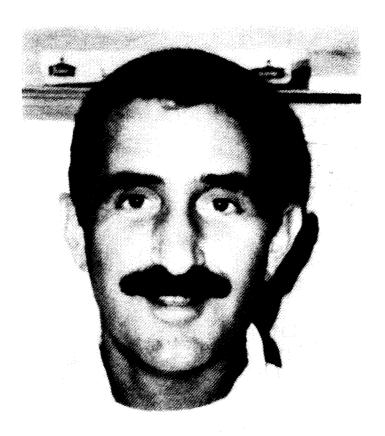
PHYSICS LETTERS B

EDITORS

G.F. BERTSCH EAST LANSING, MI M. DINE NEW YORK, NY R. GATTO GENEVA

H. GEORGI CAMBRIDGE, MA P.V. LANDSHOFF CAMBRIDGE C. MAHAUX LIEGE

L. MONTANET GENEVA J.P. SCHIFFER ARGONNE, IL


R.H. SIEMSSEN GRONINGEN

K. WINTER GENEVA

VOLUME 239, 1990

IN MEMORIAM

Alan Rittenberg, longtime member of the Particle Data Group, died January 3, 1989 following a long illness.

Alan was born December 27, 1938 in Nashville, Tennessee. He received a B.S. in Physics from Yale University in 1960 and a Ph.D. from the University of California at Berkeley in 1969. His graduate research work was done in particle physics in the Alvarez Group at Lawrence Berkeley Laboratory. He participated in the discovery of the η' meson and in several other experiments.

After receiving his Ph.D., Alan joined the Particle Data Group at LBL, while continuing to work on several bubble chamber experiments. He served as group leader from 1974 to 1976 and for nearly two decades was responsible for the organization, editing, and production aspects of the Review of Particle Properties and other Particle Data Group publications. His attention to detail and constant striving for excellence played a major role in the accuracy and integrity of these publications. The entire particle physics community has benefited. We miss him greatly.

INTRODUCTION

I. OVERVIEW

This review is an updating through December 1989 of the Review of Particle Properties, a compilation of experimental results on the properties of particles studied in elementary particle physics. These properties include masses, widths or lifetimes, branching ratios, and so on. Where feasible, we suggest a "best" value of each property, based on what in our judgment are the best available data.

We also give an extensive summary of searches for hypothesized particles. Results of searches usually take the form of limits on masses under specified assumptions. Since such limits are often complex functions of mass and may be model-dependent, our summary cannot provide the detailed information given in the original papers.

Our compilation is presented in two sections, the "Summary Tables of Particle Properties" and the "Full Listings." The Summary Tables give our best values of the properties of those particles that we consider to be well established. We try to be conservative in judging whether or not a particle is well established. The Summary Tables also give a condensed version of search limits for hypothesized particles, and a summary of experimental tests of conservation laws.

All data used for the best values in the Summary Tables are given in the Full Listings, with references and occasional comments. Other measurements considered recent enough or important enough to mention, but which for some reason are not used to get the best values, appear separately just beneath the data we do use for the Summary Tables. The Full Listings also give information on unconfirmed particles and on particle searches, as well as short "mini-reviews" about subjects of particular interest.

The Full Listings were once an archive of all published data on particle properties. This is no longer possible because of the growth of information. We refer interested readers to earlier editions for references to data now considered to be obsolete [Particle Data Group (1988)].

In previous editions, we organized the Summary Tables and Full Listings into three categories:

Stable Particles

Mesons

Baryons

With this edition, we adopt a new organization into five categories:

Gauge and Higgs Bosons

Leptons

Mesons

Baryons

Searches for Other Particles

The last category is for searches for particles that do not belong to the previous four groups.

In addition to the compilations of measurements and best values, we give a long section of "Miscellaneous Tables, Figures, and Formulae," a quick reference for the practicing particle physicist.

In Sec. II of this Introduction, we list the main areas of responsibility of the various authors, and also list our large number of consultants on various special topics. In Sec. III, we summarize the naming scheme for hadrons,

first introduced in our 1986 edition [Particle Data Group (1986)]. In Sec. IV, we discuss our procedures for selecting measurements of particle properties and for obtaining best values of the properties from the measurements.

The accuracy and usefulness of this compilation depends in large part on interaction between the users and the authors and consultants. We appreciate comments, criticisms, and suggestions for improvements of any kind. Please send them to the appropriate author, according to the list of responsibilities in Sec. II below, or to

Particle Data Group, MS 50–308 Lawrence Berkeley Laboratory Berkeley, CA 94720, USA

Or send them via computer mail to

LBL::PDG on HEPNET, PDG@LBL on BITNET, or PDG@LBL.GOV on INTERNET

A pocket-sized Particle Properties Data Booklet is available. This contains the complete Summary Tables of Particle Properties and the most frequently used parts of the Miscellaneous Section, but not the Full Listings. For North and South America, Australia, and the Far East, write to

Technical Information Department Lawrence Berkeley Laboratory Berkeley, CA 94720, USA

For all other areas, write to

CERN Scientific Information Service CH-1211 Geneva 23 Switzerland

II. AUTHORS AND CONSULTANTS

The main areas of responsibility of the authors are as follows:

- (1) Gauge and Higgs Bosons: R.M. Barnett*, G. Conforto, K. Hagiwara, K. Hikasa, K. Olive, M. Suzuki
- (2) Leptons: R.M. Barnett*, R.E. Shrock, K.G. Hayes, K. Olive, D.E. Groom
- (3) Mesons: M. Aguilar-Benitez, R.M. Barnett[†], C. Caso, G. Conforto, R.A. Eichler, K. Hagiwara, J.J. Hernandez^{††}, K. Hikasa, S. Kawabata, G.R. Lynch, L. Montanet, F.C. Porter, M. Roos, R.H. Schindler, K.R. Schubert, M. Suzuki, N.A. Törnqvist, T.G. Trippe^{†††}, C.G. Wohl.
- (4) Baryons: R.M. Barnett, R. Eichler, G. Höhler, M. Suzuki, C.G. Wohl*
- (5) Miscellaneous Searches: R.M. Barnett*, K. Hagiwara, S. Kawabata, K.-I. Hikasa, S. Kawabata, K. Olive, J. Stone
- (6) Miscellaneous Tables, Figures, and Formulae: R.M. Barnett, J.J. Eastman, D.E. Groom*, R.J. Morrison, G.P. Yost
- (7) Technical Support: B. Armstrong, K. Gieselmann, G.S. Wagman

^{*}Contact person

[†]Contact person for stable mesons

^{††}Contact person for unstable mesons

^{†††}Contact person for stable K mesons

Consultants

Of great importance to this Review is our world-wide network of consultants, experts in particular topics. We mention the following people with thanks:

- D. Anderson (Fermilab)
- V.I. Balbekov (Serpukhov)
- A. Baldini (CERN)
- G. Brianti (CERN)
- E. Browne (LBL)
- R.N. Cahn (LBL)
- COMPAS Group (IHEP, Serpukhov)
- E.D. Commins (University of California, Berkeley)
- R.L. Crawford (Glasgow)
- O. Dahl (LBL)
- R.H. Dalitz (Oxford University)
- J. Donoghue (University of Massachusetts, Amherst)
- S. Eidelman (Novosibirsk)
- J. Ellis (CERN)
- V.V. Ezhela (Serpukhov)
- W. Fetscher (ETH, Zürich)
- D. Finley (Fermilab)
- V. Flaminio (University of Pisa)
- R. Flores (University of Minnesota)
- S.J. Freedman (Argonne National Lab)
- H.-J. Gerber (ETH, Zürich)
- H. Galič (SLAC)
- F.J. Gilman (SSC)
- \bullet M. Goldhaber (BNL)
- N.A. Greenhouse (LBL)
- H.E. Haber (University of California, Santa Cruz)
- R. Hagstrom (ANL)
- G. Hall (Imperial College, London)
- C. Hearty (LBL)
- I. Hinchliffe (LBL)
- W. Hofmann (LBL)
- J.H. Hubbell (U.S. National Bureau of Standards)
- J. Huston (Michigan State University)
- A. Hutton (SLAC)
- J.D. Jackson (LBL)
- Zhang Jinjun (IHEP Beijing)
- K. Kajantie (University of Helsinki)
- R.W. Kenney (LBL)
- K. Kleinknecht (Universität Dortmund)
- Shin-ichi Kurokawa (KEK)
- P. Langacker (University of Pennsylvania)
- T.L. Lavine (SLAC)
- L. Lyons (University of Oxford)
- S. Majewski (University of Florida)
- D.M. Manley (Kent State University)
- W.G. Moorhead (CERN)
- D.R.O. Morrison (CERN)
- W.R. Nelson (SLAC)
- L. Okun (ITEP, Moscow)
- Y. Oyanagi (University of Tsukuba, Japan)
- A.P.T. Palounek (LBL)
- S.I. Parker (University of Hawaii)
- J.M. Paterson (SLAC)
- J.M. Peterson (LBL)
- A. Prokapenko (Novosibirsk)
- H.S. Pruys (Zürich University)
- F. Reines (University of California, Irvine)

- B. Renk (Universität Mainz)
- D. Rice (Cornell University)
- N.A. Roe (LBL)
- S. Rudaz (University of Minnesota)
- D. Schramm (University of Chicago)
- M. Shaevitz (Nevis Laboratory)
- V. Shirley (LBL)
- V. Soergel (DESY)
- E.M. Standish, Jr. (Jet Propulsion Laboratory, Pasadena)
- W.J. Stirling (University of Durham)
- S. Stone (Cornell University)
- B.N. Taylor (U.S. National Bureau of Standards)
- W.H. Toki (SLAC)
- G.H. Trilling (LBL)
- R.D. Tripp (LBL)
- P. Trower (Virginia Polytechnic Inst.)
- E. Wang (LBL)
- R. Wigmans (NIKHEF, Amsterdam)
- H. Wahl (CERN)
- L. Wolfenstein (Carnegie-Mellon University)

In addition, the Berkeley Particle Data Group has benefited from the advice of the PDG Advisory Committee, which meets annually. The members of the 1989 committee were J. Dorfan (SLAC), Chair, M. Della Negra (CERN), J. Donoghue (University of Massachusetts), E. Eichten (Fermilab), and B. Taylor (National Institute of Standards and Technology). The members of the 1988 committee were S. Ellis (University of Washington), Chair, J. Dairiki (LBL), M. Della Negra (CERN), J. Donoghue (University of Massachusetts), and J. Dorfan (SLAC).

III. THE NAMING SCHEME FOR HADRONS

A. Introduction

We introduced in the 1986 edition [Particle Data Group (1986)] a new naming scheme for the hadrons. Here we summarize the rules and rationale for the scheme.

The virtues sought after were as follows. The symbols were to be as few and as simple as possible, with those already in common use retained where possible; the symbols were to convey unambiguously the important quantum numbers of the particles they name; and the quark model was to guide the whole scheme, without limiting it. Some compromise between simplicity and long-established usage was unavoidable.

Changes from older terminology affected mainly the heavier mesons made of u, d, and s quarks. Otherwise, the only important change was that the F^{\pm} became the D_s^{\pm} . None of the lightest pseudoscalar or vector mesons changed names, nor did the $c\bar{c}$ or $b\bar{b}$ mesons (we do, however, now use χ_c for the $c\bar{c}$ χ states), nor did any of the established baryons. The Summary Tables give both the new and old names whenever a change has occurred.

We follow custom and use spectroscopic names such as $\Upsilon(1S)$ as the primary name for most of those ψ , Υ , and χ states whose spectroscopic identity is known. We continue to use the form $\Upsilon(9460)$ as an alternate, and as the primary name when the spectroscopic identity is not known.

B. "Neutral-flavor" mesons (S = C = B = T = 0)

Table I shows the naming scheme for mesons having the strangeness and all heavy-flavor quantum numbers equal to zero. The naming scheme is designed for all mesons, whether ordinary or exotic. First, we assigned names to those states with quantum numbers compatible with being $q\overline{q}$ states. The rows of the Table give the possible $q\overline{q}$ content. The columns give the possible parity/charge-conjugation states, PC=-+,+-,--, and ++; these combinations correspond one-to-one with the angular-momentum state $^{2S+1}L_J$ of the $q\overline{q}$ system being $^1(L \text{ even})_J, ^1(L \text{ odd})_J, ^3(L \text{ even})_J, \text{ or } ^3(L \text{ odd})_J.^\S$

The entries in the Table give the particle symbol. The spin J is to be added to the symbol as a subscript except for pseudoscalar and vector mesons, and the mass is added in parentheses for any meson that decays strongly. However, for the lowest mass meson resonances, we sometimes shorten names by writing ρ for $\rho(770)$, etc.

Table I. Symbols for mesons with the strangeness and all heavy-flavor quantum numbers equal to zero.

$J^{PC} = $	0 ⁻⁺ 2 ⁻⁺	1 ⁺⁻ 3 ⁺⁻	1 2	0 ⁺⁺ 1 ⁺⁺
ľ	-	•		
- (•		•

[†]The J/ψ remains the J/ψ .

Experimental determination of the mass, quark content (where relevant), and quantum numbers I, J, P, and C (or G) of a meson thus fixes its symbol. Conversely, these properties may be inferred unambiguously from the symbol.

If the main symbol cannot be assigned because the quantum numbers are unknown, X is used. Sometimes it is not known whether a meson is mainly the isospin-0 mix of $u\overline{u}$ and $d\overline{d}$ or is mainly $s\overline{s}$; a prime (or symbol ϕ) may be used to distinguish two such mixing states.

Names have been assigned for the anticipated $t\bar{t}$ mesons. Gluonium states or other mesons that are not $q\bar{q}$ states are, if the quantum numbers are not exotic, to be named just as the $q\bar{q}$ mesons are named. Such non- $q\bar{q}$ states will probably be difficult to distinguish from $q\bar{q}$ states and will likely mix with them; that is, our scheme makes no attempt to distinguish the "mostly gluonium" or "mostly $q\bar{q}$ " nature of a particle.

An "exotic" meson with quantum numbers that a $q\overline{q}$ system cannot have, namely $J^{PC}=0^{--},0^{+-},1^{-+},2^{+-},3^{-+},\cdots$, will use the same symbol as would an ordinary meson that has all the same quantum numbers as the exotic meson except for the C parity. Then a caret or "hat" is added to the symbol. For example, an isospin-1 0^{--} meson would be a $\widehat{\pi}$, an isospin-0 1^{-+} meson would be an $\widehat{\omega}$.

The results of all this were as follows. None of the lowest mass pseudoscalar or vector mesons $(\pi, \eta, \text{ and } \eta'; \rho, \omega, \text{ and } \phi)$ changed names, nor did any of the $c\bar{c}$ or $b\bar{b}$ mesons (except for χ becoming χ_c). Established mesons whose names changed

slightly are:

Old name	New name	Old name	New name
H(1170)	$h_1(1170)$	$A_2(1320)$	$a_2(1320)$
B(1235)	$b_1(1235)$	f'(1525)	$f_2'(1525)$
$A_1(1260)$	$a_1(1260)$	$\omega(1670)$	$\omega_3(1670)$
f(1270)	$f_2(1270)$		

Established mesons whose names changed completely are:

Old name	New name	Old name	New name
S(975)	$f_0(975)$	$A_3(1670)$	$\pi_2(1670)$
$\delta(980)$	$a_0(980)$	g(1690)	$\rho_3(1690)$
D(1285)	$f_1(1285)$	$\theta(1720)$	$f_2(1720)$
$\epsilon(1400)$	$f_0(1400)$	X(1850)	$\phi(1850)$
E(1420)	$f_1(1420)$	h(2030)	$f_4(2050)$
$\iota(1440)$	$\eta(1440)$		

Note that the S(975), D(1285), $\epsilon(1300)$, E(1420), $\theta(1690)$, and h(2030) all became f mesons; the new scheme reveals that all have PC = ++ and are ${}^3(L \text{ odd})_J$ states.

C. Mesons with nonzero S, C, B, and/or T

Since the strangeness or a heavy flavor is nonzero, none of the mesons here are eigenstates of charge conjugation, and in each of them one of the quarks must be heavier than the other. The rules are:

(1) The main symbol is an upper-case Roman letter indicating the heavier quark as follows:[‡]

$$s \to \overline{K}$$
 $c \to D$ $b \to \overline{B}$ $t \to T$.

- (2) If the lighter quark is not a u or a d quark, its identity is given by a subscript.
- (3) If the spin-parity is in the "normal" series, $J^P = 0^+, 1^-, 2^+, \cdots$, a superscript "*" is added.
- (4) The spin is added as a subscript unless the meson is a pseudoscalar or a vector.

Thus the pseudoscalar and vector K, K^* , D, D^* , and B mesons did not change names. Established mesons whose names did change were:

Old name	New name	Old name	New name
$Q_1(1270)$	$K_1(1270)$	L(1770)	$K_2(1770)$
$Q_2(1400)$	$K_1(1400)$	$K^*(1780)$	$K_3^*(1780)$
$\kappa(1430)$	$K_0^*(1430)$	$K^*(2045)$	$K_4^*(2045)$
$K^*(1440)$	$K_2^*(1440)$	F	D_s

Most notably, the F (the $c\bar{s}$ state) changed to a D_s . However, with the prospect of B_s , B_c , T_s , and similar mesons, there was no consistent and simple alternative. The rules can lead to cumbersome symbols, such as a D_{s2}^* , but such particles are unlikely to be often seen.

D. Baryons

No change has been made to the symbols N, Δ , Λ , Σ , Ξ and Ω used for 25 years for the baryons made of light quarks (u,d), and s quarks). They tell the isospin and quark content and the same information is conveyed by the symbols used for the baryons containing one or more heavy quarks (c,b), and t quarks). The following system was invented earlier and independently by Hendry and Lichtenberg (1978) and by Samios (1980). The rules are:

(1) Baryons with three u and/or d quarks are N's (isospin 1/2) or Δ 's (isospin 3/2).

- (2) Baryons with $two\ u$ and/or d quarks are Λ 's (isospin 0) or Σ 's (isospin 1). If the third quark is a heavy quark (not an s quark) its identity is given by a subscript. This nomenclature was already used for the $\Lambda_c(2285)$, $\Sigma_c(2455)$, and $\Lambda_b(5500)$.
- (3) Baryons with one u or d quark are Ξ's (isospin 1/2). One or two subscripts are used if one or both of the remaining quarks are heavy: thus Ξ_c, Ξ_{cc}, Ξ_b, etc.
- (4) Baryons with no u or d quarks are Ω 's (isospin 0), and subscripts indicate any heavy-quark content.

In short, the total number of u and d quarks together with the isospin determine the main symbol, and subscripts indicate any content of heavy quarks. A Σ always has isospin 1, an Ω always has isospin 0, etc.

IV. PROCEDURES

A. Selection and treatment of data

The Full Listings contain a complete record of all relevant data known to us. As a general rule, we do not include results from preprints or conference reports. There are a few exceptions to this exclusion, decided on a case-by-case basis after consultation with the experimenters.

As mentioned earlier, we no longer maintain an archival record of data of historical importance only. We do, however, quote the references of discoveries, even when the data are no longer useful.

If data are included in the Full Listings but not used in calculating or estimating the value given in the Summary Tables, they are listed in a separate section immediately following the data that *are* used. We give explanatory comments in many such cases. Amongst the reasons a measurement might be excluded are the following:

- It is superseded by or included in later results.
- No error is given.
- It is from a preprint or conference report.
- It involves some assumptions we question.
- It has a poor signal-to-noise ratio, low statistical significance, or is otherwise of much poorer quality than other data available.
- It is clearly inconsistent with other results that appear to be more reliable (see discussion in Sec. IV.D below).
- It is not independent of other results.
- It is not the best limit (see below).

In some cases, *none* of the measurements is entirely reliable and no average is calculated. For example, the masses of many of the baryon resonances, obtained from partial-wave analyses, are quoted as a range thought to probably include the true value, rather than as an average with error. This is discussed in the Baryon Full Listings.

For upper limits, we normally quote in the Summary Tables the strongest limit. We do not average or combine upper limits except in a very few cases where they may be re-expressed as measured numbers with Gaussian errors.

As is customary, we assume that antiparticles are the result of operating with CPT on particles, so both share the same spins, masses, and mean lives. The Tests of Conservation Laws Table, following the Summary Tables, lists tests of CPT and other conservation laws.

We use the following indicators in the Full Listings to tell how we get values from the tabulated measurements:

• OUR AVERAGE—From a weighted average of the

selected data.

- OUR FIT—From a constrained or overdetermined multiparameter fit of selected data.
- OUR EVALUATION—Not from a direct measurement, but evaluated from measurements of other quantities.
- OUR ESTIMATE—Based on the observed range of the data. Not from a formal statistical procedure.
- OUR LIMIT—For special cases where the limit is evaluated by us from measured ratios or other data. Not from a direct measurement.

B. Criteria for new states

An experimentalist who sees indications of a particle will of course want to know what has been seen in that region in the past. Hence we include in the Full Listings all reported states that, in our opinion, have sufficient statistical merit and that have not been disproved by more reliable data.

We are much more conservative about promoting a particle to the Summary Tables. We include only those reported states that we feel are well established. This judgment is, of course, somewhat subjective; therefore no precise criteria can be defined. For more detailed discussions, see the mini-reviews in the Full Listings. Here we attempt to specify some guidelines.

- (a) When energy-independent partial-wave analyses are available (mostly for πN resonances), approximate Breit-Wigner behavior of the amplitude appears to be the most satisfactory test for a resonance. We can check that the Argand plot follows roughly a counterclockwise circle, and that the "speed" of the amplitude also shows a maximum near the resonance energy; further, there should be data well above the resonance, showing that the speed again decreases.
- (b) When there are insufficient data to perform energy-independent analyses, one often resorts to energy-dependent partial-wave analyses. In this case, Breit-Wigner behavior is an input. We usually require that resonance solutions be found by several different analyses, preferably in different channels $(\overline{K}N \to \overline{K}N, \ \Sigma\pi, \ \text{etc.})$, before putting the resonance in the Summary Tables.
- (c) Particles stable under strong decay, most meson resonances, Ξ resonances, and some other high-mass baryon resonances fall into a category for which no partial-wave analyses exist. In general, we accept such states if they are experimentally reliable, are of high statistical significance, or are observed in several different production processes.

C. Averages and Fits

We divide this discussion on obtaining averages and errors into three sections:

- 1. Treatment of errors;
- 2. Unconstrained averaging;
- 3. Constrained fits.

1. Treatment of errors

In what follows, the "error" δx means that the range $x\pm\delta x$ is intended to be a 68.3% confidence interval about the central value x. We treat this error as if it were Gaussian. Thus, when the error is Gaussian, δx is the usual one standard deviation (1σ) . Many experimenters now give statistical and systematic errors separately. In such cases, we usually quote both errors, with the statistical error first. For averages and fits, we then add the the two errors in quadrature and use this combined error for δx .

When experimenters quote asymmetric errors $(\delta x)^+$

and $(\delta x)^-$ for a measurement x, the error that we use for that measurement in making an average or a fit with other measurements is a continuous function of these three quantities. When the resultant average or fit \bar{x} is less than $x-(\delta x)^-$, we use $(\delta x)^-$; when it is greater than $x+(\delta x)^+$, we use $(\delta x)^+$. In between, the error that is used is a linear function of x. Since the errors that are used are functions of the result, we iterate to get the final result. Asymmetric output errors are determined from the input errors assuming a linear relation between the input and output quantities.

In fitting or averaging, we do not usually include correlations between different measurements, but we try to select data in such a way as to reduce correlations. When a group improves statistical or systematic errors by further data-taking or analysis, we use only the improved result. The earlier result is either put into the list of measurements that are not used in averages or fits or is omitted entirely.

Correlated errors are, however, treated explicitly when there are a number of results of the form $A_i \pm \sigma_i \pm \Delta$ that have identical systematic errors Δ . In this case, one can first average the $A_i \pm \sigma_i$ and then combine the resulting statistical error with Δ . One obtains, however, the same result by a second procedure, averaging $A_i \pm (\sigma_i^2 + \Delta_i^2)^{1/2}$, where $\Delta_i = \sigma_i \Delta [\sum (1/\sigma_j^2)]^{1/2}$. The second procedure has the advantage that, with the modified systematic errors Δ_i , each measurement may be treated as independent and averaged in the usual way with other data. Therefore, when appropriate, we adopt this procedure, tabulate Δ_i rather than Δ for the systematic error, and include a footnote that this has been done.

2. Unconstrained averaging

To average data, we use a standard weighted least-squares procedure with the addition of a "scale factor" applied to the errors. It is worth noting, however, that a 2σ error might well be somewhat larger than twice a 1σ error, owing to the non-Gaussian character of some sets of real measurements. This is a persistent problem in averaging mildly discrepant measurements.

We begin by assuming that measurements of a given quantity are uncorrelated, and calculate a weighted average and error as

$$\overline{x} \pm \delta \overline{x} = \left(\sum_{i} w_{i} x_{i}\right) / \sum_{i} w_{i} \pm \left(\sum_{i} w_{i}\right)^{-1/2}$$

 $w_i = 1/(\delta x_i)^2 \,, \tag{1}$

where x_i and δx_i are the value and error reported by the ith experiment, and the sums run over N experiments. We also calculate $\chi^2 = \sum w_i (\overline{x} - x_i)^2$ and compare it with its expectation value, which is N-1 if the measurements obey a Gaussian distribution.

If $\chi^2/(N-1)$ is less than or equal to 1, and there are no known problems with the data, we accept the above results.

If $\chi^2/(N-1)$ is very large, we may choose not to average the data at all. Alternatively, we may quote the calculated average, but then give an educated guess as to the error, a conservative estimate designed to take into account known problems with the data.

Finally, if $\chi^2/(N-1)$ is greater than 1, but not greatly so, we still average the data, but then also do the following:

(a) We try to take account of $\chi^2/(N-1)$ being greater than 1 by scaling up our quoted error of $\delta \bar{x}$ in Eq. (1) by a scale factor S defined as

$$S = \left[\chi^2/(N-1)\right]^{1/2} \ . \tag{2}$$

Our reasoning is as follows. The large value of the χ^2 is likely to be due to underestimation of errors in at least one of the experiments. Since we do not know which of the errors are underestimated, we assume that they are all underestimated by the same factor S. If we scale up all input errors by this factor, the χ^2 becomes N-1, and of course the output error $\delta \bar{x}$ scales up by the same factor.

When combining data with widely varying errors, we modify this procedure slightly. We evaluate S by using only the experiments with errors that are not much greater than those of the more precise experiments, i.e., only those experiments with errors less than a "ceiling" δ_0 , arbitrarily chosen to be

$$\delta_0 = 3N^{1/2} \ \delta \overline{x} \ .$$

Here $\delta \overline{x}$ is the unscaled error of the mean of all the experiments. This is done because although the low-precision experiments have little influence on the value \overline{x} and $\delta \overline{x}$, they can make significant contributions to the χ^2 , and the contribution of the high-precision experiments tends to be obscured by them. Note that if each experiment had the same error δx_i , then $\delta \overline{x}$ would be $\delta x_i/N^{1/2}$, so each individual experiment would be well under the ceiling.

This scaling approach has the property that if there are two values with comparable errors separated by much more than their stated errors (with or without a number of other experiments of lower accuracy), the error on the mean value $\delta \bar{x}$ is increased so that it is approximately half the interval between the two discrepant values.

We emphasize that our scaling procedures for errors in no way affect central values. In addition, to recover the unscaled error $\delta \overline{x}$, simply divide the quoted error by S.

(b) If, after removing experiments with errors larger than δ_0 , the number M remaining is at least three, and $\chi^2/(M-1)$ is greater than 1.25, then we plot in the Full Listings an ideogram to display the pattern of the data. We do not extract numbers from these ideograms; they are intended simply as visual aids. Sometimes only one or two data points lie apart from the main body; other times the data split into two or more groups. The reader can use this information in deciding upon an alternative average. Figure 1 shows such an ideogram.

Each measurement appearing in an ideogram is represented by a Gaussian with a central value x_i , error δx_i , and area proportional to $1/\delta x_i$. The choice of $1/\delta x_i$ for the areas is somewhat arbitrary. With this choice, the center of gravity of the ideogram corresponds to an average that uses weights equal to $1/\delta x_i$ rather than the $(1/\delta x_i)^2$ used in the weighted averages. This may be appropriate for the case in which some experiments have seriously underestimated their systematic errors. However, since for this choice of area the height of the Gaussian for each measurement is proportional to $(1/\delta x_i)^2$, the peak position of the ideogram will often favor the high-precision measurements at least as much as does the least-squares average. The 1986 edition [Particle Data Group (1986)] contains a detailed discussion of the

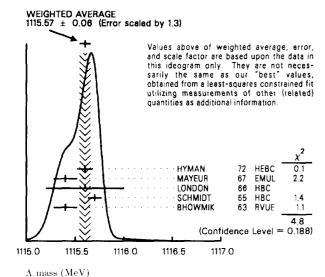


Fig. 1. Ideogram of measurements of the Λ mass. The "data point" at the top shows the position of the weighted average, while the width of the error bar (and the shaded pattern beneath it) shows the error in the average after scaling by the factor S. Only those experiments indicated by + error flags were precise enough to be accepted in the calculation of S; the column on the far right gives the χ^2 contribution of each of these experiments. Less precise experiments would be included in the calculation of the weighted average, but not of S; they would have \bot error flags.

motivation behind the use of ideograms.

3. Constrained fits

Except for trivial cases, all branching ratios and rate measurements are analyzed by making a simultaneous least-squares fit to all the data and extracting the partial decay fractions P_i , the partial widths Γ_i , the full width Γ , and the associated error matrix.

Assume, for example, that a state has m partial decay fractions P_i , where $\sum P_i = 1$. These have been measured in N_r different ratios R_r , where, e.g., $R_1 = P_1/P_2$, $R_2 = P_1/P_3$, etc. [We can handle any ratio R of the form $\sum \alpha_i P_i / \sum \beta_i P_i$, where α_i and β_i are constants, usually 1 or 0. The forms $R = P_i P_j$ and $R = (P_i P_j)^{1/2}$ are also allowed.] Further assume that each ratio R has been measured by N_k experiments (we designate each experiment with a subscript k, e.g., R_{1k}). We then find the best values of the fractions P_i by minimizing the χ^2 as a function of the m-1 independent parameters:

$$\chi^2 = \sum_{r=1}^{N_r} \left[\sum_{k=1}^{N_k} \left(\frac{R_{rk} - R_r}{\delta R_{rk}} \right)^2 \right] , \tag{3}$$

where the R_{rk} are the measured values and R_r are the fitted values of the branching ratios.

In addition to the fitted values \overline{P}_i , we calculate an error matrix $\langle \delta \overline{P}_i \ \delta \overline{P}_j \rangle$. We tabulate the diagonal elements of $\delta \overline{P}_i = (\delta \overline{P}_i \ \delta \overline{P}_i)^{1/2}$ (except that some errors are scaled as discussed below). In the Full Listings we give the complete

correlation matrix; we also calculate the fitted value of each ratio, for comparison with the input data, and list it above the relevant input, along with a simple unconstrained average of the same input.

Three comments on the example above:

- (1) There was no connection assumed between measurements of the full width and the branching ratios. But often we also have information on partial widths Γ_i as well as the total width Γ . In this case we must introduce Γ as a parameter in the fit, along with the P_i , and we give correlation matrices for the widths in the Full Listings.
- (2) We do *not* allow for correlations between input data. We do try to pick those ratios and widths that are as independent and as close to the original data as possible. When one experiment measures all the branching fractions and constrains their sum to be one, we leave one of them (usually the least well-determined one) out of the fit to make the set of input data more nearly independent.
- (3) We calculate scale factors for both the R_r and P_i when the measurements for any R give a larger-than-expected contribution to the χ^2 . According to Eq. (3), the double sum for χ^2 is first summed over experiments k=1 to N_k , leaving a single sum over ratios $\chi^2 = \sum \chi_r^2$. One is tempted to define a scale factor for the ratio r as $S_r^2 = \chi_r^2/\langle \chi_r^2 \rangle$. However, since $\langle \chi_r^2 \rangle$ is not a fixed quantity (it is somewhere between N_k and N_{k-1}), we do not know how to evaluate this expression. Instead we define

$$S_r^2 = \frac{1}{N_k} \sum_{k=1}^{N_k} \left[\frac{\left(R_{rk} - \overline{R}_r \right)^2}{(\delta R_{rk})^2 - (\delta \overline{R}_r)^2} \right] , \tag{4}$$

where $\delta \overline{R}_r$ is the fitted error for ratio r. With this definition the expected value of S_r^2 is one.

The fit is redone using errors for the branching ratios that are scaled by the maximum of S_r and one, from which new and often larger errors $\delta \overline{P}_i'$ are obtained. The scale factors we finally list in such cases are defined by $S_i = \delta \overline{P}_i'/\delta \overline{P}_i$. However, in line with our policy of not letting S affect the central values, we give the values of \overline{P}_i obtained from the original (unscaled) fit.

There is one special case in which the errors that are obtained by the preceding procedure may be changed. When a fitted branching ratio (or rate) \overline{P}_i turns out to be less than three standard deviations $(\delta \overline{P}'_i)$ from zero, a new smaller error $(\delta \overline{P}''_i)^-$ is calculated on the low side by requiring the area under the Gaussian between $\overline{P}_i - (\delta \overline{P}''_i)^-$ and \overline{P}_i to be 68.3% of the area between zero and \overline{P}_i . A similar correction is done for branching fractions that are within three standard deviations of one. This keeps the quoted errors from overlapping the boundary of the physical region.

D. Discussion

The problem of averaging data containing discrepant values is nicely discussed by Taylor (1982). He considers a number of algorithms that attempt to incorporate inconsistent data into a meaningful average. Problems occur because it is difficult to develop a procedure that handles simultaneously in a reasonable way two basic types of situations:

(a) data that lie apart from the main body of the data are incorrect (contain unreported errors); and (b) the opposite (the main body of the data is systematically wrong). Un-

fortunately, as Taylor shows, case (b) is not infrequent. His conclusion is that the choice of procedure is less significant than the initial choice of data to include or exclude.

We place much emphasis on this choice of data to include or exclude. Unfortunately, the volume of data precludes spending as much time on the problem as we would like. We address this problem by soliciting the help of many outside experts (consultants). In the final analysis, however, it is often impossible to determine which of a set of discrepant measurements are correct. Our scale-factor technique is an attempt to address this ignorance by increasing the error above that suggested by least-squares analysis. In effect, we are saying that present experiments do not allow a precise determination of this constant because of unresolvable discrepancies, and one must await further measurements. The reader is warned of this situation by the size of the scale factor, and can then go back to the literature (via the Full Listings) and redo the average as desired.

Our situation with regard to discrepant data is easier to handle than most of the cases Taylor considers, such as estimates of the fundamental constants like \hbar , etc. Most of the errors in his case are dominated by systematic effects. In particle properties data, statistical errors are often at least as large as systematic errors, and statistical errors are usually easier to estimate. A notable exception occurs in partial-wave analyses, where different techniques applied to the same data yield different results. In this case, as stated earlier, we often do not make an average but just quote a range of values.

A brief history of early Particle Data Group averages is given in Rosenfeld (1975). Updated versions of some of Rosenfeld's figures are shown in Fig. 2. The least-squares error is shown by the thick portion of the error bars; the full error bar shows the scale factor extension.

Some cases of rather wild fluctuation are shown. This usually represents the introduction of significant new data or the discarding of some older data. Older data are sometimes discarded in favor of newer data if it is felt that the newer data had smaller systematic errors, had more checks on systematic errors, made corrections unknown at the time of the older experiments, or simply had much smaller total errors. Sometimes near the time at which a large jump takes place, the scale factor becomes large, reflecting the uncertainty introduced by the new and inconsistent data. By and large, a full scan of our history plots shows a rather dull progression toward greater precision at a central value completely consistent with the first data point shown.

We conclude that the reliability of the combination of experimental data and Particle Data Group averaging procedures is usually good, but it is important to realize that fluctuations outside of the quoted errors can and do occur, perhaps with more frequency than would be expected for truly Gaussian errors.

ACKNOWLEDGMENTS

The publication of the Review of Particle Properties is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and by the U.S. National Science Foundation under Agreement No. PHY86-15529. Partial funding to cover the cost of this Review is also provided by

the European Laboratory for Particle Physics (CERN) and by an implementing arrangement between the governments of Japan (Monbusho) and the United States (DOE) on cooperative research and development.

We thank all those who have assisted in the many phases of preparing this Review. In particular, we acknowledge the usefulness of feedback from the physics community, especially those who have made suggestions or pointed out errors.

The Berkeley members of the Particle Data Group acknowledge the assistance of Gail Harper.

FOOTNOTES

[‡]Two different conventions exist in the literature for the sign of the flavor of b quarks. We have adopted the convention that the sign of the flavor of a quark is the same as the sign of its charge. Thus the strangeness of the s quark is negative, the charm of the c quark is positive, and the bottom of the b quark is negative. In addition, I_3 of the u and d quarks is positive and negative, respectively. The effect of this convention is as follows: Any flavor carried by a charged meson has the same sign as its charge. Thus the K^+ , D^+ , and B^+ have positive strangeness, charm, and bottom, respectively, and all have positive I_3 . The D_s^+ has positive charm and strangeness. Furthermore, the $\Delta(\text{flavor}) = \Delta Q$ rule, which is best known for the kaons, applies to every flavor.

§ The relations between the quantum numbers are $P = (-1)^{L+1}$, $C = (-1)^{L+S}$, $G = (-1)^{L+S+I}$, where, of course, the C quantum number (charge conjugation) is only relevant to neutral mesons.

REFERENCES

A.W. Hendry and D.B. Lichtenberg, Rep. Prog. Phys. 41, 1707 (1978).

Particle Data Group: G.P. Yost, R.M. Barnett, I. Hinchliffe,
G.R. Lynch, A. Rittenberg, R.R. Ross, M. Suzuki,
T.G. Trippe, C.G. Wohl, B. Armstrong, G.S. Wagman, F.C. Porter, L. Montanet, M. Aguilar-Benitez,
J.J. Hernandez, G. Conforto, K.R. Schubert, M. Roos,
N.A. Törnqvist, G. Höhler, K. Hagiwara and S. Kawabata, K.A. Olive, K.G. Hayes, R.H. Schindler, B. Cabrera, R.E. Shrock, R.A. Eichler, L.D. Roper, W.P. Trower,
Phys. Lett. B204 (1988).

Particle Data Group: M. Aguilar-Benitez, F.C. Porter,
J.J. Hernandez, L. Montanet, K.R. Schubert, M. Roos,
N.A. Törnqvist, G. Höhler, R.M. Barnett, I. Hinchliffe,
G.R. Lynch, A. Rittenberg, T.G. Trippe, G.P. Yost,
B. Armstrong, G.S. Wagman, T. Shimada, G.P. Gopal,
J. Primack, K.G. Hayes, R.H. Schindler, R.E. Shrock,
R.A. Eichler, R. Frosch, L.D. Roper, and W.P. Trower,
Phys. Lett. 170B (1986).

A.H. Rosenfeld, Ann. Rev. Nucl. Sci. 25, 555 (1975).

N.P. Samios, in Proceedings of the IVth International Conference on Baryon Resonances (Toronto, 1980), ed. N. Isgur, p. 309.

B.N. Taylor, "Numerical Comparisons of Several Algorithms for Treating Inconsistent Data in a Least-Squares Adjustment of the Fundamental Constants," U.S. National Bureau of Standards NBSIR 81-2426 (1982).

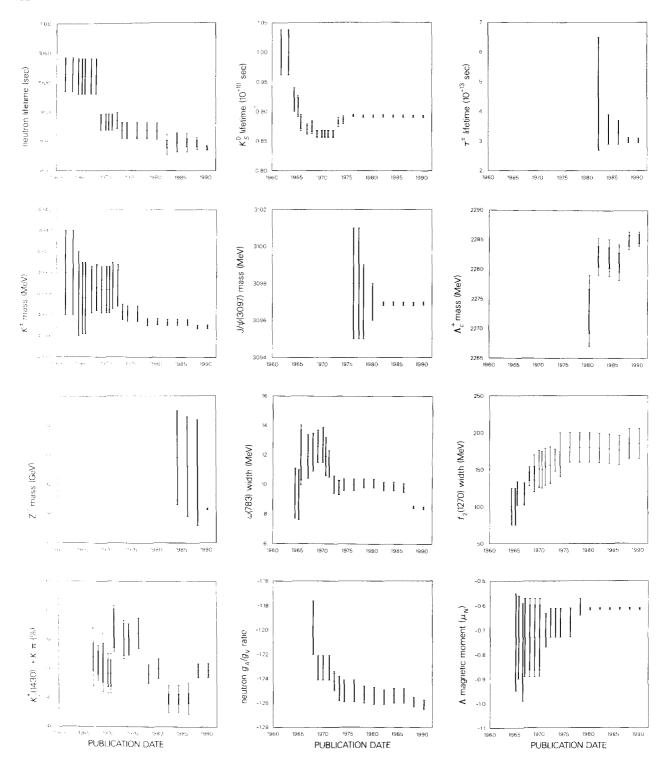


Fig. 2. Historical perspective of a few quantities tabulated in the Review of Particle Properties. The abcissa specifies the date of publication of the Review. Data measured by a variety of different techniques are included. The general reliability of the averages is good; very few are presently more than two standard deviations from their first tabulated values. A full error bar indicates the quoted error; a thick-lined portion indicates the same, but without the "scale factor" (see Sec. IV.C above). Errors with no thick-lined portion are uncertain and represent a best educated guess.

ACCESSING AND USING PARTICLE PHYSICS DATABASES*

Several publicly accessible computer databases exist which contain particle physics information. Some of these allow the user to locate papers of interest, while others contain actual numerical data. The following tells what is available and how to get started using these databases.

The SLAC Particle Physics Databases

The databases of interest at SLAC are:

- (1) HEP, a guide to particle physics journal articles, preprints, reports, theses, conference papers, etc., indexed by the standard bibliographic quantities as well as by citations and topics. HEP is a joint project of the SLAC and DESY libraries and in April 1990 contained more than 200,000 records.
- CONF, giving past and future conferences of interest to particle physicists.
- (3) HEPNAMES, giving electronic-mail addresses of many people working in high-energy physics.
- (4) INST, giving addresses (including phone and fax numbers) of high-energy physics institutions.
- (5) DATAGUIDE, an adjunct to HEP, which indexes papers containing experimental data by accelerator, detector, beam momentum, reactions, and particles studied.
- (6) PARTICLES (formerly RPP), giving the Full Listings from this Review of Particle Properties, indexed by particle and particle property.
- (7) REACTIONS, giving numerical data (e.g., cross sections, polarizations, etc.) on reactions.
- (8) EXPERIMENTS, a guide to current and past particle physics experiments, indexed similarly to the HEP and DATAGUIDE databases.

Anyone with a SLAC computing account can access these databases online. If you do not have an account and cannot find anyone who does (at major laboratories, ask at the library), contact SLAC directly. More information on the databases can be found in "A User's Guide to Particle Physics Computer-Searchable Databases on the SLAC-SPIRES System," LBL-19173, available from: Particle Data Group, Lawrence Berkeley Laboratory, Bldg. 50-Rm. 308, Berkeley, CA 94720, USA. A new edition of the "Search Guide to HEP" is available from: Library, SLAC, P.O. Box 4349, Stanford, CA 94309, USA. Or contact Louise Addis at SLAC (ADDIS@SLACVM, tel. 415-926-2411).

QSPIRES Access to SLAC/SPIRES

People without a SLAC computing account can use QSPIRES (see 'NOTE' below) to access the databases at SLAC either interactively via BITNET using the 'tell' command ('send', 'bsend', or a similar command on some systems) or using electronic mail. Here is an interactive search on HEP; the query is refined as QSPIRES sends responses to your screen:

tell QSPIRES@SLACVM FIND TITLE HADRON (response)

tell QSPIRES@SLACVM AND PION

(response)

tell QSPIRES@SLACVM AND DATE 1988

To receive the search result on your screen (≤ 10 records): tell QSPIRES@SLACVM OUTPUT (TYPE Otherwise to receive the search result as a file (via electronic mail):

tell QSPIRES@SLACVM OUTPUT PRINT BRIEF You may combine search criteria in a single command (FIND TITLE HADRON AND PION AND DATE 1988), but the command 'OUTPUT PRINT BRIEF' must be separate. Also note that a QSPIRES search defaults to the HEP database. To search another database, like CONF:

tell QSPIRES@SLACVM FIND PLACE VIENNA (IN CONF tell QSPIRES@SLACVM OUTPUT PRINT BRIEF tell QSPIRES@SLACVM OUTPUT (TYPE

Or to access the electronic version of the Review of Particle Properties (results always being returned as mail):

tell QSPIRES@SLACVM
EXPLAIN PARTICLES (IN PARTICLES
tell QSPIRES@SLACVM
FIND PP ETA MODES (IN PARTICLES

For the HEPNAMES and INST databases, you may use the special short-cut searches:

tell QSPIRES@SLACVM WHOIS ARMSTRONG,B tell QSPIRES@SLACVM WHEREIS FERMILAB

If your system does not support interactive BITNET communication or is not on the BITNET network, send electronic mail to:

QSPIRES AT SLACVM (for BITNET)
LBL::"QSPIRES@SLACVM.BITNET" (for DECNET)
ST%"QSPIRES@SLACVM.BITNET"(for LBL/DECNET)
QSPIRES%SLACVM.BITNET@LBL.GOV (for Internet)
as in the examples above. You must remove the 'tell
QSPIRES@SLACVM' from all messages:

FIND PLACE VIENNA (IN CONF

Each mail message must contain **only one line**, and the mail 'subject line' must be blank. QSPIRES will send its responses as mail. For other networks, contact your local system manager.

For more information, you can send electronic mail to HEPNAMES@SLACVM and request material on the QSPIRES commands. You can get the 'HELP' file by mailing the command 'HELP' to QSPIRES@SLACVM.

• NOTE: Use of QSPIRES is free. Anyone may use the special short-cut searches for the HEPNAMES and INST databases. Other use of QSPIRES requires that your specific computer node be registered with SLAC; an individual account is **not** required. Send mail to QSPI@SLACVM.BITNET for questions about node registration.

SPIRES HEP Databases at other Institutions

SLAC/DESY HEP and several of the other databases mentioned above are available on SPIRES at DESY, KEK, and Kyoto University, RIFP. Clone copies of HEP are kept current by nightly updates.

Contacts at these institutions are:

DESY—Hartmut Preissner (L00HTP@DHHDESY3);

KEK—Y. Miura (MIURA@JPNKEKVM);

Kyoto University, RIFP—K. Aoki (AOKI@JPNRIFP). Kyoto also operates a 'remote SPIRES' for Japan.

ACCESSING AND USING PARTICLE PHYSICS DATABASES (Cont'd)

The CERN Preprint Database

CERN has a database of high-energy preprints, PREP, similar to the SLAC/DESY HEP database. (CERN proposes adding journal articles making their database comparable in scope to HEP.) For information on QALICE, a QSPIRES-like facility for accessing this database, contact Maja Gracco, MGR@CERNVM.BITNET.

The PREP database will also run on an IBM PC (or compatible) using Micro CDS/ISIS, an information storage and retrieval system developed by UNESCO. The system is call MicroPREP and is intended for use in countries without direct access to BITNET or other electronic mail capabilities. For further information, contact Alec Hester, CERN Scientific Information Service, CH-1211 Geneva 23, Switzerland.

The Durham-RAL Particle Physics Databases

These databases contain compilations of experimental particle physics data (e.g., reaction cross sections, polarizations, etc.) and may be searched interactively using VM/CMS on both the Rutherford Appleton Laboratory (RAL) and CERN central computers. The topics include:

- (1) two-body (and quasi-two-body) reactions;
- (2) hadron and photon one- and two-particle inclusive distributions:
- (3) lepton-produced inclusive data (i.e., deep inelastic scattering, structure functions, etc.);
- (4) data from e^+e^- annihilations.

A subset of the SLAC/DESY HEP literature-searching guide (from 1980 onwards) is linked to the reaction data to inform users when new data is available. Also available are

the EXPERIMENTS and PARTICLES databases from the SLAC system. (See above.)

The databases run under the Berkeley Database Management System and are menu-driven with full on-line help information for easy use. They can be accessed by anyone having network access to the RAL or CERN computers. For PSS access to RAL, the relevant address is 23422351919169, then .2) — a guest account, PDG (password HEPDATA), is available at RAL for those without a CMS account. An EXEC file, HEPDATA, resident on the user-disk (UDISK), gives interactive access to the databases. The data are retrieved using simple keyword-based searches, and resulting data records can be listed on the terminal, sent to a printer, or transferred to the user's own machine as desired.

To insure that the databases are current, experimentalists are urged to send their data to the compilers as soon as they are available.

For more information or a user guide (1988 edition), contact Mike Whalley at Durham University, South Rd., Durham City DH1 3LE, England (MRW@UKACRL or MRW@CERNVM) or Dick Roberts at Rutherford Appleton Lab, Chilton, Didcot, Oxon. OX11 0QX, England (RGR@UKACRL). At CERN, user guides may be obtained from Alec Hester of the CERN library (HES@CERNVM).

The Serpukhov Particle Physics Databases

Many of the databases referred to above are available at Serpukhov, Inst. for High Energy Physics, 142 284 Protvino, Moscow region, USSR. Contact V.V. Ezhela for more information. Copies of the Serpukhov databases also reside on CERNVM.

^{*} Revised May 1990.

PHYSICAL CONSTANTS

Revised 1989 by B.N. Taylor. Based mainly on the "1986 Adjustment of the Fundamental Physical Constants" by E.R. Cohen and B.N. Taylor, Rev. Mod. Phys. 59, 1121 (1987). The figures in parentheses after the values give the 1-standard-deviation uncertainties in the last digits; the uncertainties in parts per million (ppm) are given in the last column. The uncertainties of the values from a least-squares adjustment are in general correlated, and the laws of error propagation must be used in calculating additional quantities; the full variance matrix is given in the cited paper. The set of constants resulting from the 1986 adjustment has been recommended for international use by CODATA (Committee on Data for Science and Technology), and is the most up-to-date, generally accepted set available.

Quantity	Symbol, equation	Value Un	cert. (ppm)
speed of light	c	299 792 458 m s ⁻¹	(exact)*
Planck constant	h	$6.626~075~5(40)\times10^{-34}~\mathrm{J~s}$	0.60
Planck constant, reduced	$\hbar \equiv h/2\pi$	$1.054\ 572\ 66(63) \times 10^{-34}\ \mathrm{J\ s}$	0.60
		$= 6.582\ 122\ 0(20) \times 10^{-22}\ MeV\ s$	0.30
electron charge magnitude	e	$1.602\ 177\ 33(49) \times 10^{-19}\ C = 4.803\ 206\ 8(15) \times 10^{-10}\ esu$	0.30, 0.03
conversion constant	$\hbar c$	197.327 053(59) MeV fm	0.30
conversion constant	$(\hbar c)^2$	$0.389\ 379\ 66(23)\ { m GeV^2\ mbarn}$	0.59
electron mass	m_e	$0.510\ 999\ 06(15)\ \text{MeV}/c^2 = 9.109\ 389\ 7(54) \times 10^{-31}\ \text{kg}$	0.30, 0.59
proton mass	m_p	$938.272\ 31(28)\ \text{MeV}/c^2 = 1.672\ 623\ 1(10) \times 10^{-27}\ \text{kg}$	0.30, 0.59
	·	= 1.007 276 470(12) $u = 1836.152 701(37) m_e$	0.012, 0.020
deuteron mass	m_d	$1875.613 \ 39(57) \ \mathrm{MeV}/c^2$	0.30
unified atomic mass unit (u)	(mass C^{12} atom)/12 = (1 g)/ N_A	931.494 32(28) MeV/ $c^2 = 1.660$ 540 2(10)×10 ⁻²⁷ kg	0.30, 0.59
permittivity of free space	ϵ_0	8.854 187 817 ×10 ⁻¹² F m ⁻¹	(exact)
permeability of free space	$\frac{\epsilon_0}{\mu_0} \left. \right\} \epsilon_0 \mu_0 = 1/c^2$	$4\pi \times 10^{-7} \text{ N A}^{-2} = 12.566 \ 370 \ 614 \dots \times 10^{-7} \text{ N A}^{-2}$	(exact)
fine structure constant	$\alpha = e^2/4\pi\epsilon_0\hbar c$	1/137.035 989 5(61)†	0.045
classical electron radius	$r_e = e^2 / 4\pi \epsilon_0 m_e c^2$	$2.817\ 940\ 92(38)\times10^{-15}\ \mathrm{m}$	0.13
electron Compton wavelength	$\lambda_e = \hbar/m_e c = r_e \alpha^{-1}$	$3.861\ 593\ 23(35) \times 10^{-13}\ \mathrm{m}$	0.089
Bohr radius $(m_{\text{nucleus}} = \infty)$	$a_{\infty} = 4\pi\epsilon_0 \hbar^2 / m_e e^2 = r_e \alpha^{-2}$	$0.529\ 177\ 249(24) \times 10^{-10}\ \mathrm{m}$	0.045
wavelength of 1 eV/ c particle	hc/e	1.239 842 $44(37) \times 10^{-6}$ m	0.30
Rydberg energy	$hcR_{\infty} = m_e e^4 / 2(4\pi\epsilon_0)^2 \hbar^2 = m_e c^2 \alpha^2 / 2$	$13.605 698 1(40) \text{ eV}^{\S}$	0.30
Thomson cross section	$\sigma_T = 8\pi r_e^2/3$	0.665 246 16(18) barn	0.27
Bohr magneton	$\mu_B = e\hbar/2m_e$	5.788 382 63(52)×10 ⁻¹¹ MeV T ⁻¹	0.089
nuclear magneton	$\mu_N = e\hbar/2m_p$	$3.152\ 451\ 66(28)\times10^{-14}\ \mathrm{MeV}\ \mathrm{T}^{-1}$	0.089
electron cyclotron freq./field	$\omega_{\mathrm{cycl}}^e/B = e/m_e$	$1.758~819~62(53)\times10^{11}~{\rm rad~s^{-1}~T^{-1}}$	0.30
proton cyclotron freq./field	$\omega_{\mathrm{cycl}}^{p}/B = e/m_{p}$	$9.578~830~9(29)\times10^7~{\rm rad~s^{-1}~T^{-1}}$	0.30
gravitational constant	G_N	$6.672\ 59(85)\times10^{-11}\ \mathrm{m^3\ kg^{-1}\ s^{-2}}$	128
8	C IV	$= 6.707 \ 11(86) \times 10^{-39} \ \hbar c \ (\text{GeV}/c^2)^{-2}$	128
standard grav. accel., sea level	g	$9.806 65 \text{ m s}^{-2}$	(exact)
		$6.022\ 136\ 7(36) \times 10^{23}\ \mathrm{mol}^{-1}$	
Avogadro number	N_A		0.59
Boltzmann constant	k	1.380 $658(12) \times 10^{-23} \text{ J K}^{-1\S}$	8.5
		$= 8.617 385(73) \times 10^{-5} \text{ eV K}^{-1}$	8.4
Wien displacement law constant		$2.897\ 756(24) \times 10^{-3} \text{ m K}^{\S}$	8.4
	$N_A k(273.15 \text{ K})/(1 \text{ atmosphere})$	$22.414\ 10(19) \times 10^{-3}\ m^3\ mol^{-1}$	8.4
Stefan-Boltzmann constant	$\sigma = \pi^2 k^4 / 60 \hbar^3 c^2$	$5.670 \ 51(19) \times 10^{-8} \ \text{W m}^{-2} \ \text{K}^{-4\S}$	34
Fermi coupling constant	$G_F/(\hbar c)^3$	$1.166\ 37(2) \times 10^{-5}\ \mathrm{GeV^{-2}}$	17
weak mixing angle	$\sin^2 \theta_W$	0.2259 ± 0.0046	
W^{\pm} boson mass	m_W	$80.6 \pm 0.4 \text{ GeV}/c^2$	
Z ⁰ boson mass	m_Z	$91.161 \pm 0.031 \text{ GeV}/c^2$	
$\pi = 3.141\ 592\ 68$		$8 \ 459 \ 045 \ 235 \qquad \qquad \gamma = 0.577 \ 215 \ 664 \ 901 \ 532 \ 861$	
$1 \text{ in} \equiv 0.0254 \text{ m} 1 \text{ barn} \equiv 10$	$^{-28} \text{ m}^2$ 1 eV	= 1.602 $\overline{17733(49)} \times 10^{-19} \text{ J}$ 1 gauss (G) $\equiv 10^{-4} \text{ tesls}$	a (T)
		= 1.782 662 $70(54) \times 10^{-36} \text{ kg}$ 0° C = 273.15 K	,
$1 \text{ fm} \equiv 10^{-15} \text{ m} \qquad 1 \text{ erg} \equiv 10$	$^{-7}$ joule (J) 2.997 924 58×10^9 esu	= 1 coulomb (C) 1 atmosphere $\equiv 760 \text{ torr} \equiv 1.013 25 \text{ s}$	$< 10^5 \text{ N/m}^2$

^{*} The speed of light is now defined to be 299 792 458 m/s. For a discussion, see B.W. Petley, Nature 303, 373 (1983).

 $^{^\}dagger$ At $Q^2=m_e^2.$ At Q^2 of order m_W^2 the value is approximately 1/128.

[§] Since the 1986 adjustment, new experiments have yielded improved values of the Rydberg constant for R_{∞} , and also for the gas constant R and hence for quantities derived from it such as the Boltzmann constant k. The new results are $R_{\infty}=10$ 973 731.571(4) m⁻¹, k=1.380 651 3(25) × 10⁻²³ J K⁻¹ (1.8 ppm) = 8.617 344(15) × 10⁻⁵ eV K⁻¹ (1.7 ppm), b=2.897 769 4(49) × 10⁻³ m K (1.7 ppm), $N_Ak=22.413$ 992(38) × 10⁻³ m³ mol⁻¹ (1.7 ppm), and $\sigma=5.670$ 399(38) × 10⁻⁸ W m⁻² K⁻⁴ (6.8 ppm).

ASTROPHYSICAL CONSTANTS*

Quantity Symi	bol, equ	ation	Value	Quantity	Symbol	Value
Newtonian gravitational constant	G_N	6.672 59(85)	$\times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-1}$	earth equatorial radi v_{\odot} around center of		$6.38140 \times 10^6 \text{ m}$ 220 (20) km s ⁻¹
astronomical unit	$\mathbf{A}\mathbf{U}$	1.495 978 70	$66(2) \times 10^{11} \text{ m}$	solar radius in galaxy		8.5 kpc
Planck mass $\sqrt{\hbar}$	$\overline{c/G_N}$,	$(9) \times 10^{19} \text{ GeV}/c^2$ $(14) \times 10^{-8} \text{ kg}$	local density of matter Hubble parameter		0.3 GeV cm ⁻³ $\approx 3 \times 10^4 \rho_c$ 100 h_0 km s ⁻¹ Mpc ⁻¹
tropical year (1900) [†] mean sidereal day	yr	31 556 925.9 23 ^h 56 ^m 04 ^s		normalized Hubble	h_0	$h_0 \times (0.97781 \times 10^{10} \mathrm{yr})^{-1}$ $0.4 < h_0 < 1$
parsec (1 AU/1 arc sec)	\mathbf{pc}	3.085 677 58	$0.6 \times 10^{16} \text{ m}$	parameter [‡]	74()	$0.4 < n_0 < 1$
light year solar mass	ly M_{\odot}	0.3066 pc = 1.98892(25)	$= 0.946 \times 10^{16} \text{ m}$ $\times 10^{30} \text{ kg}$	critical density $ ho_c$ of the universe [‡]	$=3H_0^2/8\pi G_N$	$2.775366273 \times 10^{11} h_0^2 M_{\odot} \text{Mpc}^{-3}$ = $1.87882(24) \times 10^{-29} h_0^2 \text{ g cm}^{-3}$
Schwarzschild $2G_N$ radius of the sun	$/M_{\odot}/c^2$	2.953 250 07		density parameter of the universe [‡]	$\Omega_0 \equiv \rho_0/\rho_c$	$0.05 < \Omega_0 < 4$
solar luminosity solar equatorial radius	L_{\odot} R_{\odot}	$3.826(8) \times 1$ $6.9599(7) \times$		cosmological constant age of the universe [‡]	t_0	$ \Lambda < 3 \times 10^{-52} \text{ m}^{-2}$ $1.5(5) \times 10^{10} \text{ yr}$

- * Compiled with the help of K.A. Olive, J. Primack, S. Rudaz, and E. M. Standish, Jr. Some values are taken from C.W. Allen, Astrophysical Quantities (Athlone Press, London, 1973) and The Astronomical Almanac for the year 1990 (U.S. Government Printing Office, Washington, and Her Majesty's Stationery Office, London).
- † Equinox to equinox; defining constant. The 1990 value is about 0.7 s less.
- [‡] Subscript 0 indicates present-day values.

BIG-BANG COSMOLOGY*

All observational evidence to date indicates that our universe is very nearly homogeneous and isotropic. The most general space-time interval with these properties is the Friedmann-Robertson-Walker metric (with c=1):

$$ds^2 = dt^2 - R^2(t) \left[\frac{dr^2}{1-\kappa r^2} + r^2 \left(d\theta^2 + \sin^2\theta \, d\phi^2 \right) \right] \ . \label{eq:ds2}$$

where $\kappa = +1, -1$, or 0 corresponds to closed, open, or spatially flat geometries; R(t) is a scale factor for distances in comoving coordinates. Einstein's equations lead to the Friedmann equation

$$H^2 \equiv \left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi \ G_N \ \rho}{3} \ - \ \frac{\kappa}{R^2} + \frac{\Lambda}{3} \ . \label{eq:H2}$$

as well as to

$$\frac{\ddot{R}}{R} = \frac{\Lambda}{3} - \frac{4\pi G_N}{3} ~(\rho + 3p) ~. \label{eq:Relation}$$

where H(t) is the Hubble parameter. ρ is the total mass-energy density, p is the isotropic pressure, and Λ is the cosmological constant. (For limits on Λ , see the Table of Astrophysical Constants: we will assume here $\Lambda=0$.) The Friedmann equation serves to define the density parameter Ω_0 (subscript 0 indicates present-day values):

$$\kappa/R_0^2 = H_0^2(\Omega_0 - 1)$$
 . $\Omega_0 = \rho_0/\rho_c$:

and the critical density is defined as

$$\rho_c \equiv \frac{3H_0^2}{8\pi\,G_N} = 1.88 \times 10^{-26} \,h_0^2 \; \mathrm{kg} \; \mathrm{m}^{-3} \; .$$

with

$$H_0 = 100h_0 \text{ km s}^{-1} \text{ Mpc}^{-1}$$

Observational bounds give $0.4 < h_0 < 1$. The three possible values of κ , +1, -1, and 0, correspond to $\Omega_0 > 1$. < 1, and = 1, i.e., to closed, open, and flat (critical) universes. The value of Ω_0 is inferred from velocity measurements on scales greater than 100 kpc, which are all consistent with $0.1 \lesssim \Omega_0 \lesssim 0.4$. Conservative bounds are $0.05 \leq \Omega_0 \leq 4$. The portion of Ω in luminous matter is much smaller, $0.005 \leq \Omega_{\rm lum} \leq 0.02$. The excess of Ω_0 over $\Omega_{\rm lum}$ leads to the inference that most of the matter in the universe is nonluminous "dark" matter.

Energy conservation implies that $\dot{\rho}=-3(\dot{R}/R)~(\rho+p)$, so that for a matter-dominated (p=0) universe $\rho\propto R^{-3}$, while for a radiation-dominated $(p=1/3\rho)$ universe $\rho\propto R^{-4}$. Thus the less singular curvature term κ/R^2 in the Friedmann equation can be neglected at early times when R is small. Energy conservation also implies that the universe expands adiabatically, $R^3s=$ constant, where the entropy density $s=(\rho+p)/T$ and T is temperature. The energy density of radiation can be expressed as

$$\rho_r = \frac{\pi^2 k^4}{30} \; N(T) T^4 \; .$$

with $\hbar=1.$ where N(T) counts the effectively massless degrees of freedom of bosons and fermions:

$$N(T) = \sum_B g_B + \frac{7}{8} \sum_F g_F \ . \label{eq:NT}$$

For example, for $m_{\mu}>kT>m_e,\ N(T)=g_{\gamma}+7/8\left(g_e+3g_{\nu}\right)=2+7/8\left[4+3(2)\right]=43/4.$ For $m_{\pi}>kT>m_{\mu},\ N(T)=57/4.$

In the early universe when $\rho \sim \rho_r$, then $\dot{R} \sim 1/R$, so that $R \propto t^{1/2}$ and $Ht \to 1/2$; the time-temperature relation then follows:

$$t = 2.4 [N(T)]^{-1/2} \left(\frac{1 \text{ MeV}}{kT}\right)^2 \text{ s}.$$

Today, the energy density in photons is $\rho_{\gamma} = (\pi^2 k^4/15) T_0^4$, where the present temperature of the microwave background is $T_0 = 2.73 \pm 0.05 \mathrm{K}$, and the number density of photons n_{γ} is $400 \, (T_0/2.7 \, \mathrm{K})^3 \,$ cm $^{-3}$. For nonrelativistic matter (such as baryons) today, the energy density is $\rho_B = m_B n_B$ with $n_B \propto R^{-3}$, so that for most of the history of the universe n_B/s is constant. Today, the entropy density is related to the photon density by $s \approx 7 n_{\gamma}$. Big Bang nucleosynthesis calculations limit $\eta = n_B/n_{\gamma}$ to $3 \times 10^{-10} \leq \eta \leq 10^{-9}$. The parameter η is also related to the portion of Ω in baryons

$$\Omega_B = 3.6 \times 10^7 \eta \ h_0^{-2} \ (T_0/2.7 \ \mathrm{K})^3 \ .$$

so that $0.01 < \Omega_b \; h_0^2 < 0.04$ and hence the universe cannot be closed by baryons.

^{*} Written December 1985 by K.A. Olive and S. Rudaz.

DARK MATTER*

There is increasing evidence for the existence of large quantities of dark matter in the Universe. The most direct piece of evidence comes from the astronomical observation of the motion of visible matter (stars and regions of neutral hydrogen gas) in galaxies. The observed velocities due to rotational motion in spiral galaxies are measured to be largely independent of the distance to the center of these galaxies. In the absence of any unseen component, we would expect that the velocity falls off with increasing distance, $v^2 \approx G_N M_{\rm vis}/r$. In contrast, a flat rotation curve implies a total mass $M_{\rm tot} \approx G_N^{-1} \ v_{\rm obs}^2 r$ $[\approx 10^{11} M_{\odot} \ (v_{\rm obs}/200 \ {\rm km \ s^{-1}})^2 \ (r/10 \ {\rm kpc})]$ in excess of the visible mass $M_{\rm vis}$. It can be inferred from these observations that there exists a dark matter component distributed in a (roughly) spherical halo about the galaxy. The dynamics of groups of galaxies and clusters, as well as the presence of very hot gas in elliptical galaxies require large quantities of unseen matter as well. In addition, theories of cosmological inflation predict that the density parameter of the Universe $\Omega_{\mathrm{tot}} = 1$, whereas standard Big Bang nucleosynthesis requires $\Omega_{\rm baryon} \leq 0.1$, implying the existence of nonbaryonic dark matter. Less direct evidence comes from our theoretical understanding of the growth of density perturbations as seeds for galaxy formation. Without the presence of dark matter, it is very difficult to reconcile the existence of galaxies (and quasars) at high redshifts with limits on the anisotropy of the microwave background radiation. Perturbations in baryons can grow only after the time of recombination, i.e. when the baryons decouple from the microwave background. When $\Omega_{\rm tot}=1$ due to dark matter, matter domination occurs much earlier and dark matter perturbations grow for a longer period thus avoiding a conflict with limits on the anisotropy of the microwave background.

In our own galaxy, the distribution of the visible matter and its observed circular motion determine the local (solar neighborhood) dark matter density $\rho^{\rm DM}\approx 0.3~{\rm GeV~cm^{-3}}$. Regardless of the nature of the dark matter, it must behave as a collisionless gas, with a broad velocity distribution (typically assumed to be Maxwellian); $\langle v \rangle \approx \Delta v \approx 300~{\rm km~s^{-1}}$ in our galaxy.

We do not know the identity of the dark matter nor whether there is more than one type of dark matter. Baryons are difficult to conceal and in the standard Big Bang model cannot make up all of the dark matter if $\Omega_{\rm tot}=1$. It is also theoretically unlikely and is not at present observationally motivated that galactic halos could be made of very dim objects. There are several theoretical elementary particle candidates that could explain the existence of dark matter, of which the most commonly discussed are: a neutrino (if massive), a neutralino (from supersymmetry), and the axion (from the strong CP problem).

Regardless of the exact identity of the dark matter, its kinetic energy at the time when dark-matter domination begins determines the subsequent evolution of the density perturbations that seed galactic and large structures. If the dark matter is relativistic

(hot dark matter, HDM) only the largest (supercluster) structures survive and they must fragment to form galactic structure, whereas if it is nonrelativistic (cold dark matter, CDM), structure on all scales is preserved. The large-scale distribution of matter in N-body simulations of a HDM-dominated universe is not compatible with observations (unless there are point-like density perturbations), whereas a flat CDM-dominated universe requires that the visible matter be predominantly concentrated in the denser regions of the DM distribution (biased galaxy formation).

For a cold dark matter particle species with equal particle (X) and antiparticle (\overline{X}) densities (except for the axions), its cosmological density at present is

$$\begin{split} &\Omega_X \, h^2 \approx 1.6 \times 10^{-10} \, N_F^{1/2} \, (T_X/T_\gamma)^3 \\ &\times \, \left(a + \frac{1}{12} b \, \langle v^2 \rangle_f \right)^{-1} \, \langle v^2 \rangle_f^{-1} \end{split} \tag{1}$$

with $a,\ b$ determined from the (velocity averaged) annihilation cross section, expanded in powers of momentum, $\langle v\,\sigma_{X\overline{X}}\,\rangle = a + \frac{1}{6}b\,\langle v^2\rangle_f$. at freezeout temperature $T_f\,(\langle v^2\rangle_f = 6T_f/M_X)$ at which the X's drop from thermal equilibrium (typically $T_f \approx \frac{1}{20}M_X$). In Eq. (1), N_F is the total number of relativistic degrees of freedom at T_f and (T_X/T_γ) is the ratio of the temperatures of X's and photons at T_f . In the halo of our galaxy $\langle v^2\rangle \sim 10^{-6}$, thus $\langle v\,\sigma_{X\overline{X}}\,\rangle_{\rm halo}$ and Ω_X are closely related.

Several proposals or experiments exist to detect cold dark matter candidates. In the case of heavy $(M \ge 1 \text{ GeV})$ particles, elastic scattering from nuclei would produce nuclear recoils with energies of $\gtrsim 1 \text{ keV}$, and several techniques have been proposed to detect these recoils. The expected collision rate for a target nucleus mass m_N is:

$$R = 4.3 \text{ kg}^{-1} \text{ day}^{-1} \left(\frac{\text{GeV}^2}{m_N m_x} \right) \left(\frac{\sigma_{\text{el}}}{10^{-38} \text{ cm}^2} \right) \times \left(\frac{\rho^{\text{DM}}}{0.3 \text{ GeV cm}^{-3}} \right) \left(\frac{\langle |v_E| \rangle}{300 \text{ km s}^{-1}} \right) , \qquad (2)$$

where $\langle |v_E| \rangle$ is the average velocity at which they strike the detector. Since crossing symmetry relates $\sigma_{\rm el}$ to $\sigma_{X\overline{X}}$, R is closely related to Ω_X . Dirac neutrinos and sneutrinos with masses 0.012–20 TeV have already been excluded by double- β decay experiments. Axions could be detected by their expected coherent conversion to microwave photons in a tuned cavity. Products of DM annihilation in the halo (e.g., cosmic ray \bar{p} 's, e^+ 's, γ 's) and the core of the Sun (ν 's) would indirectly signal the existence of particle DM. The absence of a signal in high energy solar- ν searches using underground detectors rules out sneutrinos whereas cosmic ray searches do not constrain theory so far.

^{*} Written September 1989 by R. Flores and K.A. Olive.

INTERNATIONAL SYSTEM (SI) NOMENCLATURE

Complete Set of Units

Derived units (cont'd) electric charge electric potential electric resistance electric conductance electric capacitance	coulomb volt ohm siemens farad	C V Ω S
electric potential electric resistance electric conductance electric	volt ohm siemens	V Ω S
potential electric resistance electric conductance electric	ohm	Ω S
resistance electric conductance electric	siemens	S
conductance electric		
1	farad	F
magnetic flux	weber	Wb
inductance magnetic	henry tesla	H T
flux density		
luminous flux	lumen	lm
illuminance	lux	lx
*activity (of a radioactive	becquerel	Bq
source)		C
I and control down	gray	Gy
	source) *absorbed dose	source)

See Quantities, Units, and Symbols, report of the Symbols Committee of the Royal Society, 2^{nd} ed. (Royal Society, London, 1975).

COMMONLY-USED METRIC PREFIXES

$10^{-1} \ \mathrm{deci} \ (\mathrm{d})$	10^{-2} centi (c)	10 ⁻³ milli (m)	10^{-6} micro (μ)	10^{-9} nano (n)	10 ⁻¹² pico (p)	10^{-15} femto (f)	$10^{-18} \text{ atto (a)}$
10 deca (da)	10^2 hecto (h)	10 ³ kilo (k)	$10^6~{ m mega~(M)}$	10 ⁹ giga (G)	10^{12} tera (T)	10^{15} peta (P)	$10^{18} \ { m exa} \ ({ m E})$

^{*}See Radioactivity and Radiation Protection Section.

ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS*

Material	Z	A	$egin{array}{c} ext{Nuclear}^a \ ext{total} \ ext{cross} \ ext{section} \ \sigma_T \ [ext{barn}] \end{array}$	$egin{array}{ll} ext{Nuclear}^b \ ext{inelastic} \ ext{cross} \ ext{section} \ ext{} \sigma_I \ ext{[barn]} \end{array}$	$\begin{array}{c} \text{Nuclear}^{c} \\ \text{collision} \\ \text{length} \\ \lambda_T \\ \text{[g/cm}^2] \end{array}$	Nuclear c interaction length λ_I [g/cm ²]	$\frac{dE}{dx}\Big _{\min}^{d}$ $\left[\frac{\text{MeV}}{\text{g/cm}^2}\right]$	[g/cm	ion length e X_0 C^2 s for gas	Density f [g/cm ³] () is for gas [g/ ℓ]	Refractive index n^f () is $(n-1)\times 10^6$ for gas
$\overline{\mathrm{H_2}}$	1	1.01	0.0387	0.033	43.3	50.8	4.12	61.28	865	0.0708(0.090)	1.112(140)
D_2	1	2.01	0.073	0.061	45.7	54.7	2.07	122.6	757	0.162(0.177)	1.128
He	2	4.00	0.133	0.102	49.9	65.1	1.94	94.32	755	0.125(0.178)	1.024(35)
Li	3	6.94	0.211	0.157	54.6	73.4	1.58	82.76	155	0.534	_
Be	4	9.01	0.268	0.199	55.8	75.2	1.61	65.19	35.3	1.848	
\overline{C}	6	12.01	0.331	0.231	60.2	86.3	1.78	42.70	18.8	2.265^{g}	
N_2	7	14.01	0.379	0.265	61.4	87.8	1.82	37.99	47.0	0.808(1.25)	1.205(300)
O_2	8	16.00	0.420	0.292	63.2	91.0	1.82	34.24	30.0	1.14(1.43)	1.22(266)
Ne	10	20.18	0.507	0.347	66.1	96.6	1.73	28.94	24.0	1.207(0.90)	1.092(67)
Al	13	26.98	0.634	0.421	70.6	106.4	1.62	24.01	8.9	2.70	
Si	14	28.09	0.660	0.440	70.6	106.0	1.66	21.82	9.36	2.33	
Ar	18	39.95	0.868	0.566	76.4	117.2	1.51	19.55	14.0	1.40(1.78)	1.233(283)
Ti	22	47.88	0.995	0.637	79.9	124.9	1.51	16.17	3.56	4.54	
Fe	26	55.85	1.120	0.703	82.8	131.9	1.48	13.84	1.76	7.87	_
Cu	29	63.55	1.232	0.782	85.6	134.9	1.44	12.86	1.43	8.96	
Ge	32	72.59	1.365	0.858	88.3	140.5	1.40	12.25	2.30	5.323	_
Sn	50	118.69	1.967	1.21	100.2	163	1.26	8.82	1.21	7.31	(505)
Xe	54	131.29	2.120	1.29	102.8	169	1.24	8.48	2.77	3.057(5.89)	(705)
W	74	183.85	2.767	1.65	110.3	185	1.16	6.76	0.35	19.3	_
Pt	78	195.08	2.861	1.708	113.3	189.7	1.15	$6.54 \\ 6.37$	$0.305 \\ 0.56$	$21.45 \\ 11.35$	
Pb U	$\frac{82}{92}$	207.19 238.03	$\frac{2.960}{3.378}$	$1.77 \\ 1.98$	$116.2 \\ 117.0$	194 199	1.13 1.09	6.00	≈0.32	≈18.95	
				1.30		90.0	1.82			0.001205(1.29)	1.000273(293)
	, 1 atn	n. (STP in	n paren.)		$62.0 \\ 60.1$	90.0 84.9	$\frac{1.82}{2.03}$	$36.66 \\ 36.08$	36.1	1.00	1.33
H ₂ O		h				99.9		26.7	10.7	2.5	1.00
Shielding SiO ₂ (qua		te			$67.4 \\ 67.0$	99.9	$1.70 \\ 1.72$	27.05	12.3	2.64	1.458
		nber 26°K			43.3	50.8	4.12	61.28	≈1000	≈ 0.063 i	1.100
- \		nber 31°K	, .		45.7	54.7	2.07	122.6	≈900	$\approx 0.140^{i}$	1.110
H-Ne mix	cture (5	50 mole pe	ercent) J		65.0	94.5	1.84	29.70	73.0	0.407	1.092
Ilford em	ulsion (G5			82.0	134	1.44	11.0	2.89	3.815	
NaI					94.8	152	1.32	9.49	2.59	3.67	1.775
BaF_2					92.1	146	1.35	9.91	2.05	4.89	1.56
BGO (Bi					97.4	156	1.27	7.98	1.12	7.1	2.15
Polystyre	ene, scir	ntillator (CH) *		58.4	82.0	1.95	43.8	42.4	1.032	1.581
Lucite, P	lexiglas	s (C ₅ H ₈ O ₅	2)		59.2	83.6	1.95	40.55	≈34.4	1.16 - 1.20	≈ 1.49
Polyethyl	lene (C	$H_2)$			56.9	78.8	2.09	44.8	≈47.9	0.92 - 0.95	_
Mylar (C					60.2	85.7	1.86	39.95	28.7	1.39	
Borosilica	ate glas	s (Pyrex)	Ł		66.2	97.6	1.72	28.3	12.7	2.23	1.474
$\overline{\mathrm{CO_2}}$					62.4	90.5	1.82	36.2	(18310)	(1.977)	(410)
Ethane C	C_2H_6				55.73	75.71	2.25	45.66	(34035)	0.509(1.356)	m = (1.038) m
Methane	CH_4				54.7	74.0	2.41	46.5	(64850)	0.423(0.717)	(444)
Isobutane	e C_4H_1	0			56.3	77.4	2.22	45.2	(16930)	(2.67)	(1270)
NaF					66.78	97.57	1.69	29.87	11.68	2.558	1.336
LiF		_ 、	-0		62.00	88.24	1.66	39.25	14.91	2.632	1.392
		f_2) gas, 20	6°C, 1 atm.		70.6	106	1.62	23.7	4810	(4.93)	1.001080
Silica Aer	_	ı _ n			65.5	95.7	1.83	29.85	≈150	0.1-0.3	$1.0 + 0.25 \rho$
NEMA G	aro bia	te f			62.6	90.2	1.87	33.0	19.4	1.7	

ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS (Cont'd)

Material	Dielectric constant $(\kappa = \epsilon/\epsilon_0)$	Young's modulus	Coeff. of thermal	Specific heat	Electrical resistivity	Thermal conductivity
	() is $(\kappa 1) \times 10^6$	$[10^6 \text{ psi}]$	expansion	[cal/g-°C]	$[\mu\Omega cm(@^{\circ}C)]$	[cal/cm-°C-sec]
	for gas	, , ,	$[10^{-6} \mathrm{cm/cm}^{\circ}\mathrm{C}]$	1 70 1	U	, ,
H_2	(253.9)					
Не	(64)					
Li			56	0.86	$8.55(0^{\circ})$	0.17
Be		37	12.4	0.436	$5.885(0^{\circ})$	0.38
C		0.7	0.6 4.3	0.165	1375(0°)	0.057
N_2	(548.5)					
O_2	(495)					
Ne	(127)					
Al		10	23.9	0.215	$2.65(20^{\circ})$	0.53
Si	11.9	16	2.8 - 7.3	0.162		0.20
Ar	(517)					
Тi		16.8	8.5	0.126	$50(0^{\circ})$	
Fe		28.5	11.7	0.11	9.71(20°)	0.18
Cu		16	16.5	0.092	$1.67(20^{\circ})$	0.94
Ge	16.0		5.75	0.073		0.14
Sn		6	20	0.052	$11.5(20^{\circ})$	0.16
Xe						
W		50	4.4	0.032	$5.5(20^{\circ})$	0.48
Pt		21	8.9	0.032	$9.83(0^{\circ})$	0.17
Pb		2.6	29.3	0.038	$20.65(20^{\circ})$	0.083
U			36.1	0.028	$29(20^{\circ})$	0.064

- * Table revised April 1988 by R.W. Kenney, σ_T , σ_I , λ_T , and λ_I are energy dependent. Values quoted apply to high energy range given in footnote a or b, where energy dependence is weak.
- a. σ_{total} at 80–240 GeV for neutrons ($\approx \sigma$ for protons) from Murthy et al., Nucl. Phys. **B92**, 269 (1975). This scales approximately as $A^{0.77}$.
- b. $\sigma_{\text{inelastic}} = \sigma_{\text{total}} \sigma_{\text{elastic}} \sigma_{\text{quasielastic}}$; for neutrons at 60–375 GeV from Roberts et al., Nucl. Phys. **B159**, 56 (1979). For protons and other particles, see Carroll et al., Phys. Lett. **80B**, 319 (1979); note that $\sigma_I(p) \approx \sigma_I(n)$, σ_I scales approximately as $A^{0.71}$.
- c. Mean free path between collisions (λ_T) or inelastic interactions (λ_I) , calculated from $\lambda = A/(N \times \sigma)$, where N is Avogadro's number.
- d. For minimum-ionizing protons and pions from Barkas and Berger. Tables of Energy Losses and Ranges of Heavy Charged Particles. NASA-SP-3013 (1964). For electrons and positrons see: M.J. Berger and S.M. Seltzer, Stopping Powers and Ranges of Electrons and Positrons (2nd Ed.), U.S. National Bureau of Standards report NBSIR 82 2550 A (1982).
- e. From Y.S. Tsai, Rev. Mod. Phys. 46, 815 (1974): X₀ data for all elements up to uranium may be found here. Corrections for molecular binding applied for H₂ and D₂. Parentheses refer to gaseous form at STP (0°C, 1 atm.).
- f. Values for solids, or the liquid phase at boiling point, except as noted. Values in parentheses for gaseous phase at STP (0 $^{\circ}$ C, 1 atm.). Refractive index given for sodium D line.
- g. For pure graphite: industrial graphite density may vary 2.1–2.3 g/cm³.
- h. Standard shielding blocks, typical composition O₂ 52%, Si 32.5%, Ca 6%. Na 1.5%, Fe 2%, Al 4%, plus reinforcing iron bars. The attenuation length, ℓ = 115 ± 5 g/cm², is also valid for earth (typical ρ = 2.15), from CERN LRI. RHEL Shielding exp., UCRL 17841 (1968).
- i. Density may vary about $\pm 3\%$, depending on operating conditions.
- Values for typical working conditions with H₂ target: 50 mole percent, 29°K, 7 atm.
- k. Typical scintillator; e.g., PILOT B and NE 102A have an atomic ratio H/C = 1.10.
- ℓ . Main components: 80% SiO₂ + 12% B₂O₃ + 5% Na₂O₂.
- m. Solid ethane density at -60 °C; gaseous refractive index at 0 °C, 546 mm pressure.
- n. Used in Čerenkov counters. Values at 26°C and 1 atm. Indices of refraction from E.R. Hayes, R.A. Schluter, and A. Tamosaitis, ANL 6916 (1964).
- o. $n(SiO_2) + 2n(H_2O)$ used in Čerenkov counters, $\rho = \text{density in g/cm}^3$. From M. Cautin et al., Nucl. Instr. and Meth. 118, 177 (1974).
- p. G10-plate, typical 60% SiO₂ and 40% epoxy.

Actinide series

l a:		<u> </u>	G:			٦٠			_ ر			l av			1 -			1		
2 He	Helium	4.002602	F 10 Ne	Neon	20.1797	18 Ar	Argon	39.948	36 Kr	Krypton	83.80	54 Xe	Xenon	131.29	At 86 Rn	Radon	(222)			
		VIIA	ļ	Fluorine	18.9984032	17 CI	Chlorine	35.4527	35 Br	Bromine	79.904		Iodine	126.90447	85 At	Astatine	(210)			
		VIA	60	Oxygen	15.9994 1	S 9	Sulfur	32.066	.4 Se	selenium	96.82	2 Te	ellurium	127.60	4 Po (olonium	(506)			
		Υ,	<u>∞</u> 2	Vitrogen	4.00674	5 P 1	Phosph.	0.973762	3 As 3	Arsenic S	4.92159	1 Sb 5	Tin Antimony Tellurium Iodine	121.75	3 Bi 8	3ismuth P	207.2 208.98037 (209)			
		ĕ	B 6 C 7	Boron Carbon Nitrogen Oxygen Fluorine Neon	12.011 14.00674 15.9994 18.9984032 20.1797	4 Si 1	Silicon	28.0855 3	12 Ge 3	German.	72.61	0 Sn 5	Tin A	118.710	12 Pb 8	Lead	207.2			
		۲		Boron	10.811	13 Al 14 Si 15 P 16 S 17 Cl 18	Aluminum Silicon Phosph. Sulfur Chlorine Argon	26.981539 28.0855 30.973762 32.066 35.4527 39.948	25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36	Zinc Gallium German. Arsenic Selenium Bromine Krypton	54.93805 55.847 58.93320 58.69 63.546 65.39 69.723 72.61 74.92159 78.96 79.904	43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53	Indium	(98) 101.07 102.90550 106.42 107.8682 112.411 114.82 118.710 121.75 127.60 126.90447 131.29	75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 T1 82 Pb 83 Bi 84 Po 85	Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine	04.3833			
			വ			1-	A	IIB 2	08 Zn 3	Zinc	62.39	18 Cd 4	admium	112.411	30 Hg 8	Mercury []	196.96654 200.59 204.3833	-		
								<u>8</u>	[n) 6	Copper	63.546	17 Ag 4	Silver (.07.8682	.9 Au	Gold	96.96654			
									8 Ni	Nickel	58.69	Pq 91	alladium	106.42	8 Pt 7	Platinum	195.08			
				MENTS				=	27 Co 2	Cobalt	8.93320	15 Rh 4	Shodium P	02:90550	77 11 7	Iridium	192.22	109		(366)
				HE ELEI					26 Fe	Iron	55.847	14 Ru 4	Ruthen.	101.07	2 Os 1	Osmium	190.2	108		(592)
				LE OF THE ELEMENTS				VIIB	25 Mn	Mangan. Iron Cobalt Nickel Copper	54.93805	43 Tc 4	Technet. Ruthen. Rhodium Palladium Silver Cadmium Indium	(86)	75 Re 7	Rhenium	186.207	107		(292)
				C TABL					24 Cr 2	hromium	51.9961	12 Mo		95.94	_			106		(263)
				PERIODIC TABI				۸B	23 V	VanadiumC	50.9415	41 NP	Niobium	92.90638	73 Ta	Rare Hafnium Tantalum Tungsten	180.9479	105 (Ha)	(Hahn.)	(262)
				Д.				IVB	22 Ti	Titanium	47.88	40 Zr	Zirconium	91.224	72 HF	Hafnium .	178.49	104 (Rf)	Ruther.) †	(261)
								22.989768 24.3050 IIIB IVB VB VIB	19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr	Potassium Calcium Scandium Titanium VanadiumChromium	39.0983 40.078 44.955910 47.88 50.9415 51.9961	39 Y	Rubidium Strontium Yttrium Zirconium Niobium Molybd.	85.4678 87.62 88.90585 91.224 92.90638 95.94	55 Cs 56 Ba 57-71 72 Hf 73 Ta 74 W	Rare	132.90543 137.327 Earths 178.49 180.9479 183.85	87 Fr 88 Ra 89–103 104 (Rf) 105 (Ha)	Francium Radium Actinides (Ruther.) (Hahn.)	
		Ι¥	4 Be	Beryllium	6.941 9.012182	12 Mg	Sodium Magnesium	24.3050	20 Ca	Calcium !	40.078	38 Sr	Strontium	87.62	56 Ba	Cesium Barium	137.327	88 Ra	Radium .	(223) 226.0254
1 H	Hydrogen	1.00794	3 Li 4	Lithium Beryllium	6.941	11 Na 12 Mg	Sodium	22.989768	19 ×	Potassium	39.0983	37 Rb	Rubidium	85.4678	55 Cs	Cesium	132.90543	87 Fr	Francium	(223)

VIIIA

≤

Rare earths	(Lanthanide	series)
'b 71 Lu]	Ytterbium Lutetium	174.967
70 Y	Ytterbiu	173.04
69 Tm 70	Erbium Thulium Y	2 167.26 168.93421 173.04
ش	rbium	.67.26
Ho 68	folmium E	93032 1
Dy 67	111	50 164.
Tb 66	Dyspi	4 162.
55 TE	Terbium	58.9253
Gd 65	m Gadolin. Terbium Dyspros.	150.36 151.965 157.25 158.92534 162.50 164.93032
Eu 64	.≘	1.965
Sm 63	um Europ	6 151
Pm 62	Samari	150.3
51 Pm	Prometh.	(145)
PN 0	[eodym.]	144.24
Pr 6	seody.	90765
Ce 59	m Pras	15 140.
28	Ceriu	140.1]
57 La	Lanthan.	138.9055

_		
103 Lr	Lawrenc.	(260)
02 No	lobelium	(259)
1 Md 1	endel. N	(258)
0 Fm 10	rmium M	(257) (
Es 10	Fe	$\stackrel{\smile}{-}$
99 Es	Einstein.	(252)
98 Cf	Californ.	(251)
æ	um	_
26	Berkeli	(247
e Cm	Curium	(247)
<u>6</u>	<u> </u>	
95 A	Americ	(243)
74 Pu	lutonium	(244)
6 de	Jun	32
03 N	Neptuni	237.04
2 U	ranium	38.0289
a 92	n.	38 238
Δ.	otactin	227.0278 232.0381 231.03588
191	ı Pr	1 23
Ė	orium	2.0381
8	Th	232.03
Ac	nium	7.0278

Names of elements 104 (Rutherfordium) and 105 (Hahmium) have not been accepted because of conflicting claims of discovery.

digit quoted. Relative isotopic abundances often vary considerably, both in naturally occurring specimens and in commercially available samples. Numbers in parentheses The atomic number (top left) is the number of protons in the nucleus. The atomic mass (bottom) is weighted by isotopic abundance in the earth's surface, relative to the are mass numbers (the whole number nearest the atomic mass, in u) of the most stable isotope of that element. Some elements without stable nuclides nevertheless exhibit mass of the carbon 12 isotope, which is assigned a mass of exactly 12 unified atomic mass units (u, formerly called amu). Standard errors range from 1 to 9 in the last a range of characteristic terrestrial compositions of long-lived radionuclides such that a meaningful atomic weight can be given. Adapted from the Table of Standard Atomic Weights of the Elements, 1987 [Pure and Applied Chemistry 60, 841 (1988)].

^{&#}x27;Revised 1990.

ELECTRONIC STRUCTURE OF THE ELEMENTS

The electron configurations and most of the ionization energies below are taken from S. Ruben, Handbook of the Elements, 3^{rd} ed. (Open Court, La Salle, IL, 1985). Twenty eight of the ionization energies have been changed slightly to bring them up to date (changes from W.C. Martin and B.N. Taylor of the National Institute of Standards and Technology, January 1990). The electron configuration for, say, iron indicates an argon electronic core (see argon), plus six 3d electrons and two 4s electrons. The ionization energy is the least energy necessary to remove to infinity one electron from an atom of the element.

			Electron configuration	Ground state	Ionization energy
	Elem	ent	$(3d^5 = \text{five } 3d \text{ electrons, etc.})$	$^{2S+1}L_J$	(eV)
1	Н	Hydrogen	(1s)	$^{2}S_{1/2}$	13.60
2	He	Helium	$(1s)^2$	$^{1}S_{0}$	24.59
3	Li	Lithium	(He) $(2s)$	$^{2}S_{1/2}$	5.39
4	Be	Beryllium	(He) $(2s)^2$	$^{+}S_{0}$	9.32
5	В	Boron	(He) $(2s)^2 (2p)$	$^{2}P_{1/2}$	8.30
6	С	Carbon	(He) $(2s)^2 (2p)^2$	${}^{3}P_{\Omega}$	11.26
7	N	Nitrogen	(He) $(2s)^2 (2p)^3$	$^{4}S_{3/2}$	14.53
8	O	Oxygen	(He) $(2s)^2 (2p)^4$	3P_2	13.62
9	F	Fluorine	(He) $(2s)^2 (2p)^5$	$^{2}P_{3/2}$	17.42
10	Ne	Neon	(He) $(2s)^2 (2p)^6$	$^{1}S_{0}$	21.56
11	Na	Sodium	(Ne) $(3s)$	$^{2}S_{1/2}$	5.14
12	Mg	Magnesium	(Ne) $(3s)^2$	$^{1}S_{0}$	7.65
13	Al	Aluminum	(Ne) $(3s)^2 (3p)$	$^{2}P_{1/2}$	5.99
14	Si	Silicon	(Ne) $(3s)^2 (3p)^2$	$^{3}P_{0}$	8.15
15	P	Phosphorus	(Ne) $(3s)^2 (3p)^3$	$^{4}S_{3/2}$	10.49
16	\mathbf{S}	Sulfur	(Ne) $(3s)^2 (3p)^4$	$^{3}P_{2}$	10.36
17	Cl	Chlorine	(Ne) $(3s)^2 (3p)^5$	$^{2}P_{3/2}$	12.97
18	Ar	Argon	(Ne) $(3s)^2 (3p)^6$	$^{1}S_{0}$	15.76
19	K	Potassium	(Ar) $(4s)$	$^{2}S_{1/2}$	4.34
20	Са	Calcium	$(Ar) \qquad (4s)^2$	$^{1}S_{0}^{-1}$	6.11
21	Sc	Scandium	(Ar) $(3d)$ $(4s)^2$ T	$^{2}D_{3/2}$	6.56
22	Ti	Titanium	$(Ar) (3d)^2 (4s)^2$ r e	3F_2	6.83
23	V	Vanadium	$(Ar) (3d)^3 (4s)^2$ a 1	$^{4}F_{3/2}$	6.75
24	Cr	Chromium	$(Ar) (3d)_{z}^{5} (4s)$ n e	$^{7}S_{3}$	6.77
25	Mn	$\mathbf{Manganese}$	(Ar) $(3d)^5 (4s)^2$ s m	$^{6}S_{5/2}$	7.43
26	Fe	Iron	$(Ar) (3d)^6 (4s)^2$ i e	$^{5}D_{4}$	7.90
27	Со	Cobalt	$(Ar) (3d)^7 (4s)^2$ t n	${}^4F_{9/2}$	7.88
28	Ni	Nickel	$(Ar) (3d)^8 (4s)^2$ i t	$\frac{3}{2}F_{4}$	7.64
29	Cu	Copper	(Ar) $(3d)^{10}(4s)$ o s	$^{2}S_{1/2}$	7.73
30	Zn	Zinc	(Ar) $(3d)^{10}(4s)^2$ n	$^{1}S_{0}$	9.39
31	$_{\mathrm{Ga}}$	Gallium	$({\rm Ar}) \; (3d)^{10} (4s)^2 \; (4p)$	${}^{2}P_{1/2}$	6.00
32	Ge	Germanium	(Ar) $(3d)^{10}(4s)^2(4p)^2$	$^{\mathfrak{d}}P_{0}$	7.90
33	As	Arsenic	$(Ar) (3d)^{10} (4s)^2 (4p)^3$	${}^4S_{3/2}$	9.82
34	Se	Selenium	(Ar) $(3d)^{10}(4s)^2(4p)^4$	$^{3}P_{2}$	9.75
35	Br	Bromine	(Ar) $(3d)^{10}(4s)^2 (4p)^5$	$^{2}P_{3/2}$	11.81
36	Kr	Krypton	$(Ar) (3d)^{10} (4s)^2 (4p)^6$	$^{1}S_{0}^{3/2}$	14.00
37	Rb	Rubidium	(Kr) $(5s)$	$^{2}S_{1/2}$	4.18
38	Sr	Strontium	$(Kr) \qquad (5s)^2$	$^{1}S_{0}$	5.69
39	Y	Yttrium	(Kr) $(4d)$ $(5s)^2$ T	$^{2}D_{3/2}$	6.22
40	Zr	Zirconium	$(Kr) (4d)^2 (5s)^2$ r e	$^{3}F_{2}$	6.63
41	Nb	Niobium	$(Kr) (4d)^4 (5s)$ a 1	$^{6}D_{1/2}$	6.76
42	Mo	Molybdenum	$(Kr) (4d)_{s}^{5} (5s)$ n e	$^{7}S_{3}$	7.09
43	Tc	Technetium	$(Kr) (4d)^6 (5s)$ s m	$^{6}D_{9/2}$	7.28
44	Ru	Ruthenium	$(Kr) (4d)^7 (5s)$ i e	${}^{5}F_{5}$	7.36
45	Rh	Rhodium	$(Kr) (4d)^8 (5s)$ t n	$^{4}F_{9/2}$	7.46
46	Pd	Palladium	$(Kr) (4d)^{10}$ i t	${}^{1}S_{0}$	8.34
47	Ag	Silver	$(Kr) (4d)^{10} (5s)$ o s $(Kr) (4d)^{10} (5s)^2$ n	${}^{2}S_{1/2}$	7.58
48	Cd	Cadmium	$(Kr) (4d)^{10} (5s)^2$ n	$^{1}S_{0}$	8.99

ELECTRONIC STRUCTURE OF THE ELEMENTS (Cont'd)

49	In	Indium	$(Kr) (4d)^{10} (5s)^2$	(5p)	${}^{2}P_{1/2}$	5.79
50	Sn	Tin		$(5p)^2$	${}^{3}P_{0}^{1/2}$	7.34
51	Sb	Antimony		$(5p)^3$	${}^{4}S_{3/2}$	8.64
52	Te	Tellurium		$(5p)^4$	${}^{3}P_{2}$	9.01
53	I	Iodine	$(Kr) (4d)^{10} (5s)^2$	$(5p)^5$	${}^{2}P_{3/2}$	10.45
54	Xe	Xenon		$(5p)^6$	${}^{1}S_{0}$	12.13
-			· - '- '- ' ' '-			
55	Cs	Cesium		(6s)	$^{2}S_{1/2}$	3.89
56	Ba	Barium	(Xe)	$(6s)^2$	$^{1}S_{0}^{^{\prime}}$	5.21
57	La	Lanthanum	(Xe) $(5d)$	$(6s)^2$	$^{2}D_{3/2}$	5.58
58	Се	Cerium		$(6s)^2$ R	${}^{3}H_{4}$	5.54
59	Pr	Praseodymium		$(6s)^2$ a	$^{4}I_{9/2}$	5.46
60	Nd	Neodymium		$(6s)^2$ r	$5I_{4}^{5/2}$	5.52
61	Pm	Promethium		$(6s)^2$ e	$^{6}H_{5/2}$	5.55
62	Sm	Samarium		$(6s)^2$	$^{7}F_{0}$	5.64
63	Eu	Europium	$(Xe)(4f)^{7}$	$(6s)^2$ e	$^8S_{7/2}$	5.67
64	Gd	Gadolinium		$(6s)^2$ a	$^{9}D_{2}$	6.15
65	Tb	Terbium	$({\rm Xe}) \; (4f)^9$	$(6s)^2$ r	$^{6}H_{15/2}$	5.86
66	Dy	Dysprosium		$(6s)^2$ t	$^{5}I_{8}$	5.94
67	Ho	Holmium		$(6s)^2$ h	$^{4}I_{15/2}$	6.02
68	\mathbf{Er}	Erbium		$(6s)^2$ s	$^{3}H_{6}$	6.11
69	Tm	Thulium	$(Xe) (4f)^{13}$	$(6s)^2$	$^{2}F_{7/2}$	6.18
70	Yb	Ytterbium	(Xe) $(4f)^{14}$	$(6s)^2$	$^{1}S_{0}$	6.25
71	Lu	Lutetium	$(Xe) (4f)^{14} (5d)$	$(6s)^2$ T	$^{2}D_{3/2}$	5.43
72	Hf	Hafnium		$(6s)^2$ r	$3F_2$	6.83
73	Ta	Tantalum	$(Xe) (4f)^{14} (5d)^3$	$(6s)^2$ a	${}^{4}F_{3/2}$	7.89
74	W	Tungsten	$(Xe) (4f)^{14} (5d)^4$		${}^{5}D_{0}$	7.98
75	Re	Rhenium		$(6s)^2$ s	$^{6}S_{5/2}$	7.88
76	Os	Osmium	(Xe) $(4f)^{14}(5d)^6$		5D_4	8.7
77	Ir	Iridium	$(Xe) (4f)^{14} (5d)^7$	$(6s)^2$ t	$^{4}F_{9/2}$	9.1
78	Pt	Platinum	$(Xe) (4f)^{14} (5d)^9$	(6s) i	$^{3}D_{3}^{^{0/2}}$	9.0
79	Au	Gold	$(Xe) (4f)^{14} (5d)^{10}$	(6s) o	$2S_{1/2}$	9.23
80	Hg	Mercury	$(Xe) (4f)^{14} (5d)^{10}$	$(6s)^2$ n	$^{1}S_{0}$	10.44
- 01	·	The Niver	(Xe) $(4f)^{14}(5d)^{10}$	(e ₀)2(e ₀)	${}^{2}P_{1/2}$	6.11
81	Tl Pb	Thallium Lead	(Xe) $(4f)^{14}(5d)^{10}$	$(6s)^2(6p)^2$	${}^{3}P_{0}$	7.42
82 83	Bi	Bismuth	(Xe) $(4f)^{14}(5d)^{10}$	(6s)(6p)	${}^{4}S_{3/2}$	7.42
84	Po	Polonium	(Xe) $(4f)^{-}(5d)^{10}$	$(6a)^2(6a)^4$	3P_2	8.42
85	At	Astatine	(Xe) $(4f)^{14}(5d)^{10}$	$(6s)^2(6p)^5$	${}^{2}P_{3/2}$	9.65
86	Rn	Radon	(Xe) $(4f)^{14}(5d)^{10}$		$^{13/2}_{1}S_{0}$	10.75
87	Fr	Francium	(Rn)	$ \begin{array}{c} (7s) \\ (7s)^2 \end{array} $	${}^{2}S_{1/2}$ ${}^{1}S_{0}$	3.97 5.28
88	Ra	Radium	(Rn)			0.20
89	\mathbf{Ac}	Actinium		$(7s)^2$	$^{2}D_{3/2}$	5.17
90	Th	Thorium	$(Rn) \qquad (6d)^2$		${}^{\mathfrak{d}}F_2$	6.08
91	Pa	Protactinium	$(\mathrm{Rn})(5f)^2\ (6d)$	$(7s)^2$ A	$^{4}K_{11/2}$	5.89
92	U	Uranium	$(\text{Rn}) (5f)^3 (6d)$	$(7s)^2$ c	$^{5}L_{6}$	6.19
93	Np	Neptunium	$(\text{Rn}) (5f)^4 (6d)$	$(7s)^2$ t	$^{6}L_{11/2}$	6.27
94	Pu	Plutonium	$(\text{Rn}) (5f)^6$	$(7s)^2$ i	${}^{7}F_{0}$	6.06
95	Am	Americium	$(\text{Rn}) (5f)^7$	$(7s)^2$ n	$^{8}S_{7/2}$	5.99
96	Cm	Curium	$(\text{Rn})(5f)^7$ $(6d)$	$(7s)^2$ i	$^{9}D_{2}$	6.02
97	Bk	Berkelium	$(Rn)(5f)^8(6d)$	$(7s)^2$ d	$^{8}G_{15/2}$	6.23
98	Cf	Californium	$(Rn)(5f)^{10}$	$(7s)^2$ e	${}^{5}I_{8}$	6.30
99	Es	Einsteinium	$(\text{Rn}) (5f)^{11}$	$(7s)^2$ s	$^{4}I_{15/2}$	6.42
100	Fm	Fermium Mendelevium	$(\text{Rn}) (5f)^{12} (\text{Rn}) (5f)^{13}$	$ \begin{array}{c} (7s)^2\\ (7s)^2 \end{array} $	${}^{3}H_{6}$	6.50
101	Md		$(\text{Rn}) (5f)^{13}$ $(\text{Rn}) (5f)^{14}$	$(7s)^2$ $(7s)^2$	${}^2F_{7/2} \ {}^1S_0$	6.58
102	No Lr	Nobelium Lawrencium	$(\text{Rn})(5f)^{14}$ $(\text{Rn})(5f)^{14}(6d)$	$(7s)^2$	${}^{2}D_{3/2}$	6.65
103 104	LI		$(Rn)(5f)^{14}(6d)^2$		$\nu_{3/2}$	
104			(rui) (01) (0a)	(18)		

HIGH-ENERGY COLLIDER PARAMETERS

e^+e^- Colliders (I)

The numbers here were received from representatives of each collider by mid 1989. Quantities are, where appropriate, r.m.s. H and V indicate horizontal and vertical directions.

	SPEAR (SLAC)	DORIS (DESY)	CESR (Cornell)	PEP (SLAC)
Physics start date	1972	1973	1979	1980
Maximum beam energy (GeV)	4	5.6	6	15
Injection energy (GeV)	2.5	5.6	6	15
Luminosity $(10^{30} \text{cm}^{-2} \text{s}^{-1})$	10 at 3 GeV	33 at 5.3 GeV	100 at 5.3 GeV (200 in 1990)	60
Circumference (km)	0.234	0.288	0.768	2.2
Interaction regions	2	2	2 (→1 in 1990)	1 (6 before 1987
Particles per bunch (units 10 ¹⁰)	15	27	17 (→15 in 1990)	35
Bunches per ring per species	1	1	7 (→14 in 1990)	3
Average beam current per species (mA)	30	35 at 5.3 GeV	73 (\rightarrow 130 in 1990)	21
Beam-beam tune shift per crossing (units 10 ⁻⁴)	300	≤ 280 (space charge limit at 5.3 GeV)	150 250	550
Filling time (min)	15	1 2	20	15
Luminosity lifetime (hr)	≈ 3	1.0 1.5	3 4	.1
Crossing angle (µ rad)	0	0	0	0
Energy spread (units 10 ⁻³)]	1.2 at 5 GeV	0.6 at 5.3 GeV	1
Transverse emittance $(10^{-9}\pi \text{ rad-m})$	$H \approx 430$	$H \colon 500$ at 5 $V \colon 5/50$ GeV	H: 50 V: 3	<i>H</i> ≈ 120
RF frequency (MHz)	358	500	500	352
Acceleration period (s)	≤ 100			≤ 100
Bunch length (cm)	$\sigma_z \approx 4$	$\sigma \sim 2$ at 5 GeV	1.7	$\sigma_z = 2$
eta^* , amplitude function at interaction point (m)	H: 1.2 V: 0.08	H: 0.64 V: 0.05	$H \colon 1.1 = V \colon 0.015$	H: 1.0 $V: 0.05$
Free space at interaction point (m)	±2.5	±1.2	$\pm 2.2~(\pm 0.6)$ to REC quads)	±3.7 (±7 before 1987)
Beam radius (10 ⁻⁶ m)	H: 700 V: 50	$ \begin{array}{c} H\colon & 570 \\ V\colon & \sim 30 \end{array} \right\} \text{ GeV} $	H: 500 V: 11	H: 340 V: 14
Utility insertions	18	3	2	5
Length of standard cell (m)	11.4	13.2	16	14.35
Phase advance per cell (deg)	H: 79 V: 90	H: 140 V: 50	45/90 (no standard cell)	H: 56 V: 33
Magnetic length of dipole (m)	2.35	3.2	1.6 6.6	5.4
Dipoles in ring	36	H: 24 V: 8	86	192
Quadrupoles in ring	46	68	106	248
Peak magnetic field (T)	1.1	1.5	$\left. egin{array}{ll} 0.3 \ \mathrm{normal} \\ 0.8 \ \mathrm{high} \ \mathrm{field} \end{array} \right\} \ \mathrm{GeV}$	0.36

HIGH-ENERGY COLLIDER PARAMETERS (Cont'd)

 e^+e^- Colliders (II)

The numbers here were received from representatives of each collider by mid 1989. Numbers are subject to change, and many are only estimates. Quantities are, where appropriate, r.m.s. H, V, and s.c. indicate horizontal and vertical directions, and superconducting.

	TRISTAN (KEK)	SLC (SLAC)	BEPC (China)	VEPP-4M (Novosibirsk)	LEP (CERN)	VLEPP, INP (Serpukhov)
Physics start date	1987	1989	1989	1990	1989	1996 (1998) ?
Maximum beam energy (GeV)	32	50	1.6 2.8	6	60	500 (1000)
Injection energy (GeV)	8	50	1.1-1.4	2	20	1
Luminosity (10 ³⁰ cm ⁻² s ⁻¹)	14	1.8×10^{-2}	2 17	50	17	100 (1000)
Circumference or length (km)	3.02	1.45 +1.47	0.2404	0.37	26.66	2×5 (2×10)
Interaction regions	4	1	2	1	4	5
Particles per bunch (units 10 ¹⁰)	22	$2.4 e^{-} \\ 1.6 e^{+}$	8	15	41.6	100 (20)
Bunches per ring per species	2	1	1	2	4	1
Average beam current per species (mA)	7	0.0001	15	40	3	0.0016
Beam-beam tune shift per crossing (units 10 ⁻⁴)	350		320	500	300	
Filling time (min)	20		40	15	0.25 mA/min	
Luminosity lifetime (hr)	2 3		7	2	5	
Crossing angle (μ rad)	0	0	0	0	0	0
Energy spread (units 10 ⁻³)	1.6	2	0.42 -0.74	1	1.0	10
Transverse emittance $(10^{-9}\pi \text{ rad-m})$	H:180 at 30 GeV	H: 0.6 V: 0.4	H: 231 V: 8	H: 400 V: 20	H: 52 V: 2.1	H: 2.0 V: 0.0005
RF frequency (MHz)	508.5808		199.53	180	352.2	$0.7 \times 10^4 \ (1.5 \times 10^4)$
Acceleration period (s)	120		120	150	80	
Bunch length (cm)	1.2	0.1	5.2	5	1.8	0.15
β^* , amplitude function at interaction point (m)	H: 1.8 V: 0.1	0.01	H: 1.3 V: 0.085	H: 0.75 V: 0.05	H: 1.75 V: 0.07	0.01 (0.005)
Free space at interaction point (m)	±4.5	±2.8	±2.5	±2	±3.5	
Beam radius (10 ⁻⁶ m)	H: 480 V: 12	2 3	H: 548 V: 26	H: 1000 V: 30	H: 300 V: 12	H: 4 V: 0.07
Utility insertions	8		2	1	2	
Length of standard cell (m)	16.1	5.2	6.6	7.2	79	1
Phase advance per cell (deg)	60	108	60	65	60	
Magnetic length of dipole (m)	5.86	2.5	1.6	2	11.66/pair	
Dipoles in ring	264 +8 weak	460+440	40 + 4 weak	78	3280+24 inj. + 64 weak	
Quadrupoles in ring	400		68	150	520+288 + 8 s.c.	
Peak magnetic field (T)	0.47 at 30 GeV	0.597	0.9028	0.6	0.135	

HIGH-ENERGY COLLIDER PARAMETERS (Cont'd)

pp, $\bar{p}p$, and ep Colliders

The numbers here were received from representatives of each collider by mid 1989. Numbers are subject to change, and many are only estimates Quantities are, where appropriate, r.m.s. H, V, and s.c. indicate horizontal and vertical directions, and superconducting.

	$\mathrm{S}par{p}\mathrm{S}$ (CERN)	TEVATRON (Fermilab)	HERA (DESY)	UNK (Serpukhov)	LHC (CERN)	SSC (USA)
Physics start date	1981	1987	1990	1995 ?	1996 ?		1999
Particles collided	$p\bar{p}$	$p\hat{p}$	ep	pp	pp	ep	pp
Maximum beam energy (TeV)	0.315 (0.45 in pulsed mode)	0.9 1.0	e: 0.026 p: 0.82	3	8	e: 0.05 p: 8	20
Injection energy (TeV)	0.026	0.15	e: 0.014 p: 0.040	0.4	0.450	e: 0.02 p: 0.450	2
$\begin{array}{c} \text{Luminosity} \\ (10^{30} \text{cm}^{-2} \text{s}^{-1}) \end{array}$	3	2 (1989) 7 (1991)	16	400	4×10^4	200	1000, $\beta^* = 0.5 \text{ m}$ 55, $\beta^* = 10 \text{ m}$
Circumference (km)	6.911	6.28	6.336	20.772	26.659		87.12
Interaction regions	2	$2 \text{ high } \mathcal{L}$ $2 \text{ low } \mathcal{L}$	3	4	$4 \text{ high } \mathcal{L}$ $2 \text{ med } \mathcal{L}$	3	4 max. simultaneous; 8 max. total
Particles per bunch (units 10 ¹⁰)	p: 15 p̄: 8	p: 7 p: 3	e: 3.65 p: 10	6	10	e: 8 p: 30	0.80
Bunches per ring per species	6	6	210	1980	4810	540	1.60×10^4
Average beam current per species (mA)	p: 6 p: 3	p: 3.2 p: 1.4	e: 58 p: 163	280	865	e: 80 p: 300	71
Beam-beam tune shift per crossing (units 10 ⁻⁴)	50	p: 12 p̄: 21	e: 190(H), 210(V) p: 12(H), 9(V)	10	34	e: 400 p: 33	$\beta^* = 0.5 \text{ m}$: 9 head-on 21 long-range
Filling time (min)	0.5	8	e: 15 p: 20	10	7	40	~60
Luminosity lifetime (hr)	20	15 40	>3	10	15	50	~24
Crossing angle (µ rad)	0	0	0	350	96	0	75
Energy spread (units 10 ⁻³)	0.35	0.15	e: 0.91 p: 1.3	0.05	0.1	0.1	0.058
Transverse emittance $(10^{-9}\pi \text{ rad-m})$	p: 9 p : 5	p: 4.3 p̄: 3.1	e: 39(H), 2(V) p: 7(H), 7(V)	2	10.45	6(H), 3.4(V) 6(H), 0.6(V)	0.047
RF frequency (MHz)	200	53	e: 499.7 p: 208.2/52.05	200	400	e: 352 p: 400	360
Acceleration period (s)	10	44		100	1200		1000
Bunch length (cm)	20	50	e: 0.83 p: 7.5	10	7.5		6.0
β^* , amplitude function at interaction point (m)	1 (H) 0.5 (V)	0.50	e: 2(H), 0.70(V) p: 10(H), 1.0 (V)	1	$0.25 \text{ high } \mathcal{L} = e: 0.64$ $0.5 \mod \mathcal{L} = p: 45$		0.5 at 2 IR's 10 at 2 IR's
Free space at interaction point (m)	28	±6.5	±5.5	±20	12 high <i>L</i> 40 med <i>L</i>	20	$\pm 20, \beta^* = 0.5 \text{ m}$ $\pm 120, \beta^* = 10 \text{ m}$
Beam radius (10 ⁻⁶ m)	p: 95(H), 67(V) $\bar{p}: 70(H), 50(V)$	43	e: 280(H), 37(V) p: 265(H), 84(V)	50	10	$230 \; (H) \ 57 \; (V)$	4.8, $\beta^* = 0.5 \text{ m}$ 21.7, $\beta^* = 10 \text{ m}$
Utility insertions	-	3	4	4	2		2
Length of standard cell (m)	64	59.5	e: 23.5 p: 47	91.8	100		180
Phase advance per cell (deg)	90	67.8	e: 60 p: 90	82.5	90		90
Magnetic length of dipole (m)	6.26	6.12	e: 9.23 p: 8.82	5.8	9.54		Mostly 14.98
Dipoles in ring	744	774	e: 396 p: 416	2194	1760		$ \begin{array}{c} H: 8662 \\ V: 276 \end{array} \right\} 2 \text{ rings} $
Quadrupoles in ring	232	216	e: 580 p: 280	496	560		2188 } 2 rings
Magnet type	H type with bent-up coil ends	s.c. $\cos \theta$ warm iron	e: C-shaped p: s.c., collared, cold iron	s.c.	s.c. 2 in 1 cold iro	n	s.c. $\cos \theta$ cold iron
Peak magnetic field (T)	1.4 (2 in pulsed mode)	4.4	e: 0.274 p: 4.65	5	10		6.60
p source accum. rate (hr^{-1})	3×10^{10}	2×10 ¹⁰					_
Max. no. \bar{p} in accum. ring	9×10^{11}	1×10 ¹²					

PASSAGE OF PARTICLES THROUGH MATTER*

(1) Maximum energy transfer: The maximum kinetic energy which a point-charge particle with momentum $p = \gamma \beta c M$ can impart to a stationary unbound electron with mass m_e is given by

$$T_{\text{max}} = \frac{2m_e c^2 \,\beta^2 \gamma^2}{1 + 2\gamma m_e/M + (m_e/M)^2} \,. \tag{1}$$

This kinetic energy appears several times in the following discussion. It is usual to make the "low-energy" approximation $T_{\rm max}=2m_ec^2\,\beta^2\gamma^2$, valid for $2\gamma m_e/M\ll 1$. For a pion, the error in this approximation reaches 1% at 20 GeV. On the other hand, if the energy transfer is much in excess of 1 MeV then the impact parameter is less than the "pion radius," so that our point-charge approximation is invalid. We use the approximation with the understanding that form-factor corrections are necessary if the energy transfer is large.

(2) Energy loss rates for ionizing particles: A moderately relativistic charged particle loses energy in matter primarily through ionization. If its velocity is larger than that of orbital electrons ($\sim \alpha c$) and small enough that radiative effects do not dominate, and it is not an electron, then the mean rate of energy loss is given by the Bethe-Bloch equation, 2 which we write as

$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I} \right) - \beta^2 - \frac{\delta}{2} \right] \quad (2)$$

for a particle with charge ze passing through an element with atomic number Z and atomic weight A. In this equation m_e is the electron mass, r_e is the classical radius of the electron, and the product $4\pi N_A r_e^2 m_e c^2$ is equal to 0.3071 MeV cm² g⁻¹. The *ionization constant* I is approximately given by $16 \, Z^{0.9} \, \text{eV}$ for Z > 1, but measurements and calculations which include atomic configuration effects yield results which differ by as much as 10% from this value. Hydrogen is the most sensitive to atomic effects; $I = 15 \, \text{eV}$ for atomic hydrogen, $19.2 \, \text{eV}$ for H_2 gas, and $21.8 \, \text{eV}$ for H_2 liquid.

In Eq. (2) dx is measured in mass per unit area, e.g. in g cm⁻². Except in hydrogen, particles of the same velocity have very similar rates of energy loss in different materials; there is a slow decrease in the rate of energy loss with increasing Z.

Plots of dE/dx and ranges obtained by integrating $(dE/dx)^{-1}$ are given in another section.

The extended transverse electric field of a relativistic incident particle is shielded by the charge density of atomic electrons, reducing its rate of energy loss. This *density effect* is represented by δ in Eq. (2), which for very energetic particles approaches $2 \ln \gamma$ plus a constant.⁴ As a result, the quantity in the square brackets in Eq. (2) asymptotically increases as $\ln \gamma$ instead of $2 \ln \gamma$. The correction depends upon the chemical composition and density of the medium.

The first term in the square brackets of Eq. (2) is given more precisely by $\ln(2m_ec^2\gamma^2\beta^2T_{\rm max}/I^2)^{1/2}$, and so in the absence of corrections the logarithmic term is in error by a few percent at several hundred GeV. At low incident particle speeds (β/z) close to α 0 atomic shell corrections and higher-order QED corrections also introduce errors of this magnitude. Equation (2) should thus be trusted only to a few percent at any velocity, and the literature should be consulted by those with more demanding needs. 2,5,6

For particles moving more slowly than atomic electrons the above discussion is inapplicable. At velocities $\alpha z \gtrsim \beta \gtrsim 10^{-3}$ or slightly lower, the total energy loss rate is proportional to β , and non-ionizing nuclear recoil energy loss contributes substantially to the total.⁷ For protons in silicon, $|dE/dx| = 61.2\,\beta$ GeV cm² g⁻¹ for $\beta < 0.005$; the peak occurs at $\beta = 0.0126$, where |dE/dx| = 522 MeV cm² g⁻¹. In neutron-scattering experiments, light output in scintillator has been observed for recoil protons with energies as low as 30 eV.⁸

At velocities higher than $\sim cz/137$, |dE/dx| initially falls as $1/\beta^2$, to a broad minimum at $\gamma \approx 3.2$, almost independently of the medium. In practical cases most relativistic particles (e.g. cosmic-ray muons) have energy loss rates close to this minimum, and are said to be *minimum ionizing* particles, or MIPs. The energy loss rate rises slowly for $\gamma > 4$, with the quantity in the square brackets of Eq. (2) increasing as $2 \ln \gamma$. The density effect gradually limits the slope to $\ln \gamma$. Much of the relativistic rise can be attributed to large

energy transfers to a few electrons in the medium. If these escape or are otherwise accounted for separately, the energy deposited in an absorbing layer (in contrast to the energy lost during its traversal) approaches a constant value, the *Fermi plateau*. At extreme energies (e.g. 400 GeV for muons or pions in iron) radiative effects become important. These are especially relvant for high-energy muons, as discussed in Sec. (9).

Energy loss by electrons and positrons has been excluded from this discussion, since radiative effects (bremsstrahlung and pair production) usually contribute more than ionization. This important case is discussed below, and the relative contributions of various electron energy-loss processes in lead are shown in a figure given in the section "Photon and Electron Attenuation Plots."

The quantity $(dE/dx)\delta x$ is the **mean** energy loss via interaction with electrons in a layer of the medium with thickness δx . For finite δx , Poisson fluctuations vary the actual energy loss. Landau first remarked that the distribution is skewed toward high values. Only for a very thick layer $[(dE/dx)\delta x \gg 2m_e c^2 \beta^2 \gamma^2]$ is the distribution nearly Gaussian. The large fluctuations in the energy loss are due to a small number of collisions involving large energy transfers. The fluctuations are greatly reduced for the so-called restricted energy loss rate, as discussed below.

In a mixture or compound, the rate of energy loss is approximately

$$\frac{dE}{dx} = \sum f_i \left. \frac{dE}{dx} \right|_i \,. \tag{3}$$

where f_i is the fraction by weight of the *i*th element and $dE/dx|_i$ the mean rate of energy loss (in g cm⁻²) in this element. Atomic corrections to this additivity rule are discussed in Ref. 3. These are neglected in many widely-used computer codes.

(3) Energetic knock-on electrons (δ rays): For an incident relativistic particle with mass M, the distribution of secondary electrons with kinetic energy $T \gg I$ is given by Rossi^1 as

$$\frac{d^2N}{dTdx} = \frac{1}{2} 4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \frac{F}{T^2}$$
(4)

for $I\ll T\leq T_{\rm max}$, where $T_{\rm max}$ is given by Eq. (1) above. The factor F is spin-dependent, but is approximately unity for $T\ll T_{\rm max}$. It is evaluated for spins 0, 1/2, and 1 in Rossi. Other factors in the equation are defined above. For incident electrons, the indistinguishability of projectile and target means that the range of T extends only to half the kinetic energy of the incident particle. Additional formulae are given in Ref. 10. Our formula is inaccurate for T close to I; for $2I\lesssim T\lesssim 10I$, the $1/T^2$ dependence above becomes approximately $T^{-\eta}$, with $3\lesssim \eta \lesssim 5.^{11}$

(4) Restricted energy loss rates for relativistic ionizing particles: Fluctuations in energy loss are primarily due to the production of a few high-energy knock-on electrons. Practical detectors often measure the energy deposited as distinguished from the energy lost. Since energy is carried off by energetic knock-on electrons, it is more appropriate to consider the mean energy loss for collisions which exclude energy transfers greater than some cutoff $E_{\rm max}$. The restricted energy loss rate is given by²

$$\left. -\frac{dE}{dx} \right|_{\leq E_{\text{max}}} = 4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \times \left[\ln \left(\frac{\sqrt{2m_e \beta^2 \gamma^2 E_{\text{max}}}}{I} \right) - \frac{\beta^2}{2} - \frac{\delta}{2} \right] .$$
(5)

This expression is the same as that given by Eq. (2), except that $E_{\rm max}$ rather than $T_{\rm max}$ appears in the logarithmic term and β^2 is divided by 2. Distributions about the mean do not exhibit such an extreme "Landau tail" as does the distribution of -dE/dx. The density effect causes the restricted energy loss rate to approach a constant, the Fermi plateau value, at asymptotically high energies.

(5) Ionization yields: Physicists frequently relate total energy loss to the number of ion pairs produced near the particle's track. This relation becomes complicated for relativistic particles due to the

wandering of energetic knock-on electrons whose ranges exceed the dimensions of the fiducial volume. For a qualitative appraisal of the nonlocality of energy deposition by such modestly energetic knock-on electrons in various media, see Ref. 12. Furthermore, the mean local energy dissipation per local ion pair produced, W, while essentially constant for relativistic particles, increases at slow particle speeds. ¹³ The numerical value of W for gases can be surprisingly sensitive to trace amounts of various contaminants. ¹³ In addition to these effects, ionization yields in practical cases may be greatly influenced by such factors as subsequent recombination. ¹⁴

(6) Multiple scattering through small angles: As a charged particle traverses a medium it is deflected by many small-angle scatters. The bulk of this deflection is due to Coulomb scattering from the nuclei and the atomic electrons within the medium, hence the usual identification of this effect as multiple Coulomb scattering (Note, however, that strong interactions do contribute to the total multiple scattering for hadronic projectiles.) The true Coulomb scattering distribution is well represented by the theory of Molière. It is roughly Gaussian only for small deflection angles, while for large-angle scatters (greater than a few θ_0 , defined below) it behaves like Rutherford scattering, having a relatively greater probability than would be the case for a Gaussian distribution. A simpler approach, which may suffice for many applications, is to use a Gaussian approximation for the central 98% of the projected angular distribution, with a width given by 16,17

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{x/X_0} \left[1 + 0.20 \ln(x/X_0) \right]$$
 (6)

where p, βc , and z are the momentum (in MeV/c), velocity, and charge number of the incident particle, and x/X_0 is the thickness of the scattering medium in radiation lengths (defined below). The angle θ_0 is a fit to Molière theory¹⁵ for singly charged particles with $\beta=1$ for all Z, and is accurate to 11% or better for $10^{-3} < x/X_0 < 100$.

Lynch and Dahl have extended this phenomenological approach, fitting Gaussian distributions to a variable fraction F of the Molière distribution for arbitrary scatterers. ¹⁷ They achieve accuracies of 2% or better by these methods.

