3 (P1)/(P3) 68 HBC - 8. PI- P ERROR SCALED BY 1.3 BISWAS 2/72 G+- INTO (K KBAR)/(2P1) INDICATION SEEN INDICATION SEEN (P6)/(P1) 66 HBC +-0 7.9 PI- P 67 HBC 0 4.25 K- P 68 HBC 6.0 PI- P 70 HBC + 8. PI+ P R4 R4 R4 R4 EHRLICH Abrams Crennell Bartsch 3/67 6/67 12/68 1/71 0.03 0.08 0.08 R4 R4 R4 0.080 0.026 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG R5 R5 G+- INTO (K KBAR P1)/(2P1) 0.10 0.03 (P8)/(P1) 70 HBC + 8. PI+ P 2/72 BARTSCH CHISQ G+- INTO (RHO 2PI)/(ALL 4 CONSISTENT WITH 1. 1. 0.15 0.88 0.15 (P4)/(P2) - 11 PI- P + 8. PI+ P - 16. PI- P R6 R6 R6 R6 R6 R6 · · · · · GRAYER 74 ASPK 1.5 CASO BARTSCH BALLAM 68 HBC 70 HBC 71 HBC 6/68 2/72 2/72 · · · · · · · MATTHEWS 71 HBC 8.5 MATTHEWS 71 DBC 0.4 0.94 0.11 - · · ·STUNTEBEC 70 HOBC 2.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG · · · · · · ARMENISE 70 DBC 0.0 R7 R7 R7 G+- INTO (2RHO)/(ALL 4P1) SEEN SEEN (P3)/(P2) 0 3-4 PBAR P + 7,8.5 PI+ P - 8. PI- P DANYSZ BALTAY BISWAS 67 HBC 68 HBC 68 HBC 5/68 6/68 2/72 1/74* · · · · CRENNELL 68 HBC 0.0 · · ARMENISE 68 DBC 0.0 (0.63) OR MORE R7 R7 R7 R7 R7 R7 R7 5 S · ·GOLDBERG 65 HBC 0.0 SUPERSEDED BY CASON 73 SEEN 0.7 0.15 SUPERSEDED BY CASEN 73 0-7 0-15 BARTSCH 70 HBC (0-92) CASEN ARTENISE 72 HBC (0-78) (0-33) CASEN 73 HBC ASSUMING (ALL 4PI)=(PHO RHC) + (DMEGA PI) - 7 PI-P 8. PI+ P 9.1 PI- P,P 4PI 8.,18.5 PI- P 12.8 6/68 2/72 • -(CONLEU =0.078) 12/72 -100 100 300 500 G WIDTH (MEV), PI+ PI- MODE G+- INTO (2 SHO)/(ALL SHO 2PI) 0.48 0.16 (0.75) OR MORE R 8 R 8 R 8 (P3)/(P4) 68 HBC - 11 PI- P 68 HBC - 8. PI- P (2PT)+- MODE CASO BISWAS 6/68 2/72 12/68 5/70 5/70 11/70 200.0 100.0 CRENNELL 68 HBC - 6.0 PI+ P - 8 PI- P G+- INTO (PI+- A20)/(ALL 4PI) (WITH A20 INTO (PI+ PI- PIO)) 0.40 0.20 BALTAY 68 HBC + NOT SEEN JOHNSTON 68 HBC -(0.6) (0.15) BARTSCH 70 HBC + NOT SEEN CASON 73 HBC -BARISH BARTSCH KRAMER 69 HBC 70 HBC 70 HBC (200.) R9 R9 R9 R9 R9 R9 + 8 PI+ P,2 PI + 13.1 P1+ P,2P1 122 180.0 30.0 + 7,8.5 PI+P - 7 PI- P + 8. PI+ P - 8.,18.5 PI- P 6/68 6/68 2/72 1/74* 28.7 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 181.7 Ŵ AVG K KBAR + K KBAR PI MODE G+- INTO (PI OMEGA)/(ALL 4PI) (WITH OMEGA INTO(PI+ PI- PIO)) 0.25 0.10 BALTAY 68 HBC + 7-8.5 PI+P 0.12 0.07 BALLAM 71 HBC - 16. PI-P 0.12 0.07 BALLAM 71 HBC - 16. PI-P 0.22 (0.08) CASON 73 HBC - 8.,18.5 PI-P ASSUMING (ALL 4PI)=(RHO RHO) + (OMEGA PI) G 0.184 0.050 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R10 R10 R10 R10 R10 R10 A R10 A R10 APPROX. FRENCH 67 HBC (KO K+-) 3-4 PBAR P 11/69 VALUE ESTIMATED FROM FIG. 9 (F FRENCH 67 70.0 25.0 CRENNEL 68 HBC +- 6.0 PI-P,KBAR K 12/68) ADERHOLZ 69 HBC +- 8 PI+P,K+KO 8/69 60.0 ADERHOLZ 69 HBC + 8 PI+P,KHSARPI 8/69 (120.) 5/68 6/68 2/72 1/74* ABOVE 79.0 13 (100.0) 112.0 91.7 37.2 AVG AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) RIO AVG (4PI)+- MODE G+- INTO (PI PHI)/(ALL 4PI) (0.11) OR LESS (P9)/(P2) BALTAY 68 HBC + 7+8+5 PI+P R11 R11 100. 35. (162.) (58.) (40.) SUPERSEDED BY CASON 73 6/68 2/72 1/744 6/68 BALTAY BISWAS 68 HBC + 7, 8.5 PI+ P 68 HBC - 8. PI- P 6/68 S S J SUPERSEDE BY CASON 73 JCHNSTON (90.0) (20.0) JCHNSTON NOT SEPARATED FROM 2 PI DECAY (72.1 (72.1 (29.) BARNAM IACLUDED IN HOLMES 72 BARNSCH 144 135.0 30.0 130.0) BARTSCH 102 (160.0) (30.0) BARTSCH 102 (160.0) (30.0) BARTSCH 1030 (200.) CASO CASO R12 R12 G+- INTO (PI+- 2PI+ 2PI- PIO)/(ALL PI+- PI+ PI- PIO) (0.15) DR LESS BALTAY 68 HBC + 7+8.5 PI+ P - 7.0 PI- P JCHNSTON 68 HBC 6768 J B B 70 HBC + 10 K+ P+RHO PIPI 1/73 R FPACTION INTO ONE / THREE / FIVE OR MORE CHARGED TRACKS (0.371/ (0.591/ 0.04 FCCACCI 66 MMS - 7-12 PI-P,P MMS (0.421/ (0.561/ 0.01 FCCACCI 66 MMS - 7-12 PI-P,P MMS (0.141/ (0.801/ 0.05 FCCACCI 66 MMS - 7-12 PI-P,P MMS R 1 3 R13 R1 R13 R1 R13 R2 R13 R3 BARTSCH BARTSCH BARTSCH CASO ARMENISE HOLMES CASON CASON 70 HBC 70 HBC 70 HBC 70 HBC 72 HBC 72 HBC 73 HBC 73 HBC + 8 PI+ P,4 PI + 8 PI+ P,42 PI + 8 PI+ P,2 RHO - 11.2PI-P,RHO 2PI - 9.1 PI- P,P 4PI + 10.-12. K+ P - 8.,18.5 PI- P - 8.,18.5 PI- P 2172 4/71 4/71 2/72 5/70 12/72 1/73 1/74* ****** ******** ******** ****** 300 (200.) 130. 30. 169. 70. {125.} (83.) FROM RHO- RHOO MODE SELLINI,DI CORATC,DUIMIO,FIDRINI (MILANO) M.DEUTSCHMANN ET AL (AACHEN+BERLIN+CERN) FORINO,GESSARDLI + (BDLORM+DRSAY+SACLAY) GOLDBERG+ (CERN+EPQL+ORSAY+MILANO+CEA-SACL) 48. (35.) BELLINI 65 NC 40 A 948 DEUTSCHM 65 PL 18 351. FORINO 65 PL 19 65 GOLDBERG 65 PL 17 354 1/74* 127.7 17.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG R. EHRLICH.W.SELOVE.H.YUTA (PENNSYLVANIA) CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) EHRLICH 66 PR 152 1194 FCCACCI 66 PRL 17 B90 LEVRAT 66 PL 22 714 SEGUINOT 66 PL 19 712 (4PI)0 MODE W W W 30 (40.) (12.) DANYSZ 67 HBC OSEE NOTE R BELOW. 5/67 SEEN IN 2.5-3 PBAR P. 2PI+2PI-,WITH 0,1,2 PI+PI- PAIRS IN RHOO BAND +KEHDE+GLASSER+SECHI-ZORN+WOLSKY (MARYLAND) +FRENCH+KINSOHSSIMAK+ (CERN+LIVERPOL) HEDGACI+KINZE+LECHANDIN+LEVAT+ (CERN) L-DUBAL +KINSCH+MCDONALD+RIDDIFORD+ (CERN+BIRM) ABRAMS 67 PRL 18 620 DANYSZ 67 PL 248 309 DUBAL 67 P 83 475 ALSO 68 THESIS 1456 FRENCH 67 NC 52A 442 OMEGA PT MODE 70 HBC + 10 K+ P.OMEGA PI 6/70 70 HBC - 11.2PI-P.PI OMEG 5/70 73 HBC - 8..18.5 PI- P 1/74* BARNHAM 130. 73. 43. (60.0) (194.) CASO CASON (94.) (60.) +FORINO+CARTACCI+(BARI+BGNA +FIRENZE+ORSAY)I +KUNG+YEH+FERBEL+ (COLU+POCH+RUTG+YALE)I=1 +CASON,DZIERBA,GROVES-KENNEY.+ (NDAM) BOESEBECK,DEUTSCHMANN,+(AACHEN+BERLIN+CERN) +CONTE+CONDS+DIAZ+ (GENOYA+HAMB+MILA+SACL) +KARSHOM,LAI,SCARR,SKILITCORN (BNL) +PPENTICE,STEENBERG,YOON (TORONTO+WISC)IJP ARMENISE 68 NC 54 A 999 BALTAY 68 PRL 20 887 BISWAS 68 PRL 21 50 BUESEREC 68 NP B 4 501 CASO 68 NC 54 A 983 GRENNELL 68 PL 28 B 136 JOHNSTON 68 PRL 20 1414 R PEAKS FROM MMS. (FOR DIFFICULTIES WITH MMS EXPT SEE A2 MINIREVIEW) 1/73 (21.) (30.) (38.) T SEEN BY (195.0) FOCACCI FOCACCI FOCACCI NR1 NR2 NR3 N R OR LESS OR LESS OR LESS BOWEN 72 66 MMS -66 MMS -66 MMS -7-12 PI-P,P MMS 12/72 7-12 PI-P,P MMS 12/72 7-12 PI-P,P MMS 12/72 7-12 PI-P,P MMS 12/72 NOT ANDERSON 69 MMS - 16 PI- P.BACKW 8/69 +BARTSCH,+ (AACH+BERL+CERN+JAGL+WARS) +COLLINS,BLIEDEN+ (BNL+CARN) +SELDVF,BISWAS,CASON,+ (PENN+NDAH+ROCH) +CONTE,BERZ,+ (CEND+DESYH+MAB+MILA+SACL) +GUZHAVIN,KLIGER,KOLGANOV,LEBEDEV+ (ITEP) ADERHOLZ 69 NP 8 11 259 ANDERSON 69 PRL 22 1390 BARISH 69 PR 184 1375 CASO 69 NC 62 A 755 VETLITSK 69 SJNP 9 461 15 G PARTIAL DECAY MODES DECAY MASSES 139+ 139 139+ 139+ 139+ 139+ 139 770+ 770 130+ 139+ 770 1310+ 139 497+ 497 139+ 782 497+ 497+ 139 1019+ 139 G INTO PI PI G INTO 4PI G INTO 2 RHO G INTO PI PI RHO G INTO 42 PI G INTO 42 PI G INTO MEGA PI G INTO MEGA PI G INTO K KBAR PI G INTO PHI PI ARMENISE 70 LNC 4 199 BARNHAM 70 PRL 24 1083 BARTSCH 70 NP B 22 109 CASD 70 LNC 3 707 KRAMER 70 PRL 25 396 MAURER 70 7HCSIS NO.588 STUNTEBE 70 PL 32 B 391 +GHIDINI,FORINO,CAQTACCI,+ (BARI+BGNA+FIRZ) +COLLEY,JOBES,KENYON,PATMAK,RIDDIFORO(BIRM) +KRAUS,ISNOS,GROTE-KOTZANICACH+BERL+CERN) +CONTE,TOMASINI,CORDS+(GENO+HAMB+MILA+SACL) BARTOM,GUTAY.LICHTMAN,MILLEF, [UNDUE] G.MAURER (STUMTEDECK,KENNEY,DEERY,BISMS,CASOM+INDAM) P1 P2 P4 P56 P8 P9 +CHADWICK,GUTRAGOSSIAN,JOHNSON,+ (SLAC) +RRIDMAN,GERBER,GIVENAND,KAHN,+ (STRB) +HYAMS,JONES,SCHLEIN,BLUM,+ (CERN+HPIM)JP3-PRENTICE,YOON,CARROLL,+ (TNTO+HISC)JP3- BALLAM 71 PR D 3 2606 BRAUN 71 NP B 30 213 GRAYER 71 PL 35 B 610 MATTHEWS 71 NP B 331 --------15 G BRANCHING RATIOS 5 INTO (2P1)/TOTAL (P1) (0.4) BARTSCH 70 HBC + B. PI+ P 2/72 (0.22) (0.04) MATTHENS 71 HOBC 0 7. PI+N,PI-P 2/72 OPE MODEL USED IN THIS ESTIMATION 0.26 0.02 HYANS 73 ASPK 0 17 PI-P,N PI+PI- 1/74* ARMENISE 72 LNC 4 205 BOWEN 72 PRL 29 890 CLAYTON 72 NP 8 47 81 GRAYER 72 PHIL.COMF.PRGC. HOLMES 72 PR 0 6 3336 +FORIND,CARTACCI,+ (BARI+BGNA+FIRZ) +EARLES,FAISSLER,BLIEDEN,+ (NEAS+STON) HASON,MUIRHEAD,REGOPDULDS,+ (LIVP+PATR) +HYANS,JONES,SCHLEIN,BLUM,DIETL+(CERN+MPIM) FERREL,SLATTERY,MERNER (ACCH) G INTO (2P1)/TOTAL R1 R1 R1 R1 R1

Mesons g(1680)

Mesons g(1680), X(1690), X⁻(1795), S(1930), A₄(1960) For notation, see key at front of Listings.

+ENGEL, ESCOUBES, KURTZ, LLORET, PATY, + (STRB) +BISMAS, KENNEY, MADDEN, SANDER, SHEPHARD (NDAM) +MADDEN, BISHOP, BISWAS, KENNEY, + (NDAM) +JONES, WELLHANMER, BLUM, DIETL, + (EERN+MPIM) BOBERTSON, MALKER, DAVIS (DUKE+WISC)
 APNOLD
 73
 LNC
 6
 707

 CASON
 73
 PR
 D
 7
 1971

 CASON
 73
 NP
 B
 64
 14

 HYAMS
 73
 NP
 B
 64
 134

 ROBERTSO
 73
 PR
 D
 7
 2554
 GRAYER 74 NP G.GRAYER, HYANS, BLUM, DIETL.+ (CERN+MPIM) X(1690) $\rightarrow \omega \pi \pi$ 64 X(1690) THIS ENTRY CONTAINS (DNEGA PI PI) PEAKS AROUND 1690 MEV. EVIDENCE NDT COMPELLING. ONITTED FROM TABLE. 64 X(1690) MASS (MEV) [1689.] (10.] DANYSZ 67 H8C 0 3,3.6 PBAR P 2/74* NOT SEEN IN HIGH STATISTICS EXP. OF OREN 73 1670.0 18.0 YCST 68 H8C 04.3 K−P,LMBD.5PI 2/74* 1695.0 20.0 BAANES 69 H8C 04.6 K−P,OME02PI 2/74* NOT SEEN JITH THREE TIMES BIGGER STATISTICS IN K−P 4.2 GEV/C M M M N A A A A (CHALDUPKA 741 1681.2 13.4 AVG AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 64 X(1690) WIDTH (MEV) (18.) 15.0 20. DANYSZ YOST BARNES (38.) 50.0 90. 0 3.3.6 P8AR P 1/73 04.3 K-P.LM8D.5P1 1/73 0 4.6 K-P.DMEG2P1 1/73 67 HBC Å 68 HBC 69 HBC 19.2 AVEPAGE (ERROR INCLUDES SCALE FACTOR OF 1.6) ÁVG 64.4 REFERENCES FOR X(1690)
 DANYSZ
 67 NC 51 & 801
 DANYSZ+FRENCH+SIMAK
 (CERN)

 YCST
 68 UMD T.4EPOPT849 +YDDH.EINSCHLAG.DAY,GLASSER
 (UMD)

 BARNES
 69 PAL 23 142
 +EUNUGE LISURE,FLAMIN (D1+)
 (BNL)

 DPEN
 73 ANL/HEP 7351
 +CODPEG,FIELDS,RHINES,WHITMORE,+
 (ANLOXF)

 CHALCUPK 7.4 PRIV.COMUNL
 -CEANUNC
 CERN)
 (CERN)
 (1795) 63 X- (1795, JPG=) 1=1 SEEN AS A (PBAR N) ROUND STATE IN PBAR D ANNIHILATIONS AT REST. NEEDS FURTHER CONFIRMATION.OMITTED FROM TABLE. --- -------63 X-(1795) MASS (MEV) 71 DBC - 0.PBAR D 1794.5 L.4 GRAY DECAYS TO FOUR OR MORE PIONS 1/72 -- ------63 X-(1795) WIDTH(MEV) (8.) OR LESS CL=.95 GPAY DECAYS TO FOUR OR MORE PIONS. D D 71 DBC - 0.PBAR D 1/72 REFERENCES FOR X-(1795) +HAGERT, KALDGEROPOULOS (SYRA) BOGDANOVA, DALKAROV, SHAPIRO (ITEP) +P4PADOPOULOU, KAPAGEROPOULOS, + (ATEN+SYRA)
 GRAY
 71
 PRL
 26
 1491

 BOGDANCV
 72
 PRL
 28
 1418

 GRAY
 73
 PRL
 30
 1091
 S(1930) 31 S (1930, JPG=) REGION

This entry contains the structure observed in the s-channel $N\overline{N}$ annihilations, as well as various peaks claimed in this region by production experiments. Note that part of the criticism of a resonant interpretation of the structure observed in pp backward elastic scattering (CLINE 70, D'ANDLAU 71) was based on the absence of a bump in the total pp cross section. Such a bump has now been observed by CARROLL 74. In view of the past difficulties with the S region, we prefer to wait for further clarification, before entering the S meson into the table of established resonances.

Data Card Listings

	31 S MAS	S (MEV)					
M M C M B M S M	S CHANNEL NBAR N (1940.) {8.} (1939.) (1968.) 1932. 2.	CLINE 70 HBC 0 .2574 PBAR P 2/72 DFANDLAU 71 HBC 0 .3765 PBAR P 2/72 BENVENUTI 71 HBC 0 .18 PBAR P 2/72 CARROLL 74 CNTR S CHAN.PBAR P.D 1/74:					
м с м с м с	FROM FIT OF A SINGLE CROSS SECTION / COS(OF AN ADDITIONAL STRU RESONANT INTERPRETATION	BW FORMULA TO THE PBAR P BACKWARD ELASTIC THETA) IN (9,-I.O) /. SOME INDICATIONS TURE IN BOTH DATA. ON QUESTIONED BY LYS 70 AND BIZZARRI 72 .					
м в м в м в м в	SEEN AS A BUMP IN THE BASED ON ONLY 71 EVEN NOT SEEN BY CARSON 72 BURNS 73 FIND COMPARA	PBAR P - KS KL CROSS SECTION WITH JPC=1 TS OF THIS REACTION. WITH 69 EVENTS. AIE C==1 ADD C=-1 ADDVE 700 NEV/C 1/74					
M M S M S	STATIST. SIGNIFICANT AND PBAR D CPOSS-SECT	NAPROW BUMP OBSERVED IN TOTAL PBAR P IDNS. ISOSPIN NOT KNOWN.					
M M N	PEAKS FROM PRODUCTION (1929.0) (14.0)	EXPERIMENTS CHIKOVANI 66 MMSP - 12.0 PI-P 12/72					
M N M A M A	NOT SEEN BY BOWEN 73. 1900. 40. 1973.0 15.0 SEEN IN RHO- PI+ P	BOESEBECK 68 HBC + 8 P1+ P.P1+ PIO 6/68 CASO 70 HBC - 11.2P1- P.NOTE C 5/70 I- (CMEGA AND ETA ANTISELECTED IN 4 PI SYSTEM) 5/70					
M M AVER	AGE MEANINGLESS (SCAL	E FACTOR = 1.3)					
w w c	S CHANNEL NBAR N (49.) (9.)	CLINE 70 HBC 0 .2574 PBAR P 2/72					
W C	(63.) SEE REMARKS UNDER MAS	D#ANDLAU 71 HBC 0 .3765 PBAR P 2/72 S ABDVE					
W B W S	SEE REMARKS UNDER MAS	BENVENUTI /1 HBC 0 .18 PBAR P 2/72 S ABOVE 3. CARROLL 74 CNTR S CHAN BBAR D.D. 1/74					
W Š	SEE NOTE S ABOVE.						
W N	PEAKS FROM PRODUCTION (35.0) OR LESS NOT SEEN BY BOWEN 73.	EXPERIMENTS CHIKOVANI 66 MMSP - 12.0 PI-P 12/72					
W A	216. 105. (80.0)	BOESEBECK 68 HBC + 8 PI+ P.PI+ PIO 6/68 CASO 70 HBC - 11.2PI- P.NOTE C 5/70					
W A W	SEEN IN RHO- P1+ P (52.0) OR LESS	I— (OMEGA AND ETA ANTISELECTED IN 4 PI SYSTEM) 5/70 L=.90 kraner 70 HBC + 13.1 PI+ P,2PI 11/70					
		TIAL DECAY MODES					
P1 S P2 S	INTO PI+ PI- Into PBAR P	DECAY MASSES 139+ 139 938+ 938					
***** *	******** *********	******* *******************************					
		REFERENCES FOR S					
CHIKOVAN FOCACCI BOESEBEC CLINF	66 PL 22 233 66 PRL 17 890 68 NP 8 4 501 68 PRL 21 1268	CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) BOESEBECK, DEUTSCHMANN, + (AACHEN+BERLIN+CERN) +ENGLISH, PEEDER, TERRELL, TWITTY (WISCONSIN)					
CASO CLINE KRAMER LYS	70 LNC 3 707 70 PREPRINT 70 PRL 25 396 70 PREPRINT	+CORDS,COSTA,+ (GEND,DESY,HAMB,MILA,SACL) D.CLINE,J.ENGLISH,D.D.REEDER (MISC)J +Barton,Gutay,LICHTMAN,MILLER,+ (PURDUE) J.LYS (MICCH)					
BENVENUT CLINE D≠ANDLAU PINSKI	71 PRL 27 283 71 REVIEW 71 PREPRINT 71 PRL 27 1548	RENVENUTI,CLINE,RUTZ,REEDER,SCHERER (WISC) D.CLINE,TALK AT ANL WORKSHOP JULY 71 (WISC) +ASTIER,PETRI,+ (CDEF+PISA) STEPHEN & PINSKY (UTAH+ARGONE)					
BIZZARRI BOWEN 1 CARSON DIEBOLD WOHLMUT	72 PR D 6 160 72 PRL 29 890 72 BAT.CONF.PAP.498 72 BATAV.CONF. 72 BATAV.CONF.PAP.275	+GUIDGNI,MARZANG,CASTELLI,+ (ROMA+TRST) +EARLES,FAISSLER,GLIEGEN,+ (NEAS+STON) +BUITGN-SHAFER,YAMANOTO,+ (MASA+TOKY) R.DIEGOLD RAPPORTEUR TALK (ANL) +YEE,JOHNON,PETERS,STENGER (MAMAII)					
BOWEN BURNS DONNACHI KIENZLE	73 PRL 30 332 73 PR D 8 1286 73 LNC 7 285 73 PR D 7 3520	+EARLES,FAISSLER,BLIEDEN,+ (NEAS+STON) +CONDON,DONAHUE,MANDELKERN,PRICE,+ (UCI) A.DONNACHIE,P.R.THOMAS (MANCHESTER) N.KIFNZLE (CFRN)					
CARROLL	74 PRL 32 247	+CHIANG,KYCIA,LI,MAZUR,MICHAEL,+ (BNL)					
A4 (1960) 43 A4 (1960, JPG= -) [=1							
	INITED FROM TABLE.						
Т	This entry contains the diffractive-like 3π and						
5π bu	mps in the regi	on of 1900 MeV, as well as various					
peaks	nearby. Note	that existence of an S-wave $g\pi$					
threshold bump (as continuation to A_1 and A_3) is not							
		unexpected.					

43 A4 MASS (MEV) (1900.) HUSON 68 HLBC - 16.PI-A.A 5PI 40(1960.) (30.) BASTIEN 73 DBC - 15.PI-D.D 3PI MARGINAL STATISTICAL SIGNIFICANCE. 2/74* M B B VARIOUS PEAKS (1820.) (1820.) DBSERVED IN (KS KO PIO...) WODE (G-PARITY UNKNOWN) 1829. 20. HARRISON 72 HBC - 13,20 PI-P,P 3PI 2/74*

Data Card Listings Mesons For notation, see key at front of Listings. A₄(1960),ρ(~2100),T(2200),ρ(~2275),U(2360)

A4 WIDTH (NEV)	ſ	32 SIGMA (HB) FOR FORMATION BY NUCLEON ANTINUCLEON	
W B 40 (200.) BASTIEN 73 DBC - 15.PI-D.D 3PI	2/74*	CS A {5.5} ABRAMS 70 CNTR S CHANNEL NBAR N 1/	/71
W VARIOUS PEAKS W 127. 69. HARRISON 72 HBC - 13,20 PI-P.P 3PI	2/74*	CS A FOR T=1 NBAR N CS 2.3 0.13 0.08 ALSPECTOR 73 CNTR S CHANNEL PBAR P 1/	/74+
W K (50.) (20.) FRENCH 67 HBC 0 3-4 PBAR P	7/67	****** ********* ********* ************	
***************************************		REFERENCES FOR T	
REFERENCES FOR A4		CHIKOVAN 66 PL 22 233 CERN MISSING MASS SPECTROMETER GROUP (CERN) FDCACCI 66 PRL 17 890 CERN MISSING MASS SPECTROMETER GROUP (CERN)	
FRENCH 67 NC 52A 442 +KINSON+MCDONALD+RIDDIFORD+ (CERN) HUSON 68 PL 26 B 208 +LUBATT.BELINI.BINGHAM.+ (DESA+BILAFIBI)		ALSO 69 CASO ABRAMS 67 PRL 18 1209 +COOL,GIACOMELLI,KYCIA,LEONTIC,LI,+ (BNL) ALLES-BOAZ MC 50 A 774 ALLES-BOBELLI,BOENCH, SPICK A (CEDMADDUM)C-	
BEMPORAD 71 NP 8 33 397 +DUFEY,COOLING,+ (CERN+ETHZ+LDIC+MILA) CLAYTON 72 NP 8 47 81 +MASON,MUIRHEAD,RIGOPOULOS,+ (LIVP+PATR)		CLAYTON 67 HEIDBG.CONF.P.57 +MASDN.MUIRHEAD,FILIPPASY(LIVERPOL+ATHENS) COOPER 68 PRL 20 1059 +HYMAN,MANNER,MUSGRAVE,VDYVDDIC (ANL)	
MARKISUN 72 PRL 28 775 + HHEYDA,JOHNSON,KIN,LAN,HUELLER,+ (HARV) BASTIEN 73 UPPSALA CONF. 73 +DUNN,HARRIS,LUBATI,BINGHAM,+ (SEAT+UCB) OREN 73 ANL/HEP 7351 +CODPER,FIELOS,RHINFS,WHITMORF.+ (ANI+GYE)		BRICMAN 69 PL 29 B 451 +FERRO-LUZZI,BIZARD,+ (CERN+CAEN+SACL) CASD 69 NC 62 A 755 +CONTE BENZ,A (CENDADESYAMMBANILASCA)	
****** ******** ********* ******** *****	•	KALBFLEI 69 PL 29 B 259 G.KALBFLEISCH,R.STRAND,V.VANDERBURG (BNL) MONTANET 69 LUND CONF.P.189 L.MONTANET, RAPPORTEUR (CERN)	
[a(~2100)]		ABRAMS 70 PR D 1 1917 +COOL,GIACCMELLI,KYCIA,LEONTIC,LI,+ (BNL)	
REGION		ALSO 69 CASO KALBFLEI 70 PHILAD.CDNF.P.409 G.KALBFLEISCH AND D.MILLER REVUES (BNL)	
DIFFERENTIAL CROSS-SECTIONS FOR PBAR PI 2PI. NOT SUPPORTED BY EHRLICH 72, EISENHANDLER 73.		KRAMER 70 PRL 25 396 +BARTON,GUTAY,LICHTMAN,MILLER,+ (PURDUE) BACON 71 NP B 32 66 +BHITTERWORTH,MILLER,DWELAN,A (DHELALIVO)	
OMITTED FROM TABLE.		FIELDS 71 PRL 27 1749 +COOPER,RHINES,ALLISON (ANL+OXF) YOH 71 PRL 26 922 +BARISH,CAROLL,LCBKOVICZ+ (CIT+BNL+ROCH)	
51 RHO (2100) MASS (MEV)		ALEXANDE 72 NP B 45 29 ALEXANDER,BAR-NIR,BEVARY,DAGAN,+ (TELA) BERTANZA 72 CERN 72-10 L.BERTANZA REVIEW AT CHEXBRES 72 (PISA)	
M 2086-0 38-0 ANDERSON 69 MMS - 16 PI- P, BACKW M S (2120.) NICHOLSON 69 CMP 0 7-2 6 PP 0 201	8/69	BUGG 72 PR D 6 3047 +CONDO,HART,COHN,ENDORF,+ (TENN+ORNL+CINC) CLAYTON 72 NP B 47 B1 +MASON,MUTRHEAD,RIGOPOULOS,+ (LIVP+PATR)	
M S SEE ALSO NICHOLSON 73 M 50(2070.) TAKAHASHI 72 HBC	1/73	DIDALD 72 PL 40 B 586 +GALLETLY, SOWARDS, DE BILLY, + (LIVP+LPNP) MING WA 72 NP B 51 77 +EASTMAN.CH.PARKFR.SMITH.SOPAFKA (MSU)	
		WOHLMUT 72 BAT.CONF.PAP.275 +YEE, JOHNSON, PETERS, STENGER (HAWAII)	
51 RHO (2100) WIDTH (MEV)		BACON 73 PR D 7 577 +BUTTERWORTH, (RUG+UPA) BACON 73 PR D 7 577 +BUTTERWORTH, (RHEL+LIVP) BETTINI 73 NC 15 A 563 +GARNJOST.ARIGI.+ (PADD+LBL+DFSA+TOR1)	
W (150.0) ANDERSON 69 MMS - 16 PI- P.BACKW W N (249.1 NICHUES RESOLUTION NICHUES N. 0.7-2.4 PB P.2PI W N THE MICTURES RESOLUTION	8/69 9/69	BOWEN 73 PRL 30 332 +EARLES,FAISSLER,BLIEDEN,+ (NEAS+STON) DCNALD 73 NP 8 61 333 +EDWARDS,GIBBINS,BRIAND,DUBOC,+ (LIVP+LPNP)	
W 50 (160.) TAKAHASHI 72 HBC 8. PI- P,N 2PI	1/73	KIENZLE 73 PR D 7 3520 W.KIENZLE (CERN)	
REFERENCES FOR RH0(2100)		****** ******** ********* ********* ****	
ANDERSON 69 PRL 22 1390 +COLLINS, BLIEDEN+ (BNL+CARN)		0(~2275) 52 RHO (2275, JPG= +) I=1	
EHRLICH 72 PRL 28 1147 +ETKIN.GLODIS.HUGHES.KONDO.LU.MORI.+ (YALF)		REGION NICHOLSON 69 SUGGEST IG-1+, JP-5- FROM ANALYSIS OF	
TAKAHASH 72 PR D 6 1266 TAKAHASHI,BARISH,+ (TOHO+PENN+NDAM+ANL) EISENHAN 73 PL 47 8 536 EISENHANDLER,+ (LOQM+LIVP+DARE*RHEL)		NOT SUPPORTED BY EMRLICH 72, EISENHANDLER 73. OMITTED FROM TABLE.	
****** ******** ******** ******** ******			
******* *******************************		52 RHD(2275) MASS (MEV)	
T(2200) 32 T (2200, JPG=)		M S (2290.) 18.0 ANDERSON 69 MMS - 16 PI- P, BACKW 8/ M S (2290.) NICHOLSON 69 CNTR 0 .7-2.4 PB P, 2PI 1/ M S SEE ALSO NICHOLSON 73.	'69 /74*
REGION THIS ENTRY CONTAINS VARIOUS PEAKS NEAR 2200 MEV.			
FOR REVIEWS SEE BERTANZA 72, DIEBOLD 72.		52 RH0(2275) WIDTH (MEV)	
32 T MASS (MEV)		W (25.0) OR LESS ANDERSON 69 MMS - 16 PI- P;BACKW 8/ W N (165.) NICHOLSON 69 CNTR 0 .7-2.4 PB P;2PI 9/ W N THE WIDTH INCLUDES RESOLUTION.	'69 '69
M S CHANNEL NBAR N M B 2190 10 APRAME TO CHITO E CUMUEL UNIO N		****** ******** ******** ******** ******	
M B SEEN AS BUMP IN I=1 STATE. SEE ALSO COOPER 68. M B BRICMAN (69) SEES NO BUMP, SPIN LESS THAN 5 IS SO EXCLUDED	1713	REFERENCES FOR RHO(2275)	
M K (2190-0) KALBFLEIS 69 HBC O S-CHANNEL PBARP M K SEEN IN PBAR P TO RHOO PIO. IG-1 M K NOT SEEN BY DOMAID 73.	7/69	ANDERSON 69 PRL 22 1390 +COLLINS, BLIEDEN+ (BNL+CARN) NICHOLSO 69 PRL 23 603 NICHOLSON, BARISH, DELORME,+ (CIT+ROCH+BNL)	
M 2193. 2. ALSPECTOR 73 CNTR S CHANNEL PBAR P. M S (2141.) DONALD 73 HBC O S CHANNEL PBAR P	1/74* 1/74*	EISENHAN 73 PL 47 B 536 EISENHANDLER,+ (LOOM+LIVP+DARE+RHEL) NICHOLSO 73 PR D 7 2572 NICHOLSON, DELORME,CARROLL,+ (CIT+ROCH+RNI)	
M S SEEN IN FINAL STATE (OMEGA PI+ PI-) M M AVG 2192.9 2.0 AVERAGE (FRRDR INCLUDES SCALE FACTOR OF 1.01		****** ******** ***********************	
M PEAKS FROM PRODUCTION EXPERIMENTS			
M N 12195-03 (15-03 CHIKOVANI 66 MMSP - 12-0 P[-P M N NOT SEEN 87 BOWEN 73. M 2207. 13. ALLES-BOR 67 HBC 0 5.7 PBAR P	12/72	U(2360) 33 U (2360, JPG*) I=1	
M A ALLES-BORELLI 67 SEE NEUTRAL MODE ONLY (PI+PI-PIO) M 2190-0 10-0 CLAYTON 67 HBC +- 2-5PBAR, A2+OMEGA 1	10/67	REGION THIS ENTRY CONTAINS THE BROAD BUMP DBSERVED IN THE S CHANNEL NBAR N, AND VARIOUS OTHER PEAKS,	
M C SEEN IN RHO- PI+ PI- (OMEGA AND ETA ANTISELECTED IN 4 PI SYSTEM) M 2157.0 10.0 KRAMER TO HEC + 13.1 PI+ P.2PI .1	5/70 5/70 11/70	HOSTLY CONTROVERSIAL. OMITTED FROM TABLE. FOR REVIEW SEE ASTBURY 72, DIEBOLO 72.	
M			
M AVERAGE MEANINGLESS (SCALE FACTOR = 2.0)			
M AVERAGE MEANINGLESS (SCALE FACTOR = 2.0)		33 U(2360) MASS (NEV) M S CHANNEL NBAR N	
M AVERAGE MEANINGLESS (SCALE FACTOR = 2.0) 32 T WIDTH (NEV) W S CHANNEL NBAR N		33 U(2360) MASS (MEV) M S CHANNEL NBAR N M R (2370.0) (10.0) RING 69 HBC O S-CHANNEL PBARP 11/ M R NOT CONFIRMED IN EXTENSION OF THE EXP.SEE CHAPMAN 71. M A 2300	71
M AVERAGE MEANINGLESS (SCALE FACTOR = 2.0) 	7/67	33 U(2360) MASS (MEV) M S CHANNEL NBAR N R (2370-0) I(0.0) RING 69 HBC O S-CHANNEL PBARP 11/ M R NOT CONFIRMED IN EXTENSION OF THE EXP.SEE CHAPMAN 71. 11/ M A 2550. 10. ABRAMS TO CNTR S CHANNEL NBAR N 1/ M A FOR 1-1 NBAR N N (2360.0) (230.0) DH TO HDBC -OPBAR(P,N),K*K2PI 1/	71 71 73
M AVERAGE MEANINGLESS (SCALE FACTOR = 2.0) 32 T WIDTH (MEV) 32 T WIDTH (MEV) S CHANNEL NBAR N B (B5.) ABRAMS 67 CNTR S CHANNEL NBAR N W B SEE NOTE UNDER T(2200) MASS ABOVE. W B SEE NOTE BUDDER T(2200) MASS ABOVE. W B SEE NOTE BUDDER T(2200) MASS ABOVE. W K BETWEEN 20 AND 80 MEV KALSPECTOR O S-CHANNEL PBAR M S	7/67 7/69 1/74* 1/74*	33 U(2360) MASS (NEV) M S CHANNEL NBAR N RING 69 HBC 0 S-CHANNEL PBARP 11/ M R (2370-0) (10.0) RING 69 HBC 0 S-CHANNEL PBARP 11/ M R (2370-0) (10.0) FTHE EXP-SEE CHAPMAN 1. 11/ M NOT CONFIRMED IN EXTENSION OF THE EXP-SEE CHAPMAN TI. 11/ 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1250-1 11 M N N 11 11 1250-0 11	'71 '71 '73 '73 73 74
M AVERAGE MEANINGLESS (SCALE FACTOR = 2.0) 32 T WIDTH (NEV) S CHANNEL NBAR N B (85.) K B5:WEEN 20 AND 80 NEV KALSFLEIS 69 HBC 0 S-CHANNEL PBAR P K B5:WEEN 20 AND 80 NEV KALSFLEIS 69 HBC 0 S-CHANNEL PBAR P S (8.) S SEEN IN FINAL STATE (OMEGA P1+ P1-) M S SEEN IN FINAL STATE (OMEGA P1+ P1-) M PEAKS FROM PRODUCTION EXPERIMENTS	7/67 7/69 1/74* 1/74*	33 U(2360) MASS (MEV) M S CHANNEL MBAR N R (2370.0) (10.0) RING 69 HBC O S-CHANNEL PBARP 11/ M R NOT CONFIRMED IN EXTENSION OF THE EXP.SEE CHAPMAN 71. 11/ M A CORTEL NBAR N A FOR TEL NBAR N N FOR TEL NBAR N N O EVIDENCE FOR THIS BUMP SEEN IN THE PBAR P DATA OF CHAPMAN 71. 1/ M N NO EVIDENCE FOR THIS BUMP SEEN IN THE PBAR P DATA OF CHAPMAN 71. 1/ M N NO EVIDENCE FOR THIS BUMP SEEN IN THE PBAR P DATA OF CHAPMAN 71. 1/ M N OF VIDENCE FOR THIS BUMP SEEN IN THE PBAR P DATA OF CHAPMAN 71. 1/ M I (2359.1) (2.) M PEAKS FROM PRODUCTION EXPERIMENTS M PEAKS FROM PRODUCTION EXPERIMENTS	71 73 73 73 74
M AVERAGE MEANINGLESS (SCALE FACTOR = 2.0) 32 T WIDTH (MEV) B SCHANNEL NBAR N B SEE NOTE B UNDER T(2200) HASS ABOVE. W B SEE NOTE B UNDER T(2200) HASS ABOVE. W K SETHEEN 20 AND 80 MEV KALBFLEIS 69 HBC. O S-CHANNEL PBAR P W K SETHEEN 20 AND 80 MEV KALBFLEIS 69 HBC. O S-CHANNEL PBAR P W K SETHEN 20 AND 80 MEV KALBFLEIS 69 HBC. O S-CHANNEL PBAR P W K SETHEN 20 AND 80 MEV KALBFLEIS 69 HBC. O S-CHANNEL PBAR P W K SETHEN 20 AND 80 MEV KALBFLEIS 69 HBC. O S-CHANNEL PBAR P W S SEN IN FINAL STATE (ONEGA PI+ PI-) S CHANNEL PBAR P M PEAKS FROM PRODUCTION EXPERIMENTS N (13.0) OR LESS CHIKOYANI 66 MMSP - 12.0 PI-P M N SE. ALLES-BOR 67 HBC. 0.5.7 PBAR P D	7/67 7/69 1/74* 1/74* 1/74* 1/74*	33 U(2360) MASS (MEV) M S CHANNEL NBAR N R R (2370.0) (10.0) RING 69 HBC 0 S-CHANNEL PBARP 11/ M R (2370.0) (10.0) RING 69 HBC 0 S-CHANNEL PBARP 11/ M NOT CONFIRMED IN EXTENSION OF THE EXPSEE CHAPMAN 71. 11/ M 2350. 10. ABRAMS 70 CNTR S CHANNEL NBAR N M FOR T=1 NBAR N N FOR T=1 NBAR N 1/ M N (2360.0) 125.0) 0H 70 HDBC -OPBAR(P.N),KWKZPI 1/ M N (2360.0) (2350.1) 0H 70 HDBC -OPBAR(P.N),KWKZPI 1/ M N U(2360.0) (24.0) 0H 70 HDBC -OPBAR(P.N),KWKZPI 1/ M N U(2360.0) (2354.0) 0H 70 HDBC -OPBAR(P.N),KWKZPI 1/ M N U(2360.0) (2354.0) 0H 70 HDBC -OPBAR(P.N), KWKZPI 1/ M N U(2360.0) (2354.0) 0H 70 HDBC -OPBAR(P.N), KWKZPI 1/ M I ISOSPINS 0 AND I NOT SEPARATED (2362.0) CHKOVANI 66 MMS - 12.0 PI-P 12/ M I (2324.0) (234.0)	71 71 73 73 74 74 72 69
M AVERAGE MEANINGLESS (SCALE FACTOR 2.0) 32 T WIDTH (NEV) 32 T WIDTH (NEV) W S CHANNEL NBAR N 8 (05.) ABRANS 67 CNTR S CHANNEL NBAR N 8 (05.) ABRANS 67 CNTR S CHANNEL NBAR N 9 5 SEE NOTE B UNDER T(2200) MASS ABOVE. 0 S-CHANNEL PBAR P 9 8 .0 DONALD 73 HBC 0 S CHANNEL PBAR P 9 5 SEEN IN FINAL STATE (OMEGA PI+ PI-) 9 PEAKS FROM PRODUCTION EXPERIMENTS 9 N (13.0) 0 CASO 70 PIAR P 1 130.0) CASO 70 NBC -12.0 PI-P 191-P 1 130.0) CASO 70 NBC -11.201-P PARP 1 130.0) CASO 70 NBC -11.201-P PARP 1 130.00 CASO 70 NBC 1.211-P PARP 1 68.0 22.0 KRAMER 70 HBC 1.21-P<	7/67 7/69 1/74+ 1/74+ 1/74+ 1/74+ 1/74+ 5/70 5/70	33 U(2360) MASS (MEV) M S CHANNEL NBAR N R R (2370-0) IL0-0) RING 69 HBC 0 S-CHANNEL PBARP M R (2370-0) IL0-0) RING 69 HBC 0 S-CHANNEL PBARP M NOT CONFIRMED IN EXTENSION OF THE EXP-SEE CHAPMAN 71. 11/ M 2500. L0- ABRAMS TO CHTR S CHANNEL NBAR N 1/ M FOR 1=1 NBAR N OH TO HDBC -OPBAR(P,N),K*KZPI 1/ M N (2360.0) (25.0) OH TO HDBC -OPBAR(P,N),K*KZPI 1/ M N (2360.0) (25.0) OH TO HDBC -OPBAR(P,N),K*KZPI 1/ M N (2360.0) (25.0) OH TO HDBC -OPBAR(P,N),K*KZPI 1/ M N (2360.0) (23.0) (21.0) FOR THE PBARP DAT OF CHAPMAN 71. 1/ M I (2302.0) (21.1) SEPETOR 73 CNTR S CHANNEL PBAR P M I (2302.0) (21.1) SEPETOR 73 CNTR S CHANNEL PBAR P M I (232.0) (24.0) SEPETOR 74.0 1/ M I 12302.01 (24.0) CHKOVANI 66 MMS 12.0	71 71 73 73 73 74 74 69
M AVERAGE MEANINGLESS (SCALE FACTOR = 2.0) 32 T WIDTH (MEV) B SCHANNEL NBAR N B SEE NOTE B UNDER T(2200) MASS ABOVE. W B SEE NOTE B UNDER T(2200) MASS ABOVE. W B SEE NOTE B UNDER T(2200) MASS ABOVE. W B SEE NOTE B UNDER T(2200) MASS ABOVE. W B SEE NOTE B UNDER T(2200) MASS ABOVE. W B SEE NOTE B UNDER T(2200) MASS ABOVE. W B SEE NOTE B UNDER T(200) MASS ABOVE. W B SEEN IN FINAL STATE (ONEGA P1+ PI-1) M PEAKS FROM PRODUCTION EXPERIMENTS N N (13.0) OR LESS CHIKOVANI 66 NMSP - 12.0 PI-P M 62.0 S2.0 ALLES-BOR 67 HBC 0.5.7 PBAR P M C SEEN IN RHO- PI+ PI- (OMEGA AND ETA ANTISELECTED IN 4 PI SYSTEM) 64.0 22.0 KRAMER TO HBC + 13.1 PI+ P.2PI 1 M AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) 1.0)	7/67 7/69 1/74+ 1/74+ 12/66 5/70 5/70 11/70	33 U(2360) MASS (MEV) M S CHANNEL NBAR N R R (2370.0) 110.0) RING 69 HBC 0 S-CHANNEL PBARP M R (2370.0) 110.0) RING 69 HBC 0 S-CHANNEL PBARP M R (2370.0) 110.0 RING 69 HBC 0 S-CHANNEL PBARP M NOT CONFIRMED IN EXTENSION OF THE EXPSEE CHAPMAN 71. 11/ M FOR 1-1 NBAR N A M FOR 1-1 NBAR N A M NO EUDENCE FOR THIS BUMP SEEN IN THE PBARP DOTA OF CHAPMAN 71. 1/ M 1 (2359INS 0 AND I NOT SEPARATED S CHANNEL PBARP P M 1 150SPINS 0 AND I NOT SEPARATED S CHANNEL PBARP 73. M 1 12362.0) (24.0) CHIKOVANI 66 MMS - 12.0 PI-P M 12382.01 (24.0) CHIKOVANI 66 MMS - 12.0 PI-P M 10 SEEN MEY BOUNEN 73. C 2360 ↔ 10 IS MISTAKE PRIV. COMM. FROM MUTREAD. M C 2380 ↔ 10 I SMISTAKE PRIV. COMM. FROM MUTREAD. 2370. 17. M C 2380 ↔ 10 I SMISTAKE PRIV. COMM. FROM MUTREAD. 11/ M 2320.0 17. ANDRESON 69 ASPK - 16 PI-B MSCAT M 232	71 773 773 774 774 774 774 772 69 671 73

99

Mesons U(2360), $N\overline{N}_{I=0}(2375)$, X(2500-3600)

33 U(2360) WIDTH (MEV) S CHANNEL NBAR N (140.) ABRAMS 67 CNTR S CHANNEL PBAR N 1/73 (140.) DR LESS RING 69 HBC O S-CHANNEL PBAR P 11/71 NOT CONFIGMED IN EXTENSION OF THE EXP.SEE CHAPMAN 71. (100.) DR LESS DH 70 HDBC - OPBAR[P,N],K#X2PI 11/71 ND EVIDENCE FOR THIS BUNP SEEN IN THE PBAR P DATA DF CHAPMAN 71 11/71 (165.) (18.) (8.) ALSPECTOR 73 CNTR S CHANNEL PBAR P 1/74+ ISOSPINS O AND 1 NOT SEPARATED 333333 R N 1/74* W ISOSPINS V HIG - 111 PEAKS FROM PRODUCTION EXPERIMENTS PEAKS FROM PRODUCTION EXPERIMENTS CHIKOVANI 66 MMS - 12+0 PI-P (30.0) OR LESS NOT SEEN BY BOWEN 73. (57.) (80.0) OR LESS 73 (24.) OR LESS 8/66 ANDERSON 69 ASPK - 16 PI- BKSCAT Johnson 70 HBC - 12.0 P+- P Atherton 71 HBC 0 5.7 PBAR P 11/69 1/71 2/73 ---- --33 SIGMA (MB) FOR FORMATION BY NUCLEON ANTINUCLEON (3.2) ABRAMS 70 CNTR S CHANNEL NBAR N 1/7L FOR I=1 NBAR N (2.1) (0.2) (0.1) ALSPECTOR 73 CNTR S CHANNEL PBAR P 1/74* ISOSPINS 0 AND 1 NOT SEPARATED ABRAMS 70 CNTR S CHANNEL NBAR N 1/71 A A 1 1 ****** REFERENCES FOR U(2360) CHIKOVAN 66 PL 22 233 FOCACCI 66 PRL 17 890 CERN MISSING MASS SPECTROMETER GROUP (CERN) CERN MISSING MASS SPECTROMETER GROUP (CERN) ABRAMS 67 PRL 18 1209 +COOL,GIACOMELLI,KYCIA,LEONTIC,LI,+ (BNL) Clayton 67 HEIDGG-CONF,P.57 +MASON,MUIRHEAD,FILIPPAS+(LIVERPOOL+ATHENS) Also 71 priv.com, w.Nuirhead ANDERSON 69 PRL 22 1390 BRICMAN 69 PL 29 B 451 CASO 69 LNC 3 707 PINGI 69 MICH PREPRINT RING 69 +BLESER, BIRNBAUM, EDELSTEIN, + (BNL+CARN) +FERRD-LUZZI, BIZARD, + (CERN+CAEN+SACL) +CONTE, BENZ, + (GEN0+DESY+HAMB+MILA+SACL) +CHAPMAN, CMURCH, LYS, NURPHY, YANDERVELDIHICH) JOINT PREPRINT COMBINES RINGI AND DH 70 +CODL,GIACOMELLI,KYCIA,LEONTIC,LI,+ +PETERS,STENGER,YEE J.LYS +PARKER,EASTMAN,SNITH,SPRAFKA,MA G.A.SMITH ABRAMS 70 PR D 1 1917 JOHNSON 70 UH 511 77 70 LYS 70 PREPRINT OH 70 PRL 24 1257 SMITH 70 PREPRINT (BNt) (HAWAII) (MICH) (MSU) (MSU) ATHERTON 71 CERN PHYS.71-18 +CELNIKIER.CLAYTCN.FRANEK.FRENCH.+ (CERN) CMADMAN 71 PR D4 1275 +CREEN.(YS.MURPHY.PING.+ (MICH) FIELDS 71 PRL 27 1749 +CODPER.RHINES.ALLISON (ANL+OXET) YCH 71 PRL 26 922 +BARISH.CAROLL.LCBKOVICZ+ (CIT+BNL+RDCH)
 ASTBURY
 72
 CENN
 72-10
 A.ASTBURY
 REVIEW
 AT
 CHEXBRES
 72
 (RHEL)

 DIEBOLO
 72
 BATAV.CONF.
 R.DIEBOLO
 RAPPORTEUR
 TALK
 (ANL)

 DOMALD
 72
 BAT.CONF.PP.P.205
 INTERNAT.COLABORATION
 (LIVP+)

 EASTMAN
 72
 NP
 B
 51
 29
 +HING
 MA.DL.PARKER,SMITH,SPRAFKA
 (MSU)

 MING
 MA
 72
 NP
 B
 51
 77
 +EASTMAN.DL.PARKER,SMITH,SPRAFKA
 (MSU)

 MING
 MA
 72
 NP
 BAT.CONF.PAP.275
 +YEE,JOHNSON,PETERS,STENGER
 (MAHAII)
 ALSPECTOR, COHEN, CVIJANOVICH, + +EARLES, FAISSLER, BLIEDEN, + A.DONNACHIE, P.R.THOMAS W.KIENZLE ALSPECTO 73 PRL 30 511 BOWEN 73 PRL 30 332 DONNACHI 73 LNC 7 285 KIENZLE 73 PR D 7 3520 (RUTG+UPNJ) (NEAS+STON) (MANCHESTER) (CERN) $N\overline{N}_{I=0}(2375)$ 41 N NBAR (2375, JPG=) I=0 EVIDENCE FOR RESONANCE PRELIMINARY. DMITTED FROM TABLE. ------ ------- ------- -------41 N NBAR (2375) MASS 2375. 10. ABRAMS 70 CNTR S CHANNEL NBAR N 1/71 (2359.) 12.1 ALSPECTOR 73 CNTR S CHANNEL PBIR P 1/74* ISOSPINS 0 AND 1 NOT SEPARATEO 41 N NBAR(2375) WIDTH (190.) ABRAMS 70 CNTR S CHANNEL NBAR N 1/71 (165.) (18.) (8.) ALSPECTOR 73 CNTR S CHANNEL PBAR P 1/74* ISDSPINS 0 AND 1 NOT SEPARATED ------41 N NBAR (2375) SIGMA (MB) FOR FORMATION BN CS (2.5) ABRANS 70 CNTR 1/71 CS 1 (2.1) (0.2) (0.1) ALSPECTOR 73 CNTR S CHANNEL PBAR P 1/74* CS 1 ISOSPINS O AND 1 NOT SEPARATED ------REFERENCES FOR N NBAR (2375) BRICMAN 69 PL 29 B 451 ABRAMS 70 PR D 1 1917 EASTMAN 72 NP B 51 29 MING MA 72 NP B 51 77 ALSPECTO 73 PRL 30 511 +FERRO-LUZZI, BIZARD.+ (CERN+CAEN+SACL) +COOL.GIACOMELLI.KYCIA.LEONTIC.LI.+ (BNL) +MING MA.OH.PARKER,SNITH.SPRAFKA (MSU) +EASTMAN.OH.PARKER,SNITH.SPRAFKA (MSU) ALSPECTOR.COMEN.CVIJANOVICH.+ (RUTG-VDRAJ) X(2500-3600) 46 X(2500-3600) THIS ENTRY CONTAINS VARIOUS HIGH MASS NON-STRANGE PEAKS. OMITTED FROM TABLE. The high mass region is covered nearly continuously by evidence for peaks of various widths and

decay modes (see figure). As a satisfactory grouping into particles is not yet possible, we list all the Y = 0

Data Card Listings For notation, see key at front of Listings.

bumps with M > 2400 MeV together by increasing mass. Note that ANTIPOV 72 ($\pi^- p \rightarrow pMM^-$ at 25 and 40 GeV/c) see no narrow bumps.

	'
ALEXANDER 72 $(4\pi^{+}4\pi^{-})$ BAUD 70 (MM) BAUD 70 (MM) ALEXANDER 72 $(3\pi^{+}3\pi^{-})$ ALEXANDER 72 $(4\pi^{+}4\pi^{-})$ BAUD 70 (MM) ALEXANDER 72 $(3\pi^{+}3\pi^{-})$ BAUD 70 (MM) ALEXANDER 72 $(3\pi^{+}3\pi^{-})$ BAUD 70 (MM)	
64 BAUD 70 (ΜΜ)	
\rightarrow YOST 71 (7 π) ⁺	
→ BAUD 69 (M M -)	
$\vdash \hookrightarrow \qquad \qquad SABAU \ 7I \ (K\overline{K}\pi\pi)^{T}$	
$Hard BAUD 69 (MM)$ $Hard CASO 70 (a^{-}\pi^{+}\pi^{-})$	
BAUD 69 (M M [−])	
\rightarrow ATHERTON 71 (K $\overline{K} \pi \pi$)°	
2.5 3.0 3.5	
$M \pm \Gamma/2 \text{ (GeV)}$	
Masses and widths of reported enhancements with $V = 0$ M > 2400 MeV (_O_ indicates that upper lime	i+
only was reported for the width.)	
46 X(2500-3600) MASSES AND WIDTHS (MEV)	
M 2500.0 32.0 ANDERSON 69 MMS - 16 PI- P.BACKW9 W (87.0) ANDERSON 69 MMS - 16 PI- P.BACKW9	6/69 8/69
M 66 2613. 7. ATHERTON 71 HBC 0 5.7 PBAR P W 66 (90.) OR LESS ATHERTON 71 HBC 0 5.7 PBAR P	2/73 2/73
M 550 2620, 20. BAUD 69 MMS - 810. PI- P N 550 85. 30. BAUD 69 MMS - 810. PI- P	9/69 9/69
M 2676.0 27.0 CASO 70 HBC - 11.2PI-P.NOTE C W (150.0) CASO 70 HBC - 11.2PI-P.NOTE C W C SEEN IN RHO- PI+ PI- (OMEGA AND ETA ANTISELECTED IN 4 PI SYSTEM)	5/70 5/70 5/70
M 640 2800. 20. BAUD 69 MMS - 810. PI- P N 640 46. 10. BAUD 69 MMS - 810. PI- P	9/69 9/69
M C 15 2820. 10. SABAU 71 HBC + 8. PI+ P 1 W C 15 50. 10. SABAU 71 HBC + 8. PI+ P 1 W C SEEN IN (K RBAR PI PI)+ MASS DISTRIBUTION I	1/71 1/71 1/71
M 230 2880. 20. BAUD 69 MMS - 810. PI- P W 230 (15.) OR LESS BAUD 69 MMS - 810. PI- P	9/69 9/69
M Y 43 3013. 5. YOST 71 H8C + 11.PI+ 0.P(8P1)+ 1 W Y 43 (40.) OR LESS YOST 71 H8C + 11.PI+ P.P(8G1) W Y 4.3 S.D. EFFECT . DECAY TO 7 PIONS 7	1/71 5/71 1/71
M 3025.0 20.0 BAUD 70 MMS - 10.5-13 PI- P W (25.0) APPROX. BAUD 70 MMS - 10.5-13 PI- 7	5/70
M 3075.0 20.0 BAUD 70 MMS - 10.5-13 PI- P W (25.0) APPROX. BAUD 70 MMS - 10.5-13 PI- P	5/70 5/70
M D 3080. 20. ALEXANDER 72 HBC 0 6.94 PBAR P W D 200. 70. ALEXANDER 72 HBC 0 6.94 PBAR P D DECAYS TO 3P14 3P1-	1/73 1/73
M 3145.0 20.0 BAUD 70 MMS - 10.5-15 PI- P W (10.0) OR LESS BAUD 70 MMS - 10.5-15 PI- P	5/70 5/70
M D 3370. 10. ALEXANDEP 72 HBC 0 6.94 PBAR P W D 150. 40. ALEXANDER 72 HBC 0 6.94 PBAR P D DECAYS TO 4914 4PI-	1/73 1/73
M D 3390. 20. ALEXANDER 72 HBC 0 6.94 PBAR P M D 220. 100. ALEXANDER 72 HBC 0 6.94 PBAR P D DECAYS TO 3P14 3PI-	1/73 1/73
M 3475.0 20.0 BAUD 70 MMS - 14-15.5 PI- P W (30.0) APPROX. BAUD 70 MMS - 14-15.5 PI- P	5/70 5/70
N 3535.0 20.0 BAUD 70 MMS - 14-15.5 PI- P H (30.0) APPROX. BAUD 70 MMS - 14-15.5 PI- P	5/70 5/70
M D 3600. 20. ALEXANDER 72 HBC 0 6.94 PBAR P M D 140. 20. ALEXANDER 72 HBC 0 6.94 PBAR P	1/73 1/73
****** ******** ******** **************	
REFERENCES FOR X(2500-3600)	
ANDERSON 69 PRL 22 1390 +COLLINS,+ (BML+CARN) BAUD 69 PL 308 129 CERN BAUD ALEXANDE (BCRN) ALEXANDE 70 PL 31 8 549 CERN BAUD (BCRN) ALEXANDE 70 PL 31 8 549 CERN BAUD (BCR) (BCR) GSD 70 LCEN SPECTFOMETER GROUP (CERN) (BCR) (BUCHADLI) (BUCHADLI) (BUCHADLI) (BUCHADLI) (BUCHADLI) (BUCHADLI) (BUCHADLI) (BUCHADLI) (BUCHADLI) (FSU) (FSU)	

$S=\pm 1$ MESON STATES

10 CHARGED K (494, JP=0-) I=1/2

SEE STABLE PARTICLE DATA CARD LISTINGS

K⁰

K*(892)

Κ±

11 NEUTRAL K (498.JP=0-) I=1/2 See stable particle data card listings

18 K* (892, JP=1-) I=1/2

			18 K*(89;	2) MASS (MEV)					
м	CHARGED	ONLY. TH	IS IS WHAT	APPEARS	ON MESON	TABL	F			
м		898.0	5.0		CHADWICK	63	нвс	+	1.5 K+P	
м	3870	891.0	1.0		NOJCIČKI	64	HBC	-	1.7 K-P	
м		889.5	2.5		ADELMAN	65	HBC	-	1.5 K-P	6/66
M		895.0	3.0		GELSEMA	65	нвс	-	1.5 K-P	
м		895.	3.		BOMSE	67	нвс	+	2.3 K+P	7/67
M		891.	2.		DE BAERE	67	нвс	+	3.5 K+P (KO PI+)	7/67
		892.5	2.5		DE BAERE	67	HBC	+	3.5 K+P (K+ P10)	7/67
		898.	2.		SALLSTRO	M 67	HBC	+	3. K+ P (KO PI+)	7/67
		883.	2.		SALLSTRO	M 67	HBC	+	3. K+ P (K+ PIO)	7/67
M		880	3.		BARLUW	61	HBU	+	1.2 PBAR P	2/72
M		896.0	5.0		CONSORTO	47	HOU		1.2 PBAK P	11/00
м		893.	4.		ADERHOL 7	68	нас	-	10 K- P	9/01
M		891.	4		ETCENEC1	68	HBC	-	1.3 K-P (K-PIO)	9/67
M		887.	3.		FICENECI	68	HBC	-	1.3 K-P (KOPI-)	9/67
м		890.0	5.0		FICENEC2	68	HBC	-	2.7 K- P(K-PIO)	2/69
4		892.0	3.0		FICENEC 2	68	HBC	-	2.7 K- P(KOP1-1	2/69
м		896.0	4.0		SCHWEING	R 68	HBC		4-1 K-P	9/67
M		892.0	2.0		SCHWEING	R 68	HBC	-	5.5 K-P	9/67
м		884.0	5.0		KANG	68	HBC	-	4.6 K- P	7/69
м		891.0	2.0		CRENNELL	69	DBC	-	3.9 K-N (KOPI-)	7/69
м		892.0	3.0		ERWIN	69	HBC	+	3.5 K+ P	9/69
M	2886	(894.)	(1.)		FRIEDMAN	69	HBC	-	2.1 K-P (38DY)	2/72
M	728	(892.)	(2.)		FRIEDMAN	69	нвс	-	2.45 K-P (3BDY)	2/72
	3229	(892.)	(1.)		FRIEDMAN	69	HBC	-	2.6 K-P (38DY)	2/72
	1027	1892+1	(1.)		FRIEDMAN	69	HBC	-	2.7 K-P (380Y)	2/72
	4404	897.	<u>,</u>			69	HBC	+	9. K+ P	9/69
M	1300	894.1	1.5		AGUILARI	11	HBL.	-	3.9,4.6 K- P	11/71
M	1500	074.5	1.1		LAKK	15	MBC	-	3.3 K-P.P PI- KO	2/14*
м	AVG	892.15	0.48	AVERAGE	(ERROR	INCLU	JDE S	SCAL	E FACTOR OF 1.1)	
м	NEUTRAL	ONLY. BU		ISE THIS		0766			TYPED NOTE	
M	70	897.0	10.0	/JE 11113	COLLEY	62	нас	300	2.0 PT+P	
M	200	892.0	2.0		RAFMER	63	HBC		2.3 K+P	
м	150	(885.0)			SMITH	63	HBC	č	2.3 PI-P	
м		899.	4.		BARLOW	67	HBC	č	1.2 PBAR P	11/66
м		897.	4.		BARLOW	67	HBC	0	1.2 PBAR P	11/66
M		889.0	5.0		CONFORTO	67	HBC	c	0. PBAR P	9/67
м		894.7	1.3	-	DAUBER	67	HBC	c	2.0 K- P	12/66
M		892.0	4.0		GEORGE	67	нвс	0) 5.0 K+ P	11/67
	-	893.	3.		DE WIT	68	DBC	ç	3. K- D	9/69
	F	895.	4.		-ICENEC1	68	HBC	9	1.3 K-P (K-PI+)	11/69
	E ETCENS	901.	4- 8 41 CED	CEE TYP	PICENEC2	69	нвс	c	2.7 K-P (K-PI+)	11/69
M	· · · · · · · ·	896.0	4.0	300 111			мес		A 1 K-D	0 / 1 7
		903.0	4.0		CHWEING	84 9	нас	2	5 5 K-P	9/67
M		899.0	5.0		ANG	68	HRC	č	4-5 K- P	7/69
м	10700	893.7	2.0	i	DAVIS	69	HBC	č	12. K+ P	9769
M	D 2000	890.0	1.25	1	DE BAERE	69	HBC	č	5.0 K+ P	9/69
M	D	ERROR	S ENLARGED	BY US TO	GAMMA	SORT	ſ(ŇĴ,	SEE	TYPED NOTE.	
м	4000	895.0	1.0		ABER	70	DBC	Ċ	3. K-N	5/70
м	2934	897.9	0.8		GUILAR1	71	нвс	Ċ	3.9,4.6 K- P	11/71
м	5362	898.0	0.5		AGUILARL	71	HBC	c	3.9,4.6 K- P	11/71
M	D 1700	898.4	1.3	1	BUCHNER	72	DBC	0	4.6 K+ N.K+ PI-P	12/72
м	3186	896.0	1.0	1	LEWIS	73	нас	0	2.1-2.7 K+P	2/74*
M	C F	(894.0)	(1.3)		INGLIN	73	HBC	0	2-13 K+P,K+PI-	1/74*
M	C FRC	IN POLE E	XIKAPOLATIC	IN, USING	WORLD K	P DS	51			
	AVC	896.51	•••••	AVERACE	(58808		INEC		5 546 7 00 of 1 of	

(SEE IDEOGRAM BELOW) WEIGHTED AVERAGE = 896.51 ± 0.60

ERROR SCALED BY 1.9

w

Note on K*(892) Masses and Mass Differences

(1) <u>Impossibly small errors</u> are reported by some experiments. We use simple "realistic" tests for the minimum errors on the determination of mass and width from a sample of N events:

$\delta_{\min}(m) = \frac{\Gamma}{\sqrt{N}}$, $\delta_{\min}(\Gamma) = 4\frac{\Gamma}{\sqrt{N}}$.

(For detailed discussion see the April 1971 edition of this note). We have increased some unrealistic errors and scaled up some errors that are inconsistent.

(2) There are two more difficulties in measuring a mass difference $m(K^{*0}) - m(K^{*+})$ of ~7 MeV when the half-width $\Gamma/2$ of the K^* is 25 MeV:

(a) The two charges of K^* have different topologies; this introduces differences in the measuring and fitting of the events, which can also produce mass shifts.

(b) Interferences between the resonant amplitude and background can in general shift the peak in the mass spectrum by some fraction of $\Gamma/2$.

	the mass spectrum by some fraction of $\Gamma/2$.								
			18 K*(O)	- K*(+	-) MASS DIF	F. (MEV)	I		
0 0 0 0	330 1400 1600 7338	6.3 6.5 9.5 5.7	6.0 5.0 5.0 1.7		BARASH FICENEC1 FICENEC2 AGUILAR1	67 HBC 68 HBC 68 HBC 71 HBC	0 PBAR P 1.3 K- P 2.7 K- P +0 3.9,4.6 K- P	8/67 2/69 2/69 11/71	
D	AVG	6.1	1.5	AVERA	GE (ERROR I	NCLUDES	SCALE FACTOR OF 1.0)		
	*		18 K*(89)	2) WIDTI	·				
н	CHARGED	ONLY. THI	S IS WHAT	APPEAR	S ON MESON	TABLE			
W		46.0	8.0		CHADWICK	63 HBC	+ 1.5 K+P		
W	3870	46.0	3.0		WOJCICKI	64 HBC	- 1.7 K-P		
N		51.0	3.0		ADELMAN	65 HBC	- 1.5 K-P	6/66	
Ξ.		50.0	4.0		CELSENA	65 HBC	+ 3+0 K+P		
ÿ.		50.	5.		BCMSE	67 HBC	+ 2.3 K+P	7/67	
w		53.	8.		DE BAERE	67 HBC	+ 3.5 K+P (K+ PIO)	7/67	
W		68.	10.		SALLSTROM	67 HBC	+ 3. K+ P (KO PI+)	7/67	
W		47.	10.		SALLSTROM	67 HBC	+ 3. K+ P (K+ P10)	7/67	
		44.	7.		BARLOW	67 HBC	+- 1.2 PBAR P	11/66	
Ξ.		43.	7		BARLOW	67 HBC	+- 1.2 PBAR P	11/00	
Ň		58.	7.		ADERHOLZ	68 HBC	- 10 K- P	6/68	
W		58.	16.		FICENEC1	68 HBC	- 1.3 K-P (K-P10)	9/67	
W		44.	13.		FICENEC1	68 HBC	- 1.3 K-P (KOPI-)	9/67	
W		41.0	8.0		SCHWEINGR	68 HBC	- 4.1 K-P	9/67	
W		47.0	4.0		SCHWEINGR	68 HBC	- 5.5 K-P	9767	
÷.		57.0	9.0		FICENEC2	68 HBC	-2.7 K - P(K - P[0])	2/69	
ŵ.		52.0	8.0		KANG	68 HBC	- 4.6 K- P	7/69	
Ň.		(27.0)	(8.0)	(6.0)	ERWIN	69 HBC	+ 3.5 K+ P	9/69	
W		(53.)	(3.)		FRIEDMAN	69 HBC	- 2.1 K-P (38DY)	2/72	
W		(49.)	(4.)		FRIEDMAN	69 HBC	- 2.45 K-P (38DY)	2/72	
М.		(46.)	(2.)		FRIEDMAN	69 HBC	- 2.6 K-P (38DY)	2/72	
w.		(49.)	13.1		LIND	69 HBC	- 2.7 K-P (380Y)	2/12	
ŵ.	4404	54.3	2.6	2.3	AGUILARI	71 HBC	- 3.9.4.6 K- P	11/71	
Ŵ	1300	48.2	2.8		CLARK	73 HBC	- 3.3 K-P.P PI- KO	2/74*	
W									
W	AVG	49.8	1.1	AVERA	GE (ERROR I	NCLUDES	SCALE FACTOR OF 1.0)		
8	NEUTRAL	ONLY.	10.0		COLLEY	43 NBC	0.2.0.01-0		
ŵ.	200	50.0	5.0		KRAEMER	63 HBC	0 2.3 K+P		
W		53.	13.		BARLOW	67 HBC	0 1.2 PBAR P	11/66	
W		34.	8.		BARLOW	67 HBC	0 1.2 PBAR P	11/66	
W .		44.	4.		DAUBER	67 HBC	0 2.0 K- P	12/66	
ΰ.		58.	12		DE WIT	68 DBC	0 3. K- D	9/69	
ŵ.		50.0	8.0		FICENEC2	68 HBC	0 2.7 K = P(K-P!+)	2/69	
Ŵ.		48.0	8.0		KANG	68 HBC	0 4.6 K- P	7/69	
Ψ.		51.0	11.0		SCHWEINGR	68 HBC	0 5.5 K-P	9/67	
Υ.	10700	53.0	11.0		SCHWEINGR	68 HBC	0 4.1 K-P	9/67	
Ξ.	D 2000	59.2	5.0		DE BAERE	69 HBC	0 12. K+ P	9/69	
ŵ	D 2000	ERRORS	ENLARGED	BY US	TD 4*GAMMA/	SORT(N).	SEE TYPED NOTE	4104	
W	4000	54.0	3.0	43	HABER	70 DBC	0 3. K-N	5/70	
W	2934	55.8	4.2	3.4	AGUILARI	71 HBC	0 3.9,4.6 K- P	11/71	
×.	5362	48.5	2.2		AGUILAR1	71 HBC	0 3.9,4.6 K- P	11/71	
M.	0 1700	51.4	5.0		BUCHNER	72 DBC	0 4.6 K+ N.K+ PI-P	12/72	
ŵ	C	(40.5)	(1.5)		LINGLIN	73 HBC	0 2-13 K+P.K+PI-	1/74*	
w	Ċ FRO	M POLE EX	TRAPOLATI	DN, USI	NG WORLD K+	PDST		•	

AVG 50.6 1.1 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2)

Mesons

18 K#(892) PARTIAL DECAY MODES

P1 P2	K*(892) INTO K PI K*(892) INTO K PI PI	DECAY MASSES 493+ 139 493+ 139+ 139 493+ 0
	18 K*(89	21 BRANCHING RATIOS
R1 R1	K*(892) INTO (K PI PI) O (0.002)OR LESS	(/(K P1) (P2)/(P1) WOJCICK12 64 HBC - 1.7 K-P
92 R2	K*(892)+ INTO (K+ GAMM (1.6) OR LESS	4A)/TOTAL (UNITS 10**-3) (P3) CL=.95 BEMPORAD 72 CNTR + 1016. K+ A.COH 1/1
*****	******	******* ******** ******** ******** *****
		REFERENCES FOR K*(892)
ALSTON ALEXAN COLLEY	61 PRL 6 300 DE 62 PRL 8 447 62 CERN CONF 315	ALSTON,ALVAREZ,EBERHARD,GODD,GRAZIAND+(LRL) ALEXANDER,KALBFLEISCH,MILLER,G SMITH (LRL) D COLLEY,N GELFAND + (COLUMBIA+RUTGERS)
CHADWI GOLDHA KRAEME SMITH	CK 63 PL 6 309 BE 63 ATHENS CONF 92 R 63 ATHENS CONF 130 63 PRL 10 138	CHADWICK,CRENNELL,DAVIES,BETTINI+(OXF+PADD) SULAMITH GOLDHABER (LRL) R KRAEMER L MADANSKY + (JOHNS HOPKINS) SMITH,SCHWARTZ,MILLER,KALBFLEISCH,HUF+(LRL)
WOJCIC	KI 64 PR 135 8 484	STANLEY G WOJCICKI (LRL)
ADELMA	N 65 ATHENS 527	STUART LEE ADELMAN (CAVENDISH)
FERRO-	LU 65 NC 39 417	FERRO-LUZZI, GEORGE, GOLDSCHMIDT-CLER+ (CERN)
WANGLE	R 65 PR 137 8 414	WANGLER, ERWIN, WALKER (WISCONSIN)
BARASH	67 PR 156 1399	BARASH,KIRSCH,MILLER,TAN (COLUMBIA)
BOMSE	67 PR 158 1298	+BORENSTEIN+COLE+GILLESPIE+ (JOHN HOPKINS)
DAUBER	67 PR 153 1403	+SCHLEIN, SLATER, TICHO (UCLA)
DE BAE FRENCH	RE 67 NC 51 A 401	+GOLDSCHMIDT-CLERMONT+HENRI+ (BRUX+CERN) +KINSON+MCDONALD+RIDDIFORD+ (CERN+BIRM)
GEORGE	67 NC 494 9	+GOLDSCHMIDT-CLERNONT+HENRI+ (CERN+BRUX) SALLSTROM+OTTER+EKSPONG (STOCKHOLM)
ADERHO	17 68 NP 8 5 567	+DEUTSCHMANN+ (AACH+BERL+CERN+LOIC+VIENNÅ)
DE WIT	68 THESIS	S. DE WIT (AMSTERDAM)
FICENE	C2 68 PR 175 1725	FICENEC, GORDON, TROWER (ILLINOIS)
K ANG SCHWE I	68 PR 176 1587 NG 68 PR 166 1317	Y.W.KANG (IUWA) SCHWEINGRUBER,DERRICK,FIELDS+ (ANL+NWES)
CRENNE	LL 69 PRL 22 487	+KARSHON, LAI, ONEALL, SCARR (BNL)
DAVIS	69 PRL 23 1071	+DERENZO,FLATTE,ALSTON,LYNCH,SOLMITZ (LRL) +GOLDSCHMIDT-CIFRMONT,HENRI,+ (BELG+CERN)
ERWIN	69 NP 8 9 364	+WALKER, GOSHAW, WEINBERG (WISC+PRIN+VAND)
FRIEDM	AN 69 UCRL-18860 69 PR 184 1461	J.FRIEDMAN,PH.D. THESIS (LKL) +LEACOCK,RHODE,KOPELMAN,LIBBY,+ (ISU+CDLO)
LIND	69 NP B 14 1	+ALEXANDER,FIRESTONE,FU,GOLDHABER (LRL) JP
ATHERT De bae Haber	ON 70 NP B 16 416 RE 70 CERN PHYS 70 41 70 NP B 17 289	+FRANEK,FRENCH,FRISK,BEDNAR+ (CERN+PRAG) +DEBAISIEUX,DE WOLF,DUFOUR,+ (BELG+CERN) +SHAPIRA,ALEXANDER+ (REHO+SACL+BGNA+EPOL)
AGUILA	R 71 PRL 26 466	+BARNES, BASSAND, EISNER, KINSON, SAMIOS (BNL)
BARNHA	RI 71 PR D 4 2583 M 71 NP B 28 171	+EISNEK,KINSUN (BNL) +COLLEY,JOBES,GRIFFITHS,HUGHES,+(BIRM+GLAS)
BUCHNE	R 71 NP B 29 381	+DEHM, GOEBEL, GOLDSCHMIDT, + (MPIM+CERN+BELG)
MERCER	71 NP B32 381	+ANTICH, CALLAHAN, CHIEN, CDX, + (JOHN HOPKINS)
YUTA	71 PRL 26 1502	+DERRICK,ENGELMANN,MUSGRAVE (ANL+EFI)
ABRAMO	VI 72 NP B 39 189 M 72 NP B 41 1	ABRAMOVICH,CHALOUPKA,CHUNG,HILPERT,+ (CERN) + (INTERNATIONAL K+ COLLABORATION)
BEMPOR	AD 72 NP B 51 1	+BEUSCH, FREUDENREICH, + (CERN+ETHZ+LOIC)
BUCHNE	R 72 NP 8 37 114	+DEHM,CHARRIERE,CORNET,+ (MPIM+CERN+BRUX)
CHARRI	ER 72 NP 8 51 317	CHARRIERE, DRIJARD, DE BAERE, + (CERN+BELG)
DEUTSC	HM 72 NP B 36 373	DEUTSCHMANN,+ (ABCLY COLLABORATION)
ROUGE	1AN 72 PR D 5 2162 72 NP 8 44 79	ENGELMANN,MUSGRAVE,FORMAN,+ LANL+EFI) +VIDEAU,VOLTE,DE BRION,+ (EPOL+SACL)
TIECK	72 NP B 39 596	+GRIJNS, HEINEN, DE GRODT, + (NIJM+ZEEM)
BERTHO	DN 73 NP 8 63 54	+MONTANET, PAUL, BERTRANET, + (CERN+SACL)
LEWIS	73 NP B 54 432 73 NP B 60 283	+LYUNS;RADUJICIC +ALLEN;JACOBS;DANYSZ;BORG;+(LDWC+LOIC+CDEF)
LINGL	IN 73 NP 8 55 408	D+LINGLIN (CERN) +FLATTE-FRIEDMAN (LBI)
******		*****

ĸ

19 K PI S WAVE, CALLED KAPPA(750-1700 MEV)

S-Wave $K\pi$ Interactions in the Region 750 - 1700 MeV

Kπ interactions in the $I(J^P) = 1/2(0^+)$ wave can be described by the elastic phase shift δ_0^1 from the Kπ threshold (~630 MeV) up to at least 1100 MeV (BING-HAM 72). The first inelastic S-wave thresholds are Kπππ and Kη, neither of which is known to be important below 1400 MeV. Apart from the inelastic thresholds, the S-wave ππ and Kπ interactions are reminiscent of each other.

Data Card Listings For notation, see key at front of Listings.

S-wave $K\pi$ phase shift. An "up-down" ambiguity occurs at the mass of K (892), K*(1420),..., which can be resolved by precise measurement of $\sigma(K\pi)$. At K*(892), the "up" solution was ruled out by MAT-ISON 72; earlier "up" solutions are plotted only to show historical progress.

All phase-shift solutions (MERCER 71, YUTA 71, BINGHAM 72, FIRESTONE 71, 72, MATISON 72, BAKER 73, GALTIERI 73) share the following intrinsic ambiguities:

- 1) The standard modulo 180° ambiguity.
- If one amplitude is dominant [the P wave near K*(892) or the D wave near K*(1420)], then the observed S-P or S-D interference can be explain by two ambiguous S-wave solutions, known as "up" and "down". For an illustration see our 1972 edition.

The resulting 'up-down'' ambiguity of the S-wave phase shift in the K*(892) region (BINGHAM 72) was restricted by an analysis of 12 GeV/c K⁺p \rightarrow K⁺ $\pi^{-}\Delta^{++}$ (MATISON 72, GALTIERI 73) to only two points at 890 and 900 MeV, where the P wave goes through 90°. The 'up'' solution is therefore excluded, except for a possibility of a very narrow (Γ < 7 MeV) S-wave resonance. Moreover, CHUNG 72 imposes positivity on physical region K π moments, and finds a narrow resonance most unlikely.

FIRESTONE 71 and 72 and YUTA 73 have continued K π partial-wave analysis up to 1700 MeV. They find that δ_0^1 crosses 90° near 1300 MeV, and indeed shows the "up-down" ambiguity near the K*(1420).

103

Meanwhile several groups have attempted to clarify the situation around 1300 MeV. CORDS 72, FRATI 72, and ROUGE 72 give some support to the resonant S-wave interpretation of FIRESTONE 71. The other groups (AGUILAR 72, BUCHNER 72, CRENNELL 72, ENGELMANN 72, BAKER 73) agree that the S wave is important but not necessarily resonant. In analogy with the $\pi\pi$ case, where a possible ϵ pole is located several hundred MeV below the observed $\pi^0\pi^0$ peak and quite far from the real axis, the 1300 bump could also be caused by a quite distant κ pole.

			REFERENCES FOR KAPPA	
TRIPPE	68	PL 28 8 203	+CHIEN, MALAMUD, MELLEMA, SCHLEIN,+	(UCLA)
CRENNELL	69	PRL 22 487	+KARSHON+LAT+O-NEALL+SCARR	(BNL)
0000	69	PR 177 1994	+JOLDERSMA, PALMER, SAMIOS	(8NL)
GOLDBERG	69	PL 30 8 434	SABRE COLLABOR. (SACL+AMST+BGNA+RE	HO+EPOL)
SCHLEIN	69	ARGONNE CONF. 446	P.SCHLEIN	(UCLA)
FIRESTON	71	PRL 26 1460	A.FIRESTONE,G.GOLDHABER,D.LISSAUER	(LRL)
MERCER	71	NP 832 381	+ANTICH,CALLAHAN,CHIEN,COX,+ (JOHN	HOPKINSI
YUTA	71	PRL 26 1502	+DERRICK, ENGELMANN, MUSGRAVE (ANL+EFI)
AGUILAR	72	PR D 6 11	AGUILAR-BENITEZ, CHUNG, EISNER	(BNL)
BINGHAM	72	NP B 41 1	+ (INTERNATIONAL K+ COLLAB	GRATION)
BUCHNER	72	NP 8 45 333	+DEHM,CHARRIERE,CORNET.+ (MPIM+CE	RN+BRUX }
CHUNG	72	PRL 29 1570	+EISNER,AGUILAR-BENITEZ	(BNL)
CRENNELL	72	PR D 6 1220	+GORDON+KWAN-WI' LAI,SCARR	(BNL)
DTEBOLD	72	BATAV.CONF.	R.DIEBOLD RAPPORTEUR TALK	(ANL)
ENGELMAN	72	PR D 5 2162	ENGELMANN, MUSGRAVE, FORMAN, +	ANL+EFI}
FIRESTON	72	PR D 5 2188	+GOLDHABER, LISSAUER, TRILLING	(LBL)PW/
FRATI	72	PR D 6 2361	+HALPERN, HARGIS, SNAPE, CARNAHAN, +(PE	NN+CINC)
ROUGE	72	NP 8 46 29	+VIDEAU, VOLTE, DE BRION,+ (EF	OL+SACL)
MATISON	72	LBL 1537 (THESIS)	REVISED VERSION WILL GO TO PHYS.REV	. LBL
BAKER	73	IC/HEP/73/12	+BANNERJEE,CAMPBELL,HALL, ISLAM,+(LC	IC+LOWC)
CORDS	73	NP B 54 109	+CARMONY,LANDER,MEIERE,+ (PURD+L	ICO+IUPU}
GALTIERI	73	PREP.LBL 1772	+MATISON, GARNJOST, FLATTE, FRIEDMAN,	(LBL)
LINGLIN	73	NP 8 55 408	D.LINGLIN	(CERN)
YUTA	73	NP 8 52 70	+ENGELMANN, MUSGRAVE, FORMAN,+	ANL+EFI)

Q REGION, $K\pi\pi(1240-1400)$

28 Q REGION I=1/2

The main effect in the Q region is a broad bump in the $K\pi\pi$ spectrum between 1200 and 1400 MeV, i.e., not far above $K^*(892)\pi$ threshold, produced by K beams without charge exchange (for its absence in charge exchange, see WERNER 73). In particular, it has been observed in coherent K^+d interactions (FIRESTONE 72) and in coherent interactions on heavy nuclei (BING-HAM 73). The dominant J^P assignment throughout the whole region is 1^+ and I = 1/2.

The following points are relevant to the rather complex situation in the Q region:

• The broad Q peak does not have simple Breit-Wigner shape. It can be fitted at all energies by a superposition of two Breit-Wigner amplitudes (FIRESTONE 70, BARN-HAM 71, BOWLER 71, BARLOUTAUD 73).

• Although evidence for narrower states in the Q region has been reported from non-diffractive reactions (π , \bar{p} , $\bar{p}p$), these have not been clearly identified with the two Breit-Wigner amplitudes.

• DEUTSCHMANN 74 have performed a partial-wave analysis of the $K\pi\pi$ system from $K^-p \rightarrow K^-\pi^-\pi^+p$ at 10 and 16 GeV/c. They claim that more than one J^P state is required to describe the Q [and L(1770)] enhancements.

• The Q bump was observed with a similar shape in the backward direction by FIRESTONE1 72.

• In addition to the dominant modes $K^*\pi$ and $K\rho$, there is some evidence for a $K\pi\pi$ mode, with the $\pi\pi$ or the $K\pi$ system in an S wave. (ALEXANDER 69, BARNHAM 71, DAVIS 72, BARLOUTAUD 73, DEUTSCH-MANN 74).

• Analyses of the interference between the K* π and Kp modes show the relative magnitude and relative phase of the two amplitudes varying with K $\pi\pi$ mass. This is suggestive of the presence of two $J^P = 1^+$ resonances coming possibly from a mixing between the strange members of the $J^{PC} = 1^{++} ("A_1")$ and $1^{+-}(B)$ nonets (GOLDHABER 67, BARNHAM 71, BOWLER 71, GARFINKEL 71, FIRESTONE 72, BOWLER 74).

						•
		28 Q REGI	ION MASS (MEV)			
	BRODUCED BY BEA					
	1242.0	9.0	10.0 ASTIER	69 HBC	O PBAR P	. 9/69
i i	A THIS IS THE	C MESON.				
	45(1300.)		CRENNELL	67 HBC	0 6 PI- P,LK2PI	7/67
•	40(1300.)		CRENNELL	72 HBC	0 4.5PI-P,LK2PI	12/72
	PRODUCED BY K B	EAMS				
ì	12(1320.0)	(25.0)	ALMEIDA	65 HBC	+ 3-5 K+ P	12/72
•	C (1230.0)	(15.0)	BASSOMPIE	67 H8C	+ 5.K+P	11/67
•	C 35(1280.0)	(10.0)	BASSOMPIE	67 HBC	+ 5. K+ P	11/67
!	C (1320.0)	(15.0)	BASSUMPLE	67 HBL	+ 3. K+ P	11/6/
	(1270.)	APPROX .	DF BAFRF	67 HBC	+ 3.5 K+ P	7/67
i	1335.0	6.0	BARTSCH	68 HBC	10. K-P.K NPI	. 9/69
i.	(1300.)	APPROX.	BARBARD	69 HBC	+ 12.K+ P (K 2PI	9/69
4	45 1301.0	10.0	BISHOP	69 HBC	+ 3.5 K+P(K* PI)	9/69
•	21 1300.0	10.0	ERWIN	69 HBC	0 3.5 K+P(K* PI)	9/69
1	1281.		FRIEDMAN	69 HBC	- 2.612.7 K- P	9/09
2	1300.0	20	EADRED	70 HBC	+ 12.7 K+ P	. 6/70
2	(1325-0)	20.	DENEGRI	71 DBC	- 12.6 K-D.K 2PI	5/71
Å	1296.	5.	BARLOUTAU	73 HBC	- 14.3 K-P.P K-2P	2/74
4	1283.	6.	BARLOUTAU	73 HBC	- 14.3 K-P.P K02P	2/74
•	1315.	7.	BINGHAM	73 HLB	С - 5.5-12.7 СОН К-	A 2/741
1	1260.	10.	LEWIS	73 HBC	+ 2.1-2.7 K+ P	1/744
	F (1260.)	12+J EDTDHEDAL EV	ENTS (T GT 0.8)	/3 HBC	• 2.1-2.1 K+ P	1/ (4)
4	AVERAGE MEANING	GLESS (SCALE	FACTOR = 2.9)			
						-
		28 Q LOW	(QA) MASS (MEV)			
41		THENTS SPLIT	TING O REGION INT	0 110 2	EAKS	
ML						
ML	(1280.)		SHEN	66 HBC	+ 0 4.6 K+P,5 BODY	12/72
41	1260.0	10.0	ALEXANDER	69 HBC	9.0 K+ P	12/72
#L	1240.0	5.0	BARNHAM	70 HBC	+ 10.0 K+P.K 2PI	12/12
71	1293.	14.	ANDERSON	72 080	- 7.3 K- D	12/72
ML	(1260.)		DAVIS	72 HBC	+ 12. K+ P	12/72
ML	1234.	12.	FIRESTONE	72 D8C	+ 12. K+ D	2/73
ML						
ML	AVERAGE MEANIN	GLESS (SCALE	FACTOR = 1.13			
						-
		28 Q HIGH	(QB) MASS (MEV)		
мн	F FROM EXPER	IMENTS SPLIT	TING Q REGION INT	0 TWO P	EAKS	
MH.	70 1320 0	10.0	SHEN		+ 4.6 K+ P	12/72
MH	1380-0	20.0	AL EXANDER	69 HAC	9.0 K+ P	12/72
мн	1420.0	5.0	BARNHAM	70 HBC	+ 10.0 K+P.K 2PI	12/72
MH	1344.	8.	GARFINKEL	71 DBC	+ 9. K+ D	12/72
MH	1414.	15.	ANDERSON	72 DBC	- 7.3 K- D	12/72
MH	(1420.)		DAVIS	72 HBC	+ 12. K+ P	12/72
8H 80	1368.	18.	FIRESTONE	12 080	- 12. K+ U	2113
MH	AVERAGE MEANIN	GLESS (SCALE	FACTOR = 4.9			
						-

Mesons

Mesons Q, K^{*}(1420)

w W

For notation, see key at front of Listings. 28 Q REGION WIDTH (MEV) Q REGION INTO (K PI) / (K*(892) PI) (P3)/(P1) (0.21) OR LESS DE BAERE 67 HBC + 3.5 K+ P R18 R18 11/66 PRODUCED BY BEAMS OTHER THAN K MESONS 127.0 7.0 25.0 ASTIER 69 HBC 45 (60.) CRENNELL 67 HBC 40 (60.) CRENNELL 77 HBC 0 PBAR P . 9/69 0 6 PI- P 7/67 0 4.5PI-P,LK2PI 12/72 R19 Q REGION INTO (K PI PI) / TOTAL (P6) R19 201 0.22 0.08 BARTSCH 68 HBC - 10.0 K-P R19 S POSSIBLY SEEN ALEXANDER 69 HBC 9.0 K+P R19 S POSSIBLY SEEN DAVIS 72 HBC + 12. K+P R19 S HITH THE (FI PI) SYSTEM IN S-WAVE * 12. K+P 40 (60.) CRENNELL 72 HBC 0 4.5PI-P,LK2PI 12/72 PRODUCED BY K BEAMS 12 (60.0) (20.0) ALMETDA 65 HBC 3-5 K+P 12/72 C (60.0) (20.0) ALMETDA 65 HBC + 3-5 K+P 12/72 C (60.0) (20.0) BASSOMPIE 67 HBC + 5. K+P 11/67 C (60.0) (20.0) BASSOMPIE 67 HBC + 5. K+P 11/67 C SSIMPIE 67 HBC + 5. K+P 11/67 C SSIMPIE 67 HBC + 3.5 K+P 7/69 (200.1 APPROX. DE BAREARC 69 HBC + 3.5 K+P 7/69 B ADGACKGROWD SUBTRACTION. BARBARO 69 HBC + 3.5 K+PK NPI 9/69 S1. 22.4 FRIEDMAN REFERENCES FOR Q REGION PRODUCED BY BEAMS OTHER THAN K MESONS APMENTER 64 DUBNA CONF 1 577 ARMENTEROS.EDWARDS.D-ANDLAU + (CERN+CDEF) ALSO 64 DUBNA CONF 1 617 R ARMENTEROS.EDWARDS.D-ANDLAU + (CERN+CDEF) ALSO 64 DUBNA CONF 1 617 R ARMENTEROS.EDWARDS(FAN) (COLUMBIA) CFENMELL 67 PRL 19 44 STIER 69 NP 8 10 65 + MARECHAL.MONTANET.+ (COEF+CERNE/INPA+LIVP)1JP BETTINI 69 NC 62 A 1038 +CRESTI.LIMENTANI.BERTAUZA.BIGI+(PADC+PISA)I PRODUCED BY K BEAMS AL Sł AVERAGE MEANINGLESS (SCALE FACTOR = 6.9) BA BE DE 28 Q LOW (QA) WIDTH (MEV) GC WL F FROM EXPERIMENTS SPLITTING Q REGION IN HL 100.0 20.0 SHEN WL 40.0 10.0 ALEXAND WL 10.0 15.0 BARNHAN WL 10.0 15.0 BARNHAN WL 11.0 26. 18. GARFINK WL 11.1 33. ANDERSON MURS WL 11.1 33. ANDERSON MURS WL 120.1 DAVIS MUS MURS WL 188. 21. FIRESTON MURS WL AVERAGE MEANINGLESS (SCALE FACTOR = 3.1) MURS MURS MURS FROM EXPERIMENTS SPLITTING & REGION INTO TWO PEAKS 87 80 08 SHEN 66 HBC + 0 4.6 K+P,5 BODY 12/72 ALEXANDER 69 HBC 9.0 K+P 12/72 BARNHAM 70 HBC 10.0 K+P,K PI 12/72 18. GARFINKEL 71 DBC +9. K+D 12/72 DAUGESON 72 DBC -7.3 K-D 12/72 DAVIS 72 HBC +12. K+D 2/73 FIRESTONE 72 DBC +12. K+D 2/73 AL 84 81 CH CC FR WS

28 Q HIGH (QB) WIDTH (MEV) FROM EXPERIMENTS SPLITTING & REGION INTO TWO PEAKS
 70
 80.0
 20.0

 120.0
 20.0

 120.0
 15.0

 160.1
 0R LESS

 89.
 24.

 (80.1

 241.
 30.

 SHEN
 66
 HBC
 +
 4.6
 K+P
 12/72

 ALEXANDER
 69
 HBC
 9.0
 K+P
 12/72

 BARNHAM
 70
 HBC
 +
 10.0
 K+P,K
 2P1
 12/72

 GARFINKEL
 11
 BGC
 +
 K+D
 12/72

 ANDERSON
 72
 BGC
 7.3
 K-D
 12/72

 AVIS
 72
 HGC
 +
 12.
 K+P
 12/72

 FIRESTONE
 72
 DBC
 +
 12.
 K+D
 12/72
 AVERAGE MEANINGLESS (SCALE FACTOR = 2.3) -------

28 Q REGION PARTIAL DECAY MODES

DECAY MASSES 892+ 139 497+ 770 497+ 139 497+ 548 497+ 782 497+ 139+ 139 Q REGION INTO K*(892) PI Q REGION INTO K RHO Q REGION INTO K PI Q REGION INTO K ETA Q REGION INTO K OMEGA Q REGION INTO K PI PI P1 P2 P3 P4 P5 P6 28 Q REGION BRANCHING RATIOS PRODUCED BY BEAMS OTHER THAN K MESONS Q REGION INTO (K RHO)/TOTAL (UNITS OF 10++−2) (P2) 75.0 10.0 ARMENTERD 64 HBC 0.0 PBAR P 6/66 DOMINANT CRENNELL 72 HBC 0 4.5PI-P+LK2PI 12/72 R1 R1 R1 Q REGION INTO (K* PI)/TOTAL (UNITS OF 10**-2) (PI) 25.0 10.0 ARMENTERO 64 HBC 0.0 PBAR P R2 R2 6/66 Q REGION INTO (K+ PI-) / (K+O PIO+ PI-) (0.2) CR LESS CL=.90 CRENNELL 67 HBC 0 6.0 PI-P Р3 R3 7/67 Q REGION INTO (KO PI+ PI- PIO) / (K+O PIO+ PI-) (0.1) DP LESS CL=.90 CRENNELL 67 MBC R4 R4 0 6-0 PI-P 7/67

PRODUCED BY K BEAMS Q REGION INTO (K P1) / (K*(892) P1) (0.8) OR LESS Q REGION INTO K*(892) P1 AND K NO (OVERLAPPING BANDS)(P1+P Q REGION INTO K*(892) P1 AND K NO (OVERLAPPING BANDS)(P1+P 70 (1.0) 5 MEN R6 MBC + 4+6 K+P 8/66 R10 R10 R10 R10 Q REGION INTO (K OMEGA)/(K*(892) P1) (0.1) OR LESS SHEN R11 R11 (P5)/(P1) 66 HBC + 4.6 K+P 10/66 Q REGION INTO (K PI) / (K*(892) PI) (0.30) DR LESS SHEN R12 R12 (P3)/(P1) 66 HBC + 4.6 K+P 10/66 R13 R13 R13 Q REGION INTO K*(892) PI AND K RHO (OVERLAPPING BANDS) (P1+P2) BERLINGHI 67 HBC + 12.7 K+ P 200 (1.0) 7/67 R14 R14 R14 Q REGION INTC (K PI) / TOTAL (P3) (0.02) OR LESS BERLINGHI 67 HBC + 12.7 K+ P (0.02) OR LESS CL=.95 BARTSCH 68 HBC - 10.0 K- P 11/67 Q REGION INTO (K ETA) / TOTAL (P4) (0.02) OR LESS BERLINGHI 67 HBC + 12.7 K+ P R15 P15 11/67 P16 0 REGION INTO (K OMEGA) / TOTAL (P5) R16 (0.02) OR LESS BERLINGHI 67 HBC + 12.7 K+ P R16 12 0.01 0.005 BARTSCH 68 HBC - 10.0 K- P R17 0 REGION INTO (K RHO) / (K*(892) P1) (P2)/(P1) P1 P2/(P1) R17 0.91 0.25 BERLINGHI 67 HBC + 12.7 K+ P R17 0.91 0.25 BERLINGHI 67 HBC + 12.7 K+ P R17 0.91 0.25 BERLINGHI 67 HBC + 12.7 K+ P R17 701 0.4 0.1 BARTSCH 68 HBC - 10.0 K- P R17 701 0.4 0.1 BARTSCH 68 HBC - 10.0 K- P R17 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.9) ... 91.9 11/67 11/67 9/68

Data Card Listings

9/68 2/73 1/73 1/73

ALMEIDA	65	PL 16 184	ALMEIDA,ATHERTON,BYER,DORNAN,FORSON+ (CAVE)	
SHEN ' ALSO	66 66	PRL 17 726 (PRIVATE COMMUN)	+BUTTERWORTH,FU,GOLDHABERS,TRILLING (LRL) GERSON GOLDHABER (LRL)	
BASSOMPI BERLINGH DE BAERE ALSO GOLDHABE	67 67 67 PR	PL 268 30 PRL 18 1087 NC 494 374 IVATE COMMUNICATION PRI 19 976	BASSOMPTERRE,GOLDSCHMIDT+ (CERN+BRUX+BIRM)I BERLINGHIERI+FARBER+FERBEL+FORMAN (ROCH)I >DEBAISLEUX+FAST+FILIPPAS+ (CERN+BRUX) I BY B, JONGEJANS (CERN+BRUX)	JP JP
BARTSCH BOMSE DENEGRI ALSO	68 68 68 70	NP 88 9 PRL 20 1519 PRL 20 1194 ANTICH	CCCCCONI,+ (AACH+BERL+CERN+LDICFVIEN) +BORENSTEIN,CALLAHAN,COLE,COX,+ (JOHNHOPK) +CALLAHAN+ETTLINGER+GILLESPIE+ (JCHNHOPK)	1+ 1+
ALEXANDE ANDREWS BARBARD BISHOP CHIEN CHUNG COLLEY ERWIN FRIEDMAN. WERNER	69 69 69 69 69 69 69 69 69 69 69	NP B 13 503 PRL 22 731 PRL 22 1207 NP 8 9 403 PL 298 433 PR 182 1443 NP 8 9 364 UCRL-18660 PR 188 2023	G.ALEXANDER, FIRESTONE, GOLDHABER.+ (LRL) +LACH,LUDLAM, SANOWEISS, BERGER,+ (YALE+LRL) BARBARD-GALTIFEI, JAWIJS, FLATTE,+ (LRL) +GCSHAW, ERWIN. WALKER (WISC) +WALAMUD, MELLEMA, RUDMICK, SCHLEIN+ (UCLA) +EISNEN&BALI+LUERS +EISNEN&BALI+LUERS +KALKER, GCSHAW, WEINBERG (WISC+PRIN+UAND) J.FRIFDMAN,PH.D. THESIS (LRL) +AMMAR, DAVIS, KROPAC, YARGER, (HO,+ (NWES+ANL)	1+
ABRAMS ANTICH BARNHAM BOWLER FARBER FIRESTON	70 70 70 70 70 70	PR D 1 2433 NP 8 20 201 NP 8 25 49 PL 31 8 318 PR D 1 78 PHILAD.CONF.P.229	+EISENSTEIN-KIM-MARSHALL,O-HALLORAN,+ (ILL) +CARSON-CHIEN.COX,OENEGRI,ETTLINGER.+ (JHU) +COLLEY.GEIFFITHS,ALPER,+ (BIRM+GLAS-CXFI M-G.BOWLER (OXFORD) +FERBEL.SLATTERY,YUTA (ROCH) A. FIRSSTONE REVIEW (LEL)	1+ 1+ 1+
BARNHAM BOWLER DENEGRI FORMAN GARFINKE SLATTERY	71 71 71 71 71 71	NP 825 49 BOLOGNA CONF.PROC NP 8 28 13 PR D 3 2610 PRL 26 1505 UR-875-332(PREP)	+COLLEY,GRIFFITHS,ALPER, + (0IRM+GLAS+OXF) M-G-BOWLER INTRODUCTORY TALK (OXFORD) ANTICH;CALLAHAN,CARSDN;CHIEN;COX,+ (JHU) +OFLFAND,LEARY,MOSER;SEIDL,HOLFSON (EFI) GARFINKEL,HOLLAND;CARMONY;LANDER+(PURD-HUCD) P.SLATTERY,A REVIEW OF STRANGE MESONS(ROCH)	1+ 1+
ANDERSON BINGHAM BRANDENB BRANDENB CRENNELL DAVIS FIRESTON FRESTON FRATI HAATUFT	72 72 72 72 72 72 72 72 72 72 72	PR D 6 1823 NP 8 48 589 PR 28 932 PR D 6 1220 PR D 6 1220 PR D 5 2688 NP 8 47 348 PR 0 5 505 PR D 6 2361 NP 5 48 78	+FRANKLIN,GODDEN,KOPELMAN,LIBBY,TAN (COLO) +EISENSTEIN,GRARD,HERQUET+ (CERN+BRUX) BRANDENBURG,BRODY,JONNSON,LEITH,LODS+(SLAC) BRANDENBURG,JOHNSON,LEITH,LODS,LUSTE/SLAC) BRANDENBURG,JOHNSON,LEITH,LODS,LUSTE/SLAC) +ALSTON,BARDARD,FLATTE,FRIEDMAN,LYNCH(LBL) +ALSTON,BARDARD,FLATTE,FRIEDMAN,LYNCH(LBL) +TRESTONE,GOLDMABER,LISSAUER,TRILING (LBL) +MALPERN,HARGIS,SNAPE,CARNAHAN,+(PENN+CINC) +ARROLD,MAGURAUER+ (BERGSTERBEPEDLMADR)	
BARLOUTA BINGHAM DE JONGH JONES LEWIS WERNER	73 73 73 73 73 73 73	NP 8 59 374 NP 8 52 31 NP 8 58 110 NP 8 52 383 NP 8 60 283 PR D 7 1275	+DREVILLON, SHAH, + (SACL+EPOL+RHEL) +FARWEL, + (IB+ORSAY=MONL+SACLAY+MILAN) +CORWET, CLARRIERE, + (BRUX+HONS+CERN+MPIN) G. T. JONES +ALLEN, JACOBS, DANYSZ, BORG, + (LOWC+DOIC+COEF) +SLATTERY, FERBEL	96 96 96
BOWLER DEUTSCHM	74 74	SUBM.TO NP B PL B	+DAINTON,KADDOURA,AITCHISON (OXFORD) DEUTSCHMANN,+ (AACH+BERL+CERN+LOIC+VIEN)	J P J P
K*(:	14	22 K* (14 JP = 3- 15	20,JP=2+) I=1/2 UNLIKELY BUT NOT YET COMPLETELY RULED DUT.	* * -
	TEF	22 K*(142	0) MASS (MEV) Ing mass difference, see typed note	
M UNDER M CHARG M M M M M M	ED	CONLY, WITH FINAL S (4892) 0NLY, WITH FINAL S (440. (40. (423. (401.0 (401.0 (427.0 (427.0 (427.0 (427.0 (427.0 (426.0 (427.0 (426.0 (426.0 (414.)	TATE K PT 40. DE BAERE 67 HBC + 3.5 K+P [K+ PTO ADERHOLZ 68 HBC - 10 K-P [K PT] SCHWEINGR 68 HBC - 4.1 K-P [K PT] SCHWEINGR 68 HBC - 5.5 K-P (K PT] BISHOP 69 HBC + 3.5 K+P CRENNELL 69 DBC - 3.9 K+P (K0 PT]- LIND 69 HBC + 9. K+P (K0 PT]-) 10/66 6/68 2/72 9/67 9/69) 7/69 9/69
M 140 M 20 M C 13 M C CL M M AVG	1001 1001 1001 ARM	(430. 10. (420.0 3.1 (425. 6. (418.1) (6.1) (73 DO NOT SEE THE (421.3) 2.3	ABRAMS TO HBC + 2.5-3.2 (*P)K2P AGUILARI 71 HBC - 3.9.4.6 K- P BARNHAM 71 HBC + K+ P;K0 PI+ P CLARK 73 HBC - 3.3 K-P;P PI- K K*(1420) AT 3.13 GEV/C AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0	1 11/70 11/71 1/72 0 2/74*
M CHARG M 2 M 8 24 M 8 24 M M AVG	ED 101 01 01	ONLY, WITH OTHER F 400.0 20.0 440.0 20.0 396. 6. 411.1 (7.1 399.7 8.2	INAL STATES BADIER 65 HBC - 3. K-P (K*PI DUBAL 68 MMS - 11.5 K-P BASSOMPTE 69 HBC + 5 K*P (K 2PI) FRIEDMAN 69 HBC - 2.7 K-P (K 2PI) FRIEDMAN 69 HBC - 1.5 K-P (K 2PI) AVERAGE (ERROR INCLUDES SCALE FACTOR NF 1.5 - 5 K*P (K 2PI) - 5 K*P (K 2PI)) 10/66 6/68 11/69) 2/72
	-			

CHARGED AND NEUTRAL 1404.0 15.0 1390.0 30.0 1430.0 10.0 FOCARDI 65 HBC SHEN 66 HBC SHEN 66 HBC BASSAND 67 HBC GOLOHABER 67 HBC FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS -0 3. K- P (K PI) 10/66 + 0 4.6 K+ P (K PI) 10/66 + 0 4.6 K+ P (K*PI) 10/66 -0 4.6 K- P (K*PI) 10/67 9.0 K+ P(K 2PI) 10/67 The matrix below is derived from the error matrix for the fitted partial decay mode 10.0 branching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where 1423.0 10.0 $\delta P_i = \sqrt{\langle \delta P_i \delta P_j \rangle}$, while the <u>off-diagonal</u> elements are the <u>normalized</u> correlation coeffi-1421.2 4.7 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) cients $\langle \delta P_i \delta P_j \rangle / \langle \delta P_j \cdot \delta P_j \rangle$. For the definitions of the individual P_i , see the listings above; only those P_i appearing in the matrix are assumed in the fit to be nonzero and
 AVU
 1421-2
 141
 ATCRNET LINGT
 AUGUST

 NEUTRAL ONLY
 (1446-0)
 (7.9)
 DAHL
 67
 HBC

 1425-0
 15.0
 KANG
 68
 HBC

 1405-0
 18.0
 SCHWEINGR
 68
 HBC

 1405-0
 19.0
 SCHWEINGR
 68
 HBC

 2200
 422...
 BASSOMPIE
 69
 HBC

 2200
 1421...
 2.6
 DAVIS
 69
 HBC

 600
 146...
 6.
 CORDS
 71
 HBC

 100
 1421...
 2.6
 DAVIS
 69
 HBC

 600
 146...
 6.
 CORDS
 71
 HBC

 1100
 1427...
 3.
 BUCHNER
 72
 DBC

 C
 FROM PDLE EXTRAPOLATION, USING WORLD K+P DST
 C
 FROM PDLE EXTRAPOLATION, USING WORLD K+P DST
 0 4.PI-P (KPI) 2/74* 0 4.6 K-P 7/69 0 4.1 K-P (K PI) 9/67 0 5.5 K-P (K PI) 9/67 0 5 K+P (K PI) 11/69 SEE K* TYPED NOTE. 11/69 0 12. K* P(K*PI-) 9/69 0 3.9(4.6 K-P 11/71) 0 9. K* N.K* PI-P 2/72 0 4.6 K N.K* PI-P 12/72 0 4.6 1 N.K*PI- 1/74* are thus constrained to add to 1. P1 P2 P3 P4 P5 P1.5495+-.0274 P2.-.2293.2945+-.0247 P3.-.3950 -.3925.0923+-.0241 P4.-.2443 -.2458 -.1182.0440+-.0166 P5.-.4097 -.2442 -.0787 -.0502.0197+-.0200 22 K*(1420) BRANCHING RATIOS i.; · 1.7 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) (SEE IDEOGRAM BELOW) 1421.8 AVG 20) INTO (K P1)/TOTAL (P1) (0.37) (0.19) BADIER 65 HBC 3.0 K-P (0.39) (0.11) BASSANO 67 HBC - 4.6, 5.0 K-P WE CANNOT USE THIS STATISTICALLY REDUNDANT RATIO. AUTHORS OBTAIN IT WERELY BY SUBTRACTING FROM UNITY THEIR MEASUREMENTS OF OTHER RATIOS. K*{1420} INTO (K PI)/TOTAL R1 R1 R1 R1 R1 R1 R1 RRRR 6/66 WEIGHTED AVERAGE = 1421.8 ± 1.7 ERROR SCALED BY 1.1 0.550 0.027 FROM FIT FIT K*(1420) INTO (K*(892) PI) / TOTAL DTAL (P2) BADIER 65 HBC 3.0 K-P BASSAND 67 HBC - 4.6, 5.0 K- P R 2 R 2 R 2 R 2 R 2 R 2 a q (.41) (0.14) E (0.47) (0.10) E 0.295 0.025 FROM FIT 6/66 FIT R3 R3 R3 R3 R3 R3 K*(1420) INTO (K RHO)/TOTAL (P3) 00 (0.14) (0.05) B/ (0.14) (0.10) B/ 0.092 0.024 FROM FIT BADIER BASSANO 65 HBC 67 HBC 3.0 K-P 0 4.6, 5.0 K- P 6/66 FIT <u>CHISQ</u> · · · BUCHNER R4 R4 R4 R4 72 DBC K*(1420) INTO (K OMEGA)/TOTAL (P4) 0.07 0.04 BADIER 65 HBC 3.0 K-P 3.0 · · · · CORDS 71 DBC 6/66 0.9 0.044 0.017 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) · · · · AGUILAR1 71 HBC FIT 0.5 · · · · DAVIS 69 HBC 0.1 R 5 R 5 R 5 R 5 R 5 K*(1420) INTO (K ETA)/TOTAL · · · BASSOMPIE 69 HBC 0.0 0.02 0.02 (0.025)OR LESS BADIER 65 HBC BASSOMPIE 69 HBC 3.0 K-P 5.0 K+ P 6/66 9/68 . . . SCHWEINGR 68 HBC 0.020 0.020 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) · · · SCHWEINGR 68 HBC FIT
 K+114201
 INTO
 IK+(8192)
 PII / (K, PI)

 6
 0.33
 0.33
 CHMDA

 0.65
 0.20
 SHEN

 0.651
 (0.201
 SHEN

 0.52
 0.12
 SCHWE

 0.91
 (0.21)
 BSSO

 SUPERSEDED BY CHARRIENE 72
 B4
 0.47

 0.47
 0.08
 AGUIL

 0.78
 0.15
 CHARR
 · · ·KANG 68 HBC (P21/(P1) + 0 3.9-4.2 P1+ P 0 N* PRODUCED + N0 N* PRODUCED 0 4.1+5.5 K- P + 0 5 K+P 4.5 (PI) (CHUNG 65 HBC + SHEN 66 HBC SHEN 66 HBC + SCHWEINGR 68 HBC BASSOMPIE 69 HBC + 8/66 10/66 10/66 10/67 1/73 (CONLEV =0.338) 1360 1400 1440 1480 Q NEUTRAL K=(1420) MASS (MEU) 8 8 0 BISHOP 69 HBC AGUILAR1 71 HBC CHARRIERE 72 HBC 3.5 K+ P 3.9.4.6 K- P 0 5. K+ P.K P 3PI 9/69 11/71 1/73 0.537 0.058 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.01 0.057 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 22 K*(1420) WIDTH (MEV) AVG CHARGED ONLY. WITH FINAL STATE K PT K*(1420) INTO (K OMEGA) / K PI (0.08) OR LESS (0.2) OR LESS 0.13 0.07 0.05 0.04 *********
 > ONLY, WITH FINAL STATE K PI

 175.
 57.