In this Gaussian approximation, θ_0 has the meaning

$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}}$$
 (7)

The nonprojected (space) and projected (plane) angular distributions are given approximately 15 by

$$\frac{1}{2\pi\theta_0^2} \exp\left[-\frac{\theta_{\text{space}}^2}{2\theta_0^2}\right] d\Omega . \tag{8}$$

$$\frac{1}{\sqrt{2\pi}\,\theta_0}\,\exp\left(-\frac{\theta_{\rm plane}^2}{2\theta_0^2}\right)\,d\theta_{\rm plane}\ , \tag{9}$$

where θ is the deflection angle. In this approximation, $\theta_{\mathrm{space}}^2 \approx (\theta_{\mathrm{plane},x}^2 + \theta_{\mathrm{plane},y}^2)$, where the x and y axes are orthogonal to the direction of motion, and $d\Omega \approx d\theta_{\mathrm{plane},x} \, d\theta_{\mathrm{plane},y}$. Deflections into $\theta_{\mathrm{plane},x}$ and $\theta_{\mathrm{plane},y}$ are independent and identically distributed.

Other quantities defined in Fig. 1 are sometimes used to describe the amount of multiple Coulomb scattering. The auxiliary quantities ψ_{plane} , y_{plane} , and s_{plane} are given by

$$\begin{split} &\psi_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{3}} \, \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{3}} \, \theta_0 \ , \\ &y_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{3}} \, x \, \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{3}} \, x \, \theta_0 \ , \\ &s_{\text{plane}}^{\text{rms}} = \frac{1}{4\sqrt{3}} \, x \, \theta_{\text{plane}}^{\text{rms}} = \frac{1}{4\sqrt{3}} \, x \, \theta_0 \ . \end{split} \tag{10}$$

All the quantitative estimates in this section apply only in the limit of small $\theta_{\rm plane}^{\rm rms}$ and in the absence of large-angle scatters. The random variables s, ψ, y , and θ in a given plane are distributed in a correlated fashion (see the section on Probability, Statistics, and Monte Carlo

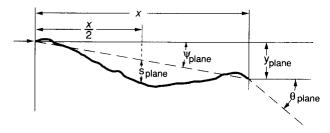


Fig. 1. Quantities useful in describing multiple Coulomb scattering. The particle is incident in the plane of the figure.

for the definition of the correlation coefficient). Obviously, $y \approx x w$. In addition, y and θ have correlation coefficient $\rho_{y\theta} = \sqrt{3}/2 \approx 0.87$. For Monte Carlo generation of a joint $(y_{\rm plane}, \theta_{\rm plane})$ distribution or for other calculations, it may be most convenient to work with independent Gaussian random variables (z_1, z_2) with mean zero and variance one and subsequently set

$$y_{\text{plane}} = z_1 x \theta_0 (1 - \rho_{y\theta}^2)^{1/2} / \sqrt{3} + z_2 \rho_{y\theta} x \theta_0 / \sqrt{3}$$
$$= z_1 x \theta_0 / \sqrt{12} + z_2 x \theta_0 / 2 ; \tag{11}$$

 $\theta_{\text{plane}} = z_2 \theta_0$.

Note that the second term for $y_{\rm plane}$ equals $x \, \theta_{\rm plane}/2$ and represents the displacement that would have occurred had the deflection $\theta_{\rm plane}$ all occurred at the single point x/2.

(7) Radiation length and associated quantities: In dealing with electrons and photons at high energies, it is convenient to measure the thickness of the material in units of the radiation length X_0 . It is the mean distance over which a high-energy electron loses all but 1/e of its energy by bremsstrahlung, and in any case it is the appropriate scale length for describing high-energy electromagnetic cascades. X_0 is calculated and tabulated by Y.S. Tsai. ¹⁸ His formula is less than straightforward, but can be approximated by ¹⁹

$$X_0 = \frac{716.4 \text{ g cm}^{-2} A}{Z(Z+1) \ln(287/\sqrt{Z})} . \tag{12}$$

where Z is the atomic number and A the atomic weight of the medium. Results obtained with this formula agree with Tsai's values to better than 2.5% for all elements except helium, where the result is low by about 5%. The radiation length in a mixture or compound, may be approximated by

$$\frac{1}{X_0} = \sum \frac{f_i}{X_i} \ . \tag{13}$$

where f_i and X_i are the fraction by weight and radiation length for the ith element.

Radiative energy losses scale nearly proportionally to incident energy, while the dependence of ionization is only logarithmic. The energy at which the two are equal is called the *critical energy* E_c . For electrons it is given approximately by²⁰

$$E_c = \frac{800 \text{ MeV}}{Z + 1.2} \ . \tag{14}$$

In an electromagnetic cascade E_c defines the dividing line between shower multiplication and energy dissipation through ionization.

The transverse development of electromagnetic showers in different materials scales fairly accurately with the *Molière radius* R_M , given by 21

$$R_M = X_0 E_s / E_c \ . {15}$$

where $E_s = \sqrt{4\pi/\alpha} \ m_e c^2 = 21.2$ MeV. The Molière radius in a material containing a weight fraction f_i of the element with critical energy E_{ci} and radiation length X_i is given by

$$\frac{1}{R_M} = \frac{1}{E_S} \sum \frac{f_i \, E_{ci}}{X_i} \,. \tag{16}$$

For photons of infinite energy, the total e^+e^- pair-production cross section is approximately

$$\sigma = \frac{7}{9}(A/X_0N_A) , \qquad (17)$$

where A is the atomic weight of the material and N_A is Avogadro's number. This cross section is accurate to within a few percent down to energies as low as 1 GeV; it decreases at lower energies, as shown in the figure "Fractional Energy Loss for Electrons and Positrons in Lead." As the energy decreases a number of other processes become important, as is also shown in the figures "Contributions to the Photon Cross Section in Carbon and Lead."

(8) Electromagnetic cascades: When a high-energy electron or photon is incident on a thick absorber, it initiates an electromagnetic cascade as pair production and bremsstrahlung generate more electrons and photons with lower energy. The longitudinal development is governed by the high-energy part of the cascade, and therefore scales as the radiation length in the material. Electron energies eventually fall below the critical energy, and they dissipate their energy by ionization and excitation rather than by the generation of more shower particles. In describing shower behavior, it is therefore convenient to introduce the scale variables

$$t = x/X_0$$

$$y = E/E_c . (18)$$

so that distance is measured in units of radiation length and energy in units of critical energy.

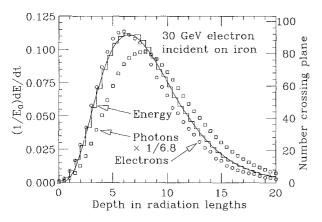


Fig. 2. An EGS4 simulation of a 30 GeV electron-induced cascade in iron. The histogram shows fractional energy deposition per radiation length, and the curve is a gamma-function fit to the distribution. Circles indicate the number of electrons with total energy greater than 1.5 MeV crossing planes at $X_0/2$ intervals (scale on right) and the squares the number of photons with $E \geq 1.5$ MeV crossing the planes (scaled down to have same area as the electron distribution).

Longitudinal profiles for an EGS4²² simulation of a 30 GeV electron-induced cascade in iron are shown in Fig. 2. The number of particles crossing a plane (very close to Rossi's \prod function¹) is sensitive to the cutoff energy, here chosen as a total energy of 1.5 MeV for both electrons and photons. The electron number falls off more quickly than energy deposition; this is because a larger fraction of the cascade energy is carried by photons with increasing depth. Exactly what a calorimeter measures depends on the device, but it is not likely to be exactly any of the profiles shown. In gas counters it may be very close to the electron number, but in glass Čerenkov detectors and other devices with "thick" sensitive regions it is closer to the energy deposition (total track length). In such detectors the signal is proportional to the "detectable" track length T_d , which is in general less than the total track length T_d . Practical devices are sensitive to electrons with energy above some detection threshold E_d , and

 $T_d=T\,F(E_d/E_c).$ An analytic form for $F(E_d/E_c)$ obtained by Rossi¹ is given by Fabjan;²³ see also Amaldi.²⁴

The mean longitudinal profile of the energy deposition in an electromagnetic cascade is reasonably well described by a gamma distribution: 25

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)} \tag{19}$$

The maximum t_{max} occurs at (a-1)/b. We have made fits to shower profiles in elements ranging from carbon to uranium, at energies from 1 GeV to 100 GeV. The energy deposition profiles are well described by Eq. (19) with

$$t_{\text{max}} = (a-1)/b = 1.0 \times (\ln y + C_i) , \qquad i = e, \gamma ,$$
 (20)

where $C_e = -0.5$ for electron-induced cascades and $C_{\gamma} = +0.5$ for photon-induced cascades. The results are very similar for the electron number profiles, but there is some dependence on the atomic number of the medium. A similar form for the electron number maximum was obtained by Rossi in the context of his "Approximation B," (see Fabjan's review in Ref. 23), but with $C_e = -1.0$ and $C_{\gamma} = -0.5$; we regard this as superseded by the EGS4 result.

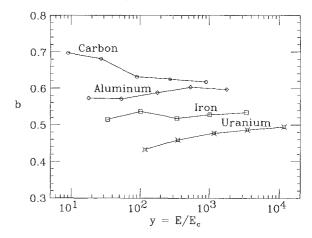


Fig. 3. Fitted values of the scale factor b for energy deposition profiles obtained with EGS4 for a variety of elements for E_0 ranging from 1 GeV to 100 GeV. Fits are for incident electrons, but values for incident photons are essentially the same.

The "shower length" $X_s=X_0/b$ is less conveniently parametrized, since b depends upon both Z and incident energy, as shown in Fig. 3. As corollary of this Z dependence, the number of electrons crossing a plane near shower maximum is underestimated using Rossi's approximation for carbon and seriously overestimated for uranium. Essentially the same b values are obtained for incident electrons and photons.

The gamma distribution is very flat near the origin, while the EGS4 cascade (or a real cascade) increases more rapidly. As a result Eq. (19) fails badly for about the first two radiation lengths; it was necessary to exclude this region in making fits.

Because of the importance of fluctuations, Eq. (19) should be used only in applications where average behavior is adequate. Grindhammer $et\ al.$ have developed fast simulation algorithms in which the variance and correlation of a and b are obtained by fitting Eq. (19) to individually simulated cascades, then generating profiles for cascades using a and b chosen from the correlated distributions.²⁶

Measurements of the lateral distribution in electromagnetic cascades are shown in Refs. 21 and 27. On the average only 10% of the energy lies outside the cylinder with radius R_M . About 99% is contained inside of $3.5R_M$, but at this radius and beyond composition effects become important and the scaling with R_M fails. The distributions are characterized by a narrow core, and broaden as the shower

develops. They are often represented as the sum of two Gaussians, and Grindhammer describes them with the function

$$f(r) = \frac{2r\,R^2}{(r^2 + R^2)^2} \ , \tag{21}$$

where R is a phenomenological function of x/X_0 and $\ln E$.

(9) Muon energy loss at high energy: At sufficiently high energies, radiative processes become more important than ionization for all charged particles. For muons and pions in materials such as iron, this "critical energy" occurs at several hundred GeV. For energetic muons found in cosmic rays or produced at the newest accelerators, radiative effects dominate. These processes are characterized by small cross sections, hard spectra, large energy fluctuations, and the associated generation of electromagnetic and (in the case of photonuclear interactions) hadronic showers. As a consequence, the treatment of energy loss as a uniform and continuous process at these energies is inadequate for many purposes.

It is convenient to write the average rate of muon energy loss as²⁸

$$-dE/dx = a(E) + b(E)E. (22)$$

Here a(E) is the ionization energy loss given by Eq. (2), and b(E) is the sum of e^+e^- pair production, bremsstrahlung, and photonuclear contributions. To the approximation that these slowly-varying functions are constant, the mean range x_0 of a muon with initial energy E_0 is given by

$$x_0 \approx (1/b)\ln(a+bE_0) \ . \tag{23}$$

Contributions to b(E) are shown in Fig. 4 for iron. Since $a(E) \approx 0.002$ MeV $\rm g^{-1}$ cm², b(E)E dominates the energy loss above several hundred GeV, where b(E) is nearly constant. The rate of energy loss for muons in hydrogen, uranium, and iron is shown in Fig. 5.²⁹

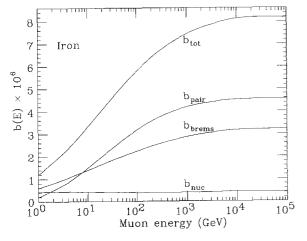


Fig. 4. Contributions to the fractional energy loss by muons due to e^+e^- pair production, bremsstrahlung, and photonuclear interactions in iron, as obtained from Lohmann $et\ al.^{29}$

QED cross sections for bremsstrahlung and e^+e^- pair production have long been known, but were very much improved about 1970 to meet the needs of cosmic ray physics. $^{30-34}$ Rozental notes that the screened atomic electron contribution can be included by replacing Z^2 by Z(Z+1.2) in the nuclear bremsstrahlung cross sections and by Z(Z+1.3) in the case of e^+e^- pair production. He also discusses other corrections which might reduce the cross section by as much as 5%, which we take as the present uncertainty. Cross sections for both processes have been evaluated independently by Tsai. He

A comparison of various improvements to the Bethe-Heitler formula is given by Wright. ³⁶ For muon energies above 100 GeV, $\mu^+\mu^-$ pair production is also possible. Such $\mu^+\mu^-$ production by muons is a potentially troublesome process because it can lead to charge misassignment, but the mechanism contributes less than 0.01% to the the total energy loss. ²⁹

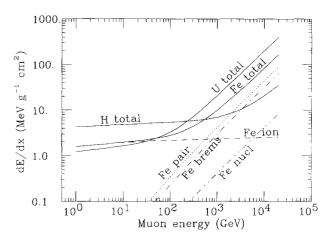


Fig. 5. The average energy loss of a muon in hydrogen, iron, and uranium as a function of muon energy. Contributions to dE/dx in iron from ionization and the processes shown in Fig. 4 are also shown.

Photonuclear interactions account for about 5% of the total energy loss of high-energy muons in iron, and about 2% in uranium. The losses are concentrated in rare, relatively hard events.

These radiative cross sections are expressed as functions of the fractional energy loss ν . The bremsstrahlung cross section goes roughly as $1/\nu$ over most of the range, while in the pair production case the distribution goes as ν^{-3} to ν^{-2} (see Ref. 38). "Hard" losses are therefore more probable in bremsstrahlung, and in fact energy losses due to pair production may very nearly be treated as continuous. The momentum distribution of an incident 1 TeV/c muon beam after it crosses 3 m of iron is shown in Fig. 6. The most probable loss is 9 GeV, or 3.8 MeV $g^{-1}cm^2$. The full width at half maximum is 7 GeV/c, or 0.7%. The radiative tail is almost entirely due to bremsstrahlung; this includes most of the 10% which lost more than 2.8% of their energy. Most of the 3.3% which lost more than 10% of their incident energy experienced photonuclear interactions. The latter can exceed nominal detector resolution,³⁹ necessitating the reconstruction of lost energy. Electromagnetic and hadronic cascades in detector materials can obscure muon tracks in detector planes and reduce tracking efficiency. 40

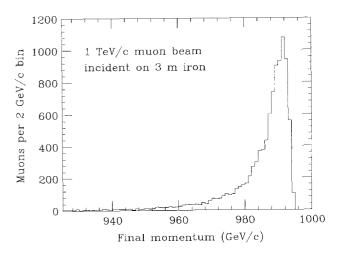


Fig. 6. The momentum distribution of 1 TeV/c muons after traversing 3 m of iron, as obtained with Van Ginniken's TRAMU muon transport code. 38

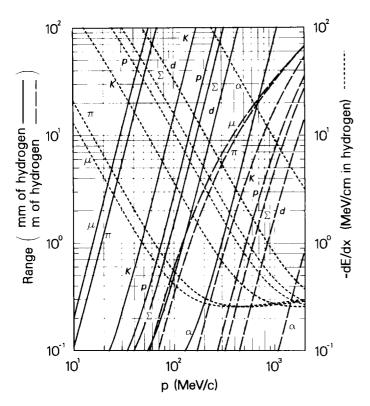
(10) Čerenkov radiation:⁴¹ The half-angle θ_c of the Čerenkov cone for a particle with velocity βc in a medium with index of refraction n is

$$\theta_c = \arccos(1/n\beta) \approx \sqrt{2(1-1/n\beta)}$$
.

The threshold velocity β_t is 1/n, and $\gamma_t = 1/(1-\beta_t^2)^{1/2}$. Therefore, $\beta_t \gamma_t = 1/(2\delta + \delta^2)^{1/2}$, where $\delta = n-1$. Values of δ for various commonly used gases are given as a function of pressure and wavelength in Ref. 42. For values at atmospheric pressure, see the Table of Atomic and Nuclear Properties.

The number of photons N per cm of path length is given by

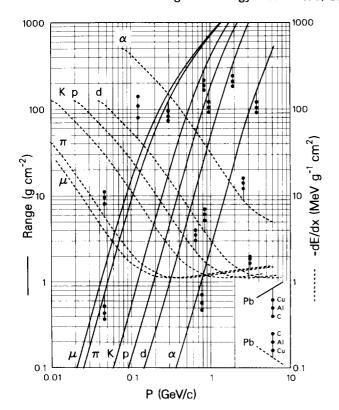
$$N = \frac{\alpha}{c} \int \left(1 - \frac{1}{\beta^2 n^2}\right) 2\pi \ d\nu = \frac{\alpha}{c} \ \beta_t^2 \int \left(\frac{1}{\beta_t^2} - \frac{1}{\beta^2}\right) 2\pi \ d\nu$$


 $\approx 500 \sin^2 \theta_c / \text{cm}$ (visible spectrum).

- * Revised April 1990 with the help of O. Dahl, R. Hagstrom, W.R. Nelson, and S.I. Parker.
- B. Rossi, High Energy Particles, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1952.
- U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).
- M.J. Berger and S.M. Seltzer, "Mean Excitation Energies for Use in Bethe's Stopping-Power Formula," p. 57-74, Proceedings of Hawaii Conference on Charge States and Dynamic Screening of Swift Ions (1982).
- A. Crispin and G.N. Fowler, Rev. Mod. Phys. 42, 290 (1970);
 R.M. Sternheimer, S.M. Seltzer, and M.J. Berger, "The Density Effect for the Ionization Loss of Charged Particles in Various Substances," Atomic Data & Nucl. Data Tables 30, 261 (1984).
- 5. For Z^3 calculations with Z=1, see J.D. Jackson and R.L. McCarthy, Phys. Rev. **B6**, 4131 (1972).
- For an approximate treatment of high-Z projectiles, see P.B. Eby and S.H. Morgan, Phys. Rev. A5, 2536 (1972).
- Low-velocity energy loss has been extensively treated by J.F. Ziegler and his collaborators; see e.g. J.F. Ziegler, Jp.P. Biersac, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press 1985, and references therein.
- 8. D.J. Ficenec et al., Phys. Rev. D36, 311 (1987).
- L.D. Landau, J. Exp. Phys. (USSR) 8, 201 (1944); See, for instance, K.A. Ispirian, A.T. Margarian, and A.M. Zverev, Nucl. Instr. and Meth. 117, 125 (1974).
- For unit-charge projectiles, see E.A. Uehling, Ann. Rev. Nucl. Sci. 4, 315 (1954). For highly charged projectiles, see J.A. Doggett and L.V. Spencer, Phys. Rev. 103, 1597 (1956). A Lorentz transformation is needed to convert these center-of-mass data to knock-on energy spectra.
- N.F. Mott and H.S.W. Massey, The Theory of Atomic Collisions, Oxford Press, London, 1965.
- L.V. Spencer "Energy Dissipation by Fast Electrons," Nat'l Bureau of Standards Monograph No. 1 (1959).
- "Average Energy Required to Produce an Ion Pair," ICRU Report No. 31 (1979).
- N. Hadley et al., "List of Poisoning Times for Materials," Lawrence Berkeley Lab Report TPC-LBL-79-8 (1981).
- H.A. Bethe, Phys. Rev. 89, 1256 (1953). A thorough review of multiple scattering is given by W.T. Scott, Rev. Mod. Phys. 35, 231 (1963). However, the data of Shen et al., (Phys. Rev. D20, 1584 (1979) show that Bethe's simpler method of including

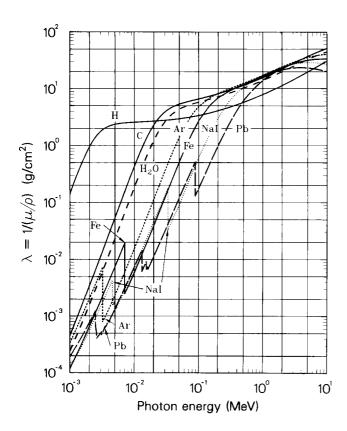
- atomic electron effects agrees better with experiment that does Scott's treatment. For a thorough discussion of simple formulae for single scatters and methods of compounding these into multiple-scattering formulae, see W.T. Scott, Rev. Mod. Phys. **35**, 231 (1963). For detailed summaries of formulae for computing single scatters, see J.W. Motz, H. Olsen, and H.W. Koch, Rev. Mod. Phys. **36**, 881 (1964).
- V.L. Highland, Nucl. Instr. and Meth. 129, 497 (1975), and Nucl. Instr. and Meth. 161, 171 (1979).
- G.R. Lynch and O.I Dahl, "Approximations to Multiple Coulomb Scattering," Lawrence Berkeley Laboratory Report LBL-28165 (1990), submitted to Nucl. Instr. Meth.
- 18. Y.S. Tsai, Rev. Mod. Phys. 46, 815 (1974).
- 19. O.I. Dahl, private communication.
- M.J. Berger and S.M. Seltzer, "Tables of Energy Losses and Ranges of Electrons and Positrons, National Aeronautics and Space Administration Report NASA-SP-3012 (Washington DC 1964)
- W.R. Nelson, T.M. Jenkins, R.C. McCall, and J.K. Cobb, Phys. Rev. 149, 201 (1966).
- W.R. Nelson, H. Hirayama, and D.W.O. Rogers, "The EGS4 Code System," SLAC-265, Stanford Linear Accelerator Center (Dec. 1985).
- Experimental Techniques in High Energy Physics, ed. by T. Ferbel (Addision-Wesley, Menlo Park CA 1987).
- 24. U. Amaldi, Phys. Scripta 23, 409 (1981).
- 25. E. Longo and I. Sestili, Nucl. Instr. and Meth. 128, 283 (1985).
- G. Grindhammer, M. Rodowicz, and S. Peters, "Fast Simulation of Electromagnetic and Hadronic Showers," Proceedings of the Workshop on Calorimetry for the Superconducting Super Collider," ed. by V. Kelly and M.G.D. Gilchriese, Tuscaloosa, Alabama (to be published, 1990).
- 27. G. Bathow et al., Nucl. Phys. B20, 592 (1970).
- P.H. Barrett, L.M. Bollinger, G. Cocconi, Y. Eisenberg, and K. Greisen, Rev. Mod. Phys. 24, 133 (1952).
- W. Lohmann, R. Kopp, and R. Voss, "Energy Loss of Muons in the Energy Range 1-10000 GeV," CERN Report 85-03 (1985).
- H.A. Bethe and W. Heitler, Proc. Roy. Soc. A146, 83 (1934);
 H.A. Bethe, Proc. Cambridge Phil. Soc. 30, 542 (1934).
- A.A. Petrukhin and V.V. Shestakov, Can. J. Phys. 46, S377 (1968).
- 32. V.M. Galitskii and S.R. Kel'ner, Sov. Phys. JETP 25, 948 (1967).
- S.R. Kel'ner and Yu.D. Kotov, Yad. Phys. 7, 237 (1968).
 S.R. Kel'ner and Yu.D. Kotov, Can. J. Phys. 46, S387 (1968).
- R.P. Kokoulin and A.A. Petrukhin, Proceedings 12th International Conference on Cosmic Rays (Hobart) 4, 2436 (1971).
- 35. I.L. Rozental, Sov. Phys. Usp. 11, 49 (1968).
- 36. A.G. Wright, J. Phys. A6, 79 (1973).
- 37. L.B. Bezrukov and E.V. Bugaev, Yad. Phys. 33, 635 (1981).
- 38. A. Van Ginneken, Nucl. Instr. and Meth. A251, 21 (1986).
- 39. U. Becker et al., Nucl. Instr. and Meth. A253, 15 (1986).
- J.J. Eastman and S.C. Loken, "Muon Energy Loss at High Energy and Implications for Detector Design," LBL-24039 (1987).
- Methods of Experimental Physics, L.C.L. Yuan and C.-S. Wu, editors, Academic Press, 1961, Vol. 5A, p.163.
- E.R. Hayes, R.A. Schluter, and A. Tamosaitis, "Index and Dispersion of Some Čerenkov Counter Gases," ANL-6916 (1964).

MEAN RANGE AND ENERGY LOSS

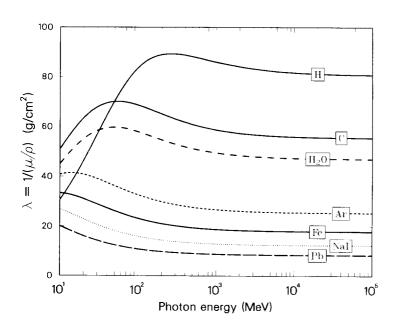

Mean Range and Energy Loss in Liquid Hydrogen

Range and energy loss in liquid hydrogen, based on Bethe-Bloch equation [See Sec. (1) of Passage of Particles Through Matter], using an average ionization potential for H_2 of I = 20.0 eV, which is an approximate average of the experimental result of Garbincius and Hyman [Phys. Rev. A2, 1834 (1970)] and the theoretical result of Ford and Browne [Phys. Rev. A7, 418 (1973)]. Bubble chamber conditions are chosen to be those of Garbincius and Hyman: parahydrogen of density = 0.0625 g/cm^3 (note: range $\propto 1/{\rm density}),$ with vapor-pressure 60.8 lb/in 2 (absolute) and temperature 26.2°K. The functional dependence of the Bethe-Bloch equation is not experimentally verified to better than about $\pm 1\%$ over large momentum ranges. It should be noted that the number of bubbles per cm of a track in a bubble chamber is nearly proportional to $1/\beta^2$. not dE/dx. For the linear portions of the range curves. $R \propto p^{3.6}$. Scaling law for particles of other mass or charge (except electrons): for a given medium, the range R_b of any beam particle with mass M_b , charge z_b , and momentum p_b is given in terms of the range R_a of any other particle with mass M_a , charge z_a , and momentum $p_a = p_b M_a/M_b$ (i.e., having the same velocity) by the expression:

$$\begin{split} R_b\left(M_b,\;z_b,\;p_b\right) &= \\ &\left(\frac{M_b/M_a}{z_b^2/z_a^2}\right) R_a\left(M_a,\;z_a,\;p_a = p_b M_a/M_b\right) \,. \end{split}$$

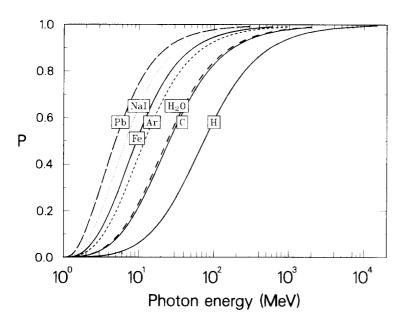

Mean Range and Energy Loss in Lead, Copper, Aluminum, and Carbon

Mean range and energy loss due to ionization for the indicated particles in Pb, with scaling to Cu. Al, and C indicated, using Bethe-Bloch equation [See Sec. (1) of Passage of Particles Through Matter] with corrections. Calculated by M.J. Berger, using ionization potentials and density effect corrections as discussed in M.J. Berger and S.M. Seltzer, "Stopping Powers and Ranges of Electrons and Positrons, $(2^{nd}$ ed.). U.S. National Bureau of Standards Report NBSIR 82-2550-A (1982). The average ionization potentials (I) assumed were: Pb (823 eV), Cu (322 eV). Al (166 eV). and C (78.0 eV). Figure indicates total path length; observed range may be smaller (by $\sim 1.2\%$ in heavy elements) due to multiple scattering, primarily from small energy-loss collisions with nuclei. The functional forms have not been experimentally verified to better than roughly $\pm 1\%$. For higher energies refer to discussion by Cobb ["A Study of Some Electromagnetic Interactions of High Velocity Particles with Matter," University of Oxford Report HEP/T/55 (1973)] and by Turner ["Penetration of Charged Particles in Matter: A Symposium," National Academy of Sciences. Washington D.C. (1970), p. 48]. For lower energies neither data nor theory are well understood. Scaling to other beam particles is, to a good approximation, described by the formula in the previous figure caption.

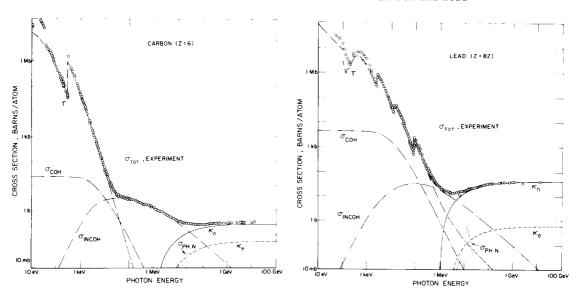

PHOTON AND ELECTRON ATTENUATION

Photon Attenuation Length

The photon mass attenuation length $\lambda = 1/(\mu/\rho)$ (also known as mfp, mean free path) for various absorbers as a function of photon energy, where μ is the mass attenuation coefficient. For a homogeneous medium of density ρ , the intensity I remaining after traversal of thickness t is given by the expression $I = I_0 \exp(-t\rho/\lambda)$. The accuracy is a few percent. Interpolation to other Z should be done in the cross section $\sigma = A/\lambda N_A \text{ cm}^2/\text{atom}$, where A is the atomic weight of the absorber material in grams and N_A is the Avogadro number. For a chemical compound or mixture, use $(1/\lambda)_{\text{eff}} \approx$ $\sum w_i(1/\lambda)_i$, accurate to a few percent, where w_i is the proportion by weight of the i^{th} constituent. See next page for high energy range. The processes responsible for attenuation are given in a following figure. Not all of these processes necessarily result in detectable attenuation. For example, coherent Rayleigh scattering off an atom may occur at such low momentum transfer that the change in energy and momentum of the photon may not be significant. From Hubbell, Gimm, and Øverbø, J. Phys. Chem. Ref. Data 9, 1023 (1980). See also J.H. Hubbell, Int. J. of Applied Rad. and Isotopes 33, 1269 (1982). Data courtesy J.H. Hubbell.


Photon Attenuation Length (High Energy)

The photon mass attenuation length, high energy range (note that ordinate is linear scale). See previous figure caption for details. The attenuation length is constant beyond the range shown for at least two decades in energy.


PHOTON AND ELECTRON ATTENUATION (Cont'd)

Photon Pair Conversion Probability

Probability P that a photon interaction will result in conversion to an e^+e^- pair. Except for a few-percent contribution from photonuclear absorption around 10 or 20 MeV, essentially all other interactions result in Compton scattering off an atomic electron. For a photon attenuation length λ (g/cm²) (upper figure), the probability that a given photon will produce an electron pair (without first Compton scattering) in thickness t (cm) of absorber of density ρ (g/cm³) is $P[1-\exp(-t\rho/\lambda)]$.

Contributions to Photon Cross Section in Carbon and Lead

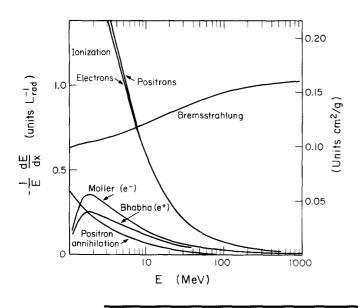
Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes.

 $\tau=$ Atomic photo-effect (electron ejection, photon absorption)

 $\sigma_{\rm COH} = \,$ Coherent scattering (Rayleigh scattering—atom neither ionized nor excited)

 $\sigma_{\text{INCOH}} = \text{Incoherent scattering (Compton scattering off an electron)}$

 κ_n = Pair production, nuclear field


 $\kappa_e = \text{Pair production, electron field}$

 $\sigma_{\text{PH.N.}}$ = Photonuclear absorption (nuclear absorption, usually followed by emission of a neutron or other particle)

From Hubbell, Gimm, and Øverbø, J. Phys. Chem. Ref. Data 9, 1023 (1980). The photon total cross section is assumed approximately flat for at least two decades beyond the energy range shown. Figures courtesy J.H. Hubbell.

PHOTON AND ELECTRON ATTENUATION (Cont'd)

Fractional Energy Loss for Electrons and Positrons in Lead

Fractional energy loss per radiation length in lead as a function of electron or positron energy. Electron (positron) scattering is considered as ionization when the energy loss per collision is below 0.255 MeV, and as Moller (Bhabha) scattering when it is above. Adapted from Fig. 3.2 from Messel and Crawford, Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air Absorbers, Pergamon Press, 1970. Messel and Crawford use $L_r(Pb) =$ 5.82 g/cm², but we have modified the figures to reflect the value given in the Table of Atomic and Nuclear Properties of Materials, namely $L_r(Pb)$ = 6.4 g/cm². The development of electron-photon cascades is approximately independent of absorber when the results are expressed in terms of inverse radiation lengths (i.e., scale on left of plot).

COSMIC RAY FLUXES*

The fluxes of particles of different types depend at the $\sim 10\%$ level on the latitude, their energy, and the conditions of measurement. Some typical sea-level values for charged particles are given below:

- I_v flux per unit solid angle per unit horizontal area about vertical direction
 - $\equiv j(\theta = 0, \phi)[\theta = \text{zenith angle}, \phi = \text{azimuthal angle}];$
- J_1 total flux crossing unit horizontal area from above

$$\equiv \int_{\theta \le \pi/2} j(\theta, \phi) \cos \theta \ d\Omega \ [d\Omega = \sin \theta \ d\theta \ d\phi] \ ;$$

 J_2 total flux from above (impinging on a sphere of unit cross-sectional area)

$$\equiv \int_{\theta < \pi/2} j(\theta, \phi) \ d\Omega \ .$$

	Intensity	Component	Component
I_v	1.1×10^2	0.8×10^{2}	$0.3 \times 10^2 \text{ m}^{-2} \text{ sec}^{-1} \text{ sterad}^{-1}$
J_1	1.8×10^{2}	1.3×10^{2}	$0.5 \times 10^2 \text{ m}^{-2} \text{ sec}^{-1}$
J_2	2.4×10^2	1.7×10^{2}	$0.7 \times 10^2 \text{ m}^{-2} \text{ sec}^{-1}$

Very approximately, about 75% of all particles at sea level are penetrating, and are muons (the dominant portion of the hard

component at sea level). The sea-level vertical flux ratio for protons to muons (both charges together) is about 3.5% at 1 GeV/c, decreasing to about 0.5% at 10 GeV/c.

The muon flux at sea level has a mean energy of 2 GeV and a differential spectrum falling as E^{-2} , steepening smoothly to $E^{-3.6}$ above a few TeV. The angular distribution is $\cos^2\theta$, changing to $\sec\theta$ at energies above a TeV, where θ is the zenith angle at production. The \pm charge ratio is 1.25–1.30. The mean energy of muons originating in the atmosphere is roughly 300 GeV at slant depths \gtrsim a few hundred meters. Beyond slant depths of \sim 10 km water-equivalent, the muons are due primarily to in-the-earth neutrino interactions (roughly 1/8 interaction ton⁻¹ year⁻¹ for $E_{\nu} > 300$ MeV, \sim constant throughout the earth). Muons from this source arrive with a mean energy of 20 GeV, and have a flux of $2\times 10^{-9}~{\rm m}^{-2}~{\rm sec}^{-1}$ sterad⁻¹ in the vertical direction and about twice that in the horizontal, down at least as far as the deepest mines.

- * Updated April 1986.
- B. Rossi, Rev. Mod. Phys. 20, 537 (1948). See also C. Grupen, "News from Cosmic Rays at High Energies," Siegen University preprint SI-84-01, and Allkofer and Grieder, Cosmic Rays on Earth, Fachinformationszentrum, Karlsruhe (1984); flux ratio for protons at sea level from G. Brook and A.W. Wolfendale, Proc. of the Phys. Soc. of London, Vol. 83 (1964), p. 843.
- J.G. Learned, F. Reines, and A. Soni, Phys. Rev. Lett. 43, 907 (1979).
- 3. M.F. Crouch et al., Phys. Rev. D18, 2239 (1978).

PARTICLE DETECTORS*

In this section we give various parameters for common detector components. The quoted numbers are usually based on typical devices, and should be regarded only as rough approximations for new designs. A more detailed discussion of detectors can be found in Ref. 1. In Table 1 are given typical spatial and temporal resolutions of common detectors.

Table 1. Typical detector characteristics.

Detector Type	Accuracy (rms)	Resolution Time	Dead Time
Bubble chamber	10 to 150 μm	1 ms	50 ms^a
Streamer chamber	$300~\mu\mathrm{m}$	$2~\mu \mathrm{s}$	$100 \mathrm{\ ms}$
Proportional chamber	$\geq 300~\mu\mathrm{m}^{b.c}$	50 ns	200 ns
Drift chamber	50 to $300~\mu\mathrm{m}$	2 ns^d	$100 \mathrm{\ ns}$
Scintillator		150 ps	10 ns
Emulsion	$1~\mu\mathrm{m}$		
Silicon strip	$2.5~\mu\mathrm{m}$	e	e

- a Multiple pulsing time.
- ^b 300 μ m is for 1 mm pitch.
- c Delay line cathode readout can give $\pm 150~\mu\mathrm{m}$ parallel to anode wire.
- d For two chambers.
- ^e Limited at present by noise and readout time of attached electronics.

(1) Scintillators: The photon yield in the frequency range of practical photomultiplier tubes is $\approx 1\gamma$ per 100 eV of charged particle ionization energy loss in plastic scintillator² and as given in Table 2 for some common inorganic scintillators.

In addition to the photon yield, one must take into account the light collection efficiency ($\lesssim 10\%$ for typical 1-cm-thick scintillator), the attenuation length (1 to 4 m for typical scintillators³), and the quantum efficiency of the photomultiplier cathode ($\lesssim 25\%$ when folded with a typical scintillator emission spectrum).

Table 2. Properties of four inorganic scintillators^{2,4-9}

	BaF_2	BGO	$\mathrm{NaI}(\mathrm{Tl})$	$\mathrm{CsI}(\mathrm{Tl})$
Density (g/cm ³)	4.9	7.1	3.7	4.53
Radiation length (cm)	2.1	1.1	2.6	1.85
dE/dx (for MIP) (MeV/cm)	6.6	9.0	4.8	5.6
Peak emission (nm)	220^a	480	410	565
, .	(310)			
Decay constant (ns)	0.6	300	250	1000^{b}
	(620)			
Index of refraction	1.56	2.15	1.85	1.80
Light yield (photons/MeV) ^c	2000	2800	4000	4250
(6	6500)			
Hygroscopic	slightly	no no	very	somewha

- a First number is for fast component, second (in parenthesis) for the slow component.
- b Undoped CsI has time constants 10 ns and 36 ns.
- c Obtained under "good" conditions; not necessarily comparable between columns. Under ideal conditions (small, high-quality crystals shaped for good light collection. etc.), yields 4–10 times higher have been obtained 10 .

(2a) Electromagnetic shower detectors: The development of electromagnetic showers is discussed in the "Passage of Particles Through Matter" section. Formulae are given for the approximate description of average showers, but since the physics of electromagnetic showers is well understood, detailed and reliable Monte Carlo simulation is possible. EGS4 has emerged as the standard.¹¹

The resolution of sampling calorimeters (hadronic and electro-

magnetic) is usually dominated by sampling fluctuations, leading to fractional resolution σ/E scaling inversely as the square root of the incident energy. Homogenous calorimeters, such as solid NaI(Tl), will in general not have resolution varying as $1/\sqrt{E}$. At high energies deviations from $1/\sqrt{E}$ occur because of noise, pedestal fluctuations, nonuniformities, calibration errors, and incomplete shower containment. Such effects are usually included by adding a constant term to σ/E , either in quadrature or (incorrectly) directly. In the case of the hadronic cascades discussed below, noncompensation also contributes to the constant term.

In Table 3 we give resolution as measured in detectors using typical EM calorimeter technologies. In almost all cases the installed calorimeters yield worse resolution than test beam prototypes for a variety of practical reasons. Where possible actual detector performance is given. For a fixed number of radiation lengths, the FWHM in sandwich detectors would be expected to be proportional to \sqrt{t} for t (= plate thickness) \geq 0.2 radiation lengths. 12

Given sufficient transverse granularity early in the calorimeter, position resolution of the order of a millimeter can be obtained.

Table 3. Resolution of typical electromagnetic calorimeters. E is in GeV.

Detector	Resolution
NaI(Tl) (Crystal Ball; 13 20 X ₀)	$2.7\%/E^{1/4}$
Lead glass $(OPAL^{14})$	$5\%/\sqrt{E}$
Lead-liquid argon (NA31; 15 80 cells: 27 $X_0,1.5$ mm Pb + 0.6 mm Al + 0.8 mm G10 + 4 mm LA)	$7.5\%/\sqrt{E}$
$Lead\text{-}scintillator\ sandwich\ (ARGUS^{16}.\ LAPP\text{-}LAL^{17})$	$9\%/\sqrt{E}$
Lead-scintillator spaghetti (CERN test module) 18	$13\%/\sqrt{E}$
Proportional wire chamber (MAC; 32 cells: 13 X_0 . 2.5 mm typemetal + 1.6 mm Al) ¹⁹	$23\%/\sqrt{E}$

(2b) Hadronic shower detectors:^{20,21} The length scale appropriate for hadronic cascades is the nuclear interaction length, given very roughly by

$$\lambda_I \approx 35 \text{ g cm}^{-2} A^{1/3}$$
.

Longitudinal energy deposition profiles are characterized by a sharp peak near the first interaction point (from the fairly local deposition of EM energy resulting from π^0 's produced in the first interaction). followed by a more gradual development with a maximum at

$$x/\lambda_I \equiv t_{\rm max} \approx 0.2 \ln(E/1 {\rm ~GeV}) + 0.7$$

as measured from the front of the detector.

The depth required for containment of a fixed fraction of the energy also increases logarithmically with incident particle energy. The thickness of iron required for 95% and 99% containment of cascades induced by single hadrons is shown in Fig. 1.²² Two of the sets of data are from large neutrino experiments, while the third is from a commonly used parametrization. Depths as measured in nuclear interaction lengths presumably scale to other materials. From the same data it can be concluded that the requirement that 95% of the energy in 95% of the showers be contained requires 40 to 50 cm (2.4 to 3.0 λ_I) more material material than for an average 95% containment.

The transverse dimensions of hadronic showers also scale as λ_I , although most of the energy is contained in a narrow core.

The energy deposit in a hadronic cascade consists of a prompt EM component due to π^0 production and a slower component mainly due to low-energy hadronic activity. In general, these energy depositions are converted to electrical signals with different efficiencies. The ratio of the conversion efficiencies is usually called the intrinsic e/h ratio. If e/h = 1.0 the calorimeter is said to be compensating. If it differs from unity by more than 5% or 10%, detector performance is compromised

PARTICLE DETECTORS (Cont'd)

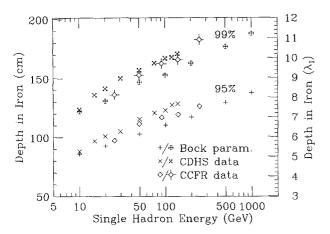


Fig. 1. Required calorimeter thickness for 95% and 99% hadronic cascade containment in iron, on the basis of data from two large neutrino detectors and the parametrization of Bock $et\ al.^{22}$.

because of fluctuations in the π^0 content of the cascades. Problems include:

- a) A skewed signal distribution;
- b) A response ratio for electrons and hadrons (the " e/π ratio") which is different from unity and depends upon energy;
- c) A nonlinear response to hadrons (the response per GeV is proportional to the reciprocal of e/π);
- d) A constant contribution to detector resolution, almost proportional to the degree of noncompensation. The coefficient relating the constant term to |1-e/h| is 14% according to FLUKA simulations, and 21% according to Wigman's calculations.²⁰

In most cases e/h is greater than unity, particularly if little hydrogen is present or if the gate time is short. This is because much of the low-energy hadronic energy is "hidden" in nuclear binding energy release, low-energy spallation products, etc. Partial correction for these losses occurs in a sampling calorimeter with thick plates, because a disproportionate fraction of electromagnetic energy is deposited in the inactive region. For this reason, it is very unlikely that a fully sensitive detector such as BGO or glass can be made compensating.

Compensation has been demonstrated in calorimeters with 2.5 mm scintillator sheets sandwiched between 3 mm depleted uranium plates 24 or 10 mm lead plates; 25 resolutions σ/E of $0.34/\sqrt{E}$ and $0.44/\sqrt{E}$ were obtained for these cases (E in GeV). The former was shown to be linear to within 2% over three orders of magnitude in energy, with approximately Gaussian signal distributions.

(3) dE/dx resolution in argon: Particle identification by dE/dx is dependent on the width of the distribution. For relativistic incident particles with charge e in a multiple-sample Ar gas counter with no lead.²⁶

$$\left.\frac{dE}{dx}\right|_{\rm FWHM} \bigg/ \frac{dE}{dx} \Big|_{\rm most\ probable} = 0.96\,N^{-0.46}\,(xp)^{-0.32}\ , \label{eq:energy}$$

where N= number of samples, x= thickness per sample (cm), p= pressure (atm.). Most commonly used chamber gases (except Xe) give approximately the same resolution.

- (4) Free electron drift velocities in liquid ionization chambers: $^{27-30}$ Velocity as a function of electric field strength is given in Fig. 2.
- (5) Measurement of particle momenta in a uniform magnetic field:³¹ The trajectory of a particle with momentum p (in GeV/c) and charge ze in a constant magnetic field \overrightarrow{B} is a helix, with radius of curvature R and pitch angle λ . The radius of curvature and momentum component perpendicular to \overrightarrow{B} are related by

$$p\cos\lambda = 0.3 z B R ,$$

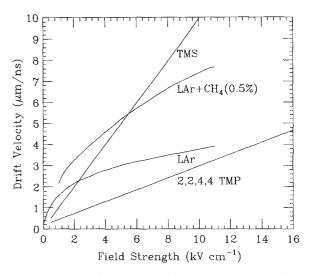


Fig. 2. Electron drift velocity as a function of field strength for commonly used liquids.

where B is in tesla and R is in meters.

The distribution of measurements of the curvature $k \equiv 1/R$ is approximately Gaussian. The curvature error for a large number of uniformly spaced measurements on the trajectory of a charged particle in a uniform magnetic field can be approximated by

$$(\delta k)^2 = (\delta k_{\rm res})^2 + (\delta k_{\rm ms})^2 \ ,$$

where $\delta k = \text{curvature error}$

 $\delta k_{\rm res} = {
m curvature} \ {
m error} \ {
m due} \ {
m to} \ {
m finite} \ {
m measurement} \ {
m resolution}$

 $\delta k_{
m ms} = {
m curvature~error~due}$ to multiple scattering.

If many (≥ 10) uniformly spaced position measurements are made along a trajectory in a uniform medium,

$$\delta k_{\rm res} = \frac{\epsilon}{L'^2} \sqrt{\frac{720}{N+5}} \; . \label{eq:delta-k}$$

If a vertex constraint is applied at the origin of the track, the coefficient under the radical becomes 320.

where N = number of points measured along track

L' = the projected length of the track onto the bending plane

 ϵ = measurement error for each point, perpendicular to the trajectory.

The contribution due to multiple Coulomb scattering is approximately

$$\delta k_{\rm ms} \approx \frac{(0.016)({\rm GeV}/c)z}{Lp\beta\cos^2\lambda}\sqrt{\frac{L}{X_0}} \; ,$$

where p = momentum (GeV/c)

z = charge of incident particle in units of e

L = the total track length

 X_0 = radiation length of the scattering medium (in units of length; the X_0 defined elsewhere must be multiplied by density)

 $\beta =$ the kinematic variable v/c.

More accurate approximations for multiple scattering may be found in the section on Passage of Particles Through Matter (following). The contribution to the curvature error is given approximately by $\delta k_{\rm ms} \approx 8 s_{\rm plane}^{\rm rms}/L^2$, where $s_{\rm plane}^{\rm rms}$ is defined there.

(6) Proportional chamber wire instability: The limit on the voltage V for a wire tension T, due to mechanical effects when the electrostatic repulsion of adjacent wires exceeds the restoring force of wire tension, is given by $(MSKA)^{32}$

$$V \leq \frac{s}{\ell C} \sqrt{4\pi\epsilon_0 T} \ ,$$

PARTICLE DETECTORS (Cont'd)

where $s,\,\ell,$ and C are the wire spacing, length, and capacitance per unit length. An approximation to C for chamber half-gap t and wire diameter d (good for $s\lesssim t$) gives 33

$$V \lesssim 59T^{1/2} \left[\frac{t}{\ell} + \frac{s}{\pi \ell} \ln \left(\frac{s}{\pi d} \right) \right] ,$$

where V is in kV, and T is in grams-weight equivalent.

(7) Proportional and drift chamber potentials: The potential distributions and fields in a proportional or drift chamber can usually be calculated with good accuracy from the exact formula for the potential around an array of parallel line charges q (coul/m) along z and located at $y=0, x=0, \pm s, \pm 2s, \ldots$,

$$V(x,y) = -\frac{q}{4\pi\,\epsilon_0} \ln\,\left\{4\left[\sin^2\left(\frac{\pi x}{s}\right) + \sinh^2\left(\frac{\pi y}{s}\right)\right]\right\} \ .$$

Errors from the presence of cathodes, mechanical defects, TPC-type edge effects, etc., are usually small and are beyond the scope of this review.

(8) Silicon strip detectors and photodiodes: These silicon diodes are operated with a reverse bias voltage V (typically 30-300 volts) sufficient to deplete the sensitive volume of most mobile charge carriers (electrons and holes). The active (depletion layer) thickness x (cm) is given in a simple model by

$$x = \sqrt{\frac{2\epsilon \, V}{ne}} = \sqrt{2\rho\mu\epsilon V} \ ,$$

where $n = \text{number of impurity centers/cm}^3$

e = electron charge

 $\epsilon = \text{ dielectric constant} \approx 1 \text{ pF cm}^{-1} \approx 11.9 \ \epsilon_0$

 $\rho = \text{resistivity} \approx 1 \cdot 20 \text{ k}\Omega \text{ cm}$

 $\mu = \text{majority charge carrier mobility}$

 $\approx 1300 \ 1500 \ \text{cm}^2 \, \text{V}^{-1} \text{s}^{-1} \ \text{(electrons)}$

 $\approx 450 600 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1} \text{ (holes)}.$

The capacitance of the diode is ϵ/x per unit area, or 106 pF $\times A(\mathrm{cm}^2)/x(100\mu\mathrm{m})$. In the case of microstrips this is usually dominated by the interstrip capacitance of ~ 1 pF per cm of strip length. A minimum-ionizing particle has a skewed energy-deposit distribution with average energy deposit 39 keV/100 $\mu\mathrm{m}$ and most probable energy deposit 26 keV in 100 $\mu\mathrm{m}$ (which scales within $\sim 10\%$ from ~ 20 to ~ 300 $\mu\mathrm{m}$). It has a full width at half-maximum of roughly $0.1\,x/\beta^2$ keV, where x is the detector thickness in microns and $\beta=v_{\mathrm{inc}}/c$. The width is usually increased further by electronic noise ($\sigma\sim 1$ 10 keV) and for thin layers by a Gaussian contribution due to atomic effects [$\sigma\sim (0.3-0.4)\sqrt{x}$ keV]. The average energy required to produce an electron-hole pair is 3.6 eV, from which one can estimate total charge of either sign released. Silicon detectors can still operate as efficient detectors in integrated charged-particle fluxes of up to $10^{10}-10^{14}\,\mathrm{cm}^{-2}$.

Typical photodiodes (e.g. Hamamatsu S1723) have quantum efficiencies in excess of 70% between 600 nm and 1000 nm, and UV extended photodiodes have useful efficiency down to 200 nm.

- (9) Radiation levels in detectors at hadron colliders: An SSC Central Design Group task force made a study of radiation levels to be expected in SSC detectors.³⁴ Its model assumed
 - The machine luminosity at $\sqrt{s}=40$ TeV is $\mathcal{L}=10^{33}$ cm $^{-2}$ s $^{-1}$, and the p-p inelastic cross section is $\sigma_{\rm inel}=100$ mb. This luminosity is effectively achieved for 10^7 s yr $^{-1}$. The interaction rate is thus 10^8 s $^{-1}$, or 10^{15} yr $^{-1}$:
 - All radiation comes from p-p collisions at the interaction point;
 - The charged particle distribution is (a) flat in pseudorapidity for |η| < 6 and (b) has a momentum distribution whose perpendicular component is independent of rapidity, which is taken as independent of pseudorapidity:

$$\frac{d^2N_{\rm ch}}{dndp_{\perp}} = H \ f(p_{\perp})$$

(where $p_{\perp} = p \sin \theta$). Integrals involving $f(p_{\perp})$ are simplified by replacing $f(p_{\perp})$ by $\delta(p_{\perp} - \langle p_{\perp} \rangle)$; in the worst case this approximation introduces an error of less than 10%;

- Gamma rays from π^0 decay are as abundant as charged particles. They have approximately the same η distribution, but half the mean momentum:
- At the SSC ($\sqrt{s}=40$ TeV), $H\approx 7.5$ and $\langle p_{\perp}\rangle\approx 0.6$ GeV/c; assumed values at other energies are given in Table 5. Together with the model discussed above, these values are thought to describe particle production to within a factor of two or better.

It then follows that the flux of charged particles from the interaction point passing through a normal area da located a distance r_{\perp} from the beam line is given by

$$\frac{dN_{\rm ch}}{da} = \frac{1.2 \times 10^8 \, {\rm s}^{-1}}{r_{\perp}^2} \ .$$

In a typical organic material, a relativistic charged particle flux of $3\times 10^9~{\rm cm}^{-2}$ produces an ionizing radiation dose of 1 Gy, where 1 Gy \equiv 1 joule kg⁻¹ (= 100 rads). The above result may thus be rewritten as dose rate.

$$\dot{D} = \frac{0.4 \text{ MGy yr}^{-1}}{(r_{\perp}/1 \text{ cm})^2} \ .$$

If a magnetic field is present, "loopers" may increase this dose rate by a factor of two.

In a medium in which cascades can develop, the ionizing dose or neutron fluence is proportional to $dN_{\rm ch}/da$ multiplied by $\langle E \rangle^{\alpha}$, where $\langle E \rangle$ is the mean energy of the particles going through da and the power α is slightly less than unity. Since $E \approx p = p_{\perp}/\sin\theta$ and $r_{\perp} = r\sin\theta$, the above expression for $dN_{\rm ch}/da$ becomes

Dose or fluence** =
$$\frac{A}{r^2} \cosh^{2+\alpha} \eta = \frac{A}{r^2 \sin^{2+\alpha} \theta}$$
.

The constant A contains the total number of interactions $\sigma_{\rm inel}\int \mathcal{L}dt$, so the ionizing dose or neutron flux at another accelerator scales as $\sigma_{\rm inel}\int \mathcal{L}dt\,H\,\langle p_\perp\rangle^\alpha$.

The dose or fluence in a calorimeter scales as $1/r^2$, as does the neutron fluence inside a central cavity with characteristic dimension r.

Under all conditions so far studied, the neutron spectrum shows a broad log-normal distribution peaking at just under 1 MeV. In a 2 m radius central cavity of a detector with coverage down to $|\eta|=3$, the average neutron flux is $2\times 10^{12}~{\rm cm}^{-2}{\rm yr}^{-1}$, including secondary scattering contributions.

Values of A and α are given in Table 4 for several relevant situations. Examples of scaling to other accelerators are given in Table 5. It should be noted that the assumption that all radiation comes from the interaction point does not apply to the present generation of accelerators.

The constant A includes factors evaluated with cascade simulation programs as well as constants describing particle production at the interaction point. It is felt that each could introduce an error as large as a factor of two in the results.

Table 4. Coefficients $A/(100~{\rm cm})^2$ and α for the evaluation of calorimeter radiation levels at cascade maxima under SSC nominal operating conditions. At a distance r and angle θ from the interaction point the annual fluence or dose is $A/(r^2\sin^{2+\alpha}\theta)$.

Quantity	$A/(100~{\rm cm})^2$	Units	$\langle p_{\perp} \rangle$	α
Neutron flux	1.5×10^{12}	$\mathrm{cm}^{-2}\mathrm{yr}^{-1}$	$0.6~{ m GeV}/c$	0.67
Dose rate from photons	400	$Gy yr^{-1}$	$0.3~{ m GeV}/c$	0.93
Dose rate from hadrons	29	Gy yr ^{−1}	$0.6~{ m GeV}/c$	0.89

PARTICLE DETECTORS (Cont'd)

Table 5. A rough comparison of beam-collision induced radiation levels at the Tevatron, UNK, high-luminosity LHC, and SSC.

	Tevatron	UNK-3	LHC	SSC
\sqrt{s} (TeV)	1.8	6	16	40
$\mathcal{L}_{\text{nom}} \ (\text{cm}^{-2}\text{s}^{-1})$	2×10^{30}	4×10^{32}	$4 \times 10^{34^a}$	1×10^{33}
$\sigma_{ m inel}$	$59~\mathrm{mb}$	$80~\mathrm{mb}$	$86~\mathrm{mb}$	100 mb
H	4.1	4.5	6.3	7.5
$\langle p_{\perp} angle \; ({ m GeV}/c)$	0.46	0.52	0.55	0.60
Relative dose rate ^b	5×10^{-4}	0.2	27	1

^a High-luminosity option.

- * Updated 1989 by D. Anderson, G. Hall, J. Huston, and R. Wigmans.
- ** Dose is the time integral of dose rate, and fluence is the time integral of flux.
- Experimental Techniques in High Energy Physics, T. Ferbel (ed.) (Addison-Wesley, Menlo Park, CA, 1987).
- Methods of Experimental Physics, L.C.L. Yuan and C.-S. Wu, editors, Academic Press, 1961, Vol. 5A, p. 127.
- 3. Nuclear Enterprises Catalogue.
- R.K. Swank, Ann. Rev. Nucl. Sci. 4, 137 (1954); and G.T. Wright, Proc. Phys. Soc. B68, 929 (1955).
- 5. M. Laval et al., Nucl. Instr. and Meth. 206, 169 (1983).
- R. Allemand et al., Communication LETI/MCTE/82-245, Grenoble, France (1982).
- 7. M. Moszynski et al., Nucl. Instr. and Meth. A226, 534 (1984).
- 8. E. Blucher et al., Nucl. Instr. and Meth. A249, 201 (1986).
- 9. See also the Table of Atomic and Nuclear Properties.
- I. Holl, E. Lorenz, G Mageras, IEEE Trans. Nucl. Sci. 35, 105 (1988).
- W.R. Nelson, H. Hirayama and D.W.O. Rogers, "The EGS4 Code System," SLAC-265, Stanford Linear Accelerator Center (Dec. 1985).
- D. Hitlin et al., Nucl. Instr. and Meth. 137, 225 (1976). See also
 W. J. Willis and V. Radeka, Nucl. Instr. and Meth. 120, 221 (1974), for a more detailed discussion.

- E. Bloom and C. Peck, Ann. Rev. Nucl. and Part. Sci. 33, 143 (1983).
- P.W. Jeffreys et al., Rutherford Appleton Laboratories Report RAL-89-060 (1989) (to be published as M.A. Akrawy et al., Nucl. Instr. and Meth. (1990)).
- 15. H. Burkhardt et al., Nucl. Instr. and Meth. A268, 116 (1988).
- 16. W. Hoffman et al., Nucl. Instr. and Meth. 163, 77 (1979).
- 17. M.A. Schneegans et al., Nucl. Instr. and Meth. 193, 445 (1982).
- 18. C. Fabjan and R. Wigmans, Rept. Prog. Phys. 52, 1519 (1989).
- 19. J.V. Allaby et al., Nucl. Instr. and Meth. A281, 291 (1989).
- R. Wigmans, Nucl. Instr. and Meth. A259, 389 (1987).
- 21. R. Wigmans, Nucl. Instr. and Meth. A265, 273 (1988).
- D. Bintinger, "Depth of Calorimetry for SSC Experiments," Proceedings of the Workshop on Calorimetry for the Superconducting Super Collider," ed. by R. Donaldson and M.G.D. Gilchriese, Tuscaloosa, Alabama (to be published, 1990).
- R.K. Bock, T. Hansl-Kozanecka, and T.P. Shah, Nucl. Instr. and Meth. 186, 533 (1981).
- T. Akesson et al., Nucl. Instr. and Meth. A262, 243 (1987).
- 25. E. Bernardi et al., Nucl. Instr. and Meth. A262, 229 (1987).
- W.W.M. Allison and J.H. Cobb, "Relativistic Charged Particle Identification by Energy-Loss," Ann. Rev. Nucl. Sci. 30, 253 (1980), see p. 287.
- 27. E. Shibamura et al., Nucl. Instr. and Meth. 131, 249 (1975).
- 28. T.G. Ryan and G.R. Freeman, J. Chem. Phys. 68, 5144 (1978).
- W.F. Schmidt, "Electron Migration in Liquids and Gases," HMI B156 (1974).
- A.O. Allen, "Drift Mobilities and Conduction Band Energies of Excess Electrons in Dielectric Liquids," NSRDS-NBS-58 (1976).
- 31. R.L. Gluckstern, Nucl. Instr. and Meth. 24, 381 (1963).
- 32. T. Trippe, CERN NP Internal Report 69-18 (1969).
- S. Parker and R. Jones, LBL-797 (1972); and P. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953, p. 1236.
- 34. Report of the Task Force on Radiation Levels in the SSC Interaction Regions, SSC Central Design Group Report SSC-SR-1033 (June 1988). Abridged versions of this report may be found in Nucl. Instr. and Meth. A279, 1 (1989) and in Proceedings of the 1988 Summer Study on High Energy Physics in the 1990's ed. by F.J. Gilman and S. Jensen, Snowmass, CO, July 1988 (1989).

^b Proportional to $\mathcal{L}_{\mathrm{nom}} \, \sigma_{\mathrm{inel}} \, H \, \langle p_{\perp} \rangle^{0.7}$

COMMONLY USED RADIOACTIVE SOURCES*

			Parti	cle	Pho	ton
Nuclide	Half-life	Type of decay	Energy (MeV)	Prob.	Energy (MeV)	Prob.
²² Na	2.602 y			90%	0.511	Annih.
					1.275	100%
$^{54}_{25}{ m Mn}$	0.855 y	EC			0.835 Cr. K. V	100% rays 24%
55 26 Fe	2.73 y	EC		•	Mn K X	
261 0	2.10 y	DC			0.00589	
					0.00649	2.9%
57 27 Co	0.745 y	EC			0.014	10%
					0.122	86%
					0.136	11%
60.cz	F 081				Fe K X 1	
⁶⁰ 27Со	5.271 y	β^{-}	0.316	100%	1.173 1.333	100% $100%$
68 32 Ge	0.742 y	EC				rays 44%
$ ightarrow rac{68}{31} Ga$		β^+ , EC	1.899	90%	0.511	Annih.
90 38 Sr	28.5 y	<i>3</i>	0.546	100%	1.077	3%
$\frac{-\frac{90}{39}Y}{\frac{106}{44}Ru}$	1.000	$\frac{\beta^-}{\beta^-}$	2.283	100%		
	1.020 y	ρ 		100%		
$ ightarrow ^{106}_{45} m Rh$		β^{-}	3.541	79%	0.512	21%
100					0.622	10%
$^{109}_{48}{ m Cd}$	1.267 y	EC	$0.063 e^{-}$	41%		3.6%
			$\frac{0.084 \ e^{-}}{0.087 \ e^{-}}$	$\frac{45\%}{9\%}$	Ag K X	rays 100%
¹ 13Sn	0.315 y	EC	$\frac{0.364 \ e^{-}}{}$	29%	0.392	64%
50~	0.010 3	2.	$0.388 e^{-}$	6%	In K X r	
$^{137}_{55}$ Cs	30.0 y	β^{-}	$0.514 e^{-}$	94%	0.662	85%
			$1.176~e^-$	6%		
¹³³ Ba	$10.54~\mathrm{y}$	EC	$0.045~e^-$	50%	0.081	34%
			$0.075~e^-$	6%	0.356	62%
207						ays 124%
$^{207}_{83}{ m Bi}$	32.2 y	EC	$0.481~c^{-}$	2%	0.569	98%
			$\frac{0.975 \ e^{-}}{1.047 \ e^{-}}$	7% 2%	1.063 1.770	75% 7%
			1.011	271	Pb K X i	
$^{228}_{90}{ m Th}$	1.913 y	6α:	5.341 to	8.785	0.239	44%
90		$3\beta^{-}$:	0.334 to	2.246	0.583	31%
					2.614	36%
$(\rightarrow^{224}_{88}Ra$	$ ightarrow ^{220}_{86} Ri$	$ ightarrow ^{216}_{84}P$	$0 \rightarrow \frac{212}{82}$	$^{\circ}b \rightarrow ^{21}8$	$\frac{^{12}_{33}\text{Bi}}{0.060} \to \frac{^{212}_{84}\text{P}}{0.060}$	0)
$^{241}_{95}{ m Am}$	432.7 y	α				
$^{241}_{95}{ m Am/Be}$	490.7	6 . 10	5.486	85%	Np L X r	ays 39%
₉₅ Am/Be	402.1 Y				MeV) and per Am deca	v
²⁴⁴ Cm	18.11 y		5.763	24%	Pu L X r	
J0	•		5.805	76%	* •	/0
²⁵² ₉₈ Cf	2.645 y	α (97%)	6.076	15%		
		4	6.118	82%		
		Fission (0001	< 1 M U	
			γ 's/fissio: ieutrons/f		< 1 MeV	

 * Updated April 1989 by E. Browne and V. Shirley.

"Prob." is the probability per decay of a given emission; because of cascades these may total more than 100%. Only principal emissions are listed. EC means electron capture, and e^- means monoenergetic internal conversion (Auger) electron. The intensity of 0.511 MeV e^+e^- annihilation photons depends upon the number of stopped positrons. Endpoint β^\pm energies are listed. In some cases when energies are closely spaced, the γ -ray values are approximate weighted averages. Radiation from short-lived daughter isotopes is included where relevant.

Half-lives, energies, and intensities are from E. Browne and R.B. Firestone, *Table of Radioactive Isotopes* (John Wiley & Sons, New York, 1986) or recent *Nuclear Data Sheets*.

Neutrons are from Neutron Sources for Basic Physics and Applications (Pergamon Press, 1983).

RADIOACTIVITY & RADIATION PROTECTION*

The International Commission on Radiation Units and Measurements (ICRU) recommends the use of SI units. Therefore we list SI units first, followed by cgs (or other common) units in parentheses, where they differ.

- Unit of activity = becquerel (curie):
 - 1 Bq = 1 disintegration/sec [= $1/(3.7 \times 10^{10})$ Ci].
- Unit of exposure, the quantity of X- or γ radiation at a point in space integrated over time, in terms of charge of either sign produced by showering electrons in a small volume of air about the point:
 - = 1 coul/kg of air (roentgen; 1 $R = 2.58 \times 10^{-4}$ coul/kg)
- = 1 esu/cm³ = 87.8 erg released energy per g of air); implicit in the definition is the assumption that the small test volume is embedded in a sufficiently large uniformly irradiated volume that the number of secondary electrons entering the volume equals the number leaving.
- Unit of absorbed dose= gray (rad):
 - 1 Gy = 1 joule/kg (= $10^4 \text{ erg/g} = 10^2 \text{ rad}$)
 - = 6.24×10^{12} MeV/kg deposited energy.
- Unit of dose equivalent (for biological damage) = sievert[= 10^2 rem (roentgen equivalent for man)]: Dose equivalent in Sv = grays $\times Q$, where Q (quality factor) expresses long-term risk (primarily cancer and leukemia) from low-level chronic exposure; it depends upon the type of radiation and other factors. For γ rays and β particles, $Q \approx 1$; for protons, $^{\dagger} Q \approx 1$ at ~ 10 MeV, rising gradually to ≈ 2 at ~ 1 GeV; for thermal neutrons, $^{\dagger} Q \approx 3$; for fast neutrons, $^{\dagger} Q$ ranges up to 10; and for α particles and low-energy heavy ions (assuming internal deposition—skin and clothing are usually sufficient protection against external sources). $Q \approx 20$.
- Natural annual background. all sources: Most world areas, whole-body dose equivalent rate $\approx (0.4\text{--}4)$ mSv (40–400 millirems). Can range up to 50 mSv (5 rems) in certain areas. U.S. average ≈ 3.6 mSv, including ≈ 2 mSv (≈ 200 mrem) from inhaled natural rdactivity, mostly radon and radon daughters (0.1–0.2 mSv in open

areas; average is for typical house and varies by more than an order of magnitude; can be more than two orders of magnitude higher in poorly ventilated mines).

- Cosmic ray backgroundin counters (Earth's surface): $\sim 1(\min/\text{cm}^2/\text{sr})$. For more accurate estimates and details, see Cosmic Rays section.
- Fluxes (per cm²) to deposit one Gy, assuming uniform irradiation: \approx (charged particles) $6.24 \times 10^9/(dE/dx)$, where dE/dx (MeV cm²/g), the energy loss per unit length, may be obtained from the Mean Range and Energy Loss figures.
- $\approx 3.5 \times 10^9$ minimum-ionizing singly charged particles in carbon. $\approx ({\bf photons}) \ 6.24 \times 10^9/[Ef/\lambda]$, for photons of energy E (MeV), attenuation length λ (g/cm²) (see Photon Attenuation Length figure), and fraction $f \lesssim 1$ expressing the fraction of the photon's energy deposited in a small volume of thickness $\ll \lambda$ but large enough to contain the secondary electrons.
 - $\approx 2 \times 10^{11}$ photons/cm² for 1 MeV photons on carbon. ($f \approx 1/2$). (Quoted fluxes good to about a factor of 2 for all materials.)
- U.S. maximum permissible occupational whole-body dose: 50 mSv/year (5 rem/year).
- Lethal dose: Whole-body dose from penetrating ionizing radiation resulting in 50% mortality in 30 days (assuming no medical treatment), 2.5 3.0 Gy (250 300 rads) as measured internally on body longitudinal center line; surface dose varies due to variable body attenuation and may be a strong function of energy.

For a recent review, see E. Pochin, Nuclear Radiation: Risks and Benefits (Clarendon Press, Oxford, 1983).

- * Revised April 1990 with assistance from N.A. Greenhouse.
- † The International Commission on Radiological Protection has provisionally recommended that these Q factors for protons and neutrons be doubled.

PROBABILITY, STATISTICS, AND MONTE CARLO*

I. PROBABILITY

I.A General

If x is the outcome of an observation, we define the probability of x as the relative frequency with which x occurs out of a (possibly hypothetical) large set of similar observations. If x may take any value from a **continuous** range, we write $f(x;\theta)$ dx as the probability of observing x between x and x+dx. The function $f(x;\theta)$ is the **probability density function** (p.d.f.) for the **random variable** x, which may depend upon a parameter θ . If x can take on only one of a set of **discrete** values (e.g., the non-negative integers), then $f(x;\theta)$ is itself a probability, but we still refer to it as a p.d.f. The p.d.f. is always normalized to unit area (unit sum, if discrete). Both x and θ may have multiple components and are then usually written as column vectors. If θ is unknown and we wish to estimate its value from a given set of data x, we may use statistics (Section II).

The *cumulative distribution function* F(a) expresses the probability that $x \leq a$:

$$F(a) = \int_{-\infty}^{a} f(x) dx . \tag{I.1}$$

Here and in what follows, if x is discrete-valued, the integral is replaced by a sum. The endpoint a is expressly included in the integral or sum. Then $0 \le F(x) \le 1$, F(x) is nondecreasing, and $\operatorname{Prob}(a < x \le b) = F(b) - F(a)$. If x is discrete, F(x) is flat except at allowed values of x, where it has a discontinuous jump equal to f(x).

Any function of random variables is itself a random variable, with (in general) a different p.d.f. The **expectation value** of any function u(x) is

$$E[u(x)] = \int_{-\infty}^{\infty} u(x) f(x) dx. \qquad (I.2)$$

The expectation value is said to exist only if it is finite. For x and y any two random variables, E(x+y)=E(x)+E(y). For c and k constants, E(cx+k)=cE(x)+k. The most commonly used expectation values are the mean and variance:

$$\mu \equiv E(x) \tag{I.3a}$$

$$\sigma^2 \equiv \text{Var}(x) \equiv E\left[(x-\mu)^2\right] = E(x^2) - \mu^2 \ . \tag{I.3b} \label{eq:sigma}$$

The mean is the location of the "center of mass" of the distribution of x and the variance is a measure of the square of its width. Note that $\operatorname{Var}(cx+k)=c^2\operatorname{Var}(x)$.

In addition to the mean, another useful indicator of the x location near which most of the probability is likely to concentrate is the **median** $x_{\rm med}$. This is that value of x such that $F(x_{\rm med}) = 1/2$, i.e., exactly half of the probability lies above and half lies below $x_{\rm med}$. For a given sample of events, $x_{\rm med}$ is that observed x such that half the events have larger x and half have smaller x (as closely as possible, not counting any that have the same x as the median). If this lies between two observed x values, the sample median is set by convention to be halfway between them. If the p.d.f. for x has the form $f(x-\mu)$ and μ is both mean and median, then for a large number of events N the variance of the median approaches $1/\{4Nf^2(0)\}$, provided f(0) > 0.

Let x and y be two random variables with joint p.d.f. f(x, y). The marginal p.d.f. of, for example, x, expressing the p.d.f. for x with y unobserved, is

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 (I.4)

and similarly for $f_2(y)$. If y is fixed, the **conditional** p.d.f. for x given the fixed y is given by

$$f(x|y) = f(x,y)/f_2(y)$$
 (I.5)

The x mean is

$$\mu_x = \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{\infty} x \ f(x, y) \ dx \ dy = \int\limits_{-\infty}^{\infty} x \ f_1(x) \ dx \tag{I.6}$$

and similarly for y. The **correlation** between x and y is a measure of the dependence of one on the other:

$$\rho_{xy} = E\left[(x - \mu_x)(y - \mu_y) \right] / \sigma_x \, \sigma_y \equiv \text{Cov}[x, y] / \sigma_x \, \sigma_y , \qquad (I.7)$$

where σ_x , σ_y are defined in analogy with Eq. (I.3b); it can be shown that $-1 \le \rho_{xy} \le 1$. The symbol "Cov" represents the covariance of x and y, a 2-variable analogue to the variance, Eq. (I.3b). Two random variables are *independent* if and only if

$$f(x,y) = f_1(x) f_2(y) . (I.8)$$

If x and y are independent then $\rho_{xy}=0$; the converse is not necessarily true except for Gaussian-distributed x and y. If x and y are independent, $E[u(x)\ v(y)]=E[u(x)]\ E[v(y)]$ and $\mathrm{Var}(x+y)=\mathrm{Var}(x)+\mathrm{Var}(y)$; otherwise. $\mathrm{Var}(x+y)=\mathrm{Var}(x)+\mathrm{Var}(y)+2\mathrm{Cov}[x,y]$ and $E[u\ v]$ does not factor.

In a change of continuous random variables from, e.g., $\overrightarrow{x} \equiv (x_1, \ldots, x_n)$, with p.d.f. $f(x_1, \ldots, x_n)$, to $\overrightarrow{y} \equiv (y_1, \ldots, y_n)$, a one-to-one function of the x's, the p.d.f. $g(y_1, \ldots, y_n)$ is found by substitution for (x_1, \ldots, x_n) in f followed by multiplication by the absolute value of the Jacobian of the transformation:

$$g(\overrightarrow{y}) = f[w_1(\overrightarrow{y}), \dots, w_n(\overrightarrow{y})][J]$$
 (I.9)

The functions w_i express the **reverse** transformation $x_i = w_i(\overrightarrow{y})$ for $i=1,\dots,n$, and |J| is the absolute value of the determinant of the square matrix $J_{ij} = \partial x_i/\partial y_j$. Such transformations must always preserve the number of random variables, n. To transform to fewer variables, first perform (I.9) and then take the marginal (I.4) to eliminate unwanted variables. If the transformation from \overrightarrow{x} to \overrightarrow{y} is not one-to-one, the situation is more complex and a unique solution may not exist. To change variables for discrete random variables simply substitute; no Jacobian is necessary because in that case f is a probability rather than a probability density. If f depends upon a parameter set θ , we can change to a different parameter set $\phi = \phi(\theta)$ by simple substitution; no Jacobian is used.

I.B Specific Probability Density Functions

We describe here a few p.d.f.'s commonly encountered in physics applications. Tables for most of these distributions, relations among them, and further information may be found in Refs. 1 and 2. Monte Carlo techniques for generating each of them may be found in Section III.C below.

I.B.1 Uniform distribution (continuous)

This p.d.f. assumes equal probability density for any x in an allowed range [a, b]:

$$f(x) = 1/(b-a)$$
, $a \le x \le b$ (I.10)

$$E(x) = (b+a)/2$$
; $Var(x) = (b-a)^2/12$. (I.11)

I.B.2 Binomial distribution (discrete)

Any random process with exactly two possible outcomes is a **Bernoulli** process. If the process is repeated n times independently, and if the probability of obtaining a certain outcome (a "success") in each trial is p, then the probability of obtaining exactly r successes is given by the binomial distribution:

$$f(r;n,p) = \binom{n}{r} p^r q^{n-r} = \frac{n!}{r!(n-r)!} p^r q^{n-r} . \tag{I.12}$$

where q=1-p and the order in which the successes and failures come is assumed irrelevant.

$$E(r) = np \; ; \; \operatorname{Var}(r) = npq \; . \tag{I.13}$$

If r successes are observed in n_r Bernoulli trials with probability p of success, and if s successes are observed in n_s similar trials, then t = r + s is also binomial with $n_t = n_r + n_s$.

I.B.3 Poisson distribution (discrete)

The Poisson distribution with mean μ is:

$$f(n;\mu) = \frac{\mu^n e^{-\mu}}{n!}$$
, $n = 0, 1, 2, \dots$ (I.14)

The observed result of a Poisson process is a non-negative integer n; the parameter μ is any non-negative real number. The Poisson distribution describes the population of events in any interval of x (e.g., space or time) whenever: (a) the number of events in any interval of x is independent of that in any other non-overlapping interval; (b) in any small Δx , the probability of one event is $\lambda \Delta x$ and the probability of two or more vanishes at least as fast as $(\Delta x)^2$, as $\Delta x \to 0$; and (c) λ does not depend on x. Then $\mu \equiv \lambda x$;

$$E(n) = \mu \; ; \; \operatorname{Var}(n) = \mu \; . \tag{I.15}$$

When μ is large ($\gtrsim 7$ or 8), it is often useful to approximate the distribution of n by a Gaussian distribution of mean μ and variance $\sigma^2 = \mu$, as though n were a continuous variable. Two or more Poisson processes (e.g., signal + background, with parameters μ_S and μ_B , respectively) which independently contribute amounts n_S and n_B to a given measurement will produce an observed number $n = n_S + n_B$, which is distributed according to a new Poisson distribution with parameter $\mu = \mu_S + \mu_B$.

I.B.4 Normal or Gaussian distribution (continuous)

The Gaussian distribution is

$$f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2} . -\infty < x < \infty ;$$
 (I.16)

$$E(x) = \mu \; ; \; \operatorname{Var}(x) = \sigma^2 \; . \tag{I.17}$$

For x and y independent and normally distributed, z = x + y obeys $f(z; \mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$.

The integrated probability for x to fall in the range $\mu - \sigma$ to $\mu + \sigma$ is 0.683. Other measures of width commonly encountered are: probable error (central region containing 0.50 of the probability) = $\mu \pm 0.67\sigma$; mean absolute deviation; $E[|x - \mu|] = 0.80\sigma$; rms deviation = σ ; half-width at half-maximum = 1.18 σ .

The Gaussian gets its importance in large part from the *central limit theorem*: if a continuous random variable x is distributed according to any p.d.f. with finite mean and variance, then the sample mean, \overline{x}_n of n observations of x will have a p.d.f. that approaches a Gaussian as n increases. Therefore the end result $\sum_{i=1}^{n} x_i \equiv n\overline{x}_n$ of a large number of small fluctuations x_i will be distributed as a Gaussian, even if the x_i themselves are not.

The cumulative distribution (I.1) for a Gaussian with $\mu=0$ and $\sigma^2=1$ is given by the *error function*, $\operatorname{erf}(a)$, through the following ugly relation:

$$F(a; 0, 1) = 0.5 \left[1 + \text{erf}(a/\sqrt{2}) \right]$$
 (I.18)

The function $\operatorname{erf}(a)$ is tabulated in Ref. 1 and is available as a FORTRAN function on many computers [caution: other definitions of $\operatorname{erf}(a)$ are sometimes used]; for mean μ and variance σ^2 replace a by $[(a-\mu)/\sigma]$.

For \overrightarrow{x} a set of n (not necessarily independent) Gaussian random variables x_i arranged into a column vector, their joint p.d.f. is the *multivariate Gaussian*:

$$f(\overrightarrow{x}; \overrightarrow{\mu}, V) = \frac{1}{(2\pi)^{n/2}} |V|^{-1/2}$$
 (I.19a)

$$\times \ \exp\left[-\frac{1}{2}(\overrightarrow{x}-\overrightarrow{\mu})^T \ V^{-1} \ (\overrightarrow{x}-\overrightarrow{\mu})\right] \ , \ |V| \neq 0 \ ,$$

where V is the **covariance matrix** of the x's, $V_{ii} = \mathrm{Var}(x_i)$ and $V_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)] \equiv \rho_{ij} \ \sigma_i \ \sigma_j$, and |V| is the determinant of V. The quantity ρ_{ij} is the correlation coefficient for x_i and x_j ; $|\rho_{ij}|^2 \leq 1$. For n=2 this becomes

$$f(x_1, x_2; \ \mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi \ \sigma_1 \ \sigma_2 \sqrt{1 - \rho^2}}$$
 (I.19b)

$$\times \exp \left\{ \frac{-1}{2(1-\rho^2)} \left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2} \right] \right\} .$$

The special case $\sigma_1 = \sigma_2$ and $\rho = 0$ is called the **Rayleigh** distribution. If V is singular, there is a linear relation among some variables; in this case one usually wants to eliminate completely dependent variables and work in a smaller number of dimensions. The marginal distribution of any x_i is a Gaussian with mean μ_i and variance V_{ii} . V is $n \times n$, symmetric, and positive definite. Therefore for any vector \overrightarrow{X} , the quadratic form $\overrightarrow{X}^T V^{-1} \overrightarrow{X} = c$ traces an n-dimensional ellipsoid as \vec{X} varies for any given c > 0. If $X_i = (x_i - \mu_i)/\sigma_i$, then c is a random variable obeying the $\chi^2(n)$ distribution, which is discussed in the following section. The probability that \overrightarrow{X} corresponding to a set of Gaussian random variables \overrightarrow{x}_i lies outside the ellipsoid characterized by a given value of $c = \chi^2$ is given by Eq. (I.22) and may be read from Fig. 1. For example, the "s-standard-deviation ellipsoid" occurs at $c=s^2$. For the two-variable case (n=2) the point \overrightarrow{X} lies outside the one-standard-deviation ellipsoid with 61% probability, so both X_1 and X_2 lie inside the ellipsoid with 39% probability. This assumes that μ_i and σ_i are correct. For $X_i = x_i/\sigma_i$, the ellipsoids of constant χ^2 have the same size and orientation but are centered at $\overrightarrow{\mu}$. The use of these ellipsoids as indicators of probable error is described in Sec. II.E.1.

It is a characteristic of the multivariate Gaussian that $\rho_{ij}=0$ is necessary and sufficient for x_i and x_j to be independent. For a given covariance matrix V, there always exist nonsingular $n\times n$ matrices H such that $HH^T=V$; H is usually upper or lower triangular in the most efficient algorithms. Then $\overrightarrow{z}=H^{-1}(\overrightarrow{x}-\overrightarrow{\mu})$ is a vector of n independent Gaussian random variables with zero mean and with covariance matrix equal to the identity.

I.B.5 The χ^2 distribution (continuous)

If x_1, \ldots, x_n are independent Gaussian distributed random variables, the sum $z = \sum_{i=1}^{n} (x_i - \mu_i)^2 / \sigma_i^2$ is distributed as a χ^2 with n degrees of freedom $[\chi^2(n)]$:

$$f(z;\,n) = \frac{1}{2^{n/2}\Gamma(n/2)}\;z^{n/2-1}\,e^{-z/2}\;,\quad z\geq 0\;; \eqno({\rm I}.20)$$

$$E(z) = n \; ; \; \operatorname{Var}(z) = 2n \; . \tag{I.21}$$

Under a linear transformation to n dependent Gaussian variables x_i' , the χ^2 at each transformed point retains its value; then $z = \overline{X}'^T V^{-1} \overline{X}'$ as in the previous section. For a set of z_i , each of which is $\chi^2(n_i)$, $\sum z_i$ is a new random variable which is $\chi^2(\sum n_i)$.

Fig. 1 shows the Confidence Level (CL) obtained by integrating the tail of the function given in Eq. (I.20) for n_D degrees of freedom:

$$\operatorname{CL}(\chi^2) = \int_{\chi^2}^{\infty} f(z; n_D) \, dz \; ; \tag{I.22}$$

this area is shown schematically in Fig. 2. It is equal to 1.0 minus the cumulative distribution function $F(z=\chi^2;\,n_D)$. It is useful in evaluating the consistency of data with a model (see Sec. II): CL is the probability that a random repeat of the given experiment would observe a **worse** χ^2 , assuming the correctness of the model. It is also useful for confidence intervals for statistical estimators (Sec. II.E), when one is interested in the unshaded area of Fig. 2.

I.B.6 Student's t (continuous)

Suppose that x and x_1, \ldots, x_n are independent and normal with mean 0 and variance 1. We then define $z = \sum_{i=1}^{n} x_i^2$, and

$$t = x/\sqrt{z/n} \ . \tag{I.23}$$

The variable z thus belongs to a $\chi^2(n)$ distribution. Then t is distributed according to a Student's t distribution with n degrees of freedom:

$$f(t:n) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma[(n+1)/2]}{\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-(n+1)/2} , \qquad (I.24)$$

 χ^2 Confidence Level vs. χ^2 for n_D Degrees of Freedom

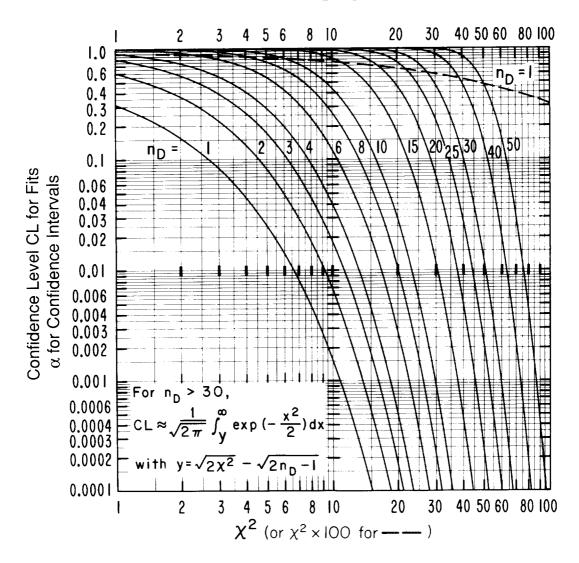


Fig. 1. Confidence level vs. χ^2 for n degrees of freedom, as defined in Eq. (L22). The curve for a given n expresses the probability that a value at least as large as χ^2 will be obtained in an experiment. For a fit, CL is a measure of goodness-of-fit in that a good fit to a correct model is expected to yield a low χ^2 (Sec. II.C). For a confidence interval, α measures the probability that the interval **does not** cover the true value of the quantity being estimated (Sec. II.E).

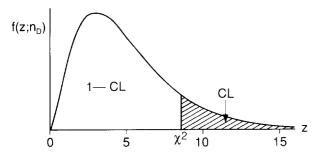


Fig. 2. Schematic illustration of the confidence level integral given in Eq. (I.22).

and

$$E(t) = 0 \text{ for } n > 1 : Var(t) = \frac{n}{n-2} \text{ for } n > 2 .$$
 (I.25)

Here $\Gamma(k)$ is the gamma function, equal to (k-1)! if k is an integer. Student's t distribution resembles a Gaussian distribution with wide tails. As $n \to \infty$, the distribution approaches a Gaussian, and if n=1, the distribution is **Cauchy**, or **Breit-Wigner**. The mean is finite for n>1 and the variance is finite for n>2, so for n=1 or n=2, t does not obey the central limit theorem.

As an example, consider the **sample mean** $\bar{x} = \sum x_i/n$ and the **sample variance** $s^2 = \sum (x_i - \bar{x})^2/(n-1)$ for normally distributed random variables x_i with unknown mean μ and variance σ^2 . The sample mean has a Gaussian distribution with a variance σ^2/n , so the variable $(\bar{x} - \mu)/\sqrt{\sigma^2/n}$ is normal with mean 0 and variance 1.

Similarly, $(n-1) s^2/\sigma^2$ is independent of this and is χ^2 distributed with n-1 degrees of freedom. The ratio

$$t = \frac{(\overline{x} - \mu)/\sqrt{\sigma^2/n}}{\sqrt{(n-1) s^2/\sigma^2 (n-1)}} = \frac{\overline{x} - \mu}{\sqrt{s^2/n}}$$
(I.26)

distributes as f(t; n-1). The unknown true variance σ^2 cancels, and t can be used to test the probability that the true mean is some particular value μ .

The distribution (I.24) is written such that n is not required to be an integer. A Student's t distribution with nonintegral n > 0 is useful in certain applications.

I.B.7 The gamma distribution (continuous)

If a process generating events as a function of x (e.g., space or time) satisfies conditions (a)-(c) of the Poisson distribution, then the x distance from an arbitrary starting point (which may be some particular event) to the k^{th} event is belongs to a gamma distribution:

$$f(x; \lambda, k) = \frac{x^{k-1} \lambda^k e^{-\lambda x}}{\Gamma(k)} , \quad 0 < x < \infty . \tag{I.27}$$

 $\Gamma(k)$ is the gamma function, equal to (k-1)! if k is an integer. The Poisson parameter μ is λ per unit x;

$$E(x) = k/\lambda$$
; $Var(x) = k/\lambda^2$. (I.28)

The special case k=1 is called the *exponential* distribution. A sum of k' exponential random variables x_i is distributed as $f(\Sigma x_i; \lambda, k')$. Eq. (I.27) allows k>0 to be nonintegral. If $\lambda=1/2$ and k=n/2, the gamma and $\chi^2(n)$ distributions are identical.

II. STATISTICS

II.A General

A probability density function with known parameters enables us to predict the frequency with which a random variable will take on a particular value (if discrete) or lie in a given range (if continuous). In *parametric* statistics we have the opposite problem of estimating the parameters of the p.d.f. from a set of actual observations.

We refer to the true p.d.f. as the **population**; the data form a **sample** from this population. A **statistic** is any function of the data, plus known constants, which does not depend upon any of the unknown parameters. A statistic is a random variable if the data have random errors. An **estimator** is any statistic whose value is intended as a meaningful guess for the value of an unknown parameter; we denote estimators with hats, e.g., $\hat{\theta}$.

Often it is possible to construct more than one reasonable estimator. Let θ represent the true value of a parameter to be estimated; θ is a vector if there is more than one. Then if $\widehat{\theta}$ is an estimator for θ , desirable properties for $\widehat{\theta}$ are: (a) Unbiased; bias $b=E(\widehat{\theta})-\theta$, where the expectation value is taken over a hypothetical set of similar experiments in which $\widehat{\theta}$ is constructed the same way. The bias may be due to statistical properties of the estimator or to systematic errors in the experiment. If we can estimate the average bias b we usually subtract it from $\widehat{\theta}$ to obtain a new $\widehat{\theta}' \equiv \widehat{\theta} - b$. However, b may depend upon θ or other unknowns, in which case we usually try to choose an estimator which minimizes its average size. (b) Minimum variance; the minimum possible value of $Var(\widehat{\theta})$ is given by the Rao-Cramér-Frechet bound:

$$Var_{min} = \left[1 + \frac{\partial b}{\partial \theta}\right]^2 / I(\theta) ; \qquad (II.1)$$

$$\left(\int_{-\theta}^{\theta} {n \over 1} \right)^2$$

$$I(\theta) = E\left\{ \left[\frac{\partial}{\partial \theta} \sum_{i=1}^{n} \ln f(x_i; \theta) \right]^2 \right\} .$$

The sum is over all data and b is the bias, if any; the x_i are assumed independent and distributed as $f(x_i;\theta)$, and the allowed range of x must not depend upon θ . The ratio $\epsilon = \mathrm{Var_{min}}/\mathrm{Var}(\widehat{\theta})$ is the **efficiency**. An **efficient** estimator (with $\epsilon = 1$) exists only for certain cases. The square root of the variance expresses the expected spread of $\widehat{\theta}$ about its average value, as would be observed in a large number of repeats of the same measurement. (c) **Minimum mean-squared error** (mse); mse $= E[(\widehat{\theta} - \theta)^2] = V(\widehat{\theta}) + b^2$. The mse combines the error due to any bias quadratically with the

variance, which expresses only the spread about $E(\hat{\theta})$, as distinct from θ , the true value. (d) **Robust**; a robust estimator is not sensitive to errors in our assumptions, e.g., to departures from the assumed p.d.f. due to such factors as noise.

These criteria (and others) allow us to evaluate any procedure for obtaining $\widehat{\theta}$. In many cases these criteria conflict. The bias, variance, and mse may depend on the unknown θ . In this case the optimum prescription for $\widehat{\theta}$ may depend on the range in which we assume θ to lie.

Following are techniques in common use for obtaining estimators and their standard errors $\sigma(\widehat{\theta}) = \sqrt{\mathrm{Var}(\widehat{\theta})}$. When the conditions of the central limit theorem are satisfied, the interval $\widehat{\theta} \pm \sigma(\widehat{\theta})$ forms a 68.3% confidence interval. This is a random interval in that its endpoints depend upon the randomly sampled data; its meaning here will be taken to be that in 68.3% of all similar experiments the interval will include the true value θ . One should be aware that in most practical cases the central limit theorem is only approximately satisfied and accordingly confidence intervals which depend on that are only approximate. Confidence intervals are discussed in Section II.E below.

II.B Data with a Common Mean

(1) Suppose we have a set of N independent measurements y_i assumed to be unbiased measurements of the same unknown quantity μ with a common, but unknown, variance σ^2 resulting from measurement error. Then

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} y_i \tag{II.2}$$

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \hat{\mu})^2 = \frac{N}{N-1} \left(E(y^2) - \hat{\mu}^2 \right)$$
 (II.3)

are unbiased estimators of μ and σ^2 . The variance of $\widehat{\mu}$ is σ^2/N . If the common p.d.f. of the y_i is Gaussian, these statistics are independent. Then, for large N, the variance of $\widehat{\sigma}^2$ is $2\sigma^4/N$. If the y_i are Gaussian or N is large enough that the central limit theorem applies, then $\widehat{\mu}$ is an efficient estimator for μ . Otherwise $\widehat{\mu}$ is sometimes subject to large fluctuations, e.g., if the p.d.f. for y_i has long tails. In this case the median of the y_i may be a more **robust** estimator for μ , provided the median and mean are expected to lie at the same point in the p.d.f. for y. For Gaussian y, the median has asymptotic (large-N) efficiency $2/\pi \approx 0.64$. The Student's t distribution provides an example in which there are large tails. In this case, for large N the efficiency of the sample median relative to the sample mean is $(\infty, \infty, 1.62, 1.12, 0.96, 0.80, 0.64)$ for $(1, 2, 3, 4, 5, 8, \infty)$ degrees of freedom.

If σ^2 is known, $\hat{\mu}$ as given in Eq. (II.2) is still the best estimator for μ ; if μ is known, substitute it for $\hat{\mu}$ in Eq. (II.3) and replace N-1 by N, to obtain a somewhat better estimator $\hat{\sigma}^2$.

(2) If the y_i have different, known, variances σ_i^2 , then

$$\widehat{\mu} = \frac{1}{w} \sum_{i=1}^{N} w_i y_i \,, \tag{II.4}$$

is an unbiased estimator for μ with smaller variance than Eq. (II.2), where $w_i=1/\sigma_i^2$ and $w=\sum w_i$. The variance of $\widehat{\mu}$ is 1/w. II.C Least-Squares Fit

We wish to determine the best fit of unbiased data y_i , measured at N points x_i (assumed known with negligible error), to the form $y(x) = \Sigma a_n f_n(x)$, where the f_n are any known, linearly independent functions (e.g., 1, x, x^2 , ..., or Legendre polynomials) which are single-valued over the allowed range of x, and the sum runs from 1 to k. We require $k \leq N$, and at least k of the x_i must be distinct. We wish to estimate the linear coefficients a_n . Later we will discuss the nonlinear case.

In the method of least squares, it is assumed that each measured y_i is equal to this sum plus a random error ϵ_i . If the distribution of ϵ_i has an expectation value of zero (unbiased) and has a finite, known variance σ_i^2 which is fixed (does not depend on the parameters of the fit), then the estimates of a_n obtained by minimizing the sum

of squares which physicists call $\chi^2 = \sum_i [y_i - \sum_n a_n f_n(x_i)]^2 / \sigma_i^2$ will be unbiased and have the smallest possible variance of all linear unbiased estimates (Gauss-Markov Theorem). If the point errors ϵ_i are Gaussian, then the minimum χ^2 will be distributed as a χ^2 random variable with N-k degrees of freedom. We can then evaluate the goodness-of-fit from Fig. 1. The observed χ^2 for $n_D = N - k$ can be used to find the "confidence level" CL. This expresses the probability that a worse fit would be obtained in a large number of similar experiments under the assumptions that: (a) the model $y = \sum a_n f_n$ is correct and (b) the errors ϵ_i are Gaussian and unbiased with variance σ_i^2 . If this probability is larger than an agreed-upon value (0.001, 0.01, or 0.05 are common choices), the data are consistent with the assumptions; otherwise we may want to find improved assumptions. As for the converse, most people do not regard a model as being truly inconsistent unless the probability is as low as corresponds to four or five standard deviations for a Gaussian (6×10^{-3}) or 6×10^{-5} , see Sec. II.E.1). If the ϵ_i are not Gaussian, the method of least squares still works, but the goodness-of-fit test would have to be done using the correct distribution of the random variable we will continue to call " χ^2 ."

Finding the minimum of χ^2 is straightforward:

$$-\frac{1}{2}\frac{\partial\chi^{2}}{\partial a_{m}} = \sum_{i} f_{m}(x_{i}) \left(\frac{y_{i} - \sum_{n} a_{n} f_{n}(x_{i})}{\sigma_{i}^{2}}\right)$$

$$= \sum_{i} \frac{y_{i} f_{m}(x_{i})}{\sigma_{i}^{2}} - \sum_{n} a_{n} \sum_{i} \frac{f_{n}(x_{i}) f_{m}(x_{i})}{\sigma_{i}^{2}}.$$
(II.5)

With the definitions

$$g_m = \sum_i y_i \ f_m(x_i) / \sigma_i^2 \tag{II.6}$$

and

$$\left(V_{\widehat{a}}^{-1}\right)_{mn} = \sum_{i} f_n(x_i) f_m(x_i) / \sigma_i^2 , \qquad (II.7)$$

the k-element vector of solutions \hat{a} (all vectors are column vectors), for which $\partial \chi^2/\partial a_m = 0$ for all m, is given by

$$\widehat{a} = V_{\widehat{\alpha}} \ \overrightarrow{g} \ . \tag{II.8}$$

More generally, the measured y_i 's are not independent. Then the set of σ_i^2 's must be replaced by the $N \times N$ covariance matrix V_y . Then, if H is the $N \times k$ matrix with element $H_{in} = f_n(x_i)$, the solution \hat{a} is given by the solution to the **normal equation**

$$(H^T V_v^{-1} H) \hat{a} = H^T V_v^{-1} \overrightarrow{y} , \qquad (II.9a)$$

or, formally

$$\hat{a} = (H^T V_n^{-1} H)^{-1} H^T V_n^{-1} \vec{y} \equiv D \vec{y} , \qquad (II.9b)$$

where \overrightarrow{y} is the N-element vector of measured y_i 's. The normal equations may be solved by numerical methods much more computationally efficient than brute application of Eq. (II.9b). In particular, $H^T \ V_y^{-1} \ H$ is sometimes singular or nearly singular. In such cases there is at least one f_n which may be expressed as a linear combination of others (or nearly so) when evaluated at the data points. The best procedure is usually to drop such functions from the expansion (or set $\widehat{a}_n = 0$). See Press, 3 Maindonald, 4 or Basilevsky 5 for discussions.

In terms of the $k \times N$ matrix D, the standard covariance matrix for the \widehat{a} is estimated by

$$V_{\widehat{a}} = D V_y D^T . (II.10)$$

If the measured y_i 's are independent, V_y is diagonal with ii^{th} element σ_i^2 and $V_{\widehat{a}}$ is obtained from Eq. (II.7) above.

The expected covariance [see Eq. (I.7)] of \widehat{a}_n and \widehat{a}_m is estimated by

$$E\left[(a_n-\widehat{a}_n)(a_m-\widehat{a}_m)\right]=(V_{\widehat{a}})_{nm}\;. \tag{II.11}$$

Even when the y_i 's are independent (diagonal V_y), \hat{a}_n and \hat{a}_m may not be (nondiagonal $V_{\widehat{a}}$). For the model function $y = \sum a_n f_n(x)$, the estimated variance of an interpolated or extrapolated value of y at a point x is

$$E\left[\left(y-\widehat{y}\right)^{2}\right] = \sigma^{2}(y)$$

$$= \sum_{n,m} (V_{\widehat{a}})_{nm} f_{n}(x) f_{m}(x) . \tag{II.12}$$

If y is not linear in the fitting parameters a_n , or if the errors σ_i depend upon y and therefore on a_n , the solution vector may have to be found by iteration of Eqs. (II.6)–(II.8) or Eq. (II.9b). The same results may be obtained by numerical techniques from the sum of squares, χ^2 , directly, if we have a reasonable first guess \overline{a}_0 for the solution vector:

$$\widehat{a} = \overrightarrow{a}_0 - \left(\frac{\partial^2 \chi^2}{\partial a^2}\right)^{-1}_{\overrightarrow{a}_0} \cdot \frac{\partial \chi^2}{\partial a}\Big|_{\overrightarrow{a}_0}$$
(II.13a)

and

$$V_{\widehat{a}} = 2 \left(\frac{\partial^2 \chi^2}{\partial a^2} \right)_{\widehat{a}}^{-1} . \tag{II.13b}$$

where $\partial\chi^2/\partial a$ is a k-element vector whose n^{th} element is $\partial\chi^2/\partial a_n$, $\partial^2\chi^2/\partial a^2$ is a $k\times k$ matrix with mn^{th} element $\partial^2\chi^2/(\partial a_m\cdot\partial a_n)$. and all derivatives are to be evaluated at the points indicated. If " χ^2 " is a true χ^2 , the second-derivative matrix is independent of \overline{a} ; therefore the shape of the χ^2 as a function of \overline{a} is a paraboloid and Eq. (II.13a) will give the solution immediately. Otherwise one may need to iterate Eq. (II.13a) to arrive at a solution (Newton-Raphson method).

Note that in Eq. (II.9b), one needs only a matrix proportional to V_y to find \widehat{a} . Hence, for example, if the variances σ_i^2 of the errors are unknown but assumed equal and independent, and $E(\epsilon_i)=0$. one can still solve for \widehat{a} . One cannot, however, solve for $V_{\widehat{a}}$ or evaluate goodness-of-fit. These can be estimated from the **residuals**, $r_i=\widehat{y}\left(x_i\right)-y_i$, where $\widehat{y}\left(x_i\right)$ is the fitted curve at x_i , because study of the r_i enables one to estimate V_y . In addition, the residuals can be used to look for evidence of bias such as trends in the data not incorporated in the model.²

Note that the errors on the solution \hat{a} are independent of the value of χ^2 at minimum—they depend only upon the shape about the minimum. Eq. (II.13b) implies that one-standard-deviation limits on the elements of \hat{a} are given by the set of \vec{a}' such that

$$\chi^2(\overrightarrow{a}') = \chi^2_{\min} + 1 \tag{II.14}$$

(compare with the corresponding relation for maximum-likelihood estimation, Sec. II.D.2). This equation, which defines a contour in \vec{a} -space, is often convenient for estimating errors in applications of least-squares techniques to nonlinear cases, where the second derivative [Eq. (II.13b)] may be a rapidly varying function of \overrightarrow{a} . In general, contours at s standard deviations may be found by replacing the 1 in Eq. (II.14) by s^2 . If the problem is highly nonlinear, all such contours are at best only approximations to desired exact confidence regions which would have some given probability of covering the true value of \overrightarrow{a} . It may be that Eq. (II.14) will define a set of disjoint regions. In addition, iteration of Eq. (II.13a) may require sophisticated techniques³ to reach convergence in a practical amount of computation. For example, in cases involving many variables in \overrightarrow{a} , especially if the correlations are not small, simplex or other techniques which do not involve explicit calculation of derivatives are often to be preferred. Such techniques are designed to find their way through complicated nonlinear problems without diverging to infinite \overrightarrow{a} (unless the minimum is actually at infinity).

Least-squares estimation, unlike maximum likelihood (Sec. II.D), requires that an error matrix V_y be known (a matrix proportional to V_y will suffice to find an estimator). For counting experiments it is therefore necessary to group the data in bins in order to associate a Poisson error with each bin. In this case y_i is the bin height and the error depends on the expectation value of the theory in each bin, N_i^{th} , as estimated by the best fit of the model. Thus the requirements of the Gauss-Markov theorem are not satisfied, since the errors are not fixed. Many experimenters arrange the bins to contain enough expected events (say ≥ 7 or 8) that the Gaussian approximation to the Poisson (Sec. I.B.3) is accurate, in which case the expected error is the square root of the theoretical height and " χ^2 " is approximately a true χ^2 . If an approximate error is used, based on the actual observed height $N_i^{
m obs}$ rather than the theoretical height N_i^{th} , the Gauss-Markov conditions would be satisfied except that a bias favoring downward fluctuations will occur. This is because a fluctuation in the data which goes down from the true expectation value will be assigned a smaller error and therefore a greater weight than an equal fluctuation upward.

For bins with few events, a procedure that converges to the above when N_i^{th} is large and yields correct error estimates for all N_i^{th} is to define

$$\chi^2 = \sum_i \left[2(N_i^{th} - N_i^{\text{obs}}) + 2N_i^{\text{obs}} \ln \left(N_i^{\text{obs}} / N_i^{th} \right) \right]. \tag{II.15}$$

This assumes that N_i^{obs} is the outcome of a Poisson process, with Poisson parameter $\mu=N_i^{th}$, in the i^{th} bin. In bins where $N_i^{\text{obs}}=0$, the second term is zero. For any N_i^{th} , s-standard-deviation error estimates are constructed as in Eq. (II.14) and subsequent discussion. If we drop the requirement that χ^2 converge to a true χ^2 for large numbers of events in each bin, then minimizing " χ^2 " = $2\sum_i [N_i^{th}-N_i^{\text{obs}} \ln{(N_i^{th})}]$ will give the same answer and errors, with slightly faster execution, as the above.

Example—Straight-Line Fit

For the case of a **straight-line fit**, $y(x) = a_1 + a_2 x$, one obtains, for independent measurements y_i , the following estimates of a_1 and a_2 .

$$\widehat{a}_1 = (S_y \ S_{xx} - S_x \ S_{xy})/D \ ,$$

$$\widehat{a}_2 = (S_1 \ S_{xy} - S_x \ S_y)/D \ , \tag{II.16}$$

where

$$S_1, S_x, S_y, S_{xx}, S_{xy} = \sum_i (1, x_i, y_i, x_i^2, x_i y_i) / \sigma_i^2,$$
 (II.17)

respectively, and

$$D = S_1 S_{xx} - S_x^2$$
.

The covariance matrix of the fitted parameters is:

$$\begin{pmatrix} V_{11} & V_{12} \\ V_{12} & V_{22} \end{pmatrix} = \frac{1}{D} \begin{pmatrix} S_{xx} & -S_x \\ -S_x & S_1 \end{pmatrix} . \tag{II.18}$$

The estimated variance of an interpolated or extrapolated value of \boldsymbol{y} at point \boldsymbol{x} is:

$$(\widehat{y} - y_{\text{true}})^2 \Big|_{\text{est}} = \frac{1}{S_1} + \frac{S_1}{D} \left(x - \frac{S_x}{S_1} \right)^2$$
 (II.19)

II.D The Method of Maximum Likelihood

II.D.1 General

This is often the simplest method—in many cases the only practical method—for estimating the unknown values of a set of parameters $\overrightarrow{\theta}$. We suppose that a set of measured quantities \overrightarrow{x} came from a particular p.d.f. f which depends upon $\overrightarrow{\theta}$; hence $f(\overrightarrow{x}; \overrightarrow{\theta})$. Now we assume that the probable range of values of $\overrightarrow{\theta}$ is restricted by the condition that it must not have been too unlikely that \overrightarrow{x} could have come from our f. The principle of maximum likelihood (M.L.) asserts that the best explanation for a set of data is provided by that value of $\overrightarrow{\theta}$ which maximizes the joint probability density for all the data

 \vec{x} . If we have a set of measured \vec{x}_i values which we assume were *independently* sampled from f, then the joint probability density is

$$\mathcal{L}(\overrightarrow{\theta}) = \prod_{i} f(\overrightarrow{x}_{i}; \overrightarrow{\theta}) . \tag{II.20}$$

 \mathcal{L} is called the likelihood; it is a function of $\overrightarrow{\theta}$ for the fixed set of measured \overrightarrow{x}_i 's. Although it is computed from a probability density for the data \overrightarrow{x} , it is not a probability density for $\overrightarrow{\theta}$, even when normalized to unit area.

In evaluating the \mathcal{L} , it is important that any normalization factors in the f's which involve $\overrightarrow{\theta}$ be included. However, we will only be interested in the maximum of \mathcal{L} and in ratios of \mathcal{L} at different $\overrightarrow{\theta}$'s; hence any multiplicative factors which do not involve the parameters we want to estimate may be dropped; this includes factors which depend on the data but not on $\overrightarrow{\theta}$.

It is often more convenient to work with

$$\ell(\overrightarrow{\theta}) = \ln \mathcal{L}(\overrightarrow{\theta}) \tag{II.21}$$

since the product in Eq. (II.20) is converted into a sum; also the p.d.f.'s f often involve exponentials. The maximum of ℓ is at the same θ as that of \mathcal{L} . The extremum for both is found from

$$\frac{\partial \ell}{\partial \theta_n} = \frac{1}{\mathcal{L}} \frac{\partial \mathcal{L}}{\partial \theta_n} \equiv S_n = 0 \ . \tag{II.22}$$

S is called the *score* function. Eq. (II.22) is called the *likelihood* condition for the optimal solution $\widehat{\theta}$. At solution, the score will have a negative slope through zero. We must be alert to various possibilities for error: (a) Eq. (II.22) may yield a minimum, therefore one must check the second derivative; (b) there may be more than one maximum—one must try to find the global maximum; (c) the global maximum may lie at a boundary of the physical region, in which case Eq. (II.22) will not find it.

If an unbiased, efficient estimator exists, M.L. will find it. A linear score function will guarantee that the estimator is efficient; other efficient cases are discussed in the literature. For large amounts of data, the central limit theorem will usually assure this condition in some significant neighborhood of zero; hence the M.L. estimator is usually efficient in that case, provided certain conditions are met (e.g., that the solution does not lie on a boundary). In this case, in the neighborhood of the maximum, the shape of ℓ is a downward parabola and $\mathcal L$ is proportional to a Gaussian. However, "large" is not well defined, and in many practical situations the M.L. estimator may be neither unbiased nor efficient.

The results of two or more experiments may be combined by adding the score functions, adding the ℓ 's, or multiplying the \mathcal{L} 's.

Under a one-to-one change of parameters from $\overrightarrow{\theta}$ to $\overrightarrow{\phi} = \overrightarrow{\phi}$ ($\overrightarrow{\theta}$), the M.L. estimate is simply $\widehat{\phi} = \overrightarrow{\phi}$ ($\widehat{\theta}$), given the solution for $\widehat{\theta}$ for $\widehat{\theta}$. That is, the M.L. solution for $\overrightarrow{\phi}$ is found by simple substitution of $\widehat{\theta}$ into the transformation equation. It is possible that the new solution $\widehat{\phi}$ will be a biased solution for the true value of $\overrightarrow{\phi}$ even if $\widehat{\theta}$ is not biased, and vice-versa. In the asymptotic limit (of large amounts of data) both $\widehat{\theta}$ and $\widehat{\phi}$ will (usually) converge to unbiased solutions, but at different rates.

Unlike least-squares estimation, the value of the likelihood at the solution does not tell us whether the final fit was a sensible description of the data or not. To evaluate this, one may: (a) prepare histograms of the data projected on various axes and make χ^2 (or other) comparisons with the fitted model projected upon the same axes; and/or (b) do numerous Monte Carlo simulations of the experiment under the hypothesis that the fitted parameters are correct, fit each of these, and compare the experimental likelihood (or ℓ) with those obtained from these simulations. If the experimental likelihood is lower than that of some agreed-upon fraction of these results, one should question the appropriateness of the p.d.f. f. At the same time one can check for bias in the solution.

The likelihood approach has the advantage over least-squares methods that no binning of the data, with its consequent loss of information, is required. For small data samples this may be very important. Additionally, the p.d.f. f may depend on a number of measured quantities. For least-squares fitting it may be necessary to

project the data onto a histogram in one or more dimensions and fit to this histogram. This loses the information about any variables not in the histogram, in addition to that lost by the binning. It is often not even clear what variables one should look at and include in the χ^2 . When using the sum of two or more projections, if the variables are not completely independent, their fitted χ^2 's will be correlated and one must take this into account in deriving error estimates. M.L. requires no such projection; it uses the full multidimensional information in the data. However, M.L. estimation requires that the form of f be known; the results may be sensitive to deviations from this form. That is, M.L. estimators may not be robust. Least-squares fitting only requires that the point errors ϵ_i be unbiased and of finite variance (to go further and evaluate goodness-of-fit, one needs to know f). In the linear least squares problem of Sec. II.C, if the ϵ_i are Gaussian-distributed, $\ell = -\frac{1}{2}\chi^2 + constant$ and both least squares and M.L. will give the same estimators.

II.D.2 Error estimates

The covariance matrix V may be estimated from

$$V_{nm} = \left(E \left[-\frac{\partial^2 \ell}{\partial \theta_n} \frac{\partial}{\partial \theta_m} \Big|_{\widehat{\theta}} \right] \right)^{-1} . \tag{II.23}$$

If the score, Eq. (II.22), is linear, the "expectation" operation in Eq. (II.23) has no effect because the second derivative of ℓ is constant. Otherwise, it may be approximated by taking the average of the quantity in square brackets over a range of θ_n and θ_m near the solution. For complex cases it may be more practical to evaluate s-standard-deviation errors from the contour

$$\ell(\overrightarrow{\theta}) = \ell_{\max} - s^2/2$$
,

where ℓ_{\max} is the value of ℓ at the solution point (compare with Eq. (II.14) and the comments following, for least-squares fitting). The extreme limits of this contour parallel to the θ_n axis give an approximate s-standard-deviation confidence interval in θ . These intervals may not be symmetric and they may even consist of two or more disjoint intervals. This procedure gives one-standard-deviation errors in θ_n equal to $\sqrt{V_{nn}}$ of Eq. (II.23) if the estimator is efficient. If it is not efficient, the level of confidence implied by the value of s is only approximate.

II.E Errors and Confidence Intervals

II.E.1 Gaussian errors

If the data are such that the distribution of the estimator(s) satisfies the central limit theorem discussed in Sec. I.B.4, the Gaussian distribution is the basis of the error analysis. If there is more than one parameter being estimated, the multivariate Gaussian is used. We define a confidence interval as being an interval constructed from the data to have probability at least $1-\alpha$ (α is called the confidence coefficient) of covering the true value of θ . For the univariate case with known σ ,

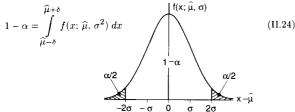


Fig. 3. Illustration of a two standard-deviation confidence interval (unshaded) for a measurement of a single quantity with Gaussian errors. Integrated probabilities, defined by α , are as shown.

is the probability that the true value of μ will fall within $\pm \delta$ ($\delta > 0$) of the measured $\widehat{\mu}$. This interval will cover μ in a fraction $1 - \alpha$ of all similar measurements. Fig. 3 shows a $\delta = 2\sigma$ confidence interval unshaded. The choice $\delta = \sqrt{\mathrm{Var}(\widehat{\mu})} \equiv \sigma$ gives an interval called the **standard error** which has $1 - \alpha = 68.33\%$ if σ is known. Other frequently used choices for δ , in terms of α are:

α (%)	δ	α (%)	δ
31.67	1σ	20	1.28σ
4.55	2σ	10	1.64σ
0.27	3σ	5	1.96σ
6.4×10^{-3}	4σ	1	2.58σ
5.8×10^{-5}	5σ	0.1	3.29σ
2.0×10^{-7}	6σ	0.01	3.89σ

For other δ , find α as the ordinate of Fig. 1 on the $n_D=1$ curve at $\chi^2=(\delta/\sigma)^2$. We can set a one-sided (upper or lower) limit by excluding above $\widehat{\mu}+\delta$ (or below $\widehat{\mu}-\delta$); α 's for such limits are 1/2 the values in the table above.

Note that we have increased confidence that the interval covers the true value as $1-\alpha$ increases, or χ^2 increases. We must be careful to distinguish this case from the other major use of Fig. 1, evaluation of goodness-of-fit (Sec. II.C). In that case we have increased confidence in the fit as χ^2 decreases. In an attempt to reduce possible confusion in this discussion, we will use the α notation (which corresponds to notation used in hypothesis testing²) when discussing confidence intervals and CL notation when discussing goodness-of-fit. Elsewhere in this Review, where the confusion between fit confidence level and interval (usually an upper or lower limit) confidence level does not arise, we follow the common practice of using "CL" to refer to the confidence level of the interval. This CL is understood to represent $1-\alpha$.

If the variance σ^2 of the estimator is not known, but must be estimated from the data, then we need to incorporate the error in $\widehat{\sigma}$ into our confidence interval using Student's t distribution. If we have N data points with which we estimate k parameters, the Gaussian approximation is adequate for $N-k\gg 1$. Otherwise replace δ by a factor $T\widehat{\sigma}$, T being defined by

$$1 - \alpha = \int_{-T}^{T} f(x; N - k) dx , \qquad (II.25)$$

where f is defined in Eq. (I.24). T is tabulated in Ref. 1 and here:

	lpha (%)					
N-k	31.67	10.00	5.00	4.55	1.00	0.27
1	1.84	6.31	12.71	13.97	63.66	235.78
2	1.32	2.92	4.30	4.53	9.92	19.21
3	1.20	2.35	3.18	3.31	5.84	9.22
4	1.14	2.13	2.78	2.87	4.60	6.62
5	1.11	2.01	2.57	2.65	4.03	5.51
10	1.05	1.81	2.23	2.28	3.17	3.96
20	1.03	1.72	2.09	2.13	2.85	3.42
∞	1.00	1.64	1.96	2.00	2.58	3.00

For multivariate θ we must consider pairwise correlations. Assuming a multivariate Gaussian, Eq. (I.19a), and subsequent discussion the standard error ellipse for the pair $(\hat{\theta}_m, \hat{\theta}_n)$ may be drawn as in Fig. 4.

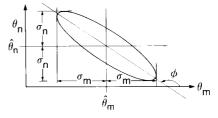


Fig. 4. Standard error ellipse for the estimators $\hat{\theta}_m$ and $\hat{\theta}_n$. In this case the correlation is negative.

The minimum χ^2 or maximum likelihood solution is at $(\widehat{\theta}_m, \widehat{\theta}_n)$. The standard errors σ_m and σ_n are defined as shown, where the ellipse is at a constant value of $\chi^2 = \chi^2_{\min} + 1$ or $\ell = \ell_{\max} - 1/2$. The angle of the major axis of the ellipse is given by

$$\tan 2\phi = \frac{2\rho_{mn} \ \sigma_m \ \sigma_n}{\sigma_m^2 - \sigma_n^2} \ . \tag{II.26}$$

For non-Gaussian or nonlinear cases, one may construct an analogous contour from the same χ^2 or ℓ relations. Any other parameters $\widehat{\theta}_\ell, \ell \neq m, n$, must be allowed freely to find their optimum values for every trial point.

For any unbiased procedure (e.g., least squares or M.L.) being used to estimate k parameters θ_i , $i=1,\ldots,k$, the probability $1-\alpha$ that the true values of all k lie within the s-standard deviation ellipsoid may be found from Fig. 1. Read the ordinate as α ; the correct value of α occurs on the $n_D=k$ curve at $\chi^2=s^2$. For example, for k=2, the probability that the true values of θ_1 and θ_2 simultaneously lie within the one-standard-deviation error ellipse (s=1), centered on $\hat{\theta}_1$ and $\hat{\theta}_2$, is 39%. This probability only assumes Gaussian errors, unbiased estimators, and that the model describing the data in terms of the θ_i is correct.

II.E.2 Gaussian errors—bounded physical region

In certain statistical problems the true value of the parameter to be estimated, μ , is constrained to lie within a bounded **physical region** (e.g., the mass of a neutrino is bounded from below by 0). However, due to random measurement error, real measured values may or may not occur inside the physical region. For this case no completely satisfactory approach exists, but here we suggest a technique for obtaining limits within the physical region approximately at specified confidence levels. The "classical" statistical techniques of the previous section can still be used for confidence intervals at some exact α . However, such limits are useful mainly in the statistical sense where it is assumed that no bound exists. In bad cases, the limit may exclude the physical region entirely, or extend into it a small distance and create the false impression of a powerful limit close to the edge of the physical region.

We assume a measurement x, which represents one observation (or the result of combining multiple measurements as in Sec. II.B) from a Gaussian of true (but unknown) mean μ and known, fixed, variance σ^2 . We **estimate** μ by $\hat{\mu} = x$ and attempt to construct a confidence interval for μ from the resultant Gaussian, as above. If $\hat{\mu}$ or a significant portion of the probability lies in the unphysical region (Fig. 5), the result, while statistically perfectly correct as stated, is physically unsatisfactory.

If we assume μ is bounded from below by μ_{\min} (the argument for μ bounded from above is similar), we may estimate a reasonable upper limit for μ at the $1-\alpha$ (e.g., 90% or 95%) level by the following procedure: (1) **renormalize** the Gaussian probability distribution for x such that the integral of Eq. (I.16) with $\mu = \hat{\mu}$ over x from μ_{\min} to infinity (i.e., over the physical region), unshaded in the figure below, is equal to 1.0; (2) find the value μ_1 such that the integral over x of the renormalized distribution from μ_{\min} to μ_1 is equal to the desired value of $1-\alpha$: (3) set μ_1 to be the desired upper limit with confidence $1-\alpha$. In fact, it can be shown that this is **conservative**, in the sense that the probability that this interval actually covers the true value of μ is $\geq 1-\alpha$.

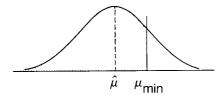


Fig. 5. An example of a bounded physical region with Gaussian errors. In this case the estimator $\widehat{\mu}$ has fallen within the unphysical region due to random error.

For $\mu-\mu_{\min}\gg\sigma$, this technique, which may be applied for any measured x (physical or unphysical), converges smoothly to that of the previous section since x is then effectively confined to the physical region.

One should exercise caution for values of x which lie many standard deviations outside the physical region. It may be that the particular probability model (Gaussian with variance σ^2) may not be a correct description of the measurement process (e.g., the true variance may have unanticipated components and be $> \sigma^2$, or there may be a bias), in which case confidence levels of this sort will not be correct.

If $\hat{\mu} < \mu_{\min}$, some authors prefer to use a fixed upper limit calculated for $\hat{\mu} = \mu_{\min}$ or $\hat{\mu} = \mu_{\min} + \sigma$, rather than allow the upper limit to decrease as $\hat{\mu}$ decreases. In any case, averaging of experiments requires that $\hat{\mu}$ and its variance be quoted, in addition to any upper limits, even if $\hat{\mu}$ is unphysical.

II.E.3 Poisson processes—upper limits

Because the outcome of a Poisson process is an integral number of events, n_0 , it is usually not possible to set confidence intervals for the true Poisson parameter μ at a certain exact α . For large n_0 an approximate interval can be set using the Gaussian approximation, Sec. I.B.3, and the techniques of Sec. II.E.1.

For small n_0 we can define an upper limit N for μ as being that value of μ such that it would be at least $1-\alpha$ (e.g., 90% or 95%) probable that a random observation of n would then lie above the observed n_0 . Thus

$$1 - \alpha = \sum_{n=n_0+1}^{\infty} f(n; N) ; \qquad \alpha = \sum_{n=0}^{n_0} f(n; N) .$$
 (II.27)

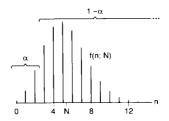


Fig. 6. Illustration of Eq. (II.27) Poisson probabilities for an assumed mean of N. With an observed count $n_0=2,\ N=5.3$ as shown gives summed probability $1-\alpha=90\%$.

Fig. 6 illustrates the case with $n_0=2$ and $1-\alpha=90\%$, for which it may be shown that N=5.3. For any given n_0 and desired α we can obtain N from the χ^2 Confidence Level figure because of a relation between the Poisson and the χ^2 : read the ordinate as α , find χ^2 on the curve for $n_D=2(n_0+1)$; then $N=\chi^2/2$. Some useful values are:

Poisson upper limits N for n_0 observed events

	$\alpha =$	$\alpha =$		$\alpha =$	$\alpha =$
n_0	10%	5%	n_0	10%	5%
0	2.30	3.00	6	10.53	11.84
1	3.89	4.74	7	11.77	13.15
2	5.32	6.30	8	13.00	14.44
3	6.68	7.75	9	14.21	15.71
4	7.99	9.15	10	15.41	16.96
5	9.27	10.51			

The meaning of these upper limits is that, for a given true μ , the probability is **at least** $1-\alpha$ that one will observe n_0 which will result in N which is $\geq \mu$. The probability for that to occur may be higher than $1-\alpha$: for example, if $\mu \leq 2.30$ a "90%" upper limit will actually exceed μ 100% of the time. Note from Eq. (II.27) that for $n_0=0$. $N=\ln\left[1/(1-\alpha)\right]$.

II.E.4 Poisson processes with background⁶

If we observe n_0 events in a Poisson process which has two components, signal and background, estimating a limit on the signal is more complicated. Let μ_S be the unknown mean (the Poisson parameter) for the signal and μ_B be the mean for the sum of all backgrounds. Assume μ_B is known with negligible error; however we don't know n_B , the actual number of events resulting from the background. We do know that $n_B \leq n_0$. If $\mu_B + \mu_S$ is large, the Gaussian approximation to the Poisson distribution (see Sec. I.B.3) is usually adequate, and one can define confidence intervals or limits as above, assuming $\widehat{n}_B \approx \mu_B$ and therefore $\widehat{\mu}_S = n_0 - \mu_B$ with variance equal to n_0 (larger than $\widehat{\mu}_S$ to allow for the error in \widehat{n}_B).

Otherwise an upper limit can be defined by extension of the argument of the preceding section. Let N be the desired upper limit on μ_S with confidence coefficient α . Set N to be that value of μ_S such that any random repeat of the current experiment with $\mu_S = N$ and the same μ_B would observe **more** than n_0 events in total **and** would have $n_B \leq n_0$, all with probability $1 - \alpha$. For any assumed N and μ_B we can calculate this probability:

$$1 - \alpha = 1 - \frac{e^{-(\mu_B + N)} \sum_{n=0}^{n_0} \frac{(\mu_B + N)^n}{n!}}{e^{-\mu_B} \sum_{n=0}^{n_0} \frac{\mu_B^n}{n!}}.$$
 (II.28)

We adjust N to obtain a desired α . For $\mu_B=0$ this converges to (II.27). As in that case (see the last paragraph of Section II.E.3) this gives a **conservative** upper limit in that for any given true μ_S we get a true probability $\geq 1-\alpha$ that $N\geq \mu_S$, averaged over a large set of identically performed experiments. For $\alpha=0.10$, Fig. 7 shows N as a function of n_0 and μ_B .

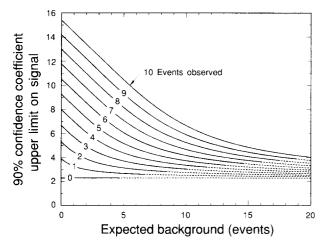


Fig. 7. 90% confidence coefficient upper limit on the number of signal events as a function of the expected number of background events. For example, if the expected background is 8 events and 5 events are observed, then the signal is 4.0 (approximately) or less with 90% confidence. Dashed portions indicate regions where it is to be expected that the number observed would exceed the number actually observed $\geq 99\%$ of the time, even in the complete absence of signal.

Averaging of experiments and other comparisons require that n_0 and μ_B be quoted and the technique used for upper limit extraction be given.

If $\mu_B \gg n_0$ the experimenter should question the probability of observing n_B as that n_0 . If this is very small the background. μ_B , may not have been calculated properly and the upper limit for μ_S obtained under those assumptions may be too low. For example, in Fig. 7, the dashed portions of the curves lie in the region where n_0

is expected to exceed the observed value 99% of the time (or more), even in the complete absence of signal. In these regions one should be cautious about accepting the results of the measurement.

As in the Gaussian case (II.E.2), whenever $n_0 < \mu_B$ some experimenters may prefer to use N calculated as if $n_0 \approx \mu_B$ rather than the smaller value obtained from the observed n_0 .

II.F Propagation of Errors

Suppose we have a set of N random variables y_i which may be direct measurements or derived estimators $\widehat{\theta}$, and we have a covariance matrix V(y) for these. We can make a transformation to a different set of variables $f_j \equiv f_j(y), \ j=1,\ldots,M \ (M\leq N)$ and obtain best estimates for the f_j from

$$\widehat{f}_{j} \approx f_{j}(\widehat{y}) + \frac{1}{2} \sum_{k,n}^{N} V_{kn}(\widehat{y}) \left[\frac{\partial^{2} f_{j}}{\partial y_{k} \partial y_{n}} \right]_{\widehat{y}}$$
 (II.29)

with covariance matrix

$$V_{ij}(\hat{f}) \approx \sum_{n,m} \frac{\partial f_i}{\partial y_n} \Big|_{\widehat{y}} \frac{\partial f_j}{\partial y_m} \Big|_{\widehat{y}} V_{nm}(\widehat{y})$$
 (II.30)

For a single-valued function f of a single measurement y with variance σ^2 (i.e., M=1,N=1), this becomes

$$\widehat{f} \approx f(\widehat{y}) + \frac{1}{2}\sigma^2 f''(\widehat{y})$$

$$V(\widehat{f}) \approx \sigma^2 [f'(\widehat{y})]^2 ,$$
(II.31)

where the primes denote differentiation with respect to y, evaluated at \widehat{y} .

These approximations are based on a Taylor expansion of f about the true value of y. If f is approximately linear in y over a range of roughly $\widehat{y}_i \pm \sigma(y_i)$, the approximation is good and the second-order terms in (II.29) and (II.31) can be neglected. This is what is usually done. However, if linearity is badly violated (e.g., $f \propto 1/y$ and \widehat{y} is no more than a few σ from zero), it should be recognized that propagation of errors will give very approximate results. In such cases $\widehat{f} \approx f(\widehat{y})$ may be a biased estimator for f even if \widehat{y} is unbiased for y, and the second-order terms in (II.29) and (II.31) will help to reduce that bias.

III. MONTE CARLO TECHNIQUES

Monte Carlo techniques are used to simulate on a computer random behavior which is too complex to be derived analytically. Most calculations are based upon pseudorandom numbers, a reproducible sequence of numbers generated on the open interval (0.1) in such a way that they satisfy various statistical tests for a uniform distribution, with independent numbers. (Caution: some commercial random number generators fill the **closed** interval [0,1]. The occurrence of 0 or 1 can sometimes cause problems for the algorithms below). No such numbers are truly uniform and independent. Many commercial random number generators sacrifice randomness in favor of speed. It is not rare that unforeseen correlations will introduce non-negligible errors in the results. A useful test for this is to recompute the same results with a different algorithm for the pseudorandom numbers. To improve the performance of an existing generator one may use the Bays-Durham algorithm [see Ref. 3 for discussion]: (a) Initialize by generating and storing N (e.g., N = 97) random numbers in an array v, using the available generator. Generate a new random number uand save it. (b) On the next call, use this u as an address j = 1 +(integer part of Nu) to select v_j as the random number to be returned. Also save this v_i as u for the next call. Replace v_j in the array with a new random number using the available generator. On the next call, go to (b).

A second problem sometimes encountered in computations requiring long sequences of random numbers is that all pseudorandom number generators will eventually begin over and repeat the same sequence. One may choose algorithms which minimize the number used. One may also use two or three different generators in different parts of the program.

Monte Carlo simulations of complex processes break them down into a sequence of steps. At each step a particular outcome is chosen from a set of possibilities according to a certain p.d.f. To do this we must transform our uniform random numbers into random numbers sampled from different distributions on different ranges.

Two techniques are in wide use to do this. We will discuss only single variable cases; multiple variable cases use straightforward extensions of these techniques. We assume we are in possession of a random number u chosen from a uniform distribution on (0,1).

III.A Inverse Transform Method

If the desired probability density function is f(x) on the range $-\infty < x < \infty$, its cumulative distribution function (expressing the probability that $x \le a$) is given by Eq. (I.1). If a is chosen with probability density f(a), then the integrated probability up to point a, F(a), is itself a random variable which will occur with uniform probability density on [0,1]. Ignoring the endpoints, we can then find a unique x distributed as f(x) for f(x) continuous, for a given u if we set

$$u = F(x) , (III.1)$$

provided we can find an inverse of F, defined by

$$x = F^{-1}(u) , (III.2)$$

as is illustrated in Fig. 8

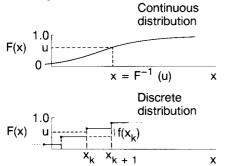


Fig. 8. Use of a random number u chosen from a uniform distribution (0,1) to find a random number x from a distribution with cumulative distribution function F(x).

For a **discrete** distribution, F(x) will have a discontinuous jump of size $f(x_k)$ at each allowed $x_k, k = 1, 2, \cdots$. Choose u from a uniform distribution on (0.1) as before. Find x_k such that

$$F(x_{k-1}) < u \le F(x_k) \equiv \text{Prob } (x \le x_k) = \sum_{i=1}^k f(x_i) ;$$
 (III.3)

then x_k is the value we seek (note: $F(x_0) \equiv 0$).

III.B Acceptance-Rejection Method (Von Neumann)

Very commonly an analytic form for F(x) is unknown or too complex to work with, so that obtaining an inverse as in Eq. (III.2) is impractical. We suppose that for any given value of x the probability density function f(x) can be computed and further that enough is known about f(x) that we can enclose it entirely inside a shape which is C times an easily generated distribution h(x) as illustrated in Fig. 9.

Frequently h(x) is uniform or is a normalized sum of uniform distributions. Note that both f(x) and h(x) must be normalized to unit area and therefore the proportionality constant C>1. To generate f(x), first generate a candidate x according to h(x). Calculate f(x) and the height of the envelope C h(x); generate u and test if $f(x) \le uC h(x)$. If so, accept x; if not reject x and try again. If we regard x and uC h(x) as the abscissa and ordinate of a point in a two-dimensional plot, these points will populate the entire area C h(x) in a smooth manner; then we accept those which fall under f(x). The efficiency is the ratio of areas, which must equal 1/C; therefore we must keep C as close as possible to 1.0. Therefore we try to choose C h(x) to be as close to f(x) as convenience dictates, as in the lower part of Fig. 9. This practice is called *importance sampling*, because

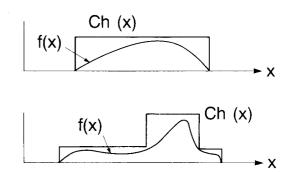


Fig. 9. Illustration of the acceptance-rejection method. Random points are chosen inside the upper bounding figure, and rejected if the ordinate exceeds f(x). Lower figure illustrates importance sampling.

we generate more trial values of x in the region where f(x) is most important.

III.C Algorithms

Many algorithms for generating common distributions are given by Rubinstein (1981), Devroye (1986), Press (1986), Walck (1987), and Everett (1983); a few of these are reproduced here. For many distributions alternative algorithms exist, varying in complexity, speed, and accuracy. For time-critical applications, these algorithms may be coded in-line to remove the significant overhead often encountered in making function calls. Variables named "u" are assumed to be independent and uniform on (0.1).

III.C.1 Sine and cosine of random angle

Generate u_1 and u_2 . Then $v_1=2u_1-1$ is uniform on (-1,1), and $v_2=u_2$ is uniform on (0,1). Calculate $r^2=v_1^2+v_2^2$. If $r^2>1$, start over. Otherwise, the sine (S) and cosine (C) of a random angle are given by

$$S = 2v_1v_2/r^2$$
 and $C = (v_1^2 - v_2^2)/r^2$.

III.C.2 Gaussian distribution

If u_1 and u_2 are uniform on (0,1), then

$$z_1 = \sin 2\pi u_1 \sqrt{-2 \ln u_2}$$
 and $z_2 = \cos 2\pi u_1 \sqrt{-2 \ln u_2}$

are independent and Gaussian distributed with mean 0 and $\sigma=1.$

There are many faster variants of this basic algorithm. For example, construct $v_1=2u_1-1$ and $v_2=2u_2-1$, which are uniform on (-1,1). Calculate $r^2=v_1^2+v_2^2$, and if $r^2>1$ start over. If $r^2<1$, it is uniform on (0,1). Then

$$z_1 = v_1 \sqrt{\frac{-2 \ln r^2}{r^2}}$$
 and $z_2 = v_2 \sqrt{\frac{-2 \ln r^2}{r^2}}$

are independent numbers chosen from a normal distribution with mean 0 and variance 1. $z_i' = \mu + \sigma z_i$ distributes with mean μ and variance σ^2 .

For a multivariate Gaussian it often is simplest to find a transformation matrix H as described at the end of Sec. I.B.4 and generate n independent z_i 's with zero means and unit variances; then return $\overrightarrow{x} = H \overrightarrow{z} + \overrightarrow{\mu}$. For n=2 it is convenient to choose H such that $x_1 = z_1\sigma_1 + \mu_1$ and

$$x_2 = V_{12} x_1/\sigma_1^2 + z_2 \left[(\sigma_1^2 \sigma_2^2 - V_{12}^2)/\sigma_1^2 \right]^{1/2} + \mu_2$$
, where $\sigma_i^2 = V_{ii}$.

III.C.3 $\chi^2(n_D)$ distribution

For n_D even, generate $n_D/2$ uniform numbers u_i ; then

$$y = -2 \ln \left(\prod_{i=1}^{n_D/2} u_i \right)$$
 is $\chi^2(n_D)$.

For n_D odd, generate $(n_D-1)/2$ uniform numbers u_i and one Gaussian z as in III.C.2; then

$$y = -2 \ln \left(\prod_{i=1}^{(n_D-1)/2} u_i \right) + z^2 \quad \text{is} \quad \chi^2(n_D) \ .$$

For $n_D \gtrsim 30$ the much faster Gaussian approximation for the χ^2 may be preferable: generate -z as in III.C.2 and use $y = \left[z + \sqrt{2n_D - 1}\right]^2/2$: if $z < -\sqrt{2n_D - 1}$ reject and start over.

III.C.4 Gamma distribution

- If k = 1 in Eq. (I.27) (the *exponential* distribution), accept $x = -(\ln u)/\lambda$.
- If 0 < k < 1, initialize with $d = (1-k) \ k^{k/(1-k)}$. $\boxed{\mathbf{A}}$ Generate $v_1 = -(\ln u_1)/\lambda$ and $v_2 = -(\ln u_2)/\lambda$. If $v_1 + v_2 \le d + v_1^{1/k}$, accept $x = v_1^{1/k}$ and stop; otherwise go back to $\boxed{\mathbf{A}}$.
- If \vec{k} is a small integer, repeat the k=1 case k times and add the results.
- Otherwise, if k>1 initialize with c=3k-0.75. \blacksquare Generate $v_1=u_1(1-u_1)$ and $v_2=(u_1-0.5)\sqrt{c/v_1}$. If $x=k+v_2-1<0$, go back to \blacksquare : otherwise compute $v_3=64v_1^3u_2^2$. If $v_3\leq 1-2v_2^2/x$ or if $\ln v_3\leq 2\{[k-1]\ln [x/(k-1)]-v_2\}$, accept x and stop; otherwise go back to \blacksquare .

III.C.5 Binomial distribution

If $p \leq 1/2$ in Eq. (I.12), iterate until a successful choice is made: begin with k=1: compute $P_k=q^n$ [for $k \neq 1$ use $P_k\equiv f(r_k;n,p)$. Eq. (I.12)] and store P_k into B: generate u. If $u \leq B$ accept $r_k=k-1$ and stop: otherwise increment k by 1 and compute next P_k and add to B: generate a new u and repeat. If we arrive at k=n+1, stop and accept $r_{n+1}=n$. If p>1/2 it will be more efficient to generate r from f(r;n,q), i.e., with p and q interchanged, and then set $r_k=n-r$.

III.C.6 Poisson distribution

Iterate until a successful choice is made: Begin with k=1 and set A=1 to start. Generate u. Replace A with uA: if now $A<\exp(-\mu)$, where μ is the Poisson parameter, accept $n_k=k-1$ and stop. Otherwise increment k by 1, generate a new u and repeat, always starting with the value of A left from the previous try. For large $\mu(\gtrsim 10)$ it may be satisfactory (and much faster) to approximate the Poisson distribution by a Gaussian distribution [Sec. I.B.4] and generate z from f(z;0.1): then accept $x=\max(0,[\mu+z\sqrt{\mu}-0.5])$ where [] signifies the greatest integer \leq the expression.

III.C.7 Student's t distribution

For n>0 degrees of freedom (n not necessarily integer), generate x from a Gaussian with mean 0 and $\sigma^2=1$ according to the method of III.C.2. Next generate y, an independent gamma random variate with k=n/2 degrees of freedom according to the method of III.C.4. Then $z=x\sqrt{2n}/\sqrt{y}$ is distributed as a t with n degrees of freedom.

For the special case n=1, the **Breit-Wigner** distribution, generate u_1 and u_2 : set $v_1=2u_1-1$ and $v_2=2u_2-1$. If $v_1^2+v_2^2\leq 1$ accept $z=v_1/v_2$ as a Breit-Wigner distribution with unit area, center at 0.0, and FWHM 2.0. Otherwise start over. For center M_0 and FWHM Γ , use $W=z\Gamma/2+M_0$.

- * Revised April 1990 with the assistance of L. Lyons and A.P.T. Palounek.
- M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1972).
- W.T. Eadie, D. Drijard, F.E. James, M. Roos, and B. Sadoulet. Statistical Methods in Experimental Physics (North Holland, Amsterdam and London, 1971); L. Lyons, Statistics for Nuclear and Particle Physicists (Cambridge University Press, New York, 1986); S.L. Meyer, Data Analysis for Scientists and Engineers (John Wiley and Sons, Inc., New York, 1975); A.G. Frodesen, O. Skjeggestad, and H. Tofte, Probability and Statistics in Particle Physics (Universitetsforlaget, Oslo, Norway, 1979).
- W.H. Press et al., Numerical Recipes (Cambridge University Press, New York, 1986).
- W.H. Maindonald et al., Statistical Computation (John Wiley and Sons, Inc., New York, 1984).
- A. Basilevsky et al., Applied Matrix Algebra in the Statistical Sciences (North Holland, New York, 1983).
- O. Helene, Nucl. Instr. and Meth. 212, 319 (1983).
- R.Y. Rubinstein, Simulation and the Monte Carlo Method (John Wiley and Sons, Inc., New York, 1981).
- L. Devroye, Non-Uniform Random Variate Generation (Springer-Verlag, New York, 1986).
- Ch. Walck, Random Number Generation, University of Stockholm Physics Department Report 1987-10-20 (Vers. 3.0).
- C.J. Everett and E.D. Cashwell, A Third Monte Carlo Sampler, Los Alamos report LA-9721-MS (1983).

ELECTROMAGNETIC RELATIONS*

Quantity	Gaussian CGS	SI
Units and	Grandian COD	51
conversions:		
Charge:	$2.99792 \times 10^9 \text{ esu}$	= 1 coul = 1 amp-s
Potential:	(1/299.792) statvolt = $(1/299.792)$ erg/esu	= 1 volt = 1 joule/coul
Magnetic field:	$10^4 \text{ gauss} = 10^4 \text{ dyne/esu}$	= 1 tesla = 1 nt/amp-m
Electron charge:	$e = 4.803\ 242 \times 10^{-10}\ \text{esu}$	$= 1.602 189 2 \times 10^{-19} \text{ coul}$
Lorentz force:	$\mathbf{F} = q \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right)$	$\mathbf{F} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$
Maxweli	$\nabla \cdot \mathbf{D} = 4\pi \rho$	$\nabla \cdot \mathbf{D} = \rho$
equations:	$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$	$\mathbf{ abla} imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$
	$\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$
	$\mathbf{\nabla} \times \mathbf{H} = \frac{4\pi \mathbf{j}}{c} + \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}$	$\mathbf{ abla} imes\mathbf{H}=\mathbf{j}+rac{\partial\mathbf{D}}{\partial t}$
Materials:	$\mathbf{D} = \epsilon \mathbf{E}, \ \mathbf{B} = \mu \mathbf{H}$	$\mathbf{D} = \epsilon \mathbf{E}, \ \mathbf{B} = \mu \mathbf{H}$
Permitivity of free space:	$\epsilon_{\rm vac} = 1$	$\epsilon_{ m vac} = \epsilon_0$
Permeability of free space:	$\mu_{\rm vac} = 1$	$\mu_{\rm vac} = \mu_0$
Fields:	$\mathbf{E} = -\nabla V - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}$	$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$
	$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$	$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$
Static potentials: (coulomb	$V = \sum_{\text{charges}} \frac{q}{r}$	$V = \frac{1}{4\pi\epsilon_0} \sum_{\text{charges}} \frac{q}{r}$
gauge)	$\mathbf{A} = \frac{1}{c} \sum_{\text{currents}} \frac{\mathbf{I}}{r}$	$\mathbf{A} = \frac{\mu_0}{4\pi} \sum_{\text{currents}} \frac{\mathbf{I}}{r}$
Relativistic	$\mathbf{E}'_{\parallel} = \mathbf{E}_{\parallel}$	$\mathbf{E}'_{\parallel} = \mathbf{E}_{\parallel}$
transforma- tions:	$\mathbf{E}'_{\perp} = \gamma(\mathbf{E}_{\perp} + \frac{1}{c}\mathbf{v} \times \mathbf{B})$	$\mathbf{E}'_{\perp} = \gamma(\mathbf{E}_{\perp} + \mathbf{v} \times \mathbf{B})$
(v is the velocity of	$\mathbf{B}'_{ } = \mathbf{B}_{ }$	$\mathbf{B}'_{\parallel} = \mathbf{B}_{\parallel}$
primed system as seen in un- primed system)	$\mathbf{B}'_{\perp} = \gamma(\mathbf{B}_{\perp} - \frac{1}{c}\mathbf{v} \times \mathbf{E})$	$\mathbf{B}'_{\perp} = \gamma(\mathbf{B}_{\perp} - \frac{1}{c^2}\mathbf{v} \times \mathbf{E})$
	$4\pi\epsilon_0 = \frac{1}{c^2} 10^7 \frac{\text{coul}^2}{\text{nt s}^2} = \frac{1}{8.987}$	$\frac{10^{-9} \frac{\text{coul}^2}{\text{nt m}^2}}{55} \times 10^{-9} \frac{\text{coul}^2}{\text{nt m}^2}$
	$\frac{\mu_0}{4\pi} = 10^{-7} \frac{\text{nt s}^2}{\text{coul}^2} \; ; \; \; c = 2.99$	$792458 \times 10^8 \text{ m s}^{-1}$

ELECTROMAGNETIC RELATIONS (Cont'd)

Impedances (SI)

 $\rho = {\rm resistivity}$ at room temperature in $10^{-8}\,\Omega$ m:

$$\sim$$
 1.7 for Cu \sim 5.5 for W \sim 2.4 for Au \sim 73 for SS 304 \sim 2.8 for Al \sim 100 for Nichrome (Al alloys may have double the Al value.)

For alternating currents, instantaneous current I, voltage V, angular frequency ω :

$$V = V_0 e^{j\omega t} = ZI .$$

Impedance of self-inductance L: $Z = j\omega L$.

Impedance of capacitance C: $Z = 1/j\omega C$.

Impedance of free space: $Z = \sqrt{\mu_0/\epsilon_0} = 376.7 \ \Omega$.

Impedance per unit length of a flat conductor of width w (high frequency, ν):

$$Z = \frac{(1+j)\;\rho}{w\;\delta}\;, \quad \text{ where } \delta \,=\, \text{effective skin depth}:$$

$$\delta = \sqrt{\frac{\rho}{\pi\nu\mu}} \approx \frac{6.6~\mathrm{cm}}{\sqrt{\nu\,(\mathrm{Hz})}}~\mathrm{for}~\mathrm{Cu}~.$$

Capacitance \widehat{C} and inductance \widehat{L} per unit length (SI)

Flat rectangular plates of width w, separated by $d \ll w$:

$$\widehat{C} = \epsilon \frac{w}{d}$$
: $\widehat{L} = \mu \frac{d}{w}$:

 $\frac{\epsilon}{\epsilon_0} = 2$ to 6 for plastics: 4 to 8 for porcelain, glasses.

Coaxial cable of inner radius r_1 , outer radius r_2 :

$$\widehat{C} = \frac{2\pi \; \epsilon}{\ln \; (r_2/r_1)} \; ; \quad \widehat{L} = \frac{\mu}{2\pi} \; \ln \; (r_2/r_1) \; .$$

Transmission lines (no loss):

Impedance:
$$Z = \sqrt{\hat{L}/\hat{C}}$$
.

Velocity:
$$v = 1/\sqrt{\widehat{L} \ \widehat{C}} = 1/\sqrt{\mu \epsilon}$$
.

Synchrotron radiation (CGS)

For a particle of charge e, velocity β . γ , energy E, traveling in a circular orbit of radius R:

Energy loss/revolution (MeV) = $\frac{4\pi}{3} \frac{e^2}{R} \beta^3 \gamma^4$

$$\approx 0.0885 [E(\text{GeV})]^4 / R(\text{m}) \text{ for } e^{\pm} \text{ if } \beta \approx 1.$$

Energy spectrum: For $\gamma \gg 1$, the energy radiated per particle per revolution into the photon energy interval $d(\hbar\omega)$ is

$$dI = \frac{8\pi}{9} \alpha \gamma F(\omega/\omega_c) d(\hbar\omega) .$$

where $\alpha=e^2/\hbar c$ is the fine-structure constant. The normalized function F(y) is

$$F(y) = \frac{9}{8\pi} \sqrt{3} \ y \ \int\limits_{y}^{\infty} dx \ K_{5/3} \left(x \right) \, , \label{eq:force}$$

where $K_{5/3}\left(x\right)$ is a modified Bessel function of the third kind, and

$$\omega_c = \frac{3\gamma^3 c}{2R}$$
 is the critical frequency;

$$\hbar\omega_c\,({\rm keV})\approx 2.22\;[E({\rm GeV})]^3/R({\rm m}) \mbox{ for } e^\pm$$
 .

Fig. 1 shows F(y) over its important range of y.

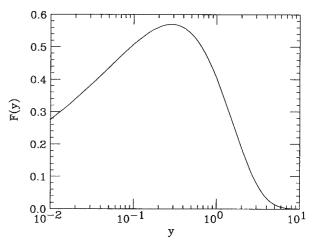
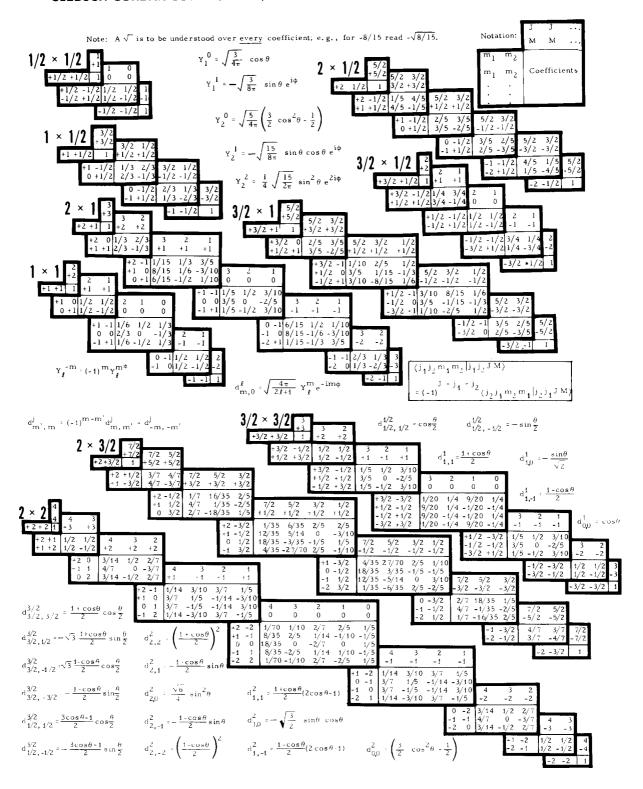


Fig. 1. Normalized synchrotron radiation spectrum F(y).

In the limit $\gamma \gg 1$.

for $\omega \ll \omega_c$:

$$\frac{dI}{d(\hbar\omega)}\approx 3.3\alpha\,(\omega R/c)^{1/3}~;$$


and for $\omega \gtrsim 3\omega_c$

$$\frac{dI}{d(\hbar\omega)} \approx \sqrt{\frac{3\pi}{2}} \, \alpha \, \gamma \left(\frac{\omega}{\omega_c}\right)^{1/2} e^{-\omega/\omega_c} \left[1 + \frac{55}{72} \frac{\omega_c}{\omega} + \ldots\right]$$

The radiation is confined to angles $\lesssim 1/\gamma$ relative to the instantaneous direction of motion.

^{*} Revised April 1990 by J.D. Jackson. See J.D. Jackson, Classical Electrodynamics. 2^{nd} edition (John Wiley & Sons, New York. 1975) for more formulae and details. (Prepared April 1974; revised April 1990.) Jackson uses a definition of ω_c twice as large as the customary definition given above.

CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND \emph{d} FUNCTIONS

Sign convention is that of Wigner (*Group Theory*, Academic Press, New York, 1959), also used by Condon and Shortley (*The Theory of Atomic Spectra*, Cambridge Univ. Press, New York, 1953), Rose (*Elementary Theory of Angular Momentum*, Wiley, New York, 1957), and Cohen (*Tables of the Clebsch-Gordan Coefficients*, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The signs and numbers in the current tables have been calculated by computer programs written independently by Cohen and at LBL. (Table extended April 1974.)

SU(3) ISOSCALAR FACTORS AND REPRESENTATION MATRICES

The most commonly used SU(3) isoscalar factors, corresponding to the singlet, octet, and decuplet content of $8\otimes 8$ and $10\otimes 8$, are shown at the right. The notation uses particle names to identify the coefficients, so that the pattern of relative couplings may be seen at a glance. We illustrate the use of the coefficients by example. See J.J de Swart, Rev. Mod. Phys. **35**, 916 (1963) for detailed explanations and phase conventions.

 $A \sqrt{\ }$ is to be understood over every integer in the matrices; the exponent 1/2 on each matrix is a reminder of this. For example, the $\Xi \to \Omega K$ element of our $10 \to 10 \otimes 8$ matrix is $-\sqrt{6}/\sqrt{24} = -1/2$.

Intramultiplet relative decay strengths may be read directly from our matrices. Thus, the ratio of the partial widths for $\Omega^* \to \Xi \overline{K}$ and $\Delta \to N\pi$ is, from the $10 \to 8 \times 8$ matrix.

$$\frac{\Gamma\left(\Omega^* \to \Xi \overline{K}\right)}{\Gamma\left(\Delta \to N\pi\right)} = \frac{12}{6} \times \text{ (phase space factors) }.$$

Supplying isospin Clebsch-Gordan coefficients, we obtain, e.g.,

$$\frac{\Gamma(\Omega^{*-}\to\Xi^0K^-)}{\Gamma(\Delta^+\to p\,\pi^0)} = \frac{1/2}{2/3}\times\frac{12}{6}\times p.s.f. = \frac{3}{2}\times p.s.f.$$

Partial widths for $8 \to 8 \otimes 8$ involve a linear superposition of 8_1 (symmetric) and 8_2 (antisymmetric) couplings. For example,

$$\Gamma(\Xi^* \to \Xi \pi) \sim \left(-\sqrt{\frac{9}{20}} g_1 + \sqrt{\frac{3}{12}} g_2 \right)^2 .$$

The relations between g_1 and g_2 (with de Swart's normalization) and the standard D and F couplings that appear in the interaction Lagrangian,

$$\mathcal{L} = -\sqrt{2} D Tr([\overline{B}, B], M) + \sqrt{2} F Tr([\overline{B}, B], M).$$

are

$$D = \frac{\sqrt{30}}{40} g_1 , \qquad F = \frac{\sqrt{6}}{24} g_2 .$$

Thus, for example.

$$\Gamma(\Xi^* \to \Xi \pi) \sim (F - D)^2 \sim (1 - 2\alpha)^2$$
.

where $\alpha \equiv D/(D+F)$.

When acting upon a representation of dimension d, the generators of SU(3) transformations, λ_a (a = 1, 8), are $d \times d$ matrices that obey the following commutation and anticommutation relationships:

$$[\lambda_a, \lambda_b] = 2if_{abc}\lambda_c$$

$$\{\lambda_a,\ \lambda_b\} = \frac{4}{2}\delta_{ab}I + 2d_{abc}\lambda_c\ .$$

where I is the $d \times d$ unit matrix. The f_{abc} are odd under the permutation of any pair of indices, while the d_{abc} are even. The nonzero elements are

$$1 \to 8 \otimes 8$$

$$(\Lambda) \rightarrow (N\overline{K} \Sigma \pi \Lambda \eta \Xi K) = \frac{1}{\sqrt{8}} (2 \ 3 \ -1 \ -2)^{1/2}$$

 $8_1 \rightarrow 8 \otimes 8$

$$\begin{pmatrix} N \\ \Sigma \\ \Lambda \\ \Xi \end{pmatrix} \rightarrow \begin{pmatrix} N\pi & N\eta & \Sigma K & \Lambda K \\ N\overline{K} & \Sigma\pi & \Lambda\pi & \Sigma\eta & \Xi K \\ N\overline{K} & \Sigma\pi & \Lambda\eta & \Xi K \\ \Sigma \overline{K} & \Lambda \overline{K} & \Xi\pi & \Xi\eta \end{pmatrix} = \frac{1}{\sqrt{20}} \begin{pmatrix} 9 & -1 & -9 & -1 \\ -6 & 0 & 4 & 4 & -6 \\ 2 & -12 & -4 & -2 \\ 9 & -1 & -9 & -1 \end{pmatrix}^{1/2}$$

$$8_2 \rightarrow 8 \otimes 8$$

$$\begin{pmatrix} N \\ \Sigma \\ \Lambda \\ \Xi \end{pmatrix} \rightarrow \begin{pmatrix} N\pi & N\eta & \Sigma K & \Lambda K \\ N\overline{K} & \Sigma\pi & \Lambda\pi & \Sigma\eta & \Xi K \\ N\overline{K} & \Sigma\pi & \Lambda\eta & \Xi K \\ \Sigma\overline{K} & \Lambda\overline{K} & \Xi\pi & \Xi\eta \end{pmatrix} = \frac{1}{\sqrt{12}} \begin{pmatrix} 3 & 3 & 3 & -3 \\ 2 & 8 & 0 & 0 & -2 \\ 6 & 0 & 0 & 6 \\ 3 & 3 & 3 & -3 \end{pmatrix}^{1/2}$$

$$10 \rightarrow 8 \otimes 8$$

$$\begin{pmatrix} \Delta \\ \Sigma \\ \Xi \\ \Omega \end{pmatrix} \rightarrow \begin{pmatrix} N\overline{K} & \Sigma\pi & \Lambda\pi & \Sigma\eta & \Xi K \\ \Sigma\overline{K} & \Lambda\overline{K} & \Xi\pi & \Xi\eta \\ \Xi\overline{K} \end{pmatrix} = \frac{1}{\sqrt{12}} \begin{pmatrix} -6 & 6 & & \\ -2 & 2 & -3 & 3 & 2 \\ 3 & -3 & 3 & 3 & \\ 12 & & & 12 \end{pmatrix}^{1/2}$$

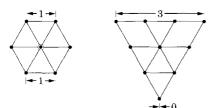
$$\begin{pmatrix} N \\ \Sigma \\ \Lambda \\ \Xi \end{pmatrix} \rightarrow \begin{pmatrix} \Delta \pi & \Sigma K \\ \Sigma \pi & \Sigma \eta & \Xi K \\ \Sigma \pi & \Xi K \\ \Sigma \overline{K} & \Xi \pi & \Xi \eta & \Omega K \end{pmatrix} \qquad = \frac{1}{\sqrt{15}} \begin{pmatrix} -12 & 3 \\ 8 & -2 & -3 & 2 \\ -9 & 6 \\ 3 & -3 & -3 & 6 \end{pmatrix}^{1/2}$$

$$0 \rightarrow 10 \otimes 8$$

$$\begin{pmatrix} \Delta \\ \Sigma \\ \Xi \\ \Omega \end{pmatrix} \rightarrow \begin{pmatrix} \Delta \pi & \Delta \eta & \Sigma K \\ \Delta \overline{K} & \Sigma \pi & \Sigma \eta & \Xi K \\ \Sigma \overline{K} & \Xi \pi & \Xi \eta & \Omega K \\ \Xi \overline{K} & \Omega \eta \end{pmatrix} \qquad = \frac{1}{\sqrt{24}} \begin{pmatrix} 15 & 3 & -6 \\ 8 & 8 & 0 & -8 \\ 12 & 3 & -3 & -6 \\ 12 & -12 & -12 \end{pmatrix}^{1/2}$$

In the fundamental 3-dimensional representation, the λ_a 's are

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$


$$\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

SU(N) MULTIPLETS AND YOUNG DIAGRAMS

This note tells how SU(n) particle multiplets are identified or labeled, how to find the number of particles in a multiplet from its label, how to draw the Young diagram for a multiplet, and how to use Young diagrams to determine the overall multiplet structure of a composite system, such as a 3-quark or a meson-baryon system.

(1) Multiplet labels – An SU(n) multiplet is uniquely identified by a string of (n-1) nonnegative integers: $(\alpha, \beta, \gamma, \ldots)$. Any such set of integers specifies a multiplet. For an SU(2) multiplet such as an isospin multiplet, the single integer α is the number of steps from one end of the multiplet to the other (i.e., it is one fewer than the number of particles in the multiplet). In SU(3), the two integers α and β are the numbers of steps across the top and bottom levels of the multiplet diagram. Thus the labels for the SU(3) octet and decuplet

are (1.1) and (3.0). For larger n, the interpretation of the integers in terms of the geometry of the multiplets, which exist in an (n-1)-dimensional space, is not so readily apparent.

The label for the SU(n) singlet is $(0,0,\ldots,0)$. In a flavor SU(n), the n quarks together form a $(1,0,\ldots,0)$ multiplet, and the n antiquarks belong to a $(0,\ldots,0,1)$ multiplet. These two multiplets are *conjugate* to one another, which means their labels are related by $(\alpha,\beta,\ldots) \mapsto (\ldots,\beta,\alpha)$.

(2) Number of particles The number of particles in a multiplet, $N = N(\alpha, \beta, ...)$, is given as follows (note the pattern of the equations). In SU(2), $N = N(\alpha)$ is

$$N = \frac{(\alpha + 1)}{1} \ .$$

In SU(3), $N = N(\alpha, \beta)$ is

$$N = \frac{(\alpha+1)}{1} \cdot \frac{(\beta+1)}{1} \cdot \frac{(\alpha+\beta+2)}{2} \ .$$

In SU(4), $N = N(\alpha, \beta, \gamma)$ is

$$N = \frac{(\alpha + 1)}{1} \cdot \frac{(\beta + 1)}{1} \cdot \frac{(\gamma + 1)}{1} \cdot \frac{(\alpha + \beta + 2)}{2} \cdot \frac{(\beta + \gamma + 2)}{2} \cdot \frac{(\alpha + \beta + \gamma + 3)}{3} \ .$$

Note that there is no factor with $(\alpha + \gamma + 2)$: only a consecutive sequence of the label integers appears in any factor. One more example should make the pattern clear for any SU(n). In SU(5), $N = N(\alpha, \beta, \gamma, \delta)$ is

$$\begin{split} N &= \frac{(\alpha + 1)}{1} \cdot \frac{(\beta + 1)}{1} \cdot \frac{(\gamma + 1)}{1} \cdot \frac{(\delta + 1)}{1} \cdot \frac{(\delta + 1)}{2} \cdot \frac{(\alpha + \beta + 2)}{2} \cdot \frac{(\beta + \gamma + 2)}{2} \times \\ &\qquad \qquad \frac{(\gamma + \delta + 2)}{2} \cdot \frac{(\alpha + \beta + \gamma + 3)}{3} \cdot \frac{(\beta + \gamma + \delta + 3)}{3} \cdot \frac{(\alpha + \beta + \gamma + \delta + 4)}{4} \end{split}$$

Multiplets that are conjugate to one another obviously have the same number of particles, but so can other multiplets. For example, the $\mathrm{SU}(4)$ multiplets (3.0.0) and (1.1.0) each have 20 particles.

(3) Young diagrams —A Young diagram consists of an array of boxes (or some other symbol) arranged in one or more left-justified rows, with each row being at least as long as the row beneath. The correspondence between a diagram and a multiplet label is: The top row juts out α boxes to the right past the end of the second row, the second row juts out β boxes to the right past the end of the third row, etc. A diagram in SU(n) has at most n rows. There can be any number of "completed" columns of n boxes buttressing the left of a diagram; these don't affect the label. Thus in SU(3) the diagrams

represent the multiplets (1.0), (0.1), (0.0), (1,1), and (3.0). In any SU(n), the quark multiplet is represented by a single box, the antiquark multiplet by a column of (n-1) boxes, and a singlet by a completed column of n boxes.

(4) Coupling multiplets together — The following recipe tells how to find the multiplets that occur in coupling two multiplets together. To couple together more than two multiplets, first couple two, then couple the third with each of the multiplets obtained from the first two, etc.

First a definition: A sequence of the letters a,b,c,... is admissible if at any point in the sequence at least as many a's have occurred as b's, at least as many b's have occurred as c's, etc. Thus abcd and aabcb are admissible sequences and abb and acb are not. Now the recipe:

- (a) Draw the Young diagrams for the two multiplets, but in one of the diagrams replace the boxes in the first row with a's, the boxes in the second row with b's, etc. The unlettered diagram forms the upper left-hand corner of all the enlarged diagrams constructed below.
- (b) Add the a's from the lettered diagram to the unlettered diagram to form all possible legitimate Young diagrams that have no more than one a per column. (All the a's appear in each new diagram.)
- (c) Use the b's to further enlarge the diagrams already obtained, subject to the same rules. Throw away any diagram in which the sequence of letters formed by reading right to left in the first row, then the second row, etc., is not admissible.
 - (d) Proceed as in (c) with the c's, etc.

Thus, for example, the calculation to find the multiplets that can occur in a system made up of two SU(3) octets (one might be the π -meson octet, the other the N-baryon octet) is as follows:

Here only the diagrams with admissible sequences and with fewer than four rows (since n=3) have been kept. In terms of multiplet labels, the above may be written

$$(1,1)\otimes (1,1)=(2,2)\oplus (3,0)\oplus (0,3)\oplus (1,1)\oplus (1,1)\oplus (0,0)$$
,

or in terms of numbers of particles.

$$\mathbf{8} \otimes \mathbf{8} = \mathbf{27} \oplus \mathbf{10} \oplus \mathbf{\overline{10}} \oplus \mathbf{8} \oplus \mathbf{8} \oplus \mathbf{1}$$
 .

The product of the numbers on the left is equal to the sum on the right. (See the section on the Quark Model for results for 3-quark systems.)

C.M. ENERGY AND MOMENTUM VS. BEAM MOMENTUM

(for scattering on a fixed proton target)

(Formulae are given in Section B of the Kinematics section; this table may be dropped in future editions.)

 $E_{\rm cm} \; dE_{\rm cm} = m_p \; dT_{\rm beam} = m_p \; \beta_{\rm beam} \; dp_{\rm beam}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0.00
0.04
0.08
0.12
0.16
0.20 1.121 1.165 1.457 1.887 1.67 .161 .129 .099 1.90 2.109 2.115 2.193 2.395 .845 .843 813 .744 25 6.913 6.915 6.932 6.979 3.39 3.39 3.39 3.38 3.3
0.24
0.28 1.186 1.219 1.480 1.897 222 215 1.78 1.38
0.32 1.201 1.204 1.493 1.903 247 241 201 158 21 2.195 2.20 2.274 2.405 .897 .895 .866 .799 31 7.685 7.686 7.701 7.743 3.79 3.78 3.78 3.78 3.78 3.79 3.78 3.78 3.78 3.79 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78
0.36 1.247 1.275 1.507 1.910 271 .265 .224 .177 2.3 2.280 2.286 2.353 2.534 .947 .944 .917 .852 33 7.925 7.926 7.941 7.982 3.91 3.91 3.91 3.90 3.8 0.38 1.262 1.288 1.514 1.913 .282 .277 .235 1.86 2.4 2.320 2.326 2.392 2.568 .970 .968 .941 .877 34 8.043 8.044 8.058 8.099 3.97 3.97 3.96 3.9
0.40 1.277 1.302 1.522 1.917 294 288 247 1.96 2.5 2.360 2.366 2.430 2.602 .994 .991 .965 .901 35 8.158 8.160 8.174 8.214 4.03 4.02 4.02 4.04 4.04 4.04 4.03 4.02 4.03 4.04 4.08 4.08 4.08 4.08 4.08 4.08 4.08
0.44
0.48 1.335 1.356 1.554 1.934 .337 .332 .290 .233 2.9 2.514 2.520 2.578 2.735 1.08 1.08 1.06 .995 39 8.606 8.607 8.621 8.658 4.25 4.25 4.24 4.2
0.52
0.56 1.390 1.408 1.589 1.952 378 373 331 .269 3.3 2.660 2.664 2.718 2.863 1.16 1.16 1.14 1.08 43 9.032 9.033 9.046 9.081 4.47 4.47 4.46 4.4 0.58 1.403 1.421 1.598 1.957 3.88 383 3.41 .278 3.4 2.695 2.699 2.752 2.895 1.18 1.18 1.16 1.10 44 9.135 9.136 9.149 9.184 4.52 4.52 4.51 4.5
0.60 1.416 1.434 1.607 1.962 397 393 350 287 3.5 2.729 2.734 2.785 2.926 1.20 1.20 1.18 1.12 45 9.237 9.238 9.251 9.286 4.57 4.57 4.56 4.5 0.62 1.430 1.447 1.616 1.968 407 402 360 2.96 3.6 2.763 2.768 2.818 2.957 1.22 1.22 1.20 1.14 46 9.338 9.339 9.352 9.386 4.62 4.62 4.62 4.62
0.64 1.443 1.459 1.625 1.973 4.16 4.12 3.70 3.04 3.7 2.797 2.801 2.851 2.987 1.24 1.24 1.22 1.16 47 9.438 9.439 9.451 9.486 4.67 4.67 4.67 4.67 0.66 1.456 1.472 1.634 1.978 425 421 3.79 3.13 3.8 2.830 2.835 2.884 3.018 1.26 1.26 1.24 1.18 48 9.537 9.538 9.550 9.584 4.72 4.72 4.72 4.72 4.72 4.72 4.72 4.7
0.68 1.484 1.643 1.984 4.434 4.30 3.88 3.22 3.9 2.863 2.966 2.916 3.048 1.28 1.28 1.26 1.20 49 9.635 9.636 9.648 9.681 4.77 4.77 4.77 4.77 4.77 4.77 4.77 4.7
0.72 1.494 1.509 1.662 1.995 452 448 406 339 4.1 2.928 2.932 2.979 3.107 1.31 1.31 1.29 1.24 52 9.923 9.924 9.935 9.968 4.92 4.92 4.91 4.8 0.74 1.506 1.521 1.671 2.001 4.61 457 415 347 4.2 2.960 2.964 3.010 3.136 1.33 1.33 1.31 1.26 54 10.11 10.11 10.12 10.15 5.01 5.01 5.01 4.9
0.76 1.519 1.533 1.681 2.007 .470 .465 .424 .355 4.3 2.992 2.996 3.041 3.165 1.35 1.35 1.35 1.35 1.37 1.56 10.29 10.30 10.31 10.34 5.10 5.10 5.10 5.0 5.0 5.0 5.10 5.10 5.
0.80 1.543 1.557 1.699 2.019 486 482 442 372 4.5 3.054 3.058 3.101 3.223 1.38 1.38 1.36 1.31 60 10.65 10.65 10.66 10.69 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28
0.84
0.88 1.591 1.604 1.737 2.043 519 .515 .475 .404 4.9 3.174 3.178 3.220 3.335 1.45 1.45 1.43 1.38 68 11.34 11.35 11.37 5.63 5.63 5.62 5.6 0.90 1.603 1.615 1.747 2.050 .527 .523 .484 .412 5.0 3.204 3.207 3.248 3.363 1.46 1.46 1.44 1.40 70 11.50 11.51 11.54 5.71 5.71 5.71 5.71 5.75
0.92 1 615 1.627 1.756 2.056 .535 .531 .492 .420 5.2 3.262 3.265 3.305 3.417 1.50 1.49 1.48 1.43 72 11.66 11.67 11.70 5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79
0.96 1.638 1.649 1.775 2.069 550 .546 .508 .435
1.00 1.660 1.672 1.794 2.082 .565 .561 .523 .451 6.0 3.484 3.487 3.524 3.627 1.62 1.61 1.60 1.55 80 12 29 12.20 12.30 12.32 6.11 6.11 6.10 6.0 6.1 6.12 1.62 1.63 1.803 2.088 .573 .569 .531 .458 6.2 3.538 3.541 3.577 3.678 1.64 1.64 1.63 1.58 82 12.44 12.44 12.45 12.48 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.1
1.04 1.683 1.694 1.812 2.095 5.80 5.76 5.38 4.66 6.4 3.590 3.593 3.629 3.728 1.67 1.67 1.65 1.61 84 12.59 12.59 12.60 12.63 6.26 6.26 6.26 6.26 6.26 6.26 6.26
1.08 1.705 1.716 1.831 2.108 594 591 553 481 6.8 3.693 3.696 3.731 3.827 1.73 1.73 1.71 1.67 88 12.88 12.89 12.89 12.92 6.41 6.41 6.40 6.3 1.716 1.726 1.840 2.115 6.01 598 561 4.88 7.0 3.744 3.747 3.781 3.875 1.75 1.75 1.74 1.70 90 13.03 13.03 13.04 13.06 6.48 6.48 6.48 6.48 6.48 6.48 6.48 6.4
1 12 1.727 1.737 1.850 2.122 6.69 6.65 5.68 4.95 7.2 3.794 3.797 3.830 3.923 1.78 1.78 1.76 1.72 92 13 17 13.17 13.18 13.21 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.5
1.16 1.748 1.759 1.868 2.136 622 619 .583 .510 7.6 3.891 3.894 3.926 4.016 1.83 1.83 1.82 1.78 96 13.45 13.46 13.49 6.59 6.69 6.69 6.69 6.66 6.76 6.76 6.76 6.7
1.20 1.770 1.780 1.887 2.149 .636 .633 .597 .524 8.0 3.987 3.989 4.021 4.108 1.88 1.88 1.87 1.83 100 13.73 13.74 13.76 6.83 6.83 6.83 6.83 6.83 6.83 1.22 1.780 1.790 1.896 2.156 6.43 .639 .604 .531 8.2 4.033 4.036 4.067 4.153 1.91 1.91 1.89 1.85 150 16.80 16.80 16.81 16.83 8.38 8.38 8.37 8.3
1.24 1.791 1.800 1.905 2.163 650 646 6.11 538 8.4 4.080 4.082 4.113 4.198 1.93 1.93 1.92 1.88 200 19.40 19.40 19.40 19.42 9.68 9.67 967 9.66 1.801 1.811 1.914 2.170 6.65 653 6.18 5.45 8.6 4.125 4.128 4.158 4.242 1.96 1.95 1.94 1.90 250 21.68 21.68 21.69 21.70 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.
1 30 1 822 1 831 1 932 2 184 669 666 631 559 9.0 4 215 4 218 4 247 4 329 2 .00 2 00 1 .99 1 .95 350 25 .65 25 .65 25 .65 25 .65 12 .8 12 .8 12 .8 12 .8
1.32 1.832 1.841 1.941 2.191 676 673 638 .565 92 4.260 4.262 4.291 4.372 2.03 2.03 2.01 1.97 400 27.41 27.42 27.43 13.7 13.7 13.7 13.7 13.7 13.7 13.6 1.851 1.950 2.198 682 679 645 .572 9.4 4.303 4.306 4.355 4.415 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.0
1.38 1.863 1.872 1.968 2.212 .695 .692 .658 .585 9.8 4.390 4.392 4.420 4.498 2.09 2.09 2.08 2.04 550 32.14 32.14 32.14 32.15 16.1 16.1 16.1 16.1
1.40 1.873 1.882 1.977 2.219 7.01 6.98 6.64 5.92 1.0.0 4.32 4.435 4.462 4.560 2.12 2.12 2.10 2.07 600 33.57 33.57 33.57 33.58 16.8 16.8 16.8 16.8 16. 14.2 1.883 1.991 1.985 2.226 7.08 7.04 6.71 5.99 1.05 4.537 4.539 4.566 4.641 2.17 2.17 2.16 2.12 600 34.94 34.94 34.94 34.95 17.5 17.5 17.5 17. 17.5 17. 17.5 17. 17. 17. 17. 17. 18. 18. 18. 19. 1.995 2.23 7.14 7.11 677 605 1.10 4.639 4.642 4.668 4.741 2.22 2.22 2.21 2.18 700 36.26 36.26 36.27 18.1 18.1 18.1 18.1 18.
1.44 1.893 1.901 1.995 2.233 .714 .711 .677 .605 1 1.0 4.639 4.668 4.764 1 2.2 2.22 2.22 1 2.18 1 700 36 26 <
1.50 1.922 1.931 2.022 2.254 .732 .729 .696 .624 12.5 4.933 4.935 4.960 5.028 2.38 2.36 2.33 1000 43.33 43.33 43.33 43.34 21.7 21.7 21.7 21. 152 1.932 1.940 2.031 2.261 .738 .735 .702 .631 13.0 5.027 5.030 5.053 5.120 2.43 2.43 2.44 2.38 2000 61.27 61.27 61.27 61.28 30.6 30.6 30.6 30.
1.52 1.952 1.940 2.031 2.260 1.35 7.35 7.02 5.031 13.5 5.120 5.123 5.035 5.300 2.52 2.47 2.47 2.45 2.43 5.000 91.87 96.8
158 1961 1969 2.057 2.282 756 753 721 .650 14.5 5.300 5.302 5.324 5.388 2.57 2.57 2.56 2.53 20000 193.7 193.7 193.7 193.7 96.9 96.9 96.9 96. 160 1.970 1.978 2.065 2.289 762 759 727 .656 15.0 5.388 5.390 5.412 5.474 2.61 2.60 2.57 50000 306.3 306.3 306.3 306.3 306.3 153 153 153
1.62 1.980 1.988 2.074 2.296 7.68 7.65 7.33 662 15.5 5.474 5.476 5.498 5.559 2.66 2.65 2.65 2.65 2.65 2.65 2.65 2.65
1 66 1.999 2 006 2 0.091 2 311 .779 .776 .745 .674

KINEMATICS*

Throughout this section units are used in which $\hbar=c=1$. The following conversions are useful: $\hbar c=197.3$ MeV fermi, $(\hbar c)^2=0.3894~({\rm GeV})^2$ mb.

A. LORENTZ TRANSFORMATIONS

The energy E and 3-momentum \overrightarrow{p} of a particle of mass m form a 4-vector $p=(E,\overrightarrow{p})$ whose square $p^2\equiv E^2-|\overrightarrow{p}|^2=m^2$. The velocity of the particle is $\overrightarrow{\beta}=\overrightarrow{p}'/E$. The energy and momentum $(E^*,\overrightarrow{p}^*)$ viewed from a frame moving with velocity $\overrightarrow{\beta}_f$ are given by

$$\begin{pmatrix} E^* \\ p_{\parallel}^* \end{pmatrix} = \begin{pmatrix} \gamma_f & -\gamma_f \beta_f \\ -\gamma_f \beta_f & \gamma_f \end{pmatrix} \begin{pmatrix} E \\ p_{\parallel} \end{pmatrix} , \quad p_{\perp}^* = p_{\perp} , \quad (A.1)$$

where $\gamma_f = (1-\beta_f^2)^{-1/2}$ and p_\perp (p_\parallel) are the components of \overrightarrow{p} perpendicular (parallel) to $\overrightarrow{\beta}_f$. The scalar product of two 4-vectors $p_1 \cdot p_2 = E_1 E_2 - \overrightarrow{p}_1 \cdot \overrightarrow{p}_2$ is invariant (frame independent).

In the collision of two particles of masses m_1 and m_2 the total center-of-mass energy is

$$E_{\rm cm} = (p_1 + p_2)^{1/2} = \left[(E_1 + E_2)^2 - (\overrightarrow{p}_1 + \overrightarrow{p}_2)^2 \right]^{1/2} ,$$

$$= \left[m_1^2 + m_2^2 + 2E_1 E_2 (1 - \beta_1 \beta_2 \cos \theta) \right]^{1/2} , \qquad (A.2)$$

where θ is the angle between the particles. In the frame where one particle (of mass m_2) is at rest (lab frame),

$$E_{\rm cm} = (m_1^2 + m_2^2 + 2E_{1\,\text{lab}} m_2)^{1/2} \ .$$
 (A.3)

The velocity in the lab of the center-of-mass frame is

$$\overrightarrow{\beta}_{\rm cm} = \overrightarrow{p}_{1\,\rm lab}/(E_{1\,\rm lab} + m_2) , \qquad (A.4)$$

and

$$\gamma_{\rm cm} = (E_{\rm 1\,lab} + m_2)/E_{\rm cm} .$$

B. CENTER OF MASS ENERGY AND MOMENTUM

A beam of particles with mass m and momentum p_{beam} is incident on a fixed target consisting of particles with mass M. The energy of the beam particles E_{beam} , the center-of-mass energy E_{cm} , and center of mass momentum of one of the particles p_{cm} are given by

$$\begin{split} E_{\,\,\mathrm{beam}} &= \sqrt{p_{\,\,\mathrm{beam}}^{\,2} + m^2} \\ E_{\mathrm{cm}} &= \sqrt{m^2 + 2E_{\,\,\mathrm{beam}}M + M^2} \\ p_{\mathrm{cm}} &= p_{\,\mathrm{beam}}\frac{M}{E_{cm}} \;. \end{split}$$

For example, if a $0.80~{\rm GeV}/c$ kaon beam is incident on a proton target, the center of mass energy is $1.699~{\rm GeV}$ and the center of mass momentum of either particle is $0.442~{\rm GeV}/c$. It is also useful to note that

$$E_{\rm cm} \, dE_{\rm cm} = M \, dE_{\rm \, beam} = M \, \beta_{\rm \, beam} \, dp_{\rm \, beam} \; .$$

C. LORENTZ INVARIANT AMPLITUDES

The invariant amplitude $-i\mathcal{M}$ for a scattering or decay process is determined in perturbation theory by a set of Feynman diagrams. The convention of Bjorken and Drell is used except that fermion spinors are normalized so that $u\overline{u}=2m$. As an example, the S-matrix for $2\to 2$ scattering is related to \mathcal{M} by

$$\langle p'_1 p'_2 | S | p_1 p_2 \rangle = I - i(2\pi)^4 \delta^4(p_1 + p_2 - p'_1 - p'_2)$$

$$\times \frac{\mathcal{M}(p_1, p_2; p'_1, p'_2)}{(2E_1)^{1/2} (2E_2)^{1/2} (2E'_1)^{1/2} (2E'_2)^{1/2}}.$$
(C.1)

The state normalization is such that

$$\langle p'|p\rangle = (2\pi)^3 \delta^3(\overrightarrow{p} - \overrightarrow{p}')$$
 (C.2)

D. PARTICLE DECAYS

The partial decay rate of a particle of mass M into n bodies in its rest frame is given in terms of the Lorentz invariant matrix element \mathcal{M} by

$$d\Gamma = \frac{(2\pi)^4}{2M} |\mathcal{M}|^2 d\Phi_n (P; p_1, \dots, p_n), \tag{D.1}$$

where $d\Phi_n$ is an element of n-body phase space given by

$$d\Phi_n(P; p_1, \dots, p_n) = \delta^4 \left(P - \sum_{i=1}^n p_i \right) \prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i} . \tag{D.2}$$

This phase space can be generated recursively, viz.

$$d\Phi_n(P; p_1, \dots, p_n) = d\Phi_i(q; p_1, \dots, p_i)$$
(D.3)

$$\times d\Phi_{n-i+1}(P; q, p_{i+1}, \ldots, p_n)(2\pi)^3 dq^2$$
,

where $q^2 = (\sum_{i=j+1}^n E_i)^2 - \left|\sum_{i=j+1}^n \overrightarrow{p}_i\right|^2$. This form is particularly useful in the case where a particle decays into another particle which subsequently decays.

D.1 Survival probability:

If a particle of mass M has mean proper lifetime $\tau \ (= 1/\Gamma)$ and has momentum (E, \vec{p}) , then the probability that it lives for a time t_0 or greater before decaying is given by

$$P(t_0) = e^{-t_0 \Gamma/\gamma} = e^{-Mt_0 \Gamma/E}$$
, (D.4)

and the probability that it travels a distance x_0 or greater is

$$P(x_0) = e^{-Mx_0 \Gamma/|\overrightarrow{p}|}. \tag{D.5}$$

D.2 Two-body decays:

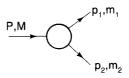


Fig. 1. Variable definitions for two-body decays.

In the rest frame of a particle of mass M, decaying into 2 particles labeled 1 and 2,

$$\begin{split} E_1 &= \frac{M^2 - m_2^2 + m_1^2}{2M} , \\ |\overrightarrow{p}_1| &= |\overrightarrow{p}_2| \\ &= \frac{\left[\left(M^2 - (m_1 + m_2)^2 \right) \left(M^2 - (m_1 - m_2)^2 \right) \right]^{1/2}}{2M} , \end{split}$$
 (D.6)

and

$$d\Gamma = \frac{1}{22-2} |\mathcal{M}|^2 \frac{|\overrightarrow{p}_1|}{M^2} d\Omega , \qquad (D.7)$$

where $d\Omega = d\phi_1 d(\cos \theta_1)$ is the solid angle of particle 1.

D.3 Three-body decays:

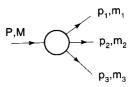


Fig. 2. Variable definitions for three-body decays.

KINEMATICS (Cont'd)

Defining $p_{ij}=p_i+p_j$, $m_{ij}^2=p_{ij}^2$, then $m_{12}^2+m_{23}^2+m_{13}^2=M^2+m_1^2+m_2^2+m_3^2$ and $m_{12}^2=(P-p_3)^2=M^2+m_3^2-2ME_3$. The relative orientation of the three final-state particles is fixed if their energies are known. Their momenta can therefore be specified by giving three Euler angles (α,β,γ) which specify the orientation of the final system relative to the initial particle. Then

$$d\Gamma = \frac{1}{(2\pi)^5} \frac{1}{16M} |\mathcal{M}|^2 dE_1 dE_2 d\alpha d\cos\beta d\gamma . \tag{D.8}$$

Alternatively

$$d\Gamma = \frac{1}{(2\pi)^5} \frac{1}{16M^2} |\mathcal{M}|^2 |\overrightarrow{p}_1^*| |\overrightarrow{p}_3^*| dm_{12} d\Omega_1^* d\Omega_3 . \tag{D.9}$$

where $(|\overrightarrow{p}_1^*|, \Omega_1^*)$ is the momentum of particle 1 in the rest frame of 1 and 2, and Ω_3 is the angle of particle 3 in the rest frame of the decaying particle. $|\overrightarrow{p}_1^*|$ and $|\overrightarrow{p}_3|$ are given by

$$|\overrightarrow{p}_1^*| = \frac{\left[\left(m_{12}^2 - (m_1 + m_2)^2\right)\left(m_{12}^2 - (m_1 - m_2)^2\right)\right]^{1/2}}{2m_{12}}.$$

and

$$|\overrightarrow{p}_{3}| = \frac{\left[\left(M^{2} - (m_{12} + m_{3})^{2}\right)\left(M^{2} - (m_{12} - m_{3})^{2}\right)\right]^{1/2}}{2M}$$
 (D.10)

[Compare with Eq. (D.6).]

Integrating over the angles in Eq. (D.8) (this is only possible if the decaying particle is a scalar or we average over its spin states; otherwise \mathcal{M} depends on α , β , and γ) gives

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{8M} |\mathcal{M}|^2 dE_1 dE_2$$

= $\frac{1}{(2\pi)^3} \frac{1}{32M^3} |\mathcal{M}|^2 dm_{12}^2 dm_{23}^2$. (D.11)

This is the standard form for the Dalitz plot.

D.3.1 Dalitz plot:

If m_{12}^2 is fixed then the range of m_{13}^2 is determined by its values when \overrightarrow{p}_1 is parallel or antiparallel to \overrightarrow{p}_3 .

$$\begin{split} (m_{13}^2)_{\rm max} &= \\ (E_1^\star + E_3^\star)^2 - \left(\sqrt{E_1^{\star 2} - m_1^2} - \sqrt{E_3^{\star 2} - m_3^2}\right)^2 \ . \\ (m_{13}^2)_{\rm min} &= \end{split}$$

$$(E_1^* + E_3^*)^2 - \left(\sqrt{E_1^{*2} - m_1^2} + \sqrt{E_3^{*2} - m_3^2}\right)^2.$$

where $E_3^* = (M^2 - m_{12}^2 - m_3^2)/(2m_{12})$ and $E_1^* = (m_{12}^2 + m_1^2 - m_2^2)/(2m_{12})$. The scatter plot in m_{12}^2 and m_{13}^2 has uniform phase space density [see Eq. (D.11)] and is called a Dalitz plot.

A nonuniformity in the plot gives immediate information on $|\mathcal{M}|^2$. For example, in the case of $D \to K\pi\pi$, bands appear when $m_{(K\pi)} = m_{K^*(892)}$, reflecting the appearance of the decay chain $D \to K^*(892)\pi \to K\pi\pi$.

D.4 Kinematic limits:

In a three-body decay the maximum of $|\overrightarrow{p}_3|$, [given by Eq. (D.10)], is achieved when $m_{12}=m_1+m_2$, i.e., particles 1 and 2 have the same vector velocity in the rest frame of the decaying particle. If, in addition, $m_3>m_1,m_2$, then $|\overrightarrow{p}_3|_{\max}>|\overrightarrow{p}_1|_{\max}$, $|\overrightarrow{p}_2|_{\max}$.

D.5 Multibody decays:

The above results may be generalized to final states containing any number of particles by combining some of the particles into "effective particles" and treating the final states as 2 or 3 "effective particle" states. Thus, if $p_{ijk...} = p_i + p_j + p_k + \ldots$, then

$$m_{ijk...} = \sqrt{p^2_{ijk...}}$$
,

and $m_{ijk...}$ may be used in place of e.g., m_{12} in the relations in Sec. D.3 or D.3.1 above.

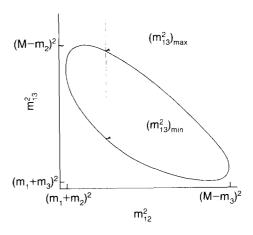


Fig. 3. Dalitz plot for a three-body final state. Four-momentum conservation restricts events to the interior of the closed curve.

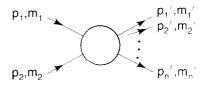


Fig. 4. Variable definitions for production of an n-body final state.

E. CROSS SECTIONS

The differential cross section is given by

$$d\sigma = \frac{(2\pi)^4 |\mathcal{M}|^2}{4\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}}$$

$$\times d\Phi_n(p_1 + p_2; p_3, \dots, p_{n+2}). \tag{E.1}$$

[See Eq. (D.2).] In the rest frame of $m_2(lab)$.

$$\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2} = m_2 p_{1 \mid \text{ab}} :$$

while in the center-of-mass frame

$$\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2} = p_{1\text{cm}} \sqrt{s} .$$

E.1 Two-body reactions:

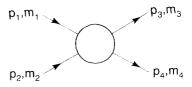


Fig. 5. Variable definitions for a two-body final state.

Two particles of momenta p_1 and p_2 and masses m_1 and m_2 scatter to particles of momenta p_3 and p_4 and masses m_3 and m_4 : the Lorentz

KINEMATICS (Cont'd)

invariant Mandelstam variables are defined by

$$\begin{split} s &= (p_1 + p_2)^2 = (p_3 + p_4)^2 \\ &= m_1^2 + 2E_1E_2 - 2\overrightarrow{p}_1 \cdot \overrightarrow{p}_2 + m_2^2 \ , \\ t &= (p_1 - p_3)^2 = (p_2 - p_4)^2 \\ &= m_1^2 - 2E_1E_3 + 2\overrightarrow{p}_1 \cdot \overrightarrow{p}_3 + m_3^2 \ , \\ u &= (p_1 - p_4)^2 = (p_2 - p_3)^2 \\ &= m_1^2 - 2E_1E_4 + 2\overrightarrow{p}_1 \cdot \overrightarrow{p}_4 + m_4^2 \ , \end{split}$$
 (E.2)

and they satisfy

$$s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2$$
.

The two-body cross section may be written as

$$\frac{d\sigma}{dt} = \frac{1}{64\pi s} \frac{1}{|\overrightarrow{p}|_{\text{1cm}}|^2} |\mathcal{M}|^2.$$
 (E.3)

In the center-of-mass frame

$$t = (E_{1\text{cm}} - E_{3\text{cm}})^2 - (p_{1\text{cm}} - p_{3\text{cm}})^2$$
$$-4p_{1\text{cm}} p_{3\text{cm}} \sin^2(\theta_{\text{cm}}/2)$$
$$= t_0 - 4p_{1\text{cm}} p_{3\text{cm}} \sin^2(\theta_{\text{cm}}/2) ,$$
 (E.4)

where $\theta_{\rm cm}$ is the angle between particle 1 and 3.

$$t_{\mp} = \left[\frac{m_1^2 - m_3^2 - m_2^2 + m_4^2}{2\sqrt{s}} \right]^2 - \left\{ \left[\left(\frac{s + m_1^2 - m_2^2}{2\sqrt{s}} \right)^2 - m_1^2 \right]^{1/2} \right.$$

$$\left. \mp \left[\left(\frac{s + m_3^2 - m_4^2}{2\sqrt{s}} \right)^2 - m_3^2 \right]^{1/2} \right\}^2. \tag{E.5}$$

Note that $t_ (t_+)$ is the largest (smallest) value of t for $2 \to 2$ scattering processes and that t_+ is always negative. In the literature the notation t_{\min} (t_{\max}) for $t_ (t_+)$ is sometimes used. This usage should be discouraged since $t_- > t_+$. The center-of-mass energies and momenta of the incoming particles are

$$E_{\rm cm} = \frac{s + m_1^2 - m_2^2}{2\sqrt{s}} , \qquad (E.6)$$

$$p_{\rm cm} = \frac{\left[\left(s - (m_1 + m_2)^2 \right) \left(s - (m_1 - m_2)^2 \right) \right]^{1/2}}{2\sqrt{s}}$$
$$= \frac{p_{1|\rm ab} m_2}{\sqrt{s}} , \qquad (E.7)$$

Here the subscript lab refers to the frame where particle 2 is at rest. [For other relations see Eqs. (A2-A4).]

E.2 Inclusive reactions:

Choose some direction (usually the beam direction) for the z-axis; then the energy and momentum of a particle can be written as

$$E = m_\perp \cosh y \ , \ p_x \ , \ p_y \ , \ p_z = m_\perp \sinh y \ ,$$

where m_{\perp} is the transverse mass

$$m_{\perp}^2 = m^2 + p_x^2 + p_y^2$$
,

and the rapidity y is defined by

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$
$$= \ln \left(\frac{E + p_z}{m_\perp} \right) = \tanh^{-1} \left(\frac{p_z}{E} \right) . \tag{E.8}$$

Under a boost in the z-direction to a frame with velocity β , $y \to y + \tanh^{-1} \beta$. Hence the shape of the rapidity distribution dN/dy is invariant. The invariant cross section may also be rewritten

$$E \frac{d^3\sigma}{dp^3} = \frac{d^3\sigma}{dy\ dp_\perp^2} \ .$$

Feynman's x variable is given by

$$x = \frac{p_z}{p_{z \max}} \approx \left(\frac{E + p_z}{(E + p_z)_{\max}}\right) \; ;$$

in the center-of-mass frame

$$x \approx \frac{2p_{z\rm cm}}{\sqrt{s}} \approx \frac{2m_{\perp} \sinh y_{\rm cm}}{\sqrt{s}}$$
 (E.9)

For $y_{\rm cm}$ such that $e^{-2y_{\rm cm}} \ll 1$,

$$x \approx \frac{m_{\perp}}{\sqrt{s}} e^{y_{\rm CM}}$$

and

$$(y_{\rm cm})_{\rm max} = \ln \left(\sqrt{s}/m\right)$$
.

The definition of rapidity [Eq. (E.8)] may be expanded to obtain

$$y = \frac{1}{2} \ln \frac{\cos^2(\theta/2) + m^2/4p^2 + \dots}{\sin^2(\theta/2) + m^2/4p^2 + \dots}$$

$$\approx -\ln \tan(\theta/2) \equiv \eta$$
 (E.10)

if the particle has zenith angle θ . The pseudorapidity η defined by the second line is approximately equal to the rapidity y for $m\gg p$ and $\theta\gg 1/\gamma$, and in any case can be measured when the mass and momentum of the particle is unknown. From the definition one can obtain the identities

$$sinh \eta = \cot \theta$$

$$\cosh \eta = 1/\sin \theta$$

$$tanh \eta = cos \theta$$

E.3 Partial waves:

The amplitude in the center of mass for elastic scattering of spinless particles may be expanded in Legendre polynomials

$$f(k,\theta) = \frac{1}{k} \sum_{\ell} (2\ell + 1) a_{\ell} P_{\ell}(\cos \theta) , \qquad (E.11)$$

where k is the c.m. momentum, θ is the c.m. scattering angle, $a_{\ell} = (\eta_{\ell}e^{2i\delta_{\ell}} - 1)/2i, \ 0 \le \eta_{\ell} \le 1$, and δ_{ℓ} is the phase shift of the ℓ^{th} partial wave. For purely elastic scattering, $\eta_{\ell} = 1$. The differential cross section is

$$\frac{d\sigma}{d\Omega} = |f(k,\theta)|^2$$
.

The optical theorem states that

$$\sigma_{\text{tot}} = \frac{4\pi}{k} \text{Im} f(k, 0) , \qquad (E.12)$$

and the cross section in the ℓ^{th} partial wave is therefore bounded:

$$\sigma_{\ell} = \frac{4\pi}{k^2} (2\ell + 1)|a_{\ell}|^2 \le \frac{4\pi (2\ell + 1)}{k^2} . \tag{E.13}$$

The partial-wave amplitude a_{ℓ} can be displayed in an Argand plot.

The usual Lorentz invariant matrix element \mathcal{M} (see Sec. C above) for the elastic process is related to $f(k, \theta)$ by

$$\mathcal{M} = -8\pi\sqrt{s} \; f(k,\theta) \; ,$$

so

$$\sigma_{\text{tot}} = -\frac{1}{2k\sqrt{s}} \operatorname{Im} \mathcal{M}(t=0) , \qquad (E.14)$$

where s and t are the center-of-mass energy squared and momentum transfer squared, respectively (see Sec. D.1).

KINEMATICS (Cont'd)

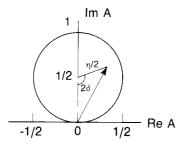


Fig. 6. Argand plot for the display of a partial-wave amplitude as a function of energy.

E.3.1 Resonances:

The Breit-Wigner form for a_ℓ with a resonance at c.m. energy E_R elastic width $\Gamma_{\rm el}$, and total width

 Γ_{tot} is

$$a_{\ell} = \frac{\Gamma_{\rm el}/2}{E_R - E - i\Gamma_{\rm tot}/2} \ , \tag{E.15} \label{eq:elliptic}$$

where E is the c.m. energy. This gives a circle in the Argand plot with center $ix_{\rm el}/2$ and radius $x_{\rm el}/2$, where the elasticity $x_{\rm el}=\Gamma_{\rm el}/\Gamma_{\rm tot}$. The amplitude has a pole at $E=E_R-i\Gamma_{\rm tot}/2$.

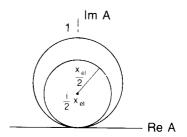


Fig. 7. Argand plot for a resonance.

The Breit-Wigner cross section for a spin-J resonance produced in the collision of particles of spin S_1 and S_2 is

$$\sigma_{BW}(E) = \frac{(2J+1)}{(2S_1+1)(2S_2+1)} \; \frac{\pi}{k^2} \; \frac{B_{\rm in} B_{\rm out} \Gamma_{\rm tot}^2}{(E-E_R)^2 + \Gamma_{\rm tot}^2/4} \; , \label{eq:sigmaBW}$$

where k is the c.m. momentum, E is the c.m. energy, and $B_{\rm in}$ and $B_{\rm out}$ are the branching fractions of the resonance into the entrance and exit channels. The 2S+1 factors are the multiplicities of the incident spin states, so they are replaced by 2 for photons, etc. This expression is valid only for a particle of narrow width. If the width is not small, $\Gamma_{\rm tot}$ cannot be treated as a constant independent of E. There are many other forms for σ_{BW} , all of which are equivalent to the one given here in the narrow-width case. Some of these forms may be more appropriate if the resonance is broad.

CROSS-SECTION FORMULAE FOR SPECIFIC PROCESSES

A. LEPTOPRODUCTION

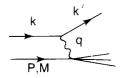


Fig. 1. Kinematic quantities for description of lepton-nucleon scattering. k and k' are the four-momenta of incoming and outgoing leptons, P is the four-momentum of a nucleon with mass M. The exchanged particle is a γ , W^{\pm} , or Z^0 ; it transfers four-momentum q=k-k' to the target.

Invariant quantities:

$$\nu=rac{q\cdot P}{M}=E-E'$$
 is the lepton's energy loss in the lab (in earlier literature sometimes $\nu=q\cdot P$). Here, E and E' are the initial and final lepton energies in the lab.

$$\begin{split} Q^2 = -q^2 = 2(EE'-\overrightarrow{k}\cdot\overrightarrow{k}') - m_\ell^2 - m_{\ell'}^2 \text{ where } m_\ell(m_{\ell'}) \text{ is the initial} \\ \text{(final) lepton mass. If } EE' \sin^2(\theta/2) \gg m_\ell^2, \ m_{\ell'}^2, \text{ then} \end{split}$$

 $\approx 4EE'\sin^2(\theta/2)$, where θ is the lepton's scattering angle in the lab.

$$x = \frac{Q^2}{2M\nu} \text{ In the parton model. } x \text{ is the fraction of the target nucleon's} \\ \text{momentum carried by the struck quark. See section on} \\ \text{QCD.}$$

$$y = \frac{q \cdot P}{k \cdot P} = \frac{\nu}{E}$$
 is the fraction of the lepton's energy lost in the lab.

 $W^2=(P+q)^2=M^2+2M\nu-Q^2$ is the mass squared of the system recoiling against the lepton.

$$s = (k+P)^2 = \frac{Q^2}{xy} + M^2$$

A.1 Leptoproduction cross sections:

$$\begin{split} \frac{d^2\sigma}{dx\;dy} &= \nu\left(s-M^2\right)\,\frac{d^2\sigma}{d\nu\;dQ^2} = \frac{2\pi\;M\nu}{E'}\,\frac{d^2\sigma}{d\Omega_{\rm lab}\;dE'} \\ &= x(s-M^2)\,\frac{d^2\sigma}{dx\;dQ^2}\;. \end{split}$$

A.2 Electroproduction structure functions:

The neutral-current process, $eN \to eX$, is parity conserving at low Q^2 and can be written in terms of two structure functions $F_1^{\rm NC}(x,Q^2)$ and $F_2^{\rm NC}(x,Q^2)$:

$$\begin{split} \frac{d^2\sigma}{dx\;dy} &= \frac{4\pi\;\alpha^2(s-M^2)}{Q^4} \bigg[(1-y)\,F_2^{\rm NC} \\ &+ \,y^2\,xF_1^{\rm NC} - \frac{M^2}{(s-M^2)}\,xy\,F_2^{\rm NC} \bigg] \;. \end{split}$$

The charged-current processes, $e^-N \to \nu X$, $\nu N \to e^-X$, and $\overline{\nu}N \to e^+X$, are parity violating and can be written in terms of three structure functions $F_1^{\text{CC}}(x,Q^2)$, $F_2^{\text{CC}}(x,Q^2)$, and $F_3^{\text{CC}}(x,Q^2)$:

$$\begin{split} \frac{d^2\sigma}{dx\;dy} &= \frac{G_F^2\;(s-M^2)}{2\pi} \frac{M_W^4}{(Q^2+M_W^2)^2} \\ &\times \left\{ \left[1 - y - \frac{M^2}{(s-M^2)} \right] F_2^{\text{CC}} \right. \\ &\left. + \frac{y^2}{2}\; 2x\, F_1^{\text{CC}} + (y - \frac{y^2}{2})\, x\, F_3^{\text{CC}} \right\} \,. \end{split} \tag{A.1}$$

^{*} Revised April 1990 with the assistance of K. Kajantie.

CROSS-SECTION FORMULAE FOR SPECIFIC PROCESSES (Cont'd)

A.3 The QCD parton model:

In the QCD parton model, the structure functions defined above can be expressed in terms of parton distribution functions. The quantity $f_i(x,Q^2)dx$ is the probability that a parton of type i (quark, antiquark, or gluon), carries a momentum fraction between x and x+dx of the nucleon's momentum in a frame where the nucleon's momentum is large. For the cross section corresponding to the neutral-current process $ep \to eX$, we have for $s \gg M^2$ (in the case where the incoming electron is either left- (L) or right- (R) handed):

$$\begin{split} \frac{d^2\sigma}{dx\;dy} &= \frac{\pi\alpha^2}{sx^2\;y^2} \left[\sum_q (x\;f_q\;(x,\;Q^2) + x\;f_{\overline{q}}\;(x,\;Q^2) \right] \\ &\times \left[A_q + (1-y)^2\;B_q \right] \;. \end{split}$$

Here the index q refers to a quark flavor (i.e., u, d, s, c, b, or t), and

$$\begin{split} A_q &= \left(-q_q + g_{Lq} \; g_{Le} \; \frac{Q^2}{Q^2 + M_Z^2} \right)^2 + \left(-q_q + g_{Rq} \; g_{Re} \; \frac{Q^2}{Q^2 + M_Z^2} \right)^2, \\ B_q &= \left(-q_q + g_{Rq} \; g_{Le} \; \frac{Q^2}{Q^2 + M_Z^2} \right)^2 + \left(-q_q + g_{Lq} \; g_{Re} \; \frac{Q^2}{Q^2 + M_Z^2} \right)^2. \end{split}$$

Here q_q is the charge of flavor q. For a left-handed electron, $g_{Re}=0$ and $g_{Le}=(-1/2+\sin^2\theta_W)/(\sin\theta_W\cos\theta_W)$, while for a right-handed one, $g_{Le}=0$ and $g_{Re}=(\sin^2\theta_W)/(\sin\theta_W\cos\theta_W)$. For the quarks, $g_{Lq}=(T_3-q_q\sin^2\theta_W)/(\sin\theta_W\cos\theta_W)$, and $g_{Rq}=(-q_q\sin^2\theta_W)/(\sin\theta_W\cos\theta_W)$.

For neutral-current neutrino (antineutrino) scattering, the same formula applies with g_{Le} replaced by $g_{L\nu}=1/(2\sin\theta_W\cos\theta_W)$ ($g_{L\overline{\nu}}=0$) and g_{Re} replaced by $g_{R\nu}=0$ [$g_{R\overline{\nu}}=-1/(2\sin\theta_W\cos\theta_W)$].

In the case of the **charged-current processes** $e_L^- p \to \nu X$ and $\overline{\nu}p \to e^+ X$, Eq. (A.1) applies with

$$\begin{split} F_2 &= 2x F_1 = 2x \Big[f_u(x,Q^2) + f_c(x,Q^2) \\ &+ f_t(x,Q^2) + f_{\overline{d}}\left(x,Q^2\right) + f_{\overline{\overline{s}}}\left(x,Q^2\right) + f_{\overline{b}}\left(x,Q^2\right) \Big] \;, \\ F_3 &= 2x \Big[f_u(x,Q^2) + f_c(x,Q^2) \\ &+ f_t(x,Q^2) - f_{\overline{d}}\left(x,Q^2\right) - f_{\overline{\overline{s}}}\left(x,Q^2\right) - f_{\overline{b}}\left(x,Q^2\right) \Big] \;. \end{split}$$

For the process $\nu p \to e^- X$:

$$\begin{split} F_2 &= 2xF_1 = 2x \Big[f_d(x,Q^2) + f_s(x,Q^2) \\ &+ f_b(x,Q^2) + f_{\overline{u}}\left(x,Q^2\right) + f_{\overline{c}}\left(x,Q^2\right) + f_{\overline{t}}\left(x,Q^2\right) \Big] \;, \\ F_3 &= 2x \Big[f_d(x,Q^2) + f_s(x,Q^2) \\ &+ f_b(x,Q^2) - f_{\overline{u}}\left(x,Q^2\right) - f_{\overline{c}}\left(x,Q^2\right) - f_{\overline{t}}\left(x,Q^2\right) \Big] \;. \end{split}$$

B. e^+e^- ANNIHILATION

For pointlike spin-1/2 fermions in the c.m., the differential cross section for $e^+e^- \to f\bar{f}$ via single photon annihilation is

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} \beta \left[1 + \cos^2\theta + (1 - \beta^2) \sin^2\theta \right] Q_f^2 \ .$$

where β is the velocity of the final state fermion in the center of mass and Q_f is the charge of the fermion in units of the proton charge. For $\beta \to 1$.

$$\sigma = \frac{4\pi\alpha^2}{3s} Q_f^2 = \frac{86.8 Q_f^2 nb}{s(\text{GeV}^2)} .$$

At higher energies the Z^0 (mass M_Z and width Γ_Z) must be included, and the differential cross section for $e^+e^- \to f\bar{f}$ becomes

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} \; \beta \; \bigg[Q_f^2 [1 + \cos^2\theta + (1-\beta^2) \, \sin^2\theta \,]$$

$$\begin{split} &-2Q_f \; \chi_1 \bigg\{ VV_f \; [1 + \cos^2\theta + (1 - \beta^2) \; \sin^2\theta \,] - 2a_f \; \beta \cos\theta \bigg\} \\ &+ \chi_2 \bigg\{ V_f^2 \; (1 + V^2) \; [1 + \cos^2\theta + (1 - \beta^2) \; \sin^2\theta \,] \\ &+ \beta^2 \; a_f^2 (1 + V^2) \; [1 + \cos^2\theta \,] - 8\beta \; VV_f \; a_f \cos\theta \bigg\} \bigg] \; , \\ &\chi_1 = \frac{1}{16 \sin^2\theta_W \cos^2\theta_W} \; \frac{s(s - M_Z^2)}{(s - M_Z^2)^2 + \Gamma_Z^2 M_Z^2} \; , \\ &\chi_2 = \frac{1}{256 \sin^4\theta_W \cos^4\theta_W} \; \frac{s^2}{(s - M_Z^2)^2 + \Gamma_Z^2 M_Z^2} \; . \\ &V = -1 + 4 \sin^2\theta_W \; , \\ &a_f = 2T_{3f} \; , \\ &V_f = 2T_{3f} - 4Q_f \sin^2\theta_W \; , \end{split}$$

where the subscript f refers to the particular fermion and

$$T_3 = +1/2$$
 for ν_e , ν_μ , ν_τ , u , c , t , $T_3 = -1/2$ for e^- , μ^- , τ^- , d , s , b .

C. e^+e^- TWO-PHOTON PROCESS

In the equivalent photon approximation, the cross section for $e^+e^-\to e^+e^-X$ is related to the cross section for $\gamma\gamma\to X$ by

$$d\sigma_{e^{+}e^{-}\rightarrow e^{+}e^{-}X}\left(s\right)=\eta^{2}\int\limits_{0}^{1}d\omega\;f(\omega)\;d\sigma_{\gamma\gamma\rightarrow X}\left(\omega s\right)\,.$$

where

$$\eta \approx \frac{\alpha}{2\pi} \ln \left(\frac{s}{4m^2} \right)$$

and

$$f(\omega) = \frac{1}{\omega} \left[(2+\omega)^2 \ln \frac{1}{\omega} - 2(1-\omega)(3+\omega) \right] .$$

The factor η arises from integrating over the mass squared of the virtual photon. For the production of a resonance, form factors suppress contributions from very virtual photons, so in the standard formula for production of a resonance of mass m_R and spin $J \neq 1$, namely,

$$\sigma(e^+e^- \to e^+e^-R) = \eta^2 \, \frac{(2J+1) \, 8\pi^2 \, \Gamma(R \to \gamma\gamma)}{sm_R} \, f(\frac{m_R^2}{s}) \ , \label{eq:sigma}$$

it would be better to use

$$\eta \approx \frac{\alpha}{2\pi} \, \ln \left(\frac{m_V^2}{4m_e^2} \right) \; , \label{eq:eta_sigma}$$

where m_V is the mass of the vector $(\rho,\,\phi,\,\cdots)$ that enters into the form factor.

D. INCLUSIVE HADRONIC REACTIONS

One-particle inclusive cross sections $E(d^3\sigma)/(d^3p_i)$ for the production of a particle of momentum p_i are conveniently expressed in terms of rapidity (see above) and the momentum p_{\perp} transverse to the beam direction (defined in the center-of-mass frame)

$$\frac{d^3\sigma}{dy\;d^2p_\perp} = E\;\frac{d^3\sigma}{d^3p}\;.$$

In the case of processes where p_{\perp} is large or the mass of the produced particle is large (here large means greater than 10 GeV), the parton model can be used to calculate the rate. Symbolically

$$\sigma_{\rm hadronic} = \sum_{ij} \int f_i(x_1, Q^2) f_j(x_2, Q^2) dx_1 dx_2 \, \widehat{\sigma}_{\rm partonic} ,$$

where $f_i(x, Q^2)$ is the parton distribution introduced above and Q is a typical momentum transfer in the partonic process and $\hat{\sigma}$ is

CROSS-SECTION FORMULAE FOR SPECIFIC PROCESSES (Cont'd)

the partonic cross section. Two examples will help to clarify. The production of a W^+ in pp reactions at rapidity y in the center-of-mass frame is given by

$$\begin{split} \frac{d\sigma}{dy} &= \frac{G_F \, \pi \sqrt{2}}{3} \\ &\times \, \tau \left[\cos^2 \theta_c \left(u(x_1 \; , \; M_W^2) \; \overline{d} \; (x_2, M_W^2) \right. \right. \\ &+ \left. u(x_2 \; , \; M_W^2) \; \overline{d} \; (x_1, M_W^2) \right) \\ &+ \sin^2 \theta_c \left(u(x_1 \; , \; M_W^2) \; \overline{s} \; (x_2 \; , \; M_W^2) \right. \\ &+ \left. s(x_2, M_W^2) \; \overline{u} \; (x_1, M_W^2) \right) \right] \; . \end{split}$$

where $x_1 = \sqrt{\tau} \ e^y$, $x_2 = \sqrt{\tau} \ e^{-y}$, and $\tau = M_W^2/s$. Similarly the production of a jet in pp (or $p\overline{p}$) collisions is given by

$$\frac{d^3\sigma}{d^2p_{\perp} dy} = \sum_{ij} \int f_i(x_1 \cdot p_{\perp}^2) f_j(x_2, p_{\perp}^2)
\times \left[\hat{s} \frac{d\hat{\sigma}}{d\hat{t}} \right]_{ii} dx_1 dx_2 \delta(\hat{s} + \hat{t} + \hat{u}) , \qquad (D.1)$$

where the summation is over quarks, gluons, and antiquarks. Here

$$s = (p_1 + p_2)^2$$
,
 $t = (p_1 - p_{jet})^2$,
 $u = (p_2 - p_{jet})^2$.

 p_1 and p_2 are the momenta of the incoming p and p (or \overline{p}) and \hat{s} . \hat{t} . and \hat{u} are s, t, and u with $p_1 \to x_1 p_1$ and $p_2 \to x_2 p_2$. The partonic cross section $\hat{s}[(d\hat{\sigma})/(d\hat{t})]$ can be found in Ref. 1. Example: for the process $qq \to q\overline{q}$.

$$\widehat{s} \; \frac{d\sigma}{dt} = 3\alpha_s^2 \; \frac{(\,\widehat{t}^{\,2} + \widehat{u}^2)}{8\widehat{s}} \; \left[\frac{4}{9\,\widehat{t}\,\widehat{u}} - \frac{1}{\widehat{s}^{\,2}} \right] \; .$$

The prediction of Eq. (D.1) is compared to data from the UA1 and UA2 collaborations in a figure labeled "Jet Production in pp and $\overline{p}p$ Interactions" in the Plots of Cross Sections and Related Quantities section.

E. ONE-PARTICLE INCLUSIVE DISTRIBUTIONS

In order to describe one-particle inclusive production in e^+e^- annihilation or deep inelastic scattering, it is convenient to introduce a fragmentation function $D_i^h(z,Q^2)/z$ which is the probability that a parton of type i and momentum p will fragment into a hadron of type h and momentum zp. The Q^2 evolution is predicted by QCD and is similar to that of the parton distribution functions (see section on Quantum Chromodynamics). The $D_i^h(z,Q^2)$ are normalized so that

$$\sum_{h} \int D_i^h(z, Q^2) dz = 1.$$

If the contributions of the Z boson and three-jet events are neglected, the cross section for producing a hadron h in e^+e^- annihilation is given by

$$\frac{1}{\sigma_{\rm had}}\,\frac{d\sigma}{dz} = \frac{\sum_i e_i^2\; D_i^h\; (z,Q^2)}{\sum_i e_i^2} \ . \label{eq:sigma_had}$$

where e_i is the charge of quark-type i, $\sigma_{\rm had}$ is the total hadronic cross section, and the momentum of the hadron is $zE_{\rm cm}/2$.

In the case of deep inelastic muon scattering, the cross section for producing a hadron of energy E_h is given by

$$\frac{1}{\sigma_{\rm tot}} \; \frac{d\sigma}{dz} = \frac{\sum_i e_i^2 \; q_i(x,Q^2) \; D_i^h(z,Q^2)}{\sum_i e_i^2 \; q_i(x,Q^2)} \; . \label{eq:sigmatot}$$

where $E_h=\nu z$. (For the kinematics of deep inelastic scattering, see section D.2 of the Kinematics section of this Review.) The fragmentation functions for light and heavy quarks have a different z dependence: the former peak near z=0. They are illustrated in a figure in the section on Plots of Cross Sections and Related Quantities.

G.F. Owens, F. Reya, and M. Glück, Phys. Rev. **D18**, 1501 (1978).

QUANTUM CHROMODYNAMICS*

A. THE QCD LAGRANGIAN

Quantum Chromodynamics (QCD), the gauge field theory which describes the interactions of colored quarks and gluons, is one of the components of the $SU(3)\times SU(2)\times U(1)$ Standard Model. The Lagrangian is (up to gauge-fixing terms)

$$\begin{split} L_{\rm QCD} &= -\frac{1}{4} F_{\mu\nu}^{(a)} \ F^{(a)\mu\nu} + i \sum_{q} \overline{\psi}_{q}^{i} \ \gamma^{\mu} \ (D_{\mu})_{ij} \ \psi_{q}^{j} \\ &- \sum_{q} m_{q} \ \overline{\psi}_{q}^{i} \ \psi_{qi} \ , \\ F_{\mu\nu}^{(a)} &= \partial_{\mu} \ A_{\nu}^{a} - \partial_{\nu} \ A_{\mu}^{a} + g_{s} \ f_{abc} \ A_{\mu}^{b} \ A_{\nu}^{c} \ . \\ (D_{\mu})_{ij} &= \delta_{ij} \ \partial_{\mu} - i g_{s} \ \sum_{q} \frac{\lambda_{i,j}^{a}}{2} A_{\mu}^{a} \ . \end{split}$$
 (A

where g_s is the QCD coupling constant, and the f_{abc} are the structure constants of the SU(3) algebra (the λ matrices and values for f_{abc} can be found in "SU(3) Isoscalar Factors and Representation Matrices"). The $\psi_q^i(x)$ are the 4-component Dirac spinors associated with each quark field of color i and flavor q and the $A_\mu^a(x)$ are the (8) Yang-Mills (gluon) fields. A complete list of the Feynman rules which derive from

this Lagrangian, together with some useful color-algebra identities, can be found in Ref. 1.

The principle of "asymptotic freedom" (see below) determines that the renormalized QCD coupling is small only at high energies, and it is only in this domain that high-precision tests—similar to those in QED—can be performed using perturbation theory. Nonetheless, there has in recent years been much progress in understanding and quantifying the predictions of QCD in the nonperturbative domain, for example in soft hadronic processes and on the lattice.² This short review will concentrate on QCD at short distances (large momentum transfers), where perturbation theory is the standard tool.

B. THE QCD COUPLING AND RENORMALIZATION SCHEME

The renormalization scale dependence of the effective QCD coupling $\alpha_s=g_s^2/4\pi$ is controlled by the β -function:

$$\mu \frac{\partial \alpha_s}{\partial \mu} = -\frac{\beta_0}{2\pi} \alpha_s^2 - \frac{\beta_1}{8\pi^2} \alpha_s^3 - \cdots ,$$

$$\beta_0 = 11 - \frac{2}{3} n_f ,$$

$$\beta_1 = 102 - \frac{38}{3} n_f .$$
(B.1)

and n_f is the number of quarks with mass less than the energy scale μ . In solving this differential equation for α_s , a constant of integration is introduced. This constant is the one fundamental constant of QCD which must be determined from experiment. The most sensible choice for this constant is the value of α_s at a fixed reference scale μ_0 , but it is more conventional to introduce the dimensional parameter Λ . The definition of Λ is arbitrary. One way to define it (adopted here) is to write a solution of Eq. (B.1) as an expansion in inverse powers of $\ln (\mu^2)$:

$$\alpha_s(\mu) = \frac{12\pi}{(33 - 2n_f) \ln(\mu^2/\Lambda^2)} \times \left[1 - \frac{6(153 - 19n_f)}{(33 - 2n_f)^2} \frac{\ln\left[\ln(\mu^2/\Lambda^2)\right]}{\ln(\mu^2/\Lambda^2)} \right] + \cdots . \tag{B.2}$$

The next term in this expansion is

$$\mathcal{O}\left(\frac{\ln^{-2}\left[\ln\left(\mu^2/\Lambda^2\right)\right]}{\ln^{-3}\left(\mu^2/\Lambda^2\right)}\right) \ .$$

This solution illustrates the **asymptotic freedom** property: $\alpha_s \to 0$ as $\mu \to \infty$. Alternative definitions of Λ are possible. For example, the solution of Eq. (B.1) with the β -function truncated at the second order:

$$\frac{1}{\alpha_s} + b_1 \ln \left(\frac{b_1 \alpha_s}{1 + b_1 \alpha_s} \right) = b_0 \ln \frac{\mu}{\Lambda} ,$$

$$b_0 = \frac{\beta_0}{2\pi} , \quad b_1 = \frac{\beta_1}{4\pi\beta_0} . \tag{B.3}$$

can be used.³ For a given value of $\alpha_s(\mu=5~{\rm GeV})$ one finds that $(\Lambda[{\rm Eq.~(B.2)}]-\Lambda[{\rm Eq.~(B.3)}])$ varies by 5 to 22 MeV as Λ goes from 120 to 350 MeV, while for $\alpha_s(\mu=30~{\rm GeV})$ it varies by 3 to 11 MeV over the same Λ range.

In the above discussion we have ignored quark-mass effects, i.e., we have assumed an idealized situation where quarks of mass greater than μ are neglected completely. In this picture, the β -function coefficients change by discrete amounts as flavor thresholds are crossed when integrating the differential equation for α_s . It follows that, for a relationship such as Eq. (B.2) to remain valid for all values of μ , Λ must also change discretely through flavor thresholds. This leads to the concept of a different Λ for each range of μ corresponding to an effective number of massless quarks: $\Lambda \to \Lambda^{(n_f)}$. This is the standard convention. It follows that when comparing measured Λ values, account must be taken of the effective number of quark flavors in each experiment. In practice, it is straightforward to relate the different $\Lambda^{(n_f)}$ using the above expressions. For example, one finds⁴ (the meaning of $\overline{\rm MS}$ will be explained below)

$$\begin{split} & \Lambda_{\overline{\rm MS}}^{(4)} \approx \Lambda_{\overline{\rm MS}}^{(5)} \, \left[\frac{m_b}{\Lambda_{\overline{\rm MS}}^{(5)}} \right]^{2/25} \left[2 \, \ln \left(\frac{m_b}{\Lambda_{\overline{\rm MS}}^{(5)}} \right) \right]^{963/14375} \\ & \Lambda_{\overline{\rm MS}}^{(4)} \approx \Lambda_{\overline{\rm MS}}^{(3)} \, \left[\Lambda_{\overline{\rm MS}}^{(3)} \, \frac{1}{M_{\rm S}} \right]^{2/25} \left[2 \, \ln \left(\frac{m_c}{\Lambda_{\overline{\rm MS}}^{(3)}} \right) \right]^{-107/1875} \, . \end{split} \tag{B.4}$$

Note that these differences are numerically very significant: for example, if $\Lambda_{\overline{MS}}^{(5)}=200$ MeV, the corresponding $\Lambda_{\overline{MS}}^{(4)}=293$ MeV. Most data from PEP/PETRA quote a value of $\Lambda_{\overline{MS}}^{(5)}$. We have converted it to $\Lambda_{\overline{MS}}^{(4)}$ as required.

All this confusion could be avoided by ignoring Λ altogether, but old habits die hard. The confusion can be minimized by adopting $\Lambda_{\overline{MS}}^{(4)}$ defined through Eq. (B.2) as the standard. This is done for all values of Λ quoted in this summary. In a given experiment where 1.5 GeV < μ < 5 GeV, $\Lambda^{(4)}$ is obtained from Eq. (B.2) with n_f = 4. For 5 GeV < μ < m_t GeV (m_t is the top-quark mass), $\Lambda^{(5)}$ is obtained from Eq. (B.2) with n_f = 5. Eq. (B.4) is then used to convert to $\Lambda^{(4)}$.

We turn now to a discussion of renormalization-scheme dependence in QCD. Although necessarily rather technical, this discussion is vital to understanding how A values can be measured and compared. See the review by Duke and Roberts⁵ for further details.

Consider a "typical" QCD cross section which, when calculated perturbatively, starts at $\mathcal{O}(\alpha_s)$:

$$\sigma = A_1 \alpha_s + A_2 \alpha_s^2 + \cdots {(B.5)}$$

The coefficients A_1 , A_2 come from calculating the appropriate Feynman diagrams. In performing such calculations various divergences arise, and these must be regulated in a consistent way. This requires a particular renormalization scheme (RS). The most commonly used one is the modified minimal subtraction ($\overline{\mathbb{MS}}$) scheme.⁶ This involves continuing momentum integrals from 4 to $4{\text -}2\epsilon$ dimensions and then subtracting off the resulting $1/\epsilon$ poles and also ($\ln 4\pi - \gamma_E$), which is another artifact of continuing the dimension. (Here γ_E is the Euler-Mascheroni constant.) To preserve the dimensionless nature of the coupling, a mass scale μ must also be introduced: $g \to \mu^\epsilon g$. The finite coefficients A_i thus obtained depend implicitly on the renormalization convention used and explicitly on the scale μ .

The first two coefficients (β_0,β_1) in Eq. (B.1) are independent of the choice of RS's. In contrast, the coefficients of terms proportional to α_s^n for n>3 are RS-dependent. Although the value of Λ , defined as above, does depend on the convention, it is straightforward to relate the different Λ 's corresponding to different RS's. It has become conventional to use the $\overline{\rm MS}$ scheme for calculating QCD cross sections beyond leading order.

The fundamental theorem of RS dependence is straightforward. Physical quantities, in particular the cross section, calculated to all orders in perturbation theory, do not depend on the RS. It follows that a truncated series **does** exhibit RS dependence. In practice all QCD cross sections are known either to leading or to next-to-leading order, and it is only the latter, which has reduced RS dependence, that are useful for precision tests. At second order the RS dependence is completely given by one condition which can be taken to be the value of the renormalization scale μ . One therefore has to address the question of what is the "best" choice for μ . There is no definite answer to this question—higher order corrections do not "fix" the scale, rather they render the theoretical predictions less sensitive to its variation.

There has been much discussion as to what constitutes the best choice of scheme. One could imagine that choosing a scale μ characteristic of the typical energy scale in the process would be most appropriate. More sophisticated choices are the scale for which the next-to-leading-order correction vanishes ("Fastest Apparent Convergence") or the scale for which the next-to-leading-order prediction is stationary.³

An important corollary is that if the higher order corrections are naturally small, then the additional uncertainties introduced by the RS dependence are likely to be less than the experimental measurement errors. There are some processes, however, for which the choice of scheme (i.e. the value of μ) can influence the extracted value of $\Lambda_{\overline{\rm MS}}$. There is no resolution to this problem other than to try to calculate even more terms in the perturbation series.

In the cases where the higher order corrections to a process are known and are large, some caution should be exercised when quoting the value of α_s . In what follows we will, where possible, indicate the size of the correction and will assign a theoretical uncertainty to α_s which corresponds to the size of this higher order correction. We estimate this error by comparing the value of $\alpha_s(\mu)$ obtained by fitting data using the QCD formula to highest known order in α_s , and then comparing it with the value obtained using the next-to-highest-order formula (μ is chosen as the typical energy scale in the process). The corresponding Λ 's are then obtained by evolving $\alpha_s(\mu)$ to $\mu=5$ GeV using Eq. (B.1) to the same order in α_s as the fit, and then converting to $\Lambda^{(4)}$ using Eq. (B.4).

C. QCD IN DEEP INELASTIC SCATTERING

The original and still one of the most powerful quantitative tests of perturbative QCD is the breaking of Bjorken scaling in deep inelastic lepton-hadron scattering. In the leading-logarithm approximation the measured structure functions $F_i(x,Q^2)$ are related to the quark distribution functions $q_i(x,Q^2)$ according to the naive parton model by the formulae in "Cross-Section Formulae for Specific Processes" (in

that section, q_i is denoted by the notation f_q). In describing the way in which scaling is broken in QCD, it is convenient to define nonsinglet and singlet quark distributions:

$$F^{NS} = q_i - q_j \qquad F^S = \sum_i (q_i + \overline{q}_i) . \tag{C.1}$$

The nonsinglet structure functions have nonzero values of flavor quantum numbers such as isospin or baryon number. The variation with Q^2 of these is described by the so-called Altarelli-Parisi equations⁸:

$$\begin{split} Q^2 \; \frac{\partial F^{NS}}{\partial Q^2} &= \frac{\alpha_s(|Q|)}{2\pi} P^{qq} * F^{NS} \\ Q^2 \; \frac{\partial}{\partial Q^2} \begin{pmatrix} F^S \\ G \end{pmatrix} &= \frac{\alpha_s(|Q|)}{2\pi} \begin{pmatrix} P^{qq} & 2n_f P^{qg} \\ P^{gq} & P^{gg} \end{pmatrix} * \begin{pmatrix} F^S \\ G \end{pmatrix} \end{split} \tag{C.2}$$

where * denotes a convolution integral:

$$f * g = \int_{x}^{1} \frac{dy}{y} f(y) g\left(\frac{x}{y}\right) . \tag{C.3}$$

The leading-order Altarelli-Parisi splitting functions are

$$\begin{split} P^{qq} &= \frac{4}{3} \left[\frac{1+x^2}{1-x} \right]_+ + 2\delta(1-x) \ , \\ P^{qg} &= \frac{1}{2} \left[x^2 + (1-x)^2 \right] \ , \\ P^{gq} &= \frac{4}{3} \left[\frac{1+(1-x)^2}{x} \right] \ , \\ P^{gg} &= 6 \left[\frac{1-x}{x} + x(1-x) + \left(\frac{x}{1-x} \right)_+ + \frac{11}{12} \delta(1-x) \right] \\ &\qquad \qquad - \frac{n_f}{3} \delta(1-x) \ . \end{split} \label{eq:pq}$$

Here the gluon distribution $G(x,Q^2)$ has been introduced and $1/(1-x)_+$ means

$$\int_{0}^{1} dx \frac{f(x)}{(1-x)_{+}} = \int_{0}^{1} dx \, \frac{f(x) - f(1)}{(1-x)} \; .$$

The precision of contemporary experimental data demands that higher order corrections also be included. The above results are for massless quarks. Algorithms exist for the inclusion of nonzero quark masses. 10 At low Q^2 values there are also important "higher-twist" contributions of the form:

$$F_i(x, Q^2) = F_i^{(LT)}(x, Q^2) + \frac{F_i^{(HT)}(x, Q^2)}{Q^2} + \cdots$$
 (C.5)

These corrections are numerically important only for $Q^2 < \mathcal{O}(10~{\rm GeV}^2)$ except for x very close to 1.

A detailed review of the current status of the experimental data can be found, for example, in Ref. 11, and only a brief summary will be presented here. From Eq. (C.2), it is clear that a nonsinglet structure function offers in principle the most precise test of the theory since the Q^2 evolution is independent of the unmeasured gluon distribution. In practice, however, such a measurement involves forming differences between cross sections (e.g., F_3 in neutrino scattering). Until recently this has meant that the most accurate measurements, involving singlet-dominated structure functions such as F_2 , have resulted in strongly correlated measurements of $\Lambda_{\overline{\rm MS}}$ and the gluon distribution. The most accurate data currently available are from the BCDMS collaboration. By utilizing high-statistics data at large x (> 0.25) and large Q^2 , the impact of the gluon distribution on the evolution and hence on the measured value of $\Lambda_{\overline{\rm MS}}$ is much reduced.

The result obtained is. 12

$$\Lambda_{\overline{MS}}^{(4)} = 230 \pm 20 (\text{stat.}) \pm 60 (\text{sys.}) \text{ MeV}$$
, (C.6)

which is consistent with earlier measurements. A summary of published $\Lambda_{\overline{\rm MS}}$ values from various experiments is displayed in Fig. 1. In Fig. 2 we have indicated the average value of $\Lambda_{\overline{\rm MS}}^{(4)}$ (238 \pm 43 MeV, statistical and systematic uncertainty added in quadrature) from the deep inelastic experiments shown in Fig. 1.

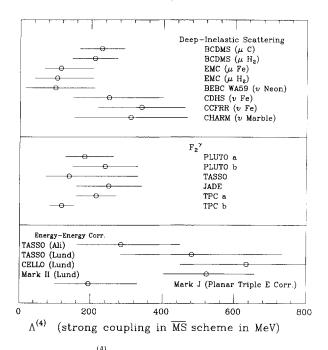


Fig. 1. Values of $\Lambda_{\overline{\rm MS}}^{(4)}$ as determined by various experiments. The results on deep inelastic scattering are from BCDMS, 12,13 EMC, 14 BEBC, 15 CDHS, 16 CCFRR. 17 and CHARM. 18 The photon structure function results are from PLUTO19 and TPC, 20 who quote two values of Λ arising from different assumptions about the hadronic part of the structure function, and from TASSO21 and JADE. 22 The Energy-Energy correlation results are from TASSO, 23 CELLO, 24 and Mark II. 25 The Planar Triple Energy correlation result is due to MARK-J. 26

The impact on the measurement of α_s of the higher order corrections can be estimated as follows. BCDMS used the evolution Eqs. (C.2) to leading order in α_s , and defined $\Lambda_{\rm LO}$ from $\alpha_s(Q^2)=12\pi/[(33-2n_f)\ln{(Q^2/\Lambda_{\rm LO}^2)}]$. They then obtained $\Lambda_{\rm LO}=215$ MeV. This corresponds to $\alpha_s(5~{\rm GeV})=0.240$, whereas their next-to-leading-order fit corresponds to $\alpha_s(5~{\rm GeV})=0.191$. We have used this to estimate the theoretical uncertainty shown on Fig. 2.

Typically, Λ is extracted from the data by parametrizing the parton densities in a simple analytic way at some Q_0^2 , evolving to higher Q^2 using the next-to-leading-order evolution equations, and fitting globally to the measured structure functions to obtain $\Lambda_{\overline{\rm MS}}$. Thus an important by-product of such studies is the extraction of parton densities at a fixed reference value of Q_0^2 . These can then be evolved in Q^2 and used as input for phenomenological studies in hadron-hadron collisions (see below). To avoid having to evolve from the starting Q_0^2 value each time, a parton density is required; it is useful to have available a simple analytic approximation to the densities valid over a range of x and Q^2 values. Such parametrizations are available in the literature.

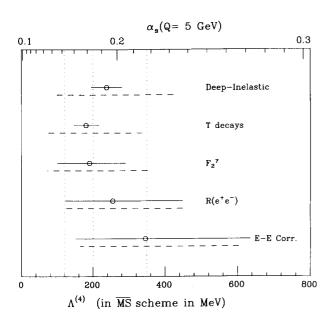


Fig. 2. Summary of the values of $\Lambda_{\overline{\rm MS}}^{(4)}$ from various processes. The deep inelastic value is an average of those shown in Fig. 1. The Υ result is from 28 an average of measurements. 29,30,31 The two-photon value is the allowed range from the results of Fig. 1 and takes into account the systematic error from the different models for the nonperturbative component of the structure function. The value from R is the average 32 of the compilation of Ref. 24. The result for the energy-energy correlations 33 is a range of allowed values and includes the systematic errors due to different fragmentation models. The dashed lines give our estimate of the possible uncertainty due to higher order QCD corrections; see text. For convenience, the top scale gives the value of $\alpha_s(5~{\rm GeV})$ corresponding to the values of $\Lambda_{\overline{\rm MS}}^{(4)}$. The vertical dotted lines indicate our allowed range and central value for Λ

D. QCD IN HIGH ENERGY HADRON COLLISIONS

There are many ways in which perturbative QCD can be tested in high energy hadron colliders. The most precise of these is the production of single large-transverse-momentum photons. The leading-order QCD subprocesses are $q\overline{q} \rightarrow \gamma g$ and $qg \rightarrow \gamma q$. Explicit expressions for the corresponding scattering amplitudes can be found, for example, in Ref. 34. If the parton distributions are taken from other processes and a value of $\Lambda_{\overline{\rm MS}}$ assumed, then an absolute prediction is obtained. Conversely, the data can be used to extract information on quark and gluon distributions and the value of $\Lambda_{\overline{MS}}$. This is also one of the few hard scattering processes for which the next-to-leading-order corrections are known, 35 and so a precision test is possible in principle. In practice, however, the residual uncertainties on the (most accurate) experimental data and in the theoretical prediction are on the order of 20-30%, and this is sufficiently large to limit the accuracy of an α_s measurement. Nevertheless a value for $\Lambda_{\overline{MS}}$ in the range 100-300 MeV gives very satisfactory agreement with a wide range of data. 36

The production of hadrons with large transverse momentum in hadron-hadron collisions provides a direct probe of the scattering of quarks and gluons: $qq \rightarrow qq$, $qg \rightarrow qg$, $gg \rightarrow gg$, etc. The present generation of $p\bar{p}$ colliders provide center-of-mass energies which are sufficiently high that these processes can be unambiguously identified in two-jet production at large transverse momentum. Corrected inclusive jet cross sections can be directly compared

to the corresponding parton cross sections, and the agreement is impressive. As an example, the figure on "Jet Production in pp and $p\bar{p}$ Interactions" in "Plots of Cross Sections and Related Quantities" shows the inclusive jet cross section at zero pseudorapidity as a function of the jet transverse momentum for $p\bar{p}$ collisions. The QCD prediction combines the parton distributions with the leading-order $2 \to 2$ parton scattering amplitudes. Data are also available on the angular distribution of jets; these are also in agreement with QCD expectations.³⁷

QCD corrections to Drell-Yan type cross sections (i.e., the production in hadron collisions by quark-antiquark annihilation of lepton pairs of invariant mass Q from virtual photons, or of real W or Z bosons) are known. ³⁸ These $\mathcal{O}(\alpha_s)$ QCD corrections are sizable and approximately constant over the lepton-pair mass range probed by experiments. Thus

$$\sigma_{DY} \approx \sigma_{DY}^{(0)} \left[1 + \frac{\alpha_s(Q^2)}{2\pi} C + \cdots \right]$$
 (D.1)

It is interesting to note that the corresponding correction to W and Z production, as measured at $p\overline{p}$ colliders, has essentially the same theoretical form and is of order 30%. Total W and Z production cross sections soon will be measured accurately enough to be sensitive to such 30% effects and can in principle offer a test of the theory. The key ingredient which is missing at present is the complete $\mathcal{O}(\alpha_s^2)$ QCD correction which is potentially important in view of the large $\mathcal{O}(\alpha_s)$ term. QCD effects are also observable in the production of W and Z bosons with large transverse momentum.³⁹ There is good qualitative agreement, although the statistics are rather poor at present.⁴⁰

E. QCD IN HEAVY QUARKONIUM DECAY

Under the assumption that the hadronic and leptonic decay widths of heavy $Q\overline{Q}$ resonances can be factorized into a nonperturbative part—dependent on the confining potential—and a calculable perturbative part, the ratios of partial decay widths allow measurements of α_s at the heavy quark mass scale. The most precise data come from the decay widths of the 1^{--} J/ψ and Υ resonances. Potential model dependences cancel from the ratios of decay widths. Important examples of such ratios are

$$\frac{\Gamma(1^{--} \to ggg)}{\Gamma(1^{--} \to \mu^+\mu^-)} \; , \; \frac{\Gamma(1^{--} \to \gamma gg)}{\Gamma(1^{--} \to ggg)} \; . \tag{E.1} \label{eq:E.1}$$

The perturbative corrections to these ratios are rather large. ⁴¹ They change the predictions by a factor of 1.64 and 0.77 respectively in the case of Υ decay. The corrections in the J/ψ case are much larger. Relativistic corrections are unknown and could be substantial for the J/ψ case. We will therefore assign a 20% uncertainty to the value of α_s obtained from Υ decays.

A recent analysis 28 of bottomonium decay-width ratios from CUSB, CLEO, and ${\rm ARGUS}^{29,30,31}$ finds

$$\alpha_s(m_b) = 0.179 \pm 0.009 \tag{E.2}$$

if the theoretical uncertainties are ignored. These uncertainties are indicated in Fig. 2.

F. PERTURBATIVE QCD IN e^+e^- COLLISIONS

The total cross section for $e^+e^- \to \text{hadrons}$ is obtained by multiplying the muon-pair cross section by the factor $R=3\Sigma_q e_q^2$. The higher order QCD corrections to this quantity have been calculated, and the results can be expressed in terms of the factor:

$$R = R^{(0)} \left[1 + \frac{\alpha_s}{\pi} + C_2 \left(\frac{\alpha_s}{\pi} \right)^2 + C_3 \left(\frac{\alpha_s}{\pi} \right)^3 + \cdots \right] ,$$

$$C_2^{\overline{\text{MS}}} = \left(\frac{2}{3} \zeta(3) - \frac{11}{12} \right) n_f + \frac{365}{24} - 11 \zeta(3) .$$
(F.1)

 $R^{(0)}$ can be obtained from the formula for $d\sigma/d\Omega$ for $e^+e^-\to f\overline{f}$ by integrating over Ω . The formula is given in "Cross-Section Formulae for Specific Processes," Section B. Numerically $C_2^{\overline{MS}}=1.41$. Recently C_3 has been computed; 42 numerically (for $n_f=5$) $C_3^{\overline{MS}}=64.7$. This result is strictly only correct in the zero-quark-mass limit. The $\mathcal{O}(\alpha_s)$ corrections are also known for massive quarks. 43

At the highest energies currently accessible (PETRA-PEP-TRISTAN), the corrections from QCD and Z exchange are comparable A comparison of the theoretical prediction of Eq. (F.1) (corrected for the b-quark mass) with all the available data (including those from TRISTAN at $\sqrt{s}=50$ GeV) has been performed by the CELLO collaboration.²⁴ The result is a correlated measurement of α_s and $\sin^2\theta_W$. Fixing $\sin^2\theta_W$ at the world-average value of 0.23 then gives:³²

$$\alpha_s(34 \text{ GeV}) = 0.132 \pm 0.016$$
 (F.2)

The corresponding value of $\Lambda_{\overline{\rm MS}}$ is shown in Fig. 2. Two comments are in order. First, the principal advantage of determining α_s from R in e^+e^- annihilation is that there is no dependence on fragmentation models, jet algorithms, etc. Second, the order α_s^3 term in Eq. (F.1) is numerically twice as large as the order α_s^2 term. The accuracy of the QCD prediction is therefore suspect. To take account of this we have given in Fig. 2 a theoretical uncertainty which corresponds to the difference of the values of α_s with and without the α_s^3 term (12% of α_s).

The traditional method of determining α_s in e^+e^- annihilation is from measuring quantities which are sensitive to the relative rate of two- and three-jet events. Here are many possible choices of such "shape variables": thrust, senergy-energy correlations, senergy planar triple-energy correlations, average jet mass, etc. All of these are infrared safe, which means they can be reliably calculated in perturbation theory. The starting point for all these quantities is the simple "three-jet" cross section for $e^+e^- \rightarrow qqg$:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{dx_1 dx_2} = \frac{2\alpha_s}{3\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)} \ . \tag{F.3}$$

where

$$x_i = \frac{2E_i}{\sqrt{s}}$$

are the center-of-mass energy fractions of the final-state (massless) quarks. A distribution in a "three-jet" variable, such as those listed above, is obtained by integrating this differential cross section over an appropriate phase space region for a fixed value of the variable.

See Fig. 1 for a compilation of the more recent data on Λ from the energy-energy correlation. Three comments must be made concerning these determinations of α_s . First, there are theoretical ambiguities in the way that the second-order matrix elements are combined with parton fragmentation. These have been a source of some confusion and have accounted for some of the differences in the results obtained from different analyses. Fortunately, there appears to now be some consensus and the different approaches have converged. 48 A more serious source of uncertainty concerns the effect of using different hadronization models which are used to describe the evolution of a parton jet into a hadron jet.^{49,50,51} These dynamics are controlled by QCD effects which we cannot yet calculate. Some experimental groups continue to quote separate α_s values according to the fragmentation model used, while others combine the uncertainty with other systematic errors. For example the TASSO collaboration²³ uses the energy-energy correlation and quotes $\alpha_s~(44~{\rm GeV})=0.143\pm0.014$ for the Lund fragmentation model⁴⁹ and α_s (44 GeV) = 0.129 \pm 0.012 for the Ali model, ⁵⁰ after the fragmentation models have been fitted to the data at $\sqrt{s} = 44 \text{ GeV}$

Third, numerically the order α_s^2 terms produce corrections of order $13\%.^{52}$ We will therefore assign a theoretical uncertainty of this size to the value of α_s extracted (see Fig. 2).

A compilation of all the available data and a complete list of references can be found in Ref. 53. A "world-average" is 33

$$\alpha_s(34 \text{ GeV}) = 0.14 \pm 0.02$$
, (F.4)

with the error being the spread between the different experiments including the fragmentation uncertainty, but not that due to the size of the higher order corrections, which from our estimate above is somewhat larger than this error. Notice that this value of α_s is in agreement with the value obtained from the measurement of

R described above. Since these results are essentially completely independent, the associated $\Lambda_{\overline{\rm MS}}$ values are displayed separately in Fig. 2.

There are many other ways in which QCD can be tested in electron-positron collisions. Mention should be made in particular of the interesting and important results from "two-photon" processes. For a comprehensive review of the data, see Ref. 54. Paramount among these is the measurement of the photon structure function in collisions involving a highly virtual and an almost real photon.

In contrast to hadronic structure functions, the photon structure function increases linearly with log $Q^{2,55}$ and a measurement of the absolute size at large Q^2 provides information about Λ . However, the exact situation is complicated and somewhat controversial. The difficulty arises when the higher order QCD corrections⁵⁶ are included. These appear to introduce a negative singularity in the structure function at x = 0.57 A more complete treatment then reveals that these singularities are in fact compensated by the nonperturbative hadronic component (the solution of the homogeneous part of the Altarelli-Parisi equations). This appears to reduce the usefulness of the photon structure function to that of hadronic structure functions. in that only the evolution can be unambiguously predicted in QCD. and the sensitivity to A is much reduced. Furthermore, fits to the data involve the determination of parameters which fix the nonperturbative components as well as Λ . The TPC/2-gamma collaboration 20 quotes two values of $\Lambda_{\overline{MS}} = 215 \pm 55$ and 119 ± 34 MeV, depending upon how the nonperturbative component is parametrized. Systematic errors from this parametrization dominate statistical errors and the situation is somewhat similar to that for the energy-energy correlations discussed above. All the data on the photon structure function (see Fig. 1) are consistent with⁵⁹

$$\Lambda_{\overline{\rm MS}} = 180^{+100}_{-90} \text{ MeV}$$
 (F.5)

This value is shown in Fig. 2. The higher order QCD corrections correspond approximately to a shift of 20% in the photon structure function and hence in α_s .⁵⁶ The corresponding uncertainty is indicated on Fig. 2.

G. CONCLUSIONS

In this short review we have focused on those high energy processes which currently offer the most quantitative tests of perturbative QCD. The precision measurements of $\Lambda_{\overline{\rm MS}}$ come from those processes which involve real or virtual photons and for which the next-to-leading corrections are known. From Fig. 2 we see that all measurements are consistent and point to a value of $\Lambda_{\overline{\rm MS}}$ for $n_f=4$ of order 200^{+150}_{-80} MeV. The remarks in Sec. B concerning different Λ 's for different effective n_f values should be remembered. It is interesting to note that the measurements are not yet precise enough to reveal the expected differences from different processes. Jet production data from high energy hadron collisions, while not yet in the precision measurement class, demonstrate in a very clear way the scattering of quarks and gluons over many orders of magnitude in cross section.

The need for brevity has meant that many other important topics in QCD phenomenology have had to be omitted from this review. One should mention in particular the study of exclusive processes (form factors, elastic scattering, ...), the behavior of quarks and gluons in nuclei, the spin properties of the theory and the importance of polarized scattering data, the interface of soft and hard QCD as manifest, for example, by minijet production and hard diffractive processes and QCD effects in hadron spectroscopy. While we can be confident that QCD is the strong interaction field theory, there are still many important tests to be made.

^{*} Prepared April 1988 by R.M. Barnett, I. Hinchliffe, and W.J. Stirling: minor changes in September 1989.

[†] Since the perturbation expansion is an asymptotic series, eventually the computation of additional terms is of no value.

[‡] This fit includes the C_3 term. If this term is not included, the fit gives α_s (34 GeV) = 0.145 ± 0.019.²⁴

- F.J. Yndurain, "Quantum Chromodynamics: an Introduction to the Theory of Quarks and Gluons", (Springer, New York, 1983).
- For a recent review, see A.J.G. Hey, Surv. High Energy Physics 5, 287 (1987).
- P.M. Stevenson, Phys. Rev. **D23**, 2916 (1981), and Nucl. Phys. **B203**, 472 (1982).
- 4. W. Marciano, Phys. Rev. **D29**, 580 (1984).
- 5. D.W. Duke and R.G. Roberts, Phys. Reports 120, 275 (1985).
- 6. W.A. Bardeen et al., Phys. Rev. D18, 3998 (1978).
- G. Grunberg, Phys. Lett. 95B, 70 (1980), and Phys. Rev. D29, 2315 (1984).
- 8. G. Altarelli and G. Parisi, Nucl. Phys. **B126**, 298 (1977).
- G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys. B175, 27 (1980); W. Furmanski and R. Petronzio, Phys. Lett. 97B, 437 (1980), and Z. Phys. C11, 293 (1982); E.G. Floratos, C. Kounnas, and R. Lacaze, Phys. Lett. 98B, 89 (1981), Phys. Lett. 98B, 285 (1981), and Nucl. Phys. B192, 417 (1981); and R.T. Herrod and S. Wada, Phys. Lett. 96B, 195 (1981), and Z. Phys. C9, 351 (1981).
- 10. M. Glück, E. Hoffmann, and E. Reya, Z. Phys. C13, 119 (1982).
- R. Voss, talk at the 1987 International Symposium on Lepton and Photon Interactions at High Energies, Hamburg 1987.
- BCDMS collaboration: A.C. Benvenuti et al., Phys. Lett. B195, 97 (1987).
- BCDMS collaboration: A.C. Benvenuti et al., report no. JINR-E1 87-689 (1987), International Europhysics Conference on High Energy Physics, Uppsala, Sweden (June 25 - July 1, 1987).
- J.J. Aubert *et al.*, Nucl. Phys. **B272**, 158 (1986), and Nucl. Phys. **B259**, 189 (1985).
- 15. K. Varvell et al., Z. Phys. C36, 1 (1987).
- 16. H. Abramowicz et al., Z. Phys. C17, 283 (1983).
- 17. D. MacFarlane et al., Z. Phys. C26, 1 (1984).
- F. Bergsma et al., Phys. Lett. 153B, 111 (1985).
- 19. Ch. Berger et al., Nucl. Phys. **B281**, 365 (1987).
- TPC/2 Gamma collaboration, H. Aihira et al., submitted to the 1987 International Symposium on Lepton and Photon Interactions at High Energies (Hamburg 1987).
- 21. M. Althoff et al., Z. Phys. C31, 527 (1986).
- 22. W. Bartel et al., Z. Phys. C24, 231 (1984).
- 23. W. Braunschweig et al., Z. Phys. 36, 349 (1987).
- CELLO collaboration: H.J. Behrend et al., Phys. Lett. B183, 400 (1987); and W. de Boer, SLAC preprint SLAC-PUB-4428 (1987).
- 25. D.R. Wood et al., SLAC-PUB-4374 (1987).
- B. Adeva et al., Phys. Lett. B180, 181 (1986). Mark-J data for energy-energy correlations appear in B. Adeva et al., Phys. Rev. Lett. 50, 2051 (1983) and Phys. Rev. Lett. 54, 1750 (1985).
- M. Glück, E. Hoffmann, and E. Reya, Z. Phys. C13, 119 (1982); D.W. Duke and J.F. Owens, Phys. Rev. D30, 49 (1984);
 E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56, 579 (1984); M. Diemoz, F. Ferroni, E. Longo, and G. Martinelli, CERN preprint CERN-TH-4751 87 (1987); and A.D. Martin, R.G. Roberts, and W.J. Stirling, Phys. Rev. D37, 1161 (1988).
- W. Kwong, P.B. Mackenzie, R. Rosenfeld, and J.L. Rosner, University of Chicago preprint EFI 87–31 (1987).
- 29. S.E. Csorna et al., Phys. Rev. Lett. 56, 1222 (1986).
- 30. R.D. Schamberger et al., Phys. Lett. 138B, 225 (1984).
- 31. H. Albrecht et al., Phys. Lett. B199, 291 (1987).