 175.
 57.

 100.0
 25.0

 BISHOP
 69 HBC

 96.
 18.

 110.0
 25.0

 96.
 18.

 110.0
 69 HBC

 96.
 18.

 110.0
 69 HBC

 96.0
 20.0

 407.0
 407.0

 94.7
 15.1

 12.5
 AGULARI TI HBC

 9.72
 12.4

 142.1
 CLARK T3 HBC

 9.147
 12.2

 142.1
 CLARK T3 HBC

 9.171
 15.2

 142.1
 CLARK T3 HBC
 R7 R7 (P4)/(P1) SHEN 66 HBC BASSOMPIE 69 HBC BASSOMPIE 69 HBC AGUILAR1 71 HBC 4.6 K+P 5 K+ P 0 5 K+ P 3.9-4.6 K- P 8/66 9/69 9/69 R7 R7 R7 . 11/71 1400 200 130 CLARK R7 R7 R7 . . 0.035 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.031 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.070 0.080 AVG FIT c c · AVERAGE (ERROR INCLUDES SCALE FACTOR DF 1.0) 8.1 K*(1420) INTO AVG (P3)/(P1) CHUNG 65 HBC SCHWEINGR 68 HBC BASSOMPIE 69 HBC BISHOP 69 HBC AGUILARI 71 HBC P3)/(P1) 0 3.9-4.2 PI-0 4.1+5.5 K- P 5 K+ P 0 5 K+ P 3.5 K+ P 3.9,4.6 K- P 8/66 10/67 9/69 9/69 -4.2 PI- P 5.5 K- P CHARGED ONLY, WITH OTHER FINAL STATES 105.0 30.0 BADIER 65 HBC - 3.0 K-P 6/66 3 240 110. 25. BASSOMPIE 69 HBC + 5 K+P (K 2PI) L1/69 (43.) (13.) FRIEDMAN 69 HBC - 2.7 K-P (K 2PI) 2/72 + в Q 15 W 11/71 19.2 108.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) . . AVG 0.048 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.048 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG CHARGED AND NEU 41 FOCARDI 65 HBC -0 3.0 K- P (K PI) SHEN 66 HBC + 04.6 K+ P BASSANO 67 HBC -0 4.6, 5.0 K- P 10/67 GOLDHABER 67 HBC 9.0 K+ P(K 2PI) 10/67 SCHWEINGR 68 HBC -0 4.145.3 K-P 9/67 14.0 25.0 20.0 20.0 92.0 K*(1420) INTO (K RHO) / (K*(892) PI) (0.39) OR LESS BASSOMPIE 67 HBC (0.40) OR LESS CL=.90 FIELD 67 HBC (P3)/(P2) + 5. K+ P - 3.8 K- P R9 R9 R9 R9 R9 65.0 80.0 9/67 0.313 0.095 FROM FIT 107.0 20.0 FIT 8.4 85.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG K*(1420) INTO (K OMEGA) / (K*(892) PI) (0.10) (0.04) FIELD T 0.149 0.061 FROM FIT R10 R10 P R10 Q R10 R10 FIT (P4)/(P2) 67 HBC - 3.8 K- P NEUTRAL ONLY (61.0) (24.0) 17.0 21. ENLARGED 10. 10.3 22. 12. 0 3.8-4.2 PI- P 2/74* 0 4.6 K- P 7/69 0 5 K+0 (K PI] 11/69 SEE K* TYPED NOTE. 0 12. K+ P (K PI] 9/69 0 3.9(4.6 K- P 11/71 0 9. K+ N.K+ PI- P 2/72 0 4.6 K + N.K+ PI- P 12/72 0 4.6 K+ N.K+ PI- 1/74* 6/57
 UTRAL DNLY
 DAHL
 67 HBC

 (61.0)
 (24.0)
 DAHL
 67 HBC

 116.0
 17.0
 KANG
 68 HBC

 420
 110.
 21.
 BASSDMPTE 69 HBC

 ERRURS ENLARGED BY US TO 4+6AMMA/SQRT(N).
 2200
 101.
 10.
 DAVIS
 69 HBC

 1200
 101.
 10.
 DAVIS
 69 HBC
 100

 1800
 116.4
 10.3
 15.5
 AGUILARI
 11 HBC

 100
 116.4
 12.
 BUCHNER
 72 DBC

 1100
 109.
 12.
 BUCHNER
 72 DBC

 (61.0)
 (14.0)
 LINGLIN
 73 HBC

 FROM POLE EXTRADULATION, USING WORLD K+P DST
 CARADA
 CARADA
 K*(1420) INTC (K ETA) / (K*(892) P1) (0.07) (0.04) FIELD T 0.067 0.069 FROM FIT P11 P11 Q (P5)/(P2) 67 HBC - 3.8 K- P 2200 1800 6/67 R11 FIT 1100 8 K*(1420) INTO (K ETA) / (K PI) (0.02) OR LESS B1SHOP 69 HBC (0.04) OR LESS CL=.95 AGUILAR1 71 HBC (P5)/(P1) 3.5 K+ P 3.9-4.6 K- P R12 c R12 R12 9/69 11/71 5.7 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) `iii.i' AVG 0.036 0.037 FROM FIT R12 R12 FIT --- ------ ------ ------- --------FOLLOWING SUGGESTION BY AGUILAR 70, WE DO NOT MAKE USE OF MEASUREMENTS WHERE THE (K PI PI) BACKGROUND SUBTRACTION IS DIFFICULT DUE TO THE NEARRY Q REGION. 22 K*(1420) PARTIAL DECAY MODES DECAY MASSES 493+ 139 892+ 139 493+ 770 493+ 782 493+ 548 K*(1420) INTO K PI K*(1420) INTO K*(892) PI K*(1420) INTO K RHO K*(1420) INTO K OMEGA K*(1420) INTO K ETA P1 P2 P3 P4 P5 PEFERENCES FOR K*(1420) BADIER 65 PL 19 612 CHUNG 65 PRL 15 325 FOCARDI 65 PL 16 351 BADIER, DEMOULIN, GOLDBERG+(EPOL+SACL+ZEEMAN) +DAHL, HARDY, HESS, JACOBS, KIRZ, MILLER (LRL) FOCARDI, MINGUZZI RANZI, SERRA+(BOLOGNA+SACL)

Mesons $K^*(1420), K_N(1660), K_N(1760), L(1770)$

SHEN 66 PRL 17 726 ALSO 66 (PRIVATE COMMUN)	+BUTTERWORTH,FU,GOLDHAB Gerson Goldhaber	ERS,TRILLING (LRL) {LRL}		60 KN
BASSAND 67 PRL 19 968 BASSOMPT 67 PL 268 30 CRENNELL 67 PRL 19 44 DAHL 67 PR 163 1377 ALSO 65 PRL 14 401 DE BAERE 67 NC 51 A 401 FIELD 67 PL 248 638 GOLDHABE 67 PRL 19 972	+GOLDBERG, GOZ, BARNES, LE BASSOMPIERRE, GOLDSCHNID +KALBFLEISCH, LAI, SCARR, +HARDY-HESS+KIRZ+MILLER HARDY, CHUNG, DAH, HESS, K +GOLDSCHNIDT-CLERMONT, H +HENDRICKS+PICCIONI+YAG G. GOLDHABER, FIRESTONE, S	ITNER+(BNL+SYRACUSE) T+ (CERN+BRUX+BIRMIJ SCHUMANN (BNL) (LRL) IRZ,MTLLER (LRL) ENRI+ (BRUX+CERN) ER (LAJOLLA) HEN (LRL)	P	P1 KN(1760) INTO K P1 P2 KN(1760) INTO K*(89; P3 KN(1760) INTO K RHO P4 KN(1760) INTO K (14; P5 KN(1760) INTO K P1 (
ADERHOLZ 68 NP 8 5 567 ALSO 66 PL 22 357 ANTICH 68 PRL 21 1842 DUBAL 68 THESIS 1456 KANG 68 PR 156 1587 SCHWEING 68 PP 166 1317 ALSO 67 THESIS	+DEUTSCHMANN+ [AACH+BE BARTSCH,DEUTSCHMANN,MOR +CALLAHAN,CARSON,COX,DEN L.DUBAL Y.W.KANG SCHWEINGRUBER,DERRICK,F F.L.SCHWEINGRUBER [NO	PL+CERN+LDIC+VIENNA) RISON+ (ABCL(IC)V) EGRI,+ (JHU) (GENEVE) (IOWA) IELDS+ (ANL+NWES) RTHWESTERN,EVANSTON)		60 KN R1 KN(1760) INTO (K P1) R1 E5 (0.40) (0.10 R1 5 STATIST. COMPATIBLE R2 KN(1760) INTO (K*(85 R2 E (0.40) (0.12
BASSOMPI 69 NP B13 189 BISHOP 69 NP B9 403 CRENNELL 69 PRL 22 487 DAVIS 69 PRL 23 1071 DE BAERE 69 NC 61 A 397 FRIEDMAN 69 UCRL-18860 LIND 69 NP B 14 1	BASSOMPIERE,GOLDSCHMIDT +GOSHAW,EPWIN,WALKER +KARSHON,LAI,ONEALL,SCA +OEREMZO,FLATTE,ALSTON, +GOLDSCHWIDT-CLERMONT,H J.FRIEDMAN,PH.J. THESIS +ALEXANDER,FIRESTONE,FU	-CLERM.+ (CERN+BRUX) (MISC) RR (BNL) LYNCH,SOLMITZ (LRL) ENRI++ (BELG+CERN) (LRL) +GOLDMABER (LRL) J	P	R3 KN(1760) INTO (K RHC R3 E (0.60) (0.25 R4 KN(1760) INTO (K*(187)) (0.12 R4 E (1.1) (0.12 R4 E (1.1) (0.12 R5 KN(1760) INTO (K*(100)) (0.12)
ABRAMS 70 PR D 1 2433 Aguilar 70 Prl 25 1362 Birmingh 70 Kiev Conf.	+EISENSTEIN,KIM,MARSHAL AGUILAR-BENITEZ,BASSAND ASTIER RAPPORTEURS TALK	L,O'HALLORAN,+ (ILL) ,EISNER,+ (BNL+PURO) (BIRM+GLAS+OXF)		R5 E DIFFICULT BACKGROUND
AGUILARI 71 PR D 4 2583 BARNHAM 71 NP 8 28 171 CORDS 71 PR D 4 1974 SLATTERY 71 UR-875-332(PREP)	+EISNER,KINSON +COLLEY,JOBES,GRIFFITHS +CARMONY,ERWIN,HEIERE,+ P.SLATTERY,A REVIEW OF	(BNL) ,HUGHES,+(BIRM+GLAS) (PURD+UCD+IUPU) STRANGE MESONS(ROCH)		CARMONY 71 PRL 27 1160 Aguilar 73 prl 30 672
BUCHMER 72 NP B 4> 333 CHARRIER 72 NP B 51 311 CRENNELL 72 PR D 6 1220 DEUTSCHW 72 NP B 36 373 ENGELMAN 72 PR D 5 2162 FRATI 72 PR D 6 2361 ROUGE 72 NP B 46 29 TIERCE 72 NP B 46 29	+ DEHM, LMARKIEKE, CUINNEI, CHARRIERE, DRIJARD, DE BA + GORDON, KWAN-WU LAI, SCA DEUTSCHMANN, + (ENGELMANN, MUSGRAVE, FORM + HALPERN, HARGIS, SNAPE, C + VIDEAU, VOLTE, DE BRION, + GRIJNS, HEFINEN, DE GRONT	+ (HPIN+LERN+DRUA) ERE,+ (CERN+DBLG) RR (BNL) ABCLV COLLABORATION) AN,+ (ANL+EFI) ARNAHAN,+(PENN+CINC) + (EPOL+SACL) .+ (NIJH+ZFEM)		L(1770) 23 L (
CLARK 73 NP B 54 432 DE JONGH 73 NP B 58 110 LINGLIN 73 NP B 55 408 WALUCH 73 PR D 8 2837	+LYONS, RADUJICIC +CORNET, CHARRIERE,+ (D.LINGLIN +FLATTE, FRIEDMAN	(OXFORD) BRUX+MONS+CERN+MPIM) (CERN) (LBL)		23 L M 20(1780.)
K _N (1660) 	27 KN (1660, JP IDENCE NOT COMPELLING, DI) I = 1/2 WITTED FROM TABLE		M B (1785.01 (12.0) M I TACLUDE IN BART ITA5.0 20.0 M 1745.0 20.0 Itas M 1745.0 15.0 Itas M (160.0) (15.0) Itas M (1767.0) 40.0 Itas M 1747.0 40.0 Itas M 1767.0 40.0 Itas M 20.0 M 20.0 MARK M P 306 1730.2 20.0 M AVG 1764.6 6.7
M (1660-0) M 1660-0 10-0 M J CLAIMED BY JDBES I M J MODES. K PI BUMP I M (1660-)	CARMONY 67 HB JOBES 67 HB N (K PI), (K*(B92) PI), NTERFERES MOSTLY WITH DE CHARRIERE 72 HB	C - 3.8 K-P.DMEGA K C + 5. K+ P AND (K+(1420) PI) LTA(1236). C 0 5. K+ P.K P 3PI	11/67 11/67 1/73	23 LW W 20 (80.) W (60.0) [20.0] W 8 (127.0) [43.0] W 8 M (10PED N 8487
27 KN(16 N 60.0 20.0	60) WIDTH (MEV) Jobes 67 HB Chardier 72 HR	C + 5.K+P C 0.5.K+P.K P 3PI	11/67	W 100.0 50.0 W 138.0 40.0 W (50.0) (40.0) W X 90. 70.
27 KN(16	60) PARTIAL DECAY MODES			W (130.0) W 100. 26. W P 306 210. 30. W P PRODUCED IN CONJUNC
P1 KN(1660) INTC K PI P2 KN(1660) INTC K PI P3 KN(1660) INTO K*(892) P4 KN(1660) INTO K*(1420)	PI PI	DECAY MASSES 493+ 139 493+ 139+ 135 892+ 139 1421+ 139		AVG 137.7 24.2
CAPHONY 67 PRL 18 615 JOBES 67 PL 26B 49 CHARRIER 72 NP 8 51 317	REFERENCES FOR KN(1660) D.CARMONY.T.HENDRICKS.L •6ASSOMPIERRE,DE BAERE CHARRIERE,DRIJARD,DE BA	.LANDER (LA JOLLA) + (BIRM+CERN+BRUX) LERE,+ (CERN+BELG)		P1 L INTO K PI PI P2 L INTO K *(1420) PI P3 L INTO K PI PI PI P4 L INTO K *(1922) PI P5 L INTO K *(1922) ANG P6 L INTO K *(1922) ONEGA P7 L INTO K *(1922) ONEGA
K _N (1760)	60 KN (1760,JP=) NEEDS FUATHER CONFIR CARMONY 71 FAVORS JP=3- 760) MASS (MEV)	IATION.DHITTED FROM THE - Aguilar 73 Needs J (TABLE. St 0.	23 L B R1 L INTO (K+(1420) PT) R1 (1.0) R1 0.2 R1 U.0) R1 0.2 R1 0.2 R1 ESS THAN 1.0 R1 LESS THAN 1.0 R1 LESS THAN 1.0 R1 PRODUCED IN CONJUNC R1 PRODUCED IN CONJUNC R1 R FOR DISCUSSION OF T R1 R FORE NOTES THOMES T
M C 76(1753.) (12.) M 65(1760.)	CARMONY 71 DE Aguilar 73 He	C 0 9. K+ N C 0 7.3 K-P,N K+ PI-	11/71 1/74*	****** ******** *******
60 KN(17 N C 76 (60.) (20.) N C DISAGREEMENT BETWEEN 1 N 65 (80.) OR LESS	760) WIDTH (MEV) Carmony 71 De Ihe Fit and data on both Aguilar 73 He	IC 0 9. K+ N SIDES OF THE SIGNAL IC 0 7.3 K-P,N K+ PI-	11/71 11/71 1/74*	BARTSCH 66 PL 22 357 BERLINGH 67 PRL 18 1087 JOBES 67 PL 26B 49 DENEGRI 68 PRL 20 1194 BARTSCH 68 NP 88 9

Data Card Listings For notation, see key at front of Listings.

60 KN{1	1760) PARTIAL DECAY HODES Decay Masses
P1 KN(1760) INTO K PI P2 KN(1760) INTO K*(892) P3 KN(1760) INTO K HO P4 KN(1760) INTO K*(1420) P5 KN(1760) INTO K PI	493+ 139 PI 892+ 139 493+ 770 DI PI 1421+ 139 493+ 139+ 139
60 KN(1	(760) BRANCHING RATIOS
R1 KN(1760) INTO (K PI)/ R1 ES (0.40) (0.10) R1 S STATIST. COMPATIBLE	'(K*(892) P1 + K RHO) (P1)/(P2+P3) CARMONY 71 DBC O 9. K+ N 11/7 WITH THE WEAK K PI PI SIGNAL OF AGUILAR 73. 1/7
R2 KN(1760) INTO (K*(892 R2 E (0.40) (0.15)	2) PI)/(K PI PI) (P2)/(P5) Carmony 71 DBC 0 9. K+ N 11/7
R3 KN(1760) INTO (K RHO) R3 E (0.60) (0.25)	(K PI P1) (P3)/(P5) CARMONY 71 D8C 0 9. K+ N 11/7
R4 KN(1760) INTO (K*(892 R4 E (1.) (0.12)	2) PI + K RHOJ/(K PI PI) (P2+P3)/(P5) Carmony (1 DBC 0 9+ K+ N 11/1
R5 KN(1760) INTO (K*(142 R5 E (0.06) DR LESS R5 E DIFFICULT BACKGROUND	20) P1)/(K PI PI) (P4)/(P5) CARMONY 71 DBC 0 9. K+ N 11/7 SUBTRACTION . ERRORS STATISTICAL ONLY . 11/7
***** ******** ******** *	******** ********* ******** **********
CARMONY 71 PRL 27 1160	REFERENCES FOR KN(1760) +CORDS,CLOPP,ERWIN,MEIERE,+ (PURD+UCD+IUPU)
AGUILAR 73 PRL 30 672 ****** ********* ******** *	+CHUNG,EISNER,PROTOPOPESCU,SAMIOS,+ (BNL)
****** ******** ******** *	******** ********* ******** ***********
L(1770) 23 L (1	.770, JP=) I = 1/2
23 L MA	
M 20(1780.) M (1760.0) (15.0)	BERLINGHI 67 H8C + 12.7 K+P 7/6 JOBES 67 H8C + 5. K+ P 1/7
M B (1785.0) (12.0) M B INCLUDED IN BARTS M 1745.0 20.0	CH 70 BARTSCH 68 MBC 10.0 K- P 11/7 ICH 70 AGUILAR 70 MBC - 4.6 K- P 6/7
M 1780.0 15.0 M (1760.0) (15.0) M X 1765.0 60.0	BARTSCH 70 HBC - 10-1 K- P 1/7 LUDLAM 70 HBC - 12-6 K- P 1/7 COLLEV 71 HBC - 10 KBPK 2BL 1/7
M X SYSTEMATIC ERRORS AD M (1740.0)	DED CORRESP. TO SPREAD OF DIFFERENT FITS. DENEGRI 71 DBC - 12.6 K-D.K 2PI D 5/7
M 1767. 6. M P 306 1730. 20. M P PRODUCED IN CONJUNCT	BLIEDEN 72 MMS - 1116. K- P 12/7 FIRESTONE 72 DBC + 12. K+ 0 1/7
M AVG 1764.6 6.7	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.3)
23 L WI W 20 (80.)	DTH (MEV) BERLINGHI A7 HRC + 12-7 K+P 7/6
W (60.0) (20.0) W B (127.0) (43.0)	JOBES 67 HBC + 5. K+ P 1/7 BARTSCH 68 HBC 10.0 K- P 11/7
W B INCLUDED IN BARTS W 100.0 50.0 W 138.0 40.0	СН 70 11/7 Адильят 70 нвс — 4.6 к— Р 6/7 Вартасни 70 нес — 101 к— Р 1/7
W (50.0) (40.0) W X 90. 70.	(20.0) LUDLAM 70 HBC - 12.6 K- P 1/7 COLLEY 71 HBC + 10.K+P,K 2P1 1/7
W X SYSTEMATIC ERRORS AD W (130.0)	DED CORRESP. TO SPREAD OF DIFFERENT FITS. DENEGRI 71 DBC - 12.6 K-D.K 2P1 D 5/7
W 100. 26. W P 306 210. 30. W P PRODUCED IN CONJUNCT	BLIEDEN 72 MMS - 1116. K- P 12/7 FIRESTONE 72 DBC + 12. K+ D 12/7 10N WITH D+
W AVG 137.7 24.2	AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.5)
	RTIAL DECAY MODES
P1 L INTO K PI PI	DECAY MASSES 497+ 134+ 134
P2 L INTO K*(1420) PI P3 L INTO K PI PI PI P4 I INTO K*(892) PI	134+1421 497+ 134+ 134+ 134 892+ 134
P5 L INTO K*(892) RHO P6 L INTO K*(892) OMEGA	892+ 770 692+ 782
P7 L INTO K*(892) PI PI	892+ 134+ 134
23 L BR	ANCHING RATIOS
L LINTO (K(1420) PI) R1 LARGE R1 (1.0)	/ (K P[P]) (P2)/(P]) DENEGRI 68 08C - 12.6 K- D 1/7 BARBARO 69 HBC + 12.0 K+ P 1/7
R1 0.2 0.2 R1 LESS THAN 1.0	AGUILAR 70 HBC - 4.6 K- P 1/7 BARTSCH 70 HBC - 10.1 K- P 1/7
FI LESS THAN 1.0 R1 P CONSISTENT WITH 1 R1 P PRODUCED IN CONJUNCT	COLLEY 71 HBC 10. K+ P 11/7 . FIRESTONE 72 DBC + 12. K+ 0 12/7 10N WITH 0+
R1 R LESS THAN 1.0 SEEMS R1 R FOR DISCUSSION OF TH R1 R MODES SEE HUGHER TH	TO BE ESTABLISHED.
****** ******** ******** *	11/7
	REFERENCES FOR L(1770)
BARTSCH 66 PL 22 357 BERLINGH 67 PRL 18 1087	+DEUTSCHMANN,+ (AACH+BERL+CERN+LOIC+VIEN) BERLINGHIERI+FARBER+FERBEL+FDRMAN+ (ROCH)I
DENEGRI 68 PRL 20 1194	+CALLAHAN+ETTLINGER+GILLESPIE+ (JHU)

Data Card Listings Mesons For notation, see key at front of Listings. L(1770), K_N(1850), K^{*}(2200), K^{*}(2800), EXOTICS

107

ANDREWS 69 PRL 22 731 Barbard 69 Prl 22 1207 Colley 69 NC a 59 519	+LACH,LUDLAM,SANDWEISS,BERGER,+ (YALE+LRL) BARBARO-GALTIERI,DAVIS,FLATTE,+ (LRL) +EASTWOOD,+ (BIRM+GLAS+LDIG+MPIM+DXF+RHEL)	
AGUILAR 70 PRL 25 54 BARTSCH 70 PL 33 B 186 Chien 70 Phila.comf.p.275 Ludlam 70 PR 0 2 1234	AGUILAR-BENITEZ,BARNES,BASSANO,CHUNG,+(BNL) +DEUTSCHMANN,+ (AACH+BERL+CERN+LOIC+VIEN) C.V.CHIEN (JDHNS HOPKINS) +SANDWETSS,SLAUGHTER (JALE)	
COLLEY 71 NP B 26 71 DENEGRI 71 NP B 28 13 HUGHES 71 BOLDGNA CONF.PROC SLATTERY 71 UR-875-332(PREP)	+JOBES,KENYON,PATHAK,HUGHES.+ (BIRN+GLAS) +ANTICH,CALLAHAN,CARSON,CHIEN,CDX,+ (JHU) J I.S.HUGHES,TALK AT BOLOGNA CONF. (GLASGOW) P.SLATTERY,A REVIEW OF STRANGE MESONS(ROCH)	P
ANDERSON 72 PR D 6 1823 BLIEDEN 72 PL 39 B 668 CHARRIER 72 NP 8 51 317 FIRESTON 72 PR D 5 505	+FRANKLIN, GODDEN, KOPELMAN, LIBBY, TAN (COLD) +FINOCCHIARO, BONEN, EARLES, + (STON+NEAS) CHARTERE, DRIJARO, DE BAERE, + (CERN+BELG) FIRESTONE, GOLDHABER, LISSAUER, TRILLING (LBI)	
BARLOUTA 73 NP 8 59 374 Bingham 73 NP 8 52 31 Deutschm 74 Pl 8	+DREVILLON, SHAH, + (SACL+EPOL+RHEL) +FARHEL, + {LBL+ORSAY+BNL+SACLAY+MILAN} DEUTSCHMANN, + {AACH+BERL+CERN+LDIC+VIEN} J	P
****** ******** ********* **	******* ********* ******** ********* ****	
$K_{\rm w}(1850)$		
<u> </u>	61 KN (1850,JP≈)	
STRUCTURE IS SEEN AT MASSES NEAR 185 A RAPIOLY INCREASI PRESENCE OF A JP-3 NEEDS FURTHER CONF	IN THE K PI SCATTERING ANGULAR DISTRIBUTION O MEV.THE MOST SIMPLE EXPLANATION INVOLVES NG F-MAVE AMPLITUDE, POSSIBLY INDICATING - RESONANCE. IRMATION. OMITTED FROM THE TABLE.	
61 KN(1B	50) MASS (MEV)	
M I (1850.) APPROX.	FIRESTONE 71 DBC 0 12.K+ N,K+ PI-P	11/71
61 KN(18		
W I (300.) APPROX. W I APPARENT INTERFERE W I PRECISE DETERMINAT	FIRESTONE 71 DBC 0 12.K+ N.K+ PI-P NCE WITH OTHER AMPLITUDES PRECLUDES ION .	11/71 11/71 11/71
****** ******** ******** **	******* ********* ******** *********	
	REFERENCES FOR KN(1850)	
FIRESTON 71 PL 36 9 513 WALUCH 73 PR D 8 2037	FIRESTONE,GOLDHABER,LISSAUER,TRILLING (LBL) +FLATTE,FRIEDMAN (LBL)	
****** ******** ***********************	******* ********** ********* ******** ****	
K*(2200) **	K* {2200,JP= }	
	HANCEMENT SEEN IN (ANTIHYPERON-NUCLEON) MASS Ar Threshold.Interpretation uncertain. Utted from table.	
40 K*(22	DO) MASS (MEV)	
M C (2200.) APPROX. M C COMPILATION OF (ANTIHY	LISSAUER /0 HBL 9, K+ P SLATTERY 71 RVUE 8-13 K+ P PNUCLEON) MASS IN K+ P 813. GEV/C	11/71 11/71 11/71
40 K*(22	00} WIDTH (NEV)	
W 20 80. 20. W C (200.) APPROX.	LISSAUER 70 HBC 9. K+ P Slattery 71 RVUE 8-13 K+ P	11/71
W C COMPILATION OF (ANTIHY	******* ******** ******** ******** *****	11771
	REFERENCES FOR K+(2200)	
ALEXANDE 68 PRL 20 755 LISSAUER 70 NP 8 18 491	ALEXANDER,FIRESTONE,GOLDHABER,SHEN (LRL) +ALEXANDER,FIRESTONE,GOLDHABER (LBL)	
CARMONY 71 PRL 27 1160 SLATTERY 71 UR-875-332(PREP)	+CORDS,CLOPP,ERWIN,MEIERE,+ (PURD+UCD+IND) P.SLATTERY,A REVIEW OF STRANGE MESONS(ROCH)	
****** ******** ******** **	******* ********** ********* **********	
K*(2800)	62 K* (2800,JP=)	
\rightarrow	NEEDS FURTHER CONFIRMATION.OMITTED FROM THE	TABLE.
62 K*{28		
M H 59(2800.)	00) MASS (MEV)	
	00} MASS (MEV) Hughes 71 HBC + 10.K+P.P MMS+	11/71
67 K#(28	00) MASS (MEV) Hughes 71 HBC + 10.K+P.P NMS+ 	11/71
62 K*(28) W H 59 (40.) OR LESS W H ONLY SEEN IN MISSI W H PROBABLY DECAYS IN	00) MASS (MEV) HUGHES 71 HBC + 10.K+P.P MMS+ 00) WIDTH (MEV) HUGHES 71 HBC + 10.K+P.P MMS+ NG MASS DISTRIBUTION.NOT IN FITTED EVENTS. TO (3 CHARGED + 2 OR MORE NEUTRAL) PARTICLES	11/71 11/71 11/71 11/71
62 K*(28 W H 59 (40.) OR LESS W H ONLY SEEN IN MISSI W H PROBABLY DECAYS IN	00) MASS (MEV) HUGHES 71 HBC + 10.K+P.P MMS+ 00) WIDTH (MEV) HUGHES 71 HBC + 10.K+P.P MMS+ NO HASS DISTRIBUTION.HOT IN FITTED EVENTS. TO (3 CHARGED + 2 OR MORE NEUTRAL) PARTICLES	11/71 11/71 11/71 11/71
62 K#(28 W H 59 (40.) OR LESS W H DNLY SEEN IN MISSI W H PROBABLY DECAYS IN ******	DD) MASS (MEV) HUGHES 71 HBC + 10.K+P.P MMS+ DO) WIDTH (MEV) HUGHES 71 HBC + 10.K+P.P MMS+ NO MASS DISTRIBUTION.NOT IN FITTED EVENTS. TO (3 CHARGED + 2 OR MORE NEUTRAL) PARTICLES REFERENCES FOR K+(280) +MGEGRAUTE. JEDICIES	11/71 11/71 11/71 11/71
62 K+(28 W H 59 (40.) OR LESS W H DNLY SEEN IN MISSI W H PROBABLY DECAYS IN HUGHES 71 PREPRINT	DD) MASS (MEV) HUGHES 71 HBC + 10.K+P.P MMS+ OO) WIDTH (MEV) HUGHES 71 HBC + 10.K+P.P MMS+ ON ASS DISTRIBUTION.NOT IN FITTED EVENTS. TO (3 CHARGED + 2 OR MORE NEUTRAL) PARTICLES REFERENCES FOR K+(2800) +HC+CORMICK.PROCTER.TURNBULL (GLASGOW)	11/71 11/71 11/71 11/71

EXOTICS

The purpose of this entry is to provide a list of references for searches for exotic mesons (see Main Text, Sec. III and Table I), as well as theoretically based suggestions for experiments. Note that LIPKIN 73 proposes experiments which are conclusive even if negative results are obtained.

****** *	***	***** *********	******* ********* **********	******* *******
			REFERENCES FOR EXOTICS	
			REPORTS ON SEARCHES	
ROSENFEL	68	PHILA.CONF.P.455	A.H.ROSENFELD	(LRL)
0000	69	PR 177 1991	+JOLDERSMA, PALMER, SAMIDS	(BNL)
CHO	70	PL 32 B 409	+DERRICK.JOHNSON.MUSGRAVE.+ ()	ANL+NWES+KANS)
GTACOMEL	70	PL 33 8 373	G.GIACOMELLI + (BGNA+SACL+Z)	EEM+REHO+EPOL}
1 7 5	70	PR 0 2 2525	J.LYS+	(MICH)
ROSNER	70	EXP.MESON SPECTRO	SCOPY.ED. C.BALTAY AND A.H.ROS	ENFELD,P.499
BUH	72	NP 8 37 421	+CLINE, TERRELL	(WISCONSIN)
COHEN	72	PREP. UR 413	D.COHEN+	(ROCH)
COHEN	73	NP 8 53 1	+FERBEL . SLATTERY .WERNER	(ROCHESTER)
FRENCH	73	AIX CONF.PAPER	B.R.FRENCH	(CERN)
			SUGGESTIONS FOR SEARCHES	
ROSNER	68	PRL 21 950,1468	J.L.ROSNER	{TEL-AVIV}
ROSNER	70	EXP.MESON SPECTRO	SCOPY, ED. C.BALTAY AND A.H.ROS	ENFELD.P.499
FATMAN	73	PL 43 8 307	D.FAIMAN, G.GOLDHABER, Y.ZARMI	(CERN)
LIPKIN	73	PR D 7 2262	H.J.LIPKIN	(APGONNE+NAL)
****** *	***	***** ********* **	******	******* ********

Baryons N's and Δ's

Note on N's and Δ 's: I. Determination of Resonance Parameters

A. Spread in Values of Resonance Parameters

Values of masses, widths, and branching ratios are obtained mainly from phase-shift analyses. In production experiments, in fact, it is seldom clear which of the many states at similar masses is being observed. In addition to a few complete phase-shift analyses, we have other analyses, done by using somewhat incomplete data, by various different groups, but we are quite far from having reliable masses and widths derived therefrom.

There are essentially two problems in obtaining reliable resonance parameters. First there is often disagreement as to just what the values of the phase shifts (η 's and δ 's) are. This problem is obviously related to the quality and quantity of the data and to the procedures used to determine or choose the phase shifts. Secondly, even if smooth curves were available for the phase shifts, there would still be some ambiguity in deciding what the resonant parameters are. We might hope that some sort of energy-dependent fit to the smooth phase shifts would yield unique parameters. Unfortunately, however, a sufficiently clever combination of background and/or resonances could fit the phase shifts, satisfy elastic unitarity, and still yield the wrong parameters. (See I. B. and I.C. below.)

We list the values of M, Γ and x quoted by the various authors with a comment on the method used to derive such parameters. We now discuss briefly the different methods used. AYED 74 analyze their phase-shift results with an energy-dependent background and Breit-Wigner amplitudes. BAREYRE 68 uses two methods: 1) cross-section method - the energy where the total cross section is maximum; 2) speed method - the energy where the speed of variation of the amplitude in the Argand plot is maximum. CERN, as well as ALMEHED 72, usually associate a resonance with simultaneous clear structure in η and $\delta.~$ The Glasgow group (DAVIES 70) uses Breit-Wigner parametrization; their solutions A and B differ in the starting values of the minimization (CERN I solution was used for solution B). Only the parameters from solution A are included in the listings. For some states no parameters have been quoted by the authors.

At the beginning of the Data Card Listings for N'sand Δs , we present a table giving our evaluation of the N

Data Card Listings For notation, see key at front of Listings.

and Δ resonances based on information contained in the Listings. In the Table of Particle Properties, we do not quote values and errors for parameters, but only give ranges for masses and widths in order to emphasize that in some cases these parameters are quite poorly determined.

B. Note on Speed Plots

In the discussion which follows, we use the term "speed plot" to indicate a plot showing the variation with c.m. energy E of the derivative |dT/dE| of a partial-wave amplitude T. (See section IV. A of the main text.) In principle such plots are a very sensitive and useful means of searching for a resonance. A rapid increase in speed followed by a rapid decrease is certainly a good indication of the presence of a resonance. In practice these plots must be judiciously used because:

1) The values of dT/dE are sensitive to variations in T. It is difficult enough to determine T(E); finding its derivative is necessarily more difficult.

2) Once the speed plot tells us that a resonance is present, the determination of precise parameters from such a plot requires additional considerations:

a) the maximum of the speed is not necessarily at the resonance mass,

b) the width cannot simply be obtained by the relation $|dT/dE|_{E=M} = 2x/\Gamma$.

Consider for example the P_{33} partial-wave amplitude in π -N scattering. Since its elasticity (x) is one, we have

$$T(E) = \frac{\Gamma(E)/2}{M-E - i\Gamma(E)/2}$$
 (1)

If we let $\Gamma'(E) = d\Gamma/dE$, then we find that

$$'\text{Speed''} = \left|\frac{dT}{dE}\right| = \frac{2}{\Gamma} \frac{1+(M-E)\Gamma'/\Gamma}{1+4(M-E)^2/\Gamma^2}.$$
 (2)

To estimate where Eq. (2) is maximum, we let $E = M + \delta$ and find that for small δ ,

$$\frac{\mathrm{d}}{\mathrm{d}\mathrm{E}} \left| \frac{\mathrm{d}\mathrm{T}}{\mathrm{d}\mathrm{E}} \right| = -\frac{16}{\Gamma^3} \left(\frac{\Gamma\Gamma'}{8} + \delta \right) + \mathfrak{G}'(\delta^2). \tag{3}$$

Since all reasonable parametrizations of $\Gamma(E)$ agree that $\Gamma' \geq 0$, we may conclude that the "speed" will have its maximum value at an energy about $\Gamma\Gamma'/8$ less than the resonant value, E = M.

This effect is illustrated in Fig. I.1, which is taken from UCRL-20030 πN .¹ For the P₃₃ partial wave, the CERN experimental and CERN Kirsopp solutions indicate the instability of |dT/dE| in the

region of a resonance (the other solutions are "smooth" by the nature of the analysis). In addition, each of the plots, quite consistently, gives $2/\Gamma \approx 16 \text{ GeV}^{-1}$ at a resonant mass of ~1236 MeV. This corresponds to a width at resonance of ~125 MeV. The speed, however, peaks some 10 to 15 MeV lower in mass and at a value of ~18.5 GeV⁻¹. Hence, were we to estimate the mass and width of the 33-resonance from the maximum speed, we would get $M \approx 1220 \text{ MeV}$ and $\Gamma = 108 \text{ MeV}$.

C. Comments on the Mass and Width of $\Delta(1232)$

In previous editions^{2,3} we presented exhaustive studies of the resonance parameters for the $\Delta(1232)$. We concluded³ that if any parameters are "unique" they are those given by the pole position.

On the basis of that study we have entered the pole position in both the Table and the Data Card Listings. We remind the reader of our conclusions.

 Over a reasonable energy interval on the real axis, <u>all</u> parametrizations of the amplitude are equally good provided:

a) they fit the data,

b) they are unitary and have sensible threshold behavior (e.g., $\delta_{\ell} \propto q^{2\ell+1}$).

2) For good fits to the same data, the resonance mass and width on the real axis depend upon the parametrization used (background +BW, different BW's, etc.). Indeed, we found that the fitted mass parameter ranged from 1230 to 1235 MeV, and the width from 109 to 124 MeV. Clearly, it is meaningless for us to average masses and widths corresponding to either different parametrizations or significantly different sets of data.

3) For good fits to the same data, the pole position is essentially independent of the parametrization.

An analysis of the $\Delta(1232)$ pole position which in principle seems more general has been made by NOGOVA 73. It is unfortunate, however, that these authors did not use the <u>same</u> phase shift "data" as in ref. 2 and 3.

D. Availability of Partial-Wave Analyses and Data

All the solutions mentioned in this note, including AYED 74 and ALMEHED 72, are available on tape from the Particle Data Group. This tape is essentially an updated version of the one corresponding to the compilation of ref. 1. In addition, a tape of the extensive input data used by ALMEHED 72⁴ and a booklet of enlarged reproductions of all the baryon Argand plots $(N, \Delta, Z^*, and Y^*)$ shown in the following pages are available from the Particle Data Group, LBL, Berkeley.

References for Section I

- D. J. Herndon, A. Barbaro-Galtieri, A. H. Rosenfeld, UCRL-20030 πN (Feb. 1970).
- Particle Data Group, Rev. Mod. Phys. <u>43</u>, S114 (1971).
- 3. Particle Data Group, Phys. Lett. 39B, 103 (1972).
- 4. C. Lovelace et al., LBL-63 (April 1973).

Note on N's and Δ 's: II. $\pi N \rightarrow \pi N, \eta N, K\Sigma$

The most recent available $\pi N \rightarrow \pi N$ amplitudes are from the analysis of the Saclay group, AYED 74. These are shown in Figs. II.1-II.6. The analysis included the recent Berkeley¹ and Saclay² charge exchange data as well as the precise $\pi^{\pm}p$ differential cross-section measurements in the $\Delta(1232)$ region $(180 \leq P_{LAB} \leq 408 \text{ MeV/c})$ by Bussey et al.³ These

109

Fig. II.1. Amplitudes for $I = 3/2 \pi N$ elastic scattering in the J = 1/2 and J = 3/2 waves from AYED 73. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 50 MeV and a base-to-tip length of 5 MeV. All the energy axes run from elastic threshold to 2500 MeV. Established resonances in these waves are the $\Delta(1650)$, $\Delta(1910)$, $\Delta(1232)$, and $\Delta(1670)$ in the S31, P31, P33, and D33 waves, respectively; these are indicated on the above Argand plots. See the Data Card Listings and the accompanying mini-review for other possible resonances in the S31 and P33 waves.

Baryons

N's and Δ 's

Baryons N's and Δ's

Fig. II.2. Amplitudes for $I = 1/2 \pi N$ elastic scattering in the J = 1/2 and J = 3/2 waves from AYED 73. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 50 MeV and a base-to-tip length of 5 MeV. All the energy axes run from elastic threshold to 2000 MeV. Established resonances in these waves are the N(1535) and N(1700) in the S_{11} wave, the N(1470) and N(1780) in the P_{11} wave, the N(1860) in the P_{13} wave, and the N(1520) in the D_{13} wave; these are indicated on the above Argand plots. The P_{11} wave also contains the nucleon pole, 138 MeV below threshold. See the Data Card Listings and the accompanying mini-review for other possible resonances in the S_{11} , P_{11} , and D_{13} waves.

Fig. II.3. Amplitudes for $I = 3/2 \pi N$ elastic scattering in the J = 5/2 and J = 7/2 waves from AYED 73. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 50 MeV and a base-to-tip length of 5 MeV. All the energy axes run from elastic threshold to 2500 MeV. Established resonances in these waves are the $\Delta(1890)$ and $\Delta(1950)$ in the F35 and F37 waves, respectively; these are indicated on the above Argand plots. See the Data Card Listings for another possible resonance in the D35 wave.

Baryons N's and Δ's

Baryons N's and Δ 's

Fig. II.4. Amplitudes for $I = 1/2 \pi N$ elastic scattering in the J = 5/2 and J = 7/2 waves from AYED 73. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 50 MeV and a base-to-tip length of 5 MeV. All the energy axes run from elastic threshold to 2500 MeV. Established resonances in these waves are the N(1670), N(1688), and N(2190) in the D_{15} , F_{15} , and G_{17} waves, respectively; these are indicated on the above Argand plots. See the Data Card Listings and the accompanying mini-review for other possible resonances in the D_{15} , F_{15} , and F_{17} waves.

113

Baryons

N's and Δ 's

Data Card Listings For notation, see key at front of Listings.

Fig. II.5. Amplitudes for $I = 3/2 \pi N$ elastic scattering in the J = 9/2 and J = 11/2 waves from AYED 73. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 50 MeV and a base-to-tip length of 5 MeV. All energy axes run from 1500 to 2500 MeV. The only established resonance in these waves is the $\Delta(2420)$ in the H_{3 14} wave; it is indicated on the above H_{3 14} Argand plot. See the Data Card Listings and the accompanying mini-review for another possible resonance in the G₃₉ wave.

Baryons N's and Δ's

Fig. II.6. Amplitudes for $I = 1/2 \pi N$ elastic scattering in the J = 9/2 and J = 11/2 waves from AYED 73. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 50 MeV and a base-to-tip length of 5 MeV. All the energy axes run from 1500 to 2500 MeV. The only established resonance in these waves is the N(2220) in the H₁₉ wave; it is indicated on the above H₁₉ Argand plot. See the Data Card Listings and the accompanying mini-review for another possible resonance in the G₁₉ wave.

Baryons N's and Δ's

data are so good, in fact, that an extensive treatment of Coulomb effects is necessary for a proper description in terms of partial waves. This has been done by CARTER 73 who obtain, in the process, rather precise values for the $\Delta(1232)$ electromagnetic mass splittings.

The figure captions summarize the known resonances in the various partial waves. We restrict our discussion here to mentioning the possible new effects seen in recent analyses. All resonance parameters quoted under AYED 74 derive from energydependent fits (Breit-Wigner with background) to the partial-wave amplitudes which were determined in an essentially energy-independent analysis.

 $S_{31}^{"}$: In Fig. II.1, the energy-dependent fit of AYED 74 suggests that the broad structure around 2000 MeV is associated with a second resonance with

M = 2001 MeV, Γ_{tot} = 307 MeV, x_{el} = 0.08.

There is some additional evidence for such an effect from LANGBEIN 73, an energy-independent analysis of $K\Sigma$ associated production.

 $\frac{P_{33}''}{P_{33}'}:$ Similarly the small dip in the imaginary part of P₃₃ and the zero in the real part around 1900 MeV are interpreted in the energy-dependent fit as a second P₃₃ resonance,

M = 1904 MeV, Γ_{tot} = 204 MeV, x_{e1} = 0.19.

In this case LANGBEIN 73 give confirming evidence in only one of their two solutions for $\pi N \rightarrow K\Sigma$. Note that ALMEHED 72 ("CERN") found two effects, one at ~1680 MeV and another at ~2150 MeV.

 P_{31} : The P_{31} resonance mass quoted by

AYED 74 (M = 1786 MeV) is considerably lower than in previous analyses (except AYED 70) which find M in the region 1900 to 1950 MeV; LANGBEIN 73 would prefer this higher mass.

 $\frac{S_{11}^{'''}}{\text{waves of AYED 74.}}$ In Fig. II.2 are shown the low spin I = 1/2 waves of AYED 74. They associate the broad effect at ~ 2300 MeV with a third S₁₁ resonance:

M = 2283 MeV, Γ_{tot} = 310 MeV, x_{el} = 0.14.

LANGBEIN 73 find, perhaps, a similar effect at \approx 1900 MeV; their analysis, however, extends only to 2137 MeV.

Data Card Listings For notation, see key at front of Listings.

$$P_{11} \begin{cases} M_{low} = 1413 \text{ MeV}, \ \Gamma_{tot} = 187 \text{ MeV}, \ x_{el} = 0.55; \\ M_{high} = 1532 \text{ MeV}, \ \Gamma_{tot} = 89 \text{ MeV}, \ x_{el} = 0.12. \end{cases}$$

While such a splitting might be a natural explanation for the relatively low mass and broad width of the "Roper" as seen in production experiments, the evidence in Fig. II.2 - especially the projectionsseems only tentative. Considerably more data are needed to substantiate such small effects. The new Saclay yn data and partial-wave analysis of LEMOIGNE 73 are not inconsistent with the parameters of the high mass state. However, it is possible that

this splitting could be explained by simultaneously fitting the elastic and nn data, taking proper account of the nn threshold at 1490 MeV.

<u>D''3</u>: A somewhat larger effect in this wave at ~ 1700 MeV is identified by AYED 74 as a second D_{13} resonance:

M = 1710 MeV, Γ_{tot} = 100 MeV, x_{el} = 0.09.

The projections reveal a shoulder in the imaginary part and a small dip in the real part. A similar effect exists in ALMEHED 72, but was not claimed as a resonance. One solution of LANGBEIN 73 shows evidence for a D_{13} effect around 1790 MeV. Recent pion photoproduction analyses and the LBL-SLAC $\pi\pi N$ analysis have also sound evidence for this state (see III and IV below).

 $\underline{D_{13}^{\prime\prime\prime}}$: Along with ALMEHED 72, AYED 74 find evidence for a D_{13} state at ~ 2000 MeV:

M = 2029 MeV, Γ_{tot} = 116 MeV, x_{el} = 0.10.

The evidence in the projections seems even less than for the effect at 1700 MeV. LANGBEIN 73 find no evidence in the $K\Sigma$ channel.

<u> $D_{15}^{''}$ </u>: The rapid decrease in the real part of this amplitude around 2100 MeV (see Fig. II.4) is associated with a second D_{15} resonance by AYED 74:

M = 2100 MeV, Γ_{tot} = 220 MeV, x_{el} = 0.08.

These parameters are in reasonable agreement with those of ALMEHED 72.

 $F_{15}^{"}$: The broad shoulder in the real part and dip in the imaginary part are identified with a second F_{15}

resonance by AYED 74:

M = 1989 MeV, Γ_{tot} = 179 MeV, x_{e1} = 0.08.

ALMEHED 72 find an effect at \sim 2200 MeV; this, however, is near the maximum energy of their analysis.

<u>Higher Waves.</u> Besides confirming the already accepted $H_{3\ 11}$ and H_{19} , AYED 74 present evidence for two additional states in the 2200 MeV region:

 G_{39} : M = 2174 MeV, Γ_{tot} = 205 MeV, x_{el} = 0.04;

$$G_{19}$$
: M = 2133 MeV, $\Gamma_{tot} = 193$ MeV, $x_{el} = 0.10$.

The G_{39} effect in Fig. II.5 is not too convincing. Notice that ALMEHED 72 claimed a P_{33} resonance in this same region; see $\Delta(2160)$ for further possibilities in this mass region. In contrast, the evidence for G_{19} , Fig. II.6, looks quite good; note, in particular, the behavior of the real part projection in the region 1900 - 2500 MeV.

References for Section II

- 1. J. E. Nelson et al., Phys. Lett. <u>47B</u>, 281 (1973).
- J. Feltesse et al., Saclay preprint (to be published).
- P. J. Bussey et al., Nucl. Phys. <u>B26</u>, 588 (1971).

Note on N's and Δ 's: III. The N $\pi\pi$ Channel

A. Current Status of Nππ Partial-Wave Analyses

In the isobar model, the amplitude for the reaction $\pi N \rightarrow N\pi\pi$ is written

$$\begin{split} \mathbf{T} &= \boldsymbol{\Sigma} \left\{ \begin{matrix} \mathbf{JILL'} & \mathbf{JILL'} \\ \mathbf{T}_{\Delta \pi} \left(\mathbf{E} \right) \mathbf{B} \mathbf{W}_{\Delta} (\mathbf{E}_{\pi N}) \mathbf{X}_{\Delta \pi} \\ & \mathbf{JILL'} & \mathbf{JILL'} & \mathbf{JILL'} \\ & + \mathbf{T}_{\rho N} \left(\mathbf{E} \right) \mathbf{B} \mathbf{W}_{\rho} (\mathbf{E}_{\pi \pi}) \mathbf{X}_{\rho N} + \mathbf{T}_{\varepsilon N} \left(\mathbf{E} \right) \mathbf{B} \mathbf{W}_{\varepsilon} (\mathbf{E}_{\pi \pi}) \mathbf{X}_{\varepsilon N} \end{matrix} \right\}, \end{split}$$

In this expression the BW's denote either appropriate Breit-Wigners or the corresponding two-body amplitude. The functions X contain all the angular information; these are well-defined functions depending only on which isobars are used in the model. The partial-wave amplitudes, $T_{\Delta\pi}^{JILL}$, etc., may be indicated by

 $\Delta \pi$, LL'_{212,1} ρ N, LL'_{212,1} ϵ N, LL'_{212,1}

where L is the incoming (πN) angular momentum, and L' is the outgoing angular momentum between the isobar $[\rho, \epsilon (= \pi \pi I=0, S \text{ wave}), \Delta]$ and the remaining hadron (Nor π); as usual I and J are the isospin and total spin $(\vec{J} = \vec{L} + \vec{S} = \vec{L}' + \vec{S}')$, respectively. Often the ρ has a subscript 1 or 3 which denotes twice the ρ N total spin. It should be noted that one assumes the partial-wave amplitudes depend only on the c.m. energy E and not on the diparticle subenergies, $E_{\pi\pi}$ and $E_{\pi N}$.

At the Purdue Conference on baryon resonances, it was observed that the phases of the LBL-SLAC¹ $\Delta \pi$ isobar amplitudes were inconsistent with predictions² deriving from the Melosh transformation between constituent and current quarks (currentquark scheme). As the same predictions follow from *l*-broken SU(6)²_W, the LBL-SLAC group was encouraged (by D. Faiman) to investigate the possibility of another solution consistent with these symmetry schemes.

In general one might hope that the output of partial-wave analyses could be used to discriminate among competing theories. In this case, however, there were at least two rather obvious reasons why the LBL-SLAC solution might not be unique:

- The c.m. energy range covered by the analysis was 1300 ≤ E ≤ 2000 MeV. Unfortunately the data available for this analysis were incomplete in that a gap existed in the interval 1550 ≤ E ≤ 1650. Thus the Purdue solution,⁴ in particular the relative resonance phases, depended on a particular choice of continuation through this gap.
- 2. In the initial stages of the analysis some 60 partial waves (120 parameters) were considered as candidates for making important contributions to the Nnm cross sections. In order to make the analysis at all feasible, this set had to be decreased to a more manageable number through a combination of statistical (e.g., neglect of waves with magnitude \leq 0.1 in preliminary analyses) and physical (e.g., D₁₅(1670) believed to have ~ 50% decay mode into Nnm) considerations. Of course, one can never be sure that waves discarded in this manner are truly unimportant.

With these problems in mind a new solution was found which included (i. e., did not set to zero) four small waves required by ℓ -broken SU(6)_W. This solution⁴ is shown in Fig. III.1. The arrowheads on these plots are spaced every 20 MeV, the last one being at 1940 MeV for each wave. The points not Baryons

N's and $\Delta 's$

Data Card Listings For notation, see key at front of Listings.

Fig. III.1. An alternate solution of the LBL-SLAC isobar analysis of $\pi N \rightarrow N\pi\pi$. See the text for notation. The sign in the upper left-hand corner of each plot indicates how to transform from the sign conventions of this group to that of the "baryon-first" convention. (See main text, Sec. IV.B.)

connected by straight lines indicate the energy gap in the data available for the analysis. The numbers (1620, 1730, etc.) are the resonance masses found by AYED 74 (see Sec. II above). The new waves are so labeled; notice that they are still fairly small in magnitude.

If we compare this solution to the old one, ¹ we find that the P₃₃, D₃₃, F₃₅, F₃₇, P₁₃, D₁₅, and F₁₅ waves have not been significantly altered in structure, but have all been rotated by ~ 180°. In contrast, S₃₁, P₃₁, S₁₁, P₁₁, and D₁₃ have undergone considerable change in both structure and phase. In a sense this is not surprising since these waves (except for P₃₁ which was small to begin with) all contain resonances which are either in, or overlap, the region of the gap (1550 $\leq E \leq 1650$): $\Delta(1650)$ S₃₁, N(1535) S₁₄, N(1470) P₁₄, and N(1520) D₁₃.

With regard to symmetry schemes, we can briefly summarize^{3,6} the situation as follows:

- 1. $\Delta \pi$: Both *l*-broken SU(6)_W and the currentquark scheme can accommodate the resonance signs given by this solution. The quark model makes predictions that agree with this solution with the exception of $\Delta \pi$ FP₁₅(1688) and $\Delta \pi$ FF₁₅(1688) which are predicted to have the same sign.
- 2. ρN : The current-quark model makes no predictions here without an additional assumption such as vector meson dominance; the consequences of such an assumption have not yet been investigated. Both *l*-broken SU(6)_W and the quark model can make predictions for this mode. There may be some disagreement between the predictions of the quark model and the signs of resonance coupling found in the LBL-SLAC analysis. However, as discussed in Sec. C below, the results of this solution for ρN may be less reliable with increasing energy.

For an excellent introduction to these symmetry schemes, we recommend the comparison of M. Kugler.⁶

B. <u>Resonance Parameters</u>

In Table III.1 we show estimates⁴ of resonance parameters associated with the amplitudes of this analysis. They were obtained in two ways. Those labeled "A" were found from the amplitudes shown in Fig. III.1 and from the elastic amplitudes of AYED 74. Those labeled "K" were found from the smooth coupled-channel K-matrix fitted amplitudes of Longacre.⁵ In both methods, the parameters derive from simple "ruler and compass" estimates of the resonance parameters from the corresponding Argand plots. For example, we have in the $\Delta_{\rm L}\pi$ column for the FP₄₅ wave

$$\sqrt{\mathbf{x}_{el} \mathbf{x}_{\Delta_{L}^{\pi}}} \approx \begin{cases} -0.26 \text{ A} \\ -0.25 \text{ K} \end{cases} \approx \text{ diameter of resonance} \\ \text{''circle''}. \end{cases}$$

The sign indicates whether, ignoring background effects, the resonance circles tend to point up (+) or down (-). Of course, the overall phase of these amplitudes cannot be found from the N $\pi\pi$ data alone; the orientation of the Argand amplitudes in Fig. III.1 was determined with the additional constraints of unitarity and continuity in energy. ⁵ For alternative resonance parameters as well as the complex energy poles corresponding to these resonances, we refer the reader to Ref. 5.

The two sets of values in Table III.1 give us, perhaps, some feeling for the uncertainty in estimating these parameters. In most instances the agreement in both magnitudes and resonance phases is satisfactory. Notice, however, that there are disagreements in <u>signs</u> for some of the $S_{11}(1700)$, $P_{11}(1470)$, and $P_{11}(1780)$ couplings. As these are all comparatively small effects, we have some measure of the spread in resonance parameters which may be associated with these amplitudes. Some comments on possible biases in the isobar model itself are given in Sec. C below.

Some information on isobar couplings from other analyses is available. MEHTANI 72, analyzing data on the $\Delta \pi$ channel in the region $1820 \le E \le 2090$ MeV, find

$$\Delta \pi \ FF_{35}(1890): \quad \sqrt{x_{e1} x_{\Delta \pi}} = 0.19 - 0.23$$
$$\Delta \pi \ FF_{37}(1950): \quad \sqrt{x_{e1} x_{\Delta \pi}} = 0.37 - 0.48.$$

These couplings are in fair agreement with the LBL-SLAC results. Note, however, that MEHTANI 72 find no evidence for ρN coupling (see Sec. C below) to these states.

DIEM 70 analyzing data overlapping the gap region (1550 $\leq E \leq 1650$) find couplings similar in magnitude for P₁₁(1470) to ρ N and D₁₃(1520) to $\Delta \pi$ (total) and ϵ N. However, their couplings for S₁₁(1520) are typically a factor of 3 greater than those estimated by LBL-SLAC.

Baryons

N's and Δ 's

Data Card Listings

For notation, see key at front of Listings.

Table III.4. Estimates of resonance parameters from isobar amplitudes. A/K indicate two methods of estimation (see text). In columns labeled x_{el} , $\Delta_L \pi$, etc., one finds the coupling ($\sqrt{x_1x_2}$) and partial width for both methods. Blank entries indicate either no coupling due to quantum number considerations, or that the amplitude was set to zero.

Resonance	M(MeV)	$\frac{\Gamma_{tot}^{(MeV)}}{A_{K}}$	x _{el} A K	ΔL ^π Α Κ	Δ _L , π Δ Κ	ρ ₃ Ν Α Κ	ρ ₁ Ν Α Κ	€ N A K	Σx _i A K	Resonance	M(MeV)	Γ _{tot} (MeV) Α Κ	×el A K	[∆] L ^π A∕K	$\Delta_{L'} = A_{K}$	ρ ₃ Ν Α Κ	ρ ₁ ^N A K	€N A K	Σx _i A K
S ₁₁	1520 1510	75 100	Nπ .34 26 .20 20	SD ₁₁ 0.0 0.0 +.06 2			SS ₁₁ +.12 3 +.09 4	SP 11 +.10 2 +.09 4	.41	D ₁₃	1 525 1 520	120 150	Nπ .56 67 .60 90	DS ₁₃ 27 16 24 15	DD ₁₃ 24 12 30 23	DS 13 +.32 22 +.24 15		DP 13 0.0 0.0 17 7	.98
S ₁₁	1675 1660	150 130	Nπ .54 .45 .58	SD ₁₁ +.16 7 +.15 6			SS ₁₁ 23 15 +.16 8	SP ₁₁ +.23 15 +.25 18	.79	D ₁₃	1710 1710	100	Νπ .09 9 .10 30	DS ₁₃ 15 25 16 75	DD 13 +.10 11 +.14 60	DS ₁₃ 0.0 0.0 07 15		DP 13 +.20 44 +.20 120	.89
S ₃₁	1625 1600	160 150	Nπ .32 51 .40 60	SD ₃₁ +.40 80 +.40 60			SS ₃₁ 18 16 28 30		.92 1.00	D ₃₃	1725 1680	190 240	Nπ .17 32 .20 48	DS ₃₃ 25 70 24 72	DD ₃₃ 0.0 0.0 10 12	DS 33 +.20 45 +.30 108			.77
P ₁₁	1415 1390	180 200	Nπ .54 97 .55 110	PP ₁₁ +.30 30 +.37 50			PP ₁₁ 0.0 0.0 +.23 20	PS 11 18 11 +.23 20	.77	D ₁₅	1660 1660	145 150	Νπ .41 59 .45 67	DD +.45 72 +.50 83					.90
P ₁₁	1730 1710	165 75	Nπ .17 28 .20 15	PP 13 16 +.20 15			PP 11 32 99 20 15	PS ₁₁ +.18 31 +.28 30	1.05	F ₁₅	1680 1670	125 130	Nπ .59 74 .59 78	FP ₁₅ 26 14 25 13	FF ₁₅ 0.0 0.0 +.08 1	FP 27 15 30 19	5	FD 28 16 30 19	.95
P ₁₃	1695 1720	115 150	Nπ .14 16 .20 30				PP 13 +.35 101 +.40 120		1.02	F ₃₅	1870 1830	2 55 220	Νπ .14 36 .18 40	FF ₃₅ 12 26 20 48	-	FP ₃₅ +.28 143 +.33 132			.80
P ₃₃	1900 1640	205 300	Nπ .19 39 .10 30	PP ₃₃ 36 140 3 270					.87	F ₃₇	1930 1925	235 240	Νπ .41 96 .40 96	FF ₃₇ 25 36 32 60		FF ₃ +.18 19 +.24 36	7		.64

C. Biases

We now discuss two possible biases which could affect the results of the LBL-SLAC analysis:

- 1) the neglect of higher partial waves;
- 2) the assumption that the partial-wave amplitudes $(T_{\Delta\pi}^{JILL'}$, etc.) are independent of the diparticle subenergies.

A UCR-LBL collaboration has made⁷ an extensive analysis of the reaction $\pi^+ p \rightarrow \pi^0 \pi^+ p$ in the region

 $1820 \leq E \leq 2090$ MeV. As noted above, they too found that $\Delta^{++}\pi^0$ production was well described by

 $\Delta(1950)$ formation in the FF₃₇ wave. At the same time, however, they found from the ρ^+ density matrix that $\rho^+ p$ production could be quite well described by one pion exchange. Their results indicate that the inclusion of higher partial waves, associated with one pion exchange, could substantially affect both the strength and the phases of the ρN and ϵN couplings found by the LBL-SLAC analysis. In short, one must be cautious in accepting these couplings above ~1800 MeV.

Recently, several authors $^{8, 9, 10}$ have emphasized that the assumption that the partial-wave amplitudes

are independent of the diparticle subenergies may be too severe an approximation. Indeed, it is known both from potential theory, 9,10 in the context of the Faddeev equations, and also from considerations of three-body unitarity 8,10 that this dependence on subenergies <u>could</u> be quite strong. The physical consequences of a subenergy dependence are readily appreciated. As it stands, the isobar model specifies how isobars, contributing to the same I, J^P partial wave, interfere in phase across the Dalitz plot. Since this specification is in principle incorrect, it is conceivable that the phases shown in Fig. III.1 are also incorrect.

The phenomenological consequence of these considerations is that the partial-wave amplitudes should become

$$\begin{array}{c} \text{JILL'} & \text{JILL'} \\ \text{T}_{\Delta \pi} (\text{E}) \longrightarrow \text{T}_{\Delta \pi} (\text{E}, \text{E}_{\pi \text{N}}), \end{array}$$

with similar replacements for the ρN and ϵN amplitudes. Clearly, such a formulation of the isobar model is impractical simply because there would be <u>many</u> parameters to be determined for only <u>one</u> partial wave. Some simple approximations for JILL' T_{$\Delta\pi$} (E, E_{πN}), etc., are given in Refs. 8 and 10. It remains, however, an open question as to just how important the subenergy dependence is.

References for Section III

- R. J. Cashmore, <u>Baryon Resonances-73</u>, ed.
 E. C. Fowler, Purdue Univ. Press, 1973, p. 53.
- 2. F. J. Gilman, ibid, p. 441.
- J. L. Rosner, <u>Particles and Fields-1973</u> (APS/DPF Berkeley), ed. Bingham et al., Amer. Inst. Phys., 1973, p. 130.
- D. J. Herndon et al., LBL-1065 (Rev. (Rev.)), 1974.
- 5. R. S. Longacre, LBL-948 (1973).
- M. Kugler, <u>Particles and Fields-1973</u> (ibid.), p. 222.
- A. Kernan et al., LBL-2017; paper submit'ed to Baryon Resonances-73. See also Y. Williamson et al., Phys. Rev. Lett. <u>29</u>, 1353 (1972).
- G. Fox, <u>Experimental Meson Spectroscopy-1972</u>, ed. Rosenfeld and Lai, Amer. Inst. of Phys., 1972, pp. 279 and 298.
- C. Lovelace, Plenary Talk, Proceedings of the XVI International Conference on High Energy Physics, Vol. 3, p. 90, NAL (1972).
- R. Aarron and R. D. Amado, Phys. Rev. Lett. <u>31</u>, 1157 (1973).

Note on N's and Δ 's: IV. Photon Couplings

(R. L. Crawford and R. G. Moorhouse, Glasgow Univ.)

Photon couplings can be studied in reactions like $\gamma N \rightarrow N^* \rightarrow \pi N, \ K\Lambda, \ K\Sigma, \ \pi \Delta \dots$

A partial-wave analysis of these formation processes is the standard technique to determine the coupling strengths $g(N^*N\gamma)$. Up to now almost all results are derived from analysis of pion photoproduction. In the following we therefore outline the formulation of pion photoproduction and define the conventions in which results will be quoted.

The process $\gamma N \rightarrow N^* \rightarrow \pi N$ for a specific intermediate resonance can be symbolically described as

$$\langle \pi N | H_{\pi} | N^* \rangle \langle N^* | H_{\nu} | \gamma N \rangle$$

The first term is measured in strong interactions, e.g. by partial-wave analysis of πN elastic scattering. A common feature of almost all analyses of pion photoproduction is a strong reliance on the knowledge of resonance parameters from πN phase-shift analyses. Very few attempts are made to determine new πN resonance parameters, partly because of lack of precise enough data, partly because photoproduction is complicated by the fact that the photon has spin states ±1 and can react as an isoscalar or isovector. Consequently in general, several couplings for $N^* \rightarrow \gamma N$ (2 for Δ , 4 for N) have to be determined.

Isospin Decomposition

If we use the conventional framework for the isospin decomposition, without an isotensor component, the reactions leading to the four possible final charge states are described by three isospin amplitudes. One set of these consists of the amplitudes A^{Δ} , A^{p} , and A^{n} , which are respectively the amplitudes for the reaction to proceed by an I = 3/2 state, an I = 1/2 state with charge =+1, and an I = 1/2 state with charge = 0:

$$\begin{split} A(\gamma p \rightarrow \pi N) &= C_{\pi N}^{3/2} A^{\Delta} + C_{\pi N}^{1/2} A^{p}, \\ A(\gamma n \rightarrow \pi N) &= C_{\pi N}^{3/2} A^{\Delta} + C_{\pi N}^{1/2} A^{n}, \end{split} \tag{1}$$

The C-G coefficients, $C_{\pi N}^{I}$ for the coupling to a specific πN state are given explicitly by

$$\begin{array}{rcl} A(\gamma p \to \pi^{+}n) &=& -\sqrt{1/3} \ A^{\Delta} &=& \sqrt{2/3} A^{P}, \\ A(\gamma p \to \pi^{\circ}p) &=& \sqrt{2/3} \ A^{\Delta} &=& \sqrt{1/3} \ A^{P}, \\ A(\gamma n \to \pi^{-}p) &=& \sqrt{1/3} \ A^{\Delta} &=& \sqrt{2/3} \ A^{n}, \\ A(\gamma n \to \pi^{\circ}n) &=& \sqrt{2/3} \ A^{\Delta} &+& \sqrt{1/3} \ A^{n}. \end{array} \tag{2}$$

Walker's amplitudes A^{V3} , A^{V1} and A^{S} for the production of an isospin eigenstate by the isovector and

isoscalar parts of the electromagnetic current are given by

$$A^{V3} \approx A^{\Delta}$$

 $A^{V1} \approx 1/2(A^{n} - A^{p}),$ (3A)
 $A^{S} \approx 1/2(A^{n} + A^{p}).$

The alternative formalism using the amplitudes $A^{(0)}$, $A^{(1)}$, and $A^{(3)}$ is related to Walker's by

$$A^{(0)} = \sqrt{3/2} A^{S},$$

$$A^{(1)} = \sqrt{3} A^{V1},$$

$$A^{(3)} = \sqrt{1/3} A^{V3}.$$
(3B)

Partial Waves

The S-matrix element for pion photoproduction $(\gamma N_1 \rightarrow \pi N_2)$ is written in the form

$$S_{fi} = i(2\pi)^5 \delta^4 (P_f - P_i) W (k \omega E_1 E_2)^{-1/2} A$$
 (4)

where P_f and P_i are the total 4-momenta in the final and initial state, k, ω , E_1 , and E_2 denote the c.m. energies of photon, pion, initial and final nucleon, and W is the total c.m. energy.

For a partial-wave analysis it is convenient to decompose A into helicity amplitudes². Choosing the x-z plane as the scattering plane, the z-axis along the photon direction, and θ as the c.m. scattering angle between photon and pion, we define helicity amplitudes $A_{\mu\gamma}(W,\theta)$ (ignoring isospin labels). Here μ and λ denote the total final and initial helicities, $\mu = \lambda_{\pi} - \lambda_2$, $\lambda = \lambda_{\gamma} - \lambda_1$. Since $\lambda_{\gamma} = \pm 1$ and $\lambda_{1,2} = \pm 1/2$, we have a set of 8 helicity amplitudes. Because of parity conservation² only 4 are independent, which we choose by fixing $\lambda_{\gamma} = \pm 1$. We thus consider $A_{\pm 1/2, 3/2}$. They are normalized such that the differential cross section is given by

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{2} \frac{\mathrm{q}}{\mathrm{k}} \sum_{\lambda,\mu} |\mathbf{A}_{\mu\lambda}|^2.$$

Each of these is expanded in the usual way^2

$$A_{\mu\lambda}(W,\theta) \approx \sum_{j} (2j+1) A_{\mu\lambda}^{j}(W) d_{\lambda\mu}^{j}(\theta)$$
 (5)

into partial wave amplitudes $A^{j}_{\mu\lambda}(W)$ of total angular momentum j (but mixed parity) and the Wigner rotation functions.

We define amplitudes of definite parity by

$$C_{\lambda}^{\ell+}(W) = \frac{1}{\sqrt{2}} [A_{1/2\lambda}^{j}(W) + A_{-1/2\lambda}^{j}(W)]$$

$$C_{\lambda}^{(\ell+1)-}(W) = \frac{1}{\sqrt{2}} [A_{1/2\lambda}^{j}(W) - A_{-1/2\lambda}^{j}(W)]$$
(6)

where $\lambda = 1/2$, 3/2. The superscripts $l \pm$ refer in the usual notation to states with pion orbital angular momentum l and total angular momentum $j = l \pm 1/2$.

Data Card Listings For notation, see key at front of Listings.

Unitarity of the S-matrix imposes a phase condition on the C amplitudes known as Watson's theorem. It states that in the elastic region the phase of each $C_{\lambda}^{\ell,\pm}$ is equal to the scattering phase of the corresponding πN partial wave.

Since we are interested in intermediate resonances, we approximate the energy dependence of $C_{\lambda}^{\ell \pm}(W)$ by a Breit-Wigner form with background

$$C_{\lambda}^{l\pm}(W) = s \left\{ \frac{\Gamma^{\lambda}(N^{*} \rightarrow \gamma N) \Gamma(N^{*} \rightarrow \pi N)}{k \cdot q} \right\}^{1/2} \frac{W}{W^{2} - m_{R}^{2} - iW\Gamma} + background$$
(7)

where s is the sign of the amplitude, m_R the resonance energy, and k, q the c.m. momenta in the initial, final states. In the following discussion of resonance couplings we use the notation \tilde{A} for the imaginary part of the resonance contribution to an amplitude A(W) evaluated at resonance (W = m_R); thus

$$\tilde{C}_{\lambda}^{\ell\pm} = s \left\{ \frac{\Gamma_{Y}^{\lambda} \Gamma_{\pi}}{k \cdot q \cdot \Gamma^{2}} \right\}^{1/2}$$
(8)

A dominant feature in pion photoproduction is the Born approximation which contains the nucleon pole in the s- and u-channel and the pion pole in the t-channel. It reproduces, e.g., the experimentally observed forward peak in charged pion photoproduction. In partial-wave analyses the sign factor s is well determined relative to the Born terms.

Introducing helicity amplitudes $A_{\lambda}^{j^{F}}$ for the decay $N^{*}(j^{P}) \rightarrow (\gamma N)_{\lambda}$ (where j^{P} labels spin and parity of the N^{*}), we can calculate the radiative width $\Gamma_{\lambda}^{\lambda}$ ³,

$$\Gamma_{\gamma}^{\lambda} = \frac{k^2}{\pi} \frac{m_N}{m_R} \frac{1}{2j+1} (\widetilde{A}_{\lambda}^{jP})^2 \qquad (9)$$

where m_N is the nucleon mass. Introducing this expression into Eq. (8) we find

$$\widetilde{C}_{\lambda}^{l\pm} = \left\{ \frac{1}{(2j+1)\pi} \quad \frac{k}{q} \quad \frac{m_{\rm N}}{m_{\rm R}} \quad \frac{\Gamma_{\pi}}{\Gamma^2} \right\}^{1/2} \widetilde{A}_{\lambda}^{jP}.$$
(10)

We quote results of partial-wave analyses in terms of the amplitudes \tilde{A}_{λ}^{jP} in units of GeV^{-1/2}.

The total radiative width Γ_{γ} and the corresponding contribution σ_T^{P} of the partial waves $C_{\lambda}^{\ell\pm}$ to the total cross section are given by

$$\Gamma_{\lambda} = \frac{3/2}{\lambda^{2} - 3/2} \Gamma_{\gamma}^{\lambda} = \frac{k^{2}}{\pi} \frac{m_{N}}{m_{R}} \frac{2}{2j+1} \{ (\tilde{A}_{1/2}^{jP})^{2} + (\tilde{A}_{3/2}^{jP})^{2} \} (11)$$

$$\sigma_{T}^{jP} = (C_{\pi N}^{I})^{2} 2 \frac{m_{N}}{m_{R}} \frac{\Gamma_{\pi}}{\Gamma^{2}} \{ (\tilde{A}_{1/2}^{jP})^{2} + (\tilde{A}_{3/2}^{jP})^{2} \}. (12)$$

The Hebb-Walker amplitudes¹, $\tilde{A}_{l\pm}$, $\tilde{B}_{l\pm}$, are related to the \tilde{A}_{ξ}^{P} by

$$\begin{split} \widetilde{A}_{l\pm} &= \overline{+} \left\{ \frac{1}{(2j+1)\pi} \frac{k}{q} \frac{m_{\rm N}}{m_{\rm R}} \frac{\Gamma_{\pi}}{\Gamma^2} \right\}^{1/2} C_{\pi \rm N}^{\rm I} \widetilde{A}_{1/2}^{\rm P}, \, (13) \\ \widetilde{B}_{l\pm} &= \pm \left\{ \frac{1}{(2j+1)\pi} \frac{k}{q} \frac{m_{\rm N}}{m_{\rm R}} \frac{\Gamma_{\pi}}{\Gamma^2} \right\}^{1/2} \\ &\times \left\{ \frac{16}{(2j-1)(2j+3)} \right\}^{1/2} C_{\pi \rm N}^{\rm I} \widetilde{A}_{3/2}^{\rm P}. \, (14) \end{split}$$

We see from (2), (7), (8), and (9) that, apart from the factor $[16/(2j-1)(2j+3)]^{1/2}$, these are just the imaginary part of the resonance part of the amplitude (2) at resonance. Consequently they are more directly related to experiment than the $\widehat{A_{\lambda}}^{P}$, which incorporate an additional uncertainty of the partial width $\Gamma(N^* \to \pi N)$.

Methods of Partial-Wave Analaysis

(a) Simple isobar model: In this method the partial-wave amplitudes are formulated as in (7) (or similarly), with the resonance, or resonances, part built using knowledge of m_R , Γ , and $\Gamma(N^* \to \pi N)$ from πN elastic partial-wave analysis; the parametrization of the background is author-dependent, as indeed is the detailed form of the resonance term, but the background is generally assumed to vary more slowly than the resonances. When the partial waves of Eq. (7) have been combined to form the angular-dependent amplitude of Eq. (5), the Born amplitudes given by the Feynman diagrams of Fig. IV.1 must be added. (Alternatively, these Born amplitudes may previously have been projected into partial waves and included in the background terms of Eq. (7).

As indicated in Fig. IV.1, the photon couples to the nucleon through both the electric charge, e, and the anomalous moment, μ . The minimum gaugeinvariant form which includes the pion pole is given

Fig. IV.1. Feynman diagrams for the Born terms in pion photoproduction. The couplings of the photon to the pion and nucleon are indicated, e representing a coupling via charge, and μ a coupling via anomalous moment.

by the pion pole term plus the nucleon pole terms with electric charge interaction only; we can refer to these as the electric Born terms. Generally, only the electric Born terms are included explicitly, because they reproduce the forward peak for charged photoproduction, and the magnetic terms can be assumed included in the real parts of background and resonances in Eq. (7). However this certainly raises problems of principle since some of the electric Born terms might also be subsumed in the background and resonances.

The best values of the resonance couplings, $\Gamma^{\lambda}(N^* \rightarrow \gamma N)$, and background parameters are found as those which give minimum χ^2 for all data within the energy range, in the usual manner for DPWA.

(b) Fixed-t dispersion relations (FTDR): The difficulties of principle with the Born approximation in the simple isobar model are among the reasons which have led to the use of FTDR:

Re
$$A_i^{(\pm,0)}(s,t) = B_i^{(\pm,0)}(s,t)$$

$$+ \int_{(M_N^{+}m_{\pi})^2}^{\infty} \left\{ \frac{\operatorname{Im} A_1^{(\pm,0)}(s',t)}{s'-s} + \xi_i \frac{\operatorname{Im} A_1^{(\mp,0)}(s',t)}{s'-u} \right\} (15)$$

for the invariant amplitudes $A_i^{(\pm,0)}(s,t)$ (i = 1,2,3,4), where $B_i^{(\pm,0)}(s,t)$ are the Born amplitudes⁴ of Fig. IV.1 ($\xi_1 = \xi_2 = \xi_4 = 1, \xi_3 = -1; \pm, 0$ denote $\gamma p \rightarrow \pi^+ n, \gamma n \rightarrow \pi^- p, \gamma p \rightarrow \pi^0 p$, respectively). $A_i^{(\pm,0)}(s,t)$ can be expressed in terms of the helicity amplitudes, and vice-versa, by standard formulae.⁴ $B_i^{(\pm,0)}(s,t)$ includes both the electric Born and the anomalous magnetic moment terms, and no ambiguity arises as in the simple isobar model, because <u>all</u> the real part (including the "resonant" real part) is manufactured by the unique prescription (15).

The Im $A_i^{(\pm,0)}(s,t)$ are constructed using the imaginary part only of Eq. (7), or alternative formulae;⁴ the Re $A_i^{(\pm,0)}(s,t)$ are constructed from (15); and minimization of χ^2 to find the unknown parameters of (7) is done as usual in DPWA.

A second advantage of FTDR over the simple isobar model is that <u>imaginary</u> parts appear to be resonance dominated^{1, $\frac{4}{4}$} (though not resonance saturated), and this is not true of the real part; the FTDR method only parametrizes the imaginary parts, and the smaller influence therein of the background terms of Eq. (7) is helpful. This advantage is diminished by the need, apparent from Eq. (15), to parametrize Im $A_i^{(\pm, 0)}(s, t)$ outside the energy region of data fitting, thus effectively adding extra background parameters. Another, and in principle more serious, disadvantage is that Im $A_i^{(\pm, 0)}(s', t)$ in Eq. (15) is required to be known for t outside the physical range corresponding to s'; formally indeed these unphysical amplitudes are given through the partial-wave series (5), and this is how the method calculates them. While the convergence of (5) is not proved for important parts of the unphysical region, Devenish, Lyth, and Rankin⁵ have surmised on the basis of the Mandelstam representation that the method is good up to $-t \leq 1(\text{GeV/c})^2$ in π^{\pm} and $-t \leq 1.5(\text{GeV/c})^2$ in π^0 photoproduction.

The use of FTDR in pion photoproduction has a longer history in the first resonance region, ⁶ where their role was envisaged as largely predictive or synthetic; the independently motivated extension, by the Berkeley^{4,7} and Lancaster⁹ based groups, to a larger energy region also changed their role to almost purely analytic.

Definitions of Resonance Parameters and Errors

From analyses which use a form like that of Eq. (7), there are reported in the Data Card Listings and Table IV.1, photonic resonance couplings which are obtained through Eq. (9) from a Breit-Wigner partial width; the FTDR method uses only the imaginary part of Eq. (7). The FTDR method of MOOR-HOUSE1 73, ⁷ MOORHOUSE2 73, ⁴ and KNIES 73⁸ uses a K-matrix ansatz for the imaginary part; in those cases it is the corresponding K-matrix pole quantity that is reported. (Regrettably no authors give also partial widths corresponding to T-matrix residues.)

If no errors are assigned, the authors have given a unique result without quoting an error. MOOR-HOUSE1 73, ⁷ MOORHOUSE2 73, ⁴ and KNIES 73⁸ quote as error the spread around a central value of a number of solutions. DEVENISH 73⁹ estimate a "real error" for each parameter of a given solution, corresponding to a 1% increase of "best-possible χ^{2} "; the quoted final value is the mean of the resulting extreme values over 3 solutions, with final errors corresponding to the spread of these values allowing for individual "real errors."

The variation between the central values of various papers is generally greater than the quoted error of an individual paper, and this is reflected in the rather large errors given in the Table below.

Data Card Listings For notation, see key at front of Listings.

Table IV.1 Photon resonance couplings.

	λ	Helicit	y couplings	Helicity couplings				
State		<u> </u>	Ã ⁿ	ÃP ÃP	Ãĩ Ãĩ			
		$(GeV)^{-1/2} \times 10^{-3}$	$^{3}(\text{GeV})^{-1/2} \times 10^{-3}$	(GeV) ^{-1/2} ×10	$(\text{GeV})^{-1/2} \times 10^{-1}$			
P' 11	1/2	- 76 ± 20	40 ± 45	27	-18			
D'13	1/2 3/2	-8 ± 18 177 ± 15	-76 ± 13 -124 ± 10	-34 109	-31 -109			
S' 11	1/2	58 ± 25	-42±13	156	-108			
D' 15	1/2 3/2	22 ± 10 25 ± 12	-29 ± 38 -53 ± 30	0 0	- 38 - 53			
F'. 15	1/2 3/2	-1 ± 15 126 ± 24	21 ± 15 -15 ± 15	-10 60	30 0			
S'' 11	1/2	36 ± 30	-27 ± 40	0	30			
D'' 13	1/2 3/2	-60 ± 60 40 ± 40	-10 ± 100 -30 ± 80	0 0	-10 -40			
P'' 11	1/2	22 ± 10	27 ± 15	- 40	10			
P' 13	1/2 3/2	-13 ± 30 -4 ± 30	70 ± 70 40 ± 60	100 -30	- 30 0			
		$\widetilde{\mathbf{A}}_{\lambda}^{\Delta} = \widetilde{\mathbf{A}}_{\lambda}^{V3}$		$\widetilde{\mathbf{A}}_{\lambda}^{\Delta} = \widetilde{\mathbf{A}}_{\lambda}^{V3}$				
P' 33	1/2 3/2	-141 ± 3 -259 ± 5		-108 -187				
S' 31	1/2	57±35		47				
D ₃₃	1/2 3/2	64 ± 28 83 ± 50		88 84				
P'' 33	1/2 3/2	10 ± 30 20 ± 50		23 39				
F ₃₅	1/2 3/2	44±30 -25±20		- 20 - 90				
P ₃₁	1/2	-10 ± 20		-30				
F ₃₇	1/2 3/2	-64 ± 12		- 50				

(1) Average of the available couplings from MOORHOUSE1 73, MOORHOUSE2 73, DEVENISH 73, KNIES 73, METCALF 74, and CRAWFORD 73; for the F_{35} , P_{34} and F_{37} only KNIES 73 and METCALF 74 are used. The errors given are an estimate, generally giving the spread of the results from the different authors.

(2) The naive, *l*-excitation, quark model is used in the 4dimensional oscillator form of Feynman, Kislinger, and Ravndal. The non-relativistic quark model with recoil gives generally very similar results.

Recent Partial-Wave Analyses

(a) Simple isobar model: Previous analyses^{1,10-12} had considerably less data available and are not included in the Data Card Listings.

METCALF 74¹⁴ uses the methods of Walker¹ to analyze data ($\gamma p \rightarrow \pi^+ n$, $\pi^0 p$; $\gamma n \rightarrow \pi^- p$) from the 1st through the 4th resonance region. Thus the partialwave amplitudes are parametrized as in Eq. (7), with the background taken to be an independent number at each energy fitted, and the electric Born terms are added.

(b) Fixed-t dispersion relations: MOORHOUSE1 73, ⁷ MOORHOUSE2 73, ⁴ analyze data ($\gamma p \rightarrow \pi^+ n$, $\pi^{0}p; \gamma n \rightarrow \pi^{-}p$) from the 1st through the 3rd resonance region (1160 < E < 1780 MeV), parametrizing the imaginary parts of the (T-matrix) helicity partialwave amplitudes $A_{\mu\lambda}^{j}(W)$ of (5) via 3-channel K-matrix formulae, roughly $K_{ij} = \sum_{r} \gamma_{i}^{(r)} \gamma_{j}^{(r)} / (E^{(r)} - E);$ (i, j = 1, 2, 3; 1 = πN , 2 = inelastic hadron channel, 3 = γN ; $\gamma_1^{(r)}$, $\gamma_2^{(r)}$, $E^{(r)}$ are previously determined from fits to πN elastic partial-wave amplitudes. The E^(r) may be resonance poles or background poles, $\chi_2^{(r)}$ are the parameters to be determined by χ^2 minimization, and when $E^{(r)}$ is a resonance pole $(\gamma_2^{(\mathbf{r})})^2 \propto \Gamma^{\lambda}(N^* \rightarrow \gamma N)$. MOORHOUSE1 73⁷ is the average of 7 solutions with the quoted error giving the spread of those solutions; χ^2 /data-point for the solutions ranges from 9.7 (with 52 variable parameters) to 5.7 (with 75). In MOORHOUSE2 73⁴ the same group present the average for 3 solutions with χ^2 /data-point between 4.0 (56) and 3.0 (74); again the quoted error is the spread, but the authors remark that the sample of 3 solutions is too small to give a realistic error. KNIES 73⁸ uses the same method, with additional recent polarization data, from the 1st through the 4th resonance region (1160 < $E_{c,m}$ < 1995 MeV); their 4 solutions have χ^2 /data-point varying from 3.48 to 4.66. Of these 3 analyses only that of KNIES 73⁸ actually fits data in the energy region of the Δ (1950) F₃₇ — the other determinations being through the low-energy real-part tail of the Δ (1950) — so the KNIES 73⁸ result on $\Delta(1950)$ is most reliable.

DEVENISH 73⁹ analyze data from the 1st through the 3rd resonance region and parametrize the imaginary parts as Breit-Wigner formulae without background, except that in the case of S-wave π^0 , a nonresonant background is allowed. The fixed-t dispersion integral is cut off at ~1.9 GeV c.m. energy but in some fits a real-part background of the form (a + bt) or (a + bt)×(s - u) is added for, respectively, crossing-even or odd amplitudes, in order to allow for contributions above 2 GeV. The quoted results are formed in the manner described in the previous section from 3 solutions having $\chi^2/\text{data-point of}$ 40.5 (37), 3.0 (68), and 4.7 (68); the first and third of these solutions use a modified χ^2 in which the different types of charge and polarization data have equal weight.

CRAWFORD 74¹⁵ is an FTDR analysis from the 1^{st} through the 3^{rd} resonance region with one solution having $\chi^2/data$ -point 5.1 (68).

(c) Energy-independent analyses: A number of groups $^{16-19}$ have made energy-independent analyses for photon laboratory energies < 450 MeV. Deviations of D and higher waves from the Born approximation are found to be small, and full use is made of Watson's theorem to give the complex phases of the partial waves and thus to reduce the number of free parameters. Discrepancies have been reported between the results of these analyses and the partial waves obtained from FTDR containing only $\Delta(1232)$; some of these appear to persist for the FTDR analyses of (b) above.

An average of the analyses of (a) and (b) above is given in the Table. We see a quantitative determination of the larger couplings of the prominent resonances $\Delta(1232) P_{33}$, N(1520) D_{13} , N(1688) F_{15} , $\Delta(1950) F_{37}$, and qualitative and sign determinations in most other cases.

Electroproduction in the Resonance Region

At present, any attempt to get quantitative information about the partial waves for pion electroproduction restricts us mainly to the first resonance region and in particular to the analysis of coincidence measurements of π^0 production.^{21,22,24-27} The information which can be obtained is the virtual photon mass squared, q^2 , dependence of the magnetic coupling to the P₃₃ resonance, and the ratios of the electric and scalar multipoles to the magnetic multipole.

The experimental data do no permit a complete partial-wave analysis, but the dominance of $M_{1+}^{(3)}$ allows the evaluation of $|M_{1+}|$, $\text{Re}(\text{E}_{1+}M_{1+}^*)/|M_{1+}|^2$, and $\text{Re}(\text{S}_{1+}M_{1+}^*)/|M_{1+}|^2$, where these are in terms of the multipoles for π^0 production. Due to the large size of $M_{1+}^{(3)}$ relative to the other partial waves and because the P₃₃ multipoles are purely imaginary at the resonance, these can be taken to be Im $M_{1+}^{(3)}$,
Baryons N's and Δ 's

 $E_{1+}^{(3)}/M_{1+2}^{(3)}$, and $S_{1+}^{(3)}/M_{1+}^{(3)}$ at the resonance. The q² dependence of $M_{1+}^{(3)}$ is expressed in the form factor $G_{M}^{*}(q^{2})^{21}$

$$G_{M}^{*}(q^{2}) = 2M \left(\frac{3}{2\alpha} \frac{|\vec{k}|}{\sin^{2}\delta_{33}} \frac{\Gamma |M_{1+}|^{2}}{\vec{q}^{2}} \right)^{1/2},$$

where \vec{k} and \vec{q} are respectively the center-of-mass three-momenta of the pion and the virtual photon. The behavior of G_M^* relative to the nucleon form factors is best shown by normalizing it to $G_M^*(0) = 3$ and the nucleon dipole $G_D(q^2) = (1+q^2/0.71)^{-2}$. The results of these analyses are shown in Fig. IV.2.

Also shown are the results from the single-arm measurements of Bortel et al. ²³ and from direct evaluation of $M_{4+}^{(3)}$ in an analysis, ²⁸ using fixed-t dispersion relations, of the differential cross-section data of Ref. 22. It is clearly established that $G_{M}^{*}(q^{2})$ decreases faster than the nucleon dipole.

The measurements of the ratios of $E_{1+}^{(3)}$ and $S_{1+}^{(3)}$ to $M_{1+}^{(3)}$ (Figs. IV.3a and IV.3b) are all consistent with these being small. However, $S_{1+}^{(3)}$ is established as being non-zero and is apparently negative with a value about 10% of that for $M_{1+}^{(3)}$. This is a small violation of the quark model selection rule²⁹ which predicts that the scalar excitation of the P₃₃ should

Data Card Listings For notation, see key at front of Listings.

have zero coupling.

The knowledge of electroproduction in the second and third resonance region is at present limited by the lack of experimental data. The electroproduction of the N(1535) S₁₄ resonance has been examined in η production. ^{30,31} Only the total cross section has been measured, but it is found that the form factor falls much more slowly with q² than the nucleon dipole. The main interest in this region is in the couplings for the D₁₃ and F₁₅ resonances to determine whether there is appreciable scalar excitation and whether the helicity 1/2 amplitudes become important as q² increases as required by the harmonic oscillator quark model. The situation is not yet clear, and it appears possible at present to have either significant scalar or helicity 1/2 effects.^{32, 20}

Information in this Edition

The Baryon Table contains the branching fractions $\Gamma_{\rm V}/\Gamma$ for 12 resonances.

The Data Card Listings contain the photon resonance coupling $(\widetilde{A}_{\lambda}^{j^{1}}$ for p, n and Δ) results of the analyses by: Moorhouse and Oberlack⁷ (MOOR-HOUSE1 73); Moorhouse, Oberlack and Rosenfeld⁴ (MOORHOUSE2 73); Knies, Moorhouse and Oberlack⁸ (KNIES 73); Devenish, Lyth and Rankin⁹ (DEVENISH

Fig. IV.2. The $\Delta(1232)$ magnetic form factor $G_{M}^{*}(q^{2})$ normalized to $G_{M}^{*}(0) = 3$ and the nucleon dipole form factor $G_{D}(q^{2}) = (1 + q^{2}/0.71)^{-2}$.

Fig. IV.3. The ratios $\text{Re}(\text{E}_{1+} \text{ M}_{1+}^*)/|M_{1+}|^2$ and $\text{Re}(\text{S}_{1+} \text{ M}_{1+}^*)/|M_{1+}|^2$ for π^0 electroproduction at the $\Delta(1232)$.

73). These are, as of February 1974, the only published analyses to analyze all three principal photoreactions $(\gamma p \rightarrow \pi^+ n, \pi^0 p; \gamma n \rightarrow \pi^- p)$ over a considerable energy range since that of Walker (1969).^{1,12} A new analysis using the methods of Walker¹ has been carried out by Metcalf and Walker¹⁴ and has been added to the Data Card Listings as METCALF 74, replacing the preliminary results last year listed as WALKER 73. Another recent analysis¹⁵ over a considerable energy range is CRAWFORD 74. Single-energy analyses over the first resonance region only^{16, 17} are in agreement for the P₃₃ amplitude at resonance with the above continuous-energy analyses; the resonance coupling is not quoted by these authors.

The average of the listed results along with an estimate of the error from the spread of all the results is given in Table IV.1; we give results from a naive (*l*-excitation) quark model for comparison.

References for Section IV

- 1. R.L. Walker, Phys. Rev. <u>182</u>, 1729 (1969).
- 2. M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).
- L.A.Copley, G.Karl, and E. Obryk, Nucl. Phys. <u>B13</u>, 303 (1969).
- R.G. Moorhouse, H. Oberlack, and A. H. Rosenfeld, LBL-1590 (1973).
- R.C.E.Devenish, D.H.Lyth, and W.A.Rankin, Daresbury Report DNPL/P109 (1972).

- F.A. Berends, A. Donnachie, and D. L. Weaver, Nucl. Phys. B4, 1 (1967), and B4, 54 (1967); J. Engels, A. Müllensiefen, and W. Schmidt, Phys. Rev. <u>175</u>, 1951 (1968).
- R.G. Moorhouse and H. Oberlack, Phys. Letters <u>43B</u>, 44 (1973); R.G. Moorhouse, Proc. of the XVI International Conf. on High Energy Physics, Vol. I, pages 180-183 (edited J. D. Jackson and A. Roberts, National Accelerator Laboratory, Batavia, 1973).
- G.Knies, R.G. Moorhouse, and H. Oberlack, LBL-2410 (1973).
- 9. R.C.E. Devenish, D.H. Lyth, and W.A. Rankin, Phys. Letters <u>47B</u>, 53 (1973). These authors made various valuable exploratory investigations of fixed-t dispersion relations: ref. R.C.E. Devenish, W.J. Leigh, D.H. Lyth, and W.A. Rankin, Nuovo Cim. <u>1A</u>, 155 (1971) and Ref. 5. But these latter were based on previous simple isobar model partial-wave analysis results and did not determine the resonance parameters or partial waves independently by a χ^2 optimization loop.
- Y.C.Chau, N.Dombey, and R.G. Moorhouse, Phys. Rev. <u>163</u>, 1632 (1967).
- 11. R.G. Moorhouse and W.A. Rankin, Nucl. Phys. <u>B23</u>, 181 (1970).
- R.L. Walker, Proc. of the Daresbury Conf. on Electron and Photon Interactions at High Energy (edited D. Braben, Daresbury Laboratory, 1969).
- 13. Y. Hemmi, et.al., Phys. Letters 43B, 79 (1973).
- 14. W.J. Metcalf and R.L. Walker, Cal. Tech. Report CALT-68-425 (1974).
- R.L.Crawford, see G. vonGehlen, rapporteur's talk at Bonn Conference, 1973 (to be published 1974) and Glasgow University preprint, 1974.