- 32. W. de Boer, private communication.
- W.J. Stirling, in Proceedings of the 1987 International Symposium on Lepton and Photon Interactions at High Energies (Hamburg 1987).
- 34. J.F. Owens, Rev. Mod. Phys. 59, 465 (1987).
- P. Aurenche, R. Baier, A. Douiri, M. Fontannaz, and D. Schiff, Phys. Lett. 140B, 87 (1984).
- P. Aurenche, R. Baier, M. Fontannaz, and D. Schiff, Nucl. Phys. B297, 661 (1988).
- UA1 collaboration: G. Arnison *et al.*, Phys. Lett. **B177**, 244 (1986).
- G. Altarelli, R.K. Ellis, and G. Martinelli, Nucl. Phys. B143, 521 (1978).
- F. Halzen and W. Scott, Phys. Rev. **D18**, 3378 (1978); and
 G. Altarelli *et al.*, Nucl. Phys. **B246**, 12 (1984).
- UA1 collaboration: G. Arnison *et al.*, Phys. Lett. **139B**, 115 (1984); and A.C. Bawa and W.J. Stirling, Phys. Lett. **B203**, 172 (1988).
- P. Lepage and P. Mackenzie, Phys. Rev. Lett. 47, 1244 (1981).
 A summary of onium decay rates can be found in W. Kwong,
 C. Quigg, and J. Rosner, Ann. Rev. Nucl. and Part. Sci. 37, 325 (1987).
- S.G. Gorishny, A. Kataev, and S.A. Larin, INR preprint, Moscow, 1988.
- E.C. Poggio, H.R. Quinn, and S. Weinberg, Phys. Rev. D13, 1958 (1976); and R.M. Barnett, M. Dine, and L. McLerran, Phys. Rev. D22, 594 (1980).
- 44. An early prediction of the existence of gluon jets in e^+e^- annihilation was J. Ellis, M.K. Gaillard, and G. Ross. Nucl. Phys. **B111**, 253 (1976). Quantitative predictions appeared in P. Hoyer *et al.*, Nucl. Phys. **B161**, 349 (1979).
- 45. E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
- C.L. Basham, L.S. Brown, S.D. Ellis, and S.T. Love, Phys. Rev. D17, 2298 (1978).
- 47. F. Csikor et al., Phys. Rev. D31, 1025 (1985).
- 48. T. Gottschalk and T. Shatz, Phys. Lett. 150B, 451 (1985).
- 49. B. Andersson et al., Phys. Reports 97, 33 (1983).
- A. Ali et al., Nucl. Phys. B168, 409 (1980); and A. Ali and R. Barreiro, Phys. Lett. 118B, 155 (1982).
- 51. B.R. Webber, Nucl. Phys. B238, 492 (1984).
- D.G. Richards, W.J. Stirling, and S.D. Ellis, Phys. Lett. 119B, 193 (1982); and K. Ellis, D.A. Ross, and T. Terrano, Phys. Rev. Lett. 45, 1226 (1980).
- 53. W.J. Stirling and M.R. Whalley, Durham-RAL Database Publication RAL/87/107 (1987); and S.L. Wu in Proceedings of the 1987 International Symposium on Lepton and Photon Interactions at High Energies (Hamburg 1987).
- 54. Ch. Berger and W. Wagner, Phys. Reports ${\bf 136},\,1$ (1987).
- T.F. Walsh and P.M. Zerwas, Phys. Lett. 44B, 195 (1973); and E. Witten, Nucl. Phys. B120, 189 (1977).
- 56. W.A. Bardeen and A. Buras, Phys. Rev. **D20**, 166 (1979).
- D. Duke and J. Owens, Phys. Rev. **D22**, 2280 (1980); and G. Rossi, Phys. Lett. **130B**, 105 (1983).
- W. Frazer, Phys. Lett. B194, 287 (1987); and I. Antonaides and G. Grunberg, Nucl. Phys. B213, 445 (1983).
- W. Wagner, in Proceedings of XXIII International Conference on High Physics, edited by S.C. Loken (World Scientific Publishing, Singapore, 1987).

STANDARD MODEL OF ELECTROWEAK INTERACTIONS*

The standard electroweak model is based on the gauge group¹ $SU(2) \times U(1)$, with gauge bosons W_{μ}^{i} , i = 1, 2, 3, and B_{μ} for the $\mathrm{SU}(2)$ and $\mathrm{U}(1)$ factors, respectively, and the corresponding gauge coupling constants g and g'. The left-handed fermion fields
$$\begin{split} \psi_i &= \begin{pmatrix} \nu_i \\ \ell_i^- \end{pmatrix} \text{ and } \begin{pmatrix} u_i \\ d_i' \end{pmatrix} \text{ of the } i^{th} \text{ fermion family transform as doublets} \\ \text{under SU(2), where } d_i' &= \sum_j V_{ij} \ d_j, \text{ and } V \text{ is the Cabibbo-Kobayashi-Maskawa mixing matrix.}^* \text{ The right-handed fields are SU(2) singlets.} \end{split}$$
In the minimal model there are three fermion families and a single complex Higgs doublet $\phi \equiv \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$. After spontaneous symmetry breaking the Lagrangian is

$$\begin{split} \mathcal{L}_F &= \sum_i \overline{\psi}_i \left(i \not \! \partial - m_i - \frac{g m_i H}{2 M_W} \right) \psi_i \\ &- \frac{g}{2 \sqrt{2}} \sum_i \overline{\psi}_i \, \gamma^\mu \, (1 - \gamma^5) (T^+ \, W_\mu^+ + T^- \, W_\mu^-) \, \psi_i \\ &- e \sum_i q_i \, \overline{\psi}_i \, \gamma^\mu \, \psi_i \, A_\mu - \frac{g}{2 \cos \theta_W} \, \times \\ &\sum_i \overline{\psi}_i \, \gamma^\mu (V^i - A^i \gamma^5) \, \psi_i \, Z_\mu \; . \end{split} \tag{1}$$

 $\theta_W \equiv \tan^{-1}(g'/g)$ is the weak angle; $e=g\sin\theta_W$ is the positron electric charge; and $A\equiv B\cos\theta_W+W^3\sin\theta_W$ is the (massless) photon field. $W^{\pm} \equiv (W^1 \mp iW^2)/\sqrt{2}$ and $Z \equiv -B\sin\theta_W + W^3\cos\theta_W$ are the massive charged and neutral weak boson fields, respectively. T^+ and T^- are the weak isospin raising and lowering operators. The vector and axial couplings are

$$V^i \equiv t_{3L}(i) - 2q_i \sin^2 \theta_W$$

$$A^i \equiv t_{3L}(i) \ , \tag{2}$$

where $t_{3L}(i)$ is the weak isospin of fermion i (+1/2 for u_i and ν_i ; -1/2 for d_i and e_i) and q_i is the charge of ψ_i in units of e.

The second term in \mathcal{L}_F represents the charged-current weak interaction.² For example, the coupling of a W to an electron and a neutrino is

$$-\frac{e}{2\sqrt{2}\sin\theta_W}\left[W_{\mu}^{-}\ \overline{e}\ \gamma^{\mu}(1-\gamma^5)\nu + W_{\mu}^{+}\ \overline{\nu}\ \gamma^{\mu}\ (1-\gamma^5)e\right]\ . \tag{3}$$

For momenta small compared to M_W , the second term gives rise to the effective four-fermion interaction with the Fermi constant given (at tree level, i.e., lowest order in perturbation theory) by $G_F/\sqrt{2} = g^2/8M_W^2$. CP violation is incorporated in the Standard Model by a single observable phase in V_{ij} . The third term in \mathcal{L}_F describes electromagnetic interactions (QED), and the last is the weak neutral-current interaction.

In Eq. (1), m_i is the mass of the i^{th} fermion ψ_i . For the quarks these are the current masses. For the light quarks, a typical estimate³ gives $m_u \approx 5.6 \pm 1.1$ MeV, $m_d \approx 9.9 \pm 1.1$ MeV, $m_s \approx 199 \pm 33$ MeV, and $m_c \approx 1.35 \pm 0.05$ GeV (these are running masses evaluated at 1 GeV). For the heavier quarks $m_b \approx 5$ GeV (the "pole" mass), and $m_t > \mathcal{O}(80) \text{ GeV}.$

H is the physical neutral Higgs scalar which is the only remaining part of ϕ after spontaneous symmetry breaking. The Yukawa coupling of H to ψ_i , which is flavor diagonal in the minimal model, is $gm_i/2M_W$. The H mass is not predicted by the model. Experimental limits are given in the Higgs section. In nonminimal models there are additional charged and neutral scalar Higgs particles⁴.

Renormalization and radiative corrections: The Standard Model has three parameters (not counting M_H and the fermion masses and mixings). A particularly useful set is: (a) the fine structure constant $\alpha = 1/137.036,^{\dagger}$ determined from the electron magnetic moment anomaly (g-2), (b) the Fermi constant, $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ determined from the muon lifetime formula (to which one must add lepton mass and $\mathcal{O}(\alpha)$ radiative corrections):

$$\tau_{\mu}^{-1} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} \ . \tag{4}$$

and (c) $\sin^2 \theta_W$, determined from neutral-current processes⁵ and the W and Z masses. The value of $\sin^2 \theta_W$ depends on the renormalization prescription. A very useful scheme⁶ is to take the tree-level formula $\sin^2 \theta_W = 1 - M_W^2/M_Z^2$ as the definition of the renormalized $\sin^2 \theta_W$ to all orders in perturbation theory. ‡ Alternatively, one can take M_Z rather than $\sin^2 \theta_W$ as the third fundamental parameter.

Experiments are now at such a level of precision that complete $\mathcal{O}(\alpha)$ radiative corrections must be applied. These corrections are conveniently divided into two classes:

- 1. QED diagrams involving the emission of real photons or the exchange of virtual photons in loops, but not including vacuum polarization diagrams. These graphs yield finite and gaugeinvariant contributions to observable processes. However, they are dependent on energies, experimental cuts, etc., and must be calculated individually for each experiment.
- 2. Electroweak corrections, including $\gamma\gamma$, γZ , ZZ, and WW vacuum polarization diagrams, as well as vertex corrections, box graphs, etc., involving virtual W's and Z's. Many of these corrections are absorbed into the renormalized Fermi constant defined in Eq. (4). Others modify the tree-level expressions for neutral-current amplitudes in several ways.⁵

In addition, the tree-level expressions for M_W and M_Z are modified:

$$M_W = \frac{A_0}{\sin \theta_W (1 - \Delta r)^{1/2}}$$

$$M_Z = \frac{M_W}{\cos \theta_W} \tag{5}$$

where $A_0 = (\pi \alpha / \sqrt{2}G_F)^{1/2} = 37.281$ GeV. The radiative correction parameter Δr is predicted to be 0.0574 ± 0.0013 for $m_t = 100$ GeV and 0.0217 for $m_t=200~{\rm GeV}$ (both for $M_H=100~{\rm GeV}$). If M_Z is regarded as fundamental, then

$$\sin^2 \theta_W = \frac{1}{2} \left[1 - \left(1 - \frac{4A_0^2}{M_Z^2 (1 - \Delta r)} \right)^{1/2} \right] \tag{6}$$

is a derived parameter, and $M_W = M_Z \cos \theta_W$.

Cross section and asymmetry formulas: It is convenient to write the four-fermion interactions relevant to ν -hadron, νe , and parity-violating e-hadron neutral-current processes in a form that is valid in an arbitrary gauge theory (assuming massless left-handed neutrinos). One has

$$-\mathcal{L}^{\nu \text{Hadron}} = \frac{G_F}{\sqrt{2}} \, \overline{\nu} \, \gamma^{\mu} \, (1 - \gamma^5) \nu$$

$$\times \sum_{i} \left[\epsilon_L(i) \, \overline{q}_i \, \gamma_{\mu} (1 - \gamma^5) q_i + \epsilon_R(i) \, \overline{q}_i \, \gamma_{\mu} (1 + \gamma^5) q_i \right] , \qquad (7)$$

$$-\mathcal{L}^{\nu e} = \frac{G_F}{\sqrt{2}} \,\overline{\nu}_{\mu} \,\gamma^{\mu} (1 - \gamma^5) \nu_{\mu} \,\overline{e} \,\gamma_{\mu} (g_V^e - g_A^e \gamma^5) e \tag{8}$$

(for $\nu_e e$ or $\overline{\nu}_e e$, the charged-current contribution must be included).

$$-\mathcal{L}^{e\text{Hadron}} = -\frac{G_F}{\sqrt{2}}$$

$$\times \sum_{i} \left[C_{1i} \ \bar{e} \ \gamma_{\mu} \ \gamma^5 \ e \ \bar{q}_i \ \gamma^{\mu} \ q_i + C_{2i} \ \bar{e} \ \gamma_{\mu} \ e \ \bar{q}_i \ \gamma^{\mu} \ \gamma^5 \ q_i \right] \ . \tag{9}$$

(One must add the parity-conserving QED contribution.)

The Standard Model expressions for $\epsilon_{L,R}(i)$, $g_{V,A}^e$, and C_{ij} are

A precise determination of $\sin^2 \theta_W$, which depends only very weakly on m_t and M_H , is obtained from deep inelastic neutrino scattering from (approximately) isoscalar targets. The ratio $R_{\nu} \equiv \sigma_{\nu N}^{NC}/\sigma_{\nu N}^{CC}$ of neutral- to charged-current cross sections has been measured to 1% accuracy by the CDHS⁷ and CHARM⁸ collaborations, so it is important to obtain theoretical expressions for R_{ν} and $R_{\bar{\nu}} \equiv \sigma_{\bar{\nu}N}^{NC}/\sigma_{\bar{\nu}N}^{CC}$ (as functions of $\sin^2 \theta_W$) to comparable accuracy. Fortunately, most of the uncertainties from the strong interactions and neutrino spectra cancel in the ratio.

Table 1. Standard model expressions for the neutral-current parameters for ν -hadron, $\nu e,$ and e-hadron processes. If radiative corrections are ignored, $\rho=\kappa=1,\,\lambda=0.\,$ At $\mathcal{O}(\alpha),\,\rho_{\nu N}^{NC}=1.0032,\,\kappa_{\nu N}=1.0078,\,\lambda_{u_L}=-0.0031,\,\lambda_{d_L}=-0.0026,\,$ and $\lambda_{u_R}=1/2\,\lambda_{d_R}=3.5\times 10^{-5}$ for $m_t=100$ GeV, $M_H=100$ GeV, $\sin^2\theta_W=0.23,\,$ and $\langle Q^2\rangle=20$ GeV². For νe scattering, $\kappa_{\nu e}=1.0074$ and $\rho_{\nu e}=1.0079$ (at $\langle Q^2\rangle=0.$). For atomic parity violation, $\rho_{eq}'=0.9818$ and $\kappa_{eq}'=1.012.$ For the SLAC polarized electron experiment, $\rho_{eq}'=0.972,\,\kappa_{eq}'=1.011,\,\rho_{eq}=0.995,\,$ and $\kappa_{eq}=1.05$ after incorporating additional QED corrections. For $m_t=200$ GeV the $\rho(\kappa)$ values should be increased by 0.0094 (0.0402).

Quantity	Standard Model Expression
$\epsilon_L(u)$	$\rho_{\nu N}^{NC} \left(\frac{1}{2} - \frac{2}{3} \kappa_{\nu N} \sin^2 \theta_W + \lambda_{uL} \right)$
$\epsilon_L(d)$	$ ho_{ u N}^{NC} \left(-rac{1}{2} + rac{1}{3} \kappa_{ u N} \sin^2 heta_W + \lambda_{dL} ight)$
$\epsilon_{R}(u)$	$ \rho_{\nu N}^{NC} \left(-\frac{2}{3} \kappa_{\nu N} \sin^2 \theta_W + \lambda_{uR} \right) $
$\epsilon_R(d)$	$ ho_{ u N}^{NC} \left(\frac{1}{3} \kappa_{ u N} \sin^2 \theta_W + \lambda_{dR} \right)$
g_V^e	$\rho_{\nu e} \left(-\frac{1}{2} + 2\kappa_{\nu e} \sin^2 \theta_W \right)$
g_A^e	$ ho_{ u e}\left(-rac{1}{2} ight)$
C_{1u}	$ ho_{eq}^{\prime}\left(-rac{1}{2}+rac{4}{3}\kappa_{eq}^{\prime}\sin^{2} heta_{W} ight)$
C_{1d}	$ ho_{eq}^{\prime}\left(rac{1}{2}-rac{2}{3}\kappa_{eq}^{\prime}\sin^{2} heta_{W} ight)$
C_{2u}	$ ho_{eq}\left(-rac{1}{2}+2\kappa_{eq}\sin^2 heta_W ight)$
$C_{oldsymbol{2d}}$	$-C_{2u}$

A simple $zero^{th}$ -order approximation is

$$R_{\nu} = g_L^2 + g_R^2 r$$

$$R_{\overline{\nu}} = g_L^2 + \frac{g_R^2}{2} , \qquad (10)$$

where

$$g_L^2 \equiv \epsilon_L (u)^2 + \epsilon_L (d)^2 \approx \frac{1}{2} - \sin^2 \theta_W + \frac{5}{9} \sin^4 \theta_W$$

$$g_R^2 \equiv \epsilon_R (u)^2 + \epsilon_R (d)^2 \approx \frac{5}{9} \sin^4 \theta_W , \qquad (11)$$

and $r \equiv \sigma_{\overline{\nu}N}^{CC}/\sigma_{\nu N}^{CC}$ is the ratio of $\overline{\nu}$ and ν charged-current cross sections, which can be measured directly. [In the simple parton model. ignoring hadron energy cuts, $r \approx (\frac{1}{3} + \epsilon)/(1 + \frac{1}{3}\epsilon)$, where $\epsilon \sim 0.125$ is the ratio of the fraction of the nucleon's momentum carried by antiquarks to that carried by quarks.] In practice, Eq. (10) must be corrected for quark mixing, the s and c seas, c-quark threshold effects, nonisoscalar target effects, W-Z propagator differences, and radiative corrections (which lower the extracted value of $\sin^2 \theta_W$ by ~ 0.009). Details of the neutrino spectra, experimental cuts, x and Q^2 dependence of structure functions, and longitudinal structure functions enter only at the level of these corrections and therefore lead to very small uncertainties. The largest theoretical uncertainty is associated with the c threshold, which mainly affects σ^{CC} . Using the slow rescaling prescription⁵ the central value of $\sin^2 \theta_W$ varies as 0.013 $[m_c({\rm GeV})$ –1.5], where m_c is the effective mass. For $m_c=1.5\pm0.3$ GeV (determined from ν -induced dimuon production) this contributes ± 0.004 to the total theoretical uncertainty $\Delta \sin^2 \theta_W \sim \pm 0.005$. This would be very hard to improve in the future. (The experimental uncertainty is ± 0.003).

The laboratory cross section for $\nu_{\mu}e \rightarrow \nu_{\mu}e$ or $\overline{\nu}_{\mu}e \rightarrow \overline{\nu}_{\mu}e$ elastic scattering is

$$\frac{d\sigma_{\nu\mu,\overline{\nu}\mu}}{dy} = \frac{G_F^2 m_e E_{\nu}}{2\pi} \times \left[(g_V^e \pm g_A^e)^2 + (g_V^e \mp g_A^e)^2 (1 - y)^2 - (g_V^{e2} - g_A^{e2}) \frac{y m_e}{E_{\nu}} \right] , \tag{12}$$

where the upper (lower) sign refers to $\nu_{\mu}(\overline{\nu}_{\mu})$, and $y \equiv E_e/E_{\nu}$ [which runs from 0 to $(1+m_e/2E_{\nu})^{-1}$] is the ratio of the kinetic energy of the recoil electron to the incident ν or $\overline{\nu}$ energy. For $E_{\nu} \gg m_e$ this yields a total cross section

$$\sigma = \frac{G_F^2 \ m_e \ E_{\nu}}{2\pi} \left[(g_V^e \pm g_A^e)^2 + \frac{1}{3} (g_V^e \mp g_A^e)^2 \right] \ . \tag{13}$$

The most accurate leptonic measurements $^{9-11}$ of $\sin^2\theta_W$ are from the ratio $R\equiv\sigma_{\nu_{\mu}e}/\sigma_{\overline{\nu}_{\mu}e}$ in which many of the systematic uncertainties cancel. Radiative corrections (other than m_t effects) are small compared to the precision of present experiments and have negligible effect on the extracted $\sin^2\theta_W$. The cross sections for $\nu_e e$ and $\overline{\nu}_e e$ may be obtained from Eq. (12) by replacing $g^e_{V,A}$ by $g^e_{V,A}+1$, where the 1 is due to the charged-current contribution.

The SLAC polarized-electron experiment 12 measured the parity-violating asymmetry

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \,, \tag{14}$$

where $\sigma_{R,L}$ is the cross section for the deep-inelastic scattering of a right- or left-handed electron: $e_{R,L}N \to e{\rm X}$. In the quark parton model

$$\frac{A}{Q^2} = a_1 + a_2 \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \,, \tag{15}$$

where $Q^2 > 0$ is the momentum transfer and y is the fractional energy transfer from the electron to the hadrons. For the deuteron or other isoscalar target, one has, neglecting the s quark and antiquarks,

$$a_1 = \frac{3G_F}{5\sqrt{2}\pi\alpha} \left(C_{1u} - \frac{1}{2}C_{1d} \right) \approx \frac{3G_F}{5\sqrt{2}\pi\alpha} \left(-\frac{3}{4} + \frac{5}{3}\sin^2\theta_W \right)$$

$$a_2 = \frac{3G_F}{5\sqrt{2}\pi\alpha} \left(C_{2u} - \frac{1}{2}C_{2d}\right) \approx \frac{9G_F}{5\sqrt{2}\pi\alpha} \left(\sin^2\theta_W - \frac{1}{4}\right)$$
. (16)

Radiative corrections (other than m_t effects) lower the extracted value of $\sin^2 \theta_W$ by $\sim~0.005$.

Experiments measuring atomic parity violation¹³ are now quite precise, and the uncertainties associated with atomic wave functions are relatively small (especially for cesium). For heavy atoms one determines the "weak charge"

$$Q_W = -2 \left[C_{1u} (2Z + N) + C_{1d} (Z + 2N) \right]$$

$$\approx Z(1 - 4\sin^2 \theta_W) - N . \tag{17}$$

Radiative corrections increase the extracted $\sin^2 \theta_W$ by ~ 0.008 .

The forward-backward asymmetry for $e^+e^- \to \ell \bar{\ell}, \; \ell = \mu$ or $\tau,$ is defined as

$$A_{FB} \equiv \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} \,, \tag{18}$$

where $\sigma_F(\sigma_B)$ is the cross section for ℓ^- to travel forward (backward) with respect to the e^- direction. A_{FB} and R, the total cross section relative to pure QED, are given by

$$R = F_1$$
 $A_{FB} = 3F_2/4F_1$, (19)

where

$$F_1 = 1 - 2\chi_0 V^e V^\ell \cos \delta_R + \chi_0^2 \left(V^{e2} + A^{e2} \right) \left(V^{\ell 2} + A^{\ell 2} \right)$$

$$F_2 = -2\chi_0 A^e A^\ell \cos \delta_R + 4\chi_0^2 A^e A^\ell V^e V^\ell , \qquad (20)$$

where

$$\tan \delta_R = \frac{M_Z \Gamma_Z}{M_Z^2 - s}$$

$$\chi_0 = \frac{G_F}{2\sqrt{2}\pi\alpha} \frac{sM_Z^2}{\left[(m_Z^2 - s)^2 + m_Z^2 \Gamma_Z^2\right]^{1/2}}$$
(21)

and \sqrt{s} is the CM energy. Eq. (20) is valid at tree level. If the data are radiatively corrected for QED effects (as described above), then the remaining electroweak corrections can be incorporated ¹⁴ (in an approximation adequate for existing PEP, PETRA, and TRISTAN data) by replacing χ_0 by $\chi(s) \equiv \chi_0(s)\alpha/\widehat{\alpha}(s)$, where $\widehat{\alpha}(s)$ is the running QED coupling. Numerically, $\alpha/\widehat{\alpha}(s) \sim 1 - \Delta r$ if Δr is evaluated for $m_t < 100$ GeV. Formulas for $e^+e^- \to hadrons$ may be found in Ref. 15.

At SLC and LEP, A_{FB} for $e^+e^- \to \overline{f}f$ at the Z pole will be measured to high precision for $f=\mu,\tau,s,c,b$. Similarly, the left-right asymmetry

$$A_{LR} \equiv \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \,, \tag{22}$$

where $\sigma_L(\sigma_R)$ is the cross section for a left- (right)-handed incident electron, will be measured very precisely at SLC and possibly at LEP At tree level and neglecting terms of order $(\Gamma_Z/M_Z)^2$, one has

$$A_{FB} \approx 3\eta_f \frac{\eta_e + 1/2(P_e)}{1 + 2P_e\eta_e}$$

$$A_{LR} \approx 2\eta_e , \qquad (23)$$

where P_e is the initial e^- polarization and

$$\eta_f \equiv \frac{V^f A^f}{V^{f2} + A^{f2}}.$$
(24)

Unlike A_{FB} , A_{LR} is especially sensitive to $\sin^2\theta_W$, and is insensitive to radiative corrections. Precise measurements of the τ polarization $P_{\tau} = \eta_{\tau}$ should also be obtained.

Neutral-current experimental results: $\sin^2\theta_W$ and, equivalently, M_Z have been determined from the W and Z masses and from a variety of neutral-current processes spanning a very wide Q^2 range. The results, $^{5.7-13.15-25}$ shown in Table 2, are in impressive agreement with each other, indicating the quantitative success of the Standard Model. The best fit to all data yields $\sin^2\theta_W=0.2305\pm0.0005$ for $m_t=100~{\rm GeV}$ and 0.2189 ± 0.0004 for $m_t=200~{\rm GeV}$, where the errors (as well as those given below for other neutral-current parameters) include full statistical, systematic, and theoretical uncertainties. When m_t is allowed to be totally arbitrary, the fits to all data yield $\sin^2\theta_W=0.2259\pm0.0046$.

The most precise results are from M_Z . However, the derived $\sin^2\theta_W$ is sensitive to the isospin breaking^{5,26} associated with a large m_t , as can be seen in Fig. 1. Consistency of the $\sin^2\theta_W$ values derived from the various reactions requires⁵ $m_t < 186$ GeV at 90% CL ($m_t < 198$ GeV at 95% CL) for $M_H \leq 100$ GeV, with a slightly weaker limit for larger M_H . (Similar limits hold for the mass splittings between fourth-generation quarks or leptons.) It has been emphasized²⁷ that the $\overline{\rm MS}$ quantity $\sin^2\theta_W(M_Z)$ is less sensitive to m_t . A fit to all data yields $\sin^2\theta_W(M_Z) = 0.2334 \pm 0.0005$ (0.2307 \pm 0.0005) for $m_t = 100$ (200) GeV, and 0.2324 \pm 0.0011 for arbitrary m_t .

The measured values of M_W and M_Z are given in Table 3. They are in agreement with the predictions of the Standard Model when full radiative corrections (to both the W and Z mass formulas and to deep inelastic scattering) are included, but disagree significantly when the corrections are excluded. From a fit to all data one obtains [see Eq. (5)] $\Delta r = 0.047 \pm 0.011$ (0.036 \pm 0.011) for $m_t = 100$ (200) GeV, and $\Delta r = 0.044 \pm 0.014$ for arbitrary m_t .

W and **Z** decays: The partial decay width for gauge bosons to decay into massless fermions $f_1\overline{f}_2$ is

$$\Gamma(W^+ \to e^+ \nu_e) = \frac{G_F M_W^3}{6\sqrt{2}\pi} \approx 229 \pm 3 \text{ MeV}$$

Table 2. Determination of $\sin^2\theta_W$ and M_Z (in GeV) from various reactions. The central values of all fits assume $M_H=100$ GeV in the radiative corrections. Where two errors are shown, the first is experimental and the second (in square brackets) is theoretical, computed assuming 3 fermion families and $M_H<1$ TeV. Z production refers to the individual M_Z measurements, while M_W/M_Z refers to the ratio obtained in $p\bar{p}$ experiments. At PEP, PETRA, and TRISTAN energies the asymmetries are nearly an absolute prediction of the model (almost independent of $\sin^2\theta_W$ and m_t). The total cross sections only constrain $\sin^2\theta_W$ (via the vector couplings) weakly. The stronger $\sin^2\theta_W$ constraint from the energy dependence of the propagator 15 is included in the M_Z constraint. The top line is for $m_t=100$ GeV; the bottom line (in parentheses) shows the central value for $m_t=200$ GeV. (The results extrapolate roughly linearly in this range.)

Reaction	$\sin^2 heta_W$	M_Z	
Z production	$0.2306 \pm 0.0002 \pm [0.0004]$ (0.2188)	91.161 ± 0.031	
Deep inelastic (isocalar)	$\begin{array}{c} 0.233 \ \pm 0.003 \ \pm [0.005] \\ (0.230) \end{array}$	$90.8 \pm 0.4 \pm [0.7]$ (89.6)	
$\nu_{\mu}(\overline{\nu}_{\mu})p \to \nu_{\mu}(\overline{\nu}_{\mu})p$	$\begin{array}{c} 0.207 & \pm 0.032 \\ (0.201) & \end{array}$	94.8 ± 4.7 (94.0)	
$\nu_{\mu}(\overline{\nu}_{\mu})e \to \nu_{\mu}(\overline{\nu}_{\mu})e$	$\begin{array}{c} 0.222 & \pm 0.011 \\ (0.214) & \end{array}$	92.4 ± 1.5 (91.9)	
M_W/M_Z	$\begin{array}{c} 0.219 \ \pm 0.009 \\ (0.219) \end{array}$	92.9 ± 1.3 (91.2)	
Atomic parity violation	$\begin{array}{cc} 0.215 & \pm 0.007 & \pm \{0.017\} \\ (0.204) & \end{array}$	$93.5 \pm 1.1 \pm [2.5]$ (93.5)	
SLAC eD	$\begin{array}{c} 0.217 \ \pm 0.015 \ \pm [0.013] \\ (0.211) \end{array}$	$\begin{array}{cc} 93.1 & \pm 2.2 \pm [1.9] \\ (92.4) & \end{array}$	
All data	$\begin{array}{c} 0.2305 \pm 0.0002 \pm [0.0004] \\ (0.2189) \end{array}$	91.16 ± 0.03	

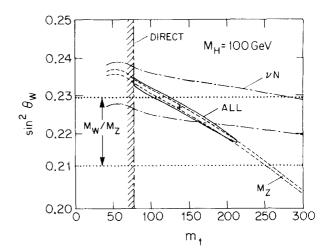


Fig. 1. One standard deviation uncertainties in $\sin^2 \theta_W$ as a function of m_t , the direct constraint $m_t > 77$ GeV, and the 90% CL region in $\sin^2 \theta_W - m_t$ allowed by all data.

$$\Gamma(W^+ - u_i \overline{d}_i) = \frac{CG_F M_W^3}{6\sqrt{2}\pi} |V_{ij}|^2 \approx (714 \pm 11) |V_{ij}|^2 \text{ MeV}$$
 (25)

Table 3. The W and Z masses (in GeV). The first uncertainties are mainly statistical and the second are energy calibration uncertainties that are 100% correlated between M_W and M_Z for each group. There is an additional LEP machine energy uncertainty $\Delta M_Z = 0.030$ which is common to the 4 LEP experiments. The combined fit is from the Listings for the W and Z in the full-sized edition of the Review of Particle Properties. The last two rows are predictions of the Standard Model, using $\sin^2\theta_W$ determined from deep inelastic scattering, with and without radiative corrections, respectively.

Group	M_W	M_Z
UA2 (Ref. 16)	$80.79 \pm 0.37 \pm 0.81$	$91.49 \pm 0.37 \pm 0.92$
UA1 (Ref. 17)(e modes)	$82.7 \pm 1.0 \pm 2.7$	$93.1 \pm 1.0 \pm 3.1$
MARK II (Ref. 18)	_	91.14 ± 0.12
ALEPH (Ref. 19)		91.182 ± 0.026
DELPHI (Ref. 20)		91.171 ± 0.030
L3 (Ref. 21)	_	91.160 ± 0.024
OPAL (Ref. 22)		91.154 ± 0.021
CDF (Ref. 23)	$80.0 \pm 3.3 \pm 2.4$	$90.9 \pm 0.3 \pm 0.2$
e^+e^- E< 90 GeV (Ref. 2	4) —	$88.6 \begin{array}{c} +2.0 \\ -1.8 \end{array}$
Combined fit	80.6 ± 0.4	91.161 ± 0.031
Prediction with radiative corrections	$79.6 \pm 0.9^*$ (78.6)	$90.8 \pm 0.7^*$ (89.6)
Prediction without radiative corrections	75.9 ± 0.9	87.1 ± 0.7

^{*}The first value is for $m_t = 100 \text{ GeV}$:

the second (in parentheses) is for 200 GeV.

$$\Gamma(Z \to \psi_i \overline{\psi}_i) = \frac{CG_F M_Z^3}{6\sqrt{2}\pi} \left[V^{i2} + A^{i2} \right]$$

$$\approx \begin{cases} 166.2 \pm 0.2 \; (167.8) \; \mathrm{MeV} \; (\nu\overline{\nu}), \;\; 83.4 \pm 0.1 \; (84.2) \; \mathrm{MeV} \; (e^{+}e^{-}), \\ 296.1 \pm 0.4 \; (300.6) \; \mathrm{MeV} \; (u\overline{u}), \;\; 382.3 \pm 0.5 \; (387.7) \; \mathrm{MeV} \; (d\overline{d}), \end{cases}$$

where the first (second) values are for $m_t=100$ (200) GeV and the quoted errors are from $M_{W,Z}$. For leptons C=1, while for quarks C=3 ($1+\alpha_s(M_V)/\pi$), where the 3 is due to color and the factor in parentheses is a QCD correction, which introduces an additional uncertainty of $\sim 1\%$ in the hadronic widths. 6.28 Corrections to Eq. (25) for massive fermions are given in Refs. 6 and 28. Here the numerical values assume $M_W=80.6\pm0.4$ GeV, $M_Z=91.161\pm0.031$ GeV, and $\alpha_s\approx 0.12\pm0.02$. Expressing the widths in terms of $G_FM_{W,Z}^3$ incorporates the bulk of the electroweak radiative corrections. 6.28 The remaining corrections introduce a small m_t dependence, which is included in the numbers.

For 3-fermion families the total widths are

$$\Gamma_Z \approx 2.482 \pm 0.003 \; (2.507) \; \mathrm{GeV}$$

$$\Gamma_W \approx 2.11 \pm 0.03 \text{ GeV}$$
 (26)

for $m_t=100$ (200) GeV. QCD introduces an additional uncertainty of ≈ 11 MeV in Γ_Z . (Fermion masses have been included in Γ_Z). This is to be compared with the experimental results: $^{18-22}$ $\Gamma_Z=2.534\pm0.027$ GeV and $\Gamma_W=2.25\pm0.14$ GeV.

Deviations from the Standard Model: The W and Z masses and neutral-current data can be used to search for and set limits on deviations from the Standard Model. For example, the relation in Eq. (5) between M_W and M_Z is modified if there are Higgs multiplets with weak isospin > 1/2 with significant vacuum expectation values. In order to calculate to higher orders in such theories one must define a set of four fundamental renormalized parameters. It is convenient to take these as α , G_F , M_Z , and M_W , since M_W and M_Z are

directly measurable. Then $\sin^2\theta_W$ and ρ can be considered dependent parameters defined by

$$\sin^2 \theta_W \equiv A_0^2 / M_W^2 (1 - \Delta r) \tag{27}$$

and

$$\rho \equiv M_W^2 / (M_Z^2 \cos^2 \theta_W) \ . \tag{28}$$

Provided that the new physics which yields $\rho \neq 1$ is a small perturbation which does not significantly affect the radiative corrections, ρ can be regarded as a phenomenological parameter which multiplies G_F in Eqs. (7)–(9), (21), and Γ_Z in Eq. (25). (Also, the expression for M_Z in Eq. (5) is divided by $\sqrt{\rho}$; the M_W formula is unchanged.) The allowed regions in the $\rho - \sin^2\theta_W$ plane are shown in Fig. 2, and a global fit to all data yields⁵

$$\sin^2 \theta_W = 0.230 \pm 0.0013 \ (0.221 \pm 0.0013)$$

 $\rho = 1.003 \pm 0.004 \ (0.993 \pm 0.004) \ ,$ (29)

for $m_t=100~(200)~{\rm GeV}$, which is remarkably close to unity (justifying the neglect of $\rho-1$ in the radiative corrections). The effects of $\rho<1$ can compensate a large m_t , leading to the much weaker limit $m_t<400~{\rm GeV}$.

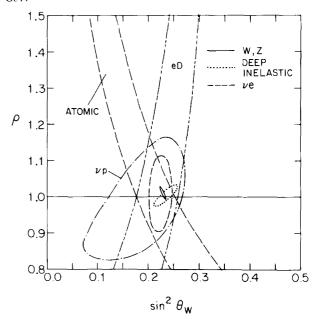


Fig. 2. The allowed regions in $\sin^2\theta_W-\rho$ at 90% CL for various reactions for $m_t=100$ GeV.

Most of the parameters relevant to ν -hadron, νe , e-hadron, and e^+e^- processes are now determined uniquely and precisely from the data in "model independent" fits (i.e., fits which allow for an arbitrary electroweak gauge theory). The values for the parameters defined in Eqs. (7)–(9)are given in Table 4 along with the predictions of the Standard Model. The agreement is excellent. The e^+e^- results are difficult to present in a model-independent way because Z-propagator effects are non-negligible at TRISTAN, PETRA, and PEP energies. However, assuming $e^-\mu^-\tau$ universality, the lepton asymmetries imply $^{15}4(A^e)^2=0.99\pm0.05$, in good agreement with the Standard Model prediction +1. Similarly, $2A^c=1.12\pm0.20$ and $2A^b=-1.07\pm0.25$ compared with the predictions of +1 and -1 respectively. The vector couplings are in agreement with the Standard Model, but with much larger errors.

Table 4. Values of the model-independent neutral-current parameters, compared with the Standard Model prediction using the global best fit value of $\sin^2\theta_W$ for $m_t=100$ (200) GeV. There is a second g^e_{VA} solution, given approximately by $g^e_V \leftarrow g^e_A$, which is eliminated by e^+e^- data under the assumption that the neutral current is dominated by the exchange of a single Z. θ_i , i=L or R, is defined as $\tan^{-1}[\epsilon_i(u)/\epsilon_i(d)]$.

Quantity	Experimental Value	Standard Model Prediction	Correlation
$\epsilon_L(u)$	0.328 ± 0.016	0.343 (0.348)	
$\epsilon_L(d)$	-0.436 ± 0.011	$-0.427 \; (-0.431)$	non-
$\epsilon_R(u)$	-0.177 ± 0.009	$-0.155 \; (-0.155)$	Gaussian
$\epsilon_R(d)$	$-0.023 {}^{+0.077}_{-0.048}$	0.078 (0.078)	
g_L^2	0.2977±0.0042	0.300 (0.307)	
$egin{array}{c} g_L^2 \ g_R^2 \end{array}$	0.0317 ± 0.0034	0.030 (0.030)	small
$ heta_L$	2.50 ± 0.03	2.46 (2.46)	
θ_R	$4.59 ^{+0.44}_{-0.27}$	5.18 (5.18)	
g_A^e	-0.513 ± 0.025	$-0.504 \; (-0.509)$	-0.05
g_V^e	-0.045 ± 0.022	$-0.036 \; (-0.042)$	
C_{1u}	-0.253 ± 0.071	-0.185 (-0.191)	-0.99 - 0.88
C_{1d}	0.391 ± 0.064	0.338 (0.343)	0.88
$C_{2u} - \frac{1}{2}C_{2d}$	0.22 ± 0.36	$-0.025 \; (-0.036)$	

- * This section prepared June 1989 by P. Langacker.
- ** Constraints on V are discussed in the section on the Cabibbo-Kobayashi-Maskawa mixing matrix.
- [†] α is dependent upon the energy scale of the process in which it is measured. This value is appropriate for low energy. At energies of order M_W the value 1/128 is applicable.
- [‡] An alternative is to use the modified minimal subtraction ($\overline{\text{MS}}$) quantity $\sin^2 \hat{\theta}_W(\mu)$, where μ is conveniently chosen to be M_Z for electroweak processes. The two definitions are related by $\sin^2 \hat{\theta}_W(M_Z) = C(m_t, M_H) \sin^2 \theta_W$, where C = 1.013 (1.054) for $m_t = 100$ (200) GeV, $M_H = 100$ GeV.
- S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam in *Elementary Particle Theory*, ed. N. Svartholm (Almquist and Wiksells, Stockholm, 1969) p. 367; and S.L. Glashow. J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970).
- For reviews, see G. Barbiellini and C. Santoni, Riv. Nuovo Cimento 9(2), 1 (1986); and E.D. Commins and P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge Univ. Press, Cambridge, 1983).
- C.A. Dominguez and E. de Rafael, Ann. Phys. 174, 372 (1987);
 and J. Gasser and H. Leutwyler, Phys. Reports 87, 77 (1982);
 S. Narison, Phys. Lett. B216, 191 (1989).
- For reviews, see J. Gunion et al., "The Higgs Hunter's Guide." UC Davis preprint UCD '89-4; M. Sher. Phys. Reports 179, 273 (1989).

- The results given here are updated from U. Amaldi et al., Phys. Rev. D36, 1385 (1987); P. Langacker, Phys. Rev. Lett. 63, 1920 (1989). Very similar conclusions are reached in an analysis by G. Costa et al., Nucl. Phys. B297, 244 (1988). Deep inelastic scattering is considered by G.L. Fogli and D. Haidt, Z. Phys. C40, 379 (1988).
- A. Sirlin, Phys. Rev. D22, 971 (1980); D29, 89 (1984); W. Hollik, DESY 88-188 and CERN-TH.5426/89; D.C. Kennedy et al., Nucl. Phys. B321, 83 (1989); and D.C. Kennedy and B.W. Lynn, Nucl. Phys. B322, 1 (1989). Extensive references to other papers are given in Radiative Corrections in SU(2L) × U(1), eds. B.W. Lynn and J.F. Wheater (World, Singapore, 1984) and in Ref. 5.
- CDHS: H. Abramowicz et al., Phys. Rev. Lett. 57, 298 (1986); and A. Blondel et al., CERN/EP 89-101.
- 8. CHARM: J.V. Allaby et al., Z. Phys. C36, 611 (1987).
- 9. CHARM I: J. Dorenbosch et al., Z. Phys. C41, 567 (1989).
- BNL E734: K. Abe et al., Phys. Rev. Lett. 62, 1709 (1989).
- 11. CHARM II: D. Geiregat et al., Phys. Lett. B232, 539 (1989).
- 12. C.Y. Prescott et al., Phys. Lett. 84B, 524 (1979).
- Boulder: M.C. Noecker et al., Phys. Rev. Lett. 61, 310 (1988). For reviews of earlier work, see M.A. Bouchiat and L. Pottier, Science 234, 1203 (1986); and C.A. Piketty, Weak and Electromagnetic Interactions in Nuclei. ed. H.V. Klapdor (Springer-Verlag, Berlin, 1986), p. 603.
- B.W. Lynn and R.G. Stuart, Nucl. Phys. **B253**, 216 (1985); and Physics at LEP, ed. J. Ellis and R. Peccei, CERN 86-02, Vol. I.
- R. Marshall, Z. Phys. C43, 607 (1989); and C. Kiesling, Tests of the Standard Theory of Electroweak Interactions (Springer-Verlag. NY, 1988).
- UA2: J. Alitti et al., Phys. Lett. B, to be published. (CERN-EP/90-22).
- 17. UA1: C. Albajar et al., Z. Phys. C44, 15 (1989).
- 18. MARK II: G.S. Abrams et al., Phys. Rev. Lett. 63, 2173 (1989).
- 19. ALEPH: D. Decamp et al., Phys. Lett. **B235**, 399 (1990).
- DELPHI: P. Aarnio et al., Phys. Lett. B, to be published. (CERN-EP/90-32).
- 21. L3: B. Adeva et al., Phys. Lett. B237, 136 (1990).
- OPAL: M.Z. Akrawy et al., Phys. Lett. to be pub. (CERN-EP/90-27).
- CDF: F. Abe et al., Phys. Rev. Lett. 63, 720 (1989) and 62, 1005 (1989); see also M. Campbell, presented at the 1989 International Conference on Lepton and Photon Interactions at High Energies (Stanford, CA).
- 24. Low Energy e^+e^- : Y. Mori *et al.*, Phys. Lett. **B218**, 499 (1989).
- 25. BEBC: D. Allasia et al., Nucl. Phys. B307, 1 (1988).
- P. Langacker, W. Marciano, and A. Sirlin, Phys. Rev. D36, 2191 (1987); and J. Ellis and G.L. Fogli, Phys. Lett. B213, 526 (1988).
- A. Sirlin, Phys. Lett. **B232**, 123 (1989); S. Fanchiotti and A. Sirlin, Phys. Rev. **D41**, 319 (1990).
- D. Albert, W.J. Marciano, D. Wyler, and Z. Parsa, Nucl. Phys. B166, 460 (1980); M. Consoli, S. Lo Presti, and L. Maiani, Nucl. Phys. B223, 474 (1983); F. Jegerlehner, Z. Phys. C32, 425 (1986); W. Beenakker and W. Hollik, Z. Phys. C40, 141 (1988); A. Djouadi et al., MPI-PAE/48/89; and A.A. Akhundov et al., Nucl. Phys. B276, 1 (1986).

THE CABIBBO-KOBAYASHI-MASKAWA MIXING MATRIX*

In the standard model with $SU(2) \times U(1)$ as the gauge group of electroweak interactions, both the quarks and leptons are assigned to be left-handed doublets and right-handed singlets. The quark mass eigenstates are not the same as the weak eigenstates, and the matrix relating these bases was defined for six quarks and given an explicit parametrization by Kobayashi and Maskawa¹ in 1973. It generalizes the four-quark case, where the matrix is parametrized by a single angle, the Cabibbo angle. ²

By convention, the three charge 2/3 quarks (u, c, and t) are unmixed, and all the mixing is expressed in terms of a 3×3 unitary matrix V operating on the charge -1/3 quarks (d, s, b):

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} . \tag{1}$$

The values of individual matrix elements can in principle all be determined from weak decays of the relevant quarks, or, in some cases, from deep inelastic neutrino scattering. Using the constraints discussed below together with unitarity, and assuming only three generations, the 90% confidence limits on the magnitude of the elements of the complete matrix are:

$$\begin{pmatrix} 0.9747 \text{ to } 0.9759 & 0.218 \text{ to } 0.224 & 0.001 \text{ to } 0.007 \\ 0.218 \text{ to } 0.224 & 0.9734 \text{ to } 0.9752 & 0.030 \text{ to } 0.058 \\ 0.003 \text{ to } 0.019 & 0.029 \text{ to } 0.058 & 0.9983 \text{ to } 0.9996 \end{pmatrix} . (2)$$

The ranges shown are for the individual matrix elements. The constraints of unitarity connect different elements, so choosing a specific value for one element restricts the range of the others.

There are several parametrizations of the Cabibbo-Kobayashi-Maskawa matrix. In view of the need for a "standard" parametrization in the literature, we advocate:

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$
(3)

proposed by Chau and Keung.³ The choice of rotation angles follows earlier work of Maiani, 4 and the placement of the phase follows that of Wolfenstein.⁵ The notation used is that of Harari and Leurer⁶ who, along with Fritzsch and Plankl, proposed this parametrization as a particular case of a form generalizable to an arbitrary number of "generations." The general form was also put forward by Botella and Chau.⁸ Here $c_{ij}=\cos\theta_{ij}$ and $s_{ij}=\sin\dot{\theta}_{ij}$, with i and j being "generation" labels, $\{i,j=1,2,3\}$. In the limit $\theta_{23}=\theta_{13}=0$ the third generation decouples, and the situation reduces to the usual Cabibbo mixing of the first two generations with θ_{12} identified with the Cabibbo angle.² The real angles θ_{12} , θ_{23} , θ_{13} can all be made to lie in the first quadrant by an appropriate redefinition of quark field phases. Then all s_{ij} and c_{ij} are positive, $|V_{us}| = s_{12}c_{13}$, $|V_{ub}| = s_{13}$, and $|V_{cb}| = s_{23}c_{13}$. As c_{13} is known to deviate from unity only in the fifth decimal place, $|V_{us}| = s_{12}$, $|V_{ub}| = s_{13}$, and $|V_{cb}| = s_{23}$ to an excellent approximation. The phase δ_{13} lies in the range $0 \le \delta_{13} < 2\pi$, with non-zero values generally breaking CP invariance for the weak interactions. The generalization to the n generation case contains n(n-1)/2 angles and (n-1)(n-2)/2 phases.^{6,7,8} The range of matrix elements in Eq. (2) corresponds to 90% CL limits on the angles of $s_{12} = 0.218 \text{--}0.224, s_{23} = 0.030 \text{--}0.058, \ \mathrm{and} \ s_{13} = 0.001 \text{--}0.007.$

Kobayashi and Maskawa¹ originally chose a parametrization involving the four angles, θ_1 , θ_2 , θ_3 , δ :

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} c_1 & -s_1c_3 & -s_1s_3 \\ s_1c_2 & c_1c_2c_3-s_2s_3e^{i\delta} & c_1c_2s_3+s_2c_3e^{i\delta} \\ s_1s_2 & c_1s_2c_3+c_2s_3e^{i\delta} & c_1s_2s_3-c_2c_3e^{i\delta} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \;, \tag{4}$$

where $c_i=\cos\theta_i$ and $s_i=\sin\theta_i$ for i=1,2,3. In the limit $\theta_2=\theta_3=0$, this reduces to the usual Cabibbo mixing with θ_1 identified (up to a sign) with the Cabibbo angle. Slightly different forms of the Kobayashi-Maskawa parametrization are found in the literature. The C-K-M matrix used in the 1982 Review of Particle Properties is obtained by letting $s_1\to -s_1$ and $\delta\to\delta+\pi$ in the matrix

given above. An alternative is to change Eq. (4) by $s_1 \to -s_1$ but leave δ unchanged. With this change in s_1 , the angle θ_1 becomes the usual Cabibbo angle, with the "correct" sign (i.e. $d' = d\cos\theta_1 + s\sin\theta_1$) in the limit $\theta_2 = \theta_3 = 0$. The angles $\theta_1, \theta_2, \theta_3$ can, as before, all be taken to lie in the first quadrant by adjusting quark field phases. Since all these parametrizations are referred to as "the" Kobayashi-Maskawa form, some care about which one is being used is needed when the quadrant in which δ lies is under discussion.

Other parametrizations, mentioned above, are due to Maiani⁴ and to Wolfenstein.⁵ The latter emphasizes the relative sizes of the matrix elements by expressing them in powers of the Cabibbo angle. Still other parametrizations ⁹ have come into the literature in connection with attempts to define "maximal CP violation". No physics can depend on which of the above parametrizations (or any other) is used as long as a single one is used consistently and care is taken to be sure that no other choice of phases is in conflict.

Our present knowledge of the matrix elements comes from the following sources:

(1) Nuclear beta decay, when compared to muon decay, gives 13

$$|V_{ud}| = 0.9744 \pm 0.0010 \ . \tag{5}$$

This includes refinements in the analysis of the radiative corrections, especially the order $Z\alpha^2$ effects, which have brought the ft-values from low and high Z Fermi transitions into good agreement.

(2) Analysis of K_{e3} decays yields ¹⁴

$$|V_{us}| = 0.2196 \pm 0.0023 \ . \tag{6}$$

The isospin violation between K_{e3}^+ and K_{e3}^0 decays has been taken into account, bringing the values of $|V_{us}|$ extracted from these two decays into agreement at the 1% level of accuracy. The analysis of hyperon decay data has larger theoretical uncertainties because of first order SU(3) symmetry breaking effects in the axial-vector couplings, but due account of symmetry breaking ¹⁵ applied to the WA2 data ¹⁶ gives a corrected value ¹⁷ of 0.222 ± 0.003 . We average these two results to obtain:

$$|V_{us}| = 0.2205 \pm 0.0018 \ . \tag{7}$$

(3) The magnitude of $|V_{cd}|$ may be deduced from neutrino and antineutrino production of charm off valence d quarks. The dimuon production cross sections of the CDHS group ¹⁸ yield $\overline{B}_c \, |V_{cd}|^2 = 0.41 \pm 0.07 \times 10^{-2}$, where \overline{B}_c is the semileptonic branching fraction of the charmed hadrons produced. The corresponding preliminary value from a recent Tevatron experiment ¹⁹ is $\overline{B}_c \, |V_{cd}|^2 = 0.534^{+0.058}_{-0.078} \times 10^{-2}$. Averaging these two results gives $\overline{B}_c \, |V_{cd}|^2 = 0.47 \pm 0.05 \times 10^{-2}$. Supplementing this with measurements of the semileptonic branching fractions of charmed mesons, ²⁰ weighted by a production ratio of $D^0/D^+ = (60 \pm 10)/(40 \mp 10)$, to give $\overline{B}_c = 0.113 \pm 0.015$, yields

$$|V_{cd}| = 0.204 \pm 0.017 \tag{8}$$

(4) Values of $|V_{cs}|$ from neutrino production of charm are dependent on assumptions about the strange quark density in the parton-sea. The most conservative assumption, that the strange-quark sea does not exceed the value corresponding to an SU(3) symmetric sea, leads to a lower bound, $^{18}|V_{cs}| > 0.59$. It is more advantageous to proceed analogously to the method used for extracting $|V_{us}|$ from K_{e3} decay; namely, we compare the experimental value for the width of D_{e3} decay with the expression 21 that follows from the standard weak interaction amplitude:

$$\Gamma(D \to \overline{K}e^+\nu_e) = |f_{\perp}^D(0)|^2 |V_{cs}|^2 (1.54 \times 10^{11} \text{ s}^{-1}).$$
 (9)

Here $f_+^D(q^2)$, with $q=p_D-p_K$, is the form factor relevant to D_{e3} decay; its variation has been taken into account with the parametrization $f_+^D(t)/f_+^D(0)=M^2/(M^2-t)$ and $M=2.1~{\rm GeV}/c^2$, a form and mass consistent with Mark III and E691 measurements. ²³ Combining data on branching ratios for $D_{\ell 3}$ decays^{22,23} with accurate

THE CABIBBO-KOBAYASHI-MASKAWA MIXING MATRIX (Cont'd)

values 24 for au_{D^+} and au_{D^0} , gives the value $0.78 \pm 0.11 \times 10^{11}$ s⁻¹ for $\Gamma(D \to \overline{K}e^+\nu_e)$. Therefore

$$|f_{\pm}^{D}(0)|^2 |V_{cs}|^2 = 0.51 \pm 0.07$$
 (10)

A very conservative assumption is that $|f_{+}^{D}(0)| < 1$, from which it follows that $|V_{cs}| > 0.66$. Calculations of the form factor either performed 26 directly at $q^2 = 0$, or done 27 at the maximum value of $q^2 = (m_D - m_K)^2$ and interpreted at $q^2 = 0$ using the measured q^2 dependence, yield $f_{+}^{D}(0) = 0.7 \pm 0.1$. It follows that

$$|V_{cs}| = 1.02 \pm 0.18 \ . \tag{11}$$

The constraint of unitarity when there are only three generations gives a much tighter bound (see below).

(5) The ratio $|V_{ub}/V_{cb}|$ can be obtained from the semileptonic decay of B mesons by fitting to the lepton energy spectrum as a sum of contributions involving $b \to u$ and $b \to c$. The relative overall phase space factor between the two processes is calculated from the usual four-fermion interaction with one massive fermion (c quark or u quark) in the final state. The value of this factor depends on the quark masses, but is roughly one-half (in suppressing $b \to c$ compared to $b \to u$). Both the CLEO²⁸ and ARGUS²⁹ collaborations have reported evidence for $b \to u$ transitions in semileptonic B decays. The interpretation of the result in terms of $|V_{ub}/V_{cb}|$ depends fairly strongly on the theoretical model used to generate the lepton energy spectrum, especially for $b \to u$ transitions.^{26,27,30} Combining the experimental and theoretical uncertainties, we quote

$$|V_{ub}/V_{cb}| = 0.09 \pm 0.04 \ . \tag{12}$$

(6) The magnitude of V_{cb} itself can be determined if the measured semileptonic bottom hadron partial width is assumed to be that of a b quark decaying through the usual V-A interaction:

$$\Gamma(b \to c\ell \,\overline{\nu}_\ell) = \frac{\mathrm{BF}(b \to c\ell \,\overline{\nu}_\ell)}{\tau_b} = \frac{G_F^2 \, m_b^5}{192\pi^3} F(m_c/m_b) \, |V_{cb}|^2 \,. \tag{13}$$

where τ_b is the b lifetime and $F(m_c/m_b)$ is the phase space factor noted above as approximately one-half. Most of the error on $|V_{cb}|$ derived from Eq. (13) is not from the experimental uncertainties, but in the theoretical uncertainties in choosing a value of m_b and in the use of the quark model to represent inclusively semileptonic decays which, at least for the B meson, are dominated by a few exclusive channels. Instead we quote the value derived from $B_{\ell 3}$ decay, $\overline{B} \to D\ell \overline{\nu}_{\ell}$, by comparing the observed rate with the theoretical expression that involves a form factor, $f_+^B(q^2)$. This is analogous to what gives the most accurate values for $|V_{us}|$ (from K_{e3} decay) and $|V_{cs}|$ (from $D_{\ell 3}$ decay). It avoids all questions of what masses to use, and the heavy quarks in both the initial and final states give more confidence in the accuracy of the theoretical calculations of the form factor. With account of a number of models of the form factor, the data 31 yield

$$|V_{ch}| = 0.044 \pm 0.009 \ . \tag{14}$$

The central value and the error are now comparable to what is obtained from the inclusive semileptonic decays, but ultimately, with more data and more confidence in the calculation of the form factor, exclusive semileptonic decays should provide the most accurate value of $|V_{ch}|$.

The results for three generations of quarks, from Eqs. (5), (7), (8), (11), (12), and (14) plus unitarity, are summarized in the matrix in Eq. (2). The ranges given there are different from those given in Eqs. (5) (14) (because of the inclusion of unitarity), but are consistent with the one standard deviation errors on the input matrix elements.

The data do not preclude there being more than three generations. Moreover, the entries deduced from unitarity might be altered when the C-K-M matrix is expanded to accommodate more generations. Conversely, the known entries restrict the possible values of additional elements if the matrix is expanded to account for additional generations. For example, unitarity and the known elements of the first row require that any additional element in the first row have a magnitude $|V_{ub}r| < 0.07$. When there are more than three generations

the allowed ranges (at 90% CL) of the matrix elements connecting the first three generations are

$$\begin{pmatrix} 0.9728 \text{ to } 0.9757 & 0.218 \text{ to } 0.224 & 0.001 \text{ to } 0.007 & \dots \\ 0.182 & \text{ to } 0.227 & 0.865 \text{ to } 0.975 & 0.030 \text{ to } 0.058 & \dots \\ 0 & \text{ to } 0.13 & 0 & \text{ to } 0.45 & 0 & \text{ to } 0.9995 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

where we have used unitarity (for the expanded matrix) and Eqs. (5), (7), (8), (11), (12), and (14).

Further information on the angles requires theoretical assumptions. For example, $B_d - \overline{B}_d$ mixing, if it originates from short distance contributions to ΔM_B dominated by box diagrams involving virtual t quarks, gives information on $V_{tb}\,V_{td}^*$ once hadronic matrix elements and the t quark mass are known. A similar comment holds for $V_{tb}\,V_{ts}^*$ and $B_s - \overline{B}_s$ mixing.

Direct and indirect information on the C-K-M matrix is neatly summarized in terms of the "unitarity triangle." The name arises since unitarity of the 3×3 C-K-M matrix applied to the first and third columns yields

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0 . ag{15}$$

In the parametrization adopted above, V_{cb} is real and V_{cd} is real to a very good approximation. Setting cosines of small angles to unity. Eq. (15) becomes

$$V_{nb}^* + V_{td} = |V_{cd} V_{cb}|. (16)$$

The unitarity triangle is just a geometrical presentation of this equation in the complex plane. $^{\rm 32}$

CP-violating processes will involve the phase in the C-K-M matrix. assuming that the observed CP violation is solely related to a nonzero value of this phase. This allows additional constraints to be imposed. More specifically, a necessary and sufficient condition for CP violation with three generations can be formulated in a parametrization-independent manner in terms of the non-vanishing of the determinant of the commutator of the mass matrices for the charge 2e/3 and charge -e/3 quarks. ³³ CP violating amplitudes or differences of rates all are proportional to the C-K-M factor in this quantity. This is the product of factors $s_{12}s_{13}s_{23}c_{12}c_{13}^2c_{23}s_{\delta_{13}}$ in the parametrization adopted above, and is $s_1^2 s_2 s_3 c_1 c_2 c_3 s_\delta$ in that of Ref. 1. With the approximation of setting cosines to unity, this is just twice the area of the unitarity triangle. While hadronic matrix elements whose values are imprecisely known generally now enter, the constraints from CP violation in the neutral kaon system are tight enough to very much restrict the range of angles and the phase of the C-K-M matrix. For *CP*-violating asymmetries of neutral *B* mesons decaying to CP eigenstates, there is a direct relationship between the magnitude of the asymmetry in a given decay and $\sin 2\phi$, where ϕ is an appropriate angle of the unitarity triangle.³² The combination of all the direct and indirect information can be used to find the overall constraints on the C-K-M matrix and thence the implications for future measurements of CP violation in the B system. ³⁴

- * Updated April 1990 by F.J. Gilman, K. Kleinknecht, and B. Renk
- M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- 2. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
- 3. L.-L. Chau and W.-Y. Keung, Phys. Rev. Lett. 53, 1802 (1984).
- L. Maiani, Phys. Lett. 62B, 183 (1976) and in Proceedings of the 1977 International Symposium on Lepton and Photon Interactions at High Energies (DESY, Hamburg, 1977), p. 867.
- 5. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
- 6. H. Harari and M. Leurer, Phys. Lett. **B181**, 123 (1986).
- 7. H. Fritzsch and J. Plankl, Phys. Rev. **D35**, 1732 (1987).
- 8. F.J. Botella and L.-L. Chau, Phys. Lett. B168, 97 (1986).
- See, for example, M. Gronau and J. Schechter. Phys. Rev. Lett. 54, 385 (1985), where various parametrizations are discussed, including one equivalent to that in Eq. (3).
- 10. W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 56, 22 (1986).

THE CABIBBO-KOBAYASHI-MASKAWA MIXING MATRIX (Cont'd)

- 11. A. Sirlin and R. Zucchini, Phys. Rev. Lett. 57, 1994 (1986).
- 12. W. Jaus and G. Rasche, Phys. Rev. D35, 3420 (1987).
- 13. A. Sirlin, Phys. Rev. D35, 3423 (1987).
- 14. H. Leutwyler and M. Roos, Z. Phys. C25, 91 (1984).
- J.F. Donoghue, B.R. Holstein, and S.W. Klimt, Phys. Rev. D35, 934 (1987)
- 16. M. Bourquin et al., Z. Phys. C21, 27 (1983).
- 17. J.M. Gaillard and G. Sauvage, private communication .
- 18. H. Abramowicz et al., Z. Phys. C15, 19 (1982).
- M. Shaevitz, talk at the Twelfth International Workshop on Weak Interactions and Neutrinos, Ginosar, Israel, April 9-14, 1989, and Nevis Report No. 1415, 1989 (unpublished).
- D. Hitlin, Proceedings of the 1987 International Symposium on Lepton and Photon Interactions at High Energies, Hamburg, July 27-31, 1987, edited by W. Bartel and R. Rückl (North Holland, Amsterdam, 1988), p. 179.
- 21. The result for $M=2.2~{\rm GeV}$ is found in F. Bletzacker, H.T. Nieh, and A. Soni, Phys. Rev. **D16**, 732 (1977).
- D.M. Coffman, California Institute of Technology Ph.D. thesis, 1986 (unpublished).
- 23. J.C. Anjos et al., Phys. Rev. Lett. 62, 1587 (1989).
- 24. J.R. Raab et al., Phys. Rev. D37, 2391 (1988).
- T.M. Aliev et al., Sov. Jour. Nucl. Phys. 40, 823 (1984) [Yad. Phys. 40, 527 (1984)].

- 26. M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C29, 637 (1985).
- B. Grinstein, N. Isgur, and M.B. Wise, Phys. Rev. Lett. **56**, 298 (1986);
 B. Grinstein, N. Isgur, D. Scora, and M.B. Wise, Phys. Rev. **D39**, 799 (1989).
- 28. R. Fulton et al., Phys. Rev. Lett. 64, 16 (1990).
- H. Albrecht et al., DESY report DESY 89/152, 1989 (unpublished).
- 30. G. Altarelli et al., Nucl. Phys. B208, 365 (1982).
- 31. H. Albrecht et al., Phys. Lett. B229, 175 (1989).
- 32. L.-L. Chau and W.-Y. Keung, Ref. 3; J.D. Bjorken, private communication and Phys. Rev. D39, 1396 (1989); C. Jarlskog and R. Stora, Phys. Lett. B208, 268 (1988); J.L. Rosner, A.I. Sanda, and M.P. Schmidt, in Proceedings of the Workshop on High Sensitivity Beauty Physics at Fermilab, Fermilab, November 11–14, 1987, edited by A.J. Slaughter, N. Lockyer, and M. Schmidt (Fermilab, Batavia, 1988), p. 165; C. Hamzaoui, J.L. Rosner and A.I. Sanda, ibid., p. 215.
- C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985) and Z. Phys. C29, 491 (1985).
- 34. C.O. Dib et al., SLAC report SLAC-PUB-5109, 1989 (unpublished): A.I. Sanda, invited talk at the KEK Topical Conference on Electron-Positron Collision Physics, Tsukuba, Japan, May 17 19, 1989 and KEK report 89-70, 1989 (unpublished); C.S. Kim, J.L. Rosner, and C.-P. Yuan, University of Chicago report EFI 89-47, 1989 (unpublished).

QUARK MODEL

A. QUANTUM NUMBERS

Each quark has spin 1/2. The additive quantum numbers (other than baryon number = 1/3) of the quarks known or presumed to exist are shown in Table 1. With the conventions used in Table 1, any flavor carried by a charged meson has the same sign as the charge; e.g., the strangeness of the K^+ is +1 and the bottomness of the B^+ is +1.

Table 1. Additive quantum numbers of the three generations of quarks.

	Quark type (flavor)							
Quantum number	d	u	s	c	b	t		
Q electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$		
I_z isospin z-component	$-\frac{1}{2}$	$+\frac{1}{2}$	0	0	0	0		
S - strangeness	0	0	-1	0	0	0		
C - charm	0	0	0	+1	0	0		
B bottomness	0	0	0	0	1	0		
T – topness	0	0	0	0	0	+1		

B. MESONS

Nearly all known mesons can be understood as bound states of a quark q and an antiquark \overline{q}' (the flavors of q and q' may be different). If the orbital angular momentum of the $q\overline{q}'$ state is L, then the parity $P=(-1)^{L+1}$. A state $q\overline{q}$ of a quark and its own antiquark is also an

eigenstate of charge conjugation with $C=(-1)^{L+S}$, where the spin S=0 or 1. The L=0 states are the pseudoscalars, $J^P=0^-$, and the vectors, $J^P=1^-$. Assignments for some known $q\overline{q}'$ states are given in Table 2. States in the "normal" spin-parity series, $P=(-1)^J$, must, according to the above, have S=1 and hence CP=+1. Thus mesons with normal spin-parity and CP=-1 are forbidden in the $q\overline{q}'$ quark model. The $J^{PC}=0^{--}$ state is forbidden as well. Mesons with such J^{PC} may exist, but would lie outside the $q\overline{q}'$ model.

The nine possible $q\overline{q}$ combinations containing $u,\ d$, and s quarks group themselves into an octet and a singlet:

$$\mathbf{3}\otimes\overline{\mathbf{3}}=\mathbf{8}\oplus\mathbf{1}$$

States with the same IJ^P and additive quantum numbers can mix (if they are eigenstates of charge conjugation, they must also have the same value of C). Thus the I=0 member of the ground-state pseudoscalar octet mixes with the corresponding pseudoscalar singlet to produce the η and η' . These appear as members of a nonet, which is shown as the middle plane in Fig. 1(a). Similarly, the ground-state vector nonet appears as the middle plane in Fig. 1(b).

A fourth quark such as charm can be included in this scheme by extending the symmetry to SU(4), as shown in Fig. 1. Bottom could be included in this way instead of charm, but if both are included the figure becomes four-dimensional.

For the pseudoscalar mesons, the Gell-Mann-Okubo formula is

$$m_{\eta}^2 = \frac{1}{3}(4m_K^2 - m_{\pi}^2) ,$$

assuming no octet-singlet mixing. However, the octet η_8 and singlet η_1 mix because of SU(3) breaking. The physical states η and η' are given by

$$\eta = \eta_8 \, \cos \theta_P - \eta_1 \, \sin \theta_P$$

$$\eta' = \eta_8 \sin \theta_P + \eta_1 \cos \theta_P \ .$$

QUARK MODEL (Cont'd)

Table 2. Standard quark-model assignments for some of the known mesons. Some assignments, especially for 0^{++} , are controversial. Only the states in the $u\bar{u}$, $d\bar{d}$, $s\bar{s}$, $c\bar{c}$, and $b\bar{b}$ columns and the neutral states in the I=1 column are eigenstates of charge conjugation C.

$2S+1L_J$	J^{PC}	$ \begin{vmatrix} u\overline{d}, u\overline{u}, d\overline{d} \\ I = 1 \end{vmatrix} $	$u\overline{u}, d\overline{d}, s\overline{s}$ $I = 0$	$c\overline{c}$ $I = 0$	$b\overline{b}$ $I = 0$	$\overline{s}u, \overline{s}d$ $I = 1/2$	$c\overline{u}, c\overline{d}$ $I = 1/2$	$c\overline{s}$ $I = 0$	$\overline{b}u, \overline{b}d$ $I = 1/2$
$^{1}S_{0}$	0-+	π	η,η'	η_c		K	D	D_s	В
$^{3}S_{1}$	1	ρ	ϕ,ω	J/ψ	Υ	K*(892)	D*(2010)		
¹ P ₁	1+-	$b_1(1235)$	$h_1(1170)$			K_{1B}	$D_1(2420)$	$D_{s1}(2536)$	
$^{3}P_{0}$	0++	$a_0(980)$	$f_0(975), f_0(1400)$	$\chi_{c0}(1P)$	$\chi_{b0}(1P)$	$K_0^*(1430)$			
$^{3}P_{1}$	1++	$a_1(1260)$	$f_1(1285), f_1(1420)$	$\chi_{c1}(1P)$	$\chi_{b1}(1P)$	K_{1A}			
$^{3}P_{2}$	2++	$a_2(1320)$	$f_2'(1525), f_2(1270)$	$\chi_{c2}(1P)$	$\chi_{b2}(1P)$	$K_2^*(1430)$	$D_2^*(2460)$		
$^{1}D_{2}$	2-+	$\pi_2(1670)$							
$^{3}D_{1}$	1			$\psi(3770)$					
3D_2	2					$K_2(1770)$			
$^{3}D_{3}$	3	$\rho_{3}(1690)$	$\omega_3(1670)$			$K_3^*(1780)$			

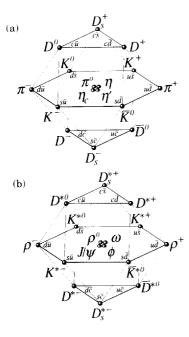


Fig. 1. The SU(4) hexadecuplets for the (a) pseudoscalar and (b) vector mesons made up of u, d, s, and c $q\overline{q}'$ combinations. The nonets mesons occupy the central planes, to which the $c\overline{c}$ members have been added. The neutral mesons at the center of these planes are mixtures of $u\overline{u}$, $d\overline{d}$, $s\overline{s}$, and $c\overline{c}$ states.

These combinations diagonalize the mass-squared matrix

$$M^2 = \begin{pmatrix} M_{11}^2 & M_{18}^2 \\ M_{18}^2 & M_{88}^2 \end{pmatrix} \ .$$

where $M_{88}^2 = \frac{1}{3} (4 m_K^2 - m_\pi^2)$. It follows that

$$\tan^2\theta_P = \frac{M_{88}^2 - m_\eta^2}{m_{n'}^2 - M_{88}^2} \ .$$

The sign of θ_P is meaningful in the quark model. If

$$\eta_1 = (u\overline{u} + d\overline{d} + s\overline{s})/\sqrt{3}$$

$$\eta_8 = (u\overline{u} + d\overline{d} - 2s\overline{s})/\sqrt{6}$$
.

then the matrix element M_{18}^2 , which is due mostly to the strange quark mass, is negative. From the relation

$$\tan\theta_P = \frac{M_{88}^2 - m_\eta^2}{M_{18}^2} \ ,$$

we find $\theta_P<0$. However, we note that caution is suggested in the use of the η - η' mixing-angle formulas, as they are extremely sensitive to SU(3) breaking. If we allow $M_{88}^2=\frac{1}{3}(4m_K^2-m_\pi^2)~(1+\Delta)$, the mixing angle is determined by

$$\tan^2 \theta_P = 0.0319(1 + 17\Delta)$$

$$\theta_P = -10.1^{\circ}(1 + 8.5\Delta)$$

to first order in Δ . A small breaking of the Gell-Mann-Okubo relation can produce a major modification of θ_P .

For the vector mesons we replace $\pi \to \rho, \ K \to K^{\star}, \ \eta \to \phi,$ and $\eta' \to \omega,$ so

$$\phi = \omega_8 \cos \theta_V - \omega_1 \sin \theta_V$$

$$\omega = \omega_8 \sin \theta_V + \omega_1 \cos \theta_V \ .$$

QUARK MODEL (Cont'd)

For "ideal mixing," $\phi = s\bar{s}$. $\tan\theta_V = 1/\sqrt{2}$, so $\theta_V = 35.3^\circ$. Experimentally, θ_V is near 35°, the sign being determined by a formula analogous to that for $\tan\theta_P$. Following this procedure we find the mixing angles given in Table 3.

Table 3. Singlet-octet mixing for the pseudoscalar, vector, and tensor mesons. The sign conventions are given in the text. The value of $\theta_{\rm quad}$ is obtained from the equations in the text, and $\theta_{\rm lin}$ is obtained by replacing m^2 by m throughout. Of the two isosinglets, the mostly octet one is listed first.

J^{PC}	Nonet Members	$\theta_{ m quad}$	$ heta_{ m lin}$
0-+	π, K, η, η'	-10°	-23°
1	$ ho,~K^*(892),~\phi,~\omega$	39°	36°
2++	$a_2(1320), K_2^*(1430), f_2'(1525), f_2(1270)$	28°	26°
3	$\rho_3(1690), K_3^*(1780), X(1850), \omega_3(1670)$	29°	28°

In the quark model, the coupling of neutral mesons to two photons is proportional to $\sum_i Q_i^2$, where Q_i is the charge of the *i*-th quark. This provides an alternative characterization of mixing. For example, defining

$${\rm Amp} \left[P \to \gamma(k_1) \; \gamma(k_2) \right] = M \epsilon^{\mu\nu\alpha\beta} \; \epsilon_{1\mu}^* \; k_{1\nu} \; \epsilon_{2\alpha}^* \; k_{2\beta} \; ,$$

where $\epsilon_{i\lambda}$ is the λ component of the polarization vector of the i^{th} photon, one finds

$$\begin{split} \frac{M(\eta \to \gamma \gamma)}{M(\pi^0 \to \gamma \gamma)} &= \frac{1}{\sqrt{3}} (\cos \theta_P - 2\sqrt{2} \sin \theta_P) \\ &= \frac{1.73 \pm 0.18}{\sqrt{3}} \\ \frac{M(\eta' \to \gamma \gamma)}{M(\pi^0 \to \gamma \gamma)} &= 2\sqrt{2/3} \left(\cos \theta_P + \frac{\sin \theta_P}{2\sqrt{2}}\right) \\ &= (0.78 \pm 0.04) 2\sqrt{2/3} \; . \end{split}$$

These data favor $\theta_P \approx -20^\circ$, which is compatible with the quadratic mass mixing formula with $\approx 12\%$ SU(3) breaking in M_{88}^2 .

C. BARYONS

All the established baryons are apparently 3-quark (qqq) states, and each such state is an SU(3) color singlet, a completely antisymmetric state of the three possible colors. Since the quarks are fermions, the state function for any baryon must be antisymmetric under interchange of any two equal-mass quarks (up and down quarks in the limit of isospin symmetry). Thus the state function may be written as

$$|qqq\rangle_A = |\operatorname{color}\rangle_A \times |\operatorname{space}, \operatorname{spin}, \operatorname{flavor}\rangle_S$$
,

where the subscripts S and A indicate symmetry or antisymmetry under interchange of any two of the equal-mass quarks. Note the contrast with the state function for the three nucleons in $^3{\rm H}$ or $^3{\rm He}$:

$$|\,NNN\,\rangle_A = |\,{\rm space},\,{\rm spin},\,{\rm isospin}\,\rangle_A$$
 .

This difference has major implications for internal structure, magnetic moments, etc. (For a nice discussion, see Ref. 1.)

The "ordinary" baryons are made up of d, u, and s quarks. The three flavors imply an approximate flavor SU(3), which requires that baryons made of these quarks belong to the multiplets on the right side of

$$3 \otimes 3 \otimes 3 = 10_S \oplus 8_M \oplus 8_M \oplus 1_A$$

(see the section on SU(n) Multiplets and Young Diagrams). Here the subscripts indicate symmetric, mixed-symmetry, or antisymmetric states under interchange of any two quarks. The 1 is a sud state (Λ_1) and the octet contains a similar state (Λ_8). If these have the same spin and parity they can mix. An example is the mainly octet D_{03} $\Lambda(1690)$ and mainly singlet D_{03} $\Lambda(1520)$. In the ground state multiplet, the SU(3) flavor singlet Λ is forbidden by Fermi statistics.

The mixing formalism is the same as for η - η' or ϕ - ω (see above), except that for baryons the mass M instead of M^2 is used. The section SU(3) Isoscalar Factors shows how relative decay rates in, say, $10 \to 8 \otimes 8$ decays may be calculated. A summary of results of fits to the observed baryon masses and decay rates for the best-known SU(3) multiplets is given in Appendix II of our 1982 edition.²

Figures 2(a) and 2(b) show the (badly broken) SU(4) multiplets that have as their "ground floors" the SU(3) octet that contains the nucleons and the SU(3) decuplet that contains the $\Delta(1232)$. All the particles in a given SU(4) multiplet have the same spin and parity. The only charmed baryons that have been discovered each contain one charmed quark. These belong to the first floor of the multiplet shown in Fig. 2(a), which consists of two SU(3) multiplets: a $\overline{\bf 3}$ which contains the Λ_c and Ξ_c , both of which decay weakly, and a 6 that contains the $\Sigma_c(2455)$, which decays strongly into $\Lambda_c\pi$. A second Ξ_c and a Ω_c^0 remain to be discovered to fill out the 6, and a host of other baryons with one or more charmed quarks are still needed to fill out the SU(4) multiplets shown in Fig. 2. Furthermore, every N or Δ baryon resonance "starts" a multiplet like those shown in Figs. 2(a) and 2(b). Analogous SU(4) structures can be made by substituting b for c. If both are present, the figures are four-dimensional.

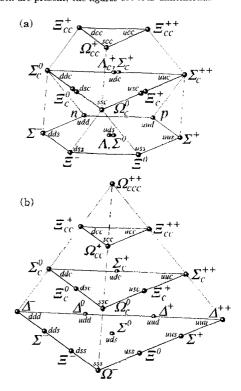


Fig. 2. SU(4) multiplets of baryons made of u, d, s, and c quarks. (a) The 20-plet with an SU(3) octet. (b) The 20-plet with an SU(3) decuplet.

For the "ordinary" baryons, flavor and spin may be combined in an approximate flavor-spin SU(6) in which the six basic states are $d\uparrow$, $d\downarrow$, \cdots , $s\downarrow$ (\uparrow , \downarrow = spin up, down). Then the baryons belong to the multiplets on the right side of

$$\mathbf{6} \otimes \mathbf{6} \otimes \mathbf{6} = \mathbf{56}_S \oplus \mathbf{70}_M \oplus \mathbf{70}_M \oplus \mathbf{20}_A$$
.

These SU(6) multiplets decompose into flavor SU(3) multiplets as follows:

$$56 = {}^{4}10 \oplus {}^{2}8$$

$$70 = {}^{2}10 \oplus {}^{4}8 \oplus {}^{2}8 \oplus {}^{2}1$$

$$20 = {}^{2}8 \oplus {}^{4}1$$

QUARK MODEL (Cont'd)

where the superscript (2S+1) gives the net spin S of the quarks for each particle in the SU(3) multiplet. The $J^P=1/2^+$ octet containing the nucleon and the $J^P=3/2^+$ decuplet containing the $\Delta(1232)$ together make up the "ground-state" 56-plet in which the orbital angular momenta between the quark pairs are zero (so that the spatial part of the state function is trivially symmetric). The 70 and 20 require some excitation of the spatial part of the state function in order to make the overall state function symmetric. States with nonzero orbital angular momenta are classified in SU(6) \otimes O(3) supermultiplets. Physical baryons with the same quantum numbers do not belong to a single supermultiplet, since SU(6) is broken by spin-dependent interactions, differences in quark masses, etc.; nevertheless, the SU(6) \otimes O(3) basis provides a suitable framework for describing baryon state functions.

It is convenient to classify the baryons into bands that have the same number N of quanta of excitation. Each band consists of a number of supermultiplets, specified by (D, L_N^P) , where D is the dimensionality of the SU(6) representation, L is the total quark orbital angular momentum, and P is the total parity. Supermultiplets contained in bands up to N=12 are given in Ref. 3. The N=0 band, which contains the nucleon and $\Delta(1232)$, consists only of the (56.0_0^+) supermultiplet. The N=1 band consists only of the $(70,1_1^-)$ multiplet and contains the negative-parity baryons with masses below about 1.9 GeV. The N=2 band contains five supermultiplets: (56.0_2^+) , (70.0_2^+) , (56.2_2^+) , (70.2_2^+) , and $(20,1_2^+)$. Baryons belonging to the $(20,1_2^+)$ supermultiplet are not ever likely to be observed, since a coupling from the ground-state baryons requires a two-quark excitation. Selection rules are similarly responsible for the fact that many other baryon resonances have not been observed.

In Table 4, quark-model assignments are given for many of the established baryons whose $SU(6)\otimes O(3)$ compositions are relatively unmixed. Note that the unestablished resonances $N(1540)P_{13}$, $\Delta(1550)P_{31}$, $\Sigma(1480)$, $\Sigma(1560)$, $\Sigma(1580)$, $\Sigma(1770)$, and $\Xi(1620)$ in our Baryon Full Listings are too low in mass to be accommodated in most modern quark models.^{4,5}

Quark models for baryons are extensively reviewed in Ref. 6.

D. DYNAMICS

Many specific quark models exist, but most contain basically the same set of dynamical ingredients. These include:

- i) Using a confining interaction, which is generally spin-independent.
- ii) Adding a spin-dependent interaction, modeled after the effects of gluon exchange in QCD. For example, in the S-wave states, there is a spin-spin hyperfine interaction of the form

$$H_{HF} = -\alpha_S M \sum_{i>j} (\overrightarrow{\sigma} \lambda^A)_i (\overrightarrow{\sigma} \lambda^A)_j \ ,$$

where M is a constant with units of energy; λ^A , $A=1,\cdots,8$, is the set of SU(3) unitary spin matrices, defined in the "SU(3) Isoscalar Factors and Representation Matrices" section: and the sum runs over constituent quarks or antiquarks. Spin-orbit interactions, although allowed, seem to be small.

- iii) Taking the strange quark mass to be somewhat larger than the up and down quark masses in order to split the SU(3) multiplets.
- iv) In the case of isoscalar mesons, an interaction is needed for mixing $q\overline{q}$ configurations of different flavors (e.g., $u\overline{u} \leftrightarrow d\overline{d}, s\overline{s}$) in a manner which is generally chosen to be flavor independent.

These four ingredients provide the basic mechanisms which determine the hadron spectrum.

Table 4. Quark-model assignments for some of the known baryons in terms of a flavor-spin SU(6) basis. Only the dominant representation is listed. Assignments for some states, especially for $\Lambda(1810)$, $\Lambda(2350)$, $\Xi(1820)$, and $\Xi(2030)$, are merely educated guesses.

J^P	(D,L_N^P)	S		Octet n	nembers		Singlets
1/2+	$(56,0_0^+)$	1/2	N(939)	Λ(1116)	$\Sigma(1193)$	Ξ(1318)	
$1/2^{+}$	$(56,0_2^+)$	1/2	N(1440)	$\Lambda(1600)$	$\Sigma(1660)$	Ξ(?)	
$1/2^{-}$	$(70,1_1^-)$	1/2	N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	≘(?)	$\Lambda(1405)$
$3/2^{-}$	(70.1_1^-)	1/2	N(1520)	$\Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1_1^-)$	3/2	N(1650)	$\Lambda(1800)$	$\Sigma(1750)$	Ξ(?)	
$3/2^{-}$	$(70,1_1^-)$	3/2	N(1700)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{-}$	$(70,1_1^-)$	3/2	N(1675)	$\Lambda(1830)$	$\Sigma(1775)$	$\Xi(?)$	
$1/2^{+}$	(70.0_2^+)	1/2	N(1710)	$\Lambda(1810)$	$\Sigma(1880)$	∃(?)	$\Lambda(?)$
$3/2^{+}$	$(56,2_2^+)$	1/2	N(1720)	$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{+}$	(56.2_2^+)	1/2	N(1680)	$\Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
$7/2^{-}$	(70.3_3^-)	1/2	N(2190)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	$\Lambda(2100)$
	0 .		N(2250)			Ξ(?)	
9/2+	(56.4_4^+)	1/2	N(2220)	$\Lambda(2350)$	Σ (?)	Ξ(?)	
			1	Decuplet	members		
$3/2^{+}$	(56.0_0^+)	3/2	$\overline{\Delta(1232)}$	$\Sigma(1385)$	Ξ(1530)	$\Omega(1672)$	
$1/2^{-}$	$(70,1_1^-)$	1/2	$\Delta(1620)$	$\Sigma(?)$	Ξ(?)	$\Omega(?)$	
	(70.1_1^+)	1/2	$\Delta(1700)$	$\Sigma(?)$	Ξ(?)	$\Omega(?)$	
$5/2^{+}$	$^{(56,2_2^+)}$	3/2	$\Delta(1905)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$	
$7/2^{+}$	(56.2_2^+)	3/2	$\Delta(1950)$	$\Sigma(2030)$	Ξ(?)	$\Omega(?)$	
$11/2^{+}$	(56.4_4^+)	3/2	$\Delta(2420)$	$\Sigma(?)$	Ξ(?)	$\Omega(?)$	

- F.E. Close, in Quarks and Nuclear Forces (Springer-Verlag, 1982), p. 56.
- 2. Particle Data Group, Phys. Lett. 111B (1982).
- R.H. Dalitz and L.J. Reinders, in Hadron Structure as Known from Electromagnetic and Strong Interactions, Proceedings of the Hadron '77 Conference (Veda, 1979), p. 11.
- N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978); ibid. D19, 2653 (1979); ibid. D20, 1191 (1979); and K.-T. Chao, N. Isgur, and G. Karl, Phys. Rev. D23, 155 (1981).
- C.P. Forsyth and R.E. Cutkosky, Z. Phys. C18, 219 (1983).
- A.J.G. Hey and R.L. Kelly, Phys. Reports 96, 71 (1983). Also see S. Gasiorowicz and J.L. Rosner, Am. J. Phys. 49, 954 (1981).

MONTE CARLO PARTICLE NUMBERING SCHEME*

Most particle physics Monte Carlo and analysis systems use a numbering scheme to represent particles. The lack of standardization of such schemes inhibits interfacing different programs. The following table proposes a standard numbering scheme. Some of the properties of this scheme are:

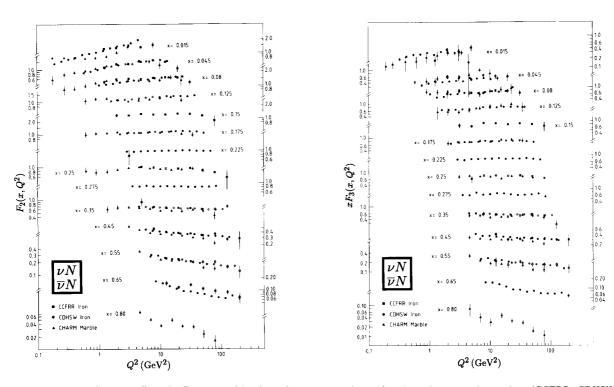
- Quarks and leptons are ordered by family, and within the family, by isospin. This puts the u and d in the opposite order than is often used in other numbering schemes. In our scheme we call the highest numbered quark the heaviest quark.
- 2. For multiple quark systems (mesons, baryons, and diquarks), the rightmost digit is generally L=2J+1. (The K_S^0 and K_L^0 are exceptions.)
- Mesons are represented by the form NML and baryons by NMKL, where N, M, and K are quark numbers.
- 4. For these systems the heaviest quark is usually on the left and the quarks are in decreasing mass order from left to right. One exception to this convention is the K⁰_L-K⁰_S pair. A second exception is for the Λ's for which we invert the up and down quarks to distinguish the Λ from the Σ⁰.
- 5. The other exception to this mass order rule is for some N's and Δ's. For N's, the u and d quark are reversed for spins 3/2 and 7/2. For Δ's, they are reversed for spins 1/2 and 5/2. The quarks are in the normal decreasing order when I + J is odd.
- Mesons, and only mesons, have the third digit nonzero and the fourth digit zero. (We designate the rightmost digit as the first digit.)
- 7. Only baryons and diquarks have the fourth digit nonzero.
- 8. Only quarks and diquarks have the second digit equal to zero.
- Particles have positive numbers; each antiparticle has the negative of its counterpart.

- The particle-antiparticle convention is the one used by the Particle Data Group, so that the K⁺ and B⁺ are particles.
- 11. The above rules imply that for mesons (as opposed to antimesons), when the number of the leftmost (heaviest) quark is even, it is a quark, and when the number of the leftmost quark is odd, it is an antiquark.
- 12. The gluon has two numbers. Its official number is 21 to place it with the other gauge bosons. Its number is also 9 so that a glueball is specified as 99.
- 13. The fifth digit is used to differentiate different particles with the same quark content and spin.
- 14. Although isospin is not manifest in this scheme, there is some isospin content. Mesons with 11J are isospin 1 and those with 22J are isospin 0. For nonstrange baryons, if the quarks are in the normal decreasing order, then I+J is odd, otherwise I+J is even. If a strange baryon does not have the normal decreasing quark order, it has I=0.

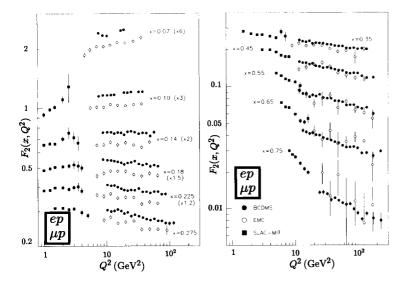
More details about the motivation behind, and properties of, this scheme can be found in Ref. 1. Although this scheme has the advantage that a particle's number has considerable physics content, it has the disadvantage that it is not compact. An algorithm that translates this scheme into a more compact scheme is needed for its implementation. Contact the Berkeley Particle Data Group for further information on such an algorithm.

A list of particle numbers follows.

- * Written April 1988 by G.R. Lynch and T.G. Trippe.
- T.G. Trippe and G.R. Lynch, "Particle I.D. Numbers, Decay Tables, and Other Possible Contributions of the Particle Data Group to Monte Carlo Standards," LBL-24287, in Proceedings of the Workshop on Detector Simulation for the SSC (August 1987).

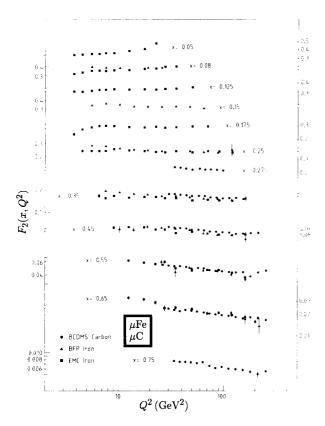

ELEMENTARY		DIQU	JARKS	MESONS (Cont'd)		
PARTI		dd_1	1103	$f_1(1420)$	30223	
Qua	rks	ud_0	2101	$\eta(1440)$	40221	
d	1	ud_1	2103	$\rho(1450)$?	
u	2	uu_1	2203	$f_1(1510)$	40223	
s	3	sd_0	3101	$f'_{2}(1525)$	335	
c	4	sd_1	3103	$f_0(1590)$	50221	
b	5	su_0	3201	$\omega(1600)$?	
t	6	su_1	3203	$\omega_3(1670)$	227	
Lept	ons	•		$\pi_2(1670)$	10215. 10115	
ν_e	12	ME	SONS	$\phi(1680)$	10333	
$ u_{\mu}$	14	π^+	211	$\rho_3(1690)$	217. 117	
$\nu_{ au}$	16	π^0	111	$\rho(1700)$	30213. 30113	
e^{-}	11	η	221	$f_2(1720)$	10225	
μ^-	13	$\rho(770)^{+}$	213	$\phi_3(1850)$?	
τ^-	15	$\rho(770)^{0}$	113	$f_2(2010)$	20225	
Gauge	e and	$\omega(783)$	223	$f_4(2050)$	229	
Higgs H		$\eta'(958)$	331	$f_2(2300)$	30225	
γ	22	$f_0(975)$	10221	$f_2(2340)$	40225	
W^+	24	$a_0(980)$	10211, 10111	K^+	321	
Z^0	23	$\phi(1020)$	333	K^0	311	
g	21 and 9	$h_1(1170)$	10223	$K_S^0 \ K_L^0$	310	
H_1^0	25	$b_1(1235)$	10213, 10113	K_L^{0}	130	
H_2^0	35	$a_1(1260)$	20213, 20113	$K^*(892)^+$	323	
$egin{array}{c} H_2^0 \ H_3^0 \end{array}$	36	$f_2(1270)$	225	$K^*(892)^0$	313	
H^+	37	$\eta(1280)$	20221	$K_1(1270)$	10323, 10313	
		$f_1(1285)$	20223	$K^*(1370)$	$30323,\ 30313$	
		$\pi(1300)$	20211, 20111	$K_1(1400)$	$20323,\ 20313$	
		$a_2(1320)$	215, 115	$K_0^*(1430)$	10321, 10311	
		$\omega(1390)$?	$K_2^*(1430)$	325. 315	
		$f_0(1400)$	30221	$K^*(1680)$	$40323.\ 40313$	

MONTE CARLO PARTICLE NUMBERING SCHEME (Cont'd)

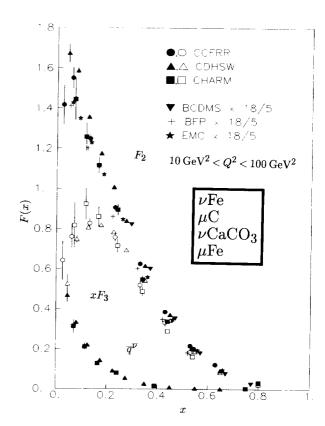

MESONS	S (Cont'd)		BARY	ONS (Cont'd)
$K_2(1770)$	10325, 10315	$\Delta(1232)^{++}$	P_{33}	2224
$K_3^*(1780)$	327, 317	$\Delta(1232)^{+}$	P_{33}	2214
$K_{4}^{*}(2045)$	329, 319	$\Delta(1232)^{0}$	P_{33}	2114
D^{+}	411	$\Delta(1232)^-$	P_{33}	1114
D^0	421	$\Delta(1620)$	S_{31}	2222, 2122, 1212, 1112
$D^*(2010)^+$	413	$\Delta(1700)$	D_{33}	12224, 12214, 12114, 11114
$D^*(2010)^0$	423	$\Delta(1900)$	S_{31}	12222, 12122, 11212, 11112
$D_1(2420)^0$?	$\Delta(1905)$	F_{35}	2226, 2126, 1216, 1116
$D_2^*(2460)^0$?	$\Delta(1910)$	P_{31}	22222, 22122, 21212, 21112
D_s^+	431	$\Delta(1920)$	P_{33}	22224, 22214, 22114, 21114
D_s^{*+}	433	$\Delta(1930)$	D_{35}	12226, 12126, 11216, 11116
$D_{s1}(2536)^{+}$?	$\Delta(1950)$	F_{37}	2228, 2218, 2118, 1118
B+	521	Λ	01	3122
B^0	511	$\Lambda(1405)$	S_{01}	13122
$\eta_c(1S)$	441	$\Lambda(1520)$	D_{03}	3124
$J/\psi(1S)$	443	$\Lambda(1600)$	P_{01}^{00}	23122
$\chi_{c0}(1P)$	10441	$\Lambda(1670)$	S_{01}	33122
$\chi_{c1}(1P)$	10443	$\Lambda(1690)$	D_{03}	13124
$\chi_{c2}(1P)$	445	$\Lambda(1800)$	S_{01}	43122
$\psi(2S)$	20443	$\Lambda(1810)$	P_{01}	53122
$\psi(3770)$	30443	$\Lambda(1820)$	F_{05}	3126
$\psi(4040)$	40443	$\Lambda(1830)$	D_{05}	13126
$\psi(4160)$	50443	$\Lambda(1890)$	P_{03}	23124
$\psi(4415)$	60443	$\Lambda(2100)$	G_{07}	3128
$\Upsilon(1S)$	553	$\Lambda(2110)$	F_{05}	23126
$\chi_{b0}(1P)$	551	Σ^+	- 00	3222
$\chi_{b1}(1P)$	10553	Σ^0		3212
$\chi_{b2}^{b1}(1P)$	555	Σ^-		3112
$\Upsilon(2S)$	20553	$\Sigma(1385)^{+}$	P_{13}	3224
$\chi_{b0}(2P)$	10551	$\Sigma(1385)^0$	P_{13}	3214
$\chi_{b1}(2P)$	70553	$\Sigma(1385)^-$	P_{13}	3114
$\chi_{b2}(2P)$	10555	$\Sigma(1660)$	P_{11}	13222, 13212, 13112
$\Upsilon(3S)$	30553	$\Sigma(1670)$	D_{13}	13224, 13214, 13114
$\Upsilon(4S)$	40553	$\Sigma(1750)$	S_{11}	23222, 23212, 23112
$\Upsilon(10860)$	50553	$\Sigma(1775)$	D_{15}	3226, 3216, 3116
$\Upsilon(11020)$	60553	$\Sigma(1915)$	F_{15}	13226, 13216, 13116
1(110-0)		$\Sigma(1940)$	D_{13}	23224, 23214, 23114
		$\Sigma(2030)$	F_{17}	3228, 3218, 3118
		Ξ0		3322
D A D	VONC	Ξ		3312
DAR	YONS	$\Xi(1530)^0$	P_{13}	3324
p	2212	$\Xi(1530)^{-}$	P_{13}	3314
n	2112	$\Xi(1820)$	13	13324, 13314
$N(1440)^+$ P_1		Ω^{-}		3334
$N(1440)^0$ P_1		Λ_c^{\pm}		4122
$N(1520)$ D_1		Σ_c^{++}		4222
$N(1535)$ S_1		Σ_c^+		4212
$N(1650)$ S_1		Σ_c^0		4112
$N(1675)$ D_1		Ξ_c^+		4322
$N(1680)$ F_1		Σ_c^0 Ξ_c^+ Ξ_c^0 Ω_c^0		4312
$N(1700)$ D_1		Ω_c^0		4332
$N(1710)$ P_1		Λ_b^0		5122
$N(1720)$ P_1				
$N(2190)$ G_1	7 2128, 1218			

NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE "BEST" OR "MOST REPRESENTATIVE" DATA IN THE OPINION OF THE COMPILER. THEY ARE NOT NECESSARILY COMPLETE COMPILATIONS OF ALL THE WORLD'S RELIABLE DATA

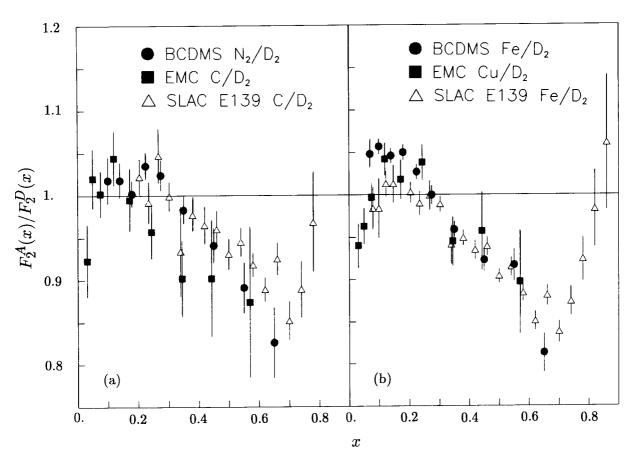
Structure Functions



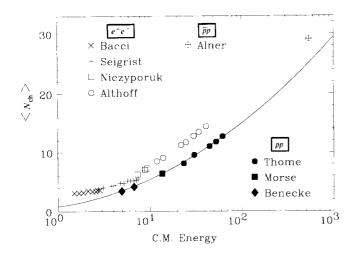
The nucleon structure functions F_2 and xF_3 measured in charged-current neutrino and antineutrino scattering on iron (CCFRR, CDHSW) and marble (CHARM) targets, versus Q^2 , for fixed bins of x. Closed symbols are read on the right-hand scale, open symbols (appearing for alternate x values) on the left-hand scale. Only statistical errors are shown. $R = \sigma_L/\sigma_T = 0$ is used in the CHARM data, and a QCD-inspired parametrization for R is assumed in the CCFRR and CDHSW data. The CHARM measurements have not been corrected for the recalibration of the total neutrino and antineutrino cross sections in the CERN neutrino beam which was completed after the publication of these data. References: CCFRR—D.B. MacFarlane et al., Z. Phys. C26, 1 (1984); CDHSW—P. Berge et al., CERN-EP/89-103; CHARM—F. Bergsma et al., Phys. Lett. 123B, 269 (1983) and Phys. Lett. 141B, 129 (1984).



The proton structure function F_2^p measured in electromagnetic scattering of electrons (SLAC-MIT) and muons (BCDMS, EMC) on hydrogen targets, versus Q^2 , for fixed bins of x. The data have been multiplied by the factors shown on the left-hand figure for convenience in plotting. Only statistical errors are shown. $R = \sigma_L/\sigma_T = 0.21$ is assumed in the SLAC-MIT data, R = 0 in the EMC data, and a QCD prediction for R in the BCDMS data. Where necessary, the SLAC-MIT and EMC data were interpolated to the x bins of the BCDMS data. Note that there are no SLAC-MIT data in the lowest x bin. References: SLAC-MIT-A. Bodek et al., Phys. Rev. D20, 1471 (1979); **EMC**—J.J. Aubert *et al.*, Nucl. Phys. B259, 189 (1985); BCDMS-A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989).


Structure Functions

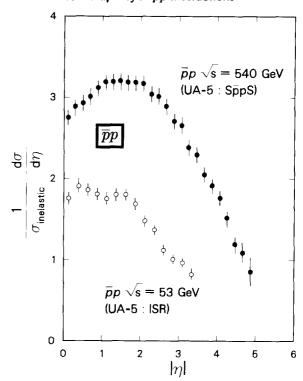
The nucleon structure function F_2 measured in electromagnetic scattering of muons on iron (BFP, EMC) and carbon (BCDMS) targets, versus Q^2 , for fixed bins in x. For x of 0.05, 0.125, 0.175, 0.275, 0.45, and 0.65 use the right-hand scale; for all other bins of x, use the left-hand scale. Only statistical errors are shown. $R = \sigma_L/\sigma_T = 0$ is used in the BFP and a QCD prediction for R is assumed in the BCDMS and EMC data. References: BCDMS A.C. Benvenuti et al., Phys. Lett. B195, 91 (1987): BFP—P.D. Meyers et al., Phys. Rev. D34, 1265 (1986); EMC J.J. Aubert et al., Nucl. Phys. B272, 158 (1986).



The structure functions F_2 , xF_3 , and $\overline{q}^{\overline{\nu}}$ measured in different experiments on isoscalar targets as functions of Bjorken x. The CCFRR, CDHSW, BFP, and EMC data were taken with iron targets; the CHARM data with a marble (CaCO₃) target; and the BCDMS data with a carbon target. Only statistical errors are shown. The CHARM and BFP collaborations assume R = $\sigma_L/\sigma_T = 0$, whereas a QCD prediction for R is assumed in the analysis of the CCFRR, CDHSW, BCDMS, and EMC data. The electromagnetic structure function $F_2^{\mu N}$ is compared to the charged-current structure function $F_2^{\nu N}$ correcting for the average squared quark charge 5/18. No corrections have been applied for the difference between the strange and charmed quark sea. References: CCFRR D.B. MacFarlane et al., Z. Phys. C26, 1 (1984): CDHSW P. Berge et al., CERN-EP/89-103; CHARM F. Bergsma et al., Phys. Lett. 123B, 269 (1983) and Phys. Lett. 141B, 129 (1984): BCDMS A.C. Benvenuti et al., Phys. Lett. B195, 91 (1987); BFP P.D. Meyers et al., Phys. Rev. D34, 1265 (1986): EMC J.J. Aubert et al., Nucl. Phys. B272, 158 (1986).

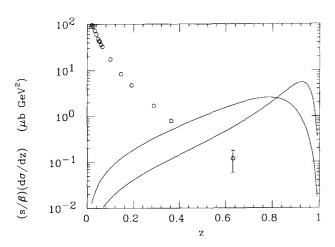
The ratio of nucleon structure functions $F_2^{\mathbf{A}}(x)/F_2^{\mathbf{D}}(x)$ for nuclear targets A compared to deuterium D, measured in deep inelastic electron (SLAC-E139) and muon (BCDMS, EMC) scattering: (a) medium-weight targets (A = N, C), (b) heavy targets (A = Fe, Cu). Only statistical errors are shown. The SLAC-E139 data were evaluated as cross section ratios $\sigma^{\mathbf{A}}/\sigma^{\mathbf{D}}$ but are equal to structure function ratios if $R = \sigma_L/\sigma_T$ is independent of A. References: BCDMS—G. Bari *et al.*, Phys. Lett. **163B**, 282 (1985); and A.C. Benvenuti *et al.*, Phys. Lett. **B189**, 483 (1987); EMC—J. Ashman *et al.*, Phys. Lett. **B202**, 603 (1988); SLAC-E139—R.G. Arnold *et al.*, Phys. Rev. Lett. **52**, 727 (1984); and SLAC-PUB-3257 (1983).

Average e^+e^- , pp, and $\overline{p}p$ Multiplicity


Average multiplicity as a function of \sqrt{s} for $p\bar{p}$ at the $S\bar{p}pS$ for pp at the ISR. (open circles) and for e^+e^- . Solid curve is a fit by Thomé et~al. to their data (solid circles) with the form $\langle N_{ch} \rangle = 0.88 + 0.44$ ln s+0.118 (ln $s)^2.~e^+e^-$ data points have been combined to reduce overlap: errors (not shown) are dominated by 10%-25% systematic effects. References: $p\bar{p}-\text{G.J.}$ Alner et~al., Phys. Lett. 138B, 304 (1984); pp-W. Thomé et~al., Nucl. Phys. B129, 365 (1977); W.M. Morse et~al., Phys. Rev. D15, 66 (1977); and J. Benecke et~al., Nucl. Phys. B76, 29 (1974); e^+e^- ADONE: C. Bacci et~al., Phys. Lett. 86B, 234 (1979): MARK II: J.L. Siegrist et~al., Phys. Rev. D26, 969 (1982); LENA: B. Niczyporuk et~al., Z. Phys. C9, 1 (1981); and TASSO: M. Althoff et~al., Z. Phys. C229, 307 (1984).

Jet Production in pp and $\bar{p}p$ Interactions

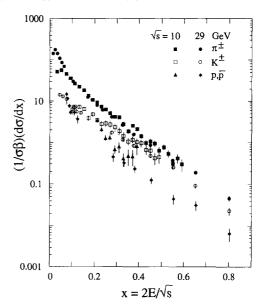
△ R807 (ISR) (1982) 10³ UA2 (1984) UA2 (1983) $|d\sigma/dp_{\perp}dv|_{V=0}$ [(nb/(GeV/c)] 10² ▲ UA1 (1983a) □ UA1 (1983b) 10 63 GeV = 540 GeV 10 10^{-2} 10^{-3} 10^{-4} 50 100 0 150 p_{\perp} GeV/c


Differential cross sections for observation of a single jet of rapidity y=0 as a function of the jet transverse momentum. ISR (pp) and $S\overline{p}pS$ collider $(\overline{p}p)$ data compared. Error bars include a contribution due to estimated systematic error in defining jet direction and p_T . Solid curve: QCD prediction; refer to the "Cross-Section Formulae for Specific Processes" section and the "Quantum Chromodynamics" section in the full-sized edition. References: ISR—T. Akesson et~al. Phys. Lett. 118B, 185 (1982); UA2—P. Bagnaia et~al., Phys. Lett. 138B, 430 (1984); and P. Bagnaia et~al., Z. Phys. C20, 117 (1983); UA1—G. Arnison et~al., Phys. Lett. 123B, 115 (1983a); and G. Arnison et~al., Phys. Lett. 123B, 144 (1983b).

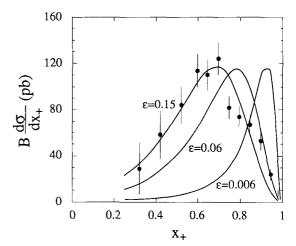
Pseudorapidity in $\overline{p}p$ Interactions

Comparison of the distribution of the pseudorapidity $\eta = -\ln{(\tan{\theta_{\rm cm}}/2)}$ for charged-particle production in protonantiproton collisions at $\sqrt{s} = 53$ GeV (1) and 540 GeV (2). References: (1) K. Alpgard et al., Phys. Lett. 112B, 209 (1982); (2) UA5 Collaboration, presented by J. Rushbrooke in the *Proceedings of the XIV International Symposium on Multiparticle Dynamics*, eds. J.F. Gunion and P.M. Yager (World Scientific Publishing Co., Singapore, 1984).

Fragmentation Function

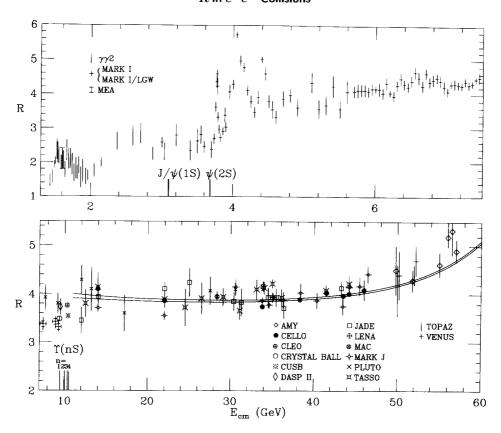

The cross section $(s/\beta) d\sigma/dz$ versus z for producing a hadron h in e^+e^- annihilation, measured in different experiments, for fixed energies $Q^2 = s$. This quantity is closely related to the fragmentation function $D_i^h(z,Q^2)$ as discussed in the "Cross-Section Formulae for Specific Processes" section. Note that we use $z = (E + p_{\parallel})_{\rm hadron}/(E + p_{\parallel})_{\rm quark},$ whereas some experiments use $z' = E_{\rm hadron}/E_{\rm beam}$ or $z'' = p_{\rm hadron}/(E_{\rm beam}^2 - m_{\rm had}^2)^{1/2}$. The data are shown for pions (singlet term) measured by the TPC at 29 GeV; they actually used z'' — for z > 0.05 the difference between z and z'' can be neglected at those energies. The data for heavy quarks are frequently parametrized by the Peterson et al. form, $D(z) = Nz(1-z)^2/[(1-z)^2 + \epsilon_i z]^2$. The parameter ϵ for quark type i depends on \sqrt{s} and upon the heavy quark mass. At $\sqrt{s} \sim 30$ GeV, $\epsilon_b = 0.006 \pm 0.002$, $\epsilon_c =$ $0.06^{+0.03}_{-0.015}$. Curves corresponding to these values (N is chosen arbitrarily) are shown on the figure. References: C. Peterson et al., Phys. Rev. D27, 105 (1983); TPC-H. Aihara et al., Z. Phys. C27, 495 (1985); and J. Chrin, Z. Phys. C36, 163 (1987).

Quark Fragmentation in Electron-Positron Annihilation


Average Hadron Multiplicities in e^+e^- Annihilation Events

	Particle	$\sqrt{s} \approx$	10 GeV	$\sqrt{s} =$	29 GeV
Pseudoscalar	π+	6.6	± 0.2	10.3	± 0.4
mesons	π^0	3.2	$\pm~0.3$	5.6	$\pm~0.3$
	K ⁺	0.90	$\pm~0.04$	1.48	± 0.09
	K^0	0.91	$\pm~0.05$	1.42	± 0.07
	η	0.19	$\pm~0.06$	0.60	$\pm~0.08$
	$\eta'(958)$		_	0.26	$\pm~0.10$
	D^+	0.16	$\pm~0.03$	0.17	$\pm\ 0.03$
	D^0	0.37	± 0.06	0.45	± 0.07
Vector	$\rho(770)^{0}$	0.50	± 0.09	0.81	$\pm~0.08$
mesons	K*(892)+	0.45	$\pm~0.08$	0.64	$\pm \ 0.05$
	$K^*(892)^0$	0.38	$\pm~0.09$	0.56	$\pm~0.06$
	$\phi(1020)$	0.045	$\pm~0.007$	0.085	$\pm\ 0.011$
	D*(2010)+	0.22	$\pm~0.04$	0.43	$\pm~0.07$
	$D^*(2010)^0$	0.23	± 0.06	0.27	± 0.11
Tensor	$f_2(1270)$		-	0.14	± 0.04
mesons	$K_2^*(1430)^+$		_	0.09	$\pm~0.03$
	$K_2^*(1430)^0$		_	0.12	± 0.06
Baryons	p	0.28	$\pm~0.03$	0.58	± 0.05
	Λ	0.080	$\pm\ 0.013$	0.214	$\pm\ 0.012$
	Σ^0	0.023	$\pm~0.008$		
	$\Delta(1232)^{++}$	0.040	$\pm~0.010$		_
	Ξ-	0.0059	$\pm~0.0008$	0.0178	$\pm\ 0.0036$
	$\Sigma(1385)^{\pm}$	0.0107	$\pm\ 0.0020$	0.035	$\pm~0.009$
	Ω-	0.0007	± 0.0004	0.015	± 0.007

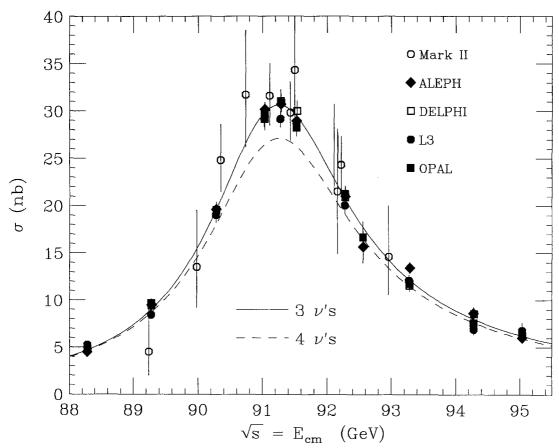
Average hadron multiplicity per e^+e^- annihilation event at $\sqrt{s}\approx 10$ GeV. and $\sqrt{s}=29$ GeV. The rates given include decay products from resonances with $c\tau,10$ cm, and include charge conjugated states. References: W. Hofmann, Ann. Rev. Nucl. and Part. Sci. **38**, 279 (1988); and H.D. Saxon, in *High Energy Electron Positron Physics*, World Sci., p. 540 (1988); R. Marshall, RAL-89-021 (1989).



Fragmentation into light hadrons: Inclusive cross sections $(1/\sigma\beta)(d\sigma/dx)$ for production of charged hadrons (π,K,p) in e^+e^- annihilation at $\sqrt{s}\approx 10$ GeV and $\sqrt{s}=29$ GeV, normalized to the total hadronic cross section, as a function of $x=2E\sqrt{s}$. References: H. Aihara *et al.*, Phys. Rev. Lett. **61**, 1263 (1988); and H. Albrecht *et al.*, DESY-89-014 (1989).

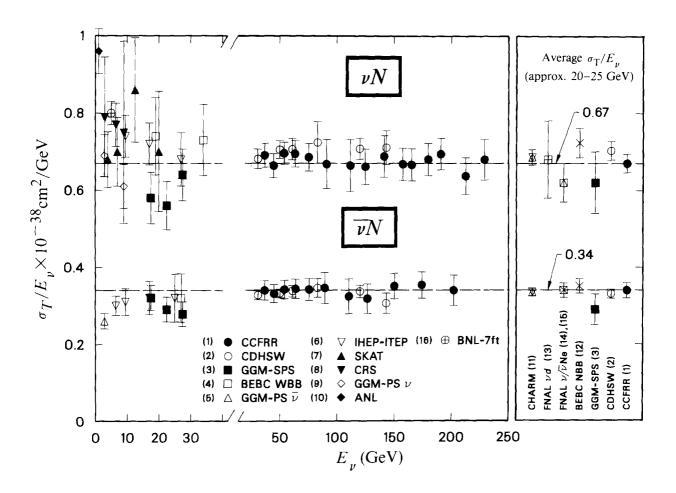
Heavy quark fragmentation: Inclusive cross section for the production of $D^*(2010)^+$ mesons in e^+e^- annihilation at $\sqrt{s} \approx 10$ GeV, as a function of the scaling variable $x_+ = (E+p)/(E+p)_{\rm kinem.\ limit}$. Also shown is the Peterson $et\ al.$ form, $d\sigma/dz \sim z(1-z)^2/[(1-z)^2+\epsilon z]^2$, for $\epsilon=0.15$. We note that instead of the scaling variable x or x_+ , some experiments prefer to define a scaling variable z as $z=(E+p_\parallel)_{\rm had}/(E+p)_{\rm quark}$; correcting for gluon radiation before the final fragmentation. With this definition at $\sqrt{s} \approx 30$ GeV, $\langle z_C \rangle = 0.67 \pm 0.03$ $\langle z_B \rangle = 0.83 \pm 0.03$, corresponding to $\epsilon_C = 0.06^{+0.03}_{-0.02}$ and $\epsilon_B = 0.006 \pm 0.002$. The corresponding Peterson shapes are included here. References: D. Bortoletto $et\ al.$, Phys. Rev. D37, 1719 (1988); J. Chrin, Z. Phys. C36, 163 (1987); and C. Peterson $et\ al.$, Phys. Rev. D27, 105 (1983).

R in e^+e^- Collisions



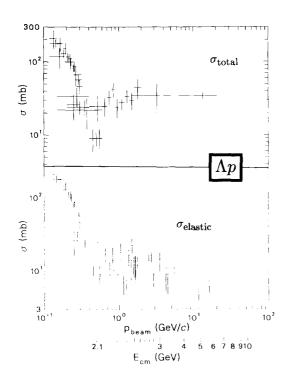
Selected measurements of $R \equiv \sigma(e^+e^- \to \text{hadrons})/\sigma(e^+e^- \to \mu^+\mu^-)$, where the annihilation in the numerator proceeds via one photon or via the Z^0 . Measurements in the vicinity of the Z^0 mass are shown in the following figure. The denominator is the calculated QED single-photon process; see the section on Cross-Section Formulae for Specific Processes. Radiative corrections and, where important, corrections for two-photon processes and τ production have been made. Note that the ADONE data ($\gamma\gamma^2$ and MEA) is for ≥ 3 hadrons. The points in the $\psi(3770)$ region are from the MARK I—Lead Glass Wall experiment. To preserve clarity only a representative subset of the available measurements is shown—references to additional data are included below. Also for clarity, some points have been combined or shifted slightly (<4%) in $E_{\rm cm}$, and some points with low statistical significance have been omitted. Systematic normalization errors are not included; they range from $\sim 5~20\%$, depending on experiment. We caution that especially the older experiments tend to have large normalization uncertainties. Note the suppressed zero. The horizontal extent of the plot symbols has no significance. The positions of the $J/\psi(1S)$, $\psi(2S)$, and the four lowest Υ vector-meson resonances are indicated. Two curves are overlaid for $E_{\rm cm} > 11~{\rm GeV}$, showing the theoretical prediction for R, including higher order QCD [M. Dine and J. Sapirstein, Phys. Rev. Lett. 43, 668 (1979)] and electroweak corrections. The Λ values are for 5 flavors in the $\overline{\rm MS}$ scheme and are $\Lambda^{(5)}_{\rm MS} = 60~{\rm MeV}$ (lower curve) and $\Lambda^{(5)}_{\rm MS} = 250~{\rm MeV}$ (upper curve). References (including several references to data not appearing in the figure and some references to preliminary data):

```
AMY: T. Mori et al., Phys. Lett. B218, 499 (1989);
CELLO: H.-J. Behrend et al., Phys. Lett. 144B, 297 (1984):
  and H.-J. Behrend et al., Phys. Lett. 183B, 400 (1987);
CLEO: R. Giles et al., Phys. Rev. D29, 1285 (1984);
  and D. Besson et al., Phys. Rev. Lett. 54, 381 (1985);
CUSB: E. Rice et al., Phys. Rev. Lett. 48, 906 (1982);
CRYSTAL BALL: A. Osterheld et al., SLAC-PUB-4160;
  and Z. Jakubowski et al., Z. Phys. C40, 49 (1988);
DASP: R. Brandelik et al., Phys. Lett. 76B, 361 (1978):
DASP II: Phys. Lett. 116B, 383 (1982);
DCI: G. Cosme et al., Nucl. Phys. B152, 215 (1979):
DHHM: P. Bock et al. (DESY-Hamburg-Heidelberg-
  MPI München Collab.), Z. Phys. C6, 125 (1980);
\gamma \gamma 2: C. Bacci et al., Phys. Lett. 86B, 234 (1979);
HRS: D. Bender et al., Phys. Rev. D31, 1 (1985);
JADE: W. Bartel et al., Phys. Lett. 129B, 145 (1983);
  and W. Bartel et al., Phys. Lett. 160B, 337 (1985);
LENA: B. Niczyporuk et al., Z. Phys. C15, 299 (1982).
```

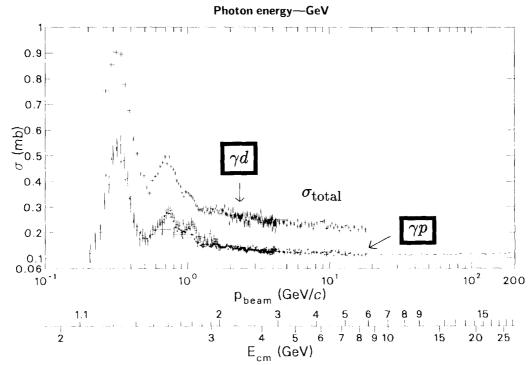

MAC: E. Fernandez et al., Phys. Rev. D31, 1537 (1985); MARK J: B. Adeva et al., Phys. Rev. Lett. 50, 799 (1983): and B. Adeva et al., Phys. Rev. D34, 681 (1986); MARK I: J.L. Siegrist et al., Phys. Rev. D26, 969 (1982); MARK I + Lead Glass Wall: P.A. Rapidis et al.. Phys. Rev. Lett. 39, 526 (1977); and P.A. Rapidis, thesis. SLAC-Report-220 (1979): MARK II: J. Patrick, Ph.D. thesis, LBL-14585 (1982); MEA: B. Esposito et al., Lett. Nuovo Cimento 19, 21 (1977); PLUTO: A. Bäcker, thesis Gesamthochschule Siegen. DESY F33-77/03 (1977); C. Gerke, thesis, Hamburg Univ. (1979); Ch. Berger et al., Phys. Lett. 81B, 410 (1979); and W. Lackas, thesis, RWTH Aachen, DESY Pluto-81/11 (1981): **TASSO**: R. Brandelik *et al.*, Phys. Lett. **113B**, 499 (1982); and M. Althoff et al., Phys. Lett. 138B, 441 (1984); TOPAZ: I. Adachi et al., Phys. Rev. Lett. 60, 97 (1988); and VENUS: H. Yoshida et al., Phys. Lett. 198B, 570 (1987).

Data from the Mark II, ALEPH, DELPHI, L3, and OPAL Collaborations (Refs. 1–5) for the cross section in e^+e^- annihilation into hadronic final states as a function of c.m. energy near the Z. LEP detectors obtained data at the same energies; some of the points are obscured by overlap. The curves show the predictions of the Standard Model with three species (solid curve) and four species (dashed curve) of light neutrinos. The mass of the Z was fixed by the data to be 91.157 GeV, and there were no other free parameters. The resulting widths are respectively 2.488 GeV and 2.653 GeV, which include QCD corrections for the hadronic channels and assume no t-quark contribution. The asymmetry of the curves is produced by initial-state radiation.

- 1. Mark II G.S. Abrams et al., Phys. Rev. Lett. 63, 2173 (1989).
- 2. ALEPH-D. Decamp et al., to be published in Phys. Lett. B (1990).
- 3. DELPHI-P. Abreu et al., CERN-EP/90-32, to be published in Phys. Lett. B (1990).
- 4. L3-B. Adeva et al., submitted to Phys. Lett. B (1990).
- 5. OPAL M.Z. Akrawy et al., to be published in Phys. Lett. B (1990).

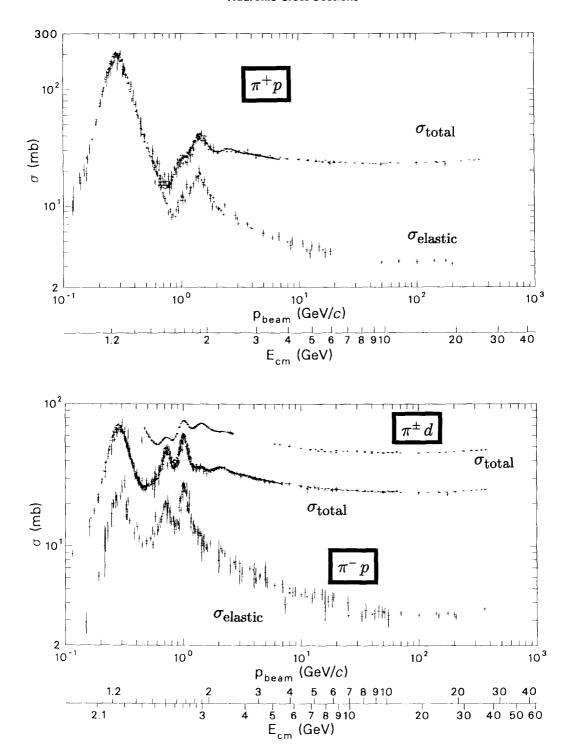

 $\sigma_{\rm T}/E_{\nu}$ for the muon neutrino and antineutrino charged-current total cross section as a function of neutrino energy. The error bars include both statistical and systematic errors. The straight lines are averages for the CCFRR measurement. Note the change in the energy scale between 30 and 50 GeV. The data points on the right give averages for other high energy measurements. Courtesy M.H. Shaevitz, Columbia University (Nevis Laboratory).

- (1) D.B. MacFarlane et al., Z. Phys. C26, 1 (1984);
- (2) P. Berge et al., Z. Phys. C35, 443 (1987);
- (3) J. Morfin et al., Phys. Lett. 104B, 235 (1981);
- (4) D.C. Colley et al., Z. Phys. C2, 187 (1979);
- (5) O. Erriquez et al., Phys. Lett. 80B, 309 (1979);
- (6) A.S. Vovenko *et al.*, Yad. Phys. **30**, 527 (1979):
- (7) D.S. Baranov *et al.*, Phys. Lett. **81B**, 255 (1979);
- (8) C. Baltay et al., Phys. Rev. Lett. 44, 916 (1980);
- (9) S. Ciampolillo et al., Phys. Lett. 84B, 281 (1979);
- (10) S.J. Barish et al., Phys. Rev. D19, 2521 (1979);
- (11) J.V. Allaby et al., Z. Phys. C38, 403 (1988), $E_{\nu} = 10\text{-}160 \text{ GeV}$;
- (12) P. Bosetti et~al., Phys. Lett. **110B**, 167 (1982), $E_{\nu}=20$ –200 GeV, as revised in M. Aderholz et~al., Phys. Lett. **173B**, 211 (1986);
- (13) T. Kitagaki et al., Phys. Rev. Lett. 49, 98 (1982), $E_{\nu} = 10\text{--}200 \text{ GeV}$;
- (14) N.J. Baker *et al.*, Phys. Rev. Lett. **51**, 735 (1983), $E_{\nu} = 10\text{--}240 \text{ GeV}$;
- (15) G.N. Taylor et al., Phys. Rev. Lett. **51**, 739 (1983), $E_{\nu} = 5$ –250 GeV;
- (16) N.J. Baker et al., Phys. Rev. **D25**, 617 (1982), $E_{\nu} = 1.6$ –10 GeV.