127

Baryons

N's and Δ 's, p, n, N(1470)

- P.Noelle, W. Pfeil, and D.Schwela, Nucl. Phys. <u>B26</u>, 461 (1971); W. Pfeil and D.Schwela, Nucl. Phys. <u>B45</u>, 379 (1972).
- F.A. Berends and D.L. Weaver, Nucl. Phys. <u>B30</u>, 575 (1971).
- Yu. M. Aleksandrov, V. F. Grushin, E. M. Leiken, and A. Ya. Rotvain, Nucl. Phys. <u>B25</u>, 589 (1972).
- S.Suzuki, S.Kurokawa, and K.Kondo, Tokyo preprint (1973).
- G. von Gehlen, rapporteur's talk at Bonn Conference, 1973, (to be published).
- W. W. Ash, K. Berkelman, C.A. Lichtenstein, A. Romanauskos, and R. H. Sieman, Phys. Letters <u>24B</u>, 165 (1967).
- C. Mistretta, J. A. Appel, R. J. Budnitz, L. Carrol, J. Chen, R. Dunning, M. Goitein, K. Hanson, D. C. Imrie, and R. Wilson, Phys. Rev. <u>184</u>, 1487 (1969).
- W. Bartel, B. Dudelzak, H. Krehbiel, J. McElroy, U. Meyer-Berkhout, W. Schmidt, V. Walther, and G. Weber, Phys. Letters <u>28B</u>, 148 (1968).
- S.Golster, G.Hartwig, H.Klein, J. Moritz, K.H. Schmidt, D.Wegener, and W.Schmidt-Parzefall, Phys. Rev. <u>D5</u>, 519 (1972).
- R. Siddle, B. Dickinson, M. Ibbotson, R. Lawson, H.E. Montgomery, V.P.R. Nuthakki, O.T. Turner, W.J.Shuttleworth, A. Sofair, R.D. Hellings, J. Allison, A. B. Clegg, F. Foster, G. Hughes, P.S. Kummer, and J. Fannon, Nucl. Phys. B35, 93 (1971).
- J.C.Alder, F.W Brasse, E.Chazelas, W.Fehrenbach, W.Flauger, K.H.Frank, E.Ganssenauge, J. Gayler, V.Korbel, J.May, and M.Merkwitz, Nucl. Phys. <u>B46</u>, 573 (1972).
- 27. K. Bätzner, U. Beck, K. H. Becks, J. Drees, G. Knop, H. Kolanoski, M. Leenen, K. Moser, Ch. Nietzel, E. Schlösser, and H. E. Stier, Bonn University preprint (1973) and contributed paper no. 21 to the Bonn Conference (1973).
- 28. R.L.Crawford, Nucl. Phys. <u>B28</u>, 573 (1971).
- C. Becchi and G. Morpurgo, Phys. Letters <u>17</u>, 352 (1965).
- P.S.Kummer, E.Ashburner, F.Foster, G.Hughes, R.Siddle, J.Allison, B.Dickinson, E.Evangelides, M.Ibbotson, R.S.Lawson, R.S.Meaburn, H.E. Montgomery, and W.J.Shuttleworth, Daresbury Laboratory Report DNPL/P147 (1972).
- J.C.Alder, F.W.Brasse, W.Fehrenbach, E. Ganssenauge, J.Gayler, V.Korbel, W.Krechlok, J.May, and M. Merkwitz, DESY preprint (1973).
- 32. R. Meaburn, E. Evangelides, J. Allison, B. Dickinson, M. Ibbotson, R. Lawson, H. E. Montgomery, D. Baxter, F. Foster, G. Hughes, D. H. Lyth, and R. C. E. Devenish, Daresbury Laboratory Report DNPL/P184; R. C. E. Devenish and D. H. Lyth, contributed paper no. 24 to the Bonn Conference (1973).

Data Card Listings For notation, see key at front of Listings.

STATUS OF N® RESONANCES THOSE WITH AN OVERALL STATUS OF N® RESONANCES TABLE. THE OTHERS AWAIT CONFIRMATION.

							-			
PARTICLE LIJ	OVERALL STATUS	CR.S.	PIN	ETA N	K LAM	K SIG	PT DE	GAM N	CHANN	R • •
N(940) P11 N*(1520) D13 N*(1555) S11 N*(1555) S11 N*(1670) D15 N*(1700) D13 N*(1700) D13 N*(1700) P11 N*(1700) P13 N*(1700) F17 N*(2000) F17 N*(2000) S11 N*(2100) D15 S*(2100) G17	****	****	*****	* *** * * *	* * * * * * * * * * * * * * * * * *	*	*** *** *** *	**** *** *** ** **	EPS RHO RHO EPS EPS RHO	
N*(2220) H19 N*(2650) N*(3030) N*(3245) N*(3690) N*(3755)	*** *** * * *	*** *** * *	*** * *							
DE(1232) P33 DE(1650) S31 DE(1670) D33 DE(1690) P33 DE(1890) F35 DE(1900) S31 DE(1910) P31 DE(1950) F37 DE(1960) D35 DE(2160) DE(2160) H31	**** *** * * * * * * * * * * * * * * *	***	*** *** * * * * * * * * * * * * * * *	F R B I	D D E N	* * * * * *	** ** * * *	**** ** * * *	RHO RHO RHO RHO	N N N
≠ ATTRI8	JTED TO	THE STAT	÷ CLOS	EST TO	WHERE T	HE CROS	S SECTI	ON PEA	KS.	-
• ATTRIBU	I=1	/2	NUC	EST TO	WHERE T	HE CROS	s secti * ***** TES	ON PEAR (N)	ks.)	•
• ATTRIBU	итер то I=1	THE STAT /2 16 PROT	NUC	EST TO CLE(38, J=1	where T ****** * DN /21 I=	HE CROS	s secti : :::::: : :::::::	(N)	ks. 	- * *
S=0	UTED TO	THE STAT	NUC	EST TO CLE(38, J=1 TICLE D	WHERE T	HE CROS STA 1/2 D. LISTI	s secti t the tes s s s s s s s s s s s s s s s s s	(N)	ks.)	-
• ATTRIBU	I=1	THE STAT	NUC NUC	EST TO CLE(38, J=1 TICLE D 939, J= TICLE O	WHERE T	HE CROS STA 1/2 D. LISTI =1/2 D LISTI	s secti 	(N)	ks.	-
 ATTRIBUTE S=0 P n N(147 		THE STAT /2 16 PROT SEE STAB 17 NEUT SEE STAB 61 N+1/	NUC NUC ON (92 LE PAR RON (4 2(1470)	EST TO CLEC 38, J=1 TICLE D 3939, J= TICLE 0	WHERE T DN /2} I= ATA CAR 1/2) I ATA CAR 2+} I=1	HE CROS STA 1/2 D. LISTI =1/2 0 LISTI /2	s secti TES NGS	(N)) 	- **
ATTRIBUTE S=0 P n N(147	I=1	/2 /2 16 PROT SEE STAB 17 NEUT SEE STAB 17 NEUT SEE STAB 10 N+1/ MASS AND MALYSES SEE BELD	CON (9: NUC RON (4: 22(1470 WIDTH 	EST TO CLEC 388, J=1 TICLE 0 3939, J= TICLE 0 3939, J= LIST PR	VHERE T V V V V V V V V V V V V V	STA STA 1/2 D. LISTI =1/2 D. LISTI /2 RMINED N EXPER	NGS	IN PEAK	YAVE	
A ATTRIBUTE S=0 P n N(147	I=1	/2 /2 16 PROT SEE STAB 17 NEUT SEE STAB 17 NEUT SEE STAB 10 N+1/ MASS AND SEE BELO AVED 74 WE TENTA	NUC NUC ION (9: ILE PAR: RON (9: ILE PAR: ILE PA	EST TO CLEC CLEC SB8, J=1 FICLE 0 SB939, J= FICLE 0 SB9399, J= FICLE 0	WHERE T WHERE T WHE	STA STA 1/2 D. LISTI -1/2 D. LISTI -1/2 D. LISTI -1/2 	s sect1 TESS NGS NGS 111 FROM PA FROM PA 1500 M	(N) PEAL (N)	AVE	- ** ** **

		61 N#1/2(1470) WIDTH (MEV)		A2 N*1/2(1470) INTO GAM N, HELICITY=1/2 (GEV**-1/2) A2 .089 .056 DEVENISH 73 DPWA PI N PHOTO PROD 2/74
******	1 3 6 4 7 2 2	(255.0) BAREYRE 68 RVUE (211.0) DONNACHI 68 RVUE (164.0) AYED 70 IPWA (391.) DAVIES 70 RVUE P-S ANAL (220.) SALER MASSI AYED 74 IPWA (187.) (LARGE MASSI) AYED 74 IPWA SEE THE NOTES ACCOMPANYING THE MASSES QUOTED. SEE THE NOTES	11/67 6/68 1/71 A 8/69 2/72 2/74* 2/74*	A2 .000 .013 KNIES 73 DPMA PI N PHOTD PROTD 2/74 A2 .025 MDGRHOUI 73 DPMA PI N PHOTD PROTD 2/74 A2 .003 .013 MDGRHOUI 73 DPMA PI N PHOTD PROD 2/74 A2 .033 .013 MDGRHOUI 73 DPMA PI N PHOTD PROD 2/74 A2 .043 .035 METCALF 74 DPMA PI N PHOTD 2/74 A2 .043 .035 METCALF 74 DPMA PI N PHOTD 2/74 A2 .043 .035 METCALF 74 DPMA PI N PHOTD PROD 2/74 A2 .043 .035 METCALF 74 DPMA PI N PHOTD PROD 2/74 A2 .043 .035 AVETCALF 74 DPMA PI N PHOTD PROD 2/74 A2 .043 .036 AVETCALF <
				****** ********************************
P E E	: 	61 N#1/2(1470) REAL PART OF POLE POSITION (MEV) (1375.) (5.) LEE 73 FIT TO ALMEHE	1/74* D72 1/74*	REFERENCES FOR N*1/2(1470) BRANDSEN 65 PR 139 B1566 +ODONNELL, MOORHOUSE (DURHAM, RHEL)IJP ROPER 65 PP 138 B190 LD ROPER,RM MRIGHT,BT FELD (LRL-LVMR,MT)IJP TUHDBALLE 65 DPL 14 GPS D C TWHDBALLEP
TME	E	61 N*1/2(1470) IMAG PART OF POLE POSITION (MEV) (108.) (5.) Lee 73 fit to Almene	1/74* D72 1/74*	NAMYSLOW 66 PR 157 1328 NAMYSLOWSKI, RAZMI, ROBERTS (STAN, EDIN, LOIC)
				ROSENFEL 67 IRVINE CONF A H ROSENFELD, P SCDING (LPL)
AB 5	5 	61 N*1/2(1470) ABSOLUTE VALUE OF POLE RESIDUE (MEV) (74.) (5.) LEE 73 FIT TO ALMENE	1/74* D72 1/74*	BAREVRE 68 PR 165 1731 P BAREVRE, C BRICMAN, G VILLET (SACLAV) IJP DONNACHI 68 PL 268 161 A DONNACHIE, P G KIRSOPP, C LOVELACE (CERN) IJP ALSO 68 VIENNA 129 DONNACHIE, RAPPORTEUR.S TALK (GLAS) ALSO 68 VIENNA 129 DONNACHIE, RAPPORTEUR.S TALK (GLAS) ALSO 68 THESIS R GRAGN (RHEL)
РН 	<u>-</u>	61 N+1/2(1470) PHASE OF POLE RESIDUE (RADIANS) (-1.4) LEE 73 FIT TO ALMENE	1/74* 072 1/74*	AYED 70 KIEV CONF P AYED,P BAREYRE, G VILLET (SACL)IJP DAVIES 70 NP 821 359 A DAVIES (GLAS) DIEM 70 KIEV CONF. + SWADJA, CHAVANCN, DELER, DCLBEAU+ (SACL) SAXON MULVEY, CHINOKSKY (OXF.IRL)
		61 N#1/2(1470) PARTIAL DECAY MODES		MAKAROV 71 SJNP 13 510 ,GASILOVA,NELYUBIN,++ (IDFFE INST)IJP
P1 P2 P3 P5 P6 P7 P8 P9		N*1/2(1470) INTO PI N I39+ 938 N*1/2(1470) INTO N EPSILON 938+ 700 N*1/2(1470) INTO N EPSILON 938+ 700 N*1/2(1470) INTO N P2/2(1232) P1 1232+ 139 N*1/2(1470) INTO N P1 P1 938+ 139+ 139 N*1/2(1470) INTO N RHO 0+ 938 N*1/2(1470) INTO GAM P, HELICITY=1/2 0+ 938 N*1/2(1470) INTO GAM N, HELICITY=1/2 0+ 939 N*1/2(1470) INTO ETA N 939+ 548		MICKENS TILKC TOP R E MICKENS (LUND, RUTG) JP ALMEHED 72 NP B40 157 +L0YELACE (LUND, RUTG) JP DEVENISH 73 L01-2410 KNIES, MOORHOUSE, OBERLACK (LUND, RUTG) JP KNIES 73 L01-2410 KNIES, MOORHOUSE, OBERLACK (L01C+ROYAL HOLLOWAY COLLEGE IJP LEE 73 PRL 31 1029 LEE, SHAW (UC1+ROYAL HOLLOWAY COLLEGE IJP LEMOIGNE 73 URD-1590 +GRANET, MARTY, AYCO, BAREYRE, BOREAUD, + (SACLIJP MOORHOUZ 73 LBL-1590 MOORHOUSE, OBERLACK, ROSENFELD (GLAS+LBLIJP ALSO 71 LNC 2 1183 CARBONARA, FIDPE, + (MAA, FRAS, NAVLA, PAVIA) JP
R1 R1 R1 R1	136	61 N*1/2(1470) BRANCHING RATIOS N*1/2(1470) INTG (PI N)/TOTAL (PI) (0.68) BAREYRE 68 RVUE (0.558) DOWNACHI 68 RVUE (0.5564) AYED 70 IPWA	11/67 6/68 1/71	AYED 74 PRIVATE COMMCTN. AYED.BAREYRE (SACL)IJP ALSD 73 AIX CONFERENCE AYED.BAREYRE (SACL)IJP CRAWFORD 74 GLAS. PREPRINT R CRAWFORD (GLAS) ALSO 73 BONN CONFERENCE R LCRAWFORD (GLAS) METCALE 74 GLAT-68-425 W J METCALF. R L WALKER (CIT)
R1 R1 R1 R1 R1 R1 R1	4 A B 7 2 2 A B	(0.49) DAVIES 70 RVUE P-S ANAL SOI (0.67) (0.18] SAXON 70 HBC AT 1400 MEV (0.58) (0.03) SAXON 70 HBC (0.65) ALMEHED 72 IPMA (.549)(SMALLER MASS) AYED 74 IPMA (.123)(LAPGER MASS) AYED 74 IPMA (.123)(LAPGER MASS) AYED 74 IPMA 600Y DECAYS, ASSUMING ONLY P1, P2 AND P3 DECAYS PFESENT. SFE THE NOTES ACCOMPANYING THE MASSES QUOTED.	L A 8/69 6/70 2/72 2/74 2/74* THRE	PAPERS NOT REFERRED TO IN DATA CARDS. BAREYRE 64 PL 8 137 +BRICMAN,VALLADAS,VILLET, + (SACLAY)IJP DALITZ 65 PL 18 342 +RRICMAN,SITALING,VILLET (SACLAY)IJP DALITZ 65 PL 18 342 +RRICMAN,SITALING,VILLET (SACLAY)IJP DALITZ 65 PL 14 159 R H DALITZ, R G MODRHOUSE (0XF,RHEL) JOHNSON 67 UCRL-17663 THSIS C H JOHNSON (LEL) (LEL) DONNACHI 69 PN 108 433 A DONNACHIE, R KIRSOPP (GLAS+EDIN) (SACLAY) AYED 70 PL 315 598 +BARYBE,VILLET (SACSONS+ (UCLA+RL)) BRARDO 70 PPL 24 419 +HADDOCK.NEFKENSPARSONS+ (UCLA+RL) AYED 72 BATAYAL COME A VED.0 BABEYGE (EMICINE)
R222 R222 R2222 R2222 R2222 R2222	D D A B A	N*1/22114701 INTO (N EPSILON)/TOTAL (P2) DOMINANT INFLASTIC DECAY THURNAUER 65 RVUE - DOMINANT INFLASTIC DECAY NAMYSLOWS 66 RVUE - DOMINANT INFLASTIC DECAY RDJSRNEELD 67 RVUE - DOMINANT INFLASTIC DECAY RDJSRNEELD 67 RVUE - DOMINANT INFLASTIC DECAY RDJSRNEELD 67 RVUE - 10-10 ASSUMING 91= 0.61 (0,30) (0,20) SAXON 70 HBC (0,20) (0,12) SAXON 70 HBC AND 8 CORRESPOND TO THE 2 BEST SOLUTIONS, SEE NOTE IN R1.	11/67 11/67 11/67 6/68 515 1/71 6/70 6/70	THE FOLLOWING ARE THEORETICAL PAPERS CONCERNING THE N+1/2(1470) RESNICK 66 PR 150 1292 L RESNICK (NIELS BOHR) SCHWARZ 66 PR 152 1325 J H SCHWARZ (LRL) BALL 67 PR 155 1725 JS BALL, GL SHAW, DY HONG (UCLA,UCI,UCSD) GOLDBERG 67 PR 154 1558 H GOLDBERG (CORNELL)
R3	n	N#1/2(1470) INTO (N#3/2(1232) PI}/TOTAL (P3)	515 1771	1470 MEV REGION - PRODUCTION EXPERIMENTS
R3 R3	D A	ASSUMING R1= 0.61 (0.03) (0.20) SAXON 70 HBC	6/70	91 N*1/2(1470, JP=) I=1/2
R3 R3 R3 R3	B A R R	(0.22) (0.12) SAXON 70 HBC AND B CORRESPOND TO THE 2 BEST SOLUTIONS, SEE NOTE IN RI. (0.20) MAKARQV 71 IPWA 0 PI-P TO PI 1 ASSUMES RI=0.6. MAXIMUM CM ENERGY ANALYZED WAS 1435 MEV.	6/70 PIN 3/72	THE BUMP SEEN IN PRODUCTION EXPERIMENTS AT LOW INVARIAN Mass most likely corresponds to the pil (see above) Resonant state, if any. The Hoc experiments see Ennancements mainly in the p Pip im mass plot. For zero
R4 R4 R4	F	N*1/211470) INTO (GAMMA N)/(PI N) (P5)/(P1) STROMG INDICATION ROSSI 73 DBC 0 GAM N TO PI-/ DISAGREES WITH OTHER DATA	• • 2/73 2/73	CHARGE EXCHANCE, SUCH FINAL STATES ARE KNOWN TO HAVE Large Deck-type Background. This fact complicates the interpretation of this bump as a resonance.
R5 R5 R5	D D	N*1/2/14/0] INTO {N RHO }//TOTAL (P6) {0.07} Assuming R1= 0.61	515 1/71	91 N+1/2(1470) MASS (MEV) (PROD.EXP.)
R 6 R 6 R 6	E	N#1/2(1470) INTO (GAMMA N)/TOTAL (P5) (.0006) MICKENS 71 THEORETICAL I TOTAL WIDTH TAKEN AS 250 MEV.	ST. 10/71	M (1400.) APPROX CCCCONI 64 CNTR PP 3.6-12 GEV/C M (1425.) APPROX ADELMAN 65 HBC * K-P 1.45 GEV/C 7/66 M (1430.) APPROX ADELMAN 65 HBC * K-P 1.45 GEV/C 7/66
87 87		N*1/2(1470) FROM PI N INTO ETA N SQRT(P1*P9) (+.23) LEMCIGNE 73 DPWA 1488 TO 1685	2/74* MEV 2/74*	M (1400.) APPROX BELLETTIN 65 SPRK + PP.D D-2.20 GEV/C T/AB M (1405.) (15.) ANDERSON 65 SPRK + PP.D 6-30 GEV/C T/AB M (1410.) (15.) BLAIR 66 CNTR + PP.2.8-7.9 GEV/C T/AB M (1400.) (30.) FOLEY 67 CNTR + PP.2.8-7.9 GEV/C T/AB
A1 A1 A1 A1 A1 A1 A1 A1 A1		61 N*1/2(1470) PHOTON DECAY AMPL(GEV**-1/2) FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- REVIEW PRECEDING THE BARYON LISTINGS. N*1/2(1470) INTO GAM P, HELICITY=1/2 (GEV**-1/2) 096 -022 DEVENISH 73 OPMA -0801 T3 -055 0.28 MCORHOUZ 73 OPMA -087 .002 MCORHOUZ 73 OPMA -087 .002 MCORHOUZ 73 OPMA -096 .013 -067 .023 MCORHOUZ 73 OPMA -070 .023 METCALF 74 OPMA -070 .023 METCALF 74 OPMA -03663 0.0031 AVEPAGE (ERROR INCLUDES SCALE FACTOR OF	200 2/74* 200 2/74* 200 2/74 200 2/73 200 2/73 200 2/74* 200 2/74* 200 2/74*	H 11450.1 11.1 ALMEIDA 28 HBC.+ PP-P2PI-105EV/C 10/05 M 11420.1 APPROX BLL 68 HBC.+ P1-+P.6 GEV/C 6/06 H 11400.1 APPROX LAMSA 68 HBC. P1-+P.6 GEV/C 6/06 H 51751446.1 (11.1 SHAPIRA 68 DBC. P1-P.7 6 GEV/C 6/06 H 5121436.1 (15.1 SHODE OB DF1-P.7 0.10/05 H 1201443.1 (15.1 RHODE 69 HBC P1-P.7 DF1-P.6.1 10/05 H 1201443.1 (13.1 ANDERSON 70 MHS - P1-P.7 DF1-P.7 DF1-P.7
				M S UATA, HAS ALMST UISAPPEARED (YEKUTIELI 72).

Baryons N(1470)

Baryons N(1470), N(1520)

91 N+1/2(1470) WIDTH (MEV) (PROD. EXP.)

Data Card Listings For notation, see key at front of Listings.

62 N#1/2(1520) PARTIAL DECAY MODES

н s s н н н н н н н н н н н н н н н н н	1100.] BELL 68 HBC PI+P P AND P 175 (179.) (40.) SHAPTRA 68 DBC (150.) (60.) TAN 68 DBC 120 (100.) (15.) RHDDE 69 HBC P2 2 GEV/C [210.1 (15.) ANDERSON 70 MKS - PI-P TO PI- (150.1 (40.) BALLAR TI HBC + P PI+PI-MK (100.) BEKETOV 71 HBC + P PI PP.PI-PK-P 120 (100.1 12.0 120/80 MA TI HBC + P PI D P NP 120 (100.0) 12.0 NORSE 71 HBC + PI-P, T GEV 100.0 130.0 MORSE 71 HBC + PI-P, T GEV (125.) (35.0) CELSTEIN 72 MBC + PP D PN P (126.0) (30.0) MORSE 71 HBC + PI-P, T GEV (125.0) (35.0) CELSTEIN 72 MBC + PP 10 PN P (126.0) (36.0) CELSTEIN 72 MBC + PP 10 PN P (126.0) (36.0) CELSTEIN 72 MBC + PP 10 PN P (125.0) (36.0) CELSTEIN 72 MBC + PP 0 PN 0 P2PI (126.0) (36.0) CELSTEIN 72 MBC + PP 0 PN 0 P2PI (126.0) (36.0) CELSTEIN 72 MBC + PP 0 P0 P2PI (126.0) (36.0) CELSTEIN 72 MBC + PP 0 P0 P2PI	P 6/68 10/69 10/69 10/69 MHS 2/71 EV 2/72 SS 3/72 PROD 3/72 I 10/71 10/71 1/C 3/72 6GEV 2/72 GEV 1/73 12/72 GEV 12/72 GEV 12/72	DECAY MASSES P1 N*1/2(1520) INTO P1 N 1394 938 P2 N*1/2(1520) INTO N*3/2(1232) P1 1232+ 139 P3 N*1/2(1520) INTO N*3/2(1232) P1 1232+ 139 P4 N*1/2(1520) INTO N*3/2(1232) P1 936 139+ 139 P5 N*1/2(1520) INTO N*1/P1+ 936+ 139+ 139 P6 N*1/2(1520) INTO N*1/P1+ 936+ 139+ 139 P6 N*1/2(1520) INTO N*1/P1+ 938+ 700 P8 N*1/2(1520) INTO N*1/P1 938+ 700 P9 N*1/2(1520) INTO A*P, HELICITY=1/2 0+ 938 P10 N*1/2(1520) INTO GA*P, HELICITY=1/2 0+ 938 P11 N*1/2(1520) INTO GA*P, HELICITY=3/2 0+ 939 P12 N*1/2(1520) INTO GA*N, NELCITY=3/2 0+ 939
P1 P2 P3 P4 P5 P6	(100.7) (30.7) NUMAI 12 HDC P1+P 10 3P1 91 N*1/2(1470) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASS DECAY MASS N*1/2(1470) INTO PI N 139+ 938 139+ 938 139+ 139 N*1/2(1470) INTO N PIP1(J,1=0) 938+ 139+ 139 1222+ 139 N*1/2(1470) INTO N PI PI 1222+ 139 1222+ 139 N*1/2(1470) INTO N PI PI 938+ 139+ 139 N*1/2(1470) INTO N RHO 938+ 770	ν 2773 ES	D2 N*1/2(1520) DTG (PI N)/TOTAL (P1) R1 N*1/2(1520) DTG (PI N)/TOTAL BAREYRE 68 RULE (P1) R1 10.55) DONNACH1 68 RULE 6/60 R1 10.59) DONNACH1 68 RULE 6/60 R1 10.593) AYED TO TPAA R1 6.0.903) AYED TO RULE R1 6.0.903) AYED TO RULE R1 10.593) AMEHED TZ TPAA R1 1.558) ALMEHED TZ TPAA R1 SEE THE NOTES ACCOMPANYING THE MASSES QUOTF0. R1 R1 ALMOST THE ENTIRE INELASTICITY IS IN N PI PI (ONLY N ETA COULD COMPETE, R1 AND D MAYES. THE N PI PI SEEMS TO BE MAINLY N*3/2(1232) PI, IN BOTH
R1 RL	91 N+1/2(1470) BRANCHING RATIOS (PROD. EXP.) N+1/2(1470) INTO (PI N)/TOTAL (P1) (.666) TAN 68 HBC PP TO PIP, 6	.1 10/69	P2 N*1/2(1520) INTO (N*3/2(1232) PI)/TOTAL (P4) P2 P2 0.05 KIRZ 66 HBC 0 ASSUMING R1=0.72 9/66 R2 DOMINANT INEL DECAY DISSON 66 RVUE PI PI TO PI PI N 9/66 R2 0.040) DIEM TO IPWA 3 BODY ANALYSIS 1/71 R2 0 ASSUMING R1= 0.5 DIEM TO IPWA 3 BODY ANALYSIS 1/71
R2 R2 R2 R3 R3	N*1/2(1470) INTO (N*3/2(1232) PI)/TOTAL (P3) PROBABLY SEEN JESPERSEN 68 HBC PP 22 BEV/C PROBABLY SEEN LAMSA 68 HBC PI-P 8 BEV/C N*1/2(1470) INTO (N PIPI(J,I=0))/TOTAL (P2) MAIN DECAY MODE MORSE 71 HBC + PI-P 7,25 GE	11/68 11/68 V/C 3/72	R3 N*1/2(1520) INTC (N*3/2(1232) PI)/(N PI PI) (P2)/(P3) R3 LARGE THURMAUER 65 RVUE - 11/67 R3 LARGE NAMYSLOWS 66 RVUE - 11/67 R3 LARGE ROBERTS 67 RVUE - 16/67
******	********* ******** ******** ******** ****	****	R4 N+1/2(1520) INTO (N EPSILON)/TOTAL (P7) P4 PROBABLY PRESENT MORGAN 68 RVUE ISOBAR HODEL 6/68 R4 D (0.02) DIEM 70 IPWA 3 BODY ANALYSIS 1/71 R4 D ASSUMING R1=0.5 0.5 0.000 0.000
CCCCDNI ADELMAN ANKENBR BELLETT ANDERSO BLAIR	64 PL 8 134 +LILETHUN,SCANLON,STAHLBRANDT, + (CER 65 PRL 14 1043 SL AOBELMAN (CAMBRIDGECEEN 18 65 NC 35 1052 ANKENBRANDT,CLYDE,CORK,KEEFE,KERTH+ (LR 18 65 NC 151 052 ANKENBRANDT,CLYDE,CORK,KEEFE,KERTH+ (LR 16 52 ANKENBRANDT,CLYDE,CORK,KEEFE,KERTH+ (LR (LR (LR) 16 54 165 BELSER,COLLINS,FUJII,+ (BNL,CAR 66 16 PRL 16 855 +BLESER,COLLINS,FUJII,+ (BNL,CAR (BNL,CAR 66 PRL 17 789 +TAYLOR,CHAPMAN,+ HARWELL,QUEENMARY,RHE	N } } N} }	R5 N+1/2(1520) INTO (N ETA)/TOTAL (P6) R5 D (0.006) APPROX DAVIES 67 RUE 11/67 R5 DAVIES AVES FORMARY DAVIES 67 RUE 11/67 R5 DAVIES AVESS SEVERAL VALUES DEPENDING ON INPUT DATA. ALL ARE SMALL R5 B (0.014) BOTKE 69 MPWA T POLE+ RESON. 10/69 R5 B (0.003) (0.004) DEANS 65 MPMA T POLE+ RESON. 5/70 R5 B (0.002100.0004) CARRERAS MPMA T POLE+ RESON. 5/70
ALMEIDA BELL JESPERS LAMSA SHAPIRA TAN RHODE	67 PKL 19 397 +JURES, LINDEMBAUM, LUYE, JULAKI+ (BN 68 PR 174 1638 +RUSHBROOKE, SCHARENGUIVEL+ (CAVE, DES' 68 PR 174 1638 +CRENNELL, HOUGH, KARSHON, LA1+ (BNL, CUN) 68 PR 121 1368 JESPERSEN, KANG, KERNAN+ (IDAN STAT 68 PR 121 1368 +CASON, BISMAS, DERADO, GROVES,+ INOTRE 0AM 68 PR 121 1835 +ESANBYC, FISSNBERG, RONAT, YAFFE+ (REH 68 PR 121 1835 TAN, PERL, MARTIN, VHINONSKU + (ISLAC+LR.+UC) 69 PR 184 MHODE, LACCICK, KERNAN, LESPERSEN, + (SLAC+LR.+UC)	L) Y) E) E) D) I)	R5 PARAMENTIZATION USED COOLD BE IN DANGER OF DOUBLE COUNTING R5 SEEN LEMOTGNE 73 DPWA 1488 TO 1685 MEV 2/744 R6 N*1/2(1520) INTO (N RHD)/TOTAL (P8) (P8) PARAMENTIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING R6 D (0.07) DIEM 70 IPWA 3 BODY ANALYSIS 1/71 R6 D ASSUMING R1= 0.5 Image: Counting Countin
ANDERSO BALLAM BEKETOV BOESEBE MA MORSE RUSHBRO EDELSTE GAGE KARSHON RONAT YEKUTIE	IN 70 PRL 25 699 +BLESER, BLIEDEN, COLLINS++ (BNL, CAR) 71 PR 04 1946 +CHADWICK, GUIRAGOSSIAN, JOHNSON,++ (SLA) 71 SJNP 13 a05 ,ZOMBOYSKII, KOMOVALDY, KRUCHINN,++ (IEG) 71 SJNP 13 a05 ,ZOMBOYSKII, KOMOVALDY, KRUCHINN,++ (IEG) 71 PR 04 323 +DOLTON (MSU+LB) 71 PR 04 133 +OULTON (MSU+LB) 71 PR 04 3273 RUSHBROKE, HILLIAMSHBAREFORD++ (VISC+THI) 71 PR 04 3273 RUSHBROKE, HILLIAMSHBAREFORD++ (CARVE, LOIN) 72 NP 05 1073 EDELSTEIN, CARPICAN, HIEN, MCMAHON, + (CARN-9N) (CARN-9N) 72 NP 0540 21 Y EKUTIELI, YAFFE, SHAPIRA, ROMAT, + (REH) 72 NP 0540 21 Y EKUTIELI, YAFFE, SHAPIRA, ROMAT, + (REH) 72 NP 0540 77 Y EKUTIELI, YAFFE, SHAPIRA, ROMAT, + (REH) 72 NP 0540 77 Y EKUTIELI, YAFFE, SHAPIRA, ROMAT, + (REH) 72 NP 0540 77 Y EKUTIELI, YAFFE, SHAPIRA, ROMAT, + (REH) 72 NP 0540 77 Y EKUTIELI, YAFFE, SHAPIRA, ROMAT, + (REH) 72 NP 0540 77 Y EKUTIELI, YAFFE, SHAPIRA, ROMAT, + (REH)	N) C) T P)IJ V) T L)I C) IJ C) IJ L) C) I D) T D)	62 N+1/2(1520) PHOTON DECAY AMPL(GEV++-1/2) FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- REVIEW PRECEDING THE BARYON LISTINGS. A1 N+1/2(1520) INTO GAM P, HELICITY-1/2 (GEV++-1/2) A1 (-026) 02 VEWNISH 73 OPMA PI N PHOTO PPOD 2/744 A1 (-026) HEMMI 73 + FWD PIO PHOTOP POD 2/744 A1 (-026) HEMMI 73 OPMA PI N PHOTOP POD 2/744 A1 (-026) NOBHOUI 73 OPMA PI N PHOTOP POD 2/744 A1 (-026) CAMFEROR 74 OPMA PI N PHOTOP POD 2/744 A1 (-026) MOBHOUI 73 OPMA PI N PHOTOP POD 2/744 A1 (-004) CRAWFORD 74 OPMA PI N PHOTOP POD 2/744 A1 (-004) CRAWFORD 74 OPMA PI N PHOTOP POD 2/744 A1 (-006) MOBHOUI 73 OPMA PI N PHOTOPPOD 2/744 A1 (-006) MECALF 74 OPMA PI N PHOTOPPOD 2/744 A1 (-0072) 0.0043 AVERAGE (ERDON INCLINES SCALE EATTOR DE 12
GELLERT ALBERI WALKER CLEGG ALEXAND ANSORGE ******	66 PRL 17 884 +SMITH, WOJCICKT, COLTON, SCHLEIN + (LL, UCL, 68 68 PR 176 1631 +SMITH, WOJCICKT, COLTON, SCHLEIN + (LL, UCL, 68 68 PR 176 1631 +APPEL, BUONITZ, CHEN DUNNING, GOITEIN+ (HAR) 68 PR 176 1631 +APPEL, BUONITZ, CHEN DUNNING, GOITEIN+ (HAR) 68 PR 176 1631 +APPEL, BUONITZ, CHEN DUNNING, GOITEIN+ (HAR) 69 NF 013 222 CLEGG ILAN 73 NP B52 221 ALEXANDER, BENARY+(TEL-AVIV+HEIDELBERG+DES) ILAN 73 NP B53 93 ANSORGE, MADEN, NEALE, RUSHBROCKE (CAN)	A) V) C) C) Y) E)	A2 N*1/2(1520) INTO GAN P, HELICITY#3/2 (GEV#+-1/2) N*1/2(1520) INTO GAN P, HELICITY#3/2 (GEV#+-1/2) A2 .180 .017 DEVENISH 73 OPWA PI N PHOTO PROD 2/744 A2 .169 .012 KNIES T3 OPWA PI N PHOTO PROD 2/744 A2 .194 .031 MCORHOUL 73 OPWA PI N PHOTO PROD 2/744 A2 .194 .031 MCORHOUL 73 OPWA PI N PHOTO-PROD 2/744 A2 .174 .006 MODRHOUZ 73 DPWA PI N PHOTO-PROD 2/744 A2 (.181) CRAWFORD 74 OPWA PI N PHOTO-PROD 2/744 A2 .165 .011 METCALE 74 OPWA PI N PHOTO-PROD 2/744 A2 .165 .0046 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)
N(1	1520) 62 N+1/2(1520, JP=3/2-) I=1/2 D'13 THE EXISTENCE OF THIS RESONANCE IS WELL ESTABLISHED		A3 N*1/2(1520) INTO GAN N, HELICITY=1/2 (GEV**-1/2) A3 075 .037 A3 077 .005 KNIES 73 DPNA PIN PIN PHOTO PROD A3 005 KNIES A3 006 .014 MODRHOUZ 73 DPNA PIN PIN PHOTO-PROD 2/74* A3 008 .007 MODRHOUZ 73 DPNA PIN A3 0062 .007 MODRHOUZ 73 DPNA PIN PIN PHOTO-PROD 2/74* A3 066 .010 METCALF TA DPNA PIN PHOTO-PROD 2/74* A3 066 .010 METCALF
	62 N*1/2(1520) MASS (MEV)		A3 AYG -0.0790 0.0040 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) A4 N+1/2(1520) INTO GAM N, HELICITY=3/2 (GEV++-1/2)
M M 1 M 3 M 6 M 6 M 7 M	11530.01 BRANDSEN 65 RVUE PHASE-SHIFT (1530.0) ROPER 65 RVUE PHASE-SHIFT (1510.0) BAREYRE 68 RVUE PHASE-SHIFT (1510.0) BAREYRE 68 RVUE PHASE-SHIFT (1510.0) BAREYRE 68 RVUE PHASE-SHIFT (1541.0) DONNACH1 68 RVUE PHASE-SHIFT (1523.0) AYED 70 IPWA FROM ENER. DEP. FIT OF ARGAND DIAGRAM DIAVIES 70 RVM (1520.1) ALMEHED 72 IPWA (1525.1) ALWEND 74 IPWA	ANAL 9766 ANAL 9766 ANAL 11/67 ANAL 6/68 1/71 L A 8/69 2/72 2/74*	A4 126 .028 DEVENISH 73 DPWA PIN PIN PONTO PRO 27744 A4 124 .013 MODRHOUL 73 DPWA PIN PHOTO PRO 27744 A4 119 .025 MODRHOUL 73 DPWA PIN PHOTO-PROD 27744 A4 118 .013 METCALF 74 DPWA PIN PHOTO-PROD 27744 A4 118 .013 METCALF 74 DPWA PIN PHOTO-PROD 27744 A4 118 .013 METCALF 74 DPWA PIN PHOTO-PROD 27744 A4 118 .013 METCALF 74 DPWA PIN PHOTO-PROD 27744 A4 1207 0.0964 AVERAGE (ERPOR INCLUDES SCALE FACTOR OF 1.0) 2744
			REFERENCES FOR N+1/2(1520)
ب ا	62 N+1/2(1520) WIDTH (MEV)	1	SEE A PREVIOUS EDITION (RMP 37, 633, 1965) FOR EARLIER REFERENCES.
W 3 W 6 W 4 W 7 W	122.07 DARETYRE 6B RVUE (149.0) DONNACHI & B RVUE (131.0) AYED 70 FDWA (106.0) DAVIES 70 RVUE P-S ANAL SOI (120.1) AVED 72 FDWA SOI	11/67 6/68 1/71 A 2/72 2/74*	BRANDSEN 65 PR 139 81566 +OODNNELL, MOORHOUSE (DURHAH, RHEL)1JP ROPER 65 PR 138 8190 LD ROPER, AM WRIGHT, BT FELD (LRL-VMR, MT)1JP THURNAUE 65 PR 14 985 P G THURNAUER (RCCH) KIRZ 66 PRIVATE CONN J KIRZ (LRL)
	SEE THE NUITS ACCUMPANTING THE MASSES QUOTED.		NAMYSLOW 66 PR 157 1328 NAMYSLOWSKI, RAZMI, ROBERTS (STAN, EDIN, LOIC)

ł

OLSSON 66 PR 145 1309 M G OLSSON, G B YODH (WISC.UMD) DAVIES 67 NC 52A 1112 ROBERTS 67 PREPRINT ROSENFEL 67 IRVINE CONF A T DAVIES, R G MOORHOUSE (GLASGOW, RHEL) R G ROBERTS (DURHAM) A H ROSENFELD, P SODING (LRL) BAREYRE 68 PR 165 1731 DONNACH1 68 PL 268 161 ALSO 68 VIENNA 139 ALSO 68 THENIS MORGAN 68 PR 166 1731 P BAREYRE, C BRICMAN, G VILLET (SACLAY)IJP A DONNACHIE, R G KIRSOPP, C LOVELACE (CERNIIP DONNACHIE RAPPORTEUR.S TALK (EGLAS) R G KIRSOPP (EDIN) O MORGAN (ENLE) BOTKE DE ANS J C BOTKE (UCSB) S DEANS, J WOOTEN (UNIV S FLORIDA) 69 PR 180 1417 69 PR 185 1797 AYED 70 KIEV CONF CARRERAS 70 NP 168 35 DAVIES 70 NP 821 359 DIEM 70 KIEV CONF. R AYED,P BAREYRE, G VILLET (SACL) B CARRERAS, A DONNACHIE (DARE, MCHS) A DAVIES (GLAS) + SMADJA, CHAVANON, DELER, DOLBEAU+ (SACL) (SACL)IJP ALMEHED 72 NP 840 157 DEVENISH 73 PL 478 53 HEMMI 73 PL 478 79 KNIES 73 LBL-240NF. 93 MOORHOU 73 PL 438 44 MOORHOUZ 73 LBL-1590 +LOVELACE (LUND,RUTG)IJP DEVENISH,RAKIN,LYTH (LOUC+BONN+LANC)IJP HEMMI,INAGAKI+ (KYTOT-SACHNL)+TOKY)IJP KNIES,MODRHOUSE,OBERLACK (LBL+GLAS)IJP FGANET,MATTY,AYED,BAREYAE,BORGEAUD,+ISACLIJI MOORHOUSE,OBERLACK,ROSENFELD (GLAS+LBL)IJP MOORHOUSE,OBERLACK,ROSENFELD (GLAS+LBL)IJP AYED 74 PRIVATE COMMCTN. AYED,BAREYRE ALSO 73 AIX CONFERENCE AYED,BAREYRE CRAMFORD 74 GLAS. PREPRINT R. L CRAMFORD ALSO 73 BONN CONFERENCE R L CRAMFORD METCALF 74 CALT-68-425 W J METCALF, R L WALKER (SACL)IJP (SACL)IJP (GLAS) (GLAS) (GLAS) (CIT) PAPERS NOT REFERRED TO IN DATA CARDS. KIRZ 63 PR 130 2481 J KIRZ, J SCHWARTZ, R O TRIPD (LRL) BABEYRE 65 PL 18 3472.3 SCHWARTZ, R O TRIPD (LRL) BABEYRE 65 PL 18 347.4 STIALING, VILLET (LSCH) IJP CROUCH 65 DESY CONF 12 + BROHNCEAL HIT.PADOVAL HEIZMANNI DEBADO 65 ATTENS CNF 244 +KENNEYLLANSA, + (NOTRE DAME, KENIUCKY) DEBADO 65 ATTENS OLF 244 +KENNEYLLANSA, + (NOTRE DAME, KELUCKY) DEBADO 65 ATTENS OLF P MERLO 60 PONSIL SCLANNY THE ABOVE PAPERS DISCUSS INELASTIC CHANNELS NEAR THE REDNANCE, JOHNSON GOV UCRL-17ABS THESIS C JOHNSON GUNIY S FLORIDAI DONNACHI 69 PN 104 SCLANN SUNIY S FLORIDAI DONNACHI 5, GLASEDINI AVED 70 PL 318 S98 +6AREYRE+VILLET (SACLAY) N(1535) THE EXISTENCE OF THIS RESONANCE IS WELL ESTABLISHED. IT IS STRONGLY ASSOCIATED WITH THE ETA N CHANNEL. - ---- -----63 N#1/2(1535) MASS (MEV) 63 Nº1/2(1335) MASS (HeV) (15)9.0) HENDBY 65 RVUE ETA N + SLI PI N 9/66 (15)9.0) HENDBY 65 RVUE ETA N + SLI PI N 9/66 (15)7.0) HENDBY 65 RVUE FIS BAREYRE SLI 7/66 (15)7.0) R1565.0 UCHYAMA-6 RVUE FIS HETA SAFEYRE SLI 7/66 (15)5.0) RASEVRE 64 RVUE PHASE-SHIFT ANAL 1/67 (15)5.0) WHERE CROSS SECTION IS GREATEST - EVEBALL FIT FANAL 1/67 FA/69 (15)5.0) WHERE CROSS SECTION IS GREATEST - EVEBALL FIT FANAL 5/67 FA/69 (15)5.0) MHERE CROSS SECTION IS GREATEST - EVEBALL FIT FANAL 5/67 FA/69 (15)5.0) MHERE CROSS SECTION TO TO PHASE-SHIFT ANAL 6/68 FA/69 FA/69 (15)5.0) MEND AYED 70 IPWA FA/69 FA/69 (15)50.0) AVED 70 IPWA FA/72 FA/72 (15)0.1) ALMEHED 72 IPWA GAM P-ETA P 9/723 (15)0.1) HICKS 73 AFRE INCLUDED IN LISTINGS. 9/734 <td N N 1 1 3 8/69 2/72 9/73* 9/73* 9/73* 2/74* 63 N*1/2(1535) WIDTH (MEV) HENDRY 65 RVUE NICHAEL 66 RVUE UCHIYAMA-66 RVUE BAREYRE 68 RVUE DONNACH1 68 RVUE DELCOURT 69 CNT AYED 70 IPWA DAVIES 70 RVUE ALMEHED 72 IPWA NICKS 73 MPWA AYED 74 IPWA 9/66 7/66 SEE NOTE ON MASS 9/66 11/67 6/68 (130.0) (130.0) (130.0) (156.0) OR 144.0 (155.0) N 1 3 APPROX (268.0) (120.0) PHOTOPRODUCT. 8/69 (96.0) (36.0) (50.1 6 4 7 1/71 P-S ANAL SOL A 8/69 2/72 2 (134.) HICKS 73 MPMA (.080) AYED 74 IPWA SEE THE NOTES ACCOMPANYING THE MASSES QUOTED. (134.) GAM P-ETA P 9/73* * ---------63 N+1/2(1535) PARTIAL DECAY MODES DECAY MASSES 139+ 938 939+ 548 938+ 139+ 139 938+ 700 1232+ 139 938+ 770 04 938 N#1/2(1535) INTO PI N N#1/2(1535) INTO N ETA N#1/2(1535) INTO N PI PI N#1/2(1535) INTO N EPSILON N#1/2(1535) INTO N EPSILON N#1/2(1535) INTO N EHO N#1/2(1535) INTO N EHO N#1/2(1535) INTO GAM N, HELICITY=1/2 N#1/2(1535) INTO GAM N, HELICITY=1/2 P1 P2 P3 P5 P5 P7 P8 0+ 938 63 N#1/2(1535) BRANCHING RATIOS (P1) HENDRY 65 RVUE MICHAEL 66 RVUE UCHIYANA-66 RVUE DUNACHI 66 RVUE PI DUNACHI 68 RVUE PI DUNACHI 68 RVUE PI DUNACHI 69 CHTR AYED 70 IPMA AVED 74 IPMA N*1/2(1535) INTO (PI N)/TOTAL (0.69) (0.32) (0.71) OR 0.28 (0.31) OR 0.43 (0.696) (0.33) (0.397) (0.36) R1 R1 R1 R1 R1 R1 R1 R1 R1 1) 9/66 9/66 SEE NOTE ON MASS 9/66 PIP TO N ETA,B,C 11/67 6/68 8/69 N 3 6 4 7 1/71

P-S ANAL SOL A

2/72 2/74*

(0.36) (0.25) (.36)

R2 N R2 R2 N R2 N R2 B R2 B R2 B R2 B R2 THI R2 DF	1/2(1535) INTO (N ET/ DOMINANT INEL DI (0.68) (0.29) DR 0.71 (0.69) DR 0.45 (0.4) (0.66) DR 0.696 DARAMETRIZATION USED (E VALUES OF R2 LISTED DIEN ET AL. (70)	A)/TOTAL (P2) ECAY HENDRY 65 RVUE 99 MICHAEL 66 RVUE SEE NOTE ON MASS 99 UCHIYAMA- 66 RVUE SEE NOTE ON MASS 99 DAVIES 67 RVUE PIP TO N ETA,B,C 11 DEANS 69 MPMA T POLE+ RESON. 5, DELCOURT 69 MPMA T POLE+ RESON. 5, COULD BE IN CARGER OF DOUBLE COUNTING ABOVE ARE INCOMPATIBLE WITH THE RESULTS	/66 /66 /67 /70 /70 /70
R3 N ³ R3 D R3 D	*1/2(1535) INTO (N*3/; (0.07) ASSUMING R1= 0.34	2(1232) P[]/TOTAL (P5) DIEM 70 IPWA 3 BODY ANALYSIS 1/	/71
R4 N R4 D R4 D	*1/2(1535) INTO (N EP: (0.26) Assuming R1= 0.34	SILONJ/TOTAL (P4) DIEM 70 IPWA 3 BODY ANALYSIS 1/	/11
R5 Nº R5 O R5 D	*1/2(1535) INTO (N RHC (0.20) ASSUMING R1= 0.34	O }/TOTAL (P6} DIEM 70 IPWA 3 BODY ANALYSIS 1/	/71
R6 N R6 5 R6 5 R6 5	*1/2(1535) INTO GAMMA .0042 .0014 BR=(DEANS72 RADIATIVE THE HICKS73 ENTRY UND	PROTON/TOTAL 9, DEANS 72 MPMA P ETA PHOTOPROD. 9, WIDTH//(NORINAL FULL WIDTH=IOO MEV) 9, ER R7 IS A MORE RECENT RESULT BY SAME GROUP. 9,	/73* /73* /73* /73*
R7 N R7 2	*1/2(1535) FROM GAMMA (+0366)	PROTON TO ETA PROTON SQPT(P2*P7) 9. HICKS 73 MPMA GAM P-ETA P 9.	/73* /73*
R8 N R8	*1/2(1535) FROM PL N 1 [+.43]	INTO ETA N SQRT(P1*P2) 2. Lemoigne 73 DPWA 1488 to 1685 Mev 2.	/74* /74*
	63 N*1/2	(1535) PHOTON DECAY AMPL(GEV**-1/2)	
RE	FOR DEFINITION OF GAM VIEW PRECEDING THE BAN	MA-NUCLEON DECAY AMPLITUDES, SEE MINI- Ryon Listings.	
Al N Al Al Al Al Al Al Al Al	*1/2(1535) INTO GAM P .042 .023 (.015) .056 .020 +.053 .020 .036 .002 (.095) +.063 .013	, HELICITY*1/2 (GEV**-1/2) DEVENTSH 73 DPWA PI N PHOTO PROD 2. HEMMI 73 + FWD PIO PHTOPROD 2. KNIES 73 DPWA PI N PHOTO PROD 2. MODRHOUL 73 DFWA PI N PHOTO-PROD 2. CRAMFORD 74 DFWA PI N PHOTO-PROD 2. METCALF 74 DFWA PI N PHOTO-PROD 2.	/74* /74* /74 /73 /74* /74* /74*
A1 AVG	0.0370 0.0040	AVERAGE (EPROR INCLUDES SCALE FACTOR OF 2-1) . HELICITY=1/2 (GEV#=-1/2)	
A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 AVG	026 .029 052 .005 048 .021 027 .009 (047) 051 .021 051 .021	DEVENISH 73 DPWA PI N PHOTO PROD 2. KNIES 73 DPWA PI N PHOTO PROD 2. MODRHOUI 73 DPWA PI N PHOTO-PROD 2. MODRHOUZ 73 DPWA PI N PHOTO-PROD 2. CRAWFORD 74 DPWA PI N PHOTO-PROD 2. METCALF 74 DPWA PI N PHOTO-PROD 2. AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.4)	/74* /74* /73 /74* /74* /74*
***** *	••••••	******* ********* ******** *********	
		REFERENCES FOR N+1/2(1535)	
REVIE EXPENDENT MICHAEL UCHIYAMA DAVIES	65 PL 18 171 EMS EARLY PHASE-SHEFT- RIMENTS. WE TAKE NUMBI 66 PL 21 93 66 PR 149 1220 67 NC 52A 1112	A W MENDAT, K G MUDAHUDSE TANALYSIS RESULTS AND PI- P TO ETA N PRS FROM THE SOLUTION USING BRANDSEN 65. C MICHAEL C MICHAEL F UCHITAMA-CAMPBELL, R K LOGAN (ILLIIJP A TOAVIES, R G MOORHOUSE (IGLASGOW, ANHEL)	
BAREYRE DONNACH1 ALSC ALSO	68 PR 165 1731 68 PL 268 161 68 VIENNA 139 68 THESIS	P BAREYRE, C BRICMAN, G VILLET (SACLAY)IJP A DONNACHIE, R G KIRSOPP, C LOVELACE (CERN)IJP DONNACHIE RAPPORTEUR.S TALK (GLAS) R G KIRSOPP (EDIN)	
DEANS	69 PR 185 1797 69 PL 298 75	S DEANS, J HOOTEN (UNIV S FLORIDA) DELCOURT,LEFRANCOIS,PEREZ-Y-JORBA,+ (ORSA)	
AYED CARRERAS DAVIES DIEM	70 KIEV CONF 70 NP 16B 35 70 NP 821 359 70 KIEV CONF.	R AYED,P BAREYRE, G VILLET (SACL)IJP B CARRERAS, A DONNACHIE (DARE,MCHS) A DAVIES (GLAS) + SMADJA, CHAVANON, DELER, DOLBEAU+ (SACL)	
ALMEHED DEANS DEVENISH HEMMI HICKS KNIES LEMOIGNE MOORHOUI MOORHOU2	72 NP 840 157 72 PN 3 217 73 PL 478 53 73 PL 478 53 73 PR 7 2614 73 PRD 7 2614 73 PL 2614 73 PL 438 44 73 PL 438 44 73 L8L-1590	+LOYELACE (LUND.RUTGIIJP +JACOBS, LYONS, HICKS (U S FL TAMPA+CARN) DEVENISH, RANKIN, LYTH (LYOTO+SAGA+NLJ+TOKY)IJP HEMMI, INAGAKI+ (KYOTO+SAGA+NLJ+TOKY)IJP HOEANS, JACOBS, LYONS+ (CARH+CANK-SOUTH FLA.HIJP KNIES, MOGPHOUSE, OBERLACK (LAS+LB.IIJP HGANET, MARTY, AYED, BAEYER, BOGEALD, +I SACILIJP MOGPHOUSE, DBERLACK (GLAS+LB.IIJP MOGPHOUSE, DBERLACK	
AYED ALSO CRAWFORD ALSO METCALF	74 PRIVATE CONMCTN. 73 AIX CONFERENCE 74 GLAS. PREPRINT 73 BONN CONFERENCE 74 CALT-68-425	AYED,BAREYRE (SACL)IJP AYED,BAREYRE (SACL)IJP AYED,BAREYRE (SACL)IJP R L CRAHFORD (GLAS) R L CRAHFORD (GLAS) W J METCALF, R L WALKER (CIT)	
BAREYRE	65 PL 18 342	PAPERS NOT REFERRED TO IN DATA CARDS. + BRICMAN, STIRLING, VILLET (SACLAY)IJP	
BRANDSEN BASI JOHNSON LOVELACE DONNACHI AYED	65 PR 139 B1566 S OF NUMBERS WE QUOTE 67 UCRL-17683 THESIS 67 HEIDELBERG C. 79 69 NP 10B 433 70 Pl 31B 598	+ODDNNELL, MORNCUSE (DURHAM, RHEL)1JP FROM HENDRY 65. (LRL) C H JOHNSON (LRL) C LOVELACE (CERNIJP A DONNACHIE, R KIRSOPP (GLASHEDIN) ARBEYDERVILET (SACIAY)	
	THE FOLLOWING ART AND GAMMA P TO ETA P ARTICLES ARE USEFUL TUDE AS DETERMINED I MAY BE FOUND IN THEM	ICLES DEAL WITH THE REACTIONS PI- P TO ETA N NEAR THRESHOLD. THE DATA AND THE THEORETICAL IN UNDERSTANDING THE BEHAVIOR OF THE SII AMPLI- N PI PHASE-SHIFT ANALYSES. FURTHER REFERENCES	
BULOS BACCI JONES RICHARDS PREPOST	MAINLY EXPERIMENTAL 64 PRL 13 486 66 NC 45A 983 66 PRL 23 597 66 PRL 16 1221 67 PRL 18 82	+ (BROWN, BRANDEIS, HARVARD, MIT, PADOVA) I +PENSO, SALVINI, MENCLUCINI,+ (ROMA, FRASCATI) IJP +BINNIE, DUANE, HORSEY, MASON,+ (LOIC, RHEL) +CHIU, BANDI, HELMHOLZ, KENNEY,+ (LKL, HAWAII) IJ R PREPOST, D. LUNGOUIST, D. QUIN (STANFORD)	

Baryons N(1520), N(1535)

Baryons N(1535), N(1670)

BULDS 69 PR 187 1827 +LANDU.BORDNER.BASTIEN-(BOST+HARV+HIT+PENN) HEUSCH 70 PRL 25 1331 +PRESCOTT,ROCHESTER,WINSTEIN (CIT) MAINLY THEORETICAL CUCLA) (CIT) BALL 66 PR 149 101 SALL (UCLA) ODBSDN 66 PR 149 102 P N DOBSON (HAMATI) HINAMI 66 PR 149 1023 S HINAMI (GSAKA) DEALS 67 PR 161 1466 S R DEANS, N C HOLLADAY (VANDERBILT) LOGAN 67 PR 153 1634 R K DEANS, N C HOLLADAY (VANDERBILT) LOGAN 67 PR 153 1634 R K DEANS, N C HOLLADAY (VANDERBILT) LOGAN 67 PR 153 1634 R K DEANS, N C HOLLADAY (VANDERBILT)	N(1670) 64 N*1/2(1670, JP=5/2-) 1=1/2 D'15 THE FXISTENCE OF THIS RESONANCE IS WELL ESTABLISHED.	
MOSS 67 PR 163 1765 7 A MOSS (150) DEANS 68 PR 165 1866 5 R DEANS, MG HOLLADAY (VANDERBILT) PAL 68 PR 167 1350 5 R PAL, MG HOLLADAY (VANDERBILT) PAL 68 PR 172 257 +GARGS-SHAN (UCLA+UCI) LEFTEVRE 70 NC 66A 349 +LERUSTE (UCLA+UCI) 1520 MEV REGION - PRODUCTION EXPERIMENTS 8 N*1/2(1520, JP=) [=1/2	64 N+1/2(1670) MASS (MEV) M (1650.0) APPROX BRANDSEN 65 RVUE PHASE-SHIFT ANAL 17/ M 1 (1860.0) BAPEVRE 68 RVUE PHASE-SHIFT ANAL 17/ M 1 (1678.0) DONNACHI 68 RVUE PHASE-SHIFT ANAL 17/ M 3 (1678.0) DONNACHI 68 RVUE PHASE-SHIFT ANAL 6/ M (1874.0) DONNACHI 68 RVUE PHASE-SHIFT ANAL 6/ M 6 (1875.0) DONNACHI 68 RVUE PHASE-SHIFT ANAL 6/ M 6 (1875.0) DAVE 68 (NTR PI-P EL + POL 6/ M 6 (1875.0) DAVIES 70 RVUE P-S ANAL SOL A 8/ M 4 (1869.0) DAVIES 70 RVUE P-S ANAL SOL A 8/ M 4 (1869.0) AVED 74 IPMA 2/ M 1 (1860.) AVED 74 IPMA 2/	'66 '67 '68 '71 '72 '72 '74*
THIS INFORMATION REFERS TO EITHER THE D13 OR THE S11 STATE SEEN AT THIS MASS. FOR SPIN-PARITY ANALYSIS OF THIS MASS REGION, SEE JOHNSTAD 72. B N*1/2(1520) MASS (MEV) (PROD. EXP.) M 1507.0 6.0 A-BORELLI 67 HBC O PBAR P 5.7 GEV M 1503. M 1507.0 6.0 ANDRASON 70 MMS - PI - PTO PI - MMS M 1503.	64 N+1/2(1670) WIDTH (MEV) W 1 (135.0) BAREYRE 68 RVUE 11// W 3 (173.0) DONNACHI 68 RVUE 6// W 3 (173.0) DONNACHI 68 RVUE 6// W 4 (143.0) AYED 70.1PMA 11// W 4 (115.0) DAVIES 70.8VUE SOL A AND B 8// N 7 (150.1) ALMEHED 72.1PMA 2// NY (146.1) AYED 74.1PMA 2// NY SEE THE NOTES ACCOMPANYING THE MASSES QUOTED. 2//	'67 '68 '71 '69 '72 '74*
M 1512.0 2.0 ELLIS 71 CNTR MMS P 3.7 GEV/C M 1501.0 5.7 EDELSTEIN 72 MMS + P b T 0.3 GEV/C M 1 (1520.) DH 72 DBC 0 PI-N TO PI-PI-P M 1 DETERMINE J=3/2,D13 PROBABLE	7C 10/71 1/73 64 N#1/2(1670) PARTIAL DECAY MODES 1/73 2/73 DECAY MASSES 2/73 1 1394 938 P1 N*1/2(1670) INTO PI N 1394 938 P2 N*1/2(1670) INTO NETA 9395 548 P3 N*1/2(1670) INTO NETA 1154 457 P4 N*1/2(1670) INTO N#7/2(1232) PI 12324 139 10/71 P5 N*1/2(1670) INTO A#7/2(1232) PI 1394 179 139 10/71 P5 N*1/2(1670) INTO GAM P, HELICITY=1/2 04 938 10/71 P6 N*1/2(1670) INTO GAM P, HELICITY=1/2 04 938 10/71 P8 N*1/2(1670) INTO GAM N, HELICITY=1/2 04 939 7/73 P9 N*1/2(1670) INTO GAM N, HELICITY=3/2 04 939	
8 N+1/2(1520) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES P1 N+1/2(1520) INTO PI N I394 938 P2 N+1/2(1520) INTO N*2/2(1232) PI I232+ 139 P3 N+1/2(1520) INTO N*2/2(1232) PI 938+ 139+ 139 P4 N*1/2(1520) INTO NEUTRON PI+ 939+ 139 P5 N*1/2(1520) INTO NEUTRON PI+ 939+ 139 P6 N*1/2(1520) INTO N FIA 939+ 548 P7 N*1/2(1520) INTO N FIA 939+ 548 P8 N*1/2(1520) INTO N RHO 938+ 770		'67 '68 '71 '69 '72 '74*
B N*1/2(1520) BRANCHING RATIOS (PROD. EXP.) R1 N*1/2(1520) INTO (N P1)/TOTAL (P1) R1 N*(1520) INTO (N P1)/TOTAL PRODUCTION EXPERIMENTS R1 0.78 0.24 BASSOMPIE 67 R2 N*1/2(1520) INTO (NEUTRON P1+)/(P P1+ P1-) (P4)/(P5)	R2 B (0.013) BOTKE GO MAN T POLE + RESON. 10// R2 R2 B (0.006)DR (0.004) DEANS 69 MPWA T POLE + RESON. 5// R2 R2 B (0.006)DR 0.012 CARREAS 70 MPWA T POLE + RESON. 5// R2 R2 B (0.006)DR 0.012 CARREAS 70 MPWA T POLE + RESON. 5// R2 R3 N*1/2(1670) INTO (LAMBDA K)/TOTAL (P3) (P3) (P3) 8// R3 (0.01) DR LESS TRIPP 67 FVUE 8// R3 8// DOLOD DR LESS RUSH 68 MPWA T POLE + RESON. 8// R3 8// DOLOD DR LESS RUSH 68 MPWA T POLE + RESON. 8// R3 8// DOLOD DR LESS RUSH 68 MPWA T POLE + RESON. 8// R3 8// DOLOD DR LESS RUSH 68 MPWA T POLE + RESON. 8// R3 8// DOLOD DR LESS RUSH 68 MPWA T POLE + RESON. 8// R3 8// R3	169 170 170
R2 0.77 0.45 ALEXANDER 67 HBC + PP 5.5 BEV/C R3 N*1/2(1520) INTO (N PI)/(N PI PI) (P1)/(P3) (P1)/(P3) R3 1.25 0.44 0.71 A-BORELLI 67 HBC (PBAR P 5.7 BEV/C R4 N*1/2(1520) INTO (N*3/2(1232) P1)/(N PI PI) (P2)/(P3) P3 P4 0.00 0.09 A-BORELLI 67 HBC P5 N*1/2(1520) INTO (N PI PI)/TOTAL (P3)	9/66 R3 (0.00) DR LESS CL=.63 MAGNER 71 TPMA PI-P TO K LAMB 1/7 /C 9/66 R4 N*1/2(1670) INTO (N*3/2(1232) PI)/TOTAL (P4) R4 E 12600 0.63 0.1 BRODY 71 HBC PI-P2PI N.PWA 6/7 R4 E 12600 0.63 0.1 BRODY 71 HBC PI-P2PI N.PWA 6/7 R4 E 12600 0.63 0.1 BRODY 71 HBC PI-P2PI N.PWA 6/7 R4 E 12600 0.63 0.1 BRODY 0.42+-0.04 9/66 SEF NOTE PRECEDING THE N*1/2(1688) INELASTIC DECAY MODE MEASUREMENTS.	71
R5 (0.08) OR LESS BASSOMPIE 67 HBC + K+P TO K+ N* R6 N*1/2(1520) INTO (N ETA)/TOTAL BASSOMPIE 67 HBC + K+P TO K+ N* 97 N*1/2(1520) INTO (PI N)/(PI N*3/2(1232)) BASSOMPIE 67 HBC + K+P TO K+ N* 97 N*1/2(1520) INTO (PI N)/(PI N*3/2(1232)) F HBC PI-P 3.6 GEV/C	11/68 64 N#1/2(1670) PHOTON DECAY AMPL(GEV##-1/2) 11/68 FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- REVIEW PRECEDING THE BARYON LISTINGS. C 11/67 A1 N#1/2(1670) INTO GAM P, HELICITY=1/2 (GEV##-1/2)	
A-BORELL 67 NC 47 232 ALEXANDE 67 PR 154 1284 BASSOMPI 67 PL 254 40 LEE 67 PR 159 1156 HOEBS, RDE, SINCLAIR, VANDEP VELDE (MICH)	AI .027 .030 DEVENTSH 73 DPW PIN NPHOTO PROD 2// AI .023) HEMHI 73 FWD PIN PHOTO PROD 2// AI .013 .014 KNTES 73 DPWA PIN PHOTO PROD 2// AI .013 .014 KNTES 73 DPWA PIN PHOTO PROD 2// AI .011 .012 MORHQUI 73 DPWA PIN PHOTO-PROD 2// AI .019 .007 MOGRHQUI 73 DPWA PIN PHOTO-PROD 2// AI .054) CPAWFORD 74 DPNOTO PIND	74* 74* 74* 74* 74* 74*
ANDERSON 70 PRL 25 99 +BLESER, BLIEDEN, COLLINS++ (BNL, CARN) AMALDI T1 PL 346 455 +BLESER, BLIEDEN, COLLINS++ (BNL, CARN) ELLIS 71 PRL 27 442 +BIACASTELLI, BOSION-+ (I SANTA ROMA+CERN) EDELSTEI 71 PRL 27 442 +MAGLICH, NOREM, SANNES, SILVERMAN (RUTG) EDELSTEI 72 PD 40 72 PL 428 497 +FUNG, KERNAN, PDE, SCHALK, SHEN (UCRIIJP	A2 N*1/2(1670) INTO GAM P. HELICITY=3/2 (GEV**-1/2) A2 .036 .030 DEVENISH 73 DPWA PI N PHOTO PROD 2/1 A2 .014 .008 A2 .012 .020 A2 .016 .002 M00RHOU 73 DPWA PI N PHOTO PROD 2/1 A2 .016 .002 M00RHOU 73 DPWA PI N PHOTO-PROD 2/1 A2 .016 .002 M00RHOU 73 DPWA PI N PHOTO-PROD 2/1 A2 .016 .002 M00RHOU 73 DPWA PI N PHOTO-PROD 2/1 A2 .024 MCRAHOUZ 73 DPWA PI N PHOTO-PROD 2/1 A2 .024 .040002 73 DPWA PI N PHOTO-PROD 2/1 A2 .024 .024 MCRAF .024 .024 A2 .0012 .0019 A2 .0012 .0019	'74* '73 '74* '74* '74*

A3 N#1/2(1670) INTO GAN N	+ HELICITY=1/2 (GEV++-1/2)		2174*	65 N#1/2(1688) BRANCHING RATIOS	
A3043 006 A3017 006 A3017 004 A3017 004 A30671 A3 -004 015 A3 AVG -0.0235 0.0093	KNIFS 73 DPWA KNIFS 73 DPWA MOORHOUI 73 DPWA CRAWFORD 74 DPWA METCALF 74 DPWA AVERAGE (ERROR INCLUDES S	PI N PHOTO PROD PI N PHOTO-PROD PI N PHOTO-PROD PI N PHOTO-PROD PI N PHOTO-PROD PI N PHOTO-PROD CALE FACTOR OF 2.9)	2/74* 2/74* 2/73 2/74* 2/74* 2/74*	P1 N+1/2(1688) INTO (PI N)/TOTAL (P1) R1 1 0.64) BAREYRE 68 RVUE 11/6 R1 3 (0.560) DONNACH1 68 RVUE 6/6 R1 6 (0.593) AYED 70 IPMA 1/7 P1 4 (0.554) OAVIES 70 RVUE SOL A AND 8 8/6 R1 7 (0.65) ALMEHED 72 IPMA 2/7 R1 (.593) AYED 74 IPMA 2/7	57 58 71 59 72 74*
A4 N*1/2(1670) INTO GAM N A4 ~-072 -022	+ HELICITY=3/2 (GEV**-1/2)		2/76*	SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.	
A4071 .030 A4035 .014	KNIES 73 DPWA MODRHOU1 73 DPWA	PI N PHOTO PROD PI N PHOTO-PROD	2/74*	BUMP, AS SEEN IN PRODUCTION EXPERIMENTS, MAY BE FOUND BELOW	
A4084) A4 (084) A4009 .029 A4009 .029 A4 AVG -0.0483 0.0038	MUCHHUUZ 73 DPWA Crahford 74 DPWA Metcalf 74 DPWA Average (error includes s	PI N PHOTO-PROD PI N PHOTO PROD PI N PHOTO-PROD Cale factor of 1.0)	2/74* 2/74* 2/74*	R2 N*1/2(1686) TMT0 (N ETA)/TOTAL (P2) 8/6 R2 10.01510R LESS TRIPP 67 RVUE 8/6 R2 8 (0.0004) BOTKE 69 MFMA TPDLE + RESON. 10/6 R2 8 (0.0003) (0.0002) DEAMS 69 MFMA TPDLE + RESON. 5/7 R2 8 (0.0005) RC BANS 570 MFMA TPDLE + RESON. 5/7 R2 8 (0.0005) CARREARS 70 MFMA TPDLE + RESON. 5/7 R2 8 (0.0005) DEAMS 65 OF DOUBLE COUNTING 5/7	57 59 70 70
****** ********* ********	****** ******** *******	******** *******		R3 N*1/2(1688) INTO (N ETA)/(PI N) (P2)/(P1) R3 (0.02710R LESS HEUSCH 66 RVUE + P10, ETA PHOTO 9/6	56
RRANDSEN 65 PL 19 620	REFERENCES FOR N+1/2(1670)		•	84 N+1/2(1688) INTO (LAMBDA K)/TOTAL (P3)	
TRIPP 67 NP 83 10	+ LEITH, + (LRL,SLAC,	CERN, HEID, SACLAY)	r	R4 B (0.001)OR LESS RUSH 68 MPMA T POLE + RESON. 5/7 R4 B PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING	70
BAREVRE 68 PR 165 1731 DONNACH 68 PL 268 161 ALSO 68 VIENNA 139 ALSO 68 VIENNA 139 DUKE 68 PR 166 1448 INSIGHTFUL QUALITATIVE A RUSH 68 PR 173 1776	P BAREYRE, C BRIGMAN, G VI A DGNNACHIE, R G KIRSOPP, DONNACHIE RAPPORTEUR.S TA R G KIPSOPP +JONES,KEMP,MURPHY,THRESHE RGUMENTS CONCERNING EXISTEN J E RUSH	LLET (SACLAY)IJ C LOVELACE (CERN)IJ LK (GLAS) (EDIN) R, + (RHEL,OXF)IJ CE AND IJP. (UNIV ALABAMA)	P P	R4 (0.001)0R LESS CL=.63 WAGNER 71 IPWA PI-P TO K LAMB 1/7 R5 N*1/2(1688) INTO (N*3/2(1232) PI)/TOTAL (P4) R5 P12601 (0.13) (0.04) SOLN.A BRODY 71 HBC PI-P2PI N/PWA 6/7 R5 E 12600 (0.39) (0.10) SOLN.B BRODY 71 HBC PI-P2PI N/PWA 6/7 R5 E 35UMES ELASTIC BRANCHING RATIO 0.624-0.06	71 70 70
BOTKE 69 PR 180 1417 DEANS 69 PR 185 1797	J C BOTKE S DEANS, J WOOTEN	(UCSB) (UNIV S FLORIDA)			
AYED 70 KIEV CONF CARRERAS 70 NP 168 35 DAVIES 70 NP 821 359	R AYED,P BAREYRE, G VILLET B CARRERAS, A DONNACHIE	(SACL)IJ (DARE,MCHS)	Ρ	FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- Review preceding the baryon listings.	
BRODY 71 PL 348 665	+CASHMORE++HERNDON+	(SLAC+LRL)		A1 N+1/2(1600) INTO GAM P. HELICITY=1/2 (GEV++-1/2) A1 .015 .023 DEVENISH 73 DPWA PI N PHOTO PROD 2/7	74*
ALMEHED 72 NP 840 157	F WAGNER, C LOVELACE	(CERN) (LUND+RUTG)IJ	P	A1 (003) HEMMI 73 + FWD P10 PHTOPROD 2/7 A1 016 .014 KNIES 73 DPWA PI N PHOTO PROD 2/7 A1 008 .004 MCORHOUL 73 DPWA PI N PHOTO-PROD 2/7	74* 74* 73
DEVENISH 73 PL 478 53 HEMMI 73 PL 438 79 KNTES 73 LBL-2410	DEVENISH, RANKIN, LYTH HEMMI, INAGAKI+ (KYO KNIES, MOORHOUSE, OBERIACK	{LOUC+BONN+LANC}IJ	р р	A1 014 .003 MOGRHOU2 73 DPWA PI N PHOTO-PROD 2/7 A1 (.009) CRAMFORD 74 DPWA PI N PHOTO-PROD 2/7 A1 (.009) CRAMFORD 74 DPWA PI N PHOTO-PROD 2/7	74* 74* 7/+
MODRHOU1 73 PL 438 44 MODRHOU2 73 LBL-1590	MOORHOUSE, DBERLACK MODPHOUSE, OBERLACK, ROSENFE	(GLAS+LBL)IJ LD (GLAS+LBL)IJ	P P	A1	147
AYED 74 PRIVATE COMMCTN. ALSO 73 AIX CONFERENCE	AYED,BAREYRE AYED,BAREYRE	(SACL)IJ (SACL)IJ	р Р	A2 N*1/2(1688) INTO GAM P. HELICITY=3/2 (GEV**-1/2) A2 .146 .031 DEVENISH 73 DPNA PIN PHOTO PROD 2/7	74*
CRAWFORD 74 GLAS. PREPRINT ALSO 73 BONN CONFERENCE METCALE 74 CALT-68-425	R L CRAWFORD R L CRAWFORD W J METCALE, R L WALKER	(GLAS) (GLAS)		A2 .097 .007 KNIES 73 DPWA PI N PHOTO PROD 2/7 A2 +.100 .012 MODRHOUL 73 DPWA PI N PHOTO-PROD 2/7 A2 100 .012 MODRHOUL 73 DPWA PI N PHOTO-PROD 2/7 A2 .004	74 * 73
	PAPERS NOT REFERRED TO IN	DATA CARDS.		A2 (.138) CRAWFORD 74 OPWA PI N PHOTO PPOD 2/7 A2 (.138) CRAWFORD 74 OPWA PI N PHOTO PPOD 2/7 A2 .129 .016 METCALF 74 OPWA PI N PHOTO-PROD 2/7	74 * 74*
BAREYRE 65 PL 18 342 Duke 65 Prl 15 468	+ BRICMAN, STIRLING, VILLE +JONES,KEMP,MURPHY,PRENTIC	T (SACLAY)IJI E. + (RHEL.OXF)IJI	P P	A2 AVG 0.123 0.014 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 3.3)	
JOHNSON 67 UCRL-17683 THESIS DEANS 69 PRL 177 2623 DONNACHI 69 NP 108 433	C H JOHNSON S R DEANS A Donnachie, r Kirsopp	(UNIV S FLORIDA) (GLAS+EDIN)		A3 N*1/2(1688) INTO GAM N, HELICITY=1/2 (GEV**-1/2) A3 -035 -049 DEVENISH 73 DPWA PI N PHOTO PROD 2/7 A3 -023 -005 KNIES 73 DPWA PI N PHOTO PROD 2/7	74* 74*
AYED 70 PL 318 598	+84REYRE+VILLET	(SACLAY)		A3 +.017 .014 MOORHOUI 73 DPWA PI N PHOTO-PROD 2/7 A3 .023 .003 MOORHOUZ 73 DPWA PI N PHOTO-PROD 2/7 A3 .024 .003 MOORHOUZ 73 DPWA PI N PHOTO-PROD 2/7 A3 .024 .004 .024	73 74*
****** ******** ******* **		*****		A3 .008 .018 METCALE 74 DPWA PI N PHDTO-PROD 2/7	74*
N(1688) 65 N*1/2	(1688, JP=5/2+) T=1/2	15		A3 AVG 0.0225 0.0025 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) A4 N*1/2(1688) INTO GAM N, HELICITY=3/2 (GEV**-1/2)	
THE EXIST	ENCE OF THIS RESONANCE IS W	ELL ESTABLISHED.		A4018 .039 DEVENISH 73 DPWA PI N PHOTO PROD 2/7 A4 .001 .018 KNIES 73 DPWA PI N PHOTO PROD 2/7 A4 .005 018 KNIES 73 DPWA PI N PHOTO PROD 2/7	74* 74* 73
				A4 041 .004 MODRHOUZ 73 DPWA PI N N HOTO-PROD 2/7 A4 (024) CRAWFORD 74 DPWA PI N PHOTO PROD 2/7	74* 74*
65 N#1/2	(1688) MASS (MEV)			A4	74*
M (1680.0) M 1 (1690.0) M 1 NHERE CROSS	BRANDSEN 65 RVUE BAREYRE 68 RVUE SECTION IS CREATEST - EVENA	PHASE SHIFT ANAL PHASE-SHIFT ANAL	7/66 11/67	{	
M 3 (1687.0) M (1682.0)	DONNACH1 68 RVUE DUKE 68 CNTR	PHASE-SHIFT ANAL PI-P EL + PGL	6/68 6/68	REFERENCES FOR N*1/2(1688)	
M 6 FROM ENER. DEP. FIT 0 M 4 (1685.0)	AYED 70 IPWA F ARGAND DIAGRAM DAVIES 70 RVUE	P-S ANAL SOL A	8/69	SEE A PREVIOUS EDITION (RMP 37, 633, 1965) FOR EARLIER REFERENCES.	
M 7 (1688.) M (1680.)	ALMEHED 72 IPWA Ayed 74 IPWA		2/72 2/74*	BRANDSEN 65 PL 19 420 +ODDNNELL, MOGRNOUSE IOURAM, RHEL JIP HEUSCH 66 PRL 17 1019 C A HEUSCH, C Y PRESCUTT, R F DASHEN (CIT) TRIPP 67 NP B3 10 + LEITH, + (IRL, SLAC, CERN, HEID, SACLAY)	
65 N*1/2	(1688) WIDTH (MEV)			BAREYRE 68 PR 165 1731 P BAREYRE C BRICHAN, G VILLET (SACLAY)IJP DONNACH1 68 PL 26B 161 A DONNACH1E, R G KIRSOPP, C LOVELACE (CERNIJP	
W 1 (110.0) W 3 (177.0)	BAREYRE 68 RVUE Donnach1 68 RVUE		11/67	ALSO 68 VIENNA 139 DONNACHIE RAPPORTEUR.S TALK (GLAS) ALSO 68 THESIS R G KIRSOPP (EDIN) DUKE 68 PR 166 1448 +JONES,KEMP_MURPHY_THRESHER.+ (BHEL.DXEII)P	
W 6 (109.0) W 4 (104.0) W 7 (160.)	AYED 70 IPWA DAVIES 70 RVUE	P-S ANAL SOL A	1/71 8/69	RUSH 68 PR 173 1776 J E RUSH (UNIV ALABAMA)	
W (126.) SEE THE NOTES ACCOMPAN	AYED 74 IPWA YING THE MASSES QUOTED.		2/74*	DEANS 69 PR 185 1797 S DEANS, J WOOTEN (UNIV S FLORIDA)	
	(1688) PARTIAL DECAY MODES			CARERAS TO NP 168 35 B CARERAS & DONNACHIE (DARE, MCHS) DAVIES TO NP 821 359 A DAVIES (GLAS)	
PI N#1/2(1688) INTO PI N		DECAY MASSES 139+ 938		BRODY 71 PL 34B 253 +CASHMORE++HERNDON+ (SLAC+LRL) WAGNER 71 NP B25 411 F WAGNER, C LOVELACE (CERN)	
P2 N#1/2(1688) INTO N ETA P3 N#1/2(1688) INTO LAMBO P4 N#1/2(1688) INTO N#3/2	A K (1232) PI	939+ 548 1115+ 497 1232+ 139		ALMEHED 72 NP 840 157 +LOVELACE (LUND, RUTG) IJP DEVENISH 73 PL 478 53 DEVENISH, RANKIN, LYTH (LOUCABONN-LANC) IJP HEMNI 73 PL 438 79 HEMNI INCATAL (VOTABLACAL)	
P5 N+1/2(1688) INTO N PI P6 N+1/2(1688) INTO GAM P	PI • HELICITY=1/2	938+ 139+ 139 0+ 938		KNIES 73 L01-2410 KNIES, MOORHOUSE, OBERLACK (L01-04) JUN	
P8 N#1/2(1688) INTO GAM N	UCI 10178-3/0	A. AAA			
P9 N#1/2(1688) INTO GAM N	<pre>+ HELICITY=3/2 , HELICITY=1/2 , HELICITY=3/2</pre>	0+ 938 0+ 939 0+ 939		AYED 74 PRIVATE COMMCTN. AYED, BAREYRE (SACL)IJP	
P9 N*1/2(1688) INTO GAM N P10 N*1/2(1688) INTO N EPS P11 N*1/2(1688) INTO N RHO	, HELICITY=3/2 , HELICITY=1/2 , HELICITY=3/2 ILON	0+ 938 0+ 939 0+ 939 938+ 700 938+ 770		AYED 74 PRIVATE COMMETN. AYED, BAREYRE (SLACL, RUSENFELD (SLASELBL) IJP ALSD 73 AIX COMFERENCE AYED, BAREYRE (SACL) IJP CRAMFORD 74 GLAS. PREPRINT R L CRAMFORD (GLAS) ALSD 73 BONN COMFERENCE R L CRAMFORD (GLAS)	

Baryons N(1670), N(1688)

Baryons N(1688), N(1700)

Data Card Listings For notation, see key at front of Listings.

PAPERS NOT REFERRED TO IN DATA CARDS.	66 N#1/2(1700) PHOTON DECAY AMPL(GEV##-1/2)
CROUCH 65 DESY CONF II 21 + (BRDWN,CEA,HARVARD,MIT,PADOVA,WEIZMANN)	FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI-
DERADO 65 ATHENS COMF 244 *KENNEY,LAMSA, + (NOTRE DAME,KENTUCKY) DUKE 65 PAL 15 468 +JDNES,KENP,MURCHY,PRENTICE, + (RHEL,OXF)IJP MERLO 66 P ROY SOC 289 489 J P MERLO, G VALLADAS (SACLAY) ROBERTS 67 PREPRINT R G ROBERTS (DURHAM) BANNER 68 PR 166 1347 +DETOEUF,FAYDUX,HAMEL, + (SACLAY,CAEN) THE ABOVE PAPERS DISCUSS INELASTIC CHANNELS NEAR THE BUMP. BAREYRE 65 PL 18 342 + BRICMAN, STIRLING, VILLET (SACLAY)IJP DEANS 69 PRL 177 2623 S R DEANS (UNIV S FLORIDA) DONNACHL 69 NP 108 433 A DONNACHIE, R KIRSOPP (GLASGEDIN) AYED 70 PL 318 598 +BAREYRE+VILLET (SACLAY)	Al N+1/2(1700) INTO GAM P, HELICITY=1/2 (GEV++-1/2) A1 .024 .033 DEVENISH 73 DPWA PI N PHOTO PROD 2/74* A1 .058 .018 KNIES 73 DPWA PI N PHOTO PROD 2/74* A1 .056 .042 MOGRHOUT 73 DPWA PI N PHOTO-PROD 2/74* A1 .054 .005 MOGRHOUT 73 DPWA PI N PHOTO-PROD 2/74* A1 .054 .005 MOGRHOUT 73 DPWA PI N PHOTO-PROD 2/74* A1 .054 .005 MOGRHOUT 73 DPWA PI N PHOTO-PROD 2/74* A1 .0031 CRAWFORO 74 OPWA PI N PHOTO-PROD 2/74* A1 +.012 .015 METCALE 74 DPWA PI N PHOTO-PROD 2/74* A1 .00500 0.0086 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1 9) 2/74*
****** ******** ******** ******** ******	A2 N*1/2(1700) INTO GAM N, HELICITY=1/2 (GEV**-1/2)
N(1700) 66 N*1/2(1700, JP=1/2-) 1=1/2 S11 THE EXISTENCE OF THIS RESONANCE IS WELL ESTABLISHED.	A2 015 .035 KNIES 73 DPHA PI PHOTO PROD 2774 A2 072 .066 MOGRHOUI 73 DPHA PI N PHOTO-PROD 2773 A2 072 .066 MOGRHOUI 73 DPHA PI N PHOTO-PROD 2774 A2 0051 CRAWFORD 74 DPHA PI N PHOTO-PROD 2774* A2 019 .022 METCALF 74 DPHA PI N PHOTO-PROD 2774* A2 019 .022 METCALF 74 DPHA PI N PHOTO-PROD 2/74* A2 019 .022 METCALF 74 DPHA PI N PHOTO-PROD 2/74* A2 019 .022 METCALF 74 DPHA PI N PHOTO-PROD 2/74* A2 AVG -0.0247 0.0079 AVERAGE (ERROR INCLUDES SCALE
66 N*1/2(1700) MASS (MEV)	****** ******** ***********************
M (1695.0) BRANDSEN 65 RVUE PHASE-SHIFT ANAL 9/66	REFERENCES FOR N+1/2(1700)
M (1700.0) MICHAEL 66 RVUE FITS BAREYRE 511 7/66 M 1 (1710.0) BAREYRE 68 RVUE PHASE-SHIFT ANAL 11/67	BRANDSEN 65 PL 19 420 +ODONNELL, MOORHOUSE (DURHAM, RHEL)IJP
M 1 WHERE CROSS SECTION IS GREATEST - EYEBALL FIT M 3 (1710.0) DONNACHI 68 RVUE PHASE-SHIFT ANAL 8/68	MICHAEL 66 PL 21 93 C MICHAEL (DXF)
H (1705.0) (10.0) URITU 69 KULE K LAMODA PS ANAL 8/69 H 6 IL689.0) H 6 FROM ENER, DEP. FIT OF ARGAND DIAGRAM H 4 (1766.0) H 4 (1767.0) H 11678.0] H A (1689.0) H	BAREYRE 68 PR 165 1731 P BAREYRE, C BRICMAN, G VILLET (SACLAY)IJP DONNACHIE 68 PL 268 161 A DONNACHIE, R G KIRSOPP, C LOVELAGE (CERN)IJP ALSO 68 VIENNA 139 DONNACHIE RAPPORTEUR,S TALK (EOIN) ALSO 68 THESIS R G KIRSOPT (EOIN) RUSH 68 PP 173 1776 J E RUSH (UNIV ALABAMA)
M A THERE ARE 3 SIMILAR SULUTIONS M 7 (1670.) M 2 (1699.) M 2 (1699.) M 2 (1699.) M 2 ONLY STATES FROM TABLE VII OF MICKS73 ARE INCLUDED IN LISTINGS. 9/73* M 2 M AND W ARE FROM SOLUTION C2-BR=SQRT(G)/W HITH G FROM TABLE VII. 9/73*	BOTKE 69 PR 180 1417 J C BOTKE (UNLY S CLOSH DEANS 69 PR 185 1797 S DEANS, J MODTEN (UNLY S FLORIDA) ORITO 69 LNC 1936 S CRITO, S SASAKI (TOKYO-OSAKA) ORITO2 69 INS J 113 S ORITO (THESIS) (TOKYO)
M 1 (1860.) ANGBEIN 73 TPMA PIN-K SIG-SCL 2 9/73* M 1 SII AMPLITUDE LARGE BUT NOT RESONANT IN SOLUTION 1 OF LANGBEIN73 9/73* N (1672.) AYED 74 IPMA 2/74*	AYED 70 KIEV CONF R AYED,P BAREYRE, G VILLET (SACL)IJP CAREFRAS 70 NP 168 35 B CAREFRAS, A DONNACHIE (DARE,MCHS) DAVIES 70 NP 821 359 A DAVIES (GLAS) SCHORSCH 70 NP 825 179 +TIETGE,MEILNBDECK (MPIM)
	WAGNER 71 NP 825 411 F WAGNER, C LOVELACE (CERN)
66 N#1/21/001 WIDH (HV) 7/66 W 1260.01 BAREYRE 68 RVUE 11/67 W 3 1300.01 DONNACH1 68 RVUE 8/69 W 1104.01 (15.0) DRITO 69 RVUE 8/69 W 6 (166.01 AYED 70 TPWA 1/71 W 4 (404.01) DAVIES 70 RVUE 8/69 W 50L 8 GIVES 121 MEV DAVIES 70 RVUE 8/27/3	ALMEHED 72 NP B40 157 +LOVELACE (LUND, RUTG) 1JP DEANS 72 PRD 6 DEANS, JACOBS, LYONS, MONTGOMERY (SOUTH FLA.) 1JP DEVENISH 73 PL 478 53 DEVENISH, FANXIN, LYTH (LOUC+BONN+LANCI) IJP HICKS 73 PRD 7 2614 +DEANS, JACOBS, LYONS+ (CARN+OPNL+SOUTH FLA.) IJP KNIES 73 B&L-2410 KNIES, MOORHOUSE, OBERLACK (LB+GLAS) IJP LANGBEN, MAGNER (MUNICH) JANGBEN, MAGNER (MUNICH) JIP MOORHOUZ 73 BL 243 44 MOORHOUSE, OBERLACK, ROSENFELO (GLAS+LB) JIP
N (99.01 SCHUKSCH TO DYNA K LAM PHIODAGL LOFT N A (110.010R(140.0) WAGNER TI JPNA PI-P TO K LAMB 1/71 N 7 (120.4) ALMEHED 72 IPNA 2/72 N 2 (195.1) HICKS 73 NPMA GAM P-ETA P 9/73* N 1 (200.1) LANGBEIN 73 IPNA PI N-K SIG+SOL 2 9/73* N 1 (200.1) LANGBEIN 74 IPNA 2/74* SEE THE NOTES ACCOMPANYING THE MASSES QUOTED. 2/74* 2/74* 2/74*	AYED 74 PRIVATE COMMETN. AYED.BAREYRE (SACL)IJP ALSO 73 AIX CONFERENCE AYED.BAREYRE (SACL)IJP CRAMFORD 74 GLAS. PREPRINT R L CRAMFORD (GLAS) ALSO 73 BONN CONFERENCE R L CRAMFORD (GLAS) METCALF 74 CALT-68-425 W J METCALF. R L WALKER (CIT)
	PAPERS NOT REFERRED TO IN DATA CARDS.
66 N+1/2(1700) PARTIAL DECAY MODES Decay Masses P1 N+1/2(1700) INTO PI N 1394-938 P2 N+1/2(1700) INTO N ETA 9394-548	BAREYRE 65 PL 18 342 + BRICMAN, STIRLING, VILLET (SALLAY)1JP JOHNSON (IRI) (IRI) (IRI) DEANS 67 UCR-17263 THESIS C H JOHNSON (IRI) DEANS 69 PR 177 2623 S R DEANS (UNIV S FLORIDA) DONNACHI 69 PP 108 433 A DONNACHIF, R KIRSOPP (GLAS+EDIN) AYED 70 PL 318 598 + BAREYRE+VILLET (SACLAY)
P3 N#1/2(1700) INTO LAMBDA K 1115+ 497 P4 N#1/2(1700) INTO GAM N, HELICITY=1/2 0+ 938 P5 N#1/2(1700) INTO GAM N, HELICITY=1/2 0+ 939 P6 N#1/2(1700) INTO GAM N, HELICITY=1/2 0+ 939 P6 N#1/2(1700) INTO N P1 P1 936+ 139+ 139 P7 N#1/2(1700) INTO N F91LON 936+ 700 P8 N#1/2(1700) INTO N RHO 936+ 770 P9 N#1/2(1700) INTO N KSIGMA 493+1189	N(1700) a NEH, PRELIMINARY ENERGY DEPENDENT ANALYSIS BY AYED 72 INCLATES THE PRESENCE OF THIS STATE, AYED 74 INCLATES THE PRESENCE OF THIS STATE AYED 75 INCLATES THE PRESENCE OF THE AYED 75 INCLATES THE PRESENCE OF THE AYED
66 N#1/2(1700) BRANCHING RATIOS	MODEL ANALYSIS BY HERNOON 72 SHOWS EVIDENCE FOR THIS STATE IN THE SIGM N AND DELTA PI CHANNELS. THERE IS ADDITIONAL
R1 N+1/2(1700) INTO (PI N)/TOTAL (P1)	EVIDENCE FROM K SIGMA ASSOCIATED PRODUCTION AND PI N, K LAMBDA Photoproduction. See the N* Mini Review.
P1 (1.0) APPROX HICHAEL B6 RVUE 1700 R1 3 (0.79) DONNACH1 68 RVUE 8/69 P3 6 (0.462) AYED 70 IPNA 1/71	
R1 4 (0.56) DAVIES TO RVUE P-S ANAL SOL A 8/69 R1 7 (0.5) ALMEHED 72 IPWA 2/72	18 N*1/2(1700) MASS (MEV)
RI (-586) AYED 74 IPWA 2/74* R2 N#1/2(1700) INTO (LAMBDA K)*(PI N)/TOTAL**2 (P3*P1) R2 0-039 0.019 ORITO 69 RVUE 8/69	M 3 (1730.) M 3 (1680.) M 3 (1680.) M 3 (1680.) M 3 (1680.) M 3 HIERE MAX. ABSORPTION IS -DONNACH!2 , KIRSOPP & SEALL FIT CERN 1 10/69 M 3 HIERE MAX. ABSORPTION IS -DONNACH!2 , KIRSOPP & SEALL FIT CERN 1 10/69 M 4 (1780.0) M 5 (1780.0) M 6 (1780.0) M 6 (1780.0) M 7 (10.0) M 7 (10.0
R2 A (0.043)OR 0.054 WAGNER 71 IPWA PI-P TO K LAMB 1/71	M (1670.) DEANS 72 MPMA GAM P-K LM, SOL D 9/73 M 1 (1790.) LANGBEIN 73 IPWA PI N-K SIG, SOL 1 9/73
R3 N#1/2(1700) INTO (LAMBOA K//10/AL (P3) R3 B (0,028) APPROX. RUSH 68 NPWA T POLE + RESON. 8/69 R3 B PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING P4 N#1/2(1700) INTO (N ETAI/TOTAL (P2)	M 1 NOT SEEN IN SOLUTION 2 OF LANGBEIN73 9/73 M (1710.) AYED 74 IPWA 2/74
R4 B (0.013) BDTKE 69 MPWA T POLE + RESON. 10/69 R4 B (0.03) (0.02) DEANS 69 MPWA T POLE + RESON. 8/69	18 N+1/2(1700) WIDTH (MEV)
R4 C (0.19) CR 0.27 CARRERAS TO MPMA T POLE + RESON, 5/70 R4 B PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING R4 C CARRERAS TO USES REGGE POLES + RESONANCES, VALUES SUSPICIOUSLY LARG	H (190.) DEANS 72 MPMA GAM P=K LM.SDL D 9/73 W 1 (120.1) LANGBEIN 73 TMA PI N=K SIG, SDL 1 9/73 W (100.1) AYED 74 TPWA 2/74
къ N#1/2(1700) FRUM GAMMA PRUTUN TU K LAMBDA SQRT(1/3#94) 9//3# R5 (0.0021OR LESS ORITOZ 60 CNTR K LAM PHOTOPRO 10//11 R5 (0.0072) SCHORSCH 70 OPWA K LAM PHOTOPRO 10/71 R5 (.0060) DEANS 72 MPWA GAM P-K LM,SDL D 9/73#	18 N#1/2(1700) PARTIAL DECAY MODES
R6 N#1/2(1700) FROM GAMMA PROTON TO ETA PROTON SQRT(P2#P4) 9/73# R6 2 (+0101} Hicks 73 MPWA GAM P−ETA P 9/73*	P1 N+1/2(1700) INTO P1 N 1394 938 P2 N+1/2(1700) INTO LANBDA K 1115+ 497
R7 N+1/2(1700) FROM PI N TO K SIGMA SGRT(P1+P9) 9/73+ R7 1 (+11) Langbein 73 IPNA PI N-K Sig,sol 2 9/73+ 	P3 N+1/2117001 NTO GAM P,HELICITY=3/2 0+938 P4 N+1/2117001 NTO GAM P,HELICITY=1/2 0+938 P5 N+1/2117001 NTO GAM P,HELICITY=1/2 0+939 P6 N+1/2117001 NTO GAM N+HELICITY=1/2 0+939 P6 N+1/2117001 NTO GAM N+HELICITY=1/2 0+939 P7 N+1/2117001 NTO GAM N+HELICITY=1/2 0+939

134

Baryons N(1700)

18 N+1/2(1700) BRANCHING RATIOS	20 N+1/2(1700) WIDTH (MEV) (PROD. EXP.)
RI N*1/2(1700) FROM GAMMA PROTON TO K LAMBDA SQRT((P3+P4)*P2) 9/73* 91 (.0077) DEANS 72 MPWA GAM P-K LM-SQL D 9/73*	W (70.0) (20.0) A-BORELLI 67 HBC 9/69 W (140.0) (57.0) ALMEIDA 68 HBC + 9/69
P2 N+1/2(1700) FROM PL N TO K SIGMA SQRT(P1+P7) 9/73+	H (55.0) (15.0) GALLOWAY 68 HBC 8/69 H 1 (70.0) (15.0) BARNES 69 HBC K-P 70 K-P 2PI 7/70 H A (105.0) (14.0) BENEMINITAR DEC 0 5/70
R3 N#1/2(1700) INTO PI N/TOTAL (PI)	W B 190 (235.) (50.) PHODE 69 MBC PP 22 GEV/C 10/69 W (130.) (10.) ANDERSON 70 MMS PI- P TO PI- MMS 2/71
93 (.089) AYED 74 IPWA 2/74*	W 177 (66.) (26.) CIRBA 70 HBC + P1+ PAT 5 GEV/C 2/71 W (102.) (40.) CCOPER 70 HBC + P1+P, 5.5 5EV/C 2/71 H 505 (130.0) (20.0) COPER 70 HBC + 1/71
	W 60 (220.) KUZNETSOV 70 HLBC - PI-P, 4 GEV/C 2/71 W A (63.0) (12.0) WILLMANN 70 HBC + 5/70
18 N+1/2(1700) PHOTON DECAY AMPL(GEV++-1/2)	W (152.0) (15.0) AMALDT 71 CNTR P AT 24 GEV 1071 W (120.) (50.) BALLAM 71 HBC +- PI+-P AT 16GEV 2/72 W (15.) BASSAFC 71 RVUF PD.DL-D.K-P PD.00 3/72
REVIEW PRECEDING THE BARYON LISTINGS.	W (102-0) (9-0) ELLTS 71 CNTR MMS PP 3.7 GEV/C 10/71 W 80 (94-0) (20-0) 80/120 MA 71 HBC + P P TO P N P1 10/71
A1 N+1/2(1700) INTC GAM P, HELICITY=1/2 (GEV#+=1/2) A1103 .130 DEVENISH 73 DPWA PI N PHOTO PROD 2/74# A1015 .140 KNIES 73 DPWA PI N PHOTO PROD 2/74#	W (70.) (20.) MORSE 71 HBC + PI-P 25 GEV/C 3/72 W 70.TO 120. MORSE 71 HBC +0 PI-P 7 GEV/C 3/72 W (120.) (40.) RUSHBRONKE71 HBC + PP TO P2PI 166FV 2/72
A1 (.023) MOORHOUZ 73 DPWA PI N PHOTO PROD 2/74* A1 .0 .034 METCALF 74 DPWA PI N PHOTO-PROD 2/74*	W (133.0) (26.0) EDELSTEIN 72 MMS + PP 6 TO 30 GEV 1/73 W (168.0) (64.0) KARSHON 72 DBC + PDPD2PI 7 GEV 12/72
A1 AVG -0.010 0.025 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	W (80.0) APPROX. LAMSA 72 HC P 18.5 GEV/C 12/72 W 2 (128.1) (40) OH 72 DBC 0 PI-PI-PI-P 2/73 W (60.1) (40) PINAT 72 HBC DI+P TO 3PI-P 2/73
A2 N*1/2(1700) INTO GAM P, HELICITY=3/2 (GEV**-1/2) A2 .055 .065 DEVENISH 73 DPWA PI N PHOTO PROD 2/74*	SEE THE NOTES ACCOMPANYING THE MASSES QUOTED
42 .030 .040 ΚΝΙΕΣ 73 ΟΡΜΑ ΡΙΝ ΡΗΟΤΟ PROD 2/74* 42 (.035) ΜΟΟRHOUZ 73 ΟΡΜΑ ΡΙΝ ΡΗΟΤΟ PROD 2/74* 42 .0 .029 ΜΕΤCALEF 74 ΟΡΜΑ ΡΙΝ ΡΗΟΤΟ-ΡRDD 2/74*	20 N+1/2(1700) PARTIAL DECAY MODES (PROD. EXP.)
A2 A2 AVG 0.015 0.022 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	DECAY MASSES
A3 N+1/2(1700) INTO GAM N, HELICITY=1/2 (GEV++−1/2) A3 -013 -222 DEVENISH 73 OPWA PI N PHOTO PROD 2/74+	P2 N#1/2(1700) INTO N PI PI 938+ 139+ 139 P3 N#1/2(1700) INTO N*3/2(1232) PI 1232+ 139
43 036 .040 KNIES 73 DPWA PI N PHOTO P/74* A3 (015) MODRHOUZ 73 DPWA PI N PHOTO PROD 2/74*	P4 N*1/2(1700)+ INTC NEUTRON PI+ 939+ 139 P5 N*1/2(1700)+ INTC PROTON PI+ PI- 938+ 139+ 139 P6 N*1/2(1700)+ INTC PROTON PI+ PI- 938+ 139+ 139 P6 N*1/2(1700)+ NTC N*2/2(1700)+ NTC 1320+ 130
A3	P7 N#1/2(1700) INTO N ETA 939+ 548 P8 N#1/2(1700) INTO LAMBDA K 1115+ 497
44 N*1/2(1700) INTO GAM N, HELICITY=3/2 (GEV**-1/2)	
A4024 .024 KNTES 73 DPMA P1 N PHOTO PROD 2/74# A4 (.028) MODRMOU2 73 DPMA P1 N PHOTO PROD 2/74#	20 N+1/2(1700) BRANCHING RATIOS (PPOD. EXP.)
A4 .0 .044 METCALE 74 DPWA PI N PHOTO-PROD 2/744 A4 AVG 0.013 0.020 AVERAGE (ERROR INCLUDES SCALE CACTOR OF 1.03	R1 N*1/2(1700) INTC (PI N)/(P[N*3/2(1232)) (P1)/(P3) R1 (0.77) CR LESS LEE 67 HBC P1-9 3.6 GEV/C 11/67 R1 4 (9.01) DR MORE REVVENUIT 69 DBC 0 5/20
****** ******** ***********************	R2 N#1/2(1700) INTO (N ETA)/(N PI + N PI PI) (P7)/(P1+P2)
REFERENCES FOR N+1/2(1700)	N2 (0.025)OR LESS KRAEMER 64 DBC + P1+D 1.2 P2 (0.042)DR LESS CL=.95 A-BORELLI 67 HBC + PBAR P 5.7 BEV/C 9/69
DONNACH2 68 VIENNA 139 DONNACH1E PAPPORTEUR.S TALK (GLAS) KIRSOPP 68 THESIS R & KIRSOPP (EDIN)	R3 N+1/2(1700) INTC (LAMBDA K)/(P PI+ PI-) (P8)/(05) R3 (0.034)0R LESS ALEXANDER 67 HBC + PP 5.5 BEV/C 11/67 R3 (0.034)0R LESS ALEXANDER 67 HBC + PP 5.5 BEV/C 12/67
DEANS 72 PRD 6 1906 DEANS, JACOBS, LYONS, MONTGOMERY (SOUTH FLA.)IJP DEVENISH 73 PL 478 53 DEVENISH, PANKIN, LYTH (LOUC+BONN+LANC)IJP	R4 N+1/2(1700) INTO (LAMBDA K)/(N P[+ N P] P[) (P8)/(P1+P2)
KNIES 73 LBL-2410 KNIES,MOORHOUSE,OBERLACK (LBL+GLAS)IJP LANGBEIN 73 NP B53 251 LANGREIN, WAGNER (MUNICH)IJP	R4 (0.013)OR LESS CL≈.95 A-BORELLI 67 HBC + 8/67 R4 SEEN CHINOWSKY 68 HBC PP TO K+ Y N 6/68 R4 LINUTE 0.025 TO 0.11 PADUCKY 68 HBC PP TO K+ Y N 6/68
AYED 74 PRIVATE COMMETN, AYED, BAREYRE (SACL)IJP ALSO 73 AIX CONFRENCE AYED, BAREYRE (SACL)IJP	R4 25 0.025 0.005 CPENNELL 70 HBC + 1/71 R4 LESS THAN 0.025 WILLMANN 70 HBC PI+P TO 3PI P 6/70
METCALF 74 CALT-68-425 W J METCALF, R L WALKER (CIT) Padeds not deceded to in data cards	R4 25 SEEN. CONS. WITH J=1/2 MORSE 71 HBC 0 PI-P 7 GEV/C 3/72 P5 N#1/2(1700) INTO (N PI)/(N PI PI) (P1)/(P2)
HERNDON 72 LBL 1065 +ROSENFELD+CASHMCRE+ (LBL,SLAC)	R5 (1.26) OR LESS CL=.95 A-BORELLI 67 HBC + 8/67 R5 0.025 0.13 CRENNELL 70 HBC + 1/71
****** ******** ***********************	R6 N*1/2(1700) INTO (N*3/2(1232) PI)/(N PI PI) (P3)/(P2) R6 NO EVIDENCE A-BORELLI 67 HBG + 8/67
1700 MEV REGION - PRODUCTION EXPERIMENTS	SEE MERLO 66 FOR A REVIEW.
20 N+1/2(1700, JP=) T=1/2	R7 0.67 0.40 ALEXANDER 67 HBC + PP 5.5 BEV/C 11/67 R7 0.47 0.25 A-BORELLI 67 HBC PBar P 5.5 GEV/C 1/67
PARTIAL WAVE ANALYSIS REGULIRES AT LEAST EQUID 1-1/2 STAT	R7
IN THE LOTO TO 1780 REGION (DIS, FIS, SIL, PIL) AND AT LEAST ONE I=3/2 STATE (D33). OBVIOUSLY, DIFFERENT EXPE	R8 N*1/2(1700) INTO (N*3/2(1232)++ PI-)/(P PI-) (P6)/(P5) R8 0.74 0.14 ALEXANDER 67 HBC + PP 5.5 BEV/C 11/67
IMENTS ARE SEEING DIFFERENT STATES AND OFTEN IT IS NOT CLEAR WHAT ISOSPIN STATE IS BEING OBSERVED. NO EFFORT WAS MADE TO SEPARATE THESE FXPERIMENTS ACCORDING TO JP. SINCE NONE OF THE	R8 1.0 0.3 ALMEIDA 68 HBC + PP 10 8EV/C 9/66 R8 (0.83) KAYAS 68 HBC PP 10 8EV/C 11/68 R8 1 LESS THAN 0.15 BARNES 69 HBC K-P 70 K-P 7/70
REPORTED UP IS FIRMLY ESTABLISHED. WE LIST ALL THE INFORMATION HERE, But we have not used it in the baryon table.	R8 (0.50) OR LESS CL=.95 CIRBA 70 HBC PI+P AT 5 GEV/C 2/71 R8 NO EVIDENCE CRENNELL 70 HBC + 1/71
FOR SPIN-PARITY ANALYSIS OF THIS MASS REGION, SEE JOHNSTAD 72 AND LAMSA 72.	P8 (2.3) (1.6) WILLMANN 70 HBC PI+P TO 3PI P 6/70 R8 (1.0) 0R MORE CL=.95 BEKETOV 71 HBC DEL(1232)++ PI- 3/72 0 0.75 0.75 205 DEDEE 71 HBC DEL(1232)++ PI- 3/72
	R8 0.35 0.20 RUSHSPOCKE71 HBC + PP TO P2P1 L6GEV 2/72 R8 C 0.65 0.15 LAMSA 72 HBC PI P 18.5 GEV/C 12/72
20 N*1/2(1700) MASS (MEV) (PROD. EXP.) M (1695.0) (9.0) 4-BORELLI 67 HBC + PBAR P 5.7 BFV/C B/67	R8 AVG 0.66 0.10 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.2)
M (1734.0) (21.0) ALMEIDA 68 HBC + PP 10 BEV/C 9/69 M (1730.0) (18.0) GALLDWAY 68 HBC PI-P 6 GEV/C 8/69	P9 N#1/2(1700) INTO (SIG K)/(LAMB K) PROD. EXP. R9 LESS THAN .20 COOPER 70 HBC + PI+P+ 5.5 GEV/C 2/71
M 1 (1/12-0) (5-0) BARNES 69 HBC K-P 2P1 7/70 M A (1667-0) (5-0) BENVENUTI 69 DBC 0 PI-D 2.26 GEV 5/70 M B 19011693.I (15-1 RHDDE 69 HBC PP 22 GEV/C 10/69	SEE THE NOTES ACCOMPANYING THE MASSES QUOTED
M (1691.) (4.) ANDERSON 70 MMS PI- P TO PI- MMS 2/71 M 177(1710.) (10.) CTRBA 70 HBC + PI+ P TO P43P1 2/71 M CONDECT TO HBC + PI+ P TO P43P1 2/71	****** ******** ******** ******** ******
M 505(1730.0) (15.0) CRENEL TO HBC + PI-P.PIP+ 6 GEV 1/71 M 60(1710.) KUZNETSOV TO HLBC - LAMB. K PROD. 2/71	KRAEMER 64 PR 136 B496 +HADANSKY++ (J HOPKINS, NWESTERN, WOODSTOCK) I
M A (1719.0) (6.0) WILLMANN 70 HBC + PI+P 13. GEV 5/70 M (1694.0) (8.0) AMALDI 71 CNTR P P AT 24 GEV 10/71 N (1730.1 (20.1) BALLAM 71 HBC 4- 01A-D AT 16GEV 2/72	ALEXANDE 67 PR 154 1284 ALEXANDER, BENARY, CZAPEK, + (HEIZMANN(CERN)) A-BORELL 67 NC 47 232 ALLES-BORELLI, FRENCH, FRISK, MICHEJDA (CERN) LFF 67 PR 159 1156 + MORENS, DEC.SINCL 418, VANDER VELDE (MICH)
M (1700.) BEKETOV 71 HBC + PI-P 4.45GEV/C 3/72 M (1711.) (10.) BOESTBEC 71 RVUE PP,PI-P,K-P PROD 3/72	ALMEIDA 68 PR 174 1638 +RUSHBROOKE, + (CAVE, DESY(CERN))
M (1672.0) (4.0) ELLIS TI CNTP MMS PP 3.7 GEV/C 10/71 M 80(1650.0) (10.0) 80/120 MA 71 HBC + P P TO P N PI 10/71 M (1700.0) (10.0) MDRSF 71 HBC + PI-P 25 GEV/C 3/72	GALLOWAY 68 PL 278 250 GALLOWAY,ALYEA,CRITTENDEN,PRICKETT,+ (IND) KAYAS 68 NP 251 69 + 600 + 60
M 1670. TO 1730. MORSE 71 HBC +0 PI-P 7 GEV/C 3/72 W (1720.) (20.) RUSHBROCKET1 HBC + PP TO P2PI 166EV 2/72	BARNES 69 PRL 23 1516 +BASSANG+CHUNG+EISNER+FLANINTG+KINSON (BNL)[J RENVENIT AS DD 187 1852 RENVENITT MODULT CONSUMPTION (BNL)[J
M C (1668-0) (19-0) 24/45 KARSHON 72 DBC + PD→PD2PI 7 GEV 12/72 M C (1715-0) (5-0) LAMSA 72 HBC + PI→P ATOLB GEV 1/73	RHODE 69 PR 187 1844 RHODE, LEACOCK, KEPNAN, JESPERSEN,+ (ISU)
M 2 (1660.) (15. OH 72 DBC 0 PI-N TO PI-PI-P 2/73 M (1720.) (15.) RONAT 72 HBC PI+P TO 3PI P 2/73 M C ANALYSIS CIVES ID - 5/24	ANDERSON 70 PRL 25,699 +BLESER,BLIEDEN,COLLINS++ (BNL.CARN) CIRBA 70 NP 823,533 +VANDERHAGEN+ (EPOL,DURH,NIJH, TORT,BONN) CINDER 70 NP 823,605 +MANDERHAGEN+ (EPOLAD),VOVVDIC
M 2 DETERNING 15/2+15 PROBABLE 2/73 M B JP IS PROBABLY 5/2+	CRENNELL 70 PRL 25 187 +LAI, LOUIE, SCAR, SIMS (BNL) KUZNETSOVTO SJNP 10,332 +HELNIKOV,RYLTSEVA,CHADRAA,BALINTP (JINR)
M 1 IJP CONSISTENT WITH S11(1700) OR P11(1780) IN FORMATION M A J CONSISTENT WITH 5/2 OR 7/2	WILLMANN 70 PRL 24 1260 +LAMSA,GAIDOS,EZELL (PURD)IJ