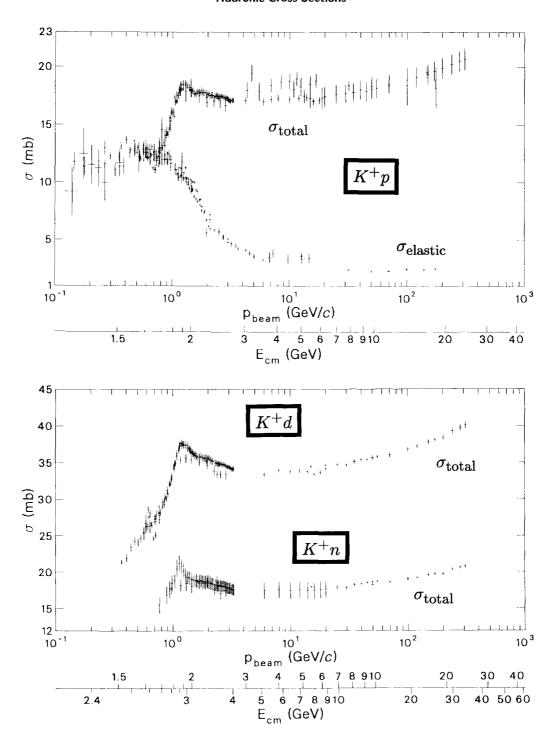

High-energy Parametrizations of Hadron Cross Sections

The CERN-HERA Group has done a least-squares fit to the cross section in the high-energy region for each of the hadron reactions plotted below. The parametrization they used was $\sigma = A + Bp^n + C \ln^2(p) + D \ln(p)$, where σ is in mb and p is in GeV/c. The best-fit coefficients A, B, C, and D and the fitted exponent n are tabulated here. The errors in these parameters are highly correlated; this should be taken into account before making any changes. The applicable momentum range is given in the right-hand column; use of these parameterizations outside of this range may give incorrect results.

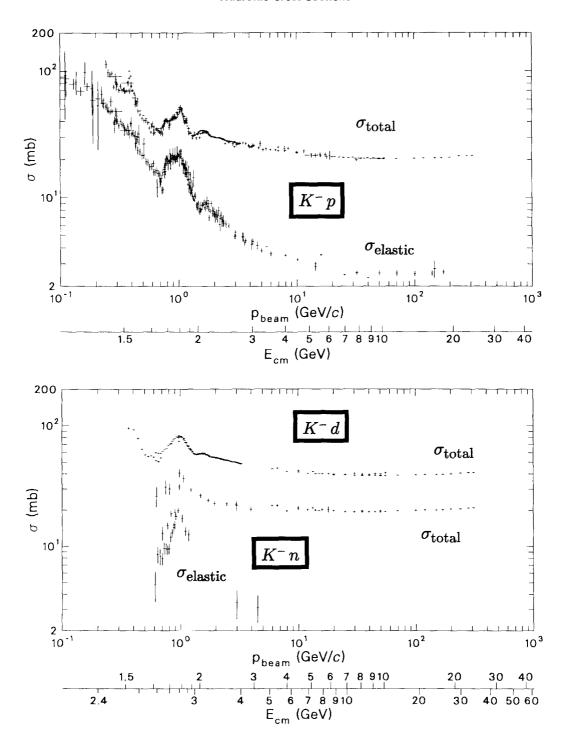
Reaction	A	В	n	C	D	$\begin{array}{c} \text{Momentum} \\ \text{range } (\text{GeV}/c) \\ p_{\min} - p_{\max} \end{array}$
$\gamma p \text{ (total)}$	0.154 ± 0.021	-0.018 ± 0.023	-1.4 ± 3.7	0.0026 ± 0.0009	-0.020 ± 0.009	3.0-183
$\gamma d \; (ext{total})$	0.206 ± 0.007	0.111 ± 0.006	-0.78 ± 0.16	_	_	2.0-17.8
$\pi^+ p \text{ (total)}$	-5.0 ± 8.1	40.4 ± 7.7	-0.28 ± 0.05		3.7 ± 0.8	4.0-340
$\pi^+ p$ (elastic)	7.4 ± 1.4	11.2 ± 1.6	-1.67 ± 0.48	0.180 ± 0.079	-1.71 ± 0.67	2.0-200
$\pi^+ d$ (total)	28.4 ± 8.7	51.9 ± 3.4	-0.56 ± 0.17	_	2.9 ± 1.2	6.0 – 340
$\pi^- p$ (total)	33.0 ± 1.2	14.0 ± 1.8	-1.36 ± 0.29	0.456 ± 0.049	-4.03 ± 0.48	2.5 – 370
$\pi^- p$ (elastic)	1.76 ± 0.42	11.2 ± 0.3	-0.64 ± 0.07	0.043 ± 0.011		2.0-360
$\pi^- d$ (total)	41.6 ± 0.9	44.0 ± 2.5	-0.79 ± 0.07	0.150 ± 0.026	_	2.5-370
K^+p (total)	17.1 ± 0.9	5.5 ± 5.2	-2.7 ± 2.0	0.139 ± 0.076	-0.27 ± 0.53	2.0-310
K^+p (elastic)	5.73 ± 0.29	17.2 ± 1.1	-3.02 ± 0.21	0.191 ± 0.026	-1.62 ± 0.18	1.5–175
K^+n (total)	18.56 ± 0.31	$(0.16\pm4.9)\times10^{-7}$	3.0 ± 5.1	0.178 ± 0.050	-0.71 ± 0.26	2.0-310
K^+d (total)	34.2 ± 1.2	7.9 ± 3.8	-2.1 ± 1.1	0.346 ± 0.074	-0.99 ± 0.61	2.0 – 310
K^-p (total)	-1.0 ± 5.4	36.4 ± 4.8	-0.34 ± 0.05	_	3.02 ± 0.57	3.0-310
K^-p (elastic)	7.24 ± 0.16	46 ± 32	-4.7 ± 1.0	0.279 ± 0.017	-2.35 ± 0.11	2.0 – 175
K^-n (total)	8 ± 11	22.6 ± 6.9	-0.45 ± 0.31	_	2.0 ± 1.3	10-310
K^-d (total)	45.5 ± 9.2	26.7 ± 3.5	-1.12 ± 0.65	0.54 ± 0.32	-4.0 ± 3.4	3.0-310
pp (total)	45.64 ± 0.17	239 ± 126	-4.33 ± 0.50	0.414 ± 0.009	-3.44 ± 0.08	3.0-2100
pp (elastic)	11.9 ± 0.8	26.9 ± 1.7	-1.21 ± 0.11	0.169 ± 0.021	-1.85 ± 0.26	2.0 - 2100
pn (total)	47.70 ± 0.13	-100 ± 14	-4.56 ± 0.20	0.512 ± 0.012	-4.29 ± 0.09	2.0-280
pd (total)	92.2 ± 1.2	-0.08 ± 0.65	0.7 ± 1.0	1.36 ± 0.41	-9.82 ± 0.49	3.0-370
pd (elastic)	-237 ± 53000	253 ± 53000	0.1 ± 4.5	-0.5 ± 52	-20 ± 2600	2.0 – 384
$\overline{p}p$ (total)	39.8 ± 4.3	77.1 ± 3.0	-6.60 ± 0.68	0.278 ± 0.048	-1.5 ± 0.9	$5.0-1.73 \times 10$
$\overline{p}p$ (elastic)	10.55 ± 0.72	52.7 ± 1.8	-1.176 ± 0.05	0.135 ± 0.016	-1.39 ± 0.22	$2.0-1.73 \times 10$
$\bar{p}n$ (total)	41.8 ± 2.4	96.1 ± 4.6	-0.98 ± 0.07	_	-0.14 ± 0.46	1.1-280
$\overline{p}n$ (elastic)	38 ± 21	-3 ± 17	-3 ± 38	_	-13 ± 12	1.1 – 5.55
$\overline{p}d$ (total)	112 ± 13	125 ± 8	-1.08 ± 0.15	1.14 ± 0.49	-12.4 ± 4.9	2.0-280
$\Lambda p \; ({ m total})$	18.0 ± 1.9	0.121 ± 0.017	-3.92 ± 0.83	_	6.38 ± 0.74	0.1-21.0
Λp (elastic)	3.5 ± 5.6	26 ± 25	-1.0 ± 1.3	_		2.0-24.0



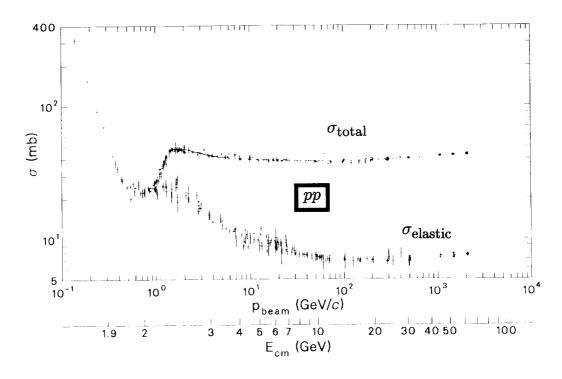
 Λp total and elastic cross sections vs. laboratory beam momentum $p_{\rm beam}$ and total center-of-mass energy $E_{\rm cm}$. Data courtesy A. Baldini, V. Flaminio, W.G. Moorhead, and D.R.O. Morrison, CERN; and COMPAS Group, IHEP, Serpukhov, USSR. See *Total Cross-Sections for Reactions of High Energy Particles*, Landolt-Bornstein, New Series, Vol. 12a and 12b. H. Schopper. Ed. (1987).

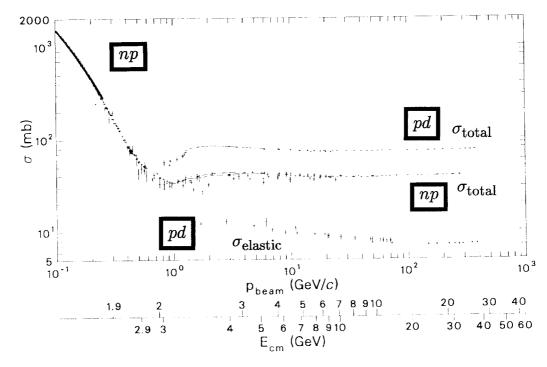

Photon cross sections vs. laboratory beam momentum p_{beam} and total center-of-mass energy E_{cm} . Data courtesy A. Baldini, V. Flaminio. W.G. Moorhead, and D.R.O. Morrison, CERN; COMPAS Group, IHEP, Serpukhov, USSR; and G.M. Lewis, Glasgow. See *Total Cross-Section for Reactions of High Energy Particles*, Landolt-Bornstein, New Series, Vol. 12a and 12b, H. Schopper. Ed. (1987).

Hadronic Cross Sections

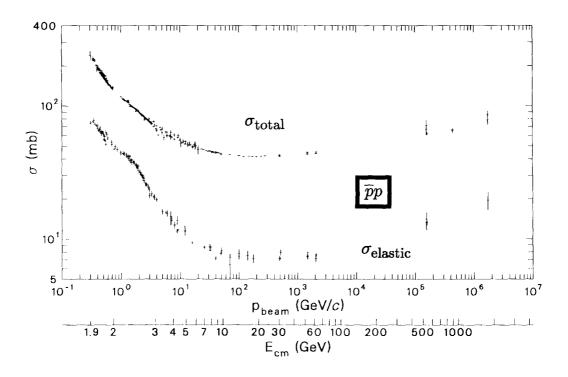

Hadronic total and elastic cross sections vs. laboratory beam momentum p_{beam} and total center-of-mass energy E_{cm} . Data courtesy A. Baldini, V. Flaminio, W.G. Moorhead, and D.R.O. Morrison, CERN; and COMPAS Group, IHEP, Serpukhov, USSR. See *Total Cross-Sections for Reactions of High Energy Particles*, Landolt-Bornstein, New Series, Vol. 12a and 12b, H. Schopper, Ed. (1987).

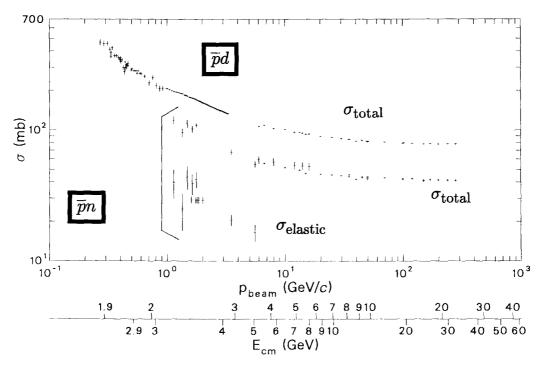
Hadronic Cross Sections


Hadronic total and elastic cross sections vs. laboratory beam momentum p_{beam} and total center-of-mass energy E_{cm} . Data courtesy A. Baldini. V. Flaminio, W.G. Moorhead, and D.R.O. Morrison, CERN; and COMPAS Group, IHEP, Serpukhov, USSR. See *Total Cross-Sections for Reactions of High Energy Particles*, Landolt-Bornstein, New Series, Vol. 12a and 12b, H. Schopper, Ed. (1987).


Hadronic Cross Sections

Hadronic total and elastic cross sections vs. laboratory beam momentum p_{beam} and total center-of-mass energy E_{cm} . Data courtesy A. Baldini, V. Flaminio, W.G. Moorhead, and D.R.O. Morrison, CERN; and COMPAS Group, IHEP, Serpukhov, USSR. See *Total Cross-Sections for Reactions of High Energy Particles*, Landolt-Bornstein, New Series, Vol. 12a and 12b, H. Schopper, Ed. (1987).


Hadronic Cross Sections



Hadronic total and elastic cross sections vs. laboratory beam momentum p_{beam} and total center-of-mass energy E_{cm} . Data courtesy A. Baldini. V. Flaminio, W.G. Moorhead, and D.R.O. Morrison, CERN: and COMPAS Group. IHEP, Serpukhov, USSR. See *Total Cross-Sections for Reactions of High Energy Particles*, Landolt-Bornstein. New Series, Vol. 12a and 12b, H. Schopper, Ed. (1987).

Hadronic Cross Sections

Hadronic total and elastic cross sections vs. laboratory beam momentum p_{beam} and total center-of-mass energy E_{cm} . Data courtesy A. Baldini, V. Flaminio, W.G. Moorhead, and D.R.O. Morrison, CERN: and COMPAS Group, IHEP, Serpukhov, USSR. See *Total Cross-Sections for Reactions of High Energy Particles*, Landolt-Bornstein, New Series, Vol. 12a and 12b, H. Schopper, Ed. (1987).

GAUGE AND HIGGS BOSONS

 $I(J^{PC}) = 0.1(1^{--})$

γ MASS

For a review of the photon mass, see BYRNE 77.

VALUE (MeV)	CL%	DOCUMENT ID	TECN	COMMENT
$< 3 \times 10^{-33}$		CHIBISOV	76	Galactic mag. field
• • • We do not use	the followin	g data for average	s, fits, limit	s, etc. • • •
$< 6 \times 10^{-22}$	99.7	DAVIS	75	Jupiter magfield
$< 7.3 \times 10^{-22}$		HOLLWEG	74	Alfven waves
$< 6 \times 10^{-23}$		¹ FRANKEN	71	Low freq. res. cir.
<1- × 10 ⁻²⁰		WILLIAMS	71 CNTF	R Tests Gauss law
$< 2.3 \times 10^{-21}$		GOLDHABER	68	Satellite data
$< 6 \times 10^{-21}$		1 PATEL	65	Satellite data
$< 6 \times 10^{-21}$		GINTSBURG	64	Satellite data
_				

¹ Validity questionable. See criticism in KROLL 71 and GOLDHABER 71.

γ CHARGE

VALUE (10 ⁻³² e)	DOCUMENT ID_	TECN	COMMENT
<2	COCCONI	88 TOF	Pulsar f ₁ , f ₂ TOF

REFERENCES FOR 7

COCCONI BYRNE CHIBISOV DAVIS HOLLWEG FRANKEN GOLDHABER KROLL WILLIAMS GOLDHABER	88 77 76 75 74 71 71 71 71 68	PL B206 705 Ast.Sp.Sci. 46 115 SPU 19 624 PRL 35 1402 PRL 32 961 PRL 26 115 RMP 43 277 PRL 26 1395 PRL 26 721 PRL 21 567	+Goldhaber, Nieto + Ampulski + Nieto + Faller, Hill + Nieto	(CERN) (LOIC) (LEBD) (CIT, STON, LASL) (NCAR) (MICH) (STON, BOHR, UCSP) (SLAC) (WESL) (STON)
GOLDHABER	68	PRL 21 567	+Nieto	(STON)
PATEL	65	PL 14 105		(DUKE)
GINTSBURG	64	Sov. Astr. AJ7 536		(ASCI)

J = 1

W MASS

The fit uses the W and Z mass and mass difference measurements.

VALUE (GeV)	EVTS	DOCUMENT ID	TE	CN COMMENT
80.6 ± 0.4 OUR FIT		icludes scale factor	of 1.1.	
80.9 ± 0.8 OUR AVE	RAGE			4 <u>5</u>
$80.79 \pm 0.31 \pm 0.84$		1 ALITTI	90B UA	
$80.0 \pm 3.3 \pm 2.4$	22	² ABE	891 CE	
$82.7 \pm 1.0 \pm 2.7$	149	³ ALBAJAR	89 UA	1 $E_{Cm}^{p\overline{p}} = 546,630 \text{ GeV}$
• • We do not use to	he followi	ng data for average	s, fits, li	nits, etc. • • •
$81.8 \begin{array}{c} + & 6.0 \\ - & 5.3 \end{array} \pm 2.6$	46	⁴ ALBAJAR	89 UA	$E_{\text{CM}}^{p\overline{p}} = 546,630 \text{ GeV}$
89 ± 3 ±6	32	⁵ ALBAJAR	89 UA	1 $E_{CM}^{p\bar{p}} = 546,630 \text{ GeV}$
$80.2 \pm 0.6 \pm 1.4$	251	6 ANSARI	87 U	2 Repl. by ALITTI 90B
$81.2 \pm 1.0 \pm 1.4$	119	⁶ APPEL	86 UA	2 Repl. by ANSARI 87
83.5 $^{+}_{-}$ $^{1.1}_{1.0}$ ± 2.7	86	7 ARNISON	86 UA	1 Repl. by ALBAJAR 89
81. + 6.	14	8 ARNISON	840 UA	1 Repl. by ALBAJAR 89
$83.1 \pm 1.9 \pm 1.3$	37	BAGNAIA	84 UA	2 Repl. by ALITTI 90B
81. ± 5.	6	ARNISON	83 UA	1 Repl. by ARNISON 83D
80.9 ± 2.9	27	ARNISON	83D UA	1 Repl. by ARNISON 86
81.0 ± 2.8		BAGNAIA	83 UA	2 Repl. by BAGNAIA 84
80. +10.	4	BANNER	83B UA	2 Repl. by ALITTI 90B

 $^{^1}$ There are two contributions to the systematic error (±0.84): one (±0.81) which cancels in m(W)/m(Z) and one (±0.21) which is non-cancelling. These were added in quadra-

W WIDTH							
VALUE (GeV)		EVT\$	DOCUMENT ID		TECN	COMMENT	
2.25 ± 0.14 OUR A	VERA	GE .					
2.19 ± 0.20			⁹ ABE	90	CDF	Extracted value	
$2.30 \pm 0.19 \pm 0.06$			10 ALITTI	90c	UA2	Extracted value	
$2.8 \begin{array}{c} +1.4 \\ -1.5 \end{array} \pm 1.3$		149	¹¹ ALBAJAR	89	UA1	$E_{CM}^{\overline{p}} = 546,630 \text{ GeV}$	
• • • We do not use	the fo	lowing d	ata for averages, fi	ts, lir	nits, etc	. • • •	
< 5.4	90	149	¹¹ ALBAJAR	89	UA1	$E_{CM}^{\overline{\rho}\overline{\rho}} = 546,630 \text{ GeV}$	
<7	90	251	ANSARI	87	UA2	$E_{cm}^{p\overline{p}} = 546,630 \text{ GeV}$	
<7	90	119	APPEL	86	UA2	$E_{cm}^{\rho \overline{p}} = 546,630 \text{ GeV}$	
<6.5	90	86	¹² ARNISON	86	UA1	Repl. by ALBAJAR 89	
<7	90	27	ARNISON	83 D	UA1	Repl. by ARNISON 86	
) which is equal to	

 $[\sigma(W)/\sigma(Z)][\Gamma(W \to e\nu)/\Gamma(Z \to ee)]$ $\Gamma(Z)/\Gamma(W)$. The bracketed quantities can be calculated with plausible reliability. ABE 90 then extract $\Gamma(W)$ by using the value $\Gamma(Z) = 2.57 \pm 0.07$ GeV. They measured $R = 10.2 \pm 0.8 \pm 0.4$, assumed $\sin^2\theta_W = 0.229 \pm 0.007$, and took predicted values $\sigma(W)/\sigma(Z) = 3.23 \pm 0.03$ and $\Gamma(W \to e\nu)/\Gamma(Z \to ee) = 2.70 \pm 0.02$. This yields $\Gamma(W)/\Gamma(Z) = 0.85 \pm 0.08$. The quoted error for $\Gamma(W)$ includes systematic uncertainties. $E_{CM}^{\rho \overline{\rho}} = 1800$ GeV.

 $^{10}\,\mathrm{ALITTI}$ 90c used the same technique as described for ABE 90. They measured R= $9.38^{+0.82}_{-0.72} \pm 0.25$, obtained $\Gamma(W)/\Gamma(Z) = 0.902 \pm 0.074 \pm 0.024$. Using $\Gamma(Z) =$ 2.546 ± 0.032 GeV, they obtained the $\Gamma(W)$ value quoted above and the limits $\Gamma(W)$ < 2.56 (2.64) GeV at the 90% (95%) CL. $E_{CM}^{p\vec{p}} = 546,630$ GeV.

 $^{11}\, {\rm ALBAJAR}$ 89 result is from a total sample of 299 $W \to ~e \nu$ events.

 12 If systematic error is neglected, result is $^{2.7}_{-1.5}^{+1.4}$ GeV. This is enhanced subsample of 172 total events.

W ANOMALOUS MAGNETIC MOMENT ($\Delta \kappa$)

The full magnetic moment is given by $\mu(W)=e(2-\Delta\kappa)/2m(W)$. In the Standard Model, $\Delta \kappa =$ 0. The parameter Λ appearing below is a regularization cutoff and may correspond to the energy scale where the structure of the W boson becomes manifest.

VALUE (e/2m(W))	DOCUMENT ID		TECN
• • We do not use the follow	ring data for average	s, fit	s, limits, etc. • • •
	¹³ GRIFOLS	88	THEO
	14 GROTCH	87	THEO
	¹⁵ VANDERBIJ	87	THEO
	¹⁶ GRAU	85	THEO
	¹⁷ SUZUKI	85	THEO
	18 455706	0.4	THEO

 13 GRIFOLS 88 uses deviation from ho parameter to set limit $\Delta\kappa \lesssim 65~(M_W^2/\Lambda^2)$.

 $^{14}\,\text{GROTCH}$ 87 finds the limit $-37~<~\Delta\kappa~<73.5$ (90% CL) from the experimental limits on $e^+\,e^- \to \, \nu \bar{\nu} \gamma$ assuming three neutrino generations and $-19.5 < \Delta \kappa <$ 56 for four generations. Note their $\Delta \kappa$ has the opposite sign as our definition.

 15 VANDERBIJ 87 uses existing limits to the photon structure to obtain $|\Delta\kappa|$ $(m(W)/\Lambda)$. In addition VANDERBIJ 87 discusses problems with using the ρ parameter of the Standard Model to determine $\Delta\kappa$.

16 GRAU 88 uses the muon anomaly to derive a coupled limit on the anomalous magnetic dipole and electric quadrupole (λ) moments 1.05 $> \Delta \kappa \ln(\Lambda/m(W)) + \lambda/2 > -2.77$. In the Standard Model $\lambda = 0$.

 17 SUZUKI 85 uses partial-wave unitarity at high energies to obtain $|\Delta\kappa| \lesssim 190$ $(m(W)/\Lambda)^2$. From the anomalous magnetic moment of the muon, SUZUKI 85 obtains $|\Delta\kappa|~\lesssim~2.2/{\ln(\Lambda/m(W))}.$ Finally SUZUKI 85 uses deviations from the ho parameter and obtains a very qualitative, order-of-magnitude limit $|\Delta\kappa|\lesssim 150~(m(W)/\Lambda)^4~{
m if}$ $|\Delta \kappa| \ll 1$.

 18 HERZOG 84 consider the contribution of W-boson to muon magnetic moment including anomalous coupling of $WW\gamma$. Obtain a limit $-1 < \Delta\kappa < 3$ for $\Lambda \gtrsim 1$ TeV.

W+ DECAY MODES

 W^- modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_I/Γ)	Confidence level	
Г1	e ⁺ ν	(10.0+2.4) %		
Γ_2	$e^+ u\gamma$	[a] < 1.0 %	90%	
Γ_3	$\mu^+ u$	$(10.0^{+2.9}_{-3.7})$ %		
Γ4	$\mu^+ \nu \gamma$			
Γ_5	$ au^+ u$	$(10.2^{+3.4}_{-4.1})$ %		

[a] See the Listings below for the γ energy range used in this measurement.

ture. ² ABE 89) systematic error dominated by the uncertainty in the absolute energy scale.

³ALBAJAR 89 result is from a total sample of 299 $W \rightarrow e \nu$ events.

 $^{^4}$ ALBAJAR 89 result is from a total sample of 67 $W \to \mu \nu$ events.

⁵ ALBAJAR 89 result is from $W \to \tau \nu$ events. ⁶ There are two contributions to the systematic error (± 1.4): one (± 1.3) which cancels in m(W)/m(Z) and one (± 0.5) which is non-cancelling. These were added in quadrature.

⁷ This is enhanced subsample of 172 total events.

⁸Using $W^{\pm} \rightarrow \mu^{\pm} \nu$.

Gauge & Higgs Boson Full Listings

W, Z

W	BRA	NCH	ING	RAT	IOS
---	-----	-----	-----	-----	-----

$\Gamma(e^+\nu)/\Gamma_{\rm total}$				Γ_1/Γ
VALUE	EVTS	DOCUMENT ID	TEÇN	COMMENT
$0.10 \pm 0.014^{+0.02}_{-0.03}$	248	¹⁹ ANSARI	87C UA2	$E_{cm}^{p\overline{p}} = 546,630 \; GeV$
• • • We do not use	the follow	ing data for averag	es, fits, limits	, etc. • • •
seen	299	²⁰ ALBAJAR		$E_{C\underline{m}}^{oldsymbol{\overline{p}}}\!=$ 546,630 GeV
seen	119	APPEL	86 UA2	$E_cm^{oldsymbol{ ho}oldsymbol{\overline{p}}}=$ 546,630 GeV
seen	172	ARNISON	86 UA1	Repl. by ALBAJAR 89

- 19 The first error was obtained by adding the statistical and systematic experimental uncertainties in quadrature. The second error reflects the dependence on theoretical prediction of total W cross section: $\sigma(546~{\rm GeV})=4.7^{+1.4}_{-0.7}$ nb and $\sigma(630~{\rm GeV})=5.8^{+1.8}_{-1.0}$ nb. See ALTARELLI 858.
- 20 ALBAJAR 89 experiment determines values of branching ratio times production cross section.

$\Gamma(e^+\nu\gamma)/\Gamma(e^+$	⁺ ν)					(Γ_2/Γ_1
VALUE	CL%	EVTS	DOCUMENT ID		TECN	COMMENT	
<0.1	90	1	²¹ ARNISON	84	UA1	$E_CM^{oldsymbol{ar{p}}} = 546\;GeV$	
• • • We do not	use th	e followi	ng data for average	es, fit	s, limits	s, etc. • • •	
none in 119 $W \rightarrow e \nu$ evts	i	0	APPEL	86	UA2	$E_CM^{oldsymbol{p}} = 546,630 \; Ge$	·V

 21 After accounting for selection efficiency and geometric acceptance, and requiring $E_T\left(\gamma\right) > 10$ GeV. ARNISON 84 $W \rightarrow e \nu \gamma$ one event in 52 $W \rightarrow e \nu$ events is consistent with QED Bremsstrahlung. Mass not restricted to W mass.

$\Gamma(\mu^+\nu)/\Gamma(e^+\nu)$				13/11
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
$1.00 \pm 0.14 \pm 0.08$	67	ALBAJAR	89 UA1	$E_{cm}^{p\bar{p}} = 546,630 \text{ GeV}$
• • • We do not use	the following	g data for average	es, fits, limits	, etc. • • •
$1.24^{+0.6}_{-0.4}$	14	ARNISON	84D UA1	Repl. by ALBAJAR 89

 Γ_4/Γ $\Gamma(\mu^+ \nu \gamma)/\Gamma_{\text{total}}$ TECN COMMENT EVTS DOCUMENT ID $\mathsf{E}_{\mathsf{cm}}^{oldsymbol{\overline{\rho}}} = \mathsf{546} \; \mathsf{GeV}$ 0 ²² ARNISON 84 UA1 none in 18 $W \rightarrow \mu \nu$ evts

 $^{22}\,\mathrm{Mass}$ not restricted to W mass. Γ_5/Γ_1 $\Gamma(\tau^+\nu)/\Gamma(e^+\nu)$ TECN COMMENT EVTS VALUE 89 UA1 $E_{cm}^{\rho \bar{p}} = 546,630 \text{ GeV}$ 32 ALBAJAR • • We do not use the following data for averages, fits, limits, etc. 87 UA1 Repl. by ALBAJAR 89 ALBAJAR $1.02 \pm 0.20 \pm 0.10$

REFERENCES FOR W

ABE
CERN-EP/90-20
ALITII 90C ZPHY C (to be pub.)
CERN-EP/90-20
ABE 891 PR. 62 1005 + Amide, Apollinari, Ascoli, Alac+ (LD-Collab.) ALBAJAR 87 PL B197 437
ABE 891 PR. 62 1005 + Amide, Apollinari, Ascoli, Alac+ (LD-Collab.) ALBAJAR 87 PL B197 437 - Albrow, Allkofer, Arnison, Astbury+ (DA Collab.) ANSARI 87 PL B195 233 + Amide, Apollinari, Ascoli, Albert, Arnison, Astbury+ (DA Collab.) ANSARI 87 PL B195 233 + Ablrow, Allkofer, Arnison, Astbury+ (UA2 Collab.) ANSARI 87 PL B196 440 + Bagnaia, Banner, Battiston+ (UA2 Collab.) ANSARI 87 PR D15 1088 + Bagnaia, Banner, Battiston+ (UA2 Collab.) ANSARI 87 PR D15 1088 van der Bij (FNAL) APPEL 86 ZPHY C30 1 + Bagnaia, Banner, Battiston+ (UA2 Collab.) APPEL 86 ZPHY C30 1 + Bagnaia, Banner, Battiston+ (UA2 Collab.) APPEL 86 ZPHY C27 617 - Elis, Martinelli (CERN, ENAL.) Alborow, Allkofer, Astbury+ (CERN, ENAL.) Alborow, Allkofer, Astbury+ (CERN, ENAL.) Elis, Martinelli (EBAC.) (BARC.) ARNISON 84 PL 153B 289 ARNISON 84 PL 153B 289 ARNISON 84 PL 138B 260 + Astbury, Aubert, Bacci - (UA1 Collab.) ARNISON 84 ZPHY C24 1 - Banner, Battiston - (UA2 Collab.) ARNISON 84 ZPHY C24 1 - Banner, Battiston - (UA2 Collab.) ARNISON 84 ZPHY C24 1 - Banner, Battiston - (UA1 Collab.) ARNISON 84 ZPHY C24 1 - Banner, Battiston - (UA2 Collab.) ARNISON 84 ZPHY C24 1 - Banner, Battiston - (UA1 Collab.) ARNISON 84 ZPHY C24 1 - Banner, Battiston - (UA1 Collab.) ARNISON 84 ZPHY C24 1 - Banner, Battiston - (UA1 Collab.)
AlbaJar 39
Also also also also also also also also a
Also
ALBAJAR 87 PL B185 233 +Albrow, Alkofer, Arnison, Astbury+ (UAZ Collab.) ANSARI 87 PL B186 40 +Bagnaia, Banner, Battiston+ (UAZ Collab.) CROTCH 87 PR D36 2153 +Robinett (PSU) VANDERBIJ 87 PR D35 1088 van der Bij (FNAL) AFPEL 86 ZPHY C30 +Bagnaia, Banner, Battiston+ (UAZ Collab.) ARNISON 86 PL 1668 48 +Albrow, Alkofer, Astbury+ (UAZ Collab.) ALTARELLI 858 ZPHY C27 617 -Efic, Martinelli (CERN. FNAL. FRAS.) GRAU 85 PL 1538 289 -Astbury, Aubert, Bacci- (UAI Collab.) ARNISON 84 PL 1358 29 +Astbury, Aubert, Bacci- (UAI Collab.) ARNISON 84 PL 1358 29 -Banner, Battiston. (UAI Collab.) ARNISON 84 PL 1358 29 -Astbury, Aubert, Bacci- (UAI Collab.) ARNISON 84 ZHY C24
ANSAR 87 PL 8186 440 +Bagnaia, Banner, Battiston- (JAZ Collab.)
ANSAR 87C PL B194 158
GROTCH
VANDERBIJ 87 PR D35 1088
APPEL 86 ZPHY C30 1 +Bagnaia, Banner, Battiston+ (UAZ Collab.) ARNISON 86 PL 1684 484 +Albrow, Allkofer, Astbury+ (UAI Collab.) ALTARELLI 85 ZPHY C27 617 -Elis, Martinelli (CERN, FNAL, FRAS) SUZUKI 85 PL 158B 283 -Griflos (BARC) SUZUKI 85 PL 153B 289 +Astbury, Albert, Bacci- (UAI Collab.) ARNISON 84 PL 138B 250 +Astbury, Aubert, Bacci- (UAI Collab.) ARNISON 94D PL 134B 469 +Astbury, Aubert, Bacci- (UAI Collab.) ARNISON 84 ZPHY C24 1 -Banner, Battiston, Blech- (UA2 Collab.)
ARNISON 86 PL 166B 498 4-Albrow, Allkofer, Astbury+ (UAI Collab.) J ALTARELI 88B ZPHY C27 617 -Ellis, Martinelli (CERN, FNAL, FRAS) GRAU 85 PL 158B 283 -Grifols (BARC) SUZVIKI 85 PL 135B 289 (LIB.) ARNISON 84 PL 135B 250 +Astbury, Aubert, Bacci - (UAI Collab.) ARNISON 94D PL 134B 469 +Astbury, Aubert, Bacci - (UAI Collab.) BACNAIA 84 ZPHY C24 I -Banner, Battiston, Blech - (UA2 Collab.)
ALTARELLI 85B ZPHY C27 617 - Ellis, Martinelli (CERN, FNAL, FRAS) GRAU 85 PL 154B 283 - Grifols (BARAC, UZUKI 85 PL 153B 289 (LBL) ARNISON 84 PL 135B 250 + Astbury, Aubert, Bacci - (UA1 Collab.) ARNISON 84D PL 134B 469 + Astbury, Aubert, Bacci - (UA2 Collab.) BACNAIA 84 ZPHY C24 1 - Banner, Battiston, Blech - (UA2 Collab.)
GRAU 85 PL 154B 283 - Griffols (BARC) SUZUKI 85 PL 153B 289 (LBL) ARNISON 84 PL 135B 250 + Astbury, Aubert, Bacci (UAI Collab.) ARNISON 84D PL 134B 469 + Astbury, Aubert, Bacci (UAI Collab.) BACNAIA 84 ZPHY C24 1 - Banner, Battiston, Biech - (UA2 Collab.)
SUZUKI 85 PL 153B 289 (LBL)
ARNISON 84 PL 135B 250 +Astbury, Aubert, Bacci (UAI Collab.) ARNISON 94D PL 134B 469 +Astbury, Aubert, Bacci (UAI Collab.) BACNAIA 84 ZPHY C24 1 -Banner, Battiston, Blech (UA2 Collab.)
ARNISON 84D PL 134B 469 +Astbury, Aubert, Bacci+ (UA1 Collab.) BAGNAIA 84 ZPHY C24 1 -Banner, Battiston, Blech-
BAGNAIA 84 ZPHY C24 1 —Banner, Battiston, Blech + (UA2 Collab.)
HERZOG 84 PL 148B 355 (WISC)
Also 84B PL 155B 468 erratum Herzog (WISC)
ARNISON 83 PL 122B 103 +Astbury, Aubert, Bacci - (UA1 Collab.)
ARNISON 830 PL 129B 273 +Astbury, Aubert, Bacci - (UA1 Collab.)
BAGNAIA 83 PL 129B 130 +Banner, Battiston, Bloch+ (UA2 Collab.)
BANNER 83B PL 122B 476 +Battiston, Bloch, Bonaudi- (UA2 Collab.)

J = 1

Z MASS

The fit uses the W and Z mass and mass difference (see below) measurements.

	(* in		EVTS		DOCUMENT ID		TECN	COMMENT
VALUE 91 161		OUR FIT	EVIS		DOCOMENTID		7ECH	COMMENT
		OUR AVE	RAGE					
91.171	±0.030	±0.030	11k	1	ABREU	90	DLPH	Ecm = 88.3-95.0 GeV
91.160	±0.024	±0.030	17k	1	ADEVA	90 c	L3	$E_{Cm}^{ee} = 88.28-95.04 \text{ GeV}$
91.154	±0.021	±0.030	28k	1	AKRAWY	90E	OPAL	$E_{CM}^{ee} = 88.28-95.04 \text{ GeV}$
91.182	±0.026	±0.030	20k	1	DECAMP	90D	ALEP	Ecm = 88.28-95.04 GeV
90.9	±0.3	±0.2	188	2	ABE	89c	CDF	$E_{cm}^{\overline{p}\overline{p}} = 1800 \text{ GeV}$
	±0.12		480		ABRAMS	89B	MRK2	Ecm = 89.2–93.0 GeV
88.6	+2.0 -1.8			4	MORI	89	RVUE	$E_{Cm}^{\it ee} \leq 57~{ m GeV}$
		not use the	following	d	ata for averages	, fits	, limits,	etc. • • •
	± 0.35			_	ALITTI		UA2	$E_{cm}^{\rho \overline{\rho}} = 546,630 \text{ GeV}$
		±0.93	1066		AARNIO	89	DLPH	Eee = 89.26-93.27 GeV
	±0.09	±0.045	106		ABRAMS	89	MRK2	Repl. by ABRAMS 89B
		±0.046	2538	6	ADEVA	89	L3	Repl. by ADEVA 900
		±0.045	4350		AKRAWY	89	OPAL	Repl. by AKRAWY 90E
93.1	±1.0	± 3.0			ALBAJAR	89	UA1	$E_{\rm cm}^{p\bar{p}} = 546,630 \; {\rm GeV}$
90.7	+5.2	±3.2	14	9	ALBAJAR	89	UA1	$E_{cm}^{p\bar{p}} = 546,630 \text{ GeV}$
91 174		± 0.045	3320	6	DECAMP	89	ALEP	Repl. by DECAMP 90D
91.5	+1.2	±1.7	25	7	ANSARI	87	UA2	Repl. by ALITTI 90B
92.5	±1.3	±1.5	13		APPEL	86	UA2	Repl. by ANSARI 87
93.0	±1.4	± 3.0	14		ARNISON	86	UA1	Repl. by ALBAJAR 89
85.8	+7.0 -5.4			10	ARNISON	84E	UA1	Repl. by ALBAJAR 89
92.7	±1.7	±1.4	4	11	BAGNAIA	84	UA2	Repl. by ALITTI 90B
95.2	± 2.5		5		ARNISON	83 C	UA1	Repl. by ARNISON 83D
95.6	± 3.2		5		ARNISON	83D	UA1	Repl. by ARNISON 86
91.9	± 1.9		4		BAGNAIA	83	UA2	Repl. by ALITTI 90B
,								FB

- ¹ The systematic error (0.03) is an error in common to the 4 LEP experiments.
- ² First error of ABE 89 is combination of statistical and systematic contributions; second is mass scale uncertainty.
- is mass scale uncertainty. 3 ABRAMS 89B uncertainty includes 35 MeV due to the absolute energy measurement. 4 MORI 89 result is from all existing measurements of R below the Z region including AMY, VENUS, and TOPAZ at TRISTAN plus data from PEP, PETRA, CESR, and DORIS. Assuming $\Gamma(Z)=2.5$ GeV and $\Delta r=0.070$.
- ⁵ Enters fit through W/Z mass ratio below.
- 6 The systematic error (0.045) is an error in common to the 4 LEP experiments.
- ⁷ Enters fit through Z-W mass difference below.
- ⁸ ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

- PALBAJAR 89 result is from a total sample of 39 $Z \rightarrow \mu^+ \mu^-$ events. 10 ARNISON 84E is from 4 $\mu^+ \mu^-$, $1\mu^+ \mu^-$, $1\mu^+ \mu^-$ events. 11 BAGNAIA 84 is a reanalysis of BAGNAIA 83 after recalibration of calorimeter.

W/Z MASS RATIO

VALUE	DOCUMENT ID		COMMENT			
0.884 ±0.005 OUR FIT	Error includes scale fa		_			
$0.8831 \pm 0.0048 \pm 0.0026$	12 ALITTI	90B UA2	$E_{Cm}^{pp} = 546,630 \text{ GeV}$			
12 ALITTI 90B scale error cancels in this ratio.						

Z - W MASS DIFFERENCE

The fit uses the W and Z mass and mass difference measurements.

VALUE (GeV) 10.5±0.4 OUR FIT Error inc	DOCUMENT ID	1 1	TECN	COMMENT
10.5±0.4 OUR FIT EFFORMS			IIA1	$E_{cm}^{p\bar{p}} = 546,630 \text{ GeV}$
• • • We do not use the folio				CITI
11 3+1 3+0 9				$E_{cm}^{\rho \overline{\rho}} = 546,630 \text{ GeV}$

Z WIDTH

	% EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT
2.534 ± 0.027 OUR A	WERAGE				
2.511 ± 0.065	11k	ABREU	90	DLPH	Ecm = 88.3-95.0
2.539 ± 0.054	17k	ADEVA	90 C	L3	GeV Ecm = 88.28-95.04
2.536 ± 0.045	28k	AKRAWY	90E	OPAL	GeV Ecm = 88.28-95.04
2.541 ± 0.056	20k	DECAMP	90D	ALEP	GeV Ecm = 88.28-95.04
3.8 ±0.8 ±1.0	188	ABE	89 C	CDF	$E_{CM}^{ar{DP}} = 1800 \text{ GeV}$
$2.42 \begin{array}{l} +0.45 \\ -0.35 \end{array}$	480	¹³ ABRAMS	89B	MRK2	E _{cm} = 89.2-93.0
$2.7 {}^{+ 1.2}_{- 1.0} \pm 1.3$	24	¹⁴ ALBAJAR	89	UA1	$\frac{\text{GeV}}{\text{Ecm}} = 546,630 \text{ GeV}$
2.7 ±2.0 ±1.0	25	¹⁵ ANSARI	87	UA2	$E_{cm}^{p\overline{p}} = 546,630 \text{ GeV}$

٠	 We do	not us	e the	following	data	for	averages.	fits.	limits.	etc.	•	•	•

			U	•	-		
	2.42 ±0.21	±0.09	1066	¹⁶ AARNIO	89	DLPH	E _{CM} = 89.26-93.27 GeV
	$1.61 \begin{array}{l} +0.60 \\ -0.43 \end{array}$		106	ABRAMS	89	MRK2	Repl. by ABRAMS 89B
	2.588 ± 0.137	,	2538	ADEVA	89	L3	Repl. by ADEVA 90c
	2.60 ±0.13		4350	AKRAWY	89	OPAL	Repl. by AKRAWY 90E
<	5.2	90	24	¹⁴ ALBAJAR	89	UA1	$E_{cm}^{pp} = 546,630 \text{ GeV}$
	2.68 ±0.15		3320	DECAMP	89	ALEP	Repl. by DE- CAMP 90D
<	5.6	90	25	¹⁵ ANSARI	87	UA2	$E_{cm}^{p\bar{p}} = 546,630 \text{ GeV}$
<	3.2	90	13	17 APPEL	86	UA2	Repl. by ANSARI 87
	$\begin{array}{ccc} 2.2 & +0.7 \\ -0.5 \end{array}$	±0.2	13	17 APPEL	86	UA2	Repl. by ANSARI 87
<	4.6	90	13	APPEL	86	UA2	Repl. by ANSARI 87
<	8.3	90	14	¹⁸ ARNISON	86	UA1	Repl. by ALBAJAR 89
<	6.5	90	4	¹⁹ BAGNAIA	84	UA2	Repl. by ANSARI 87
<	2.6	90	4	BAGNAIA	84	UA2	Repl. by ANSARI 87
<	10.2	90	4	ARNISON	830	UA1	Repl. by ARNISON 86
<	8.5	90	4	ARNISON	830	UA1	Repl. by ARNISON 86
	11.	90	4	BAGNAIA	83	UA2	Repl. by ANSARI 87

13 ABRAMS 89B uncertainty includes 50 MeV due to the miniSAM background subtraction

error. 14 ALBAJAR 89 result is from a total sample of 33 $Z \rightarrow e^+e^-$ events.

¹⁵ Quoted values of ANSARI 87 are from direct fit. Ratio of Z and W production gives either $\Gamma(Z) < (1.09 \pm 0.07) \times \Gamma(W)$, CL = 90% or $\Gamma(Z) = (0.82 + 0.19 \pm 0.06) \times \Gamma(W)$. Assuming Standard-Model value $\Gamma(W)=2.65$ GeV then gives $\Gamma(Z)<2.89\pm0.19$ or =2.17+0.50 ±0.16 .

16 The systematic error (0.09) originates in a 6% systematic error on the absolute value of

the cross section.

¹⁷Ratio of Z and W production gives either $\Gamma(Z) < \Gamma(W) \times (1.2 \pm 0.1)$, CL = 90% or $\Gamma(Z) = \Gamma(W) \times (0.83^{+0.26}_{-0.22})$. Assuming Standard-Model value $\Gamma(W) = 2.65$ GeV then gives $\Gamma(Z) < (3.2 \pm 0.2)$ or $= 2.2^{+0.7}_{-0.5} \pm 0.22$.

 18 If systematic error is neglected, result is $3.9^{+2.3}_{-1.5}$ GeV.

 $^{-1.9}$ Ratio of Z and W production gives $\Gamma(Z)<\Gamma(W)\times(0.93\pm0.09).$ Assuming $\Gamma(W)=2.77$ GeV, gives $\Gamma(Z)<2.6\pm0.3$ GeV.

Z DECAY MODES

	Mode	Fraction (Γ_i/Γ)	C	onfidence level
$\overline{\Gamma_1}$	e+ e-	(3.21±0.07) %	
Γ_2	$\mu^+\mu^-$	(3.36 ± 0.11)) %	
Γ_3	$\tau^+\tau^-$	(3.33 ± 0.13)) %	
Γ_4	$\nu \overline{\nu}$ (or other invisible modes)	(19.2 ± 1.0)) %	
Γ_5	e+e-γ			
Γ_6	$\mu^+\mu^-\gamma$			
Γ_7	$e^{\pm}\mu^{\mp}$	< 2.2	$\times 10^{-3}$	90%
Γ8	hadrons	(70.9 ± 0.9)) %	
Γ9	B <u>B</u>	(14.6 ±1.9) %	
Γ_{10}	поп- $B\overline{B}$ hadrons	(56.3 ± 2.0)) %	
Γ_{11}	$\pi^{0}\gamma$	< 3.9	× 10 ⁻⁴	95%
Γ_{12}	$\eta \gamma$	< 4.6	× 10 ⁻⁴	95%
Γ_{13}	$\eta'(958)\gamma$	< 2.2	$\times 10^{-4}$	95%
Γ_{14}	$\gamma\gamma$	< 3.7	× 10 ⁻⁴	95%
Γ_{15}	$\gamma\gamma\gamma$	< 2.8	× 10 ⁻⁴	95%

CONSTRAINED FIT INFORMATION

An overall fit to 10 branching ratios uses 21 measurements and one constraint to determine 6 parameters. The overall fit has a $\chi^2 = 5.6$ for 16 degrees of freedom.

following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j
angle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

x_2	2				
<i>x</i> ₃	1	3			
X4	-12	-25	-31		
Xg.	1	1	2	9	
x ₁₀	2	5	7	-36	-89
	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 9

Z BRANCHING RATIOS

	EVTS	DOCUMENT ID		TECN	COMMENT
0.0321 ± 0.0007 OUR FI	r				
0.0322±0.0007 OUR AV	ERAGE				
0.0331 ± 0.0018	263	²⁰ AARNIO	90	DLPH	Ecm = 88.28-95.04 Ge
$0.0319 \pm 0.0013 \pm 0.0005$	651	²¹ ADEVA	90D	L3	$E_{cm}^{ee} = 88.28 - 94.28 \text{ Ge}$
0.0320 ± 0.0009	908	²² AKRAWY	90E	OPAL	Ecm = 88.28-95.04 Ge
$0.046 \pm 0.009 ^{+0.008}_{-0.014}$	39	²³ ANSARI	87 C	UA2	$E_{cm}^{p\overline{p}} = 546,630 \text{ GeV}$
• • • We do not use the	follow	ng data for average	s, fits	, limits,	etc. • • •
$0.0342 \pm 0.0015 \pm 0.0011$	103	AKRAWY	90	OPAL	Ecm = 89.3-93.3 GeV
0.034 ±0.004 ±0.003	95	²⁴ ADEVA	89	L3	$E_{cm}^{ee} = 89.26 - 93.27 \text{ Ge}$
seen	33	²⁵ ALBAJAR	89	UA1	$E_CM^{oldsymbol{p}oldsymbol{\overline{p}}} = 546,630 \; GeV$
seen	13	APPEL	86	UA2	$E_{cm}^{p\bar{p}} = 546,630 \text{ GeV}$
seen	16	ARNISON	86	UA1	Repl. by ALBAJAR 89
seen	4	ARNISON	83 C	UA1	Repl. by ARNISON 86
seen	8	²⁶ BAGNAIA	83	UA2	$E_{cm}^{p\overline{p}} = 546 \text{ GeV}$

ADEVA 90D result is from $\Gamma(e\,e)=81.1\pm2.8\pm1.2\pm0.7$ MeV.

 22 AKRAWY 90E result is from $\Gamma(e\,e)=81.2\pm2.6$ MeV and includes both statistical and systematic errors.

Systematic errors. 23 The first error is obtained by adding the statistical and systematic experimental uncertanties in quadrature. The second error reflects the dependence on theoretical prediction of total Z cross section: $\sigma(546 \text{ GeV}) = 1.3^{+0.4}_{-0.2} \text{ nb}$ and $\sigma(630 \text{ GeV}) = 1.7^{+0.5}_{-0.3} \text{ nb}$. See ALTARELLI 85B. 24 ADEVA 89 result is from $\Gamma(ee) = 88 \pm 9 \pm 7$ MeV.

25 ALBAJAR 89 experiment determines values of branching ratio times production cross

26 BAGNAIA 83 interpret their events as either ($Z \rightarrow e^+ e^-$) or ($Z \rightarrow e^+ e^- \gamma$).

 $\Gamma(e^+e^-)/\Gamma(hadrons)$ $\Gamma_1/(\Gamma_9+\Gamma_{10})$ VALUE **EVTS** DOCUMENT ID TECN COMMENT 0.0453±0.0011 OUR FIT 0.0444 ± 0.0031 OUR AVERAGE $0.0448 \pm 0.0030 \pm 0.0012$ 323 DECAMP 90D ALEP Ecm = 90-92.5 GeV 89D MRK2 Ecm = 89.2-93.0 GeV $0.037 \begin{array}{l} +0.016 \\[-4pt] -0.012 \end{array}$ 27 ABRAMS 12 ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet28 DECAMP 0.0472 ± 0.0061 127 90B ALEP Ecm = 90-92.5 GeV

27 ABRAMS 89D have included both statistical and systematic uncertainties in their quoted

 $^{\rm errors.}$ 28 DECAMP 90B have added statistical and systematic errors in quadrature.

 $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ Γ_2/Γ VALUE EVTS DOCUMENT ID TECN COMMENT 0.0336 ± 0.0011 OUR FIT 0.0333 ± 0.0014 OUR AVERAGE ²⁹ ADEVA 0.0345 ± 0.0023 90D L3 Eem = 88.28-94.28 GeV 0.0326 ± 0.0018 585 30 AKRAWY 90E OPAL Ecm = 88.28-95.04 GeV \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet 31 ADEVA 0.036 ±0.002 ±0.001 97 90 L3 Ecm = 89.3-93.3 GeV $0.0328 \pm 0.0034 \pm 0.0017$ 101 AKRAWY 90 OPAL $E_{CM}^{ee} = 89.3-93.3 \text{ GeV}$ $^{29}\,\text{ADEVA}$ 90D result is from $\Gamma(\mu\mu)=87.6\pm0.053$ MeV. Error includes systematics.

 30 AKRAWY 90E result is from $\Gamma(\mu\mu)=$ 82.6 \pm 5.8 MeV and includes both statistical and

31 ADEVA 90 result is from $\Gamma(\mu\mu)=92\pm5\pm3$ MeV. They assume e- μ universality.

 $\Gamma_2/(\Gamma_9+\Gamma_{10})$

DOCUMENT ID TECN COMMENT 0.0474±0.0016 OUR FIT 0.0481 ± 0.0026 OUR AVERAGE $0.0480 \pm 0.0026 \pm 0.0005$ 380 DECAMP 900 ALEP Ecm = 88.3-95.0 GeV $0.053 \begin{array}{l} +0.020 \\ -0.015 \end{array}$ 32 ABRAMS 89D MRK2 Ecm = 89.2-93.0 GeV • • We do not use the following data for averages, fits, limits, etc.
 • • 33 DECAMP 0.0435 ± 0.0060 117 908 ALEP Ecm = 90-92.5 GeV 34 ADEVA 89 L3 Ecm = 89.26-93.27 GeV 32 ABRAMS 89D have included both statistical and systematic uncertainties in their quoted

 $^{\rm errors.}$ 33 <code>DECAMP</code> 90B have added statistical and systematic errors in quadrature.

 $^{34}\,\text{ADEVA}$ 89 result gives $\Gamma(\mu\,\mu)=$ 92 \pm 6 MeV.

 $\Gamma(\mu^+\mu^-)/\Gamma(\text{hadrons})$

$\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$	-)					Γ_2/Γ_1
VALUE 1.05±0.04 OUR FIT	EVTS	DOCUMENT ID		TECN	COMMENT	
1.04±0.30±0.08	19	ALBAJAR	89	UA1	$E_{cm}^{p\bar{p}} = 546,630$	GeV
• • • We do not use	the followi	ng data for aver	ages, f	its, limit	s, etc. • • •	
seen	1	ARNISON	83 C	UA1	Repl. by ALBA.	JAR 89

Gauge & Higgs Boson Full Listings

$\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$				Г	3/Г
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.0333±0.0013 OUR 0.0330±0.0019 OUR					
0.032 ±0.002 ±0.00		³⁵ ADEVA	90 L3	Ecm = 89.3-93.3 Ge	v I
0.0338 ± 0.0025	506 ³	¹⁶ AKRAWY	90€ OPAL	$E_{\rm cm}^{ee} = 88.28 - 95.04$	GeV
• • We do not use	the following	data for averag	es, fits, limits,	etc. • • •	
$0.0333 \pm 0.0037 \pm 0.00$	26 87	AKRAWY	90 OPAL	Ecm = 89.3–93.3 Ge	V
35 ADEVA 90 result i 36 AKRAWY 90E resu systematic errors.				cludes both statistical	and
$\Gamma(\tau^+\tau^-)/\Gamma(\text{hadro})$ VALUE 0.0470±0.0018 OUR	EVTS	DOCUMENT ID		Γ ₃ /(Γ ₉ +Γ	10)
0.0474±0.0024 OUR 0.047 ±0.0021±0.00	AVERAGE	DECAMP	90n ALEP	Eee = 90-92.5 GeV	
		37 ABRAMS		C	, i
0.066 +0.021 -0.017				Ecm = 89.2–93.0 Ge	٠ -
• • • We do not use		Bata for averag		Eee = 90-92.5 GeV	- 1
0.0483±0.0051					l I boto
errors				ncertainties in their qu	oted
38 DECAMP 908 hav		istical and syste	matic errors in		,- I
$\Gamma(e^{\pm}\mu^{\mp})/\Gamma(e^{+}e^{-})$,	OCUMENT IS	TECN "		/F ₁
<u>VALUE</u> <0.07		ALBAJAR 8		<u>OMMENT</u> CD = 546,630 GeV	
					\ /r
Γ(hadrons)/Γ _{total}	EVTS	DOCUMENT ID	TECN	(Γ ₉ +Γ ₁₀	י/ני
0.709±0.009 OUR FI	T				
0.710±0.010 OUR AV 0.693±0.030		39 ABREU	90 DLPH	Eee = 88.3-95.0 Ge	v I
0.687±0.025		11 ADEVA	90D L3	Ecm = 88.28-94.28	
0.725 ± 0.017	26k	¹² AKRAWY	90E OPAL	Ecm = 88.28-95.04	
0.710 ± 0.015	17k	DECAMP	90D ALEP	Citi	V
• • • We do not use	-				
0.687 ± 0.031 ± 0.020		¹⁰ AKRAWY ¹⁰ DECAMP	90 OPAL 90B ALEP	$E_{Cm}^{ee} = 89.3-93.3 \text{ GeV}$ $E_{Cm}^{ee} = 90-92.5 \text{ GeV}$	٧ !
0.689 ± 0.030 39 ABREU 90 result if 40 Obtained branchin	is from Γ(had g ratio using	$\sigma(\text{hadron}) = 1.741 : $	± 0.061 GeV. L2π/m ² (Z)) Γ	$\Gamma(e)\Gamma(h)/\Gamma^2(Z).$	İ
⁴¹ ADEVA 90D result ⁴² AKRAWY 90E resuniversality. Both	ult is from	$\Gamma(hadrons) = 1$.838 ± 0.046	GeV and assumes le	pton
$\Gamma(B\overline{B})/\Gamma_{\text{total}}$					7/و
0.146±0.020 OUR FI 0.17 +0.07 +0.04 -0.06 -0.03		DOCUMENT ID 13 KRAL		$\frac{COMMENT}{E_{CM}^{ee}} = 89.2-93.0$	
				$) = 0.23 + 0.10 + 0.05 \\ -0.08 - 0.04$	
		and found I (B	B)/I (nadrons		
$\Gamma(B\overline{B})/\Gamma(\text{hadrons})$) <u>EVTS</u>	DOCUMENT ID	<u>TECN</u>	Г9/(Г 9+ I <u>СОММЕНТ</u>	10)
0.207±0.028 OUR FI 0.204±0.014±0.024	Т	44 ADEVA	90E L3	Ecm = 88.3-95.0 Ge	v I
44 ADEVA 90E used	isolated muo	ns and found B($B \rightarrow \mu)\Gamma(b\overline{b}$	$) = 41.7 \pm 2.9 \pm 3.0$	MeV.
added in quadratu			s 0.02 due to	uncertainty in B(B -	I
$\Gamma(\pi^0\gamma)/\Gamma_{total}$	<u> </u>	DOCUMENT ID	TECN	COMMENT	. ₁ /Γ
$< 3.9 \times 10^{-4}$	95	AKRAWY		E _{cm} = 88.3-95.0 Ge	v
• • • We do not use		data for averag	ges, fits, limits	, etc. • • •	
$<4.9 \times 10^{-4}$	95	DECAMP	90」ALEP	E ^{ee} _{cm} = 88.3-95.0 Ge	
$\Gamma(\eta\gamma)/\Gamma_{\text{total}}$	CIN	DOCUMENT "	TECH		. ₂ /Γ
<4.6 × 10 ⁻⁴	<u>CL%</u> 95	DECAMP		COMMENT Eee = 88.3-95.0 Ge	v
• • • We do not use		data for averag	ges, fits, limits	, etc. • • •	
$< 5.8 \times 10^{-4}$	95	AKRAWY	90F OPAL	E _{cm} = 88.3–95.0 Ge	V
$\Gamma(\eta'(958)\gamma)/\Gamma_{\text{total}}$				=	₁₃ /Γ
<u>VALUE</u> <2.2 × 10 ^{−4}	<u>CL%</u> 95	DECAMP		<u>COMMENT</u> E _{Cm} = 88.3-95.0 Ge	v l
		= = =/ *****			₄ /Γ
$\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$	CL%	DOCUMENT IL	TECN_	COMMENT	
<3.7 × 10 ⁻⁴	95	AKRAWY		E _{cm} = 88.3–95.0 Ge	eV

$\Gamma(\gamma\gamma\gamma)/\Gamma_{total}$				Γ ₁₅ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 2.8 \times 10^{-4}$	95	AKRAWY	90F OPAL	Ecm = 88.3-95.0 GeV

CHARGE ASYMMETRY IN $e^+ \, e^- \, ightarrow \, \mu^+ \, \mu^-$ (including radiative corrections)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
• • • We do not use the follow	wing data for	averages,	fits	, limits, etc. •	• •		
-25 ±15	(-11)	89.94		ADEVA	90D	L3	
- 9 ±11	(-1)	91.03		ADEVA	90D	L3	
18 ± 8	(+1)	91.28		ADEVA	90D	L3	
9 ±10	(+3)	91.53		ADEVA	90D	L3	
8 ±12	(+11)	93.09		ADEVA	90D	L3	
0.05 ± 0.22	(0.026)	91.14	45	ABRAMS	89D	MRK2	
-43.4 ± 17.0	(-24.9)	52.0	46	BACALA	89	AMY	
-11.0 ± 16.5	(-29.4)	55.0	46	BACALA	89	AMY	
-30.0 ± 12.4	(-31.2)	56.0	46	BACALA	89	AMY	
-46.2 ± 14.9	(-33.0)	57.0	46	BACALA	89	AMY	
-29 ±13	(-25.9)	53.3		ADACHI	88C	TOPZ	
$+$ 5.3 \pm 5.0 \pm 0.5	(-1.2)	14.0		ADEVA	88	MRKJ	
$-10.4 \pm 1.3 \pm 0.5$	(-8.6)	34.8		ADEVA	88	MRKJ	
$-12.3 \pm 5.3 \pm 0.5$	(-10.7)	38.3		ADEVA	88	MRKJ	
$-15.6 \pm 3.0 \pm 0.5$	(-14.9)	43.8		ADEVA	88	MRKJ	
-1.0 ± 6.0	(-1.2)	13.9		BRAUNSCH		TASS	
$-9.1 \pm 2.3 \pm 0.5$	(-8.6)	34.5		BRAUNSCH	88D	TASS	
$-10.6 \ \ \begin{array}{c} + & 2.2 \\ - & 2.3 \end{array} \ \pm 0.5$	(-8.9)	35.0		BRAUNSCH	88D	TASS	
$-17.6 \begin{array}{c} + & 4.4 \\ - & 4.3 \end{array} \pm 0.5$	(-15.2)	43.6		BRAUNSCH	880	TASS	
$-4.8 \pm 6.5 \pm 1.0$	(-11.5)	39		BEHREND	87c	CELL	
$-18.8 \pm 4.5 \pm 1.0$	(-15.5)	44		BEHREND	87 C	CELL	
+ 2.7 ± 4.9	(-1.2)	13.9		BARTEL	86 C	JADE	
$-11.1 \pm 1.8 \pm 1.0$	(-8.6)	34.4		BARTEL	86 C	JADE	
$-17.3 \pm 4.8 \pm 1.0$	(-13.7)	41.5		BARTEL	8 6 C	JADE	
$-22.8 \pm 5.1 \pm 1.0$	(-16.6)	44.8		BARTEL	86c	JADE	
$-6.3 \pm 0.8 \pm 0.2$	(-6.3)	29		ASH	85	MAC	
$-$ 4.9 \pm 1.5 \pm 0.5	(-5.9)	29		DERRICK	85	HRS	
4-							

 $^{^{45}}$ ABRAMS 89D asymmetry includes both 9 μ^+ μ^- and 15 τ^+ τ^- events.

CHARGE ASYMMETRY IN $e^+ \, e^- \, ightarrow \, au^+ \, au^-$ (including radiative corrections)

ASYMMETRY (%)	STD. MODEL	√s (GeV)	DOCUMENT ID	TECN
• • • We do not use the f	following data fo	or averages	, fits, limits, etc. • • •	
-18.4 ± 19.2	(-24.9)	52.0	⁴⁷ BACALA 89	AMY
-17.7 ± 26.1	(-29.4)	55.0	⁴⁷ BACALA 89	AMY
-45.9 ± 16.6	(-31.2)	56.0	⁴⁷ BACALA 89	AMY
-49.5 ± 18.0	(-33.0)	57.0	⁴⁷ BACALA 89	AMY
-20 ±14	(-25.9)	53.3	ADACHI 88	c TOPZ
$-10.6 \pm 3.1 \pm 1.5$	(-8.5)	34.7	ADEVA 88	MRKJ
$-8.5\pm6.6\pm1.5$	(-15.4)	43.8	ADEVA 88	MRKJ
$-6.0\pm2.5\pm1.0$	(8.8)	34.6	BARTEL 85	F JADE
$-11.8 \pm 4.6 \pm 1.0$	(14.8)	43.0	BARTEL 85	F JADE
⁴⁷ BACALA 89 systematic	c error is about	5%.		

CHARGE ASYMMETRY IN $e^+e^- \rightarrow c\overline{c}$

ASYMMETRY (%) • • We do not use the following the followi	STD. MODEL llowing data fo	r averages, 1	DOCUMENT ID	TECN
$-12.8 \pm 4.4 \pm 4.1$	(-13.6)	35	ELSEN 90	JADE
$-10.9 \pm 12.9 \pm 4.6$	(-23.2)	44	ELSEN 90	JADE
-14.9± 6.7	(-13.3)	35	OULD-SAADA 89	JADE

CHARGE ASYMMETRY IN $e^+e^- \rightarrow b\bar{b}$

Experimental and Standard Model values are somewhat event-selection dependent. Standard Model expectations contain some assumptions on $B - \overline{B}{}^{0}$ mixing.

ASYMMETRY (%)	STD. MODEL	(GeV)	DOCUMENT ID	TECN
• • • We do not use the follow	wing data for	averages, fit	s, limits, etc. • •	•
$-16.6\pm~7.7\pm~4.8$	(-24.3)	35	ELSEN 9	3 JADE
$-33.6 \pm 22.2 \pm 5.2$	(-39.9)	44	ELSEN 9) JADE
3.4 ± 7.0 ± 3.5	(-16.0)	29.0	BAND 8	9 MAC
-72 ± 28 ± 13	(-56)	55.2	SAGAWA 8	9 AMY

⁴⁶BACALA 89 systematic error is about 5%.

Gauge & Higgs Boson Full Listings Z, Higgs Bosons — H^0 and H^{\pm}

CHARGE ASYMMETRY IN $e^+e^- \rightarrow q\overline{q}$

Summed over five lighter flavors.

Experimental and Standard Model values are somewhat event-selection dependent. Standard Model expectations contain some assumptions on $B - \overline{B}^0$ mixing.

ASYMMETRY (%)	STD. MODEL	(GeV)	DOCUMENT ID	TECN
• • • We do not use th	e following data f	or averages,	fits, limits, etc. • • •	
6.0 ± 1.3	(5.0)	34.8	GREENSHAW 89	JADE
8.2 ± 2.9	(8.5)	43.6	GREENSHAW 89	JADE

REFERENCES FOR Z AARNIO 90 CERN-EP/90-31 ABREU 90 (DELPHI Collab.) PL B (to be pub.) +Abreu, Adam, Adami+ 90 CERN-EP/90-32 ADEVA PL B (to be pub.) (DELPHI Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (L3 Collab.) (OPAL Collab.) (OPAL Collab.) +Adriani, Aguilar-Benitez, Akbari+ +Adriani, Aguilar-Benitez, Akbari+ +Adriani, Aguilar-Benitez, Akbari+ +Adriani, Aguilar-Benitez, Akbari+ +Alexander, Allison, Allport, Anderson-+Alexander, Allison, Allport+ PL B236 109 PL B237 136 ADEVA ADEVA PL B238 (L3 no. PL B (L3 no.6) PL B235 379 PL B (to be pub.) ADEVA PL B (to be pub.) (OPAL Collab.) +Alexander, Allison, Allport+ CERN-EP. PL B (to be pub.) (UA2 Collab.) ALITTI +Ansari, Ansorge, Autiero+ CERN-EP/90-22 DECAMP 90B DECAMP 90D DECAMP 90J PL B234 399 PL B235 399 PL B (to be pub.) +Deschizeaux, Lees, Minard, Crespo+ +Deschizeaux, Lees, Minard, Crespo+ +Deschizeaux, Goy, Lees+ (ALEPH Collab.) (ALEPH Collab.) (to be pub.) (JADE Collab.) PRL 64 1211 PL B231 539 PRL 62 613 PRL 63 720 PRL 63 724 +Alison, Ambrus, Barrow+ +Abrams, Adolphsen, Averill, Ballam+ +Abreu, Adam, Adrianos, Adye+ +Amidei, Apollinari, Ascori, Atac+ +Amidei, Apollinari, Atac, Auchincloss+ AARNIO ABE ABE (CDF Collab.) (CDF Collab.) (CDF Collab.) (CDF Collab.) (Mark II Collab.) (Mark II Collab.) (Mark II Collab.) (OPAL Collab.) (OPAL Collab.) (UAX Collab.) (AMY Collab.) (AMY Collab.) (ALEPH Collab.) (JADC Collab.) (AMY Collab.) (AMY Collab.) (AMY Collab.) (AMY Collab.) (AMY Collab.) (CMArk.) (COllab.) (UAZ Collab.) (UAZ Collab.) (UAZ Collab.) (CELLO Collab.) +Amidei, Apollinari, Atac, Auchincloss+ Adolphsen, Aleksan, Alexander, Allen+ +Adolphsen, Averill, Ballam, Barish+ +Adolphsen, Averill, Ballam, Barish+ +Adriani, Aguilar-Benitez, Akbari+ +Alexander, Allison, Allport+ +Allorwa, Alloder, Amison, Astbury+ +Malchow, Sparks, Imlay, Kirk+ -Camporesi, Chadwick, Defino, Desang +Deschizeaux, Lees, Minard, Crespo+ +Warming, Allison, Ambrus, Barlow+ +Warming, Allison, Ambrus, Barlow+ ABRAMS PRL 63 724 PRL 63 2173 PRL 63 2780 PL B231 509 PL B231 530 ZPHY C44 15 PL B218 369 PL B231 519 7PHY C42 1 ARRAMS 89B 89D 89 89 89 89 ABRAMS ABRAMS ADEVA AKRAWY ALBAJAF BACALA BAND DECAME 89 89 + Deschizeaux, Lees, Minard, Crespo + Warming, Allison, Ambrus, Barlow + Nozaki, Blanis, Bodek, Bud+ + Allison, Ambrus, Barlow, Bartel+ + Lim, Abe, Fuji, Higashi+ + Ahlara, Dijsktra, Enomoto, Fujii+ + Anderhub, Ansari, Becker+ Hagnala, Banner, Battiston+ + Bagnala, Banner, Battiston+ + Bagnala, Banner, Battiston+ + Buerger, Criegee, Dainton+ + Buerger, Cords, Fest, Haidt+ Bartel, Bocker, Bowdery, Cords+ Bartel, Cords, Dittman, Eichler+ + Elis, Martinelli + Band, Blume, Camporesi+ + Becker, Cords, Fest+ + Banner, Battiston, Blech+ + Astbury, Aubert, + Astbury, Aubert, + Astbury, Aubert, + Astbury, Aubert, + Bacch+ + Astbury, Aubert, Bacch+ + Astbury, Aubert, Bacch+ +Warming, Allison, Ambrus, Barlow+ GREENSHAW MORI OULD-SAADA PL B218 499 ZPHY C44 567 ZPHY C44 567 PRL 63 2341 PL B208 319 PR D38 2665 ZPHY C40 163 PL B196 440 PL B191 209 ZBHY C20 1 ADACHI ADEVA BRAUNSCH... ANSARI ANSARI BEHREND APPEL ADNISON ZPHY C30 1 PL 166B 484 ZPHY C30 371 ZPHY C26 507 PL 108B 140 ZPHY C27 617 PRL 55 1831 PL 161B 188 PR D31 2352 PL 147B 241 ZPHY C24 1 ZPHY C24 1 (UA2 Collab. (UA1 Collab. ARNISON BARTEL (IADE Collab. (JADE Collab. (JADE Collab. , FNAL, FRAS 85B Also ALTARELLI ASH BARTEL DERRICK ARNISON BAGNAIA I, FNAL, FRAS (MAC Collab. (JADE Collab. (HRS Collab. (UA1 Collab. (UA2 Collab. (UA1 Collab. PL 126B 398 PL 129B 273 PL 129B 130 + Astbury Aubert, Bacci+ Battiston, Bloch+ (UA1 Collab.) (UA2 Collab.)

Searches for Higgs Bosons — H^0 and H^{\pm}

NOTE ON THE HIGGS BOSON

The Standard Model¹ contains one neutral scalar Higgs boson, which is a remnant of the mechanism that breaks the $SU(2) \times U(1)$ symmetry and generates the W and Z boson masses. The Higgs couples to quarks and leptons of mass m_f with a strength $gm_f/2M_W$. Its coupling to W and Z bosons is of strength g, where g is the coupling constant of the SU(2) gauge theory. Consequently its coupling to stable matter is very small, and its production and detection in experiments is very difficult. An exception is its production in the decay of the Z boson. Since large numbers of Z's can be produced and the coupling of the Z to the Higgs is unsuppressed, experiments at LEP are now able to rule out a significant range of Higgs masses.

If the Higgs mass is very large, the couplings of the Higgs to itself and to longitudinally polarized gauge bosons become large. Requiring that these couplings remain weak enough so that perturbation theory is applicable implies that $M_H \stackrel{<}{\sim} 1$ TeV.² While this is not an absolute bound, it is an indication of the mass scale at which one can no longer speak of an elementary Higgs boson. This fact is made more clear if one notes that the width of the Higgs boson is proportional to the cube of its mass and that a boson of mass 1 TeV has a width of 500 GeV.

It is believed that scalar field theories of the type used to describe Higgs self-interactions can only be effective theories valid over a limited range of energies if the Higgs self-coupling and hence Higgs mass is nonzero. A theory of this type that is valid at all energy scales must have zero coupling. The range of energies over which the interacting theory is valid is a function of the Higgs self-coupling and hence its mass. An upper bound on the Higgs mass can then be determined by requiring that the theory be valid (i.e., have a nonzero value of the renormalized Higgs self-coupling) at all scales up to the Higgs mass. Non-perturbative calculations using lattice⁴ gauge theory which can be used to compute at arbitrary values of the Higgs mass indicate that $M_H < 640$ GeV.

If the Higgs mass were small, then the vacuum (ground) state with the correct value of M_W would cease to be the true ground state of the theory.⁵ A theoretical constraint can then be obtained from the requirement that this is not the case, i.e., that the our universe is in the true minimum of the Higgs potential. The constraint can be parameterized approximately as⁶

$$M_H > 1.85 (m_{\rm top} - 85 \text{ GeV})$$
.

If the top mass lies below 85 GeV and above the experimental limit of 77 GeV,⁷ there is no constraint. This constraint may be too restrictive. Strictly speaking we can only require that the predicted lifetime of our universe, if it is not at the true minimum of the Higgs potential, be longer than its observed age. This constraint can be approximated by^{8,9}

$$M_H > (m_{\rm top} - 85~{\rm GeV})/3$$
 : for $M_H < 30~{\rm GeV}$

$$M_H > 5.9 (m_{\text{top}} - 170 \text{ GeV})$$
 : for $M_H > 30 \text{ GeV}$

Experiments at LEP¹⁰ are able to exclude a large range of Higgs masses. They search for the decay $Z \to HZ^*$. Here Z^* refers to a virtual Z boson that can appear in the detector as e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $\nu\bar{\nu}$ (i.e., missing energy) or hadrons. If $M_H > 2m_\mu$, the lifetime is short, the Higgs decays close to the production vertex, and a search for a final state with at least two charged tracks and missing energy is able to rule out masses from 212 MeV to 24 GeV.¹⁰ For Higgs bosons of mass less than 212 MeV where the decay is largely to e^+e^- and the lifetime is long, a search for separated vertices can be made. Such a search rules out the range of masses from 32 MeV to 212 MeV. Higgs bosons of mass below 32 MeV are too long lived to be seen.¹⁰

A very light Higgs boson would produce an additional long range component to the nuclear force. No such component has been seen and the constraint 11,12 $M_H > 15$ MeV can be

Gauge & Higgs Boson Full Listings

Higgs Bosons — H^0 and H^{\pm}

obtained. A light Higgs could be emitted in K meson decay via the process $K \to \pi H$. If the Higgs is lighter than $2m_\mu$, the final state will be $\pi e^+ e^-$ or $\pi \gamma \gamma$ (the former has at least twice the rate of the latter provided it is kinematically accessible)^{12,13} The branching ratio $K \to \pi H$ has been computed.^{14,15} Its value depends on the unknown top quark mass and the elements of the Cabibbo-Kobayashi-Maskawa matrix. The hadronic matrix element of this quark decay operator must then be evaluated; this gives rise to an additional uncertainty. Evaluation¹⁶ of this for $M_H < 2m_\mu$ gives $B(K \to \pi H) \gtrsim 4.5 \times 10^{-6}$.

The range $M_H < 26$ MeV is ruled out by an experiment at BNL¹⁷ which looks for $K^{\pm} \to \pi^{\pm} + nothing$. If the Higgs mass is greater than 26 MeV, the Higgs decays within the detector and no limit can be set.

Barr et al.¹⁸ at CERN search for $K_L^0 \to \pi^0 H \to \pi^0 e^+ e^-$. They set a limit on the product branching ratio $B(K \to \pi H)B(H \to e^+ e^-)$ of less than 10^{-7} . This suffices to exclude Higgs bosons between 15 MeV and $2m_\mu$. The experiment has no acceptance below this range due in part to the long lifetime of the Higgs boson.

In summary, a Standard Model Higgs boson of mass less than 24 GeV is unambiguously excluded: a significant step forward from the situation that prevailed when the last version of this note was written.

Extensions of the standard model, such as those based on supersymmetry. 19 can have more complicated spectra of Higgs bosons. The simplest extension has two Higgs doublets whose neutral components have vacuum expectation values v_1 and v_2 , both of which contribute to the W and Z masses. The physical particle spectrum contains one charged Higgs boson (H^{\pm}) , two neutral scalars (H_1^0, H_2^0) , and one pseudoscalar (P^0) if CP is conserved in the scalar sector.²⁰ In the simplest version of the supersymmetric model one of these neutral scalars has mass less than the Z boson. In models where all fermions of the same electric charge receive their masses from only one of the two doublets (v_2 gives mass to the charge 2/3 quarks. while v_1 gives mass to the charged leptons and the charge 1/3quarks), there are, as in the standard model, no flavor-changing neutral currents at lowest order in perturbation theory. The H_i^0 and P^0 couplings to fermions depend on v_2/v_1 and are either enhanced or suppressed relative to the couplings in the standard model. Experiments at LEP are able to exclude neutral Higgs particles in these models if their masses are between 50 MeV and 20 GeV if $v_2/v_1 > 0.6$ (Ref. 21).

Searches for charged Higgs bosons exclude them if their mass is below 35 GeV²² independent of the branching fractions to $\nu\tau$, $c\bar{s}$, and $c\bar{b}$.

References

 S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); and A. Salam, in "Elementary Particle Theory," W. Svartholm, ed., Almquist and Wiksell, Stockholm (1968); and S.L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970).

- M. Veltman, Ann. Phys. (NY) B8, 475 (1977); and B.W. Lee, C. Quigg, and H. Thacker, Phys. Rev. D16, 1519 (1977).
- L. Maiani, G. Parisi, and R. Petronzio, Nucl. Phys. B136, 115 (1978); and R. Dashen and H. Neuberger, Phys. Rev. Lett. 50, 1897 (1983).
- G. Bhanot and K. Bitar, Phys. Rev. Lett. 61, 798 (1988);
 J. Kuti, L. Lin, and Y. Shen, Phys. Rev. Lett. 61, 678 (1988).
- A.D. Linde, JETP Lett. 23, 64 (1976) [Pis'ma Zh. Eksp. Teor. Fiz. 23, 73 (1976)]; and S. Weinberg. Phys. Rev. Lett. 36, 294 (1976).
- M. Lindner, M. Sher, and H.W. Zaglauer, Phys. Lett. B228, 527 (1988); and M.J. Duncan, R. Phillipe, and M. Sher, Phys. Lett. 153B, 165 (1985).
- 7. F. Abe et al., Phys. Rev. Lett. 64, 142 (1990).
- 8. G. Anderson, preprint LBL-28261 (1990).
- 9. P.B. Arnold, Phys. Rev. **D40**, 613 (1989).
- D. Decamp et al., CERN-EP/89-174, Phys. Lett. B (to be publ.); and M.Z. Akrawy et al., Phys. Lett. B236 (to be publ.).
- 11. R. Barbieri and T.E.O. Erikson, Phys. Lett. 57, 270 (1975).
- J. Ellis, M.K. Gaillard, and D.V. Nanopoulos, Nucl. Phys. B106, 292 (1976).
- A.J. Vainshtein, V.I. Zakharov, and M.A. Shifman, Sov. Phys. Usp. 23, 429 (1980) [Usp. Fiz. Nauk 131, 537 (1980)].
- 14. R.S. Willey and H.L. Yu, Phys. Rev. D26, 3287 (1982).
- 15. B. Grzadkowski and P. Krawczyk, Z. Phys. C18, 43 (1983).
- 16. R.S. Willey, Phys. Lett. B173, 480 (1986).
- 17. M.S. Atiya et al., Phys. Rev. Lett. 64, 21 (1990).
- G.D. Barr et al., CERN-EP/89-156, Phys. Lett. B (to be publ.).
- For a review of these models see, for example, I. Hinchliffe, Ann. Rev. Nucl. and Part. Sci. 36, 505 (1986).
- 20. J.F. Gunion and H.E. Haber, Nucl. Phys. 278, 449 (1986).
- 21. D. Decamp et al., CERN-EP/89-168, Phys. Lett. **B**. (to be publ.), and CERN-EP/90-16, Phys. Lett. **B** (to be publ).
- 22. D. Decamp et al., Phys. Lett. B (to be publ.).

H⁰ (Higgs Boson) MASS LIMIT

These limits apply to the Higgs boson of the three-generation Standard Model with the minimal Higgs sector. Limits that depend on the $Ht\bar{t}$ coupling may also apply to a Higgs boson of an extended Higgs sector whose couplings to up-type quarks are comparable to or larger than those of the standard one-doublet model H^D couplings.

Some of the experiments for a light Higgs utilize its coupling with nucleons. We parameterize the Higgs-nucleon coupling (which is dominantly isosclar) as $g_{HNN}=\eta_{HNN}=\eta_{HNN}=\eta_{HNN}=\eta_{HNN}=0.22$ assuming three heavy flavors. More recently, T.P. Cheng [Phys. Rev. D38, 2869 (1988)], H.-Y. Cheng [Phys. Lett. B219, 347 (1989)], and Barbieri and Curci [Phys. Lett. B219, 503 (1989)] took into account the strange-quark content of the proton as well as the heavy quark effects, and derived $\eta_{HNN}=0.56$.

For early Higgs search papers, see J. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B106, 292 (1976).

For recent and comprehensive reviews, see Gunion, Haber, Kane, and Dawson, "The Higgs Hunter's Guide," (Addison-Wesley, Menlo Park, CA, 1990), M. Sher, Phys. Rep. 179, 273 (1989), and R.N. Cahn, Rep. Prog. Phys. 52, 389 (1989).

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>24 (CL = 95%) O					
none 3.0-19.3	95 1	^{.2} AKRAWY	90c	OPAL	$Z \to H^0 + (e^+ e^-)$
		_			$\kappa^{\pm} \xrightarrow{\mu^{\pm} \mu^{-}, \nu \bar{\nu}}$
> 0.026					
none 0.012-0.211	90	⁴ BARR	90	CNTR	$\kappa_I^0 \rightarrow \pi^0 H^0$
					$(H^0 \to e^+ e^-)$
> 0.32		⁵ DAWSON	90	RVUE	K decays

none 0.032-15	95	2,6 DECAMP 90 ALEP $Z \rightarrow H^0 + (e^4)$	⊢e-,
		$\frac{\mu^+\mu^-}{a\overline{a}}$, τ^+	τ^- , $\nu \overline{\nu}$,
none 11-24	95	⁷ DECAMP 90H ALEP $Z \rightarrow H^0 + (e^+ \mu^-, \nu \overline{\nu})$	-e-,
none 0.0012-0.052	90	DAVIER 89 BDMP $e^- Z \rightarrow e H^0$. $(H^0 \rightarrow e^+)$	Z e-)
none 0.010-0.10	90	⁸ EGLI 89 CNTR $\pi^+ \rightarrow e^+ \nu H$ ($H^0 \rightarrow e^+$	
> 0.010 none 0.003-0.012	68 95	9 BELTRAMI 86 SPEC Muonic atoms 10 FREEDMAN 84 CNTR $^{+*}$ $^{-}$ He $^{+0}$ $^{-}$ $^{-}$ $^{+}$	
none 0.00103-0.00584		11 MUKHOPAD 84 RVUE $0^* \xrightarrow{H^0 \to e^+} 0H^0$	
• • • We do not use th	e followi	g data for averages, fits, limits, etc. • • •	-)
none 0.21-3.57		12 DAWSON 90 RVUE $B \rightarrow \mu^+ \mu^- > B \rightarrow K (\mu^-)$	μ^{-}
> 0.3		$\pi^+\pi^-, K^+$ 13 LEUTWYLER 90 RVUE $K^+ \rightarrow \pi^+H^0$	K-)
none 0.21-1.0	90	14 ALAM 89B CLEO $B \rightarrow H^0 K$, (F)	
none 1.0-3.6	90	¹⁴ ALAM 89B CLEO $B \rightarrow H^0 X$	π) μ ⁻)
none 0.29-0.57	90	¹⁵ ALBRECHT 89 ARG $\Upsilon(1S) \rightarrow H^0$. $(H^0 \rightarrow \pi^+$	γ
none 0.22-0.32		16 ATIYA 89 CNTR $K^+ \xrightarrow{\pi^+} \pi^+ H^0$	ŕ
> 0.28		¹⁷ CHENG 89 RVUE $K^{\pm} \rightarrow \pi^{\pm} H$,
none 3.6-4.6		¹⁸ EILAM 89 RVUE $B \rightarrow H^0 X$, $(H^0 \rightarrow \mu^+)$	\
> 0.018		¹⁹ GRIFOLS 89 RVUE $\sigma_{tot}(nPb)$	μ)
none 0.211-0.700		²⁰ LINDNER 89 THEO Vacuum stabilit 21 RABY 89 RVUE $B \rightarrow \mu^+ \mu^-$	(
none 0.07-0.21	90	²² SNYDER 89 MRK2 $\xrightarrow{\text{$M(\text{top})}}$ >80 $\xrightarrow{\text{$M(\text{top})}}$ $\xrightarrow{\text{$H^0$ X}}$ $\xrightarrow{\text{$(H^0 \to e^+)}}$	GeV
none 0.015-0.04	90	²³ YEPES 89 RVUE $\pi^{\pm} \rightarrow e^{\pm} \nu H^{\bullet}$	J
none 0.03-0.20		24 YEPES 89B RVUE $pN \rightarrow H^0 \times (H^0 \rightarrow e^+)$	
> 0.36		²⁵ CHIVUKULA 88 RVUE $\kappa \rightarrow \pi^+ H^0$	e)
none 0.00103-3.57		²¹ CHIVUKULA 88 RVUE $B \rightarrow H^0 X$, $m(top) > 80$	I GeV
none 2-3.7		21 GRINSTEIN 88 RVUE $B \rightarrow H^0$ X, $m(top) > 80$	
none 0.21-5	90	LEE-FRANZINI 88 CUSB Υ (15,35) \rightarrow	
	90	27 BAKER 87 CALO $K^{\pm} \xrightarrow{\pi} \pi^{\pm} H^{0}$	e-)
		²⁸ DRUZHININ 87 ND $\phi \rightarrow \gamma H^0$,
none 0.05-0.211		WILLEY 86 RVUE $K^{\pm} \xrightarrow{\pi} \pi^{\pm} H^0$,
		30 HOFFMAN 83 CNTR $\pi p \rightarrow nH^0$ $(H^0 \rightarrow e^+)$	•
		31 DZHELYADIN 81 $\eta' \xrightarrow{\eta} $	
		32 WITTEN 81 COSM	i+ <i>)</i>
		³² GUTH 80 COSM	
		³² SHER 80 COSM	
> 0.006		33 BARBIERI 75 RVUE nN → nN	

 1 AKRAWY 90c based on 825 nb $^{-1}$. The decay $Z \to H^0 \,
u \overline{
u}$ with $H^0 \to au \overline{ au}$ or $q \, \overline{q}$ provides the most powerful search means, but the quoted results sum all channels ²These limits do not apply to pseudoscalar Higgs bosons (supersymmetric models, for

example, have a pseudoscalar boson in addition to scalars). ³ ATIYA 90 sets limits on B($K^{\pm} \rightarrow \pi^{\pm} H^{0}$) varying from $< 6.4 \times 10^{-9}$ for $m(H^{0}) \approx$

0 MeV to $< 10^{-6}$ for $m(H^0) = 26$ MeV.

⁴ BARR 90 set $m(H^0)$ -dependent limits on $B(K_L^0 \to \pi^0 H^0)$ in the region where $B(H^0 \to e^+e^-) \approx 1$. The limit varies from $B(K_L^0 \to \pi^0 H^0) < 10^{-7}$ at $m(H^0) = 12$ MeV to $< 2 \times 10^{-8}$ for 50 $\le m(H^0) \le 211$ MeV. BARR 90 allow for nonzero H^0 lifetime.

⁵ Based on ASANO 81B, YAMAZAKI 84, BAKER 87, ATIYA 89, and BARR 90. DAW-SON 90 used theoretical calculations and various assumptions such as m(t) > 80 GeV and Im $V_{td}^*V_{ts} > 0.2 \sin^5\theta_C$.

⁶ DECAMP 90 limits based on 11,550 Z events. The decay Z \rightarrow $H^0 \, \nu \overline{\nu}$ provides the most powerful search means, but the quoted results sum all channels. Different analysis methods are used for $m(H^0) < 2m(\mu)$ where Higgs would be long-lived. The 99% confidence limits exclude $m(H^0) = 0.040$ –12 GeV.

 7 DECAMP 90H limits based on 25,000 $Z\to\,$ hadron events. 8 EGLI 89 give a limit for B($\pi^+\to\,e^+\nu\,H^0$) B($H^0\to\,e^+\,e^-$) ranging from 10 $^{-9}$ to 10^{-11} for the mass range 10^{-110} MeV. The theoretical prediction they use is too large by a factor of 162/49 (see DAWSON 89, DAWSON 90, and CHENG 89). The lower limit given above is reevaluated by us.

 $^9\,\mathrm{BELTRAMI}$ 86 measured the wavelengths of the $3d_{5/2}-2p_{3/2}$ X-ray transitions in muonic ²⁴ Mg and ²⁸Si and found the deviation from QED $\delta\lambda/\lambda = (-0.2 \pm 3.1) \times 10^{-6}$. The listed limit uses $\eta_{HNN} = 0.23$. The experiment excludes $m(H^0) \lesssim 1$ MeV by more

than 3-s.d. 10 FREEDMAN 84 is ANL experiment with dynamitron proton bombarding tritium to form He*. $\eta_{HNN}=0.30$ is used to derive the limit . They also reanalyze KOHLER 74 He* data to find no mass region is excluded by that data. See also footnote for MUKHOPAD-HYAY 84 below

 11 MUKHOPADHYAY 84 examine KOHLER 74 He* and C* data. Claim that no mass region can be excluded by 74 He* data since He* decay width to proton is large [B(He* \rightarrow ${
m H}^0{
m He})=3.4\times 10^{-11}$ is very small]. Above limit is from KOHLER 74 O* decay data.

ı

- 12 Based on ALTHOFF 84G, ALAM 89B, and ALBRECHT 87D. Some processes considered require the assumption B($B \rightarrow H^0 K$)/B($B \rightarrow H^0 X$) >0.01. Other processes require theoretical assumptions regarding B($H \rightarrow \pi^+\pi^-$) when considering masses in the
- interval 0.9–1.2 GeV. 13 LEUTWYLER 90 give a consistent analysis of the $K \to \pi H^0$ amplitude based on chiral theory and find that all contributions except the t-quark loop are unimportant numerically provided the t-quark mass is of order or bigger than 100 GeV. Hence, a light Higgs can
- 14 ALAM 898 searched for inclusive and exclusive decays of B mesons into H^0 and can exclude the mass range $2m(\mu)-2m(\tau)$ with a wide margin provided $m(t)\gtrsim m(W)$, possibly except for masses near $\chi_0(3410)$, where the mixing effect can reduce B($H^0 \rightarrow$ $\mu^{+}\mu^{-}$) significantly.
- ¹⁵ ALBRECHT 89 give a limit B(\Upsilon(1S) \rightarrow $H^0\gamma$) B($H^0 \rightarrow \pi^+\pi^-$) < 3-4.5 × 10⁻⁵ for $m(H^0)=290$ –570 MeV, which is lower than the predition including first order QCD corrections and assuming B($H^0\to\pi^+\pi^-$) < 45%. 16 ATIYA 89 give a limit B($K^+\to\pi^+H^0$)·B($H^0\to\mu^+\mu^-$) < 1.5 × 10⁻⁷ (90% CL) for
- $m(H^0) = 220-320$ MeV, which is lower than the prediction unless there is an accidental cancellation in the CP-conserving part of the amplitude and the CP-violating part is unexpectedly small. See WILLEY 89 and CHENG 89. ¹⁷ CHENG 89 concludes even if real part of $K^+ \to \pi^+ H$ amplitude is cancelled accidentally,
- the imaginary contribution alone rules out $m(H) < 2m(\pi)$. 18 ELAM 89 assume m(top) > 90 GeV and vary $|V_{ub}/V_{cb}|^2$ from 0 to 0.026.
- ¹⁹ GRIFOLS 89 use the neutron-lead total cross-section measurement at kinetic energies of 50 eV 50 keV by SCHMIEDMAYER 88 and argue that the agreement of the measured energy dependence with the prediction of a hard-core potential model is lost by light-Higgs exchange. The limit of 18 MeV is obtained for $\eta_{HNN}=0.56$ and is reduced to 12 MeV for $\eta_{HNN} = 0.22$.
- 20 LINDNER 89 require vacuum stability and numerically solve the renormalization equations to two-loop order. If m(top)=100, 110, 120 GeV, then m(Higgs)>20, 34, 50 GeV. However, it is possible that the vacuum is not stable but is very long-lived.
- 21 Limits assume m(top) > 80 GeV and $|V_{ts}V_{tb}^*/V_{cb}| \approx 1$. CHIVUKULA 88 excludes $m(H^0)$ between 2m(e) and $2m(\tau)$ from the limits on $B \to ~\mu^+~\mu^-~+~$ X by taking the $B(H^0 \to \mu^+\mu^-)$ estimate of VOLOSHIN 86. GRINSTEIN 88 argues that this estimate of VOLOSHIN 86 is unreliable, and excludes $m(H^0)$ between 2 GeV and 3.7 GeV where perturbative QCD is used to estimate B($H^0 \rightarrow \mu^+ \mu^-$).
- $22\,\mathrm{SNYDER}$ 89 exclude the mass range 70–210 MeV with a wide margin provided that m(t) $\gtrsim m(W)$. A limit B(B $\rightarrow H^0$ X)·B($H^0 \rightarrow e^+e^-$) < 22% (90% CL) is given for $m(H^0) = 50 \text{ MeV}.$
- 23 YEPES 89 reanalyzed a BNL beam-dump experiment (JACQUES 80) which looked for electron pairs in 7 foot BC downstream from the dump and found none
- 24 YEPES 89B reanalyzed a Fermilab neutral-hyperon beam experiment (BECHIS 78), which looked for a long-lived neutral lepton and found none, and argues that their limit is many orders of magnitude lower than expected from low-mass Higgs bremsstrahlung production followed by the decay to e^+e^-
- 25 CHIVUKULA 88 uses chiral perturbation theory to estimate $K \rightarrow \pi^+ H^0$ amplitudes with a conservative sign assignment for the relative sign of the $\Delta \it{l} = 1/2$ term, and exclude $m(H^0)$ below 0.36 GeV barring cancellation among terms, by using the limits on $K\to \pi^+$ X with X = $\mu^+\mu^-$, e^+e^- , or missing particles. For a criticism see on $K \rightarrow \pi^+$ DAWSON 90.
- 26 LEE-FRANZINI 88 presents updated results from the CUSB experiment (see FRANZINI 87 for more details). First order QCD correction included with $\alpha_{\rm S}\sim 0.2$ ($\Lambda=0.2$ GeV and n(f)=4). The order $\alpha_{\rm S}$ correction reduced the rate for $\Upsilon(1S)\to H^0\gamma$ by a factor of 2 (yielding these limits). The impact of order $\alpha_{\rm S}^2$ and of relativistic corrections are unknown. If they amounted to another factor of 2 suppression, the above limit would be essentially eliminated.
- 27 BAKER 87 sets limit B($K^{\pm} \rightarrow \pi^{\pm} H^0$)B($H^0 \rightarrow e^+e^-$) $< 8 \times 10^{-7}$ at CL=90% for $m(H^0) < 100$ MeV if H^0 travels much less than 1.4 cm in the lab frame $(p(K^+)$ = 5.8 GeV). The expected lifetime of the standard H^0 is too long to be effectively detected by the experiment and their limit on the branching ratio is significantly weakened accordingly. In view of the uncertainty in the theoretical prediction for B($K \to \pi H$), no definite conclusion can be drawn from the result. See also DAWSON 90. 28 DRUZHININ 87 sets limit B($\phi \to \gamma H^0$)B($H^0 \to \pi^0 \pi^0$) $< 8 \times 10^{-5}$ at CL=90% for
- $m(H^0) = 0.6-1$ GeV which is still far from the standard Higgs model prediction and does not exclude the existence of light Higgs bosons.
- 29 WILLEY 86 re-examined the theoretical estimate of the decay $K^\pm \to \pi^\pm \, H^0$ rate via the one-loop $s\,d\,H^0$ coupling. The experimental bound ${\tt B}(K \to \pi\mu\mu) < 2.4 imes 10^{-6}$ is not
- strong enough to rule out $2m(\mu) < m(H^0) < 2m(\pi^0)$. For a criticism see DAWSON 90. 30 HOFFMAN 83 looked for e^+e^- peak from Higgs produced in $\pi^-p H^0$ n at 300 MeV/c. Set CL = 90% limit $d\sigma/dt$ B(e^+e^-) < 3.5×10⁻³² cm²/GeV² for 140 < $m(H^0)$
- < 160 MeV, which does not exclude H^0 with the standard one-doublet-model couplings.
 31 DZHELYADIN 81 obtained B($\eta' \to \eta \mu^+ \mu^-$) < 1.5 × 10⁻⁵ (CL = 90%), and argued that it excludes ${\it H}^0$ with the standard one-doublet-model couplings in $\mu^+\,\mu^-$ channel for $m(H^0) = 0.25 - 0.409$ GeV. However, the number 0.409 is not well-determined due to theoretical uncertainties in B($H^0 \rightarrow \mu^+ \mu^-$).
- 32 Limits from cosmological considerations of SU(2)×U(1) symmetry-breaking phase transition occurring only after extreme supercooling, resulting in too high a ratio of entropy to baryon number. Limits apply to the standard one-doublet model H⁰, with 'zero bare mass' whose physical mass is determined by the Coleman-Weinberg mechanism of dynamical symmetry breakdown. These limits depend on the mass of the top quark approximately according to $m(H^0)>10.4[1-4m(t)^4/(2m_W^4+m_Z^4)]^{1/2}$ GeV when m(t)<80 GeV. So for $m(t)\approx80$ GeV, there is no limit. If m(t)>80 GeV, then vacuum stability arguments may give bounds on m(H), see LINDNER 89 above.
- 33 BARBIERI 75 studied Higgs boson exchange effect in neutron-lead scattering data of ALEKSANDROV 66 and found limit $(g_{H^0 nn}^2/4\pi) (m(H^0)/\text{MeV})^{-4} \lesssim 3.4 \times 10^{-11}$ for $m(H^0)\gtrsim 1$ MeV. This gives the listed limit for $\eta_{HNN}=$ 0.2 and 10 MeV for $\eta_{HNN}=$ C.56. Lighter mass region $m(H^0) \lesssim 1$ MeV would be incompatible with the measured

Gauge & Higgs Boson Full Listings

Higgs Bosons — H^0 and H^{\pm}

H⁰ (Higgs Boson) MASS LIMIT in Extended Higgs Models

The parameter x denotes the Higgs coupling to charge -1/3 quarks and charged leptons relative to the value in the standard one-Higgs-doublet model.

In order to prevent flavor-changing neutral currents in models with more than one Higgs doublet, only one of the Higgs doublets can couple to quarks of charge 2/3. The same requirement applies independently to charge -1/3 quarks and to leptons. Higgs couplings can be enhanced or suppressed.

VALUE (GeV) CL% DOCUMENT ID TECN COMMENT Me do not use the following data for averages, fits, limits, etc. ● ●

• • • we do not us	e the follow	ing data for average	25, 711	5, 11111115,	etc. • • •
		³⁴ DAVIER	89	BDMP	$e^- Z \rightarrow e H^0 Z$ $(H^0 \rightarrow e^+ e^-)$
		³⁵ SNYDER	89	MRK2	$ \begin{array}{ccc} B & & H^0 & X \\ (H^0 & & e^+ & e^-) \end{array} $
none 0.6-6.2	90	³⁶ FRANZINI	87		$\Upsilon(15) \rightarrow \gamma H^0, x=2$
none 0.6-7.9	90	³⁶ FRANZINI	87	CUSB	$\Upsilon(15) \rightarrow \gamma H^0, x=4$
none 3.7-5.6	90	37 ALBRECHT	85 J	ARG	$\Upsilon(15) \rightarrow \gamma H^0, x=2$
none 3.7-8.2	90	37 ALBRECHT	85J	ARG	$\Upsilon(1S) \rightarrow \gamma H^0, x=4$

- ³⁴ DAVIER 89 give excluded region in $m(H^0)$ -x plane for $m(H^0)$ ranging from 1.2 MeV to
- $_{35}$ SNYDER 89 give limits on B(B $\rightarrow~H^0$ X) B(H^0 $\rightarrow~e^+\,e^-$) for 100 < $m(H^0)$ < 200 MeV. $c\tau$ < 24 mm.
- 36 First order QCD correction included with $\alpha_S \approx 0.2$. Their figure 4 shows the limits vs.
- $^{37}\text{ÅLBRECHT}$ 85.1 found no mono-energetic photons in both $\Upsilon(1S)$ and $\Upsilon(2S)$ radiative decays in the range 0.5 GeV $<\!E(\gamma)\!<\!4.0$ GeV with typically BR<0.01 for $\Upsilon(1S)$ and BR< 0.02 for $\Upsilon(2S)$ at 90% CL. These upper limits are 5–10 times the prediction of the standard Higgs-doublet model. The quoted 90% limit B($\Upsilon(1S) \rightarrow H^0 \gamma$) < 1.5 × 10⁻³ at $E(\gamma) = 1.07$ GeV contradicts previous Crystal Ball observation of $(4.7 \pm 1.1) \times 10^{-3}$; see their reference 3. Their figure 8a shows the upper limits of x^2 as a function of $E(\gamma)$ by assuming no QCD corrections. We used $m(H^0)=m(\Upsilon)~(1-2E(\gamma)/m(\Upsilon))^{1/2}$

H₁⁰ (Higgs Boson) MASS LIMIT in Supersymmetric Models

The minimal supersymmetric model has two complex doublets of Higgs bosons. The resulting physical states are two scalars (H_1^0 and H_2^0), a pseudoscalar (F^0) and two charged Higgs (H^+) and H^-). Their masses are restrained by the model to be: $m(H_1^0)$ $< m(Z), \ m(H_2^0) > m(Z), \ m(P^0) > m(H_1^0), \ {\rm and} \ m(H^\pm) > m(W).$ There are two free parameters in the theory which can be chosen to be $m(H_1^0)$ (the lightest Higgs scalar) and $an eta = v_2/v_1$, the ratio of the vacuum expectation values of the two Higgs

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
none 0.05-3.1	95		E ALEP	any v ₂ /v ₁
>37.1	95		E ALEP	$v_2/v_1 > 6$
none 0.05-20	95		н ALE P	$v_2/v_1 > 0.6$
none 0.006-21.4	95	39 DECAMP 90	H ALEP	$v_2/v_1 > 2$
• • • We do not use	the follow	ing data for averages, fi	ts, limits,	etc. • • •
none 0.05-13	95			$v_2/v_1 > 0.6$
none 0.006-20	95	38 DECAMP 90	E ALEP	$v_2/v_1 > 2$
				ys. Their search includes
				+ Can shale

signatures in which H_1^0 and P^0 decay to $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, or $q\overline{q}$. See their figures of $m(H_1^0)$ vs. v_2/v_1 .

 39 DECAMP 90H is similar to DECAMP 90E but with 25,000 Z^0 decays.

MASS LIMIT for Associated Higgs Production in e^+e^- Interactions

In multi-Higgs models, associated production of Higgs via virtual or real Z^0 in e^+e^- annihilation, $e^+e^- \rightarrow H_1^0H_2^0$, is possible if H_1^0 and H_2^0 have opposite CP eigenvalues. Limits are for the mass of the heavier Higgs H_2^0 in two-doublet models.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not us	e the follow	ing data for average	es, fits	, limits,	etc. • • •
>45	95				$m(H_1^0) < 20 \text{ GeV}$
>37.5	95	⁴⁰ DECAMP	90н	ALEP	$m(H_1^0) < m(H_2^0)$
> 8	90	⁴¹ KOMAMIYA	89	MRK2	
					$H_0^0 \rightarrow q \overline{q}, \tau^+ \tau^-$ $m(H_0^1) \lesssim 20 \text{ MeV},$
>28	95	⁴² LOW	89	AMY	$m(H_1^0) \lesssim 20 \text{ MeV},$
					$H_2^0 \rightarrow q\bar{q}$
none 2-9	90	⁴³ AKERLOF	85	HRS	$m(H_1^0)=0,$
					$H_2^0 \rightarrow f\overline{f}$
none 4-10	90	⁴⁴ ASH	85 C	MAC	\ 1'
					$H_2^0 \rightarrow \tau^+ \tau^-, c\overline{c}$
none 1.3-24.7	95	⁴³ BARTEL	85L	JADE	$m(H_1^0) = 0.2 \text{ GeV},$
					$H_2^{\bar{0}} \rightarrow f\bar{f} \text{ or } f\bar{f} H_1^{\bar{0}}$
none 1.2-13.6	95	43 BEHREND	85	CELL	$m(H_1^0)=0,$
					$H_2^{\bar{0}} \rightarrow f\bar{f}$
none 1-11	90	⁴³ FELDMAN	85	MRK2	$m(H_{\vec{\lambda}}^{0})=0, H_{\vec{\lambda}}^{0} \rightarrow f\vec{\tau}$
none 1-9	90	⁴³ FELDMAN	85	MRK2	$m(H_1^0) = m(H_2^0),$

⁴⁰DECAMP 90H search for $Z^0 \rightarrow H_1^0 \, e^+ \, e^-$, $H_1^0 \, \mu^+ \, \mu^-$, $H_1^0 \, \tau^+ \, \tau^-$, $H_1 \, q \, \overline{q}$, low multi-

plicity final states, r-r-jet-jet final states and 4-jet final states. Al KOMAMIYA 89 assume B($H_1^0 \rightarrow \mu^+\mu^-$) = 100 %, $2m(\mu) < m(H_1^0) < m(\tau)$. The limit is for maximal mixing. A limit of $m(H_2^0) > 18$ GeV for the case $H_2^0 \rightarrow H_1^0 H_1^0$ $(H_1^0 \rightarrow \mu^+ \mu^-)$ is also given. From PEP at $\sqrt{s} = 29$ GeV.

- 42 LOW 89 assume that H_1^0 escapes the detector. The limit is for maximal mixing. A reduced limit of 24 GeV is obtained for the case $H_2^0 \rightarrow H_1^0 f \bar{f}$. Limits for a Higgs-triplet model are also discussed. $\mathsf{E}_\mathsf{CM}^\mathit{ee} = 50\text{--}60.8~\mathsf{GeV}$
- 43 The limit assumes maximal mixing and that H_1^0 escapes the detector.
- ⁴⁴ ASH 85 assumes that H_1^0 escapes undetected. The bound applies up to a mixing sup-

H[±] (Charged Higgs or Techni-pion) MASS LIMIT

Most of the following limits assume B($H^+ \to \tau^+ \nu$) + B($H^+ \to c\bar{s}$) = 1. DE-CAMP 90I, BEHREND 87, and BARTEL 86 assume B($H^+ \to \tau^+ \nu$) + B($H^+ \to \tau^+ \nu$) $c\,\overline{s}) + B(H^+ \rightarrow c\,\overline{b}) = 1$. For a discussion of techni-particles, see EICHTEN 86.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>35	95	⁴⁵ DECAMP	901	ALEP	$B(\tau \nu) = 0-1$
 ● ● We do not use th 	e followi	ng data for averages	s, fits	i, limits,	etc. • • •
>19	95	⁴⁵ BEHREND	87	CELL	$B(\tau \nu) = 0-1$
>18	95	⁴⁶ BARTEL	86	JADE	$B(\tau \nu)=0.1-1.0$
>17	95	⁴⁶ ADEVA	85	MRKJ	$BR(\tau \ \nu) = 0.25 - 1.0$
none 5-13	95	⁴⁷ ALTHOFF	83B	TASS	$BR(\tau \nu)=00.26$
>m(B)		⁴⁸ CHEN	83	RVUE	B decay at $\Upsilon(45)$
none 5-13	95	⁴⁶ ADEVA	82B	MRKJ	$BR(\tau \ \nu) = 0.25$
none 3-13	95	⁴⁶ BARTEL	82D	JADE	$BR(\tau \nu)=0.2-1.0$
none 7-14.9	95	⁴⁹ BEHREND	82B	CELL	$BR(\tau \ \nu) = 0.80$
none 4-9	90	⁴⁶ BLOCKER	82	MRK2	$BR(\tau \nu)=0.10-0.90$

- ⁴⁵ Studied $H^+H^- \rightarrow (\tau \nu) + (\tau \nu)$, $H^+H^- \rightarrow (\tau \nu) + \text{hadrons}$, $H^+H^- \rightarrow \text{hadrons}$.
- If B($H^+ \to \tau^+ \nu$) = 100%, the DECAMP 90 limit improves to 43 GeV. ⁴⁶ Studied $H^+ H^- \to (\tau \nu) + (\tau \nu)$, $H^+ H^- \to (\tau \nu) +$ hadrons. Search for muon opposite hadronic shower.
- ⁴⁷ ALTHOFF 83 analyzed $H^+H^- \rightarrow$ 4-jets. The same limit is obtained for B($\nu\tau$) = 0–1.0 if $B(H^+ \rightarrow c\overline{b})/B(H^+ \rightarrow c\overline{s}) = 1$. See their figure 3.
- ⁴⁸CHEN 83 excluded a model where $b o H^-$ light-quark at BR = 1. Observed B(b o eX) would require B($H^+ \to au$ X) = 1 but then charged energy fraction would be smaller than experiment value (0.60 \pm 0.03). (CLEO data)
- ⁴⁹ BEHREND 82B studied H^+ $H^ \rightarrow$ $(\tau \nu)$ + $(\tau \nu)$. See their figure 3.

Searches for X(2200) (A Neutral Higgs Candidate)

Limits are for branching ratios or products of branching ratios. The notation ξ below refers to X(2200).

VALUE (units 10 -)	CL%	DOCUMENTID		IECN	COMMENT
• • • We do not use	the follow	ing data for average	s, fit	s, limits,	etc. • • •
< 0.29	90	⁵⁰ ALBRECHT	89	ARG	$\Upsilon(15) \rightarrow K^+ K^-$
< 0.68	90	⁵⁰ ALBRECHT	89	ARG	$\Upsilon(2S) \rightarrow K^+K^-$
< 2	90	⁵¹ BARU	89	MD1	$\Upsilon(1S) \rightarrow K^+ K^-$
<30	90	⁵¹ BARU	89	MD1	mode $\Upsilon(1S) o \phi \phi$ mode
< 0.31	90	⁵² BEAN	86	CLEO	$\Upsilon(15) \rightarrow K^+ K^-$
< 2	90	⁵³ BEHRENDS	84	CLEO	
< 0.9	90	⁵³ BEHRENDS	84	CLEO	
<30	90	53 BEHRENDS	84	CLEO	mode B meson, K+K- mode
<4-12	90	⁵⁴ YOUSSEF	84	CUSB	↑(1, 25) 2-charged
< 5-15	90	⁵⁴ YOUSSEF	84	CUSB	$\Upsilon(15) \rightarrow \gamma X$
50 ALBRECHT SQ of	ivo limite f	or B(Y(15, 25) -	H0.	1.B(H0	$\rightarrow \pi^{+}\pi^{-} K^{+}K^{-} Q\overline{Q}$

- BRECHT 89 give limits for B($\Upsilon(1S, 2S) \rightarrow H^0 \gamma$)·B($H^0 \rightarrow \pi^+ \pi^-, K^+ K^-, \rho \overline{\rho}$) for the mass range 1-3.5 GeV.
- ⁵¹ BARU 89 limits are for B($\Upsilon(1S) \rightarrow \gamma \xi$)·B($\xi \rightarrow K^+ K^-, \phi \phi$). Spin zero is assumed
- ⁵² BEAN 86 looked for cascade decays $\Upsilon(15) \rightarrow \gamma H^0 (H^0 \rightarrow h^+ h^-)$ for the 3 modes, $\pi^+\pi^-$, K^+K^- , and $\rho\bar{p}$. See their figure 4 for limits on branching fractions as function of $m(H^0)$ in the range $2m(h) < m(H^0) < 8$ GeV.
- ⁵³BEHRENDS 84 first and second limits are for B($\Upsilon \to \gamma \xi$)B($\xi \to K^+ K^-$), the third is for B(B $\to \xi$ X)B($\xi \to K^+K^-$). All for $m(\xi)=2.2$ GeV, but are similar for 1.5–4 GeV(first,second) and for 2–3 GeV(third).
- 54 YOUSSEF 84 first limit is for inclusive radiative decay, the second is for B(Υ ightarrow $\xi \gamma) B(\xi \rightarrow 2 \text{ charged})$. For $m(\xi) = 1$ –7 GeV.

REFERENCES FOR H^0 and H^{\pm}

AKKAWY	90C	PL B236 224	- Alexander, Allison, Aliport	(UPAL CONAD.)
ATIYA	90	PRL 64 21	+Chiang, Frank, Haggerty+ (BNL, LA	
BARR	90	PL B235 356	+Clark+ (CERN, EDIN, MANZ, L)	
DAWSON	90	PR D41 (to be pub.)	+Gunion, Haber (B	INL, UCD, UCSC)
DECAMP	90	PL B236 233	+Deschizeaux, Lees, Minard, Crespo+	
DECAMP	90E	PL B237 291	+Deschizeaux, Lees, Minard+	(ALEPH Collab.)
DECAMP	90H	PL B (CERN-EP/90-16)+Deschizeaux, Goy, Lees+	(ALEPH Collab.)
DECAMP	901	PL B (to be pub.)	+Deschizeaux, Goy, Lees+	(ALEPH Collab.)
LEUTWYLER	90	NP B	+Shifman	(BERN, ITEP)
BUTP-89/3	29-BEI	RN		
ALAM	89B	PR D40 712	+Katayama, Kim. Li, Lou, Sun+	
Also	89C	PR D40 3790 erratum	Alam, Katayama, Kim, Li, Lou, Sun+	
ALBRECHT	89	ZPHY C42 349	+Boeckmann, Glaeser, Harder+	
ATIYA	89	PRL 63 2177	+Chiang, Frank, Haggerty- (BNL, LA	
BARU	89	ZPHY C42 505	+ Beilin, Blinov-	(NOVO)
CHENG	89	PR D40 2980	+Yu	(AST)
DAVIER	89	PL B229 150	+ Nguyen Ngoc	(LALO)
DAWSON	89	PL B222 143		(BNL)
EGLI	89	PL B222 533	+Engfer, Grab, Hermes, Kraus+ (5	SINDRUM Collab.)
EILAM	89	PL B231 184	+Nakada, Wyler	(PSI, ZURI)
GRIFOLS	89	PRL 63 1346	+Masso, Peris	(BARC)
KOMAMIYA	89	PR D40 721	+Fordham, Abrams, Adolphsen, Akerlof+	
LINDNER	89	PL B228 139	+Sher, Zaglauer	(FNAL, WUSL)
LOW	89	PL B228 548	· Xu, Abashian, Gotow, Hu, Mattson+	(AMY Collab.)

Higgs Bosons — H^0 and H^{\pm} , Heavy Bosons Other than Higgs Bosons

RABY	89	PR D39 828	+West, Hoffman	(LANL)
SNYDER	89	PL B229 169	+Murray, Abrams, Adolphsen, Akerlof+	
WILLEY	89	PR D39 2784		(PITT)
YEPES	89	PL B227 182		(MCGI)
YEPES	89B	PL B229 156		ÌMCGŃ
CHIVUKULA	88	PL B207 86	+ Manohar	(BOST, MIT)
Also	89	PL B217 568 (erratum)	Chivukula, Manohar	(BOST, MIT)
GRINSTEIN	88	PL B211 363 `	+Hall, Randall	(LBL, UCB)
LEE-FRANZINI	88	Munich HEP Conf. p.	1432	(CUSB Collab.)
SCHMIEDM	88	PRL 61 1065	Schmiedmayer, Rauch, Riehs	TUW)
Also	888	PRL 61 2509 erratum	Schmiedmayer, Rauch, Riehs	(TUW)
ALBRECHT	87D	PL B199 451	+Andam, Binder, Boeckmann+	(ARGUS Collab.)
BAKER	87	PRL 59 2832		SIN, WASH, YALE)
Also	88	PRL 60 472 erratum		SIN, WASH, YALE)
BEHREND	87	PL B193 376	+Buerger, Criegee, Dainton+	(CELLO Collab.)
DRUZHININ	87	ZPHY C37 1	+Dubrovin, Eidelman, Golubev+	(NOVO)
FRANZINI	87	PR D35 2883	+Son, Tuts, Youssef, Zhao+	(CUSB Collab.)
BARTEL	86	ZPHY C31 359	+Becker, Felst, Haidt+	(JADE Collab.)
BEAN	86	PR D34 905	+Bobbink, Brock, Engler+	(CLEO Collab.)
BELTRAMI	86	NP A451 679	+Aas, Beer, Dechambrier, Goudsmit+	(ETH, FRIB)
EICHTEN	86	PR D34 1547	+Hinchliffe, Lane, Quigg+	(FNAL, LBL, OSU)
VOLOSHIN	86	SJNP 43 495	+Okun	(ITEP)
1444 1 574		Translated from YAF 4:	3 779.	
WILLEY	86	PL B173 480		(PITT)
ADEVA	85	PL 152B 439	+Becker, Becker-Szendy+	(Mark-J Collab.)
AKERLOF	85	PL 156B 271	+Bonvicini, Chapman, Errede+	(HRS Collab.)
ALBRECHT	85J	ZPHY C29 167	+Binder, Harder+	(ARGUS Collab.)
ASH ASH	85 85C	PRL 55 1831 PRL 54 2477	+Band, Blume, Camporesi+	(MAC Collab.)
BARTEL	85L	PL 155B 288	+Band, Blume, Camporesi+	(MAC Collab.)
BEHREND	85 85	PL 161B 182	+Becker, Cords, Felst, Hagiwara+ +Burger, Criegee, Fenner+	(JADE Collab.)
FELDMAN	85	PRL 54 2289		(CELLO Collab.)
ALTHOFF	84G	ZPHY C22 219	+Abrams, Amidei, Baden+ +Braunschweig, Kirschfink+	(Mark II Collab.) (TASSO Collab.)
BEHRENDS	84	PL 137B 277	+Chadwich, Chauveau, Gentile+	(CLEO Collab.)
FREEDMAN	84	PRL 52 240	+Napolitano, Camp, Kroupa	(ANL, CHIC)
MUKHOPAD		PR D29 565	Mukhopadhyay, Goudsmit+	(RPI, SIN, LISB)
YAMAZAKI	84	PRL 52 1089	+Ishikawa, Taniguchi, Yamanaka+	(TOKY, KEK)
YOUSSEF	84	PL 139B 332	+Franzini, Son, Tuts+	(CUSB Collab.)
ALTHOFF	83	PL 121B 216	+Brandelik, Boerner, Burkhardt+	(TASSO Collab.)
ALTHOFF	83B	PL 122B 95	+Brandelik, Boerner, Burkhardt+	(TASSO Collab.)
CHEN	83	PL 122B 317	+Goldberg, Alam, Andrews+	(CLEO Collab.)
HOFFMAN	83	PR D28 660	+Frank, Mischke, Moir, Schardt	(LANL, ARZS)
ADEVA	82B	PL 115B 345	+Barber, Becker, Berdugo+	(Mark-J Collab.)
BARTEL	82D	PL 114B 211	+Cords, Elsen, Bethke+	(JADE Collab.)
BEHREND	82B	PL 114B 287	+Chen, Fenner, Field+	(CELLO Collab.)
BLOCKER	82	PRL 49 517	+Matteuzzi, Abrams, Amidei+	(Mark II Collab.)
ASANO	81B	PL 107B 159		KEK, TOKY, OSAK)
DZHELYADIN	81	PL 105B 239	+Golovkin, Konstantinov, Kubarovski+	(SERP)
WITTEN	81	NP B177 477	•	(HARV)
GUTH	80	PRL 45 1131	+Weinberg	(SLAC)
JACQUES	80	PR D21 1206	+Kalelkar, Miller, Plano+ (R	UTG, STEV, COLU)
SHER	80	PR D22 2989	,	(UCSC)
Also	83	ANP 148 95	Flores, Sher	(UCSČ, UCI)
BECHIS	78	PRL 40 602	+Chang, Dombeck, Ellsworth, Glasser,	Lau+ (UMD)
BARBIERI	75	PL 57B 270	+Ericson	(CERN)
KOHLER	74	PRL 33 1628	+Watson, Becker	(LOCK)
ALEKSANDRO	V66	JETPL 4 134	+Samosvat, Sereeter, Tsoi	(JINR)
		Translated from ZETF	4 196.	

Searches for Heavy Bosons Other Than Higgs Bosons

We list here various limits on charged and neutral heavy vector bosons (other than W's and Z's), heavy scalar bosons (other than Higgs bosons), vector or scalar leptoquarks, and axigluons.

WR (Right-Handed W Boson) MASS LIMITS

	Assuming	а	light	right-handed	neutrino.
ALUE	(GeV)			CL%	DOCUMENT ID
				- 1	1001010

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
> 406	90		86	ELEC	Any L-R mixing angle	
• • We do not use the	following	data for averages	, fit	s, limits,	etc. • • •	
> 160	90	² BALKE	88	CNTR	$\mu \rightarrow e \nu \overline{\nu}$	1
> 482	90	1 JODIDIO	86	ELEC	L-R mix angle =0	•
> 800		MOHAPATRA	86	RVUE	$SU(2)_I \times SU(2)_R \times U(1)$	
> 400		³ STOKER	85	ELEC	Any L-R mix ang.	
> 475		3 STOKER	85	ELEC	L-R mix ang < 0.041	
		⁴ BERGSMA	83	CHRM	$\nu_{\mu} e \rightarrow \mu \nu_{e}$	
> 380		⁵ CARR	83	ELEC	μ^+ decay	
>1600		⁶ BEALL	82	THEO	$K_L^0 - K_S^0$ mass difference	Į

 1 JODIDIO 86 is the same TRIUMF experiment as STOKER 85 (and CARR 83); however, it uses a different technique. The results given here are combined results of the two techniques. The technique here involves precise measurement of the end-point e^+ spectrum in the decay of the highly polarized μ^+ . Alternative results can be obtained by fixing $m(W_R)$ and obtaining limits on the L-R mixing angle $\zeta\colon$ If $m(W_R)=\infty$, then $|\zeta| < 0.040$ whereas for unconstrained $m(W_R)$, $-0.056 < \zeta < 0.040$.

² BALKE 88 limit is for $m(\nu_{e\,R})=0$ and $m(\nu_{\mu\,R})\leq 50$ MeV. Limits come from precise measurements of the muon decay asymmetry as a function of the positron energy.

STOKER 85 is same TRIUMF experiment as CARR 83. Here they measure the decay e⁺ spectrum asymmetry above 46 MeV/c using a muon-spin-rotation technique. Assumed a light right-handed neutrino. Quoted limits are from combining with CARR 83.

⁴ BERGSMA 83 set limit $m(W_2)/m(W_1) > 1.9$ at CL = 90%.

 5 CARR 83 is TRIUMF experiment with a highly polarized μ^+ beam. Looked for deviation from V–A at the high momentum end of the decay e^+ energy spectrum. Limit from previous world-average muon polarization parameter is $m(W_R)>$ 240 GeV. Assumes a

 6 BEALL 82 limit is obtained assuming that W_R contribution to $K_L^0 - K_S^0$ mass difference is smaller than the standard one, neglecting the top quark contributions.

MASS LIMITS for W' (A Heavy Charged Vector Boson Other Than W) in Hadron Collider Experiments

Limits are obtained when the W^\prime couplings to quarks $g_{W^\prime q}$ and the leptonic branching ratio $\mathsf{B}(W' \to e \overline{\nu})$ are the same as those of the standard W, where the leptonic cross section is proportional to $(g_{W'q})^2 \; \mathsf{B}(W' \to e \overline{\nu})$.

		4		
VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>220	90	⁷ ALBAJAR	89 UA1	$\rho \bar{\rho} \rightarrow W' X$,
				$W' \rightarrow e \nu$
• • We do not use the	ie followi	ing data for averages,	fits, limits,	, etc. • • •
>209	90	8 ANSARI 8	87D UA2	$\rho \overline{\rho} \rightarrow W' X$
>210	90	9 ARNISON	86B UA1	$W' \rightarrow e \nu$ $\rho \bar{\rho} \rightarrow W' X$
, ===	,,,	7.11.11.00.11	000 0/12	$W' \rightarrow e \nu$
>170	90	10 ARNISON	83D UA1	$p\overline{p} \rightarrow W' X$
				$W' \rightarrow e \nu$

⁷ ALBAJAR 89 cross section limit at 630 GeV is $\sigma(W')$ B($e\nu$) < 4.1 pb (90% CL). ⁸ See Fig. 5 of ANSARI 87D for the excluded region in the m(W')-[$(g_{W'q})^2$ B($W' \rightarrow$ $(e\overline{\nu})$] plane. Note that the quantity $(g_{W'q})^2$ B $(W' \to e\overline{\nu})$ is normalized to unity for the standard W couplings.

9 ARNISON 868 find no excess at large p_T in 148 $W\to e\nu$ events. Set limit $\sigma\times B(e\nu)$ <10 pb at CL = 90% at E_{CM} = 546 and 630 GeV.

10 ARNISON 83B find among 47 $W\to e\nu$ candidates no event with excess ρ_T . Also set $\sigma \times \mathrm{B}(e\nu) <$ 30 pb with CL = 90% at Ecm = 540 GeV.

MASS LIMITS for Z' (Heavy Neutral Vector Boson Other Than Z)

The mass bounds depend on the quantum number and the coupling strength of Z and neutral currents. In particular, we use the following notation for Z^\prime associated with specific U(1) currents:

$$\begin{split} & Z_1; \, \mathsf{SM} \times \mathsf{U}(1)_{Z_1} \\ & Z_{LR}; \, \mathsf{SU}(2)_L \times \mathsf{SU}(2)_R \times \mathsf{U}(1) \, \rightarrow \, \, \mathsf{SM} \times \mathsf{U}(1)_{LR} \\ & Z_\chi; \, \mathsf{SO}(10) \, \rightarrow \, \, \mathsf{SU}(5) \times \mathsf{U}(1)_\chi \\ & Z_\psi; \, E_6 \, \rightarrow \, \, \mathsf{SO}(10) \times \mathsf{U}(1)_\psi \\ & Z_\eta; \, E_6 \, \rightarrow \, \, \mathsf{SM} \times \mathsf{U}(1)_\eta \end{split}$$

Here SM denotes either $SU(2)_L \times U(1)_Y$ or $SU(3)_C \times SU(2)_L \times U(1)_Y$, whichever is appropriate. Typical reference coupling strengths are $g_Y=e/{\cos}\theta_W$ and $g_Z=e/{\cos}\theta_W$ $g_Y/\sin\theta_W$. In particular $g_Z, = g_Z$ is always assumed.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>129	90	11 COSTA	88 RVUE	$Z_{\eta}; g_{\eta} = g_{Y}$
>352	90	12 COSTA 8	88 RVUE	Z_X ; $g_X = g_Y$
>343	90	13 AMALDI 8	37 RVUE	$Z_{IR}; g_I = g_R$
>151	90	¹⁴ AMALDI 8	7 RVUE	Z_{ψ} : $g_{\psi} = g_{Y}$
>180	90		370 UA2	$p\overline{p} \rightarrow Z_1 \times (Z_1 \rightarrow$
				.+`\

 \bullet \bullet We do not use the following data for averages, fits, limits. etc. \bullet \bullet

90	11,16	HAGIWARA	90	RVUE	$Z_{\eta}; g_{\eta} = g_{Y}$
9012	,16,17	HAGIWARA	90	RVUE	Z_{χ} ; $g_{\chi} = g_{\gamma}$
90	14,16	HAGIWARA	90	RVUE	Z_{ψ} ; $\mathbf{g}_{\psi} = \mathbf{g}_{Y}$
90	16	HAGIWARA	90	RVUE	Z_1
90	18	ALBAJAR	89	UA1	$\rho \overline{p} \rightarrow Z_1 X$,
					$Z_1 \rightarrow e^+e^-$
95	19	DORENBOS	89	CHRM	Z_{χ} ; $g_{\chi} = g_{\gamma}$
90	20	COSTA	88		
					$^{\circ}g_{eta}=g_{Y}$
90	11,21	ELLI\$	88	RVUE	$Z_{\eta} \colon g_{\eta} = g_{Y}$
90	11,22	ELLIS	88	RVUE	$Z_{\eta} \colon g_{\eta} = g_{Y}$
90			87	RVUE	$Z_{\eta}: g_{\eta} = g_{Y}$
90	12	AMALDI	87	RVUE	Z_{χ} ; $g_{\chi} = g_{\gamma}$
90	23	ARNISON	86B	UA1	$\rho \overline{p} \rightarrow Z_1 \times (Z_1 \rightarrow$
					e+e-)
90			86в	RVUE	Z_n ; $g_n = g_V$
90	13	DURKIN	86	RVUE	$Z_{LR}; g_L = g_R$
90	11	DURKIN	86	RVUE	Z_{η} ; $g_{\eta} = g_{Y}$
90			86	RVUE	$Z_{\chi}: g_{\chi} = g_{\gamma}$
90	14	DURKIN	86	RVUE	Z_{ψ} ; $g_{\psi} = g_{Y}$
95	24	ADEVA	85	MRKJ	Z ₁ ; Bhabha
	9012 90 90 90 90 90 90 90 90 90 90 90 90 90	9012.16.17 90 14.16 90 14.16 90 18 95 19 90 20 90 11.21 90 12.29 90 11.22 90 13 90 11.22 90 13 90 11,22 90 13	9012.16.17 HAGIWARA 90 14.16 HAGIWARA 90 16 HAGIWARA 90 18 ALBAJAR 91 19 DORENBOS 91 11.21 ELLIS 91 11.22 ELLIS 91 11 AMALDI 92 23 ARNISON 91 11.22 BARGER 91 13 DURKIN 92 11 DURKIN 93 14 DURKIN 94 14 DURKIN	90 ^{12,16,17} HAGIWARA 90 90 14,16 HAGIWARA 90 90 18 HAGIWARA 90 90 18 ALBAJAR 89 95 19 DORENBOS 89 90 20 COSTA 88 90 11,21 ELLIS 88 90 11,22 ELLIS 88 90 11,24 ELLIS 87 90 23 ARNISON 86B 90 12 AMALDI 87 90 23 ARNISON 86B 90 11,22 BARGER 86B 90 13 DURKIN 86 90 12 DURKIN 86 90 12 DURKIN 86 90 14 DURKIN 86	9012,16,17 HAGIWARA 90 RVUE 90 14,16 HAGIWARA 90 RVUE 90 16 HAGIWARA 90 RVUE 90 18 ALBAJAR 89 UA1 95 19 DORENBOS 89 CHRM 90 20 COSTA 88 RVUE 90 11,21 ELLIS 88 RVUE 90 11,22 ELLIS 88 RVUE 90 11,24 ELLIS 87 RVUE 90 12 AMALDI 87 RVUE 90 23 ARNISON 86B UA1 90 11,22 BARGER 86B RVUE 90 13 DURKIN 86 RVUE 90 11 DURKIN 86 RVUE 90 14 DURKIN 86 RVUE

 $^{11}g_{\eta}=g_{Y}$ assumed, which implies that $\it E_{6}~\rightarrow~SM \times U(1)_{\eta}$ in one step. $U(1)_{\eta}$ is defined by $Q_{\eta} = (3/8)^{1/2} Q_{\chi} - (5/8)^{1/2} Q_{\psi}$. $\rho = 1$ assumed.

85 MRKJ Z1; Bhabha

 12 $\mathbf{g}_{\chi}=\mathbf{g}_{Y}$ assumed, which implies that SO(10) $\rightarrow ~$ SM \times U(1) $\chi ~$ in one step. $\rho=1$ assumed.

13 Left-right symmetry ($g_L = g_R$) assumed.

 $^{14}g_{\psi}=g_{Y}$ assumed, which implies that E_{6} \rightarrow SM \times U(1) \times U(1) $_{\psi}$ in one step. ρ =1

¹⁵ See Fig. 5 of ANSARI 87D for the excluded region in the $m(Z_1)$ -[$(g_{Z_1}q)^2$ B($Z_1 \rightarrow$ (e^+e^-)] plane. Note that the quantity $(g_{Z_1\,q})^2\,{\sf B}(Z_1\,\to\,e^+\,e^-)$ is normalized to unity for the standard Z couplings.

 16 HAGIWARA 90 perform a fit to $e^+\,e^-\,$ data at PEP, PETRA, and TRISTAN including $\mu^+\mu^-$, $\tau^+\tau^-$, and hadron cross sections and asymmetries. $^{17}m(Z_\chi)=\infty$ is excluded at 2.7 s.d.

 18 ALBAJAR 89 cross section limit at 630 GeV is $\sigma(Z_1)$ B(ee) <4.2 pb (90% CL).

¹⁹ DORENBOSCH 89 obtain the limit $(g_X/g_Z)^2 \cdot (m(Z)/m(Z_X))^2 < 0.11$ at 95% CL from the processes $\bar{\nu}_\mu e \rightarrow \bar{\nu}_\mu e$ and $\nu_\mu e \rightarrow \nu_\mu e$.

 20 $Z_{eta}=Z_{\chi}$ $\cos\!eta+Z_{\psi}$ $\sin\!eta.$ $g_{eta}=g_{Y}$ and ho=1 assumed.

 $^{21}Z_{\eta}$ mass limits obtained by combining constraints from non-observation of an excess of $\ell^+\ell^-$ pairs at the CERN $p\overline{p}$ collider and the global analysis of neutral current data by

Gauge & Higgs Boson Full Listings

Heavy Bosons Other than Higgs Bosons, Axions (A⁰) and Other Very Light Bosons

COSTA 88. Least favorable spectrum of three (E_6 27) generations of particles and their superpartners are assumed. The limit weakens if fourth generation of particles contribute to the Z_η width.

22 Z_η mass limits from non-observation of an excess of ℓ^+ ℓ^- pairs at the CERN $\rho \bar{p}$ collider [based on ANSARI 87b and GEER Uppsala Conf. 87]. The limits apply when Z_η decays only into light quarks and leptons. They weaken if other particles such as exotic particles of E_0 and supersymmetry contribute to Z_η width.

 23 ARNISON 86B find no excess $e^+\,e^-$ pairs among 13 pairs from Z. Set limit $\sigma\times {\rm B}(e^+\,e^-)$ <13 pb at CL = 90% at Ecm = 546 and 630 GeV.

 24 ADEVA 85 measure asymmetry of μ -pair production, following formalism of RIZZO 81.

Constraint on Coefficient (c) of Additional Neutral Current

Term in $SU(2)\times U(1)_Y\times U(1)_G$ theory. The coefficent c depends on the group G.

VALUE	CL%	DOCUMENT ID		COMMENT
• • • We do not use the	e following	g data for averages	, fits, limits,	etc. • • •
< 0.04	95	²⁵ BARTEL	86c JADE	$e^+ e^- \rightarrow \mu^+ \mu^-$
< 0.03			86c JADE	$e^+ \stackrel{\tau^+}{e^-} \stackrel{\tau^-}{\rightarrow} e^+ e^-$
< 0.05		²⁶ DERRICK	86 HRS	$e^+e^- \rightarrow e^+e^-$
< 0.035		²⁷ ADEVA		$e^+ e^- \rightarrow \mu^+ \mu^-$
< 0.05	95	²⁸ BERGER	85B PLUT	$e^+e^- \rightarrow e^+e^-$,
				,,+,,-

 $^{25}\,{\rm E_{Cm}}{=}12{\text -}46.78$ GeV, m(Z)=93 GeV and $\sin^2\theta_W=0.217$ assumed.

 26 E_{Cm}=29 GeV. m(Z)=93 GeV and $\sin^2\theta_W=0.217$ assumed.

27 ADEVA 85 measure asymmetry of μ-pair production at E_{Cm} = 14–46.8 GeV. See also Adeva et al., in Phys. Rep. 109, 133 (1984) for more details.

 28 E_{CM}=34.7 GeV. m(Z)=93 GeV and $\sin^2 heta_W=0.217$ assumed.

MASS LIMITS for a Heavy Neutral Boson Coupling to e+e-

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not us	e the follow	ing data for averag	es, fit	s, limits,	etc. • • •
none 55-61		²⁹ ODAKA	89	VNS	$\Gamma(X^0 \to e^+ e^-)$ $B(X^0 \to hadrons)$ $\geq 0.2 MeV$
>45	95	³⁰ DERRICK	86	HRS	
>46.6	95	31 ADEVA	85		$\Gamma(X^0 \to e^+ e^-) = 10$
>48	95	31 ADEVA	85		$\Gamma(X^0 \rightarrow e^+e^-) = 4$
none 39.8-45.5		32 ADEVA	84	MRKJ	$\Gamma(X^0 \to e^+ e^-) = 10$
>47.8	95	32 ADEVA	84	MRKJ	$\Gamma(X^0 \rightarrow e^+e^-) = 4$ MeV
none 39.8-45.2 >47	95	32 BEHREND 32 BEHREND		CELL	$\Gamma(X^0 \to e^+ e^-) = 4$

 29 ODAKA 89 looked for a narrow or wide scalar resonance in $e^+\,e^ \;
ightarrow$ hadrons at Ecm = 55.0-60.8 GeV

30 DERRICK 86 found no deviation from the Standard Model Bhabha scattering at Ecm = 29 GeV and set limits on the possible scalar boson e^+e^- coupling. See their figure 4 for excluded region in the $\Gamma(X^0\to e^+e^-)$ - $m(X^0)$ plane. Electronic chiral invariance requires a parity doublet of X^0 , in which case the limit applies for $\Gamma(X^0 \to e^+e^-) =$

31 ADEVA 85 first limit is from 2γ , $\mu^+\mu^-$, hadrons assuming X^0 is a scalar. Second limit is from e^+e^- channel. $E_{\rm CM}=40{\sim}47$ GeV. Supercedes ADEVA 84.

³² ADEVA 84 and BEHREND 84c have $E_{CM} = 39.8$ -45.5 GeV. MARK-J searched X^0 in $e^+e^- \rightarrow$ hadrons, 2γ , $\mu^+\mu^-$, e^+e^- and CELLO in the same channels plus τ pair. No narrow or broad X^0 is found in the energy range. They also searched for the effect of x^0 with $m(x) > E_{cm}$. The second limits are from Bhabha data and for spin-0 singlet. The same limits apply for $\Gamma(X^0 - e^+e^-) = 2$ MeV if X^0 is a spin-0 doublet. The second limit of BEHREND 84c was read off from their figure 2. The original papers also list limits in other channels

Search for Leptoquarks

Mass bounds derived

VALUE	<u>CL%</u> .	EVTS	DOCUMENT ID	TECN	COMMENT
• • • We do not us	e the fol	lowing	data for averages, fi	ts, limits, etc	. • • •
none 5~20.8 GeV	95		33 BARTEL	878 JADE	Spinless-leptoquark
none 7~20.5 GeV	95	2	³⁴ BEHREND		Spinless-leptoquark
>350 TeV				83 RVUE	Pati-Salam X-boson
>1.TeV			³⁶ SHANKER	82 RVUE	PS leptoquark
>125 TeV			³⁶ SHANKER	82 RVUE	Vector-leptoquark

 33 BARTEL 878 limit is valid when a pair of charge 2/3 spinless leptoquarks X is produced with point coupling, and when they decay under the constraint B(X $\rightarrow~c\overline{\nu}_{\mu}$) + B(X $\rightarrow~$

 34 BEHREND 86B assumed that a charge 2/3 spinless leptoquark, χ , decays either into

 s_H^+ or $c\overline{v}$: B($\chi \to s_H^+$) + B($\chi \to c\overline{v}$) = 1. 35 DESHPANDE 83 used upper limit on $K_I^0 \to \mu e$ decay with renormalization-group equations to estimate coupling at the heavy boson mass. See also Dimopoulos et al., NP B182, 77 (1981).

 36 From $(\pi \rightarrow e \nu)/(\pi \rightarrow \mu \nu)$ ratio.

MASS LIMITS for g₄ (axigluon)

Axigluons are massive color-octet gauge bosons in chiral color models and have axial-

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not us	se the following	ng data for average	s, fits, limit	s, etc. • • •
>65		37 CUYPERS	89 RVUE	$\sigma(e^+e^- \rightarrow hadrons)$
no limit		³⁸ FALK	89 RVUE	$\sigma(e^+e^- \rightarrow hadrons)$
>29		³⁹ ROBINETT	89 THEC	Partial-wave unitarity
none 150-310	95	⁴⁰ ALBAJAR	88B UA1	$\Gamma(g_A) < 0.4 \ m(g_A)$
>20			88 RVUE	pp → Υ X vla g _A g
> 9		41 CUYPERS	88 RVUE	
>25		⁴² DONCHESKI	88B RVUE	↑ decay

 37 CUYPERS 89 calculated axigluon corrections to $e^+\,e^- \to \text{hadrons}$ and argue that a light axigluon would result in too large values of $R(e^+\,e^- \to \text{hadrons})$. The listed limit is obtained by assuming " $\alpha_S(34\text{ GeV})$ " (derived from R measurements) < 0.165 and $\Lambda_{\overline{MS}} = 0.1$ GeV. Use of $\Lambda = 0.2$ GeV instead gives a limit of 100 GeV. For a criticism, see FALK 89.

 38 FALK 89 argues that no limit from e^+e^- scattering can be derived for the axigluon

³⁹ ROBINETT 89 result demands partial-wave unitarity of J = 0 $t\bar{t} \rightarrow$ amplitude and derives a limit $m(g_A) > 0.5 m(t)$. Assumes m(t) > 56 GeV.

 $^{
m 40}\,{\rm ALBAJAR}$ 88B result is from the nonobservation of a peak in two-jet invariant mass distribution. See also BAGGER 88.

41 CUYPERS 88 requires $\Gamma(\Upsilon \to gg_A) < \Gamma(\Upsilon \to ggg)$. A similar result is obtained by

DONCHESKI 88

42 DONCHESKI 888 requires $\Gamma(\Upsilon \to g \, q \, \overline{q})/\Gamma(\Upsilon \to g \, g \, g) < 0.25$, where the former decay proceeds via axigluon exchange. A more conservative estimate of < 0.5 leads to $m(g_A) > 21$ GeV.

REFERENCES FOR Searches for Heavy Bosons Other Than Higgs Bosons

HAGIWARA	90	PR D41 815	+Najima, Sakuda, Terunuma (KEI	
ALBAJAR	89	ZPHY C44 15	+Albrow, Allkofer, Arnison, Astbury+	
CUYPERS	89	PRL 63 125	~Frampton	(UNCC)
DORENBOS	89	ZPHY C41 567	Dorenbosch, Udo, Allaby, Amaldi ~	(CHARM Collab.)
FALK	89	PL B230 119		(HARV)
ODAKA	89	JPSJ 58 3037	 Kondo, Abe, Amako 	(Venus Collab.)
ROBINETT	89	PR D39 834		(PSU)
ALBAJAR	88B	PL B209 127	~Albrow, Allkofer, Astbury, Aubert+	(UA1 Collab.)
BAGGER	88	PR D37 1188	- Schmidt, King	(HARV, BOST)
BALKE	88	PR D37 587	~Gidal, Jodidio+ (LBL. UCB,	COLO. NWES, TRIU)
BERGSTROM	88	PL B212 386		(STOH)
COSTA	88	NP B297 244		O, BARI, WISC. LBL)
CUYPERS	88	PRL 60 1237	+Frampton	(UNCC)
DONCHESKI	88	PL B206 137	+Grotch, Robinett	(PSU)
DONCHESKI	88B	PR D38 412	+Grotch, Robinett	(PSU)
ELLIS	88	PL B202 417	Ellis, Franzini, Zwirner	(CERN, UCB, LBL)
AMALDI	87	PR D36 1385	+Bohm, Durkin, Langacker+	(CERN, AACH, OSU+)
ANSARI	87D	PL B195 613	+Bagnaia, Banner-	(UA2 Collab.)
BARTEL	87B	ZPHY C36 15	+ Becker, Felst	(JADE Collab.)
ARNISON	86B	EPL 1 327	-Albrow, Allkofer+	(UA1 Collab.)
BARGER	868	PRL 56 30	+Deshpande, Whisnant	(WISC, OREG, FSU)
BARTEL	86C	ZPHY C30 371	-Becker, Cords, Felst, Haidt+	(JADE Collab.)
BEHREND	86B	PL B178 452	-Buerger, Criegee, Fenner, Field-	(ČELLO Collab.)
DERRICK	86	PL 166B 463	Gan, Kooiiman, Loos+	(HRS Collab.)
DURKIN	86	PL 166B 436	+Langacker	(PENN)
JODIDIO	86	PR D34 1967	+Balke, Carr, Gidal, Shinsky+	(LBL, NWES, TRIU)
Also	88	PR D37 237 erratum	Jodidio, Balke, Carr+	(LBL. NWES, TRIU)
MOHAPATRA	86	PR D34 909		(UMD)
ADEVA	85	PL 152B 439	- Becker, Becker-Szendy+	(Mark-J Collab.)
BERGER	85B	ZPHY C27 341	+Deuter, Genzel+	(PLUTO Collab.)
STOKER	85	PRL 54 1887	+Balke, Carr, Gidal+	(LBL, NWES, TRIU)
ADEVA	84	PRL 53 134	+Barber, Becker, Berdugo +	(Mark-J Collab.)
BEHREND	84C	PL 140B 130	+Burger, Criegee, Fenner+	(CELLO Collab.)
ARNISON	83B	PL 122B 189	+Astbury, Aubert, Bacci+	(UA1 Collab.)
ARNISON	83D	PL 129B 273	+ Astbury, Aubert, Bacci+	(UA1 Collab.)
BERGSMA	83	PL 122B 465	+ Dorenbosch, Jonker+	(CHARM Collab.)
CARR	83	PRL 51 627	+Gidal, Gobbi, Jodidio, Oram+	(LBL, NWES, TRIU)
DESHPANDE	83	PR D27 1193	+ Johnson	(OREG)
BEALL	82	PRL 48 848	- Bander, Soni	(UCI, UCLA)
SHANKER	82	NP B204 375		(TRIU)
RIZZO	81	PR D24 704	+ Senjanovic	(BNL)

Searches for Axions (A⁰) and Other Very Light Bosons

NOTE ON AXIONS

In this section we list limits for very light neutral (pseudo) scalar bosons that couple weakly to stable matter. Typical examples are pseudo-Goldstone bosons like axions (A^0) . familons,² and Majorons,³ associated, respectively, with spontaneously broken Peccei-Quinn, family, and lepton-number symmetries.

Peccei-Quinn symmetry gives a natural solution to the strong CP-violation problem. Axion mass and its coupling to stable particles are inversely proportional to the scale of the Peccei-Quinn symmetry breaking $\Lambda_{PO} (\equiv f_A)$. The original axion model $^{4.1}$ assumes $\Lambda_{PQ}=\Lambda_{EW},$ where Λ_{EW}

= $(\sqrt{2}G_F)^{-1/2}$ = 247 GeV is the scale of the electroweak symmetry breaking, and has two Higgs doublets as minimal ingredients. By requiring tree-level flavor conservation, the axion mass and its couplings are completely fixed in terms of one parameter, the ratio of the vacuum expectation values of two Higgs fields. The result of extensive experimental searches for such an axion have been negative.⁵

Observation of a narrow-peak structure in positron spectra from heavy ion collisions suggested a particle of mass 1.8 MeV that decays into e^+e^- . Variants of the original axion model, which keep $\Lambda_{\rm PQ}=\Lambda_{\rm EW}$, but drop the constraints of tree-level flavor conservation, were proposed. Extensive searches for this particle, $A^0(1.8~{\rm MeV})$, ended up with another negative result. Example 2.

One way to avoid these experimental constraints is to make A^0 sufficiently massive. One way to achieve this is to introduce a new strong interaction (QC'D) with $\Lambda_{\rm QC'D}\gg\Lambda_{\rm QCD}$, whose anomaly couples to the axion. 9 A^0 can receive significant mass from the QC'D sector if QC'D colored quarks are massive.

Another way to save the Peccei-Quinn idea is to discard the proposition $\Lambda_{PQ} = \Lambda_{EW}$ and introduce a new scale. With $\Lambda_{\rm PQ} \gg \Lambda_{\rm EW}$, the A^0 mass becomes smaller and its coupling weaker, thus one can easily avoid all the existing experimental limits; hence such models are called invisible axion models. 10,11 Various invisible axion models can be constructed by identifying Λ_{PQ} with other large mass scales such as the Planck mass, the GUT scale, the SUSY-breaking scale, and so on. It has been found, however, that invisible axions are not completely elusive. Cosmological considerations on the matter density of our universe suggest¹² $\Lambda_{PQ} < O(10^{12})$ GeV as a possible upper bound on the scale. Lower bounds of $\Lambda_{\rm PQ} > O(10^7)~{\rm GeV}$ are obtained from astrophysics, 13 where axion emission from the center of stellar objects can speed up their evolutionary time scales. The recent observation of the supernova SN 1987A improves the lower bound to $\Lambda_{PQ} > O(10^{10})$ GeV. Various terrestrial experiments to detect 'invisible' axions by making use of their coupling to photons have been proposed, 14 and the first result of such experiments appeared recently.

There is also a Note on "invisible" axions later in this section.

References

- S. Weinberg, Phys. Rev. Lett. 40, 223 (1978); and F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
- 2. F. Wilczek, Phys. Rev. Lett. 49, 1549 (1982).
- Y. Chikashige, R.N. Mohapatra, and R.D. Peccei, Phys. Rev. Lett. 45, 1926 (1980).
- R.D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977), also Phys. Rev. D16, 1791 (1977).
- T.W. Donnelly et al., Phys. Rev. D18, 1607 (1978);
 S. Barshay et al., Phys. Rev. Lett. 46, 1361 (1981); A. Barroso et al., Phys. Lett. 106B, 91 (1981); and R.D. Peccei, in Proceedings of Neutrino '81, Honolulu, Hawaii, Vol. 1, p. 149 (1981).
- J. Schweppe et al., Phys. Rev. Lett. 51, 2261 (1983); and T. Cowan et al., Phys. Rev. Lett. 54, 1761 (1985).

- R.D. Peccei, T.T. Wu, and T. Yanagida, Phys. Lett. B172, 435 (1986); and L.M. Krauss and F. Wilczek, Phys. Lett. B173, 189 (1986).
- W.A. Bardeen, R.D. Peccei, and T. Yanagida, Nucl. Phys. B279, 401 (1987);
- 9. S.H.H. Tye, Phys. Rev. Lett. 47, 1035 (1981).
- J.E. Kim, Phys. Rev. Lett. 43, 103 (1979); M.A. Shifman,
 A.I. Vainstein, and V.I. Zakharov, Nucl. Phys. B166, 493 (1980).
- A.R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980); and M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. 104B, 199 (1981).
- J. Preskill et al., Phys. Lett. **120B**, 127 (1983);
 L.F. Abbott, and P. Sikivie, Phys. Lett. **120B**, 133 (1983); and M. Dine and W. Fischler, Phys. Lett. **120B**, 137 (1983).
- D.A. Dicus et al., Phys. Rev. D18, 1829 (1978); M. Fukugita, S. Watamura, and M. Yoshimura, Phys. Rev. Lett. 48, 1522 (1982), also Phys. Rev. D26, 1840 (1982);
 D.S.P. Dearborn et al., Phys. Rev. Lett. 56, 26 (1986);
 and G.G. Raffelt, Phys. Rev. D33, 897 (1986).
- P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983), also Phys. Rev. Lett. 52, 695 (1984).

A⁰ (Axion) MASS LIMITS from Astrophysics and Cosmology

These bounds depend on model-dependent assumptions (i.e. — on a combination of axion parameters).

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following data for average	s, fits	limits,	etc. • • •
>0.2	BARROSO	82	ASTR	Standard Axion
>0.25	1 RAFFELT	82	ASTR	Standard Axion
>0.2	² DICUS	78C	ASTR	Standard Axion
	MIKAELIAN	78	ASTR	Stellar emission
>0.3	² SATO	78	ASTR	Standard Axion
>0.2	VYSOTSKII	78	ASTR	Standard Axion

Lower bound from 5.5 MeV γ -ray line from the sun.

A⁰ (Axion) Searches in Stable Particle Decays Limits are for branching ratios.

VALUE	CL% EV	<u>'TŞ</u>	DOCUMENT ID		TECN	COMMENT
• • We do not use the	ne followin	ng data	for averages, fits	, limi	ts, etc.	• • •
<8 × 10 ⁻⁷	90		³ BAKER	87	CALO	κ^{\pm} $\rightarrow \pi^{\pm} A^{0}$
<1.3 × 10 ⁻⁸	90		⁴ KORENCHE	87	SPEC	$\begin{array}{c} \kappa^{\pm} \xrightarrow{\pi^{\pm}} A^{0} \\ (A^{0} e^{+} e^{-}) \\ \pi^{+} e^{+} {\nu} A^{0} \\ (A^{0} e^{+} e^{-}) \end{array}$
<1. × 10 ⁻⁹	90	0	⁵ EICHLER	86	SPEC	Stopped $\pi^+ \rightarrow e^+ e^- f$
<2. × 10 ⁻⁵	90		⁶ YAMAZAKI	84	SPEC	For 160 <m<260< td=""></m<260<>
<(1.5-4)×10 ⁻⁶	90		⁶ YAMAZAKI	84	SPEC	MeV K decay, $m(A^0) \ll$
		0	⁷ ASANO	82	CNTR	100 MeV Stopped K ⁺ →
		0	8 ASANO	81B	CNTR	$\begin{array}{c} \pi^{+} A^{0} \\ \text{Stopped } K^{+} \rightarrow \\ \pi^{+} A^{0} \end{array}$
3 DAVED 07 limit and			9 ZHITNITSKII	79		Heavy axion

 $^{^3}$ BAKER 87 limit assumes that the ${\it A}^0$ travels much less than 1.4 cm in the lab before decaying.

 $^{^2\,\}mbox{Lower}$ bound from requiring the red giants' stellar evolution not be disrupted by axion emission.

 $^{^4}$ KORENCHENKO 87 limit assumes $m(A^0)=1.7$ MeV, $\tau(A^0)\lesssim~10^{-12}$ s, and B($A^0\to e^+e^-)=1.$

 $^{^5}$ EICHLER 86 looked for $\pi^+ \to e^+ \nu \, A^0$ followed by $A^0 \to e^+ \, e^-$. Limits on the branching fraction depend on the mass and and lifetime of A^0 . The quoted limits are valid when $\tau(A^0) \gtrsim 3. \times 10^{-10} \mathrm{s}$ if the decays are kinematically allowed.

⁶ YAMAZAKI 84 looked for a discrete line in $K^+ \to \pi^+$ X. Sensitive to wide mass range (5–300 MeV), independent of whether X decays promptly or not.

⁽³⁻³⁰⁰ MeV), independent of whether X decays promptly or not. 7 ASANO 82 at KEK set limits for $B(K^+ \to \pi^+ A^0)$ for $m(A^0) < 100$ MeV as BR $< 4. \times 10^{-8}$ for $\tau(A^0 \to n\gamma' s) > 1. \times 10^{-9}$ s, BR $< 1.4 \times 10^{-6}$ for $\tau < 1. \times 10^{-9}$ s. 8 ASANO 81B is KEK experiment. Set $B(K^+ \to \pi^+ A^0) < 3.8 \times 10^{-8}$ at CL = 90%. 9 ZHITNITSKII 79 argue that a heavy axion predicted by YANG 78 (3 < m < 40 MeV) contradicts experimental muon anomalous magnetic moments.

Gauge & Higgs Boson Full Listings

Axions (A⁰) and Other Very Light Bosons

VALUE		CL% 1	VTS	DOCUMENT ID		TECN	COMMENT
	We do not	use the	followir	ng data for averages	, fits	, limits,	etc. • • •
<6.4	× 10 ⁻⁵	90		¹⁰ ORITO	89	CNTR	$o\text{-PS} \to A^0 \gamma$, $m(A^0) < 30 \text{ keV}$
<5	× 10 ⁻⁵	90		¹¹ DRUZHININ	87	ND	$ \phi \xrightarrow{\gamma} {}^{A^0} (A^0 e^+ e^-) $
<2	× 10 ⁻³	90		12 DRUZHININ	87	ND	$\phi \rightarrow \gamma A^0 (A^0 \rightarrow \gamma \gamma)$
	× 10 ⁻⁶	90		¹³ DRUZHININ	87	ND	$ \begin{array}{c} \phi \to \gamma A^0 \\ (A^0 \to \text{missing}) \end{array} $
<3.1	× 10 ⁻⁴	90	0	¹⁴ ALBRECHT	86 D	ARG	$\Upsilon(1S) \rightarrow \gamma A^0$
<4	× 10 ⁻⁴	90	0	¹⁴ ALBRECHT	8 6 D	ARG	$ \begin{array}{rcl} (A^0 \to e^+ e^-) \\ \Upsilon(1S) \to \gamma A^0 \\ (A^0 \to \mu^+ \mu^-, \end{array} $
<8	× 10 ⁻⁴	90	1	¹⁵ ALBRECHT	8 6 D	ARG	$ \begin{array}{c} \pi^{+}\pi^{-}, K^{+}K^{-}) \\ \Upsilon(1S) \to \gamma A^{0} \end{array} $
	× 10 ⁻³	90	0	¹⁶ ALBRECHT	86 D	ARG	$ \Upsilon(1S) \to \gamma A^0 (A^0 \to e^+ e^-, \gamma \gamma) $
<2.	× 10 ⁻³	90		¹⁷ BOWCOCK	86	CLEO	$\Upsilon(2S) \to \Upsilon(1S) \to A^0$
< 5.	\times 10 ⁻³	90		¹⁸ MAGERAS ¹⁹ AMALDI	86	CUSB CNTR	$\Upsilon(15) \rightarrow A^0 \gamma$ Ortho-positronium
<3.	× 10 ⁻⁴	90		²⁰ ALAM	85 83	CLEO	$\Upsilon(15) \rightarrow A^0 \gamma$
<9.1	× 10 ⁻⁴	90		²¹ CARBONI ²² NICZYPORUK	83 83	CNTR LENA	Ortho-positronium $\Upsilon(1S) \rightarrow A^0 \gamma$
<1.4	$\times 10^{-5}$	90		²³ EDWARDS	82	CBAL	$J/\psi \rightarrow A^0 \gamma$
	$\times 10^{-4}$	90		24 SIVERTZ	82	CUSB	$\Upsilon(15) \rightarrow A_0^0 \gamma$
	× 10 ⁻⁴	90		²⁴ SIVERTZ	82	CUSB	$\Upsilon(3S) \rightarrow A^0 \gamma$

- 10 ORITO 89 limit translates to $g_{A^0\,e\,e}^2/4\pi < 6.2\times 10^{-10}$. Somewhat more sensitive limits are obtained for larger $m(A^0)$: $B < 7.6 \times 10^{-6}$ at 100 keV.
- 11 The first DRUZHININ 87 limit is valid when $\tau({\it A}^0)/m({\it A}^0) < 3\times 10^{-13}$ s/MeV and $m(A^0) < 20 \text{ MeV}$
- 12 The second DRUZHININ 87 limit is valid when $\tau(A^0)/m(A^0) < 5 \times 10^{-13}$ s/MeV and $m(A^0) < 20 \text{ MeV}.$
- 13 The third DRUZHININ 87 limit is valid when $\tau(A^0)/m(A^0) > 7 \times 10^{-12}$ s/MeV and $m(A^0) < 200 \text{ MeV}$
- $14 \frac{1}{\tau(A^0)} < 1 \times 10^{-13}$ s and $m(A^0) < 1.5$ GeV. Applies for $A^0 = \gamma \gamma$ when $m(A^0) < 100$
- $15\frac{\text{MeV}'}{\tau(A^0)} > 1 \times 10^{-7} \text{s}$
- 16 Independent of $\tau(A^0)$
- 17 BOWCOCK 86 looked for A^0 that decays into e^+e^- in the cascade decay $\Upsilon(25) \rightarrow$ 17 BOWCOCK 86 looked for A^0 that decays into e^+e^- in the cascade decay $\Upsilon(25) \to \Upsilon(15) \pi^+\pi^-$ followed by $\Upsilon(15) \to A^0 \gamma$. The limit for $\mathrm{BR}(\Upsilon(15) \to A^0 \gamma)\mathrm{BR}(A^0 \to e^+e^-)$ depends on $m(A^0)$ and $\tau(A^0)$. The quoted limit for $m(A^0)=1.8$ MeV is at $\tau(A^0) \sim 2 \cdot \times 10^{-12} \mathrm{s}$, where the limit is the worst. The same limit $2 \cdot \times 10^{-3}$ applies for all lifetimes for masses $2m(e) < m(A^0) < 2m(\mu)$ when the results of this experiment are combined with the results of ALAM 83 M MAGERAS 86 looked for $\Upsilon(15) \to \gamma A^0$ ($A^0 \to e^+e^-$). The quoted branching fraction limit is for $m(A^0) = 1.7$ MeV, at $\tau(A^0) \sim 4 \cdot \times 10^{-13} \mathrm{s}$ where the limit is the worst.
- 19 worst. AMALDI 85 set limits B($A^0\gamma$) / B($\gamma\gamma\gamma$) < (1–5)×10⁻⁶ for $m(A^0)$ = 900–100 keV which are about 1/10 of the CARBONI 83 limits.
- ²⁰ ALAM 83 is at CESR. This limit combined with limit for B($J/\psi \to A^0 \gamma$) (EDWARDS 82) excludes standard axion.
- excludes standard axion. 21 CARBONI 83 looked for orthopositronium \rightarrow $A^0 \gamma$. Set limit for A^0 electron coupling squared, $g(e \in A^0)^2/(4\pi) < 6. \times 10^{-10} 7. \times 10^{-9}$ for $m(A^0)$ from 150–900 keV (CL = 99.7%). This is about 1/10 of the bound from g-2 experiments.
- 22 NICZYPORUK 83 is DESY-DORIS experiment. This limit together with lower limit 9.2×10^{-4} of B(T \rightarrow $A^0 \gamma$) derived from B($J/\psi(1S) \rightarrow$ $A^0 \gamma$) limit (EDWARDS 82)
- excludes standard axion. $23\,\text{EDWARDS}$ 82 looked for $J/\psi \to \gamma A^0$ decays by looking for events with a single γ [of energy $\sim 1/2$ the $J/\psi(1S)$ mass], plus nothing else in the detector. The limit is inconsistent with the axion interpretation of the FAISSNER 81B result. 24 SIVERTZ 82 is CESR experiment. Looked for $\Upsilon \rightarrow \gamma A^0$, A^0 undetected. Limit for 15
- (3S) is valid for $m(A^0)$ <7 GeV (4 GeV).

A⁰ (Axion) Production in Hadron Collisions

Limits	are f	for $\sigma(A)$	$^{(0)}$ / σ (1	τ^{0}).			
VALUE			EVT5	DOCUMENT ID		TECN	COMMENT
• • • We do	not	use th	e followi	ing data for average	s, fits	, limits,	etc. • • •
				²⁵ FAISSNER	89	OSPK	Beam dump,
				²⁶ DEBOER	88	RVUE	$A_{0}^{0} \stackrel{\rightarrow}{\rightarrow} \stackrel{e^{+}e^{-}}{e^{-}}$
				²⁷ EL-NADI	88		$A^0 \rightarrow e^+ e^-$
				²⁸ FAISSNER	88		Beam dump, $A^0 \rightarrow 2\gamma$
				²⁹ BADIER	86	BDMP	$A^0 \rightarrow e^+ e^-$
$< 2. \times 10^{-1}$	11	90	0	³⁰ BERGSMA	85	CHRM	CERN beam dump
<1. × 10 ⁻¹	13	90	0	30 BERGSMA	85	CHRM	CERN beam dump
			24	31 FAISSNER	83	OSPK	Beam dump, $A^0 \rightarrow 2\gamma$
				32 FAISSNER	83B	RVUE	LAMPF beam dump
				33 FRANK	83B	RVUE	LAMPF beam dump
				34 HOFFMAN	83	CNTR	$\pi p \rightarrow nA^0$
							$(A^0 \rightarrow e^+ e^-)$
				35 FETSCHER	82	RVUE	
			12	36 FAISSNER	81	OSPK	CERN PS ν wideband
			15	37 FAISSNER	81B	OSPK	Beam dump, $A^0 \rightarrow 2\gamma$
			8	38 KIM	81	OSPK	26 GeV $pN \rightarrow A^0 X$
			0	³⁹ FAISSNER	80	OSPK	Beam dump,
			v				40 → e+e-

	00	40		0.0	20 5-1/
<1. × 10 ⁻⁸	90	⁴⁰ JACQUES	80	HERC	28 GeV protons
$< 1. \times 10^{-14}$	90	⁴⁰ JACQUES	80	HLBC	Beam dump
		⁴¹ SOUKAS	80	CALO	28 GeV p beam dump
		⁴² BECHIS	79	CNTR	
<1. × 10 ⁻⁸	90	⁴³ COTEUS	79	OSPK	Beam dump
$< 1. \times 10^{-3}$	95	⁴⁴ DISHAW	79	CALO	400 GeV pp
$<1. \times 10^{-8}$	90	ALIBRAN	78	HYBR	Beam dump
$<6. \times 10^{-9}$	95	ASRATYAN	78B	CALO	Beam dump
$< 1.5 \times 10^{-8}$	90	⁴⁵ BELLOTTI	78		Beam dump
$<$ 5.4 \times 10 ⁻¹⁴	90	⁴⁵ BELLOTTI			$m(A^0)=1.5 \text{ MeV}$
$< 4.1 \times 10^{-9}$	90	⁴⁵ BELLOTTI	78	HLBC	$m(A^0)=1 \text{ MeV}$
$< 1. \times 10^{-8}$	90	⁴⁶ BOSETTI	78s	HYBR	Beam dump
		⁴⁷ DONNELLY	78		
$< 0.5 \times 10^{-8}$	90	HANSL	78D	WIRE	Beam dump
		48 MICELMAC	78		
		49 VYSOTSKII	78		
		·· V13013KII	10		

- 25 FAISSNER 89 searched for 40 $^{-}$ e^{+} e^{-} in a proton beam dump experiment at SIN. No excess of events was observed over the background. A standard axion with mass 2m(e)-20 MeV is excluded. Lower limit on f_{A^0} of $\sim 10^4$ GeV is given for $m(A^0)=$ 2m(e)-20 MeV.
- ²⁶ DEBOER 88 reanalyze EL-NADI 88 data and claim evidence for three distinct states with mass ~ 1.1 , ~ 2.1 , and ~ 9 MeV, lifetimes 10^{-16} – 10^{-15} s decaying to e^+ and note the similarity of the data with those of a cosmic-ray experiment by Bristol group (B.M. Anand, Proc. Roy. Soc. (London) A220, 183 (1953)). For a criticism see PERKINS 89, who suggests that the events are compatible with π^0 Dalitz decay. DEBOER 89B is a reply which contests the criticism.
- $27 \, \text{EL-NADI}$ 88 claim the existence of a neutral particle decaying into $e^+\,e^-$ with mass 1.60 ± 0.59 MeV, lifetime $(0.15 \pm 0.01) \times 10^{-14}$ s, which is produced in heavy ion interactions with emulsion nuclei at $\sim 4 \, \text{GeV}/c/\text{nucleon}.$
- 28 FAISSNER 88 is a proton beam dump experiment at SIN. They found no candidate event for $A^0 \rightarrow \gamma \gamma$. A standard axion decaying to 2γ is excluded except for a region $x \sim 1$. Lower limit on f_{A0} of 10^2-10^3 GeV is given for $m(A^0)=0.1-1$ MeV.
- ²⁹ BADIER 86 did not find long-lived A^0 in 300 GeV π^- Beam Dump Experiment that decays into e^+e^- in the mass range $m(A^0)=(20-200)$ MeV, which excludes the A^0 decay constant $f(A^0)$ in the interval (60–600) GeV. See their figure 6 for excluded region on $f(A^0)$ - $m(A^0)$ plane.
- ³⁰ BERGSMA 85 look for $A^0 \rightarrow 2\gamma$, e^+e^- , $\mu^+\mu^-$. First limit above is for $m(A^0)=1$ MeV; second is for 200 MeV. See their figure 4 for excluded region on $f_{A0} - m(A^0)$ plane, where f_{A0} is A^0 decay constant. For Peccei-Quinn PECCEI 77 A^0 , $m(A^0)$ <180 keV and au >0.037 s. (CL = 90%). For the axion of FAISSNER 818 at 250 keV, BERGSMA 85 expect 15 events but observe zero.
- $^{31}\text{FAISSMER}$ 83 observed 19 1γ and 12 2γ events where a background of 4.8 and 2.3 respectively is expected. A small-angle peak is observed even if iron wall is set in front of the decay region.
- 32 FAISSNER 838 extrapolate SIN γ signal to LAMPF ν experimental condition. Resulting 370 γ 's are not at variance with LAMPF upper limit of 450 γ 's. Derived from LAMPF limit that $[d\sigma(A^0)/d\omega$ at $90^\circ]\,m(A^0)/\tau(A^0) < 14 \times 10^{-35}$ cm² sr $^{-1}$ MeV ms $^{-1}$. See comment on FRANK 83B.
- 33 FRANK 83B stress the importance of LAMPF data bins with negative net signal. By comment on FAISSNER 838.
- 34 HOFFMAN 83 set CL = 90% limit $d\sigma/dt$ B(e^+e^-) <3.5 × 10⁻³² cm²/GeV² for 140 $< m(A^0) <$ 160 MeV. Limit assumes $\tau(A^0) <$ 10 $^{-9}$ s.
- 35 FETSCHER 82 reanalyzes SIN beam-dump data of FAISSNER 81. Claims no evidence for axion since $2-\gamma$ peak rate remarkably decreases if iron wall is set in front of the decay
- 36 FAISSNER 81 see excess μe events. Suggest axion interactions.
- 37 FAISSNER 81B is SIN 590 MeV proton beam dump. Observed 14.5 \pm 5.0 events of 2γ decay of long-lived neutral penetrating particle with $m(2\gamma)\lesssim 1$ MeV. Axion interpretation with η - A^0 mixing gives $m(A^0)=250\pm25$ keV, $\tau_{(2\gamma)}=(7.3\pm3.7)\times10^{-3}$ s from above rate. See critical remarks below in comments of FETSCHER 82, FAISSNER 83, FAISSNER 83B, FRANK 83B, and BERGSMA 85. Also see in the next subsection ALEKSEEV 82, CAVAIGNAC 83, and ANANEV 85. 38 KIM 81 analyzed 8 candidates for 40 \rightarrow 2 obtained by Aachen-Padova experiment at
- CERN with 26 GeV protons on Be. Estimated axion mass is about 300 keV and lifetime is $(0.86 \sim 5.6) \times 10^{-3}$ s depending on models. Faissner (private communication), says axion production underestimated and mass overestimated. Correct value around 200
- 36 FAISSNER 80 is SIN beam dump experiment with 590 MeV protons looking for 40 $^{+}$ $^{-}$ decay. Assuming 40 / 0 = 5.5 × 10⁻⁷, obtained decay rate limit 20 / 40 mass) MeV/s (CL = 90%), which is about 10^{-7} below theory and interpreted as upper limit to $m(A^{(i)}) < 2m(e^{-i})$.
- 40 JACQUES 80 is a BNL beam dump experiment. First limit above comes from nonobservation of excess neutral-current-type events $[\sigma(\text{productlon})\sigma(\text{interactaction}) < 7. \times 10^{-68}$ cm⁴, CL = 90%]. Second limit is from nonobservation of axion decays into 2γ 's or + e⁻, and for axion mass a few MeV.
- 41 SOUKAS 80 at BNL observed no excess of neutral-current-type events in beam dump.
- 42 BECHIS 79 looked for the axion production in low energy electron Bremsstrahlung and the subsequent decay into either 2γ or $e^+\,e^-$. No signal found. CL = 90% limits for model parameter(s) are given.
- 43 COTEUS 79 is a beam dump experiment at BNL.
- 44 DISHAW 79 is a calorimetric experiment and looks for low energy tail of energy distri-
- butions due to energy lost to weakly interacting particles. 45 BELLOTTI 78 first value comes from search for $A^0 \rightarrow e^+e^-$. Second value comes from search for $A^0 \rightarrow 2\gamma$, assuming mass $<2m(e^-)$. For any mass satisfying this, limit is above value×(mass 4). Third value uses data of PL 60B 401 and quotes σ (production) σ (interaction) < 10^{-67} cm 4 .
- ⁴⁶ BOSETTI 78B quotes σ (production) σ (interaction) <2. × 10⁻⁶⁷ cm⁴

- 47 DONNELLY 78 examines data from reactor neutrino experiments of REINES 76 and GURR 74 as well as SLAC beam dump experiment. Evidence is negative
- 48 MICELMACHER 78 finds no evidence of axion existence in reactor experiments of REINES 76 and GURR 74. (See reference under DONNELLY 78 below).
- 49 VYSOTSKII 78 derived lower limit for the axion mass 25 keV from luminosity of the sun and 200 keV from red supergiants.

A⁰ (Axion) Searches in Reactor Experiments

VALUE						DOCUM	IENT ID		TECN	COMME	NT
• • •	We	do no	t use	the	following	data for	averages	s, fits	s, limits	, etc. • (• •
					5	0 KETO	V	86	SPEC	Reacto	, A ⁰ →

51 KOCH 86 SPEC Reactor: A⁰ → γγ 52 DATAR 82 CNTR Light water reactor ⁵³ VUILLEUMIER 81 CNTR Reactor, $A^0 \rightarrow 2\gamma$

- 50 KETOV 86 searched for ${\it A}^0$ at the Rovno nuclear power plant. They found an upper limit on the ${\it A}^0$ production probability of 0.8 [100 keV/m(${\it A}^0$)] 6 \times 10 $^{-6}$ per fission. In the standard axion model, this corresponds to $m(A^0) > 150$ keV. Not valid for $m(A^0)$ \gtrsim 1 MeV.
- 51 KOCH 86 searched for $A^0 \to \gamma \gamma$ at nuclear power reactor Biblis A. They found an upper limit on the A^0 production rate of $\omega(A^0)/\omega(\gamma(M1)) < 1.5 \times 10^{-10}$ (CL=95%). Standard axion with $m(A^0) = 250$ keV gives 10^{-5} for the ratio. Not valid for $m(A^0)$
- 52 DATAR 82 looked for $A^0 \rightarrow 2\gamma$ in neutron capture $(np \rightarrow dA^0)$ at Tarapur 500 MW reactor. Sensitive to sum of l=0 and l=1 amplitudes. With ZEHNDER 81 [(l=0)](I=1)] result, assert nonexistence of standard A^0
- 53 VUILLEUMIER 81 is at Grenoble reactor. Set limit $m(A^0)$ <280 keV.

A^0 (Axion) and Other Light Boson (X^0) Searches in Nuclear Transitions

Lin	nits are to	or branchir	ng ratio	Э.				
VALUE		CL% EV	<u>T5</u>		DOCUMENT ID		<u>TECN</u>	COMMENT
• • • W	e do not	use the fo	llowing	ξd	ata for averages	, fits	, limits,	etc. • • •
<(0.4-10)×10 ⁻³	95		54	DEBOER	90	CNTR	$^{8}\text{Be}^{*} \rightarrow {}^{8}\text{Be} A^{0}$,
<(0.2-1)	×10 ⁻³	90		55	BINI	89	CNTR	$ \begin{array}{ccc} A^0 & \rightarrow & e^+e^- \\ 16^{O*} & \rightarrow & 16^{O}X^0 \\ X^0 & \rightarrow & e^+e^- \end{array} $
				56	AVIGNONE	88	CNTR	$Cu^* \rightarrow CuA^0 (A^0 \rightarrow 2\gamma, A^0 e \rightarrow \gamma e,$
								$A^0 Z \rightarrow \gamma Z$
	$\times 10^{-4}$			57	DATAR			12C* → 12CA0
< 5	$\times 10^{-3}$	90		58	DEBOER	88C	CNTR	$^{16}0^* \rightarrow ^{16}0X^0$,
	× 10 ⁻⁵	95		59	DOEHNER	88	SPEC	2 H*, 0
< 4	× 10 ⁻⁴				SAVAGE	88	CNTR	Nuclear decay (isovec- tor)
< 3	$\times 10^{-3}$	95		60	SAVAGE	88	CNTR	Nuclear decay (isoscalar)
< 0.106		90		61	HALLIN	86	SPEC	⁶ Li isovector decay
<10.8		90		61	HALLIN	86	SPEC	¹⁰ B isoscalar decays
< 2.2		90		61	HALLIN	86	SPEC	¹⁴ N isoscalar decays
< 4	$\times 10^{-4}$	90	0	62	SAVAGE		CNTR	
				63	ANANEV	85	CNTR	Li*, deut* $A^0 \rightarrow 2\gamma$
				64	CAVAIGNAC		CNTR	97 Nb*, deut* transition $^{40} \rightarrow ^{2\gamma}$
				65	ALEKSEEV	82B	CNTR	Li*, deut* transition $A^0 \rightarrow 2\gamma$
				66	LEHMANN	82	CNTR	$Cu \stackrel{\longleftarrow}{\to} Cu \stackrel{A^0}{\to} Cu \stackrel{A^0}{\to} 2\gamma)$
			0	67	ZEHNDER	82	CNTR	Li*, Nb* decay, n-capt.
			0	68	ZEHNDER	81		$\begin{array}{c} Ba^* \rightarrow BaA^0 \\ (A^0 \rightarrow 2\gamma) \end{array}$
				40				477

69 CALAPRICE 79 ⁵⁴ The DEBOER 90 limit is for the branching ratio 8 Be* (18.15 MeV, $^{1+}$) \rightarrow 8 Be 9 0,

Carbon

- $A^0 \rightarrow e^+e^-$ for the mass range $m(A^0)=4$ –15 MeV. 55 The BINI 89 limit is for the branching fraction of $^{16}\mathrm{O}^*$ (6.05 MeV, $^0+$) \rightarrow $^{16}\mathrm{O}\,^{x0}$, $x^0 \rightarrow e^+e^-$ for m(X)=1.5–3.1 MeV. $\tau(X^0)\lesssim 10^{-11}$ s is assumed. The spin-parity of X is restricted to 0+ or 1-
- The stricted to upon the secondary A^0 interactions by Compton and by Primakoff 2γ in-flight decay or from the secondary A^0 interactions by Compton and by Primakoff processes. Limits for axion parameters are obtained for $m(A^0) < 1.1$ MeV.
- ⁵⁷DATAR 88 rule out light pseudoscalar particle emission in the mass range 1.02–2.5 MeV and lifetime range 10^{-13} – 10^{-8} s. The above limit is for $\tau=5\times 10^{-13}$ s and m=
- and lifetime range 10 $^{-3}$ -10 $^{-3}$. The above limit is for $\tau=5\times10^{-3}$ s and m=1.7 MeV; see the paper for the τ -m dependence of the limit. 58 The limit is for the branching fraction of 16 O* (6.05 MeV, 0+) \rightarrow 16 O \times 0, \times 0 \rightarrow e⁺ e⁻ against internal pair conversion for $m(X^0)=1.7$ MeV and $\tau(X^0)<10^{-11}$ s. Similar limits are obtained for $m(X^0)=1.3$ -3.2 MeV. The spin parity of \times 0 must be either 0+ or 1-. The limit at 1.7 MeV is translated into a limit for the χ^0 -nucleon coupling constant: $g_{\chi 0\,NN}^2/4\pi < 2.3 \times 10^{-9}$.
- ⁵⁹ The DOEHNER 88 limit is for $m(A^0)=1.7$ MeV, $\tau(A^0)<10^{-10}$ s. Limits less than
- 10⁻⁴ are obtained for $m(A^0) = 1.2-2.2$ MeV. 60 SAVAGE 88 looked for A^0 that decays into e^+e^- in the decay of the 9.17 MeV J^P = 2⁺ state in ¹⁴N, 17.64 MeV state $J^P = 1^+$ in ⁸Be, and the 18.15 MeV state J^P = 1⁺ in ⁸Be. This experiment constrains the isovector coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and the isoscalar coupling of A^0 to hadrons, if $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and is $m(A^0) = (1.1 \rightarrow 2.2)$ MeV and (1.1 \rightarrow 2.6) MeV. Both limits are valid only if $\tau(A^0) \lesssim 1 \times 10^{-11}$ s.
- 61 Limits are for $\Gamma(A^0(1.8~{\rm MeV}))/\Gamma(\pi{\rm M1});$ i.e., for 1.8 MeV axion emission normalized to the rate for internal emission of e^+e^- pairs. Valid for $\tau(A^0) < 2 \times 10^{-11} \text{s.}^{6} \text{Li}$

- isovector decay data strongly disfavor PECCEI 86 model I, whereas the 10 B and 14 N
- isoscalar decay data strongly reject PECCEI 86 model II and III. 62 SAVAGE 86B looked for 40 that decays into e^+e^- in the decay of the 9.17 MeV 50 = 2⁺ state in ¹⁴N. Limit on the branching fraction is valid if $\tau(A^0)\lesssim 1.\times 10^{-11}$ s for $m(A^0) = (1.1-1.7)$ MeV. This experiment constrains the iso-vector coupling of A^0 to
- 63 ANANEV 85 with IBR-2 pulsed reactor exclude standard 40 at CL = 95% masses below 470 keV (LI* decay) and below 2m(e) for deuteron* decay. 64 CAVAIGNAC 83 at Bugey reactor exclude axion at any $m(^{97}$ Nb* decay) and axion with $m(A^0)$ between 275 and 288 keV (deuteron* decay).
- 65 ALEKSEEV 82 with IBR-2 pulsed reactor exclude standard A^0 at CL = 95% mass-ranges $m(A^0)$ <400 keV (Li* decay) and 330 keV $< m(A^0)$ <2.2 MeV. (deuteron* decay). 66 LEHMANN 82 obtained $A^0 \rightarrow 2\gamma$ rate <6.2 \times 10 $^{-5}$ /s (CL = 95%) excluding $m(A^0)$
- between 100 and 1000 keV. between 100 and 1000 keV. 7° ZEHNDER 82 used Goesgen 2.8GW light-water reactor to check 4° production. No 2γ peak in Li*, Nb* decay (both single p transition) nor in n capture (combined with
- previous Ba* negative result) rules out standard A^0 . Set limit $m(A^0)$ <60 keV for any
- ⁶⁸ A^{O} . SEHNDER 81 looked for Ba* \rightarrow A^{O} Ba transition with A^{O} \rightarrow 2γ . Obtained 2γ coincidence rate $<2.2\times10^{-5}$ /s (CL = 95%) excluding $m(A^{O})$ >160 keV (or 200 keV depending on Higgs mixing). However, see BARROSO 81.
- ⁶⁹CALAPRICE 79 saw no axion emission from excited states of carbon. Sensitive to axion mass between 1 and 15 MeV.

A⁰ (Axion) Limits from Its Electron Coupling

Lilling are for //A -	6	<i>J</i> ·			
VALUE (s)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the foll	owing	data for averages, fits	s, lim	its, etc.	• • •
		70 BJORKEN	88	CALO	$A \rightarrow e^+e^- \text{ or } 2\gamma$
		71 BLINOV	88	MD1	e ⁺ e [−] → e ⁺ e [−] A ⁰
14 10		70			$(A^0 \to e^+ e^-)$
none $1 \times 10^{-14} - 1 \times 10^{-10}$	90	72 RIORDAN	87	BDMP	$eN \rightarrow eA^{0}N$
none $1 \times 10^{-14} - 1 \times 10^{-11}$	90	⁷³ BROWN	86	врмр	$A \rightarrow e^+e^-$ or 2γ $e^+e^ A \rightarrow e^+e^-$) $e^+e^ A \rightarrow e^+e^-$) $e^+e^ e^+e^-$)
none $6 \times 10^{-14} - 9 \times 10^{-11}$	95	74 DAVIER	86	вомр	$eN \rightarrow eA^0N$
none $3 \times 10^{-13} 1 \times 10^{-7}$	90	75 KONAKA	86	вомр	$eN \rightarrow eA^0N$
					$(A^{\circ} \rightarrow e^{+}e^{-})$

- 70 BJORKEN 88 reports limits on axion parameters ($f_A,\,m_A,\,\tau_A$) for $m(A^0)<200$ MeV from electron beam-dump experiment with production via Primakoff photoproduction, bremsstrahlung from electrons, and resonant annihilation of positrons on atomic electrons.
- trons. 71 BLINOV 88 assume zero spin, m=1.8 MeV and lifetime $< 5 \times 10^{-12}$ s and find $\Gamma(A^0 \rightarrow$
- $\gamma\gamma) B(A^0 \to e^+e^-) < 2$ eV (CL=90%). ^22 Assumes $A^0\,\gamma\gamma$ coupling is small and hence Primakoff production is small. Their figure 2 shows limits on axions for $m(A^0) < 15$ MeV.
- 73 Uses electrons in hadronic showers from an incident 800 GeV proton beam. Limits for $m(A^0) < 15$ MeV are shown in their figure 3.
- $74 \, m(A^0) = 1.8$ MeV assumed. The excluded domain in the $\tau(A^0) m(A^0)$ plane extends
- up to $m(A^0) \approx 14$ MeV, see their figure 4. 75 The limits are obtained from their figure 3. Also given is the limit on the $A^0\gamma\gamma-A^0e^+e^-$ coupling plane by assuming Primakoff production.

Search for A⁰ (Axion) Resonance in Bhabha Scattering

The limit is for $[\Gamma(A^0 \rightarrow e^+e^-)]^2/\Gamma_{\text{tot}}$ (= Γ_{tot} if only the decay channel to $e^+e^$ is present)

VALUE (10 ⁻³ eV)	CL%	DOCUMENT ID TECN COMMENT
• • We do not use:	the follow	ing data for averages, fits, limits, etc. • • •
< 5		BAUER 90 CNTR $m(A^0) = 1.832 \text{ MeV}$
< 1.9	97	⁷⁶ TSERTOS 89 CNTR $m(A^0) = 1.82 \text{ MeV}$
<(10-40)	97	⁷⁶ TSERTOS 89 CNTR $m(A^0) = 1.51-1.65$
<(1-2.5)	97	76 TSERTOS 89 CNTR $m(A^{O}) = 1.80-1.86$
< 31	95	
< 94	95	LORENZ 88 CNTR $m(A^0) = 1.726 \text{ MeV}$
< 23	95	LORENZ 88 CNTR $m(A^{0}) = 1.782 \text{ MeV}$
< 19	95	LORENZ 88 CNTR $m(A^0) = 1.837 \text{ MeV}$
< 3.8	97	77 TSERTOS 88 CNTR $m(A^0) = 1.832 \text{ MeV}$
		78 VANKLINKEN 88 CNTR
		⁷⁹ MAIER 87 CNTR
<2500	90	MILLS 87 CNTR $m(A^0) = 1.8 \text{ MeV}$
		80 VONWIMMER.87 CNTR

- 76 See also TSERTOS 88B in references.
 77 The upper limit listed in TSERTOS 88 is too large by a factor of 4. See TSERTOS 88B,
- 78 VANKLINKEN 88 looked for relatively long-lived resonance ($\tau=10^{-10}$ – 10^{-12} s). The
- sensitivity is not sufficient to exclude such a narrow resonance. $^{79}\,\text{MAIER 87 obtained limits } RT\lesssim 60\,\text{eV}\,(100\,\text{eV})\,\text{at } m(A^0)\sim 1.64\,\text{MeV}\,(1.83\,\text{MeV})\,\text{for energy resolution } \Delta E_{cm}\sim 3\,\text{keV}, \text{where } R\text{ is the resonance cross section normalized to}$ that of Bhabha scattering, and $\Gamma=\Gamma_{ee}^2/\Gamma_{tot}$. For a discussion implying that $\Delta E_{cm}\sim 10$ keV, see TSERTOS 89.
- 80 VONWIMMERSPERG 87 measured Bhabha scattering for E_{Cm} = 1.37–1.86 MeV and found a possible peak at 1.73 with $\int \sigma dE_{\rm Cm} = 14.5 \pm 6.8$ keV-b. For a comment and a reply, see VANKLINKEN 88B and VONWIMMERSPERG 88. Also see S.H. Connel et al., Phys. Rev. Lett. 60, 2242 (1988).

Gauge & Higgs Boson Full Listings

Axions (A⁰) and Other Very Light Bosons

Search for A^0 (Axion) Resonance in $e^+e^- \rightarrow \gamma \gamma$ The limit is for $\Gamma(A^0 \rightarrow e^+e^-) \cdot \Gamma(A^0 \rightarrow \gamma \gamma) / \Gamma_{tot}$

VALUE (10 ⁻³ eV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use	the followi	ng data for averag	es, fit	s, limits,	etc. • • •
		⁸¹ FOX	89	CNTR	
< 0.11	95	82 MINOWA			$m(A^0) = 1.062 \text{ MeV}$
<33	97	CONNELL			$m(A^0) = 1.580 \text{ MeV}$
<42	97	CONNELL			$m(A^0) = 1.642 \text{ MeV}$
<73	97	CONNELL			$m(A^0) = 1.782 \text{ MeV}$
<79	97	CONNELL	88	CNTR	$m(A^0) = 1.832 \text{ MeV}$

 $81\,\mathrm{FOX}$ 89 measured positron annihilation with an electron in the source material into two photons and found no signal at 1.062 MeV ($< 9 \times 10^{-5}$ of two-photon annihilation at

⁸² Similar limits are obtained for $m(A^0) = 1.045-1.085$ MeV.

Searches for Goldstone Bosons (X^0)

(Including Horizontal Bosons and Majorons.) Limits are for branching ratios. CL% EVTS DOCUMENT ID TECN COMMENT

• • • we do not	use	the following	g data for averages	, rits	, iimits,	etc. • • •
$< 1.1 \times 10^{-9}$	90		83 BOLTON	88	СВОХ	$\mu^+ \rightarrow e^+ \gamma X^0$.
			84 CHANDA	88	ASTR	Familon Sun, Majoron
			⁸⁵ CHOI	88	ASTR	Majoron, SN 1987A
$< 5 \times 10^{-6}$	90		86 PICCIOTTO	88	CNTR	$\pi \to e \nu X^0$, Majoron
$<1.3 \times 10^{-9}$	90		⁸⁷ GOLDMAN	87	CNTR	$\mu \rightarrow e \gamma X^0$. Familon
$< 3 \times 10^{-4}$	90		⁸⁸ BRYMAN	86B	RVUE	$\mu \rightarrow eX^0$. Familion
$<1. \times 10^{-10}$	90		89 EICHLER	86	SPEC	$\mu^+ \rightarrow e^+ X^0$. Familon
$< 2.6 \times 10^{-6}$	90		90 JODIDIO			$\mu^+ \rightarrow e^+ X^0$. Familon
			⁹¹ BALTRUSAIT	.85	MRK3	$\tau \to \ell X^0$. Familon
			⁹² DICUS	83	COSM	ν (hvy) $\rightarrow \nu$ (light) X^0

 83 BOLTON 88 limit corresponds to $F>3.1\times10^9\,$ GeV, which does not depend on the chirality property of the coupling.

 $^{84}\mathrm{CHANDA}$ 88 find v_T $\,<$ 10 MeV for the weak-triplet Higgs vev. in Gelmini-Roncadelli model, and $v_S > 5.8 \times 10^6$ GeV in the singlet Majoron model.

 $85\,\mathrm{CHOI}$ 88 used the observed neutrino flux from the supernova SN 1987A to exclude the neutrino Majoron Yukawa coupling h in the range 2×10^{-5} $< h < 3 \times 10^{-4}$ for the interaction $L_{\mathrm{int}}=\frac{1}{2}i\hbar\overline{\psi}_{\nu}^{c}\gamma_{5}\psi_{\nu}\phi_{\mathrm{X}}.$ For several families of neutrinos, the limit applies for $(\Sigma h_i^4)^{1/4}$.

⁸⁶ PICCIOTTO 88 limit applies when $m(X^0) <$ 55 MeV and $\tau(X^0) >$ 2ns, and it decreases to 4×10^{-7} at $m(X^0) = 125$ MeV, beyond which no limit is obtained.

 87 GOLDMAN 87 limit corresponds to $F > 2.9 \times 10^9\,$ GeV for the family symmetry breaking scale from the Lagrangian $L_{\rm int}=(1/F)\overline{\psi}_{\mu}\gamma^{\mu}$ $(a+b\gamma_5)$ $\psi e \partial_{\mu}\phi_{X0}$ with $a^2+b^2=1$. This is not as sensitive as the limit $F>9.9\times10^9$ GeV derived from the search for $\mu^+\to$ $e^+\,X^0$ by JODIDIO 86, but does not depend on the chirality property of the coupling. 88 Limits are for $\Gamma(\mu \to e X^0)/\Gamma(\mu \to e \nu \overline{\nu})$. Valid when $m(X^0)=0$ –93.4, 98.1–103.5

MeV. Rev. Bell-LLER 86 looked for $\mu^+ \to e^+ X^0$ followed by $X^0 \to e^+ e^-$. Limits on the branching fraction depend on the mass and and lifetime of X^0 . The quoted limits are valid when $\tau(X^0) \gtrsim 3. \times 10^{-10} \mathrm{s}$ if the decays are kinematically allowed.

90 JODIDIO 86 corresponds to $F>9.9\times10^9$ GeV for the family symmetry breaking scale with the parity-conserving effective Lagrangian $L_{\rm int}=(1/F)\ \bar{\psi}_{\mu}\gamma^{\mu}\psi e\,\partial^{\mu}\phi_{\chi}0$.

 91 BALTRUSAITIS 85 search for light Goldstone boson(X^0) of broken U(1). CL = 95% limits are B($au o \mu^+ X^0$)/B($au o \mu^+
u
u$) <0.125 and B($au o e^+ X^0$)/B($au o e^+
u
u$) <0.04. Inferred limit for the symmetry breaking scale is m >3000 TeV.

92 The primordial heavy neutrino must decay into ν and familion, f_A , early so that the redshifted decay products are below critical density, see their table. In addition, $K \to \pi f_A$ and $\mu \to e^- f_A$ are unseen. Combining these excludes $m(\text{heavy } \nu)$ between 5×10^{-5} and 5×10^{-4} MeV (μ decay) and m(heavy ν) between 5×10^{-5} and 0.1 MeV (K-decay).

Majoron Searches in Neutrinoless Double β Decay

Limits are for the half-life of neutrinoless $\beta\beta$ decay with a Majoron emission. Previous indications for neutrinoless double beta decay with majoron emission have been superceded. No experiment currently claims any such evidence. For a review, see DOL 88

VALUE (ye	ars)	CL%	DOCUMENT ID		TECN	COMMENT
> 1.4	× 10 ²¹	90	CALDWELL	87	CNTR	76 Ge
• • • W	e do not use	the followi	ng data for average	es, fit	s, limits,	etc. • • •
> 1.9	$\times 10^{20}$	68	BARABASH		CNTR	
> 1.0	× 10 ²¹	90	FISHER	89	CNTR	
> 3.3	× 10 ²⁰	90	ALSTON			
(6 ±	$1) \times 10^{20}$		AVIGNONE		CNTR	
> 4.4	× 10 ²⁰	90	ELLIOTT	87	SPEC	
> 1.2	$\times 10^{21}$	90	FISHER	87	CNTR	76 Ge
			⁹³ VERGADOS	82	CNTR	

 93 VERGADOS 82 sets limit $g_{H} < 4 \times 10^{-3}$ for (dimensionless) lepton-number violating coupling, g_{H} , of scalar boson (Majoron) to neutrinos, from analysis of data on double β decay of 48 Ca.

INVISIBLE A^0 (AXION) MASS LIMITS FROM ASTROPHYSICS AND COSMOLOGY

Limits on $m(A^0)$ are obtained from the axion coupling to electrons, nucleons, or photons. Quoted limits are often expressed in terms of the axion decay constant f_A which can be defined in terms of the mass or axion-electron coupling by $m(A^0) = 3.5 \times 10^{10} g_{Ae} \cos^{-2} \beta \,\text{eV} = 7.2 \times 10^7 (\text{GeV}/f_A)(N/6) \,\text{eV}$ [using the conventions detailed in Srednicki1; for other conventions take $f_A \to 2f_A$ (Bardeen²) or $f_A \to 4f_A$ (Kaplan³)] where N is the number of quarks with Peccei-Quinn charge (usually the number of quark flavors) and $\cos^2\beta = v_1^2/(v_1^2 + v_2^2)$ is determined by the vacuum expectation values of the two Higgs doublets coupling to up and down quarks (and charged leptons). For the coupling to photons $m(A^0) = 6.9 \times 10^9$ $(g_{A\gamma}/\text{GeV}^{-1})\,\text{eV}$ and for the coupling to nucleons $m(A^0)=$ $7.7 \times 10^7 g_{AN}/c_{AN}$ eV where c_{AN} depends on the details of the coupling of axions to nucleons. These couplings are defined by

$$\begin{split} \mathcal{L}_{\text{int}} &= -\frac{1}{4} g_{A_{\gamma}} \, \phi_{A} \, F_{\mu\nu} \, \widetilde{F}^{\mu\nu} = g_{A_{\gamma}} \, \phi_{A} \, \mathbf{E} \cdot \mathbf{B} \, \, , \\ \mathcal{L}_{\text{int}} &= i g_{Ae} \, \phi_{A} \, \overline{\psi}_{e} \, \gamma_{5} \psi_{e} \, \, , \qquad \text{and} \\ \mathcal{L}_{\text{int}} &= i g_{AN} \, \phi_{A} \, \overline{\psi}_{N} \, \gamma_{5} \, \psi_{N} \, \, . \end{split}$$

The factors in these equations are model dependent, in particular $g_{Ae} = 0$ in the KSVZ⁴ models. In the comment for each limit below, D indicates that the limit is specific to DFSZ⁵ axions, K to KSVZ axions (The limits quoted assume N=6and $v_1 = v_2$.)

References

- M. Srednicki, Nucl. Phys. **B260**, 689 (1985).
- 2. W. Bardeen and H. Tye, Phys. Lett. 74B, 229 (1978).
- 3. D. Kaplan, Nucl. Phys. B260, 215 (1985).
- 4. J.E. Kim, Phys. Rev. Lett. 43, 103 (1979); M.A. Shifman, A.I. Vainstein, and V.I. Zakharov, Nucl. Phys. B166, 493
- 5. A.R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980); and M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. 104B, 199 (1981).

Invisible A^0 (Axion) MASS LIMITS from Astrophysics and Cosmology $v_1 = v_2$ is usually assumed ($v_i = vacuum expectation values$).

VALUE (eV) DOCUMENT ID TECN COMMENT ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet $< 1 \times 10^{-3}$ 94 BURROWS 89 ASTR D,K, SN 1987A <(1.4-10) \times 10⁻³ 95 ERICSON 89 ASTR D,K, SN 1987A $< 3.6 \times 10^{-4}$ 96 MAYLE 89 ASTR D,K, SN 1987A D, Sun <12 CHANDA 88 ASTR \times 10⁻³ < 1 RAFFELT 88 ASTR D,K, SN 1987A 97 RAFFELT 888 ASTR red giant < 0.07 FRIEMAN ASTR 87 D. red glant 98 RAFFELT < 0.7 87 ASTR K, red giant < 2-5 TURNER COSM K, thermal production 99 DEARBORN < 0.01 ASTR D, red giant < 0.06 RAFFELT 86 ASTR D, red giant 100 RAFFELT < 0.7 86 ASTR < 0.03 RAFFELT 86B ASTR D, white dwarf ¹⁰¹ KAPLAN 85 ASTR K, red giant < 1 < 0.003-0.02 IWAMOTO 84 ASTR D. K. neutron star $> 1 \times 10^{-5}$ ABBOTT 83 COSM D,K, mass density of the universe 83 COSM D,K, mass density of the > 1 \times 10⁻⁵ DINE universe

(UCSB) (FNAL)

Gauge & Higgs Boson Full Listings Axions (A^0) and Other Very Light Bosons

```
< 0.04
                                                          ELLIS
                                                                                   83B ASTR D, red giant
          × 10<sup>-5</sup>
                                                                                   83 COSM D,K, mass density of the
                                                          PRESKILL
> 1
                                                                                  82 ASTR D, red giant
82 ASTR D, stellar cooling
< 0.1
                                                          BARROSO
                                                   102 FUKUGITA
 < 0.07
                                                          FUKUGITA
                                                                                   82B ASTR D, red giant
 <sup>94</sup> The region m(A^0) \gtrsim 2 \text{ eV} is also allowed.
 STERICSON 89 considered various nuclear corrections to axion emission in a supernova core, and found a reduction of the previous limit (MAYLE 88) by a large factor.
 96 MAYLE 89 limit based on naive quark model couplings of axion to nucleons. Limit based on couplings motivated by EMC measurements is 2–4 times weaker. The limit from axion-electron coupling is weak: see HATSUDA 88B.
 97 RAFFELT 88B derives a limit for the energy generation rate by exotic processes in helium-
      burning stars \epsilon < 100 erg g^{-1} s^{-1}, which gives a firmer basis for the axion limits based
 burning stars \epsilon and \epsilon on red giant cooling. 98 RAFFELT 87 also gives a limit g_{A\gamma} < 1 \times 10^{-10}~{\rm GeV}^{-1}.
^{99} DEARBORN 86 also gives a limit g_{A\gamma}<1.4\times10^{-11}~{\rm GeV^{-1}}. ^{100} RAFFELT 86 gives a limit g_{A\gamma}<1.1\times10^{-10}~{\rm GeV^{-1}} from red giants and <2.4\times10^{-9}
^{\rm GeV^{-1}} from the sun. 101 KAPLAN 85 says m(4^0)<23 eV is allowed for a special choice of model parameters. 102 FUKUGITA 82 gives a limit g_{A\gamma}<2.3\times10^{-10}~{\rm GeV^{-1}}.
```

Search for Invisible Axions Limits are for $[G_{A\gamma\gamma}/m(A^0)]^2 \rho_A$ where $G_{A\gamma\gamma}$ denotes the axion two-photon coupling, $L_{\rm int} = \frac{G_{A\gamma\gamma}}{4} \phi_A F_{\mu\nu} \tilde{F}^{\mu\nu} = G_{A\gamma\gamma} \phi_A E \cdot B$, and ρ_A is the axion energy density near the earth. VALUE CLY DOCUMENT ID TECN COMMENT

```
**NOTE: The state of the state
```

103 WUENSCH 89 looks for condensed axions near the earth that could be converted to photons in the presence of an intense electromagetic field via the Primakoff effect, following the proposal of SIKIVIE 83. The theoretical prediction with $[G_{A\gamma\gamma}/m(A^0)]^2 = 1.1 \times 10^{-16}~\text{MeV}^{-4}$ (the three generation DFSZ model) and $\rho_A = 300~\text{MeV/cm}^3$ that makes up galactic halos gives $(G_{A\gamma\gamma}/m(A^0))^2~\rho_A = 2.3 \times 10^{-46}$. Note that our definition of $G_{A\gamma\gamma}$ is $(1/4\pi)$ smaller than that of WUENSCH 89.

REFERENCES FOR Searches for Axions (A0) and Other Very Light Bosons

```
+Briggmann, Carstanjen, Connell, et al. (STUT, PSI, GSI) de Boer, Lehmann, Steyaert (IVLN) +Kuzminov, Lobashev, Novikov+ (ITEP, INRM) +Fazzini, Giannatiempo, Poggi, Sona+(FIRZ, CERN, AARH) +Turner, Brinkmann (ARIZ, CHIC, FNAL, BOCH) (FNAL, EF) (FNAL, ER)
BAUER
                                                                                                      NIM B50 300
                                                                                                   NIM B50 300
JP G16 L1
PL B223 273
PL B221 99
PR D39 1020
PRL 60 1797
PRL 62 2639
PL B219 507
ZPHY C44 557
PL B218 257
 DEBOER
BARABASH
                                                                        Also
DEBOER
ERICSON
FAISSNER
                                                                                                                                                                                                                      de Boer, van Dantzig
+Mathiot
                                                                                                                                                                                                                  Washiot Survey Care Name (CERN, IPN)
Helmigs, Preussger, Reitz, Samm+ (AACH, BERL, PSI)
Heboehm, Bovet, Egger- (CIT, NEUC, PSI)
Hemper, Cottle, Zingarelli (FSU)
Hillion, Ellis (LLL, CERN, MINN, FNAL, CHIC, OSU)
Mayle, Wilson+ (LLL, CERN, MINN, FNAL, CHIC, OSU)
HOrto, Tisuchiaki, Tisukamoto (TOKY)
Yoshimura, Haga, Minowa, Tsuchiaki (TOKY)
(OXF)
                                                                                                                                                                                                                                                                                                                                                                                                                                         (CERN, IPN
   FISHER
                                                                                                      PL B218 257
PR C39 288
                                                                                                   PR C39 288
PL B219 515
PL B203 188
PRL 62 1091
PRL 63 597
PRL 62 2638
PR D40 3153
PR D40 3153
PR 59 839
   MAYLE
Also
MINOWA
ORITO
PERKINS
TSERTOS
WUENSCH
                                                                                                                                                                                                   (TOKY)

+Kozhuharov, Armbruster, Kienle+
+De Panfilis-Wuensch, Semertzidis+
De Panfilis-Wuensch, Semertzidis+
Noksowitz-
(ROCH, BNL, FNAL)
Alston-Garnjost, Dougherty+
LBAttash, Barker, Calapinet-(PRIN, USCR, ORNL, WASH)
+Ecklund, Nelson, Abashian+
-Bondar, Bukin, Vorobyev, Groshev+
(NOVO)

47 889.
   Also
ALSTON
   AVIGNONE
BJORKEN
                                                                                                      PR D38 3375
                                                                                                     PR D36 3375
SJNP 47 553
Translated from
PR D38 2077
PRL 56 2461
PRL 57 3241
PR D37 2714
PR D37 3225
PRI 60 2222
   BLINOV
                                                                                                                                                                                                                      883.
+Copper, Frank, Hallin+
Bolton, Bowman, Cooper+
(LANL, STAN, CHIC, TEMP)
Grosnick, Wright, Bolton+
+Nieves, Pal
(UMD, UPR, MASA)
                                                                          BOLTON
   Also
Also
CHANDA
   CHOI
CONNELL
DATAR
                                                                                                                                                                                                                    PRL 60 2242
PR C37 250
                                                                                                   PR C37 250
PRL 61 1274
PRL 62 2644 erratum
PRL 62 2638
PRL 62 2639
JP G14 L131
PR D38 2722
PR D37 2575
PRL 61 1271
ZPHY C37 231
PL B203 469
   DEBOER
DEBOER
Also
Also
Also
DEBOER
DOEHNER
DOI
EL-NADI
                                                                                                                                                                                                                       +Badawy
+Heinrigs, Preussger, Reitz, Samm+ (AACH, BERL, SIN
                                                                                                                                                                                                                    +Helnigs, Preussger, Reitz, Samm+ (AACH, BERL, SIN)
+YoShimura
+Washeras, Stiegler, Huszar
+Wilson+ (LLL, CERN, MINN, FNAL, CHIC, OSU)
+Ahmad, Britton, Bryman, Clifford+
+Seckel
-Dearborn
+Filippone, Mitchell
+Filippone, Mitchell
+Kozhuharov, Armbruster, Kienle+
+Kozhuharov, Armbruster, Kienle+
-Kozhuharov, Armbruster, Kienle+
-Kozhuharov, Mehing, de Boer, Schaafsma+ (GRON, GS)
van Klinken
- (GRON)
- (GRO
                                                                                                   PL B203 469
PL B214 10
PL B203 188
   HATSUDA
   LORENZ
     MAYLE
   PICCIOTTO
                                                                                                      PR D37 1131
PRL 60 1793
                                                                                                 PRL 60 1793
PR D37 549
PR D37 1134
PL B207 273
ZPHY A331 103
PL B205 223
PRL 60 2442
PRL 60 2442
A1P Conf. 1987
Saft Lake City, UT
PRL 59 222
PRL 60 472 erratum
PRL 59 419
ZPHY C37 1
PRL 59 1549
PL B192 460
PR D36 2201
PR D36 2201
PR D36 1243
SJINP, 46 192
     RAFFELT
   RAFFELT 88
RAFFELT 88B
SAVAGE 88
TSERTOS 88B
VANKLINKEN 88
VANKLINKEN 88B
VONWIMMER...88
                                                                                                                                                                                                                    van Klinken
von Wimmersperg
+Brodzinski, Miley, Reeves
 AVIGNONE 87
AIP Conf. Proc.
                                                                                                                                                                                                                                                                                                                                                                                                                                     (SCUC, PNL)
                                                                                                                                                                                                                  + Gordon, Lazarus+
Baker, Gordon+
Eisberg, Grumm, Witherell+
Dubrowin, Eldelman, Golubev+
Hahn, Moe
(UC)
Boehm, Bovet, Egger+
(CIT, NEUC, SIN)
+ Dimpopulos, Turner
(LANL, CHIC, STAN, FNAL EFF)
+ Hallin, Hoffman+
Koren, Enekh Kostin, Mithawise, Chick, STAN, TEMP)
Koren, Enekh Kostin, Mithawise, Chick, STAN, TEMP)
Koren, Enekh Kostin, Mithawise, Chick, STAN, TEMP)
AIP Con
BAKER
Also
CALDWELL
DRUZHININ
ELLIOTT
FISHER
FRIEMAN
                                                                                                                                                                                                                                                                                                                                                         (UCI)

(CIT, NEUC, SIN)

(SLAC, STAN, FNAL, EFI)

(LANL, CHIC, STAN, TEMP)
                                                                                                      SJNP 46 192 Korenchenko, Kostin, Mzhaviya+
Translated from YAF 46 313.
   KORENCHE ...
```

CREDNICKI	05	NO BOSO SEO	R RELATED PAPERS
		ATUE	DELATED DADEDS
GURR	74	PRL 33 179	+Reines, Sobel (UCI)
Also RÉINES	77B 76	PRL 38 1440 PRL 37 315	Peccei, Quinn (STAN, SLAC) +Gurr, Sobel (UCI)
PECCEI	77	PR D16 1791	+Quinn (STAN, SLAC)
YANG	78	Translated from ZETFF PRL 41 523	27 533. (MASA)
SATO VYSOTSKII	78 78	PTP 60 1942 JETPL 27 502	+Zeldovich, Khlopov, Chechetkin (ASCI)
MIKAELIAN	78	PR D18 3605	(FNAL, NWES)
HANSL MICELMAC	78D 78	PL 74B 139 LNC 21 441	+Holder, Knobloch, May, Paar+ (CDHS Collab.) Micelmacher, Pontecorvo (JINR)
Also	74	PRL 33 179	Gurr, Reines, Sobel (UCI)
DONNELLY Also	78 76	PR D18 1607 PRL 37 315	+Freedman, Lytel, Peccei, Schwartz (STAN) Reines, Gurr, Sobel (UCI)
DICUS	78C	PR D18 1829	+Kolb, Teplitz, Wagoner (TEXA, VPI, STAN)
BELLOTTI BOSETTI	78 78B	PL 76B 223 PL 74B 143	+Fiorini, Zanotti (MILA) +Deden, Deutschmann, Fritze+ (BEBC Collab.)
ASRATYAN	78B	PL 74B 134 PL 79B 497	+Epstein, Fakhrutdinov+ (ITEP, SERP)
ALIBRAN	78	Translated from YAF 2	9 1001. +Armenise, Arnold, Bartley (Gargamelle Collab.)
DISHAW ZHITNITSKII	79 79	PL 85B 142 SJNP 29 517	+Skoypen (NOVO)
COTEUS	79	PRL 42 1438	+Diesburg, Fine, Lee, Sokolsky+ (COLU, ILL, BNL)
BECHIS CALAPRICE	79 79	PRL 42 1511 PR D20 2708	+Dombeck+ (UMD, COLU, AFRR) +Dunford, Kouzes, Miller+ (PRIN)
SOUKAS	80	PRL 44 564	+Wanderer, Weng+ (BNL, HARV, ORNL, PENN)
FAISSNER JACQUES	80 80	PL 96B 201 PR D21 1206	+Frenzel, Heinrigs, Preussger, Samm+ (AACH) +Kalelkar, Miller, Plano+ (RUTG, STEV, COLU)
ZEHNDER	81	PL 104B 494	(ETH)
KIM VUILLEUMIER	81	PL 105B 55 PL 101B 341	+Stamm (AACH) +Boehm, Hahn, Kwon+ (CIT, MUNI)
FAISSNER FAISSNER	81 81B	ZPHY C10 95 PL 103B 234	+Frenzel, Grimm, Hansl, Hoffman+ (AACH) +Frenzel, Heinrigs, Preussger+ (AACH)
BARROSO	81	PL 107B 159 PL 106B 91	+Mukhopadhyay (SIN)
	82 81B	PL 110B 419 PL 107B 159	+Gabathuler, Vuilleumier (ETH, SIN, CIT) +Kikutani, Kurokawa, Miyachi+ (KEK, TOKY, OSAK)
VERGADOS	82	PL 109B 96	(CERN)
SIVERTZ	82 82	PL 119B 323 PR D26 717	+Stodolsky +Lee-Franzini, Horstkotte+ (CUSB Collab.)
LEHMANN	82	PL 115B 270	+Lesquoy, Muller, Zylberajch (SACL)
	82 82B	PRL 48 1522 PR D26 1840	+Watamura, Yoshimura (KEK) +Watamura, Yoshimura (KEK)
FETSCHER	82	JP G8 L147	(ETH)
	82 82	PL 114B 63 PRL 48 903	+Baba, Betigeri, Singh +Partridge, Peck, Porter+ (Crystal Ball Collab.)
BARROSO	82	PL 116B 247	+Branco (LISB)
	82	PL 113B 195	36 94. +Kikutani, Kurokawa, Miyachi+ (KEK, TOKY, OSAK)
ALEKSEEV	82B	Translated from ZETF JETPL 36 116	82 1007. +Kalinina, Kruglov, Kulikov+ (MOSU, JINR) 36 94.
	82	Translated from ZETE	+Kartamyshev, Makarin+ (KIAE)
	83 84	PRL 51 1415 PRL 52 695 (erratum)	(FLOR) Sikivie (FLOR)
PRESKILL	83	PL 120B 127	+Wise, Wilczek (HARV, UCSB)
HOFFMAN NICZYPORUK	83 83	PR D28 660 ZPHY C17 197	+ Jakobowski, Zelodziewicz+ (LLIVA CORD.)
FRANK	83B	PR D28 1790	 (LANL, YALE, LBL, MIT, SACL, SIN, CNRC, BERN)
	83 83B	PR D28 1198 PR D28 1787	+Heinrigs, Preussger, Samm (AACH) +Frenzel, Heinrigs, Preussger+ (AACH)
ELLIS	83B	NP B223 252	+Olive (CERN)
DINE	83 83	PR D28 1778 PL 120B 137	+Teplitz (TEXA, UMD) +Fischler (IAS, PENN)
CAVAIGNAC	83	PL 121B 193	+Hoummada, Koang, Ost+ (ISNG, LAPP)
CARBONI	83 83	PR D27 1665 PL 123B 349	+ (VAND, CORN, ITHA, HARV, ÖHIO, ROCH+) +Dahme (CERN, MUNI)
ABBOTT	83	PL 120B 133	+Sikivie (BRAN, FLOR)
	84 84	PRL 53 1198 PRL 52 1089	+Ishikawa, Taniguchi, Yamanaka+ (TOKY, KEK)
KAPLAN	85	NP B260 215	(HARV)
BALTRUSAIT BERGSMA	85 85	PRL 55 1842 PL 157B 458	Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) +Dorenbosch, Allaby, Amaldi+ (CHARM Collab.)
	85	SJNP 41 585 Translated from YAF 4	+Kalinina, Lushchikov, Olshevskii+ (JINR) 1 912.
AMALDI	85	PL 153B 444	+Carboni, Jonson, Thun (CERN)
SAVAGE	86B 86B	PL 166B 402 PRL 57 178	+McKeown, Filippone, Mitchell (CIT)
RAFFELT	86	PR D33 897	(MPIM)
	86 86	PRL 56 2672 PL B172 435	+Franzini, Tuts, Youssef+ (MPIM, COLU, STON) +Wu, Yanagida (DESY)
KONAKA	86	PRL 57 659	+Imai, Kobayashi, Masaike, Miyake+ (KYOT, KEK)
	86	Translated from ZETFP	44 114
	88 86	IETDI 44 146	Jodidio, Balke, Carr+ (LBL, NWES, TRIU) +Klimov, Nikolaev, Mikaelyan+ (KIAE)
10DIDI0	86	PR D34 1967 PR D37 237 erratum	+Balke, Carr, Gidal, Shinsky+ (LBL, NWES, TRIU)
HALLIN	86 86	PRL 57 2105	+Felawka, Kraus, Niebuhr+ (SINDRUM Collab.) +Calparice, Dunford, McDonald (PRIN)
DEARBORN	86	PRI 56 26	+Schramm, Steigman (LLL, CHIC, FNAL, BART)
	86B 86	PRL 57 2787 PL B180 295	+Clifford (TRIU) +Jeanjean, Nguyen Ngoc (LALO)
BROWN	86	PRL 56 2676 PRL 57 2101 PRL 57 2797	+ Giles, Hassard, Kinoshita+ (CLEO Collab.) + (FNAL, WASH, KYOT, KEK, COLU, STON, SACL)
	86 86	ZPHY C31 21 PRL 56 2676	+Bemporad, Boucrot, Callot+ +Giles, Hassard, Kinoshita+ (CLEO Collab.)
ALBRECHT	86D	PL B179 403	+Binder, Boeckmann+ (ARGUS Collab.)
TURNER VONWIMMER	87	PRL 59 2489 PRL 59 266	(FNAL, EFI) von Wimmersperg, Connell, Hoernle, Sideras-Haddad(WITW
RIORDAN	87 87	PRL 59 755	+Dearborn (LLL, UCB) +Krasny, Lang, Barbaro, Bodek+ (ROCH, CIT+)
MILLS	87	PR D36 707 PR D36 2211	+Levy (BELL)
MAIER	87	ZPHY A326 527	+Bauer, Briggmann, Carstanjen+ (STUT, GSI)

+Tye

LIGHT UNFLAVORED MESONS

$$(S=C=B=0)$$

For I=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

NOTE ON PSEUDOSCALAR-MESON DECAY CONSTANTS

The decay constant f_P for pseudoscalar meson P is defined by

$$\langle 0|A_{\mu}(0)|P(\mathbf{q})\rangle = if_P q_{\mu}$$
,

where A_{μ} is the axial-vector part of the charged weak current after a Cabibbo-Kobayashi-Maskawa mixing-matrix element $V_{qq'}$ has been removed. The state vector is normalized by $\langle P(\mathbf{q})|P(\mathbf{q}')\rangle=(2\pi)^32E_q\,\delta(\mathbf{q}-\mathbf{q}')$, and its phase is chosen to make f_P real and positive. Note, however, that in many theoretical papers our $f_P/\sqrt{2}$ is denoted by f_P and called the pseudoscalar decay constant.

In determining f_P experimentally, radiative corrections must in principle be taken into account. Since the photon-loop correction introduces an infrared divergence that is canceled by soft-photon emission, we can determine f_P only from the combined rate for $P^\pm \to \ell^\pm \nu$ and $P^\pm \to \ell^\pm \nu \gamma$. This rate is given by

$$\Gamma[P \to \ell\nu(+\ell\nu\gamma)] =$$

$$\frac{G_F^2 |V_{qq'}|^2}{8\pi} f_P^2 \; m_\ell^2 \; m_P \left(1 - \frac{m_\ell^2}{m_P^2}\right)^2 \left[1 + \frac{\alpha}{2\pi} (B + B_{\rm SD})\right] \; .$$

The term of order α consists of the inner bremsstrahlung part B, which does not depend on the structure of the meson, 1,2 and the structure-dependent part $B_{\rm SD}$. Although the latter involves a substantial theoretical ambiguity and grows with m_P , it is, in the case of the muonic decays, much smaller than the unambiguous inner bremsstrahlung part. Since we determine f_{π} , f_K , and f_D from muonic decays, we keep only the inner bremsstrahlung part, given by 4

$$B = 4 \left[\left(\frac{x^2 + 1}{x^2 - 1} \right) \ln x - 1 \right] \left[\ln(x^2 - 1) - 2 \ln x - \frac{3}{4} \right]$$

$$+ 4 \left(\frac{x^2 + 1}{x^2 - 1} \right) L \left(1 - \frac{1}{x^2} \right) - \ln x - \frac{3}{4}$$

$$+ \frac{(10x^2 - 7)}{(x^2 - 1)^2} \ln x + \frac{(15x^2 - 21)}{4(x^2 - 1)} ,$$

where

$$L(z) = \int_0^z \ln(1-t) \frac{dt}{t} , \text{ and } x = m_P/m_\ell .$$

B is -1.35 for $\pi \to \mu \nu$ and -6.44 for $K \to \mu \nu.$

We use the experimental values of $|V_{qq'}|$ given in Eqs. (5), (7), and (8) of the "Cabibbo-Kobayashi-Maskawa Mixing Matrix" section and our current best values of branching ratios, lifetimes, and masses to obtain the following values:

$$f_{\pi} = (131.74 \pm 0.15) \text{ MeV}$$

$$f_K = (160.6 \pm 1.4) \text{ MeV}$$
,

$$f_D < 310 \text{ MeV } (CL = 90\%)$$
.

References

- 1. S. Berman, Phys. Rev. Lett. 1, 468 (1958).
- T. Kinoshita, Phys. Rev. Lett. 2, 477 (1959).
- 3. T. Goldman and W.J. Wilson, Phys. Rev. D15, 709 (1977).
- 4. A. Sirlin, Phys. Rev. D5, 436 (1972).

$$\pi^{\pm}$$

$$I^G(J^P) = 1^-(0^-)$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition (Physics Letters B204).

π^{\pm} MASS

The fit uses the π^\pm , π^0 , and μ^\pm mass and mass difference measurements. Measurements with an error > 0.005 MeV have been omitted from this Listing.

VALUE (MeV)	DOCUMENT ID		TECN CHG	COMMENT
139.5675 ± 0.0004 OUR FIT	Error includes scale t	fact	or of 1.2.	
139.56737±0.00033 OUR AV	ERAGE			
139.56752±0.00037		86	CNTR -	Mesonic atoms
139.5664 ±0.0009	² LU	80	CNTR -	Mesonic atoms
139.5686 ±0.0020	CARTER			Mesonic atoms
139.5660 ±0.0024	^{2,3} MARUSHEN	76	CNTR -	Mesonic atoms
• • We do not use the folio	wing data for averages,	fit	s, limits, etc. •	
130 F704 ± 0 0011	4 ADELA		CDEC .	+ +

- ¹ JECKELMAN 86 gives $m(\pi)/m(e) = 273.12677(71)$. We use m(e) = 0.51099906(15) MeV from COHEN 87.
- 2 Value

scaled with a new wavelength-energy conversion factor $V\lambda=1.23984244(37)\times 10^{-6}$ eV m from COHEN 87.

- 3 This MARUSHENKO 76 value used at the authors' request to use the accepted set of calibration γ energies. Error increased from 0.0017 MeV to include QED calculation error of 0.0017 MeV (12 ppm).
- 4 The ABELA 84 value depends on assumed μ^+ mass = 105.65932 \pm 0.00029 MeV. ABELA 84 enters our fit via the $\pi^-\mu$ mass difference below, which is independent of $m(\mu)$.

$\pi^+ - \mu^+$ MASS DIFFERENCE

The fit uses the π^\pm , π^0 , and μ^\pm mass and mass difference measurements. Measurements with an error > 0.05 MeV have been omitted from this Listing.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
33.9092±0.0004 OU	R FIT Error	includes scale fa	ctor o	f 1.2.		
33.9111 ± 0.0011		ABELA	84	SPEC		
• • We do not use	the following	g data for average	es, fits	, limits,	etc.	• •
33.925 ±0.025		воотн	70	CNTR	+	Magnetic spect.
33.881 ± 0.035	145	HYMAN	67	HEBC	+	κ− He

$$[m(\pi^+) - m(\pi^-)]$$
 / AVERAGE m

A test of CPT invariance.

 VALUE (units 10⁻⁴)
 DOCUMENT ID
 TECN

 2±5
 AYRES
 71
 CNT

π^{\pm} MEAN LIFE

Measurements with an error $> 0.02 \times 10^{-8}$ s have been omitted.

VALUE (10-8	5)	DOCUMENT ID		TECN	CHG
2.6030 ± 0.0	024 OUR AVERAGE	***			
2.609 ± 0.0		DUNAITSEV	73	CNTR	+
2.602 ± 0.0	04	AYRES	71	CNTR	±
2.604 ± 0.0	05	NORDBERG	67	CNTR	+
2.602 ± 0.0	04	ECKHAUSE	65	CNTR	+
• • • We d	lo not use the following	data for average	, fits	, limits,	etc. • • •
2.640 ± 0.0	08	5 KINSEY	66	CNTR	+

⁵ Systematic errors in the calibration of this experiment are discussed by NORDBERG 67.

$[au(\pi^+) - au(\pi^-)]$ / AVERAGE au

A test of CPT invariance.

VALUE (units 10^{-4})	DOCUMENT ID		TECN
5.5 ± 7.1	AYRES	71	CNTR
• • • We do not use the following	data for average	s, fit:	s, limits, etc. • • •
-14 ± 29	PETRUKHIN	68	CNTR
40 ±70	BARDON	66	CNTR
23 ±40	⁶ LOBKOWICZ	66	CNTR
⁶ This is the most conservative v	alue given by LOI	вко	WICZ 66.

π^+ DECAY MODES

 π^- modes are charge conjugates of the modes below.

	Mode	Fra	Fraction (Γ_j/Γ)			
Γ ₁	$\mu^+ \nu_{\mu}$	(99.9878	2±0.0001	.4) %	
Γ_2	$e^+ \nu_e$	(1.218	±0.014	$) \times 10^{-4}$	
Γ_3	$\mu^+ \nu_{\mu} \gamma$	[a] (1.24	±0.25	$) \times 10^{-4}$	
Γ_4	$e^+ \nu_e \gamma$	[a] (5.6	± 0.7	$) \times 10^{-8}$	
Γ_5	$e^+ u_e \pi^0$	(1.025	± 0.034) × 10 ⁻⁸	
Γ_6	$e^+ u_ee^+e^-$	(3.2	±0.5	$) \times 10^{-9}$	
Γ_7	$e^+ \nu_e \nu \overline{\nu}$	<	5		× 10 ⁻⁶	90%

Lepton number (L) or Lepton Family number (LF) violating modes

Г8	$\mu^+ \overline{\nu}_e$	L	<	1.5	\times 10 ⁻³	90%
Гэ	$\mu^+ \nu_e$	LF.	<	8.0	$\times 10^{-3}$	90%
Γ_{10}	$\mu^- e^+ e^+ \nu$	LF	<	7.7	$\times 10^{-6}$	90%

[a] See the Listings below for the energy range used in this measurement; low-energy γ 's are not included. See also the note to the next block of data.

π^+ BRANCHING RATIOS

 $\Gamma(e^+\nu_e)/\Gamma_{\rm total}$ See the next block of data. Measurements of $\Gamma(e^+\,
u e)/\Gamma(\mu^+\,
u \mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+ \nu_e \gamma)$ and $\Gamma(\mu^+ \nu_\mu \gamma)$ never include low-energy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $\Gamma(e^+ \nu_e)$ $+ \Gamma(\mu^{+} \nu_{\mu})]/\Gamma_{total} = 100\%.$

DOCUMENT ID

1.218±0.014 OUR EVALUATION

$\big[\Gamma(e^+\nu_e) + \Gamma(e^+$	$ u_e \gamma)]/[\Gamma$	$-(\mu^+\nu_\mu) + \Gamma(\mu$	$+\nu_{\mu}$	$\gamma)]$	$(\Gamma_2+\Gamma_4)/(\Gamma_1+\Gamma_3)$	3)
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT	
1.218±0.014	32k	BRYMAN	86	CNTR		
ullet $ullet$ We do not use	the followir	ng data for average	s, fit	s, limits,	etc. • • •	
1.218 ± 0.014	32k	BRYMAN	83	CNTR	See BRYMAN 86	
1.273 ± 0.028	11k	⁷ DICAPUA	64	CNTR		
101 1007		ANDEDCON		CNITO		

⁷ DICAPUA 64 updated using current mean life.

eren a en en espa						
$\Gamma(\mu^+ \nu_\mu \gamma) / \Gamma_{\text{total}}$						Γ_3/Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT	
1.24±0.25	26	CASTAGNOL	58	EMUL.	KE_{μ} < 3.38 MeV	
$\Gamma(e^+ \nu_e \gamma) / \Gamma_{\text{total}}$						Γ_4/Γ
VALUE (units 10 ⁻⁸)	EVTS	DOCUMENT ID		TECN	COMMENT	
5.6±0.7	226	8 STETZ	78	SPEC	$P_e > 56 \text{ MeV}/c$	
• • • We do not use	the followi	ng data for average	s, fit	s, limits,	etc. • • •	
3.0	143	DEPOMMIER	63E	CNTR	$(KE)_{e^{+}} > 48 M$	eV

 8 STETZ 78 is for an $e^-\gamma$ opening angle $>132^\circ.$ Obtains 3.7 when using same cutoffs as DEPOMMIER 638.

EVTS	DOCUMENT ID		TECN	CHG	COMMENT
VERAGE					
1224	⁹ MCFARLANE	85	CNTR	+	Decay in flight
332	DEPOMMIER	68	CNTR	+	
38					
43					
36	10 BARTLETT	64	OSPK	-4-	
	1224 332 38 43	WERAGE 9 MCFARLANE 1224 9 MCFARLANE 332 DEPOMMIER 38 10 BACASTOW 10 BERTRAM 43 10 DUNAITSEV	WERAGE 1224 9 MCFARLANE 85 332 DEPOMMIER 68 38 10 BACASTOW 65 10 BERTRAM 65 43 10 DUNAITSEV 65	WERAGE 1224 9 MCFARLANE 85 CNTR 332 DEPOMMIER 68 CNTR 38 10 BACASTOW 65 OSPK 10 BERTRAM 65 OSPK 43 10 DUNAITSEV 65 CNTR	1224 9 MCFARLANE

 9 Combines a measured rate (0.394 \pm 0.015)/s with 1982 PDG mean life. 10 DEPOMMIER 68 says the result of DEPOMMIER 63 is at least 10% too large because of a systematic error in the π^0 detection efficiency, and that this may be true of all the previous measurements (also V. Soergel, private communication, 1972).

$\Gamma(e^+ u_ee^+e^-)/\Gamma$	$(\mu^+ u_\mu)$					Γ_6/Γ_1
VALUE (units 10 ⁻⁹) CL	% EVTS	DOCUMENT ID		TECN	CHG	COMMENT
$3.2 \pm 0.5 \pm 0.2$	98	EGLI	89	SPEC		Uses R _{PCAC} = 0.004
• • We do not use	the followin	g data for average	s, fit	s, limits	etc. •	• •
seen	79	EGLI	86	SPEC	+	See EGLI 89
< 4.8 90		KORENCHE	. 766	SPEC	+	
<34 90		KORENCHE	. 71	OSPK	+	
$\Gamma(e^+ \nu_e \nu \overline{\nu}) / \Gamma_{\rm tota}$	ı					Γ ₇ /Γ
VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN		
<5	90	PICCIOTTO	88	SPEC		
$\Gamma(\mu^+ \overline{\nu}_e)/\Gamma_{ ext{total}}$ Forbidden by to	otal lepton ni	ımber conservatio	n.			Γ ₈ /Γ
VALUE (units 10 ⁻³)	CL%	DOCUMENT ID		TECN	COMN	1ENT
<1.5	90	COOPER	82	HLBC	Wide	band $ u$ beam
$\Gamma(\mu^+ u_e)/\Gamma_{ m total}$ Forbidden by le	pton family i	number conservati	on.			Г ₉ /Г
VALUE (units 10-3)	CL%	DOCUMENT ID		TECN	COMM	IENT
<8.0	90	COOPER	82	HLBC	Wide	band $ u$ beam
$ \Gamma(\mu^-e^+e^+\nu)/\Gamma_{total} $						
VALUE (units 10 - 6)	CL%	DOCUMENT ID		TECN	CHG	
<7.7	90	KORENCHE	87	SPEC	+	

π^+ — POLARIZATION OF EMITTED μ^+

 $\rightarrow \ \mu^+ \nu$ Tests the Lorentz structure of leptonic charged weak interactions. VALUE CL% DOCUMENT ID TECN CHG COMMENT \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ¹¹ FETSCHER <(-0.9959) 84 RVUE + qη 12 ABELA -0.99 ± 0.16 83 SPEC μ X-rays $^{11}\,\mathrm{FETSCHER}$ 84 uses only the measurement of CARR 83.

 12 Sign of measurement reversed in ABELA 83 to compare with μ^+ measurements.

NOTE ON $\pi^{\pm} \to \ell^{\pm} \nu \gamma$ AND $K^{\pm} \to \ell^{\pm} \nu \gamma$ FORM FACTORS

(by H.S. Pruys, Zürich University)

In the radiative decay $P^{\pm} \to \ell^{\pm} \nu \gamma$, where P stands for π or K. ℓ for e or μ , and γ for a real or virtual photon (e^+e^- pair), both the vector and the axial-vector weak hadronic currents contribute to the decay amplitude. The vector current only gives a structure-dependent term (SD_V) , but the axial-vector current gives two contributions, one for inner bremsstrahlung (IB) from the lepton and meson, and one for structuredependent radiation (SD_A) from virtual hadronic states. The IB amplitudes are determined by the meson decay constants f_{π} and f_{K} . The SD_V and SD_A amplitudes are parameterized by the vector form factor F_V and the axial-vector form factors F_A and R, $^{1-4}$

$$M(\mathrm{SD}_V) = \frac{-eG_F\,V_{qq'}}{\sqrt{2}\,m_P} \epsilon^\mu\,\ell^\nu\,F_V\,\epsilon_{\mu\nu\sigma\tau}\,k^\sigma\,q^\tau\ ,$$

$$M({\rm SD}_A) = \frac{-ie \, G_F V_{qq'}}{\sqrt{2} \, m_P} \, \epsilon^\mu \, \ell^\nu \, \big\{ F_A \left[(s-t) g_{\mu\nu} - q_\mu \, k_\nu \right] + R t g_{\mu\nu} \big\} \ . \label{eq:MSDA}$$

Here $V_{qq'}$ is the Cabibbo-Kobayashi-Maskawa mixing-matrix element: ϵ^{μ} is the polarization vector of the real photon or the e^+e^- current, $\epsilon^\mu=(e/t)\overline{u}(p_-)\gamma^\mu v(p_+)$; ℓ^ν is the leptonneutrino current, $\ell^{\nu} = \overline{u}(p_{\nu})\gamma^{\nu}(1-\gamma_5)v(p_{\ell}); q$ and k are the meson and photon four-momenta; and $s = q \cdot k$ and $t = k^2$. The s and t dependence of the form factors is neglected, which is a good approximation for pions,² but not for kaons.⁴ For pions, the vector form factor F_V^{π} is related via CVC to the π^0 lifetime, $|F_V^\pi|=(1/\alpha)\sqrt{2\Gamma_{\pi^0}/\pi m_{\pi^0}}$.¹ PCAC relates R to the electromagnetic radius of the meson,²,⁴ $R^P=\frac{1}{3}m_Pf_P\langle r_P^2\rangle.$ The calculation of the other form factors, F_A^π,F_V^K , and F_A^K , is model dependent.¹,⁴

For the decay $P^{\pm} \to \ell^{\pm} \nu \gamma$ with a real photon, the partial decay rate can be given analytically,^{1,5}

$$\begin{split} \frac{d^2\Gamma_{P\to\ell\nu\gamma}}{dxdy} &= \frac{d^2\Gamma_{\rm IB}}{dxdy} + \frac{d^2\Gamma_{\rm SD}}{dxdy} + \frac{d^2\Gamma_{\rm INT}}{dxdy} \ , \\ \frac{d^2\Gamma_{\rm SD}}{dxdy} &= \frac{\alpha}{8\pi}\Gamma_{P\to\ell\nu} \, \frac{1}{r(1-r)^2} \left(\frac{m_P}{f_P}\right)^2 \\ &\times \left[(F_V + F_A)^2 \, {\rm SD}^+ + (F_V - F_A)^2 \, {\rm SD}^- \right] \ , \end{split}$$

where

$$SD^{+} = (x + y - 1 - r) [(x + y - 1)(1 - x) - r] ,$$

$$SD^{-} = (1 - y + r) [(1 - x)(1 - y) + r] .$$

Here $x=2E_{\gamma}/m_P$, $y=2E_{\ell}/m_P$, and $r=(m_{\ell}/m_P)^2$. $\Gamma_{\rm IB}$, $\Gamma_{\rm SD}$, and $\Gamma_{\rm INT}$ are the contributions from inner brems-strahlung, structure-dependent radiation, and their interference.

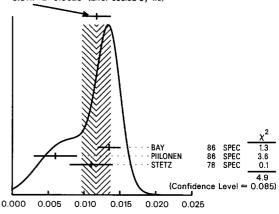
In $\pi^{\pm} \to e^{\pm}\nu\gamma$ and $K^{\pm} \to e^{\pm}\nu\gamma$ decays, the interference terms are small, and thus only the absolute values $|F_A + F_V|$ and $|F_A - F_V|$ can be obtained. In $K^{\pm} \to \mu^{\pm}\nu\gamma$ decay, the interference term is important and thus the signs of F_V and F_A can be obtained. In $\pi^{\pm} \to \mu^{\pm}\nu\gamma$ decay, bremsstrahlung completely dominates. In $\pi^{\pm} \to e^{\pm}\nu e^{+}e^{-}$ and $K^{\pm} \to \ell^{\pm}\nu e^{+}e^{-}$ decays, all three form factors, F_V , F_A , and R, can be determined.

We list the π^{\pm} form factors F_V , F_A , and R below. In the K^{\pm} branching ratio section of the Full Listings, we list measurements of Γ_{SD^+} and combinations of the interference terms and Γ_{SD^-} for $K^{\pm} \to \mu^{\pm} \nu \gamma$, and Γ_{SD^+} and Γ_{SD^-} for $K^{\pm} \to e^{\pm} \nu \gamma$.

References

- D.A. Bryman et al., Phys. Rep. 88, 151 (1982). See also the "Note on Pseudoscalar-Meson Decay Constants," above.
- 2. A. Kersch and F. Scheck, Nucl. Phys. B263, 475 (1986).
- 3. W.T. Chu et al., Phys. Rev. 166, 1577 (1968).
- D.Yu. Bardin and E.A. Ivanov, Sov. J. Part. Nucl. 7, 286 (1976).
- S.G. Brown and S.A. Bludman, Phys. Rev. 136, B1160 (1964).

π^{\pm} FORM FACTORS


VALUE	EVTS	DOCUMENT	ID	TECN	COMMENT	_
$0.023^{+0.015}_{-0.013}$	98	EGLI	89	SPEC	$\pi^+ \rightarrow e^+ \nu_e e^+ e^-$	
$0.029^{+0.019}_{-0.014}$		EGLI	86	SPEC	See EGLI 89	

F_A , AXIAL-VECTOR FORM FACTOR

	51.056	DOCUMENT OF		TEC.	COLUMNIT
VALUE	EVT5	DOCUMENT ID		TECN_	COMMENT
0.0117±0.0020 OU	R AVERAGE	Error includes s	cale fa	ctor of	1.6. See the ideogram
		below.			•
0.0135 ± 0.0016		13 BAY			$\pi^+ \rightarrow e^+ \nu \gamma$
0.006 ±0.003		¹³ PIILONEN	86	SPEC	$\pi^+ \rightarrow e^+ \nu \gamma$
0.011 ±0.003	13,	¹⁴ STETZ	78	SPEC	$\pi^+ \rightarrow e^+ \nu \gamma$
	se the following	g data for averag	ges, fit:	s, limits	etc. • • •
$0.021 \begin{array}{c} +0.011 \\ -0.013 \end{array}$	98	EGLI	89	SPEC	$\pi^+ \rightarrow e^+\nu_ee^+e^-$
0.018 +0.015		EGLI	86	SPEC	See EGLI 89

 $^{^{13}}$ Using the vector form factor from CVC prediction $F_V=0.0259\pm0.0005$. Only the absolute value of F_A is determined.

WEIGHTED AVERAGE 0.0117 ± 0.0020 (Error scaled by 1.6)

 π^{\pm} axial-vector form factor

R, SECOND AXIAL-VECTOR FORM FACTOR

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
$0.059^{+0.009}_{-0.008}$	98	EGLI	89	SPEC	$\pi^+ \rightarrow e^+ \nu_e e^+ e^-$
• • • We do not use t	he following	g data for averag	ges, fit	s, limits,	etc. • • •
$0.063^{+0.026}_{-0.016}$		EGLI	86	SPEC	See EGLI 89

REFERENCES FOR π^{\pm}

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1988 edition (Physics Letters B204).

EGLI	89	PL 8222 533	+Engfer, Grab, Hermes, Kraus+	(SINDRUM Collab.)
PICCIOTTO	88	PR D37 1131	+Ahmad, Britton, Bryman, Clifford+	(TRIU, CNRC)
COHEN	87	RMP 59 1121	+Taylor	(RISC, NBS)
KORENCHE	87	SJNP 46 192	Korenchenko, Kostin, Mzhaviya+	
NONLINCHE	0,	Translated from YAF 46	313	(JINR)
BAY	86	PL B174 445	+Ruegger, Gabioud, Joseph, Loude+	(LAUS, ZURI)
BRYMAN	86	PR D33 1211	+Dubois, Macdonald, Numao+	(TRIU, CNRC)
EGLI	86	PL B175 97		AACH, ETH, SIN, ZURI)
JECKELMAN	86	PRL 56 1444	+Nakada, Beer+	(ETH, FRIB)
PIILONEN	86	PRL 57 1402	+Bolton, Cooper, Frank+	(LANL, TEMP, CHIC)
MCFARLANE	85	PR D32 547	+Auerbach, Gaille+	(TEMP, LANL)
ABELA	84	Pt. 146B 431	+Daum, Eaton, Frosch, Jost, Kettle+	(SIN)
Also	78	PL 74B 126	Daum, Eaton, Frosch, Hirschmann+	(SIN)
Also	79	PR D20 2692	Daum, Eaton, Frosch, Hirschmann+	(SIN)
FETSCHER	84	PL 140B 117	Daum, Laton, Frosch, Filischmann+	(ETH)
ABELA	83	NP A395 413	+Backenstoss, Kunold, Simons+	(BASL, KARL)
BRYMAN	83	PRL 50 7	+Dubois, Numao, Olaniya+	(TRIU, CNRC)
CARR	83	PRL 51 627	+Gidal, Gobbi, Jodidio, Oram+	(LBL, NWES, TRIU)
COOPER	82	PL 112B 97	+Guy, Michette, Tyndel, Venus	(RL)
LU	80	PRL 45 1066	+ Delker, Dugan, Wu, Caffrey+	(YALE, COLU, JHU)
STETZ	78	NP B138 285	+Carroll, Ortendahl, Perez-Mendez+	
CARTER	76	PRI 37 1380		(LBL, UCLA) ARL, CNRC, CHIC, CIT)
KORENCHE	76B	JETP 44 35		
NONEINCHE	100	Translated from ZETF	Korenchenko, Kostin, Micelmacher+	(JINR)
MARUSHEN	76	JETPL 23 72	Marushenko, Mezentsev, Petrunin+	(LENI)
147.11.0211214		Translated from ZETFF		(ELIVI)
Also	76	Private Comm.	Shafer	(FNAL)
Also	78	Private Comm.	Smirnov	(LENI)
DUNAITSEV	73	SJNP 16 292	+Prokoshkin, Razuvaev+	(SERP)
		Translated from YAF 16		(,
AYRES	71	PR D3 1051	+Cormack, Greenberg, Kenney+	(LRL, UCSB)
Also	67	PR 157 1288	Ayres, Caldwell, Greenberg, Kenney,	Kurz+ (LRL)
Also	68	PRL 21 261	Ayres, Cormack, Greenberg+	(LRL, UCSB)
Also	69	UCRL 18369 Thesis	Ayres	(LRL)
Also	69	PRL 23 1267	Greenberg, Ayres, Cormack+	(LRL, UCSB)
KORENCHE	71	SJNP 13 189	Korenchenko, Kostin, Micelmacher+	(JINR)
		Translated from YAF 13	3 339.	. ,

¹⁴ The result of STETZ 78 has a two-fold ambiguity. We take the solution compatible with later determinations.

π^{\pm} , π^{0}

воотн	70	PL 32B 723	+ Johnson, Williams, Wormald	(LIVP)
DEPOMMIER	68	NP B4 189	+Duclos, Heintze, Kleinknecht+	(CERN)
PETRUKHIN	68	JINR P1 3862	+Rykalin, Khazins, Cisek	(JINR)
HYMAN	67	PL 25B 376	+Loken, Pewitt, McKenzie-	(ANL, CMU, NWES)
NORDBERG	67	PL 24B 594	+Lobkowicz, Burman	(ROCH)
BARDON	66	PRL 16 775	+ Dore, Dorfan, Krieger+	(coιύ)
KINSEY	66	PR 144 1132	+Lobkowicz, Nordberg	(ROCH)
LOBKOWICZ	66	PRL 17 548	+ Melissinos, Nagashima+	(ROCH, BNL)
BACASTOW	65	PR 139B 407	+Ghesquiere, Wiegand, Larsen	(LRL, SLAC)
BERTRAM	65	PR 139B 617	+ Meyer, Carrigan+	(MICH, CMU)
DUNAITSEV	65	JETP 20 58	+Petrukhin, Prokoshkin+	(JINR)
		Translated from		()
ECKHAUSE	65	PL 19 348	+Harris, Shuler+	(WILL)
BARTLETT	64	PR 136B 1452	+Devons, Meyer, Rosen	(COLU)
DICAPUA	64	PR 133B 1333	+Garland, Pondrom, Stretzoff	(COLUÍ
Also	86	Private Comm.	Pondrom	(WISC)
DEPOMMIER	63	PL 5 61	+Heintze, Rubbia, Soergel	(CERN)
DEPOMMIER	638	PL 7 285	+Heintze, Rubbia, Soergel	(CERN)
ANDERSON	60	PR 119 2050	+Fujii, Miller+	` (EFI)
CASTAGNOLI	58	PR 112 1779	+Muchnik	(RÔMA)

- OTHER RELATED PAPERS ----

BRYMAN DEPOMMIER WILKIN	82B 80 80	PRPL 88 151 NP A335 97 JP G6 L5	+Depommier, Leroy	(TRIU, MONT, LVLN) (MONT) (LOUC) P
BRYMAN	75	PR D11 1337	-Picciotto	(VICT)
CARRIGAN	68	NP B6 662		L (CMO)
CZIRR	63	PR 130 341		(LRL)
MERRISON	62	ADVP 11 1		(LIVP)
SHAPIRO	62	PR 125 1022	+ Lederman	(COLU)
CARTWRIGHT	53	PR 91 677	- Richman, Whitehead, Wilcox	(LRL) J
CZIRR MERRISON SHAPIRO	63 62 62	PR 130 341 ADVP 11 1 PR 125 1022		`(LRL) (LIVP) (COLU)

$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition (Physics Letters B204).

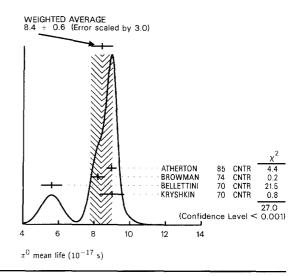
π^0 MASS

The fit uses the π^{\pm} , π^{0} , and μ^{\pm} mass and mass difference measurements.

VALUE (MeV) DOCUMENT ID

134.9739±0.0006 OUR FIT Error includes scale factor of 1.1.

π^{\pm} – π^{0} MASS DIFFERENCE


The fit uses the π^\pm , π^0 , and μ^\pm mass and mass difference measurements. Measurements with an error > 0.01 MeV have been omitted from this Listing.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4.5937 ±0.0005 OUR FIT				
4.59366 ± 0.00048	CRAWFORD	888	CNTR	$\pi p \rightarrow \pi^0 n, n \text{ TOF}$
 • • We do not use the fol 	lowing data for average	s, fit	s, limits,	etc. • • •
4.5930 ±0.0013	CRAWFORD	86	CNTR	See CRAWFORD 88B
4.6034 ±0.0052	VASILEVSKY	66	CNTR	
4.6056 + 0.0055	CZIRR	63	CNTR	

π^0 MEAN LIFE

Measurements with an error $>1\times10^{-17}\,$ s have been omitted.

$VALUE (10^{-17} s)$	EVTS	DOCUMENT ID	<i>T</i>	ECN CO	MMENT
8.4 ±0.6 OUR AVE	RAGE Erro	r includes scale fa	ctor of	3.0. See	the ideogram below.
$8.97 \pm 0.22 \pm 0.17$		ATHERTON			
8.2 ±0.4		¹ BROWMAN	74 C	NTR Pri	makoff effect
5.6 ±0.6		BELLETTIN	70 C	NTR Pri	makoff effect
9 ±0.68		KRYSHKIN	70 C	NTR Pri	makoff effect
• • • We do not use	the following	data for average	s, fits, I	imits, etc	. • • •
$8.4 \pm 0.5 \pm 0.5$	1182	² WILLIAMS	88 C	BAL e^+	$e^ \rightarrow$ e^+ $e^ \pi^0$
¹ BROWMAN 74 g	ives a π ⁰ wic	Ith $\Gamma = 8.02 \pm 0$.	42 eV.	The mear	life is \hbar/Γ .
² WILLIAMS 88 giv					

π^0 DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level				
Γ_1	2γ	(98.798±0.032	2) %	S=1.1			
Γ_2	$e^+e^-\gamma$	(1.198 ± 0.032	$(1.198 \pm 0.032)\%$				
Γ_3	$e^{+}e^{+}e^{-}e^{-}$	(3.14 ±0.30					
Γ_4	e+ e-	< 1.3	\times 10 ⁻⁷	CL=90%			
Γ_5	4 γ	< 2	× 10 ⁻⁸	CL=90%			
Γ_6	$\nu \overline{\nu}$	< 6.5	$\times 10^{-6}$	CL=90%			
۲7	$\nu_e \overline{\nu}_e$	< 1.7	× 10 ⁻⁶	CL=90%			
Γ8	$\nu_{\mu} \overline{\nu}_{\mu}$	< 3.1	$\times 10^{-6}$	CL=90%			
Γ9	$\nu_{\tau} \overline{\nu}_{\tau}$	< 2.1	× 10 ⁻⁶	CL=90%			

Charge conjugation (C) or Lepton Family number (LF) violating modes

Γ_{10} 3γ	C <	3.1	$\times 10^{-8}$	CL=90%
$\Gamma_{11} \mu^+ e^-$	LF <	1.6	× 10 ⁻⁸	CL=90%
$\Gamma_{12} \mu^{+} e^{-} + e^{-} \mu^{+}$	LF			

CONSTRAINED FIT INFORMATION

An overall fit to 2 branching ratios uses 4 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=1.9$ for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j),$ in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}.$ The fit constrains the x_i whose labels appear in this array to sum to one.

$$\begin{array}{ccc}
 x_2 & -100 \\
 x_3 & -1 & 0 \\
 & x_1 & x_2
 \end{array}$$

π^0 BRANCHING RATIOS

$\Gamma(e^+e^-\gamma)/\Gamma(2^{-\gamma})$. ,	DOCUMENT ID	,	TECN	COMMENT	Γ_2/Γ_1
1.213±0.033 OUR	FIT Error in	cludes scale facto	or of 1.	1.		
1.213 ± 0.030 OUR	AVERAGE					
1.25 ±0.04		SCHARDT 3 SAMIOS	81	SPEC	$\pi^- \rho \rightarrow n \pi^0$	
1.166 ± 0.047	3071	3 SAMIOS	61	HBC	$\pi^- p \rightarrow n \pi^0$	
1.17 ± 0.15	27	BUDAGOV	60	HBC		
• • • We do not u	se the following	ng data for averag	es, fit	s, limits,	etc. • • •	
1.196		JOSEPH	60	THEO	QED calculation	
³ SAMIOS 61 val	ue uses a Pan	ofsky ratio = 1.62	2.			

⁴ SAMIOS 62B value uses a Panofsky ratio = 1.62.