Baryons N(1700), N(1780), N(1810)

AMAL BBEKEFLL MORS FUL JOHR RON MER ****	LDI LAMC SER SER NSTC SA LO	71 PL 348 435 *BIANCASTELLI.BOSID.+ (I SANITA ROMA+CERN) 71 PR 04 1946 *CHADNICK.GUIRAGOSSIAN.JOHNSON.+* (SLAC) I 71 N7 LSJNP 13 605 *COMBNOVSKII.KCMOVALOV.KRUCHNIN.+* (ITEPIIJ 71 PR 14 6133 *DOSEBBECK.GRAFSSLER.KFAUS.,*** (ABBCHLV) I 71 PR 12 66 *COLTCN 71 PR 14 133 *OH.HALKER.CARROLLLYNCH + (HISCHTNDI) 71 PR 14 133 *OH.HALKER.CARROLLLYNCH + (HISCHTNDI) 72 PR 05 1073 EDELSTFIN.CARRIGAN.HIEN.MCMAHON.+(CARNENL) 74 PR 04 3273 RUSHBROCKE.NILLIAMS*EAREFORD+* (CAVELDIC) IJ 72 PR 05 1073 EDELSTFIN.CARRIGAN.HIEN.MCMAHON.+(CARNENL) 74 PR 05 307 +POLEKOND++AICOSSENIDONA.HES.SOSTOH J 1A 74 PR 937 371 *YEUNTELI.YAFFE.SHAPRA.RONAT.+ (CARNENL) 72 PR 937 364 *HOLLEROND++AICOSSENIDONA.HES.SOSTOH J 1A 72 PL 428 497 *FLUNG.KERNAN.POE.SCHALK.SHEN (UCF)1JP 72 PL 428 497 *FLUNG.KERNAN.POE.SCHALK.SHEN (UCF)1JP	1 19 2	14 N*1/2(1780) PHOTON DECAY AMPL(GEV*-1/2) FOP DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- REVIEW PRECEDING THE BARYON LISTINGS. A1 N*1/2(1780) INTC GAM P, HELICITY=1/2 (GEV*-1/2) A1 .022 A1 .026 .026 .015 KNIFS 73 A1 .026 .026 .026 MORHDUI 73 .014 .027 MORHDUI 73 A1 .026 .026 .027 MORHDUI 73 .014 .026 .026 .027 MORHDUI 73 A1 .026 .026 .027 A1 .026 .027 MORHDUI 73 A1 .026 .027 .015 .028 .067 DEVENISH 73 .014 .027 .015 .028 .067 .029 .0207 .021 .021 .022 .021 .023 .021 .024 .022 .025	ND 2/74* ND 2/73 ND 2/73 ND 2/74* ND 2/74*
				DONNACH1 68 PL 268 161 A DONNACHIE, R G KIRSOPP, C LOVELACE (CERN ALSO 58 VIENNA 139 DONNACHIE RAPPORTEUR.S TALK (GLAS ALSO 58 THESTS P. C KISODO	IJP
		14 N+1/2(1780) MASS (MEV)		RUSH 68 PR 173 1776 J E RUSH (UNIV ALABAMA RUSH 69 PR 173 17776 J E RUSH (UNIV ALABAMA	
***	3 6 6	(1751.0) DONNACHI 68 RVUE PHASE-SHIFT ANAL (1640.0) (70.0) ORITO 69 RVUE K LAMBA PS ANAL (1700.0) ORITO 69 RVUE K LAMBA PS ANAL (1700.0) ORITO 69 CNTR K LAM PHOTOPRO (1645.0) AYED 70 IPWA FROM ENER, DEP. FIT UF ARGAM DIAGRAM FORMENER, DEP. FIT UF ARGAM DIAGRAM	8/69 8/69 10/71 1/71	DEANS 69 PR 185 1797 S DEANS, J WODTEN (UNIV S FLORIDA DRITO 69 PR 185 1797 S DEANS, J WODTEN (UNIV S FLORIDA DRITO 69 LNC 1 936 S DRITO, S SASAKI (TOKYO-DSAKA DRITO2 69 INS J 113 S DRITO (THESIS) (TOKYO	
	4 A A	(1770.0) (1809.0) (1685.0)DR(1740.0) THERE APE 3 SIMILAR SOLUTIONS (1665.0)DR(1740.0) THERE APE 3 SIMILAR SOLUTIONS	8/69 10/71 1/71	AVED 70 KIEV CONF R AVED.P BAREVRE, G VILLET (SACL CARRERAS 70 NP 168 35 B CARRERAS, A DONNACHIE (DARE,MCHS DAVIES 70 NP 821 359 A DAVIES (GLAS SCHORSCH 70 NP 825 179 +TIETGE,WEILNBDECK (MPIM	IJP
************	222	11720.1 ALMETHED 72 IPMA GAM P-ETA P 11728.1 ALMETHED 73 MPMA GAM P-ETA P ONLY STATES FROM TABLE VII OF HICKS 73 ARE INCLUDED IN LISTINGS. M AND W ARE FROM SOLUTION C2, PARSQNTGIO, WITH G FROM TABLE VII. (1780.1 LANGEEN 73 IPMA PI N-K SIG, SOL 2 (1729.) AYED 74 IPMA	2/72 9/73* 9/73* 9/73* 9/73* 2/74*	WAGNER 71 NP 925 411 F WAGNER, C LOVELACE (CERN ALMEHED 72 P0 B 1906 DEANS, JACCBS, LYCNS, NONTGOMERY (SUITH FLA, DEVENISH 73 P0 50 SUITH FLA, DEVENISH, RAMKIN, LYTH (LOUC+BOINN+LANC HICKS 13 P0 F0 F0	1 JP 1 JP 1 JP 1 JP 1 JP
	3 6 4 7 2	14 N+1/2(1780) WIDTH (MEV) (327.0) DDNNACH1 68 PVUE (310.0) (50.0) DRTTO 69 RVUE (210.0) DRTTO 269 CNTR K LAM PHOTOPRO (50.0) AVED 70 IPMA (445.0) DAVIES 70 RVUE SOL A (280.0) SCHDRSCH 70 DPMA K LAM PHOTOPRO. (160.0)DR(220.0) WAGNER 71 IPWA P1-P T0 K LAMB (160.1) AMEHED 72 IPMA P1 AP ETA P (130.1) LANGBEIN 73 IPWA GAM P-ETA P (130.1) LANGBEIN 73 IPWA P1 N-K SIG.SCL 1	8/69 8/69 10/71 1/71 8/69 10/71 1/71 2/72 9/73*	MODRHOUI 73 PL 43R 44 MODRHOUSE, OBERLACK (GLAS+LEL MODRHOUSE) OBERLACK, ROSENFELD (GLAS+LEL SCLAS+LEL SACL MODRHOUSE, OBERLACK, ROSENFELD (GLAS+LEL SACL (GLAS+LEL SACL MALSD 73 BL-1590 NODRHOUSE, OBERLACK, ROSENFELD (GLAS+LEL SACL MALSD 73 AIX CONFERENCE AYEO, BAREYRE (SACL METCALF 74 CALT-80-425 M J METCALF, R L WALKEP (CIT PAPEPS NOT PEFERRED TO IN DATA CARDS. DANACHI 69 PR 107 2623 S R DEANS ODNNACHI 69 NP 108 433 A DONNACHIE, R KIRSDPP (GLAS+EDIN AYED MATED TO PL 318 598 *BAREYREVILLET	IJP IJP IJP IJP IJP
н н		(130.) LANGBEIN 73 IPWA PI N-K SIG,SOL 2 (217.) AVED 74 IPWA SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.	9/73* 2/74*	N(1810) 15 N+1/2(1810, JP=3/2+) 1=1/2 THE EXISTENCE OF THIS RESONANCE IS WELL ESTABLISHED.	••
P1 P34 P5 P5 P5 P7 P9		DECAY DECAY MASSES N*1/2(1780) INTO PIN 139+938 N*1/2(1780) INTO LAMBDA 1115+497 N*1/2(1780) INTO ETA 939+546 N*1/2(1780) INTO GAM P, HELICITY=1/2 0+938 N*1/2(1780) INTO GAM N, HELICITY=1/2 0+939 N*1/2(1780) INTO GAM N, HELICITY=1/2 0+939 N*1/2(1780) INTO N EPSILON 938+1399 N*1/2(1780) INTO N HO 938+700 N*1/2(1780) INTO K SIGMA 493+1189		15 N+1/2(1810) MASS (MEV) M 3 (1860-0) DONNACHI 68 RVUE PHASE-SHIFT AN M X (1860-0) DONNACHI 68 RVUE PHASE-SHIFT AN M X (1860-0) APPROX LEA 69 CNTR PI-P ELASTIC M S Existon Apulton AYED TO TPMA M 6 FROM ENER, DEP. FIT OF ARGAND GLARAM A (1844-0) DAVIES TO RULE P-S ANAL SOL M A (1800-0) UARNEP TO RULE P-S ANAL SOL	AL 5/58 8/69 1/71 A 8/69
		14 N+1/2(1780) BRANCHING RATIOS		M A P13 RESONATES ONLY IN ONE OUT OF 3 POSSIBLE SOLUTIONS M 7 (1850.) Almented 72 IPMA M 1 (1833.) HICKS 73 MPMA GAM P-ETA P	2/72
R1 P1 R1 R1 R1 R1	3 6 4 7	N+1/2(1780) INTO (PI N)/TOTAL (PI) 10.32) DONNACHL 68 RVUE (0.43) DONNACHL 68 RVUE (0.43) DAVIES 70 FPWA (0.43) DAVIES 70 RVUE (0.43) AVED 70 FPWA (1.88) AVED 74 FPWA	8/69 1/71 8/69 2/72 2/74*	M I ONLY STATES FROM TABLE VII OF HICKS73 APE INCLUDED IN LISTINGS. M I M AND W ARE FROM SCLUTION C2,BR=SQRT(G)/W WITH G FROM TABLE VII. M (1696.) 74 IPWA	9/73* 9/73* 2/74*
R2 R2		N*1/2(1780) INTO (LAMBDA K)*(PI N)/TOTAL**2 (P2*P1) 0.004 0.003 ORITO 69 RVUE 0.005.00 0.003 ORITO 73 DVUE	8/69	15 N*1/2(1810) WIDTH (MEV) W 3 (296-00) DCNNACH1 68 RVUE W 6 (182.0) AVED 70 TPMA	8/69
R3 R3 R3 R3	B B	N*1/2(1780) INTO (LAMBDA K)/TOTAL (P2) (0.0031TO 0.065 RUSH 68 MPNA T POLE + RESON. PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING	8/69	W 4 (449-0) DAVIES 70 RVUE SOLA W 4 SOLB GIVES 307 MEV W 8 (220.0) WAGNER 71 IPWA PI-P TO K LAME W 7 (300.1) ALMENED 72 IPWA W 1 (250.1) WICK 73 MULA CAM D.ETA D.	8/69 2/73 1/71 2/72
R4 R4 R4 R4 R4	8 8 8	N*1/2(1780) INTO (N FTA)/TOTAL (P3) (0.19) BOTKE 69 MPMA T POLE + RESON. (0.09) (0.05) DEANS 69 MPMA T POLE + RESON. (0.015)OR 0.035 CARPERAS TO MPMA T POLE + RESON. PRAMETEIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING	10/69 5/70 5/70	W (117.) AVED 73 DFMA GAM P-CLA P SEE THE NOTES ACCOMPANYING THE MASSES QUDTED	2/74*
R5 R5 R5 R5		N+1/2(1780) FROM GAMMA PROTON TO K LAMBDA SQRT(P2*P4) (0.0027) DRITQ2 60 CNTR K LAM PHOTOPRO (0.0088) SCHORSCH 70 DPWA K LAM PHOTOPRO. (.0104) DEANS 72 MPWA GAM P~K LH,SOL D	9/73* 10/71 10/71 9/73*	1> N*1/2(1810) PARTIAL DECAY MODES DECAY MASSES P1 N*1/2(1810) INTO PI N 1394 938 P2 N*1/2(1810) INTO LANGDA K 11154 997 P3 N*1/2(1810) INTO LANGDA K 1000 000 000	
R6 P6	2	N*1/2(1780) FROM GAMMA PROTON TO ETA PROTON SQRT(РЭ*РА) (.0075) HICKS 73 МРИА GAM P-ETA P	9/73* 9/73*	>x 3399 548 >x 1/2/18101 1/10 N PI pi 9394 1394 P5 N+1/2/18101 1/10 N PI pi 9384 1394 P5 N+1/2/18101 1/10 GAH P,HELICITY=3/2 0+ 938 P5 N+1/2/18101 1/10 GAH P,HELICITY=3/2 0+ 938 P5 N+1/2/18101 1/10 GAH P,HELICITY=1/2 0+ 938	
R7 R7 R7		N*1/2(1780) FROM PI N TO K SIGMA SQRT(PI#P9) (.11) LANGBEIN 73 IPWA PI N-K SIG,SOL 1 (.14) LANGBEIN 73 IPWA PI N-K SIG,SOL 2 	9/73* 9/73* 9/73*	r: N*1/2(1810) INTU GAM N,HELICITY=3/2 0+ 939 P8 N*1/2(1810) INTO GAM N,HELICITY=1/2 0+ 939	

R1 R1 R1 R1 R1

R2 R2 R2

R3 R3 R3 R3 R3 R3

Р5 R5

A2

A4 A4

15 N#1/2(1810) BRANCHING RATIOS 17 N#1/2(1990) WIDTH (MEV) (P1) DONNACHI 68 RVUE AYED 70 IPWA DAVIES 70 RVUE SO ALMEHED 72 IPWA AYEO 74 IPWA DONNACH1 68 RVUE KIRSOPP 68 RVUE ALMEHED 72 IPWA HICKS 73 MPWA LANGBEIN 73 IPWA AYED 74 IPWA 8/69 PHASE SHIFT ANAL 10/69 2/72 GAM P-ETA P 9/73* PI N-K SIG,SOL 1 9/73* 2/74* N*1/2(1810) INTO (P[N]/TOTAL (0.21) (0.149) (0.40) (0.25) (225.0) (250.) (200.) (300.) 8/69 1/71 8/69 2/72 2/74* 3647 SOL A (145.) (119.) N*1/2(1810) INTC (LAMRDA K)/TOTAL (P2) (0.014)17 0.16 RUSH 68 MPMA T POLE + RESON. Dagametrization used could be in Danger CF double counting 8/69 B B 17 N#1/2(1990) PARTIAL DECAY MODES DECAY MASSES 139+ 938 938+ 139+ 139 939+ 548 1115+ 497 0+ 938 0+ 938 0+ 939 0+ 939 N*1/2(1810) INTO (N ETA)/TOTAL (P3) (0.0364) BCTKE 69 MPWA T POLE + RESON. (0.003) (0.003) DEANS 69 MPWA T POLE + RESON. (0.030)07 0.094 CARERAS 70 MPWA T POLE + RESON. PARAMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING N+1/2(1990) INTO PI N N+1/2(1990) INTO N PI PI N+1/2(1990) INTO LAMBDA K N+1/2(1990) INTO LAMBDA K N+1/2(1990) INTO GAM P.HELICITY=3/2 N+1/2(1990) INTO GAM N.HELICITY=1/2 N+1/2(1990) INTO GAM N.HELICITY=1/2 N+1/2(1990) INTO K SIGMA 10/69 5/70 5/70 8 8 8 P2 P3 P4 P5 P6 P7 P8 N*1/2[1810] INTO (LAMBDA K)*(P1 N)/TOTAL**2 (P2*P1) (0.015) WAGNER 71 IPWA PI-P TO K LAMB R4 . 1/71 N#1/2(1810) FROM GAMMA PROTON TO K LAMBDA SQRT((P5+P6)#P2) {.0082} DEANS 72 MPWA GAM P-K LM+SOL D 493+1189 9/73* N*1/2(1810) FROM GAMMA PROTON TO ETA PROTON SQRT((P5+P6)*P3) (+0052) HICKS 73 MPWA GAM P-ETA P 9/73* 9/73* R6 R6 GAM P-ETA P 1 17 N*1/2(1990) BRANCHING RATIOS N*1/2(1990) INTO (PI N)/TOTAL (P1) (.09) KIRSDDP 60 RVUE PHASE SHIFT ANAL 10/69 (0.15) ALMEMED 72 IPWA 2/72 (.064) AYED 74 IPWA 2/74* N#1/2(1990) INTO (N ETA)/TOTAL (P3) 15 N+1/2(1810) PHOTON DECAY AMPL(GEV++-1/2) R1 P1 R1 FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI-REVIEW PRECEDING THE BARYON LISTINGS. R2 N*1/2(1990) INTO (N 5TA)/TOTAL R2 B (0.02) (0.02) DEANS 69 MPMA POLE + RESCN. R2 B PARMETRIZATION USED COULD BE IN DANGER OF DOUBLE COUNTING N*1/2(1810) INTO GAM P, HELICITY=1/2 (GEV**-1/2) -.022 .094 DEVENISH 73 DPWA -.004 .032 KNIES 73 DPWA .0 .025 MFTCALF 74 DPWA 5/70 A1 A1 A1 A1 A1 PI N PHOTO PROD PI N PHOTO PROD PI N PHOTO-PROD N+1/2(1990) FROM GAMMA PROTON TO K LAMBDA SQRT((P5+P6)+P4) 9/73* .0034 DEANS 72 MPWA GAM P-K LM,SOL D 9/73* #3 #3 -0.002 0.019 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG N*1/2(1990) FROM GAMMA PROTON TO ETA PROTON SQRT{{P5+P6}*P3} 1 (.0045) HICKS 73 MPWA GAM P-ETA P 9/73* R4 R4 A2 A2 A2 A2 N*1/2(1810) INTO GAM P, HELICITY=3/2 {GEV**-1/2} -.001 .106 DEVENISH 73 DPWA PI N PHOTO PROD -.006 .030 KNIES 73 DPWA PI N PHOTO PROD .0 .022 METCALF 74 DPWA PI N PHOTO-PROD 2/74* 2/74* 2/74* N#1/2(1990) FROM PIN TO K SIGMA SQRT(P1*P9) 9/73* 1 {.06} LANGBEIN 73 IPWA PIN-K SIG.SCL 1 9/73* R5 85 -0.002 0.017 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG N*1/2(1810) INTO GAM N, HELICITY=1/2 (GEV**-1/2) .132 .173 DEVENISH 73 DPWA PI N PHOTO PROD .014 .014 KNIES 73 DPWA PI N PHOTO PROD .0 .050 METCALF 74 DPWA PI N PHOTO-PROD REFERENCES FOR N#1/2(1990) 43 43 43 43 43 2/74* 2/74* 2/74* A DONNACHIE, R G KIPSOPP, C LOVELACE (CERN)IJP R G KIRSOPP (EDIN) DCNNACH1 68 PL 268 161 KIRSOPP 68 THESIS 0.014 S DEANS, J WOOTEN (UNIV S FLORIDA) LEA, CADES, WARD, COWAN, + (RHEL, BRISTOL, DARE) DEANS 69 PR 185 1797 LEA 69 PL 298 584 0.013 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG N+1/2(1810) INTO GAM N, HELICITY=3/2 (GEV++-1/2) -080 -133 DEVENISH 73 DPWA -008 -025 KNIES 73 DPWA -0 -044 METCALF 74 DPWA ALMEHED 72 NP 840 157 DEANS 72 PRD 6 1906 HICKS 73 PRD 7 2614 LANGBEIN 73 NP 953 251 AYED 74 PRIVATE COMMCTN. ALSO 73 AIX CONFERENCE .LOVELACE (RUTG)IJP DEANS,JACOBS, LYCNS.MONTGOMERY (SOUTH FLA.)IJP DEANS,JACOBS,LYCNS+ (CARN+ORNL+SOUTH FLA.)IJP LANGBEIN,MACHER (MUNICH)IJP AFED,BAREVRE (MUNICH)IJP PI N PHOTO PROD PI N PHOTO PROD PI N PHOTO-PROD LANGBEIN, WAGNER AYED, BAREYRE AYED, BAREYRE -0.004 0.021 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) (SACL)IJP (SACL)IJP PAPERS NOT REFERRED TO IN DATA CARDS. ------S R DEANS (UNIV S FLORIDA) +BAREYRE,VILLET (SACLAY) +COWAN,GIBSON,GILMCRE++ (RHEL,BRISTOL) DEANS 69 PR 177 2623 AYED 70 PL 318 598 APLIN 71 NP 832 253 REFERENCES FOR N#1/2(1810) A DONNACHIE, R G KIRSOPP, C LOVELACE (CERNIJP DONNACHIE RAPPORTEUR-S TALK (GLAS) R G KIRSOPP (EDIN) J E RUSH (UNIV ALBABMA) DCNNACH1 68 PL 268 161 ALSO 68 VIENNA 139 ALSO 68 THESIS PUSH 68 PR 173 1776 (EDIN) (UNIV ALABAMA) 06 N+1/2(2000, JP=5/2+) I=1/2 69 PR 180 1417 69 PR 185 1797 69 PL 29B 584 вотке Ј С ВОТКЕ (UC58) N(2000) J C BUTKE S DEANS, J WOOTEN (UNIV S FLORIDA) LEA,OADES,WARD,COWAN,+ (RHEL,BRISTOL,DARE) DEANS LEA THE MOST RECENT PI N PARTIAL WAVE ANALYSIS, AYED 7 FINDS EVIDENCE FOR THIS STATE. THERE IS ALSO SOME INDICATION IN THE K SIGMA CHANNEL, LANGBEIN 73. AYED 70 KIEV CONF CARRERAS 70 NP 16B 35 DAVIES 70 NP 821 359 R AYED,P BAREYRE, G VILLET B CARRERAS, A DONNACHIE A DAVIES (SACL)IJP (DARE, MCHS) (GLAS) F WAGNER, C LOVELACE ---------WAGNER 71 NP 825 411 (CERN) ALMEHED 72 NP 840 157 DEANS 72 P20 6 1906 DEVENISH 73 PL 478 53 HICKS 73 P20 7 2614 KNIES 73 18L2-2410 AYED 74 PPIVATE COMMERENCE ALSO 73 AIX COMERENCE METCALE 74 CALT-68-425 +LOVELACE (LUND,RUTG)IJP DEANS,JACOBS, LYONS,MONTGOMERY (SOUTH FLA.)IJP DEVENISH,PANKIN,LYTH (LOUC+BONH-LANC)IJP +DEANS,JACOBS,LYCNS+ (CARN+ORNL+SOUTH FLA.)IJP KNIES,MOORHCUSE.OBERLACK (LBL+GLAS)IJP AFED.BAREYRE (SACL)IJP 06 N#1/2(2000) MASS (MEV) (2175.) ALMEHED 72 IPWA (1930.) OFANS 72 MPWA (1970.) LANGBEIN 73 IPWA DT SEEN IN SOLUTION 1 OF LANGBEIN73 2/72 GAM P-K LM,SOL D 9/73* PI N-K SIG,SCL 2 9/73+ 9/73+ 2/74+ NOT 74 IPWA AYED.BAREYRE W J METCALF. R L WALKER (1989.) AYED (CIT) PAPERS NOT REFERRED TO IN DATA CARDS. 06 N#1/2(2000) WIDTH (MEV) DEANS 69 PR 177 2623 DONNACHI 69 NP 108 433 S R DEANS (UNIV S FLORIDA) A DONNACHIE, P KIRSOPP (GLAS+EDIN) ALMEHED 72 IPWA DEANS 72 MPWA LANGBEIN 73 IPWA AYED 74 IPWA (150.) (112.) (170.) (179.) GAM P-K LM.SOL D PT N-K SIG.SOL 2 +BAREYRE,VILLET (SACLAY) +COWAN,GIBSON,GILMORE++ (RHEL,BR1STOL) 70 PL 318 598 71 NP 832 253 -----06 N#1/2(2000) PARTIAL DECAY MODES 17 N+1/2(1990, JP=7/2+) I=1/2 N(1990) DECAY MASSES N*1/2120001 INTO PI N N*1/2120001 INTO LAMBDA K N*1/2120001 INTO GAM P,HELICITY=3/2 N*1/2120001 INTO GAM P,HELICITY=3/2 N*1/2120001 INTO GAM N,HELICITY=3/2 N*1/2120001 INTO GAM N,HELICITY=1/2 N*1/2120001 INTO K SIGMA 139+ 938 1115+ 497 0+ 938 0+ 938 0+ 939 P1 P2 P3 THE MOST RECENT PI N PARTIAL WAVE ANALYSIS, AYEO 74, FINDS EVIDENCE FOR THIS STATE. THERE IS ALSO SOME INDICATION IN THE K SIGMA CHANNEL, LANGBEIN 73. 493+1189 17 N#1/2(1990) MASS (MEV) (1983.0) (1983.0) (1995.) WIRSE MAX. ABSCRPTION IS - DONNACHI 68 RVUE PHASE-SHIFT ANAL (1995.) WIRSE MAX. ABSCRPTION IS - DONNACHI, 2 ,KIRSOPP EYEBAL FIT CERN I 10/69 (2000.0) SEF ALSO APLIN 71 (2000.) EALSO APLIN 71 ALMEHED 72 IPWA (1970.) MANU MARE FROM TABLE VII OF HICKS73 ARE INCLUDED IN LISTINGS. MANU MARE FROM SOLUTION C2 BH=SORT(GI/W WITH G FROM TABLE VII. (1970.) MANU MARE FROM SOLUTION C2 BH=SORT(GI/W WITH G FROM TABLE VI. (1970.) MANU MARE FROM SOLUTION C2 BH=SORT(GI/W WITH G FROM TABLE VI. MANU MARE FROM SOLUTION C2 BH=SORT(GI/W WITH G FROM TABLE VI. MANU MARE FROM SOLUTION C2 BH=SORT(GI/W WITH G FROM TABLE VI. MANU MARE FROM SOLUTION 2 OF LANGBEIN 73 IPMA PI N-K SIG, SOL 1973 (2049.) AYED 74 IPMA 27744 ---- ------- -----06 N#1/2(2000) BRANCHING RATIOS N*1/2(2000) INTO (PI N)/TOTAL (P1) (0.25) ALMEHED 72 IPWA {.08} AYED 74 IPWA R1 R1 R1 7 2/72 2/74* 9/73* 9/73* N+1/2(2000) FROM GAMMA PROTON TO K LAMBDA SQRT((P3+P4)#P2) 9/73* (.0022) DEANS 72 MPMA GAM P-K LM,SOL D 9/73* R 2 P 2 N*1/2(2000) FRUM PIN TO K SIGMA SQRT(P1*P7) 9/73* (-05) LANGBEIN 73 IPHA PIN-K SIG-SDL 2 9/73*

Baryons N(1810), N(1990), N(2000)

Baryons N(2000), N(2040), N(2100), N(2190)

REFERENCES FOR N#1/2(2000) ALMEMED 72 NP B40 157 ,LDVELACE [RUTG]JJP DEANS 72 PRD 6 1906 DEANS,JACCBS,LYONS,MONTGOMERY (SOUTH FLA.)JJP LANGBEIN, WAGNER (MUNICHI)JP AYED 74 PRIVATE COMCTN. AYED,BAREVRE (SACL)JJP ALSO 73 AIX COMPRENCE SACL)JA N(2040) 16 N+1/2(2040, JP=3/2-) 1=1/2 D^{#/}13 THIS STATE IS NOW SEEN BY THE SACLAY GROUP, AYED 74. 16 N*1/2(2040) MASS (MEV)
 (2057.0)
 DONNACHI
 68
 RVUE
 PHASE-SHIFT ANAL
 6/68

 (2030.1)
 DONNACH2
 68
 RVUE
 PHASE,SHIFT-CERNI
 10/69

 (2040.3)
 KIRSOPP
 68
 RVUE
 PHASE,SHIFT ANAL
 10/69

 WHERE MAX.
 ABSORPTION IS
 -DONNACHI,2
 ,KIRSOPP
 PHASE
 SHIFT ANAL
 10/69

 (2030.1)
 APPROX
 LEA
 69
 CNIR
 PI-PE
 ELASTIC
 8/69

 SEE
 ALSO APLIN 71
 ALMEHED
 72
 IPMA
 2/72
 2/72

 (2037.5)
 ALMEHED
 72
 IPMA
 GAM
 P-ETA P
 9/739

 ONLY STATES
 FROM TABLE VIJ DF HICKS 73
 APRE INCLUDED IN LISTINGS.
 9/739
 9/739

 MADO M ARE FROM SOLUTION C2-0RF-SQRT(GO/W WITH G FROM TABLE VII.
 0/74
 19MA
 2/74+

 (2029.1)
 AYED
 74
 19MA
 2/74+
 ******** -----16 N#1/2(2040) WIDTH (MEV)
 (293.0)
 DONNACH1
 68
 R1

 (290.1)
 DONNACH2
 68
 R1

 (240.1)
 KIRSOPP
 68
 R1

 (150.1)
 ALMEHED
 72
 11

 (224.1)
 HICKS
 73
 M1

 (116.1)
 HICKS
 73
 M1

 SEE
 THE NOTES
 ACCOMPANYING
 THE MASSES
 QUOTED.
 DONNACH1 58 RVUE DONNACH2 68 RVUE KIRSOPP 58 RVUE Almehed 72 IPWA Hicks 73 MPWA Ayed 74 IPWA 8/69 PHAS.SHIFT~CERN1 10/69 PHASE SHIFT ANAL 10/69 2/72 GAM P-ETA P 9/73* ***** 3 3 7 'n 2/74* -- ------16 N#1/2(2040) PARTIAL DECAY MODES DECAY MASSES 139+ 938 938+ 139+ 139 939+ 548 1115+ 497 0+ 938 0+ 938 0+ 939 0+ 939 N*1/2(2040) INTO PI N N*1/2(2040) INTO N PI PI N*1/2(2040) INTO N FTA N*1/2(2040) INTO LAMBDA K N*1/2(2040) INTO GAM P,HELICITY=3/2 N*1/2(2040) INTO GAM P,HELICITY=3/2 N*1/2(2040) INTO GAM N,HELICITY=1/2 P12 P23 P5678 P8 ------16 N(1/2(2040) BRANCHING RATIOS N*1/2(2040) INTO (PI N)/TOTAL (+26) (+15) (0-3)
 DONNACH2
 68 RVUE
 PHAS.SHIFT-CERNI 10/69

 KINSOPP
 68 RVUE
 PHASE SHIFT ANAL 10/69

 ALMEHED
 72 IPWA
 2/72

 AVED
 74 IPWA
 2/74
 R1 R1 R1 R1 R1 3 3 7 (.100) N*1/2(2040) INTO (N ETA)/TOTAL (0.) DR 0.009 Parametrization used could be in danger of double counting 92 92 82 N*1/2(2040) FROM GAMMA PROTON TO K LAMBDA SQRT((P5+P6)*P4) 9/73* (+0070) DEANS 72 MPMA GAM P-K LN+SOL D 9/73* R3 R3 R4 N#1/2(2040) FROM GAMMA PROTON TO ETA PROTON SQRT((P5+P6)#P3) R4 1 (+0037) HICKS 73 MPWA GAM P-ETA P REFERENCES FOR N+1/2(2040) A DONNACHIE, R G KIRSOPP, C I Donnachie Rapporteur.s talk R g Kirsopp DONNACHI 68 PL 26B 161 Donnach2 68 Vienna 139 Kirsopp 68 Thesis C LOVELACE (CERN)IJP (GLAS) (EDIN) LEA 69 PL 298 584 LEA, OADES, WARD, COWAN, + (RHEL, BRISTOL, DARE) CARRERAS 70 NP 168 35 B CARRERAS, A DONNACHIE (DARE, MCHS) ALMEHED 72 NP 840 157 +LOVELACE (LUND, RUTGJIJP DEANS 72 PED 6 1906 DEANS, JACOBS, LYONS, MONTGOMERY (SOUTH FLA.)IJP HICKS 73 PRD 7 261 PEANS, JACOBS, LYONS+ (CARN+OBNL+SOUTH FLA.)IJP AYED 74 PRIVATE COMMCTN. AYED.BAREYRE (SACL)IJP ALSO 73 AIX COMFRENCE (SACL)IJP PAPERS NOT REFERRED TO IN DATA CARDS. A DONNACHIE, R KIRSOPP (GLAS+EDIN) +BAREYRE,VILLET (SACLAY) +COWAN,GIBSON,GILMORE++ (RHEL,BRISTOL) DDNNACHI 69 NP 108 433 Ayed 70 Pl 318 598 Aplin 71 NP B32 253 N(2100) 04 N#1/2(2100, JP=1/2-) I=1/2 S11 NOW ALSO SEEN BY SACLAY, AYED 74. ----------04 N#1/2(2100) MASS (MEV) (2070.) (2100.) (2283.) ROYCHOUD 71 DPWA Almehed 72 IPWA Ayed 74 IPWA 3/72 2/72 2/74* 7

		04 N#1/2(2100) WIDTH (ME	V)		
H H	7 (200.) (310.)		ALMEHED Ayed	72 IPWA 74 IPWA		2/72 2/74*
		04 N*1/2{	2100) PARTIAL D	ECAY MODES		
P1	N#1/2(2100)	INTO PI N			DECAY MASSES 139+ 938	
		04 N*1/28	2100) BRANCHING	RATIOS		
R1	N#1/2(2100)	INTO (PI N)	TOTAL AL NEWED	70 1014	P1)	
R1	(.14	1	AYED	74 IPWA		2/74*
****	** ********	******* ***	****** *******	* ********	******** ******	
ROYC	HOUD 71 NP 827	125	R K ROYCHOUDHUR	N+172(2100) Y.E H BRANSE	EN (DURH)IJF	
ALME	HED 72 NP 840 74 Privat ALSO 73 AIX CO	E COMMOTN. NFERENCE	+LOVELACE AYED,BAREYRE AYED,BAREYRE		(LUND,RUTG)IJA (SACL)IJA (SACL)IJA	
****	** **********	******** ***	****** ********	* *********	********* *********	
N	(2100)	05 N*1/2(2100, JP=5/2-}	1=1/2 D	" 15	
		NOW ALSO S	EEN BY SACLAY,	AYED 74.	10	
_						
		05 N#1/2(2100) MASS (MEV	,		
M	7 (2100.)		ALMEHED Ayed	72 IPWA 74 IPWA		2/72 2/74*
		05 N*1/2(2100) WIDTH (ME	n 		
ų	(220.)		ALMEHED	72 IPWA 74 IPWA		2/72 2/74*
			·····			
		05 N*1/2(2100) PARTIAL DI	CAY MODES		
~ *						
P1	N#1/2(2100)	INTO PI N			139+ 938	
	N#1/2(2100)	INTO PI N 	2100) BRANCHING	RATIOS	139+ 938	
P1 	N*1/2(2100)	INTO PI N 05 N*1/2(INTO (PI N)	2100) BRANCHING /TOTAL	RATIOS	139+ 938	
R1 R1 R1 R1	N*1/2(2100) 	INTO PI N 05 N*1/2(INTO (PI N))	2100) BRANCHING /TOTAL ALMEHED AYED	RATIOS (72 IPWA 74 IPWA	139+ 938	2/72 2/7 4 *
R1 R1 R1 ****	N*1/2(2100) 	INTO PI N 05 N*1/2(INTO (PI N))	2100) BRANCHING /TOTAL ALMEHED AYED	RATIOS 72 IPWA 74 IPWA	139+ 938	2/72 2/7 4 *
R1 R1 R1 *****	N*1/2(2100) 7 (0.2) 7 (0.2) 4.08 ** ******** * HED 72 NP 840	INTO PI N 05 N*1/2(INTO (PI N)) 157	2100) BRANCHING Almehed Ayed References for M +Lovelace	RATIOS 72 IPWA 74 IPWA **********	139+ 938	2/72 2/74*
RI RI RI ***** ALMEH AYED	N+1/2(2100) 	INTO PI N 05 N*1/2(INTO (PI N)) 157 E CONNCTN. NFERENCE	2100) BRANCHING Almehed Ayed References for H +Lovelace Yed, Bareyre Yed, Bareyre	RATIOS 72 IPWA 74 IPWA **********	139+ 938 P1) (LUND,RUTG) 1JP (SACL) 125 (SACL) 125	2/72 2/74*
R1 R1 R1 ALMEH AYED	N+1/2(2100) N+1/2(2100) 7 (0.2) 7 (0.2) 4 (0.2) 7 (0.2) 7 (0.2) 7 (0.2) 1 (0.2) 7 (0.2) 1 (0	INTO PI N 05 N*1/2(INTO (PI N)) 157 E COMCTN. NFERENCE	2100) BRANCHING ATOTAL Almemed Ayed References for p +Lovelace Ayed, Bareyre Ayed, Bareyre	RATIOS 72 IPWA 74 IPWA *********	139+ 938 P11 (LUND, RUTC) 13P (SACL) 13P (SACL) 13P	2/72 2/74*
R1 R1 R1 ******	N+1/2(2100) N+1/2(2100) 7 (0.2) 6 (0.8) 0 (0.8) 10 (0.2) 10	INTO PI N 05 N+1/2(INTO (PI N) 157 E COMMCTN. NFERENCE	2100) BRANCHING /TOTAL ALMEMED AYED ************************************	RATIOS 72 IPWA 74 IPWA 1+1/2 (2100)	(LUND, RUTG) 139 (LUND, RUTG) 139 (SACL) 139 (SACL) 139	2/72 2/74*
R1 R1 R1 ALMEH AYED	N+1/2(2100) 7 N+1/2(2100) 7 (0.2) (.08 ** **********************************	INTO PI N 05 N+1/2(INTO (PI N)) 157 E CONNCTN. NEERENCE 71 N+1/2(ROYCHOUDHUJ	2100) BRANCHING AVED AVED REFERENCES FOR J HOVELACE AVED, BAREYRE AYED, BAREYRE AYED, BAREYRE 2190, JP=7/2-1 1 RY 71 FIND SOME	RATIOS 72 IPWA 74 IPWA **1/2 (2100) =1/2 G1 INDICATION	139+ 938 P1) (LUND.RUTG) 1JP (SACL) 12P (SACL) 12P (SACL) 12P (SACL) 12P (SACL) 12P	2/72 2/74*
	N+1/2(2100) 7 N+1/2(2100) 7 (0.2) (.08 7 (.08 7 (.08 7 PRIVAT ALSO 73 AIX CO	INTO PI N 05 N*1/2(INTO (PI N)) 	2100) BRANCHING ATTOTAL ALMEHED AYEO ************************************	RATIOS 72 IPMA 74 IPMA 4+1/2 (2100) 4+1/2 (2100) 4+1/2 (2100) 4+1/2 (2100) 1001 Cation S0 FIND P11	1394 938 AMOLS P1) (LUND, RUTG) LJP (SACL) 13P (SACL) 13P (SA	2/72 2/7 4 *
R1 R1 ALMEH AYED	N+1/2(2100) 7 N+1/2(2100) 7 (0.2) (-08 ************************************	INTO PI N 05 N*1/2(INTO (PI N) 157 E COMCTN. NFERENCE 71 N*1/2(. ROYCHOUDHUI THIS REQUESION NANT NEAR	21001 BRANCHING /TOTAL ALMEMED AYED ****** ****************************	RATIOS 72 IPHA 74 IPHA 1+1/2 (2100) =1/2 G1 INOTCATION SO FIND P11	1394 938 P1) (LUND, RUTG) 13P (SACL) 13	2/72 2/74*
RI RI RI ALMEP AYED	N+1/2(2100) 7 (0.2) 7 (0.2) 7 (.08 7 (.08))	INTO PI N 05 N*1/2(INTO (PI N) 157 E COMCTN. NFERENCE 71 N*1/2(NANT NEAR 71 N*1/2(1	2100) BRANCHING /TOTAL ALMEHED AYED ************************************	RATIOS 72 IPWA 74 IPWA N+1/2 (2100) =1/2 G1 INOICATION SO FIND P11	1394 938 P1) (LUND, RUTG) 1JP (SACL) 1JP (2/72 2/74*
	N+1/2(2100) 7 N+1/2(2100) 7 (0.2) (.08 * * * * * * * * * * * * * * * * * * *	INTO PI N 05 N+1/2(INTO (PI N) 157 E COMMCTN. NFERENCE 71 N+1/2(ROYCHOUDHU THIS REGION NANT NEAR 71 N+1/2(2100) BRANCHING /TOTAL ALMEHED AYED ************************************	RATIOS 72 IPWA 74 IPWA 4+1/2 (2100) 4+1/2 (2100) 50 FIND P11 1NDICATION SO FIND P11 63 CNTR 64 RVUE	139+ 938 P1) (LUND, RUTG) 1JP (SACL) 1J	2/72 2/7 4 *
	N+1/2(2100) 7 N+1/2(2100) 7 (0.2) (.08 ************************************	INTO PI N 05 N+1/2(INTO (PI N) 1 157 E COMMCTN. NFERENCE 71 N+1/2(ROYCHOUDHUI THIS REGION NANT NEAR 71 N+1/2(APPRN	2100) BRANCHING AVED AVED AVED AVED AVED AVED AVED AVED	RATIOS 72 IPWA 74 IPWA 4*1/2 (2100) 4*1/2 (2100) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	139+ 938 P11 (LUND, RUTG) 1JP (SACL) 12P (SACL) 12	2/72 2/7**
R1 R1 ALMED ALMED A	N+1/2(2100) 7 N+1/2(2100) 7 (0.2) (.08 14ED 72 NP B40 7 PRIVAT ALSD 73 AIX CO (2190.0) (2100.0) (2100.0) (2200.0) (2200.0) (2255.0) (2156.0)	INTO PI N 05 N+1/2(INTO (PI N) 1 157 E CONMCTN. NFERENCE 71 N+1/2(ROYCHOUDHUI THIS REGION NANT NEAR 71 N+1/2(APPR(25.	2100) BRANCHING ATTOTAL ALMEHED AYED REFERENCES FOR J LOVELACE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE DIDIERS HOHLER ANDERSON DCNNACH, LEA ANDERSON AYED	RATIOS 72 IPWA 74 IPWA 4+1/2 (2100) 4+1/2 (2100) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	139+ 938 (LUND.RUTG) 1JP (SACL) 12P (SACL) 12P (SA	2/72 2/74* 6/68 8/69 2/71
	N+1/2(2100) 7 N+1/2(2100) 7 (0.2) 7 (0	INTO PI N 05 N*1/2(INTO (PI N) 157 E COMCTN. NFERENCE 71 N*1/2(ROYCHOUDHUI THIS REGNO 71 N*1/2(APPR(APPR(25. DEP. FIT OF	2100) BRANCHING ATTOTAL ALMEHED AYEO AYEO AVEO AVEO, BAREYRE AYEO, BAREYRE DIDDENS HOHLER ANDERSON DIDDENS HOHLER ANDERSON DIDDENS HOHLER ANDERSON ARGANO DIAGRAM HULL	RATIOS 72 IPWA 74 IPWA 1+1/2 (2100) 1+1/2 (210) 1+1/2 (2100) 1+1/2 (21	139+ 938 (LUND, RUTG) 1JP (SACL) 13P (SACL) 13P (S	2/72 2/7** 2/7** 6/68 8/69 2/711
	N+1/2(2100) N+1/2(2100) 7 (0.2) 7 (0	INTO PI N 05 N*1/2(INTO (PI N) 157 E COMCTN. NFERENCE 71 N*1/2(ROYCHOUDHUI THIS REGION NANT NEAR 71 N*1/2(APPR(APPR(APPR(C5. DEP. FIT OF (50.0)	2100] BRANCHING ATOTAL ALMEHED AYEO AYEO REFERENCES FOR I +LOVELACE AYEO, BAREYRE AYEO,	RATIOS 72 IPWA 74 IPWA 141/2 (2100) 141/2 (2	139+ 938 (LUND, RUTG) 13P (SACL) 13P (S	2/72 2/74+ 2/74+ 6/68 9/271 1/71 1/71 1/71 1/71 3/72
	N+1/2(2100) N+1/2(2100) 7 (0.2) 7 (0.2) 7 (0.2) 7 (2.0) 7 (2.0) 7 (2.0) 7 (2.0) 7 (2.2) (2.190.0) (2.200.0) (INTO PI N 05 N*1/2(INTO (PI N) 157 E COMCTN. NFERENCE 71 N*1/2(ROYCHOUDHU THIS REGION NAMT NEAR 71 N*1/2(APPR(APPR(25. DEP. FIT OF (50.0)	2100) BRANCHING /TOTAL ALMEHED AVED ************************************	RATIOS 72 IPWA 74 IPWA 1*1/2 (2100) 1*1/2 (210) 1*1/2 (2100) 1*1/2 (21	139+ 938 (LUND, RUTG) 1JP (SACL) 1JP (S	2/72 2/74* 2/74* 2/74* 1/71 1/71 1/71 1/71 1/71 1/71
	N+1/2(2100) 7 (0.2) 7 (22) 7 (22	INTO PI N 05 N*1/2(INTO (PI N) 157 E COMMCTN. NFERENCE 71 N*1/2(ROYCHOUDHUI THIS REGION NANT NEAR 71 N*1/2(APPRI 25. DEP. FIT OF (50.0) S FROM TABLE	2100) BRANCHING ALMEHED ALVED AVED AVED AVED AVED AVED AVED AVED, BAREYRE AVED, BAREYR	RATIOS 72 IPWA 74 IPWA 141/2 (2100) 141/2 (2	139+ 930 (LUND, RUTG) 13P (LUND, RUTG) 13P (SACL) 19P (SACL) 1	2/72 2/74* 6/66 8/69 2/71 1/71 1/71 1/71 1/71 1/71 1/71 1/71
R1 R1 R1 R1 ALNEH AYED 	N+1/2(2100) N+1/2(2100) 7 (0.2) (0.2) (0.6) 7 (0.2) (0.6) 7 (0.2) (0.6) 7 (0.2) (0.6) 7 (0.6) 7 (0.6) 7 (0.6) 7 (0.6) 7 (0.6) (0.6) 7 (0.6) 7 (0.6) (0.6) 7 (0.6) 7 (0.6)	INTO PI N 05 N+1/2(INTO (PI N) 157 E COMMCTN. NFERENCE 71 N+1/2(ROYCHOUDHUI THIS REGION NANT NEAR 71 N+1/2(APPRI 25. DEP. FIT OF (50.0) S FROM TABLE E FROM SOLUT	2100) BRANCHING ATTAL ALMEHED AYED REFERENCES FOR J LOVELACE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE AYED, BAREYRE DIDERS DIDERS HOHLER DIDERS ANDERSON DIDERS ANDERSON ARGAND DIAGRAM ANDERSON ARGAND DIAGRAM ANDERSON ARGAND DIAGRAM ANDERSON ARGAND DIAGRAM ANDERSON ARGAND DIAGRAM ANDERSON DIT HULL AMALDI BRANSDEN REYCHDUC ALMEHED DIT VII OF HICKST AYED	RATIOS 72 IPWA 74 IPWA 74 IPWA 74 IPWA 74 IPWA 74 IPWA 74 IPWA 75 IPWA 70 IPWA 70 IPWA 70 IPWA 71 IPWA 71 IPWA 71 IPWA 72 IPWA 73 IPWA 74 IPWA 74 IPWA 74 IPWA 74 IPWA	139+ 038 (LUND.RUTG) 1JP (SACL) 12P (SACL) 12P (SA	2/72 2/74* 6/68 0/07 1/71 1/71 1/71 1/71 1/71 1/71 1/71
R1 R1 R1 R1 ALMEN AVED 	N+1/2(2100) 7 (0.2) (0.2) (0.2) (0.6) 7 (0.2) (0.6) 7 (0.2) (0.6) 7 (0.2) (0.6) 7 (0.2) (0.6) 7 (0.6) 7 (0	INTO PI N 05 N+1/2(INTO (PI N) 1 1 1 1 1 1 1 1 1 1 1 1 1	2100) BRANCHING ATTOTAL ALMEHED AYEO AYEO AYEO, BAREYRE AYEO, BAREYRE AYEO, BAREYRE AYEO, BAREYRE 2190, JP=7/2-1 1 RY 71 FIND SOME 2190, JP=7/2-1 1 RY 71 FIND SOME X.BRANSDEN 71 AL THIS MASS. 2190) MASS (MEVI DIDDENS HOHLER ANDERSON DIDDENS HOHLER ANDERSON DIDDENS HOHLER ANDERSON ARGANO DIAGRAM ANDERSON ARGANO DIAGRAM ANDERSON ARGANO DIAGRAM ANDERSON ARGANO DIAGRAM ANDERSON ANDERSON ANDERSON ANDERSON ANDERSON ALLESTED HERE UN	RATIOS 72 IPWA 74 IPWA 74 IPWA 74 IPWA 74 IPWA 74 IPWA 74 IPWA 75 IPWA 70 IPWA 70 IPWA 71 IPWA 71 IPWA 71 IPWA 71 IPWA 72 IPWA 73 IPWA 74 IPWA 75 IPWA 76 IPWA 77 I	1394 938 1394 938 (LUND, RUTG) 1JP (SacLi 12P (SacLi 12P (Sac	2/72 2/74* 2/74* 0/50 2/71 1/71 1/71 1/71 1/71 1/71 1/71 1/71

Baryons N(2190), N(2220), N(2650)

71 N#1/2(2190) WIDTH (MEV)	90 N#1/2(2220) PARTIAL DECAY MODES
ч (200.01) DIDDENS 63 CHTR ч (200.01) HCHLER 64 RVUE 7766 ч (200.01) APPROX 70053MA 66 CHTR 7766 ч 3 208.01 APPROX 70050MA 66 CHTR 7766 ч 3 208.01 ADDINACHL 66 KNUE 67.02 67.02 67.02 ч 3 275. 70. ADDERSON 70 MMS – PI- P TO PI- MMS 2771 1771 ч 6 1275.01 APPED 70 FUBA 1771	DECAY MASSES Pl N+1/2(2220) INTO PL N 139+ 938 P2 N+1/2(2220) INTO N ETA 939+ 548
W (239.0) HULL 70 MPWA SMALL ANGLE PI-P 1/71 W 7 (150.) ALMEHED 72 IPWA 2/72	90 N#1/2(2220) BRANCHING RATIOS
W L (193.) HILKS 73 MPNA GAM P-ETA P 97/3* W (243.) AYED 74 IPWA 2/74* W 2 (193.) AYED 74 IPWA 2/74* SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.	RI N#1/2(2220) INTO (PI N)/TOTAL (P1) 1/71 R1 6 (0.140) 4YED 70 IPWA 1/71 R1 (0.15) HULL 70 MPWA SMALL ANGLE PI-P 1/71 R1 (0.204) AYED 74 IPHA 2/74*
71 N+1/2(2190) PARTIAL DECAY MODES	REFERENCES FOR N+1/2(2220)
DECAY MASSES	RUSZA 67 NC 524 331 +DAVIS,DUFF,HEYMANN-NIMMON + (LOUC+LOWC)
P2 N#1/2(2190) INTO LAMBDA K 1115+1765 P3 N#1/2(2190) INTO N PI PI 938+ 139+ 139	HULL 70 PR 02 1783 J HULL, R LEACOCK (ISU) AYED 74 PRIVATE COMMCTN. AYEO, BAREYRE (SACL)IJP
P4 N#1/2(2190) INTO GAM P,HELICITY=3/2 0+ 938 P5 N#1/2(2190) INTO GAM P,HELICITY=1/2 0+ 938 P6 N#1/2(2190) INTO GAM N,HELICITY=3/2 0+ 939	ALSO 73 AIX CONFERENCE AYED, BAREYRE (SACL)IJP Papers not refered to in data Cards
P7 N+1/2(2190) INTO GAM N,HELICITY=1/2 0+ 939 P8 N+1/2(2190) INTO ETA N 548+ 938	AYFD 70 PL 318 598 +BAREYRE,VILLET (SACLAY)
	****** ********* ********* ******** ****
71 N#1/2(2190) BRANCHING PATIOS	
RI (0.3) APPROX DIDENS 63 CNTR 77.66 RI (0.3) APPROX YOKDSAWA 66 CNTR 77.66 RI (0.349) DONNACHI 68 RVUE 67.66 RI (0.349) DONNACHI 68 RVUE 67.68 RI 6 (0.150) AYED 70 IPWA SMALL ANGLE PI-P 1/71 RI (0.09) HULL 70 MPMA SMALL ANGLE PI-P 1/71 PI (0.351) ALMENED 72 IPWA 2/72 2/72 RI (2.251) OTT 72 MPMA PI-P BKWD ELSTC 2/73	BUMPS ROYCHOUDDHJRY 71 CLAIM FIS(2400) AND GI9(2400) TO BE POSSIBLE RESONANCES. BRANSDEN 71 FINO THE POSSIBLE RESONANT CANDIDATES SIL(2520) AND H19(2590).
RI {.161} AYED 74 IPWA 2/74* RI 2 '.095) AYED 74 IPWA 2/74*	72 N#1/2(2650] MASS (MEV) (PRCD. EXP.)
R2 N*:/2(2190) FROM GAMMA PROTON TO K LAMBDA SQRT((P4+P5)*P2) 9/73* R2 (+0161) DEANS 72 MPWA GAM P-K LM+SOL D 9/73*	M [2700.0] ALVAREZ 64 CNTR P1 PHOTOPROD M (2660.0) HOHLER 64 RVUE DATA + DISP REL
R3 N*1/2(2130) FROM GAMMA PROTON TO ETA PROTON SQRT((P4+P5)*P8) 9/73* R3 (.0.94) Hicks 73 MPWA GAM P-ETA P 9/73*	M (2600-0) APPROX WAHLIG 64 OSPK 0 PL−P CH EX M (2633-0) BARGER 66 FIT TOTAL + CH EX 11/67 M 2669-0 10-0 CITRON 66 CNTR PI→− P TOTAL 7/66
****** ********* ********* ******** ****	
REFERENCES FOR N#1/2(2190)	72 N#1/2(2650) WIDTH (NEV) (PROD. EXP.)
DIDDENS 63 PRL 10 262 +JENKINS, KYCIA, RILEY (BML) I Homler 64 Pl 12 149 g Homler, J Giesecke (Karlsruhe) I Yikosama 66 Pri 16 714 +Sima Hillestering, Booth (Aml.chic) JP	N (100-0) ALVAREZ 64 CNTR N (200-0) HOHLER 64 RVUE 7/66 N (425-0) BARCER 66 ET TOTAL + (H EX)/67
DCNNACH1 68 PL 26B 161 A DONNACH1E, R G KIRSOPP, C LOVELACE (CERNIJ) ALSO 68 VIENNA 139 DONNACH1E RAPPORTEUR,S TALK (GLAS) ALSO 68 THESIS R G KIRSOPP (EDIN)	W 360.0 20.0 CITRON 66 CNTR 7/66
LEA 69 PL 298 584 LEA, OADES, WARD, COWAN, + (RHEL, BRISTOL, DARE)	72 N#1/2(2650) PARTIAL DECAY MODES (PROD. EXP.) Decay masses
ANDERSON 70 PRL 25,699 +BLESER,BLIEDEN,COLLINS++ (BNL,CARN) AYED 70 KIEV CONF R AYED,P BAREYRE, G VILLET (SACL)IJP MULL 70 PR D2 1783 J HULL, R LEACOCK (ISU)	P1 N+1/2(2650) INTO PI N 139+ 938 P2 N+1/2(2650) INTO LAMBDA K 1115+ 497 P3 N+1/2(2650) INTO N PI PI 938+ 139+ 139
AMALDI /I /L 340 435 +BLANCASTELLI,BUSIU+ (I SANITA KUMAYECKNI BRANSCEN 71 NP 826 511 , GGDEN (DURH)IJP ALSO 70 NP 816 461 ROYCHOUDHURY,PERRIN,BRANSDEN (DURH)IJP RCYCHOUD 71 NP 827 125 R K ROYCHOUDHURY,B H BRANSDEN (DURH)IJP	T2 N+1/2(2650) BRANCHING RATIOS (PROD. EXP.)
ALMEHED 72 NP B40 157 +LOVELACE (LUND,RUTG)IJP DEANS 72 PPD 6 1996 DEANS,JACOBS, LYONS,MONTGOMERY ISOUTH FLA,IJP OTT 72 PL 478 133 +TELSCHUK,VANPA, BICHARDS,4 MCCL-STOLTMANIA	R1 ONLY (J+1/2)+(PI N/TOTAL) MEASURED FOR THIS STATE R1 8 (0.456) (0.018) BARGER 66 RVUE TOTAL + CH EXC. 11/67 P1 0.434 0.029 (1190) 46 (NUE TOTAL (2005-55) 11/67
ALSO 72 MCGILL THESIS J.VAVYA (MCGI) JP HICKS 73 PRD 7 2614 +DEANS, JACOBS, LYONS+ (CARN+ORNL+SOUTH FLA.) IJP	R1 B (0.30) BARGER 67 RVUE USES KORMANYOS67 11/67 R1 B USES REGGE AMP.+PESON. TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE
AYED 74 PRIVATE COMMOTN. AYED,BAREYRE (SACL)IJP ALSO 73 AIX CONFERENCE AYED,BAREYRE (SACL)IJP	R1 B FOR CRITICISM OF THIS METHOD, SEE DOLEN 68. R1 D (0.24) R1 D USES DRUY RESONANCES TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGREES
PAPERS NOT REFERRED TO IN DATA CARDS.	RI (0.06) KORMANYOS 67 CNTR PI-P AT 180 DEG. 11/67
QUANTUM NUMBER DETERMINATIONS NOT REFERRED TO IN DATA CARDS.	REFERENCES FOR N*1/2(2650) (PROD. EXP.)
BARGER 66 PRL 16 913 V BARGER, D CLINE (WISC) P CABROLL AN PRI 14 288 +CORRETINAMEDELL_MIDDLEMAS_ + (RHEL.OVE.)-I	ALVAREZ 64 PRL 12 710 +BAR-YAM,KERN,LUCKEY,OSBORNE, + (NIT,CEA)
CARROLL 66 PRL 17 1274 +CORBETT, DAMERELL, MIDDLEMAS, + (PHEL, OXF)J-L ERRATUM CHANGING THE RATHER WEAK DETERMINATION OF J-L TO +1 (2.)	WANLIG 64 PRI 13 103 +MANNELLI,SODICKSON,FACKLER,WARD, + (MIT) BARGER 66 PR 151 1123 V BARGER, M CLSSON (WISC)
KORMANYU 66 PRL 16 709 KORMANYUS,KRISCH,DFALLON, + (MICH,ANL) P BUSZA 67 NC 52A 331 +DAVIS,DUFF,HEYMANN, + (LOUC,WESTFIELD)	CITRON 66 PR 144 1101 +GALBRAITH,KYCIA,LEONTIC,PHILLIPS, + (BNL) I Barger 67 pr 155 1792 v barger, d cline (Wisc) P Dimmen 67 prl 18 798 F N dimmen (Wich)
****** ********** *********************	KORMANYO 67 PR 164 1661 KORMANYOS, KRISCH, OFALLON, + (MICH,ANL) P
N(2220) 90 N+1/2(2220, JP=9/2+) I=1/2 H19	BAACKE 67 NC 51A 761 J BAACKE, M YVERT (KARLSRUHE,ORSAY)J-L
THE EXISTENCE OF THIS RESONANCE IS WELL ESTABLISHED.	DOLEN ,68 PR 166 1768 R DOLEN, D HORN, C SCHMID (CIT) WAHLIG 68 PR 168 1515 M A WAHLIG, I MANNELLI (MIT,PISA) FINAL VERSION OF DATA USED IN WAHLIG 64. IN COMFUNCTION WITH CITRON 66 TOTAL CROSS SECTIONS, THIS CHARGE EXCHANGE DATA GIVES COMPLEX ELASTIC SCATTERING AMPLITUDE AT O DECRESS.
90 N#1/2(2220) MASS (MEV)	RFANSOEN 71 NP B26 511 .OGDEN (DURH)IJP ALSO 70 NP B16 461 ROYCHOUDHURY,PERRIN,BRANSDEN (DURH)IJP
M (2200.) APPROX. BUSZA 67 OSPK LEG.POLYN.ANAL. 2/71 M 6 (2221.0) AVED 70 TOUA 1/71	ROYCHOUD 71 NP 827 125 R K ROYCHOUDHURY,8 H BRANSDEN (DURH)1JP
M 6 FROM ENER, DEP. FIT OF ARGAND DIAGRAM M (2265-0) HULL TO MPWA SMALL ANGLE PI-P 1/TI	****** ********* ********* ********* ****
M (2249.) AYED 74 IPWA 2/74*	
90 N#1/2(2220) WIDTH (MEV)	
M 6 (258.0) AYED 70 TPWA 1/71 M (329.0) HULL 70 MPWA SMALL ANGLE PI-P 1/71	
w (347.) Ayed 74 IPWA 2/74*	

Baryons

Data Card Listings N(3030). N₇(3245), N(3690), N₇(3755), Δ(1232) For notation, see key at front of Listings.

73 N+1/2(3030) MASS (MEV) (PROD. EXP.) 73 N+1/2(3030) MASS (MEV) (PROD. EXP.)	
M (3080.0) HDHLER 64 RVUE DATA + DISP REL 7/66 REFERENCES FOR N+1/2(3690) (PROD. EXP.)	* I *
N (400.0) CITRON 66 CNTR 7/66 73 N+1/2(3030) PARTIAL DECAY MODES (PROD. EXP.) 76 N+/2(3755, JP=) PRCOUCTION EXPERIMENT P1 N+1/2(3030) INTO PI N 139+ 938 139+ 139 139+ 139 N+1/2(3030) INTO N PI PI N+1/2(3000) INTO N PI PI N+1/2(3000) INTO N PI	s
73 N+1/2(3030) BRANCHING RATIOS (PROD. EXP.) 73 N+1/2(3030) BRANCHING RATIOS (PROD. EXP.) 74 N+1/2(3030) INTO (PI N)/TOTAL 75 N+1/2(3030) INTO (PI N)/TOTAL 76 N+1/2(3075) HASS (MEV) (PROD. EXP.) 76 N+1/2(3075) HASS (MEV) (PROD. EXP.) 77 N+1/2(3075) HASS (MEV) (PROD. EXP.) 78 (0.088) (0.016) 76 N+1/2(3755) HASS (MEV) (PROD. EXP.) 77 N+1/2(3075) HASS (MEV) (PROD. EXP.) 78 (0.016) 78 (0.016) 78 (0.016) 78 (0.016) 78 (0.016) 78 (0.016) 78 (0.016) 76 N+ /2(3755) HASS (MEV) (PROD. EXP.) 76 N+ /2(3755) HASS (MEV) (PROD. EXP.) 77 N+ /2(3755) HASS (MEV) (PROD. EXP.) 78 N (0.016) (N (6/68
HOHLER 64 PL 12 149 G HOHLER, J GIESECKE (KARLSRUHE) I HOHLER 64 PL 12 149 G HOHLER, J GIESECKE (KARLSRUHE) I HOHLER 64 PL 12 149 G HOHLER, J GIESECKE (KARLSRUHE) I HOHLER 64 PL 12 149 G HOHLER, J GIESECKE (KARLSRUHE) I REFERENCES FOR N*1/2(3030) (PROD. EXP.) DECAY MASSES CITAON 60 PR 151 1123 V BARGER, O CLINE (HISCI P) BARGER 67 PR 155 1792 V BARGER, O CLINE (HISCI P) DIKMEN 67 PR 158 1796 P N DIXMEN (HICH) PAPERS NOT REFERRED TO IN DATA CARDS EHPLICH 68 PRL 20 686 R EHRLICH,R J PLANC,J B WHITTAKER (RUTGERS))38 **
$ \begin{array}{c} \text{KCRMANYO 67 PR 164 1661} \\ \text{ODLEN 68 PR 166 1768} \\ \text{R DOLEN, D HORN, C SCHMID (CT) } \\ \text{KORMANYOS, KRISCH, DFALLON, + (MICH, AK) P (CT) } \\ \text{COLEN, 68 PR 166 1768} \\ \text{R DOLEN, D HORN, C SCHMID (CT) } \\ \text{R HORN, C SCHMID (CT) } \\ \\ R H$	** ** !S !S
THE CHARGE EXCHANGE DATA WEEN TO EDE THE BACKDOUND UNDER THE P. THE CHARGE EXCHANGE DATA WEEN NOT USED. ON CLOER DATA, USING ROPER 65 DLSON 65 HAS DOME A SIMILAR ANALYSIS ON CLOER DATA, USING ROPER 65 PHASE SHIFTS WITH A FREE OVERALL NORMALIZATION. N ADDITION TO DATA USED IN CARTER 71, NEW, ACCURATE DIFFERENTIAL CROSS SECTION DATA ARE USED BY CARTER 73, TO DETERMINE THE N#3/2(1232 PARAMETERS.	
74 N# /2(3245) WIDTH (MEV) (PROD. EXP.) 33 N#3/2(1232) MASS (MEV) H (35.0) CR LFSS KDRMANYOS 67 CNTR 6/68 (1236.) RCDER 65 DPWA ++0 PHASE SHIFT.	N. 2/72 2/74* 2/74* 2/74* 33 1/74* 2/74*
P1 N* /2(3245) INTO PI N 1394 938	TA L 1/74* V 9/73* S 9/73* S 1/74* L 1/71
REFERENCES FOR N* /2(3245) (PROD. EXP.) MO Average Meaningless (scale factor = 4.0) KORMANYO 67 PR 164 1661 KORMANYOS, KRISCH, OFALLON, * (MICH.ANL) P 33 N*3/2(1232) HIDTH (MEV) N(3690) 75 N*1/2(3690, JP=) I=1/2 PRODUCTION EXPERIMENTS N (120.) ROPER 65 DPWA ++0 PHASE SHIFT N (3690) 75 N*1/2(3690, JP=) I=1/2 PRODUCTION EXPERIMENTS 1152.2)-(-145.8) CHENG 73 FIT CARTER 71 N (320.1 A BUMP SEEN IN THE INVARIANT MASS OF A VERY COMPLI- 120.1 Average Meaningless (scale factor = 4.0)	N. 2/72 2/74* 33 1/74* 2/76*
CATED STATE (N + SEVEN PIS), SD AS EVIDENCE FOR A NEW RESONANCE IT IS NOT CONCLUSIVE. NOT INCLUDED IN TABLE. Not included New RESONANCE IT IS NOT CONCLUSIVE. NOT INCLUDED IN TABLE. 75 N+1/2(3690) MASS (MEV) (PROD. EXP.) Not include for the	L 1/74* V 9/73* 1/71

Baryons Δ(1232), Δ(1650)

00000 00000	R R AVG 2 1 AVG 		{0 1 1 REDUI 1 1 6. 10 9	.45) .3 .4 NDAN 	33 (T WI 33	(N*0) 0.85) 1.9 .4 TH DA ¹ 0.39 (N*0) 2.2 1.3 1.7	- (N* A IN M AVER 	++) M CA CA AGE () WID CA CA CA	ASS DI SSDN RTER RTER ISTING ERPCR TH DIF RTER RTER ERROR	65 71 73 1NCLU FEREN 71 73 INCLU	NCE (RVUE MPWA IPWA IDES S ICE (F MPWA IPWA JDES S	(MEV) ++ PI+-F PI N SCALE FAC MEV} ++ PI+-FF PI N SCALE FAC	 SIG. TOTAL 88-310 MEV SIG. TOTAL 88-310 MEV STOR OF 1.5 	L 1/74* 9/73* - 9/73* L 1/74* 9/73*	PDG BALL CARTER CHENG DEVENISH MOORHOUL MOORHOUL MOORHOUZ NGOOVA ALSO ALSO TSCHANG AYED ALSO METCALF	72 PL 39 73 PPD 7 73 PPD 7 73 PPD 7 73 PL 7 73 PL 43 73 PL 43 73 PL 43 73 PP 46 73 NP 86 73 NP 86 73 NP 85 74 PRIVA 73 AIX 0 74 GLAS. 73 AGNN 74 CALT-	08 10 7 278 8 37 7 224 7 8 53 7 224 7 8 53 8 44 1590 1 43 5 54 1 43 5 54 1 43 5 54 1 43 5 54 1 43 5 54 1 43 5 54 1 44 5 7 8 6 1 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	SODING, BALL,LE CARTER,CHENG,I DEVENIES,M MOCRHOL NGGVA, NGGVA, NGGVA, NGGVA, TSCHANC AYED,BJ AYED,BJ W J MET PAPERS	BARTELS, Ee,SMAW BUGG,CAR BUGG,CAR ICHTENBE SH,RANKTN MODRHCUSE SSE,OBERL SSE,OBERL SSE,OBERL PISUT+II PISUT+II PISUT+II PISUT+II PISUT+I PISUT+I REVRE WEFGED WEFGED WEFGED WEFGED NOT REFEE	+ LDES TFR (RG .LYTH .CBERLA ACK.ROS SLOVAK P SLOVK ON L WALKE RRED TO	Y+LBI CAVEN CK ENFEL ACA CACAL ACAL F R N IN (L+BRA NDISH (LOU D SCI D SCI FLOR+	N+CERN {UT +QUEEN (LBL (GL4 (COMEN ,COMEN ,COMEN GAINES CARDS.	N+HELS)IJ AH+UCIJIJ (IND)IJ (IND)IJ (IND)IJ (IND)IJ (+GLAS)IJ (+GLAS)IJ (+GLAS)I (SACLIJIJ (SACLIJIJ (GLAS) (GLAS) (CIT)	99 99 99 99 99 99 99 99 99 99 99 99 99
REE		¢	1214	.,	30	N#274	(1232)	MI	CHAEL	0F PL 67	LE PO	FIT C	LSSON 65	2/74*	DONNACH1	68 PL 26	B 16	1		HE,LOVEL	ACE,KIR	SOPP			(CERN)	P
REE REE REE REE REE	р 3 Р	(ERR	1211 1211 1210 1214 JR E	.) .6 .7)- .5 ST.	(- 1 1 FROM	0.7 210.7 0. FITS	WITH S	BA PD CH NO OMEWH	LL G ENG GOVA IAT VAR	72 72 73 73 YING	ASSU⊨	FIT C FIT C FIT A MPTIONS	ELTA 33 ARTER 71 LMEHED72	2/73 2/73 2/74* 2/74*	····· : 123	3 MEV	R	EGION	- F	RODU	TION	····	XPE	RIM	ENTS	τ τ
REE	. AVG		1211	•61		0.70 	AVER	AGE (ERROR	INCLU	DESS	SCALE FAC	TOR OF 1.01	-			8	1 N*3/2	(1232, .	IP=3/2+1	1=3/2					
					33	N*3/2	(1232)	I MAG	PART	OF PC	ILE PC	DSITION(#	IEV }													
IME IME			(52)	.,				M I Ba	CHAEL LL	67 72		F17 C	LSSON 65	2/74*			8	1 N*3/2	(1232) +	IASS (MEV) (PROD	exe	P.)			
IME	3		49.	•5 •71-	(- 5	1.5		PD CH	G ENG	72 73		FIT C	ELTA 33 Arter 71	2/73 2/74*	M M	1217.)	8. 7.0		ANDERSO ELLTS	N 70 M	MS -	- PI	- P TC) PI- MMS	2/71
IME	AVG		48	.4	•••		AVER	NU AGE [GOVA ERROR	73 INCLU	DES S	FIT A SCALE FAC	LMEHED72 .TOR OF 1.01	2/74*	M AVG	1222.7		5.3	AVERAC	E (EPRDR	INCLUD	ES SC	CALE	FACTO	OF 1.0)	
					33	N#3/2	(1232)	AB 50	LUTE V	ALUE		DLE RESID		•	M++ M++ M++ N++	(1232.0 (1236.0 (1233.4 (1224.0 1236.0))))	(4.4) (2.0) 2.0		GIDAL HABER COLTON	66 R 66 R 66 D 70 D 72 H	VUE 4 BC 4 BC 4 BC 4	++ R+ ++ P1 ++ D K- ++ PP	+P TOT D TO + D TO 4 TO P)	() P PI+ FAL NN(NN) PI 6 BOD(P) (+PN 7GEV	7/66 7/66 7/70 1/73
485			(53.	• 1				BA	ιι	73		¢IT D	ELTA 33	9/73*	M++ M++ M++	1226.0		2.0		COLTON	72 H 72 H 73 H	8C 4	++ TO	0 PI+P PI+PI	-PIOPP	1/73
 РН			(. 81)	33	N*3/2	(1232)	PHAS	E OF P	 CLE F	ESIDU	JE (RADIA	 NS) FLTA 33	9/73*	M++ M++ AVG M- M-	1228.4 (1241.3 1239.0	• • • • •	2.9 (5.1) 5.0	AV ER A (GIDAL COLTON	TNCLUD 66 D 72 H	ES SC BC - BC -	CALE - TO	PITPI FACTOR PI+PI	C-PI-PN C-PI-PN	7/66
											.		-•													
					33	N*3/2	(1232)	PART	IAL DE	CAY M	ODE S				D	7.9	8	1 (N*-) 6.8	- {N*++	OTDAL	IFFEREN	CE (N	4EV)	(PROD.	EXP.]	
Р1 Р2	;	(*3/2 (*3/2	2(123	32) 1		N PI N GAM	мΔ					DEC 938+ 1 938+	AY MASSES													
P3 P4		1+3/2	2(12)	321 1	NTO	N PI GAM N	PI UCLEON	, HEL	10114=	1/2		938+ 1 0+ 9	39+ 139 38				8	1 N*3/2	(1232)	IDTH (ME	V) (PPO	D. EX	(P.)			
						GAM N		• HEL		372		0+ 9	38			115. 105.0	ı	5. 7.0		ANDERSO FLLIS	N 70 M 71 C	MS - NTR	- PI MM	- P TC S PP 3	D PI- MMS 3.7 GFV/C	2/71 10/71
					33	N*3/2	(1232)	BRAN	CHING	RATIO	s				W AVG	111.6		4.7	AVERAC	E (ERROR FERRO-L	INCLUD UZ 65 H	ES SO BC →	CALE	FACTOR	OF 1.2)	
₽1 ₽1	1	1*3/2	(123 0.	321 1 55	NTO	(N GA	4MA)/{	N PII DA	(PERC LITZ	ENT) 66	RVUE	(P2)/(P1)	7/68	W++ W++	(121.0)))	(14.0)		GIDAL	66 R 66 D	NUE + BC +	++ ++			7/66
R1 R1 R1	AVG		•••	53	••	0.025	AVED	8E	RENDS	71	IPWA	РНОТО	PROD. ANAL.	10/71	W++ W++	115.0		6.0		COLTON	72 H 72 H	BC + BC +	++ PP	TO PI 0 PI+F	+ BOD(P) (+PN 7GEV PI-PP	1/73
92		1+3/2	2(123	210	INTO) (N P	AVER.	AGE II	:FRUR	INCLU	115 51	(P1)	TUR UF 1.01		W++	122.0 106.0	1	9.0 7.0		COLTON	72 H 72 H	8C + 8C +	++ TO ++ TO	PI+PI PI+P1	-PI 0PP -PI-PN	1/73 1/73
R2 R2	2		(). ().	.991 .1 				CA1 AY	₹TER ED	71 74	МРНА 1РНА	++ PI+-P	SIG. TOTAL	1/74* 2/74*	₩++ AVG ₩- ₩-	118.8 (149.0 237.0	••• ••	4.7 (18.0) 22.0	AVERAG	E (ERROR GIDAL COLTON	INCLUD 66 D 72 ド	ES SC BC - BC -	TO	FACTOR PI+PI	OF 1.5) -PI-PN	7/66 1/73
					33	N*3/2	(1232)	РНОТІ	JN DEC	AY AM	PL (GE	V**-1/2)			***** *	******	****	**** **	******	********	* ***** N*3/2(1	****	****	***** 0. FXF	********	
	RE	VIEW	PRE	CEDI	NG 1	THE BA	YON L	LEON U ISTIN	GS.	AMPL I	TUDES	, SEE MI	NI -		FERRO-LU	65 NC 36	110	L	FERRO-L	UZZ1,GED	RGE, +				(CERN)	
41 41 41	•	1*3/2	123	2) T 144 138 142	NTU	GAM N .014 .004 .006	JCLEON	HELS DEN KNS MOO	ICITY= VENISH IES ORHCU1	1/2 (73 73 73	GEV** DPWA DPWA DPWA	-1/2) PIN PIN PIN	PHOTO PROD PHOTO PROD PHOTO-PROD	2/74* 2/74* 2/73	DEANS GIDAL ANDERSON	66 PREPR 66 PR 14 70 PRL 2	5 69	51	S R DEA G GIDAL	NS, W G , A KERN	HCLLADA AN, S K ,COLLIN	Y IM S++		(BNL	CARN)	
A1 A1 A1			(142		•001		MOC CR/		73 74 74	DPWA DPWA	PIN PIN	PHOTO-PROD PHOTO PROD	2/74* 2/74*	FLLIS	71 PRL 2 72 PR D6	7 442	2	+MAGLIC E COLTO	H, NOREM, N, A KTR	SANNES, SCHBAUM	STLVE	PMAN	, J = EKC	(RUTG) (LBL)	
A1 A1	≜vg	•	-0.i	4174	0	00094	AVER	AGE (8	ERROR	INCLU	DES S	CALE FAC	TOR OF 1.0)	27 14*					PAPERS	NOT REFE	RRED TO	IN C	ATA	CARDS		
A2	۲	*3/2	(123	2) 1	NTO	GAM N	CLEON	HELT	ICITY=	3/2 (GEV**	-1/2}			ALFXANDE	73 NP 85	2 2 2 1	L	ALEXAND	ER, BENAR	Y+(TEL-	AVI V+	HEID	ELBERG	+DESY)	
A 2 A 2			-	253 259		.002		KNI	IES DRHOU1	73 73	DPWA DPWA	PI N PI N	PHOTO PROD PHOTO PROD PHOTO-PROD	2/74*	****** *	*******	****	**** **	*******	********	* *****	****	****	·**** *****	********	
A2 A2 A2				261 263) 254		.001		MOC CRA	JRHOU2	73 74 74	DPWA OPWA	PIN	PHOTO-PROD PHOTO PROD	2/74* 2/74*	Δ(16	350)	83	2 N*3/2	(1650, J	P=1/2-}	1=3/2	S'a	31			
42 42	AVG	•	-0.	2593	•	.0032	AVER/	AGE (E	ERROR .	INCLU	DES SI	CALE FAC	TOR OF 3.6)	27 (4+			TI	HE EXIST	ENCE O₽	THIS RES	ONANCE	IS WE	ELL E	STABL I	SHED.	
****	** *	****	****	***	****	** **	******	* ****	*****	****	*****	******					***									
							REFER	INCES	FOR N#	•3/2(1234)						82	2 N*3/2	(1650) #	ASS (MEV	, ,					
OLSS ROPE	ON R	65 65	PRL PR 1	14 1 38 B	18 190		M G OL L D RO	SSON	RMW	RIGHT	, в т	FELD	(WISC) (LRL+MIT)IJ	P	м	(1648.0	.,	12.0)		DEVLIN	65 r	NTR	pt.	+- P 1	OTAL	
DALI	TZ CONT	66 1 N S	PR 1 REF	46 1 Eren	180 CES	TO EA	DALITZ	ORK C	IERLAND	D TA PH	OTOPR	ODUCTION	(OXFORD)		H 1 H 1 N 3	(1695.0) WHERE	CROSS	SECTION	BAREYRE IS GREAT DONNACH	68 R EST - E 1 68 R	VUE YEBAL VUE	РН. L FT РН.	ASE-SH F ASE-S⊧	IFT ANAL	11/67 6/68
MICH	NDS	67 71	PR 1 NP	56 1 830	677 575		MICHAE	EL ER	BUCC	BUCC	-	ICEA.	(RHEL)IJ	P	M 6 M 6 M 4	(1614.0 ENER. DEP (1617.0	. FII	OF ARG	AND DIAG	AYED RAM DAVIES	70 I 70 R	PWA VUE	P	S ANAL	. SOL A	1/71 8/69
ALME	HED	72 72	NP 8 PRL	40 1 28 1	57 143		+LOVEL +CAMPE	ACE SFLL.L	.EE+SH	8035 AW		LU (UTAH, B	IND,RUTG)IJ JISE,UCI)	P	M 7 M	(1620.)				ALMEHED AYED	72 I 74 I	PWA PWA				2/72 2/741

Baryons Δ(1650), Δ(1670), Δ(1690)

82 N#3/2(1650) WIDTH (MEV)			10 N*3/2(1670) PARTIAL DECAY MODES	
W 1 (250.0) BAREYRE 68 W 3 (177.0) DONNACHI 68 W 6 (142.0) AYED 70 W 4 (141.0) DAVIES 70 W 4 (141.0) DAVIES 70 W 7 (140.1) AUMERD 72 W (161.1) AYED 74 W SEE THE NOTES ACCOMPANYING THE MASSES QUOTED	RVUE 11 RVUE 6 IPWA 7 RVUE P-S ANAL SOL A 1 IPWA 7 •	1/67 6/68 1/71 8/69 2/72 2/74*	DECAY MASSES P1 N*3/2(1670) INTO PI N 139+ 938 P2 N*3/2(1670) INTO N PI PI 938+ 139+ 139 P3 N*3/2(1670) INTO K SIGMA 493+1189 P4 N*3/2(1670) INTO GAM HUCLEON, HELICITY=1/2 0+ 938 P5 N*3/2(1670) INTO GAM HUCLEON, HELICITY=3/2 0+ 938 P6 N*3/2(1670) INTO N*3/2(1232) PI 1232+ 139	
82 N*3/2(1650) PARTIAL DECAY M	CDES		10 N+3/2(1670) BRANCHING RATIOS	
P1 N#3/2(1650) INTO PI N P2 N#3/2(1650) INTO N PI PI P3 N#3/2(1650) INTO GAM NUCLEON, HELICITY=1/2 P4 N#3/2(1650) INTO N#72(1232) PI P5 N#3/2(1650) INTO N RHO	DECAY MASSES 139+ 938 938+ 139+ 139 0+ 938 1232+ 139 938+ 770		R1 N*3/2(1670) INTO (PI N)/TOTAL (P1) R1 3 (0.14) DONNACH1 68 RVUE 80 R1 6 (0.217) AYEO 70 IPWA 1 R1 6 (0.217) AYEO 70 IPWA 2 R1 4 (0.12) DAYIES 70 RVUE SOL A 8 R1 7 (0.16) ALMEHED 72 IPWA 2 R1 (.166) AYED 74 IPWA 2	/69 /71 /69 /72 /74*
82 N*3/2(1650) BRANCHING RATIO	s		R2 N*3/2(1670) INTO (K SIGMA)/TOTAL (P3) R2 1 (00002)OR LESS FEUERBACH 70 RVUE PI P TO K+ SIG+ 7. R2 1 ASSUME MASS, WIDTH, XIELAST) OF DONNACHIE 68 P2 1 MODEL USED MAY DUBLEE COLUNT.	/70
R1 N+3/2(1650) INTO (PI N)/TOTAL ODNNACHL 68 R1 3 (0,2347) AYEO 70 R1 4 (0,2361) AYEO 70 R1 4 (0,2361) DAYTES 70 R1 4 (0,235) ALMENED 72 R1 (-335) ALMENED 72 R1 (-315) AYED 74	(P1) RVUE 6 IPMA 7 RVUE P-S ANAL SOL A 6 IPMA 2 IPMA 2	6/68 1/71 8/69 2/72 2/74*	13 N#3/2(1670) PHOTON DECAY AMPL(GEV#*-1/2) FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- REVIEW PRECEDING THE BARYON LISTINGS.	
82 N+3/2(1650) PHOTON DECAY AM FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLT REVIEW PRECEDING THE BARYON LISTINGS. A1 N+3/2(1650) INTO GAM NUCLEON, HELICITY-1/2 (PL(GEV**-1/2) TUDES, SEE MINI- GEV**-1/2)		A1 N*3/2(1670) INTO GAM NUCLEON, HELICITY=1/2 GEV***1/2) A1 .036 .052 DEVENTSH T3 DFWA PI N PHOTO PROD 2 A1 .078 .009 KNIES T3 DFWA PI N PHOTO PROD 2 A1 .078 .009 KNIES T3 DFWA PI N PHOTO PROD 2 A1 +.068 .042 MCDRHOUI T3 DFWA PI N PHOTO-PROD 2 A1 .064 .042 MCDRHOUT T3 DFWA PI N PHOTO-PROD 2 A1 .041 .026 MCDRHOUT TA DFWA PI N PHOTO PROD 2 A1 .0 .048 METCALF T4 DFWA PI N PHOTO PROD 2	/74* /74* /73 /74* /74*
AI .004 .033 DEVENISH 73 AI (.113) HEMMI 73 AI .033 .015 KNIES 73	DPWA PI N PHOTO PROD 2 + FWD PIO PHTOPROD 2 DPWA PI N PHOTO PROD 2	2/14* 2/74* 2/74*	A1 AVG 0.0712 0.0086 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	
AI +.050 .076 MUURHUI 73 AI .078 .066 MOURHUI 73 AI (.030) CRAMFORD 74 AI .105 .038 METCALF 74 AI .0538 METCALF 74 AI .030 0.014 AVERAGE (ERROR INCLU	DFWA PIN PHOTO-PROD 2 DFWA PIN PHOTO-PROD 2 DFWA PIN PHOTO-PROD 2 DFWA PIN PHOTO-PROD 2 DFWA PIN PHOTO-PROD 2 DES SCALE FACTOR OF 1.1}	2/73 2/74* 2/74* 2/74*	A2 N=3/2(1610) Init Gas Neuron Neuron	/74* /74* /73 /74* /74*
****** ********* *********************	***** ******** ************************		A2 AVG 0.061 0.012 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.5)	
DEVLIN 65 PRL 14 1031 T J DEVLIN, J SOLOMON,	G BERTSCH (PRINCETON) I		****** ******** ******** ******** ******	
BAREYRE 68 PR 165 1731 P BAREYRE, C BRICMAN, DONNACHI 68 PL 268 161 A DONNACHIE, R G KIRS ALSO 68 VIENNA 139 DONNACHIE, PAPPORTEUR ALSO 68 THESIS K G KIRSOPP	G VILLET (SACLAY)IJP DPP, C LOVELACE (CERN)IJP 'S TALK (GLAS) (EDIN)		DONNACHI 68 PL 268 161 A DONNACHIE, R G KIRSOPP, C LOVELACE (CERNIJP ALSO 68 VIENNA 139 DONNACHIE RAPPORTEUR'S TALK (GLAS) ALSO 68 THESIS R G KIRSOPP (EDIN)	
AYED 70 KIEV CONF R AYED,P BAREYRE,G V Davies 70 NP 921 359 A Davies	ILLET (SACL)IJP (GLAS)		AYED 70 KIEV CONF R AYED, P BAREYRE, G VILLET (SACL)IJP DAVIES 70 NP B21 359 A DAVIES (GLAS)	
ALMEHED 72 NP 840 157 +LOVELACE DEVENISH 73 PL 478 53 DEVENISH,RANKIN,LYTH HEMMI 73 PL 437 70 HEMMI, INAGAKI- KNIES 73 LBL-2410 KNIES, MODPHOUSE, DBERL MCORHOUI 73 PL 438 44 MODRHOUSE, OBERLACK, MOD MODAHOUSE, OBERLACK, MODRHOUSE, MOBRALISE, MODRHOUSE, MORALONE, MODRHOUSE, MORALONE, MODRHOUSE, MORALONE, MODRHOUSE, MORALONE, MODRHOUSE, MORALONE, MODRHOUSE, MODRHOUS	(LUND,RUTG)IJP (LOUC+BONN+LANC)IJP (KYOTO+SAGA+NLJ+TOKY)IJP ACK (LBL+GLAS)IJP (GLAS+LBL)IJP SENFELD (GLAS+LBL)IJP		FEUERBAC 70 NP 168 85 FEUERBACHER+HOLLADAY (VANDERBILT) ALMEHED 72 NP 840 157 +LOVELACE (LUND,RUTG)IJP DEVENTS 173 PL 478 53 DEVENTSH,RANKIN,LYTH (LOUC-BONN+LANKOL)IJP KNTES 73 L8L-2410 KNTES,MODPHOUSE,OBERLACK (L8L+GLASI)IJP MCORHOU1 73 PL 438 44 MODPHOUSE,OBERLACK (GLAS+LBL)IJP MCORHOU2 73 L8L-1590 MCORHOUSE,OBERLACK,MOSENFELD GLAS+LBLIJP	
AYED 74 PRIVATE COMMCTN. AYED,BAREYRE ALSO 73 AIX CONFERENCE AYED,BAREYRE CPANFORD 76 GLAS. PREPRINT R L CRANFORD ALSO 73 BONN CONFERENCE R L CRANFORD METCALF 74 CALT-68-425 W J METCALF, R L WALK	(SACL)IJP (SACL)IJP (GLAS) (GLAS) ER (GLAS)		AYED 74 PRIVATE COMMETN. AYED, BAREYRE (SACL)IJP ALSO 73 AIX COMFERENCE AYED, BAREYRE (SACL)IJP CRAMFORD 74 GLAS. PREPRINT R L CRAMFORD (GLAS) ALSO 73 BONN CONFERENCE R L CRAMFORD (GLAS) METCALF 74 CALT-68-425 W J METCALF, R L WALKER (GIAS)	
PAPERS NOT REFERRED T CARRUTHE 60 PPL 4 303 P CARRUTHERS	O IN DATA CARDS. (CORNELLI I		PAPERS NOT REFERRED TO IN DATA CARDS. DONNACHI 69 NP 10B 433 A DONNACHIE, R KIRSOPP {GLAS+EDIN}	
DEVLIN 62 PR 125 690 T J DEVLIN, B J MOYER HELLAND 64 PR 134 B1062 +DEVLIN, HAGGE, LCNGO, M BAREYRE 65 PL 18 342 + BRICMAN, STIRLING, JCHNSON 67 UCRL-17683 THESIS C H JOHNSON	, V PEREZ-MENDEZ (LRL) I DYER,WOOD (LRL) I VILLET (SACLAY)IJP (LRL)		AYED 70 PL 318 598 +BAREYRE,VILLET (SACLAY) BOWLER 70 NP 178 331 +CASHMORE (U. OXFORD)	
DONNACHI 69 NP 108 433 A DONNACHIE, R KIRSOP AYFD 70 PL 318 598 +8AREYRE, VILLET BCWLER 70 NP 178 331 +CASHMORE	P (GLAS+EDIN) (SACLAY) (U. CXFORD)			
Δ(1670) 10 N+3/2(1670, JP+3/2-) 1=3/2 THE EXISTENCE OF THIS RESCNANCE	D33 IS WELL ESTABLISHED.		Δ(1690) 19 N*3/2(1690, JP=3/2+) I=3/2 P33 THE ENERGY DEPENDENT FITS OF AYED 73 AND 74 TO THE ARGA DIAGRAM INDICATE RESONANCE SOMEWHERE IN THE 1800-2000 M REGION. THE OTHER GROUPS, WHICH USE MAXIMUM ABSORPTION NEAK COUPLING TO GAMMA N.	
			19 N*3/2(1690) MASS (MEV)	
10 №3/2(1670) MASS (MEV) M 3 (1691.0) DONNACH1 68 M 6 (1722.0) AYEO 70 M 6 ENER.DEP.FIT OF ARGAND DIAGRAM M 4 (1649.0) DIAGRAM DVIES 70 M 7 (1700.) ALMENED 72 M (1723.) AYEO 74	RVUE PHASE-SHIFT ANAL B TPMA 1 RVUE P-S ANAL SDL A B TPMA 2	8/69 1/71 8/69 2/72 2/74*	M 3 (1690.) DONNACH2 68 RVUE PHAS.SHIFT-CERNI 10, M 3 (1690.) KIRSOPP 68 RVUE PHASE SHIFT ANAL M 3 (1690.) KIRSOPP 68 RVUE PHASE SHIFT ANAL M 3 (1690.) IS -DONNACH1, 2 , KIRSOPP EVEBALL FIT CERNI 10, M 6 ENEP. DEP. FIT OF ARGAND AYED 70 TPWA 10, M 6 ENEP. DEP. FIT OF ARGAND DIAGRAM 10, 11, M 6 ENEP. FIT OF ARGAND AVED 72, TWA 20, M (1904.) AYED 74 TPWA 20,	/69 /69 /69 /71 /72 /74*
			19 N#3/2(1690) WIDTH (MEV)	
W 3 (269.0) DONNACHI 68 W 6 (258.0) AVED 70 W 4 (188.0) DAVIES 70 W 7 (260.1) AUMHED 72 W 1192.1 AUMHED 74 AVED 74 SEE THE NOTES ACCOMPANYING THE MASSES QUOTE ASSESS QUOTE	RVUE 8 19M4 1 RVUE SOLA 8 19MA 2 19MA 2 0-	8/69 1/71 8/69 2/72 2/74*	W 3 (281.) DONNACH2 68 RVUE PHAS.SHIFT-CERN1 10/ W 3 (240.) KIRSOPP 68 RVUE PHAS.SHIFT-CERN1 10/ W 3 (220.) AYED 70 IPWA 2/ W 7 (220.) ALMEHED 72 IPWA 2/ W (204.) AYED 74 IPWA 2/	/69 /69 /71 /72 /74*

Baryons Δ(1690), Δ(1890), Δ(1900)

			19	N*3/2(16	90) PARTIAL DE	CAY MODES			ł		11	N#3/2	(1890) B	PANCHING F	RATIOS			
P1 P2		N#3/2(169 N#3/2(169	0) INTO	PIN KSIGMA			DECAY MASSES 139+ 938 493+1189		R1 R1 R1 R1	3647	N#3/2(1890) INT {0.16} {0.147} {0.20}	0 (PT N	}/TOTAL	DONNACH1 Ayed Davies	68 RVUE 70 IPWA 70 RVUE	(P1) SOL A		8/69 1/71 8/69
			19	N#3/2(16	90) BRANCHING	RATIOS			RI	'	(-144)			AYED	74 IPWA			2/74*
R1 R1 R1 R1	3	N*3/2(169 (. (. (0.	00) INT(10) .08) .135)) (PI N)/T	DTAL DONNACH2 KIRSOPP AYED	68 RVUE 68 RVUE 70 IPWA	(P1) PHAS.SHIFT-CERNI PHASE SHIFT ANAL	10/69 10/69	R 2 R 2 R 2 R 2	1 1 1	N*3/2(1890) [N1 (0.008)0R ASSUME MASS MODEL USED	O (K SI LESS WIDTH MAY DOU	GMA]/TOT , X(ELAS BLE COUN	AL FEUERBACH T) OF DONN T.	H 70 RVUE NACHIE 68	(P3) PI P	TO K+ SIG+	7/70
P1 91	7	(0. (.	1) 194)		AL MEHED AVED	72 IPWA 74 IPWA		2/72 2/74*	R3 R3		N#3/2(1890) INT (.0016)0	O (SIGM R LESS	A K)*(PI	N)/TOTAL* KALMUS	**2 70 DPWA	(P3*P1) P1+P	TO K+ SIG+	1/71
R2 R2 R2	1	N#3/2(169 (.00 ASSUN	00) INTO) (K SIGMA LESS WIDTH, X	I/TCTAL FEUERBAC (ELAST) OF DON	H 70 RVUE NACHIE 68	PI P TO K+ SIG+	7/70	R4 84 84	1	N*3/2(1890) FR .19 TO .23 MOSTLY F WAVE	OM PT N DECAY	TC N*3/	2(1232) PI MEHTANI	72 DPWA	SQRT(P1* PI+P	P4) TO PI+PIOP	9/73* 9/73*
									R5		N#3/2(1890) FRC	MPIN	ta k sig		73 10WA	SQRT(P1*	P3)	9/73*
	9	FOR DEFI	19 NITION	N#3/2(16 OF GAMMA-	90) PHOTON DEC Nucleon Decay	AY AMPL(GE Amplitudes	V**-1/2) ;, see mini→		R5		(.06)			LANGBEIN	73 IPWA	PI N-	K SIG, SOL 2	9/73*
A1		N*3/2(169	0) INT	GAM NUCL	EON, HELICITY=	1/2 (GEV**	-1/2)				FOR DEFINITION	N#372	(1890) P MA→NUCLE	HUTON DECA ON DECAY 4	MPLITUDE	EV**-1/2} 5. SFF MT	NT-	
A1 A1		:	016	.055 .015	DEVENISH	73 DPWA 73 DPWA	PI N PHOTO PROD PI N PHOTO PROD	2/74* 2/74*		R	FVIEW PRECEDING	THE BA	RYON LIS	TINGS.		J. J.L		
A1 A1 A1	VG		003	.030 0.014 A	METCALF	74 DPWA	PI N PHOTO~PROD	2/74*	A1 A1		N*3/2(1890) INT .042	C GAM N	UCLEON,	HELICITY=1 KNIES	73 DPWA	PI N	PHOTO PROD	2/74*
A 2		N*3/2(169	0) INTO	GAM NUCL	EDN, HELICITY=	3/2 {GEV**	-1/2)			۸VG	+.047	0.016	AVERAG	METCALE E (ERROR 1	74 DPWA	PIN	PHOTO-PRCD	2/74*
A2 A2		-:	074	.064 .022	DEVENISH	73 DPWA 73 DPWA	PI N PHOTO PROD PI N PHOTO PROD	2/74* 2/74*	42		N*3/2(1890) INT	0 GAM N	UCLEON,	HELICITY=3	1/2 (GEV**	-1/2)		
A2 A2 A2	٩VG	-0.	016	0.021 A	MEICALF	14 DPWA	PI N PHOTO-PROD	2/74*	A2 A2 A2		022 028	.020		KNIES Metcalf	73 DPWA 74 DPWA	PI N PI N	PHOTO PROD PHOTO-PROD	2/74* 2/74*
									A2	∆VG	-0.023	0.019	AVFRAG	E (ERROR I	NCLUDES	SCALE FAC	TOR OF 1.0}	
****	* *	*******	*****	8F		*********	* * * * * * * * * * * * * * * * * * * *		****	***	******** ****	**** **	******	********	*******	* ******	** *******	
DONN	сн	2 68 VIEN	NA 139	DO	NNACHIE RAPPO	RTEUR'S TA	LK (GLAS)		DONA	NACH	1 68 PL 268 161		A DONNA	CHIE. R G	KIRSOPP+	C LOVELA	CE (CERN)TJP	
AYED) P P	' 68 THES 70 KIEV		R	G KIRSOPP		(EDIN)			ALS ALS	0 68 VIENNA 139 0 68 THESIS		DONNACH R G KIR	IE RAPPOR Sopp	TEUR'S T	ALK	(GLAS) (EDIN)	
ALMEN	984 460 415	C 70 NP 1 72 NP 8 H 73 PL 4	68 85 40 157 78 53	FE +LI DE	JERBACHER+HOLL DVELACE /ENISH,RANKIN,	ADAY	(VANDERGILT) (LUND,RUTG)IJ (LUNC+BDNN+LANC)IJ	0	AYED DAVI FEUR	D LES ERBA	70 KIEV CONF 70 NP 821 359 C 70 NP 168 85 70 PR D2 1824		R AYED, A DAVIE FEUERBA	P BAREYRE, S CHER+HOLLA	G VILLET	r (VA	(SACL)IJF (GLAS) NDERBILT)	•
AYED METC	5 115 11F	73 LBL- 74 PRIV 0 73 AIX 74 CALT	2410 ATE COM CONFERE -68-425	KN IMCTN. AYI INCE AY	IES,MOORHOUSE, ED,BAREYRE ED,BAREYRE J METCALF, R L	UBEPLACK WALKER	(LBL+GLAS)TJI (SACL)TJI (SACL)TJI (SACL)TJI (CTT)	P D	ALME Meht Knie	EHED FANT ES	72 NP B40 157 72 PRL 29 163 73 LBL-2410	4	+LOVELA +FUNG, KNIES,M	CE KERNAN, SC DOPHOUSE, O	HALK, +	(L (L	UND,RUTG)1JF UCR +LBL) LBL+GLAS)1JF	, ,
AYED BOWLS	R	70 PL 3 70 NP 1	18 598 78 331	PA +B +C	PERS NOT REFER AREYRE,VILLET ASHMORE	RED TO IN	DATA CARDS. (SACLAY) (U. OXEDRD)		LANG AYEO METO	ALS	N 73 NP 853 251 74 PRIVATE CO 0 73 AIX CONFER 74 CALT-68-42	MMCTN. ENCE 5	LANGBEI AYED, BAI AYED, BAI W J MET	N,WAGNER Reyre Reyre Calf, R L	WALKER		(MUNICH)IJF (SACL)IJF (SACL)IJF (CIT)	> >
													PAPERS I	NOT REFERR	ED TO IN	DATA CAP	DS .	
****	*	******	*****	*** *****	*** ********	********	********		AYEC) ***	70 PL 318 598		+BAREYRI	E+VILLET			(SACLAY)	
Δ	(1	890)	11 THE	N*3/2(18 EXISTENC	90+ JP=5/2+) I E OF THIS RESO	-3/2 F	35 ELL ESTABLISHED.		Δ	(1	900) 30	**** ** N*3/2	(1900, J	P=1/2−] [=	3/2 S		** *******	9/73*
										<u>`</u>		IS EFFE	CT IS SE	EN IN TWO	CHANNELS			
M 5		(1913	11	N#3/2(18	OD MASS (MEV)	(0. DMUE												
м е м е	5	(1837. FROM ENE	O) R. DEP.	FIT OF A	AYED RGAND DIAGRAM	70 IPWA	PRASE-SHIFT ANAL	1/71			30	N*3/2	(1900) M	SS (MEV)				9/73*
M 4 M 1 M	1	(1841. (1875. 1890 (1890.	0)) TO 1986)		DAVIES ALMEHED MEHTANI LANGBEIN	70 PVUE 72 IPWA 72 DPWA 73 IPWA	P-S ANAL SOL A PI+P TO PI+PIOP PI N-K SIG+SOL 1	8/69 2/72 9/73* 9/73*	M M M		(1920.) (1870.) (2001.)			LANGBEIN LANGBEIN AYED	73 IPWA 73 IPWA 74 IPWA	PI N- PI N-	< SIG,SOL 1 < SIG,SOL 2	9/73* 9/73* 2/74*
M		(1869.	5		AYED	74 JPWA	PI N-R SIG, SUE 2	2/74*				N#3/2	(1900) W			• •••••••		0/73*
	-								w		140.)	10. SV E		LANGBEIN	73 IPWA	PI N-	SIG, SEL 1	9/73*
W 3 N 6 W 4		(350. (198. (136.	0) 0)	N*3/2(18	DO) WIDTH (MEV DONNACH1 Ayed Davies	68 RVUE 70 IPWA 70 RVUE	501 A	8/69 1/71	*		(160.) (307.)			LANGBEIN AYED	73 IPWA 74 IPWA	PI N-1	< SIG, SOL 2	9/73* 2/74*
4 7 4	1	(250. 273 T) 0 322		ALMEHED MEHTANI	72 IPWA 72 DPWA	PI+P TO PI+PIOP	2/72 9/73*			30	N*3/2	(1900) P	ARTIAL DEC	AY MODES			9/73*
4 4 4		(180. (140. (255. SEE N	} } OTES AC	COMPANYING	LANGBEIN LANGBEIN AYED MASSES QUOTE	73 IPWA 73 IPWA 74 IPWA D AS FOR N	PI N-K SIG,SOL 1 PI N-K SIG,SOL 2 *1/2(1910)	9/73* 9/73* 2/74*	Р1 Р2	l	N*3/2(1900) INT N*3/2(1900) INT	CPIN DKSIG	4 A			DEC 139+ 9 493+11	AY MASSES 38 39	
	-										30	N#3/2	(1900) B	ANCHING R	ATTOS			0/73*
P1 P2		N#3/2(189	11 0) INTO	N#3/2(189	0) PARTIAL DE	CAY MODES	DECAY MASSES 1394 938		R1 R1 R1	I	N#3/2(1900) FRO (.11) (.12)	M PI N	ГО K SIG	14		SQRT(PL+ PIN- PIN-	2) (SIG,SOL 1 (SIG,SOL 2	9/73* 9/73* 9/73*
P3 P4 P5 P6	1	N*3/2(189 N*3/2(189 N*3/2(189 N*3/2(189	0) INTO 0) INTO 0) INTO 0) INTO	K SIGMA N+3/2(123 GAM NUCLE GAM NUCLE	2) PI ON, HELICITY= ON, HELICITY=	1/2 3/2	493+1189 1232+ 139 0+ 938 0+ 938		R2 R2	1	N#3/2(1900) INT (.076)	D PI N/	TOTAL	AYED	74 IPWA	(P1)		2/74*
P7	_	N*3/2(189	0) [NTC	N RHO	_		938+ 770		****	**	******** *****	**** **	******	******	*******	******	** *******	
			*						1 4 4 7		4 73 NO 050		REFEREN	ES FOR N*	3/2(1900)			
									AYED	ALS	N 13 NP 853 251 74 PRIVATE CO D 73 AIX CONFER	MMCTN. ENCE	LANGBEIN AYED, BAN AYED, BAN	+WAGNER LEYRE LEYRE			(MUNICH)IJP (SACL)IJP (SACL)IJP	
									****	**	********* *****	**** ***	******	*******	********	*******	* ********	