$\Gamma(e^+e^-)/\Gamma(2\gamma)$)	Γ ₄ /Γ ₁
VALUE (units 10-7)		DOCUMENT ID TECN COMMENT
<1.3	90	NIEBUHR 89 SPEC $\pi^- p ightarrow \pi^0 n$ at rest
• • • We do not u	use the following	data for averages, fits, limits, etc. • • •
< 5.3	90	ZEPHAT 87 SPEC $\pi^- p \rightarrow \pi^0 n \ 0.3$ GeV/c
1.7 ±0.6 ±0.3	59	FRANK 83 SPEC $\pi^- p \rightarrow n \pi^0$
1.8 ± 0.6	58	MISCHKE 82 SPEC See FRANK 83
$2.23^{+2.40}_{-1.10}$	90 8	FISCHER 78B SPRK $K^+ o \pi^+ \pi^0$
$\Gamma(4\gamma)/\Gamma_{total}$		Γ ₅ /Γ
VALUE (units 10 ⁻⁸)		DOCUMENT ID TECN COMMENT
< 2	90	MCDONOUGH 88 CBOX $\pi^- p$ at rest data for averages, fits, limits, etc. • • •
<160	90	BOLOTOV 86C CALO
<440	90 0	AUERBACH 80 CNTR
- (- \		5 /F
$\Gamma(u\overline{ u})/\Gamma_{total_{\perp}}$		Γ ₆ /Γ
VALUE (units 10 ⁻⁶)		DOCUMENT ID TECN COMMENT
< 6.5	90 use the following	DORENBOS 88 CHRM Beam dump, prompt ν data for averages, fits, limits, etc. • • •
<24	90 0	⁵ HERCZEG 81 RVUE $K^+ \rightarrow \pi^+ \nu \nu'$
		$\nu \nu'$ states as well as to other massless, weakly interacting
states.	es to all possible	DV States as well as to other massless, weakly interacting
r/ =)/r		Γ_/Γ
$\Gamma(\nu_e \overline{\nu}_e)/\Gamma_{\text{total}}$		Γ ₇ /Γ
VALUE (units 10 ⁻⁶) <1.7	<u>CL%</u> 90	DORENBOS 88 CHRM Beam dump, prompt ν
		data for averages, fits, limits, etc. • • •
<3.1	90	6 HOFFMAN 88 RVUE Beam dump, prompt ν
	analyzes data fr	rom a 400-GeV BEBC beam-dump experiment.
	andigues add in	•
$\Gamma(\nu_{\mu}\overline{\nu}_{\mu})/\Gamma_{total}$		Γ ₈ /Γ
VALUE (units 10 ⁻⁶)	<u>CL%</u>	DOCUMENT ID TECN COMMENT
<3.1	90 use the following	⁷ HOFFMAN 88 RVUE Beam dump, prompt ν ↓ data for averages, fits, limits, etc. • • •
<7.8	90	DORENBOS 88 CHRM Beam dump, prompt ν
		rom a 400-GeV BEBC beam-dump experiment.
	unaryzes dota n	
$\Gamma(u_{ au}\overline{ u}_{ au})/\Gamma_{total}$		Г ₉ /Г
VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID TECN COMMENT
<2.1	90	⁸ HOFFMAN 88 RVUE Beam dump, prompt ν data for averages, fits, limits, etc. • • •
<4.1	90	•
		DORENBOS 88 CHRM Beam dump, prompt $ u$ rom a 400-GeV BEBC beam-dump experiment.
- HOFFMAN 88	anaiyzes data ir	oni a 400-dev BEBC beam-dump experiment.
$\Gamma(3\gamma)/\Gamma_{\text{total}}$		Γ ₁₀ /Γ
Forbidden by VALUE (units 10 ⁻⁸)	y C invariance.	505/USVT /5 TSSV 501USVT
< 3.1	90	DOCUMENT ID TECN COMMENT MCDONOUGH 88 CBOX π ⁻ p at rest
		data for averages, fits, limits, etc. • •
< 38	90 0	HIGHLAND 80 CNTR
<150	90 0	AUERBACH 78 CNTR
<490	90 0	9 DUCLOS 65 CNTR 9 KUTIN 65 CNTR
<490	90	
7 These experim	ents give $B(3\gamma/2)$	$(2\gamma) < 5.0 \times 10^{-6}$.
$\Gamma(\mu^+ e^-)/\Gamma_{\text{tota}}$	l v lepton family n	Γ_{11}/Γ
VALUE (units 10 ⁻⁸)	CL%	DOCUMENT ID TECN COMMENT
<1.6	90	LEE 90 SPEC $K^+ \rightarrow \pi^+ \mu^+ e^-$
	-	g data for averages, fits, limits, etc. • • •
<7.8	90	CAMPAGNARI 88 SPEC See LEE 90
$[\Gamma(\mu^+e^-)+\Gamma$	$(e^-\mu^+)]/\Gamma_{\text{tot}}$	τal Γ ₁₂ /Γ
		number conservation.
VALUE (units 10 ⁻⁸)		DOCUMENT ID TECN COMMENT
<14	use the ronowing	g data for averages, fits, limits, etc. $ullet$ $ullet$ HERCZEG 84 RVUE $K^+ o \pi^+ \mu e$
< 14 $< 2 \times 10^{-7}$		HERCZEG 84 RVUE $K^+ \rightarrow \pi^+ \mu e$ HERCZEG 84 THEO $\mu^- \rightarrow e^-$ conversion
< 7	90	BRYMAN 82 RVUE $K^+ \rightarrow \pi^+ \mu e$

π^0 ELECTROMAGNETIC FORM FACTOR

The amplitude for the process $\pi^0 \to e^+ e^- \gamma$ contains a form factor F(x) at the $\pi^0 \gamma \gamma$ vertex, where $x = [m(e^+ e^-)/m(\pi^0)]^2$. The parameter a in the linear expansion F(x) = 1 + ax is listed below.

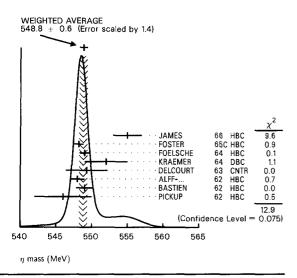
ALUE	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT
$-0.11 \pm 0.03 \pm 0.08$	32k	FONVIEILLE	89	SPEC	Radiation corr.
• • We do not use	the followi	ing data for average	s, fits	s, limits,	etc. • • •
$0.12 + 0.05 \\ -0.04$		¹⁰ TUPPER	83	THEO	FISCHER 78 data
+0.10±0.03	30k	11 FISCHER	78	\$PEC	Radiation corr.
$+0.01 \pm 0.11$	2200	DEVONS	69	OSPK	No radiation corr.
-0.15 ± 0.10		KOBRAK	61	HBC	No radiation corr.
-0.24 ± 0.16	3071	SAMIOS	61	HBC	No radiation corr.

 $10\,\mbox{TUPPER}$ 83 is a theoretical analysis of FISCHER 78 including 2-photon exchange in the

REFERENCES FOR π^0

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1988 edition (Physics Letters B204).

LEE	90	PRL 64 165		SI, WASH, YALE)
FONVIEILLE	89	PL B233 65		SC, CBER, SACL)
NIEBUHR	89	PR D40 2796		INDRUM Collab.)
CAMPAGNARI	88	PRL 61 2062	+ Alliegro, Chaloupka+ (BNL, FNAL, P	SI, WASH, YALE)
CRAWFORD	88B	PL B213 391	+Daum, Frosch, Jost, Kettle, Marshall+	(PSI, VIRG)
DORENBOS	88	ZPHY C40 497	Dorenbosch, Allaby, Amaldi, Barbiellini+	(CHARM Collab.)
HOFFMAN	88	PL B208 149		(LANL)
MCDONOUGH	88	PR D38 2121	+Highland, McFarlane, Bolton+ (TE	MP, LANL, CHIC)
WILLIAMS	88	PR D38 1365	+Antreasyan, Bartels, Besset+ (C	rystal Ball Collab.)
ZEPHAT	87	JP G13 1375	+Playfer, van Doesburg, Bressani+ (C	MICRON Collab.)
BOLOTOV	86C	JETPL 43 520	+Grinenko, Dzhilkibaev, Isakov	(INRM)
		Translated from ZETFP		
CRAWFORD	86	PRL 56 1043	+ Daum, Frosch, Jost, Kettle+	(SIN, VIRG)
ATHERTON	85	PL 158B 81		.UND, LPTP, EFI)
HERCZEG	84	PR D29 1954	+Hoffman	(LANL)
FRANK	83	PR D28 423	+Hoffman, Mischke, Moir+	(LANL, ARZS)
TUPPER	83	PR D28 2905	+Grose, Samuel	(OKSU)
BRYMAN	82	PR D26 2538		(TRIU)
MISCHKE	82	PRL 48 1153	+Frank, Hoffman, Moir, Sarracino+	(LANL, ARZ5)
HERCZEG	81	PL 100B 347	+Hoffman	(LANL)
SCHARDT	81	PR D23 639	+Frank, Hoffmann, Mischke, Moir+	(ARZS, LANL)
AUERBACH	80	PL 90B 317	+Haik, Highland, McFarlane, Macek+	(TEMP, LASL)
HIGHLAND	80	PRL 44 628	+Auerbach, Haik, McFarlane, Macek+	(TEMP, LASL)
AUERBACH	78	PRL 41 275	+Highland, Johnson+	(TEMP, LASL)
FISCHER	78	PL 73B 359	+Extermann, Guisan, Mermod+	(GEVA, SACL)
FISCHER	78B	PL 73B 364	+Extermann, Guisan, Mermod+	(GEVA, SACL)
BROWMAN	74	PRL 33 1400	+Dewire, Gittelman, Hanson+	(CORN, BING)
MIYAZAKI	73	PR D8 2051	+ Takasugi	(TOKY)
BELLETTINI	70	NC 66A 243	+Bemporad, Lubelsmey+	(PISA, BONN)
KRYSHKIN	70	JETP 30 1037	+Sterligov, Usov	(TMSK)
		Translated from ZETF 5	57 1917.	, , ,
DEVONS	69	PR 184 1356	+Nemethy, Nissim-Sabat, Capua+	(COLU, ROMA)
VASILEVSKY	66	PL 23 281	+Vishnyakov, Dunaitsev+	(JINR)
DUCLOS	65	PL 19 253	+Freytag, Heintze+	(CERN, HEID)
KUTIN	65	JETPL 2 243	+Petrukhin, Prokoshkin	(JINR)
		Translated from unknow	n journal.	
CZIRR	63	PR 130 341		(LRL)
SAMIOS	62B	PR 126 1844	+Plano, Prodell+	(COLU, BNL)
KOBRAK	61	NC 20 1115		(EFI)
SAMIOS	61	PR 121 275		(COLU, BNL)
BUDAGOV	60	JETP 11 755	+Viktor, Dzhelepov, Ermolov+	(JINR)
		Translated from ZETF 3	8 1047.	,,
JOSEPH	60	NC 16 997		(EFI)



$$I^G(J^{PC}) = 0^+(0^{-+})$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition (Physics Letters B204).

η MASS							
VALUE (MeV)	OUR AVERAGE	DOCUMENT ID		TECN of 1.4.	See the ideogram b	pelow.	
555.0 ± 2.0	250	JAMES		нвс			
548.2±0.65		FOSTER	65C	нвс			
549.0 ± 0.7	148	FOELSCHE	64	нвс			
552.0 ± 3.0	325	KRAEMER	64	DBC			
549.3 ± 2.9		DELCOURT	63	CNTR			
548.0 ± 1.0	91	ALFF	62	нвс			
549.0 ± 1.2	53	BASTIEN	62	HBC			
546.0 ± 4.0	35	PICKUP	62	нвс			

corrections. $^{11}{
m The}$ FISCHER 78 error is statistical only. The result without radiation corrections is $+0.05 \pm 0.03$.

η WIDTH

This is the partial decay rate $\Gamma(\eta \to \gamma \gamma)$ divided by the fitted branching fraction for that mode. See the Note on the Decay Rate $\Gamma(\eta \to \gamma \gamma)$, below.

DOCUMENT ID 1.19±0.12 OUR FIT Error includes scale factor of 2.0.

η DECAY MODES

	Mode	Fraction (Γ_j/Γ) Co	Scale factor/ nfidence level
Γ ₁	neutral modes	(70.8 ±0.8) %	S=1.2
Γ_2	2γ	[a] (38.9 ± 0.5)%	5=1.2
Γ3	$3\pi^{0}$	$(31.9 \pm 0.4)\%$	S=1.2
Γ4	$\pi^0 2\gamma$	$(7.1 \pm 1.4) \times 10^{-4}$	
Γ_5	charged modes	(29.2 ±0.8)%	S=1.2
Γ6	$\pi^{+}\pi^{-}\pi^{0}$	$(23.6 \pm 0.6)\%$	S=1.2
Γ ₇	$\pi^+\pi^-\gamma$	(4.88 ± 0.15) %	S=1.2
Γ8	$e^+e^-\gamma$	$(5.0 \pm 1.2) \times 10^{-3}$	
Γ9	$\mu^+\mu^-\gamma$	$(3.1 \pm 0.4) \times 10^{-4}$	
Γ_{10}	e^+e^-	< 3 × 10 ⁻⁴	CL=90%
Γ_{11}	$\mu^+\mu^-$	$(6.5 \pm 2.1) \times 10^{-6}$	
Γ_{12}	$\pi^+\pi^-e^+e^-$	$(1.3 \begin{array}{c} +1.3 \\ -0.8 \end{array}) \times 10^{-3}$	
Γ_{13}	$\pi^+\pi^-2\gamma$	$< 2.1 \times 10^{-3}$	
Γ14	$\pi^+\pi^-\pi^0\gamma$	< 6 × 10 ⁻⁴	CL=90%
Γ ₁₅	$\pi^0 \mu^+ \mu^- \gamma$	< 3 × 10 ⁻⁶	CL=90%

Charge conjugation (C), Parity (P), or Charge conjugation × Parity (CP) violating modes

Γ_{16}	3γ	C	<	5	× 10 ⁻⁴	
Γ_{17}	$\pi^+\pi^-$	P,CP	<	1.5	$\times 10^{-3}$	
Γ ₁₈	$\pi^0 e^+ e^-$	C	<	4	\times 10 ⁻⁵	CL=90%
Γ_{19}	$\pi^{0}\mu^{+}\mu^{-}$	C	<	5	$\times 10^{-6}$	CL=90%

[a] See the Note on the Decay Rate $\Gamma(\eta \to \gamma \gamma)$, below.

CONSTRAINED FIT INFORMATION

An overall fit to a partial width and 14 branching ratios uses 38 measurements and one constraint to determine 9 parameters. The overall fit has a $\chi^2 = 30.7$ for 30 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_i \rangle / (\delta x_i \cdot \delta x_i)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\dot{\Gamma_i}/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> 3	57								
x ₄	3	3							
x ₆	-88	-84	-5						
x ₇	-77	-74	-5	81					
<i>x</i> ₈	-11	-10	-1	-3	-4				
<i>X</i> 9	0	0	0	0	0	0			
<i>x</i> ₁₂	-3	-3	0	13	-10	-2	0		
Γ	-12	7	0	10	9	1	0	0	
	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₆	×7	<i>x</i> ₈	<i>x</i> 9	x ₁₂	

Mode		Rate (keV)	Scale factor	
Γ ₂	2γ	[a] 0.46 ±0.05	2.1	
Γ3	$3\pi^{0}$	0.38 ±0.04	2.0	
Γ4	$\pi^0 2\gamma$	$(8.4 \pm 1.9) \times 10^{-4}$	1.1	
Γ_6	$\pi^{+}\pi^{-}\pi^{0}$	0.282 ± 0.032	1.9	
Γ7	$\pi^+\pi^-\gamma$	0.058 ±0.007	1.9	
Γ_8	$e^+e^-\gamma$	0.0059 ± 0.0016	1.1	
Γ9	$\mu^+\mu^-\gamma$	$(3.7 \pm 0.6) \times 10^{-4}$	1.2	
Γ ₁₂	$\pi^+ \pi^- e^+ e^-$	$0.0016 {}^{+ 0.0015}_{- 0.0010}$		

NOTE ON THE DECAY WIDTH $\Gamma(\eta \to \gamma \gamma)$

(by N.A. Roe, Lawrence Berkeley Laboratory)

In the measurements of $\Gamma(\eta \to \gamma \gamma)$ listed below, the results from two-photon production disagree with those from Primakoff production. Since the 1988 edition, new two-photon measurements from the Crystal Ball and ASP groups, consistent with previous two-photon results and having somewhat smaller errors, have exacerbated the disagreement with the Primakoff results. The weighted average of the two-photon measurements is 0.510 ± 0.027 keV, to be compared with the Primakoff-production measurement of BROWMAN 74B, $0.324 \pm 0.046 \text{ keV}.$

In the two-photon measurements, η 's are produced in the QED process $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-\eta$. The calculation of the rate is believed to be well understood. The uncertainty due to the virtual photon form factor is small; WILLIAMS 88 quotes an uncertainty of 0.2% from this source. Backgrounds to the η signal from beam-gas interactions and other two-photon interactions with missing particles are also small.

In the Primakoff experiments, η 's are produced by the interaction of a real photon with a virtual photon in the Coulomb field of the nucleus. There is coherent background from strong production of η 's in the nuclear hadronic field. and interference between the strong and Primakoff production amplitudes. The angular dependences of the Primakoff signal and the background are different, allowing $\Gamma(\eta \to \gamma \gamma)$ to be extracted from a fit to the angular distribution. In the best fit to their data. BEMPORAD 67 found the coherent hadronic background to be consistent with zero. BROWMAN 74B had a wider range of photon energies, a higher maximum energy, better angular resolution, and higher statistics. They found a significant contribution from the hadronic background, especially at lower energies. BROWMAN 74B also reanalyzed the data of BEMPORAD 67 and found that it was compatible with their fit, including background terms. This suggests that the background was underestimated by BEMPORAD 67, and we consider their result to be superseded by that of RROWMAN 74B

There remains the disagreement between the two-photon results and the result of BROWMAN 74B. The errors assigned by BROWMAN 74B include a 5.3% statistical error, a 12.2% systematic error for uncertainty in the accepted photon spectrum, and a 2.5% systematic error for uncertainty in the nuclear parameters used in the calculation of the Primakoff and nuclear form factors. The Primakoff form factor F_C is a function of the momentum transfer q and the production angle θ . As $q^2 \to 0$, the uncertainty in F_C due to the q^2 dependence vanishes. The minimum q^2 in this experiment ranged from -680 MeV^2 at the lowest energy to -174 MeV^2 at the highest. In this range, the result is sensitive to details in the calculation of F_C , but it is difficult to estimate the systematic error of this dependence. Another possible source of systematic error is in the phase of the interference term, ϕ . This was a free parameter in the fit, but was not well determined by the data because the interference contribution peaks in the same angular region as the Primakoff signal and so cannot be unambiguously separated by an angular fit. A reanalysis of the data would be necessary to determine whether any of these factors was overlooked in the determination of the systematic error.

Using the same apparatus, Browman et al.¹ measured $\Gamma(\pi^0 \to \gamma\gamma)$ to be 7.92 ± 0.42 eV, in good agreement with our world average of 7.7 ± 0.6 eV. (Our average includes the measurement of Browman et al., but is dominated by a decay-length measurement by Atherton et al.² The error on the average involves a scale factor S=3.0 due to one outlying measurement.) However, the uncertainty due to F_C is reduced at lower momentum transfers, and q^2 was on the order of 100 times smaller in the π^0 measurement. The signal-to-background ratio is also larger, making the fit less sensitive to nuclear production.

A possible source of common systematic error in the two-photon experiments is the calculation of the two-photon luminosity function. However, WILLIAMS 88 measured the two-photon width of the π^0 as well as of the η , and their result, $7.7 \pm 0.5 \pm 0.5$ eV, is consistent with the world average quoted above.

To summarize, the two-photon measurements seem more reliable than the best Primakoff-production measurement. However, we include the latter in our average as there is no compelling reason to exclude it. The result, $\Gamma(\eta \to \gamma \gamma) = 0.46 \pm 0.05$ keV, is one standard deviation from the average using only the two-photon measurements, 0.510 ± 0.027 keV, and the error is twice as large, due to the scale factor.

References

- 1. A. Browman et al., Phys. Rev. Lett. 33, 1400 (1974).
- 2. H.W. Atherton et al., Phys. Lett. 158B, 81 (1985).

η DECAY RATES

$\Gamma(2\gamma)$ See the above No	te on th	ne Decay Rate Γ(η →	· γγ).	Γ ₂
VALUE (keV)		DOCUMENT ID		COMMENT
0.46 ±0.05 OUR FIT	Error	includes scale factor	of 2.1.	
0.46 ±0.05 OUR AVE	RAGE	Error includes scale	factor of 2.0	. See the ideogram below.
$0.490 \pm 0.010 \pm 0.048$	2287	ROE		$e^+ e^- \rightarrow e^+ e^- \eta$
$0.514 \pm 0.017 \pm 0.035$	1295			$e^+e^- \rightarrow e^+e^- \eta$
$0.53 \pm 0.04 \pm 0.04$		BARTEL	85E JADE	$e^+ e^- \rightarrow e^+ e^- \eta$
0.324 ± 0.046		BROWMAN	74B CNTR	Primakoff effect
• • We do not use the	e follow	ving data for average	s, fits, limits,	etc. • • •
$0.64 \pm 0.14 \pm 0.13$		AIHARA	86 TPC	$e^+ e^- \rightarrow e^+ e^- \eta$
0.56 ± 0.16	56	WEINSTEIN	83 CBAL	$e^+e^- \rightarrow e^+e^-\eta$
1.00 ± 0.22		¹ BEMPORAD	67 CNTR	Primakoff effect

 1 BEMPORAD 67 gives $\Gamma(2\gamma)=1.21\pm0.26$ keV assuming $\Gamma(2\gamma)/\Gamma(\text{total})=0.314$. Bemporad private communication gives $\Gamma(2\gamma)^2/\Gamma(\text{total})=0.380\pm0.083$. We evaluate this using $\Gamma(2\gamma)/\Gamma(\text{total})=0.38\pm0.01$. Not included in average because the uncertainty resulting from the separation of the coulomb and nuclear amplitudes has apparently been underestimated.

WEIGHTED AVERAGE 0.46 ± 0.05 (Error scaled by 2.0) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not neces-sarily the same as our "best" values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. ROE 90B ASE WILLIAMS BARTEL BROWMAN 74B CNTR 12.6 (Confidence Level 0.006) 0.3 0.8 0.6

η BRANCHING RATIOS

 $\Gamma(2\gamma)$ (keV)

$\Gamma(\text{neutral modes})/\Gamma_{\text{t}}$	otal			$(\Gamma_2+\Gamma_3+\Gamma_4)/\Gamma$
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.708±0.008 OUR FIT	Error inc	ludes scale factor	of 1.2.	
0.705 ± 0.008	16k	BASILE	710 CNTR	MM spectrometer
 ● ● We do not use th 	e following	g data for average	s, fits, limits	, etc. • • •
0.79 ± 0.08		BUNIATOV	67 OSPK	
$\Gamma(2\gamma)/\Gamma$ (neutral mod	des)			$\Gamma_2/(\Gamma_2+\Gamma_3+\Gamma_4)$
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.5491 ± 0.0028 OUR FI				
0.549 ±0.004 OUR A	/ERAGE			
0.549 ± 0.004		ALDE	84 GAM2	
0.535 ±0.018		BUTTRAM	70 OSPK	
0.59 ± 0.033		BUNIATOV	67 OSPK	
• • • We do not use th	e following	g data for average	s, fits, limits	, etc. • • •
0.52 ±0.09	88	ABROSIMOV	80 HLBC	
0.60 ±0.14	113	KENDALL	74 OSPK	
0.57 ±0.09		STRUGALSKI	71 HLBC	
0.579 ±0.052		FELDMAN	67 OSPK	
0.416 ± 0.044		DIGIUGNO	66 CNTR	Error doubled
0.44 ±0.07		GRUNHAUS	66 OSPK	
0.39 ±0.06		² JONES	66 CNTR	
2				

²This result from combining cross sections from two different experiments. $\Gamma(3\pi^0)/\Gamma(\text{neutral modes})$ $\Gamma_3/(\Gamma_2+\Gamma_3+\Gamma_4)$ <u>VALUE</u> <u>EVTS</u> **0.4499±0.0028 OUR FIT** DOCUMENT ID TECN COMMENT 0.450 ±0.004 OUR AVERAGE 0.450 ± 0.004 ALDE 84 GAM2 0.439 ± 0.024 BUTTRAM 70 OSPK • • We do not use the following data for averages, fits, limits, etc. • • • 0.44 ± 0.08 75 ABROSIMOV 80 HLBC 0.32 ± 0.09 STRUGALSKI 71 HLBC ± 0.033 BUNIATOV Not indep. of $\Gamma(2\gamma)$ OSPK 67 (neutral modes) 0.177 ± 0.035 FELDMAN OSPK 67 DIGIUGNO CNTR Error doubled 66 0.29 ± 0.10 **GRUNHAUS**

 η

```
\Gamma(3\pi^0)/\Gamma(2\gamma)
                                                                                              \Gamma_3/\Gamma_2
                                          DOCUMENT ID TECN COMMENT
                                                                                                                             WEIGHTED AVERAGE
1.27 + 0.12 - 0.14 (Error scaled by 1.3)
0.819±0.009 OUR FIT
0.84 ±0.06 OUR AVERAGE
0.91 \pm 0.14
                                          COX
                                                           70в НВС
                                                                                                                                                                   Values above of weighted average, error,
0.75 \pm 0.09
                                          DEVONS
                                                           70 OSPK
                                                                                                                                                                   and scale factor are based upon the data in
this ideogram only. They are not neces-
sarily the same as our "best" values,
0.88 \pm 0.16
                                          BALTAY
                                                           670 DBC
1.1 \pm 0.2
                                          CENCE
                                                           67 OSPK
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                                                                   obtained from a least-squares constrained fit
                                                                                                                                                                   utilizing measurements of other (related) quantities as additional information.
                                                           63 CNTR Inverse BR reported
                                         BACCI
1.25 \pm 0.39
\Gamma(\pi^0 2\gamma)/\Gamma(\text{neutral modes})
                                                                                \Gamma_4/(\Gamma_2+\Gamma_3+\Gamma_4)
                                         DOCUMENT ID TECN
0.00100±0.00020 OUR FIT
0.0010 \pm 0.0002
                                          ALDE
                                                           84 GAM2
                                                                                                                                                                            BAGLIN
                                                                                                                                                                                               69 HLBC
\Gamma(\pi^0 2\gamma)/\Gamma_{\text{total}}
                                                                                               \Gamma_4/\Gamma
                                                                                                                                                                            BULLOCK
                                                                                                                                                                                               68 HIBC
                                                                                                                                                                                                                 1.3
       These results are summarized in the review by LANDSBERG 85.
                                                                                                                                                                            BAGLIN
                                                                                                                                                                                               67B HLBC
                                                                                                                                                                                                                0.0
VALUE (units 10<sup>-4</sup>) CL% EVTS DOCUMENT ID TECN COMMENT 7.1±1.4 OUR FIT
                                                                                                                                                                            FOSTER
                                                                                                                                                                                               65 HBC
                                                                                                                                                                            FOELSCHE
                                                                                                                                                                                               64
                                                                                                                                                                                                    HBC
                                                                                                                                                                                                                0.5
                                                                                                                                                                            CRAWFORD
                                                                                                                                                                                                                 1.9
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                       <sup>3</sup> ALDE
                                                                                                                                                                                                                6.9
                                                        84 GAM2 \pi^- p \rightarrow \eta n
   7.1\pm1.7
                                                                                                                                                                                   (Confidence Level
                                                                                                                                                                                                            = 0.227
    9.5\pm2.3
                               70
                                         BINON
                                                           82 GAM2 See ALDE 84
                                         DAVYDOV 81 GAM2 \pi^- p \rightarrow \eta n
 < 30
                   90
                               0
  <sup>3</sup> Not independent of the ALDE 84 result \Gamma(\pi^0 2\gamma)/\Gamma(\text{neutral modes})
                                                                                                                            \Gamma(3\pi^0)/\Gamma(\pi^+\pi^-\pi^0)
\Gamma(\text{neutral modes})/\left[\Gamma(\pi^{+}\pi^{-}\pi^{0}) + \Gamma(\pi^{+}\pi^{-}\gamma) + \Gamma(e^{+}e^{-}\gamma)\right]
                                                                  (\Gamma_2+\Gamma_3+\Gamma_4)/(\Gamma_6+\Gamma_7+\Gamma_8)
                                                                                                                \Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-\pi^0)
                                                                                                                                                                                                               \Gamma_7/\Gamma_6
                                         DOCUMENT ID
                                                                                                                 VALUE EVTS DOCUMENT ID T
0.207 ± 0.004 OUR FIT Error includes scale factor of 1.1.
2.44 ± 0.09 OUR FIT Error includes scale factor of 1.2.
                                         BALTAY
                                                          678 DBC
2.64 ± 0.23
                                                                                                                 0.207 ± 0.004 OUR AVERAGE Error includes scale factor of 1.1.
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                                             18k
                                                                                                                 0.209 \pm 0.004
                                                                                                                                                           THALER
                                                                                                                                                                            73 ASPK
                             280 4 JAMES
4.5 ±1.0
                                                        66 HBC
                                                                                                                                                           GORMLEY
                                                                                                                 0.201 \pm 0.006
                                                                                                                                             7250
                                                                                                                                                                            70 ASPK
                                       4 BASTIEN
3.20 \pm 1.26
                              53
                                                           62 HBC
                                                                                                                 • • • We do not use the following data for averages, fits, limits, etc. • • •
                                      <sup>4</sup> PICKUP
2.5 \pm 1.0
                                                                                                                                                           BALTAY
                                                                                                                 0.28 \pm 0.04
                                                                                                                                                                            678 DBC
  <sup>4</sup> These experiments not used in the averages as they do not separate clearly \eta \to \pi^+\pi^-\pi^0 and \eta \to \pi^+\pi^-\gamma from each other. The reported values thus probably contain some unknown fraction of \eta \to \pi^+\pi^-\gamma.
                                                                                                                                                           LITCHFIELD 67 DBC
                                                                                                                 0.25 \pm 0.035
                                                                                                                                                                            66 HBC
                                                                                                                                                           CRAWFORD
                                                                                                                 0.30 \pm 0.06
                                                                                                                 0.196 \pm 0.041
                                                                                                                                                           FOSTER
\Gamma(2\gamma)/\left[\Gamma(\pi^+\pi^-\pi^0)+\Gamma(\pi^+\pi^-\gamma)+\Gamma(e^+e^-\gamma)\right]
                                                                                                                 \Gamma(e^+e^-\gamma)/\Gamma(\pi^+\pi^-\pi^0)
                                                                                                                                                                                                               \Gamma_8/\Gamma_6
                                        DOCUMENT ID

        VALUE
        EVTS
        DOCUMENT ID
        TECN

        1.34 ± 0.05 OUR FIT
        Error includes scale factor of 1.2.

                                                                                                                 VALUE (units 10 2)
2.1±0.5 OUR FIT
                                                                                                                                                                               TECN COMMENT
                                                                                                                                                           DOCUMENT ID
1.1 \pm 0.4 OUR AVERAGE
                                                                                                                                                           IANE
                                                                                                                                                                            75B OSPK See the erratum
                                                                                                                 2.1 \pm 0.5
1.51\pm0.93
                                          KENDALL
                                         CRAWFORD 63 HBC
0.99 \pm 0.48
                                                                                                                 \Gamma(\mu^+\mu^-\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                                                 \Gamma_9/\Gamma
                                                                                                                 VALUE (units 10-4)
                                                                                                                                            EVTS
                                                                                                                                                           DOCUMENT ID
\Gamma({\rm neutral\ modes})/\Gamma(\pi^+\pi^-\pi^0)
                                                                                                                                                                               TECN COMMENT
                                                                                (\Gamma_2+\Gamma_3+\Gamma_4)/\Gamma_6
                                                                                                                 3.1±0.4 OUR FIT
                                         DOCUMENT ID
VALUE
                           EVTS
                                                                TECN
2.99±0.11 OUR FIT Error includes scale factor of 1.2.
                                                                                                                                               600
                                                                                                                                                           DZHELYADIN 80 SPEC \pi^- p \rightarrow \eta n
                                                                                                                 • • • We do not use the following data for averages, fits, limits, etc. • • •
3.26±0.30 OUR AVERAGE
                                                                                                                                                           BUSHNIN 78 SPEC See DZHELYADIN 80
2.54 \pm 1.89
                                          KENDALL
                                                            74 OSPK
                                                                                                                 1.5 \pm 0.75
                                                                                                                                              100
3.4 ±1.1
                               29
                                          AGUILAR-...
                                                           728 HBC
                                       <sup>5</sup> BLOODWO... 72B HBC
                                                                                                                 \Gamma(e^+e^-)/\Gamma_{\text{total}}
2.83\pm0.80
                              70
                                         FLATTE
                                                           678 HBC
3.6 \pm 0.6
                                                                                                                                                           DOCUMENT ID
                                                                                                                                                                               TECN COMMENT
                                                                                                                 VALUE (units 10<sup>-4</sup>)
                                          ALFF-...
                                                           66 HBC
2.89 \pm 0.56
                                                                                                                                                           DAVIES
                                                                                                                                                                            74 RVUE Uses ESTEN 67
                                          KRAEMER
                                                           64 DBC
                              50
36 +08
                                                           64 DBC
3.8 \pm 1.1
                                         PAULI
                                                                                                                 \Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                               \Gamma_{11}/\Gamma
  ^{5}\,\mathrm{Error} increased from published value 0.5 by Bloodworth (private communication).
                                                                                                                 VALUE (units 10<sup>-5</sup>) CL% EVTS
                                                                                                                                                           DOCUMENT ID
                                                                                                                                                                               TECN COMMENT
                                                                                                                                                           DZHELYADIN 808 SPEC \pi^- p \rightarrow \eta n
                                                                                                                                        27
\Gamma(2\gamma)/\Gamma(\pi^+\pi^-\pi^0)
                                                                                             \Gamma_2/\Gamma_6
                                                                                                                 <u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u>
1.64±0.06 OUR FIT Error includes scale factor of 1.2.
                                                                                                                                                0
                                                                                                                                                           WEHMANN 68 OSPK
1.69±0.21 OUR AVERAGE
                                                                                                                 \Gamma(\mu^+\mu^-)/\Gamma(2\gamma)
                                                                                                                                                                                                              \Gamma_{11}/\Gamma_2
1.72\pm0.25
                                                            69 HLBC
1.61 \pm 0.39
                                                                                                                 VALUE (units 10<sup>-5</sup>)
                                                                                                                                                           DOCUMENT ID
                                                                                                                                                                                TECN
                                                                                                                 • • • We do not use the following data for averages, fits, limits, etc. • • •
\Gamma(3\pi^0)/\Gamma(\pi^+\pi^-\pi^0)
                                                                                              \Gamma_3/\Gamma_6
                                                                                                                                                           HYAMS
                                                                                                                                                                           69 OSPK
VALUE EVTS DOCUMENT ID

1.35±0.05 OUR FIT Error includes scale factor of 1.2.
                                                                                                                 \Gamma(\pi^+\pi^-e^+e^-)/\Gamma(\pi^+\pi^-\gamma)
                                                                                                                                                                                                              \Gamma_{12}/\Gamma_7
1.27^{+0.12}_{-0.14} OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.
                                                                                                                                                           DOCUMENT ID TECN
                                                                                                                 0.027^{+0.026}_{-0.017} OUR FIT
1.50 \,{}^{+\, 0.15}_{-\, 0.29}
                             199
                                         BAGLIN
                                                           69 HLBC
                                                                                                                 0.026 \pm 0.026
                                                                                                                                                           GROSSMAN 66 HBC
1.47 ^{\,+\, 0.20}_{\,-\, 0.17}
                                          BULLOCK
                                                           68 HLBC
                                                                                                                 \Gamma(\pi^+\pi^-e^+e^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                \Gamma_{12}/\Gamma
                                                           678 HLBC
                                          BAGLIN
1.3 \pm 0.4
0.90 \pm 0.24
                                          FOSTER
                                                           65 HBC
                                                                                                                 VALUE (units 10 2)
                                                                                                                                                           DOCUMENT ID TECN
                                          FOELSCHE
                                                           64 HBC
2.0 \pm 1.0
                                                                                                                   0.13^{+0.13}_{-0.08} OUR FIT
                                          CRAWFORD
                                                          63 HBC
0.83 \pm 0.32
                                                                                                                 \bullet \bullet We do not use the following data for averages, fits, limits, etc. 
 \bullet \bullet
                                                                                                                                                           RITTENBERG 65 HBC
                                                                                                                 \Gamma(\pi^+\pi^-2\gamma)/\Gamma(\pi^+\pi^-\pi^0)
                                                                                                                                                                                                              \Gamma_{13}/\Gamma_6
                                                                                                                 VALUE
                                                                                                                                 CL%
                                                                                                                                                           DOCUMENT ID
                                                                                                                                                                                 TECN
                                                                                                                                                                             67 HBC
                                                                                                                  < 0.009
                                                                                                                                                           PRICE
                                                                                                                 • • • We do not use the following data for averages, fits, limits, etc. • •
```

BALTAY

$\Gamma(\pi^+\pi^-\pi^0\gamma)$	′Γ(π ⁺	$\pi^{-}\pi^{0}$)				Γ_{14}/Γ_{6}
VALUE (units 10 ⁻²)	CL%	EVT5	DOCUMENT ID		TECN	
< 0.24	90	0	THALER	73	ASPK	
• • • We do not	use the	e following (data for averages	s, fits	s, limits,	etc. • • •
<1.7	90		ARNOLD	68	HLBC	
<1.6	95		BALTAY	67B	DBC	
<7.0			FLATTE		HBC	
<0.9			PRICE	67	нвс	
$\Gamma(\pi^0\mu^+\mu^-\gamma)$						Γ ₁₅ /Γ
VALUE (units 10 ⁻⁶)		<u>CL%</u>	DOCUMENT ID			COMMENT
<3		90	DZHELYADIN	81	SPEC	$\pi^- p \rightarrow \eta n$
Γ(3γ)/Γ(neutra Forbidden t	al mod by Cin	des) variance.				$\Gamma_{16}/(\Gamma_2+\Gamma_3+\Gamma_4)$
VALUE (units 10-4)		CL%	DOCUMENT ID		TECN_	
<7		95	ALDE		GAM2	
F(-+)/F						F/F
$\Gamma(\pi^+\pi^-)/\Gamma_{tot}$ Violates P	al and <i>CE</i>	invariance				Γ ₁₇ /Γ
VALUE (units 10 ⁻²)	and ¢,	EVTS	DOCUMENT ID		TECN_	
<0.15			THALER		ASPK	
$\Gamma(\pi^0 e^+ e^-)/\Gamma$			iden by C parity.			Γ_{18}/Γ_{6}
VALUE (units 10 ⁻⁴)			DOCUMENT ID		TECN	
< 1.9	90		JANE	_	OSPK	
• • • We do not	use th	e following				etc. • • •
< 42	90		BAGLIN	67	HLBC	
< 16	90	0	BILLING	67	HLBC	
< 77		0	FOSTER	65E	HBC	
<110			PRICE	65	HBC	
$\Gamma(\pi^0 e^+ e^-)/\Gamma$ A single ph	total oton pi	rocess forbio	lden by C parity.			Γ_{18}/Γ
VALUE (units 10^{-2})			DOCUMENT ID		TECN	
• • • We do not	use th	e following	data for average	5, fit	s, limits,	, etc. • • •
< 0.016	90	0	MARTYNOV	76	HLBC	
< 0.084	90		BAZIN	68	DBC	
< 0.7			RITTENBERG	65	нвс	
$\Gamma(\pi^0\mu^+\mu^-)/\Gamma$ A single ph		rocess forbio	lden by C parity.			Γ_{19}/Γ
VALUE (units 10 ⁻⁴)		CL%	DOCUMENT ID		TECN	COMMENT
< 0.05		90	DZHELYADIN	81	SPEC	$\pi^- \rho \rightarrow \eta n$
• • • We do not	use th	e following	data for average	s, fit	s, limits	, etc. • • •
< 5			WEHMANN	68	OSPK	

NOTE ON η DECAY PARAMETERS

C violation in η decays

A number of experiments have looked for charge asymmetries in $\eta \to \pi^+\pi^-\pi^0$ and $\eta \to \pi^+\pi^-\gamma$ decays. Any difference between the π^+ and π^- spectra in either decay would indicate C violation in electromagnetic interactions. In sections that follow this Note, we list measurements of the following parameters:

(a) The left-right asymmetry

$$A = (N^+ - N^-)/(N^+ + N^-)$$
.

where N^+ is the number of events in which the π^+ energy in the η rest frame is greater than the π^- energy, etc.

(b) For the decay $\eta \to \pi^+\pi^-\pi^0$, the sextant asymmetry

$$A_s = \frac{N_1 + N_3 + N_5 - N_2 - N_4 - N_6}{N_1 + N_2 + N_3 + N_4 + N_5 + N_6}$$

where the N_i are the numbers of events in sextants of the Dalitz plot; see, for example, Layter et al. 1 A_s is sensitive to an I=0 C-violating final state.

(c) For the decay $\eta \to \pi^+\pi^-\pi^0$, the quadrant asymmetry

$$A_q = \frac{N_1 + N_3 - N_2 - N_4}{N_1 + N_2 + N_3 + N_4} \ ,$$

where the N_i are numbers of events in quadrants of the Dalitz plot. A_q is sensitive to an I=2 C-violating final state.

(d) For the decay $\eta \to \pi^+\pi^-\gamma$, evidence for a *D*-wave contribution to the *C*-violating amplitude. The upper limit for this contribution is measured by the parameter β , defined by

$$dN/d|\cos\theta| \propto \sin^2\theta (1 + \beta \cos^2\theta)$$
,

where θ is the angle between the π^+ and the γ in the dipion center of mass. A term proportional to $\cos^2\theta$ could also come from P- and F-wave interference.

Dalitz plot for $\eta \to \pi^+\pi^-\pi^0$

The Dalitz plot for $\eta \to \pi^+\pi^-\pi^0$ decay may be fit to the distribution

$$|M(x,y)|^2 \propto (1 + ay + by^2 + cx + dx^2 + exy)$$
.

Here

$$x = \sqrt{3} (T_+ - T_-)/Q ,$$

$$y = (3T_0/Q) - 1 ,$$

where T_+ , T_- , and T_0 are the kinetic energies of the π^+ , π^- , and π^0 in the η rest frame, and $Q=T_++T_0+T_-$. The coefficient of the term linear in x is sensitive to C violation due to an I=0 or I=2 final state. In a section below, we list papers that measured a,b,c, and d, but do not tabulate values of these parameters because the assumptions made by different authors are not compatible and do not allow comparison of the numerical values.

Dalitz plot for $\eta \to \pi^0 \pi^0 \pi^0$

The Dalitz plot for the decay $\eta \to \pi^0 \pi^0 \pi^0$ may be fit to

$$|M|^2 \propto 1 + 2\alpha z$$
,

where

$$z = \frac{2}{3} \sum_{i=1}^{3} \left(\frac{3E_i - m_{\eta}}{m_{\eta} - 3m_{\pi^0}} \right)^2 = \frac{\rho^2}{\rho_{\text{max}}^2} .$$

Here E_i is the energy of the i^{th} pion in the η rest frame, and ρ is the distance from the center of the Dalitz plot. We list measurements of the parameter α in a section below.

Reference

1. J.G. Layter et al., Phys. Rev. Lett. 29, 316 (1972).

η C-NONCONSERVING DECAY PARAMETERS

$\pi^+\pi^-\pi^0$ LEFT-RIGHT ASYMMETRY PARAMETER

Measurements with an error $> 1.0 \times 10^{-2}$ have been omitted. VALUE (units 10^{-2}) **EVTS** DOCUMENT ID 0.09±0.17 OUR AVERAGE 0.28 ± 0.26 165k LAYTER 72 ASPK -0.05 ± 0.22 220k ◆ We do not use the following data for averages, fits, limits, etc. 1.5 ± 0.5 37k ⁶ GORMLEY 68c ASPK

 6 The GORMLEY 68c asymmetry is probably due to unmeasured (E \times B) spark chamber effects. New experiments with (E \times B) controls don't observe an asymmetry.

$\pi^+\pi^-\pi^0$ SEXTANT ASYMMETRY PARAMETER

Measurements with an error $> 2.0 \times 10^{-2}$ have been omitted. VALUE (units 10⁻²) DOCUMENT ID EVTS 0.18±0.16 OUR AVERAGE 0.20 ± 0.25 165k JANE 74 OSPK 0.10 ± 0.22 LAYTER 72 ASPK 220k 0.5 ± 0.5 GORMLEY 68c WIRE

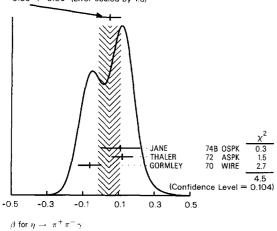
$\pi^+\pi^-\pi^0$ QUADRANT ASYMMETRY PARAMETER

VALUE (units 10 ⁻²)	EVTS	DOCUMENT I	D	TECN
-0.17±0.17 OUR	AVERAGE			
-0.30 ± 0.25	165k	JANE	74	OSPK
-0.07 ± 0.22	220k	LAYTER	72	ASPK

$\pi^+\pi^-\gamma$ LEFT-RIGHT ASYMMETRY PARAMETER

Measurements with an error $> 2.0 \times 10^{-2}$ have been omitted.

VALUE (units	10 ⁻²) EVTS	DOCUMENT ID	TECN
0.9 ± 0.4	OUR AVERAGE		
1.2 ± 0.6	35k	JANE	74B OSPK
0.5 ± 0.6	36k	THALER	72 ASPK
1.22 ± 1.56	7257	GORMLEY	70 ASPK


$\pi^+\pi^-\gamma$ PARAMETER eta

Sensitive to a *D*-wave contribution: $dN/d\cos\theta = \sin^2\theta \ (1 + \beta \cos^2\theta)$

VALUE	EVTS	DOCUMENT IE	TECN_	
0.05 ± 0.06	OUR AVERAGE	Error includes s	cale factor of 1.5.	See the ideogram
		below.		
0.11 ± 0.11	35k	JANE	74B OSPK	
0.12 ± 0.06		⁷ THALER	72 ASPK	
-0.060 ± 0.065	7250	GORMLEY	70 WIRE	

⁷ The authors don't believe this indicates *D*-wave because the dependence of β on the γ energy is inconsistent with theoretical prediction. A $\cos^2\theta$ dependence may also come from *P*- and *F*-wave interference.

WEIGHTED AVERAGE 0.05 ± 0.06 (Error scaled by 1.5)

ENERGY DEPENDENCE OF $\eta \to \pi^+ \pi^- \pi^0$ DALITZ PLOT

See the Note on η Decay Parameters above. The following experiments fit to one or more of the coefficients a, b, c, d, or e for $|matrix element|^2 = 1 + ay + by^2 + cx + <math>dx^2 + exy$.

VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>
• • • We do not us	e the followin	g data for average	s, fits	s, limits, etc. • • •
	81k	LAYTER	73	ASPK
	220k	LAYTER	72	ASPK
	1138	CARPENTER	70	HBC
	349	DANBURG	70	DBC
	7250	GORMLEY	70	WIRE
	526	BAGLIN	69	HLBC
	7170	CNOPS	68	OSPK
	37k	GORMLEY	68c	WIRE
	1300	CLPWY	66	HBC
	705	LARRIBE	66	HBC

α PARAMETER FOR $\eta \to 3\pi^0$

See the Note on η Decay Parameters above. The value here is of α in matrix element $|^2$

$= 1 + 2\alpha z$.			
VALUE	EVT5	DOCUMENT I) TECN
-0.022 ± 0.023	50k	ALDE	84 GAM2
• • • We do not use t	he followin	g data for avera	ges, fits, limits, etc. • • •
-0.32 ± 0.37	192	BAGLIN	70 HLBC

REFERENCES FOR η

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1988 edition (Physics Letters **B204**).

ROE	90B	PR D41 17		+Bartha, Burke, Garbincius+		(ASP Collab.)
WILLIAMS AIHARA	88 86	PR D38 1365 PR D33 844		+Antreasyan, Bartels, Besset+ +Aiston-Garnjost+		(Crystal Ball Collab.) (TPC-2γ Collab.)
BARTEL	85E	PL 160B 421		+Becker, Cords, Felst+		(JADE Collab.)
LANDSBERG	85	PRPL 128 310				(SERP)
ALDE Also	84 84B	ZPHY C25 225 SJNP 40 918		+Binon, Bricman, Donskov+		(SERP. BELG, LAPP)
Also	UND	Translated from YAI	40	Alde, Binon, Bricman+ 1447.		(SERP, BELG, LAPP)
WEINSTEIN	83	PR D28 2896		+Antreasyan, Gu. Kollman+		(Crystal Ball Collab.)
BINON	82	SJNP 36 391 Translated from YA	: 36	+Bricman, Gouanere+	(SERP	BELG, LAPP, CERN)
Also	82B	NC 71A 497	30	Binon, Bricman+	(SERP	, BELG, LAPP, CERN)
DAVYDOV	81	LNC 32 45		+Donskov, Inyakin+		, BELG, LAPP, CERN)
Also	818	SJNP 33 825 Translated from YAI	- 33	Davydov, Binon+ 1534	(SERP	, BELG, LAPP, CERN)
DZHELYADIN	81	PL 105B 239	-	+Golovkin, Konstantinov, Kuban		(SERP)
Also	81C	SJNP 33 822 Translated from YAI		Dzhelyadin, Viktorov, Golovkin	+	(SERP)
ABROSIMOV	80	SJNP 31 195		+llina, Niszcz, Okhrimenko+		(JINR)
DZUELVADIN	80	Translated from YAR	31	371.		
DZHELYADIN Also	80C	PL 94B 548 SJNP 32 516		+Viktorov, Golovkin+ Dzhelyadin, Golovkin, Kachano	V.3	(SERP) (SERP)
		Translated from YAI	32	998.		
DZHELYADIN Also	80B 80D	PL 97B 471 SJNP 32 518		+Viktorov, Golovkin+ Dzhelyadin, Golovkin, Kachano	u ±	(SERP) (SERP)
		Translated from YAI	32	1002.		
BUSHNIN Also	78 78B	PL 79B 147 SJNP 28 775		+Dzhelyadin, Golovkin, Gritsuk+		(SERP)
MISU	TOD	Translated from YAI	28	Bushnin, Golovkin, Gritsuk, Dz. 1507.	neiyadii	1+ (SERP)
MARTYNOV	76	SJNP 23 48		+Saltykov, Tarasov, Uzhinskii		(JINR)
JANE	75	Translated from YAF PL 59B 99	23	+Grannis, Jones, Lipman, Owen-	-	(RHEL, LOWC)
JANE	75B	PL 59B 103		+Grannis, Jones, Lipman, Owen-	+	(RHEL, LOWC)
Also Erratum in	78B Drivate	PL 73B 503 communication.		Jane		
BROWMAN	74B	PRL 32 1067		+ Dewire, Gittelman, Hanson, Lol	n	(CORN, BING)
DAVIES	74	NC 24A 324		+Guy, Zia		(BIRM, RHEL, SHMP)
JANE IANE	74 74B	PL 48B 260 PL 48B 265		+Jones, Lipman, Owen+ +Jones, Lipman, Owen+		(RHEL, LOWC, SUSS) (RHEL, LOWC, SUSS)
KENDALL	746	NC 21A 387		+Lanou, Massimo, Shapiro+		(BROW, BARI, MIT)
LAYTER	73	PR D7 2565		+Appel, Kotlewski, Lee, Stein, T	haler	(COLU)
THALER AGUILAR-	73 72B	PR D7 2569 PR D6 29		+ Appel, Kotlewski, Layter, Lee, S		(COLU) s (BNL)
BLOODWO	72B	NP B39 525		Aguilar-Benitez, Chung, Eisner, Bloodworth, Jackson, Prentice,	Yoon	(TNTO)
LAYTER	72	PRL 29 316		+Appel, Kotlewski, Lee, Stein, T	haler	(COLU)
THALER BASILE	72 71D	PRL 29 313 NC 3A 796		+Appel, Kotlewski, Layter, Lee, S		(COLU)
STRUGALSKI	71	NP B27 429		+Bollini, Dalpiaz, Frabetti+ -Chuvilo, Gemesy, Ivanovskaya+	f	CERN, BGNA, STRB) (JINR)
BAGLIN	70	NP B22 66		+Bezaguet, Degrange+	((JINR) EPOL, MADR, STRB)
BUTTRAM CARPENTER	70	PRL 25 1358 PR D1 1303		+ Kreisler, Mischke + Binkley, Chapman, Cox, Dagan		(PRIN)
COX	70 70B	PRL 24 534		+Fortney, Golson	+	(DUKE)
DANBURG	70	PR D2 2564		+Abolins, Dahl, Davies, Hoch, K		(LRL)
DEVONS GORMLEY	70 70	PR D1 1936 PR D2 501		+Grunhaus, Kozlowski, Nemethy	+	(COLU, SYRA)
Also	70B	Nevis 181 Thesis		+Hyman, Lee, Nash, Peoples- Gormley		(COLU, BNL) (COLU)
BAGLIN	69	PL 29B 445		+Bezaguet +	(EPOL	UCB, MADR, STRB)
Also HYAMS	70 69	NP B22 66 PL 29B 128		Baglin, Bezaguet, Degrange+	(EPOL, MADR, STRB)
ARNOLD	68	PL 27B 466		+Koch, Potter, VonLindern+ +Paty, Baglin, Bingham+	(STRB	(CERN, MPIM) , MADR, EPOL, UCB)
BAZIN	68	PRL 20 895		+Goshaw, Zacher+		(PRIN, QUKI)
BULLOCK CNOPS	68 68	PL 27B 402 PRL 21 1609		+Esten, Fleming, Govan, Henders +Hough, Cohn+ (BNL, C	SON+	(LOUC) UCND, TENN, PENN)
GORMLEY	68C	PRL 21 402		+Hyman, Lee, Nash, Peoples+	ANIAL,	(COLU, BNL)
WEHMANN	68	PRL 20 748		-Engels+ (HARV,	CASE.	SLAC, CORN, MCGI)
BAGLIN BAGLIN	67 67B	PL 24B 637 BAPS 12 567		+ Bezaguet, Degrange+ +Bezaguet, Degrange+		(EPOL, UCB) (EPOL, UCB)
BALTAY	67B	PRL 19 1498		+Franzini, Kim, Newman+		(COLU, STON)
BALTAY	67D	PRL 19 1495		+Franzini, Kim, Newman+		(COLU, BRAN)
BEMPORAD Also	67 67	Pt. 25B 380 Private Comm.		+Braccini, Foa, Lubelsmey+ Ion		(PISA, BONN)
BILLING	67	PL 25B 435		+Bullock, Esten, Govan+		(LOUC, OXF)
BUNIATOV	67	PL 25B 560		+Zavattini, Deinet+		(CERN, KARL)
CENCE ESTEN	67 67	PRL 19 1393 PL 24B 115		+Peterson, Stenger, Chiu+ +Govan, Knight, Miller, Tovey+		(HAWA, LRL) (LOUC, OXF)
FELDMAN	67	PRL 18 868		+Frati, Gleeson, Halpern+		(PENN)
FLATTE FLATTE	67 47D	PRL 18 976		+Wohl		(LRL)
LITCHFIELD	67B 67	PR 163 1441 PL 24B 486		+ Woni + Rangan, Segar, Smith+		(LRL) (RHEL, SACL)
PRICE	67	PRL 18 1207		+Crawford		(LRL)
ALFF CLPWY	66 66	PR 145 1072 PR 149 1044		Alff-Steinberger, Berley+		(COLU, RUTG) PURD, WISC, YALE)
CRAWFORD	66	PRL 16 333		- Price	., LKL,	(LRL)
DIGIUGNO	66	PRL 16 767		+ Giorgi, Silvestri -		(NAPL, TRST, FRAS)
GROSSMAN GRUNHAUS	66 66	PR 146 993 Thesis		+Price, Crawford		(LRL) (COLU)
JAMES	66	PR 142 896		+ Kraybill		(YALE, BNL)
JONES	66	PL 23 597		+Binnie, Duane, Horsey, Mason+		(LOIC, RHEL)
LARRIBE FOSTER	66 65	PL 23 600 PR 138B 652		Leveque, Mulier, Pauli+ +Peters, Meer, Loeffler+		(SACL, RHEL) (WISC, PURD)
FOSTER	65B	Athens Conf.		+Good, Meer		(WISC)
FOSTER	65C	Thesis				(WISC)
PRICE RITTENBERG	65 65	PRL 15 123 PRL 15 556		+Crawford +Kalbfleisch		(LRL) (LRL, BNL)
FOELSCHE	64	PR 134B 1138		+Kraybill		(YALE)
KRAEMER	64	PR 136B 496 PL 13 351		+Madansky, Fields + +Muller	(JHU, NWES, WOOD)
PAULI BACCI	64 63	PL 13 351 PRL 11 37		+ Muller + Penso, Salvini+		(SACL) (ROMA, FRAS)
CRAWFORD	63	PRL 10 546		+Lloyd, Fowler		(LRL, DUKE)
Also DELCOURT	66B 63	PRL 16 907 PL 7 215		Crawford, Lloyd, Fowler +Lefrancois, Perez-y-Jorba+		(LRL, DUKE) (ORSA)
ALFF	62	PRL 9 322		Alff-Steinberger, Berley, Colley-		(COLU, RUTG)
BASTIEN	62	PRL 8 114 PRL 8 329		+Berge, Dahi, Ferro-Luzzi+		(LRL)
PICKUP	62	CNL 0 329		+ Robinson, Salant		(CNRC, BNL)
	-	отн	ER	RELATED PAPERS		
Davide						
BOWEN	67	PL 24B 206		- Cnops, Finocchiaro +		(CERN, ETH, SACL)

BOWEN	67	PL 24B 206	- Cnops, Finocchiaro -	(CERN, ETH, SACL)
CARMONY	62	PRL 8 117	+Rosenfeld, VanDeWalie	(LRL)
ROSENFELD	62	PRL 8 293	+ Carmony, VanDeWalle	(LRL)
PEVSNER	61	PRL 7 421	+ Kraemer, Nussbaum, Richardson	(JHU)
				(

$$I^{G}(J^{PC}) = 1^{+}(1^{--})$$

Our latest mini-review on this particle can be found in the 1984 edition.

$\rho(770)$ MASS

We no longer list S-wave Breit-Wigner fits, or data with high combinatorial back-

CHARGED ONLY

VALUE (MeV)	EVTS	DOCUMENT ID			HG COMMENT
768.3±0.5 OUR AV	ERAGE Inc		ne 2 c	latablocks	that follow this one.
767 ±3	2935	¹ CAPRARO	87	SPEC -	- 200 <u>π</u> Cu →
761 ±5	967	¹ CAPRARO	87	SPEC -	π π σ Cu - 200 π Pb →
771 ±4		HUSTON	86	SPEC +	π − π ⁰ Pb - 202 π + A →
766 ±7	6500	² BYERLY	73	OSPK -	π ⁺ π ⁰ Α - 5π ⁻ ρ
766.8 ± 1.5	9650	³ PISUT	68	RVUE -	- $1.7-3.2 \pi^- \rho$, t
767 ±6	900	¹ EISNER	67	нвс -	<10 - 4.2 π^- p. $t < 10$

NEUTRAL ONLY, PHOTOPRODUCED

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMEN</u>
The data in this block is included in the average printed for a previous datablock TECN CHG COMMENT

768.1 ± 1.3 OUR AVERAGE

767.6± 2.7		BARTALUCCI	78	CNTR	0	$\gamma p \rightarrow e^+ e^- p$
775 ± 5		GLADDING	73	CNTR	0	2.9-4.7 yp
767.0± 4.0	1930	BALLAM	72	HBC	0	2.8 yp
770.0 ± 4.0	2430	BALLAM	72	HBC	0	4.7 yp
765.0 ± 10.0		ALVENSLEBEN	170	CNTR	0	$\gamma A, t < 0.01$
767.7 ± 1.9	140k	BIGGS	70	CNTR	0	$<$ 4.1 γ C \rightarrow
765 ± 5.0	4000	ASBURY	67B	CNTR	0	$\pi^+\pi^-$ C γ + Pb

NEUTRAL ONLY, OTHER REACTIONS

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>
The data in this block is included in the average printed for a previous datablock.

768.7±0.7 OUR AVERAGE	Error includes scale factor	of 1.2.
768 ±1	4 GESHKENBEIN89	RVUE
7000100	F. 6	

768 ±1		4 GESHKENBEI	N89	RVUE		π form factor
768.0 ± 4.0		^{5,6} BOHACIK	80	RVUE	0	
769.0 ± 3.0		² WICKLUND	78	ASPK	0	3,4,6 π^{\pm} N
768.0 ± 1.0	76000	DEUTSCH	76	HBC	0	16 π ⁺ p
767 ±4	4100	ENGLER	74	DBC	0	$6 \pi^+ n \rightarrow$
		_				$\pi^+\pi^-p$
775.0 ± 4.0	32000	5 PROTOPOP	. 73	HBC	0	7.1 π^+ p, t < 0.4
764.0 ± 3.0	6800	RATCLIFF	72	ASPK	0	15 $\pi^- p$, $t < 0.3$
774.0 ± 3.0	1700	REYNOLDS	69	HBC	0	$2.26 \pi^{-} p$
775.0 ± 3.0	2250	HYAMS	68	OSPK	0	11.2 π ρ
769.2 ± 1.5	13300	7 PISUT	68	RVUE	0	$1.7-3.2 \pi^{-} p, t$
						<10
\bullet \bullet We do not use	the following	ng data for average	s, fit	s, limits,	etc.	
775.9 ± 1.1		⁸ BARKOV	85	OLYA	0	π form factor
		^			•	A 101111 IBCIO

773.9 ± 1.1		BARKOV	85	OLYA	0	π form factor
777.4 ± 2.0			83	ASPK	0	17 $\pi^- p$ polarized
770 ±2			80	RVUE		Pion form factor
769.5 ± 0.7				RVUE		
770 ±9		⁶ ESTABROOKS	74	RVUE	0	$17 \pi^- p \rightarrow$
770 5 4 7		1				$\pi^+\pi^-n$
773.5 ± 1.7	11200	¹ JACOBS	72	HBC	0	2.8 π^{-} p

 1 Mass errors enlarged by us to $\Gamma/\mathit{N}^{1/2};$ see the note with the $\mathit{K}^*(892)$ mass.

Phase shift analysis. Systematic errors added corresponding to spread of different fits.

From fit of 3-parameter relativistic *P*-wave Breit-Wigner to total mass distribution. Includes BATON 66, MILLER 678, ALFF-5TEINBERGER 66, HAGOPIAN 66, HAGOPIAN 668, JACOBS 66, USAMS 66, WEST 66, BLIEDEN 65 and CARMONY 64.

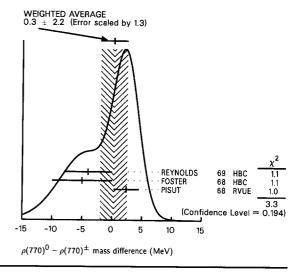
Includes BARKOV 85 data. Model-dependent width definition.

⁵ From pole extrapolation.

⁶ From phase shift analysis of GRAYER 74 data.

7 Includes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, GOLDHABER 64, ABOLINS 63.

8 From the Gounaris-Sakurai parametrization of the pion form factor.


9 From fit of 3-parameter relativistic Breit-Wigner to helicity-zero part of P-wave intensity. CHABAUD 83 includes data of GRAYER 74.

10 HEYN 80 includes all spacelike and timelike F_π values until 1978.

ρ (770)⁰ – ρ (770)[±] MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID			CHG	
0.3±2.2 OUR	AVERAGE Erro	r includes scale f	actor	of 1.3.	See the	ideogram below.
-4.0 ± 4.0	3000	11 REYNOLDS	69	HBC	-0	2.26 π ⁻ p
-5 ±5	3600	11 FOSTER	68	HBC		0.0 pp
2.4 ± 2.1	22950	12 PISUT	68	RV/HE		-π N/ → ∧ N/

 $^{11}_{-}$ From quoted masses of charged and neutral modes.

ρ (770) RANGE PARAMETER

The range parameter R enters an energy-dependent correction to the width, of the form $(1+q_r^2 \ R^2)\ /\ (1+q^2\ R^2)$, where q is the momentum of one of the pions in the $\pi\pi$ rest system. At resonance, $q=q_r$.

VALUE (GeV ⁻¹)	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
$5.3^{+0.9}_{-0.7}$	CHABAUD	83	ASPK	0	17 $\pi^- \rho$ polarized

$\rho(770)$ WIDTH

We no longer list S-wave Breit-Wigner fits, or data with high combinatorial background.

CHARGED ONLY

1

VALUE (MEV)	EVIS	DOCUMENT ID		TECN	CHG	COMMENT
149.1 ± 2.9 OUR	TT.					
151.5± 1.2 OUR	WERAGE I	ncludes data from t	he 2	datablo	ks tha	t follow this one.
155 ±11	2935	¹³ CAPRARO	87	SPEC	_	200 π^- Cu \rightarrow
154 ±20	967	¹³ CAPRARO	87	SPEC	-	$ \begin{array}{c} \pi^{-}\pi^{0} Cu \\ 200 \pi^{-} Pb \rightarrow \\ \pi^{-}\pi^{0} Pb \end{array} $
150 ± 5		HUSTON	86	SPEC	+	202 π ⁺ A →
146 ±12	6500	14 BYERLY	73	OSPK	_	π ⁺ π ⁰ Α 5π ⁻ ρ
148.2 ± 4.1	9650	¹⁵ PISUT	68	RVUE	_	$1.7-3.2 \pi^- p$, t
146 ±13	900	EISNER	67	нвс	_	<10 4.2 π^{-} p, $t<10$

NEUTRAL ONLY, PHOTOPRODUCED

<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>
The data in this block is included in the average printed for a previous datablock. TECN CHG COMMENT

150.9± 3.0		BARTALUCCI				$\gamma p \rightarrow e^+ e^- p$
• • We do not use the	ne following (data for averages	, fits	i, limits,	etc. •	• •
147 ±11		GLADDING	73	CNTR	0	2.9-4.7 γp
155.0 ± 12.0	2430	BALLAM	72	HBC	0	$4.7 \gamma \rho$
145.0 ± 13.0	1930	BALLAM	72	HBC	0	2.8 yp
140.0± 5.0		ALVENSLEBEN	170	CNTR	0	$\gamma A, t < 0.01$
146.1 ± 2.9	140k	BIGGS	70	CNTR		$<$ 4.1 γ C \rightarrow
160.0 ± 10.0		LANZEROTTI	68	CNTR	0	$\gamma P^{\pi^+\pi^-}C$
130 ± 5	4000	ASBURY	67 B	CNTR	0	γ + Pb

NEUTRAL ONLY, OTHER REACTIONS

DOCUMENT ID TECN CHG COMMENT The data in this block is included in the average printed for a previous datablock.

1	52.4±	1.5	OUR	FIT
٠	FO 4 1		0110	41.550.05

132.71	1.0	OOK AVENAGE					
$150.5\pm$	3.0		16 BARKOV	85	OLYA	0	π form factor
				80	RVUE	0	
152.0 \pm	9.0		14 WICKLUND	78	ASPK	0	3,4,6 $\pi^{\pm} \rho N$
		10000	DEUTSCH	76	HBC	0	16 $\pi^{+} p$
$157.0 \pm$	8.0	6800	RATCLIFF	72	ASPK	0	15 π^- p, t < 0.3
$143.0\pm$	8.0	1700	REYNOLDS	69	HBC	0	2.26 π^{-} p
	$\begin{array}{c} 150.5 \pm \\ 148.0 \pm \\ 152.0 \pm \\ 154.0 \pm \\ 157.0 \pm \end{array}$	$\begin{array}{ccc} 150.5 \pm & 3.0 \\ 148.0 \pm & 6.0 \\ 152.0 \pm & 9.0 \\ 154.0 \pm & 2.0 \end{array}$	$\begin{array}{ccc} 152.0 \pm & 9.0 \\ 154.0 \pm & 2.0 & 76000 \\ 157.0 \pm & 8.0 & 6800 \end{array}$	150.5± 3.0 16 BARKOV 148.0± 6.0 17.18 BOHACIK 152.0± 9.0 14 WICKLUND 154.0± 2.0 76000 DEUTSCH 157.0± 8.0 6800 RATCLIFF	150.5± 3.0 16 BARKOV 85 148.0± 6.0 17.18 BOHACIK 80 152.0± 9.0 14 WICKLUND 78 154.0± 2.0 76000 DEUTSCH 76 157.0± 8.0 6800 RATCLIFF 72	150.5± 3.0 16 BARKOV 85 OLYA 148.0± 6.0 17.18 BOHACIK 80 RVUE 152.0± 9.0 14 WICKLUND 78 ASPK 154.0± 2.0 76000 DEUTSCH 76 HBC 157.0± 8.0 6800 RATCLIFF 72 ASPK	150.5± 3.0 16 BARKOV 85 OLYA 0 148.0± 6.0 17.18 BOHACIK 80 RVUE 0 152.0± 9.0 14 WICKLUND 78 ASPK 0 154.0± 2.0 76000 DEUTSCH 76 HBC 0 157.0± 8.0 6800 RATCLIFF 72 ASPK 0

A-From quoted masses of charged and neutral moues.
12 Includes MALAMUD 69, ARMENISE 68, BATON 68, BACON 67, HUWE 67, MILLER 678, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65, CARMONY 64, GOLDHABER 64, ABOLINS 63.

$\rho(770)$

• • • vve do not us	e the follow	ing data for average:	, rit	s, limits,	etc.	• •
138 ± 1		¹⁹ GESHKENBEII	N89	RVUE		π form factor
160.0^{+}_{-} $\begin{array}{c} 4.1 \\ 4.0 \end{array}$		²⁰ CHABAUD	83	ASPK	0	17 π^- p polarized
155 ± 1		21 HEYN	80	RVUE	0	π form factor
148.0 ± 1.3		17.18 LANG	79	RVUE	0	
146 ±14	4100	ENGLER	74	DBC	0	$6 \pi^+ n \rightarrow$
143 ±13		¹⁸ ESTABROOKS	74	RVUE	0	$ \begin{array}{c} \pi^+ \pi^- \rho \\ 17 \pi^- \rho \rightarrow \\ \pi^+ \pi^- \rho \end{array} $
160.0 ± 10.0	32000	17 PROTOPOP	73	нвс	0	$\pi^{+}\pi^{-}n$ 7.1 $\pi^{+}p$, $t < 0.4$
145.0 ± 12.0	2250	¹³ HYAMS	68	OSPK	0	$11.2 \pi^{-} p$
163.0 ± 15.0	13300	²² PISUT	68	RVUE	0	$1.7-3.2 \pi^- p$, t <10

- ¹³ Width errors enlarged by us to $4\Gamma/N^{1/2}$; see the note with the K^* (892) mass.
- 14 Phase shift analysis. Systematic errors added corresponding to spread of different fits. 15 From fit of 3-parameter relativistic P-wave Breit-Wigner to total mass distribution. Includes BATON 68, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, BLIEDEN 65 and CARMONY 64.
- $^{16}\mathrm{From}$ the Gounaris-Sakurai parametrization of the pion form factor.
- 17 From pole extrapolation.
- 18 From phase shift analysis of GRAYER 74 data.
- 19 Includes BARKOV 85 data. Model-dependent width definition.
- ²⁰ From fit of 3-parameter relativistic Breit-Wigner to helicity-zero part of *P*-wave intensity. CHABAUD 83 includes data of GRAYER 74
- ²¹ HEYN 80 includes all spacelike and timelike F_{π} values until 1978.
- ²² Includes MALAMUD 69, ARMENISE 68, BACON 67, HUWE 67, MILLER 67B, ALFF-STEINBERGER 66, HAGOPIAN 66, HAGOPIAN 66B, JACOBS 66B, JAMES 66, WEST 66, GOLDHABER 64, ABOLINS 63.

ρ(770) DECAY MODES

	Mode	Fraction (I	Scale factor/ Confidence level
Γ	ππ	~ 100	%
		ρ (770) $^{\pm}$ decays	
Гэ	$\pi^{\pm}\pi^{0}$	~ 100	%
Γ3	$\pi^{\pm}\gamma$	(4.5 :	± 0.5) $\times 10^{-4}$ S=2.2
Γ₄	$\pi^{\pm}\eta$	< 8	$\times 10^{-3}$ CL=84%
Γ ₅	$\pi^{\pm} \pi^{0}$ $\pi^{\pm} \gamma$ $\pi^{\pm} \eta$ $\pi^{\pm} \pi^{+} \pi^{-} \pi^{0}$	< 2.0	$\times 10^{-3}$ CL=84%
		$ ho(770)^0$ decays	
Γ_6	$\pi^+\pi^-$	~ 100	%
Γ7	$\pi^+\pi^-\gamma$ $\pi^0\gamma$	(1.11:	±0.14) %
Γ8	$\pi^0 \gamma$	(7.9 :	± 2.0) $\times 10^{-4}$
Гο		(3.8 :	± 0.7) × 10 ⁻⁴
Γ ₁₀	$\mu^+ \mu^-$	[a] (4.60:	$\pm 0.28) \times 10^{-5}$
Γ_{11}	e^+e^-	[a] (4.44:	$\pm 0.21) imes 10^{-5}$
Γ_{12}	$\pi^{+}\pi^{-}\pi^{0}$	< 1.2	× 10 ⁻⁴ CL=90%
Γ13	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 2	× 10 ⁻⁴ CL=90%
Γ ₁₄	$\pi^+\pi^-\pi^0\pi^0$	< 2	× 10 ⁻⁴ CL=90%

[a] The e^+e^- branching fraction is from $e^+e^- \rightarrow \pi^+\pi^-$ experiments only. The $\omega\,\rho$ interference is then due to $\omega\,\rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0 \to \mu^+\mu^-) = \Gamma(\rho^0 \to e^+e^-) \times$ 0.99785.

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 9 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2 = 10.2$ for 7 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

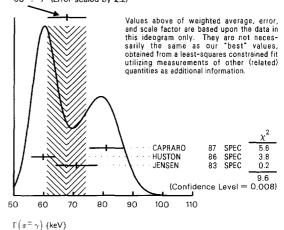
$$x_3 = -100$$
 $\Gamma = 18 = -18$
 $x_2 = x_3$

	Mode	Rate (MeV)	Scale factor
Γ2	$\pi^{\pm}\pi^{0}$	149.1 ±2.9	
Γ_3^-	$\pi^{\pm} \gamma$	0.068 ± 0.007	2.3

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, and a branching ratio uses 8 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=3.3$ for 5 degrees of

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.


ı

	Mode	Rate (MeV)
Γ ₆	$\pi^{+} \pi^{-}$	152.4 ±1.5
	$\mu^+ \mu^-$	[a] 0.0070 ± 0.0004
Γ_{11}	e^+e^-	[a] 0.00677 ± 0.00032

ρ(770) PARTIAL WIDTHS

$\Gamma(\pi^{\pm}\gamma)$				Γ3
VALUE (keV)	DOCUMENT ID	TE	CN CHG	COMMENT
68 ±7 OUR FIT Error i	ncludes scale factor of 2	2.3.		
68 ±7 OUR AVERAGE	Error includes scale fact	tor of 2.	See the	ideogram below.
$81.0 \pm 4.0 \pm 4.0$	CAPRARO	87 SF	PEC ~	200 π^- A \rightarrow
59.8 ± 4.0	HUSTON	86 SF	EC +	$ \begin{array}{c} \pi^{-} \pi^{0} A \\ 202 \pi^{+} A \rightarrow \\ \pi^{+} \pi^{0} A \end{array} $
71.0 ± 7.0	JENSEN	83 SF	PEC -	156-260 ₀ π A →

WEIGHTED AVERAGE 7 (Error scaled by 2.2)

²⁴ DOLINSKY 2^3 Solution corresponding to constructive $\omega\text{-}\rho$ interference. The quark model predicts a relative decay phase of zero.

89 ND

²⁴ Solution corresponding to destructive ρ - ω interference.

 111 ± 22

ρ (770) BRANCHING RATIOS

$\Gamma(\pi^{\pm}\eta)/\Gamma(\pi\pi)$						Γ_4/Γ_1
VALUE (units 10 -4)	CL%	DOCUMENT ID		TECN	CHG	COMMENT
<80	84	FERBEL	66	HBC	±	π^{\pm} p above 2.5

$\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$	π)						Γ_5/Γ_1
ALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	CHG	COMMENT	
<20	84	FERBEL	66	нвс	±	$\pi^{\pm} p$ abo	ve 2.5
• • We do not use the	e following		s, fits	, limits,	etc.		
35 ± 40		JAMES	66	HBC	+	2.1 $\pi^{+} p$	
$(\mu^{+}\mu^{-})/\Gamma(\pi^{+}\pi^{-})$							Γ_{10}/Γ_{6}
VALUE (units 10^{-5})		DOCUMENT ID		TECN	сомі	MENT	10/-0
4.60±0.28 OUR FIT		<u>DOCOMENT ID</u>		120.0	00.00		
1.6 ±0.2 ±0.2		ANTIPOV		SIGM			ı− π− Cu
• • We do not use the	e following	g data for average	s, fits	, limits,	etc.	• • •	
$3.2 \begin{array}{l} +1.6 \\ -3.6 \end{array}$		²⁵ ROTHWELL	69	CNTR	Phot	oproductio	n
5.6 ±1.5		²⁶ WEHMANN	69	OSPK	12 π	C, Fe	
9.7 +3.1 -3.3		²⁷ HYAMS	67	OSPK	11 π	Li. H	
-3.3 25 Possibly large ρ - ω int							
26 Result contains 11 ± correction takes accoupper limit of ω → 27 HYAMS 67's mass re	= 11% con unt of poi $\mu^+\mu^-$ fr	rrection using SU $_{ m s}$ ssible $ ho$ - ω interferon this experimen	(3) fo ence a nt.	or centra and the	ıl valu upper	e. The err limit agree	
$\Gamma(e^+e^-)/\Gamma(\pi\pi)$							Γ_{11}/Γ_1
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COM		
0.41 ± 0.05		BENAKSAS	72	OSPK	e ⁺ e		
$\Gamma(\eta \gamma)/\Gamma_{total}$							۲/و۲
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	CHG	COMMENT	-,
3.8±0.7 OUR AVERAGE			_				
1.0 ± 1.1		28 DOLINSKY	89	ND	_	e+ e-	_
3.6±0.9		²⁸ ANDREWS	77	CNTR		6.7–10 γ	Cu
• • • We do not use the	e rollowin	-			etc.		
7.3±1.5		²⁹ DOLINSKY ²⁹ ANDREWS	89 77	ND	0	e ⁺ e ⁻ 6.7-10 γ	Cu
5.4±1.1				CNTR			
relative decay phase 29 Solution corresponding $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{ ext{to}}$	of zero. ng to dest tal	instructive ω - $ ho$ interf					Г ₁₃ /Г
relative decay phase 29 Solution corresponding $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{to}$ VALUE (units 10^{-4})	of zero. ng to dest tal <u>CL%</u>	tructive ω-ρ interf	erence	e. <u>TECN</u>	COM	MENT	
relative decay phase 29 Solution corresponding $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{ ext{to}}$	of zero. ng to dest tal	tructive ω - $ ho$ interf		e.		MENT	Γ ₁₃ /Γ
relative decay phase 29 Solution corresponding $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{to}$ VALUE (units $^{10^{-4}}$)	of zero. ng to dest tal <u>CL%</u> 90	tructive ω-ρ interf	erence	e. <u>TECN</u>	COM	MENT	Γ ₁₃ /Γ
relative decay phase 29 Solution corresponding $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{to}$ $\frac{VALUE\ (units\ 10^{-4})}{<2}$	of zero. Ing to dest Ital $\frac{CL\%}{90}$	tructive ω-ρ interf	erence 88	e. TECN OLYA	<u>сом</u> е ⁺ е π	ΜΕΝΤ - → + π - π + π	Γ ₁₃ /Γ
relative decay phase 29 Solution corresponding $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{\text{VALUE (units }10^{-4})}{2}$ < 2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)$	of zero. Ing to dest Ital $\frac{CL\%}{90}$ IT π) $\frac{CL\%}{L}$	DOCUMENT ID DOCUMENT ID KURDADZE DOCUMENT ID	88	TECN OLYA	COMM e+ e π	$MENT \longrightarrow \pi^+ \pi^-$ $COMMENT$	Γ ₁₃ /Γ
relative decay phase 29 Solution corresponding $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{\text{VALUE (units }10^{-4})}{2}$ < 2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)$	of zero. Ing to dest Ital $\frac{CL\%}{90}$ IT π) $\frac{CL\%}{L}$	DOCUMENT ID DOCUMENT ID KURDADZE DOCUMENT ID	88	TECN OLYA	COMM e+ e π	$MENT \longrightarrow \pi^+ \pi^-$ $COMMENT$	Γ ₁₃ /Γ - Γ ₁₃ /Γ ₁
relative decay phase 2^9 Solution correspondin $\Gamma\left(\pi^+\pi^-\pi^+\pi^-\right)/\Gamma_{\text{to}}$ $\frac{\text{VALUE (units }10^{-4})}{2}$ < 2 $\Gamma\left(\pi^+\pi^-\pi^+\pi^-\right)/\Gamma\left(\pi^+\pi^-\pi^+\pi^-\right)/\Gamma\left(\pi^+\pi^-\pi^+\pi^-\right)$ \bullet \bullet \bullet We do not use the	of zero. Ing to dest Ital $\frac{CL\%}{90}$ $\pi\pi$ $\frac{CL\%}{\pi}$ e following	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID g data for average	88	TECN OLYA TECN TECN TECN 5, limits,	COM: e+ e π CHG etc.	$MENT$ $+ \pi^{-} \pi^{+} \pi$ $COMMENT$	Γ ₁₃ /Γ Γ ₁₃ /Γ ₁
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{\text{VALUE (units }10^{-4})}{\text{<}2}$ < 2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	of zero. Ing to dest Ital $\frac{CL\%}{90}$ $\pi\pi$ $\frac{CL\%}{\pi}$ e following	DOCUMENT ID KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON	88 es, fits 69 68 68	TECN OLYA TECN 5, limits, HBC HBC HLBC	<u>COM</u> e ⁺ e π <u>CHG</u> etc. 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ ₁₃ /Γ Γ ₁₃ /Γ ₁ Γ ₁
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{\text{VALUE (units }10^{-4})}{2}$ < 2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	of zero. Ing to dest Ital $\frac{CL\%}{90}$ $\pi\pi)$ $\frac{CL\%}{90}$ e following	DOCUMENT ID KURDADZE DOCUMENT ID g data for average ERBE CHUNG	88 es, fits 69 68	TECN OLYA TECN TECN HBC HBC	<u>COM</u> e ⁺ e π <u>CHG</u> etc. 0	$MENT$ $+ \pi^{-} \pi^{+} \pi$ $COMMENT$ $\bullet \bullet$ $2.5-5.8 \uparrow$ $3.2,4.2 \pi$	Γ ₁₃ /Γ Γ ₁₃ /Γ ₁ Γ ₁
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{\text{VALUE (units }10^{-4})}{2}$ < 2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	of zero. Ing to dest Ital $\frac{CL\%}{90}$ $\pi\pi)$ $\frac{CL\%}{90}$ e following	DOCUMENT ID KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON	88 es, fits 69 68 68	TECN OLYA TECN 5, limits, HBC HBC HLBC	<u>COM</u> e ⁺ e π <u>CHG</u> etc. 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ ₁₃ /Γ Γ ₁₃ /Γ ₁ Γ ₁
relative decay phase 29 Solution correspondin $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{to}}$ $\frac{\text{VALUE (units }10^{-4})}{\text{<}2}$ < 2 $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma(n^2)$ < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	of zero. In graph to dest of tal $=\frac{CL\%}{90}$ of π $=\frac{CL\%}{90}$ e following $=\frac{6L\%}{90}$ 90	DOCUMENT ID KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON	88 es, fits 69 68 68	TECN OLYA TECN 5, limits, HBC HBC HLBC	<u>COM</u> e ⁺ e π <u>CHG</u> etc. 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ ₁₃ /Γ - Γ ₁₃ /Γ ₁ - Γ ₁₃ /Γ ₁ - γ ρ ρ
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{\text{VALUE (units }10^{-4})}{<2}$ <2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma_{\text{total}}$ <15 <20 <20 <80 $\Gamma\left(\pi^{+}\pi^{-}\pi^{0}\right)/\Gamma_{\text{total}}$	of zero. Ing to dest Ital $\frac{CL\%}{90}$ $\pi\pi)$ $\frac{CL\%}{90}$ e following	DOCUMENT ID KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES	88 88 69 68 68 66	TECN OLYA TECN 5, limits, HBC HBC HLBC HBC	<u>COMM</u> e ⁺ e π <u>CHG</u> etc. 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ ₁₃ /Γ Γ ₁₃ /Γ ₁ Γ ₁₂ /Γ Γ ₁₂ /Γ
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{\text{VALUE (units }10^{-4})}{<2}$ <2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$	of zero. In graph to dest of tal $\frac{CL\%}{90}$ of π π) of $\frac{CL\%}{90}$ e following 90 90	DOCUMENT ID RURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES	88 88 69 68 68 66	TECN OLYA TECN S, limits, HBC HBC HBC HBC TECN	<u>COMM</u> e ⁺ e π <u>CHG</u> etc. 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \frac{\Gamma_{13}/\Gamma}{\Gamma_{13}/\Gamma_{1}} $ $ \frac{\Gamma_{13}/\Gamma_{1}}{\Gamma} $ $ \frac{\Gamma_{12}/\Gamma}{\pi^{-}\pi^{0}} $
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}\right.$ $\left. \begin{array}{l} \left($	of zero. Ing to dest tal $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ e following $\frac{GC}{90}$ $\frac{GC}{90}$ $\frac{GC}{90}$	DOCUMENT ID RURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN	88 69 68 68 66	TECN OLYA TECN S, limits, HBC HBC HBC HBC HBC	$ \frac{COMN}{e^+} \frac{e^+}{\pi} e^+ \frac{e^-}{\pi} $ $ \frac{CHG}{etc.} $ $ 0 $ $ 0 $ $ \frac{COMN}{e^+} \frac{e^+}{\epsilon} \frac{e^-}{\epsilon} $	$\begin{array}{c} \stackrel{\text{MENT}}{\longrightarrow} \stackrel{\rightarrow}{+} \stackrel{\rightarrow}{\pi^-} \pi^+ \pi \\ & \stackrel{\leftarrow}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \\ 2.5 - 5.8 \\ 3.2, 4.2 \\ \pi \\ 16.0 \\ \pi^- \\ 2.1 \\ \pi^+ \\ \rho \\ \stackrel{\text{MENT}}{\longrightarrow} \stackrel{\rightarrow}{\pi^+} \end{array}$	Γ_{13}/Γ_{-} Γ_{13}/Γ_{1} Γ_{13}/Γ_{1} Γ_{12}/Γ_{-} Γ_{12}/Γ_{-} Γ_{12}/Γ_{1}
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ \times 20 \times 4 \times 4 \times 5 \times 6 \times 7 \times 6 \times 6 \times 8 \times 7 \times 9 \times	of zero. Ing to dest Ital - CL% 90 - Tπ) - CL% e followin 90 90 - CL% 90 - CL% 90 - CL% 90	DOCUMENT ID RURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN	88 88 69 68 66 68	TECN OLYA TECN S, limits, HBC HBC HBC HBC HBC TECN ND	$\begin{array}{c} \underline{COMM} \\ e^+ e \\ \pi \end{array}$ $\begin{array}{c} \underline{CHG} \\ \text{etc.} \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} \underline{COMM} \\ e^+ e \\ \end{array}$	$\begin{array}{c} \text{MENT} \\ + \rightarrow \\ + \pi^{-} \pi^{+} \pi \\ \end{array}$ $\begin{array}{c} \text{COMMENT} \\ \bullet \bullet \\ \bullet \\ \text{2.5-5.8} \\ \uparrow \\ \text{3.2,4.2} \\ \pi \\ \text{16.0} \\ \pi^{-} \\ \text{2.1} \\ \pi^{+} \rho \\ \end{array}$ $\begin{array}{c} \text{MENT} \\ + \rightarrow \\ \pi^{+} \\ \end{array}$ $\begin{array}{c} \text{COMMENT} \\ \end{array}$	Γ_{13}/Γ_{-} Γ_{13}/Γ_{1} Γ_{13}/Γ_{1} Γ_{12}/Γ_{-} Γ_{12}/Γ_{-} Γ_{12}/Γ_{1}
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}\right.$ $\left.\begin{array}{l} \left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}\right.$ $\left.\begin{array}{l} \left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}\right.$ $\left.\begin{array}{l} \left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}\right.$ $\left.\begin{array}{l} \left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}\right.$ $\left.\begin{array}{l} \left(\pi^{+}\pi^{-}\pi^{0}\right)/\Gamma_{\text{total}}\right.$ $\left.\begin{array}{l} \left(\pi^{+}\pi^{-}\pi^{0}\right)/\Gamma_{\text{total}}\right.$ $\left.\begin{array}{l} \left(\pi^{+}\pi^{-}\pi^{0}\right)/\Gamma_{\text{to}}\right.$ $\left.\begin{array}{l$	of zero. Ing to dest Ital - CL% 90 - Tπ) - CL% e followin 90 90 - CL% 90 - CL% 90 - CL% 90	DOCUMENT ID KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average	88 69 68 68 66	TECN OLYA TECN S, limits, HBC HBC HBC HBC ND TECN S, limits,	$\begin{array}{c} \underline{COMN} \\ e^+ e \\ \pi \\ \hline \\ \underline{CHG} \\ etc. \\ 0 \\ 0 \\ \\ \hline \\ \underline{COM} \\ e^+ e \\ \\ \underline{CHG} \\ etc. \\ \end{array}$	$\begin{array}{c} \text{MENT} \\ -\\ +\\ \pi^{-}\\ \pi^{+}\\ \pi^{-}\\ \pi^{+}\\ \pi^{-}\\ \pi^{+}\\ \pi^{-}\\ \pi^{+}\\ \pi^{-}\\ \pi^{+}\\ \pi^{-}\\ \pi^{+}\\ \mu \end{array}$	$ \frac{\Gamma_{13}/\Gamma}{\Gamma_{13}/\Gamma_{1}} $ $ \frac{\Gamma_{13}/\Gamma_{1}}{\sigma} $ $ \frac{\Gamma_{12}/\Gamma}{\sigma} $ $ \frac{\Gamma_{12}/\Gamma}{\sigma} $
relative decay phase 29 Solution corresponding $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ to $VALUE \ (units \ 10^{-4})$ <2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma_{\text{total}}$ <15 <20 <80 $\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{0}\right)/\Gamma_{\text{total}}$ $VALUE \ (units \ 10^{-4})$ <1.2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{0}\right)/\Gamma\left(\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$	of zero. Ing to dest Ital CL% 90 T \(\pi \) CL% e followin 90 - CL% 90 - CL% e followin e followin	DOCUMENT ID RURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON	88 69 68 68 66 88B	TECN OLYA TECN OLYA TECN NBC HBC HBC HBC HBC ND TECN ND TECN RVUE	$\begin{array}{c} \underline{COM},\\ e^+e^-e^-\pi\\ \\ \underline{CHG}\\ etc.\\ 0\\ 0\\ \\ \end{array}$	$\begin{array}{c} \text{MENT} \\ - \\ + \\ \pi^- \\ \pi^+ \\ \pi^- \\ \pi^+ \\ \pi^- \\ \pi^+ \\ \end{array}$ $\begin{array}{c} \text{COMMEN!} \\ \bullet \\ $	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-} \pi^{0} \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \sigma^{-} \omega \pi^{0} \end{array} $
relative decay phase 29 Solution corresponding $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ ($\tau^{+}\pi^{-}\pi^{+}\pi^{-}$) $\Gamma\left(\tau^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\tau^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\tau^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\tau^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\tau^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma_{\text{total}}$ ($\tau^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	of zero. ng to dest tal - CL% 90 - Tπ) - CL% e followin 90 - CL% 90 - CL% e followin 84	DOCUMENT ID RURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 30 ABRAMS	88 69 68 68 66 88B 88B	TECN OLYA TECN OLYA TECN S, limits, HBC HBC HBC HBC TECN ND TECN S, limits, RVUE HBC	$\begin{array}{c} \underline{COMN} \\ e^+ e \\ \pi \\ \hline \\ \underline{CHG} \\ etc. \\ 0 \\ 0 \\ \\ \hline \\ \underline{COM} \\ e^+ e \\ \\ \underline{CHG} \\ etc. \\ \end{array}$	$\begin{array}{c} \text{MENT} \\ -\\ +\\ \pi^{-}\\ \pi^{+}\\ \pi^{-}\\ \pi^{+}\\ \pi^{-}\\ \pi^{+}\\ \pi^{-}\\ \pi^{+}\\ \pi^{-}\\ \pi^{+}\\ \pi^{-}\\ \pi^{+}\\ \mu \end{array}$	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-} \pi^{0} \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \sigma^{-} \omega \pi^{0} \end{array} $
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{VALUE\ (units\ 10^{-4})}{<2}$ <2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	of zero. ng to dest tal - CL% 90 - T \(\pi \) - CL% 90 90 - CL% 90 - CL% 90 - CL% 90 - CL% 84 ssumes I :	DOCUMENT ID RURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 30 ABRAMS	88 69 68 68 66 88B 88B	TECN OLYA TECN OLYA TECN S, limits, HBC HBC HBC HBC TECN ND TECN S, limits, RVUE HBC	$\begin{array}{c} \underline{COM},\\ e^+e^-e^-\pi\\ \\ \underline{CHG}\\ etc.\\ 0\\ 0\\ \\ \end{array}$	$\begin{array}{c} \text{MENT} \\ - \\ + \\ \pi^- \\ \pi^+ \\ \pi^- \\ \pi^+ \\ \pi^- \\ \pi^+ \\ \end{array}$ $\begin{array}{c} \text{COMMEN!} \\ \bullet \\ $	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-} \pi^{0} \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \sigma^{-} \omega \pi^{0} \end{array} $
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{VALUE\ (units\ 10^{-4})}{<2}$ <2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	of zero. ng to dest tal - CL% 90 - T \(\pi \) - CL% 90 90 - CL% 90 - CL% 90 - CL% 90 - CL% 84 ssumes I :	DOCUMENT ID RURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 30 ABRAMS	88 69 68 68 66 88B 88B	TECN OLYA TECN OLYA TECN S, limits, HBC HBC HBC HBC TECN ND TECN S, limits, RVUE HBC	$\begin{array}{c} \underline{COM},\\ e^+e^-e^-\pi\\ \\ \underline{CHG}\\ etc.\\ 0\\ 0\\ \\ \end{array}$	$\begin{array}{c} \text{MENT} \\ - \\ + \\ \pi^- \\ \pi^+ \\ \pi^- \\ \pi^+ \\ \pi^- \\ \pi^+ \\ \end{array}$ $\begin{array}{c} \text{COMMEN!} \\ \bullet \\ $	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-} \pi^{0} \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \sigma^{-} \omega \pi^{0} \end{array} $
relative decay phase 29 Solution correspondin $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{to}}$ $\frac{VALUE (units 10^{-4})}{<2} <2 \Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma(\pi^+\pi^-\pi^-)/\Gamma(\pi^+\pi^-\pi^-)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}} <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 $	of zero. Ing to dest Ing to d	DOCUMENT ID KURDADZE DOCUMENT ID KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 30 ABRAMS = 1, 2, or 3 for th	88 69 68 66 66 71 88 68 71 e 3π	TECN OLYA TECN S, limits, HBC HBC HBC ND TECN ND TECN SI limits RVUE HBC System.	$\begin{array}{c} \underline{COM!} \\ e^+e^-\pi \\ \\ \underline{CHG} \\ e^+c \\ \\ \underline{CHG} \\ e^+e^- \\ \underline{CHG} \\ e^+c \\ \\ \underline{CHG} \\ e^+c \\ \\ \underline{O} \\ 0 \\ \\ \underline{O} \\ \\ \\ \underline{O}	MENT $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\Gamma_{13}/\Gamma_{13}/\Gamma_{13}/\Gamma_{13}/\Gamma_{13}/\Gamma_{13}/\Gamma_{13}/\Gamma_{13}/\Gamma_{12}/\Gamma_{13}/\Gamma_{12}/\Gamma_{13}/\Gamma_{13}/\Gamma_{14}/\Gamma_{13}/\Gamma_{14}/\Gamma_{14}/\Gamma_{13}/\Gamma_{14}/$
relative decay phase 29 Solution corresponding $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ ($\tau^{+}\pi^{-}\pi^{+}\pi^{-}$)/ Γ_{to} ($\tau^{+}\pi^{-}\pi^{+}\pi^{-}$)/ Γ_{to} ($\tau^{+}\pi^{-}\pi^{+}\pi^{-}$)/ $\Gamma\left(\tau^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\tau^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma_{\text{total}}$ ($\tau^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	of zero. Ing to dest Ing to d	DOCUMENT ID RURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 30 ABRAMS	88 69 68 68 66 88 86 71 e 3π	TECN OLYA TECN S, limits, HBC HBC HBC ND TECN ND TECN SI limits RVUE HBC System.	$\begin{array}{c} \underline{COM!} \\ e^+e^-\pi \\ \\ \underline{CHG} \\ etc. \\ 0 \\ 0 \\ \\ \end{array}$	$\begin{array}{c} \text{MENT} \\ - \\ + \\ \pi^- \\ \pi^+ \\ \pi^- \\ + \\ \pi^- \\ \pi^+ \\ + \\ \hline \begin{array}{c} \text{COMMENT} \\ - \\ - \\ \end{array} \\ \begin{array}{c} - \\ \pi^+ \\ \end{array} \\ \begin{array}{c} \text{COMMEN} \\ - \\ \end{array} \\ \begin{array}{c} - \\ \pi^+ \\ \end{array} \\ \begin{array}{c} \text{COMMEN} \\ \end{array} \\ \begin{array}{c} - \\ \pi^+ \\ \end{array} \\ \begin{array}{c} $	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-}\pi^{0} \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \Gamma_{14}/\Gamma \\ \hline \Gamma_{14}/\Gamma \end{array} $
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{\sqrt{\lambda_L U_E \ (units\ 10^{-4})}}{\sqrt{2}}$	of zero. Ing to dest Ital CL% 90 T \(\pi \) CL% e followin 90 90 CL% e followin 84 ssumes I: al CL%	DOCUMENT ID KURDADZE DOCUMENT ID KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 30 ABRAMS = 1, 2, or 3 for th DOCUMENT ID KURDADZE	88 88 69 68 68 66 71 6 3 π	TECN OLYA TECN S, limits, HBC HBC HBC TECN ND TECN ND TECN S, limits, TECN ND TECN ND TECN ND TECN ND TECN ND	$\begin{array}{c} \underline{COM} \\ e^+ e \\ \pi \end{array}$ $\begin{array}{c} \underline{CHG} \\ 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} \underline{COM} \\ e^+ \epsilon \\ \end{array}$ $\begin{array}{c} \underline{COM} \\ 0 \\ \end{array}$ $\begin{array}{c} \underline{COM} \\ 0 \\ \end{array}$ $\begin{array}{c} \underline{COM} \\ 0 \\ \end{array}$	$\begin{array}{c} \text{MENT} \\ - \\ + \\ \pi^{-} \\ \pi^{+} \\ \pi^{-} \\ \pi^{+} \\ \pi^{-} \\ \pi^{+} \\ \pi^{-} \\ \text{2.5-5.8} \\ 3.2,4.2 \\ \pi^{-} \\ 16.0 \\ \pi^{-} \\ 2.1 \\ \pi^{+} \\ \rho \\ \\ \text{2.1} \\ \pi^{+} \\ \rho \\ \\ \text{3.7} \\ \pi^{+} \\ \rho \\ \\ \text{3.7} \\ \pi^{+} \\ \rho \\ \\ \text{3.7} \\ \pi^{+} \\ \rho \\ \\ \text{4.2} \\ \\ \text{6.2} \\ 6.2$	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-}\pi^{0} \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \Gamma_{14}/\Gamma \\ \hline \Gamma_{14}/\Gamma \end{array} $
relative decay phase 29 Solution correspondin $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{to}}$ $\frac{1}{\sqrt{4}LUE\ (units\ 10^{-4})}$ <2 $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma(\pi^+\pi^-\pi^-)/\Gamma(\pi^+\pi^-\pi^-)/\Gamma(\pi^+\pi^-\pi^-)/\Gamma(\pi^+\pi^-\pi^-)/\Gamma(\pi^+\pi^-\pi^-)/\Gamma(\pi^-\pi^-)/\Gamma(\pi^-\pi^-)/\Gamma(\pi^-\pi^-\pi^-)/\Gamma(\pi^-\pi^-)$	of zero. Ing to dest Ital CL% 90 T \(\pi \) CL% e followin 90 90 CL% e followin 84 ssumes I: al CL%	DOCUMENT ID KURDADZE DOCUMENT ID KURDADZE DOCUMENT ID g data for average ERBE CHUNG HUSON JAMES DOCUMENT ID VASSERMAN DOCUMENT ID g data for average BRAMON 30 ABRAMS = 1, 2, or 3 for th DOCUMENT ID KURDADZE	88 88 66 68 66 71 86 3π 86	TECN OLYA TECN OLYA TECN S, limits, HBC HBC HBC TECN ND TECN S, limits RVUE HBC System. TECN OLYA	$\begin{array}{c} \underline{comm.} \\ e^+ e \\ e^+ e \\ \pi \\ \\ \underline{chg} \\ e^+ e \\ \\ \underline{chg} \\ 0 \\ \\ \underline{chg} \\ 0 \\ \\ \underline{chg} \\ 0 \\ \\ \underline{comm.} \\ \\ com$	MENT $\begin{array}{c} - \rightarrow \\ + \rightarrow \\ - \rightarrow \\ \pi^- \pi^+ \pi^- \pi^+ \pi^- \\ \end{array}$ $\begin{array}{c} COMMEN. \\ \bullet \bullet \bullet \\ 2.5 - 5.8 \\ 3.2, 4.2 \\ \pi^- \\ 16.0 \\ \pi^- \\ 2.1 \\ \pi^+ p \\ \end{array}$ $\begin{array}{c} COMMEN \\ \bullet \bullet \\ \bullet \\ 3.7 \\ \pi^+ p \\ \end{array}$ $\begin{array}{c} COMMEN \\ \bullet \bullet \\ \bullet \\ \pi^+ \pi^- \\ \end{array}$	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-}\rho \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \tau_{12}/\Gamma_{1} \\ \hline \tau_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \tau_{14}/\Gamma \\ \hline \tau_{14}/\Gamma \\ \hline \tau_{17}/\Gamma_{17}/\Gamma_{17} \\ \hline \Gamma_{17}/\Gamma_{17}/\Gamma_{17} \end{array} $
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}$ $\frac{\text{VALUE (units }10^{-4})}{\text{<}2}$ C $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	of zero. ng to dest tal - CL% 90 T \(\pi \) 6 followin 90 90 - CL% 90	DOCUMENT ID RURDADZE 88 88 66 68 66 71 86 3π 86	TECN OLYA TECN OLYA TECN S, limits, HBC HBC HBC TECN ND TECN S, limits RVUE HBC System. TECN OLYA	$\begin{array}{c} \underline{comm.} \\ e^+ e \\ e^+ e \\ \pi \\ \\ \underline{chg} \\ e^+ e \\ \\ \underline{chg} \\ 0 \\ \\ \underline{chg} \\ 0 \\ \\ \underline{chg} \\ 0 \\ \\ \underline{comm.} \\ \\ com$	$\begin{array}{c} \text{MENT} \\ - \\ + \\ \pi^{-} \\ \pi^{+} \\ \pi^{-} \\ \pi^{+} \\ \pi^{-} \\ \pi^{+} \\ \pi^{-} \\ \text{2.5-5.8} \\ 3.2,4.2 \\ \pi^{-} \\ 16.0 \\ \pi^{-} \\ 2.1 \\ \pi^{+} \\ \rho \\ \\ \text{2.1} \\ \pi^{+} \\ \rho \\ \\ \text{3.7} \\ \pi^{+} \\ \rho \\ \\ \text{3.7} \\ \pi^{+} \\ \rho \\ \\ \text{3.7} \\ \pi^{+} \\ \rho \\ \\ \text{4.2} \\ \\ \text{6.2} \\ 6.2$	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-}\rho \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \tau_{12}/\Gamma_{1} \\ \hline \tau_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \tau_{14}/\Gamma \\ \hline \tau_{14}/\Gamma \\ \hline \tau_{17}/\Gamma_{17}/\Gamma_{17} \\ \hline \Gamma_{17}/\Gamma_{17}/\Gamma_{17} \end{array} $	
relative decay phase 29 Solution correspondin $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{to}}$ $\frac{1}{\sqrt{4}UE}$ (units 10^{-4}) <2 $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma(\pi^+\pi^0\pi^0)/\Gamma(\pi^+\pi^0\pi^0)/\Gamma(\pi^+\pi^0\pi^0)/\Gamma(\pi^0\pi^0)/\Gamma(\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0)/\Gamma(\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0\pi$	of zero. ng to dest tal - CL% 90 T \(\pi \) 6 followin 90 90 - CL% 90	DOCUMENT ID RURDADZE 88 88 66 68 66 71 86 3π 86	TECN OLYA TECN OLYA TECN S, limits, HBC HBC HBC TECN ND TECN S, limits RVUE HBC System. TECN OLYA	$\begin{array}{c} \underline{comm.} \\ e^+ e \\ e^+ e \\ \pi \\ \\ \underline{chg} \\ e^+ e \\ \\ \underline{chg} \\ 0 \\ \\ \underline{chg} \\ 0 \\ \\ \underline{chg} \\ 0 \\ \\ \underline{comm.} \\ \\ com$	MENT $\begin{array}{c} - \rightarrow \\ + \rightarrow \\ - \rightarrow \\ \pi^- \pi^+ \pi^- \pi^+ \pi^- \\ \end{array}$ $\begin{array}{c} COMMEN. \\ \bullet \bullet \bullet \\ 2.5 - 5.8 \\ 3.2, 4.2 \\ \pi^- \\ 16.0 \\ \pi^- \\ 2.1 \\ \pi^+ p \\ \end{array}$ $\begin{array}{c} COMMEN \\ \bullet \bullet \\ \bullet \\ 3.7 \\ \pi^+ p \\ \end{array}$ $\begin{array}{c} COMMEN \\ \bullet \bullet \\ \bullet \\ \pi^+ \pi^- \\ \end{array}$	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-}\rho \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \tau_{12}/\Gamma_{1} \\ \hline \tau_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \tau_{14}/\Gamma \\ \hline \tau_{14}/\Gamma \\ \hline \tau_{17}/\Gamma_{17}/\Gamma_{17} \\ \hline \Gamma_{17}/\Gamma_{17}/\Gamma_{17} \end{array} $	
relative decay phase 29 Solution correspondin $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{to}}$ $\frac{1}{\sqrt{4}UE}$ (units 10^{-4}) <2 $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^-\pi^0)$ • • • We do not use the <15 <20 <80 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ $\frac{1}{\sqrt{4}UE}$ (units 10^{-4}) <1.2 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi\pi)$ $\frac{1}{\sqrt{4}UE}$ (units 10^{-4}) <1.2 $\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi\pi)$ $\frac{1}{\sqrt{4}UE}$ • • We do not use the <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 $<0.$	of zero. ng to dest tal - CL% 90 T \(\pi \) 6 followin 90 90 - CL% 90	DOCUMENT ID RURDADZE 88 88 66 68 66 71 86 3π 86	TECN OLYA TECN OLYA TECN S, limits, HBC HBC HBC TECN ND TECN S, limits RVUE HBC System. TECN OLYA	$\begin{array}{c} \underline{comm.} \\ e^+ e \\ e^+ e \\ \pi \\ \\ \underline{chg} \\ e^+ e \\ \\ \underline{chg} \\ 0 \\ \\ \underline{chg} \\ 0 \\ \\ \underline{chg} \\ 0 \\ \\ \underline{comm.} \\ \\ com$	MENT $\begin{array}{c} - \rightarrow \\ + \rightarrow \\ - \rightarrow \\ \pi^- \pi^+ \pi^- \pi^+ \pi^- \\ \end{array}$ $\begin{array}{c} COMMEN. \\ \bullet \bullet \bullet \\ 2.5 - 5.8 \\ 3.2, 4.2 \\ \pi^- \\ 16.0 \\ \pi^- \\ 2.1 \\ \pi^+ p \\ \end{array}$ $\begin{array}{c} COMMEN \\ \bullet \bullet \\ \bullet \\ 3.7 \\ \pi^+ p \\ \end{array}$ $\begin{array}{c} COMMEN \\ \bullet \bullet \\ \bullet \\ \pi^+ \pi^- \\ \end{array}$	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-}\rho \end{array} $ $ \begin{array}{c} \Gamma_{12}/\Gamma_{1} \\ \hline \tau_{12}/\Gamma_{1} \\ \hline \tau_{13}/\Gamma_{1} \\ \hline \tau_{12}/\Gamma_{1} \\ \hline \tau_{12}/\Gamma_{1} \\ \hline \tau_{13}/\Gamma_{1} \\ \hline \tau_{$	
relative decay phase 29 Solution correspondin $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{to}}$ \times 20 Solution correspondin $\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{to}}$ \times 20 \times 20 \times 30 We do not use the \times 15 \times 20 \times 20 \times 80 \times 40 \times 50 \times 70 \times 71 \times 72 \times 80 \times 73 \times 74 \times 75 \times 76 \times 76 \times 77 \times 77 \times 77 \times 78 \times 79	of zero. ng to dest tal - CL% 90 T \(\pi \) 6 followin 90 90 - CL% 90	DOCUMENT ID RURDADZE DOCUMENT ID RURDADZE DOCUMENT ID RURDADZE DOCUMENT ID RURDADZE DOCUMENT ID VASSERMAN DOCUMENT ID RURDADZE 1, 2, or 3 for th DOCUMENT ID KURDADZE 31 VASSERMAN an 50 MeV/c.	88 88 69 68 66 88 86 71 63 71 86 88	TECN OLYA TECN S, limits, HBC HBC HBC ND TECN ND	$\begin{array}{c} \underline{com},\\ e^+e^-\pi \\ \\ \underline{chg}\\ e^+\epsilon \\ \\ \underline{chg}\\ e^+\epsilon \\ \\ \underline{chg}\\ \\ \underline{chg}\\ \\ \underline{chg}\\ \\ \\ \\ \underline{chg}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} \text{MENT} \\ + \xrightarrow{-} \\ + \pi^{-} \\ \pi^{+} \\ + \pi^{-} \\ \pi^{+} \\ + \pi^{-} \\ \pi^{+} \\ + \pi^{-} \\ \text{MENT} \\ - \xrightarrow{-} \\ - $	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-}\rho \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \tau_{12}/\Gamma_{1} \\ \hline \tau_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma_{1} \\ \hline \tau_{14}/\Gamma \\ \hline \tau_{14}/\Gamma \\ \hline \tau_{17}/\Gamma_{17}/\Gamma_{17} \\ \hline \Gamma_{17}/\Gamma_{17}/\Gamma_{17} \end{array} $
relative decay phase 29 Solution correspondin $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma_{\text{to}}\right.$ $\frac{VALUE (units 10^{-4})}{<2}$ <2 $\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\right)/\Gamma\left(\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	of zero. ng to dest tal - CL% 90 T \(\pi \) 6 followin 90 90 - CL% 90	DOCUMENT ID RURDADZE 888 888 888 866 866 888 888 888 888 888	TECN OLYA TECN OLYA TECN S, limits, HBC HBC HBC TECN ND TECN S, limits RVUE HBC System. TECN OLYA	$\begin{array}{c} \underline{com},\\ e^+e^-\pi \\ \\ \underline{chg}\\ e^+\epsilon \\ \\ \underline{chg}\\ e^+\epsilon \\ \\ \underline{chg}\\ \\ \underline{chg}\\ \\ \underline{chg}\\ \\ \\ \\ \underline{chg}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} \text{MENT} \\ - \\ + \\ \pi^- \\ \pi^+ \\ \pi^- \\ + \\ \pi^- \\ \pi^+ \\ + \\ \end{array}$ $\begin{array}{c} \text{COMMENT} \\ - \\ - \\ - \\ \pi^+ \\ \end{array}$ $\begin{array}{c} \text{COMMEN} \\ - \\ - \\ - \\ \pi^+ \\ \end{array}$ $\begin{array}{c} \text{COMMEN} \\ - \\ - \\ - \\ \pi^+ \\ \end{array}$ $\begin{array}{c} \text{COMMEN} \\ - \\ - \\ - \\ \pi^+ \\ \pi^- \\ \end{array}$ $\begin{array}{c} \text{COMMEN} \\ - \\ - \\ - \\ \pi^+ \\ \pi^- \\ \end{array}$ $\begin{array}{c} \text{COMMEN} \\ - \\ - \\ - \\ \pi^+ \\ \pi^- \\ \end{array}$	$ \begin{array}{c c} \Gamma_{13}/\Gamma \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{13}/\Gamma_{1} \\ \hline \Gamma_{12}/\Gamma \\ \hline \pi^{-}\rho \end{array} $ $ \begin{array}{c} \Gamma_{12}/\Gamma_{1} \\ \hline \tau_{12}/\Gamma_{1} \\ \hline \tau_{13}/\Gamma_{1} \\ \hline \tau_{12}/\Gamma_{1} \\ \hline \tau_{12}/\Gamma_{1} \\ \hline \tau_{13}/\Gamma_{1} \\ \hline \tau_{$	

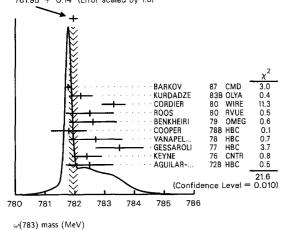
ρ (770) REFERENCES

ANTIPOV 89	ZPHY C42 185	+Batarin+ (SERP, JINR, BGNA, MILA, TBLI)
DOLINSKY 89		+Druzhinin, Dubrovin, Golubev+ (NOVO)
GESHKENBEIN 89	ZPHY 45 351	(ITEP)
	JETPL 47 512	+Leltchouk, Pakhtusova, Sidorov+ (NOVO)
KURDADZE 88		
V466601111 00	Translated from ZETFI	47 432. (NOVO)
VASSERMAN 88	SJNP 47 1035	+Golubev, Dolinsky+ (NOVO)
	Translated from YAF 4	
VASSERMAN 888		+Golubev, Dolinsky+ (NOVO)
	Translated from YAF 4	8 753.
CAPRARO 87	NP B288 659	+Levy+ (CLER, FRAS, MILA, PISA, LCGT, TRST+)
BRAMON 86	PL B173 97	+Casulleras (BARC)
HUSTON 86	PR 33 3199	+Berg, Collick, Jonckheere+ (ROCH, FNAL, MINN)
KURDADZE 86	JETPL 43 643	+Lelchuk, Pakhtusova, Sidorov, Skrinskii+ (NOVO)
MONDABLE 00	Translated from ZETFI	2 43 497
BARKOV 85	NP B256 365	+Chilingarov, Eidelman, Khazin, Lelchuk+ (NOVO)
CHABAUD 83	NP B223 1	+Gorlich, Cerrada+ (CERN, CRAC, MPIM)
JENSEN 83	PR D27 26	+Berg, Biel, Collick+ (ROCH, FNAL, MINN)
BOHACIK 80	PR D21 1342	+Kuhnelt (SLOV, WIEN)
HEYN 80	ZPHY C7 169	+Lang (GRAZ)
LANG 79	PR D19 956	+Mas-Parareda (GRAZ)
BARTALUCCI 78	NC 44A 587	+Basini, Bertolucci+ (DESY, FRAS)
WICKLUND 78	PR D17 1197	+Avres, Diebold, Greene, Kramer, Pawlicki (ANL)
ANDREWS 77	PRL 38 198	+Fukushima, Harvey, Lobkowicz, May+ (ROCH)
DEUTSCH 76	NP B103 426	Deutschmann+ (AACH, BERL, BONN, CERN+)
ENGLER 74	PR D10 2070	+Kraemer, Toaff, Weisser, Diaz+ (CMU, CASE)
ESTABROOKS 74	NP B79 301	+Martin (DURH)
GRAYER 74	NP B75 189	+Hyams, Blum, Dietl+ (CERN, MPIM)
BYERLY 73	PR D7 637	+Anthony, Coffin, Meanley, Meyer, Rice+ (MICH)
		+Russell, Tannenbaum, Weiss, Thomson (HARV)
GLADDING 73	PR D8 3721	
PROTOPOP 73	PR D7 1280	Protopopescu, Alston-Garnjost, Galtieri, Flatte+ (LBL)
BALLAM 72	PR D5 545	+Chadwick, Bingham, Milburn+ (SLAC, LBL, TUFT)
BENAKSAS 72	PL 39B 289	+Cosme, Jean-Marie, Jullian, Laplanche+ (ORSA)
JACOBS 72	PR D6 1291	(SACL)
RATCLIFF 72	PL 38B 345	+Bulos, Carnegie, Kluge, Leith, Lynch+ (SLAC)
ABRAMS 71	PR D4 653	+Barnham, Butler, Coyne, Goldhaber, Hall+ (LBL)
ALVENSLEBEN 70	PRL 24 786	+Becker, Bertram, Chen, Cohen (DESY)
	PRL 24 1197	+Braben, Clifft, Gabathuler, Kitching+ (DARE)
ERBE 69	PR 188 2060	+Hilpert+ (German Bubble Chamber Collab.)
MALAMUD 69	Argonne Conf. 93	+Schlein (UCLA)
REYNOLDS 69	PR 184 1424	+Albright, Bradley, Brucker, Harms+ (FSU)
ROTHWELL 69	PRL 23 1521	+Chase, Earles, Gettner, Glass, Weinstein+ (NEAS)
WEHMANN 69	PR 178 2095	+ (HARV, CASE, SLAC, CORN, MCGI)
ARMENISE 68	NC 54A 999	+Ghidini, Forino+ (BARI, BGNA, FIRZ, ORSA)
	PR 176 1574	
CHUNG 68	PR 165 1491	+Dahl, Kirz, Miller (LRL)
FOSTER 68	NP B6 107	+Gavillet, Labrosse, Montanet+ (CERN, CDEF)
HUSON 68	PL 28B 208	+Lubatti, Six, Veillet+ (ORSA, MILA, UCLA)
HYAMS 68	NP B7 1	+Koch, Potter, Wilson, VonLindern+ (CERN, MPIM)
LANZEROTTI 68	PR 166 1365	+Blumenthal, Ehn, Faissler+ (HARV)
PISUT 68	NP B6 325	+Roos (CERN)
	3 PRL 19 865	+Becker, Bertram, Joos, Jordan+ (DESY, COLU)
BACON 67	PR 157 1263	+Fickinger, Hill, Hopkins, Robinson+ (BNL)
EISNER 67	PR 164 1699	+Johnson, Klein, Peters, Sahni, Yen+ (PURD)
HUWE 67	PL 24B 252	+Marquit, Oppenheimer, Schultz, Wilson (COLU)
HYAMS 67	PL 24B 634	+Koch, Pellett, Potter, VonLindern+ (CERN, MPIM)
MILLER 67		+Gutay, Johnson, Loeffler+ (PURD)
ALFF 66	PR 145 1072	Alff-Steinberger, Berley+ (COLU, RUTG)
FERBEL 66	PL 21 111	(ROCH)
HAGOPIAN 66	PR 145 1128	+Selove, Alitti, Baton+ (PENN, SACL)
HAGOPIAN 66	B PR 152 1183	+Pan (PENN, LRL)
JACOBS 66	3 UCRL 16877	(LRL)
JAMES 66	PR 142 896	+Kraybill (YALE, BNL)
WEST 66	PR 149 1089	+Boyd, Erwin, Walker (WISC)
BLIEDEN 65	PL 19 444	+Freytag, Geibel+ (CERN Missing Mass Spect. Collab.)
	PRL 12 254	+Lander, Rindfleisch, Xuong, Yager (UCB)
GOLDHABER 64	PRL 12 336	+Brown, Kadyk, Shen+ (LRL, UCB)
ABOLINS 63	PRL 11 381	+Lander, Mehlhop, Nguyen, Yager (UCSD)

		OTHER	R RELATED PAPERS
ERKAL	85	ZPHY C29 485	+Olsson (WISC)
RYBICKI	85	ZPHY C28 65	+Sakrejda (CRAC)
KURDADZE	83	JETPL 37 733	+Leichuk, Pakhtusova+ (NOVO)
		Translated from ZETFF	
ALEKSEEV	82	JETP 55 591	+Kartamyshev, Makarin+ (KIAE)
BERG	80	Translated from ZETF PRL 44 706	#2 1007. +Chandlee, Biel+ (ROCH, FNAL, MINN)
BALTAY		PR D17 62	+Cautis, Cohen, Csorna+ (COLU, BING)
QUENZER	78	PL 76B 512	+Ribes, Rumpf, Bertrand, Bizot, Chase+ (LALO)
MONTONEN	75	LNC 12 627	+Roos, Torngvist (HELS)
CARROLL	74B	PR D10 1430	+Matthews, Walker+ (SLAC, DUKE, WISC, TNTO)
HABER	74	PR D10 1387	+Hodous, Hulsizer, Kistiakowsky, Levy+ (MIT)
NORDBERG	74	PL 51B 106	+Abramson, Andrews, Harvey+ (CORN, ROCH)
SPITAL	74	PR D9 126	+Yennie (CORN)
CHARLESW	73	NP B65 253	Charlesworth, Emms, Bell+ (RHEL, BIRM, DURH)
BAILLON	72	PL 38B 555	+Carnegie, Kluge, Leith, Lynch, Ratcliff+ (SLAC)
BASDEVANT	72	PL 41B 178	+Froggatt, Petersen (CERN)
DRIVER	72	NP 838 1	+Heinloth, Hohne, Hofmann, Rathje+ (DESY, HAMB)
EISENBERG	72	PR D5 15	+Ballam, Dagan+ (REHO, SLAC, TELA)
GRAYER	72	NP B50 29	+Hyams, Jones, Weilhammer, Blum+ (CERN, MPIM)
GRAYER		Phil. Conf. 5	+Hyams, Jones, Schlein+ (CERN, MPIM)
TAKAHASHI	72	PR D6 1266	+Barish+ (TOHO, PENN, NDAM, ANL)
BLOODWO	71	NP B35 133	Bloodworth, Jackson, Prentice, Youn (TNTO)
DEERY	71	PR D3 635	+Biswas, Cason, Groves, Johnson+ (NDAM)
BINGHAM	70	PRL 24 955	+Fretter, Moffeit, Ballam+ (LRL, SLAC, TUFT)
GALLOWAY	70	PR D1 3077	+Mott, Alvea, Lee, Martin, Prickett (IND)
AUGUSTIN	69B	LNC 2 214	+Lefrancois, Lehmann, Marin+ (ORSA)
AUGUSTIN	69C	PL 28B 508	+Bizot, Buon, Haissinski, Lalanne+ (ORSA)
HAISSINSKI	69	Argonne Conf. 373	(ORSA)
JUHALA	69	PR 184 1461	+Leacock, Rhode, Kopelman, Libby+ (ISU, COLO)
MILLER	69	PR 178 2061	+Lichtman, Willmann (PURD)
MOTT	69	PR 177 1966	+Ammar, Davis, Kropac, Slate+ (NWES, ANL)
ROOS	69	NP B10 563	+Pisut (CERN, CMNS)
SCHARENG	69	Argonne Conf. 306	Scharenguivel (PURD)
BLECHSCH	68	NC 53A 1045	Blechschmidt, Dowd, Elsner+ (DESY, MCHS)
Also	67	NC 52A 1348	Blechschmidt
BOESEBECK	68	NP B4 501	+Deutschmann+ (AACH, BERL, CERN)
DONALD	68C	NP B6 174	+Edwards, Frodesen, Bettini+ (LIVP, OSLO, PADO)
JOHNSON	68	PR 176 1651	+Poirier, Biswas, Gutay+ (NDAM, PURD, SLAC)
JONES .	68	PR 166 1405	+Bleuler, Caldwell, Elsner, Harting+ (CERN)
KEY	68	PR 166 1430	+Prentice, Cooper, Manner+ (TNTO, ANL, WISC)
LAMSA	68	PR 166 1395	+Cason, Biswas, Derado, Groves+ (NDAM)
MARATECK	68	PRL 21 1613	+Hagopian+ (PENN, LRL, COLO, PURD, TNTO+)
ALLES	67B	NC 50A 776	Alles-Borelli, French, Frisk+ (CERN, BONN)
BANNER	67	PL 25B 300	+Fayoux, Hamel, Zsembery, Cheze+ (SACL, CAEN)

$\rho(770), \omega(783)$

BARLOW	67	NC 50A 701	+Lillestol, Montanet+ (CERN, CDEF, IRAD, LIVP)
BATON	67	PL 25B 419	+Laurens, Reignier (SACL)
Also	67B	NP B3 349	Baton, Laurens, Reignier (SACL)
CLEAR	67	NC 49A 399	+ Johnston, Cooper, Manner+ (TNTO, ANL, WISC)
DANYSZ	67B	NC 51A 801	+French, Simak (CERN)
FRENCH	67	NC 52A 438	+Kinson, McDonald, Riddiford+ (CERN, BIRM)
POIRIER	67	PR 163 1462	+Biswas, Cason, Derado, Kenney+ (NDAM, PENN)
ACCENSI	66	PL 20 557	+Alles-Borelli, French, Frisk+ (CERN)
BALTAY	66B	PR 145 1103	+Franzini, Lutjens, Severiens, Tycko+ (COLU)
CAMBRIDGE	66	PR 146 994	(Cambridge Bubble Chamber Collab.)
CASON	66	PR 148 1282	(WISC)
DEUTSCH	66	PL 20 82	Deutschmann, Steinberg+ (AACH, BERL, CERN)
ALYEA	65	PL 15 82	+Crittenden, Martin. Rhode+ (IND)
ARMENISE	65	NC 37 361	(SACL, ORSA, BARI, BGNA)
CLARK	65	PR 139B 1556	+Christenson, Cronin, Turlay (PRIN)
GUTAY	65	NC 39 381	+Lannutti, Tuli (FSU)
ZDANIS	65	PRL 14 721	+Madansky, Kraemer+ (JHU, BNL)
BONDAR	64	NC 31 729	 + (AACH, BIRM, BONN, DESY, LOIC, MPIM)
GUIRAGOS	63	PRL 11 85	Guiragossian (LRL)
SACLAY	63	Siena Conf. 1 239	(SACL, ORSA, BARI, BGNA)
KENNEY	62	PR 126 736	+Shephard, Gall (KNTY)
SAMIOS	62	PRL 9 139	+Bachman, Lea+ (BNL, CUNY, COLU, KNTY)
XUONG	62	PR 128 1849	+Lynch (LRL)
ANDERSON	61	PRL 6 365	+Bang, Burke, Carmony, Schmitz (LRL)
ERWIN	61	PRL 6 628	+March, Walker, West (WISC)


$$I^{G}(J^{PC}) = 0^{-}(1^{--})$$

ω (783) MASS

VALUE (MeV)		DOCUMENT ID			COMMENT
781.95±0.14 OU	I R AVERAGE E	rror includes scale			See the ideogram below.
781.78 ± 0.10		BARKOV	87	CMD	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
782.2 ± 0.4		KURDADZE	83B	OLYA	$e^+ e^-$
783.3 ±0.4		CORDIER	80	WIRE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$
782.5 ±0.8	33260	ROOS	80	RVUE	0.0-3.6 pp
782.6 ± 0.8	3000	BENKHEIRI	79	OMEG	9-12 π [±] p
781.8 ± 0.6	1430	COOPER	78 _B	HBC	$0.7 - 0.8 \ \overline{\rho} \rho \rightarrow 5\pi$
782.7 ± 0.9	535	VANAPEL	78	HBC	$7.2 \overline{p} p \rightarrow \overline{p} p \omega$
783.5 ± 0.8	2100		77	HBC	$11 \pi^- \rho \rightarrow \omega \pi$
782.4 ± 0.5	7000	1 KEYNE	76	CNTR	$\pi^- p \rightarrow \omega n$
782.5 ± 0.8	418	AGUILAR	72B	HBC	3.9,4.6 K ⁻ p
• • • We do not	t use the following	g data for averages	s, fits	, limits,	etc. • • •
783.4 ±1.0	248	BIZZARRI	71	HBC	$0.0 \ p \bar{p} \rightarrow K^+ K^- \omega$
781.0 ± 0.6	510	BIZZARRI	71	HBC	$0.0 \ \rho \overline{\rho} \rightarrow K_1 \ K_1 \ \omega$
783.7 ±1.0		² COYNE	71	HBC	3.7 π ⁺ p
784.1 ±1.2	750	ABRAMOVI	70	HBC	3.9 π ⁻ p
783.2 ±1.6		³ BIGGS	70B	CNTR	$<$ 4.1 γ C \rightarrow π^+ π^- C
782.4 ±0.5	2400	BIZZARRI	69	HBC	0.0 pp

 $^{^{1}}$ Observed by threshold-crossing technique. Mass resolution = 4.8 MeV FWHM.