Baryons Δ(1910), Δ(1950)

Δ(1910) 12 N*3/2(1910, JP=1/2+1 I=3/2 P31 THE EXISTENCE OF THIS RESONANCE IS WELL ESTABLISHED.		M 6 (1931.0) AYED 70 ГРМА 1/71 M 6 FROM ENER. DEP. FIT OF ARGAND DIAGRAM 0 16000000000000000000000000000000000000
12 N+3/2(1910) MASS (MEV) M 3 (1934.0) DONNACHI 68 RVUE PHASE-SHIFT ANAL M 6 (1783.0) AYED 70 TPMA M 6 FOM ENER. DEP. FIT OF ARGAND DIAGRAM 4 (1914.0) DAVIES 70 RVUE P-S ANAL SOL A M 4 (1914.0) DAVIES 70 RVUE P-S ANAL SOL A M 4 (1900.) ALMGED 72 IPMA PI N-K SIG,SOL 1 M (1980.) LANGBEIN 73 IPMA PI N-K SIG,SOL 2 M M (1786.) AYEO 74 IPMA PI N-K SIG,SOL 2	8/69 1/71 8/69 2/72 9/73* 9/73* 2/74*	B3 N+3/2(1950) WIDTH (MEV) W (170.0) DUKE 65 CNTR 7/66 W (200.0) APPQOX YCKDSMA 66 CNTR 7/66 W (180.0) BAREYRE 68 RVUE 11/67 W (197.0) DONNACHI 66 RVUE 6/68 W (197.0) AVED 70 IPWA 1/71 W (197.0) DAVES 70 RVUE 8/69 W (1300.0) (60.0) KALMUS 70 DPWA PI+P TO K+ SIG+ 1/71 W 2 234 TO 269 MEHTANI 72 MEMA PI+P TO PI+PIOP 9/72 W (237.1) AVEO 74 IPA 2/72 2/72
12 N*3/2(1910) WIDTH (MEV) M 3 (339.0) DCNNACH1 68 PVUE M 6 (306.0) AYEO 70 IPWA M 4 (220.1) DAVIES TO RVUE SOL A M 7 (200.1) LANGBEIN 73 IPWA PI N-K SIG.SOL 1 M (150.1) LANGBEIN 73 IPWA PI N-K SIG.SOL 2 N (172.2) MAYED 74 IPWA SEE NOTES ACCOMPANYING MASSES QUOTED	8/69 1/71 8/69 2/72 9/73* 9/73* 2/74*	SEE THE NOTES ACCOMPANYING THE MASSES QUOTED. DECAY MASSES B3 N*3/2(1950) PARTIAL DECAY MODES B1 N*3/2(1950) INTO PI N DECAY MASSES P1 N*3/2(1950) INTO PI N 1309 938 P2 N*3/2(1950) INTO SIGMA K 1109 433 P3 N*3/2(1950) INTO N*3/2(1232) PI 1232+ 139 P4 N*3/2(1950) INTO N*3/2(1232) PI 1232+ 139 P5 N*3/2(1950) INTO N*3/2(1232) RHO 1232+ 770 P5 N*3/2(1950) INTO N*3/2(1232) RHO 1232+ 130
I2 N+3/2(1910) PARTIAL DECAY MODES P1 N+3/2(1910) INTO PI N 1394 938 P2 N+3/2(1910) INTO N PI PI 9384 1394 P3 N+3/2(1910) INTO N PI PI 9384 1394 P4 N+3/2(1910) INTO N *3/2(1232) PI 12224 139 P5 N+3/2(1910) INTO N *3/2(1232) PI 12224 139 P5 N+3/2(1910) INTO N RUCLEON, HELICITY=1/2 04 938 P6 N+3/2(1910) INTO N RHO 9384 770		P7 N*3/2(1950) INTO N*3/2(1232) PI PI (NOT RHO) 1232-1339-139 P8 N*3/2(1950) INTO GAN NUCLEGN, HELICITY=1/2 0+938 P9 N*3/2(1950) INTO GAN NUCLEGN, HELICITY=1/2 0+938 P10 N*3/2(1950) INTO GAN NUCLEGN, HELICITY=1/2 0+938 P10 N*3/2(1950) INTO N FHO 938+7TO
12 N*3/2(1910) BRANCHING RATIOS R1 N*3/2(1910) INTO (PI N)/TOTAL (P1) R1 3 (0.30) DCNNACHI 68 PVUE (P1) R1 6 (0.128) DCNNACHI 68 PVUE SOL A R1 4 (0.18) DAVIES TO PVUE SOL A P1 R1 4 (0.18) DAVIES TO PVUE SOL A P1 P1 7 (0.33) ALMEHED 72 IPMA P1 P1 (.158) AYED 74 IPMA P1 P2 1 (0.000)RC LESS FEUERBACH "O PVUE P1 P TO K* SIG* 1	8/69 1/71 8/69 2/72 2/74* 7/70	R1 10.41 APPNIX YURUSANA 66 CNTR 7/66 R1 10.571 BAREYRE 68 RVUE 11/67 P1 3 10.3861 DONNACH 68 RVUE 1/67 P1 3 10.3861 DONNACH 68 RVUE 6/68 P1 3 10.3861 DONNACH 68 RVUE 6/69 P1 3 10.3861 DONNACH 68 RVUE 6/69 P1 4 10.451 DAVES 70 RVUE 6/69 P1 7 10.51 DAVES 70 RVUE 50 A 8/69 P1 7 4.4051 DAVES 70 RVUE 50 A 8/69 P2 N*3/2(1950) INTO (SIGMA K)+(P1 N)/TUTAL**2 (P2*P1) 772 P2 SEE THE NOTES ACCOMPANYING THE MASSES QUOTED. P1 P TO K+ SIG+ 7/70 774 P2 SEE THE NOTES ACCOMPANYING THE MASSES QUOTED. P1 P TO K+ SIG+ 7/70 772 P2 SEE THE NOTES ACCOMPANY DIG THE MASSES QUOTED. P1 P TO K+ SIG+ 7/70 772 P2 SEE THA ASSS, MIDTH, X(ELAST) DE DONNACH16 68
F2 1 ASSUME MASS, WIDTH, XIELAST) OF DONNACHIE 68 R2 1 MODEL USED MAY DOUBLE COUNT. R3 N*3/2(1910) FROM PI N TO K SIGMA R3 (.11) R3 (.11) R3 (.11) R4 LANGBEIN 73 IPWA R5 (.15) R6 LANGBEIN 73 IPWA R7 IPN ~K SIG, SOL 1 R8 LANGBEIN 73 IPWA R9 N*3/2(1910) PHOTON DECAY AMPLIGEV**-1/2) FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- '	9/73* 9/73* 9/73*	R2 MODEL USED MAY DOUBLE COUNT. R2 0.0081 0.0013 KALMUS TO DPWA PI+P TO K+ SIG+ 1/71 R3 N*3/2(1950) FROM PI N TO N*3/2(1232) PI SQRT(P1+P3) R3 2 .37 TO .48 MEMTANI TZ MPWA PI+P TO PI+PIOP 9/73* R3 2 MOSTLY F MAYE DECAY MOSTLY F MAYE DECAY 9/73* R4 N*3/2(1950) FROM PI N TO SIGMA K SQRT(P1*P2) 9/73* R4 (.04) LANGBEIN 73 IPWA PI N-K SIG, SOL 1 9/73* R4 (.05) LANGBEIN 73 IPWA PI N-K SIG, SOL 2 9/73* R4 (.05) LANGBEIN 73 IPWA PI N-K SIG, SOL 2 9/73* R4 (.05) LANGBEIN 73 IPWA PI N-K SIG, SOL 2 9/73*
REVIEW PRECEDING THE BARYON LISTINGS. A1 N*3/2(1910) INTO GAM NUCLEON, HELICITY=1/2 (GEV**-1/2) A1 .010 .012 KITES 73 CPWA PI N PHOTO PROD 2 A1	2/74* 2/74*	EXPERIMENTS AROUND 1950 MEV, MAY BE FOUND IN THE NEXT ENTRY 63 N*3/2(1950) PHOTON DECAY AMPL(GEV**-1/2) FOR DEFINITION OF GAMMA-NUCLEON DECAY AMPLITUDES, SEE MINI- REVIEW PRECEDING THE BARYON LISTINGS. A1 N*3/2(1950) INTO GAM NUCLEON, HELICITY-1/2 (GEV**-1/2) A1J70 .012 KNIES 73 DPMA PIN PHOTO-PROD 2/74* A1 (080) MODEMNUZ 73 DPMA PIN PHOTO-PROD 2/74*
DONNACHI 68 PL 268 161 A DONNACHIE, R G KIRSOPP, C LOVELACE (CENNIJ) ALSO 68 VIENNA 139 DONNACHIE, R GAVENTEUR'S TALK (GLAS) ALSO 68 THESIS R G KIRSOPP (EDIN) AYEO 70 KIEV CONF R AYEO, P BAREYRE, G VILLET (SACLIJP OAVIES TO NP 821 359 A DAVIES (GLAS) FEUERBAC 70 NP 821 359 A DAVIES (VANDERBILT) ALMEMED 72 NP 840 157 +LOVELACE (LUND, RUTG) 1JP KNIES 73 LBL-2410 KNIES, MOORHCUSE, DBERLACK (IBL-GLAS) 1JP AYEO, BAREYRE (SACLIJI) AYEO, BAREYRE (SACLIJI)		A1 059 .029 METCALF 74 DPMA PIN PHOTO-PRCD 2/74* A1 -0.068 0.011 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) A2 N*3/2(1950) INTO GAM NUCLEON. HELICITY=3/2 (GEV*+1/2) A2 -0.10 KNIES T3 DPMA PIN PHOTO PROD 2/74* A2 -0.10 KNIES T3 DPMA PIN PHOTO-PROD 2/74* A2 -0.10 KNIES T3 DPMA PIN PHOTO-PROD 2/74* A2 -0.03 .024 METCALF T4 DPMA PIN PHOTO-PROD 2/74* A2 -0.0302 0.0092 AVERAGE (ERROR INCLUDES SCALE FACTOR DF 1.0) 2/74*
METCALF 74 CALT-68-425 W J METCALF, R L WALKER (CIT) PAPERS NOT REFERRED TO IN DATA CARDS. CARYANN 05 PR 138 0433 CARYANNOPOULOS, TAUTEEST, WILLMANN (PUPD) A PARTIAL WAVE ANALYSIS OF PIPP TO SIGNA+ K+ AVED TO PL 318 598 OF NEW YOLLET (SACLAY) MA(1050) 83 NEW YOLDED DEVICE TO TO THE STORE		REFERENCES FOR N+3/2(1950) DUKE 65 PRL 15 468 +JONES,KEMP,MURPHY,PRENTICE, + YOKOSAMA 66 PRL 16 714 +SUMA, HILL, ESTERLING, BOOTH BAREYRE 68 PR 165 1731 BORREANI 68 UCL 18350 BORNEANI 7 G NILEY ALSO 68 VIENNA 139 DONNACHIE RAPPORTEUR'S TALK (EDIN) ALSO 68 THESIS R G KIRSOPP CO NE 92760 AVED TO NE 92760 R AYED, TO NE 92760 CO NE 92760 CO NE 92760 CO NE 92760
ALIDOU 83 N+3/2(1950, JP=7/2+) 1=3/2 437 THE EXISTENCE OF THIS RESONANCE IS WELL ESTABLISHED. 83 N+3/2(1950) MASS (MEV) M (1920-0) APPROX DUKE 65 CNTR PI-P PL + POL 6 M (1950-0) APPROX YOKOSAMA 66 CNTR PI-P DSIG + POL 7 1 (1975-0) APPROX SAREYRE 68 RVUE PHASE-SHIFT ANAL 11 M 1 WHERE CROSS SECTION IS GREATEST - EYEBALL FIT DUNACHI 68 RVUE PLASE-SHIFT ANAL 16	6/68 7/66 1/67 6/68	UAVIES /U MP B21 359 A DAVIES (GLAS) FEUERBACHER+HOLLADAY (VANDERBILT) KALMUS 70 PR D2 1824 G KALMUS, G BORREANI, J LDUTE (LRL) ROYCHOUD 71 NP B27 125 R K ROYCHOUDHURY, B H BPANSDEN (DURH) IJP (LUND, RUTG) IJP ALMEHED 72 NP B40 157 +LDVELACE (LUND, RUTG) IJP MEHTANI 73 PR B32 73 LANGBEIN, MGNER (UCR *LBL) KNIFS 73 LBL-2410 KNIES, MODEMOUSE, OBERLACK (LBL+GLAS) IJP MODEHOUZ 73 NP B33 251 LANGBEIN, MGNER (MUNCH IJP MODEHOUZ 73 LBL-1590 MODHOUSE, OBERLACK, ROSENFELD (LBL+GLAS) IJP AYED 74 PRIVATE COMMENN. AYEO, BAREYRE (SACLIJP AYEO 73 AIX CONFERENCE MYEGALF, R L WALKEP (CIT) WETCALF, 74 CALT-68-425 W J METCALF, R L WALKEP (CIT)

SEE

1

P1 P2

R1 R1 R1 R1 R1

R2 R2 P2 K2

1 5 8

3 3 7

1 1 1

PAPERS NOT REFERRED TO IN DATA CARDS. 70 N#3/2(1950) PARTIAL DECAY MODES (PROD. EXP.) G HOHLER, G EBEL (KARLSRUHE) I H X LAYSON (CERN) IJ P AUVIL, C LOVELACE (LOICI) 52 +DEVIN,HAGES,LONGO,MOYER,WOOD (IRL) IJ G HOHLEAR, J GIESECKE (KARLSRUHE) I 48 (F HOLLADY (VANDERBILT) THESIS C 4 JOHNSON (IRL) THESIS C 4 JOHNSON (IRL) +BAREYRE+VILLET (SACLAY) HOHLER 63 NP 48 470 LAYSON 63 NC 27 724 AUVIL 64 NC 33 473 HELLAND 64 PR 134 81062 HCHLER 64 PL 12 149 MOLLADAY 65 PR 139 81348 JCHNSON 67 UCRL-17683 TH DONNACH 69 NP 108 433 AYEO 70 PL 318 598 DECAY MASSES 139+ 938 1189+ 493 1232+ 139 1386+ 493 1232+ 770
 N#3/2(1950) INTO PI N
 139+ 938

 N#3/2(1950) INTO SIGMA K
 1189+ 493

 N#3/2(1950) INTO SIGMA K
 1189+ 493

 N#3/2(1950) INTO N#3/2(1232) PI
 1232+ 139

 N#3/2(1950) INTO N#3/2(1232) RHO
 1232+ 770

 N#3/2(1950) INTO N#3/2(1232) RHO
 1232+ 770

 N#3/2(1950) INTO N#3/2(1232) PI PI (NOT RHO)
 1232+ 139+ 139
 P1 P2 P3 P4 P5 P6 P7 70 N#3/2(1950) BRANCHING RATIOS (PROD. EXP.) Δ(1960) 13 N*3/2(1960, JP=5/2-) I=3/2 D35 THIS EFFECT IS SEEN IN THO CHANNELS. N*3/2(1950) INTO (PI N)/TOTAL (P1) (0.57) (0.12) DEVLIN 65 CNTR R1 R1 N*3/2(1950) INTO (SIGMA KI/(PI N) (P2)/(P1) 0.059 0.024 CHINDWSKY 68 HBC ++ PP TO P SIG K 11/68 R2 R2 N*3/2(1950) INTO N*3/2(1232) PI PI (NOT RHO) (P7) SEEN CHINOWSKY 68 HBC ++ PP TO (P 3PI) N 11/68 SEEN BCGGILD 70 HBC PP TC N3PI(NTRL) 6/70 R 3 P 3 R 3 -----13 N#3/2(1960) MASS (MEV)
 (1954.0)
 DONNACH1
 68
 RVUE
 PHASE-SHIFT
 ANAL
 10/69

 (1970.)
 KIRSOPP
 68
 RVUE
 PHASE
 SHIFT
 ANAL
 10/69

 (1950.0)
 APPPOX
 LEA
 69
 CNTR
 PI-P
 FLASTIC
 8/69

 SEE
 ALSO
 APLIN
 70
 WHERE
 MAX.
 ABSORPTION
 IS
 ODONNACH1, 2
 KIRSOPP
 KIRSOP
 69
 CNTR
 PI-P
 FLASTIC
 8/69

 VERE<MAX.</td>
 ABSORPTION IS
 ODONNACH1, 2
 KIRSOPP
 KIRSOP
 2/72
 2/74

 (200.)
 LAMEMED
 72
 IPWA
 PI N-K
 SIG-SOL 2
 9/73+

 NOT SEEN IN SOLUTION 1 OF LANGEEIN73
 AVED
 74
 IPWA
 2/74+
 R4 R4 N 3/2(1950) INTO (PI N)/(N*3/2(1232) PI) (P1)/(P3) (0.55) OR LESS LEF 67 HBC PI-P 3.63 BEV/C 11/67 R5 95 R5 N*3/2(1950) INTO ((PI N)*(NEUTRON PI+ PI+))/TOTAL**2 {P1*P6} 0.05 0.013 GALLOWAY 68 RVUE ++ P1+P TO N 2PI+ 6/68 N*3/2(1950) INTO (Y*1(1385) K)/(PI N) (P4)/(P1) 0.035 0.015 CHINOWSKY 68 HPC ++ PP TO P LAM K PI 11/68 R6 86 N#3/2(1950) INTC (N#3/2(1232) RHC)/(PI N) (P5)/(P1) (0.45) APPROX CHINOWSKY 68 HBC ++ PP TO (P 3PI) N 11/68 THIS INCLUCES CORPECTION FOR UNSEEN DECAY (ISPIN FACTOR 5/3). 97 97 97 13 N#3/2(1960) WIDTH (MEV) N*3/2(1950) INTO (N*3/2(1232) RH0)/TOTAL (P5) SEEN YCON 67 HPC + 8/67 NOT SEEN BOGGILD 70 HBC PP TO N3PI(NTRL) 6/70 DONNACH1 68 RVUE KIRSOPP 68 RVUE Almehed 72 IPWA Langbein 73 IPWA Ayed 74 IPWA (311.00) 8769 PHASE SHIFT ANAL 10/69 2/72 P1 N-K SIG,SOL 2 9/73* 2/74* (400.) (600.) ****** (150.) (121.) REFERENCES FOR N#3/2(1950) (PROD. EXP.) _ ____ R CGOL, D PICCIONI, D CLARK (BNL) I +OSTOEUF,FALK-VAIRANT,VAN ROSSUM,+ (SACLAY) J DEVLINJ, SOLCMONG BEFTSCH (PRINCETOM) +MCEBS,RDE,SINCLAIR,VANDEP VELDE (MICH) +BERENYI,REV,FRENTICE, + (IORONTO,WISC)
 CCOL
 56
 PR
 103
 1092

 BRISSON
 61
 NC
 19
 210

 DEVLIN
 65
 PRL
 14
 1031

 LEE
 67
 PR
 159
 1156

 YCON
 67
 PL
 24B
 307
 13 N*3/2(1960) PARTIAL DECAY MODES DECAY MASSES N*3/2(1960) INTO PI N N*3/2(1960) INTO K SIGMA 139+ 938 493+1189 CHINDWSK 68 PR 171 1421 CHUNG 68 PR 165 1491 GALLDWAY 68 PL 268 334 BCGGILD 70 NP 816 503 CCLTON 72 PR 06 95 CHINOWSKY,CONDON.KINSEY,KLEIN,+ (LRL,SLAC) S U CHUNG-DAML,KIRZ,HILLEP (LRL) K F GALLDWAY (INDIANA) +KOREA-AHC-JACOBSEN+ (BCHR+ HELS+OSL)+STOH) S COLTON, A KIRSCHBAUM (LRL) _____ (INDIANA) I 13 N#3/2(1960) BRANCHING RATIOS N*3/2(1960) INTO (PI N)/ TOTAL
 CP11
 CP11

 DGNNACH1
 68
 RVUE
 PHASE
 SHIFT ANA.
 10/69

 KIRSOPP
 68
 RVUE
 PHASE
 SHIFT ANAL
 10/69

 ALMEHED
 72
 IPWA
 2/72
 2/74

 AYED
 74
 IPWA
 2/74
 (.154) (.12) (0.25) **∆(**2160) (.081) 9 N*3/2(2160, N*3/2(1960) INTO (K SIGMA)/TOTAL (P2) (0.013) (0.01) FEUERBACH 70 RVUE PI P TO K+ SIG+ 7/70 ASSUME MASS, WIDTH, X(ELAST) OF DONNACHIE 68 MODEL USED MAY DOUBLE COUNT.) I=3/2 SEVERAL ANALYSES HAVE FOUND EVIDENCE FOR A RESONANCE NEAD THIS MASS IN THE P33 PAPTIAL WAVE, AND UNLESS STATED OTHERWISE, ALL DATA CADDS BELOW APPLY TO THIS WAVE. IN ADDITION, ROVCHOUDHRY TJ FIND POSSIBLE EVIDENCE FOR P31, D33, AND D35 RESONANCES IN THIS MASS REGION. IN A SIMILAR AMALYSIS RPANSEN TI FOUND SOME EVIDENCE FOR S31, 033, AND D35 KESONANCES IN THIS REGION. VON SCHLIPPE 72 SUGGEST A C39. THE WOST RECENT PI N ANALYSIS FINDS A G39 RESONANCE IN THIS MASS REGION. THE EFFECT SEEN IN K SIG PROD. IS 100 MEV LOWER IN MASS. N*3/2(1960) FROM PIN TO K SIGMA SQRT(P1*P2) 9/73* 1 (.08) LANGBEIN 73 IPWA PIN+K SIG,SOL 2 9/73* PEFERENCES FOR N#3/2(1960) A DONNACHIE, R G KIRSOPP, C LOVELACE (CERN)IJP R G KIRSOPP (EDIN) DONNACH1 68 PL 268 161 KIRSOPP 68 THESIS 9 N#3/2(2160) MASS (MEV) LEA, DADES, WARD, COWAN, + (RHEL, BRISTOL, DARE) 69 PL 298 584
 (2160.)
 KIRSOPP
 68 RVUE

 (2120.)
 RCYCHOUD
 71 OPWA

 (2150.)
 ALMEFRED
 72 IPWA

 (1980.)
 LANGBEIN73
 73 IPWA

 NOT SEEN IN SOLUTION 2 OF LANGBEIN73
 4YED
 74 IPWA

 AYED 74 RESULT IS A G39 RESCNANCE.
 74 IPWA
 PHASE SHIFT ANAL 10/69 3/72 2/72 PI N-K SIG,SOL 1 9/73* 9/73* 2/74* 2/74* FEUERBAC 70 NP 168 85 FEUERBACHER+HOLLADAY (VANDERBILT) ALMEHED 72 NP B40 157 LANGREIN 73 NP 953 251 AYED 74 PRIVATE COMMCTN. ALSO 73 AIX CONFERENCE +LOVELACE LANGBEIN,WAGNER Ayed,Bareyre Ayed,Bareyre (LUND,RUTG)IJP (MUNICH)IJP (SACL)IJP (SACL)IJP 1 PAPERS NOT REFERRED TO IN DATA CARDS. A DONNACHIF, R KIRSOPP (GLAS+EDIN) +BAREYRE+VILLET (SACLAY) +COWAN,GIBSON,GILMORE++ (RHEL,BRISTOL) DONNACHI 69 NP 108 433 AYED 70 PL 318 598 APLIN 71 NP 832 253 9 N#3/2(2160) WIDTH (MEV) KIRSOPP 68 RVUE Almehed 72 IPwa Langbein 73 IPwa Ayed 74 IPwa [260.1 PHASE SHIFT ANAL 10/69 3 7 PHASE SMIFT ANAL 10/69 2/72 PI N-K SIG,SOL 1 9/73* 2/744 (200.) 2 (205.) 1950 MEV REGION - PRODUCTION AND σ_{TOTAL} EXP'TS 9 N*3/2(2160) PARTIAL DECAY MODES 70 N*3/2(1950, JP=) I=3/2 DECAY MASSES 139+ 938 493+1189 N*3/2(2160) INTO PI N N*3/2(2160) INTO K SIGMA _____ 70 N*3/2(1950) MASS (MEV) (PROD. EXP.) _____
 (1922.0)
 APPROX
 COOL
 56
 CNTR
 PI+
 P
 TOTAL
 7/66

 (1912.0)
 (15.0)
 BRISSON
 61
 CMTR
 PI+
 P
 TOTAL
 7/66

 (1900.0)
 (19-0.0)
 DEVLIN
 65
 CMTR
 PI+
 P
 TOTAL
 7/66

 (2000.0)
 (12.0)
 DVLIN
 65
 CMTR
 PI+
 P
 TOTAL

 7HIS
 BUMP
 IS
 NOT
 SEEN
 BY
 CHUNG
 68
 AT
 3.2
 GEV/C
 PI-P
 8/67

 (1860.0)
 CULTON
 72
 HBC
 ++
 P
 TO
 PI+PN 7GEV
 1/73
 9 N#3/2(2160) BRANCHING RATIOS
 N+3/2(2160)
 INTO
 INT
 (P1)

 (-25)
 KIPSOPP
 68
 RVUE
 PHASE
 SHIFT
 ANAL
 10/69

 (0,3)
 ALMEHED
 72
 IPMA
 2/724

 (-045)
 AFED
 74
 IPMA
 2/744
 R1 3 R1 7 R1 2 --- ------ ----- ------ ------R2 N*3/2(2160) FROM PIN TO K SIGMA SQRT(P1*P2) 9/73* P2 1 (+08) LANGBEIN 73 IPWA PIN-K SIG+SUL 1 9/73* 70 N#3/2(1950) WIDTH (MEV) (PROD. EXP.) (256-0) (39-0) DEVLIN 65 CNTR 40-0 20-0 YOON 67 HBC + (180-0) CDITN 72 HBC ++ PP TO PI+PN 7GEV 1/73

Baryons Δ(1950), Δ(1960), Δ(2160)

Baryons Δ(2160), Δ(2420), Δ(2850)

69 N#3/2(2420) BRANCHING RATIOS (PROD. EXP.) REFERENCES FOR N+3/2(2160) N*3/2(2420) INTO (PI N)/TOTAL (P1) (0.067) APPROX DIDDENS 63 CNTR ASSUMING J=11/2 7/66 0.113 0.0036 CITRON 66 CNTR ASSUMING J=11/2 7/66 (0.12) BARGER 67 FIT ASSUMING J=11/2 11/67 USES ONLY RESONANCES TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGPRES 0.06) KORMANYOS 67 CNTR ASSUMING J=11/2 11/67 KIRSOPP 68 THESIS R G KIRSOPP (EDTN) R1 R1 R1 R1 ROYCHOUD 71 NP 827 125 R K ROYCHOUDHURY .B H BRANSDEN (DURH)IJP 8 D D ALMEHED 72 NP 840 157 LANGBEIN 73 NP 853 251 Ayed 74 Ppivate commetn. Also 73 Aix confepence +LOVELACE (LUND, RUTG) IJP (MUNICH) IJP LANGBEIN, WAGNER AYED, BAREYRE AYED, BAREYRE R1 R1 (SACL)IJP (SACL)IJP N*3/2(2420) INTO (PI N)*(NEUTRON PI+ PI+)/(TOTAL**2) R2 P2 R2 PAPERS NOT REFERRED TO IN DATA CARDS. (P1*P4) 0.0195 0.0048 GALLOWAY 68 RVUE A DONNACHTER KIRSOPP (GLAS-EDIN) - OGDEN (DURHIJP ROVCHOUDHURY, PERRIN, BRANSDEN (DURHIJP VON SCHIIPPE (LONCHJP 6/68 DCNNACHI 69 NP 108 433 BPANSDEN 71 NP 826 511 ALSO 70 NP 816 461 VON SCHL 72 LNC 4 767 EFERENCES FOR N#3/2(2420) (PROD. EXP.) +JENKINS, KYCIA, RILEY (BNL) I +BAR-YAM,KERN,LUCKEY,USBORNE, + (MIT.CEA) 6 MOHLES, J GIESECKE (KARLSRIME) I +MANNELLI,SODICKSON,FACKLER,WARO, + (MIT) V BAPGER, M OLSSON (MISC) +GALBRAITH,KYCIA,LEONTIC,PHILLIPS, + (BNL) I DIDDENS 63 PRL 10 262 ALVAREZ 64 PRL 12 710 HOHLER 64 PL 12 149 WAHLIG 64 PRL 13 103 BARGER 66 PR 151 1123 CITPON 66 PR 144 1101 84 N*3/2(2420, JP=11/2+) I=3/2 H3 11 Δ(2420) BOTH ROYCHOUDHURY 71 AND BRANSDEN 71 SEE A POSSIBLE RESONANT F35 IN THIS MASS REGION. IN ADDITION BRANSDEN 71 FIND A RESONANT P33 AT 2600 MEV. BARGER 67 PR 155 1792 DIKMEN 67 PRL 18 798 KORMANYD 67 PR 164 1661 GALLOWAY 68 PL 268 334 V BARGER, D CLINE (WISC) P F N DIKMEN (MICH) KORMANYOS, KRISCH, OFALLON, + (MICH, ANL) P K F GALLOMAY (INDIANA) I 84 N#3/2(2420) MASS (MEV) PAPERS NOT REFERRED TO IN DATA CARDS. (2312.0) AYED 70 IPWA FROM ENER. DEP. FIT OF ARGAND DIAGRAM DIAGRAM (2400.4) (2400.4) RANSDEN 71 DPMA (2400.4) RCYCHOUD 71 DPMA (2400.4) RCYCHOUD 71 DPMA (2400.4) RCYCHOUD 71 DPMA (2402.4) RCYCHOUD 71 DPMA (2400.2) AYED 74 IPWA 0 PI-P BKWD ELSTC BAACKE 67 NC 51A 761 J BAACKE, M YVERT (KARLSRUHE,ORSAY]J-L DOBROWOL 67 PL 245 203 DORROWOLSKI,GUSKOV,LIKHACHEV, + (DUBMA) P DOLEN, 68 PR 166 1516 P DULEN, O HORN, C SCHMID (CIT) WAHLIG 68 PR 168 1515 W ANHLIG, I MANNELL FIMALVERSION OF GOSS SECTIONS, THIS CHARGE EXCHANGE DATA GIVES COMPLEX ELASTIC SCATTERING AMPLITUDE AT O DEGRES. 1/71 3/72 3/72 2/73 2/74* 84 N*3/2(2420) WIDTH (MEV) 1/71 2/74* (347.0) (289.) AYED 70 IPWA 74 IPWA **∆(2850)** 85 N#3/2(2850, JP= +) I=3/2 PRCDUCTION EXPERIMENTS BUMPS 84 N#3/2(2420) PARTIAL DECAY MODES DECAY MASSES N*3/2(2420) INTO PI N N*3/2(2420) INTO SIGMA K 139+ 938 1197+ 493 P1 P2 85 N#3/2(2850) MASS (MEV) (PROD. EXP.) (2870.0) (2700.0) APPROX 84 N*3/2(2420) BRANCHING RATIOS (2850.0) 2850.0 7/66 12.0 N*3/2(2420) INTO (PI N)/TOTAL (0.113) AYED (44) OTT (.109) AYED (P1) (PI) (PI) (PI) AYED 70 IPWA 1/71 OTT 72 MPWA 0 PI-P BKWD ELSTC 2/73 AYED 74 IPWA 2/74* R1 R1 R1 ь 7 85 N*3/212850) WIDTH (MEV) (PRCD. FXP.) (150.0) BARDADIN 66 HBC ++ 400.0 40.0 CITRON 66 CNTR 7/66 7/66 REFERENCES FOR N#3/2(2420) AYED 70 KIEV CONF R AYED, P BAREYRE, G VILLET (SACL)IJP 85 N#3/2(2850) PARTIAL DECAY MODES (PROD. EXP.) BRANSDEN 71 NP B26 511 ALSO 70 NP B16 461 POYCHOUD 71 NP B27 125 CIT 72 PL 428 133 ALSO 72 MCGILL THESIS AYED 74 RIVATE COMMET CONFERENCE (DURH)IJP (DURH)IJP (DURH)IJP .00DEN ROVCHOUDHURY,PERRIN,BRANSDEN (DURH)IJP FK ROVCHOUDHURY,B H BRANSDEN (DURH)IJP +TRISCHUK,VAVRA,RICHARDS,+ (MCGI,STLD.IDWA)IJP (KCGI,J) OGDEN DECAY MASSES 139+ 938 938+ 139+ 139+ 139 938+ 139+ 139 N*3/2(2850) INTO PI N N*3/2(2850) INTO P I PI PI N*3/2(2850) INTO N PI PI P1 P2 P3 J. VAVRA AYED.BAREYRE AYED.BAREYRE ČTN. (SACL)IJP (SACL)IJP PAPERS NOT REFERRED TO IN DATA CARDS. 85 N*3/2(2850) BRANCHING RATIOS (PROD. EXP.) B5 N#3/2(2850) ERANCHING RATIDS (PRUD. EXP.] N*3/2(2850) INTO (PI N)/TOTAL (P1) ONLY (14/2)*(PI N/TOTAL) REASURED FOR THIS STATE (P1) ONLY (14/2)*(PI N/TOTAL) REASURED FOR THIS STATE (0.224) 0.2241 0.048 CITRON 66 CNT TOTAL CROSS.SEC. 11/67 USES REGE AMP.*RESON. TO CALCULATE OIF. CROSS SECTIONS AT 180 DEGRE FOR CRITICISM OF THIS METHOD. SEE DOLEN 68. (0.49) DIKMEN 67 RVUE USES KORMANYDS66 11/67 USES SONANCES TO CALCULATE OIF. CROSS SECTIONS AT 180 DEGRE (0.49) (0.49) DIKMEN 67 RVUE USES KORMANYDS67 11/67 USES ONLY RESONANCES TO CALCULATE OIF. CROSS SECTIONS AT 180 DEGG (0.10) KORMANYDS 67 CNTR PI+P AT 180 DEG (0.10) KORMANYDS 72 CNTR PI+P AT 180 DEG UPPER LIMIT ON ELASTICITY.ALSO FIND J=9/2 OR MORE. PI GEV/C 12/72 BELLAMY 67 PRL 19 476 +BUCKLEY, DOBINSON, + (WESTFIELD, LOUC) JP R1 AYED 70 PL 318 598 +BAREYRE+VILLET (SACLAY) В 8 8 8 0 0 2420 MEV REGION - PRODUCTION AND σ_{TOTAL} EXP'TS 69 N#3/2(2420, JP#) I=3/2 PRODUCTION EXPERIMENTS D ******** ********* ************* ----------REFERENCES FOR N#3/2(2850) (PROD. EXP.) 69 N#3/2(2420) MASS (MEV) (PROD. EXP.) 12360.0) DIDDENS 63 CNTR PI+ P TOTAL 12520.0) (40.0) ALVAREZ 64 CNTR PI PHOTOPRDD 124040.0) HOHLER 64 CNTR PI PHOTOPRDD 124040.0) HOHLER 64 CNTR PI PHOTOPRDD 124040.0) APPROX WAHLIG 64 OSPR PI-P CH EX 12452.0) BARGER 64 VUE TOTAL + CH EX 5 REGGE AMP.+RESON. TO CALCULATE DIF. CROSS SECTIONS AT 180 DEGRE CRITICISM OF THIS METHOD. SEE ODLEN 68. 2423.0 10.0 CITRON 66 CNTR PI + P TOTAL G HOHLER, J GTESECKE (KARLSRUHE) I +MANNELLI,SODICKSON,FACKLER,WARD, + (MIT) BARDADIN-OTWINONSKA,DANYSZ, + (WARSAW) V BARGER,M OLSSON (MISC +GALBRAITH,KYCIA,LEONTIC,PHILLIPS, + (RNL) I HOHLER 64 PL 12 149 WAHLIG 64 PRL 13 103 BARDADIN 66 PL 21 357 BARGER 66 PR 151 1123 CITRON 66 PR 144 1101 (2360.0) (2520.0) (2440.0) (2400.0) (2452.0) S REGGE 7/66 USES BARGER 67 PR 155 1792 DIKMEN 67 PRL 18 798 DOBROWOL 67 PL 248 203 KORMANYO 67 PR 164 1661 HALDORSE 72 NC 10A 468 V BARGER, D CLINE (MISC) P F N DIKMEN (MICH) DOBRNOULSKI,GUSKOV,LIKHACMEV, + (DUBNA) P KORMANYDS, KRISCH, DFALLON, + (MICH,ANL) P HALDORSEN,JACOBSEN (DSLO) IJ 7/66 69 N#3/2(2420) WIDTH (MEV) (PROD. EXP.) PAPERS NOT REFERRED TO IN DATA CARDS. (200.0) (245.0) (275.0) 310.0 DIDDENS 63 CNTR HOHLER 64 RVUE BARGER 66 RVUE CITRON 66 CNTR BAACKE 67 NC 51A 761 J BAACKE, M YVERT (KARLSRUHE,ORSAY)J-L DOLEN 68 PR 166 1768 R DOLEN, D HORN, C SCHMID (CIT) WAHLIG 68 PR 168 1515 M A WAHLIG, I MANNELLI (MIT,PISA) FINAL VERSION DF DATA USED IN WAHLIG 64. IN CONJUNCTION WITH CITRON 65 TOTAL CROSS SECTIONS, THIS CHARGE EXCHANGE DATA GIVES COMPLEX ELASTIC SCATTERING AMPLITUDE AT 0 DEGREES. 7/66 11/67 7/66 8 TOTAL + CH EX 20-0 --------- ------- ------- --------69 N#3/2(2420) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES 139+ 938 1197+ 493 1232+ 139 939+ 139+ 139 |#3/2(2420) INTO PI N |#3/2(2420) INTO SIGMA K |#3/2(2420) INTO N#3/2(1232) PI |#3/2(2420) INTO NEUTRON PI+ PI+ P1 P2 P3 P4

Δ(3230) BUMPS	86 N*3/2(32	°30, JP= }	1=3/2 PRCOU	JCTION EXPERIMENTS	
	86 N*3/2(32	230) MASS (MEV)	(PROD. EXP.	.)	
M (3230.0)		CITRON	66 CNTR	PI+ P TOTAL	7/66
	86 N*3/2(32	230) WIDTH (MEV			
w (440.0)		CITRON	66 CNTR		7/66
	00 N+3/2134	(50) PARITAL DE	CAT MODES I	DECAY MASSES	
P1 N*3/2(3230) P2 N*3/2(3230)	INTO PI N INTO N PI PI			139+ 938 938+ 139+ 139	
	86 N*3/2(3)	230) BRANCHING	RATIOS		
R1 N*3/2(3230)	INTO (PI N)/	TOTAL		P1)	
FI ONLY (J+1/2)* R1 B (0.03) R1 (0.06) R1 B (0.03) R1 B USES R1 D (0.25)	(PI N/TOTAL) (0.01) TO 0.1 MP.+RESCN. TO SM OF THIS ME	I MEASURED FOR BARGER CITRON BARGER D CALCULATE DIF THOD, SEE DOLEN DIKMEN	66 RVUE 66 CNTR 67 CNTR • CROSS SEC 68. 67 RVUE	TOTAL + CH EXC. TOTAL CROS. SEC. USES KORMANYOS66 TIONS AT 180 DEGRE USES KORMANYOS67	11/67 11/67 11/67
R1 D USES ONLY RE	SONANCES TO	CALCULATE DIF.	CROSS SECTI	ONS AT 180 DEGREES	
****** *********	R	EFERENCES FOR N	*3/2(3230)	(PROD. EXP.)	
PARGER 66 PR 151 CITRON 66 PR 144 BARGER 67 PR 155 DIKMEN 67 PR 18	1123 V 1101 +1 1792 V 798 F	BARGER, M OLSS Galbraith,Kycia Barger, D Clin N Dikmen	ON +LEONTIC+PH	(WISC) ILLIPS, + (BNL) I (WISC) P (MICH)	
	Ρ	APERS NOT REFER	RED TO IN D	ATA CARDS	
KORMANYO 67 PR 164 DCLEN 68 PR 166	1661 Ki 1768 P	ORMANYOS, KRISC DOLEN, D HORN,	H. OFALLON, C SCHMID	+ (MICH,ANL) P (CIT)	
****** ********	******* ****	***** ********	******	******** *******	
****** ********		***** ********	********	******** *******	
EXOTIC	NUCLEON	NS - 1644	MEV	REGION	
EXOTIC THIS IS I	NUCLEON	NS - 164 E LIST. WE WILL	D MEV	REGION	
EXOTIC THIS IS I	NUCLEON NOT A COMPLET EX(1640	NS - 164 E LIST. WE WILL , JP=) 1=5/	D MEV	REGION	
EXOTIC THIS IS I	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY ERGIN 1	NS - 164 E LIST. WE WILL , JP=) I=5/ A COMPLETE LIS 270 0N-	D MEV : . tabulate e ?2 st. we tabu	REGION XOTICS FROM NOW ON LATE	
EXOTIC THIS IS I BIRULEV 71 FINI MASS INTERVAL	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM I IN A MISSIN D ND EVIDENCE 1-2 TO 2-2 GE	NS - 184 E LIST. WE WILL , JP-) I=5/ A COMPLETE LIS 970 ON. G MASS EXPERIME FOR EXOTIC (I- V.	D MEV 2 TABULATE E 5T. WE TABU NT. PI+ P T 57(2) RESONA	REGION XOTICS FROM NOW ON ILATE 10 PI- X+++, NCES IN THE	
EXOTIC THIS IS / BIRULEV 71 FINI MASS INTERVAL	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM L IN A WIDSING D NO EVIDENCE 1.2 TO 2.2 GE	NS – 164 E LIST. WE WILL , JP=) 1=5/ A COMPLETE LIS 970 ON. G MASS EXPERIME FOR EXOTIC (1= V.	D MEV TABULATE E 51. WE TABU ENT, PI+ P T 5/2) RESONA	REGION XOTICS FROM NOW ON ILATE O PI- X+++, NCES IN THE	
EXOTIC THIS IS 7 BIRULEY 71 FINI MASS INTERVAL	NUCLEON NOT A COMPLET EX(1640 TMIS IS NOT ONLY FROM I IN A MISSIN O NO EVIDENCE 1.2 TO 2.2 GE EX(1640	NS – 1844 E LIST. WE WILL , JP-) 1-5/ A COMPLETE LIS 970 ON. G MASS EXPERIM FOR EXOTIC (1- V.) MASS (MEV) PDICE	D MEV	REGION XOTICS FROM NOW ON LATE 0 P1- X+++, NCES IN THE	3/71
EXOTIC THIS IS I BIRULEV 71 FINI MASS INTERVAL M A 29 1627. M A FOUR S. D.	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM 1 ONLY FROM 1 IN A MISSIM D NJ EVIDENCE 1.2 TO 2.2 GE EX(1640 EX(1640	NS – 1844 E LIST. ME WILL , JP-) I-5/ A COMPLETE LIS 970 ON. G MASS EXPERIM FOR EXOTIC (I- V.) NASS (MEV) PRICE	D MEV TABULATE E TABULATE E	REGION XOTICS FROM NOW ON LATE D PI- X+++, NCES IN THE 	: 3/71
EXOTIC THIS IS / BIRULEV 71 FINI MASS INTERVAL M A 29 1627. M A FOUR S. D.	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM 1 IN A MISSIN O NJ EVIDENCE 1.2 CVIDENCE EX(1640 12. EFFECT EX(1640	NS - 184 E LIST. ME WILL , JP-) I-5/ A COMPLETE LIS 970 ON. G MASS EXPERIME FOR EXOTIC (I- V.) MASS (MEV) PPICE) WIDTH (MEV)	D MEV TABULATE E 2 5T. WE TABU ENT, PI+ P T 572) RESONA 70 DBC -	REGION XOTICS FROM NOW ON ILATE O PI- X+++, NCES IN THE K-D AT 4.91GEV/C	3/71
EXOTIC THIS IS P BIRULEY 71 FINI MASS INTERVAL M A 29 1627. M A FOUR S. D. P M B 29 30. M R CROSS SECTIO	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM 1 IN A MISSIN O NJ CV JOENCE EX(1640 12. EX(1640 12. EFFECT EX(1640 0R LESS CL ON 13.0+-3.9	NS - 1844 E LIST. ME WILL , JP-) I=5/ A COMPLETE LIS 970 ON. G MASS EXPERIME FOR EXOTIC (I= V.) MASS (MEV) PPICE) WIOTH (MEV) =.90 PRICE MICPOBARNS	D MEV TABULATE E TABULATE E	REGION XOTICS FROM NOW ON LATE 0 PI- X+++, NCES IN THE K-D AT 4.91GEV/C PI-PI-N BUMP	3/71
EXOTIC THIS IS 7 BIRULEY 71 FIN MASS INTERVAL M A 29 1627. M A FOUR S. D. 0 W B 29 30. W R CROSS SECTIO	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM 1 IN A MISSIN ON 2 EVIDENCE 1.2 TO 2.2 GE EX(1640 12. EX(1640 OR LESS CL ON 13.0+-3.9 EX(1640	NS - 1844 E LIST. ME WILL , JP-) 1-5/ A COMPLETE LIS 970 ON. G NASS EXPERIM FOR EXOTIC (1- V.) NASS (MEV) PPICE) WIDTH (MEV) =.90 PRICE MICPOBARNS) CROSS SECTION	D MEV TABULATE E TABULATE E TO BC	REGION XOTICS FROM NOW ON LATE 0 PI- X+++, NCES IN THE K-D AT 4.91GEV/C PI-PI-N BUMP CROBARN)	3/71 3/71
EXOTIC THIS IS 7 BIRULEY 71 FINI MASS INTERVAL M A 29 1627. M A FOUR S. D. 7 M B 29 30. M R CROSS SECTI CS B 40. CS B 40.	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM 1 ONLY FROM 1 IN A MISSIM D NJ EVIDENCE 1.2 TO 2.2 GE EX(1640 CALLSS CL ON 13.04-3.9 EX(1640 OR LESS CL ON CLESS CL	NS - 1844 E LIST. ME WILL , JP-) I-5/ A COMPLETE LIS 970 ON. G MASS EXPERIM FOR EXOTIC (I- V.) MASS (MEV) PRICE) WIDTH (MEV) =90 PRICE IS FOR MASS R.	D MEV TABULATE E 72 51. WE TABU INT, PI+ P T 5/2) RESONA 70 DBC - 70 DBC - 70 DBC - 70 DBC - 10 CSPK 4 NGE 1540-11	REGION XOTICS FROM NOW ON LATE D PI- X+++, NCES IN THE	
EXOTIC THIS IS 7 BIRULEV 71 FINI MASS INTERVAL M A 29 1627. M A 29 1627. M A FOUR S. 0. 1 W B 29 30. W B 29 30. W B 29 30. W B 1572 LIMI	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM 1 IN A MISSIM D NJ EVIDENCE 1.2 TO 2.2 GE EX(1640 EFFECT EX(1640 OR LESS C GIVEN ABOVE	NS - 1844 E LIST. ME WILL , JP-) I-5/ A COMPLETE LIS 970 ON. G MASS EXPERIME FOR EXOTIC (I- V.) MASS (MEV) PPICE) WIDTH (MEV) 90 PRICE MICPOBARNS 90 CROSS SECTION BANNER IS FOR MASS R.	D MEV TABULATE E 72 57. WE TABU NT, PI+ P T 572) RESONA 70 DBC - 70 DBC - 70 DBC - 70 DBC - N LIMITS (MI 70 CSPK NGE 1540-11 70 CSPK	REGION XOTICS FROM NOW ON LATE 0 PI- X***, NCES IN THE K-D AT 4.91GEV/C PI-PI-N BUMP crobarn) + PI+PI.1.9 GEV/C ** PI+PI.1.9 GEV/C	3/71 3/71
EXOTIC THIS IS 7 BIRULEY 71 FIN MASS INTERVAL M Δ 29 1627. M Δ FOUR S. D. 0 W 8 29 30. W 8 CROSS SECTION CS 8 40. CS 8 40. CS 8 1=5/2 LIMI	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM 1 IN A MISSIM D NJ CY 1020 EX(1640 12. EX(1640 0 CX(1640 0 CX(1640 0 CX(1640 0 CX(1640 0 CX(1640 0 CX(1640 0 CX(1640	NS - 1844 E LIST. ME WILL , JP-) 1-5/ A COMPLETE LIS 970 ON. G NASS EXPERIM FOR EXOTIC (1- V.) MASS (MEV) PPICE) WIDTH (MEV) =.90 PRICE MICPOBARNS) CROSS SECTION BANNER IS FOR MASS RU MEREPENCES FOR 1	D MEV TABULATE E TABULATE E TABULATE E TO BC - TO DBC - TO DBC - TO DBC - TO DBC - N LIMITS (MI TO CSPK 4 ANGE 1540-11 EX11640)	REGION XOTICS FROM NOW ON LATE 0 PI- X+++, NCES IN THE K-D AT 4.91GEV/C PI-PI-N BUMP CROBARN) +++ PI+P,1.9 GEV/C	- 3/71 - 3/71 - 7/70
EXOTIC THIS IS 7 BIRULEY 71 FIN MASS INTERVAL M A 29 1627. M A 29 1627. M A FDUR S. D. 1 M B 29 30. M B 29 30. CS B 1-5/2 LIMI CS B 1-5/2 LIMI SANNER 70 NP B15 PPICE 70 PL 33B	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM 1 ONLY FROM 1 IN A MISSIM D NJ EVIDENCE 1.2 TO 2.2 GE EX(1640 CH LESS CL ON 13.0+-3.9 EX(1640 OR LESS T GIVEN ABOVE CALLSS CL ON 13.0+-3.9 EX(1640 CH LESS CL ON 13.0+-3.9 CH LESS CL ON 15.0 CH LESS CL ON 15.0+-3.9 CH LESS CL ON 15.0+-3.0+-3.0+-3.0+-3.0+-3.0+-3.0+-3.0+-3	NS - 1844 E LIST. ME WILL , JP-) 1-5/ A COMPLETE LIS 970 ON. G MASS EXPERIM FOR EXOTIC (1- V.) MASS (MEV) PPICE) WIOTH (MEV) 	D MEV TABULATE E 2 ST. WE TABU NT. PI+ P T 55/2) RESONA 70 DBC 70 DBC 70 DBC 70 DBC 10 CSPK 4 ANGE 1540-11 EX(1640) 16EP.2 ACCONS TERS, WEBSTER	REGION XOTICS FROM NOW ON LATE 0 PI- X+++, NCES IN THE	- - - - 7/70
EXOTIC THIS IS 7 BIRULEV 71 FINI MASS INTERVAL M A 29 1627. M A FOUR S. D. 1 M B 29 30. W B CROSS SECTION CS B 40. CS B 40. CS B 1=5/2 LIMI BANNER 70 NP B15 PRICE 70 PL 33B	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM 1 IN A MISSIN EX(1640 12. EX(1640 OR LESS CON 13.0+-3.9 EX(1640 OR LESS T GIVEN ABOVE R 205 ;533	NS - 1844 E LIST. ME WILL , JP-) I-5/ A COMPLETE LIS 970 ON. G MASS EXPERIME FOR EXOTIC (I- V.) MASS (MEV) PPICE) WIDTH (MEV) =	D MEV TABULATE E 72 ST. WE TABU NT, PI+ P T 5/2) RESONA 70 DBC - 70 DBC - 70 DBC - 70 DBC - 70 DBC - 10 CSPK 4 NNGE 1540-11 EXIL640) IGER, ZACCOME TERS, WEBSTER RRED TO IN U	REGION XOTICS FROM NOW ON LATE D PI- X+++, NCES IN THE K-D AT 4-91GEV/C PI-PI-N BUMP CCOBARN) ++ PI+P,1.9 GEV/C 50 MEV *** (SACLAY) XWEINBERG (VAND) XATA CARDS	3/71 3/71 7/70
EXOTIC THIS IS / BIRULEY 71 FINI MASS INTERVAL M A 29 1627. M A 29 1627. M A 29 1627. M A FOUR S. D. I 	NUCLEON NOT A COMPLET EX(1640 THIS IS NOT ONLY FROM L IN A MISSIN D NJ EVIDENCE 1.2 TO 2.2 GE EX(1640 EFFECT EX(1640 OR LESS CLON 13.0+-3.9 EX(1640 OR LESS CLON ABOVE EX(1640 OR LESS CLON ABOVE EX(1640 OR LESS CLON ABOVE EX(1640 OR LESS CLON ABOVE EX(1640 OR LESS CLON ABOVE EX(1640 OR LESS CLON ABOVE EX(1640 OR LESS CLON ABOVE CLON ABOVE C	NS - 1844 E LIST. ME WILL , JP-) I=5/ A COMPLETE LIS 970 ON. G MASS EXPERIME FOR EXOTIC (I- V.) MASS (MEV) PPICE) WIDTH (MEV) =.90 PRICE MICPOBARNS 	D MEV TABULATE E TABULATE E TABULATE E TO BC - TO DBC - TO D	REGION XOTICS FROM NOW ON LATE 0 PI- X+++, NCES IN THE	3/71 3/71 7/70

Note on the S=+1 Baryon System

Models based on states of three quarks have been successful in the description of the spectrum and decay of the known baryon resonances. Three quarks can not produce S=+1 baryon resonances (Z^{*}), and

$\Delta(3230)$, EXOTIC NUCLEONS, Z^{*}'s

Baryons

this has probably been the primary motivation for the great amount of experimental effort that has gone into S=+1 baryon physics below ~ 2 GeV/c during the last several years. In addition, the S=+1 system offers an opportunity to study single and double pion production in a small number of rather distinct quasi-two-body channels (K Δ , K^{*}N, and K^{*} Δ). Recent developments in the field are summarized below.

I=1 System

The most recent K⁺p total cross-section data is from BNL (CARROLL 73; 0.41 to 1.06 GeV/c) and Arizona-Michigan (BOWEN 73; 0.57 to 1.16 GeV/c). Neither measurement exhibits the dip of approximately 1.5 mb at 0.7 GeV/c reported by BUGG 68 and BOWEN 70. Recent differential elastic cross-section measurements (including extensions and final results of previously reported results) have come from Bologna-Glasgow-Rome-Trieste (BGRT 73; 0.14 to 0.73 GeV/c), Birmingham-RHEL (ADAMS 73; 0.43 to 0.94 GeV/c), Bristol-RHEL-Aarhus-Southampton (CHARLES 73; 0.7 to 1.9 GeV/c), Maryland-ANL (ABE 73; 0.86 to 2.12 GeV/c), and UCL-RHEL (BARBER 73; 1.37 to 2.26 GeV/c). Below 750 MeV/c (where the inelastic cross section is less than 0.1 mb) the total elastic cross sections from the first three above experiments also fail to exhibit the dip seen in earlier total cross-section experiments. Coulomb interference effects are observed by BGRT 73 and ADAMS 73; both confirm the early conclusion of GOLDHABER 62 that the low energy S-wave interaction is repulsive. New high-statistics data on single and double pion production in K⁺p scattering has been reported by CERN-Saclay (BERTHON1 73; 1.21, 1.29, 1.38, and 1.69 GeV/c). The I=1 total and partial cross sections are shown as dashed lines in Fig. 1.

The most recent partial-wave analyses of the elastic channel have been performed by ADAMS 73 and CUTKOSKY 73. Both analyses used recent highstatistics cross-section data and the high partial waves calculated from two and three pion exchange by ALCOCK 73. The energy-dependent ADAMS 73 analysis included data at energies up to 1.5 GeV/c, but was aimed primarily at determining the amplitudes below 1.0 GeV/c. Below about 0.5 GeV/c a zero-effective-range scattering-length parametrization was used for S and P waves with D and F waves set to zero; at higher energies the η and δ parameters of the S, P, D, and F waves were taken to be polynomials in c.m. momentum. Waves with $l \ge 4$

147

Baryons Z*'s

1.0 1.5 2.0 25 4*π* χ² $\sigma_0(total)$ 20 h(elastic σı (total) 15 $|\sigma_0|$ Cross section (mb) σ_i 10 σ_1 (elastic) σ₀ (KNπ) σ_i (KNπ 5 σ, (ΚΝππ σ0(KN## 0.5 1,0 1.5 2.0 K⁺ beam momentum (GeV/c) XBL7 32 - 2331

Fig. 1. KN total and partial cross sections. Subscripts indicate isospin; I = 1 (I = 0) cross sections are indicated by dashed (solid) curves. The total cross-section curves are from CARROLL 73, who use their recent data and that of BOWEN 73 as well as older data. The elastic I = 1 curve is hand drawn through new and old elastic data. The inelastic I = 1 curves are taken from LOKEN 72. The inelastic I = 0curves are taken from GIACOMELLI 72, and the elastic I = 0 curve is obtained by subtracting these from the I = 0 total cross-section curve of CARROLL 73.

Fig. 2. (a) Unfolded I=0 cross sections as quoted by the various authors discussed in the Z* minireview:

- \Diamond BOWEN 73 σ_{T} \Box BUGG 68 σ_{T} (as unfolded by CARROLL 73) ∇ CARROLL 73 σ_{T}
- \triangle COOL 70 σ T
- GIACOMELLI 72 σ(πKN)
 GIACOMELLI 72 σ(ππKN)

(b) Energy dependence of the isospin 0 and isospin 1 cross sections for the reaction $KN \rightarrow K^*N$ (HIRATA 70).

Baryons

Z*'s

were set to the values calculated by ALCOCK 73. The best χ^2 values obtained were about 2250 for 1600 degrees of freedom of which an estimated 300 comes from inconsistent data. Two solutions were found; they are essentially identical below 1 GeV/c but differ significantly at higher energies. The CUTKOSKY 73 analysis included data from 0.8 to 2.5 GeV/c. The ACE parametrization (see MILLER 72) was used along with contributions from exchange-degenerate $\Lambda{+}\Sigma$ and $\rho{+}A_2$ exchange. Imaginary parts of the ALCOCK 73 high partial waves were included as part of the data set in the fitting. An iterative fitting procedure was followed in which energy-independent fitting was alternated with energy smoothing using a parametrization based on partial-wave dispersion relations. Typical χ^2 per degree of freedom (χ^2/NDF) values were 1.0 to 1.1. Neither of the above analyses found evidence for the existence of a z*.

Results of these two analyses are shown in Figs. 3 and 4. Solution 2 of ADAMS 73 is plotted below 1.0 GeV/c with errors¹ on real and imaginary parts ranging from 3% to 50% for the various waves. The data set used for the results plotted included the preliminary BGRT 73 data mentioned above. This solution agrees qualitatively with CUTKOSKY 73 at higher energies; solution 1 disagrees. The results² of CUTKOSKY 73 are plotted from 0.8 to 2.5 GeV/c. Previous analyses using less data (particularly crosssection data) have found a wide range of solutions, some of which disagree with ADAMS 73 and CUTKOSKY 73. The most likely candidate for an I=1 Z^* has been in the P_{13} wave around 1900 MeV. For comparison we show results for this wave from a number of previous analyses in Fig. 5.

An energy-independent multi-channel partialwave analysis of the I=1 KN, K Δ , and K^{*}N channels at 1.21, 1.29, 1.38, and 1.69 GeV/c has been performed by BERTHON2 73. It was not possible to draw any firm conclusions about the K^{*}N channel or to discriminate between results of other analyses of the elastic channel alone. Results on the K Δ channel indicate four comparably large waves; SD₁₁, PP₁₃, DD₁₅, and (at the higher energies) FF₁₇. This is in contrast to earlier analyses (e. g., GRIFFITH 72) which found this channel to be dominated by the PP₁₃ wave over most of the 1.0 to 1.5 GeV/c region. BERTHON2 73 find (like GRIFFITH 72) no indication in the K Δ channel of rapid phase variations signaling possible resonant effects.

I=0 System

The experiments of CARROLL 73 and BOWEN 73 (see above) measured K⁺d total cross sections in the same energy ranges as their K⁺p measurements. These experiments agree rather well with each other and with older data except that the CARROLL 73 cross sections are systematically higher than those of BOWEN 70 (0.36 to 0.72 GeV/c). Unfolded I=0 cross sections, new and old, are shown in Fig. 2(a); the disagreement between CARROLL 73 and BOWEN 73 at low energies is primarily due to differences in the unfolding procedure. The I=0 cross section unfolded from the new $K^{\dagger}p$ and $K^{\dagger}d$ data rises to a plateau in the 0.7 to 0.9 GeV/c region and has a hump of about 3 mb in the 0.9 to 1.3 GeV/c region. Older data had indicated a hump of comparable size in the plateau region. As shown in Figs. 1 and 2(b), the plateau is associated with a broad peak in the elastic cross section while the hump is associated with a rising K^{*}N cross section.

Partial-wave analyses of the I=0 elastic channel have been reported by GIACOMELLI2 73 and AARON 73. GIACOMELLI2 73 fit data in the 0.38 to 1.51 GeV/c region, including new K[†]n differential cross-section data of the BGRT collaboration (GIACOMELLI1 73; 0.64 to 1.51 GeV/c). Three types of partial-wave analysis (all with S, P, and D waves only) were used to analyse these data: an energydependent analysis (ED) using the parametrization of LEA 68 and I=1 partial waves from previous solutions of GIACOMELLI 70, ALBROW 71, and LOVELACE 71; an energy-independent analysis (EI-1) which included $K^{\dagger}p$ data and determined both the I=0 and I=1 partial waves; and an energy-independent analysis (EI-2) in which the I=1 partial waves were fixed at the values of ALBROW 71's solution y. In analyses EI-1 and EI-2 several variants of the LOVELACE 71 shortest-path technique were used to link solutions at different energies. The solutions found by these different methods fell into three main families denoted A, C, and D, the best χ^2/NDF values being

Fig. 3. Amplitudes for I = 1 KN elastic scattering in the J = 1/2 and J = 3/2 waves from ADAMS 73 (φ) and CUTKOSKY 73 (+). The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 100 MeV and a base-to-tip length of 20 MeV. All the energy axes run from elastic threshold to 2500 MeV.

Baryons

Z^{*}'s

Data Card Listings For notation, see key at front of Listings.

ENERGY (MeV)

Fig. 4. Amplitudes for I = 1 KN elastic scattering in the J = 5/2 and J = 7/2 waves from ADAMS 73 (ϕ) and CUTKOSKY 73 (\dagger). The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 100 MeV and a base-to-tip length of 20 MeV. All the energy axes run from elastic threshold to 2500 MeV.

ENERGY (MeV)

Baryons Z^{*}'s

Fig. 5. Argand plots for the P₁₃ partial wave as obtained in partial-wave analyses performed by the authors indicated. (CARRERAS-1 70 plotted by us from η, δ .)

Baryons Z^{*}'s

Data Card Listings For notation, see key at front of Listings.

Fig. 6. Amplitudes for I = 0 KN elastic scattering from GIACOMELLI2 73. The energy dependence of the amplitudes is indicated by tick marks at even multiples of 100 MeV. These are results of the energy-dependent analysis exemplifying the three main classes of solutions found in the complete analysis.

1.4-1.9, 1.6-1.7, and 1.5-1.8, respectively. Examples of each class from an ED analysis using the I=1 partial waves of GIACOMELLI 70 are shown in Fig. 6. Some criteria for choice between these solutions are offered by comparison with particular features of the data. The single existing measurement of $K^+n \rightarrow K^0p$ polarization (RAY 69; 0.60 GeV/c) is consistent with classes C and D only. The I=0 total cross sections of CARROLL 73 and BOWEN 73 were not included in the fitting, but comparison is made with CARROLL 73 and the data are found to be consistent with class D only. LONDON 73 has calculated $K_L p \rightarrow K_S p$ amplitudes by combining the best (i. e., lowest χ^2) energy-dependent solution from each of GIACOMELLI2 73's classes with existing I=1 KN and $\overline{K}N$ solutions and compared the results with $K_L p \rightarrow K_S p$ cross-section data. He finds that the class D solution is preferred. No conclusive evidence for Z^* 's emerges from the analysis of GIACOMELLI2 73; the most likely candidate is the class D P₀₁ wave, but GIACOMELLI2 73 point out that the resonance interpretation is questionable for some of the class D solutions and for all of the class C solutions. A Breit-Wigner plus quadratic back-

Baryons Z^{*}'s, Z₀(1780), Z₀(1865)

ground fit to the class D P_{01} wave yields the following parameters: M=1740 MeV, Γ = 300 MeV, x = 0.85.

AARON 73 fit $K^{\dagger}n \rightarrow K^{0}p$ differential cross-section data and I=0 total cross-section data (not including CARROLL 73 and BOWEN 73) in the range 0.64 to 1.58 GeV/c using the results of earlier analyses for the I=1 channel. The analysis is a model-dependent one including all waves through G_{09} with the δ parameters parametrized as polynomials in c.m. momentum and the η parameters taken from AARON 71; these are calculated from a model in which all inelasticity in the I=0 KN channel is due to K^{*}N production via one pion exchange. Chi-squared values of about 560 for 353 degrees of freedom are obtained, and three types of solutions are found. However only two solutions (A and B) are consistent with the CEX polarization data of RAY 69, and both show counterclockwise loops in the D_{03} wave and corresponding peaks in the speed plots. AARON 73 interpret this as a resonance of mass 1830 MeV and width 100 MeV. The S_{01} (P₀₁) wave is found to show weaker indications of resonance behavior in solution A (B) only.

Production Experiments

There are no new developments in production experiments, and the observation of ERNE 70 that present upper limits for Z^* production are not small still holds. Cross-section limits for the production of broad Z^* 's are comparable to the observed N^* and Y^* production cross sections.

Figures

It has been necessary to reduce the Argand plots in Figs. 3 and 4 somewhat excessively because of space limitations. A booklet of reproductions and enlargements of all of the Argand plots in the Baryon mini-reviews is available on request from the Particle Data Group, LBL, Berkeley.

References

J. D. Dowell, private communication.
 R. E. Cutkosky, private communication.
 See the Data Card Listings for other references.

S=1 I=0 H	EXOTIC SI	ATES	(Z ₀)	
Z ₀ (1780) ⁹⁵ 2*0(1	L780+ JP≖1/2+) I=0	P ₀₁]	
SEE THE M WILSON 7: WITH RESC THE EFFEC IF A RESC IF A RESC	AINI-REVIEW PRECED 2 AND GIACOMELLI2 2 NANT-LIKE REHAVIO 2T SEEN THE THE I 2 CROSS SECTION IS 2 TION IS ABOUT 4+P	ING THIS LIS 73 FIND SOME R IN THE POI D TOTAL CROS SPIN=1/2, BE VERY SMALL I/K**2.	TING. SOLUTIONS PARTIAL WAVE. S SECTIONS, CAUSE THE AND THE TOTAL	
95 Z+0(1) M 1780.0 10.0 M D SEEN M D SEE ALSD DISCUSSIC M (1800.) M M ESTIMATE OF PARAMETER M 1 (1825.) M 1 Fit 1=Fit OF SINGLE (M 1 FIT 1=Fit OF L=1 ANO M (1740.)	1780] MASS (MEV) CCOL DOWELL NOF LISON WILSON SFOM BW + OUADR CARPOLL CARPOLL L 1 MHABACKGOUND L=2 BWS TO SAME D GIACOMEZ	70 CNTR + 70 CNTR 72 PWA ATIC BACKGRO 73 CNTR 73 CNTR 73 CNTR T0 1=0 TCS F BTA, 55 ZO(1 73 PWA	K+P. D TOTAL K+P.D TOTAL K+N POI WAVE UND FIT TO POI. KN I=0 TCS.FIT 1 KN I=0 TCS.FIT 1 KN I=0 TCS.FIT 1 KN I=0 TCS.FIT 1 S0M -4-11. GEV/C 865) FOR L=2 PAFT .38-1.51 GEV/C	1/71 7/70 3/72 3/72 9/73* 9/73* 9/73* 9/73*
95 Z*0() W (565.0) W (300.) W (600.) W (600.) W (845.) W (300.)	CCCL CCCL Wilson CARPOLL CARROLL GIACOME2	70 CNTR + 72 PWA 73 CNTR 73 CNTR 73 PWA	K+P, D TOTAL K+N PO1 WAVE KN I=0 TCS,FIT 1 KN I=0 TCS,FIT 2 .38-1.51 GEV/C	1/71 3/72 9/73* 9/73* 1/74*
95 2+0(1) P1 2+0(1780) INTO K N	.780) PARTIAL DECA	Y MODES	DECAY MASSES 493+ 939	
95 Z*0(1 RI Z*0(1780) INTO (K N)/1 QI (0.85) RI W (0.85) RI I (75) RI 1 (75) RI 1 (.91) RI (.85)	1780) BRANCHING RA OTAL COOL Milson Caroll Caroll Giacomez	TIOS 70 CNTR + 72 PWA 73 CNTR 73 CNTR 73 PWA ********	[] K+P, D TQTAL K+N PO1 WAVE IF J=1/2,FIT 1 IF J=1/2,FIT 2 .38-1.51 GEV/C	1/71 3/72 9/73* 9/73* 1/74*
COOL 70 DUKE CONF 47 ALSO 69 PL 308 564 ALSO 70 PR 01 887 DOWEL 70 DUKE 53 WILSON 72 NP 842 445 CARROLL 73 PL 456 531 GIACOME2 73 SURWID TO NP	REFERENCES FOR Z R L COOL ABRAMS,COOL,GIAC COOL,GIACOMELLI,I J.D. DOWELL +GRIFFITHS,HIRAT +KYCIA,LI,MICHAEL GIACOMELLI,+	C(1780) DMELLI,KYCIA (YCIA,LEONTI 4 + (BGNA+ (BGNA+	(BNL) +LI + (BNL) C,LI + (BNL) (BIRM) GLAS+RCMA+TRST) HM + (BNL)I GLAS+RCMA+TRST)IJ	Þ
LYNCH 70 DUKE 9 Hîrata 71 NP 830 157 Bowen 73 pr d7 22	G LYNCH (REVIEWE +GOLDHABER,HALL, +JENKINS,KALBACH	RED TO IN DA R OF CR.SEC. SEEGER,THRIL PETERSEN +	TA CARDS DATA) (LRL) LING,WOHL (LBL)IJ (ARIZ+MICH)	Þ
EXPERIMENTS MAINLY ABOUT GOLOMABE 62 PR1 9 135 PAY 69 PR 183 1183 ARMITAGE 72 NAL PAPER 391 GIACOME1 72 NP 856 346 ALSO 73 BGNA PPT. AE-73/4 LONDON 73 BNL PREPR. 18470	ELASTIC CHANNELS GOLDHABER, CHINOW: RAY, BURRIS, FISK, +ASTON, DUERDOTH, GIACOMELLI + GIACOMELLI, + GIACOMELLI, GRIFI DIONOON	SKY, GOLDHABE KRAEMER,HILL ELLISON, + (BGNA+ (BGNA+ YHS,+ (BGNA+	R+ (LRL+UCLA)TJI + +CARN+BNL (MCHS+DARE) GLAS+ROMA+TRST) GLAS+ROMA+TRST) GLAS+ROMA+TRST] (BNL)TJI	p
EXPERIMENTS MAINLY ABOUT GIACOMEL 72 NP B37 577	INELASTIC CHANNEL GIACOMELLI +	.S (BGNA+	GLAS+ROMA+TRST)	
Z ₀ (1865) , 115 GFFE THIS GF	865, JP=3/2-) I=0 CT IS STRONGLY AS: . SEE HRATA 68 IZ 73 REPORT PART CLAIMS A RESONANCI ALSO Z*0(1780].	Dog SOCIATED WIT AND TO. WIL IAL WAYE ANA E IN A HODEL	H THE K+ N SON 72 AND LVSES. DEPENDENT	
96 Z*0(1 M (1860.0) (15.0) M (1808.0) (10.0) M (1830.) M 1 (1840.) M 1 FIT2=FIT OF L=L AND L M 1 SFE Z0(1780) FOR FIT	865) MASS (MEV) CARTER COOL AARON CARROLL =2 BWS TO I=0 TCS 1 AND L=1 PART OF	67 THED 70 CNTR 73 MPNA 73 CNTR FROM .4-1.1 FIT 2.	DISPERSION REL. K+P, D TGTAL I=0 KN 6-1.66/C KN I=0 TCS.FIT 2 GEV/C.	8/67 8/67 9/73* 9/73* 9/73*

96 Z*0(1865) WIDTH (MEV) REFERENCES FOR Z#1(1900) 67 THED 70 CNTR 73 MPWA 73 CNTR CARTER 8/67 8/67 I=0 KN .6~1.6G/C 9/73* KN I=0 TCS,FIT 2 9/73* (200.0) (50.0) +BOWLER, BROWN, G+S GOLDHABER, SEEGER, + (LRL) A A CARTER (CAVENDISH) BLAND 67 PRL 18 1077 CARTER 67 PRL 18 801 (160.0) (100.) (75.) CDOL AARON CARPOLL
 AYED
 70
 PL
 32B
 404

 BARNETT
 70
 U
 MD_RPT
 70-101

 ALSO
 70
 DUKE
 443

 COOL
 70
 PR
 1
 1887

 ALSO
 66
 PRL
 17
 102
 +BAREYRE, FELTESSE, VILLET BARNETT,GOLDMAN,LAASANEN,STEINBERG BARNETT,GCLDMAN,LAASANEN,STEINBERG +GTACOMELLI, KYCIA, LEONTIC, LI, + CODL,GIACOMELLI,KYCIA,LEONTIC,LI + (SACLAY) LJP (UMD) 13P (UMD) 13P (UMD) 13P (BNL) 1 (BNL) 96 Z*0(1865) PARTIAL DECAY MODES +ANDERSON, ALMEHED...., UDD, WAGNER (CEPN) IJP ERNE, SENS, WAGNER (CERN) IJP KNOEHLER...., YOKOSAWA-BURLESON (ANL, NHES) IJP A. YOKOSAWA (ANL) IJP KATO, KOEHLER.NOVEY, YOKOSAWA+ (ANL, NHES) IJP DECAY MASSES 493+ 939 938+ 892 ALBRDW 71 NP 830 273 ALSO 70 DUKE 375 KATO 71 H.€.PHEN.,MORIOND ALSO 70 DUKE 367 ALSO 70 PRL 24 615 Z*0(1865) INTO K N Z*0(1865) INTO N K*(892) P1 P2 96 Z*0(1865) BRANCHING RATIOS +HIRATA,HUGHES + (BGNA+GLAS+ROMA+TRST) +NOVEY,YOKOSAWA,CUTKOSKY + (ANL+CARN+NWES)IJP GRIFFITH 72 NP 838 365 MILLER 72 NP 837 401 2*0(1865) INTG (K N)/TOTAL (.155) (.025) (.115) (.025) (.085) (P1) CARTER 67 THEO IF J=3/2 CCOL 70 CNTR IF J=3/2 CARROLL 73 CNTR IF J=3/2,FIT 2 R1 R1 R1 R1 9/73* 9/73* 9/73* PAPERS NOT REFFERED TO IN Z*1 DATA CARDS TOTAL-CROSS-SECTION EXPERIMENTS ---BUGE 68 PR 168 1466 +GILMORE.KNIGHT, + (RHEL,BIRM.CAVE) I ROLEM 70 PR 02 2599 +CALDWELL, DIKMEN, JENKINS, KALBACH.+(ARIZ) I BOHEM 73 PR 07 22 + JENKINS.KALBACH.PETERSEN + (ARIZHICH) CARPOLL 73 BNL PREPRINT +KVCIA.LIN.HCHAEL.MOCKETT (BNL) Z#0(1865) INTO N K#(892) (P2) Main Inelastic Decay Hirata 68 HBC 11/68 REFERENCES FOR Z#0(1865) A K-MATRIX ANALYSIS OF SOME OF THE EARLY K+P DATA ---67 THESIS G E HITE (ILLINOIS) A A CARTER (CAVENDISH) HIRATA, WCHL, GOLDHABER, TRILLING (LRL) COOLGIACOMELLI,KYCIA,LEONTIC,LI + (BNL) +GIACOMELLI,KYCIA,LEONTIC,LI + (UNDBY,+ (BNL) ABRAMS,COOLGIACOMELLI,KYCIA,LI + (BNL) ARAMS,ANG,RICH,HOGAN,SRIVASTAVA (LSL+NEASIJJ +KYCIA,LI,MICHAEL,MOCKETT,RAHM+ (BNL)I CARTER 67 PRL 18 801 HIRATA 68 PRL 21 1485 CPOL 70 PR D1 1887 ALSO 66 PRL 17 102 ALSO 69 PL 308 564 AARON 73 PRD 7 1401 CARROLL 73 PL 458 531 THEORETICAL AND MODEL DEPENDENT ANALYSES CARRERAS TO NP B19 349 B CARPERAS, A DONNACHIE (DARESBURY, MCHS) ALCOCK 73 NP B56 1973 ALCOCK,COTTINGHAM (BRIS)IJP
 EXCERTING
 FXXEFINE
 FXXEFINE
 FXXEFINE
 FXXEFINE

 RLAND
 68
 UCAL-18131
 FHESIS
 FX
 FXAND

 BLAND
 69
 NP
 813
 595
 + BOWLER, BRDWN, KADVK, GOLDHABER, + (IRL)

 BLAND
 69
 AND
 ELACK
 FXAND
 FXAND

 BLAND
 69
 AND
 ELACK
 BLAND
 GAL

 BLAND
 69
 AND
 ELACK
 BLAND
 GAL

 BLAND
 69
 AND
 ELACK
 FXAND
 GAL

 BLAND
 69
 AND
 ELACK
 FXAND
 GAL
 HIR

 BLAND
 69
 AND
 ELACK
 BLAND
 GAL
 HIR
 <t PAPERS NOT REFERRED TO IN DATA CARDS +GOLDHABER,SEEGER,TRILLING+WOHL (LRL) *AMADD+SILBAR (NEAS,PENN,LASL)IJP *GOLDHABER,HALL,SEEGER,TRILING,WOHL (LBL) GIACOMELLI + (BONAFGLAS+ROMAFTRST) *GRIFFITNS,HIRATA + (BONAFGLAS+ROMAFTRST) HIRATA 70 DUKE 429 AARON 71 PRL 26 407 HIRATA-1 71 NP 833 445 GIACOMEL 72 NP 837 577 WILSON 72 NP 842 445 LEWIS, 73 NP 860 283 LEWIS, ALLEN, JACOBS, DANYS2+ (LOUCC+OIT-KOEF) THE MAIN ELÁSTIC SCATTEFING AND POLARIZATION EXPERIMENTS --CARROLL 68 PRL 21 1282 +FISCHER, LUNDAY, PHILLIPS, + IBNL-ROCH ANDERS-1 69 PL 286 611 ANDERSSON, DAUM, ERKE, LAGNAUX, + (CERN) ASBURY 69 PRL 23 194 + DOWELL, KATO, LUNDOUIST, NOVEY, +(ANL, WN) GIACOMELI, GATEFIL, GRIFFINS, IBONA, GAS, ROMA, TRSTIJP HALL 70 PNL 24 160 + RONGONE, DUFF, HEYMANN, IMRIE,+ (LOUC, RHELIJP ADAMS 71 PR D4 2637 + BLAND, GOLDHABER, TRILLING (LRL) BARNET 71 PR D4 2637 + BLAND, GOLDHABER, TRILLING (LRL) HALL 70 PNL 24 160 + ROTHBERG, ETKINS, GLODIS, + (YALE) JP ADAMS 71 PR D4 2637 + DAYES, STEINSTEIN, KIM, CHALLORAN, + (LLE) JP ADAMS 71 PR D4 2637 + DAYES, STEINSTEIN, KIM, CHALLORAN, + (ILL) ADAMS 72 NAL PAPER 326 + COXA, DAWARS, GIBSON, + (BIS, RHEL, SHMP) ALSO 72 NAL PAPER 327 CHARLES, T2 NP 404 296 + COXA, DAWARS, GLOBAN, + (BIS, RHEL, SHMP) ALSO 72 NAL PAPER 287 CHARLES, COMAN, LANSANEN, + (UNCANL, HUCANL) BARNET 73 NP 861 125 BARNETT, 30 PD 861 275 BARNETT, 30 PD 861 275 BARNETT, 30 PUROUE CONF. (HARLES, T3 PUROUE CONF. CHARLES 73 PUROUE CONF. CHARLES 74 PUAPER 280 CHARLES, CHARDAS, (SHMP+AARH+RHEL+BRS) PHASE SHIFT ANALYSES S=1 I=1 EXOTIC STATES (Z₁) P₁₃ **Z1(1900)** ⁹⁷ Z*111900, 37-372. THIS EFFECT IS STRONGLY ASSOCIATED WITH THE K-DELTA THRESHOLD. SEE THE MINIREVIEW PRECEDING Z*0(1780) 97 Z#1(1900) MASS (MEV)
 97
 Z*I[1900] MASS (MEV)

 (1932.0)
 AYED
 70 IPWA
 PI3.SOL.1

 (1899.0)
 AYED
 70 IPWA
 PI3.SOL.1I

 (2030.0)
 AYED
 70 IPWA
 SI1.SOL.1II

 TMPEE SOLMS IN ORDER OF DECERASING SIGNIFICANCE.
 HOUMAND AYED
 70

 GIVE PARAMETERS.THEY CONCLUDE RESONANT INTERPRETATION DOUBTFUL.
 BARNET
 70 IPWA

 11830.1
 BARNET
 70 IPWA
 PI3.SOL.NII

 RESONANCE SIGNAL BARELY ABOVE BAKKGRQUND DUE TO THE LARGE ERRORS
 10.0
 COL
 70 CNTR ++ K+P TOTAL

 1900.0
 10.0
 COL
 70 CNTR ++ K+P TOTAL
 (1880.)
 ALBROW TI IPWA ++ SOL GAMMA

 (1880.)
 ALBROW TI IPWA ++ SOL II(FIT BW)
 KATO TI IPWA SOL II(FIT BW)
 KATO TI IPWA SOL II(FIT BW)

 (2040.)
 KATO TI IPWA SOL II(FIT BW)
 FOR THE RESONANCE PRARAMETERS -- UPDATED PHASE SHIFTS

 PUBLISHED IN MILLER 72.
 6/70 6/70 6/70 2 PHASE SHIFT ANALYSES CARRERAI TO NP 823 525 ALSO TO DUKE 447 LEA 71 NP 826 413 LOVELACE 71 NP 828 141 CUTKOSKY 72 NAL PAPER 210 EHRLICH 72 NAL PAPER 210 EHRLICH 72 NAL PAPER 447 MARTIN 72 PREPRINT CUTKOSKY 73 PURDUE CONF. 175 9/73+ 2 B CARRERAS, A DONNACHIE (DARE)IJP +DONNACHIE,KIRSOPP (DARE+MCHS+ EDIN) +MARTIN,THOMPSON (RHEL,LOUC)IJP +MAGRER (CERN)IJP +MICKS,KELLY,SHIH,JOHNSON (CARN=ILL+ANL) +ETKIN,GLODIS,HUGHES,LU,PATTON + (YALE) B.R.MARTIN, C.F.HILER (LOUC) CUTKOSKY,HICKS,KELLY,+ (CARN+11T+ANL)IJP 1/71 10/71 10/71 10/71 3/72 3/72 (LOUC) (CARN+IIT+ANL)IJP . EARLIER ANALYSES THAT DO NOT INCLUDE RECENT POLARIZATION DATA --LEA 68 PR 165 1770 LEA, MARTIN, DADES (RHEL,BNL,CERN) MARTIN 68 PRL 21 1286 8 R MARTIN (BNL) CUTKOSKY 70 PR D1 2547 R E CUTKOSKY, B B DED (CARNEGIE-MELLON) 1 97 Z+1(1900) WIDTH (MEV) (520.0) (397.0) (557.0) (120.) (240.0) (190.) (280.) 6/70 6/70 6/70 9/73* 1/71 10/71 10/71 10/71 70 IPWA K+P 70 IPWA K+P 70 IPWA K+P 70 IPWA P13,SOLN III 70 CNTR +K+P TOTAL 71 IPWA ++ SOL. GAMMA 71 IPWA SOL II(FIT BW) 71 IPWA SOL II(FIT BW) 1 1 1 2 AYED ******* AYED AYED BARNETT CCOL ALBROW KATO KATO LATEST REVIEW TALKS LEVISETT 69 LUND CONF 341 GOLDHABE TO DUKE 407 DOMELL 72 NAL REVIEW LOVELACE 72 NAL REVIEW DOWELL 73 PURDUE CONF. 157 R LEVI SETTI (PAPPORTEUR) G.GOLDHABER (REVIEWER) PEVIEW TALK IN BARYON SESSION RAPPORTEUR'S TALK DOWELL (CHICAGE) (LRL) (BIRM) (RUTG SEE NOTES ACCOMPANYING MASSES QUOTED. 97 Z#1(1900) PARTIAL DECAY MODES Z1(2150) 93 Z*1(2150, JP- 1 I*1 DECAY MASSES Z*1(1900) INTO K N Z*1(1900) INTO N*3/2(1232) K 493+ 938 1232+ 493 Р1 Р2 BUMPS A SMALL BUMP IN TOTAL CROSS SECTION AT PK=1.8 GEV/C 97 Z#1(1900) BRANCHING RATIOS Z*1(1900) INTO (K N)/TOTAL (0.10) OR LESS (0.16) (0.20) (P1) DISPERSION REL. 8/67 6/70 913,SOLN 11 9/73+ ** K*P TOTAL 1/71 ** SOL. GAMMA 10/71 10/71 (P1) 67 THEO DISPERSION REL 70 IPWA 70 IPWA P13,SOLN TII 70 CNTR ++ K>P TOTAL 71 IPWA ++ SOL GAMMA 71 IPWA SOL II(FIT BW) R1 R1 R1 R1 R1 R1 R1 R1 R1 CARTER 93 Z#1(2150) MASS (MEV) 1 1 1 2 AYED AYED BARNETT 2150. 20. ABRAMS 70 CNTR ++ K+P TOTAL 10/71 10.171 (.12 - ----- ------(0.12) (ASSUMING J=3/2) COOL (0.15) ALBROW (0.22) KATO (0.27) KATO 93 Z*1(2150) WIDTH (NEV) ĸ 10/71 w (175.) ABRAMS 70 CNTR + K+P TOTAL 10/71 SEE NOTES ACCOMPANYING THE MASSES QUOTED. 2*1(1900) INTO K N#3/2(1232) (P2) MAIN INELASTIC DECAY BLAND 67 HBC ** ND EVIDENCE, SPEED HAS HINH, GRIFFITHS 72 HBC K+P .9-1.5 GEV/C 3/72 R2 R2 R2 93 Z#1(2150) PARTIAL DECAY MODES DECAY MASSES 493+ 938 Р1 Z*1(2150) INTO K N

Baryons $Z_0(1865), Z_1(1900), Z_1(2150)$

Baryons $Z_1(2150)$, $Z_1(2500)$, A's and Σ 's

		93	Z*1(2150)	BRANCHING R#	1105		
P1	Z*1(2150)	INTO (K	NI/TOTAL			(P1)	
RI	J 15 NOT	KNUWN. 04]	THE FOLLO	ABRAMS	70 CNTR	+ K+P TOTAL	10/71
*****	*******	******	** *****	*** ********	*******	* ******** ******	r
			REFI	ERENCES FOR 2	*1(2150)		
. A B P A M S AL	70 PR (50 67 PRL)	01 1917 19 257	+C00 ABR/	DL,GIACOMELLI AMS,COOL,GIAC	.KYCIA.LE OMELLI.KY	GNTIC,LI + {BNL} CIA,LEONTIC+ {BNL}	
****** ******	********	*******	** ******	*** ********	*******	* ******** *******	•
7.	(2500	ע ה					
	NDC	//"	2+1(2500,		5 556710N	47	
БС	MIS	PK=2	.7 GEV/C	IN TOTAL CRUS	5 SECTION	AI	
	\longrightarrow	•					
		94	Z*1(2500)	MASS (MEV)			
M	2500.	20	•	ABRAMS	70 CNTR	++ K+P TOTAL	10/71
		94	Z*1(2500)	WIDTH (MEV)			
W	(160.)	F .		ABRAMS	70 CNTR	++ K+P TOTAL	10/71
							
		94	Z*1(2500)	PARTIAL DECA	Y MGDES		
P1	Z*1(2500)	ιντο κ	N			DECAY MASSES 493+ 938	
		 94	 Z*1(2500)	BRANCHING RA			
R1	Z*1(2500)	INTO (K	N}/TOTAL			(P1)	
R1 R1	J 15 NOT (0.0	KNOWN, 31	THE FOLLOW	ING IS (J+1/ ABRAMS	2)*P1 7C CNTR	++ K+P TOTAL	10/71
*****	********	******	** ******	** *******	*******	* ******** ******	
			PEF	RENCES FOR Z	*1(2500)		
ABRAMS AL	70 PR 0 50 67 PRL 1	01 1917 19 257	+C00 4884	UL,GIACOMELLI MS,CODL,GIAC	•KYCIA•LE CMFLLI•KY	CNTIC,LI + (BNL) CIA,LEONTIC+ (BNL)	
****** *****	******** ******	****** ******	** ******* ** *******	** *********	******* ****	* ******** ********	
		7.	CROSS	SECTION	I IMTT	S	
		~1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	212011011	للصبيد	0	

 SEE MINIREVIEW PRFCEDING Z+0

 CS UNITS MICROBARNS SL TEAN 50.
 BASSOMPTE 68 HBC
 K+P TO Z*+ PI+
 10/69

 CS A LESS THAN 50.
 -1
 ANDERSON 69 ASPK + PI-P TO K-Z*+
 10/69

 CS A LESS THAN 1.4
 +1.9
 -5
 ANDERSON 69 ASPK + PI-P TO K-Z*+
 10/69

 CS 8 LESS THAN 1.4
 +1.9
 -5
 ASPCR CL *99 P.C.
 10/69

 CS 8 LESS THAN 1.4
 +1.9
 -5
 ASPCR CL *9 ASPK + PI-P TO K-Z*+
 10/69

 CS 8 LESS THAN 1.4
 +1.9
 -5
 ASPCR CL *9 ASPK + PI-P TO K-Z*+
 10/69

 CS 8 LESS THAN 1.4
 +1.9
 -5
 ASPCR CL *9 ASPK + PI-P TO K-Z*+
 10/69

 CS 8 LESS THAN 1.4
 +1.9
 -5
 ASPCR CL *9 ASPK + PI-P TO K-Z*+
 10/69

 CS 8 LESS THAN 1.4
 +1.9
 -5
 ASPCR CL *9 ASPK + PI-P TO K-Z*+
 10/69

 CS 8 LESS THAN 1.4
 +1.9
 -5
 ASPCR CL *9 ASPK + PI-P TO K-Z*+
 10/69

 CS 8 LESS THAN 1.4
 +1.9
 -5
 ASPCR CL *9 ASPK + PI-P TO K-Z*+
 10/69

 REFERENCES FOR Z*1 CROSS SECTION LIMITS
 ASSOMPT 168 PL 276 468
 BASSOMT 168 PL 276 468
 A

Note on Y^{*'s}

The number of known or suspected Υ^* states has increased considerably in the last few years, following closely a similar increase in the number of N^* states. Just as the recently discovered N^{*_1} 's are only weakly coupled to the $\pi N \rightarrow \pi N$ reaction, so also are the recently discovered Υ^{*_1} 's only weakly coupled to the $\overline{KN} \rightarrow \overline{KN}$, $\overline{KN} \rightarrow \Lambda \pi$, and $\overline{KN} \rightarrow \Sigma \pi$ reactions. For this reason the newer Υ^{*_1} 's are more difficult to uncover; in invariant mass distributions they usually appear as small peaks or make no appearance at all. Rather when the 2-body reactions are partial-wave

Data Card Listings For notation, see key at front of Listings.

analyzed, some of the amplitudes are found to traverse resonance-like counterclockwise circles. The results of partial-wave analysis give J^P information, whereas a peak seen in an invariant mass distribution or a total cross section often cannot be analyzed for its quantum numbers. We will keep information coming from formation experiments and from production experiments separate whenever necessary.

Production Experiments

These types of experiments are often difficult to analyze. Information on I = 0 states is possible only when there is no I = 1 state at similar mass. The main controversies at the present time concern resonances in the 1600 to 1700 MeV region. See the mini-reviews on Σ (1620) and on Σ (1670) in these listings. The situation has not changed significantly during the last few years. For a good review, one can still refer to Miller 70.¹

Formation Experiments

Partial-wave analyses have been performed on $\overline{K}N$, $\Lambda\pi$, $\Sigma\pi$, and ΞK , plus some quasi-2-body channels. Given the present accuracy of the data it is not possible to perform a completely energy-independent analysis, that is, solve for the partial-wave amplitudes at each energy in a model-independent way.

Three recent analyses have attempted a multichannel approach using data on the three 2-body reactions $\overline{K}N$, $\Lambda\pi$, and $\Sigma\pi$, a fictitious channel sometimes being introduced to account for the global effect of the remaining final states. The latter have large cross sections, so the present multi-channel analyses do not really impose any more stringent unitarity constraints than those already contained in the singlechannel fits. However, there is an advantage in the determination of resonance parameters (masses, widths, and branching fractions) since they are fit simultaneously to data in all three channels.

a) LANGBEIN 72 (LW) performed single-energy fits at 40 momenta between 436 and 1226 MeV/c. The partial waves at each energy were expressed in a form that automatically satisfies the unitarity equation:

$$\operatorname{Im} \mathbf{T}_{\overline{K}N} \geq |\mathbf{T}_{\overline{K}N}|^2 + |\mathbf{T}_{\Sigma\pi}|^2 + |\mathbf{T}_{\Lambda\pi}|^2.$$

This work is the nearest approximation to an energyindependent partial-wave analysis existing for the S=-1 system. However, the partial waves corres-

Baryons Λ 's and Σ 's

ponding to the D_{03} (1690), $D_{15}(1765)$, $F_{05}(1815)$, and $F_{17}(2030)$ resonances were constrained to have Breit-Wigner forms in the range $|E-M_R| < \Gamma$, with parameters near the expected values. Approximately 90 acceptable single-energy fits per energy were generated and were used in shortest-path searches over two regions, 1536 to 1700 MeV and 1700 to 1900 MeV. Several candidates for acceptable shortest paths were generated, and a preferred path was chosen by rejecting those that failed to reproduce known resonance behavior. Resonances in this solution were identified by loops in Argand diagrams correlated with peaks in the ≥ 3 -body final state cross section. Resonance parameters were then extracted by fitting BW's with both multiplicative and additive background.

Our conclusion about this work is that the amplitudes which were not specifically chosen to be resonant (sometimes even those, as in the case $D_{15}(1765) \rightarrow \Lambda \pi$) show an erratic behavior which cannot be justified simply by the fluctuation of the data. This may be due to jumping between different ambiguous solutions at different energies (see the discussion of IPWA in the main text). Argand diagrams of the elastic and $\overline{K}N \rightarrow \Sigma \pi$ partial-wave amplitudes from this analysis are shown in Figs. 1-10.

b) KIM 71 (K) fit data from threshold to 1226 MeV/c using the Ross and Shaw² effective-range expansion of the inverse multi-channel K-matrix. The data in each of seven energy intervals bounded by 0, 534, 658, 806, 916, 1022, 1117, and 1226 MeV/c, were fit with a constant effective-range matrix. Only the F_{15} (1915) was fixed to a BW form, all other waves included being parametrized by the K-matrix formalism. Resonances were identified by a method involving the appearance of loops in the Argand diagram, peaks in the speed plot, and poles of the K-matrix, the exact procedure not being reported. The parameters used to describe the K-matrix elements are not given.

c) The latest published analysis is LEA 73 (LMMO). It is a multi-channel energy-dependent partial-wave analysis with parametrized K-matrix elements. The momentum range covered is 440 to 1190 MeV/c and 99 parameters were used in the fit. Established resonances were constrained to have parameters near their generally accepted values taken from a previous edition of these tables (for this reason we do not list the results of LEA 73 for these resonances in the fol-

Data Card Listings For notation, see key at front of Listings.

lowing data cards). New resonances are identified using poles of the K-matrix. As with KIM 71, the procedure used to get the resonance parameters is not described and the values of the fitted K-matrix elements are not given. Argand diagrams of the partial-wave amplitudes from this analysis are given in Figs. 1-10.

In the previous energy-dependent analyses which used simple parametrizations of the partial waves, the presence of a resonance was based on the goodness of fit for a non-resonant parametrization as compared to the fit for a BW form alone or a BW form plus smooth background. In the more recent approaches of KIM 71 and LEA 73 the procedure used is different. The K-matrix parametrization can accommodate either resonant or non-resonant behavior; the presence or absence of particular resonances depends on the particular values of the K-matrix parameters obtained in the fit. No explicit comparison of the results with alternative parametrizations is made.

In the momentum range 400 to 1200 MeV/c the latest analysis fitting the 3 channels separately is still that of ARMENTEROS 70 (CH), a brief description of which can be found in the previous edition of this compilation. This analysis uses just as much data as the multi-channel analyses described above, and imposes a degree of energy smoothing intermediate between that of LEA 73 and LANGBEIN 72.

In Table I we list the poorly established resonances (i.e., those with only one or two stars in Table II below) in the S or P wave claimed by at least one of the four analyses mentioned above.

Wave CH	<u> </u>	LW	LMMO
s ₀₁	1780/40/ K N	1830/70/ K N	
P ₀₁	1570/50/?	1620/60/?	
$P_{01} \begin{cases} 1750/70/\Sigma\pi \\ 1800/30/\overline{K}N \end{cases}$	1755/35/KN	1780/120/KN	
P ₀₃		1850/125/KN	1868/324/ K N
s _{i1}	1620/40/Λπ	1630/65/Σπ	
S ₁₁ 1730/80/Λπ	1790/50/ K n	1790/100/KN	
P., {1500-1600/50/∑π	1670/50/Σπ		1621/52/Σπ
¹¹ (1850/30/KN	, , -		1898/222/KN
P ₁₃		1840/120/KN]

Table I. Comparison of recent Y claims. Notation is mass (MeV)/width (MeV)/strongest two-body channel; CH = CERN-Heidelberg, K = Kim, LW = Langbein and Wagner, LMMO = Lea et al. Baryons Λ 's and Σ 's

Data Card Listings For notation, see key at front of Listings.

1. Amplitudes for $\overline{K}N$ scattering in the S_{11} Fig. partial wave. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 25 MeV and a base-to-tip length of 5 MeV (except for LANGBEIN 72 where only the base is shown). The results of two different analyses are shown for each channel; the energy axes for the two analyses are aligned for ease of comparison. All the energy axes run from elastic threshold to 2000 MeV. The upper Argand plot for each channel is from LEA 73. The lower plot is from LANGBEIN 72 for the elastic and $\pi\Sigma$ channels, and from VAN HORN 72 for the $\pi\Lambda$ The signs of the $\pi\Sigma$ amplitudes from channel. LANGBEIN 72 have all been changed in order to agree with the convention of LEA 73. The amplitudes shown for VAN HORN 72 were obtained by averaging three energy-dependent fits (his fits H, K, R) and assigning error bars that cover the range of these three fits. The only established resonance in this wave is the $\Sigma(1750)$; see the accompanying mini-review and the Data Card Listings for other possible resonances in the S₁₁ wave.

Fig. 2. Amplitudes for KN scattering in the P11 partial wave. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 25 MeV and a base-to-tip length of 5 MeV (except for LANGBEIN 72 where only the base is shown). The results of two different analyses are shown for each channel; the energy axes for the two analyses are aligned for ease of comparison. All the energy axes run from elastic threshold to 2000 MeV. The upper Argand plot for each channel is from LEA 73. The lower plot is from LANGBEIN 72 for the elastic and $\pi\Sigma$ channels, and from VAN HORN 72 for the $\pi\Lambda$ channel. The signs of the $\pi\Sigma$ amplitudes from LANGBEIN 72 have all been changed in order to agree with the convention of LEA 73. The amplitudes shown for VAN HORN 72 were obtained by averaging three energy-dependent fits (his fits H, K, R) and assigning error bars that cover the range of these three fits. This wave contains the Σ pole but no established resonances; see the accompanying mini-review and the Data Card Listings for possible resonances in the P₁₁ wave.

159

Baryons

Baryons

80-11M(P13) 1500 1700 1 800 150 -.15 .3(1700 1900 (MeV) REP13 ENERGY 150 1600 KN ELASTIC P13 AMPLITUDE 1700 1900 ENERGY (MeV) ENERGY (MeV) 30-JIM(P13) 1500 1700 1800 -.16 . 15 +++1700 ~.15 -.31 .30 .16 16 BE(P13) 1500 1500 $\overline{K}N \rightarrow \pi \Lambda$ P13 AMPLITUDE 1700 1900 ENERGY (MeV) ENERGY (NeV)

Data Card Listings For notation, see key at front of Listings.

Amplitudes for $\overline{\mathrm{KN}}$ scattering in the P₁₃ Fig. 3. partial wave. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 25 MeV and a base-to-tip length of 5 MeV (except for LANGBEIN 72 where only the base is shown). The results of two different analyses are shown for each channel; the energy axes for the two analyses are aligned for ease of comparison. All the energy axes run from elastic threshold to 2000 MeV. The upper Argand plot for each channel is from LEA 73. The lower plot is from LANGBEIN 72 for the elastic and $\pi\Sigma$ channels, and from VAN HORN 72 for the $\pi\Lambda$ channel. The signs of the $\pi\Sigma$ amplitudes from LANGBEIN 72 have all been changed in order to agree with the convention of LEA 73. The amplitudes shown for VAN HORN 72 were obtained by averaging three energy-dependent fits (his fits H, K, R) and assigning error bars that cover the range of these three fits. The only established resonance in this wave is the $\Sigma(1385)$ which lies below elastic threshold and does not appear here; see the accompanying mini-review and the Data Card Listings for other possible resonances in the P₁₃ wave.

Baryons Λ 's and Σ 's

Data Card Listings For notation, see key at front of Listings.

Fig. 4. Amplitudes for $\overline{\mathrm{K}}\mathrm{N}$ scattering in the D_{13} partial wave. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 25 MeV and a base-to-tip length of 5 MeV (except for LANGBEIN 72 where only the base is shown). The results of two different analyses are shown for each channel; the energy axes for the two analyses are aligned for ease of comparison. All the energy axes run from elastic threshold to 2000 MeV. The upper Argand plot for each channel is from LEA 73. The lower plot is from LANGBEIN 72 for the elastic and $\pi\Sigma$ channels, and from VAN HORN 72 for the $\pi\Lambda$ channel. The signs of the $\pi\Sigma$ amplitudes from LANGBEIN 72 have all been changed in order to agree with the convention of LEA 73. The amplitudes shown for VAN HORN 72 were obtained by averaging three energy-dependent fits (his fits H, K, R) and assigning error bars that cover the range of these three fits. Established resonances in the D_{13} wave are the $\Sigma(1670)$ and the $\Sigma(1940)$.

60-11M(D15) .18 1500 1700 1900 .16 .30 1900 -.15 1500 1700 ENERGY (MeV) -.15 RE(DIS) 1500 1500 KN ELASTIC D15 AMPLITUDE 170 3 ENERGY (NoV) ENERGY (MoV) .30 (D15) .11 150 - .18 .16 -.30-.30 -.15 RE(DIS) 500 1500 $\overline{K}N \rightarrow \pi \Lambda$ D15 AMPLITUDE 1700 ENERGY (MoV) ENERGY (MeV)

Fig. 5. Amplitudes for $\overline{\rm K}{\rm N}$ scattering in the D_{15} partial wave. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 25 MeV and a base-to-tip length of 5 MeV (except for LANGBEIN 72 where only the base is shown). The results of two different analyses are shown for each channel; the energy axes for the two analyses are aligned for ease of comparison. All the energy axes run from elastic threshold to 2000 MeV. The upper Argand plot for each channel is from LEA 73. The lower plot is from LANGBEIN 72 for the elastic and $\pi\Sigma$ channels, and from VAN HORN 72 for the $\pi\Lambda$ channel. The signs of the $\pi\Sigma$ amplitudes from LANGBEIN 72 have all been changed in order to agree with the convention of LEA 73. The amplitudes shown for VAN HORN 72 were obtained by averaging three energy-dependent fits (his fits H, K, R) and assigning error bars that cover the range of these three fits. The only established resonance in the D_{15} wave is the Σ(1765).

Baryons Λ 's and Σ 's

.10-11M(F16) 25

1500

-.06

150 1700 ~ $\overline{K}N \rightarrow \pi\Sigma$ F15 AMPLITUDE 1900 ENERGY (MeV) Fig. 6. Amplitudes for $\overline{K}N$ scattering in the F₁₅ partial wave. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 25 MeV and a base-to-tip length of 5 MeV (except for LANGBEIN 72 where only the base is shown). The results of two different analyses are shown for each channel; the energy axes for the two analyses are aligned for ease of comparison. All the energy axes run from elastic threshold to 2000 MeV. The upper Argand plot for each channel is from LEA 73. The lower plot is from LANGBEIN 72 for the elastic and $\pi\Sigma$ channels, and from VAN HORN 72 for the $\pi\Lambda$ channel. The signs of the $\pi\Sigma$ amplitudes from LANGBEIN 72 have all been changed in order to agree with the convention of LEA 73. The amplitudes shown for VAN HORN 72 were obtained by averaging three energy-dependent fits (his fits H, K, R) and assigning

error bars that cover the range of these three fits. The only established resonance in this wave is the $\Sigma(1915)$; see the Data Card Listings for other possible

Baryons

Baryons A's and Σ's

Fig. 8. Amplitudes for $\overline{K}N$ scattering in the S_{01} and P_{01} partial waves. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 25 MeV and a base-to-tip length of 5 MeV (except for LANGBEIN 72 where only the base is shown). The results of two different analyses are shown for each channel; the energy axes for the two analyses are aligned for ease of comparison. All the energy axes run from elastic threshold to 2000 MeV. The upper Argand plot for each amplitude is from LEA 73; the lower plot is from LANGBEIN 72. The signs of the $\pi\Sigma$ amplitudes from LANGBEIN 72 have all been changed in order to agree with the convention of LEA 73. Established resonances in the S_{01} wave contains the Λ pole but no established resonances. See the accompanying mini-review and the Data Card Listings for other possible resonances in the S_{01} and P_{01} waves.

Baryons

Data Card Listings For notation, see key at front of Listings.

Fig. 9. Amplitudes for $\overline{K}N$ scattering in the P_{03} and D_{03} partial waves. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 25 MeV and a base-to-tip length of 5 MeV (except for LANGBEIN 72 where only the base is shown). The results of two different analyses are shown for each channel; the energy axes for the two analyses are aligned for ease of comparison. All the energy axes run from elastic threshold to 2000 MeV. The upper Argand plot for each amplitude is from LEA 73; the lower plot is from LANGBEIN 72. The signs of the $\pi\Sigma$ amplitudes from LANGBEIN 72 have all been changed in order to agree with the convention of LEA 73. Established resonances in the D_{03} wave are the $\Lambda(1520)$ and the $\Lambda(1690)$; there are no established resonances in the P_{03} and D_{03} waves.

Baryons Λ 's and Σ 's

Fig.10. Amplitudes for $\overline{K}N$ scattering in the D_{05} and F_{05} partial waves. The energy dependence of each amplitude is displayed by plotting its real and imaginary parts vs. energy, in alignment with the corresponding Argand plot. In addition, arrows are plotted on the Argand plots with bases positioned at even multiples of 25 MeV and a base-to-tip length of 5 MeV (except for LANGBEIN 72 where only the base is shown). The results of two different analyses are shown for each channel; the energy axes for the two analyses are aligned for ease of comparison. All the energy axes run from elastic threshold to 2000 MeV. The upper Argand plot for each amplitude is from LEA 73; the lower plot is from LANGBEIN 72. The signs of the $\pi\Sigma$ amplitudes from LANGBEIN 72 have all been changed in order to agree with the convention of LEA 73. Established resonances in these waves are the $\Lambda(1830)$ in the D_{05} wave and the $\Lambda(1815)$ in the F_{05} wave.

167

Baryons Λ 's and Σ 's

There are fewer analyses which extend above 1200 MeV/c; all of them are of the single-channel energy-dependent type.

A new method to compare different partial-wave analyses is one involving the properties of the "Barrelet zeroes".^{3,4} Using a particular set of N partial waves, this technique can be used to generate all the 2^N-1 other sets corresponding exactly to the same cross section and polarization as the original set: VAN HORN 72 has done an energy-dependent fit of the $\Lambda\pi$ channel Legendre coefficients over the energy range 1537-2215 MeV. Using the Barrelet method, he has generated the ambiguous solutions corresponding to his best fit. Seven of them preserve the established resonances $D_{1,3}(1670)$, $D_{15}(1765)$, $F_{15}(1915)$, and $F_{17}(2030)$. The couplings of these resonances to the $\Lambda\pi$ channel are sometimes very different in the "ambiguous solutions" from their generally accepted values. Also new resonance structures appear in all the waves, particularly in the lower spins. This analysis is instructive in so far as demonstrating that there could be an entire constellation of other possible resonances beyond those which appear at the primitive stage of the analysis. However, one should keep in mind that these possible resonances do not necessarily correspond to a simple or even plausible parametrization of the amplitudes.

The values we have listed on the data cards correspond to the average of the 20 best original fits of this analysis (all containing the established, plus <u>a</u> few probable, resonances).

Figures

Argand plots of 13 S=-1 partial waves are shown in Figs. 1-10. The analyses shown were picked largely for illustrative purposes rather than on the basis of our judgment of their quality; as discussed above there are a number of analyses extant and no clear choice of the "best" ones is possible. We show LEA 73⁵ and LANGBEIN 72 to allow comparison of a highly smoothed analysis with an unsmoothed shortest-path analysis. These analyses used essentially the same data. VAN HORN 72 is shown as one of the few analyses that extends beyond 1200 MeV/c. It has been necessary to reduce the figures somewhat excessively because of space limitations. A booklet of larger versions of all the Argand plots in the Baryon mini-reviews is available on request from the Particle Data Group, LBL, Berkeley.

Data Card Listings For notation, see key at front of Listings.

Errors on Masses and Widths

Often the quoted errors are only statistical, but the values of masses and widths can change well above these errors when a new parametrization is used. For this reason we report the values of M, Γ , and x_i obtained by different authors even if they analyze the same data. The spread of these masses and widths is certainly a better estimate of the uncertainties than the statistical errors. Sometimes the errors quoted are obtained by the inspection of various fits done with different hypotheses (see, for example, BERTHON 70, GALTIERI 70 and VAN HORN 72). For two states, $\Lambda(1820)$ and $\Sigma(1765)$, there are enough data available to perform an overall fit of the various x_i of the type discussed in the main text (section V.C). In this case we are forced to use the errors, however small they may be, but we warn the reader that the final errors are not to be taken seriously.

In conclusion, we choose not to give errors on masses and total widths determined in partial-wave analyses, but, whenever necessary, to show a range of values. As for the branching ratios, we use the errors when needed to perform an overall fit, but we caution the reader.

Conclusions

Table II is an attempt to evaluate the status of the various Υ^{*} 's. The evaluations are of course partly subjective. A blank indicates that there is no corresponding evidence at all. This may mean either that the relevant couplings are small or that the resonance does not really exist. The Baryon Table includes only the well-established resonances. It seems clear, however, that whereas any particular one of the questionable resonances may disappear with the next analysis, there are probably many new resonances underlying those already established.

References

- 1. D. H. Miller, in Proceedings of the Duke Conference on Hyperon Resonances (1970), p. 229.
- M. Ross and G. Shaw, Ann. Phys. (N.Y.) <u>13</u>, 147 (1961).
- 3. E. Barrelet, Nuovo Cim. 8A, 331 (1972).
- 4. P. Litchfield Proceedings of the IInd Aix-en-Provence Conference (1973).
- 5. Numerical results provided by R. G. Moorhouse, priv. comm.
- For other references see the Data Card Listings.

TABLE II. STATUS OF Y* RESONANCES THOSE WITH AN OVERALL STATUS OF *** OR **** ARE INCLUDED IN THE MAIN BARYON TABLE. THE OTHERS AWAIT CONFIRMATION. STATUS AS SEEN IN --

		OVERALL	TOTAL#				
PARTICLE	LIJ	STATUS	CR. SEC.	KBAR N	LAM PI	SIG PI	OTHER CHANNELS
LAM(1115)	P01	****					WEAK TO N PI
LAM(1330)		DEAD					
LAM(1405)	\$01	****		****	F	****	
LAM(1520)	D03	****	****	****	Ú.	****	LAM2PI,LAM GAM
LAM(1670)	\$01	****		****	R	****	LAM ETA
LAM(1690)	003	****	****	****	e	****	LAM2PI, SIG2PI
LAM(1750)	P01	**		***	I	**	
LAM(1815)	F05	****	****	****	D	****	SIG(1385) PI
LAM(1830)	0.05	***		***	D	****	
LAM(1860)	P03	**	**	***	E	*	
LAM(1870)	501	**		**	N	*	
LAM(2010)	003	**			F	*	LAM DMG
LAM(2020)	F07	**		*	0	*	
LAM(2100)	G07	****	****	****	R	***	XI K,LAM OMG
LAM(2110)		*		*	8	*	LAM OMG
LAM(2350)		****	****	****	I		
LAM(2585)		***	***	*	D		
SIG(1190)	P11	****					WEAK TO N PI
SIG(1385)	P13	****			****	****	
SIG(1440)	PE	DEAD					
SIG(1480)	PE	*		*	•	*	
SIG(1620)	\$11	**		**	*	*	
SIG(1620)	P11	**		**	*	**	
SIG(1620)	PE	**		*	**		LAM 2-PI
SIG(1670)	D13	****	**	***	****	****	SEVERAL OTHERS
SIG(1670)	PĘ	**		**	**	**	SEVERAL OTHERS
51G(1690)	PE	**	*	*	**	*	LAM 2-PI
SIG(1750)	S11	***		**	**	*	SIG ETA
SIG(1765)	D15	****	****	****	* * * *	***	SEVERAL OTHERS
SIG(1840)	P13	*		*	**	*	
SIG(1880)	P11	**		**	**		
SIG(1915)	F15	****	***	***	****	***	
SIG(1940)	D13	***		*	***	**	
SIG(2030)	511	*			*		
SIG(2030)	F17	****	****	****	****	**	XIK
\$1G(2070)	F15	*				*	
SIG(2080)	P13	**			**		
SIG(2100)	G17	**			**	**	
SIG(2250)		****	****	*	*	*	
SIG(2455)		***	***	*			
SIG(2620)		***	***	*			
516(3000)		**		*	*		

**** GOCD, CLEAR, AND UNMISTAKABLE.
*** GOOD, BUT IN NEED OF CLARIFICATION CP NOT ABSOLUTELY CERTAIN.
** NEEDS CONFIRMATION.
** WEAK.

* ATTRIBUTED TO THE STATE CLOSEST TO WHERE THE CROSS SECTION PEAKS.

S=-1 I=0 HYPERON STATES (A)

Λ	

18 LAMBDA (1115, JP=1/2+) I=0 SEE STABLE PARTICLE DATA CARD LISTINGS

A(1330) 87 Y*O(1330, JP=) I=0 PRODUCTION EXPERIMENTS BUMPS SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS.

A PEAK IS SEEN NEAR 1330 MEV IN THE LAMBDA GAMMA SPEC-TRUM IN THREE PI- PROPAME EXPERIMENTS (VUNG-CHANG 64, BUBELEV 67, AND BOZOKI 68). IN THE FIRST THO, THIS ETA, WITH THE ETA DECAYING TO TWO GAMMAS. IN THE FIRST THO, THIS THIS INTERPETATION HAS BEEN VULED OUT. BOZOKI 68 MENTION THE POSSI-BILITY OF THERE BEING A Y*0(1330) WITH A NARGOW WIDTH (225 MEV). BUT DEFER SERIOUS CONSIDERATION OF IT UNTIL THERE IS MORE DATA. SHOULD SUCH A RESONANCE EXIST, IT SHOULD BE SEEN IN PI- P TO KO + (MISSING MAKES). DANH 67 FOUND NO EVIDENCE FOP IT. A SFARCH FOR A NEW Y*0 NEAR THE LAMBDA OR SIGMA MASS WAS MADE BY TAN 69. NONE WAS FOUND.

REFERENCES FOR Y+0(1330) (PROD. EXP.)

Y-CHANG BUBELEV DAHL BOZOKI TAN MAYEUR	64 OUBNA CONF I 615 67 PL 248 246 67 PR 163 1377 68 PL 288 360 69 PRL 23 101 70 PL 338 441	YUNG-CHANG, IN, KLADNITSK +CHADRAA, CHUVILO, + (JI DAHL, HARDY, HESS, KIRZ, +FENYVES, GEMESY, + T H TAN +VAN BINST, WIYODET+++	AYA, + {DUBNA} NR,BUCHAREST,CERN] MILLER {LRL} (BUDAPEST,DUBNA) (BRUX-CERN_TUET)
COR	10 - 2 338 441	TVAN BINST WILLOUF ITTT	(BRUX,CERN, TUFT)

Baryons A's and Σ 's, A, A(1330), A(1405)

Λ(1405)	37 Y*0(1405, J) PRCDUCTION THIS RESONANCE STATE IN THE KB. ENERGY K-P INTE RATELY BELOW. AVERAGING OF MA:	P=1/2-} I=0 EXPERIMENTS CAN RE IDENTIFIED WI AR-N SYSTEM FOUND IN ACTION. WE LIST SU VE USE ONLY PRODUCTI SSES AND WIDTHS.	Só1 TH THE VIRTUAL BOUND THE ANALYSIS OF LOW ICH EXPERIMENTS SEPA- ON EXPERIMENTS FOR	
	37 Y*0(1405) M	SS (MEV) (PROD. EXP	·.)	
M (1405.0) M (1410.0) M (1405.0) M (1405.0) M (1382.0) M 1400.0 M 67 1400.0 M 120 1405.0	(8.0) 24.0 5.0 5.0	ALSTON 61 HEC ALSTON 62 HBC ALSTON 62 HBC ENGLER 65 HDRC MUSGRAVE 65 HBC BIRMINGHA 66 HBC GALTIERI 68 DBC	K-P 1.15 BEV/C PI-P 2.1 REV/C K-P 1.25 BEV/C PI-P, PI+D 1.68 PBAR P 3-4 BEV/C K-P 3.5 K-D 2.1-2.7BEV/C	7/66 7/66 9/67 6/68
M AVG 1402.4	3.5 AVER	AGE (ERROR INCLUDES	SCALE FACTOR OF 1.0)	
	37 Y*O(1405) W	IDTH (MEV) (PROD. EX	(P.)	
W (20.0) W 35.0 W (50.0)	5.0	ALSTON 61 HBC ALEXANDER 62 HBC ALSTON 62 HBC		7/66
W (89.0) W 60.0 W 67 50.0 W 120 35.0 W	(20.0) 20.0 10.0 8.0	ENGLER 65 HDBC MUSGRAVE 65 HBC BIRMINGHA 66 HBC GALTIERI 68 DBC	K-P 3.5 K-D 2.1-2.78EV/C	7/66 7/66 9/67 6/68
W AVG 38.1	3.9 AVER.	AGE (ERROR INCLUDES	SCALE FACTOR OF 1.0)	
	37 Y*O(1405) P	APTIAL DECAY MODES (PRED. EXP.)	
P1 Y*0(1405) IN	TO SIGMA PI		1197+ 139	
	REFER	ENCES FOR Y*0(1405)	(PROD. EXP.)	
ALSTON 61 PRL 6 6 ALEXANDE 62 PRL 8 4 ALSTON 62 CERN CO ENGLER 65 PRL 15 MUSGRAVE 65 NC 35 7	98 +ALVA 47 ALEXA NF311 +ALVA 224 +FISK 35 +PETM	REZ,EBERHARD,GOOD,GA NDER,KALBFLEISCH,MIL REZ,FERRO-LUZZI,ROSE ,KRAEMER,MELTZER,WES EZAS,+ (BIRM,CERN	RAZIAND, + (LRL) I LER,SMITH (LRL) I NFELD, + (LRL) I STGARD,+ (CARN,BNL) IJ NFEPOL,LOIC,SACLAY)	
BIRMINGH 66 PR 152 Galtieri 68 Prl 21	1148 BIRMI 573 BARBA	NGHAM,GLASGEW,LOIC, RC-GALTIEPI,CHADWICK	CXECRD,RUTHERFORD (+ (LRL,SLAC)	
****** ******** **	****** *******	* ******** *******	*********	
****** *********	****** *******	* ******** *******	* ******** *******	
1405 MEV R	EGION: EXT	RAPOLATIONS	BELOW THRESH	IOLD
1405 MEV R	24 Y*0(1405, J	RAPOLATIONS P=1/2-} 1=0 5'	BELOW THRESH	iold
1405 MEV R	EGION: EXT 24 y+0(1405, J SEE NOTE IN Y+0 FICULTIES IN EX THE RESONANCE L	RAPOLATIONS P=1/2-) I=0 S' (1405) P@CDUCTION 5) TRAPOLATING FROM THE DCATION ARE DISCUSSE	BELOW THRESH	iold
1405 MEV R STATE OR A COD MARTIN 71. GALT THAT THE DATA C	EGION: EXT 24 Y*011405, J SEE NOTE IN Y*0 FICULTISE IN EX THE RESONANCE L THE QUESTION ON PICLE (DALITZ 70) IERI 72, AND OOB ANNOT TELL THE D	RAPOLATIONS P=1/2-) 1=0 S ¹ (1405) P@OUCTION 5 TRAPOLATING FROM THE GCATION ARE DISCUSS WHETHER Y*[1405) 11 HAS BEEN INVESTIGAT SCN 72. THE LAST TWO IFFERENCE.	BELOW THRESH	IOLD
1405 MEV R STATE OR A COD MARTIN 71. GALT THAT THE DATA C	24 Y*011405, J SEE NOTE IN Y*0 FICULTIES IN EX THE RESONANCE L THE QUESTION ON PILE (DALITZ TO) IERI 72, AND 00B ANNOT TELL THE D 24 Y*0(1405) M	RAPOLATIONS P=1/2-1 1=0 5' (1405) PCCDUCTION 5; TRAPOLATING FROM THE FROM THE DESTING FROM THE FROM THE MHETHER Y*(1405) 15 HAS DEFEN TWESTIGAT SGN 72. IFFFFERCE. ASS (MEV)	BELOW THRESH	IOLD
1405 MEV R STATE OR A COD MARTIN 71, GALT THAT THE DATA C	EEGION: EXT 24 y+011405, J SEE NOTE IN Y*0 FICULTIES IN EXTHE RESONANCE L THE QUESTION ON POLE (PALITZ 70) PICLE (PALITZ 70) IERT 72, AND 00B ANOT TELL THE OBSERVED V#0(1405) 24 Y#0(1405) M (1.0) (1.7) DATA OF	RAPOLATIONS P=1/2-1 1=0 S' (1405) PCDUCTION 5> TRAPOLATING FROM THE FROM THE CATION ARE DISCUSSE WHETHER Y*(1405) 1' HAS BEEN INVESTIGAT SCN 72. THE LAST TWO IFFFRENCE. ASS (MEV) KIN 65 HBC SAKITT ARE USED IN	BELOW THRESH OI (PERIMENTS -THE DIF- PHYSICAL REGION TO ED BY DALITZ 67. S A KBAR-N BOUND FED BY CLINE 71. O PAPERS CONCLUDE O-EFF-RANGE FIT O-EFF-RANGE FIT FIT BY KITEL.	10LD
1405 MEV R STATE OR A COD MARTIN 71. GALT THAT THE DATA C M 1410.7 M 1407.5 1403.0 M 1410.0 M 1412.0 M 1412.0 M 1410.0	ZEGION: EXT 24 y*011405, J 55 FICULTIES IN EXTHE RESONANCE L THE QUESTION ON PPLE (DALITZ 70) THE QUESTION ON PPLE (DALITZ 70) ANNOT TELL THE D 24 Y*0(1405) M (1.0) (1.7) DATA OF (1.2) (3.0) (4.0)	RAPOLATIONS P=1/2-1 1=0 S ¹ (1405) PCCDUCTION 5- TRAPOLATING FROM THE DCATION ARE DISCUSST WHETHER Y*(11405) THE SON 72. THE LAST TWO IFFFRENCE. INVESTIGAT SON 72. THE LAST TWO IFFFRENCE. ASS (MEV) SHBC SAKITT 45 HBC SAKITT 45 HBC SAKITT 45 HBC SAKITT 46 HBC MARTIN 70 HBC MARTIN 70 FWU CHAD	BELOW THRESH BELOW THRESH OI CPHYSICAL REGION TO D BY DALITZ 67. SA KBAP-N BOUND FED BY CLINE 71. D -EFF-RANGE FIT O-EFF-RANGE FIT O-EFF-RANGE FIT D -EFF-RANGE FIT N MATRIX FITKED CONST. K MATRIX CONST. K MATRIX O - CONST. K MATRIX O - CONST. K MATRIX	7/66 7/66 7/66 10/69 6/70 9/13+
1405 MEV R STATE OR A COD MARTIN 71, GALT THAT THE DATA C 1400.7 1400.0 1403.0 1403.0 1402.0 1421.0 1 (1402.) 1 (1402.) 1 (1402.)	Z4 Y+0(1405, J) 24 Y+0(1405, J) SEE NOTE IN Y*0 FIGULTISTS IN EXTIME RESONANCE L THE RESONANCE L THE QUESTION CN PPLE (0ALITZ 70) IERI 72, AND 00B ANNOT TELL THE OUBANNOT TELL	RAPOLATIONS P=1/2-1 1=0 S' (1405) PCDUCTION EXTRAPOLATING FROM THE TRAPOLATING FROM THE DCATION ARE DISCUSST WHETHER Y*(1405) IS HAS BEEN INVESTIGATION SCN 72. THE LAST TWO IFFFRENCE. ASS (MEV) KIM 65 HBC SAKITT ARE USED IN KITTEL SAKITT ARE USED IN KITTEL 66 HBC MARTIN 67 HBC MARTIN 67 HBC MARTIN 70 FVU APERANT 73 DPWI APERANT	BELOW THRESH DOI OPERIMENTS -THE DIF- PHYSICAL REGION TO DO ALITZ 67. S A KBAR-N BOUND TED BY CLINE 71. DO PEFF-RANGE FIT O-EFF-RANGE FIT D-EFF-RANGE FIT S A KBAR-N BOUND CONST. K MATAIX CONST. K MATAIX O-RNG. FIT.SOL B	7/66 7/66 7/66 8/67 10/69 9/73*
1405 MEV R STATE OR A CDD MARTIN 71. GALT THAT THE DATA C M 1410.7 M 1407.5 M 1407.5 M 1407.5 M 1407.5 M 1402.0 M 1412.0 M 1 SEE ALSO TH	ZEGION: EXT 24 y*011405, J 35 05 910017165 1N 94 94011405, J 94 94011405 97 16 97 16 97 16 97 14 97 14 97 14 97 14 97 14 97 14 97 14 101 17 110 17 110 11 110 14 110 14 110 14 110 14 110 14 110 14 110 14 110 14 110 14 110 14 110 14 110 14 110 14 110 14 110 1	RAPOLATIONS P=1/2-1 1=0 S ¹ (1405) P°CDUCTION 5: TRAPOLATING FROM THE FROM THE TRAPOLATING FROM THE FROM THE TRAPOLATING FROM THE FROM THE TABOLATING FROM THE FROM THE MATHER YELL THE ASS (MEV) KIM KIM OS HBC SAKITT 65 HBC SAKITT 65 HBC SAKITT 64 HBC MARTIN 70 FWU CHANT 70 FWU APER OF THOMAST3.	BELOW THRESH DO1 CPRIMENTS -THE DIF- PHYSICAL REGION TO D BY DALITZ 67. SA KBAR-N BOUND FED BY CLINE 71. D -EFF-RANGE FIT D -EFF-RANGE FIT D -EFF-RANGE FIT N -EFF-RANGE FIT K MATRIX FIT(KP) CONST. K MATRIX O -RNG. FIT.SOL B	7/66 7/66 7/66 8/67 10/69 9/73*
1405 MEV R STATE OR A COD MARTIN 71. GALT THAT THE DATA C M 1410.7 M 1407.5 M 1407.5 M 1407.5 M 1410.0 M 1400.0 M 1200.0 M 1200.0 M 1200.0 M 1200.0 M 1200.0 M 1200.0 M 1200.0 M 200.0 M	ZEGION: EXT 24 Y*011405, J 55 FICULTIES IN EXT FICULTIES IN EXTHE RESONANCE EXTHE RESONANCE THE QUESTION ON PDLE (DALITZ 70) THE QUESTION ON PDLE (DALITZ 70) THE QUESTION ON PDLE (DALITZ 70) Z4 Y*0(1405) M (1.0] 11.71 DATA OF (1.2) (3.0) (4.0) Z4 Y*0(1405) W (3.2) (4.1) (5.0) (6.2)	RAPOLATIONS P=1/2-1 1=0 S ¹ (1405) PCCDUCTION ESTRAPOLATING FROM THE DCATION ARE DISCUSS WHETHER Y*(11405) THE LAST TWO IFFFENCE. ASS (MEV) KIM 65 HBC SAKITT ARE USED IN KITTEL 66 HBC SAKITT ARE USED IN KITTEL 66 HBC MARTIN 67 HBC MARTIN 67 HBC SAKITT 65 HBC KIM	BELOW THRESH BELOW THRESH OI CPHYSICAL REGION TO D BY DALITZ 67. SA KBAP-N BOUND FO BY CLINE 71. D PAPEPS CONCLUDE O-EFF-RANGE FIT O-EFF-RANGE FIT D-EFF-RANGE FIT N MATRIX FIT(KP) CONST. K MATRIX CONST. K MATRIX	1/66 7/66 7/66 8/61 10/69 6/70 9/73* 9/73*
1405 MEV R STATE OR A CDD MARTIN 71, GALT THAT THE DATA C M 1410-7 M 1409-6 M 1409-6 M 1409-6 M 1409-6 M 14021-0 M 1406-1 M 1 1406-1 M 1 5EE ALSO TH 37.0 M 28-2 M 34-1 M 29-0 M 1405-1 M 155-1 M 20-0 M 20-0 M 155-1 M 20-0 M 20-0 M 155-1 M 20-0 M 20-0 M 155-1 M	ZEGION: EXT 24 y*011405, J SEE NDTE IN Y*0 FIGUITES IN EXT THE QUESTION CONTRACTOR IN PRILE (PALITZ 70) PRILE (PALITZ 70) IERI 72, AND 00B ANNOT YELL THE D Z4 Y*0(1405) M (1.0) (1.7) QATA OF (1.2) (1.40) (1.2) (1.2) (1.2) (1.40) (1.2) (1.2) (1.2) (1.2) (1.2) (1.2) (1.2) (1.2) (1.2) (1.2) (1.2) (1.2) (2.2) (3.1) (4.1) (5.2) (6.2) RESONANCE SHAPE,	RAPOLATIONS P=1/2-1 1=0 S' (1405) PCDUCTION EXTRAPOLATION ARE DISCUSSI rapolating from the board of the second sec	BELOW THRESH BELOW THRESH PHYSICAL REGION TO DPHYSICAL REGION TO DE BY DALITZ 67. S A KBAR-N BUUND TED BY CLINE 71. D-EFF-RANGE FIT D-EFF-RANGE FIT D-EFF-RANGE FIT D-EFF-RANGE FIT CONST. K MATRIX CONST. K MATRIX CONST. K MATRIX D-RNG. FIT.SOL B K MATPIX FIT(KP) CONST. K MATRIX D-RNG. FIT.SOL B CONST. K MATPIX CONST. K MATPIX	7/66 7/66 7/66 7/66 9/73* 9/73*
1405 MEV R STATE OR A COD MARTIN 71. GALT THAT THE DATA C M 1410.7 M 1407.5 M 1407.5 M 1407.5 M 1416.0 M 1416.0 M 1416.0 M 1416.0 M 1416.0 M 1416.0 M 1416.0 M 1416.0 M 1407.5 M 1400.5 M 1400.5 M 1400.5 M 1400.5 M 1400.5 M 155.0 M 29.0 M 20.0 M 1416.0 M 1 M 1416.0 M 1 M 1416.0 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1	ZEGION: EXT 24 y*011405, J 35 EE NOTE IN Y*0 FICULTIES IN EXTHE RESONANCE L THE QUESTION ON POLE (DALITZ 70) THE QUESTION ON POLE (DALITZ 70) THE QUESTION ON POLE (DALITZ 70) 24 Y*0(1405) M (1.0) DATA OF (1.0) (1.0) (1.0) TATA OF (1.0) (1.0) (1.0) (1.2) (3.0) (4.0) 24 Y*0(1405) W (3.2) (4.1) (5.0) (6.2) RESONANCE SHAPE, SHAPE,	RAPOLATIONS P=1/2-1 1=0 S ¹ TRAPOLATION APCOUCTION EF TRAPOLATING FROM THE DCATION ARE DISCUSST SI WHETHER Y*(11-05) SI SON 72. THE LAST TWO IFFFRENCE. SI ASS (MEV) SI KIM SF HBC SAKITT 45 HBC SAKITT 45 HBC SAKITT 45 HBC MARTIN 70 FWU CHAO T3 DPWU APER 0F THOMAST3. IDTH (MEV) XIM XIIT SF HBC SAKITT 65 HBC MARTIN 70 FWU CHAO T3 DPWU APER 0F THOMAST3. IDTH (MEV) XIM XIIT SF HBC SAKITT 65 HBC SAKITT 65 HBC SAKITT 65 HBC SAKITT 65 HBC SAKITT 70 FWU CHAO T3 DPWU CHAO T3 DPWU	BELOW THRESH BELOW THRESH OI CONSTRUCTION TO CHYSICAL REGION TO CHYSICAL REGION TO DE BY DALITZ 67. SA KBAP-N BOUND FOD BY CLINE 71. D-EFF-RANGE FIT O-EFF-RANGE FIT O-EFF-RANGE FIT D-EFF-RANGE FIT N MATRIX FITKEPJ CONST. K MATRIX CONST. K MATRIX SCONANCE, 14 MEV ABCVE.	7/66 7/66 7/66 8/67 10/69 6/70 9/73* 7/66 8/67 10/69 6/70 9/73*
1405 MEV R STATE OR A COD MARTIN 71, GALT THAT THE DATA C H 1410.7 H 1407.5 H 1406.0 H 1410.6 H 1410.6 H 1400.7 H 1400.7 H 1407.5 H 1407.5 H 1407.5 H 1400.7 H 1500.0 H 28.2 H 500.0 H 29.1 H 550.0 H 29.2 H 105.1 H 550.0 H 1451.0 H 550.0 H 1451.0 H 1451.1 SANTIT 50	EEGION: EXT 24 Y*011405, J 24 Y*011405, J SEE NOTE IN Y*0 FICULTIES IN EXT FICULTIES IN EXT FICULTIES IN EXT THE QUESTION ON POLE (DALITZ 70) THE QUESTION ON POLE (DALITZ 70) Z4 Y*0(1405) M (1.0] 11.01 (1.0] 14.00 (1.0) (1.2) (3.0) (4.0) 24 Y*0(1405) W (3.2) (4.1) (4.1) (5.0) (6.3) RESONANCE SHAPE, PEFER P 29 J K 719 O X 4709 A D 473 A D	RAPOLATIONS P=1/2-) 1=0 S ¹ (1405) P°CDUCTION 5: TRAPOLATING FROM THE DCATION ARE DISCUSS WHETHER Y*(11405) 11 HAS BEEN INVESTIGAT SON 72. THE LAST TWO IFFFRENCE. ASS (MEV) KIM 65 HBC SAKITT 65 HBC SAKITT 65 HBC SAKITT 66 HBC MARTIN 73 DPWI CHAD 73 DPWI APER OF THOMAST3. IDTH (MEV) KIM 65 HBC SAKITT 65 HBC MARTIN 76 HBC MARTIN 70 FUB CHAD 73 DPWI WAPER OF THOMAST3. IDTH (MEV) KIM 65 HBC SAKITT 65 HBC SAKITT 65 HBC SAKITT 65 HBC SAKITT 65 HBC MARTIN 70 RUU CHAD 73 DPWI CHAD 74 CF HBC MARTIN 65 HBC SAKITT 65 HBC SAKITT 65 HBC SAKITT 65 HBC SAKITT 75 HBC SAKITA 75 HBC SAKITT 75 HBC SAKITT 75 HBC SAKITA 75 HBC SAKITT 75 HBC SAKITA 75	BELOW THRESH BELOW THRESH OI OI CPERIMENTS -THE DIF- EPHYSICAL REGION TO DE BY DALITZ 67- SA KBAP-N BOUND FED BY CLINE 71. D -EFF-RANGE FIT O	7/66 7/66 7/66 8/67 10/69 6/70 9/73* 7/66 8/67 10/69 6/70 9/73*

FIT SOLUTIONS GIVING AN 1+0 S1 Abrams 65, Kadyk 66, and dowald 66 support those effective-range-Dalitz 67 pr 153 1617 Dalitz, wong rajasekaran (lokford,sombay)

Baryons Λ(1405), Λ(1520), Λ(1670)

 DALITZ
 70 DUKE-HR
 70 03
 R D DALITZ
 (0XF)

 CLINE
 71 P0L 26 1194
 D CLINE,R LAUMANN,J MAPP
 (WISC)

 MARTIN, 71 P1 356 62
 A D MARTIN, B R MARTIN,ROSS (DURH+LOUC-RHEL)
 DOBSON
 72 PR D6 3256
 P N DOBSON,R MCELHANEY
 (HAMA)

 GALTIERT
 72 PR D6 3256
 P N DOBSON,R MCELHANEY
 (HAMA)
 GALTIERT
 (BL)

 SHAW
 73 PURDUE CONF. 417
 SHAW
 (UCIHIJP
 R4 R4 R4 R4 Y#0(1520) INTO (LAMBDA GAMMA)/TOTAL (PERCENT) (P4) 238 0.80 0.14 MAST 68 HBC 0 USING ELAST=.45 11/68 238 0.80 0.14 MAST 68 HBC 0 USING ELAST=.45 FIT 0.80 0.14 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) Y+0(1520) INTO (SIGMAO GAMMA)/TOTAL (PERCENT) (P5) 2.0 .35 MAST 68 HGC SEE NOTE S RATIOS CALCULATED FROM R4.ASSUMING SU(3). NEEDED TO CONSTRAIN ALL THE Y+0(1520) BRANCHING RATIOS TO BE UNITY. R 5 R 5 10/69 R5 R5 1.99 0.35 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 38 Y*0(1520, JP=3/2-) I=0 D'03 FIT Y*0(1520) INTO (KBAR N}/TOTAL 0.29 0.05 .447 .018 0.47 0.03 (0.45) A(1520) PRODUCTION AND FORMATION EXPERIMENTS AGREE QUITE WELL MITH EACH OTHER, THEREFORE, THEY HAVE NOT BEEN SEPARATE FOR THIS PARTICLE A POSSIBLE EXCEPTION TO ABOVE IS THE LAW PI PI MODE. BOTH CHAN 72 AND MAST 73 (FORMATION) AGREE THAT IT IS PREDOMINANTLY Y*1(1385) PI, HOWEVER, THEY DISAGPEE BY A FACTOR OF 24S TO THE CONTRIBUTION OF Y*0(1520) TO THE OVERALL LAW PI PI CROSS SECTION. BURKHARDT 71 (PREDUCTION), WITH MUCH LESS STATISTICS, FIND A MUCH LOWER BRANCHING RATIO. (P1) MATSON 63 HBC K-P ALL CHANNELS 10/71 GALTIERI 69 HBC K-P -28--45 G/C 10/69 COLLEY 71 OBC K-N 1-5 GEV PROD 10/71 KIM 71 DPHA K-MATRIX AMAL 3/71 86 86 86 86 86 86 86 0.439 0.033 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 2.3) 0.4508 0.0088 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) AVG
 Y*0(1520) INTC (SIGMA PI)/TOTAL
 (P2)

 0.55
 0.09
 WATSON
 63
 HBC
 K-P
 ALL CHANNELS
 10/71

 0.418
 .017
 GALTIERI
 69
 HBC
 N-P
 .28-.456EV/C
 6/69

 0.438
 0.03
 CCLLEY
 71
 DBC
 K-MATRIX ARAL
 3/71

 (0.46)
 KIM
 71
 DFM
 K-MATRIX ARAL
 3/71
 R7 R7 R7 R7 R7 R7 R7 38 Y*O(1520) MASS (MEV)
 1517.2
 3.0
 GALTIERI
 63 DBC
 K-0
 1.51 BEV/C

 1519.4
 2.0
 WATSON
 63 HBC
 K-P ALL CHANNELS

 1520.0
 4.0
 ALMEIDA
 64 HBC
 K-P ALL CHANNELS

 1520.0
 4.0
 ALMEIDA
 64 HBC
 K-P ALL CHANNELS

 1520.0
 4.0
 BIRNINGHA
 64 HBC
 K-P ALL CHANNELS

 1520.0
 4.0
 BIRNINGHA
 64 HBC
 K-P ALL CHANNELS

 1510.0
 125.01
 MUSGRAVE
 65 HBC
 PAR P 3-4 BEV/C
 7/66

 1517.2
 1.2
 BURKHARDT 69 HBC
 K-P .8-1.2 GEV/C
 10/69

 QUOTED ERROR INCREASED TO ACCOUNT FOR DISAGREEMENT BETWEEN
 THO MEASUREMENTS DONE BY SAME AUTHORS (K-P AND SIGMA PI)

 (1519.)
 KIM
 71 DPMA
 K-MATRIX ANAL.
 3/71
 0.424 0.015 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.4120 0.0092 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) AVG FIT 145 1517.2 1519.4 29 1520.0 (1511.0) 30(1510.0) Y*0(1520) INTO (SIGMA PI PI)/TOTAL (P6) -010 .0015 GALTIERI 69 HBC 0 K-P .28-.45GEV/C 10/69 2 .0085 .0006 MAST2 73 MPWA K-P TO 2PI SIG 9/73* 2 BASED DN ASSUMED ELASTICITY OF .46 9/73* R 8 R 8 R8 R8 R8 R8 R8 0.00871 0.00056 AVERAGE (ERROR INCLUDES SCALE FACTOR DF 1.0) 0.00870 0.00056 FROM FIT (ERROR INCLUDES SCALE FACTOR DF 1.0) AVG (1519.) 1517.85 0.95 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) Y+0(1520) TO Y+1(1385) PI TO LN PI PI/LM PI PI (P8)/(P3) MORE THAN 0.10 CLINE 69 DBC K-D TO 2PI LAM N 8 0.39 0.10 SURKHARDT 71 HBC LAM. 3PI PROD. C (1.0) CHAN 72 IPVA K-P TO LAM 2PI 0.82 0.10 MAST 73 IPVA K-P TO LAM 2PI 8 CENTRAL BINIS1A-1524) GIVES .74+.10 -- OTHER BINS LOWEP BY 2-5SIG C ONLY THE Y+(1385)DS33 SEEMS TO CONTRIBUTE 9/73* 9/69 3/71 2/73 AVG BC 38 Y+0(1520) WIDTH (MEV) 12/72 WATSON 63 HBC MUSGRAVE 65 HBC BIRMINGHA 66 HBC Dahl 67 HBC BURKHARDT 69 HBC KIM 71 DPWA 2.0 (19.0) (10.0) CR LESS 1.8 16.4 (19.0) (50.0) (18.0) 14.7 (16.) 7/66 K-P 3.5 9/67 9/66 K-P .8-1.2 GEV/C 10/69 K-MATRIX ANAL. 3/71 30 R9 R9 AVERAGE MEANINGLESS (SCALE FACTOR = 3.0) Y*0(1520) INTO (Y*1(1385) PI)/TOTAL 0.041 0.005 CHAN R10 R10 (P7) 72 HBC K-P TO LAM 2PI 3/71 15.5 1.3 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG 0.10 0.02 COLLEY 71 DBC K-N 1.5 GEV PROD 10/71 1 .11 .01 MAST 73 IPWA K-P TO 2PI LAM 9/73 1 BASED ON ASSURED ELASTICITY OF .46+/-.02 9/73 AVG 0.1000 TO 1000 TO 10000 TO 1000 TO 1000 TO 1000 TO 1000 TO 1000 TO 10000 TO 1000 TO 1 R11 ----- ----9/73* 9/73* 38 Y+0(1520) PARTIAL DECAY MODES
 DECAY NASSES

 V#0(1520) INTO KBAR N
 497+ 930

 Y#01(520) INTO SIGMA PI
 1197+ 139

 Y#0(1520) INTO LAMBDA PI PI
 1115+ 139+ 139

 Y#0(1520) INTO LAMBDA GAMMA
 1115+ 0

 Y#0(1520) INTO SIGMA GAMMA
 1192+ 0

 Y#0(1520) INTO SIGMA PI PI
 1197+ 139+ 139

 Y#0(1520) INTO SIGMA PI PI
 1384+ 139

 Y#0(1520) INTO Y#1(1385) PI INTO LAMBDA PI PI
 1384+ 139

 Y#0(1520) INTO Y#1(1385) THTO LAMBDA PI PI
 115+ 139+ 139

 NOTE THAT P8/P7 IS THE BRANCHING FRACTION FOR Y#1(1385) INTO LH PI
 NOTE Y#1(1385) INTO LH PI
 R11 AVG 0.1080 0.0089 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R11 AVG 0.1080 0.0054 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) R11 FIT 0.1086 0.0054 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) P1 P2 P3 P5 P5 P7 REFERENCES FOR Y+O(1520) GALTIERI 63 PL 6 296 WATSON 63 PR 131 2248 ALMEIDA 64 PL 9 204 ARMENTER 65 PL 19 338 MUSGRAVE 65 NC 35 735 A BARBARD-GALTIERI,A HUSSAIN,RD TRIPP (LRL) M B WATSON, M FERRO-LUZZI, R D TRIPP (LRL)IJP 5 ALVEIDA, G R LYNCH (CERN,MEID,SACLAY) ARMENTEROS,F-LUZZI, + (CERN,MEID,SACLAY) PETREZAS+ (BIPP,GERN,EPU,LOID,SACLAY) P8 9/73* FITTED PARTIAL DECAY MODE BRANCHING FRACTIONS BIRMINGH 66 PR 152 1148 DAML 67 PR 163 1377 DAUBER 67 PL 248 525 UHLIG 67 PR 155 1448 MAST 68 PRL 21 1715 SCHEUER 68 NP 88 503 BIRMINGHAM,GLASGOW,I.C., OXFORD,RUTHERFORD DAHL,HARDY,HESS,KIRZ,MILLER (LRI) HMLANUD,SCHLEIN,SLATER,STORK (UCLA) +CHARLTON,CONDON,GLASSER,YODH,+ (UMD,NRL) MAST,ALSTON,BANGERTER,GALTIERI+ (LRI) SABRE COLLAB. (SACL+AMST+BGNA+PEHO+EPDL) The matrix below is derived from the error matrix for the fitted partial decay mode anching fractions, P_i , as follows: The <u>diagonal</u> elements are $P_i \pm \delta P_i$, where $\delta P_i = \sqrt{\langle \delta P_i \delta P_i \rangle}$, while the off-diagonal elements are the normalized correlation coefficients $(\delta P_i \delta P_j)^{1}/(\delta P_i \cdot \delta P_j)$. For the definitions of the individual P_i , see the listings above; only those P_i appearing in the matrix are assumed in the fit to be nonsero and BURKHARD 69 NP 814 106 CLINE 69 LNC 2 407 GALTIERI 69 LUND 352 ALSO 70 DUKE 95 +FILTHUTH+KLUGE+.. (HEID+EFI+CERN+SACLAY) +LAUMANN+MAPP (MISC) Barbard-Galtieri,bangerter,mast,tripp (LRL) R D TRIPP (LRL) are thus constrained to add to 1. P L P 2 P 3 P 4 P 5 P 6 .4508+-.0088 -.7558 .4120+-.0092 -.2187 -.3405 .1006+-.0054 -.0680 -.0639 -.0325 .0080+-.0014 -.1717 -.1614 -.0822 -.0095 .0199+-.0035 -.0270 -.0254 -.0129 -.0015 -.0038 .0087+-.0006 P 1 P 2 P 3 P 4 P 5 P 6 BURKHARDT71 NP 827 64 COLLEY 71 NP 831 61 KIM 71 PRL 27 356 ALSO 70 DUKE 161 +FILTHUTH,KLUGE,OBERLACK++ (HETD+CERN+SACL) +COX,EASTWOOD,FRY+.. (BIRM+EDIN+GLAS+LDIC) J K KIM (HARV)IJP J. K. KIM (HARV)IJP 72 PRL 28 256 73 PR D7 5 73 PRD 7 3212 +BUT.-SHAFER,HERTZBACH,KOFLER++ (MASA,YALE) +ALSTON-GARNJCST,BANGERTER,+... {LBL} +BANGERTER,ALSTON-GARNJOST,+ (LBL) CHAN MAST MAST2 (LBL) TJP (LBL)TJP PAPERS NOT REFERRED TO IN DATA CARDS 38 Y+O(1520) BRANCHING RATIOS BEPLEY 70 PR D1 1996 +YAMIN,KOFLER,MANN,MEISNER+ (BNL,MASA,YALE)IJP Y+0(1520) INTO (SIGMA PI)/(KBAR N) 1.72 .78 MUSG 0.96 0.20 DAHE 0.73 0.11 DAUB (P2)/(P1) P1 R1 R1 R1 R1 P1 R1 R N] MUSGRAVE 65 HBC Dahl 67 HBC Dauber 67 HBC Schfuer 68 DBC Burkhardt 69 HBC
 PI-P
 1.6-4
 GEV/C
 9/66

 K-P
 AT
 2.6EV/C
 8/67

 0
 K-N
 3
 GEV/C
 10/69

 K-P
 .8-1.2
 GEV/C
 10/69
 40 Y+0(1670, JP=1/2-) I=0 S''_1 1.06 .14 A(1670) D.064 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) 0.036 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.1) 0.851 AVG FIT SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS.
 Y*0(1520) INTO (LAMBDA PI PI)/(KBAR N)
 (P3)/(P1)

 0.17
 0.05
 DAHL
 67 HBC
 PI-P 1.6-4 GEV/C
 9/60

 0.21
 0.18
 DAUBER
 67 HBC
 K-P AT 2.GEV/C
 8/67

 .19
 .04
 SCHEUER
 68 DBC
 0 K-N 3 GEV/C
 10/69

 0.22
 0.03
 BURKHARDT 69 HBC
 K-P AS-1.2 GEV/C
 10/69

 0.21
 KIM
 71 DPWA
 K-MARTIX AMAL.
 3/71
 THIS RESONANCE IS WELL ESTABLISHED. (SEE THE NOTE FOR THE Y*0(1330)). 40 Y+0(1670) MASS (MEV) (1666.010R(1675.0) SERLEY 65 HBC 0 K-P TO LAM ETA 7/66 THE FIRST VALUE ASSUMES THE BRANCHING RATID INTO LAMBDA ETA IS SMALL, THE SECOND THAT IT IS LARGE. BECAUSE THE RESONANCE IS NEAR THE LAMBDA ETA TRESHOLD, THE BRANCHING MATID AFFECTS THE MOMENTUM DEPENDENCE OF THE TOTAL WIDTH, AND THUS ALSO THE RESONANCE PARA-METERS DETAINED BY FITTING TO THE DATA. (1663.0) (3.0) ARMENT-1 68 HBC 0 ELASTIC, CH EXCH 11/68 (1678.0) (5.0) ARMENT-3 69 HBC 0 MULTICHANNEL 9/69 1660.0 (1.0) ARMENT-4 69 HBC 0 K-P TO SIG PI.ED 9/69 0.202 0.021 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.014 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG FIT Y*0(1520) INTO (SIGMA PI)/(LAMBDA PI PI) 4.5 1.0 ARMENTERO 65 HBC 3.3 1.1 BIRNINGHA 66 HBC 3.9 1.0 UHLIG 67 HBC (22)/(23) R3 R3 R3 R3 R3 R3 R3 R3 7/66 K-P 3.5 9/67 K-P .9-1.0 BEV/C 9/66 0.59 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 0.27 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0) 3.94 AVG

Data Card Listings

For notation, see key at front of Listings.

Baryons Λ(1670), Λ(1690)

M 1674.0 BERLEY 69 HBC 0 K-P TO SIGHA PI M 1683.0 (5.0) GALTIERI 70 HBC 0 SIG PI.EDPWA M 1670. KIM 71 DPWA K-MATRIX AMAL. M 1640.0 (40.0) LANGBEIN 72 IPWA NULTICHANNEL M 1672. (1.1) HART 73 DPWA EL4CK78GENAPI. M 1672. (1.1) HART 73 DPWA EL4CK78GENAPI. M THE MULTICHANNEL ANALYSIS INCLUDES ELASTIC AND SIGNA PI. N THE APPARENT DISCREPACY BETWEEN THESE RESULTS IS PROBABLY MOR PI. M THE PARENT DISCREPACY BETWEEN THESE RESULTS IS INCOMBALY MOR PI. N THE SPARENT DISCREPACY BETWEEN THESE RESULTS IS INCOMBALY MOR PI. M SERIOUS. THE ERFORS GIVEN ARE JUST STATISTICAL. THE SYSTEMATIC HE SPARENT DISCREPACY BETWEEN THESE RESULTS IS INCOMBALY MOR FORCED ON M THE PARTIAL-WAVE AMPLITUDES ARE NOT INCLUDED, AND CAN BE LARGE.	6/70 7/70 3/71 12/72 2/74* 10/69	H 1680.0 (5.0) GALTIERI TO HBC 0 SIG PI,EDPWA 7/71 H 1680.0 (3.0) CCMFORTO 71 HBC 0 K-P,ELAST.GEX 6/71 H 1690.0 KIH 71 DPWA K-MATRIX ANAL. 3/7 H 1680.0 (20.0) LANGBEIN 72 IPWA HULTICHANNEL 12/7. H 1680.0 (20.0) LANGBEIN 72 IPWA HULTICHANNEL 12/7. H 1684.0 (3.1) HAT 73 DPWA EL4CX.78GEV/C 2/7. H 1684.0 (3.1) HAT 73 DPWA EL4CX.78GEV/C 2/7. H N THE Y#0(1690) IS AT THE EDGE 0F THE ENERGY REGION ANALYZED BY H H COMPTOTOTHE SAME DATA AS HELL AS OTHERS EXTENDING TO LOWER N H A COMPTOTOTHE SAME DATA AS HELL AS OTHERS EXTENDING TO LOWER A ANALYSIS INCLUDES OLD AND NEW DATA 0F CHS LOBA438 GEV/C 10/6/. H A COMPTOTOTHE SAME TAUGUSTHE ERRORS GIVEN ARE JUST STATISTICAL. THE H A PROBABLY NOT SERIOUS. THE ERRORS GIVEN ARE JUST STATISTICAL. THE H A SYSTEMATIC LEARORS THAT RESULT FROM THE RESTRUCTIVE TARAFETRIZIAL. THE H A SYSTEMATIC LARORS THAT RESULT FROM THE RESTRUCTIVE TRAAFTRIZICAL. THE H A SYSTEMATIC LEARORS THAT RESULT FROM THE RESTRUCTIVE TARAFTRIZICAL. THE A OF THE PARTIAL-WAYE AMPLITUDES ARE NOT INCLUDED, AND CAN ELARGE.
M (22.0)0R(15.0) BERLEY 65 MBC 0 SEE NOTE M ABOVE N (26.0) (8.0) APMENT-1 68 MBC 0 SEE NOTE M ABOVE N (26.0) (5.0) APMENT-1 68 MBC 0 SEE NOTE M ABOVE N (26.0) (5.0) APMENT-2 68 MBC 0 N 33.0 (5.0) APMENT-3 69 MBC 0 N 33.0 (5.0) ARMENT-4 69 MBC 0 K-P TO SIGMA PI N 33.0 (5.0) ARMENT-4 69 MBC 0 K-P TO SIGMA PI N 33.0 (5.0) BARLEY 69 MBC 0 K-P TO SIGMA PI N 25.0 (5.0) GALTIERI 70 MBC 0 SIG PI EDDMA N 45.0 (2.0) LANGSEIN 72 IPWA MULTICHANNEL N 45.0 (2.0) LANGSEIN 72 IPWA MULTICHANNEL N 55.0 (2.0) LANGSEIN 73 IPWA LAC4	7/66 11/68 11/68 9/69 9/69 9/69 6/70 7/70 3/71 12/72 2/74*	55 Y+0(1690) WIDTH (MEY) W (35.0) (7.0) APMENT-1 68 HBC 0 DLD DATA 11/61 W (85.0) (7.0) APMENT-3 68 HBC 0 DLD DATA 11/61 W 48. (15.1) BARTLEY 68 DBC 0 K-P AND K-D DATA 11/61 W 40.0 (7.0) BARTLEY 68 DBC 0 K-P AND K-D DATA 11/61 W 40.0 (7.0) BARTLEY 68 DBC 0 K-P AND K-D DATA 11/61 W 40.0 (7.0) BARTLEY 68 DBC 0 K-P AND K-D DATA 11/61 W 40.0 (7.0) BARTLEY 68 DBC 0 K-P AND K-D DATA 11/61 W 41.0 (7.0) COMFORTC 68 HBC 0 K-P TO SIGM PI 0.76 W 28.0 (18.0) GALTIERI 70 HBC 0 K-P TO SIGM PI 77 W 64.0 (5.0) COMFORTO 71 HBC 0 K-P, FLASTLEY 67 W 40.0 (10.0)
P1 Y*0(1670) INTO KBAR N 497+ 939 P2 Y*0(1670) INTO LAMBDA ETA 1115+ 548 P3 Y*0(1670) INTO SIGMA P1 1189+ 139		55 Y+0(1690) PARTIAL DECAY MCDES
40 Y+0(16T0) BRANCHING RATIOS R1 Y+0(16T0) INTO (KBAR N)/TOTAL (P1) R1 P (0.14) (0.04) ARMENT-1 68 HBC 0 0.0D DATA R1 P (0.14) (0.04) ARMENT-3 69 HBC 0 DDD DATA R1 0.17 ARMENT-3 69 HBC 0 NEW DATA R1 0.13 (0.04) ARMENT-3 69 HBC 0 NEW DATA R1 0.28 COMPOSTO THBC NEPELSASTACEX NEW ANALL R1 0.28 COMPOSTO THBC NEPELSASTACEX NEW ANALL R1 0.28 COMPOSTO THAN NUTICHANKEL NEW ANALL R1 0.28 COMPOSTO THAN NUTICHANKEL NEW ANALL R1 0.33 HART T3 DPMA EL+CX+, 7BGEV/C R1 A AFFECT FLICM RELION ANALYZED, VALUE OF ALB DELS NOT	11/68 9/69 9/69 6/70 3/71 12/72 2/74*	DECAY MASSES P1 Y*0(1690) INTO KBAR N 4074 939 P2 Y*0(1690) INTO SIGMA P1 1189* 139 P3 Y*0(1690) INTO LAMOA P1 P1 1189* 139 P4 Y*0(1690) INTO SIGMA P1 P1 1189* 139 P5 Y*0(1690) INTO SIGMA P1 P1 1189* 139 P5 Y*0(1690) INTO Y*0(1890) P1 1384* 139 P5 Y*0(1690) BRANCHING RATIOS 55 THE SUM OF ALL THE QUOTED \$RANCHING RATIOS THE SUM OF ALL THE QUOTED \$RANCHING RATIOS IS MORE THAN 1.0. THE TWO-BODY RATIOS ARE FROM PARTIAL WAYE ANALYSES. AND THUS PROBABLY ARE MORE SIGNIFICANT (THE RERCP GIVE NATIOS.) WORE SIGNIFICANT (THE RERCP GIVE NOT THE LAMEA PI P1 SUMD LOOKS UN- REASONABLY SMALL). HARDLY ANY OF THE SIGMA PI P1 DECAY CAN BE VIA Y*1(1395), FOR THEN NINE TIMES AS MUCH LAMBDA PI P1 DECAY CAN BE VIA Y*1(1395), FOR THEN NINE TIMES AS MUCH LAMBDA PI P1 DECAY WOULD BE REQUIRED.
P2 (0.26) ARMENT-3 69 HBC 0 P2 (0.24) KIM TI DPHA K-MATRIX ANAL. SEE THE NOTES ACCOMPANYING MASSES QUOTED SQRT(P1#93) P3 (-0.25) (0.06) ARMENT-2 68 HBC 0 DLD DATA R3 (-0.25) (0.06) ARMENT-2 68 HBC 0 DLD DATA R3 -0.27 ARMENT-4 69 HBC 0 NEM DATA P3 -0.30 (0.03) ARMENT-4 69 HBC 0 NEM DATA R3 -0.27 BERLEY 69 HBC 0 NEM DATA R3 -0.27 BERLEY 69 HBC 0 NEM DATA R3 -0.29 (0.03) GALTIERI 70 HBC 0 SIG P1:EDPMA R3 -0.38 KIM 71 DPMA K-MATRIX ANAL.	9/69 3/71 9/69 9/69 6/70 7/70 3/71	R1 Y+0(1690) INTO (KBAR N/TOTAL [P1] 11/6 P1 (0.18) (0.03) ARMENT-1 68 HBC 0 11/6 R1 (0.23) BUGG 65 CMTR 0 ASSUMING J=3/2 7/6 R1 M (0.22) (0.03) COMFORTO 68 MBC 0 SEE NOTE M ADOVE 11/6 R1 M (0.22) (0.03) COMFORTO 68 MBC 0 SEE NOTE M ADOVE 17/6 R1 0.18 (0.02) ARMENT-4 69 HBC 0 NEW DATA 9/6 R1 0.22 (0.04) BEHATAZA 69 HBC 0 NEW DATA 9/6 R1 0.22 COMFORTO T1 HBC K-P, ELAST, CEX 6/7 R1 AULTICHANNEL 2/7 R1 0.22 KIM T1 DPMA K-MATRIX ANAL 3/71 R1 0.22 KIM T1 DPMA <td< td=""></td<>
REFERENCES FOR Y+0(1670)		R2 Y+0(1690) FRCM KBAR N TO SIGHA PI SQRT(P1+P2) R2 (-0.33) (0.02) ARMENT-3 68 HBC 0 OLD DATA 11/60 R2 -0.33 (0.02) ARMENT-6 69 HBC 0 OLD DATA 12/60
BEPLEY 65 PQL 15 641 +COMODLY, HART, RAUM, STOMEHILL, + (BNLIJJ ARMENT-16 68 NP 86 195 ARMENTEROS, BAILLON, + (CERN,HEIDEL,SACLAYIJJ ARMENT-2 68 NP 86 223 ARMENTEROS, BAILLON, + (CERN,HEIDEL,SACLAYIJJ	P P P	R2 -0.27 BERLEY 69 HBC O K-P TO SIGNA PI 6/77 R2 -0.31 (0.03) GALTIERI 70 HBC 0 SIG PI.60PMa 7/7 R2 -0.40 KIM 71 DPMA K-MATRIX ANAL. 3/7
APMENT-3 69 LUND PAPER 229 ARMENTEROS, BAILLON, + (CERN,HEIDEL,SACLAY)IJU VALUES ARE QUOTED IN LEVI SETTI 69. ARMENT-6 69 NP B14 91 ARMENTEROS, BAILLON, + (CEPN,HEIDEL,SACLAY)IJI BERLEY 69 NP 1308 430 + MARI, RAHM, MILLIS, YAMAMOTO (BNIJJ GALTIERI TO DUKE 173 A. BARBARO GALTIERI (LARII) (ONFORTO 71 NP 834 61 +LEVI SETTI,LASINSKI.OBERLACK++ (EFI+MEIDIJJ	P P P P	P3 Y*0(1690) FROM KBAR N TO LAMEDA PI PI SORT(P1+P3) R3 B (0.25) (0.02) BARTLEY 68 HOBC 0 LAM 2PI CROS SEC 11/6 R3 B CNLY CROSS-SECTION DATA USED. ENHANCEMENT NOT SEEN BY PREVOST 71, 3/7; R4 Y*0(1690) FROM KBAR N TO SIGMA PI PI SORT(P1+P4)
ALSO 70 DUKE LOI J.K.KIM (HAKVIJU) ANGEIN 72 NP 847 477 + HAGNER (ART 73 PURDUE CONF. 311 + RFICE,BACASTOW,FUNG,+ (TENN+UCR+MASA+BUFF)IJ	P P P	Na* (0.21) ARMENT-2 68 HDBC 0 K-N TO SIG PI 11/61
PAPERS NOT REFERRED TO IN DATA CARDS RIRMINGH 66 PR 152 1148 (BIRMINGHAN,GLASGOW,LOIC,OXFORD,RUTHERFD) LEVISETT 69 LUND 339 R LEVI SETTI (RAPPORTUN) (CHICAGC)		REFERENCES FOR Y*0(1690) ARMENT-1 68 NP 88 195 ARMENTERDS, BAILLON, + (CERN.HEIDEL,SACLAY)IJP ARMENT-2 68 NP 88 216 ARMENTERDS, BAILLON, + (CERN.HEIDEL,SACLAY)IJP BARLEY 68 NP 186 223 BARTLEY 68 PR 186 1466 BUGG 68 PR 186 1466 GUPR 168 6466 FOLMONE, KNIGHT, + (BIRM.CAVE,RHEL)I ALSO 67 PR 188 62 DAVIES,DOWELL,+ GUMCREY 68 NP 88 265 +HARMSEN, LASINSKI, + (CHICAGO,HEIDELIJP
A(1690) 55 Y+0(1690, JP=3/2-) I=0 Do3 SEE THE MINI-REVUE AT THE START OF THE Y+ LISTINGS.		APMENT-4 69 NP 814 91 ARMENTERDS, BAILLON, + (CERN.HEIDEL,SACLAY)IJP BERLEY 69 PL 308 430 + HART, RAHM, MILLIS, YAMANOTO (BNLIJP BERTANZA 69 PR 177 2036 + BIGICARRARA,CASALI, + (FISA,BNL,YALE)IJP
THIS RESONANCE IS WELL ESTABLISHED. 55 Y*0(1690) MASS (MEV) M (1690-0) (3-0) APMENT-1 68 HBC 0 M (1681-0) (2-0) APMENT-3 68 HBC 0 M 1681-01 (2-0) APMENT-3 68 HBC 0 0 1691-0 (2-0) 0	11/68 11/68 11/68 7/68	GALTIERT 70 DUKE 173 A. BARBARO GALTIERI (LRLIIJP COMFORTO 71 NP P34 41 +LEVI SETTI;LASINSKI0BERLACK++ IEFI+HEIDIJP KIM T1 PRL 27 356 J K KIM (HARVIJP ALSO 70 DUKE 161 J. K. KIM (HARVIJP LANGE RIT 72 NP B47 477 +HAGNER (HPI HIJP HART 73 PURDUE CONF. 311 +RICE, BACASTON, FUNG,+ (TENN+UCR+MASA+BUFF)IJP PAPERS NOT REFEREND TO IN DATA CARDS PREVOST 71 AMSTERDAM CONF
H 11501 DOUG DB UNIK UNI	11/68 9/69 9/69 6/70 9/69	CERNAME CONF + UNS CULLADUMAI IUN (CERNAME DOSACL)

Baryons Λ(1750), Λ(1815)

77 Y*0(1750, JP=1/2+) I=0 Po1 Λ(1750) SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. THE EVIDENCE FOR THIS STATE IS SOMEWHAT CONFUSED. IT MAS FIRST SUGGESTED IN A PARTIAL WAVE AMALYSIS OF KORM N DATA BY THE BEHAVIOR OF THE POL AMPLITUDE WHEN IT WAS PARAMETRIZED AS A RESONANCE SUPFRIMPOSED ON A ONE-STRAINED, WHEN IT REGOUND, A BROAD RESONANCE SUPFRIMPOSED ON A ONE-STRAINED, A REAMALYSIS OF ESSENTIALLY THE SAME DATA, BUT THIS TIME WITH THE POL AMPLITUDE UNCON-STRAINED, SUGGESTED A MUCH NARROWER RESONANCE AT HADRLITUDE UNCON-TERAD, SUGGESTED A MUCH NARROWER RESONANCE AT HADRLITUDE UNCON-TERAD. SUGGESTED A MUCH NARROWER RESONANCE AT HADRLITUDE UNCON-TERAD. THE ANALYSIS OF BAILEY 69. THIS USES CONSIDERABLY LESS DATA THAN THE ANALYSIS OF BAILEY 69. THIS USES CONSIDERABLY LESS DATA THAN THE ANALYSIS OF BAILEY 69. THIS USES CONSIDERABLY LESS DATA THAN THE ANALYSIS OF BAILEY 69. THIS REASON WE DO NOT OUTET ANY PARAMETERS THE OTHER PARTIAL WAVES DETAINED IN THIS AMALYSIS. AMPORTEROS THE CHER PARTIAL WAVES DETAINED IN THIS AMALYSIS APPENTEROS THE CHER PARTIAL WAVES DETAINED IN THIS AMALYSIS APPENTEROS THE CHER PARTIAL MADES DETAINED IN THIS AMALYSIS AMENTERS OF THE CHER PARTIAL WAVES DETAINED IN THIS AMALYSIS AMENTERS THE SIGNA PI CHANNEL. IN ADDITION THE ANALYSES OF KIN 71 AND LANGERIN 72 INDICATE A SECOND POSSIBLE POL STATE.WE TENTATIVELY LIST THESE EFFECTS TOGETHER. 77 Y*0(1750) MASS (MEV) 0 (1745.0) ARMENTERD & BHBC 0 ELASTIC, CH EXCH 11/68 (1740.0) BATLEY 69 DPMA 0 ELASTIC, CH EXCH 11/68 (180.0) ARMENTERD 70 HBC 0 ELASTIC, CH EXCH 10/70 (1750.0) ARMENTERD 70 HBC 0 SIGMA PI (160.0) (10.0) GALTIERI 70 HBC 0 SIGMA PI N ERGOR STATIST. DNLY- NC ERROR DUE TO PARTICULAR P.M. ANAL. INCLUDED 1/71 (1755.1 KIM 71 DPMA K-MATRIX ANAL. 3/71 1 (1570.1 KIM 71 DPMA K-MATRIX ANAL. 3/71 1 (1570.1 LANGBEIN 72 IPMA HULTICHANNEL 12/72 AND 80 CORRESPOND TO 2 DIFFERENT RESONANCES IN POI 1 POSSIBLE EFFECT IN SIGMA PI AND KARN N CHANNELS. 0 CLD ANALYSIS, USING OLD DATA. **H** M F M M M M 1 8 8 77 Y*0(1750) WIDTH (MEV) (147.0) ARMENTERC 68 HBC 0 (300-0) BAILEY 69 DPMA 0 ELASTIC, CH EXCH 10/70 (30-0) ARMENTERD 70 HBC 0 ELASTIC, CH EX 6/70 (70-0) ARMENTERD 70 HBC 0 ELASTIC, CH EX 6/70 (22-0) GALTERI 70 HBC 0 SIGMA PI (35.1) KIM 71 DPMA (50-0) KIM 71 DPMA (50-0) LANGBEIN 72 IPMA MULTICHANNEL (22-0) LANGBEIN 72 IPMA HULTICHANNEL (50-0) LANGBEIN 72 IPMA HULTICHANNEL (22-0) LANGBEIN 72 IPMA HULTICHANNEL (22-0) LANGBEIN 72 IPMA HULTICHANNEL (23-1) KIM 71 DPMA N ı AB ------ ------77 Y*O(1750) PARTIAL DECAY MODES DECAY MASSES 497+ 939 1197+ 139 Y*0(1750) INTO KBAR N Y*0(1750) INTO SIGMA PI P1 P2 77 Y*O(1750) BRANCHING RATIOS Y*0(1750) INTC (KBAR N)/TOTAL (P1) 10.4) APMENTERO 68 DPMA 0 ELASTIC, CH EXCH 11/68 10.55) BAILEY 69 DPMA 0 ELASTIC, CH EXCH 10/70 10.15) APMENTERO 70 DPMA 0 ELASTIC, CH EXCH 10/70 10.30) AFMENTERO 70 DPMA 0 ELASTIC, CH EXCH 10/70 10.30) KIM 71 DPMA K-MATRIX AMAL 3/71 0.25 (0.15) LANGBEIN 72 IPMA MULTICHANNEL 12/72 0.36 (0.05) LANGBEIN 72 IPMA MULTICHANNEL 12/72 R1 R1 P1 R1 R1 R1 R1 B Y*0(1750) FROM KBAR N INTO SIGMA PI (+0.20) ARMENTERO 70 DPHA 0 K-P TO SIGMA PI (-0.13) (0.03) GALTIERI 70 DPHA 0 K-P TO SIGMA PI (0.17) KIM 71 DPHA 0 K-P TO SIGMA PI 0.28 (0.09) LANGBEIN 72 IPHA MULTICHANNEL 0.01 DR LESS LANGBEIN 72 IPHA MULTICHANNEL SES THE NOTES ACCOMPANYING MASSES QUOTED R2 R2 R2 N R2 R2 A R2 B 6/70 7/70 3/71 12/72 12/72 REFERENCES FOR Y*0(1750) ARMENTER 68 NP 88 195 ARMENTEROS, BAILLON, + (CEPN, HEIDEL, SACLAYIJP BAILEY 69 THESIS UCRL-50617 DAVID SAAL BAILEY (LRL LIVERMORE)IJP APMENTER 70 DUKE CONF 123 ARMENTEROS, BAILLON, + (CERN, HEIDELIJP GALTIER1 70 DUKE CONF 173 A BARBARO-GALTIER1 (LRL)IJP KIM 71 PRL 27 356 J K KIM (HARVIJP ALSG 70 DUKE 161 J, K., KIM (HARVIJP LANGBEIN 72 NP 847 477 +WAGNER (MPIM)IJP

 $\overline{\Lambda(1815)}^{39} \xrightarrow{9} \sqrt{10}(1815, JP=5/2*) I=0 \underbrace{F'_{05}}_{55}$ See the MINI-REVIEW AT THE START OF THE Y* LISTINGS.

THIS STATE IS WELL STABLISHED, MOST OF THE EISTINGS. FOPS ARE STATISTICAL ONLY. THE SYSTEMATIC ERRORS DUE TO THE PARTICULAR PARAMETRIZATION USED IN THE P.W.A. ARE NOT INCLUDED, FOR THIS REASON WE DO NOT CALCULATE WEIGHTED AVERAGES FOR MASS AND WIDTH.

39 Y*O(1815) MASS (MEV)

222222

N

 1813.0
 (2.0)
 ARMENT-1
 67 HBC
 0 K-P TO SIGMA PI
 8/67

 1816.0
 (4.0)
 BELL
 67 HDC
 0 K-N TO SIGMA PI
 11/67

 1816.0
 (4.0)
 BELL
 67 HDC
 0 K-N TO SIGMA PI
 11/67

 1817.0
 (2.0)
 ARMENT-3
 68 HBC
 0 ELASTIC, CH EXCH 11/68
 11/67

 1819.0
 (4.0)
 BUGG
 68 CNTR O K-P, D TOTAL
 6/68

 1825.0
 (1.0)
 BRICMAN TO CNTR O TOTAL AND CH EX 6/70
 6/70

 1819.0
 (1.0)
 BRICMAN TO CNTR O TOTAL AND CH EX 6/70
 1820.0
 (10.0)
 GAUTIENI TO DPHA S
 6/84 PI 10/70

 1820.0
 (10.0)
 GAUTIENI TO DPHA O ELASTIC, CH EXCH 1/71
 1830.0
 10/70
 GAUTIENI TO DPHA O ELASTIC, CH EXCH 6/70

 1810.0
 (2.0)
 CONFORTO T1 DPHA O ELASTIC, CH EXCH 6/70
 1810.0
 8/71
 1823.0
 13.01
 KANE T2 DPHA O K-P TO SIGMA PI 7/70

 1813.0
 (3.0)
 KANE T2 DPHA O K-P TO SIGMA T1 7/70
 1816.0
 (3.0)
 LANGEIN T2 IFMA MULTICHANNEL
 17/71

 26ROR STATIST, UNLY- NO ERPOR DUE TO PARTICULAR P.W-ANAL. INCLUDED 1/71
 17/12

</tabu/>

	39 Y*0(1	815) WIDTH (MEV)	
2222 222222222	87.0 (15.0) 64.0 (12.0) 71.0 (4.0) 80.0 (6.0) 79.0 (3.0) 100.0 (3.0) 100.0 (20.0) 70. (4.0) 70. (4.0) 70. (5.0) SEE THE NOTES ACCOMP	ARMENT-1 67 HBC BELL 67 HDC ARMENT-3 68 HBC BUGG 68 CNT BRICMAN 170 CNT BRICMAN1 70 CNT GALTIERI 70 CHT GALTIERI 70 CHT KIN 71 DPW KIN 71 DPW LANGBEIN 72 IPW/ ANYING MASSES QUO'EO	0 8/67 0 ELASTIC, CH EXCH 11/68 0 K-P, D TOTAL 6/68 0 TOTAL AND CH FX 6/70 SIGTOT, ELAS, CHFX 1/71 K-P, D TOTAL 10/70 0 K-P TO SIGMA PI 7/70 0 ELASTIC, CH FXCH 6/70 K-MATRIX AMAL 3/71 0 K-P TO PI SIG 10/71 MULTICHANNEL 12/72
P1 P2 P3 P4 P5	39 Y*0(1 Y*0(1815) INTO K84P N Y*0(1815) INTO SIGMA P Y*0(1815) INTO Y*1(138 Y*0(1815) INTO SIGMA P Y*0(1815) INTO ETA LAM	815) PARTIAL DECAY MODES I 5) PI I PI 804	DECAY MASSES 497+ 939 1189+ 139 1384+ 139 1192+ 139+ 139 548+1115
$\frac{\text{FITTE}}{\text{T}}$ $\frac{\text{FITTE}}{\text{branch}}$ $\frac{\delta P_i}{\epsilon} = \text{cients}$ $\frac{\text{above;}}{\epsilon}$ $\frac{\text{are thr}}{P_i}$ $\frac{P_i}{P_i}$ $\frac{P_i}{P_i}$ $\frac{P_i}{P_i}$	The partial decay mode is derived in gractions, P_i , as follow $\sqrt{\langle \delta P_i \delta P_i \rangle}$, while the <u>off-d</u> $\langle \delta P_i \delta P_i \rangle$, $\delta P_i \delta P_i \rangle$, $\delta P_i \delta P_i \rangle$, $\delta P_i \delta P_i \delta P_i \rangle$, $\delta P_i \delta P_i$	BRANCHING FRACTIONS from the error matrix for the <i>i</i> res: The <u>diagonal</u> elements are the <u>normula</u> the definitions of the individual the matrix are assumed in the P 3 P 4 P 5 0+0500 9150 .0660+.0546 00001293 .0152+00	itted partial decay mode $P_1 \neq \delta P_1$, where <u>lited</u> correlation coeffi- IP_1 , see the listings fit to be nonzero and 85
	39 Y*0(1 ERRORS QUOTED BY EXPER TO PARAMETRIZATION USE	815) BRANCHING RATIOS IMENTERS DO NOT INCLUDE UN D IN THE P.W.A. THEY SHOU	CERTAINTY DUE
R] R] R] R] R] R] R] R]	Y*0(1815) INTO (KBAP N 0.62 0.02 (0.72) 0.65 0.02 0.58 0.02 (0.8) 0.63 0.01 (0.52) 0.47 0.02	I/TDTAL APMENT-3 68 HBC BUGG 68 CNTR BRICMAN 70 CNTR BRICMAN 10 DPM CCOL 70 CNT CONFORTC 71 DPM KIM 71 DPM LANGGEIN 72 IPM	(P1) 0 ELASTIC, CH EXCH 11/68 0 K-P, D TOTAL 6/68 0 TOTAL AND CH EX 6/70 SIGTOT;ELAS;CHEX 1/71 K-P, D TOTAL 10/70 0 ELASTIC, CH EXCH 6/70 K-MATRIX ANAL 3/71 MULTICHANNEL 12/72
R1 AV R1 FI R2 R2 R2 R2 R2 R2 R2 R2 R2 R2	G 0.005 0.027 T 0.505 0.024 ¥*0(1815) FROM KRAR N 0.27 0.01 0.23 0.025 -0.26 0.03 (0.26) -0.26 0.027 0.25 0.03	AVERAGE (EPPOR INCLUDES FROM FIT (ERROR INCLUDES INTO SIGMA PI ARMENT-1 67 DPWA GALTIERI 70 DPWA KIM 71 0PWA KANE 72 DPWA LANGBEIN 72 IPWA	SCALE FACTOR OF 3.8) SCALE FACTOR OF 3.4) SORT(P1*P2) 0 K-P TO SIGMA PI 8/67 0 K-P TO SIGMA PI 11/67 0 K-P TO SIGMA PI 11/67 K-MATRIX ANAL. 3/71 0 K-P TO PI SIG 10/71 MULTICHANNEL 12/72
R2 AV R2 FI R3 A R3 A R3 FI	G MOD 0.2634 0.0081 T 0.2624 0.0081 Y*0(1815) FROM KBAR N (0.3) (0.05) T 0.348 0.044	AVERAGE (EPROR INCLUDES FROM FIT (ERROR INCLUDES INTO Y*1(1385) PI ARMENT-2 67 HBC FROM FIT	SCALE FACTOR OF 1.0) SCALE FACTOR OF 1.0) SORT(P1*P3) O K-P TO LAM P+ P+
R4 R4 R4 P4 F1	Y+0(1815) INTO (Y+1(13 0.20 0.05 T 0.200 0.050	85) PI)/TOTAL BIRGE 65 HBC FROM FIT (ERRCR INCLUDES	(P3) O K-P TO LAM PI PI 7/66 SCALE FACTOR OF 1.0)
R5 P R5 P R5 P R5 R5	Y*0(1815) INTO (SIGMA NO CLEAR SIGMAL THERE IS A SUGGESTIO WHAT IS EXPECTED FROM	PI PI)/TOTAL ARMENT-4 68 HDSC N DF A BUMP, ENDUGH TO 86 SIGMA PI DECAY OF THE Y*1(EDDM EIT	(P4) O K-N TO SIG PI PI 11/68 CONSISTENT WITH 1385) ABOUT 0.02.
R6 R6 P6 R6 F1 *****	Y*0(1815) FROM KBAP N 996 .040 T 0.095 0.027	TO ETA LAMBDA .020 RADER 73 MPWA FROM FIT (ERROR INCLUDES	SQRT(P1*P5) 9/734 9/734 SCALE FACTOR OF 1.0) * ********* *******
BIRGE ARMENT BELL ARMENT ARMENT BUGG BRICMA	65 ATHENS CONF 296 -1 67 PL 248 198 -2 67 ZEIT PHYS 202 486 67 PRL 19 936 -3 68 NP 88 195 -4 68 NP 88 216 68 PR 168 1466 N 70 PL 318 152	REFERENCES FOR Y+0(1815) +ELY,KALMUS,KERNAN,LOUIE, ARMENTEROS, F LUZZI, + 10 P B BELL ARMENTEROS, BAILLON, + 10 ARMENTEROS, BAILLON, + 10 ARMENTEROS, BAILLON, + 10 +FERRO LUZZI, PERREAU,+	SAHOURIA. + (LQLIJP ERN.HEIDEL.SACLAYIIJP ERN.HEIDEL.SACLAYIIJP ERN.HEIDEL.SACLAYIIJP ERN.HEIDEL.SACLAYIJJP ERN.HEIDEL.SACLAYI (ARELABIRHEAVEI I (CERN.CAEN.SACLAY)
BRICNAL COOL GALTIE CONFOR	TO PL 338 511 70 PR D1 1887 RI 70 DUKE CONF 173 TO 71 NP 834 41	+FERCE-LUZZI,LAGNAUX +GIACOMELLI, KYCIA, LEONT A BARBARD-GALTIERI +LEVI SETTI,LASINSKIOBE	(CERN) IC+ LI, + (BNL) I (LRL)IJP RLACK++ (EFI+HE1D)IJP
KIM AL: KANE LANGBE RADER	71 PRL 27 356 50 70 DUKE 161 72 PR D5 1583 1N 72 NP 847 477 73 NC 164 178	J K KIM J. K. KIM D F KANE +WAGNER *BARI OUTAUD.+ (SACI-WE	(HARV)[JP (HARV)[JP (LBL)[JP (MPTM][JP (Defermedeted)

Λ(1815), Λ(1830), Λ(1860), Λ(1870)

Baryons

APPERS NOT REFERRED TO IN DATA CARDS THE FOLLOWING PAPERS ARE NON OF ONLY HISTORICAL INTEREST CHAMBERL 62 PR 125 1696 CHAMBERLAIN, COWF, KEEFE, KERTH, * (181) I COULD 66 PR 112 123 CHAMBERLAIN, COWF, KEEFE, KERTH, * (181) I COULD 66 PR 112 123 CHAMBERLAIN, COWF, KEEFE, KERTH, * (181) I COULD 66 PR 112 1234 CHAMBERLAIN, COWF, KEEFE, KERTH, * (181) I COULD 66 PR 112 1234 CHAMBERLAIN, COWFLIER, SCHARMERLIE, FRISCH, MANLEID, SALL, IST, MANNELLI, SCHARMERLIE, FRISCH, MANLEID, SALL, IST, MANNELLI, SCHAR, PREDAZZI * (161) CONFORT 06 NP 08 3592 CHAMBERLAIN, SCHARLEUL, SCHIT, PREDAZZI * (161) CONFORT 06 NP 08 3592 CHARMERN, SLASINSKI, LEVI SETTI, PREDAZZI * (161) CONFORT 06 NP 08 3592 CHARMERN, SLASINSKI, LEVI SETTI, PREDAZZI * (161) CONFORT 06 NP 08 3592 CHARMERN, SLASINSKI, LEVI SETTI, PREDAZZI * (161) CONFORT 06 NP 08 3592 CHARMERN, SLASINSKI, LEVI SETTI, PREDAZZI * (161) CONFORT 06 NP 08 3592 CHARMERN, SLASINSKI, LEVI SETTI, PREDAZI * (161) CONFORT 06 NP 08 3592 CHARMERN, SLASINSKI, LEVI SETTI, PREDAZI * (161) CONFORT 06 NP 08 3592 CHARMERN, SLASINSKI, SLEVI SETTI, PREDAZI * (161) CONFORT 06 NP 08 3592 CHARMERN, SLASINSKI, SLEVI SETTI, PREDAZI * (161) CONFORT 06 NP 08 3592 CHARMERN, SLASINSKI, SLEVI SETTI, PREDAZI * (161)	A(1860) b) 40 Y*0(1860, JP=3/2+) ItO PO3 THE JP=3/2+ ASSIGNMENT IS CONSISTENT WITH ALL AVAILABLE DATA (INCLUDING POLARIZATION) AND PECENT AVAILABLE DATA (INCLUDING POLARIZATION) AND PECENT A FO7 1864-0 2-0 ARMENTERO 68 DWPA O ELASTIC, CH EXCH 11/08 M A FO7 1867-0 5-0 BUGG 68 CNTR 0 K-P TOTAL 7/68 A A FO7 1877-0 6-0 BRICMAN TO CNTR 0 TOTAL AND CH EX 6/70 H N PO3 1873-0 6-0 BRICMAN TO CNTR 0 TOTAL AND CH EX 6/71 H N PO3 1873-0 6-0 BRICMAN TO CNTR 0 TOTAL AND CH EX 6/71 H N PO3 1873-0 10-0 CONFORT 71 DPMA 0 ELASTIC, CH FXCH 6/70 H I PO3 1870-0 CO-0 BRICMAN TO CNTR 0 TOTAL AND CH EX 7/71 A THESE TAD ANALYSES GAVE THE FO7 ASSIGNMENT, THEY HAVE TO BE 1/71 A THESE TAD ANALYSES GAVE THE FO7 ASSIGNMENT, THEY HAVE TO BE 1/71 A DISCAROED IN VIEW OF COMPAND TO AND BRICMAN TO N DUE TO PARTICULAR PARAMETERIZATION USED FROM CAN BE LARGE 1/71 H A DISCAROED IN VIEW OF COMPONENTIAL BE LARGE 1/71 H A DISCAROED IN VIEW OF COMPONENTIAL BE LARGE 1/71 H A DISCAROED IN VIEW OF COMPONENTIAL OF LEAT ANALES FROM TABLE 1 OF LEATS ANE IN LISTINGS. 9779
56 Y*0(1830) MASS (MEV) M N 1827.0 (3.0) ADMENTERD 67 HBC O K-P TO SIGMA PI 8/67 M N 1837.0 (11.0) BELL 67 HBC O K-P TO SIGMA PI 11/67 M N 1837.0 (11.0) BELL 67 HBC O K-P TO SIGMA PI 11/67 M N 1807.0 (10.0) ATMENTERD 68 HBC 0 ELASTIC, CH KCH 11/68 N 1840.0 (15.0) GALTIERI TO DPMA 0 K-P TO SIGMA PI 7/70 M 1833.0 (5.0) CONFORTO TI DPMA 0 K-P TO SIGMA PI 3/71 M K (1720.) KIM TI DPMA K K-MATRIX ANAL. 3/71 M K (1720.) KIM TI DPMA K K-MATRIX ANAL. 3/71 M K 10551BLE CFFECT MAINUT IN SIGMA PI 72 DPMA 0 K-P TO PI SIGN 12/72 M K VITH THE 1830 EFFECT NOT CLEAR IF UNCORRELATED 12/72 M ERROP STATIST, ONLY- NO ERROR OUE TO PARTICULAR P.W.ANAL. INCLUDED 1/71	60 Y*0(1860) w*DTH (MEV) W A F07 39.0 7.0 ARMENTERO 68 DWPA DELASTIC, CH EXCH 11/68 W N 40.0 10.0 RUGG 68 CNTE D K-P TOTAL 7/68 W A F07 24.0 15.0 BRICMAN TO CNTR O TOTAL AND CH EX 6/70 W P03 37.0 10.0 BRICMAN TO DPWA O SIGTOT-ELASCHEX 1/71 N P03 80.0 20.0 CNFROTO TI DPWA O SIGTOT-ELASCHEX 1/71 W 125.0 (20.0) KIM TI DPWA K-MATPIX XANL 3/71 W 125.0 (20.0) LANGERIN TZ DPWA MULTICHANNEL 12/72 W 2 (323.8) LEA T3 DPWA SEE THE NOTES ACCOMPANYING MASSES QUOTED
56 Y*0(1830) WIDTH (MEV) W 75.0 (9.0) ARMENTER® 67 HBC 0 K-P TO SIGMA PI 8/67 W 74.0 (18.0) BFLL 67 HBC 0 K-P TO SIGMA PI 8/67 W 74.0 (18.0) AFMENTER® 61 HBC 0 K-P TO SIGMA PI 8/67 W 123.0 132.0) AFMENTER® 68 HBC 0 ELASTIC, CH EXCH 11/68 W 150.0 (130.0) GALTIERI TO OPHA 0 K-P TO SIGMA PI 7/70 W 104.0 (135.0) CONFORTO 71 DPHA 0 FLASTIC, CH EXCH 6/70 WA 80.0 KIM 71 DPHA 0 FLASTIC, CH EXCH 6/70 W 80.0 KIM 71 DPHA 0 K-MATRIX ANAL. 3/71 W 88.0 (10.0) KANE 72 DPHA 0 K-P TO PI SIG 10/71 W 88.0 (20.0) LANGREIN 72 DPHA MULTICHANNEL 12/72 SEE THE NOTES ACCOMPANYING MASSES QUOTED SEE THE NOTES ACCOMPANYING MASSES QUOTED MULTICHANNEL 12/72	P1 Y*0(1860) INTO KBAR N DECAY MASSES P2 Y*0(1860) INTO SIGMA PI 1189+ 139
56 Y+O(1830) PARTIAL DECAY MODES P1 Y+O(1830) INTO KBAR N 497+ 939 P2 Y+O(1830) INTO SIGMA PT 1189+ 139 P3 Y+O(1830) INTO Y=1(1351) P1 1189+ 139 P4 Y+O(1830) INTO ETA LAMBDA 548+1115	R1 PO3 0.14 0.02 BRIGMAN FOR DEVA CONFORT DEVA CONFORT DESTIGATION CONFORT DEVA MULTICHANCEL 12/72 P1 2 (-32) LEA 73 DEVA MULTICHANCEL 12/72 SEE THE NOTES ACCOMPANYING MASSES QUOTED (-21) (-22) (-22) P2 Y*0118601 INTO SIGMA PI (-22) (-22) (-22) P2 PROBABLY SSEN GALTIERI 60 DEC 0 K-N TO SIG PI PI 11/68 R2 0.03 OP LESS LANGREIN 72 IPVA MULTICHANNEL 12/72 R2 POSSIBLY THIS BUMP SEEN AT 1840-10 MEV MITH A WIDTH OF 359-10 MEV R2 R2 POSSIBLY THIS BUMP SEEN AT 1840-10 MEV MITH A WIDTH OF 359-10 MEV R2 ISTME Y*0(1830), WHICH DECAYS STRONGLY TO SIGMA PI. MOREVET THE R3 MEDRON UNDER MULTICHANNEL 12/72
56 Y+0(1830) BPANCHING RATIOS %1 Y+0(1830) INTO (KBAR N)/TOTAL (P1) (P1) R1 0.09 (0.01) ARMENTERO 68 H8C 0.08 SIGTOT.ELAS.CHEX.1/168 81 0.03 (0.02) BRICMANN TO DPWA SIGTOT.ELAS.CHEX.1/11 81 0.05 (0.02) BRICMANN TO DPWA SIGTOT.ELAS.CHEX.1/11 81 0.03 LANGBEIN 72 IPWA KMATRIX ANAL. 3/71 81 0.10 (0.03) LANGBEIN 72 IPWA SGRT(P1*P2) 72 0.15 (0.02) ARMENTERO 67 DPWA 0 K-P TO SIGMA PI 11/67 82 0.19 (0.01) BELL 67 DPWA 0 K-P TO SIGMA PI 11/67 82 0.15 (0.02) ARMENTERO 67 DPWA 0 K-P TO SIGMA PI 11/67 82 0.15 (0.02) ARMENTERO 70 DPWA 0 K-P TO SIGMA PI 11/67 82 0.15 (0.01) BELL 67 DPWA 0 K-P TO SIGMA PI 11/67 83 Y*0(1830) FROM KBAR N TO TA LAMBDA SORT(P1*P4) 9/73* 973 -044 020 <td>R2 MARGUM WIDTH HERE ANGUES FOR TIS BEING THE **O(1860). 9/73 R3 Y*0(1860) FROM KBAR N TO SIGHA PI R2 (+.15) SQRT(PI+P2) 9/73 R3 2 (+.15) LEA 73 DPWA MULTICHNL K-MTRX 9/73 REFERENCES FOR Y*0(1860) ARMENTEROGA NP B8 195 ARMENTEROS. BAILLON, + (CERN.HEIDEL,SACLAY)IJP MULTICHNL K-MTRX 9/73 BUGG GA PR 168 1666 FGILMORE, KNIGHT, + (PHEL,BIAM,CAVE) I GALTIERI 68 PPL 21 573 BARBARO-GALTIERI, MATISON, + (LEL,SLAC) BRICMAN TO PL 318 152 +FEPROL ULZI, LEGRAU,+ (CERN,CALEN,SACLAY) (CERN) BRICMAN TO PL 318 152 +FEPROL ULZI, LEGRAUX (CERN) (CERN) CONFORTO 71 NP 834 +LEVI SETTI,LASINSKIOBERLACK++ (EFI-HEIDIJP KIM (HARV)IJP ALSO 70 DUKE 161 J. K. KIM (HARV)IJP LARGEIR 73 NP 856 77 +MARTIN,MODRHOUSE+ (RHEL+LOUC+GLAS+AARHUS)IJP PAPERS NOT PEFERRED TO IN DATA CAROS PAPERS NOT PEFERRED TO IN DATA CAROS PAPERS NOT PEFERRED TO IN DATA CAROS</td>	R2 MARGUM WIDTH HERE ANGUES FOR TIS BEING THE **O(1860). 9/73 R3 Y*0(1860) FROM KBAR N TO SIGHA PI R2 (+.15) SQRT(PI+P2) 9/73 R3 2 (+.15) LEA 73 DPWA MULTICHNL K-MTRX 9/73 REFERENCES FOR Y*0(1860) ARMENTEROGA NP B8 195 ARMENTEROS. BAILLON, + (CERN.HEIDEL,SACLAY)IJP MULTICHNL K-MTRX 9/73 BUGG GA PR 168 1666 FGILMORE, KNIGHT, + (PHEL,BIAM,CAVE) I GALTIERI 68 PPL 21 573 BARBARO-GALTIERI, MATISON, + (LEL,SLAC) BRICMAN TO PL 318 152 +FEPROL ULZI, LEGRAU,+ (CERN,CALEN,SACLAY) (CERN) BRICMAN TO PL 318 152 +FEPROL ULZI, LEGRAUX (CERN) (CERN) CONFORTO 71 NP 834 +LEVI SETTI,LASINSKIOBERLACK++ (EFI-HEIDIJP KIM (HARV)IJP ALSO 70 DUKE 161 J. K. KIM (HARV)IJP LARGEIR 73 NP 856 77 +MARTIN,MODRHOUSE+ (RHEL+LOUC+GLAS+AARHUS)IJP PAPERS NOT PEFERRED TO IN DATA CAROS PAPERS NOT PEFERRED TO IN DATA CAROS PAPERS NOT PEFERRED TO IN DATA CAROS
PEFEPENCES FOR Y*011830) ARMENTER 67 PL 24B 198 ARMENTEROS, F-LUZZI, + (CERN,HEIDEL,SACLAY)IJP BELL (IL) IJP BARMENTER 68 NP 88 195 ARMENTEROS, BALLLON, + (CERN,HEIDEL,SACLAY)IJP IS.UPERSEDED BY COMFORTO 71. (IL) IJP BYLICMANI TO PL 33B 511, + FERPO-LUZZI,LAGNAUX CONFORTO 71 NP B33B 511, PEFENDED BY COMFORTO 71. (IL) IJP CONFORTO 71 NP B34 41 +LEVI SETTI,LASINSKIOBERLACK++ (EFI+HEID)IJP KIM T1 PRL 27 356 J. K.K.KIM (HARV)IJP LANGGEN TO NO LUKE 1061 J. K.K.KIM LANGERT 73 NC 164 178 + BARRACOUTAUD,+ PAPERS NOT REFERRED TO IN DATA CAROS PAPERS NOT REFERRED TO IN DATA CAROS PREVOST 71 AMSTERDAM CONF PREVOST 71 AMSTERDAM CONF CONFORT 71 AMSTERDAM CONF CONFORT 71 AMSTERDAM CONF PREVOST 71 AMSTERDAM CONF	AMENTER 67 NP 83 592 REPLACED BY ANEMETEROS, F-LUZZI, + (CERN, HEIDEL, SACLAYIIJP REPLACED BY ANEMETEROS 68 AND CONFORTO 68.CONFORTO 68 NP 88 265 SUPERSEDE BY COMFORTO 71.LEVISETT 69 LUND 339 ALBROW 71 NP 829 413R.LEVI SETTI (RAPPORTEUR) ALBROW 71 NP 829 413ALBROW 71 NP 829 413ANDERSON, BOSNJAKOVIC, DAUM, ERNZ, +ALBROW 71 NP 829 413ALBROW 71 NP 829 413

173

Baryons Λ(1870), Λ(2010), Λ(2020), Λ(2100)

		36 Y*0(1870) W1	DTH (MEV)			1	I			27 V+0/2			HODES			
พ พ พ	(100.0) (40.) 70.0	(20.0) (15.0)	BRICMAN Kim Langbein	70 DPWA 71 DPWA 72 IPWA	TOT, ELAS, CHEX K-MATRIX ANAL. Multichannel	1/71 3/71 12/72	P1 P2		Y*0(2020) IN Y*0(2020) IN	TO KBAR N	1	IAL UECAY	MCDES	DECA 497+ 93 1197+ 13	Y MASSES 9 9	
		36 Y*0(1870) PA	RTIAL DECAY	MODES												
P1 P2	Y*0(1870) IN Y*0(1870) IN	TO KBAR N TO SIGMA PI			DECAY MASSES 497+ 939 1197+ 139		R1 R1		¥*0(2020) [N {0.05]	27 ¥*0(2 NTD (KBAR N) [0.02)	()/TOTAL	CHING RAT	105 71 OPWA	(P1) K-P TO	KBAR N	10/71
		36 Y*0(1870) BR	ANCHING RAI				P2 P2		Y*0(2020) FR (-0.15)	CM KBAR N (0.02)	TO SIGMA	P1 GALTIERI	70 DPWA	SQRT(P1*P 0 K-P TO	2] SIGMA PI	7/70
R1	Y+0(1870) IN	TO (KBAR N)/TOTAL		70 0004		1.771	***	***	*******	******* **	******* *	*********	********	*******	* *******	
R1 R1 R1	(0.80) 0.35	(0.15)	KIM LANGBEIN	70 CPWA 71 DPWA 72 IPWA	K-MATRIX ANAL. MULTICHANNEL	3/71	GAL	TIEF	RT 70 DUKE CO	NF 173	A BARBAR	S FOR F	1		(LRL)IJF	,
R 2 R 2	Y*0(1870) FR (0.24)	CM KBAR N TO SIGN	A PI KIM	71 DPWA	SQRT(P1*P2) K-MATRIX ANAL.	3/71	LIT ***	***	IE 71 NP 830) 125 ******** **	LITCHFIE	L0,+LE *******	\$QUOY.+	(RHEL+CD	EF+SACL)IJF * *******	•
*****	******** **	*******	*******	********	******** *******		***	***	******** **	******* **	****** *	*******	·····		* *******	
BRICMA KIM AL LANGBE	N 70 PL 33B 71 PRL 27 SO 70 DUKE 16 IN 72 NP 847	511 C BRIC 356 J K KI 1 J. K. 477 +WAGNE	MAN, M FERI M KIM R	RO-LUZZI,	J P LAGNAUX(CERN)IJF (HARV)1JF (HARV)1JF (MPIM)IJF	2 2 2 2		1(2	2100)	41 Y*0(2 SEE THE M	100, JP≖7 INI-R⊊VIE	/2~) 1=0 W AT THE	START OF	77	STINGS.	
***** ******	********* **	******* ********	*********	********	********* ********					ANALYSES. AND INVAR	Y ONLY IN PARAMET	CLUDES RE ERS OF PE DISTRIBU	SULTS FRO AKS SEEN ITIONS ARO	M PARTIAL IN CROSS- UND 2100	-WAVE Sections Mev Are	
Λ(2	2010)	89 Y*0(2010, JF S56 THE MINI-REV	*=3/2-) I=0	D ^{##}	THE Y* LISTINGS.			G1\ G1\ I5 F0P	VEN IN THE NE VE THE BEST R , HOWEVER, PR R PARAMETERS	EXT ENTRY. RESULTS, AS ROBABLY NOT GIVEN IN T	EVENTUAL THEY ISO YET ATTA HE MAIN B	LY THE PA LATE THE INED, AND ARYON TAB	GO7 WAVE. WF RELY UE.	E ANALYSE THIS SU ON BOTH E	S SHOULD PERIORITY NTRIES	
	\rightarrow	SUCH A RESONANCE	IS SUGGES	TED BY ONL	Y TWO GION, UNITI THERE					41 Y#0(2		(MEV)				
		IS MORE EVIDENCE BARYON TABLE.	WE OMIT	THIS STATE	FROM THE MAIN		M		(2120.0)		1007 11033	WOHL	66 HBC	K-P CH	EX	7/66
							M	Ĺ	(2080.0) (2130.0) 2110.0	(20.0)		BURGUN BERTHONI GALTIERI	68 DPWA 70 DPWA 70 DPWA	0 K-P TO 0 K-P TO	XI K SIGMA PI SIGMA PI	10/69 10/70 7/70
	(2010-0)	89 Y*0(2010) N	GALTIERT	70 DPWA	O K-P TO SIGNA PT	7/70	M M M	L	2100. 2110.0 2113. T	(15.) (30.0) 2154-		LITCHFIE LITCHFIE BRANDSTE	71 DPWA 71 DPWA 72 DPWA	K-P TO K-P TO 0 K-P TO	KBAR N SIG PI LAM, DMG,	10/71 10/71 1/74*
M 1 M 1	1935. TO 1951. TO	1971. 2034.	BRANDSTE	72 DPWA 72 DPWA	O K-P TO LAM. OMG. O K-P TO LAM. DMG.	1/74* 1/74*	M M	٠ ۸	2092.0 BURGUN 68	(12.0) B SEE A RES	ONANCE-LI	KANE Ke effect	72 DPWA IN THIS	0 K-P TO REGION IN	PI SIG THE	10/71
M 1 M 1 M 1	PRESENT.BOT QUOTED ARE	ASSIFICATION OF T TH ARE LISTED HERE RANGES FROM THREE	AWAITING I BEST FITS	TATES IS N FURTHER EV THE LOWER	OT POSSIBLE AT IDENCE. PARAMETERS (HIGHER) MASS STATE	1/74* 1/74* 1/74*	M M M		WHETHER IT I UNOBSERVED F	P TO XI K. IS MAINLY T RESONANCE W	HOWEVER, HE GOT Y* ITH A SPI	AS THEY 0(2100) C N LESS TH	PUINT OUT R INSTEAD	A SO FAR	OTHERWISE	
M 1	PROBABLY HA	S J.LE.3/2(5/2).				1/74*	Å	L 1	LITCHFIELD PARAMETERS	71 IS AN U QUOTED ARE	PDATE OF RANGES F	BERTHON1 ROM THREE	70 BEST FIT	5.		3/72 1/74*
		89 Y*0(2010) W1	DTH (MEV)													
W W 1	(130.0) 180. TO	(50.0) 240. (LWR. MASS	GALTIERI BRANDSTE	70 DPWA 72 DPWA	O K-P TO SIGMA PI O K-P TO LAM. OMG.	7/70 1/74*	w		(145.0)	41 1+012	21007 W101	WOHL	66 HBC			7/66
W 1	73. 70	9 154. (HGR. MASS	BRANDSTE	72 DPWA	O K-P TO LAM. ONG.	1/74*	× ×	A	(80.0) 140.0 60.0	(10.0) (15.0) (25.0)		BURGUN BERTHON1 GALTIEPI	68 DPWA 70 DPWA 70 DPWA	0 K-P TO 0 K-P TO 0 K-P TO	XI K SIGMA PI SIGMA PI	10/69 10/70 7/70
		89 Y+0(2010) P	APTIAL DECA	Y MODES			×	8 8	(170.) I LARGER VALUE	CORRESPON	IDS TO PUR	E B.W. LC	71 DPWA	K-P TO • TO 8.W	KBAR N + BCKGRD	10/71
P1	Y*0(2010) IN	TO KBAR N			DECAY MASSES 497+ 939		÷.	1	208. TO 144.0	(26.0)	(30.07	BRANDSTE	72 DPWA 72 DPWA	0 K-P TO	LAM. OMG. PI SIG	1/74*
P2 P3	Y*0(2010) IN Y*0(2010) IN	ITO SIGMA PI ITO LAMBDA OMEGA			1197+ 139 1115+ 782				SEE THE NO	DTES ACCOMP	PANYING MA					
		89 Y*0(2010) B								41 Y*0(2	2100) PART	TAL DECAY	MDDES			
				. 105			P1		Y*0(2100) IN	NTO KBAR N				DECA 497+ 93	Y MASSES	
R1	(-0.20)	(0.04)	GALTIERI	70 DPWA	O K-P TO SIGMA PI	7/70	P3 P4		Y+0(2100) IM Y+0(2100) IM	NTO XI K NTO LAMBDA	OMEGA			1321+ 49	7	
P2 R2 1 R2 1	Y*0(2010) FR (.17)	CM KBAR N INTO LA TO .25 (LWR.) TO .15 (HGR.)	BRANDSTE BRANDSTE	72 DPWA 72 DPWA	SQRT(P1*P3) O K-P TO LAM. OMG. O K-P TO LAM. DMG.	1/74*	P5		Y*0(2100) 1	NTO ETA LAM	48DA			548+111	5	
*****	******* **	******* *******	*******	*******	********* ********					41 Y*0(2	2100) BRAN	CHING RAT	105			
		REFER	ENCES FOR Y	*0(2010)			R1 R1		Y#0(2100) IN (0.25)	NTO (KBAR N	A)/TOTAL	WOHL	66 HBC	(P1)		7/66
GALTIE	RI 70 DUKE CO TE 72 NP 839	INF 173 A BARE 13 BRAND	SARD-GALTIE	RI TERWORTH,+	(LRL)IJI (RHEL+CDEF+SACL)	Ρ	R1 R1 R1	D	(0.33) 0.30 DAUM 68 AS) .03 SUMES (J+1/	2)*X VALU	DAUM LITCHFIE E SEEN IN	68 CNTR 71 DPWA 1 TOTAL CR	K-P EL K~P TO SS SECTI	A, POL, SIGT KBAR N . ON.	7/70
******	********* **	******* ********	· **********	*********	********* ********		P2		Y*0(2100) FF	ROM KBAR N	INTO SIGM	A PI	70 0944	SQRT(P1+P	2) 510HA BT	10/70
F 77		27 Y+0(2020, JI	P=7/2+] I=0	F07			R2 R2	Ľ	+0.06	(0.03)		GALTIERI	70 DPWA 71 DPWA	0 K-P TO K-P TO	SIGMA PI SIG PI	7/70
[Λ(2020)	EFFECTS IN THIS DIFFERENT ENERG	PARTIAL WA	VE HAVE OB	SERVED AT SOMEWHAT However, Litchfield		R2 R3		+0.096 Y*0(2100) FF	6 (0.037) Rom Kbar N	TO XI K	KANE	72 DPWA	0 K-P TO	PI SIG 3)	10/71
_	\rightarrow	71 NOTE THAT THE RESTS SOLELY ON MEASUREMENT AT	A POSSIBLY	THIS STATE INCONSIST	IN THEIR ANALYSIS ENT POLARIZATION		R3 P3	в	(0.05) (0.09)) } (0.01)		TRIPP BURGUN MIRIER	67 RVUE 68 DPWA	0 K-P TO 0 K-P TO	XI K XI K	8/67 10/69 7/70
							93 83	8	0.03	5 0.018 UPDATED BY	LITCHFIEL	LITCHFIE D 71, WHO	71 DPWA TAKES SC	K-P TO	XIK OF BURGUN	3/72 3/72
		27 Y*0(2020) M	ASS (MEV)			_	R4 R4	ı	Y*0(2100) FF .05	ROM KBAR N TO +11	INTO LAMB	DA CMEGA BRANDSTE	72 DPWA	SQRT(P1*P 0 K-P TO	4) LAM. OMG.	1/74*
M	(2020.0) (2100.)	(20.0) (30.)	GALTIERI LITCHFIE	70 DPWA 71 DPWA	D K-P TO SIGMA PI K-P TO KBAR N	7/70 10/71	R5 R5		Y*0(2100) FF	ROM KBAR N	TO ETA LA	MBDA Rader	73 MPWA	SORT(P1*P	51	9/73* 9/73*
									SEE THE NO	DTES ACCOMP	PANYING MA	SSES QUOT	ED			
H	(160.0)	(30.0)	GALTIERI	TO DPWA	O K-P TO SIGMA PI	7/70	'''				REFERENC	ES FOR Y	0(2100)	***		
ч 	(120.)	(30.)	LITCHFIE	71 DPWA	K-P TO KBAR N	10/71	WOH TR I	HL [PP	66 PRL 17 67 NP B3 1	107 10	C G WOHL + LEITH,	, F T SOL + (LF	MITZ, M L L,SLAC,CE	STEVENSO	N {LRL}IJI ,SACLAY}	•
							BUP DAU	RGUN JM COI	68 NP 88 4 68 NP 87 1 NFIRMS THE 50	447 19 PIN-PARITY	+MEYER,P +ERNE, L ASSIGNMEN	AULI, + Agnaux, s It.	(SACLA SENS, STEL	IER, UDO	CE,RHEL) (CERN)JP	
							MU	IFR	A0 THESTS	UCRI 19372	R & MILLI	FR			(LRL)	

+VRANA, BUTTERWORTH, + (CDEF, RHEL, SACLAY)IJP A BARARAO-GALTIERI LITCHFIELD,...+LFSQUOY,+.. (RHEL+CDEF+SACL)IJP BRANDSTETTER+...+TALLINI (RHEL+CDEF+SACL)IJP D F KANE РЗ Р3 BERTHON1 70 NP B24 417 GALTIERI 70 DUKE CONF 173 LITCHFIF 71 NP B30 125 BRANDSTE 72 NP B39 13 KAME 72 PR 05 1583 RADER 73 NC 16A 178 R4 04 +BARLOUTAUD,+ (SACL+HEID+CERN+RHEL+COEF) 35 Y*0(2110, JP=5/2-) I=0 F05 or D05 A(2110) 10) BERTHONI 70 FIND EITHER FOS OR DOS POSSIBLE IN THE SIG PI CHANNEL, WITH FOS SLIGHTLY PREFERED. IN THE KBAR N CHANNEL, LITCHFIELD TI (SAME GROUP) FIND CNLY DOS. AS USUAL, THE STATISTICS ARE MUCH BETTER IN THE ELASTIC CHANNEL. ALTHOUGH KAME 72 FINDS AN FOS EFFECT, THE UNUSUALLY BROAD WIDTH MAY INVALIDATE A RESONANT INTERPRETATION. RRICMAN COOL _____ 35 Y*0(2110) MASS (MEV) (2110.) (10.) BERTHONL 70 DPWA - K- P TO SIG PI (2140.) (40.) LITCHFIE 71 DPWA K-P TO KBAR N (2141.0) (6.0) KANE 72 DPWA 0 K-P TO PI SIG PESONANCE OUTSIDE PANGE OF DATA. 1/71 10/71 10/71 35 Y*O(2110) WIDTH (MEV) (30.) BERTHON1 70 DPWA → K-P TO SIG PI LITCHFIE 71 DPWA K-P TO KBAR N KANE 72 DPWA 0 K-P TO PI SIG (120.) (40.) (504.0) (10.0) 10/71 35 Y*0(2110) PARTIAL DECAY NODES DECAY MASSES 497+ 939 1197+ 139 1115+ 782 Y*0(2110) INTC KBAR N Y*0(2110) INTC SIGMA PI Y*0(2110) INTC LAMBDA CMEGA P1 P2 P3 35 Y#0(2110) BRANCHING RATIOS w Y*0(2110) FROM KBAR N TO SIGMA PI SORT(P1*P2) (+.17) (.03) BERTHON1 70 DPMA - K- P TO SIG PI A (+0.156) (0.013) KANE 72 DPMA 0 K-P TO PI SIG R1 R1 1/71 10/71 Y*0(2110) INTO (KBAR N)/TOTAL (P1) {0.14} {0.04} LITCHFIE 71 DPWA K∼P TO KBAR N R 2 P 2 10/71 REFERENCES FOR Y*0(2110) +VR4NA,BUTTERWOPTH,+ (CDEF,RHEL,SACLAY)IJP LITCHFIELD,...+LESQUDY,+.. (RHEL+COEF+SACL)IJP D F KANE (LBL)IJP BERTHON1 70 NP B24 417 LITCHFIE 71 NP B30 125 KANE 72 PR 05 1583 R1 R1 R1 R1 R1 2100 MEV REGION - PRODUCTION EXPERIMENTS 25 Y+0(2100, JP=) I=0 SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. SEE THE NOTE TO THE GOT Y*0(2100), WHICH PRECEDES THIS ENTRY. HERE WE LIST ONLY PARAMETERS OF PEAKS IN CROSS SECTIONS AND INVARIANT-MASS DISTRIBUTIONS. THE CROSS-SECTION PEAKS ARE AT LEAST DOMINANTLY ASSOCIATED WITH THE Y*0/2100), BUT MAY CONTAIN A SMALL CONTRIBUTION FROM THE SUGGESTED BUT NOT ESTAB-LISMED OTHER RESONANCES IN THIS REGION. 25 Y*0(2100) MASS (MEV) (PRCD. EXP.)
 BOCK
 65 HBC
 PBAR P 5.7 BEV/C
 7/66

 BUGG
 68 CNTR
 K-P, D TOTAL
 6/68

 BRICHAN
 70 CNTR
 0 TOTAL AND CH EX
 6/70

 CC9L
 70 CNTR
 K-P, D TOTAL
 10/70

 LU
 70 CNTR
 0 GANMA P TO K+ Y*
 1/71
 (6.0) (7.0) (5.0) (2097.0) 2100.0 2121.0 (10.0) (2135.0) 25 Y*0(2100) WIDTH (MEV) (PPOD. EXP.) -' INTO KBAR N (PI) 7/66 6/68 0 TOTAL AND CH EX 6/70 K-P, D TOTAL 10/70 0 GAMMA P TO K+ Y* 1/71 (14.0) (24.0) BOCK 65 HBC INTO KBAR N (PI) (15.0) BUGG 68 CNTR (15.0) BRICMAN TO CNTR 0 TOTAL AND CH EX (200L 70 CNTR K-P.D TOTAL LU TO CNTR 0 GAMMA P TO K+ Y* (24.0) 140.0 147.0 185.0 (40.0) ____ 25 Y*0(2100) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES 497+ 939 497+ 939 1115+ 548 1115+ 782 Y*0(2100) INTO KBAR N Y*0(2100) INTO KBAR N PI Y*0(2100) INTO LAMBDA ETA Y*0(2100) INTO LAMBDA OMEGA P1 P2 P3 P4 25 Y*0(2100) BRANCHING RATIOS (PROD. EXP.) Y*0(2100) INTO (KBAR N)/TOTAL (P1) THESE VALUES DF ELASTICITIES ASSUME J=7/2 --0.305 BUGG 60 CNTR 0.24 (0.02) BPICMAN TO CNTR O TOTAL AND CH EX 0.4 CODL TO CNTR K-P, O TOTAL R1 R1 R1 R1 R1 R1 R1 R1 R1 C R1 C 6/68 6/70 10/70 (P2) 65 HBC Y*O(2100) INTO KBAR N PI SEEN R2 R2

воск

Baryons Λ(2100), Λ(2110), Λ(2350), Λ(2585)

 Y*0(2100)
 FROM KBAR N
 INTO LAMBDA ETA
 SQRT(P1*P3)

 (0.09)
 CR
 LESS
 FLATTE 2
 67
 HBC
 0 K-P
 TO LAM ETA
 6/68 Y*O(2100) INTC (LAMBDA OMEGA)/TOTAL [P4] {0.1} OR LESS FLATTE 1 67 HBC O K-P TO LAM OMEGA 8/67 ****** REFERENCES FOR Y+0121001 (PROD. EXP.) +COOPER, FRENCH, KINSON, + (CERN, SACLAY)
 BOCK
 65
 PL
 17
 166

 FLATTE
 1
 67
 PR
 155
 1517

 FLATTE
 2
 67
 PR
 163
 1441

 BUGG
 68
 PR
 168
 1466
 S M FLATTE S M FLATTE, C G WOHL +GILMORE,KNIGHT, + (LRL) (LRL) (RHEL,BIRM,CAVE) [+FEPRD LUZZI, PEPREAU,+ (CEPN,CAEN,SACLAY) +GIACOMELLI, KVCIA, LEONTIC, LI, + (BML) +GREENBERG, HUGHES, MINEHART, MORI,+ (YALE) 70 PL 318 152 70 PR D1 1887 70 PR D2 1846 PAPERS NOT REFERRED TO IN DATA CARDS COOL 66 PRL 16 1228 SUPERSEDED BY COOL 70. +GIACOMELLI,KYCIA,LEONTIC,LI,LUNDBY,+ (BNL) f 42 Y*0(2350, JP=) I=0 PRODUCTION EXPERIMENTS A(2350) SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. BUMPS DAUM 68 FAVORS JP=7/2- OR 9/2+. BRICMAN 70 FAVORS 9/2+. LASINSKI 71 SUGGESTS THREE STATES IN THIS REGION USING A POMERON + RESONANCES MODEL. 42 Y#0(2350) MASS (MEV) (PROD. EXP.) (7.0) (6.0) (15.0) (20.0) 2340.0 2344.0 ------ ------42 Y#0(2350) WIDTH (MEV) (PROD. EXP.)
 BUGG
 68 CNTR
 K-P, D TOTAL
 6/68

 BPIGNAN
 70 CNTR
 0 TOTAL AND CH EX
 6/70

 CCOL
 70 CNTR
 K-P, D TOTAL
 10/70

 LU
 70 CNTR
 0 GAMMA P TO K+ Y*
 1/71
 140.0 (20.0) (30.0) (190.0) (55.0) 42 Y*0(2350) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES 497+ 939 Y*0(2350) INTO KBAR N 42 Y#0(2350) BRANCHING RATIOS (PROD. EXP.) Y≠0(2350) INTO (KEAP N)/TOTAL (P1) J IS NOT KNOWN. THE FOLLOWING IS (J+1/2)*P1. (0.57) 1.1 0.25 B≅ICHAN 70 CATR K-P.D TOTAL 6/68 (1.0) CEDL 70 CATR K-P.D TOTAL 10/70 REFERENCES FOR Y+0(2350) (PROD. EXP.) +GILMORE,KNIGHT, + +ERNE, LAGNAUX, SENS, STEUER, UDO (CERNJP) FERRO,UZZI, PERREAU,+ (CERN.CAEN,SACLAY) +GIACOMELLI, KYCIA, LEONTIC, LI, + +GIACOMELLI, KYCIA, LEONTIC, LI, + HOFFENBEG, HUGHES, MINEHART, MORI,+ (VALE)
 BUGG
 68
 PR
 168
 1466

 DAUM
 68
 NP
 87
 19

 BRICMAN
 70
 PL
 31B
 152

 COOL
 70
 PR
 01
 1887

 LU
 70
 PR
 02
 1846
 PAPERS NOT REFERRED IN DATA CARDS +GIACOMELLI,KYCJA,LEONTIC,LI,LUNDBY,+ (BNL) I COOL 66 PRL 16 1228 SUPERSEDED BY COOL 70. LASINSKI 71 NP 829 125 T & LASINSKI (EFI)IJP A(2585) 7 Y*O(2585, JP= } I≈O PRODUCTION EXPERIMENTS BUMPS | SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. 7 Y*0(2585) MASS (MEV) (PROD. EXP.) ABRAMS 70 CNTP K-P. D TOTAL 10/70 LU 70 CNTR 0 GAMMA P TD K+ Y* 1/71 2585.0 (2530.0) 45.0 (25.0) ------7 Y*0(2585) WIDTH (MEV) (PROD. EXP.) ABRAMS LU (300.0) 70 CNTR K-P, D TOTAL 10/70 70 CNTR 0 GAMMA P *0 K+ Y+ 1/71 (150.0) 7 Y+0(2585) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES 497+ 939 Y*0(2585) INTO KBAR N -----7 Y+O(2585) BRANCHING RATIDS (PROD. EXP.) Y*0(2585) INTO (KBAR NJ/TOTAL (P1) J IS NOT KNOWN. THE FOLLDWING IS (J+1/2)*PL. (1.0) ABRAMS 70 CMTR K-P, D TOTAL 10/70 (0.12) (0.12) BRICMAN 70 CMTR TOTAL AND CH EX 10/70 RESONANCE AT END OF REGION ANALYZED -- NO CLEAR SIGMAL. Baryons $\Lambda(2585), \Sigma^+, \Sigma^-, \Sigma^0, \Sigma(1385)$

40

40

0

P1 P2 P3

0

WEIGHTED AVERAGE = 35.1 ± 2.3 WEIGHTED AVERAGE = 0.132 ± 0.016 ERROR SCALED BY 2.0 ERROR SCALED BY 1.0 CHISQ · · · · · HABIBI 73 HBC 1.5 · · · · · · · · · · · · · ATHERTON 71 HBC 0.0 • • • • ATHERTON 71 HBC 14.2 · · · AGUILAR 70 HBC · · · · SIEGEL 67 HBC 0.1 CHISQ ····BIRMINGHA 66 HBC 2.8 THOMAS 73 HBC 0.4 · · · · · SMITH 65 HBC 0.3 . . . MAST2 73 MPWA 1.5 · · · · SMITH 65 HBC 2.4 COLLEY 71 DBC 0.0 · · · · ARMENTERD 65 HBC 1.0 PAN 69 HBC 0.0 · ·HUWE 64 HBC 14.5 ·LONDON 66 HBC 0.7 · · · · · · · · · · COOPER 64 HBC 2.5 ARMENTERD 65 HBC 0.8 · · · · · ELY 61 HLBC 2.6 HOUF 64 HBC 1.1 42.0 4.5 (CONLEV (CDNLEV 0.35 BO 120 -0.05 0.05 0.15 0.25 =0.000) =0.610) Y#1(1385)+ WIDTH (MEV) Y#1(1385) INTO (SIGMA PI)/(LAMBDA PI) Y*1(1385) INTO LAMBDA GAMMA 1 (0.17) (0.17) (P3) MEISNER 72 HBC 1 EVENT ONLY R2 R2 1/73 **** ******** ******* ****** -----WEIGHTED AVERAGE = 42.5 ± 4.9 REFERENCES FOR Y#1(1385) ERROR SCALED BY 3.5 +ALVARFZ,EBERHARO,GOOD,GRAZIANO, + (LRL) I P BASTIEN,M FERRO-LUZZI,A H ROSENFELD (LRL) +ASTIEN,DAHL,FERRO-LUZZI,KIRZ, + (LRL) +HORWITZ,MILER,MURAY,MHITE (LRL) +FUNG,GIDAL,PAN,POWELL,WHITE (LRL) +EIPUNER,CHINOWSKY,SHIVELY, + (BNL,YALE) ALSTON 60 PRL 5 520 BASTIEN 61 PRL 6 702 BERGE 61 PRL 6 557 DAHL 61 PRL 6 142 ELY 61 PRL 7 461 MARTIN 61 PRL 6 283 +ALVAREZ,FERRO-LUZZI,ROSENFELD, + (IRL) +GELFAND,NAUENBERG, + (COLUMBIA.RUTGERS) JP +COFFIN,MEVER.TERMILLIGER (MICH) +FILTNUTH,FRIDMAN,MALAMUD, + (CERN.AMSI) D 0 HUWE (LRL) ALSTON 62 CERN CONF 311 CCLEFY 62 PR 128 1930 CURTIS 63 PR 132 1771 COOPER 64 PL 8 365 HUWE 64 UCRL-11291 THES ALSC 69 PR 180 1824 AL STON COLLEY CURTIS COOPER CHISQ 2.0 · · · · · THOMAS 73 HBC ARMENTEP 65 PL 19 75 BALTAY 65 PR 140 B1027 MUSGRAVE 65 NC 35 735 SMITH 65 THESIS (UCLA) ARMENTEROS, + (CERN,HEIDEL,SACLAY) +SANDWEISS,TAFT,CULWICK,KOPP, + (YALE,BNL) +PETM52AS,+ (BIFM,CERN,EPOL,LUIC,SACLAY) L T SMITH (UCLA) 73 HBC 14.1 67 HBC 8.3 · · ·SIEGEL · ·SMITH 65 HBC 33.4 SHITM 65 THESIS GOLLAT BIRMINGH 66 PR 152 1148 LONDON 65 PR 25 1148 LONDON 65 PR 25 58 ATHLER 70 PR 25 58 ATHLER 71 PS 25 74 OLLEY 71 NP 31 61 WEISNER 72 NC 124 62 AMMANN 73 PRO 7 3212 ALSO 73 PRO 7 3212 ALSO 73 PUTS 154 FM HABIBI 73 PUTS 154 FM HASIBI 73 PUTS 154 FM HABIBI 73 PUTS 154 FM HABIBI 73 PUTS 154 FM FUNDAS 73 PUTS 154 FM </tabup> COLLING CARDING CONTRACTOR CONTRA · · · · SMITH 65 HBC 5.5 · · ARMENTERD 65 HBC 2.3 · · · · · · · · HUWE 64 HBC 7.7 20.7 64 HBC ELY 61 HLBC 5.5 99.4 CONLEY 120 вo =0.0003 Y#1(1385)- WIDTH (MEV) QUANTUM NUMBER DETERMINATIONS NOT REFERPED TO IN DATA CARDS. E MALAMUD, P E SCHLEIN J B SHAFER, D D HUWE (CERN,UCLA) JP (LRL) JP MALAMUD 64 PL 10 145 Shafer 64 PR 134 B1372 43 Y#1(1385) PARTIAL DECAY MODES Σ(1440) PRODUCTION EXPERIMENTS 80 Y*1(1440, JP=) I=1 DECAY MASSES 1115+ 139 1197+ 139 1115+ 0 Y*1(1385) INTO LAMBDA PI Y*1(1385) INTO SIGMA PI Y*1(1385) INTO LAMBDA GAMMA BUMPS SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS. CLINE 68 FID A NARROW PEAK AT 146 MEV 105 ABOVE THE KOAR NARROW PEAK AT 1460 MEV 1057 ABOVE THE KOAR NARROW DIT HE LAMBDA PI INVARIANT MASS THE KOAR NARROW DIT HE LAMBDA PI INVARIANT MASS THE NITERRETATIONS -- THAT IT IS A RESONANCE OR A KINEMATIC FFEET. IN CLINE OB THE K- BEAM MOMENTUM IS 0.4 GEV/C. IN A STUDY OF THE SAME REACTION WITH A MOMENTUM OF 1.1 GEV/C, ALEXANDER 69 FIND ND PEAK. IN MODITION, THEY ARE ABLE TO EXPLAIN THE RESULTS OF BOTH EXPERIMENTS WITHOUT INVOKING A NEW RESONANCE. A REANALYSIS OF THE CLINE 68 DATA MADE BY BUNNEL TO SHOW AGREEMENT OF THE DATA WITH THE ALEXANDER 69 INTERPERTATION. 43 Y#1(1385) BRANCHING RATIOS Y*1(1385) INTO (SIGMA PI)/(LAMBDA PI) (0.04) (0.04) BASTIEN 61 HBC (0.04) OR (ISS) ALSTON 62 HBC 0.09 0.04 HUNE 64 HBC 0.08 0.035 ARMENTER 65 HBC 0.08 0.06 LONDON 66 HBC 0.13 0.06 PAN 69 HBC 0.13 0.06 PAN 69 HBC 0.13 0.06 MBST2 73 MPMA .10 .05 THOMAS 73 HBC (P2)/(P1) +--+--+-+-7766 7766 PI+ P - K Y PI 12772 K-N 1.5 GEV PROD 10/71 K-P TO 2PI SIG 9773* PI-P TO PI K Y 9/73* ******* REFERENCES FOR Y*1(1440) (PPOD. FXP.) D CLINE, R LAUMANN, J MAPP (WISCONSIN) I Alexander, Hall, Jew, + (Lrl.Riverside) +Cline,Laumann,mapp + (nwes+wisc+anl) CLINE 60 PRL 21 1372 ALEXANDE 69 PRL 22 483 BUNNELL 70 LNC 3 224

R1 0.016 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) (SEE IDEOGRAM BELOW) AVG 0.132

177

Baryons Σ(1385), Σ(1440)

Baryons $\Sigma(1440), \Sigma(1480), \Sigma(1620)$

Σ(1 ΒU	480) MPS	23 Y*1(14 SEE THE MI PEAKS ARE THE REACTI	80+ JP# NI-REVUE SEEN IN I DN PI+P) I= AT THE LAMBDA TO K+ P	1 START PI AND I Y AT	PRC 0F 1 51GP	DUC HE GEV	TION Y* L I SPI	EXF ISTI ECTR ALS	PERIMENT INGS. A IN 50 THE	s
S S I BL DEC A CHAN DEC A TO A MASS HAN DENY	SEE MILLER E ALTERNAT AY TO LAMBD INFL SEEMS INTO SIG CCCOUNT FOR S REGION. SSON 71, WI Y THE EXIST	70 FOR A DIS E EXPLANATIO A K. HOWEVER UNLIKELY (SE MA K. IN ADO THE OSCILLA TH FEWER DAT ENCE OF THIS	CUSSION (IN IN TER SUCH AN E PAN 700 TITION SUC TION OF A THAN PI STATE.	DF THIS MS CF A N EXPLA I IN TE CH REFL THE Y P AN 70,	STATE REFLE NATION RMS OF ECTION OLARIZ CAN NE	+ HE CTION FOR KNON IS WOU ATION	SU THE THE UNN JLD	GGES N#1 K+ *3/2 ALSO THE NF1R	TS / /2(1 SIGN (165 HA) 148 M NC	A POS- 1670) MA+ PIO 90) VE 90 DR	_
		23 Y*1(14	80) MASS	(MEV)	(PROD.	EXP.					
M M	1479. 1465. 1485.	10. 15. 10.		PAN PAN CLINE	70 70 73	НВС НВС МРЖА	* *	P1+P P1+P K- D	то то то	K PI LA K PI SI LM PI-	M 3/71 G 3/71 P 9/73*
M AVER	AGE MEANIN	GLESS (SCALE	FACTOR	= 1.0)							
							 P.1				-
w	31.	15.		PAN	70	нвс	÷	PI+P	та	K PI LA	M 3/71
8	30. 40.	20.		PAN CLINE	70 73	HBC MPWA	+	PI+P K- D	10 10	K PI SI LM PI-	6 3//1 P 9/73*
W AVER	RAGE MEANIN	GLESS (SCALE	FACTOR	* 1.0)							-
		23 Y*1(14	80) PART	IAL DEC	AY MOD	DES (PROD	. EX	P.)		
P1) P2) P3)	Y*1(1480) 1 Y*1(1480) I Y*1(1480) I	NTO KBAR N NTO LAMBDA F NTO SIGMA PI	PT I				4 11 11	DE 97+ 15+ 89+	CAY 939 139 139	MASSES	
						(PRO	 D- F	 XP.)			-
R1 1	Y*1(1480) 1	NTO (SIGNA I	PI)/(LAMB	DA PIJ		unc	(P3	}/(P	21		3/71
R1 R2 1	0.82 (1480) 1	NTO (PROTON	K08AR)/(LAMBDA	21) 21)	HBC	+ (P1)/(P	21		5771
R2	0.36	0.25		PAN	70	HBC	•				3/71
R3 1	Y#1{1480] I SMALL	NTO KBAR N		CLINE	73	MPWA	(P1) K- D	то	LM PI-	9/73* P 9/73*
*****	*******	******* **	****** *	******	* ***	****	* **	****	***	******	18
			REFERENC	ES FOR	Y*1(1	480) FELOV	(PRO	D.E	XP.) 2.05443	
CLINE	73 LNC 6	205	CLINE, LA	UMANN .*	APP	SELUY	E	(WIS	CONSINI	JP
			PAPERS N	OT REF	RRED	TO 1N	DAT	A CA	RDS		
YU-LI PA	A 69 PRL 23 A 69 PRL 23	806 808	YU-LI PA YU-LI PA	N, FL N, FL	FORMA	N N				(PENN) (PENN)	T T
MILLER	70 DUKE 2 71 PR D4	29 1296	D H MILL ,KALMUS,	ER LOUIE	IRE	VIEW	TALK	.)	ı	(LBL)	I
******	********	******* **	******	******	* ***	*****	* **	****	***	******	**

Note on $\Sigma(1620)$

This state was first suggested by the BNL-CCNY collaboration (CRENNELL 68) who presented evidence for it in the reaction $K^-n \rightarrow \Sigma(1620)^{\pm}\pi^{\mp}\pi^-$ with $\Sigma(1620)^{\pm}$ decaying into $\Lambda\pi^{\pm}$. Since then there have been conflicting reports about this state.

Total Cross-Section Experiment

A new measurement of the K⁻p and K⁻d total cross sections in the 0.4 to 1.1 GeV/c range has been reported by the BNL group.¹ A clear bump about 40 MeV wide and 3-4 mb high (corresponding to $(J+1/2) \times 0.1$) is seen at a c.m. energy of 1590 MeV in the I = 1 K⁻N cross section.

Formation Experiments

There is evidence from several partial-wave

Data Card Listings For notation, see key at front of Listings.

analyses for one or two fairly narrow states within ~ 50 MeV of the effect seen in production.

ARMENTEROS 70 saw a possible 50 MeV effect in $\rm P_{11}$ in the $\Sigma\pi$ channel only.

In multi-channel analyses, KIM 71 found two narrow resonances in S_{11} and P_{11} ; LANGBEIN 72 has seen only the S_{11} and LEA 73 only the P_{11} state. Note however that the branching ratios into $\overline{K}N$, $\Sigma\pi$, and $\Lambda\pi$ of the resonances found by LANGBEIN 72 or LEA 73 are <u>not</u> the same as those observed by KIM 71.

VAN HORN 72, in the $\Lambda \pi$ channel, found a narrow S_{11} and a very broad P_{11} resonance. A narrow P_{11} state is reported by HART 73 in preliminary results from an analysis of the $\overline{K}N$ channel.

Production Experiments

A good review of the production experiments has been given by MILLER 70. Here the evidence is only in the $\Lambda\pi$ channel. The BNL-CCNY collaboration, with increased data, CRENNELL 69, still claim the effect in the $\Lambda\pi$ channel (no evidence seen in $\overline{K}N$ or $\overline{K}N\pi$). SABRE 70 studied the same reaction at 3.0 GeV/c with comparable statistics and do not see any evidence for it in the $\Lambda\pi$ channel; on the contrary, they believe it to be a spurious peak resulting from misidentified Σ^0 from the production of $\Sigma(1670)$ decaying into $\Sigma^{0}\pi^{+}$. CRENNELL 69 give counter arguments to show that this is not the case in their data and the controversy goes on. AMMANN 70 studied the same reaction at 4.5 GeV/c and report a state at 1640 MeV, again decaying only into $\Lambda \pi$ (no evidence seen in $\Sigma\pi$ or $\overline{\mathrm{K}}\mathrm{N}$ channels). The closeness of this mass to 1670 MeV is suggestive that this effect may be related to what goes on in that region (see discussion below).

In conclusion, for $\Sigma(1620)$ we have to wait for more data and for a complete understanding of the entire mass region 1600 to 1700 MeV. The hope is that the determination of quantum numbers for each of these effects for each decay mode may eventually clarify the situation.

References

 K. K. Li in Baryon Resonances-73 (Purdue, 1973), pg. 283; A. S. Carroll, et al. in <u>Particles and</u> <u>Fields-1973</u>, ed. H. H. Bingham, et al., (Berkeley, 1973), pg. 208.

S'11 32 Y*1(1620, JP=1/2-) I-1 THE SI1 STATE AT 1697 MEY REPORTED BY VANHORN 72 IS INTERMEDIATE IN MASS BETWEEN THE SIGMA(1620) AND SIGMA(1750). WE TENTATIVELY LIST IT UNDER SIGMA(1750). Σ(1620) _____ 32 Y*1(1620) MASS (MEV) K-MATRIX ANAL. 3/71 Multichannel 12/72 KIM 71 DPWA LANGBEIN 72 IPWA (1620.) (10.0) -----32 Y*1(1620) WIDTH (MEV) K-MATRIX ANAL. MULTICHANNEL KIM 71 DPWA LANGBEIN 72 IPWA 3/71 (40.) 65.0 (20.0) - -----32 Y*1(1620) PARTIAL DECAY MODES DECAY MASSES 497+ 939 1197+ 139 1115+ 134 Y#1(1620) INTO K8AR N Y#1(1620) INTO SIGMA PI Y#1(1620) INTO LAMBDA PI P2 P3 32 Y#1(1620) BRANCHING RATIOS Y#1(1620) INTO KBAR N (P1) (0.05) KIM 71 DPWA K-MATRIX ANAL. 0.05 OR LESS WONG 71 DPWA K-4P--LAM4P1 0.22 (0.02) LANGBEIN 72 IPWA HULTICHANNEL K-MATRIX FITINEGLECTS 3-BODY CHANNELS / REQUIRES NO RESONANCE R1 R1 R1 A R1 R1 A 10/71 12/72 10/71 (66.0) 30.0 72.0 55.0 Y*1(1620) FROM KBAR N TO SIGMA PI SQRT(P]*P2) (0.08) KIM 71 DPWA K-MATRIX ANAL. 0.40 (0.06) LANGREIN 72 IPWA MULTICHANNEL R2 R2 R2 20 3/71 . . . Y#1(1620) FROM KEAR N TO LAMBDA P1 (0.15) KIM SQRT(P1*P3) 71 DPWA K-MATRIX ANAL. 41 AVG 3/71 REFERENCES FOR Y+1(1620) KIM 71 PRL 27 356 ALSO 70 DUKE 161 WONG 71 NC 24 353 LANGBEIN 72 NP 847 477 J K KIM (HARV)IJP (HARV)IJP (HARV)IJP (YALE)IJP (MPIM)IJP J K KIM J. K. KIM N S WONG +WAGNER P1 P2 P3 P5 P5 PAPERS NOT REFERRED TO IN DATA CARDS VANHORN 72 LBL-1370(THESIS) /LBL IJP -----79 Y*1(1620, JP=1/2+) I=1 P'11 R1 R1 Σ(1620) SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS. R2 R2 R2 THE PARTIAL-WAVE ANALYSIS OF K- N TO SIGHA PI BY Armentoros 73 suggest such a resonance. Nom Found Also in some, but not all, more recent Analyses. R3 R3 R4 R4 R4 79 Y#1(1620) MASS (MEV)
 1500.
 -- 1600.
 ARMENTERC
 70
 HDBC
 --O
 K-N
 TO
 SIGMA
 PI
 6/70

 (1670.)
 KIM
 71
 DPMA
 K-MATRIX
 ANAL.
 3/71

 1668.
 (.25)
 VAHUGAN
 72
 DPMA
 K-P
 TO
 AMP [O
 2/73

 16161..
 LEA
 73
 DPMA
 MULTICHML
 K-MTRY
 9/73%

 OHLY UNCONSTRAINED STATES FROM TABLE 1
 OF
 LEA
 73
 DPMA
 MULTICHNS
 9/73%

 1658.
 (+.)
 HART
 73
 DPMA
 EL+CX..7-.8GEV/C
 2/74*
 R5 R5 R6 R6 -- ---------79 Y#1(1620) WIDTH (MEV)
 ARMENTERD 70 HDBC -0 K-N TO SIGMA P1
 6/70

 KIM
 71 DPWA
 K-MATRIX ANAL.
 3/71

 VANNDRN
 72 DPWA OK-P TO LAM P10
 2/73

 LEA
 73 DPWA
 HULTICHNL K-MTRX
 9/71

 HART
 73 DPWA
 ELECX.17-BGEV/C
 2/74
 (50.0) (50.) 230. (165.) (60.) (51.8) 2 (10.) NN 70 PRL 24 327 ALSO 73 PRD 7 1345 AMMANN 40. 79 Y#1(1620) PARTIAL DECAY MODES ARMENTER 68 NP 88 183 LEVISETT 69 LUND CONF TRIPP 69 UCRL 19361 ARMENTER 70 DUKE 123 MILLER 70 DUKE 229 SABRE 70 NP 816 201 DECAY MASSES Y#1(1620) INTO KBAR N Y#1(1620) INTO SIGMA PI Y#1(1620) INTO LAMBDA PI 497+ 939 1197+ 139 1115+ 139 P1 P2 P3 79 Y#1(1620) BRANCHING RATIOS Y+1(1620) FROM KBAR N TO SIGMA PI SORT(P1+P2) (+0.2) ARMENTERO 70 HOBC -- O K-N TO SIGMA PI 6/70 (0.24) KIM 71 DPWA K-MATRIX ANAL. 3/71 (-.21) LEA 73 DPWA MULTICHNL K-MTRX 9/73+ R1 R1 R1 R1 Note on $\Sigma(1670)$ R2 R2 R2 R2 Y#1(1620) INTO KBAR N (P1) 71 DPWA 73 DPWA 73 DPWA K-MATRIX ANAL: 3/71 MULTICHNL K-MTRX 9/73* EL+CX:.7-.8GEV/C 2/74* (0.14) (.10) .11 LEA г (-02) Y*1(1620) FROM KBAR N TO LAMBDA PI (0.0) KIM .12 (.12) (.04) VANHORN (+.07) LEA SQRT(P1+P3) 71 DPWA K-MATRIX ANAL. 2/73 72 DPWA K-P TO LAM PIO 2/73 73 DPWA HULTICHNL K-MTRX 9/73+ R3 R3 РЗ 83 2

Baryons

Σ(1620), Σ(1670) REFERENCES FOR Y*1(1620)
 ARMENTER 70 DUKE 123
 ARMENTER05, BAILLON, +
 (CERN, HEIDELJIJP

 KIM
 71 PRL 27 356
 J K KIM
 (HARVIJP

 ALS0 70 DUKE 161
 356
 J.K. KIM
 (HARVIJP

 VANHORN
 72 LBL-1370(THESIS)
 A.J.VANHORN
 (HARVIJP

 HART
 73 PURDUE CONF. 311
 +RICE,BACASTOW,FUNG,+
 (TENN-UCR+MASA+BUFF)1JP

 LEA
 73 NP PS6 T7
 +MARTIN,MOORHOUSSE
 (RHEL+LOUC+GLASA+ARHUS)IJP
 (CERN, HE IDEL)IJP (HARV)IJP (HARV)IJP 1620 MEV REGION - PRODUCTION EXPERIMENTS 78 Y#1(1620, JP= | [=1 SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS. THIS RESONANCE NEEDS CONFIRMATION. THE RESULTS OF CRENNELL 69 AT 3.9 GEV/C ARE NOT CONFIRMED BY THE SABRE COLLABORATION AT 3.0 GEV/C (SABRE 70). HONEVER IN AN EXPERIMENT AT 4.5 GEV/C, AMMANN 70 SEE A PERK AT 1642 MEV WHICH ON THE BASIS OF BRANCHING RATIOS THEY DO NOT ASSOCIATE WITH THE Y*1(1670). SEE MILLER 70 FOR A REVIEW OF THESE CONFLICTS. -----78 Y#1(1620) MASS (MEV) (PROD. EXP.) (1616.0) (B.0) CRENNELL 68 DBC ↔ K-D 3.9 BEV/C 11/68 EVENTS OF CRENNELL 66 ARE IN THE LARGER SAMPLE OF CRENNELL 69. 20 1618.0 3.0 BLUMENFEL 69 HBC ↔ K-N DLONG + PROTON 9/69 1619.0 8.0 CRENNELL 69 DBC ↔ K-N TO LAM 3 PI 9/69 1642.0 12.0 AMMANN 70 DBC ↔ K-N 4.5 GEV/C 9/73 9/69 9/734 1619.4 3.8 AVERAGE (EPROR INCLUDES SCALE FACTOR OF 1.4) 78 Y#1(1620) WIDTH (MEV) (PROD. EXP.) (16.0) 10.0 22.0 1 24.0
 CRENNELL
 68
 DBC
 ←
 SEE
 NDTE
 N ABOVE
 11/68

 BLUMENFEL
 69
 HBC
 +
 9/69
 9/69

 15.0
 CRENNELL
 69
 BLG
 +
 9/69

 AMMANN
 70
 DBC
 ←
 8/69
 9/734 12.2 .3 12.2 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.5) SEE THE NOTES ACCOMPANYING THE MASSES QUOTED 78 Y#1(1620) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES 497+ 939 1115+ 139 1384+ 139 1115+ 139+ 139 1197+ 139 1405+ 139 Y*1(1620) INTO KBAR N Y*1(1620) INTO LAMBOA PI Y*1(1620) INTO Y*1(1385) PI Y*1(1620) INTO Y*1(1385) PI Y*1(1620) INTO SIGMA PI Y*1(1620) INTO SIGMA PI Y*1(1620) INTO Y*0(1405) PI 78 Y#1(1620) BRANCHING RATIOS (PROD. EXP.) Y*1(1620) INTO (LAMBDA P1 P1}/(LAMBDA P1) (P4)/(P3) 14 (2.5) APPROX BLUMENFEL 69 HBC + Y*1(1620) INTO (KBAP N)/(LAMBDA PI) (P1)/(P2) (0.0) [0.1) CRENNELL 68 DBC + 0.4 0.4 AMMANN 70 DBC K-P 4.5 GEV/C 6/70 (P2) CRENNELL 68 DBC +-Y*1(1620) INTO LAMBDA PI LARGE 11/68 Y+1(1620) INTO (Y+1(1385) PI)/(LAMBDA PI) (P3)/(P2) (0.2) (0.1) CREMELL 68 DBC ↔ (0.3) QR LESS CL=.95 AMMANN TO DBC K-P 4.5 GEV/C 11/68 6/70 Y#1(1620) INTO (SIGMA PI)/(LAMBDA PI) (1.1)(95 PC UPPER LIMIT) AMMANN (P5)/(P2) 70 DBC K-N 4.5 GEV/C 9/734 Y*1(1620) INTO (Y*0(1405) PI)/(LAMBDA PI) (P6)/(P2) 0.7 0.4 AMMANN 70 DBC K-P 4.5 GEV/C 6/70 REFERENCES FOR Y#1(1620) (PRCD. EXP.) CPENNELL 68 PRL 21 648 +DELANEY, FLAMINIO, KARSHON, + (BNL,CUNY) I BLUMENFF 69 PL 298 58 BLUMENFELD, KALBFLEISCH (BNL) I CRENNEL 69 LUND 2PER 183 +SARSHON, LAI, ONEIL, SCARR, + (BNL,CUNY) I RESULTS ARE QUOTED IN LEVI SETTI 69. + GARFINKEL, CARMONY, GUTAY,+ (PURDUE,IND) Ammann,CARMONY,GARFINKEL, (PURD+IUPU) PAPERS NOT REFERRED TO IN DATA CARDS ARMENTEROS, BAILLON + (CERN+HEID+SACL) R LEVI SETTI (RAPPORTEUR) EFINS R D TRIPP (LRL) ARMENTEROS, BAILLON + (CERN+HEID+SACL) D H MILLER (REVIEW TALK) (PURDUE) SABRE COLLAB. (SACL, AMST, BGNA, REHO, EPOL)

Formation Experiments

Formation experiments show the presence of only one I = 1 state in this energy region with major decay modes into $\overline{K}N$ (7-10%), $\Lambda\pi$ (10-15%), $\Sigma\pi$ (30-50%),

179

Baryons Σ(1670)

 $\Sigma\pi\pi$ (5-15%), and some $\Lambda\pi\pi$ (the experimental situation here is unclear). Its quantum numbers are $J^{\rm P}$ = 3/2⁻.

Production Experiments

Production experiments are more confused. When determined, the most likely quantum numbers are also $3/2^{-1}$ [for $\Sigma\pi$ and $\Lambda(1405)\pi$]. The measured branching ratio $R = \Sigma\pi/\Sigma\pi\pi$ changes with the momentum transfer to the proton. This was first observed by EBERHARD 69 who suggested the existence of 2 Υ_{1}^{*} with the same mass and quantum numbers; one object with a large $\Sigma\pi\pi$ [mainly $\Lambda(1405)\pi$] decay mode produced peripherally, and another one with a large $\Sigma\pi$ decay mode produced at larger angles. This observation has been confirmed by AGUILAR-BENITEZ 70. This problem has been recently reviewed by EBERHARD 73, where some preliminary information on new experiments is also given.

The other difficulty comes from the different $\Lambda \pi / \Sigma \pi$ branching ratios reported by the various experiments. Those experiments done with K⁻ beams below 2 GeV/c (HUWE 64 and BUTTON-SHAFER 68) report values for the $\Lambda \pi / \Sigma \pi$ ratio in agreement with formation experiments; the others report a higher $\Lambda \pi / \Sigma \pi$ ratio. Therefore, the possibility of a third Y_1^* state, referred to as $\Sigma(1690)$ in the Data Card Listings, with a large $\Lambda \pi / \Sigma \pi$ branching ratio still exists. This large branching ratio is the main justification for this hypothesis and needs confirmation. It relies on the separation between $K^-p \rightarrow \Lambda \pi^+\pi^-$ and $K^-p \rightarrow \Sigma^0 \pi^+\pi^-$, which is experimentally difficult at high energy. These problems are reviewed by MILLER 70. (See also the mini-review on $\Sigma(1620)$.)

 Δ4
 Y+1(1670, JP=3/2-) I=1
 D13

 Δ5(1670)
 SEE THE MINI-REVUE AT THE START OF THE Y* LISTINGS.

 SEE NOTE ABOVE
 WELL ESTABLISHED RESONANCE. IT HAS BEEN SEEN IN BOTH FORMATION AND PRODUCTION EXPERIMENTS. HOWEVER THE BRANCHING RATIOS OBTAINED BY THESE TWO METHODS SHOW LARGE INCONSISTENCIES.

 SEE LISTING OF PRODUCTION EXPERIMENTS BELOW
 As FOR THE QUANTUM NUMBERS, THE SIGNAL DI CHANDEL JIN FORMATION EXPL. JAS WELL AS THE SIGNAL OF CHANDEL IN FORMATION EXPL. JAS WELL AS THE SIGNA PI CHANDEL AGREE ON JP=3/2-.

 44
 Y+1(1670) MASS (MEV)

м	1660.0			BERLEY	64	HBC	0	K-P	TO LAM PIO	7/66
M	1668.	(5.)		ARMENTER	68	нес	0	К-Р	ELAS.+CH.EX	11/68
M	(1661.0)	(2.0)		ARMENTE2	68	нвс	0	K-P	TO SIGMA PI	11/68
м	1680.			ARMENTE4	69	DBC		K-N	TO SIG- PIO	12/68
M	1663.0	(2.0)		ARMENT-5	69	нвс	0	KP	TO SIGMPI ED	9/69
M	1672.0			BERLEY	69	нвс		K-P	TO SIG PI	5/70
M	1660.			ARMENTER	70	HBC	0	K-P	TO LAM.PI EI	5/70
M	1681.0	(3.0)		BRUCKER	70	DBC	-	K-N	TO SIG 2PI	10/71
м	1662.0	(5.0)		GALTIERI	70	нвс	0	51G	PI,EDPWA	7/70
M	1665.	(10.)		GALTIERI	70	HBC	0	LAM	• PI, EDPWA	7/70
M	1676.	(2.)		BUDGEN	71	DPWA		LAM	PIO, CHS DATA	10/71
м	1670.			KIM	71	DPWA		K-M	ATRIX ANAL.	3/71
M	1675.0	(15.0)		LANGBEIN	72	IPWA		MUL	TICHANNEL	12/72
м	1659.	(12.)	(5.)	VANHORN	72	DPWA	0	К-	P TO LAM PIO	2/73

* 0.0.0 ISENETY 0.0.0 0.0.1 0.0.1 * 0.0.0 1.0.0 DEFLETY 0.0.0 0.0.0 DEFLETY	44 Y*1(1670) WIC	DTH (MEV)
44 Y4116701 PARTIAL DECAY MODES P2 Y4116701 INTO KBAR N DECAY MASSES P2 Y4116701 INTO LAMOA P1 1115+139 P3 Y4116701 INTO LAMOA P1 1115+139 P4 Y4116701 INTO LAMOA P1 1115+139 P5 Y4116701 INTO LAMOA P1 P1 1105+139-139 P5 Y4116701 INTO Y40140591 1105+139-139 P6 Y4116701 INTO Y40140591 Y1115-139 P7 Y4116701 INTO Y40140591 Y1115-139 P6 Y41116701 INTO Y40140591 Y110741 P4 Y4110701 INTO Y40140591 Y40408107141 Y4116701 P4 Y4110701 Y401671141 Y4110701 Y401107141 Y41110701 Y4116701 Y4116701 Y40116711741 Y41117141 Y4111701 Y4111701 Y4116701 <	w 60.0 w 56. (18.) w (4.0) (4.0) w 47.0 (4.0) w 34.0 (4.0) w 30.0 (10.0) w 30.0 (10.1) w 50. (5.0) w 50. (4.5) w 50. (20.0) w 65.0 (20.0) w 32.2 (11.)	BERLEY 64 HBC 0 7766 APMENTER 68 HBC 0 K-P ELAS.+CH.EX 11/26 11/26 APMENTER 68 HBC 0 K-P ELAS.+CH.EX 11/26 11/26 APMENTER 69 HBC 0 K-P TO SIGMPI DI 27/86 12/26 APMENTER 69 HBC 0 K-P TO SIGMPI DI 27/86 5/70 APMENTER 70 HBC 0 K-P TO LAMB.PI DI 7/71 5/71 APMENTER 70 DBC K-N TO SIG 2PI I 10/71 5/71 GALTIERI 70 HBC 0 SIG PIEDPWA 7/70 GUDGEN 71 DPWA LAM PID 10/71 LANGBEIN 72 DPWA C M-P TO LAMB.PID 2/72 VANGDEN 72 DPWA C M-P TO LAMPID 2/72
DECAY MASSES P2 Villarol NTD KAAR N 4074 339 P2 Villarol NTD KAAR N 4074 339 P3 Villarol NTD KAAR N 11154 139 P3 Villarol NTD SIGMA PI PI 11154 139 P4 111670 NTD KAAR N/113551 PI 11364 139 P5 Villarol NTD KAAR N/1074L 1364 139 P4 Villarol NTD KAAR N/1074L (P1) P4 Villaro NTD KAAR N/1074L (P3) P4 Villaro NTD KAAR N/1074L (P3) P4 ND SEN AMARTES 60 HBC K-9 (P1-0) P4 Villaro NTD KAAR N/1074L (P3) P4 Villaro NTD KAAR N/1074L (P3) P4 ND O-P1-00 (P1) P4 (P1) (P4) P4	+ + +	RTIAL DECAY MODES
44 V=1(1670) DRANCHING RATIOS R1 V=1(1670) INTO (KBAR N)/TOTAL (F1) R1 0.06 (0.02) AMMENTER 68 HEC 0 EAS. +CH.EX. ED 9/6/ R1 0.06 (0.02) AMMENTER 68 HEC 0 EAS. +CH.EX.ED 9/6/ R1 0.07 SEC (A.G.) KH MENT-5 68 HEC 0 EAS. +CH.EX.ED 9/6/ R2 (0.11) OR (LAMDDA PI P1/T)7TAL (P4) (P4) (P4) (P4) R3 Y=1(1670) INTO (LAMDDA PI P1/T)7TAL (P5) (P4) (P4) (P4) (P4) R4 Y=1(1670) INTO (SIGMA PI P1)/TOTAL (P4)	P1 Y+1(1670) INTO KBAR N P2 Y+1(1570) INTO LAMBDA P1 P3 Y+1(1670) INTO LAMBDA P1 P3 Y+1(1670) INTO S10M P1 P1 P5 Y+1(1670) INTO S10M P1 P1 P6 Y+1(1670) INTO Y+1(1385) P1 P7 Y+1(1670) INTO Y+0(1405) P1 	DECAY MASSES 497+ 939 1115+ 139 1195- 139 1195- 139 1197+ 139+ 139 1197+ 139+ 139 1384+ 139 1405+ 139
R1 Y=1(1670) INTO (KBAR N)/TOTAL (F1) 9/6 R1 0.06 (0.02) ARMENT=5 66 HBC 0 ELAS. +CH.EX. ED 9/6 R1 0.06 (0.02) ARMENT=5 66 HBC 0 ELAS. +CH.EX. ED 9/6 R1 0.07 (0.03) LIRET TD DPAA MEATRIX ANAL. 3/7 R2 (0.11) OND (LAMBDA PI PI)/TOTAL (F4) (F4) (F4) R2 (0.11) OND (LAMBDA PI PI)/TOTAL (F5) (F7) (F4) R3 A (D.14) OND (SIGMA PI PI)/TOTAL (F7) (F7) R4 Y=(11670) INTO (LAMBDA PI PI)/TOTAL (F7) (F7) R4 Y=(11670) INTO (V=011605) PI)/TOTAL (F7) (F7) R5 Y=(11670) FROM KBAR N TO LAMBDA PI TER CBMT(PI+P2) (F7) R5 Y=(11670) FROM KBAR N TO LAMBDA PI TER CBMT(PI+P2) (F7) R5 Y=(11670) FROM KBAR N TO SIGMA PI SERT(PI+P3) (F6) (F0.21) (F7) R5 O.13 (O.01) AFMENTE AG B HBC NEUT(FIAMANEL 12/7) (F7) R5 O.13 (O.21) AFMENTE AG BHC	44 Y#1(1670) BRA	ANCHING RATIOS
22 Y=1(1570) INTO (LAMBOA PI PI//TOTAL (P-1) 72 (0.11) OK LESS AARMENTES 68 HGC K-P (PI=.09) 9/67 73 A PATIO ONLY FOR (SIGAPI) SYSTEM IN I=1, WHICH CANNOT BE Y=1(1385) 11/6 74 (0.12) ONLY FOR (SIGAPI) SYSTEM IN I=1, WHICH CANNOT BE Y=1(1385) 11/6 74 (0.06) ON LESS AARMENTES 68 HGC K-P AND D-PI=.09 11/6 75 +0.1 APATIO (Y=01405) PI//TOTAL (P7) 75 +0.0 AARMENTES 68 HGC K-P AND D-PI=.09 11/6 75 +0.09 (0.22) GALTIERI 70 HGC 0 LAM PI D-PI=.09 11/6 75 +0.09 (0.02) GALTIERI 70 HGC 0 LAM PI D-PI=.09 11/6 75 +0.09 (0.02) GALTIERI 70 HGC 0 LAM PI D 10/7 75 +0.09 (0.02) VANHORN 72 OPAA 0 K-P TO LAM PI D 2/7 76 +1(1670) FRON KARA N TO SIGMA PI SIGAPI 1 SCRT(PI=P3) 1/6 5/7 76 +1(1670) FRON KARA N TO Y=1(1385) PI SIGAPI 1/7 OHGC 0 SIG PI EDYA 7/7 7 6 0.15 5/7 76 +1(1670) FROM KBAR N TO Y=1(1385) PI SIGAPI 1/7 SIGA FI EDYA 7/7 7	R1 Y*1(1670) INTO (KBAR N)/TOTAL R1 (0.09) {0.02} R1 0.08 (0.02) R1 0.07 R1 0.07 R1 0.10 (0.03) R1 NOT SEEN	(P1) 9/69 ARMENTER 68 HBC 0 ELAS. +CH.EX. ED 9/69 KIM 71 DPWA K-MATRIX ANAL. 3/71 LANGBEIN 72 IPWA MULTICHANNEL 12/72 HARȚ, 73 DPWA EL+CX78GEV/C 2/74
R3 A Y+1(1670) INTO (SIGMA PI PI)/TOTAL (P3) R3 A RATIO DNLY FOR (SIG2PI) SYSTEM IN I=1, WHICH CANNOT BE Y+1(1385) 11/6 R4 Y+1(1670) INTO (Y+0(1405) PI)/TOTAL (P7) R4 (0.06) ON LESS ARMENTES 68 HEC K-P AND D-P1=.09 11/6 R5 +0.1 APMENTES 70HEC K-P AND D-P1=.09 11/6 R5 +0.1 APMENTES 70HEC K-P AND D-P1=.09 11/6 R5 +0.10 ADMENTES 70HEC K-P AND D-P1=.09 11/6 R5 +0.10 ADMENTES 70HEC K-P AND D-P1=.09 11/6 R5 +0.09 (0.02) GALTIER 70 HEC NULTIEGNAMEL 2/7 R5 +0.09 (0.02) GALTIER 70 HEC NULTIEGNAMEL 2/7 R6 Y+1(1670) FROM KBAR N TO SIGAN PI SCOFAD ACMENTEL 2/7 7 R6 Y+1(1670) FROM KBAR N TO SIGAN PI SCOFAD ACMENTEL 2/7 7 R6 Y+1(1670) FROM KBAR N TO Y+1(1385) PI SCRT(P1+P3) 7 7 R6 Y+1(1670) FROM KBAR N TO Y+1(1385) PI SCRT(P1+P6) 7/7 7 R6 0.23 (0.05) KAMENTES 68 DEC O SECIO TO	R2 Y#1(1670) INTO (LAMBOA PI PI)/ R2 (0.11) OR LESS	/TOTAL (P4) Armentes 68 HBC K-P (P1=+09) 9/69
R4 Y+1(1670) INTO Y+0(1405) PIJ/TOTAL (P7) R4 Y+1(1670) FADM KBAR N TO LAMBDA PI SOFT(PIPE2) R5 Y+1(1670) FADM KBAR N TO LAMBDA PI SOFT(PIPE2) R5 +0.09 (0.02) GALTIENI TO HAGC K-P TO LAMB PI 5/7 R5 +0.09 (0.02) GALTIENI TO HAGC LAM PIO 10/7 R5 -1.65 (0.1) BUDGEN TI DFWA LAM PIO 10/7 R5 0.08 KIM TD DFWA K-MATIX ANAL. 3/7 R5 0.13 (0.03) LANGETN TZ DFWA K-MATIX ANAL. 3/7 R6 (+0.21) 10.01 ARMENTE2 68 HGC 0 LD DATA 11/6 R6 +0.18 BERLEY 69 HGC 0 LD DATA 11/6 R6 +0.18 GALOB BERLEY 69 HGC NEUTICHANNEL 12/7 R7 Y+1(1670) FADM KBAR N TO Y+1(1385) PI SORT(P1PPS) SORT(P1PS) 11/6 11/6 R7 S GALTO FAM KBAR N TO Y+1(1385) PI SORT(P1PS) SORT(P1PS) 11/7 11/7 11/7 11/7 11/7 11/7 11/7	R3 Y#1(1670) INTO (SIGMA PI PI)/T R3 A (0.14) OR LESS R3 A RATIO ONLY FOR (SIG2PI) SYSTE	TOTAL (P5) ARMENTE3 68 HBC K-P AND D-P1=.09 11/68 EM IN I=1, WHICH CANNOT BE Y*1(1385) 11/68
R5 V*1(1670) FROM KBAR N TO LAMBDA PI SCRT(P1+P2) R5 +0.1 APMENTER TO HBC K-P TO LAMB PI 577 R5 +0.09 (0.02) GALTIERI TO HBC K-P TO LAMB PI FORMA R5 +0.09 (0.01) BUGEN TI DPMA K-MATELXANNEL 277 R5 0.13 (0.03) LANGEN T2 IPMA MULTICHANNEL 277 R6 +0.99 (.021) VANHORN T2 OPMA NCK TP TO LAM PIO 277 R6 +0.210 10.011 APMENTES 68 DEC 0.010 DATA 176 R6 +0.210 10.011 APMENTES 68 DEC 0.010 DATA 376 R6 +0.210 10.011 APMENTES 68 DEC 0.010 DATA 376 R6 +0.18 (0.01) GALTIERI 70 HBC 0.014 377 R6 +0.18 (0.021) ARAMENTES 68 DEC 0.014 377 R6 -0.15 KIM TO HBC 0.516 PI-LOPMA 377 R6 +0.18 (0.025) LANGENITY 21 PFA MULTICHANNEL 1277 R7 S INS 68	R4 Y*1(1670) INTO (Y*0(1405) PI)/ R4 (0.06) OR LESS	/TOTAL (P7) ARMENTE3 68 HBC K-P AND D-P1=.09 11/68
P6 Y=1(1670) FROM KBAR N TO SIGMA PI SORT(P1+P3) R6 +0.21) (0.01) AFMENTE2 68 HBC 0 OLD DATA 11/6 R6 +0.20 (0.01) AFMENTE5 69 HBC 0 NEW DATA 9/6 R6 +0.18 0 BRIEY 69 HBC 0 NEW DATA 9/6 R6 +0.18 0.06) GALTIERI 70 HBC 0 SIG P1.EDPWA 7/7 R6 +0.18 (0.06) GALTIERI 70 HBC 0 SIG P1.EDPWA 7/7 R6 0.15 0.22 (0.05) LANGBEIN 72 IPWA K-MARKAL AAL. 3/7 R6 0.22 (0.05) LANGBEIN 72 IPWA K-MARKAL AAL. 3/7 R6 0.23 (0.05) LANGBEIN 72 IPWA K-MARKAL AAL. 3/7 R7 Y=1(1670) FROM KBAR N TO Y=1(1385) P1 SORT(P1+P3) R7 SIMS 68 USES ONLY CROSS-SECT. DATA. RESULT USED AS UPPER LIMITONLY 3/7 R7 R7 Y=1(1670) INTO (Y=0(1405) P1)=(KBAR N)/TOTAL+2 (P7+P1) R8 R6 0.007 (0.002) BRUCKER 70 DBC - K-N TO SIG 2P1 10/7 R8 B ASSUMING Y=0(1405) P1 (Y=1(1385) P11 (P7)/(P6) P1 R9 Y=1(1670) INTO (Y=0(1405) P11/(Y=1(1385) P11 (P7)/(P6) P2 R9 Y=1(1670) INTO (Y=0(1405) P11/(Y=1(1385) P11 (P7)/(P6) P2 R9 Y=11(1670) INTO (Y=0(1405) P1/(Y=1(1385) P11 (P7)/(P6) P2 R9 Y	R5 Y+1(1670) FROM KBAR N TO LAMBO R5 +0.1 P5 +0.09 (0.02) R5 .165 (0.1) R5 0.08 P5 0.13 (0.03) R5 +0.09 (.021)	DA PI SQPT(P1+P2) APMENTER TOHBC K-P TO LAMB PI 5/70 GALTIERI TO HBC O LAM. PI, EOPWA 7/70 BUDGEN 71 DPWA LAM PIO 10/71 KIM 71 DPWA K-MATRIX ANAL. 3/71 LANGBEIN 72 IPWA MULTICHANNEL 12/72 VANHORM 72 DPWA 0 K-P TO LAM PIO 2/73
R6 0.23 (0.05) LARGEEN 72 JPWA MULTICHANREL 12/7. R7 Y*1(1670) FROM KBAR N TO Y*1(1385) PI SORT[P1+P6] SORT[P1+P6] SORT[P1+P6] R7 S INS 68 USES ONLY CROSS-SECT. DATA. RESULT USED AS UPPER LIMIT ONLY 3/7 SORT[P1+P6] RF R8 Y*1(1670) INTO (**0(1405)P1)*(KARA NY/TOTAL*22 (P7P1) RF 8 0.031 OR LESS R8 D.031 OR LESS BERLEY A9 HBC OK-P A-N TO SIG 2PI 10/7 RF B ASSUMING Y*0(1405) P1 CROSS SECTION BUMP DUE SOLEY TO 3/2- RESON. 10/7 R8 B ASSUMING Y*0(1405) P1 CROSS SECTION BUMP DUE SOLEY TO 3/2- RESON. 10/7 RF R9 V*1(1670) INTO (*0(1405) P1 CROSS SECTION BUMP DUE SOLEY TO 3/2- RESON. 10/7 R9 V*1(1670) INTO (*0(1405) P1 CROSS SECTION BUMP DUE SOLEY TO 3/2- RESON. 10/7 R9 V*1(1670) INTO (*0(1405) P1 L/(*1(1385) P1 (P7)/(P6) RF 10/7 R9 V*1(1670) INTO (*0(1405) P1 CROSS SECTION BUMP DUE SOLEY TO 3/2- RESON. 10/7 R4 P1 LIK2 CREFERENCES FOR Y*1(1670) BERLEY 64 DUBNA CONF I 565 KONDULY+HART,RAHM,STONEHILL, * (BNL)IJP APMENTER SOR BA 100 AS9 ARMENTEN	P6 Y+1(1670) FROM KBAR N TO SIGM, R6 +0.21) (0.01) R6 +0.19 R6 +0.20 (0.01) R6 +0.18 R6 +0.18 (0.06) R6 0.15	A PI SQRT(P1+P3) ARMENTE2 68 HBC 0 QLD DATA 11/68 ARMENTE4 69 DBC 9/69 ARMENT-5 69 HBC 0 NEW DATA 9/69 BERLEY 69 HBC 516 P1+EDPWA 7/70 GALTIERI 70 HBC 0 S16 P1+EDPWA 7/70 KIM 71 DPWA K-MATRIX ANAL 3/71
RT 5 SINK 66 USES ONLY CROSS-SECT. DIFA. RESULT USED AS UPPER LIMIT ONLY 3/T RT 5 SINK 66 USES ONLY CROSS-SECT. DIFA. RESULT USED AS UPPER LIMIT ONLY 3/T R8 Y*1(1670) INTO (**0(1405) PI)*(KBAP N/TOTAL**2 (PT*PI) R8 0.007 (0.002) BRUCKER 70 DBC - K-N TO SIG 2PI 10/T R8 B ASSUMING Y*0(1405) PI CROSS SECTION BUMP DUE SOLEY TO 3/2- RESON. 10/T R8 R9 Y*1(1670) INTO (**0(1405) PI /(Y*1(1385) PI) PT/Y/P6) R9 0.23 (0.08) BRUCKER 70 DBC - K-N TO SIG 2PI 10/T ***********************************	R6 0.23 (0.05) R7 Y*1(1670) FROM KBAR N TO Y*1()	LANGBEIN 72 IPWA MULTICHANNEL 12/72 1385) PI SQRT(P1*P6)
NB V#116/00 INIC (Y#011403)F1/14(BB# Nf/UIAL#22 (D/AP1) NB (0.03) CR LESS BELEY 60 MEC 0. AF 1682 BEV/C 5/7 RB B ASSUMING Y#011405) F1 CROSS SECTION BUMP DUE SOLEY TO 3/2- RESON. 10/7 RB ASSUMING Y#011405) F1 CROSS SECTION BUMP DUE SOLEY TO 3/2- RESON. 10/7 R9 Y*1(1670) INTO (Y*0(1405) F11/(Y*1(1385) F1) (P7)/(P6) R9 0.23 (0.08) BRUCKER 70 DBC - K-N TO SIG 2P1 10/7 ***********************************	R7 S SIMS 68 USES ONLY CROSS-SECT.	DATA. RESULT USED AS UPPER LIMIT ONLY 3/72
R9 Y*1(1670) INTO (Y*0(1405) PI)/(Y*1(1385) PI) (P7)/(P6) R9 0.23 (0.08) BRUCKER TO DEC - K-N TO SIG 2PI 10/T ************************************	R8 Y#1(15/0) INTO (Y#011405)P1)#1 R8 (0.03) OR LESS R8 B 0.007 (0.002) R8 B ASSUMING Y#0(1405) PI CROSS 5	(RBAK N)//UIAL**2 (//**/1) BERLEY 69 HBC 0 K-P .682 BEV/C 5/70 BRUCKER 70 DBC - K-N TO SIG 2PI 10/71 SECTION BUMP DUE SOLEY TO 3/2- RESON. 10/71
REFERENCES FOR Y*1(1670)BERLEY 64 DUBNA CONF I 565 *CONNOLLY.HART.RAHM.STONEHILL.* (BNL)IJPAPMENTERGS.BAILLON * (CERN+HEID-SACLAY)IJPARMENTERGS.BAILLON * (CERN+HEID-SACLAY)IJPARMENTERGS.BAILLON, * (CERN+HEID-SACLAY)IJPBERLEY 69 PB 80 459ARMENTERGS.BAILLON, * (CERN+HEID-SACLAY)IJPBERLEY 69 PB 100 459ARMENTERGS.BAILLON, * (CERN-HEIDELSACLAY)IJPBERLEY 69 PL 308 430BERLEY, HART, RAHH.WILLIS, VAMAMOTOBAUCKAYBRUCKER 70 DUKE 123ARMENTERGS.BAILLON, * (CERN-HEIDELSACLAY)IJPBERLEY 70 DUKE 123ARMENTERGS.BAILLON, * (CERN-HEIDELSACLAY)IJPBARBARO GALTIERT(DUKH 173A. BARBARO GALTIERT(DUKH 173A. BARBARO GALTIERT(DUKH 137A. BARBARO GALTIERT(DUKH 137A. BARBARO GALTIERT(DUKH 137A. BARBARO GALTIERT(DUKH 137 <td>R9 Y*1(1670) INTO (Y*0(1405) PI), R9 0.23 (0.08)</td> <td>/(Y*1(1385) PI) (P7)/(P6) Brucker 70 DBC - K-N TO SIG 2PI 10/71</td>	R9 Y*1(1670) INTO (Y*0(1405) PI), R9 0.23 (0.08)	/(Y*1(1385) PI) (P7)/(P6) Brucker 70 DBC - K-N TO SIG 2PI 10/71
REFERENCES FOR Y*1(1670) BERLEY 64 DUBNA CONF I 565 +CONNOLLY,HART,RAHM,STONEHILL, + (BNL)IJP APMENTER 68 NP 88 195 ARMENTEROS,BAILLON + (CERN+HEID+SACLAY)IJP AFMENTEL 68 NP 88 103 ARMENTEROS,BAILLON + (CERN+HEID+SACLAY)IJP ARMENTES 68 NP 88 223 ARMENTEROS,BAILLON + (CERN+HEID+SACLAY)IJP ARMENTES 69 NP 810 459 ARMENTEROS,BAILLON, + (CERN+HEID+SACLAY)IJP BATENTES 69 NP 810 459 ARMENTEROS,BAILLON, + (CERN+HEIDEL,SACLAY)IJP BERLEY 69 PL 308 430 BERLEY,HART,RAMM,WILLIS,TAMAMOTO (SNL) ARMENTER 7D DUKE 123 ARMENTEROS, BAILLON, + (CERN+HEIDEL,SACLAY)IJP BRUCKER 70 DUKE 155 HHART,SON,SIMS,ALBRICHT,CHANDLER++ (FSU)I BRUCKER 70 DUKE 153 A.BARBNORG, BAILLON, + (CERN+HEID) BRUCKER 70 DUKE 153 ALBRISON,SIMS,ALBRICHT,CHANDLER++ (FSU)I ALSO 70 DUKE 161 J. K. KIN (HARV)IJP LANGBOIR 71 LNC 2 85 D BUDGEN (MARV)IJP ALSO 70 DUKE 161 J. K. KIN (HARV)IJP LANGEN 72 VP BAY 477 +HAGNER (MPINIJP VANHORN 72 LOBL-1370(THESTS) A.J.VANHORN (TENN+UCR+MASAFBUFF)IJP PAPERS NOT REFERRED TO IN DATA CAPOS BASTIENI 63 PRL 10 188 P L BASTIEN, J P BERGE (LRL) IJ REPLACED BY BASTIEN 2, BUT SIMLAR AND MORE READILY AVAILABLE. BASTIENI 63 UCLA-1016 TALEP.2, BUT SIMLAR AND MORE READILY AVAILABLE. BASTIENI 63 UCLA-1016 P.E. SCHLEIN, T.G. TRIPPE (UCLA) JP SEE MOTE FOLLOWING SCHLEIN, 51 D. BASTIEN DAS,SCHLEIN,SLATER+ (UCLA) JP SEE MOTE FOLLOWING SCHLEIN, 56 MILTER 50 MILL PUBLISHED LANGENS DET FOLLOWING SCHLEIN, 76 MAIL PUBLISHED LANGENS DET FOLLOWING SCHLEIN, 66, SCHLEIN,SLATER+ LUCLA JP SEE MOTE FOLLOWING SCHLEIN 66, SCHLEIN,SLATER+ ZADEH 63 PRL 11 1755 MARTEN FROM SCHLEIN,SIN OF TAHER- ZADEH 63 PRL 17 556 MARTEN FROM SCHLEIN,SIN OF TAHER- ZADEH 64 PRL 17 556 MARTEN FROM SCHLEINS, FERDO-LUZZI (CERN+HEID-SACL) SMART 66 PRL 17 556 MARTEN FROM SCHLEIN, 10271 (CERN+HEID) SACLAY) PREVOST 71 AMSTERDAM CONF + CHS COLLABORATION (CERN+HEI	****** ********* ******** *******	********* ********* ********* ********
APMENTER 68 NP 88 195ARMENTEROS, BAILLON +(CERN+HEID+SACLAY)IJPARMENTE 68 NP 88 183ARMENTEROS, BAILLON +(CERN+HEID+SACLAY)IJPARMENTES 68 NP 88 233ARMENTEROS, BAILLON +(CERN+HEID+SACLAY)IJPARMENTES 68 PL 288 521ARMENTEROS, BAILLON +(CERN+HEID+SACLAY)IJPARMENTES 68 PL 288 521ARMENTEROS, BAILLON +(CERN+HEID+SACLAY)IJPARMENTES 68 PL 288 521ARMENTEROS, BAILLON +(CERN+HEID+SACLAY)IJPARMENTER 68 PRI 21 1413SIMS, ALBRIGHT, BARTY, WERFK (FSU, TUFT, BRAN)ARMENTER 69 NP 810 459ARMENTEROS, BAILLON, HINTEN +(CERN+HEIDELSACLAY)IJPBERLEY 69 PL 308 430BERLEY, HART, RAHM, WILLIS, YAMAMOTO(BNL)ARMENTER 70 DUKE 123ARMENTEROS, BAILLON, +(CERN, HEIDEL, SACLAY)IJPBUGGEN 71 LNC 2 85D BUDGEN(LRL)IJPBUDGEN 71 LNC 2 85D BUDGEN(LRL)IJPALSO 70 DUKE 161J. K. KIM(HARV)IJPANDRN 72 LBL-1370THESIS)A.J. VANHORN(MIT)IJPVANHORN 72 LBL-1370THESIS)A.J. VANHORN(MIT)IJPVANHORN 72 DUBLCOMF. 311PAFERS NOT REFERRED TO IN DATA CAPOSBASTIEN 63 PRL 10 188P L BASTIEN J P BERGE(LLL) IJPAFERS NOT REFERRED TO IN DATA CAPOSSCHLEIN 66 SHLEIN 56, THEN, FLORA MORESASTIEN 63 PRL 10 188P L BASTIEN, J P BERGE(LLL) IJSCHLEIN 63 PRL 10 188P L BASTIEN J P BERGE(UCLA) JPSCHLEIN 66 UCLA-1016THER-ZADEH 63, BASTIEN 63 AND ALL PUBLISHEDLANDA PI CROSS SECTION DATA IN THE LIGHT OF THE NOW MOWNYH1(1765) .REVERSES THE MODEL-DEPENDENT CONCU	REFEREN BERLEY 64 DUBNA CONF I 565 +CONNOL	NCES FOR Y*1(1670) LLY,HART,RAHM,STONEHILL, + (BNL)IJP
ARMENTER 69 NP BIO 459 ARMENTEROS, BAILLON, MINTEN + (CERN-SACLAY) J AMMENTER 59 NP BIO 450 ARMENTEROS, BAILLON, + (CERN-MEIDEL, SACLAY) JP BERLEY, HART, RAHH.WILLIS, YAMAMOTO (BNL) ARMENTEROS, BAILLON, + (CERN, HEIDEL, SACLAY) JP BERLEY, HART, RAHH.WILLIS, YAMAMOTO (BNL) ARMENTER 70 DUKE 123 ARMENTEROS, BAILLON, + (CERN, HEIDEL, SACLAY) JP BRUCKER 70 DUKE 155 BRUCKER 70 DUKE 155 HARRISON, SIMS, LABIGHT, CHANDLER++ (FSUIT GAITIERI 70 DUKE 155 BUDGEN 71 LNC 265 D BUDGEN (DUKH 1JP (LARV) 1JP ALSO 70 DUKE 167 KIM 71 PRL 27 356 J K KIM (HARV) 1JP (MARY 72 DULD'STOTHESIS) J K KIM (HARV) 1JP HART 73 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 73 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 73 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 73 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 73 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 73 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 73 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 73 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 74 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 75 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 75 PURDUE CONF. 311 + RICE, BACASTON, FUNG, + (TENN+UCR+MASAFBUFF) 1JP MART 75 PURDUE CONF. 311 ARENTEROS, SCHLEIN, SLATER, + (UCL) JP SEE ONT FOLLOWING SCHLEIN, 50, AND ALL PUBLISHED LANDA PIL CROSS SECTION DATA IN THE LIGHT OF THE NOM KNOWN WAILTASIS DATA FTAREFERDED JA AN MART, A KENRING, SCHLEIN, SLATER, + (UCLA) JP REANALYSES DATA OF TAMER_TADE AND AND ALL PUBLISHED LAND	APMENTER 68 NP 88 195 ARMENT ARMENTEL 68 NP 88 183 ARMENT ARMENTE2 68 NP 88 223 ARMENT ARMENTE3 68 PL 28 521 ARMENT SIMS 68 PRL 21 1413 SIMS, AMERICAN	EROS,BAILLON + (CERN+HEID+SACLAY)IJP EROS,BAILLON + (CERN+HEID+SACLAY)IJP EROS+BAILLON + (CERN+HEID+SACLAY)IJP EROS-BAILLON + (CERN+HEID+SACLAY)I LGRIGHT,BARTLEY,MEER+ (FSU,TUFT,BRAN)
ARMENTER 70 DUKE 123 ARMENTEROS, BAILLON, + (CERN, HEID) BRUCKER 70 DUKE 155 +HARRISON, SIMS, ALBRIGHT, CMANDLER++ (FSU)1 GALTIERI 70 DUKE 155 +HARRISON, SIMS, ALBRIGHT, CMANDLER++ (LRL)IJP BUDGEN 71 LUC 2 85 D BUDGEN (UDRNIJJP KIM 71 PRL 27 35. J K KIM (HARVIJP ALSO 70 DUKE 161 J. K. KIM (HARVIJP LANGGEN 72 NP BAY 477 +HAGNER (MPIN)JP VANHORN 72 LBL-1370(THESTS) A.J.VANHORN (HELL)IJ MAPT 73 PURDUE COMF. 311 *FICE.BACASTOW,FUNG.+ (TENN+UCR+MASA+BUFF)IJP PAPERS NOT REFERRED TO IN DATA CAPOS BASTIEN 63 URL 10178 FLE.1370(THESTS) BASTIEN 63 URL 10198 P L BASTIEN J P BERGE (LRL) IJ REPLACED DY BASTIEN 2, BUT SITIEN AND MOPE READILY AVAILABLE. (LRL) JJ BASTIEN 63 URL 10178 THESTEN 65, SCHLEIN, T.G. TRIPPE (UCLA) JP SCHERMOS SUSCIIDN DATA IN THE LIGAT OF THER-ZADEH 63, BASTIEN 63 AND ALL PUBLISHED (ANDA PI CROSS SECTION DATA IN THE LIGAT OF THE NOWN Y*1117631. REVERSES THE MODEL-DEPENDENT CONCLUSION OF TAHER-ZADEH 63, BASTIEN 64 AND ALL PUBLISHED (ANDA PI CROSS SECTION DATA IN THE LIGAT OF THE NOWN	ARMENTE4 69 NP B10 459 ARMENTI ARMENT-5 69 NP B14 91 ARMENTI BERLEY 69 PL 30B 430 BERLEY	EROS,BAILLON,MINTEN + (CERN+SACLAY) J EROS, BAILLON, + (CERN,HEIDEL,SACLAY)IJP ,HART,RAHM,WILLIS,YAMAMOTO (BNL)
PAPERS NOT REFERRED TO IN DATA CAPOS 8ASTIENI 63 PRL 10 188 PL BASTIEN, J P BERGE (LRL) IJ REPLACED BY BASTIEN 2, BUT SIMILAR AND MORE READLY AVAILABLE. (LRL) IJ 8ASTIEN2 63 UCRL-10779 THESIS PL BASTIEN (LRL) IJ 7-2ADEH 63 PRL 11 470 TAHER-2ADEH, PROMSE, SCHLEIN, SLATER, + (UCLA) JP SEE NOTE FOLLOWING SCHLEIN 66. (UCLA) JP REANALYSES DATA OF TAHER-ZADEH 63, BASTIEN 53 AND ALL PUBLISHED (UCLA) JP REANALYSES DATA OF TAHER-ZADEH 63, BASTIEN 53 AND ALL PUBLISHED (UCLA) JP REANALYSES DATA OF TAHER-ZADEH 63, BASTIEN 53 AND ALL PUBLISHED (UCLA) JP REANALYSES DATA OF TAHER-ZADEH 63, BASTIEN 52 AND ALL PUBLISHED (UCLA) JP RAMAT 56 PRL 17 556 W MORTA 11 THE LIGHT OF THE NOW KNOWN Y+1(1765). REVERSES THE MODEL-DEPENDENT CONCLUSION OF TAHER-ZADEH ON THE PASIES THE MODEL-DEPENDENT CONCLUSION OF TAHER-ZADEH ON THE PASIES THE MODEL-DEPENDENT CONCLUSION OF TAHER-ZADEH ON THE PASIES THE MODEL-DEPENDENT CONCLUSION OF TAHER-ZADEH ON THE PASIESTER THE MODEL-DEPENDERT CONCLUSION OF TAHER-ZADEH ON THE PASIESTER THE MODEL-DEPENDERT CONCLUSION OF TAHER-ZADEH ON THE PASIESTER THE MODEL TAHER OF TAHER OF	ARMENTER 70 DUKE 123 ARMENT BRUCKER 70 DUKE 155 +HARRI GALTIERI 70 DUKE 153 A. BAR BUDGEN 71 LNC 2 85 D BUDG KIM 71 PAL 27 356 J K KI ALSO 70 DUKE 161 +K.a LANGBEIN 72 NP 847 477 +HAGRE VANHORN 72 LBL-1370THESISD A.J.VAI HART 73 PURDUE CONF. 311 +RICE,	ERDS, BAILLON, + (CERN, HEID) SON,SINS,ALBRIGHT,CHANDLER++ (FSUI) BARO GALTIERI (LRLIJ) EN (DURH)IJP M (HARV)IJP KIM (HARV)IJP R (MPIM)IJP NHORN (LBLIJ)P BACASTOW,FUNG,+ (TENN+UCR+MASA+BUFF)IJP
LAMBDA PI CROSS SECTION DATA IN THE LIGHT OF THE NOW KNOWN Y+1(1765). REVERSES THE MODEL-DEPENDENT CONCLUSION OF TAMER- ZADOH ON THE PREFERRED JP ASSIGNMENT (FROM 3 2+ TO 3 (2-).) SMART 66 PRL 17 556 W M SMART,A KERNAN,G E KALMUS,R P ELV (IRL)IJP ARMENTER 67 NP B3 592 ARKENTEROS,FERNO-LUZI+ (CERN-HEID,SACLAY) PREVOST 71 AMSTERDAM CONF + CHS COLLABORATION (CERN+HEID+SACL)	PAPERS BASTIENI 63 PRL 10 188 PL BA REPLACED BY BASTIEN 2, BUT SIMIL BASTIEN 63 UCRL-10179 THESIS PL BA T-ZADEH 63 UCRL-10179 THESIS PL BA T-ZADEH 63 PRL 11 470 TAHER- SE MOTE FOLLOWING SCHLEIN 66. SCHLEIN 66 UCLA-1016 P.E. SI REANALYSES DATA OF TAHER-ZADEH 6	NOT REFERRED TO IN DATA CAPDS STIEN, J P BERGE (LRL) IJ AR AND MORE READILY AVAILABLE. STIEN (LRL) IJ ZADEH, PROWSE, SCHLEIN, SLATER, + (UCLA) JP CHLEIN, T.G. TRIPPE (UCLA) JP 3, BASTIEN 63 AND ALL PUBLISHED
****** ********* **********************	LAMBDA PI CROSS SECTION DATA IN Y¥11765). REVERSES THE MODEL ZADEH ON THE PREFERRED JP ASSIGN SMART 66 PRL 17 556 W N SM ARMENTER 67 NP B3 592 ARMENT PREVDST 71 AMSTEDDAM CONF + CHS	THE LIGHT OF THE NOW KNOWN -DEPERDENT CONCLUSION OF TAMER- MENT (FROM 3 2+ TO 3 (2-).) ARTAA KERNANG E KALMUS,R P ELY (LRL)IJP RROS,FERRO-LUZZI+ (CERN+HEID;SACLAY) COLLABORATION (CERN+HEID+SACL)

1670 MEV REGION - PRODUCTION AND σ_{TOTAL} EXP'TS PRODUCTION EXPERIMENTS 51 Y*1(1670, JP=) I=1 SEE NOTE PRECEDING Y*1(1670) PROBABLY THERE ARE TWO STATES AT SAME MASS WITH SAME QUANTUM NUMBERS, DNE DECAVING INTO SIGMA PI AND LAMBDA PI, THE OTHER INTO Y*0(1405) PI. BRANCHING RATIOS NOT DISENTANGLED YET, WE LIST THEM TOGETHER FOR NOW. 51 Y*1(1670) MASS (MEV) (PROD. EXP.)
 (1685.0)
 ALEXANDER 62 HBC
 -0 PI-P 2-2.2 BEV/C

 1660.0
 10.0
 ALVAREZ
 63 HBC
 + K-P 1.51 BEV/C

 (1665.0)
 (5.0)
 BUGG
 68 CNTR
 K-P, D TDTAL C.S

 70(1661.1)
 (9.1)
 PRIMER
 68 HBC
 + K-P.5. GEV/C
 7/68

 SEE BARNES 69 FOR NEW ANALYSIS OF DATA (3 TIMES MORE DATA)
 10/69
 10/69
 10/69
 5/70

 1668.0
 10.0
 AGUILAR 70 HBC
 SIG.2PI K-P 4 GEV
 5/70
 AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) 51 Y*1(1670) MASS (MEV) (PROD. EXP.)
 (45.0)
 ALEXANDER 62 HBC -0

 40.0
 10.0
 ALVAREZ
 63 HBC +

 (30.0)
 (15.0)
 BUGG
 68 CNTR
 11/66

 70
 (60.1)
 (20.1)
 PRIMER
 60 HBC + K-P 4.6-5. GEV/C
 7/68

 SEE THE NOTES ACCOMPANYING THE MASSES QUOTED.
 110.0
 12.0
 ACUILAR
 70 HBC
 SIG.2PI K-P 4 GEV
 5/70

 135.0
 40.0
 30.0
 AGUILAR
 70 HBC
 SIG.2PI K-P 4GEV
 5/70
 AVERAGE MEANINGLESS (SCALE FACTOR - 3.4) _____ 51 Y#1(1670) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES DECAY MASS 497+ 939 1115+ 139 1197+ 139 1197+ 139+ 139 1197+ 139+ 139 1384+ 139 1405+ 139 Y*1(1670) INTO K8AR N Y*1(1670) INTO LAMBDA PI Y*1(1670) INTO SIGMA PI Y*1(1670) INTO SIGMA PI PI Y*1(1670) INTO SIGMA PI PI Y*1(1670) INTO Y*1(1385) PI Y*1(1670) INTO Y*0(1405) PI P1 P2 P3 P5 P5 P7 - ----- ----51 Y#1(1670) BRANCHING RATIOS (PROD. 5XP.)
 Y+1(1670)
 INTO (KBAP N)/(SIGMA PI)
 [P1)/(P3]

 0
 (0.19)
 RR LESS
 ALVAREZ
 63
 HBC
 +
 K-P
 ILS
 BEV/C

 (0.5)+-25 OR MORE
 SMITH
 63
 HBC
 -0
 -0

 (0.5)+-25 OR MORE
 SMITH
 66
 HBC
 +
 K-P
 ILS
 BEV/C
 7/66

 (0.205)
 BUGG
 68
 CMRC
 ASSUMING J=3/2
 11/66

 (0.24)
 OR LESS
 PRIMER
 68
 HBC
 +
 K-P
 4.0-5.
 GEV/C
 7/68

 (0.201)
 DR LESS
 BARNES
 69
 HBC
 +
 K-P
 3.9-5
 GEV/C
 10/69

 (0.21)
 OR LESS
 BARNES
 69
 HBC
 +
 K-P
 3.9-5
 GEV/C
 10/69

 (0.21)
 OR LESS
 BARNES
 69
 HBC
 +
 K-P
 3.9-5
 GEV/C
 10/69
 R1 R1 R1 R1 R1 R1 R1
 VILIATO
 LOUILAN
 <t P P P AVERAGE MEANINGLESS (SCALE FACTOR = 1.5) R3 R3 R3 R3 Y+1(1670) INTO (LAMB. PI PI)/(SIG PI) (P4)/(P3) 90 (0.56) ALVAREZ 63 HBC + K-P 1.15 BEV/C (0.17) SMITH 63 HBC - O (0.6) OR LESS LCNDCN 66 HBC + K-P AT 2.25 BEV/C 7/66 Y*1(1670) INTO (SIGMA PI PI)/(SIG PI) (P5)/(P3) 180 (0.56) ALVAREZ 63 HBC + K-P 1.15 BEV/C R4 R4 Y*1(1670) INTO (Y*0(1405) PI)/(SIG PI) (P7)/(P3) 66 HBC + K-P 2.25 BEV/C 7/66 68 HBC + K-P 4.6-5. GEV/C 7/68 R5 R5 R5 P LONDON Primer 50 3. 1.6 17 (0.58) (0.20) Y*1(1670) INTO (SIGMA P1)/(SIGMA P1 P1) (P3)/(P5) .4 OR LESS BIRMINGHA 66 HBC + K-P AT 3.5 GEV/C 11/67 0.30 0.15 LONDON 66 HBC + K-P 2.25 GEV/C 7/66 BETWEEN 2.5 AND 0.24 EBERHARD 69 HBC K-P AT 2.6 GEV/C 9/69 DEPENDING ON THE PRODUCTION ANGLE R6 R6 R6 R6 Y*1(1670) INTO (Y*0(1405) PI)/(SIGMA PI PI) (P7)/(P5) 0.90 0.10 0.16 EBERHARD 65 HBC + K-P 2.45 BEV/C 7/66 R 7 R 7 Y*1(1670) [NTO (Y*0(1405) PI)/(Y*1(1385) PI) (P7)/(P6) (0.8) OR LESS EBERHARD 65 HBC + K-P 2.45 BEV/C 7/66 R 8 R 8 R9 R9 Y*1(1670) INTO (LAMBDA PI PI)/(SIGMA PI PI) (P4)/(P5) 0.35 0.2 BIRMINGHA 66 HBC + K-P AT 3.5 GEV/C 11/67 Y*1(1670) INTO (LAMBDA PI)/(SIGMA PI PI) (P2)/(P5) (.2) OR LESS BIRMINGHA 66 HBC + K-P AT 3.5 GEV/C 11/67 R10 R10 Y*1(1670) INTO (LAMBDA P1)/(LAMBDA P1 + SIG P1) {P2)/(P2+P3) [0+6) DR LESS AGUILAR 70 HBC 911 R11 5/70 ***** 51 Y*1(1670) QUANTUM NUMBER DETERMINATION (PROD. EXP.) JP=3/2+ LEVEQUE 65 H8C INTD Y*(1405)+PI 11/68 JP=3/2− E6ERHARD 67 H8C + INTD Y*(1405) PI 11/68 JP=3/2− BUTTON-SH 66 H8C +− INTO S162ER0+PI 11/68 01 03 04 JP=3/2-400 JP=3/2-

Baryons Σ(1670), Σ(1690)

REFERENCES FOR Y#1(1670) (PROD. EXP.)

ALEXANDI ALVAREZ SMITH HUWE EBERHARI	63 63 64 65	CERN (PRL 10 Athens PR 180 PRL 14	CONF 320 D 184 5 CONF 67 D 1824(196 4 466	ALEXANDER,JACOBS,KALGFLETSCH,MILLER,+ 11R() 1 +ALSTON,FERRO-LUZZI,HUWE, + (LRL) 1 G A SHITH (LRL)) D O HUWE +SHIVELLY,ROSS,STEGAL,FICENEC, + (LRLILL) 1	
BIRMING LCNDON BUGG BUTTON-: PRIMER	H 66 68 5 68 68	PR 14 PR 14 PR 168 PPL 21 PRL 20	52 1148 3 1034 8 1466 1 1123 0 610	BIBWINGHAM,GLASGOW,I.C.Y OXFORO,FUTHERFORD +RALJSAMIOS,YAMAMOTO,GOLDBERG,+ (DM.SYRA) IJ +RALJSAMIOS,YAMAMOTO,GOLDBERG,+ (DM.SYRA) IJ J BUTTON SHAFER J BUTTON SHAFER +GOLDBERG,JAEGER,BARNES,DORNAN + (SYRA)BNL)	
BARNES Eberhar: Aguilar	69 69 70	BNL 1 PRL 2 PRL 2	3823 2 200 5 58	+CHUNG,EISNER,FLAMINID+ {BNL,SYRA} +FRIEDMAN,PRIPSTEIN,ROSS {LRL} +BARNES, BASSANO, CHUNG, EISNER,+{BNL,SYRA}	
L EVEOUE				PAPERS NOT REFERRED TO IN DATA CARDS	
LEVEQUE LEE EBERHARI EBERHARI	66 0 67 0 73	PRL 1 PR 16 PURDU	7 45 3 1446 E CONF. 24	Y Y LEE, D D REFOR, R WHATUNG (WISC) JP +PRIPSTEIN,SHIVELY,KRUSE,SWANSON (LRL,ILL)IJP / EBERHARD (LBL)IJP	
******	**** ****	*****	*********	******** ********* ******** ***********	
5/4	20		£0. V41		
2(1 BU	69 ИР	s	SEE THE	MINI-REVUE AT THE START OF THE Y* LISTINGS.	
·	_	≯	SEE NOT Experim	E PRECEDING Y*1(1670) LISTINGS, SEEN IN PRD. ENTS ONLY, MAIN DECAY MODE IS LAMBDA PI.	
			58 Y*1	(1690) MASS (MEV) (PROD. EXP.)	
M M P	30(60(1715.0 1694.0) (12.0)) (24.0)	COLLEY 67 HBC + K-P 6 GEV/C 8/6 PRIMER 68 HBC + K-P 4.6-5 GEV/C 7/6	7 8
H N M	46	1700.0) (6.0)	SIMS 68 HBC - K-N TO LAM PI PI 11/6 BLUMENFEL 69 HBC + KO LONG + PROTON 9/6	8
м М Р М Р	SE	E Y*1(IMER 6	1670) LIST 8 SHOW TH	ING-AGUILAR 70 WITH THREE TIMES THE DATA OF AT THEY HAVE NO EVIDENCE FOR Y*(1690)	9
M N	TH	IS ANA SHOWS	LYSIS, WHI NO UNAMBIG	TH IS DIFFICULT AND REQUIRES SEVERAL ASSUMPTIONS JOUS Y#1(1690) SIGNAL, SUGGESTS JP=5/2+. SUCH A	
H .	Y* W	00LD L	EAD ALL PR	EVIOUSLY KNOWN Y* TRAJECTORIES.	
				(1690) WIDTH (MEV) (PROD. EXP.)	
w	30	(100.0) (35.0)	COLLEY 67 HBC + 8/6	7
W N	60	(105.0) (35.0)) (14.0)	PRIMER 68 HBC + 7/6 SIMS 68 HBC - SEE NOTE N ABOVE 11/6	8
w W	46	(130.0) (10.0) } (25.0) FE THE NOT	BLUMENFEL 69 HBC + 976 MOTT 69 HBC + 976 ES ACCOMPANYING THE MASSES DIVITED	9
			58 Y#1	(1690) PARTIAL DECAY MODES (PROD. EXP.)	
P1	Y*1(16901	INTO KBAR	DECAY MASSES N 4974 939	
P2 P3	Y*1(Y*1(1690)	INTO LAMBO	A PI 1115+ 139 PI 1197+ 139	
P4 P5	Y*1(Y*1(1690) 1690)	INTO Y*1(1 INTO LAMBO	385) PI 1384+ 139 A PI PI (INCLUDING P4) 1115+ 139+ 139	
			58 Y*1	(1690) BRANCHING RATIOS (PROD. EXP.)	
R1 R1 R1	Y*1(18	1690) 0.4 (0.2	INTO (KBAP 0.25) OR LESS	N)/(LAMBDA P1) (P1)/(P2) COLLEY 67 HBC + 6/30 EVENTS 8/6 MOTT 69 HBC + 9/6	7
R2 R2	Y*1(1690)	INTO (SIGM 0.3	A PI)/(LAMBOA PI) (P3)/(P2) COLLEY 67 HBC + 4/30 EVENTS 8/6 (L= 20 MOTT 40 HBC + 4/30 EVENTS 8/6	7
R3 R3	Y*1{	1690)	INTO (Y*10	1385) PI)/(LAMBDA PI) (P4)/(P2) MOT 69 HBC + 9/6	, 9
R4	Y*1{	1690)	INTO (LAME	DA PI PII/(LAMBDA PI) (P5)/(P2)	-
R4 R4 R4 R4		0.5	0.25	COLLEY 67 HBC + 15/30 EVENTS 8/6 Blumenfel 69 HBC + 31/15 EVENTS 9/6 Average (Erors Includes Scale Factor de 2.3)	7 19
R5	Y#1(1690)	1NTO (Y+16	1385) PI)/(LAMBDA PI PI) (P4)/(P5)	
R 5 R 5		SMAL LARG	L E	COLLEY 67 HBC + 8/6 SIMS 68 HBC - K-N TO L2PI 11/6	8
*****	****	*****	*******	******** ********* ******** ***********	
COLIFY	67	PL 74	6 489	REFERENCES FUR THIIG90/ (PROD. EXP.) (BIRH.GLAS.LOIC.MUNICH.OXFORD.RHELL]	
DERRICK	67 LACE	PRL 1 D BY M	8 266 DTT 69.	+FIELDS, LOKEN, AMMAR, (ARGONNE, NORTHWEST) I	
PRIMER SIMS	68 68	PRL 2 PRL 2	0 610 1 1413	+GOLDBERG, JAEGER, BARNES, + (SYRACUSE;BNL) [+ALBRIGHT, + (FSU,TUFTS;BRANDEIS)]	
BLUMENF MOTT	E 69 69	PL 29 PR 17	6 58 7 1966	B J BLUMENFELD, G R KALBFLEISCH (BNL) I +AMMAR, DAVIS, KROPAC, +(NORTHWEST,ARGONNE) I	
				PAPERS NOT REFERRED TO IN DATA CARDS	
AGUILAR	70	PRL 2	5 58	AGUILAR-BENITEZ, BARNES, BASSANO+ (BNL+SYRA)	
******	****	*****	********	******** ******************************	

Baryons Σ(1750), Σ(1765)

45 Y#1(1765) BRANCHING RATIOS	REFERENCES FOR Y#1(1765)
ERRORS QUOTED BY EXPERIMENTERS DO NOT INCLUDE UNCERTAINTY DUE TO PARAMETRIZATION USED IN THE P.W.A. THEY SHOULD BE INCREASED. R1 Y+1(1765) INTO (KBAR N)/TOTAL (P1) R1 0.60 GALTIERI 63 MBC 0 K-P RVUE 9/66 R1 0.53 0.09 UHLIG 67 MBC 0 ELASTIC, CM EXCH 1/68	GALTIERI 63 9L 6 296 A BARBARO-GALTIERI,A HUSSAIN,RD TRIPP (LRL)IJ ARMENTER 65 PL 19 338 ARMENTEROS, + (CERN,HEIDELBERG,SACLAYIJP BELL 1 66 PRL 16 203 R 8 BELL (IRL)IJP BELL 2 66 UCRL-16936 THESIS R 8 BELL (IRL)IJP ARMENTER 67 PL 248 183 ARMENTEROS,FERRO-LUZZI+ (CERN,HEID,SACLAYIJP ARMENTER 67 PL 248 183 ARMENTEROS,FERRO-LUZZI+ (CERN,HEID,SACLAYIJP ARMENTER 67 PL 248 184 +CHARLTON.CONDON,GLASSER,YCDM++ (UMO,NRL)
0.37) BUGG 68 CNTR L1/66 R1 0.36 0.02 BRICMANI 70 DPWA SIGTOT.ELAS.CMEX 1/71 R1 10.41 COL 70 CMTR K-P,D TOTAL L0/70 R1 0.36 0.02 CONFORTO 71 DPWA 0 ELASTIC, CHE XCHE //71 R1 L0.42 COMFORTO 71 DPWA 0 ELASTIC, CHE XCHE //71 R1 10.42 KIN 71 DPWA 0 HARTAK XAMAL. 3/71 R1 0.39 0.01 LANGBEIN 72 IPWA MULTICHANNEL 12/72	ARMENT-1 68 NP 58 195 APMENTEROS, BAILLON, + (CERNI, HEIDEL, SACLAY) IJP ARMENT-2 68 NP 58 216 ANMENTEROS, BAILLON, + (CERNI, HEIDEL, SACLAY) I BUGG 68 PR 168 CHICKE, KINGHT, GAVIES+ (BIM, GAVE, RHEL) I SIMA 68 PR 169 1330 W SMART (LR.1) IJP
RI AVG 0.409 0.021 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 3.3) RI FIT 0.411 0.017 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.7) (SEE TOBOGRAM BELOW)	981CMAN1 70 PL 338 511 +FERRO-LUZZI,LAGNAUX (CERN) COOL 70 PR DI 1887 +GIACOMELLI, KYCIA, LECNTIC, LI, + (BNL) I GALTIERI 70 OUKE COMP 173 A BABRAPC-GALTIERI (LRL)IJP
WEIGHTED AVERAGE = 0.409 ± 0.021	CONFORTD 71 NP 834 41 +LEVI SETTI,LASINSKICBEPLACK++ (EFI+HEID)IJP KIM 71 PRL 27 356 J K KIM (HARV)IJP ALSO 70 OUKF 161 J. K. KIM (HARV)IJP
ERROR SCALED BY 3.3	BARLETTA 72 NP B40 45 W.A. BARLETTA (EFI) 1JP KANE 72 NP 05 1583 D F KANE (LBL)IJP LANGBEIN 72 NP 847 +W4GNER (LBL)IJP VANHORN 72 UBL-1370(THESIS) A.J.VANHORN (LGL)IJP
Values above of weighted average, error, and scale factor are for the reader's convenience only. The data were actually processed by a constrained fit program, which calculates its own values of \overline{x} , $\delta \overline{x}$, and scale factor, which are differ-	PAPERS NOT PEFERPED TO IN DATA CARDS FENSTER 66 PRL 17 841 +GELFAND, HARMSEN,L-SETTI,+ (CHIC,ANL(CERN))IJP FENSTER 66 IS SUPERSEDED BY BARLETTA 72 CONFORTO 68 MP B8 265 +HARMSEN, LASINSKI, + (CHICAGO,HEIDEL)IJP SUPERSEDED BY COMFORTO 71. HARRISON 70 FSU-HEP 70 3 1 W.C. HARRISON (THESIS) (FSU) PREVOST 71 AMSTERDAM CONF + CHS COLLABORATION (CERN+HEID-SACL)
ent from the values shown here.	
CHISP +	Σ(1840) C(1840) C(1840) C(1840) See the MINI-REVIEWS PRECEDING THE Y+0'S. FOR THE TIME BEING, WE LIST THESE TWO CLAIMS TOGETHER.
Y#1(1765) INTO (KBAR N)/TOTAL	M 1840.0 (10.0) LANGBEIN 72 IPWA MULTICHANNEL 12/72 M 1925. (200.) VANHORN 72 DPWA 0 K- P TO LAM PIO 2/73
R2 Y41(1765) FROM KBAR N INTO LAMBDA PI SQRT(P1eP2) R2 -0.266 0.017 SMART 68 DPMA -0 K-N TO LAMBDA PI 7/68 R2 -0.22 0.03 GALTIERI 70 DPWA 0 K-P TO LAMBDA PI 7/70 R2 -0.30 GALTIERI 70 DPWA 0 K-P TO LAMBDA PI 7/70 R2 (0.30) KIM T1 DPWA K-MATRIX ANAL 3/71 R2 0.15 0.04 LANGEGIN T1 DPWA NULTICHANNEL 12/72	W 120.0 (10.0) LANGBEIN 72 IPWA MULTICHANNEL 12/72 W 65. (50.) (20.) VANHORN 72 DPWA 0 K- P TO LAN PIO 2/73
RZ28 .04 .05 VANHORN 72 DPWA 0 K- P TO LAM PIO 2/73 R2 AVG MOD 0.245 0.022 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.7) R2 AVG MOD 0.245 0.022 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.7)	01 Y#1(1840) PARTIAL DECAY MODES
κ2 FI 0.223 0.016 FKUM FI (ERKUK INCLUDES SCALE FALTOR 0.1 1.5 R3 Y=1(1765) FROM KBR <n< th=""> N INTO Y=0(1520) PI SQRT[P]=P30 SQRT[P]=P30 0.27 0.03 ARMENTERO 65 HBC 0 K=1520 PI 9/66 R3 0.31 0.02 BARLETTA 72 DPMA 0 K=1520 PI 12/72</n<>	PI Y#1(1840) INTO KBAR N 497+ 939 P2 Y#1(1840) INTO SIGMA PI 1197+ 139 P3 Y#1(1840) INTO LAMBDA PI 1115+ 134
R3 AVG 0.298 0.018 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.1) R3 FIT 0.254 0.028 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.1)	01 Y#1(1840) BRANCHING RATICS
R4 Y+1(1765) FROM KBAR N INTO Y+1(1385) PI SQRT(P1+P4) R4 A (0.24) (0.03) ARMENT-2 67 HBC 0 K-P TO LAM PI PI 8/67 P4 S (0.32) (0.06) S1MS 68 0BC - K-N TO LAM PI PI 11/68	RI Y#1(1840) INTO (KBAR N)/TOTAL (PL) R1 0.37 (0.13) LANGBEIN 72 IPWA MULTICHANNEL 12/72
R4 S SIMS 68 USES ONLY CROSS-SECT. DATA. RESULT USED AS UPPER LIMIT ONLY 3/72 R4 R4 FIT 0.206 0.038 FROM FIT	RZ Y*1118401 FRUM KBAR N INTO SIGMA PI SORT(P1*P2) RZ 0.15 (0.04) LANGBEIN 72 IPWA MULTICHANNEL 12/72 03 Y#1/18401 EGN KBAR N INTO LAMPA DI SORT(P1*P2)
R5 Y+1(1765) FROM KBAR N INTO SIGMA PI SQRT[P1+P5] R5 0.07 0.02 ARMENTERO 67 DPWA O K-P TO SIGMA PI 8/67 R5 +0.06 0.03 GALTIERI 70 DPWA O K-P TO SIGMA PI 7/70 R5 (0.09) KIM 71 DPWA K-MATRIX ANAL 3/71	R3 0.20 (0.04) LANGBEIN 72 IPMA MULTICHANNEL 12/72 R3 +.06 (.04) VANHORN 72 DPMA 0 K-P TO LAM 12/73
R5 +0.074 0.017 KANE 72 DPWA 0 K-P TO PI SIG 10/71 R5 0.09 OR LESS LANGBEIN 72 IPWA MULTICHANNEL 12/72 R5	REFERENCES FOR Y+1(1840)
R5 AVG 0.070 0.012 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R5 FIT 0.070 0.012 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)	LANGBEIN 72 NB 647 477 +MAGNER (MPIM)1JP VANHORN 72 LBL-1370(THESIS) A.J.VANHORN (LBL)1JP
R6 Y+1(1765) 1NTO (LAMBOA P1)/(KBAR N) (P2)/(P1) R6 0.33 0.05 UHLIG 67 HBC 0 K-P,9 GEV/C 9/66 R6 F17 0.321 0.042 FROM F1T (ERROR INCLUDES SCALE FACTOR OF 1.4)	P%_
R7 Y+1(1765) INTO (Y+0(1520)PI)/(KBAR N) (P3)/(P1) R7 0.28 0.05 UHLIG 67 HBC 0 К-Р+.9 GEV/C 9/66	$\Sigma(1880)$ SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS.
R7R7 FIT 0.381 0.080 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 2.1) R8 Y#1(175) INTO (Y#1(1385)PI)/(KBAR N) (P4)/(P1) R8 0.25 0.09	SUCH A RESONANCE IS SUGGESTED BY SOME BUT NOT ALL PARTIAL-WAYE ANALYSES ACROSS THIS REGION. UNTIL THERE IS MORE EVIDENCE, WE OMIT THIS STATE FROM THE MAIN BARYON TABLE.
R8 FIT 0.250 0.091 FROM FIT (ERROR INCLUDES SCALE FACTOR OF 1.0)	
99 Y41(1765) INTO (SIGMA PI PI)/TOTAL (P7) R9 P (0.12) ARHENT-2 68 HDBC -0 K-N TO SIG PI PI 11/68 R9 P FOR ABOUT 3/4 DF THIS, THE SIGMA PI SYSTEM HAS I=0 AND IS ALMOST R9 P ENTRELY Y40(1520). FOR THE OTHER L/4, THE SIGMA PI HAS I=1. THIS R9 P IS ABOUT WHAT IS EXPECTED FROM THE KNOWN RATE Y+1(1765) TO Y+1(1385) R9 P PI, AS SEEN IN LAMBDA PI PI.	67 Y*1(1880) MASS (MEY) M 1882-0 40.0 SMART 68 DPMA -0 K- N TO LAM P1 7/68 M (1850.0) BATLEY 69 DPMA 0 ELASTIC, CH EXCH 10/70 M ABOUT 1850.0 ARMENTERO 70 IPMA -0 K- N TO LAM P1 7/70 M 1950.0 50.0 GAITERT 70 DPMA -0 K- N TO LAM P1 6/70 M 1920.0 30.0 LITCHFIEL 70 DPMA -0 K- N TO LAM P1 1/73 M (11772-0) KANET 72 DPMA N-P TO SIGMA P1 1/73
****** ******** ******** ******** ******	1995. 50. VANHORN 72 DPWA O K-P TO LAM PIO 2/73 N 2 (1898.) LEA 73 DFWA MULTICHNL K-MTRX 9/73 M 2 ONLY UXCONSTRAINED STATES FROM TABLE 1 OF LEA73 ARE IN LISTINGS. 9/73 M AVG 1925.6 19.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)

Baryons Σ(1765), Σ(1840), Σ(1880)

9/73*

183

Baryons Σ(1880), Σ(1915)

Data Card Listings For notation, see key at front of Listings. Ł 46 Y*1(1915) BRANCHING RATIDS LASTIC, CH EXCH 11/67 IGTOT,ELAS,CHEX 1/71 LASTIC, CH EXCH 6/70 -P TO KBAR N 10/71

67 Y*1(1880) WIDTH (MEV)	46 Y*1(1915) BRANCHING RATIDS
W 222.0 150.0 SMART 68 DPMA -0 K-N TO LAM PI 7/68 W (200.0) BAILEY 69 DPMA -0 ELASTIC. CH EXCH 10/70 W ABOUT 30.0 APMENTERO 70 TPMA -0 ELASTIC. CH EXCH 10/70 W 200.0 50.0 GAITTERI 70 DPMA -0 ELASTIC. CH EXCH 10/70 V 170.0 40.0 LITCHFIEL 70 DPMA -0 K-N TO LAM PI 6/70 W 180.01 KANE 72 DPMA -0 K-N TO LAM PI 6/70 W 220.1 L6A 73 DPMA K-P TO SIGMA PI 1/73 W 220.1 LEA 73 DPMA K-P TO SIGMA PI 2/73 W 220.1 LEA 73 DPMA MULTICHNL K-MTRX 9/73+ W 4.05 29.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0)	R1 Y+1(1915) INTO (KBAR N)/TOTAL (P1) R1 A (0.12) (0)1 R1 A (0.12) BRICMANI 70 DPWA SIGTOTELEASCHEK 1/71 R1 0.11 (0.02) COMPOTO 71 DPWA SIGTOTELEASCHEK 1/71 R1 0.15 (0.04) LITCHFIE 71 DPWA K-P TD KBAR N 10/71 R2 -0.08 (0.02) SART 68 DPWA -0 K-P TO LAMBOA PI 7/68 R2 -0.01 (0.02) SRTYON 70 DPWA - K-N TO LAMBOA PI 7/68 R2 -0.01 (0.02) COX 70 DPWA - K-N TO LAMBOA PI 7/76 R2 -0.01 GO31 GALTIERI 70 DPWA - K-N TO LAMBOA PI 7/76 R2 -0.11 GO33 GALTIERI 70 DPWA - K-N TO LAMBOA PI 7/76 R3 -0.01 GO35 GALTIERI 70 DPWA - K-N TO LAMBOA PI
67 Y*1(1880) PARTIAL DECAY MODES PI Y*1(1880) INTO KBAR N 497+ 939 PZ Y*1(1880) INTO LAMBDA PI 1115+ 134 P3 Y*1(1880) INTO SIGMA PI 1197+ 139	R2 09 .02 VANHORN 72 CPWA 0 K - P TO LAM PIO 2/73 R3 A (0.00) (0.01) RAMENTERO 67 DPWA 0 K - P TO SIGMA PI 11/67 R3 A (0.00) (0.01) RAMENTERO 67 DPWA 0 K - P TO SIGMA PI 11/67 R3 -0.13 (0.03) GERTHONI TO DPWA 0 K - P TO SIGMA PI 10/70 R3 -0.06 (0.03) GERTHONI TO DPWA 0 K - P TO SIGMA PI 10/70 R3 -0.06 (0.02) ISLAM TI DPWA 0 K - P TO SIG 10/71 R3 -0.013 (0.02) ISLAM TI DPWA NK - P TO SIG 10/71
	****** ******** ******** ******** ******
R1 Y*L(1880) INTO (KBAR N)/TOTAL (P1) R1 (0.221) BAILEY 69 DPWA O ELASTIC, CH EXCH 10/70 R1 (0.20) ARMENTERO 70 IPMA -O ELASTIC, CH EXCH 6/70 R1 2 (.31) LEA	ARMENTER 67 PL 248 198 ARMENTEROS,FERRO-LUZZI+ (CERN,HEID,SACLAY) ARMENTE1 67 NP 63 592 ARMENTEROS,FERRO-LUZZI+ (CERN,HEID,SACLAY) SMART 68 PR 169 1330 W M SMART (LRL)IJP
R2 Y*1(1880) FROM KBAR N INTO LAMBDA PI SQRT(P1*P2) R2 -0.11 0.03 SMART 68 DFWA -0 K-N TO LAM PI 7/68 R2 -0.09 0.04 GALTIERI 70 DFWA -0 K-N TO LAM PI 7/70 R2 -0.14 0.03 LITCHFIEL 70 DFWA -0 K-N TO LAM PI 7/70 R2 -0.14 0.03 LITCHFIEL 70 DFWA -0 K-N TO LAM PI 6/70 R2 +0.05 +07 -02 VANNORN 72 DFWA 0 K-N TO LAM PI 2/73 R2 2 (-30) LEA 73 DFWA NULTICHNL K-WTRX 9/73*	BERTHON 70 NP 820 476 +RANGAN, VRANA, +(COL FRANCE, RHEL, SACLAYILJP BERTHONI 70 NP 824 417 +VRANA, BUTTERNORTH, + (CDEF, RHEL, SACLAYILJ BRIGMANI 70 PL 338 511 +FERRD-LUZZI,LAGNAUX (CERN) COX 70 NP 819 61 +ISLAM, COLLEY, + (BIRM,EDIN,GLAS,LOIC)IJP GALTIERI 70 DUKE CONF 173 A BABBARO-GALTIERI (IRI)JP LITCHFIE 70 NP 822 269 P J LITCHFIELD (RUTHERFORD)IJP
R2 AVG MOD 0.017 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) R3 Y*1(1880) FROM KBAR N TO SIGNA PI SORT(P1*P3) 9/73* R3 (~.108) KANE 72 DPWA K-P TO SIGNA PI 9/73* R3 (~.108) LEA 73 DPWA HULTICHNL K-NTRX 9/73*	CONFORTO 71 MP 834 41 +LEVI SETTI,LASINSKI08ERLACK++ (EFI+HEIDI]JP ISLAM 71 PJSR 14 305 +COX,COLLEY,HEATHCOTE (BIRM) IJP PAKISTAN J. SCT. IND. PES. IITCHFIETI NB 830 125 LITCHFIE 71 NP 830 125 LITCHFIELD,+LESQUDY,+ (RHEL+CDEF+SACL)IJP KANE 72 PR D5 1583 D F KANE VANHORN 72 LBL-1370[THESTS] A.J.VANHORN
REFERENCES FOR Y+1(1880) SMART 68 PR 169 1330 W N SMART (LRL)IJP RAILEY 69 THESIS UCRL-50617 DAVID SAAL BAILEY (LRL LIVERMORE)IJP ARMENTER 70 DUKE CONF 123 ARMENTEROS, BAILLON, + (CERN, HE IDELIJP ACTIER 17 0 DUKE CONF 173 A BABARO-GALTIERI (LRL)IJP LITCHFIE 70 NP B62 269 P J LITCHFIELD (RUTHREFRODIJP KANE 7 Z R DS 1583 D F KANE (LBL) VANHORN 72 LBL-1370ITHESIS) AJJVANHORN (LBL)IJP	PAPERS NOT REFERRED TO IN DATA CARDS SMART 66 PRL 17 556 W M SMART,A KERNAN,G E KALMUS,R P ELY (LRL)IJP SUPERSEDED BY SMART 68. CONFORTO 68 MP 68 265 +HARMSEN, LASINSKI, + (CHICAGO, HEIDEL) SUPERSEDED BY COMFORTO 71.
$ \begin{array}{c} \textbf{E}_{\textbf{A}} & \textbf{F}_{\textbf{A}} & \textbf{F}_{$	1915 MEV REGION - PRODUCTION AND σ_{TOTAL} EXP'TS 29 Y+1(1915, JP+) 1=1 SEE THE MINI-REVIEW AT THE START OF THE Y+ LISTINGS. SEE THE MOTES TO THE Y+1(1915) AND Y+1(1940), WHICH IMMEDIATELY PRECEDE AND FOLLOW THIS ENTRY. HER WE LIST ONLY PARAMETERS OF PEAKS SEEN IN CROSS SECTIONS AND INVARIANT-MASS DEAKS OF PEAKS SEEN IN CROSS SECTIONS CRATAINLY ASSOCIATED WITH THE FIS Y+1(1915) SEEN IN PARTIAL-MAVE ANALYSES. THE INVARIANT-MASS PEAKS SEEM NORE LIKELY TO BE WITH THE NOT-COMPLETELY-ESTABLISHED WITH THE DI3 Y+(1940).
COMPLICATED AND POORLY UNDERSTOOD AND THE PEAKS MAY CONTAIN HORE THAN JUST THE V*1(1915). SEE ALSO THE NOTE TO THE NEXT ENTRY. 46 Y*1(1915) MASS (MEV) M 1902.0 11.0 SMART 68 DPWA -0 K-N TO LAMBDA PI 7/68 M 1910.0 20.0 BERTHONI 70 DPWA 0 K-P TO LAMBDA PI 7/70 M 1900.0 15.0 BERTHONI 70 DPWA 0 K-P TO LAMBDA PI 7/70 M 1903.0 10.0 CDX 70 DPWA 0 K-P TO SIGKA PI 10/70 M 1903.0 10.0 CDX 70 DPWA - K-N TO LAMBDA PI 7/70 M 1903.0 10.0 LITCHTEFL TO DPWA - K-N TO LAMBDA PI 7/70 M 1905.0 30.0 GALTIERI 70 DPWA - K-N TO LAMBDA PI 7/70 M 1905.0 10.0 LITCHTEFL TO DPWA - K-N TO LAMBDA PI 7/70 M 1905.0 10.0 LITCHTEFL TO DPWA - K-N-TO LAMBDA PI 7/70 M B 11985.0 10.2 LITCHTEFL TO DPWA - K-N-TO LAMBDA PI 7/70 M B 11985.0 10.2 LITCHTEFL TO DPWA - K-N-PI-SIG .12/72 B DISCREPANCY DUE POSSIBLY TO INSUFFICIENT STATISTICS	29 Y#11915) MASS (MEV) (PROD. EXP.) M CROSS-SECTION PEAKS M 1905.0 5.0 BUGG 68 CNTR K-P. D TOTAL 11/66 M 1905.0 6.0 BRICMAN 70 CNTR K-P. D TOTAL 11/66 M 1905.0 6.0 BRICMAN 70 CNTR K-P. D TOTAL 11/66 M 1902.0 10.0 COL 70 CNTR K-P. D TOTAL 10/70 M 1912.0 10.0 DOC CNTR K-P. D TOTAL 10/70 M 1942.0 11.0 AGUILAR 70 HBC PBAR 5.7 BEV/C M 1940.0 11.0 AGUILAR TO HBC * 3.9-4.6 GEV/C K- 5/70 M LGST INDICATED BY LEGENDRE CDEFFS69 NOT RULED OUT. 2/73 1 1191.9 2/73 M AVERAGE MEANINGLESS ISCALE FACTOR = 1.9)
M 1910. 15. LITCHFIE 71 DPMA K-P T0 KBAR 10/71 M 1925.0 8.0 KANE 72 DPMA 0 K-P T0 PISIG 10/71 M 1925.0 8.0 KANKORN 72 DPMA 0 K-P T0 PISIG 10/71 M 1920.1 1.5 .20 VANHORN 72 DPMA 0 K-P T0 LAM PIO 2/73 N RERGR STATIST. ONLY-NO GEROR DUE TO PARTICULAR P.W.ANAL. INCLUDED 1/71 N M M AVERAGE MEANINGLESS (SCALE FACTOR = 1.0)	29 Y+1(1915) WIDTH (MEV) (PROD. EXP.) W CROSS-SECTION PEAKS W 60.0 10.0 BUGG 68 CNTR 11/66 W 50.0 12.0 BRICMAN 70 CNTR 0 TOTAL AND CH EX 6/70 W (30.0) W INVARIANT-MASS-DISTRIBUTION PEAKS W INVARIANT-MASS-DISTRIBUTION PEAKS
46 Y*1(1915) WIDTH (MEV) N 4 (50-0) (20-0) ARMENITER 67 DPMA O ELASTIC, CH EXCH 11/67 N 52-0 25-0 SMART 68 DPMA −0 K−N TO LAMBDA PI 7/68 N 52-0 20-0 BERTHON 70 DPMA 0 K−P TO LAMBDA PI 7/70 N 75-0 20-0 BERTHONI 70 DPMA 0 K−P TO SIGMA PT 10/70 N 135-0 12-0 BRICMANI 70 DPMA SIGTOT,ELAS.(HEX 1/71 N 77-0 27-0 CDX 70 DPMA − K−N TO LAMBDA PI 6/70	W (36.0) (20.0) (36.0) BDCK 65 HBC 90.0 20.0 AGUILAR 70 HBC 3.9-4.6 GEV/C K- 5/70 W ELASTIC DCS 0ADD 72 HBC 0 K-P ELSTC DCS 2/73 W TO. 1.0 0ADD 72 HBC 0 K-P ELSTC DCS 2/73 W AVERAGE MEANINGLESS (SCALE FACTOR = 1.1)
N 70.0 20.0 GALTIERI 70 DFMA O N FTO LANGDA PI 77/70 W 70.0 0.15 LITCHFEL 70 DFMA O NTO LANGDA PI 77/70 W 6 (159.0) (80.0) ISLAM 71 DFMA O N-PI-SIG 12/72 W 70.0 15. LITCHFIE 70 DFMA O N-PT-SIG 12/72 W 146.0 22.0 KANE 72 DFMA O K-P TO PISIG 10/71 M 142.1 8. VANHORN 72 DFMA O K-P TO PISIG 10/71 W 142.1 8. VANHORN 72 DFMA O K-P TO PISIG 10/71 W 142.0 28. VANHORN 72 DFMA O K-P TO PISIG 10/71 W 142.1 8. VANHORN 72 DFMA O K-P TO LAM PIO 2/73 W A LACK OF DATA PFEVENTS FROM DETERMINING UNAMB. THIS AMPLITUDE 11/67 N N N	29 Y*1(1915) PARTIAL DECAY MODES (PROD. EXP.) PL V*1(1915) INTO KBAR N 497+939 P2 V*1(1915) INTO LAMBDA PI 1115+134 P3 V*1(1915) INTO SIGMA PI 1197+139
R AVERAUE MEANINGLESS (SUALE FAULUK = 1.9)	29 Y*1(1915) BRANCHING RATIOS (PROD. EXP.)
46 Y*1(1915) PARTIAL DECAY MODES P1 Y*1(1915) INTO KBAR N 497+ 939 P2 Y*1(1915) INTO LAMBDA P1 1115+ 139 P3 Y*1(1915) INTO SIGMA P1 1117+ 139	NI Y*111915) INTO (KBAR NJ/TOTAL {P1} RI THESE VALUES OF ELASTICITIES ASSUME J=5/2 - RI 0.06 BUGG 68 CNTR ASSUMING J=5/2 6/68 RI 0.07 0.02 BRICMAN TO CNTR ASUMING J=5/2 6/70 RI 0.07 0.02 BRICMAN TO CNTR AP.P.D TOTAL 10/70 RI 1 THIS ELASTICITY ASSUMES J=7/2 CCOL 70 CNTR AP.P.D TOTAL 2/73 RI 4.62 .08 DADD 72 HBC 0 K-P ELSTC DCS 2/73 RI AVE 0.01 0.13 AVERAGE (ERROR INCLUDES SCALE FACTOR OF A.71

Y+1(1915) INTC (KBAR N)/(SIGMA PI) (P1)/(P3) (.37) DR LESS BARNES 69 HBC + 1 STAN. DEV. 02 Y#1(2000) PARTIAL DECAY MODES R 2 R 2 10/69 DECAY MASSES Y*1(1915) INTO (LAMBDA PI)/(SIGMA PI) (.20) OR LESS BARNES (P2)/(P3) 69 HBC + 1 STAN. DEV. 83 83 P1 P2 Y#1(2000) INTO KBAR N Y#1(2000) INTO LAMBDA PI 497+ 939 10/69 ****** ******** ********* REFERENCES FOR Y*1(1915) (PROD. EXP.) 02 Y#1(2000) BRANCHING RATIDS +COOPER, FRENCH, KINSON, + (CERN, SACLAY) 1 +GIACOMELLI, KYCIA, LEONTIC, LI, LUNDBY, + (BNL) 1 Y*1(2000) FROM KBAR N INTO LAMBDA PI SQRT(P1*P2) .07 .02 .01 VANHORN 72 DPWA 0 K-P TO LAM PIO 2/73 BOCK 65 PL 17 166 COOL 66 PRL 16 1228 SUPERSEDED BY COOL 70 BUGG 68 PR 168 1466 BARNES 69 PRL 22 479 R1 81 +GILMORE,KNIGHT,DAVIES+ (BIRM,CAVE,RHEL)I +FLAMINIO,MONTANET,SAMIOS + (BNL+SYRA) REFERENCES FOR Y#1(2000) AGUILAR-BENITEZ, BARNES, + (BNL,SYRA) +FERROLUZZI, PERREAU,+ (CERN,CAEN,SACLAY) +GIACOMELLI, KYCIA, LEONTIC, LI, + (BNL) +BIRMAN,GOLOBERG,VEISS (MAIFJJP AGUILAR 70 PRL 25 58 RFICMAN 70 PL 318 152 CDOL 70 PR D1 1887 DADO 72 PRL 29 1695 VANHORN 72 LBL-1370(THESIS) A.J.VANHORN (1 BI 1 LJP PAPERS NOT REFERRED TO IN DATA CARDS 47 Y+1(2030, JP=7/2+) I=1 F17 PRIMER 68 PRL 20 610 +GOLDBERG, JAEGER, BARNES, DORNAN + (SYRA, BNL) SUPERSEDED BY BARNES 69 AND AGUILAR-BENITEZ 70. Σ(2030) SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. THIS ENTRY ONLY INCLUDES RESULTS FROM PARTIAL-HAVE ANALYSES. PARAMETERS OF PEAKS SEEN IN CROSS-SECTIONS AND INVARIANT-MASS DISTRIBUTIONS AROUND 2030 MEV ARE GIVEN IN THE NEXT ENTRY. EVENTUALLY THE PARTIAL-MAVE ANALYSES SHOULD GIVE THE BEST RESULTS, AS THEY ISOLATE THE FIT WAVE. THIS SUPERIORITY IS, HOWEVER, PROBABLY NOT YET ATTAINED, AND WE RELY ON BOTH ENTRIES FOR PARAMETERS GIVEN IN THE MAIN BARYON TABLE. 98 Y*1(1940, JP=3/2-) 1=1 D'13 Σ(1940) SEE THE MINI-REVIEW AT THE START OF THE Y+ LISTINGS. SUCH A RESONANCE IS SUGGESTED BY SOME BUT NOT ALL PARTIAL-WAVE ANALYSES IN THIS REGION. THIS EFFECT IS PERHAPS ASSOCIATED WITH THE BUMPS SEEN IN PRODUCTION EXPERIMENTS NEAR THIS MASS. SEE THE PRECEDING ENTRY. 47 Y+1(2030) MASS (MEV) {2030.0} 2032.0 2030.0 2027.0 2010.0 2010.0 2000.0 2022.0 2025. 2034.0 WCHL 66 HBC 0 K-P TO LAM PIO 7/66 SMART 68 CPWA K-N TO LAMBDA PI 6/68 BERTHON TO DPWA O K-P TO LAMBDA PI 7/70 BERTHON TO DPWA O K-P TO LAMBDA PI 7/70 BERTHONI TO DPWA O K-P TO LAMBDA PI 7/70 GALTIERI TO DPWA O K-P TO LAMBDA PI 7/70 GALTIERI TO DPWA O K-P TO LAMBDA PI 7/70 LITCHFIE TO DPWA O K-P TO LAMBDA PI 7/70 LITCHFIE TO DPWA O K-P TO LAMBDA PI 6/70 VANHORN TO DPWA O K-P TO LAMBDA</ (20.0) 6.0 10.0 10.0 6.0 15.0 20.0 4.0 15. 14.0 98 Y#1(1940) MASS [MEV] 1940.0 50.0 GALTIERI 70 OPHA K-N TO LAM PI 7/70 1940.0 40.0 GALTIERI 70 OPHA K-P TO SIGMA PI 7/70 1940.0 20.0 LITCHFIEL TO DPWA K-P TO SIGMA PI 7/70 1980.0 5.0 KANE 72 OPWA K-N TO LAM PI 7/70 1985.0 (5.0) KANE 72 OPWA K-P TO LAM PI 2/70 1945.0 40. 60. VANHORN 72 DPWA K-P TO LAM PIO 2/73 2 (1865.) LEA 73 OPWA MULTICHNIK K-HTEX 9/73* 2 DNLY UNCONSTRAINED STATES FROM TABLE 1 DF LEA73 ARE IN LISTINGS. 9/73* îi. 2042. AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) 19.9 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) 1941.4 AVG 47 Y#1(2030) WIDTH (MEV) 98 Y*1(1940) WIDTH (MEV) WOHL 66 HBC 0 7/66 SMART 68 DPMA K-N TC LAMBDA PI 6/68 BERTHON TO DPMA 0 K-P TC LAMBDA PI 6/70 SERTHON TO DPMA 0 K-P TC LAMBDA PI 6/70 COX TO DPMA K-N TO LAMBDA PI 6/70 GALTIERI TO DPWA K-P TO SIGMA 1 7/70 GALTIERI TO DPWA K-P TO SIGMA 1 7/70 LITCHFIE TO DPWA K-P TO SIGMA 1 7/70 LITCHFIE TO DPWA K-P TO SIGMA 1 7/70 LITCHFIE TO DPWA K-P TO KABDA 1 7/71 VANHORN 72 DPWA K-P TO LAM (170.0) 160.0 150.0 158.0 115.0 100.0 170.0 200. GALTIERI 70 DPWA K-N TO LAM PI 7/70 GALTIERI 70 DPWA K-P TO SIGHA PI 7/70 LITCHFIEL 70 DPWA K-N TO LAM PI 7/70 KANE 72 DPWA 0 K-P TO PI SIG 10/71 VANHORN 72 DPWA 0 K-P TO LAM PI0 2/73 LEA 73 DPWA NULTICHNL K-MTRX 9/73* 50.0 50.0 40.0 16.0 30.0 20.0 16.0 15.0 40.0 15.0 30. 12.0 200.0 200.0 280.0 208.0 (22.0) 40. 70. 2 (108.9) 26.7 AVERAGE (EPROR INCLUDES SCALE FACTOR OF 1.1) 220.9 AVG. 118.0 13. 98 Y*1(1940) PARTIAL DECAY MODES AVERAGE MEANINGLESS (SCALE FACTOR = 1.6) DECAY MASSES 497+ 939 1115+ 139 1197+ 139 Y*1(1940) INTG KBAR N Y*1(1940) INTO LAMBDA PI Y*1(1940) INTO SIGMA PI P1 P2 P3 47 Y#1(2030) PARTIAL DECAY MODES DECAY MASSES 497+ 939 1115+ 134 1197+ 139 1321+ 497 Y*1(2030) INTO KBAR N Y*1(2030) INTO LAMBDA PI Y*1(2030) INTO SIGMA PI Y*1(2030) INTO XI K P2 P3 P4 98 Y*1(1940) BRANCHING RATIOS Y*1(1960) FROM KBAR N INTO LAMBDA PI -0.12 0.04 GALTIERI TO DPWA K-N TO LAM PI -0.14 0.03 LITCHFIEL TO DPWA K-N TO LAM PI -.05 .03 02 VANHORN T2 DPWA 0 K-P TO LAM PIO (-.11) LEA T3 DPWA MULTICHNI.K-MTRX R1 R1 R1 R1 R1 R1 7/70 7/70 2/73 9/73* -----47 Y#1(2030) BRANCHING RATIOS (-....) 2 Y*1(2030) INTO (KBAR N)/TOTAL (0.25) 0 (0.25) 0 (0.11) 0 (0.11) 0 (0.17) 0.17 0.04 0.18 0.02 0 LITCHETE 71 DPAK K-P TO KBAR N .10/71 0 DAUM 68 ASSUMES (J+1/2)*P1 VALUE SEEN IN TOTAL CROSS SECTION. R1 R1 R1 D 0.093 D.030 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.7) AVG MOD Y+1(1940) FROM KBAR N INTO SIGHA PI SQRT(P1+P3) -0.12 0.03 GALTIERI 70 DWA K-P TO SIGMA PI 7/70 -0.093 10.006) KANE 72 DWA O K-P TO PI SIG 10/71 NOT SEEN LEA 73 DPWA MULTICHNL K-MTRX 9/73* R2 R2 R2 R2 RI R1 D D R1 R1 AVG 2 0.178 0.018 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) Y*1(1940) INTO KBAR N 2 1.21) (P1) 9/73* 73 DPWA MULTICHNL K-MTRX 9/73* Y+1(2030) FROM KBAR N INTO LAMBDA PI 10:20) Soft Piter Soft Piter Piter Y0:2030) FROM KBAR N INTO LAMBDA PI 10:20) WCHL 66 HBC SOFT PIter Soft Piter No Y0:2030 WCHL 66 HBC SOFT PIter No No No No Y0:2030 WCHL 66 HBC SOFT PIter No < LEA REFERENCES FOR Y#1(1940) GALTIERI TO DUKE CONF 173 A BARBARD-GALTIERI (LRL)IJP LITCHFIE TO NP 822 269 P J LITCHFIELD (RUTHERFORDIJP KANE 72 PR D5 1583 D F KANE (LBL)IJP VANHORN 72 LBL-1370(THFSIS) A.J.VANHORN (LBLIIAP LEA 73 NP 856 77 +HARTIN,MOORHOUSE+ (RHEL+LOUC+GLAS+AARHUS)IJP (LRL)IJP (RUTHERFORD)IJP (LBL)IJP (LBL)IJP AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) Y+1120301 FROM KBAR N INTO SIGMA PI L (-0.091 (0.02) BERTHONI 70 DPWA 0 K-P TO SIGMA PI -0.052 0.010 GALTIERI 70 DPWA 0 K-P TO SIGMA PI -0.10 0.03 LITCHFIE 71 DPWA (K-P TO SIGMA PI -0.10 0.03 LITCHFIE 71 DPWA (K-P TO SIG PI L LITCHFIED 71 IS AN UPDATE OF SERTHONI 70 -0.086 0.014 KANE 72 DPWA 0 K-P TO PI SIG R3 R3 R3 10/70 7/70 3/72 3/72 02 Y*1(2000, JP=1/2-) I=1 S"1 Σ(2000) R3 R3 AVERAGE MEANINGLESS (SCALE FACTOR = 1.6) Y*1(2030) FROM KBAR N INTO XI K SQPT(P1*P4) (0.051 OR LESS TRIPP 67 RVUE 0 K-P TO XI K (0.051 OR LESS BURGUN 68 DPWA 0 K-P TO XI K (0.023) MULLER 69 DPWA 0 R 4 R 4 R 4 R 4 8/67 10/69 7/70 02 Y+1(2000) MASS (MEV) VANHORN 72 DPWA O K-P TO LAM PIO 2/73 40. 2004. -- ----02 Y+1(2000) WIDTH (MEV) 2/73 VANHORN 72 DPWA 0 K-P TO LAM PIO 116.

185

Baryons

$\Sigma(1915), \Sigma(1940), \Sigma(2000), \Sigma(2030)$

	Y*1(2070) IN Y*1(2070) IN	TO KBAR N TO SIGMA PI				497+ 93 1197+ 13	Y MASSES 9 9
							•
R1	Y#1(2070) FR	34 Y#1(20 .0M KBAR N T	170) BRAN D SIGMA	CHING RAT	105	SQRT(P1*P	2)
R1 R1	(+.12) (+0.104	(.02)		REPTHON1 KANE	70 DPW4 72 DPW4	- к-рт к-рто	O SIG PI SIGMA PI
*****	* ********* **	******* ***	****** *	********	********	* *******	* *******
BERTH	ON1 70 NP 824	417	+VRANA,E	UTTERWORT	н,+	(CDEF,RHEL	SACLAY I JF
*****	* ******** **	****** ***	******	*******	*******	* ******	* ******
				*****	P"	1	
Σ(2080)	SEE THE MI	NI-REVIE	W AT THE	START OF	THE Y* LI	STINGS.
	\rightarrow	SUCH A RES Partial-Wa is more ev Baryon tae	IONANCE I IVE ANALY IDENCE, ILE.	S SUGGEST SES ACROS WE DMIT T	ED BY SC S THIS R HIS STAT	ME BUT NOT EGION. UN E FROM THE	ALL TIL THERE MAIN
		88 Y*1(20	80) MASS	(MEV)			
M M	{2082.01 {2070.0}	(4.0) (30.0)		COX LITCHFIEL	70 DPW#	— к- N Т -0 к- N Т	O LAM PI O LAM PI
							
w	(87.0)	88 Y*1(20	80) WID1	COX	70 DPWA	к- N Т	O LAM PI
¥ 	(250.0)	(40.0)		L1TCHFIEL	. 70 DPW#	-0 K- N T	0 LAM PI
		88 ¥*1(20	80) PART	TAL DECAY	MODES		
P1	Y#1(2080) IN	TO KBAR N				DECA 497+ 93	Y MASSES 9
- +							
		88 Y*1(20	60) BRAN	CHING RAT	105		
R1 R1 R1	Y*1(2080) FR (-0.16) (-0.09)	(0.03) (0.03)	O LAMBDA	V PI COX LITCHFIEL	70 DPW# 70 DPW#	SQRT(P1*P - K- N T -0 K- N T	2) O LAM PI O LAM PI
*****	* ******** **	****** ***	******	*******	*******	* *******	* *******
***** crx	* ********* ** 70 NP 819	61	******* * PEFERENC +ISLAM+	COLLEY, +	1(2080) (B1	* *********	* ********* AS+LOIC)IJf
сгх LITCH	* ********* ** 70 NP 819 FIE 70 NP 822 * *********	61 269	PEFERENC +ISLAM, P J LITC	COLLEY, + COLLEY, +	********* 1(2080) (B1	* ******** RM,EDIN,GL (RUT	* ******** AS,LOIC)IJF HERFORD)IJF
СРХ LITCH *****	* ********** ** 70 NP B19 FIE 70 NP B22 * ********* **	61 269 ******* ***	PEFERENC +ISLAM, P J LITC	COLLEY, + HFIELD	1(2080) (B)	RM,EDIN,GL (RUT * ********	* ******* AS.LOIC)IJF HERFORD)IJF * ********
	€ 10 NP 819 FIE 70 NP 819 € 000 NP 822	61 269 ******* *** 26 Y*1(21	PEFERENC +ISLAM, P J LITC	COLLEY, + COLLEY, + HFIELD	1(2080) (B1 G ₁₇	RM,EDIN,GL (RUT *********	* ******** AS.LOIC)IJF HERFORD)IJF * ******** * ********
сгх Liтсн	FIE 70 NP 819 FIE 70 NP 822	61 269 26 Y*1(21 SEE THE MI SUCH A RES	PEFERENC +ISLAM, P J LITC 	COLLEY, + COLLEY, + HFTELD (22-) I=L W AT THE S SUGGEST	(1(2080) (B) (B) (B) (B) (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	RM.EDIN.GL (RUT THE Y* LI	AS,LOIC)IJF HERFORD)IJF * ******** STINGS. ALL
сгу LITCH	(2100)	61 269 ******* *** 26 Y*1(21 SEE THE MI SUCH A RES PARTIAL-WA IS MORE HA BARYON TAB	PEFERENC +ISLAM, P J LITC ******* * 00, JP=7 NI-REVIE ONANCE 1 VE ANALY IDENCE, SLE.	COLLEY, + HFIELD //2-) I=L W AT THE S SUGGEST SES ACROS WE OWIT T	(B1 (B1 (B1 (B1 (B1 (B1)) (B1)) (B1) (B1	RM,EDIN,GL (RUT THE Y* LI ME BUT NOT LEGION. UN E FROM THE	AS.LOIC)IJF HERFORDIJF *********** STINGS. ALL TIL THERE MAIN
Crx Litch Σ((2100)	61 269 26 Y*1(21 SEE THE MI SUCH A RES PARTIAL-WA IS MORE EV BARVON TAE	PEFERENC +ISLAM, P J LITC 	COLLEY, + HHTELD (2) I=L (2) I=L (2) I=L (3) SUGGEST (3) SES ACROS WE ONIT T	(B1 (B1 (B1 (B17) START OF ED BY SC S THIS R HIS STAT	RM,EDIN,GL (RUT THE Y* LI ME BUT NOT EGION. UN TE FROM THE	AS.LOIC)IJF HERFORD)IJF * ******** STINGS. ALL TIL THERE MAIN
	(2000.0)	61 269 26 Y*1(21 SEE THE MI SUCH A RES PARTIAL-WA IS MORE THE MI IS MORE THE MILLION	PEFERENC +ISLAM, P J LITC 	EES FOR Y* COLLEY, * HFTELD (HTTELD (HTTEL) (HTTEL) (HTTEL) (HTTEL) (HTTEL) (HTTEL) (HEV) GALTIERI (GALTIERI	1(2080) (BI G17 START OF ED BY SC BY STATS HIS STAT 70 DPH4	RM,EDIN,GL (RUT THE Y= LI THE SUT NOT EGION. UN E FROM THE E O K-P TO 0 K-P TO	AS, LOIC) IJF HERFORDIJF STINGS. ALL TIL THERE MAIN LAMBDA PT
сгх Litcн Σ((2060.0) (2100)	61 269 269 26 Y*1(21 SEE THE MI SUCH A RES PARTIAL-MA IS MORE EV BARYON TAE BARYON TAE 26 Y*1(21 (20.0) (30.0)	PEFERENC +ISLAM, P J LITC 	COLLEY, + HHTTELD + HTTELD + (/2-) 1=1 W AT THE S SUGGEST SES ACROS WE OMIT T GALTIERI GALTIERI GALTIERI	1(2080) (B1 G17 START OF ED BY SC S THIS F HIS STAT 70 DPWA	RM,EDIN,GL (RUT THE Y* LI ME BUT NOT LEGION. UN E FROM THE 0 K-P TO 0 K-P TO	AS, LOIC) IJF HEREDRDIJF STINGS. ALL TIL THERE MAIN LANBDA PI SIGMA PI
	(2060.0) (2100)	61 26 26 26 26 26 26 26 27 26 26 27 26 26 26 26 26 26 26 26 26 26	PEFERENC +ISLAM, P J LITC ************************************	ES FOR Y* COLLEY, * HFTELD * //2-) I=L W AT THE IS SUGGEST SES ACROSS WE ONIT T GALTIERI GALTIERI GALTIERI CH (MEV)	1(2080) (81 G17 STATT OF ED BY SC STHIS & HIS STATT 70 DPWA	RM,EDIN,GL (RUT) THE Y+ LI) ME BUT V+ LI I I EGION. UN TE FROM THE EGION THE CO K-P TO O K-P TO	AS, LOIC) IJF HERFORDIJF STINGS. ALL TIL THERE MAIN LANBDA PI SIGMA PI
	(2060.0) (22060.0) (22060.0) (22060.0) (22060.0) (22060.0) (22060.0) (22060.0) (22060.0) (22060.0) (22060.0) (22060.0) (22060.0) (22060.0) (22060.0)	61 269 26 Y+1(21 SEE THE MI SUCH A RES PARTIAL-WA IS MURE EV BARYON TAR 26 Y+1(21 (20.0) (30.0) (30.0) (30.0)	PEFERENC +ISLAM, P J LITC 	COLLEY, + (HFTELD) + (HFTELD) + (HFTELD) + (HFTELD) + (HTTELD) + (HTTELD) + (HEV) + (HEV) + (ALTIERI GALTIERI GALTIERI GALTIERI	1(2080) (81 G17 START OF START OF START OF S THIS F HIS STAT 70 DPWA 70 DPWA 70 DPWA	RM,EDIN,GL (RUT (RUT THE Y+ LI HE BUT NOT EGION, UN EGION, UN E FROM THE C 0 K-P TO 0 K-P TO	AS, LOIC) IJF HERFORDIJF STINGS. ALL TIL THERE MAIN LAMBDA PI SIGMA PI SIGMA PI
	(2000.0) (2100) (2100) (2100) (2100.0) (2100.0) (135.0)	61 269 269 269 26 Y*1(21 SEE THE MI SUCH A RES PARTIAL-WA IS MORE EV BARYON TAE BARYON TAE 26 Y*1(21 (30.0) (30.0) (30.0) 26 Y*1(21) (30.0) (30.0) 26 Y*1(21) (30.0) (30.0) 26 Y*1(21) (30.0) (30.0) 26 Y*1(21) (30.0	PEFERENC +ISLAM, P J LITC 	ES FOR Y+ COLLEY, + HFTELD + (V2-) I=1 W AT THE S SUGGEST SES ACROS WE OMIT T GALTIERI GALTIERI GALTIERI GALTIERI GALTIERI TIAL DECAY	1(2080) (81 G17 START OF ED BY SC S THIS F HIS STAT 70 DPWA 70 DPWA 70 DPWA	RM,EDIN,GL (RUT (RUT THE Y* LI THE BUT NOT LEGION. UN E FROM THE 0 K-P TO 0 K-P TO	AS, LOIC) IJA MEREDRDIJA STINGS. ALL TIL THERE MAIN LAMBDA PI SIGMA PI SIGMA PI
	(2060.0) (22060.0) (2100) (22060.0) (22060.0) (22060.0) (2200.0)	61 26 269 26 Y*1(21 SEE THE MI SUCH A RES PARTIAL-WA IS MORE EX BARYON TAE C20.01 (20.0) (20.0) (20.0) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) 27 Y*1(2) 28 Y*1(2) 28 Y*1(2) 28 Y*1(2) 29 Y*1(2) 20 Y*1(2	PEFERENC +ISLAM, P J LITC NI-REVIE ONANCE 1 VE ANALY IDENCE, JLE. 	COLLEY, + HFTELD + HFTELD + (/2-) 1=1 W AT THE S SUGGEST SES ACROS WE OMIT T GALTIERI GALTIERI GALTIERI GALTIERI GALTIERI	1(2080) (81 G17 START OF ED BY SC S THIS F HIS STAT 70 DPWA 70 DPWA 70 DPWA	RM,EDIN,GL (RUT (RUT) THE Y+ LI) ME BUT NOT LEGION. UN LEGION. U	AS,LDIC) JJA HEREDRDIJJ STINGS. ALL TIL THERE MAIN LAMBDA PI LAMBDA PI LAMBDA PI Y MASSES
CCX LITCH ΣΤCH Σ(Σ((2060.0) (2060.0) (2060.0) (2060.0) (2060.0) (2100.0) (2100.0) (2100.0) (2100.0) (2100.0) (2100.0) (2100.0) (2100.0) (2100.0) (2100.0) (2100.0) (2060.0) (20	61 26 269 26 26 26 26 26 26 27 26 26 26 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27	PEFERENC +ISLAM, P J LITC 	COLLEY, + HFTELD + HFTELD + HFTELD + HFTELD + HATTHE IS SUGGEST SES ACROS WE ONIT T GALTIERI GALTIERI GALTIERI GALTIERI GALTIERI GALTIERI GALTIERI	1(2080) (81 G17 START OF ED BY SC S THIS F HIS STAT 70 DPWA 70 DPWA 70 DPWA 70 DPWA	RM,EDIN,GL (RUT (RUT) THE Y= LI HME BUT NOT LEGION. UN TE FROM THE CONCEPTO ON K-P TO ON K-P TO ON K-P TO ON K-P TO ODECA 1115+ 13 LI97+ 13	 ************************************
CCX LITCH ΣΤCΗ ΣΤCΗ Μ Μ Μ Μ Μ Ν Ν Ν Ν Ν Ν Ν Ν Ν	(2000.0) (210) (2100) (61 269 269 269 26 Y*1(21 SEE THE WI SUCH A RESP PATIAL EN BARYON TAE BARYON TAE 26 Y*1(21 (20.0) (30.0) 26 Y*1(21 (30.0) 26 Y*1(21) (30.0) 26 Y*1(21) (30.0) 27 KBAR N TTO KBAR N TTO SIGMA PI 26 Y*1(21) 27 KBAR N TTO SIGMA PI	PEFERENC +ISLAM, P J LITC 	COLLEY, + HFTELD + HFTELD + (72-) I=1 W AT THE S SUGGEST SES ACROS WE OMIT T GALTIERI GALTIERI GALTIERI GALTIERI GALTIERI GALTIERI CALTIERI GALTIERI	1(2080) (81 G17 START OF ED BY SC S THIS R HIS STAT 70 DPWA 70 DPWA 70 DPWA	RM,EDIN,GL (RUT (RUT) THE Y+ LI THE Y+ LI MME BUT NOT LEGION. UN (EGION. EGION. EGI	* ******** AS,LOIC)IJF HEREDRDIJF ************************************
CCX LITCH ΣΤΟ Σ(Σ(Δ Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν	(2060.0) (2100) (2100) (2100) (2100) (2100) (2100) (2100) (2100) (135.0) (135.0) (135.0) (135.0) (135.0)	61 269 26 Y*1(2) SEE THE MI SUCH A RES PARTIAL- 26 Y*1(2) (20.0) (30.0) 26 Y*1(2) (30.0) (30.0) 26 Y*1(2) (30.0) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) (30.0) 26 Y*1(2) (30.0) (30.0) 26 Y*1(2) (30.0) (30.0) (30.0) 26 Y*1(2) (30.0) (30.0) 26 Y*1(2) (30.0	PEFERENC +ISLAM, P J LITC 	COLLEY, + COLLEY, + HFTELD (HFTELD) (HTTEL) (SUGGES) (SSUGGE	1(2080) (81 G17 START OF ED BY SC S THIS F HIS STAT 70 DPW4 70 DPW4 70 DPW4 70 DPW4 70 DPW4 10	RM,EDIN,GL (RUT (RUT) THE Y+ LI) E THE Y+ LI) HE BUT NOT HE BUT NOT HE BUT NOT HE BUT NOT HE BUT NOT HE BUT NOT HE BUT	<pre>* ********* AS,LOIC)IJF HERFORDIJF STINGS. ALL TIL THERE MAIN LAMBDA PI SIGMA PI Y MASSES 9 2) LAMBDA PI 2) </pre>
ССХ LITCH	(2060.0) (2100) (2100) (2100.0) (2120.0) (135.	61 269 26 Y*1(21 SEE THE MI SUCH A RESP PARTIAL RESP PARTIAL (20.0) (30.0) (30.0) 26 Y*1(2) (30.0) (30.0) 26 Y*1(2) (30.0) (30.0) 26 Y*1(2) (30.0) (30.0) 26 Y*1(2) (30.0) 26 Y*1(2) (30.0) (30.0) 26 Y*1(2) (30.0) (30	PEFERENC +ISLAM, P J LITC 	COLLEY, + HFTELD + HFTELD + HFTELD + HFTELD + HTTEL HATTHE SES ACROS WE ONIT T GALTIERI GALTIERI GALTIERI GALTIERI HAL DECAY HAL DECAY	1(2080) (B1 G17 START OF ED BY SC S THIS R HIS STAT 70 DPWA 70 DPWA 70 DPWA 70 DPWA 70 DPWA 70 DPWA 70 DPWA 70 DPWA	RM,EDIN,GL (RUT (RUT THE Y= LI THE PUT NOT LEGION. UN EGION. UN E FROM THE O K-P TO O K-P TO O K-P TO OECA 40 K-P TO OECA 115+ 13 1197+ 13	********* AS, LOIC) IJF HERFORDIJF ********************************
CrX Litch ΣΣ(Μ Μ Μ Ν Ψ Ψ Ψ Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν	(2000.0) (210) (2100) (61 269 269 269 26 Y*1(21 SEE THE MI SUCH A RES PARTIAL-W PARTIAL-W PARTIAL-W PARTIAL-W 15 MORE EX PARTIAL-W 15 MORE EX 15 MORE EX 16 MORE EX 16 MORE EX 16 MORE EX 16 MORE EX 17 MORE EX 16 MORE EX 16 MORE EX 17 MORE EX 16 MORE EX 17 MORE EX 16 MORE EX 16 MORE EX 17 MORE EX 16 MORE EX 17 MORE EX 16 MORE EX 16 MORE EX 16 MORE EX 17 MORE EX 16 MORE EX 16 MORE EX 16 MORE EX 17 MORE EX 16 MO	PEFERENC + ISLAM, P J LITC NI-REVIE ONANCE 1 VE ANALY (IDENCE, 	COLLEY, + HHTTELD + HHTTELD + HHTTELD + HHTTELD + HHTTELD + HHTTELD + HHTTELD + GALTIERI GALTIERI GALTIERI GALTIERI GALTIERI GALTIERI FI GALTIERI FI GALTIERI	1(2080) (81 G17 START OF ED BY SC S THIS R HIS STAT 70 DPWA 70 DPWA	RM,EDIN,GL (RUT (RUT) THE Y+ L1) THE Y+ L1) THE Y+ L1 CON CONT CONT CONT CONT CONT CONT CONT	

Baryons $\Sigma(2030), \Sigma(2070), \Sigma(2080), \Sigma(2100)$ REFERENCES FOR Y+1(2030)

 WOHL
 66
 PRL 17
 107
 C
 G
 WOHL, F
 T
 SOLMITZ, M
 L
 STEVENSON (LRL)IJP

 TRIPP
 67
 NP
 B3
 10
 +
 L
 EILH, +
 (LRL,SLAC,CERN,HEIDEL,SACLAY)

 BURGUN
 68
 NP
 B8
 447
 +NEYER,PAULITALLINI +
 (SACL+CDEF+RHEL)

 DAUM
 68
 NP
 B7
 +ERNE,LAGNAUX,SENS,STEUER,UDD
 (CERN)JP

 CONFIRMS
 THE SPIN-PARITY
 ASSIGNMENT.
 SMART
 (LRL)IJP

 MULLER
 69
 THESIS,UCRL
 19372
 R
 MULLER
 (LRL)

 BERTHON
 70 NP
 B20
 476
 +RANGAN, VRANA, +(CDL FRANCE, RHEL, SACLAY)IJP

 BERTHONI
 70 NP
 B24
 417
 +VRANA, BUTTERWORTH, + (CDF, RHEL, SACLAY)IJP

 COX
 70 NP
 B29
 61
 +ISLAM, COLLEY, + (BIRM, EDIN, GLAS, LOIC)IJP

 GALTIERI
 70 DUKE CONF
 13
 A BARBARD-GALTIERI
 (BIRM, EDIN, GLAS, LOIC)IJP

 LITCHFIF
 70 NP
 B22
 269
 P
 LITCHFIELD
 (RUTHERFORDIIAP)
 (LRL)IJP (RUTHERFORD)IJP CAMPBELL 71 NP B25 75 +MORTON, NEGUS, GOYAL, MILLER (GLAS, LOIC)IJP LITCHFIE 71 NP B30 125 LITCHFIELD,...+LESQUOY,+.. (RHEL+CDEFSACL)IJP KANE 72 PR D5 1583 D F KANE VANHORN 72 LBL-1370(THESIS) A.J.VANHORN (LBL)IJP 2030 MEV REGION - PRODUCTION AND σ_{TOTAL} EXP'TS 28 Y*1(2030, JP=) I=1 SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. SEE THE NOTE TO THE F17 V+1(2030), WHICH PRECEDES THIS Entry. Here WE LIST ONLY PARAMETERS OF PEAKS IN CROSS Sections and invariant-mass distributions. The Cross-section peaks are at least dominantly associated with the V+1(2030), But may contain a small contribution from the suggested but not estab-lished other resonances in this region. 28 Y*1(2030) MASS (MEV) (PROD. EXP.)
 (2022.0)
 (20.0)
 BLANPIED 65 CNTR 0 GAMMA P TO K+ Y*

 2020.0
 7.0
 BUGG 68 CNTR K-P, D TOTAL 6/68

 2049.0
 4.0
 BRICMAN 70 CNTR 0 TOTAL AND CH EX 6/70

 2025.0
 10.0
 CODL 70 CNTR +P, D TOTAL 10/71

 (2025.0)
 (20.0)
 LU
 70 CNTR 0 GAMMA P TO K+ Y*
 AVERAGE MEANINGLESS (SCALE FACTOR = 2.8) 28 Y#1(2030) WIDTH (MEV) (PROD. EXP.)
 (120.0)
 (20.0)
 BLANPIED
 65 CNTR
 0

 130.0
 10.0
 BUGG
 68 CNTR
 6/66

 126.0
 11.0
 BRICMAN
 70 CNTR
 0 TOTAL AND CH EX
 6/76

 165.0
 CCOL
 70 CNTR
 K-P, D TOTAL
 10/70

 (80.0)
 LU
 70 CNTR
 0 GAMMA P TO K+ Y*
 1/71
 AVERAGE MEANINGLESS (SCALE FACTOR = 1.0) 28 Y#1(2030) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES 497+ 939 497+ 939+ 139 Y*1(2030) INTO KBAR N Y*1(2030) INTO KBAR N PI P1 P2 28 Y#1(2030) BRANCHING RATIOS (PROD. EXP.) Y+1(2030) INTO (KBAR N)/TOTAL (P1) THESE VALUES OF FLASTICITIES ASSUME J=7/2 --0.131 BUGG 68 CNTR 6/66 0.27 (0.02) BRICMAN TO CNTR 0 TOTAL AND CH EX 6/70 0.12 COOL 70 CNTR K-P, D TOTAL 10/70 R1 R1 R1 R1 R1 Y*1(2030) INTO KBAR N PI SEEN (P2) R2 72 воск нес REFERENCES FOR Y*1(2030) (PRDD. EXP.) BLANPIED 65 PRL 14 741 CCOL 66 PRL 16 1228 SUPERSEDED BY CODL 70. BUGG 68 PR 168 1466 +GREENBERG,HUGHES,KITCHING,LU,+ (YALE(CEA}) +GIACOMELLI,KYCIA,LEONTIC,LI,LUNDBY,+ (BNL) I +GILMORE,KNIGHT, + (RHEL,8IRM,CAVE) I BRICMAN 70 PL 310 152 +FERRD LUZZI, PERREAU,+ (CERN,CAEN.SACLAY) CCOL 70 PR 01 1887 +GIACOMELLI, KYCIA, LEONIIC, LI, + (BNL) I LU 70 PR 02 1846 +GREENBERG, HUGHES, MINEHART, MORI,+ (YALE)

 Σ(2070)
 34
 Y*112070, JP=5/2+1
 I=1
 F15

 THIS STATE HAS BEEN SUGGESTED BY ONLY ONE PARTIAL WAVE ANALYSIS ACROSS THIS REGION. IT WEEDS CONFIRMATION THE RESONANCE PROPOSED BY KANE IS TOO BROAD TO BE USED AS EVIDENCE.
 34
 Y*1(2070) HASS (MEV)

 34
 Y*1(2070) HASS (MEV)
 34
 Y*1(2070) HIDTH (MEV)

 34
 Y*1(2070) WIDTH (MEV)
 34
 Y*1(2070) HIDTH (MEV)

 4
 (140.)
 (20.)
 BERTHONI TO DPWA - K-P TO SIG PI 1/7 KANE
 1/7

P1 P2 P3 P4

R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3

R4 R4

R 5 R 5

Σ(2455) 48 Y#1(2250, JP=) I=1 PRODUCTION EXPERIMENTS 53 Y*1(2455, JP=) I=1 PRODUCTION EXPERIMENTS SEE THE MINI-REVIEW AT THE START OF THE Y* LISTING. THIS MASS REGION FROM THE IS ALSO SOME SLIGHT EVIDENCE FOR Y* STATES IN SEE GREENBERG 68. Σ(2250) BUMPS SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. THE PHASE-SHIFT-ANALYSIS RESULTS ARE TOO WEAK TO WARRANT SEPARATING THEM FROM THE PRODUCTION AND CROSS-SECTION EXPERIMENTS. IN AN ANALYSIS OF ELASTIC AND POLARIZATION DATA. DAUN 68 COULD NOT EXCLUDE ANY POSSIBILITY FROM JP = 5/2+- TO JP L1/2+- FOR THIS STATE. BRICHAN TO SUGGESTS 7/2-. VANHORN72 CLAIMS 5/2+. BUMPS 53 Y+1(2455) MASS (MEV) (PROD. EXP.) LASINSKI 71 SUGGESTS TWO RESONANCES IN THIS REGION USING A POMERON + RESONANCES MODEL. 2455.0 2455.0 7.0 10.0 BUGG 68 CNTR K-P, D TOTAL ABRAMS 70 CNTR K-P, D TOTAL 6/68 5.7 2455.0 AVERAGE (ERROR INCLUDES SCALE FACTOR OF 1.0) AVG 48 Y*1(2250) MASS (MEV) (PROD. EXP.)
 (2245.0)
 BLAMPIED OS CNTR
 GAMMA P TO K+ Y*

 (2299.0)
 (6.0)
 BOCK
 65 HBC
 PBAR P 5.7 BEV/C

 2280.0
 7.0
 BUGG
 68 CNTR
 K-P, D IOTAL

 2280.1
 14.0
 4GUILAR
 TO HBC + K-3.9-4.6 GEV/C

 2237.0
 11.0
 BRICMAN TO CNTR O TOTAL AND CH EX

 2235.0
 10.0
 CODL TO CNTR K-P, D IOTAL

 (2251.0)
 30.20.
 VANHORN T2 DPMA O K-P TO LAM PIO

 VANHORN7Z VALUE FROM A OPMA THAT FINOS JP=5/2+.
 (2290.)
 (26.)

 BELLEFON T3 DPMA
 P3 OR D5 WAVE
 (2215.)
 (20.)

 V2210.1
 26.1
 BELLEFON T3 DPMA
 G OR H11 WAVE
 53 Y*1(2455) WIDTH (MEV) (PROD. EXP.) 6/68 5/70 .6/70 10/70 1/71 2/73 20.0 100.0 140.0 BUGG 68 CNTR 6/68 ABRAMS 70 CNTR K-P+ D TOTAL 10/70 ____ - ------53 Y*1(2455) PARTIAL DECAY MODES (PROD. EXP.) 2/74* 2/74* 2/74* DECAY MASSES 497+ 939 P1 Y#1(2455) INTO KBAR N ------AVERAGE MEANINGLESS (SCALE FACTOR = 1.2) 53 Y*1(2455) BRANCHING RATIOS (PROD. EXP.) -----Y*L(2455) INTO (KBAR N)/TOTAL (P1) J IS NOT KNOHN. THE FOLLOWING IS (J+1/2)*PL. (0.3) 0.39 ABRAMS TO CNTR K-P, D TOTAL 0.39 (0.05) ABRAMS TO CNTR O TOTAL AND CH EX FIT OF TOTAL CROSS SECTION GIVEN BY BRICHAN TO IS POOR IN THIS REGION. R1 R1 48 Y*1(2250) WIDTH (MEV) (PROD. EXP.) R1 R1 R1
 BLANPIED
 65
 CNTR

 BOCK
 65
 HBC

 RUGG
 68
 CNTR

 AGUILAR
 70
 HBC

 BRICMAN
 70
 CNTR

 COOL
 70
 CNTR

 U
 70
 CNTR

 BLANPIED
 65 CNTR
 GAMMA P TO K+ Y*

 BOCK
 65 HBC
 PBAR P 5.7 GEV/C

 BUGG
 68 CNTR
 K-P. D TOTAL
 6/68

 AGUILAR
 70 HBC + K-P. D TOTAL
 6/68
 6/68

 AGUILAR
 70 HBC + K-3.9-4.6 GEV/C
 5/70

 BRICMAN
 70 CNTR
 TOTAL AND CH EX
 6/70

 COU
 70 CNTR
 K-P. D TOTAL
 10/70

 CU
 70 CNTR
 GAMMA P TO K+ Y*
 1/71

 VANNORN
 72 DPWA
 0 K-P TO LAM PIO
 2/74*

 BELLEFGN
 73 DPWA
 G9 OR H11 WAVE
 2/74*
 (150.0) (21.0) 230.0 100.0 R1 C R1 C R1 C (17.0) (21.0) 6/70 20.0 100.0 164.0 (170.0) (125.0) 192. (150.) (100.) ****** ********* ******** ******* REFERENCES FOR Y#1(2455) (PROD. EXP.) 8 8 (50.) (20.) BUGG 68 PR 168 1466 Abrams 70 PR 1D 1917 Bricman 70 PL 318 152 +GILMCRE,KNIGHT, + (RHEL,BIRM,CAVE) +COOL, GIACOMELLI, KYCIA, LEONTIC, + (BML) +FERRO LUZZI, PERREAU,+ (CERN,CAEN,SACLAY) 100.1 (20.1) 109.5 33.4 AVERAGE (EARON INCLUDES SCALE FACTOR OF 2.7) SEE THE NOTES ACCOMPANYING THE MASSES QUDTED AVG PAPERS NOT REFERRED TO IN DATA CARDS +CODL,GIACOMELLI,KYCIA,LEONTIC,LI, + (BNL) ABRAMS 57 PRL 19 578 PAPERS NOI REPERSED U IN DATA LANDS SUPERSEDED BY ABRAMS 70. GREENBER 68 PRL 20 221 GREENBERG, HUGHES, LU, MINEHART, + (YALE) -----48 Y#1(2250) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES 497+ 939 1115+ 134 1197+ 139 497+ 939+ 139 Y*1(2250) INTO KBAR N Y*1(2250) INTO LAMBDA PI Y*1(2250) INTO SIGMA PI Y*1(2250) INTO KBAR N PI 54 Y*1(2620, JP=) I=1 PRCDUCTION EXPERIMENTS Σ(2620) SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. BUMPS 48 Y#1(2250) BRANCHING RATIOS (PROD. EXP.) Y+1(2250) INTO (KBAR N)/TOTAL (P1) J IS NOT KNOWN. THE FOLLOWING IS (J+1/2)+P1. (0.47) BUGG 68 CMTR (0.42) 991CMAN 70 CMTR 0 TOTAL AND CH EX 6/70 (0.42) CODL 70 CMTR K−P.D TOTAL 10/70 54 Y#1(2620) MASS (MEV) (PROD. EXP.) 2620.0 15.0 ABRAMS 70 CNTR K-P, D TOTAL 10/70 Y*1(2250) FROM KBAR N TO LAMBDA PI SQRT(P1*P2) THE FOLLOWING ASSUMES JP=9/2-. OATA INSUF. FOR DETERM. THIS AMP. (-0.16) GALTIERI TO DPHA K-P TO LAMBDA PI 10/70 -16 .03 VANHORN 72 DPHA O K-P TO LAM PIO 2/73 (+.22) (.05) BELLEFON 73 DPHA O K-P TO LAM PIO 2/74 (-10) (.02) BELLEFON 73 DPMA G9 OR H11 WAVE 2/74+ SEE THE NOTES ACCOMPANYING THE WASESS QUOTED 54 Y*1(2620) WIDTH (MEV) (PROD. EXP.) 2/73 2/74* 2/74* ABRAMS 70 CNTR K-P, D TOTAL (175.0) B B w 10/70 Y+1(2250) FROM KBAR N TO SIGMA PI The Following Assumes JP=9/2-. Data insuf, for determ, this AMP. (+0-07) K-P To Sigma PI 10/70 54 Y#1(2620) PARTIAL DECAY MODES (PROD. EXP.) DECAY MASSES P1 Y*1(2620) INTO KBAR N Y*1(2250) INTO (KBAR NJ/(SIGMA PI) (P1)/(P3) (0.18) OR LESS BARNES 69 HBC + 1 STAN DEV LIMIT 10/69 -- ----- -------Y*1(2250) INTC (LAMBDA PI)/(SIGMA PI) (P2)/(P3) (0.18) CR LESS BARNES 69 HBC + 1 STAN DEV LIMIT 10/69 54 Y#1(2620) BRANCHING RATIOS (PROD. EXP.) Y+1(2620) INTO (KBAR N)/TOTAL (P1) J IS NOT KNCHN, THE FOLLOWING IS (J+1/2)+P1. (0.32) ABRAMS 70 CNTR K-P, D TOTAL 10/70 0.36 0.12 BRICMAN 70 CNTR 0 TOTAL AND CH EX 6/70 R1 R1 R1 R1 REFERENCES FOR Y*1(2250) (PROD. EXP.) +GREENBERG,HUGHES,KITCHING, + (YALE(CEA)) +CODPER,FREACH,KINSON, + (CERN,SACLAY) +GILMORE,KNIGHT, + (RHEL,BIRM,CAVE) I +FLAMINIO,MONTANET,SAMIDS + (BNL+SYRA) BLANPIED 65 PRL 14 741 BOCK 65 PL 17 166 BUGG 68 PR 168 1466 BARNES 69 PRL 22 479 REFERENCES FOR Y#1(2620) (PROD. EXP.) ABRAMS 67 PRL 19 676 +COOL,GIACOMELLI,KYCIA,LEONTIC,LI, + (BNL) SUPERSEDED BY ABRAMS 70. ABRAMS 70 PR 1D 1917 +COOL, GIACOMELLI, KYCIA, LEONTIC, + (BNL) I BRICMAN 70 PL 31B 152 +FERRO LUZZI, PERPEAU+ (CERN,CAEN,SACLAY) AGUILAR 70 PRL 25 58 BRICMAN 70 PL 318 152 COOL 70 PR D1 1887 GALTIER! TO DUKE COMF 173 LU 70 PR D2 1846 VAMHORN 72 L8L-1370(THESIS) BELLEFON 73 PURDUE CONF. 293 AGUILAR-BENITEZ, BARNES, + (BNL,SYRA) +FERRO LUZZI, PERREAU,+ (CERN,CAEN,SACLAY) +GIACOMELLI, KVCIA, LEONITC, LI, + (BNL) I A BARBARO-GALTIERI IIILIJJP +GREENBERG, HUGHES, MINEHART, MORI,+ (YALE) A.J.VANHORM (LEL)JJP DE BELLEFON,BERTHON,BRUNET+ (CDEF+SACL)IJP PAPERS NOT REFERRED TO IN DATA CARDS Σ(3000) 59 Y*1(3000, JP= } I=1 PRODUCTION EXPERIMENTS COOL 66 PRL 16 1228 +GIACOMELLI,KYCIA,LEONTIC,LI,LONDO,,. SUPEREDED BY COOL 70. DAUBER 66 PL 23 154 +SCHLEIN, SLATER, STORK, TICHO (UCLAILRLI) J SUGGESTS J#9/2 RESONANT BEHAVIOR IN SIGMA- PI+, BUT APPEARS INCONSISTENT WITH PARAMETERS OF COOL 66. DAUM 68 NP B7 19 +ERNE, LAGNAUX, SENS, STEUER, UDD (CERNIJP LASINSKI 71 NP B29 125 T A LASINSKI SEE THE MINI-REVIEW AT THE START OF THE Y* LISTINGS. BUMPS ENMANCEMENT IN LAMBDA PI AND KBAR N INVARIANT MASS SPECTRA AND IN MISSING MASS OF NEUTRALS RECOILING AGAINST KO. EVIDENCE NOT CONCLUSIVE. OMITTED FROM TABLE. 59 Y*1(3000) MASS (MEV) (PROD. EXP.) (3000.0) EHRLICH 66 HBC 0 PI-P 7.91 BEV/C 9/66

Baryons Σ(2250), Σ(2455), Σ(2620), Σ(3000)

59 Y#1(3000) PARTIAL DECAY MODES (PROD. EXP.)

Y*1(3000) INTO KBAR N Y*1(3000) INTO LAMBDA PI ₽1 ₽2

EHRLICH 66 PR 152 1194

497+ 939 1115+ 139

REFERENCES FOR Y#1(3000) (PROD. EXP.) R EHRLICH. W SELOVE. H YUTA (PENN(BNL)) I

DECAY MASSES

EXOTIC HYPERON CROSS SECTION LIMITS

THIS IS NOT A COMPLETE LIST. WE TABULATE ONLY FROM 1970 ON.

GAL	TIEF	RT 68	PRL 21	573	REFE A.BA	RENCES FOR	EXOTIC HYP ERI,CHADWI	ERONS CK + {LI	RL+SLAC)	
***	***	****	**** *	******	******	** ******	* *******	* *******	* *******	
СS	A	ABOVE	LIMIT	FOR MAS	5 < 2.3	GEV AND GA	MMA < 120	MEV- (2.7	GEV/C K-)	7/70
cs	A		(40.)	OR LES	s	GALTIER	I 68 DBC	K-N TO	5G-PI-P10	7/70
CS	G	ABOVE	E LIMIT	FOR MAS	5 < 2.1	5 GEV AND 0	AMMA < 60	MEV- (2.1	GEV/C K-)	7/70
¢ S	G		(20.)	OR LES	S	GALTIEF	I 68 DBC	K-N TO	SG-PI-PIO	7/70
C S	UN	its m	CROBAR	NS						

Ξ Resonances

The Ξ resonance situation has long been and will probably long remain unsettled. This is because 1) they can only be produced as part of a final state, $K^+ \to \Xi^*$ + others, and 2) they are so produced with very small cross sections (<50 µb). Thus the numbers of events available are small, and the analysis is more complicated than if direct formation were possible. Only the Ξ (1530) is really well established. There are at least two Ξ states in the 1800-2000 MeV region and there are indications of several more above 2000 MeV, but the situation is very unclear. We are forced to group together rather disparate observations and await new results. Figures in the listings point out disagreements among various experiments. The table following this note gives our evaluation of the status of the Ξ resonances, based on the meager data available at this time.

						ST	ATUS	OF	XI*	RESO	MANCES				
THOSE	WITH	AN D	VERA	LL 3	STATUS	OF	***	OR	****	ARE	INCLUDED	ΙN	THE	MAIN	BARYON
TABLE.	THE	OTHE	RS A	WAT	T CONF	IRM	ATIO	Ν.							

STATUS AS SEEN IN --

PARTI	CLE L	IJ	OVERALL STATUS	XI PI	LAM K	SIG K	XI* PI	OTHER CHANNELS
****	1201							WEAK TO LAM PI
	5201 1		****	****				
	4201	1.2	**	**				
- Q111	8201		***	***	***	**	***	
2171	9401		***	***			***	
Ŷ112	0301		**		**	**		3-BODY DECAYS
XT12	2501		*					3-BODY DECAYS
XIIZ	500)		**		**	**		3-BODY DECAYS
			•					
****	GOOD	. CLI	EAR, AND L	INM ISTAKAE	LE.			
***	6000	່ອນ	T IN NEED	OF CLARIF	ICATION	OR NOT AB	SOLUTELY	CERTAIN.
**	NEED	s co	NFIRMATION					
	WEAK	•						

Data Card Listings

For notation, see key at front of Listings.

Baryons

Ξ(2030), Ξ(2250), Ξ(2500), Ω⁻

Ξ(2030) •8 XI+1/2(2030, JP-) I=1/2	I	22 XI+1/2(2250) PARTIAL DECAY MODES	
		DECAY MASSES P1 XI+1/2(2250) INTO XI PI PI 1321+139+139 P2 XI+1/2(2250) INTO LAMBDA KBAR PI 1115+497+139 P3 XI+1/2(2250) INTO SIGMA KBAR PI 1197+497+139	
68 XI*1/2(2030) MASS (MEV)		****** ********* **********************	
M 42 2030.0 10.0 ALITTI 69 HBC - K-P 3.9-5 BEV/C	9/69	REFERENCES FOR XI#1/2(2250)	
M 15 2019. 7. ROSSI 73 SIGMA KBAR	2/74*	BARTSCH 69 PL 200 439 + (AACHEN, BERLIN, CERN, LUIC, VIERNA) GOLDWASS 70 PR 10 1960 E L GOLDWASSER, P F SCHULTZ (ILLINOIS)	
N AVERAGE MEANINGLESS (SCALE FACTOR # 1.5)		****** ******** ********* ******** *****	
W 45-0 40.0 20.0 ALITTI 69 HBC -	9/69	IT IS QUITE POSSIBLE THAT THE REASON THE EXPERIMENTS	
W 57.0 30.0 BARTSCH 69 HBC W 15 33. 17. ROSSI 73 SIGMA KBAR W AVERAGE MEANINGLESS (SCALE FACTOR = 1.0)	2/74*	THEM TOGETHER.	
68 XI+1/2(2030) PARTIAL DECAY MODES	• •	99 XI+1/2(2500) MASS (MEV)	
DECAY MASSES	1	M 30 2430.0 20.0 ALITTI 69 HBC - K-P 4.6-5 GEV/C M 45 2500.0 10.0 BARTSCH 69 HBC -0 K-P 10 GEV/C	9/69 9/69
P1 X1*1/2(2030) INTO X1 P1 1321* 139 P2 X1*1/2(2030) INTO LAMBDA KBAR 1115* 497 P2 V1*1/2(2030) INTO LAMBDA KBAR 1197* 497		M M AVERAGE MEANINGLESS (SCALE FACTOR = 3.1)	
P4 X1*1/2(2030) INTO SIGMA (DR SIGMA) KBAR PI 1533+ 139 P5 X1*1/2(2030) INTO LAMBDA (DR SIGMA) KBAR PI 1115+ 497+ 139	1		
	-	99 XI+1/2(2500) WIDTH (MEV)	
68 XI+1/2(2030) BRANCHING RATIOS		W 150.0 60.0 40.0 ALITTI 69 HBC - W 59.0 27.0 BARTSCH 69 HBC -0	9/69
R1 X1#1/2(2030) INTO (XI PI)/(MODES P1 TO P4) (P1)/(P1+P2+P3+P4) R1 (0.30) OR LESS ALITTI 69 HBC - 1 STO DEV LIMIT	9/69	W AVERAGE MEANINGLESS (SCALE FACTOR = 1.6)	
R2 XI#1/2(2030) INTO (LAM KBAR)/(MODES P1 TO P4) (P2)/(P1+P2+P3+P4) R2 0.25 0.15 ALITTI 69 HBC -	9/69	99 X1+1/2(2500) PARTIAL DECAY MCDES	
R3 XI#1/2(2030) INTO (SIG KBAR)/(MODES P1 TO P4) (P3)/(P1+P2+P3+P4)	9/69	DECAY MASSES	
R4 XI#1/2(2030) INTO (XI# PI//(MODES P1 THRU P4) (P4)/(P1+P2+P3+P4)		P2 XI+1/2(2500) INTO LAMBDA KBAR 1115+ 497 P3 XI+1/2(2500) INTO SIGMA KBAR 1197+ 497	
R4 (0.15) OR LESS ALITTI 69 HBC - I SID DEV LIMIT	9769	P4 XI*1/2(2500) INTO XI*1/2(1530) P1 1533+ 139 P5 XI*1/2(2500) INTO LAMBDA (OR SIGMA) KBAR P1 1115+ 497+ 139 120	
R5 SEEN BARTSCH 69 HBC	9/69		
****** ******** ********* ******** *****	•	99 XI+L/2(2500) BRANCHING RATIOS	
ALITTI 69 PRL 22 79 +BARNES,FLAMINIO,METZGER, + (BNL,SYRACUSE)	т	R1 X1*1/2(2500) INTO (X1 PI)/(MODES P1 THRU P4) (P1)/(P1+P2+P3+P4) R1 (0.5) CR LESS ALITTI 69 HBC 1 STO DEV LIMIT	9/69
BARTSCH 69 PL 28B 439 + (AACHEN, BERLIN, CERN, LDIC, VIENNA) Rossi 73 Purdue Conf. 345 Ross,Lloyd,Radojicic (Oxford)		R2 X1*1/2(2500) INTO (LAM KBAR)/(MODES PL THRU P4) (P2)/(P1+P2+P3+P4)	0/40
****** ********* ********* ******** ****	*	R2 0.5 0.2 ALITI BY HOL ~ R3 X[#1/2(2500) INTO (SIG KBAR)/(MODES P1 THRU P4) (P3)/(P1+P2+P3+P4)	9/07
		R3 0.5 0.2 ALITTI 69 HBC -	9/69
E(2250) THE EVIDENCE FOR THIS STATE IS WEAK. BARTSCH 69 SEE		R4 XI*1/2(2500) INTO (XI* PI)/(MODES PI THHU PA) (P4)/(P1+P2+P3+P4) R4 (0.2) OR LESS ALITTI 69 HBC 1 STD DEV LIMIT	9/69
A BUMP OF NOT MUCH STATISTICAL SIGNIFICANCE IN LAMBDA- KBAR-PI, SIGMA-KBAR-PI, AND XI-PI-PI MASS SPECTRA.	·	R5 XI*1/2(2500) INTO (LAMBDA (OR SIGMA) KBAR PI)/TOTAL R5 (P5)	
GOLDWASSER 70 SEE A NARKUMER BUMP IN ALPHITA AT A Higher Mass. Perhaps they are the same state, perhaps they are not.	;	R5 SEEN BARTSCH 69 HBC -0	9769
	-	R6 SEEN BARTSCH 69 HBC -0	9/69
22 X1*1/2(2250) MASS (MEV)		****** ********* **********************	
M 35 2244+0 52.0 BARTSCH 69 HBC K-P 10 GEV/C M 18 2295.0 15.0 GOLDWASSE 70 HBC ~ K-P 5.5 GEV/C	9/69 10/70	AUTTI AG ORI 22 79 +RARNES.FLAMINIO.NETZGER. + (BNL.SYRACUSE) 1	
M AVERAGE MEANINGLESS (SCALE FACTOR = 1.0)		BARTSCH 69 PL 28B 439 + (AACHEN, BERLIN, CERN, LOIC, VIENNA)	
22 X1+1/2(2250) WIDTH (MEV)			
W 130-0 80.0 BARTSCH 69 HBC	9/69	24 OMEGA-(1675, JP=3/2+) I=0	
W LESS THAN 30.0 GOLDWASSE 70 HBC - K-P 5.5 GEV/C	10/10	SEE STABLE PARTICLE DATA CARD LISTINGS	
	1	******	

Appendix I

TEST OF $\Delta I = 1/2$ RULE FOR K DECAYS

The quantities of interest for making tests of theoretical predictions regarding the $\Delta I=1/2$ rule for K decay are usually partial decay rates for single channels or special sums of channels. It is not possible to compute the errors on sums, differences, and ratios of partial decay rates from the information given in the Table of Stable Particles because of the presence of off-diagonal terms in the error matrix. For this reason we give some of these quantities in Table I. Throughout this Appendix, italics are used to indicate that a quantity has changed by more than one (old) standard deviation since our previous edition, and S gives the scale factor included in the quoted error because of inconsistencies in the data (see footnote at end of Stable Particle Table for definition of S).

Table I. (000) or (+ into which the	-0) refer to the sign of the pions K_{L} decays.
$\Gamma_{K_{f3}^+} = \Gamma_{e3} + \Gamma_{\mu3}$	= $(6.484 \pm .092) \times 10^6 \text{ sec}^{-1}$
$\Gamma_{K_{\mu3}^+}/\Gamma_{K_{e3}^+}$	= 0.663±.018 S=1.7
$\Gamma_{K_{\tau}^{+}} / \Gamma_{K_{\tau}^{+}}$	= 3.226±.082
$\Gamma = \Gamma + \Gamma$ $K_{\beta 3}^{0} \qquad K_{e 3}^{0} \qquad K_{\mu 3}^{0}$	= $(12.85\pm.16)\times10^6$ sec ⁻¹ S=1.2
Γ / Γ ^{K⁰_{μ3} / Γ}	= 0.705±.019
$\Gamma_{K^{0}(000)}/\Gamma_{K^{0}(+-0)}$	= 1.780±.078 S=1.2

1. Leptonic decay rates

The
$$\Gamma$$
 rates are useful in testing the $K_{\ell 3}$

leptonic $\Delta I = 1/2$ rule in the way suggested by Trilling.¹ The predictions are

$$\Gamma_{K_{\ell_3}^0}/2\Gamma_{K_{\ell_3}^+} = 1.012$$
, a phase-space

factor, ² and

$$K^{0}_{\mu3} / \Gamma_{K^{0}_{e3}} = \Gamma_{K^{+}_{\mu3}} / \Gamma_{K^{+}_{e3}}$$

From Table I,

Г

$$\Gamma_{K_{\ell_3}^0} / {}^{2\Gamma}_{K_{\ell_3}^+} = 0.991 \pm 0.019$$

and
$$\frac{\Gamma_{K_{\mu3}^{0}}}{\Gamma_{K_{e3}^{0}}} \left[\frac{\Gamma_{K_{\mu3}^{+}}}{\Gamma_{K_{e3}^{+}}} \right]^{-1} = 1.063 \pm .041.$$

These results seem to show a less than 2σ disagreement with the predictions, but the errors should be regarded with caution in view of the internal disagreements in the data. (Note the ideograms in the data listing for the charged K meson.)

2. Three-pion decays

We follow here the tests done by Mast et al.,³ based on the general analysis of K decays suggested by Zemach.⁴ Both decay rates (Γ) and slopes (g, the energy dependence of the Dalitz plot distributions) are used. The $\Delta I = 1/2$ rule predicts that the following test quantities are all equal to zero:

$$\begin{aligned} \text{Test } 1 &= \frac{2}{3} \quad \frac{\Gamma_{K^{0}(000)}}{\phi_{1}} \quad \left[\frac{\Gamma_{K^{0}(+-0)}}{\phi_{2}} \right]^{-1} ,\\ \text{Test } 2 &= \frac{1}{4} \quad \frac{\Gamma_{K^{+}_{T}}}{\phi_{3}} \quad \left[\frac{\Gamma_{K^{+}_{T'}}}{\phi_{4}} \right]^{-1} ,\\ \text{Test } 3 &= \frac{1}{2} \quad \frac{\Gamma_{K^{+}_{T}}}{\phi_{3}} \quad \left[\frac{\Gamma_{K^{0}(+-0)}}{\phi_{2}} \right]^{-1} ,\\ \text{Test } 4 &= \frac{1}{2} \quad g_{K^{+}_{T'}} \quad + \quad g_{K^{+}_{T}},\\ \text{Test } 5 &= \quad g_{K^{0}(+-0)} \quad + \quad g_{K^{+}_{T}} \quad - \quad \frac{1}{2} \quad g_{K^{+}_{T'}} \quad \cdot \end{aligned}$$

The ϕ_i are phase-space factors which have been calculated as described in Mast et al.³ by use of a relativistic formulation and the masses and slopes from our 1973 edition. The factors labeled UDP are the relative areas of the Dalitz plots, assuming a uniform distribution. The NUDP include the observed slopes (see below). The CNUDP have been calculated by including the final-state Coulomb interaction. The values are:

		Method	
	UDP	NUDP	CNUDP
$\phi_1^{(000)} =$	1.489	1.489	1.444
$\phi_2(+-0) =$	1.221	1.294	1.279
φ ₃ (++-) =	1.000	1.000	1.000
$\phi_4^{(+00)} =$	1.247	1.183	1.147

For convenience, we repeat the slope parameters tabulated in the Stable Particle Table. They are as follows:

$$g_{K_{T}^{+}} = -0.214 \pm 0.005 \qquad S=1.7$$

$$g_{K_{T}^{-}} = -0.214 \pm 0.007 \qquad S=2.7$$

$$\overline{g}_{K_{T}^{+}} = -0.214 \pm 0.004$$

$$g_{K_{T}^{+}} = -0.214 \pm 0.004$$

$$g_{K_{T}^{+}} = 0.522 \pm 0.020 \qquad S=1.3$$

$$g_{K_{T}^{0}} = 0.610 \pm 0.021 \qquad S=2.6$$

A difference in the τ^+ and τ^- slopes would be an indication of CP violation in this decay. Since no difference is observed at this time, we average the two and use this value in Test 4.

We use the CNUDP factors and the rates and slopes reported here to compute the five test quantities which the $\Delta I=1/2$ rule predicts to be zero. The results are:

Test 1 = 0.051
$$\pm$$
 0.046
Test 2 = -0.075 \pm 0.024
Test 3 = 0.251 \pm 0.038
Test 4 = 0.047 \pm 0.011
Test 5 = 0.135 \pm 0.024

The three-pion final state can be in isospin states I = 1, 2, 3. Tests 1 and 2 test the existence of isospin I = 3 in the final state. Since the rate tests (Tests 1, 2, and 3) could differ from zero by as much as 0.1 owing to the mass differences and the occurrence of big slopes⁵, no evidence for I=3 is found. Test 4 is related to the I=2 amplitude in the final state and indicates the presence of I=2. Tests 3 and 5 give information on the $\Delta I = 3/2$ part of the I=1 amplitude relative to the $\Delta I = 1/2$ part. Both tests indicate the presence of $\Delta I = 3/2$.

References

1. G. Trilling, K-Meson Decays, UCRL-16473, (updated from Argonne Conference Proceedings, 1965, p. 115).

 N. Brene (CERN), private communication. In our Jan. 1968 edition we had erroneously used 1.04.
 T. S. Mast, L. K. Gershwin, M. Alston-Garnjost, R. O. Bangerter, A. Barbaro-Galtieri, J. J. Murray, F. T. Solmitz, and R. D. Tripp, Phys. Rev. <u>183</u>, 1200 (1969).

4. C. Zemach, Phys. Rev. 133, B1201 (1964).

5. C. Bouchiat and M. Veltman, Topical Conference on Weak Interactions, CERN 69-7 (1969), p. 225.

<u>Appendix II</u> A. SU(3) CLASSIFICATION OF BARYON RESONANCES

There are a few multiplets that have been studied and we report here the results.

Exact SU(3) symmetry predicts that all the members of a multiplet should have the same mass and the same couplings for decays into other multiplets. It has been found, however, that the members of the octet of Stable Baryons lie within 20% of their mean mass; therefore a symmetry breaking interaction has been introduced by GELL-MANN 62 and OKUBO 62 independently. In addition, for the isospin-0 vector mesons (ω and ϕ) an additional symmetry-breaking interaction has been introduced (SAKURAI 62) to take care of octet-singlet mixing. The relevant formulae for masses and decay rates are given below.

Mass Formulae

Broken SU(3) gives:

	. –		
Decuplet	$\triangle - \Sigma = \Sigma - \Xi^* = \Xi^* - \Omega$	GMO	(1)
Octet	$2(N + \Xi) = 3\Lambda + \Sigma$	GMO	(2)

Octet-
Singlet
mixing
$$\begin{cases} \sin^2 \theta = \frac{\Lambda - M_8}{\Lambda - \Lambda'} & \text{Mixing} \\ M_8 = \frac{2(N + \Xi) - \Sigma}{3} & \text{GMO} \end{cases}$$
(3)

Here GMO stands for the Gell-Mann-Okubo formula; the particle symbol indicates its mass. The formulae would be the same if squared masses were used. For the nonet case, Λ is the "mostly-octet" particle, Λ ' is the "mostly-singlet" particle.

Decay Rates

In terms of a relativistically invariant matrix element T, the decay rate for two-body decay of a resonance of mass M_R is

$$\Gamma \propto \frac{|\mathbf{T}|^2 \mathbf{R}_2}{M_{\rm B}}, \qquad (5)$$

where $R_2 = k/M_R$ is the two-body phase space factor. Since the numerator is an invariant, and since Γ must transform as 1/E, we introduce the denominator $1/M_R$ (see FEYNMAN 62).

For <u>meson</u> decays (see below) the rates are calculated according to Eq. (5); for <u>baryon</u> resonance decays into $1/2^+$ baryons and 0⁻ mesons, one next takes into account the fact that spin sums in $|T|^2$ introduce another factor M_R , cancelling the $1/M_R$. We are then left with

$$\Gamma = \frac{|\mathbf{T}|^2 \mathbf{k}}{M_R} \quad M_{N'} \quad \text{for baryons} \tag{5'}$$

$$= \frac{|\mathbf{T}|^2 \mathbf{k}}{M_R^2} M_N^2, \text{ for mesons}$$
(5")

The powers of the nucleon mass M_N or M_N^2 have been introduced so that we can treat |T| as dimensionless.

 $|T|^2$ contains centrifugal barrier factors, which we call B_{g} . We then have

$$\frac{\text{Decuplet}}{\text{Singlet}} \} \Gamma = (cg)^2 B_{\ell}(k) \frac{M_N}{M_R} k$$
(6)

Octet
$$\Gamma = (c_D g_D + c_F g_F)^2 B_{\ell}(k) \frac{M_N}{M_R} k$$
 (7)

Singlet {
$$\Lambda = G_8 \cos \theta + G_1 \sin \theta$$

mixing
$$\Lambda' = -G_8 \sin \theta + G_1 \cos \theta$$
(3)

with
$$G_8 = c_D g_D + c_F g_F$$

 $G_1 = c_1 g_1$. (3)

Here c_i are the SU(3) coefficients with the sign convention adopted in this article [see note preceding the table of SU(3) isoscalar factors and Fig. 2 in the text]. M_N is the nucleon mass, M_R is the resonance mass for which Γ is calculated, k is the center-of-mass momentum for the channel being considered, g_i are the relevant couplings. For the case of singlet-octet mixing, formula (8) has to be used in conjunction with (6) and (7). G_8 and G_1 represent the couplings for the multiplet, and Λ and Λ ' represent the couplings for the physical states.

The relation between g_D , g_F , and the parameter α is

$$\alpha = \left[1 + \frac{\sqrt{5}}{3} \quad \frac{g_{\rm F}}{g_{\rm D}}\right]^{-1} . \tag{10}$$

Exact SU(3) predicts that the couplings g_i for all the members of a multiplet are the same; however, since the symmetry is broken for the masses, it is probably broken for the widths. In the case of the $3/2^+$ decuplet, for broken SU(3) a sum rule has been derived by BECCHI 64 and by GUPTA 64 independently. It relates the g_i for the members of the decuplet by the relation

$$2(\Delta + \Xi) = 3\Sigma * (\Lambda \pi) + \Sigma * (\Sigma \pi), \qquad (11)$$

where $\Sigma * (\Lambda \pi)$ is the coupling for the $\Sigma (1385)$ $\rightarrow \Lambda \pi$ decay and $\Sigma * (\Sigma \pi)$ is the coupling for the decay $\Sigma (1385) \rightarrow \Sigma \pi$.

As mentioned in the text (Sec. IV B) the determination of the relative signs of resonant amplitudes can be useful in making an SU(3) assignment of resonances. In fact the resonant amplitude $T \propto \sqrt{x_e x_i} \propto G_e G_i$ where the subscript e refers to the elastic channel and the G, G are the couplings of Eqs. (6) through (9). Assuming that all g_i are positive, the sign of the G; are dependent upon the sign of the Clebsh-Gordon coefficients c_i. Once a sign convention is adopted (we use the LEVI-SETTI 69 convention, see Fig. 2 in the text) and the sign for a Σ state (I = 1) and a Λ state (I = 0) of known SU(3) assignment have been chosen for reference, the signs of all the other amplitudes can be useful in determining multiplet assignments. For exact SU(3) all the decays of members of a decuplet have the same sign. For octets the relative sign depends upon the value of g_D/g_F and the mixing angle, as seen from Eqs. (7) through (9).

Fits to the Data

Fits of baryon decay rates within SU(3) can be found, among others, in TRIPP 68 and 69, LEVI SETTI 69, SAMIOS 70 and PLANE 70. The most recent fits were made by BARBARO-GALTIERI 72 and SAMIOS 73.

In fitting the data a choice for B_{l} has to be made. PLANE 70 tried two forms for B_{l} :

(a) The form $B_{\ell} = (kr)^{2\ell} D_{\ell}(kr)$, r being the radius of interaction and D_{ℓ} the polynomials in kr given by BLATT-WEISSKOPF 52. Usually r is taken to be 1 fermi (TRIPP 68).

(b) The form $B_{\ell} = k^{2\ell}$. However, for their final results they used form (b). A discussion of the differences among these two forms can be found in BARBARO-GALTIERI 71. It turns out that not only the values of the couplings, g_i , depend upon the form used for B_{ℓ} , but also the value obtained for the mixing angle. For the $3/2^$ singlet, $\Lambda(1520)$, and isospin-0 member of the octet, $\Lambda(1690)$, the mixing angles obtained in the two cases are

$$\theta_{a} = (-16.1 + 1.4)^{\circ}, \quad \theta_{b} = (-27.5 + 3.6)^{\circ},$$

in disagreement by a few standard deviations. It turns out that if a radius of interaction of r = 0.15 fermi is used for form (a), the two values of θ agree. This value of r does not fit resonance shapes when used in the Breit-Wigner resonant form.

SAMIOS 73 used form (b) for B_{g} .

Table I is a summary of the fits made by BARBARO-GALTIERI 72 using the barrier factor form (a) and exact SU(3). A few comments follow.

$\frac{1}{2}$ - Nonet (Baryon - Eta Resonances)

For this nonet Eq. (7) was multiplied by the factor

$$\left[\frac{M_{R} - M_{B}}{\overline{M}_{R} - \overline{M}_{B}}\right]^{2}$$

where M_B is the decay baryon and $\overline{M}_R - \overline{M}_B =$ 564 MeV is the difference of the mean $1/2^{-}$ and $1/2^{+}$ baryon octet masses. This kinematic factor comes from PCAC arguments (i.e., the assumption that axial vector current remains an octet in presence of symmetry breaking) and it was advocated by Graham et al. (GRAHAM 67). For the $1/2^{-}$ nonet it has been used in this form first by Gell-Mann et al. (GELL-MANN 68).

$\frac{3}{2}^{+}$ Decuplet

The agreement among the coupling constants obtained for the four rates in this decuplet is very bad. The fit made using form (b) for B_{ℓ} has $\chi^2=50$ for 3 Degrees of Freedom; the one made with form (a) for B_{ℓ} has $\chi^2=24/3$ DF. The broken SU(3) relation (11), however, is very well satisfied.

B. SU(3) CLASSIFICATION OF MESON RESONANCES

All of the discussion above applies, except that for Bosons the GMO formula is usually applied to the <u>square</u> of the masses, as opposed to the first power for fermions. Thus for example, Eq. (2) becomes

$$4\hat{\mathbf{K}} = 3\hat{\eta} + \hat{\pi}.$$
 (21)

The symbol \hat{K} was introduced by Glashow and Socolow[†] for the square of the K mass, etc.

Because of the difference between Eqs. (5') and (5"), there is also an extra factor of (M_N/M_R) in Eqs. (6) and (7). The three established nonets (0⁻, 1⁻, 2⁺) and their mixing angles are listed at the bottom of the Meson table.

Footnotes and References

[†]The formula has been calculated from analogy with the formula for mixing of meson states, first put in this form by S. L. Glashow and R. H. Socolow, Phys. Rev. Letters <u>15</u>, 329 (1966). For the baryon formula see A. Barbaro-Galtieri, Phenomenology of Resonances and Particle Supermultiplets. UCRL-17054 (1966).

[‡]This is an updated version of the fits by Flaminio et al., BNL report 14572.

A. Barbaro-Galtieri, Lawrence Berkeley Laboratory LBL-555, lectures given at the 1971 Erice School on Subnuclear Physics (to be published by Academic Press).

Table I. SU(3) baryon multiplets with two or more known members. Values of θ and α [defined by Eqs. (8) and (10)] are the results of fits made to all the measured two-body decay rates of each multiplet by BARBARO-GALTIERI 72 (BG72) and SAMIOS 73 (SGM73).

					ВС	72	SGM73		
JР		Octet me	mbers ^a		Singlet	$\theta(deg)^{b}$	α	$\theta(deg)^{b}$	α
1/2	N(1535)	Λ(1670)	Σ(1 750)	[三(1825)]	Λ(1405)	8±3	1.2 ±.1	d	d
3/2	N(1520)	Λ(1690)	Σ(1670)	[Ξ(1815)]	Λ(1520)	-23±4	.34±.09	-26±3	.28±.15
5/2	N(1670)	Λ(1830)	Σ(1765)				1.13±.05		$1.16 \pm .01$
5/2+	N(1688)	Λ(1815)	Σ (1 915)				.62±.04) ? }	.46±.005
<u></u>		Decuple	et members ^C		g ₁₀			<u> </u>	
3/2+	∆(1232)	Σ(1385)	王(1 530)	Ω_	1.78 - 2.29		$\chi^2 = 50/3I$	DF	
7/2+	∆(1950)	Σ(2030)							

^aMasses in parentheses are the nominal masses used in the Baryon Table. The Ξ members have masses as calculated by using formulae (1) and (2) with the mixing angle θ derived from the decay widths.

^bSee text for a discussion of the $3/2^{-}$ mixing angle.

^CCoupling constants from BARBARO-GALTIERI 72.

^dFor the $J^{P}=1/2$ octet the values of SAMIOS 73 are not quoted here, because for $\Lambda(1405)$ the coupling to $\overline{K}N$ was not included in the fit and the state was assumed to couple only to $\Sigma\pi$.

A. Barbaro-Galtieri, Lawrence Berkeley Laboratory LBL-1366. To be published in Proceedings of the 16th International Conference on High Energy Physics, Chicago-Batavia (1972).

C. Becchi, E. Eberle, and G. Morpurgo, Phys. Rev. 136B, 808 (1964).

J. M. Blatt and V. F. Weisskopf, <u>Theoretical</u> Nuclear Physics, Wiley, New York, 1952.

R. P. Feynman, <u>Theory of Fundamental Pro-</u> cesses, W. A. Benjamin, Inc., New York, 1962.

M. Gell-Mann, Phys. Rev. <u>125</u>, 1067 (1962).

M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. <u>175</u>, 2195 (1968).

R. Graham, S. Pakvasa, and K. Raman, Phys. Rev. 163, 1774 (1967).

V. Gupta and V. Singh, Phys. Rev. <u>135B</u>, 1442 (1964).

R. Levi Setti, in <u>Proceedings of the Lund Inter-</u> national Conference on Elementary Particles (1969).

S. Okubo, Prog. Theoret. Phys. (Kyoto) 27, 949 (1962).

D. E. Plane <u>et al.</u>, Nuclear Physics <u>B22</u>, 93 (1970). Also J. Meyer and D. E. Plane, Nuclear Phys. B25, 428 (1971).

J. J. Sakurai, Phys. Rev. Letters 9, 472 (1962).

N. P. Samios, in Proceedings of the 15th International Conference on High Energy Physics, Kiev, p. 187 (1970).

N.P. Samios, M. Goldberg, and B.T. Meadows in Hadrons and SU(3): A Critical Review, BNL Report BNL-17851 (1973).

R. D. Tripp, in <u>Proceedings of the 14th Inter-</u> national Conference on High Energy Physics, Vienna 1968, p. 173.

R. D. Tripp, in <u>Proceedings of the 3rd Hawaiian</u> <u>Topical Conference on Particle Physics</u>; UCRL-19361 (1969).

$\frac{\text{Appendix III}}{\text{TEST OF } \Delta I=1/2 \text{ RULE FOR HYPERON DECAYS}}$

O. E. Overseth University of Michigan

1. Nonleptonic Decay Amplitudes

In this edition we again use the new convention for the amplitudes A and B adopted last year. Some theorists have suggested that dimensionless amplitudes are more useful to them than the ones appearing in the literature. Berge (1966) used a convention with A and B in units of sec^{-1/2}. Samios (1965) used a convention which gave A and B in units of (MeV-sec)^{-1/2}. Following is the convention suggested by Jackson (1973), which gives dimensionless A and B.

The effective Lagrangian density for nonleptonic hyperon decays $(B_1 \rightarrow B_2 + \pi)$ can be written

$$\mathcal{L}_{\rm eff} = G \mu_{\rm c}^2 \left[\overline{\psi}_2 (A + B \gamma_5) \psi_1 \right] \phi_{\pi},$$

where G = 10^{-5} m_p⁻² is a coupling constant characteristic of first-order weak decays, μ_c is the charged pion mass, and A and B are <u>dimensionless</u> complex numbers giving the relative amplitudes of the parityviolating and parity-conserving decays, respectively. The matrix γ_5 is to be taken in the Pauli form, $\gamma_5 = (\begin{array}{c} 0 & -I \\ -I & 0 \end{array})$. The invariant amplitude for the decay is

$$\mathcal{M} = G\mu_c^2 \left[\overline{u}(p) (A + B\gamma_5) u(P) \right],$$

where P is the 4-momentum of the decaying hyperon of mass M, and p is the 4-momentum of the baryon decay product of mass m. With the normalization convention, $\overline{u_i}u_i = 2m_i$, the Pauli form of the matrix element in the rest frame of the decaying hyperon is

$$\mathcal{M}_{\mathcal{F}} \operatorname{G\mu}^{2}_{c} \langle \chi_{2} | \sqrt{2M(E+m)} \operatorname{A} + \sqrt{2M(E-m)} \operatorname{B} \vec{\sigma} \cdot \mathfrak{g} | \chi_{1} \rangle,$$

where E is the total energy of the final baryon and \hat{q} is a unit vector in the direction of motion of the final baryon. Comparison with Sec. VID shows that the amplitudes s and p defined there are proportional to A and B:

$$\frac{\mathbf{p}}{\mathbf{s}} = \left(\frac{\mathbf{E} - \mathbf{m}}{\mathbf{E} + \mathbf{m}}\right)^{\frac{1}{2}} \frac{\mathbf{B}}{\mathbf{A}} = \sqrt{\frac{(\mathbf{M} - \mathbf{m})^2 - \mu^2}{(\mathbf{M} + \mathbf{m})^2 - \mu^2}} \quad \frac{\mathbf{B}}{\mathbf{A}}$$

Here μ is the mass of the pion entering the decay. The parameters a, β, γ can therefore be expressed in terms of A and B, rather than s and p, if desired.

The decay rate for $B_1 \rightarrow B_2 + \pi$ is

$$\Gamma = \frac{G^{2} \mu_{c}^{4}}{8 \pi} q \left\{ \left(\frac{(M+m)^{2} - \mu^{2}}{M^{2}} \right) |A|^{2} + \left(\frac{(M-m)^{2} - \mu^{2}}{M^{2}} \right) |B|^{2} \right\},$$

where q is the c.m. momentum of the decay products. For reference, the dimensionless constant in this expression has the value $(G^2 \mu_c^4/8\pi) = 1.9488 \times 10^{-15}$.

Table I summarizes the amplitudes A and B for the nonleptonic decays of the Λ , Σ , and Ξ hyperons. These amplitudes have been calculated by using the experimental data for mean lives, branching ratios, and the decay asymmetry a given in the Stable Particle Table of this review. Time-reversal invariance is assumed and final-state interactions are neglected, so A and B are taken to be relatively real. The subscript on the hyperon refers to the sign of the decaying pion. The statistical correlation coefficient

$$C_{AB} = \frac{\langle \Delta A \Delta B \rangle}{\sqrt{\langle \Delta A^2 \rangle \langle \Delta B^2 \rangle}}$$

is also given. The absolute signs of A and B have bee assigned, using the following convention. Taking $A(\Lambda^{0})$ as positive, the other S-wave decay amplitudes are chosen to give an approximate fit to the triangular relationships

$$\sqrt{2}A(\Sigma_0^+) + A(\Sigma_+^+) = A(\Sigma_-^-) \text{ and } \sqrt{3}A(\Sigma_0^+) + A(\Lambda_-^0) = 2A(\Xi_-^-).$$

The signs of the B amplitudes relative to those of the corresponding A amplitudes are determined by the sign of the appropriate α decay parameter.

	Table I								
М	+	m	+μ	А	В	C _{AB}			
Λ °_	- >	р	+π-	1.48 ± 0.01	10.17 ± 0.24	-0.272			
Λ ⁰ 0	→	n	+π ⁰	-1.08 ± 0.02	-7.28 ± 0.58	-0.744			
Σ_{+}^{+}	→	n	+ π ⁺	0.06 ± 0.02	19.05±0.16	0.003			
Σ_0^+	-	р	+ π ⁰	1.48±0.05	-12.04±0.59	0.919			
Σ]	→ :	n	+ π ⁻	1.93±0.01	-0.65 ± 0.08	-0.024			
Ξ°	→ ,	Λ	+ π ⁰	1.53 ± 0.03	-5.90 ± 1.11	0.347			
Ξ.	→	Λ	+ π¯	2.04 ± 0.02	-6.73 ± 0.41	0.237			

2. <u>Tests of the $\Delta I=1/2$ Rule</u> (a) Λ Decay

For Λ decay the $\Delta I = 1/2$ rule predicts that $\Gamma_0/\Gamma_1 = 0.50$ and $\alpha_0 = \alpha_1$. In order to determine the magnitude of possible $\Delta I = 3/2$ amplitudes present we write the linear expressions [Overseth and Pakvasa (1969)] for the $\Delta I = 3/2$ A- and B-wave amplitudes in terms of $\Delta \alpha$, where $\Delta \alpha$ is the measured value of α_0/α_1 minus the predicted value, and in terms of $\Delta \Gamma$ similarly defined. Evaluating these we find

$$\begin{split} & \Delta \alpha \ = \ - \ 1.53 \ (\text{A}_3/\text{A}_1) \ + \ 1.60 \ (\text{B}_3/\text{B}_1), \\ & \Delta \Gamma \ = \ 1.83 \ (\text{A}_3/\text{A}_1) \ + \ 0.26 \ (\text{B}_3/\text{B}_1). \end{split}$$

Here the $\Delta I = 3/2$ amplitudes are expressed relative to the $\Delta I = 1/2$ amplitudes. The numerical values of the coefficients depend on the ratio B/A. The uncertainties in the coefficients are small compared to the uncertainties in $\Delta \alpha$ and $\Delta \Gamma$. Final-state π -N interactions have been included in these relations but have a very small effect. From the Stable Particle Table,

 $\Delta \alpha = 0.006 \pm 0.066$, $\Delta \Gamma = 0.058 \pm 0.012$, and hence

 $(A_3/A_1) = 0.027 \pm 0.008$

and

 $(B_3/B_1) = 0.030 \pm 0.037.$

The possible 3% $\Delta I = 3/2$ A-wave amplitude is due to the disagreement of decay rates with prediction. At this level the results are sensitive to electromagnetic corrections. However, in Λ decay the phase space correction and the other radiative corrections appear to be about equal in magnitude and have opposite signs [Belavin and Narodetsky (1968), and Intemann (1973)], and hence cancel each other in the correction to the decay rates.

(b) E Decay

The analysis for Ξ decay is very similar to that for Λ decay. If the $\Delta I = 1/2$ rule is valid, $\Gamma_0(\Xi^0)/\Gamma_-(\Xi^-) = 0.50$ and $\alpha_0 = \alpha_-$. For this case the expressions linear in $\Delta I = 3/2$ A- and B-wave amplitudes are [Overseth and Pakvasa (1969)]

 $\Delta \alpha = 1.38 (A_3/A_1) - 1.38 (B_3/B_1),$ $\Delta \Gamma = -1.44 (A_3/A_1) - 0.06 (B_3/B_1).$

From the Stable Particle Table,

 $\Delta \alpha = 0.12 \pm 0.21, \qquad \Delta \Gamma = 0.058 \pm 0.024,$ and we find

 $(A_3/A_1) = -0.035 \pm 0.017$

and

$$(B_2/B_1) = -0.12 \pm 0.15.$$

(c) Σ Decay

The traditional test of the $\Delta I = 1/2$ rule in Σ decay is that the amplitudes satisfy the relationship $\sqrt{2} \Sigma_0^+ + \Sigma_+^+ - \Sigma_-^- = 0$. Graphically this is equivalent to closing the Σ triangle when the amplitudes are plotted on A, B axes. Including $\Delta I \ge 3/2$ amplitudes in Σ decay analysis, the " Σ triangle" relationship becomes

$$\sqrt{2} A_0 + A_+ - A_- = -3\sqrt{\frac{2}{5}} A_3 + \frac{2}{\sqrt{15}} A_5$$

where A_3 , A_5 are $\Delta I = 3/2$, 5/2 amplitudes, respectively. There is a similar equation for the B amplitudes. From Table I,

$$\sqrt{2} A_0 + A_+ - A_- = 0.22 \pm 0.09$$

and $\sqrt{2} B_0 + B_+ - B_- = 2.7 \pm 1.1$

If we neglect the $\Delta I = 5/2$ amplitudes and assume all amplitudes to be real we can solve for possible $\Delta I=3/2$ amplitudes. The result is

$$\frac{A_3}{A_1} = -0.060 \pm 0.026$$

and
$$\frac{B_3}{B_1} = -0.074 \pm 0.030.$$

Thus for hyperon decay, present experimental data limit $\Delta I = 3/2$ amplitudes to less than about 5%.

3. The Lee-Sugawara Relation

From Table I the Lee-Sugawara [Lee (1964) and Sugawara (1964)] relation $\sqrt{3} \Sigma_0^+ + \Lambda_0^0 - 2 \Xi_1^- = 0$ is satisfied to -0.04 ± 0.12 for the A amplitudes, and to 2.8 ± 2.1 for the B amplitudes.

References

- A. A. Belavin and I. M. Narodetsky, Yadern. Fiz. <u>8</u>, 978 (1968) [Soviet J. Nucl. Phys. 8, 568 (1969)]
- J. P. Berge, in <u>Proceedings of the 13th International</u> <u>Conference on High-Energy Physics</u>, Berkeley, <u>(1966)</u> (University of California Press, Berkeley, 1967), p. 46.
- G. W. Intemann, private communication (1973).
- J. D. Jackson, private communication (1973).
- B. W. Lee, Phys. Rev. Lett. 12, 83 (1964).
- O. E. Overseth and S. Pakvasa, Phys. Rev. <u>184</u>, 1663 (1969). The expression for Γ_0/Γ_{-} for Λ decay should read

$$\frac{1}{\Gamma^{-}} \approx \frac{1}{2} \left\{ 1 + 3\sqrt{2} + \left\{ \frac{1}{1 + 3\sqrt{2}} \times \left(\frac{[S_{11}S_{33}\cos(\delta_{1}-\delta_{3})+P_{11}P_{33}\cos(\delta_{11}-\delta_{31})]}{S_{11}^{2} + P_{11}^{2}} \right) \right\}.$$

- N. P. Samios, International Conference on Weak Interactions, Argonne (1965), p. 189.
- H. Sugawara, Prog. Theor. Phys. 31, 213 (1964).