WEIGHTED AVERAGE 781.95 ± 0.14 (Error scaled by 1.6)

ω (783) WIDTH								
VALUE (MeV) EVTS	DOCUMENT ID TECN	COMMENT						
8.43 ^{+0.10} _{-0.09} OUR AVERAGE								
8.4 ±0.1	⁴ AULCHENKO 87 ND							
8.30 ± 0.40	BARKOV 87 CMD	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$						
9.8 ±0.9	KURDADZE 83B OLYA							
9.0 ±0.8	CORDIER 80 WIRE	$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$						
9.1 ±0.8	BENAKSAS 728 OSPK	e+ e-						

• • • We do not use	the followin	g data for averages, fits, limits, etc. • • •	
12.0 ± 2.0	1430	COOPER 788 HBC 0.7-0.8 74	$\rightarrow 5\pi$
9.4 ± 2.5	2100	GESSAROLI 77 HBC $11 \pi^- p$ -	
10.22 ± 0.43	20000	⁵ KEYNE 76 CNTR $\pi^- p \rightarrow \omega$	o n
13.3 ±2	418	AGUILAR 728 HBC 3.9,4.6 K	p
10.5 ± 1.5		BORENSTEIN 72 HBC 2.18 K p	
$7.70 \pm 0.9 \pm 1.15$	940	BROWN 72 MMS $2.5 \pi^- \rho$	→ n MM
10.3 ± 1.4	510	BIZZARRI 71 HBC $0.0 p\bar{p} \rightarrow$	$K_1 K_1 \omega$
12.8 ± 3.0	248	BIZZARRI 71 HBC $0.0 p\overline{p} \rightarrow$	$K^+ \bar{K}^- \omega$
95 +10	4270	COVNE 71 HBC $3.7 \pi^+ n$	

⁴ Relativistic Breit-Wigner includes radiative corrections.

ω (783) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Co	Scale factor/ infidence level
	$\pi^{+} \pi^{-} \pi^{0}$	(88.8 ±0.6) 9	6	
	$\pi^0\gamma$	(8.5 ±0.5) %	6	
Γ_3	$\pi^+\pi^-$	(2.21 ± 0.30) 9	6	
Γ_4	neutrals (excluding $\pi^0\gamma$)	(4.4 ^{+7.9} _{-2.9})>	10-3	
Γ_5	$\pi^0 e^+ e^-$	(5.9 ±1.9) ×	10-4	
-	$\eta \gamma$	(4.7 ^{+2.2} _{-1.8})>	10-4	S=1.1
Γ_7	$\pi^0 \mu^+ \mu^-$	(9.6 ±2.3) >	10-5	
Γ8	$e^+ e^-$	$(7.07 \pm 0.19) \times$	10-5	S=1.1
Γ9	$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	< 2 9	6	CL=90%
Γ_{10}	$\pi^+\pi^-\gamma$	< 4	10-3	CL=95%
	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 1 ×	10-3	CL=90%
Γ_{12}	$\pi^0\pi^0\gamma$	< 4 ×	10-4	CL=90%
Γ_{13}	$\mu^+\mu^-$	< 1.8 >	10-4	CL=90%
r ₁₄	$\frac{\mu^+\mu^-}{\eta\pi^0}$			

CONSTRAINED FIT INFORMATION

An overall fit to 6 branching ratios uses 22 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=11.3$ for 19 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j),$ in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}.$ The fit constrains the x_i whose labels appear in this array to sum to sum to

ω (783) PARTIAL WIDTHS

ω (783) BRANCHING RATIOS

$\Gamma(\text{neutrals})/\Gamma(\pi^+\pi^-)$	$-\pi^{0}$)				$(\Gamma_2 + \Gamma_4)/\Gamma_1$
VALUE	EVT5	DOCUMENT ID		TECN	COMMENT
0.101 ± 0.007 OUR FIT	Error incl	udes scale factor	of 1.	1.	
0.105 ± 0.009 OUR AVE	RAGE				
0.15 ± 0.04	46	AGUILAR	72B	HBC	3.9,4.6 K ⁻ p
0.10 ± 0.03	19	BARASH	67B	HBC	0.0 pp
0.134 ± 0.026	850	DIGIUGNO	66B	CNTR	1.4 π ⁻ p
0.097 ± 0.016	348	FLATTE	66	HBC	1.8 K ⁻ ρ
$0.06 \begin{array}{c} +0.05 \\ -0.02 \end{array}$		JAMES	66	нвс	2.1 $\pi^+ p$
0.08 ± 0.03	35	KRAEMER	64	DBC	$1.2 \pi^{+} d$
0.11 ± 0.02	20	BUSCHBECK	63	HBC	1.5 K ⁻ p
$\Gamma(\pi^+\pi^-)/\Gamma(\pi^+\pi^-)$					Γ_3/Γ_1
See also $\Gamma(\pi^+\pi^-$)/I total·	0.0.000.000.00		TEC.	
VALUE 0.0249±0.0035 OUR F	İT	DOCUMENT ID _		<u>TEÇN</u>	COMMENT
0.0249±0.0035 OUR A					
	VERAGE	,			
$0.021 \begin{array}{c} +0.028 \\ -0.009 \end{array}$		⁶ RATCLIFF	72	ASPK	$15 \pi^- p \rightarrow n2\pi$
0.028 ± 0.006		BEHREND	71	ASPK	Photoproduction
0.022 +0.009		⁷ ROOS	70	RVUE	

 $^{^6}$ Significant interference effect observed. NB of $\omega\to 3\pi$ comes from an extrapolation. 7 ROOS 70 combines ABRAMOVICH 70 and BIZZARRI 70.

² From best-resolution sample of COYNE 71.

³ From ω - ρ interference in the π^+ π^- mass spectrum assuming ω width 12.6 MeV.

⁵Observed by threshold-crossing technique. Mass resolution = 4.8 MeV FWHM.

									u	0(103)
$\Gamma(\pi^0\gamma)/\Gamma(\pi^+\pi^-\pi^0$	P)			Γ ₂ /ι	1	$\Gamma(e^+e^-)/\Gamma_{\text{total}}$				Г ₈ /г
VALUE		DOCUMENT ID	<u>TECN</u>	COMMENT	_	VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID	TECN	COMMENT	•/
0.096±0.006 OUR FIT 0.096±0.006 OUR AVE	DACE					0.707 ± 0.019 OUR AVERAGE	Error includes scale		ι.	
0.099 ± 0.007	ENAGE	DOLINSKY	89 ND	$e^+e^- \rightarrow \pi^0 \gamma$		0.714±0.036	DOLINSKY	89 ND	e^+e^-	
0.084 ± 0.013		KEYNE	76 CNTR		•	0.72 ±0.03	BARKOV	87 CMD	e ⁺ e [−] → 7	$_{\pi}^{+}$ $_{\pi}^{-}$ $_{\pi}^{0}$
0.109 ± 0.025		BENAKSAS	72c OSPK			0.64 ±0.04 0.675±0.069	KURDADZE CORDIER	83B OLYA 80 WIRE	e+e− e+e− → 3	
0.081 ± 0.020		BALDIN	71 HLBC	$2.9 \pi^{+} p$		0.83 ±0.10	BENAKSAS	72B OSPK		3π 3π
0.13 ±0.04		JACQUET	69в HLBC			0.77 ±0.06	10 AUGUSTIN	69D OSPK		
$\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-)$	$-\pi^{0}$			Γ ₁₀ /ſ	٠,	• • We do not use the follow	ing data for average	es, fits, limits	, etc. • • •	
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	1	0.65 ±0.13 33	¹¹ ASTVACAT	68 OSPK	Assume SU(3)+mixing
• • • We do not use th					_	10 Rescaled by us to correspon	d to ω width 8.4 M	eV.		
< 0.066	90	KALBFLEISCH	175 HBC	2.2 K ⁻ p		11 Not resolved from $ ho$ decay.	Error statistical only	<i>i</i> .		
< 0.05	90	FLATTE	-	1.8 K ⁻ p		E(noutrals) /E				(E . E) (E
F(+ - \/F				,		Γ(neutrals)/Γ _{total}	DOCUMENT ID	T		$(\Gamma_2 + \Gamma_4)/\Gamma$
$\Gamma(\pi^+\pi^-\gamma)/\Gamma_{\text{total}}$				Γ ₁₀ /	′ Γ	<u>VALUE</u> <u>EVTS</u> 0.089±0.006 OUR FIT Error	DOCUMENT ID includes scale factor	of 1.1.	COMMENT	
VALUE	<u>CL%</u>	DOCUMENT ID		COMMENT		0.079±0.009 OUR AVERAGE		0. 2.2.		
<0.004	95	BITYUKOV	88B SPEC	$32 \pi^- p \rightarrow \pi^+ \pi^- \gamma$	×	0.073 ± 0.018 42	BASILE	72B CNTR	1.67 $\pi^{-} \rho$	
$\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{tc}$	otal			Γ ₁₁ /	′ Г	0.075 ± 0.025	BIZZARRI	71 HBC		
VALUE	CL%	DOCUMENT ID	TECN	COMMENT		0.079±0.019	DEINET	69B OSPK		
<1 × 10 ⁻³	90	KURDADZE	88 OLYA	e ⁺ e ⁻ →	_ ı	0.084 ± 0.015	BOLLINI	68c CNTR	$2.1 \pi^- \rho$	
				$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	•	$\Gamma(\pi^+\pi^-)/\Gamma_{ m total}$				Γ_3/Γ
$\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\text{tot}}$	tal			/و7	′ Г	See also $\Gamma(\pi^+\pi^-)/\Gamma(\pi^+$	$\pi^{-}\pi^{0}$).			. 3/ '
<u>VALUE (units 10⁻²)</u>	CL%	DOCUMENT ID	TECN	CHG COMMENT	•	VALUE	DOCUMENT ID	TECN	COMMENT	
<2	90		86 OLYA		_	0.0221±0.0030 OUR FIT				
~~	90	NUNDADZE	OU OLTA	$0 \qquad \begin{array}{c} e^+ e^- \rightarrow \\ \pi^+ \pi^- \pi^0 \pi^0 \end{array}$		0.021 ±0.004 OUR AVERAGE			_	
$\Gamma(\mu^+\mu^-)/\Gamma(\pi^+\pi^-)$	_0\					0.023 ±0.005 +0.009	BARKOV	85 OLYA		
	,			Γ ₁₃ /Γ	1	$0.016 \begin{array}{l} +0.009 \\ -0.007 \end{array}$	QUENZER	78 CNTR	$e^+ e^-$	
VALUE (units 10 ⁻³)	<u>CL%</u>	DOCUMENT ID	TECN		_		ing data for average	s, fits, limits,	etc. • • •	
<0.2	90	WILSON		12 π [−] C → Fe		0.010 ±0.001	12 WICKLUND	78 ASPK	3.4.6 π^{\pm} N	
• • We do not use th		_				0.0122 ± 0.0030	ALVENSLEBE	N71c CNTR	Photoproduc	tion
<1.7 <1.2	74	FLATTE		1.8 K ⁻ p		$0.013 \begin{array}{l} +0.012 \\ -0.009 \end{array}$	MOFFEIT	71 HBC	2.8,4.7 yp	
		BARBARO	92 HBC	2.7 K ⁻ p		$0.0080 \stackrel{+}{-} 0.0028 \\ -0.002$	13 BIGGS			
$\Gamma(\pi^0\pi^0\gamma)/\Gamma(\pi^0\gamma)$				Γ ₁₂ /Γ	,				$4.2\gamma C \rightarrow \pi$	- π – C
VALUE	CL%	DOCUMENT ID	TECN_	COMMENT	_	12 From a model-dependent an	alysis assuming com	plete coherer	nce.	
• • • We do not use th	ne following	data for averages	s, fits, limits,	etc. • • •		13 Re-evaluated under $\Gamma(\pi^+\pi^-$	$)/\Gamma(\pi^{+}\pi^{-}\pi^{0})$ by	BEHREND 7	1 using more a	iccurate $\omega ightarrow$
< 0.005	90	DOLINSKY	89 ND	e+ e-	- 1	ho photoproduction cross-sec	tion ratio.			
< 0.18	95	KEYNE	76 CNTR	$\pi^- \rho \rightarrow \omega n$	•	$\Gamma(\pi^0\pi^0\gamma)/\Gamma(\text{neutrals})$			F13	$2/(\Gamma_2+\Gamma_4)$
< 0.15	90		72c OSPK			VALUE CL%	DOCUMENT ID	TECN	COMMENT	
<0.14 <0.1	90	BALDIN BARMIN	71 HLBC				ing data for average	s, fits, limits,	etc. • • •	
V0.1	90	DARWIN	04 HLBC	1.3-2.8 π ρ		0.22 ± 0.07	¹⁴ DAKIN	72 OSPK	1.4 π ⁻ ρ →	n MM
$\left[\Gamma(\eta\gamma) + \Gamma(\eta\pi^0)\right]$	$\Gamma(\pi^+\pi^-)$	π^{0})		$(\Gamma_6 + \Gamma_{14})/\Gamma_{14}$		< 0.19 90	DEINET	69B OSPK	r	
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	•	¹⁴ See $\Gamma(\pi^0\gamma)/\Gamma$ (neutrals).				
< 0.017	90	FLATTE		1.8 K ⁻ p	_	E(-0-) /E(_	
• • • We do not use th	ne following	data for averages	, fits, limits,	etc. • • •		$\Gamma(\pi^0\gamma)/\Gamma(\text{neutrals})$				$_{2}/(\Gamma_{2}+\Gamma_{4})$
< 0.045	95	JACQUET	69B HLBC			VALUE CL%	DOCUMENT ID		COMMENT	
Γ(neutrals)/Γ(charge	ad particle	·c)		/F +F \ //F + F		 • • We do not use the follow 0.78±0.07 				
VALUE	eu particie	DOCUMENT ID	TECH	$(\Gamma_2+\Gamma_4)/(\Gamma_1+\Gamma_3$)	>0.78±0.07 >0.81 90	¹⁵ DAKIN DEINET	72 OSPK 69B OSPK	1.4 $\pi^- p \rightarrow$	n MM
0.098±0.007 OUR FIT	Error incl	udes scale factor of	of 1.1.	COMMENT	_				0	
0.124 ± 0.021			67c OSPK	1.2 π ⁻ p		¹⁵ Error statistical only. Author decay.	ors obtain good fit	also assuming	χπD γ as the	only neutral
$\Gamma(\pi^0\pi^0\gamma)/\Gamma(\pi^+\pi^-$	_0)			·		-				
,, .	· ·			Γ ₁₂ /Γ	1	$\Gamma(\eta\gamma)/\Gamma_{total}$				Γ_6/Γ
<0.00045	<u>CL%</u> 90	DOLLNERY	89 ND	COMMENT	- ,	VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use th				e ⁺ e ⁻	ı	4.7+2.2 OUR AVERAGE Err	or includes scale fac	tor of 1.1		
<0.08	95					7.3±2.9	16 DOLINSKY		4 -	
(0.08	95	JACQUET	69в HLBC					89 ND	e+ e-	
$\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)$				Γ ₆ /Γ	2	$3.0^{+2.5}_{-1.8}$	¹⁶ ANDREWS		6.7–10 γCu	
VALUE		DOCUMENT ID	<u>TECN</u>	COMMENT	_	• • We do not use the follow	ng data for average	s, fits, limits,	etc. • • •	
0.0082±0.0033 OUR AV		8 00. 11.0				35 ±5	17 DOLINSKY	89 ND	e^+e^-	
0.0082±0.0033 0.010 ±0.045			89 ND	e+ e-	I	29.0±7.0	¹⁷ ANDREWS		6.7–10 γ Cu	
	e following			$4-8 \pi^- p \rightarrow n3\gamma$		¹⁶ Solution corresponding to co	onstructive $\omega ext{-} ho$ inte	rference. Th	e quark mode	el predicts a
0.039 +0.007		•	89 ND	e+ e-		relative decay phase of zero.				
					ı	¹⁷ Solution corresponding to de	structive ω - ρ interfe	rence.		
relative decay phase	ing to cons	tructive ω - $ ho$ inter	rerence. Th	e quark model predicts	a	$\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)$				Γ_7/Γ_{13}
9 Solution correspondi		ictive ρ - ω interfer	rence.		1	VALUE EVTS	DOCUMENT ID	TECN	COMMENT	- 11 13
		,			•	• • We do not use the following				
$\Gamma(\pi^0\mu^+\mu^-)/\Gamma_{\text{total}}$				Γ ₇ /	Γ	1.2±0.6	18 DZHELYADIN			
VALUE (units 10 ⁻⁴)		DOCUMENT ID		COMMENT	_	¹⁸ Superseded by DZHELYADIN			- 55 p	
0.96 ± 0.23		DZHELYADIN	81B CNTR	25-33 $\pi^- \rho \rightarrow \omega n$			- CID ICSUIT ADOVE.			
$\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}$				- "	_	$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{total}$				Γ_1/Γ
	FLOTE			Γ ₅ /Ι	ı	VALUE	DOCUMENT ID		COMMENT	
	EVTS	DOCUMENT ID	TECN_	COMMENT		0.8942±0.0062	DOLINSKY	89 ND	e^+ e^-	
5.9±1.9	43	DOLINSKY	88 ND	$e^+ e^- \rightarrow \pi^0 e^+ e^-$	ı					

 $\omega(783), \eta'(958)$

ω (783) REFERENCES

DOLINSKY 89	ZPHY C42 511	+Druzhinin, Dubrovin, Golubev+	(NOVO)
BITYUKOV 88B	YAF 47 1258	+Borisov, Viktorov, Golovkin+	(SERP)
DOLINSKY 88	YAF 48 442	+Druzhinin, Dubrovin, Golubev+	(NOVO)
KURDADZE 88	JETPL 47 512	+Leltchouk, Pakhtusova, Sidorov+	(NOVO)
	Translated from ZETFP		(110)(0)
AULCHENKO 87	PL B186 432	+Dolinsky, Druzhinin, Dubrovin+	(NOVO)
BARKOV 87	JETPL 46 164 Translated from ZETFP	+Vasserman, Vorobev, Ivanov	(NOVO)
KURDADZE 86	JETPL 43 643	+Lelchuk, Pakhtusova, Sidorov, Skrinskii-	(NOVO)
KOKDADZE 00	Translated from ZETFP	43 497.	(11010)
BARKOV 85	NP B256 365	+Chilingarov, Eidelman, Khazin, Lelchuk-	(NOVO)
KURDADZE 83B	JETPL 36 274	+Pakhtusova, Sidorov+	(NOVO)
	Translated from ZETFP		
DZHELYADIN 81B	PL 102B 296	+Golovkin, Konstantinov+	(SERP)
CORDIER 80	NP B172 13	+Delcourt, Eschstruth, Fulda+	(LALO)
ROOS 80	LNC 27 321	Pellinen	(HELS) RN, CDEF, LALO)
BENKHEIRI 79 DZHELYADIN 79	NP B150 268 PL 84B 143	+Eisenstein+ (EPOL, CE +Golovkin, Gritsuk+	(SERP)
	NP B146 1		RN, CDEF, MADR)
COOPER 78B QUENZER 78	PL 76B 512	+Ribes, Rumpf, Bertrand, Bizot, Chase+	
VANAPEL 78	NP B133 245	VanApeldoorn, Grundeman, Harting+	(ZEEM)
WICKLUND 78	PR D17 1197	+Avres, Diebold, Greene, Kramer, Pawlic	
ANDREWS 77	PRL 38 198	+Fukushima, Harvey, Lobkowicz, May+	(ROCH)
GESSAROLI 77	NP B126 382	+ (BGNA, FIRZ, GENO,	
KEYNE 76	PR D14 28	+Binnie, Carr, Debenham, Garbutt+	(LOIC, SHMP)
Also 73B	PR D8 2789	Binnie, Carr, Debenham, Duane+	(LOIC, SHMP)
KALBFLEISCH 75	PR D11 987	+Strand, Chapman	(BNL, MICH)
AGUILAR 72B	PR D6 29	Aguilar-Benitez, Chung, Eisner, Samios	(BNL)
APEL 72B	PL 41B 234	+Auslander, Muller, Bertolucci+	(KARL, PISA)
BASILE 72B	Phil. Conf. 153	+Bollini, Broglin, Dalpiaz, Frabetti+	(CERN)
BENAKSAS 72B	PL 42B 507	+Cosme, Jean-Marie, Jullian	(ORSA)
BENAKSAS 72C	PL 42B 511	+Cosme, Jean-Marie, Jullian, Laplanche+	(ORSA)
BORENSTEIN 72	PR D5 1559	+Danburg, Kalbfleisch+	(BNL, MICH)
BROWN 72	PL 42B 117	+Downing, Holloway, Huld, Bernstein-	(ILL, ILLC)
DAKIN 72	PR D6 2321	+ Hauser, Kreisler, Mischke	(PRIN) (SLAC)
RATCLIFF 72	PL 38B 345	+Bulos, Carnegie, Kluge, Leith, Lynch+ +Becker, Busza, Chen, Cohen+	(DESY)
ALVENSLEBEN 71C BALDIN 71	PRL 27 888 SJNP 13 758	+Yergakov, Trebukhovsky, Shishov	(ITEP)
DALDIN /1	Translated from YAF 1	3 1318	
BEHREND 71	PRL 27 61	+Lee, Nordberg, Wehmann+ (RO	CH, CORN, FNAL)
BIZZARRI 71	NP B27 140	+Montanet, Nilsson, D'Andlau+	(CERN, CDEF)
COYNE 71	NP B32 333	+Butler, Fang-Landau, MacNaughton	(LRL)
MOFFEIT 71	NP B29 349		CB, SLAC, TUFT)
ABRAMOVI 70	NP B20 209	Abramovich, Blumenfeld, Bruyant+	(CERN)
BIGGS 70B	PRL 24 1201	+Clifft, Gabathuler, Kitching, Rand	(DARE)
BIZZARRI 70	PRL 25 1385	+Ciapetti, Dore, Gaspero, Guidoni+	(ROMA, SYRA)
ROOS 70	DNPL/R7 173		(CERN)
AUGUSTIN 69D	Study Weekend No. 1. PL 28B 513	+Benaksas, Buon, Gracco, Haissinski+	(ORSA)
BIZZARRI 69	NP B14 169	+Foster, Gavillet, Montanet+	(CERN, CDEF)
DEINET 69B	PL 30B 426	+Menzione, Muller, Buniatov+	(KARL, CERN)
JACQUET 69B	NC 63A 743	+Nguyen-Khac, Haatuft, Halsteinslid	(EPOL, BERG)
WILSON 69	Private Comm.		(HARV)
Also 69	PR 178 2095		AC, CORN, MCGI)
ASTVACAT 68	PL 27B 45	Astvacaturov, Azimov, Baldin+	(JINR, MOSU)
BOLLINI 68C	NC 56A 531		RN, BGNA, STRB)
BARASH 67B	PR 156 1399	+Kirsch, Miller, Tan	(COLU)
FELDMAN 67C	PR 159 1219	+Frati, Gleeson, Halpern, Nussbaum+	(PENN)
DIGIUGNO 66B	NC 44A 1272		APL, FRAS, TRST)
FLATTE 66	PR 145 1050	-Huwe, Murray, Button-Shafer, Solmitz-	
JAMES 66	PR 142 896	+Kraybill	(YALE, BNL)
BARBARO 65	PRL 14 279	Barbaro-Galtieri, Tripp	(LRL) (ITEP)
BARMIN 64	JETP 18 1289 Translated from ZETF	+Dolgolenko, Krestnikov+ 45, 1879	(HEP)
KRAEMER 64	PR 136B 496	+Madansky, Fields+ (JH	U, NWES, WOOD)
BUSCHBECK 63	Siena Conf. 1 166		IEN, CERN, ANIK)
		**	
	OTHER	R RELATED PAPERS	
	OTTIL	THE THE PART OF TH	

DOLINSKY 86	PL B174 453	+Druzhinin, Dubrovin, Eidelman+	(NOVO)
KURDADZE 83	JETPL 37 733	+Leichuk, Pakhtusova+	(NOVO)
	Translated from ZETFF	37 613.	
BARTKE 77	NP B118 360	 + (AACH, BERL, BONN, 	CERN, CRAC, LOIC+)
EMMS 75E	NP B98 1	+Kinson, Stacey, Bell, Dale+	(BIRM, DURH, RHEL)
ROOS 75	NP B97 165		(HELS)
ESTABROOKS 74B	NP B81 70	Hyams, Jones, Blum +	(CERN, MPIM)
GREGORIO 74	NC 20A 437		(ICTP)
KRAMER 74	PRL 33 505	+Ayres, Diebold, Greene, Pawlicki+	(ANL)
EISENBERG 72	PR D5 15	+Ballam, Dagan+	(REHO, SLAC, TELA)
ABRAMS 71	PR D4 653	+Barnham, Butler, Coyne, Goldhaber	
ANGELOV 71	SJNP 12 427	+Gramenitsky, Kanasirsky, Keratschev	v+ (JINR)
	Translated from YAF 1		(IMADE)
BARDADIN 71	PR D4 2711	Bardadin-Otwinowska, Hofmokl+	(WARS)
BL00DW0 71	NP B35 133	Bloodworth, Jackson, Prentice, You	
CHAPMAN 71	PR D3 38	+Fortney, Fowler	(DUKE)
FIELDS 71	PRL 27 1749	+Cooper, Rhines, Allison	(ANL, OXF)
MATTHEWS 71B	PRL 26 400	+Prentice, Yoon, Carroll, Walker+	(TNTO, WISC)
CASON 70	PR D1 851	+Andrews, Biswas, Groves, Harringto	
DANBURG 70	PR D2 2564	+Abolins, Dahl, Davies, Hoch, Kirz+	
FLATTE 70	PR D1 1		(LRL)
GOLDHABER 70B	Phil. Conf. 59		(LRL)
HAGOPIAN 70	PRL 25 1050	+Hagopian, Bogart, Selove	(FSU, PENN)
DANBURG 69	UCRL 19275 Thesis		(LRL)
ERWIN 69	NP B9 364	+Walker, Goshaw, Weinberg	(WISC, PRIN, VAND)
MILLER 69	PR 178 2061	+Lichtman, Willmann	(PURD)
STRUGALSKI 69B	PL 29B 532	+Chuvilo, Fenyves+	(WARS, JINR, BUDA)
KEY 68	PR 166 1430	+Prentice, Cooper, Manner+	(TNTO, ANL, WISC)
PISUT 68	NP B6 325	+ Roos	(CERN)
WEHMANN 68	PRL 20 748		SLAC, CORN, MCGI)
HERTZBACH 67	PR 155 1461	+Kraemer, Madanski, Zdanis+	(JHU, BNL)
BINNIE 65	PL 18 348	-Duane, Jane, Jones+	(LOIC, MCH5)
MILLER 65B	CU-237/Nevis-131 The		(COLU)
ZDANIS 65	PRL 14 721	+Madansky, Kraemer+	(JHU, BNL)
ARMENTEROS 63	Siena Conf. 1 296	+Edwards, Jacobsen+	(CERN, CDEF)
BARMIN 63	Siena Conf. 1 207	+Dolgolenko, Krestnikov+	(ITEP)
GELFAND 63	PRL 11 436	+Miller, Nussbaum, Ratau+	(COLU, RUTG)
MURRAY 63	PL 7 358	+Ferro-Luzzi, Huwe, Shafer, Solmitz-	
ALFF 628	PRL 9 325	Alff-Steinberger, Berley, Colley+	(COLU, RUTG)
ARMENTEROS 62	CERN Conf. 90	+Budde+	(CERN, CDEF, EPOL)
STEVENSON 62	PR 125 687	+Alvarez, Maglich, Rosenfeld	(LRL)
MAGLICH 61	PRL 7 178	+Aivarez, Rosenfeld, Stevenson	(LRL)
PEVSNER 61	PRL 7 421	+Kraemer, Nussbaum, Richardson+	(JHU)
XUONG 61	PRL 7 327	+Lynch	(LRL)

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

Our latest mini-review on this particle can be found in the 1984 edition. See also the mini-review under non- $q\bar{q}$ candidates. (See the index for the page number)

η' (958) MASS							
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
957.50±0.24 OUI		CIDAL	^-	MDICO	.+		
956.3 ±1.0	143 ± 12	GIDAL	87	MRK2	$\stackrel{e^+}{_{e^+}}\stackrel{e^-}{_{e^+}}\stackrel{\rightarrow}{_{e^+}}\stackrel{\rightarrow}{_{\eta_{\pi^+}}}\stackrel{\pi^-}{_{\pi^-}}$		
957.46 ± 0.33		DUANE	74	MM\$	$\pi^- p \rightarrow n MM$		
958.2 ±0.5	1414	DANBURG			$2.2 K^{-} p \rightarrow \Lambda X^{0}$		
958 ±1	400	JACOBS			$2.9 K^- p \rightarrow \Lambda X^0$		
956.1 ± 1.1	3415	BASILE			$1.6 \pi^{-} p \rightarrow n X^{0}$		
957.4 ±1.4	535	BASILE	71	CNTR	$1.6 \pi^- \rho \rightarrow n X^0$		
957 ±1		RITTENBERG	69	HBC	1.7-2.7 K p		

η' (958) WIDTH

We include direct measurements of the $\eta'(958)$ total width and $\gamma\gamma$ partial width together with the measured branching ratios in the fit for the partial decay rates.

VALUE (MeV)	EVT5	DOCUMENT ID		ECN	CHG	COMMENT
0.208 ± 0.021 OUR FIT	Error in	cludes scale factor	of 1.4.			
0.28 ± 0.10	1000	BINNIE	79 N	MMS	0	$\pi^- p \rightarrow n MM$

η' (958) DECAY MODES

	Mode	Fraction (Γ_f/Γ)	Scale factor/ Confidence level
Γ1	$\pi^+\pi^-\eta$	(44.2 ±1.7) 9	6 S=1.2
Γ_2	$\rho^0 \gamma$	(30.0 ±1.5) %	6 S=1.1
Γ_3	$\pi^{0}\pi^{0}\eta$	(20.5 ±1.3) %	6 S=1.3
Γ4	ωγ	(3.00 ± 0.31) %	6
Γ_5	$\gamma \gamma$	(2.16 ± 0.17) %	6 S=1.5
Γ_6	$3\pi^{0}$	(1.53±0.26) >	c 10 ⁻³ S=1.1
Γ ₇	$\mu^+ \mu^- \gamma$	(1.06 ± 0.27) >	< 10 ⁻⁴
Γ8	$\pi^+\pi^-\pi^0$	< 5	6 CL=90%
Γg	$\pi^{0} \rho^{0}$	< 4	6 CL=90%
Γ ₁₀	$\pi^+\pi^-$	< 2	6 CL=90%
Γ11	$\pi^{0}e^{+}e^{-}$	< 1.3	6 CL=90%
Γ ₁₂	$\eta e^+ e^-$	< 1.1	6 CL=90%
Γ ₁₃	$\pi^{+} \pi^{+} \pi^{-} \pi^{-}$	< 1	6 CL=90%
Γ_{14}	$\pi^+\pi^+\pi^-\pi^-$ neutrals	< 1	6 CL=95%
Γ ₁₅	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 1	6 CL=90%
Γ ₁₆		< 1	6 CL=90%
Γ17	$\pi^{+}\pi^{-}e^{+}e^{-}$		<10 ^{−3} CL=90%
Γ ₁₈	$\pi_{-}^{0}\pi^{0}$	< 9	<10 ^{−4} CL=90%
Γ19	$\pi^0 \gamma \gamma$		< 10 ⁻⁴ CL=90%
Γ20		< 5	< 10 ^{−4} CL=90%
Γ ₂₁			< 10 ^{−5} CL=90%
Γ22	$\mu^{+}\mu^{-}\pi^{0}$	< 6.0	< 10 ^{−5} CL=90%
	$\mu^+\mu^-\eta$	< 1.5	< 10 ⁻⁵ CL=90%
	$\pi^+\pi^-\gamma$ (including $ ho^0\gamma$)		
Γ ₂₅	e+e-	< 2.1	× 10 ⁻⁷ CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, 2 combinations of partial widths obtained from integrated cross section, and 16 branching ratios uses 40 measurements and one constraint to determine 7 parameters. The overall fit has a $\chi^2=28.6$ for 34 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

 $\eta'(958)$

			η' (958
	$\Gamma(\pi^+\pi^-\eta(\text{charged decay}))/\Gamma_{\text{tota}}$	•	.291Γ _{1/}
$x_2 = -54$ $x_3 = -59 = -33$ $x_4 = -25 = -26 = 36$	0.129±0.005 OUR FIT		
$x_5 - 18 - 10 20 6$ $x_6 - 23 - 13 38 13 7$	0.1 ±0.04 10 L	ITTENBERG 69 HBC ONDON 66 HBC ADIER 658 HBC	1.7-2.7 K ⁻ p 2.2 K ⁻ p 3 K ⁻ p
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left[\Gamma \left(\pi^0 \pi^0 \eta \right. \left(ext{charged decay} ight) ight) + \Gamma$]/r _{total}
Mode Rate (MeV) Scale factor	<u>VALUE</u> <u>EVTS</u> <u>D</u> 0.087±0.006 OUR FIT Error include		(.291\(\Gamma_3 + .9\(\Gamma_4\)) COMMENT
$ \Gamma_1 \pi^+ \pi^- \eta \qquad 0.092 \pm 0.011 \qquad 1.3 \Gamma_2 \rho^0 \gamma \qquad 0.062 \pm 0.006 \qquad 1.4 $			1.7-2.7 K ⁻ ρ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ(neutrals)/Γ _{total} VALUE 0.170±0.010 OUR FIT Error include	OCUMENT ID TECN	(.709\Gamma_3+.09\Gamma_4+\Gamma_5)/
$\Gamma_5 = \gamma \gamma$ 0.00451±0.00026 1.1	0.187±0.017 OUR AVERAGE		0
$\Gamma_6 = 3\pi^0$ (3.2 ±0.6)×10 ⁻⁴ 1.2		ASILE 71 CNTR ITTENBERG 69 HBC	1.6 $\pi^- p \rightarrow nX^0$ 1.7-2.7 $K^- p$
η' (958) PARTIAL WIDTHS	$\Gamma(ho^0\gamma)/\Gamma_{ ext{total}}$	OCUMENT ID TECN	Γ _{2/}
$\Gamma(\gamma\gamma)$ Γ_5 VALUE (keV) EVTS DOCUMENT ID TECN COMMENT		s scale factor of 1.1.	COMMENT
4.51±0.26 OUR FIT Error includes scale factor of 1.1. 4.6 ±0.4 OUR AVERAGE		ITTENBERG 69 HBC ONDON 66 HBC	1.7-2.7 K ⁻ p 2.2 K ⁻ p
$4.96 \pm 0.23 \pm 0.72$ 547 ¹ ROE 908 ASP $e^+e^- → e^+e^- 2γ$ 3.8 ± 0.7 ± 0.6 34 AIHARA 88¢ TPC $e^+e^- →$		ADIER 65B HBC	3 K ⁻ p
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma(ho^0\gamma)/\Gamma(\pi\pi\eta)$	OCUMENT ID TECN	$\Gamma_2/(\Gamma_1+\Gamma_2)$
4.7 $\pm 0.6 \ \pm 0.9$ 143 \pm 12 GIDAL 87 MRK2 $e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}$	0.464 ± 0.033 OUR FIT Error include	s scale factor of 1.2.	5.5 K p
• • • We do not use the following data for averages, fits, limits, etc. • • • 4.0 ± 0.9	$\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}$		Γ ₁₁ /
1 Using B($\eta' \to \gamma \gamma$) = (2.16 ± 0.16)%.	VALUE CL% D	OCUMENT ID TECN ITTENBERG 65 HBC	COMMENT
² Systematic error not evaluated.		ITTENBERG 65 HBC	2.7 K ⁻ p
$\eta'(958) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$	$\Gamma(\eta e^+ e^-)/\Gamma_{\text{total}}$ VALUE CL% D	OCUMENT ID TECN	Γ ₁₂ /
This combination of a partial width with the partial width into $\gamma\gamma$ and with the		ITTENBERG 65 HBC	2.7 K p
total width is obtained from the integrated cross section into channel(i) in the $\gamma\gamma$ annihilation.	$\Gamma(\pi^0 \rho^0)/\Gamma_{total}$		Г9/
-() -(0) (n		OCUMENT ID TECN ITTENBERG 65 HBC	<u>СОММЕНТ</u> 2.7 К [—] р
VALUE (keV) EVTS DOCUMENT ID TECN COMMENT	$\Gamma(\pi^+\pi^-e^+e^-)/\Gamma_{ ext{total}}$		Γ ₁₇ /
1.35±0.08 OUR FIT Error includes scale factor of 1.2. 1.32±0.08 OUR AVERAGE Error includes scale factor of 1.2.	VALUE CL% D		COMMENT
$1.35 \pm 0.09 \pm 0.21$ AIHARA 87 TPC $e^+ e^- \rightarrow e^+ e^- \rho \gamma$ $1.13 \pm 0.04 \pm 0.13$ 867 \pm 30 ALBRECHT 87B ARG $e^+ e^- \rightarrow e^+ e^- \rho \gamma$		ITTENBERG 65 HBC	2.7 K ⁻ p
$1.53 \pm 0.09 \pm 0.21$ ALTHOFF 84E TASS $e^+ e^- ightarrow e^+ e^- ho \gamma$	$\Gamma(6\pi)/\Gamma_{\text{total}}$ VALUE CL% D	OCUMENT ID TECN	Γ ₁₆ /
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ONDON 66 HBC	Compilation
$1.73 \pm 0.34 \pm 0.35$ 95 JENNI 83 MRK2 $e^+e^- \rightarrow e^+e^-\rho\gamma$ $1.49 \pm 0.13 \pm 0.027$ 213 BARTEL 82B JADE $e^+e^- \rightarrow e^+e^-\rho\gamma$	$\Gamma(\omega\gamma)/\Gamma(\pi^+\pi^-\eta)$		Γ ₄ /Γ
$\Gamma(\gamma\gamma) \times \Gamma(\pi^0\pi^0\eta)/\Gamma_{\text{total}}$ $\Gamma_5\Gamma_3/\Gamma$	0.068 ± 0.008 OUR FIT Error include:	OCUMENT ID TECN s scale factor of 1.1.	COMMENT
VALUE (keV) DOCUMENT ID TECN COMMENT		ANFINO 77 ASPK	8.4 π ⁻ ρ
0.92 \pm 0.08 OUR FIT Error includes scale factor of 1.2. 1.03 \pm 0.08 \pm 0.11 ANTREASYAN 87 CBAL $e^+e^- \rightarrow e^+e^- \eta \eta^0 \eta^0$		OCUMENT ID TECN	$\Gamma_2/(\Gamma_1+\Gamma_3+\Gamma_4)$
$\eta'(958) \alpha$ PARAMETER	0.443±0.031 OUR FIT Error include: 0.25 ±0.14 D		1.95 K p
$ MATRIX \ ELEMENT ^2 = (1 + \alpha y)^2 + cx^2$	$\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$		Γ ₅ /
VALUE DOCUMENT ID TECN COMMENT	<u>VALUE</u> <u>EVTS</u> <u>D</u> 0.0216±0.0017 OUR FIT Error inclu	OCUMENT ID TECN	COMMENT
-0.061 ± 0.012 OUR AVERAGE -0.058 ± 0.013 ALDE 86 GAM4 38 π^- p → $n\eta \pi^0 \pi^0$	0.0196±0.0015 OUR AVERAGE		
-0.08 ± 0.03 KALBFLEISCH 74 RVUE $\eta' o \eta \pi^+ \pi^-$			$\begin{array}{c} 8.45 \ \pi^{-} \ \rho \rightarrow \\ n\pi^{+} \ \pi^{-} \ 2\gamma \end{array}$
-/(050) PRANCHING PATIOS			$\pi^- p \rightarrow n MM$ 1.6 $\pi^- p \rightarrow n X^0$
η'(958) BRANCHING RATIOS	1.0.009		$3.65 \pi^{-} p \rightarrow n X^{0}$
$\Gamma(\pi^+\pi^-\eta(\text{neutral decay}))/\Gamma_{\text{total}}$.709 Γ_1/Γ VALUE EVTS DOCUMENT ID TECN COMMENT	• • We do not use the following dat	-	
0.313±0.012 OUR FIT Error includes scale factor of 1.2. 0.314±0.026 281 RITTENBERG 69 HBC 1.7-2.7 K ⁻ ρ	0.018 ±0.002 6000 ⁴ A ³ Includes APEL 79 result. ⁴ Data is included in STANTON 80 6		15-40 π ⁻ p
$\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma_{\text{total}}$ (.709 Γ_1 +.291 Γ_3 +.9 Γ_4)/ Γ_3	$\Gamma(e^+e^-)/\Gamma_{\text{total}}$	- p. agrioti	F
VALUE EVTS DOCUMENT ID TECN COMMENT 0.400±0.010 OUR FIT Error includes scale factor of 1.1.		OCUMENT ID TECN	Γ ₂₅ /
0.36 ±0.05 OUR AVERAGE 0.4 ±0.1 39 LONDON 66 HBC 2.2 K ⁻ ρ	<2.1 90 V	OROBYEV 88 ND	$e^+ e^- \rightarrow \pi^+ \pi^- \eta$
0.35 ± 0.06 33 BADIER 658 HBC 3 $K^ p$	$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$		Γ ₁₀ /
		OCUMENT ID TECN ITTENBERG 69 HBC	<u>COMMENT</u> 1.7-2.7 K ⁻ ρ
	 ● We do not use the following dat 	a for averages, fits, limits,	, etc. • • •
	<0.08 95 D	ANBURG 73 HBC	$22 K^- n \rightarrow \Lambda X^0$

DANBURG 73 HBC 2.2 $K^- \rho \rightarrow \Lambda X^0$

$\eta'(958)$

$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$					Г ₈ /Г
VALUE	CL%	DOCUMENT ID			
<0.05 • • • We do not use th	90 e following o	RITTENBERG			1.7-2.7 K p etc. • • •
< 0.09	95	DANBURG		нвс	$2.2 \text{ K}^- p \rightarrow \Lambda X^0$
$\Gamma(\pi^+\pi^+\pi^-\pi^-)$ neut	rals)/Ftota	si.			Γ_{14}/Γ
	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
<0.01 • • • We do not use th	95 e following (DANBURG		HBC	$2.2 \ K^- \ \rho \rightarrow \ \Lambda X^0$
< 0.01	90	RITTENBERG			1.7-2.7 K p
$\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0})/$	Г				Γ ₁₅ /Γ
	CL%	DOCUMENT ID		<u>TECN</u>	
<0.01	90	RITTENBERG	69	HBC	1.7-2.7 K p
$\Gamma(\pi^+\pi^+\pi^-\pi^-)/\Gamma_{to}$					Γ_{13}/Γ
<u>VALUE</u> <0.01	<u>CL%</u> 90	DOCUMENT ID RITTENBERG			
	,,	_	0,	III.C	·
$\Gamma(ho^0\gamma)/\Gamma(\pi^+\pi^-\gamma)$	including <i>j</i>	οςγ)) <u>DOCUMENT ID</u>		TECN	Γ_2/Γ_{24}
1.08±0.08 OUR AVERA	GE				
1.15 ± 0.10 1.01 ± 0.15	473 137	DANBURG JACOBS		HBC HBC	2.2 $K^- \rho \rightarrow \Lambda X^0$ 2.9 $K^- \rho \rightarrow \Lambda X^0$
0.94 ± 0.20	137			HBC	3.9-4.6 K ⁻ p
$\Gamma(\pi^0\pi^0\eta$ (3 π^0 decay	·))/F _{total}				.319 Г ₃/Г
VALUE 0.065±0.004 OUR FIT	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT
0.065 ± 0.004 OUR FIT 0.11 ± 0.06	4	BENSINGER			$2.2 \pi^{+} d$
$\Gamma(\rho^0\gamma)/\Gamma(\pi^+\pi^-\eta)$	eutral dec	n/)			Γ ₂ /.709Γ ₁
VALUE	EVTS	DOCUMENT ID		TECN_	COMMENT
0.96±0.08 OUR FIT E 0.99±0.11 OUR AVERA		s scale factor of	1.2.		
0.99±0.11 OUR AVERA	473	DANBURG	73	нвс	$2.2 \text{ K}^- \rho \rightarrow \Lambda X^0$
1.11 ± 0.18	192	JACOBS		нвс	$2.9 \ K^{-} p \rightarrow \Lambda X^{0}$
$\Gamma(\gamma\gamma)/\Gamma(\pi^0\pi^0\eta)$ (neu	itral decay))			Γ ₅ /.709Γ ₃
VALUE 0.149±0.013 OUR FIT			-6.1	TECN_	COMMENT
0.149±0.013 OUR FIT	16	APEL	72	ospk	$3.8 \pi^- \rho \rightarrow nX^0$
$\Gamma(\mu^+\mu^-\gamma)/\Gamma(\gamma\gamma)$					Γ_7/Γ_5
,	EVT5	DOCUMENT ID		TECN	-, -
VALUE (units 10 ⁻³) 4.9±1.2	33	DOCUMENT ID	80		$\frac{\textit{COMMENT}}{25,33 \ \pi^- \ p \rightarrow \ 2\mu\gamma}$
VALUE (units 10 ⁻³) 4.9±1.2			80		COMMENT
VALUE (units 10 ⁻³)	33			CNTR	$\frac{\textit{COMMENT}}{25,33 \ \pi^- \ p \rightarrow \ 2\mu\gamma}$ Γ_{23}/Γ
$\frac{\text{VALUE (units }10^{-3})}{4.9\pm1.2}$ $\Gamma(\mu^{+}\mu^{-}\eta)/\Gamma_{\text{total}}$	33	VIKTOROV DOCUMENT ID		CNTR TECN	$\frac{\textit{COMMENT}}{25,33 \ \pi^- \ p \rightarrow \ 2\mu\gamma}$ Γ_{23}/Γ
VALUE (units 10^{-3}) 4.9 ± 1.2 $\Gamma(\mu^{+}\mu^{-}\eta)/\Gamma_{\text{total}}$ VALUE (units 10^{-5})	33 CL%	VIKTOROV DOCUMENT ID		CNTR TECN	$\frac{\textit{COMMENT}}{25,33 \; \pi^- \; p \; \rightarrow \; 2 \mu \gamma}$ Γ_{23}/Γ $\textit{COMMENT}$
VALUE (units 10^{-3}) 4.9±1.2 $\Gamma(\mu^{+}\mu^{-}\eta)/\Gamma_{\text{total}}$ VALUE (units 10^{-5}) <1.5	33 <u>CL%</u> 90	VIKTOROV DOCUMENT ID DZHELYADIN DOCUMENT ID	81	CNTR TECN CNTR	$\frac{\text{COMMENT}}{25,33 \ \pi^- \ p \rightarrow \ 2\mu \gamma}$ $\frac{\Gamma_{23}/\Gamma}{30 \ \pi^- \ p \rightarrow \ \sqrt{n}}$ $\frac{\Gamma_{22}/\Gamma}{\text{COMMENT}}$
VALUE (units 10^{-3}) 4.9±1.2 $\Gamma(\mu^{+}\mu^{-}\eta)/\Gamma_{\text{total}}$ VALUE (units 10^{-5}) <1.5 $\Gamma(\mu^{+}\mu^{-}\pi^{0})/\Gamma_{\text{total}}$	33 <u>CL%</u> 90	VIKTOROV DOCUMENT ID DZHELYADIN DOCUMENT ID	81	CNTR TECN CNTR	$\frac{\textit{COMMENT}}{25,33 \; \pi^- \; p \; \rightarrow \; 2 \mu \gamma}$ Γ_{23} / Γ $\frac{\textit{COMMENT}}{30 \; \pi^- \; p \; \rightarrow \; \gamma / \; n}$ Γ_{22} / Γ
VALUE (units 10^{-3}) 4.9±1.2 $\Gamma(\mu^+\mu^-\eta)/\Gamma_{\text{total}}$ VALUE (units 10^{-5}) <1.5 $\Gamma(\mu^+\mu^-\pi^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-5})	33 <u>CL%</u> 90 <u>CL%</u>	VIKTOROV DOCUMENT ID DZHELYADIN DOCUMENT ID	81	CNTR TECN CNTR	$\frac{\text{COMMENT}}{25,33 \ \pi^- \ p \rightarrow \ 2\mu \gamma}$ $\frac{\Gamma_{23}/\Gamma}{30 \ \pi^- \ p \rightarrow \ \sqrt{n}}$ $\frac{\Gamma_{22}/\Gamma}{\text{COMMENT}}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\mu^{-}\eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\mu^{-}\pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{VALUE\ (units\ 10^{-4})} \end{array}$	33 <u>CL%</u> 90 <u>CL%</u>	VIKTOROV DOCUMENT ID DZHELYADIN DOCUMENT ID	81	CNTR TECN CNTR TECN CNTR	$\begin{array}{c} \underline{\textit{COMMENT}} \\ 25,33 \ \pi^- \ p \rightarrow \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{\textit{COMMENT}} \\ 30 \ \pi^- \ p \rightarrow \ \eta' \ n \\ \hline \\ \underline{\textit{COMMENT}} \\ 30 \ \pi^- \ p \rightarrow \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \end{array}$
VALUE (units 10^{-3}) 4.9±1.2 $\Gamma(\mu^{+}\mu^{-}\eta)/\Gamma_{\text{total}}$ VALUE (units 10^{-5}) <1.5 $\Gamma(\mu^{+}\mu^{-}\pi^{0})/\Gamma_{\text{total}}$ VALUE (units 10^{-5}) <6.0 $\Gamma(3\pi^{0})/\Gamma(\pi^{0}\pi^{0}\eta)$	33 <u>CL%</u> 90 <u>CL%</u>	VIKTOROV DOCUMENT ID DOCUMENT ID DOCUMENT ID DZHELYADIN	81	CNTR TECN CNTR TECN CNTR	$\begin{array}{c} \underline{\textit{COMMENT}} \\ 25,33 \ \pi^- \ p \rightarrow \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{\textit{COMMENT}} \\ 30 \ \pi^- \ p \rightarrow \ \eta' \ n \\ \hline \\ \underline{\textit{COMMENT}} \\ 30 \ \pi^- \ p \rightarrow \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\left(\mu^{+}\mu^{-}\eta\right)/\Gamma_{\rm total} \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\left(\mu^{+}\mu^{-}\pi^{0}\right)/\Gamma_{\rm total} \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\left(3\pi^{0}\right)/\Gamma\left(\pi^{0}\pi^{0}\eta\right) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ \frac{74\pm12\ OUR\ AVERAGE}{74\pm15} \\ \end{array}$	33 <u>CL%</u> 90 <u>CL%</u>	VIKTOROV DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID ALDE	81 81 878	CNTR TECN CNTR TECN CNTR TECN GAM2	$\frac{COMMENT}{25,33 \ \pi^- \ p \rightarrow \ 2\mu \gamma}$ Γ_{23}/Γ $\frac{COMMENT}{30 \ \pi^- \ p \rightarrow \ \eta' \ n}$ Γ_{22}/Γ $\frac{COMMENT}{30 \ \pi^- \ p \rightarrow \ \eta' \ n}$ Γ_{6}/Γ_{3} $\frac{COMMENT}{38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\left(\mu^{+}\mu^{-}\eta\right)/\Gamma_{\rm total} \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\left(\mu^{+}\mu^{-}\pi^{0}\right)/\Gamma_{\rm total} \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\left(3\pi^{0}\right)/\Gamma\left(\pi^{0}\pi^{0}\eta\right) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ \frac{74\pm12\ OUR\ AVERAGE}{74\pm15} \\ 75\pm18 \end{array}$	33 <u>CL%</u> 90 <u>CL%</u>	DOCUMENT ID DZHELYADIN DOCUMENT ID DZHELYADIN DOCUMENT ID	81 81 878	CNTR TECN CNTR TECN CNTR TECN GAM2	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \to \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma's \\ 30 - 40 \ \pi^- \ p \to \ n + \ 6\gamma \\ \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\left(\mu^{+}\mu^{-}\eta\right)/\Gamma_{\rm total} \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\left(\mu^{+}\mu^{-}\pi^{0}\right)/\Gamma_{\rm total} \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\left(3\pi^{0}\right)/\Gamma\left(\pi^{0}\pi^{0}\eta\right) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ \frac{74\pm12\ OUR\ AVERAGE}{74\pm15} \\ 75\pm18 \\ \Gamma\left(\gamma\gamma\right)/\Gamma\left(\pi^{0}\pi^{0}\eta\right) \end{array}$	33 <u>CL%</u> 90 <u>CL%</u>	DOCUMENT ID DZHELYADIN DOCUMENT ID DZHELYADIN DOCUMENT ID ALDE BINON	81 81 878 84	CNTR TECN CNTR TECN CNTR TECN GAM2 GAM2	$\begin{array}{c} \underline{\text{COMMENT}} \\ 25,33 \ \pi^- \ p \to \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{\text{COMMENT}} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{\text{COMMENT}} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{\text{COMMENT}} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' \text{s} \\ 30 - 40 \ \pi^- \ p \to \ n + \ 6\gamma \\ \hline \\ \Gamma_{5}/\Gamma_{3} \\ \end{array}$
$\begin{array}{l} {\scriptstyle VALUE\ (units\ 10^{-3})} \\ {\scriptstyle 4.9\pm1.2} \\ {\scriptstyle \Gamma\ (\mu^+\mu^-\eta)/\Gamma\ total} \\ {\scriptstyle VALUE\ (units\ 10^{-5})} \\ {\scriptstyle <1.5} \\ {\scriptstyle <1.5} \\ {\scriptstyle (6.0)} \\ {\scriptstyle \Gamma\ (3\pi^0)/\Gamma\ (\pi^0\pi^0\eta)} \\ {\scriptstyle VALUE\ (units\ 10^{-4})} \\ {\scriptstyle 74\pm12\ OUR\ FIT} \\ {\scriptstyle 74\pm12\ OUR\ AVERAGE} \\ {\scriptstyle 74\pm15} \\ {\scriptstyle 75\pm18} \\ {\scriptstyle \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^0\pi^0\eta)} \\ {\scriptstyle VALUE\ (0.106\pm0.009\ OUR\ FIT)} \\ {\scriptstyle VAL$	33 <u>CL%</u> 90 <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID ALDE BINON DOCUMENT ID DOCUME	81 81 878 84	CNTR TECN CNTR TECN CNTR GAM2 GAM2 TECN 7.	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \rightarrow \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \rightarrow \ \eta' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \rightarrow \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ 30 - 40 \ \pi^- \ p \rightarrow \ n + \ 6\gamma \\ \hline \\ \Gamma_{5}/\Gamma_{3} \\ \underline{COMMENT} \\ \end{array}$
$\begin{array}{l} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\mu^{-}\eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\mu^{-}\pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ 74\pm12\ OUR\ AVERAGE \\ 74\pm15 \\ 75\pm18 \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.106\pm0.009\ OUR\ FIT} \\ 0.112\pm0.002\pm0.006 \\ \end{array}$	33 <u>CL%</u> 90 <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID ALDE BINON	81 81 878 84	CNTR TECN CNTR TECN CNTR GAM2 GAM2 TECN 7.	$\begin{array}{c} \underline{\text{COMMENT}} \\ 25,33 \ \pi^- \ p \to \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{\text{COMMENT}} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{\text{COMMENT}} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{\text{COMMENT}} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' \text{s} \\ 30 - 40 \ \pi^- \ p \to \ n + \ 6\gamma \\ \hline \\ \Gamma_{5}/\Gamma_{3} \\ \end{array}$
$\begin{array}{l} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\mu^{-}\eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\mu^{-}\pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ 74\pm12\ OUR\ AVERAGE \\ 74\pm15 \\ 75\pm18 \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.106\pm0.009\ OUR\ FIT} \\ 0.112\pm0.002\pm0.006 \\ \Gamma\ (\omega\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \end{array}$	33 <u>CL%</u> 90 <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID ALDE BINON DOCUMENT ID DOCUMENT ID DOCUMENT ID ALDE BINON	81 81 878 84 of 1.	CNTR TECN CNTR TECN CNTR TECN GAM2 GAM2 TECN 7. GAM2	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \to \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ 30 - 40 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ \hline \end{array}$
$\begin{array}{l} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\mu^{-}\eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\mu^{-}\pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ 74\pm12\ OUR\ AVERAGE \\ 74\pm15 \\ 75\pm18 \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.106\pm0.009\ OUR\ FIT} \\ 0.112\pm0.002\pm0.006 \\ \end{array}$	33 <u>CL%</u> 90 <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID ALDE BINON DOCUMENT ID DOCUME	81 81 878 84 of 1.	CNTR TECN CNTR TECN CNTR TECN GAM2 GAM2 TECN 7. GAM2	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \to \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma's \\ 30 - 40 \ \pi^- \ p \to \ n + \ 6\gamma's \\ \underline{COMMENT} \\ \hline \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma's \\ \underline{COMMENT} \\ \hline \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\left(\mu^{+}\mu^{-}\eta\right)/\Gamma_{\rm total} \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\left(\mu^{+}\mu^{-}\pi^{0}\right)/\Gamma_{\rm total} \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\left(3\pi^{0}\right)/\Gamma\left(\pi^{0}\pi^{0}\eta\right) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ 74\pm12\ OUR\ AVERAGE \\ 74\pm15 \\ 75\pm18 \\ \Gamma\left(\gamma\gamma\right)/\Gamma\left(\pi^{0}\pi^{0}\eta\right) \\ \frac{VALUE\ (units\ 10^{-4})}{0.106\pm0.009\ OUR\ FIT} \\ 0.106\pm0.009\ OUR\ FIT \\ 0.112\pm0.002\pm0.006 \\ \Gamma\left(\omega\gamma\right)/\Gamma\left(\pi^{0}\pi^{0}\eta\right) \\ \frac{VALUE\ (units\ 10^{-3})}{VALUE} \\ \end{array}$	33 <u>CL%</u> 90 <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID ALDE BINON DOCUMENT ID DOCUMENT ID DOCUMENT ID ALDE BINON	81 878 84 of 1. 878	CNTR TECN CNTR TECN CNTR GAM2 GAM2 TECN TECN GAM2 TECN TECN TECN TECN TECN TECN TECN TECN	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \to \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ 30 - 40 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ \hline \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\ \mu^{-}\ \eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\ \mu^{-}\ \pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ 74\pm12\ OUR\ AVERAGE \\ 74\pm15 \\ 75\pm18 \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ }{0.106\pm0.009\ OUR\ FIT} \\ 0.112\ (0.002\ \pm0.006 \\ \Gamma\ (\omega\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ }{0.146\pm0.014\ OUR\ FIT} \\ \end{array}$	33 <u>CL%</u> 90 <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID des scale factor ALDE DOCUMENT ID	81 878 84 of 1. 878	CNTR TECN CNTR TECN CNTR GAM2 GAM2 TECN TECN GAM2 TECN TECN TECN TECN TECN TECN TECN TECN	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \to \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ 30 - 40 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \underline{\Gamma_{5}/\Gamma_{3}} \\ \underline{COMMENT} \\ \hline \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \underline{\Gamma_{4}/\Gamma_{3}} \\ \underline{COMMENT} \\ \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\ \mu^{-}\ \eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\ \mu^{-}\ \pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ \frac{74\pm12\ OUR\ AVERAGE\ 74\pm15}{75\pm18} \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.106\pm0.009\ OUR\ FIT} \\ 0.112\pm0.002\pm0.006 \\ \Gamma\ (\omega\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.146\pm0.014\ OUR\ FIT} \\ 0.147\pm0.016 \\ \Gamma\ (3\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.140\ (units\ 10^{-4})} \end{array}$	33 <u>CL%</u> 90 <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID des scale factor ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE	81 81 878 84 of 1. 878	CNTR TECN CNTR TECN CNTR TECN GAM2 GAM2 TECN TECN GAM2 TECN GAM2	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \to \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{5}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{4}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{21}/\Gamma_{3} \\ \underline{COMMENT} \\ \hline \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\ \mu^{-}\ \eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\ \mu^{-}\ \pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ 74\pm12\ OUR\ AVERAGE \\ 74\pm15 \\ 75\pm18 \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.106\pm0.009\ OUR\ FIT} \\ 0.112\pm0.009\ OUR\ FIT \\ 0.112\pm$	33 <u>CL%</u> 90 <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID des scale factor ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE	81 81 878 84 of 1. 878	CNTR TECN CNTR TECN CNTR TECN GAM2 GAM2 TECN TECN GAM2 TECN GAM2	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \to \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ 30 - 40 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ COMMENT \\ \hline 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ COMMENT \\ \hline 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{4}/\Gamma_{3} \\ \underline{COMMENT} \\ \hline \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{21}/\Gamma_{3} \\ \hline \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\mu^{-}\eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\mu^{-}\pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ <6.0 \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ 74\pm12\ OUR\ AVERAGE \\ 74\pm15 \\ 75\pm18 \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ }{0.106\pm0.009\ OUR\ FIT} \\ 0.112\pm0.002\pm0.006 \\ \Gamma\ (\omega\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ }{0.146\pm0.014\ OUR\ FIT} \\ 0.147\pm0.016 \\ \Gamma\ (3\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{<4.6} \\ \Gamma\ (\pi^{0}\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \end{array}$	33 <u>CL%</u> 90 <u>CL%</u> 90 Error inclu <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID des scale factor ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE	81 81 878 84 878	CNTR TECN CNTR TECN CNTR GAM2 GAM2 TECN GAM2 TECN GAM2 TECN GAM2	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \rightarrow \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \rightarrow \ \eta' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \rightarrow \ \eta' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ 30 - 40 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{5}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{4}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{21}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\ \mu^{-}\ \eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\ \mu^{-}\ \pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ \frac{74\pm12\ OUR\ FIT}{74\pm12\ OUR\ AVERAGE} \\ \frac{74\pm15}{75\pm18} \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ VALUE\ (0.106\pm0.009\ OUR\ FIT\ 0.112\pm0.009\ OUR\ FIT\ 0.1$	33 CL% 90 CL% 90 CL% 90 CL%	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE	81 81 878 878 878	CNTR TECN CNTR TECN CNTR TECN GAM2 TECN GAM2 TECN GAM2 TECN GAM2 TECN GAM2	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \to \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \gamma' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \to \ \gamma' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{5}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{4}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{21}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \to \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\mu^{-}\eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\mu^{-}\pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ 74\pm12\ OUR\ AVERAGE \\ 74\pm15 \\ 75\pm18 \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.112\pm0.002\pm0.006} \\ \Gamma\ (\omega\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.146\pm0.014\ OUR\ FIT} \\ 0.147\pm0.016 \\ \Gamma\ (3\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{<4.6} \\ \Gamma\ (\pi^{0}\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{<37} \\ \end{array}$	33 <u>CL%</u> 90 <u>CL%</u> 90 Error inclu <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID des scale factor ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE	81 81 878 878 878	CNTR TECN CNTR TECN CNTR TECN GAM2 TECN GAM2 TECN GAM2 TECN GAM2 TECN GAM2	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \rightarrow \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \rightarrow \ \gamma' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \rightarrow \ \gamma' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{5}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{4}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{21}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\mu^{-}\eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\mu^{-}\pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ 74\pm12\ OUR\ AVERAGE \\ 74\pm15 \\ 75\pm18 \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.106\pm0.009\ OUR\ FIT} \\ 0.112\pm0.009\ OUR\ FIT \\ 0.112\pm0.009\ OUR\ FIT \\ 0.112\pm0.009\ Total \\ \Gamma\ (\alpha\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{<4.6} \\ \Gamma\ (\pi^{0}\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{<4.6} \\ \Gamma\ (\pi^{0}\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{<37} \\ \Gamma\ (\pi^{0}\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \end{array}$	33 <u>CL%</u> 90 <u>CL%</u> 90 Error inclu <u>CL%</u> 90 <u>CL%</u> 90	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID des scale factor ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE	81 81 878 878 878	CNTR TECN CNTR TECN CNTR GAM2 GAM2 TECN GAM2 TECN GAM2 TECN GAM2	$\begin{array}{c} \frac{COMMENT}{25,33} \ \pi^- \ p \rightarrow \ 2\mu \gamma \\ & \Gamma_{23}/\Gamma \\ \frac{COMMENT}{30 \ \pi^- \ p \rightarrow \ \eta' \ n} \\ & \Gamma_{22}/\Gamma \\ \frac{COMMENT}{30 \ \pi^- \ p \rightarrow \ \eta' \ n} \\ & \Gamma_{6}/\Gamma_{3} \\ \frac{COMMENT}{30-40 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s} \\ \frac{\Gamma_{5}/\Gamma_{3}}{38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s} \\ \frac{COMMENT}{38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s} \\ \frac{\Gamma_{4}/\Gamma_{3}}{36 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s} \\ \frac{\Gamma_{21}/\Gamma_{3}}{38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s} \\ \frac{COMMENT}{38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s} \\ \frac{COMMENT}{38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s} \\ \frac{\Gamma_{19}/\Gamma_{3}}{18 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s} \\ \frac{COMMENT}{38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s} \\ \Gamma_{18}/\Gamma_{3} \end{array}$
$\begin{array}{c} \frac{VALUE\ (units\ 10^{-3})}{4.9\pm1.2} \\ \Gamma\ (\mu^{+}\mu^{-}\eta)/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<1.5} \\ <1.5 \\ \Gamma\ (\mu^{+}\mu^{-}\pi^{0})/\Gamma\ total \\ \frac{VALUE\ (units\ 10^{-5})}{<6.0} \\ \Gamma\ (3\pi^{0})/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{74\pm12\ OUR\ FIT} \\ 74\pm12\ OUR\ AVERAGE \\ 74\pm15 \\ 75\pm18 \\ \Gamma\ (\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.112\pm0.002\pm0.006} \\ \Gamma\ (\omega\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{0.146\pm0.014\ OUR\ FIT} \\ 0.147\pm0.016 \\ \Gamma\ (3\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{<4.6} \\ \Gamma\ (\pi^{0}\gamma\gamma)/\Gamma\ (\pi^{0}\pi^{0}\eta) \\ \frac{VALUE\ (units\ 10^{-4})}{<37} \\ \end{array}$	33 CL% 90 CL% 90 CL% 90 CL%	DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE DOCUMENT ID ALDE	81 878 84 of 1. 878 878	CNTR TECN CNTR TECN CNTR TECN GAM2 TECN TECN GAM2 TECN GAM2 TECN GAM2 TECN GAM2 TECN GAM2	$\begin{array}{c} \underline{COMMENT} \\ 25,33 \ \pi^- \ p \rightarrow \ 2\mu\gamma \\ \hline \\ \Gamma_{23}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \rightarrow \ \gamma' \ n \\ \hline \\ \Gamma_{22}/\Gamma \\ \underline{COMMENT} \\ 30 \ \pi^- \ p \rightarrow \ \gamma' \ n \\ \hline \\ \Gamma_{6}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{5}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{4}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{21}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \Gamma_{19}/\Gamma_{3} \\ \underline{COMMENT} \\ 38 \ \pi^- \ p \rightarrow \ n + \ 6\gamma' s \\ \hline \\ \end{array}$

$\Gamma(4\pi^0)/\Gamma(\pi^0\pi^0\eta)$						Γ_{20}/Γ_3
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
<23	90	ALDE	87B	GAM2	38 $\pi^- \rho \rightarrow $	$n + 6\gamma$'s

1/(958) C-NONCONSERVING DECAY PARAMETER

See the note on η decay parameters in the Stable Particle Full Listings for definition of this parameter.

DECAY ASYMMETRY PARAMETER FOR $\pi^+\pi^-\gamma$

<u>VALUE</u> -0.01 ±0.04		DOCUMENT ID	_	TECN	COMMENT
	OUR AVERAGE	A 11.1.4.D.A	07	TDC	. + -
-0.019 ± 0.056					$2\gamma \rightarrow \pi^+\pi^-\gamma$
-0.069 ± 0.078	295	GRIGORIAN	75	STRC	2.1 π ⁻ p
0.00 ± 0.10	103	KALBFLEISCH	75	HBC	2.2 K ⁻ p
0.07 ± 0.08	152	RITTENBERG	65	HBC	2.1 – $2.7~K^-~\rho$

$\eta'(958)$ REFERENCES

ROE	90B	PR D41 17	+Bartha, Burke, Garbincius+ (ASP Collab.)
AIHARA	88C	PR D38 1	+Alston-Garnjost+ (TPC-2γ Collab.)
VOROBYEV	88	YAF 48 436	+Golubev, Dolinsky, Druzhinin+ (NOVO)
WILLIAMS	88	PR D38 1365	+Antreasyan, Bartels, Besset - (Crystal Ball Collab.)
AIHARA	87	PR D35 2650	+Alston-Garnjost+ (TPC-2γ Collab.) JP
ALBRECHT	87B	PL B199 457	+Andam, Binder+ (ARGUS Collab.)
ALDE	87B	ZPHY C36 603	+Binon, Bricman+ (LANL, BELG, SERP, LAPP)
ANTREASYAN	87	PR D36 2633	+Bartels, Besset+ (Crystal Ball Collab.)
GIDAL	87	PRL 59 2012	+Boyer, Butier, Cords, Abrams+ (LBL, SLAC, HARV)
ALDÉ	86	PL B177 115	+Binon, Bricman+ (SERP, BELG, LANL, LAPP)
BARTEL	85E	PL 160B 421	+Becker, Cords, Felst+ (JADE Collab.)
ALTHOFF	84E	PL 147B 487	+Braunschweig, Kirschfink, Luebelsmeyer+ (TASSO Collab.)
BERGER	84B	PL 142B 125	(AACH, BERG, DESY, GLAS, HAMB, UMD, SIEG+)
BINON	84	PL 140B 264	+Donskov, Duteil+ (SERP, BELG, LAPP, CERN)
BEHREND	83B	PL 125B 518	+D'Agostini+ (DESY, KARL, MPIM, LALO, LPNP+)
Also	82C	PL 114B 378	Behrend+ (DESY, KARL, MPIM, LALO, LPNP+)
JENNI	83	PR D27 1031	+Burke, Telnov, Abrams, Blocker+ (SLAC, LBL)
BARTEL	82B	PL 113B 190	+Cords+ (DESY, HAMB, HEID, LANC, MCHS+)
DZHELYADIN	81	PL 105B 239	+Golovkin, Konstantinov, Kubarovski+ (SERP)
STANTON	80	PL 92 B 353	+Edwards, Legacey+ (OSU, CARL, MCGI, TNTO)
VIKTOROV	80	SJNP 32 520	+Golovkin, Dzhelyadin, Zaitsev, Mukhin+ (NOVO)
		Translated from YAF	32 1005.
APEL	79	PL 83B 131	+Augenstein, Bertolucci (KARL, PISA, SERP, WIEN)
BINNIE	79	PL 83B 141	+Carr, Debenham, Jones, Karami, Keyne+ (LOIC)
ZANFINO	77	PRL 38 930	+Brockman+ (CARL, MCGI, OHIO, TNTO)
GRIGORIAN	75	NP B91 232	+Ladage, Mellema, Rudnick+ (UCLA)
KALBFLEISCH	75	PR D11 987	+Strand, Chapman (BNL, MICH)
DUANE	74	PRL 32 425	+Binnie, Camilleri, Carr+ (LOIC, 5HMP)
KALBFLEISCH	74	PR D10 916	(BNL)
DANBURG	73	PR D8 3744	+Kalbfleisch, Borenstein, Chapman+ (BNL, MICH) JP
JACOBS	73	PR D8 18	+Chang, Gauthier+ (BRAN, UMD, SYRA, TUFT) JP
APEL	72	PL 40B 680	+Auslander, Muller, Bertolucci+ (KARL, PISA)
DALPIAZ	72	PL 42B 377	+Frabetti, Massam, Navarria, Zichichi (CERN)
BASILE	71	NC 3A 371	+Bollini, Dalpiaz, Frabetti+ (CERN, BGNA, STRB)
HARVEY	71	PRL 27 885	+Marquit, Peterson, Rhoades+ (MINN, MICH)
AGUILAR	70D	PRL 25 1635	Aguilar-Benitez, Bassano, Samios, Barnes+ (BNL)
BENSINGER	70	PL 33B 505	+Erwin, Thompson, Walker (WISC)
RITTENBERG	69	UCRL 18863 Thesis	(LRL) I
DAVIS	68	PL 27B 532	+Ammar, Mott, Dagan, Derrick- (NWES, ANL)
LONDON	66	PR 143 1034	+Rau, Goldberg, Lichtman+ (BNL, SYRA) UP
BADIER	65B	PL 17 337	+Demoulin, Barloutaud+ (EPOL, SACL, AMST)
RITTENBERG	65	PRL 15 556	+Kalbfleisch (LRL, BNL)
DAUBER	64	PRL 13 449	+Slater, Smith, Stork, Ticho (UCLA) JP
Also	64B	Dubna Conf. 1 418	Dauber, Slater, Smith. Stork, Ticho (UCLA)

— OTHER RELATED PAPERS —

OTHER RELATED TALERS					
BICKERSTAFF	82	ZPHY C16 171	+McKellar (MELB)		
ABRAMS	79B	PRL 43 477	+McKellar (MELB) +Alam, Blocker, Boyarski+ (SLAC, LBL) +Golovkin, Gritsuk, Kachanov+ (SERP)		
DZHELYADIN	79B	PL 88B 379	+Golovkin, Gritsuk, Kachanov+ (SERP)		
CERRADA	77	NP B126 189	+Wagner, Blockzijl+ (CERN, AMST, NIJM, OXF) JP		
DELAGUILA	77	PR D16 2833			
GESSAROLI	77	NP B126 382	+ Doncel (BARC) JP + (BGNA, FIRZ, GENO, MILA, OXF, PAVI)		
LEDNICKY	77	JINR E2-10521,22,23	(JINR) JP		
BALTAY	74B	PR D9 2999	+Cohen, Csorna, Habibi, Kaleikar+ (COLU, BING) JP		
GAULT	74	NC 24A 259	+ Jones, Scadron, Thews (DURH, LOIC, ARIZ)		
KALBFLEISCH	73	PRL 31 333	+Chapman+ (BNL, MICH, LBL) JP		
AGUILAR ·	72B	PR D6 29	Aguilar-Benitez, Chung, Eisner, Samios (BNL)		
BINNIE	72	PL 39B 275	+Camilleri, Duane, Garbutt, Burton+ (LOIC, SHMP)		
BLOODWO	72B		Bloodworth, Jackson, Prentice, Yoon (TNTO) +Abolins, Dahl, Danburg, Davies, Hoch+ (LBL)		
RADER	72		+Abolins, Daht, Danburg, Davies, Hoch+ (LBL)		
BARDADIN			Bardadin-Otwinowska, Hofmokl+ (WARS) +Bollini, Dalpiaz, Frabetti+ (CERN, BGNA, STRB)		
BASILE	71B		+Bollini, Dalpiaz, Frabetti+ (CERN, BGNA, STRB)		
OGIEVETSKY		PL 35B 69	+Tybor, Zaslavsky (JINR) +Gobbi, Pouchon, Cnops+ (ETH, CERN, SACL) IJP		
DUFEY	69	PL 29B 605	+Gobbi, Pouchon, Cnops+ (ETH, CERN, SACL) IJP		
MOTT	69	PR 177 1966	+Ammar, Davis, Kropac, Slate+ (NWES, ANL)		
BARBARO		PRL 20 349	Barbaro-Galtieri, Matison, Rittenberg+ (LRL)		
BARLOUTAUD		PL 26B 674	+ (SACL, AMST, BGNA, REHO, EPOL) I		
BOLLINI	68D		+Buhler, Dalpiaz, Massam+ (CERN, BGNA, STRB)		
COHN	66	PL 21 347	+McCulloch, Bugg, Condo (ORNL, TENN, UCND)		
MARTIN	66	PL 22 352	+Crittenden, Schroeder (IND)		
KIENZLE	65	PL 19 438	+Crittenden, Schroeder (IND) +Maglich, Levrat, Lefebvres+ (CERN) +Brown, Goldhaber, Kadyk, Scanio (LRL)		
TRILLING	65	PL 19 427	+ Brown, Goldhaber, Kadyk, Scanio (LRL)		
GOLDBERG	64	PRL 12 546	Gundzik, Lichtman, Connolly, Hart+ (SYRA, BNL)		
GOLDBERG	64B		+Gundzik, Leitner, Connolly, Hart+ (SYRA, BNL)		
KALBFLEISCH			-Alvarez, Barbaro-Galtieri+ (LRL) JP		
KALBFLEISCH	64B	PRL 13 349	+Dahl, Rittenberg (LRL) JP		

 $f_0(975)$ was S(975)

$$I^{G}(J^{PC}) = 0^{+}(0^{++})$$

For early work using Breit-Wigner or scattering length parametrization in fits to the $K\overline{K}$ mass spectrum, see reference section and our 1972 edition.

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

fo(975) MASS OR REAL PART OF POLE POSITION

$D \cap I$	DAG	ITION.	I DE	TERM	ILAIAT	TIONS

VALUE (MeV)	DOCUMENT ID	TEC	NCOMMENT
975.6± 3.1 OUR AVERAGE	Error includes scale		
978 ± 9	ABACHI	86B HR	$6 e^+ e^- \rightarrow \pi^+ \pi^-$
974.0± 4.0			K2 J/ψ decay
986 ±10	AGUILAR	78 HB	$C 0.7 \overline{p}p \rightarrow K_S^0 K_S^0$
969.0 ± 5.0			PK 2-2.4 π ⁻ p
987 ± 7	BINNIE	73 CN	TR $\pi^- p \rightarrow n MM$
• • • We do not use the follow	ing data for average	s, fits, lim	nits, etc. • • •
985.0±39.0	¹ ETKIN	82B MP	$9 23 \pi^- \rho \rightarrow n2K_S^0$
1012 ± 6	² GRAYER	73 ASI	PK 17 $\pi^- p \rightarrow \pi^+ \tilde{\pi}^- n$
1007 ±20			PK 17 $\pi^{-} p \to \pi^{+} \pi^{-} n$
007 + 6	2 PROTOPOP	73 HR	$C = 7 \pi^+ \rho \rightarrow \pi^+ \rho \pi^+ \pi^-$

 $^{^{1}\,\}mbox{ETKIN}$ 82B quotes errors $^{+}_{-39}^{9}$ MeV. We use $\pm\,39$ MeV in the average.

MASS DETERMINATIONS

(Real part of mass matrix eigenvalue)

VALUE (MeV)	DOCUMENT ID	TECN_
• • We do not use the following	data for averages, fit	s, limits, etc. • • •

985 3 TORNQVIST 82 RVUE 975 3 ACHASOV 80 RVUE

€ (975) WIDTH OR IMAGINARY PART OF POLE POSITION

POLE POSITION DETERMINATIONS

(Corresponds to half-width, not full width.)

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
16.8± 2.8 OUR AVER	AGE			
29 ± 13	ABACHI	86B	HRS	$e^+ e^- \rightarrow \pi^+ \pi^-$
14.0 ± 5.0	GIDAL	81	MRK2	J/ψ decay
15.0 ± 4.0	LEEPER	77	ASPK	2-2.4 π ⁻ p
24 ± 7	BINNIE	73	CNTR	$\pi^- \rho \rightarrow n MM$
• • • We do not use th	e following data for average	s, fits	s, limits,	etc. • • •
$60.0^{+141.0}_{-10.0}$	ETKIN			$23~\pi^-\rho\to~n2K_S^0$
50 ± 40	4 AGUILAR	78	HBC	$0.7 \overline{p}p \rightarrow K_S^0 K_S^0$
16 ± 5	⁵ GRAYER	73	ASPK	$17 \pi^{-} \rho \rightarrow \pi^{+} \pi^{-} n$
15 ± 5	⁵ HYAMS	73	ASPK	$17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$
27 + 8	5 PROTOPOP	73	HRC	$7 \pi^+ \rho \rightarrow \pi^+ \rho \pi^+ \pi$

 $^{^4}$ From coupled channel fit to the HYAMS 73 and PROTOPOPESCU 73 data. With a simultaneous fit to the $\pi\pi$ phase-shifts, inelasticity and to the K_S^0 K_S^0 invariant mass.

FULL WIDTH DETERMINATIONS

(From imaginary part of	i mass matrix eigenvalue	=)	
VALUE (MeV)	DOCUMENT ID	TECN	
• • • We do not use the follo	owing data for averages,	fits, limits, et	C. • • •
~ 400	6 TORNQVIST	82 RVUE	
70 to 300	⁶ ACHASOV	80 RVUE	

⁶ Coupled channel analysis with finite width corrections.

f₀(975) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ ₁	ππ	(78.1±2.4) %	
Γ ₁ Γ ₂	κ Κ	(21.9 ± 2.4) %	
Γ ₃ Γ ₄	ηη e+e-	< 3 × 10 ⁻¹	7 90%

CONSTRAINED FIT INFORMATION

An overall fit to a branching ratio uses 3 measurements and one constraint to determine 2 parameters. The overall fit has a $\chi^2=2.0$ for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j),$ in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}.$ The fit constrains the x_i whose labels appear in this array to sum to

f₀(975) PARTIAL WIDTHS

$\Gamma(e^+e^-)$					Γ4
VALUE (eV)	90	VOROBYEV 8	7 <u>ECN</u> 8 ND	$\frac{COMMENT}{e^+ e^- \rightarrow \pi^0 \pi^0}$	_

f₀(975) BRANCHING RATIOS

$\frac{\Gamma(\pi\pi)/\left[\Gamma(\pi\pi) + \Gamma(K\overline{K})\right]}{\frac{VALUE}{0.781 \pm 0.024 \text{ OUR FIT}}}$	DOCUMENT ID		<u>TECN</u>	$\Gamma_1/(\Gamma_1+\Gamma_2)$
0.781+0.027 OUR AVERAGE				
0.67 ±0.09	7 LOVERRE	80	HBC	$4 \pi^- p \rightarrow K \overline{K} N$
$0.81 \begin{array}{c} +0.09 \\ -0.04 \end{array}$	7 CASON	78	STRC	$7 \pi^- p \rightarrow n2K_S^0$
0.78 ±0.03	7 WETZEL	76	OSPK	$8.9 \pi^- \rho \rightarrow n2K_S^0$

 7 Measure $\pi\pi$ elasticity assuming two resonances coupled to the $\pi\pi$ and $\mbox{$K'\overline{K}}$ channels \blacksquare only.

f₀(975) REFERENCES

VOROBYEV	88	YAF 48 436	+Golubev, Dolinsky, Druzhinin+ (NOVO)
ABACHI	86B	PRL 57 1990	+Derrick, Blockus+ (PURD, ANL, IND, MICH, LBL)
ETKIN	82B	PR D25 1786	+Foley, Lai+ (BNL, CUNY, TUFT, VAND)
TORNOVIST	82	PRL 49 624	(HELS)
GIDAL	81	PL 107B 153	+Goldhaber, Guy, Millikan, Abrams+ (SLAC, LBL)
ACHASOV	80	SJNP 32 566	+Devyanin, Shestakov (NOVO)
		Translated from '	YAF 32 1098.
LOVERRE	80	ZPHY C6 187	+Armenteros, Dionisi+ (CERN, CDEF, MADR, STOH) IJ
AGUILAR	78	NP B140 73	Aguilar-Benitez, Cerrada+ (MADR, BOMB, CERN+)
CASON	78	PRL 41 271	+Baumbaugh, Bishop, Biswas+ (NDAM, ANL)
LEEPER	77	PR D16 2054	+Buttram, Crawley, Duke, Lamb, Peterson (ISU)
WETZEL	76	NP B115 208	+Freudenreich, Beusch+ (ETH, CERN, LOIC)
BINNIE	73	PRL 31 1534	+Carr, Debenham, Duane, Garbutt+ (LOIC, SHMP)
GRAYER	73	Taliahassee	+Hyams, Jones, Blum, Dietl, Koch+ (CERN, MPIM)
HYAMS	73	NP B64 134	+Jones, Weilhammer, Blum, Dietl+ (CERN, MPIM)
PROTOPOP	73	PR D7 1280	Protopopescu, Alston-Garnjost, Galtieri, Flatte+ (LBL)

- OTHER RELATED PAPERS ----

		OTHE	R RELATED PAPERS
AU	87	PR D35 1633	+Morgan, Pennington (DURH, RAL)
AKESSON	86	NP B264 154	+Albrow, Almehed+ (Axial Field Spec. Collab.)
MENNESSIER	83	ZPHY C16 241	(MONP)
BARBER	82	ZPHY C12 1	+Dainton, Brodbeck, Brookes+ (DARE, LANC, SHEF)
ETKIN	82C	PR D25 2446	+Foley, Lai+ (BNL, CUNY, TUFT, VAND)
ACHASOV	81	PL 102B 196	+Devyanin, Shestakov (NOVO)
AGUILAR	81	ZPHY C10 299	Aguilar-Benitez, Done, Martin (MADR, DURH)
ROUSSARIE	81	PL 105B 304	+Burke, Abrams, Alam+ (SLAC, LBL)
WICKLUND	80	PRL 45 1469	+Ayres, Cohen, Diebold, Pawlicki (ANL)
ACHASOV	79	PL 88B 367	+Devyanin, Shestakov (NOVO)
APEL	79B	NP B160 42	+Auslander, Muller, Rehak+ (KARL, PISA)
BECKER	79	NP B151 46	+Blanar, Blum+ (MPIM, CERN, ZEEM, CRAC)
CORDEN	79	NP B157 250	+Dowell, Garvey+ (BIRM, RHEL, TELA, LOWC) JP
ESTABROOKS	79	PR D19 2678	(CARL)
GREENHUT	79	PR D20 2326	+Intemann (SETO)
POLYCHRO	79	PR D19 1317	Polychronakos, Cason, Bishop+ (NDAM, ANL)
BALAND	78	NP B140 220	+Grard+ (MONS, BELG, CERN, LOIC, LALO)
FROGGATT	77	NP B129 89	+Petersen (GLAS, NORD)
MARTIN	77D	NP B121 514	+Ozmutlu, Squires (DUKE)
PAWLICKI	77	PR D15 3196	+Ayres, Cohen, Diebold, Kramer, Wicklund (ANL) IJ
BRANDENB	76C	NP B104 413	Brandenburg, Carnegie, Cashmore+ (SLAC)
BUTTRAM	76	PR D13 1153	+Crawley, Duke, Lamb, Leeper, Peterson (ISU)
CERRADA	76	PL 62B 353	+Gonzalez-Arroyo, Rubio, Yndurain (CERN, MADR)
FLATTE	76B	PL 63B 228	(CERN)
WILKINS	76	PR D13 1831	+Albright, Hagopian, Hagopian, Lannutti (FSU)
MORGAN	75	Argonne Conf. 45	(RHEL)
PAWLICKI	75	PR D12 631	+Ayres, Diebold, Greene, Kramer, Wicklund (ANL)
BALLAM	74	NP B76 375	+Chadwick, Bingham, Fretter+ (SLAC, LBL, MPIM)
GRAYER	74	NP B75 189	+Hyams, Blum, DietI+ (CERN, MPIM)
MORGAN	74	PL 51B 71	(RHEL)
DIAMOND	73	PR D7 1977	+Binkley+ (WISC, DUKE, COLO, TNTO, OHIO)
FUJII	73	NC 13A 311	+Kato (TOKY)
OCHS	73	Thesis	(MPIM)
BASDEVANT	72	PL 41B 178	+ Froggatt, Petersen (CERN)
DAMERI	72	NC 9A 1	+Borzatta, Goussu+ (GENO, MILA, SACL)
DUBOC	72	NP B46 429	+Goldberg, Makowski, Donald+ (LPNP, LIVP) +Alston-Garnjost, Barbaro-Galtieri+ (LBL)
FLATTE	72	PL 38B 232	
GRAYER	72B	Phil. Conf. 5	
WILLIAMS	72B	PR D6 3178	(FSU) Alston-Garnjost, Barbaro-Galtieri+ (LBL)
ALSTON	71B	PL 36B 152	+Bonnet, Drevillon, Baubillier+ (EPOL, IPNP)
BADIER	70	NP B22 512	+Bonner, Drevillon, Baudillier+ (EPOL, IPNP) +Laurens, Reignier (SACL)
BATON	70	PL 33B 528	+Laurens, reignier (SACL)

² Included in AGUILAR-BENITEZ 78 fit.

³ Coupled channel analysis with finite width corrections.

 $^{^{5}\,\}mbox{Included}$ in AGUILAR-BENITEZ 78 fit.

 $f_0(975), a_0(980)$

BEUSCH	70	Phil. Conf. 185		(ETH, CERN)
HYAMS	70B	Phil. Conf. 41	+Koch, Beusch+ (CERN, MPIM, E	
Also	70	NP B22 189	Hyams, Koch, Potter, VonLindern+	(CERN, MPIM)
ОН	70	PR D1 2494	+Garfinkel, Morse, Walker, Prentice	(WISC, TNTO)
AGUILAR	69C	PL 29B 241	Aguilar-Benitez, Barlow+	(CERN, CDEF)
Also	69	NP B14 195	Aguilar-Benitez, Barlow+	(CERN, CDEF)
HOANG	69	NC 61A 325	Agunu Bentez, Danon +	(ANL)
HOANG	69B	PR 184 1363	+Eartly, Phelan, Roberts+	
ALITTI	68B	PRL 21 1705		(ANL, ILLC)
LAI	68		+Barnes, Crennell, Flaminio, Goldberg+	(BNL)
		Phil. Conf. 303		(BNL)
PHELAN	68	Thesis		(ANL, STLO)
Also	68	PRL 21 316		IL, CHIC, NDAM)
BARLOW	67	NC 50A 701	+Lillestol, Montanet+ (CERN, CE	DEF, IRAD, LIVP)
BEUSCH	67	PL 25B 357	+Fischer, Gobbi, Astbury+	(ETH, CERN)
DAHL	67	PR 163 1377	+Hardy, Hess, Kirz, Miller	(LRL)
CRENNELL	66	PRL 16 1025	+Kalbfleisch, Lai, Scarr, Schumann+	(BNL)
HESS	66	PRL 17 1109	+Dahl, Hardy, Kirz, Miller	(LRL)
BALTAY	64	Dubna Conf. 1 409	+Lach, Crennell, Oren, Stump+	(YALE, BNL)
BARMIN	64B	Dubna Conf. 1 433	+Dolgolenko, Yerofeev, Krestni-	(ITEP)
BIGI	62	CERN Conf. 247	+Brandt, Carrara+	(CERN)
BINGHAM	62	CERN Conf. 240	+Bloch+	(EPOL. CERN)
ERWIN	62	PRL 9 34	+Hoyer, March, Walker, Wangler	
		JETP 13 323		(WISC, BNL)
WANG	61		+Veksler, Vrana+	(JINR)
		Translated from ZETF	4U 464.	

 $a_0(980)$ was $\delta(980)$

 $I^G(J^{PC}) = 1^-(0^{++})$

NOTE ON $a_0(980)$

A conventional $q\bar{q}$ assignment of this scalar meson still remains an intriguing question.

Its observed mass and width are inconsistent, a priori, with the properties expected for a member of a L=1 $q\overline{q}$ nonet. However, since the mass and width are distorted by the proximity of the $K\overline{K}$ threshold, its nature can be better investigated using different experimental observations.

TORNQVIST 82 has shown that it is possible to understand the unusual experimental features of this particle within a unitarized quark model. As for the $f_0(975)$, the $a_0(980)$ can be interpreted as a normal $q\bar{q}$ resonance with a large admixture of $K\bar{K}$, $\eta'\pi$, and $\eta'\pi$ continuum state.

Assuming the dominance of the decay chain $\eta'(958) \rightarrow a_0(980)\pi \rightarrow \eta\pi\pi$, BRAMON 80 concludes that the experimental value $\Gamma(\eta'(958) \rightarrow \eta\pi\pi) \approx 200$ keV is fully consistent with a $q\bar{q}$ interpretation. The same analysis finds additional evidence in favor of a $q\bar{q}$ interpretation of the $a_0(980)$: in fact, if the $a_0(980)$ is a $q\bar{q}$ state, one expects that the decay chain $f_1 \rightarrow a_0(980)\pi \rightarrow \eta\pi\pi$ will be more important for the $f_1(1285)$ than for the $f_1(1420)$, the reverse being true if the $a_0(980)$ were a $q\bar{q}q\bar{q}$ state with a strange quark component. In practice, the $f_1(1285) \rightarrow a_0(980)\pi \rightarrow \eta\pi\pi$ is observed, while the $f_1(1420) \rightarrow a_0(980)\pi \rightarrow \eta\pi\pi$ is (practically) absent.

The main point in favor of the interpretation of this particle as a $q\bar{q}q\bar{q}$ state is its almost complete degeneracy in mass with the isoscalar $f_0(975)$, together with the fact that the $f_0(975)$ couples much more to the $K\bar{K}$ than to the $\pi\pi$ system. A Crystal Ball measurement of the $a_0(980) \to \gamma\gamma$ suppression in the reaction $\gamma\gamma \to a_0(980) \to \eta\pi$ (ANTREASYAN 86) has reinforced this four-quark interpretation point of view. ACHASOV 88B points out that none of the calculations performed in the framework of a $q\bar{q}$ scheme has been able to predict such a narrow $a_0(980) \to \gamma\gamma$ width as the one found by the Crystal Ball. He then argues in favor of an unusual nature of the $a_0(980)$ resonance and shows that a four-quark model is instead able to give the correct order of magnitude for the suppression of the 2γ production for both the scalar $a_0(980)$ and $f_0(975)$ mesons.

Another interesting non- $q\bar{q}$ interpretation is given by the model of WEINSTEIN 83B, 89. In this work the $q\bar{q}q\bar{q}$ system is investigated using the nonrelativistic quark model; assuming a large hyperfine interaction, the $a_0(980)$ and $f_0(975)$ are both interpreted as $K\bar{K}$ bound states and then the P-wave $q\bar{q}$ states would be all in the 1300 MeV mass region. With this S-wave $K\bar{K}$ molecule assignment, many of the peculiar properties of the $a_0(980)$ and $f_0(975)$ (masses, widths, branching fractions and two photon widths) appear clarified.

		a ₀ (980) MAS	SS			
ηπ FINAL STAT	E ONLY					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
983.3± 2.6 OUR	AVERAGE I	Error includes scale t	actor	of 1.2.		
976 ± 6		ATKINSON	84E	OMEG	±	$25-55 \gamma \rho \rightarrow \eta \pi n$
986 ± 3	500	1 EVANGELISTA	81	OMEG		$12 \pi^- p \rightarrow \eta \pi p$
990.0± 7.0	145	¹ GURTU	79	нвс	±	$4.2 K^- p \rightarrow \Lambda n 2\pi$
977.0 ± 7.0		GRASSLER	77	нвс	_	$16 \pi^{\mp} p \rightarrow p \eta 3 \pi$
972 ± 10	150	DEFOIX	72	HBC	+	$0.7 \overline{\rho} \rho \rightarrow 7\pi$
• • • We do not u	se the follow	ing data for average	s, fits	, limits,	etc.	
980 ±11	47	CONFORTO	78	OSPK	-	4.5 $\pi^- p \rightarrow$
978.0 ± 16.0	50	CORDEN	78	OMEG	±	pX^{-} 12-15 π^{-} $p \rightarrow \pi \eta 2\pi$
989.0± 4.0	70	WELLS	75	HBC	-	3.1−6 K ⁻ p → Λη2π
970.0 ± 15.0	20	BARNES	69c	нвс	-	4-5 K ⁻ ρ → Λη2π
980 ±10		CAMPBELL	69	DBC	+	$2.7 \pi^{+} d$
980.0 ± 10.0	15	MILLER	69B	HBC	-	4.5 K ⁻ N →
						ηπΛ
980.0±10.0	30	AMMAR	68	нвс	±	$5.5 K^- \rho \rightarrow \Lambda \eta 2\pi$
1 From $f_{1}(1285)$	decay.					
$K\overline{K}$ ONLY						
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
976 ± 6	316	DEBILLY	80	нвс	±	$\begin{array}{c} 1.2-2 \ \overline{p}p \rightarrow \\ f_1(1285)\omega \end{array}$
 • • We do not u 	se the followi	ng data for average	s, fits	, limits,	etc. •	• •
1016 ± 10	100	² ASTIER	67	нвс	±	0.0 pp
1003.3 ± 7.0	143	3 ROSENFELD	65	RVUE	±	• •
² ASTIER 67 incl ³ Plus systematic	udes data of errors.	BARLOW 67, CON	FOR ⁻	TO 67, A	ARME	NTEROS 65.

$\eta\pi$ FINAL ST	TATE ONLY					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
57 ±11 OUF	R AVERAGE				_	
62 ±15	500	4 EVANGELISTA	81	OMEG		$12 \pi^- p \rightarrow \eta \pi p$
60.0 ± 20.0	145	⁴ GURTU	79	HBC	±	
44.0 ± 22.0		GRASSLER	77	HBC	_	$16 \pi^{\frac{1}{2}} \rho \rightarrow \rho n 3\pi$
• • • We do no	ot use the following	data for average	s, fits	, limits,	etc.	
± 50	_	•				
60 + 50 - 30	47	CONFORTO	78	OSPK	-	$4.5 \pi^- \rho \rightarrow$
						ρX [—]
$86.0^{+60.0}_{-50.0}$	50	CORDEN	78	OMEG	±	$12-15 \pi^- p \rightarrow$
		•				$n\eta 2\pi$
80 to 300		⁵ FLATTE	76	RVUE	-	4.2 K ⁻ $\rho \rightarrow$
25.0						$\Lambda \eta 2\pi$
$16.0^{+25.0}_{-16.0}$	70	WELLS	75	HBC	-	3.1-6 K ⁻ p →
						$\Lambda \eta 2\pi$
30 ± 5	150	DEFOIX	72	нвс	±	* *
40 ±15		CAMPBELL	69	DBC	±	$2.7 \pi^{+} d$
60.0 ± 30.0	15	MILLER	69B	HBC	_	$4.5 K^- N \rightarrow$

a₀(980) WIDTH

 80.0 ± 30.0

⁵ Using a two-channel resonance parametrization of GAY 76B data.

ALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>
• • • We do not us	se the following	ng data for average	s, fit	s, fimits,	etc. • • •
~ 25	100				±
57.0 ± 13.0	143	7 ROSENFELD	65	RVIIE	+

⁴ From f₁ (1285) decay.

< 0.25

a₀(980) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	$\eta\pi_{-}$	seen
Γ_2	ΚK	seen
Γ3	$ ho\pi$	
	$\pi \eta'(958)$	
Γ5	$\gamma\gamma$	seen
Γ ₆	e ⁺ e ⁻	

$a_0(980) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\frac{\Gamma(\eta\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}}{^{\text{VALUE}\ (\text{keV})}}$ $0.19 \pm 0.07 ^{+0.10}_{-0.07}$	<u>DOCUMENT II</u> ANTREASY		$e^+ e^- \rightarrow$	$\frac{\Gamma_1\Gamma_5/\Gamma}{e^+ e^- \pi^0 \eta}$
$\frac{\Gamma(\eta\pi)\times\Gamma(e^+e^-)/\Gamma_{\text{to}}}{\stackrel{VALUE\ (eV)}{<1.5}} \frac{CL}{90}$	M DOCUMENT IE	88 ND	$\frac{COMMENT}{e^+ e^- \rightarrow 0}$	$\frac{\Gamma_1\Gamma_6/\Gamma}{\pi^0 \eta}$

a₀(980) BRANCHING RATIOS

$\Gamma(K\overline{K})/\Gamma(\eta\pi)$						Γ_2/Γ_1
VALUE		DOCUMENT ID	,	TECN	CHG	COMMENT
• • • We do not use	the followin	g data for averag	ges, fit	s, limits,	etc.	• •
0.7 ±0.3		⁸ CORDEN	78	OMEG		$\begin{array}{c} 12\text{-}15 \ \pi^- \ p \rightarrow \\ n\eta 2\pi \end{array}$
0.25 ± 0.08 8 From the decay of	f ₁ (1285).	⁸ DEFOIX	72	нвс	±	$0.7 \overline{p} \rightarrow 7\pi$
$\Gamma(\rho\pi)/\Gamma(\eta\pi)$						Γ_3/Γ_1
VALUE	<u>CL%</u>	DOCUMENT ID	<u> </u>	TECN	CHG	COMMENT
• • • We do not use	the followin	g data for averag	es, fit	s, limits,	etc.	• •

a₀(980) REFERENCES

70 HBC ±

 $\begin{array}{c} 4.1,5.5 \ K^- \ p \rightarrow \\ \Lambda \eta 2\pi \end{array}$

VOROBYEV	88	YAF 48 436	+Golubev, Dolinsky, Druzhinin+ (NOVO)
ANTREASYAN	86	PR D33 1847	+Aschman, Besset, Bienlein+ (Crystal Ball Collab.)
ATKINSON	84E	PL 138B 459	+ (BONN, CERN, GLAS, LANC, MCHS, LPNP+)
EVANGELISTA	81	NP 8178 197	+ (BARI, BONN, CERN, DARE, LIVP+)
DEBILLY	80	NP B176 1	+Briand, Duboc, Levy+ (CURI, LAUS, NEUC, GLAS)
GURTU	79	NP B151 181	+Gavillet, Blokzijl+ (CERN, ZEEM, NIJM, OXF)
CONFORTO	78	LNC 23 419	+Conforto, Key+ (RHEL, TNTO, CHIC, FNAL+)
CORDEN	78	NP B144 253	+Corbett, Alexander+ (BIRM, RHEL, TELA, LOWC)
GRASSLER	77	NP B121 189	+ (AACH, BERL, BONN, CERN, CRAC, HEID+)
FLATTE	76	PL 63B 224	(CERN)
GAY	76B	PL 63B 220	+Chaloupka, Blokziji, Heinen+ (CERN, AMST, NIJM) JI
WELLS	75	NP B101 333	+Radojicic, Roscoe, Lyons (OXF)
DEFOIX	72	NP B44 125	+Nascimento, Bizzarri+ (CDEF, CERN)
AMMAR	70	PR D2 430	+Kropac, Davis+ (KANS, NWES, ANL, WISC)
BARNES	69C	PRL 23 610	+Chung, Eisner, Bassano, Goldberg+ (BNL, SYRA)
CAMPBELL	69	PRL 22 1204	+Lichtman, Loeffler+ (PURD)
MILLER	69B	PL 29B 255	+Kramer, Carmony+ (PURD)
Also	69	PR 188 2011	Yen, Ammann, Carmony, Eisner+ (PURD)
AMMAR	68	PRL 21 1832	+Davis, Kropac, Derrick, Fields+ (NWES, ANL)
ASTIER	67	PL 25B 294	+Montanet, Baubillier, Duboc+ (CDEE CERN (RAD)
Includes da	ta of	BARLOW 67, CONFORT	TO 67, and ARMENTEROS 65.
	67	NC 50A 701	+Lillestol, Montanet+ (CERN, CDEF, IRAD, LIVP)
	67	NP B3 469	+Marechal+ (CERN, CDEF, IPNP, LIVP)
ARMENTEROS		PL 17 344	+Edwards, Jacobsen+ (CERN, CDEF)
ROSENFELD	65	Oxford Conf. 58	(LRL)
			` ,

OTHER RELATED PAPERS —

WEINSTEIN	89	UTPT 89 03	+lsgur	(TNTO)
ACHASOV	88B	ZPHY C41 309	+Shestakov	(NOVO)
WEINSTEIN	83B	PR D27 588	+ Isgur	(TNTO)
TORNQVIST	82	PRL 49 624	-	(HELS)
BRAMON	80	PL 93B 65	+ Masso	(BARC)
KIENZLE	65	PL 19 438	+Maglich, Levrat, Lefebvres+	(CERN)
TURKOT	63	Siena Conf. 1 661	+Collins, Fujii, Kemp+	(BNL, PITT)

$$I^{G}(J^{PC}) = 0^{-}(1^{--})$$

$\phi(1020)$ MASS

We average mass and width values only when the systematic errors have been

VALUE (1		8 OUR AVERA	EVTS		DOCUMENT ID	_	TECN	COMMENT
	±0.00	8 OUR AVERA	2012		DAVENPORT	86	MPSF	400 pA → 4K
		-		1	-			X .
1019.41	1±0.00	8	642k	1	DIJKSTRA	86	SPEC	100–200 π^{\pm} , \bar{p} , p , K^{\pm} , on Be
1019.7	± 0.1	± 0.1	5079		ALBRECHT	85 D	ARG	p, K+, on Be e+e- → hadrons
1019.3	± 0.1		1500		ARENTON	82	AEMS	11.8 polar. pp → KK
1019.67			25080	2	PELLINEN	82	RVUE	FF
1019.52					BUKIN		OLYA	e^+ e^-
• • • V	Ve do no	ot use the follo	wing data t	for	averages, fits, II	mits	, etc. •	• •
1019.8	±0.7				ARMSTRONG	86	OMEG	85 $\pi^+/pp \rightarrow \pi^+/p4Kp$
1020.1	± 0.11		5526	3	ATKINSON	86	OMEG	20-70 γp
1019.7	± 1.0				BEBEK	86	CLEO	e ⁺ e [−] →
1020.9	±0.2			3	FRAME	86	OMEG	$\Upsilon(4S)$ 13 $K^+ p \rightarrow$
1020.7								άK ⁺ n
1021.0	± 0.2			3	ARMSTRONG	83B	OMEG	18.5 $K^- p \rightarrow$
1020.0	±0.5			3	ARMSTRONG	83B	OMEG	
1019.7	±0.3			3	BARATE	83	GOLI	K ⁻ K ⁺ Λ 190 π ⁻ Be →
1019.8	±0.2	±0.5	766		IVANOV	81	OLYA	$2\mu X$ 1-1.4 e ⁺ e ⁻ \rightarrow
1019.4	±0.5		337		COOPER	78B	нвс	K^+K^- 0.7-0.8 $\vec{p}p \rightarrow$
1020.0	±1.0		383	3	BALDI	77	CNTR	$\begin{array}{c} \kappa_{5}^{0} \kappa_{L}^{0} \\ 10 \pi^{-} \rho \rightarrow \end{array}$
1018.9	±0.6		800		COHEN	77	ASPK	$6 \pi^{\pm} N \rightarrow$
1019.7	±0.5		454		KALBFLEISCH	76	нвс	K ⁺ K [−] N 2.18 K [−] p →
1019.4	±0.8		984		BESCH	74	CNTR	$2 \stackrel{K\overline{K}n}{\gamma \rho \rightarrow} \rho K^+ K^-$
1020.3	±0.4		100		BALLAM	73	нвс	2.8-9.3 γp
1019.4	± 0.7				BINNIE	73B	CNTR	$\pi^- p \rightarrow \phi n$
1019.6	± 0.5		120	4	AGUILAR	72B	HBC	3.9,4.6 $K^- \rho \rightarrow$
1019.9	±0.5		100	4	AGUILAR	72в	нвс	$\Lambda K^{+} K^{-}$ 3.9,4.6 $K^{-} p \rightarrow K^{-} p K^{+} K^{-}$
1020.4	±0.5		131		COLLEY	72	нвс	10 K ⁺ p →
1019.9	±0.3		410		STOTTLEMYE	R1	нвс	$K^+ p \phi$ 2.9 $K^- p \rightarrow \Sigma / \Lambda K \overline{K}$

1 Weighted and scaled average of 12 measurements of DIJKSTRA 86.
2 PELLINEN 82 review includes AKERLOF 77, DAUM 81, BALDI 77, AYRES 74, DEG-ROOT 74.
3 Systematic errors not evaluated.

$\phi(1020)$ WIDTH

We average mass and width values only when the systematic errors have been

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
4.41 ± 0.07 OUR FIT	Error inc	ludes scale factor of	1.2.		
4.41 ± 0.06 OUR AVER	RAGE				
4.45 ± 0.06	271k	DIJKSTRA	86	SPEC	100 π Be
4.5 ± 0.7	1500	ARENTON	82	AEMS	11.8 polar. $pp \rightarrow KK$
4.2 ± 0.6	766	⁵ IVANOV	81	OLYA	$1-1.4 e^+ e^- \rightarrow$
4.3 ±0.6		⁵ CORDIER	80	WIRE	$e^{+} \stackrel{K^{+}}{e^{-}} \stackrel{K^{-}}{\rightarrow} \pi^{+} \pi^{-} \pi^{0}$
4.36 ± 0.29	3681	^{5,6} BUKIN	78c	OLYA	e+ e-
4.5 ± 0.50	1300	^{5,7} AKERLOF	77	SPEC	$400 pA \rightarrow K^+ K^- X$
4.4 ±0.6	984	⁵ BESCH	74	CNTR	$2 \gamma p \rightarrow p K^+ K^-$
3.81 ± 0.37		COSME		OSPK	
3.8 ± 0.7	454	5 BORENSTEIN	72	HBC	$2.18 \ K^- p \rightarrow K \overline{K} n$
4.67 ± 0.72	681	⁵ BALAKIN		OSPK	
4.09 ± 0.29		BłZOT	70	OSPK	$e^+ e^-$

⁴ Mass errors enlarged by us to $\Gamma/N^{1/2}$; see the note with the K^* (892) mass.

$\phi(1020)$

• • • We do not use th	e followii	ng data for averages	, fits	, limits,	etc. • • •
8.9 ±0.3		⁷ FRAME	86	OMEG	13 $K^+ \rho \rightarrow \phi K^+ \rho$
3.6 ±0.8	337	⁵ COOPER	78B	HBC	$0.7-0.8 pp \rightarrow K_5^0 K_1^0$
4.5 ±0.8	500	5,7 AYRES			3-6 π ⁺ p →
					K^+K^-n , $K^-p \rightarrow$
					$\kappa^+ \kappa^- \Lambda / \Sigma^0$
4.2 ±1.3	170	^{5,7} DEGROOT	74	HBC	$4.2 K^- p \rightarrow \Lambda K^+ K^-$
3.8 ±1.5	100	⁵ BALLAM	73	HBC	2.8-9.3 γp
4.5 ± 1.1				CNTR	$\pi^- \rho \rightarrow \phi n$
4.6 ±1.7	120	⁵ AGUILAR	72B	HBC	3.9,4.6 $K^- p \rightarrow$
					$\Lambda K^+ K^-$
4.7 ± 1.9	100	⁵ AGUILAR	72B	HBC	3.9,4.6 $K^- p \rightarrow$
		E			κ- pK+ K-
5.0 ±1.8	131	5 COLLEY		HBC	$10 K^+ p \rightarrow K^+ p \phi$
4.2 ±1.4	150	⁵ AUGUSTIN	69	OSPK	e^+e^-
5 Width errors enlarge	t by us t	0 45 /N1/2, see the	not	a with th	no K* (903) mass

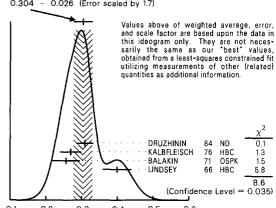
⁵ Width errors enlarged by us to $4\Gamma/N^{1/2}$; see the note with the K^* (892) mass.

$\phi(1020)$ DECAY MODES

	7()		
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ1	K+K-	(49.5 ±1.1) %	S=1.4
Γ_2	$\kappa_L^0 \kappa_S^0$	$(34.4 \pm 0.9)\%$	S=1.4
Γ_3	$ ho \pi$	(12.9 ± 0.7) %	
Γ4	$\pi^{+}\pi^{-}\pi^{0}$	$(1.9 \ ^{+1.2}_{-1.0})\%$	S=1.3
Γ_5	$\eta \gamma$	(1.28 ± 0.06) %	S=1.2
	$\pi^0\gamma$	$(1.31 \pm 0.13) \times 10$	₀ –3
Γ_7	e+ e-	$(3.11 \pm 0.10) \times 10$	o ⁻⁴
Γ8	$\mu^+\mu^-$	$(2.48\pm0.34)\times10$) ⁻⁴
Γ9	ηe^+e^-	$(1.3 \begin{array}{c} +0.8 \\ -0.6 \end{array}) \times 10^{-1}$	0^{-4}
Γ_{10}	π + π ~	(8 ⁺⁵ ₋₄) × 10	o ⁻⁵ S=1.5
Γ_{11}	$\omega \gamma$	< 5 %	CL=84%
Γ_{12}	$\rho\gamma$	< 2 %	CL=84%
Γ_{13}	$\pi^+\pi^-\gamma$	< 7 × 10) ⁻³ CL=90%
Γ_{14}	$f_0(975)\gamma$	< 2 × 10) ⁻³ CL=90%
Γ_{15}	$\pi^0\pi^0\gamma$	< 1 × 10)-3 CL=90%
Γ_{16}	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 8.7 × 10	0 ^{−4} CL=90%
Γ17	$\eta'(958)\gamma$	< 4.1 × 10) ⁻⁴ CL=90%
Γ ₁₈	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 1.5 × 10) ⁻⁴ CL=95%
Γ ₁₉	$\pi^0 e^+ e^-$	< 1.2 × 10)-4 CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, and 9 branching ratios uses 40 measurements and one constraint to determine 6 parameters. The overall fit has a $\chi^2=42.1$ for 35 degrees of freedom.


The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)	Scale factor	
$\overline{\Gamma_1}$	K+K-	2.19 ±0.06	1.3	
Γ_2	KOKO	1.52 ± 0.05	1.3	
Γ_3	$\rho\pi$	0.570 ± 0.030		
Γ4	$\pi^{+}\pi^{-}\pi^{0}$	0.08 ± 0.05	1.3	
Γ ₅	$\eta \gamma$	0.0567 ± 0.0029	1.2	

ϕ (1020) PARTIAL WIDTHS

$\Gamma(\rho\pi)$					Γ3
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
0.570±0.030 OUR FIT					
0.57 ±0.03	JULLIAN	76	OSPK	e^+ e^-	

$\Gamma(e^+e^-)$ $\frac{VALUE~(keV)}{1.37\pm0.05~{\rm OUR~EVALU}}$	JATION	DOCUMENT ID				Γ ₇
	φ(102	20) BRANCHIN	G R	ATIOS		
$\Gamma(K^+K^-)/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE	EVT5	DOCUMENT ID		TECN	COMMENT	-,
0.495 ± 0.011 OUR FIT	Error in	cludes scale factor				
0.497±0.019 OUR AVE	RAGE					
0.45 ± 0.05	321	KALBFLEISCH	176	нвс	2.18 K ⁻ p	
0.49 ± 0.06	270	DEGROOT	74	HBC	$4.2 K^- p \rightarrow \Lambda \phi$	
0.540 ± 0.034		BALAKIN	71	OSPK	e+ e-	
0.486 ± 0.044		CHATELUS	71	OSPK	e+ e-	
0.48 ± 0.04	252	LINDSEY	66	нвс	2.7 K ⁻ p	
$\Gamma(K_L^0 K_S^0)/\Gamma_{\text{total}}$						Γ_2/Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	- 21
0.344 ± 0.009 OUR FIT					COMMENT	
0.304 ± 0.026 OUR AVE	RAGE I	Error includes scale	fact	or of 1.7	. See the ideogram	below
0.310 ± 0.024		DRUZHININ			$e^+ e^- \rightarrow K_I^0 K_S^0$	
0.27 ±0.03	133	KALBFLEISCH	176		L .	,
0.257 ± 0.038		BALAKIN		OSPK		
0.40 ±0.04	167	LINDSEY			2.7 K ⁻ p	
WEIGHTED 0.304 + 0		GE Fror scaled by 1	.7)			

 $\frac{\left[\left(\rho \pi \right) + \Gamma \left(\pi^+ \pi^- \pi^0 \right) \right] / \Gamma_{\text{total}}}{\frac{VALUE}{0.148 \pm 0.010 \text{ OUR FIT}}} \frac{DOCUMENT ID}{\text{Error includes scale factor of } 1.7. } \frac{COMMENT}{0.139 \pm 0.007} \frac{OMMENT}{0.139 \pm 0.007} \frac{PARROUR}{0.148 \pm 0.010 \text{ OPK}} \frac{e^+ e^-}{e^-}$

 $\Gamma(\kappa_L^0 \kappa_S^0)/\Gamma_{\text{total}}$

 8 Using total width 4.1 MeV. The 3π mode is more than 80%. $\rho\pi$ at the 90% confidence level

$\Gamma(K_L^0K_S^0)/\Gamma(K\overline{K})$					$\Gamma_2/(\Gamma_1+\Gamma_2)$
VALUE	<u>EVTS</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
0.410±0.010 OUR FIT		ides scale factor	of 1.	3.	
0.45 ± 0.04 OUR AVE	RAGE				
0.44 ± 0.07		LONDON	66	HBC	2.2 K ⁻ p
0.48 ±0.07	52	BADIER	65E	HBC	3 K - p
0.40 ± 0.10	10	SCHLEIN	63	HBC	2.0 K [−] p
$\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)$	π ⁰)]/Γ(<i>K</i>	\overline{K})			$(\Gamma_3+\Gamma_4)/(\Gamma_1+\Gamma_2)$
VALUE		DOCUMENT ID		TECN	COMMENT
0.177 ± 0.014 OUR FIT	Error inclu	ides scale factor	of 1.	7.	
0.24 ±0.04 OUR AVE	RAGE				
0.237 ± 0.039		CERRADA	77B	HBC	$4.2~K^-~\rho \rightarrow ~\Lambda 3\pi$
0.30 ± 0.15		LONDON	66	HBC	2.2 K ⁻ p
$[\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-)]$	π^0)]/ $\Gamma(K$	0 KS)			$(\Gamma_3+\Gamma_4)/\Gamma_2$
VALUE		DOCUMENT ID			COMMENT
0.431 ± 0.035 OUR FIT	Error inclu	ides scale factor	of 1.	6.	
0.49 ±0.05 OUR AVE	RAGE				
0.56 ± 0.13		BUKIN	780	OLYA	e + e -
0.47 ±0.06		COSME	74	OSPK	e+ e-
$\Gamma(\mu^+\mu^-)/\Gamma_{total}$					Γ_8/Γ
VALUE (units 10-4)		DOCUMENT ID		TECN	COMMENT
2.48±0.34 OUR AVERA	AGE				
2.69 ± 0.46		HAYES	71	CNTR	Photoproduction
2.17 ± 0.60		EARLES	70	CNTR	6.0 Bremsstr.
2.34 ± 1.01		MOY	69	CNTR	Photoproduction

⁶ Number of events includes a small background contribution.

⁷ Systematic errors not evaluated.

 ϕ (1020)

$(\eta \gamma)/\Gamma_{\rm total}$						Γ_5/Γ
ALUE	<u>EVTS</u>	DOCUMENT ID			COMMENT	
0.0128±0.0006 OU 0.0128±0.0007 OU		Error includes scale fact			1.2	
.0130±0.0006		⁹ DRUZHININ	84	ND	e ⁺ e [−] →	3γ
.014 ±0.002		¹⁰ DRUZHININ	84	ND	e^+e^-	
$.0088 \pm 0.0020$	290	KURDADZE		OLYA	e+ e− →	
.0135±0.0029	54	ANDREWS 9 COSME	77	CNTR		u
.015 ±0.004		COSME	76	OSPK	e+ e-	
9 From 2γ decay 10 From $3\pi^0$ decay	mode of η .					
$(\pi^+\pi^-\gamma)/\Gamma_{\rm tot}$	al					Γ_{13}/Γ
ALUE	CL%_	DOCUMENT ID				
<0.007	90	COSME		OSPK		
		ng data for average				
<0.06	90	KALBFLEISCI		HBC	2.2 K ⁻ p 2.7 K ⁻ p	
<0.04		LINDSEY	65	HBC	2.7 K p	
$(\omega \gamma)/\Gamma_{\text{total}}$						Γ_{11}/Γ
ALUE	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.05	84	LINDSEY	66	HBC	2.7 K ⁻ p	
() /5						- /-
$(\rho\gamma)/\Gamma_{\text{total}}$						Γ_{12}/Γ
ALUE	<u>CL%</u>	DOCUMENT ID			COMMENT	
<0.02	84	LINDSEY	66	нвс	2.7 K ⁻ p	
$(e^+e^-)/\Gamma_{\text{total}}$						Γ_7/Γ
ALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	. ,,,
11±0.10 OUR A	/ERAGE	DOCOMENT ID		, = C/V	COMMENT	
.00 ± 0.21		BUKIN	78 c	OLYA	$e^+ e^-$	
10 ± 0.14		¹¹ PARROUR	76	OSPK	e^+e^-	
3 ±0.3		COSME	74	OSPK	e+ e-	
81±0.25		BALAKIN CHATELUS	71	OSPK OSPK	e+ e- e+ e-	
50±0.27			71			
Using total wid مناطقة الما الداء الله With سالة	tn 4.2 MeV. T	They detect 3π market for in the result of	ode a	nd obse	rve significa	nt interference
	accounted	or in the result t	Juorec	acove.		
$(\pi^0 \gamma) / \Gamma_{\text{total}}$						Γ_6/Γ
(· /// Will						. 0, .
	EVTS	DOCUMENT ID		TECN	COMMENT	. 0, -
ALUE (units 10 ⁻³) 31±0.13 OUR AV						
31±0.13 OUR AV 30±0.13	/ERAGE	DRUZHININ	84	ND	e ⁺ e [−] →	
31±0.13 OUR AV 30±0.13					e ⁺ e [−] →	
4LUE (units 10 ⁻³) 31±0.13 OUR AV 30±0.13 4 ±0.5	/ERAGE	DRUZHININ	84	ND	e ⁺ e [−] →	3γ
$\frac{\text{ALUE (units }10^{-3})}{31\pm0.13}$ OUR AV 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma_{ ext{total}}$	/ERAGE 32	DRUZHININ COSME	84 76	ND OSPK	e+ e− → e+ e−	
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma_{\text{total}}$ ALUE (units 10^{-4})	/ERAGE 32 	DRUZHININ COSME	84 76	ND OSPK	$e^+e^- \rightarrow e^+e^-$	3γ
ALUE (units 10^{-3}) .31 ± 0.13 OUR AV .30 ± 0.13 .4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ ALUE (units 10^{-4})	/ERAGE 32 	DRUZHININ COSME	84 76	ND OSPK	$e^+e^- \rightarrow e^+e^-$	3γ
ALUE (units 10^{-3}) $.31 \pm 0.13$ OUR AN $.30 \pm 0.13$ $.4 \pm 0.5$ $.4 \pm $	/ERAGE 32 	DRUZHININ COSME DOCUMENT ID	84 76	ND OSPK <u>TECN</u> or of 1.5	$e^+e^- \rightarrow e^+e^-$	3γ Γ ₁₀ /Γ
ALUE (units 10^{-3}) 31±0.13 OUR AN 30±0.13 4±0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ 4±0.5 0.8 $^{+}0.5$ 0.8 $^{+}0.5$ 0.00 0.63 $^{+}0.37$ 0.85	/ERAGE 32 	DRUZHININ COSME DOCUMENT ID Error includes scale	84 76 	ND OSPK TECN or of 1.5	$e^+e^- \rightarrow e^+e^-$	3γ Γ ₁₀ /Γ
ALUE (units 10^{-3}) 31±0.13 OUR AN 30±0.13 4±0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ 4±0.5 0.8 $^{+}0.5$ 0.8 $^{+}0.5$ 0.00 0.63 $^{+}0.37$ 0.85	/ERAGE 32 	DRUZHININ COSME DOCUMENT ID	84 76 	ND OSPK TECN or of 1.5	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $COMMENT$ $e^{+}e^{-} \rightarrow$	3γ Γ ₁₀ /Γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ 42 LUE (units 10^{-4}) 0.8 $^{+}0.5$ 0.9 0.63 $^{+}0.5$ 0.9 0.63 $^{+}0.37$ 0.8 0.8 1.94 $^{+}1.03$	32 CL% AVERAGE	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN	84 76 facto 86 81	ND OSPK TECN or of 1.5 ND	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $COMMENT$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$	3γ Γ ₁₀ /Γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ 42 LUE (units 10^{-4}) 0.8 $_{-0.4}^{+0.5}$ OUR 0.63 $_{-0.28}^{+0.5}$ 1.94 $_{-0.81}^{+1.03}$ • • We do not us	32 CL% AVERAGE 6 see the followire	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average	84 76 facto 86 81	ND OSPK TECN or of 1.5 ND OLYA	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $COMMENT$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • •	3γ Γ ₁₀ /Γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ 4.4LUE (units 10^{-4}) 0.8 ± 0.5 0.7 0.8 ± 0.7 0.8 0.63 ± 0.37 0.28 1.94 ± 1.03 1.94 ± 1.03 1.94 ± 0.81 0.94 ± 0.98 1.94	32 CL% AVERAGE	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN	84 76 facto 86 81 es, fits	ND OSPK TECN or of 1.5 ND	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $COMMENT$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$	3γ Γ ₁₀ /Γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ ALUE (units 10^{-4}) 0.8 ± 0.5 0.04 0.63 ± 0.5 0.028 1.94 ± 1.03 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81	32 CL% AVERAGE 6 se the followir 95 95 95	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE	84 76 86 81 es, fits 788 76	ND OSPK TECN or of 1.5 ND OLYA o, limits, OLYA OSPK	$e^+e^- \rightarrow e^+e^-$ COMMENT $e^+e^- \rightarrow e^+e^-$ etc. • • •	3γ Γ ₁₀ /Γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ ALUE (units 10^{-4}) 0.8 ± 0.5 0.04 0.63 ± 0.5 0.028 1.94 ± 1.03 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81	32 CL% AVERAGE 6 se the followir 95 95 95	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE	84 76 86 81 es, fits 788 76	ND OSPK TECN or of 1.5 ND OLYA o, limits, OLYA OSPK	$\begin{array}{c} e^{+} \ e^{-} \rightarrow \\ e^{+} \ e^{-} \end{array}$ $\begin{array}{c} COMMENT \\ \vdots \\ e^{+} \ e^{-} \rightarrow \\ e^{+} \ e^{-} \\ e^{+} \ e^{-} \end{array}$ $\begin{array}{c} e^{+} \ e^{-} \rightarrow \\ e^{+} \ e^{-} \end{array}$	3γ Γ ₁₀ /Γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ ALUE (units 10^{-4}) 0.8 ± 0.5 0.8 ± 0.5 0.7 0.8 ± 0.7 0.7 0.7 ± 0.7	32 CL% AVERAGE E se the followin 95 95 95 95 7 total = 3.1	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE	84 76 86 81 es, fits 788 76	ND OSPK TECN or of 1.5 ND OLYA o, limits, OLYA OSPK	$\begin{array}{c} e^{+} \ e^{-} \rightarrow \\ e^{+} \ e^{-} \end{array}$ $\begin{array}{c} COMMENT \\ \vdots \\ e^{+} \ e^{-} \rightarrow \\ e^{+} \ e^{-} \\ e^{+} \ e^{-} \end{array}$ $\begin{array}{c} e^{+} \ e^{-} \rightarrow \\ e^{+} \ e^{-} \end{array}$	3 _γ Γ ₁₀ /Γ π+ π-
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ 4.4LUE (units 10^{-4}) 0.8 ± 0.5 0.7 0.8 ± 0.5 0.7 0.8 ± 0.7 0.8 0.63 ± 0.37 0.28 0.94 ± 1.03 0.94 ± 1.03 0.94 0.95 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99	AVERAGE E See the following 95 95 95 95 95 97 fotal = 3.1	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ .	84 76 86 81 es, fits 788 76	ND OSPK TECN or of 1.5 ND OLYA o, limits, OLYA OSPK OSPK	$e^+e^- \rightarrow e^+e^-$ COMMENT $e^+e^- \rightarrow e^+e^-$ etc. • • • $e^+e^ e^+e^ e^+e^-$	3γ Γ ₁₀ /Γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ 4.4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ 4.4 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.94 0.037 0.28 1.94 ± 1.03 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81	32 32 32 AVERAGE E see the followin 95 95 95 95 7/ Total = 3.1	DRUZHININ COSME DOCUMENT ID 2 GOLUBEV 12 VASSERMAN 12 data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ .	84 76 86 81 85, fits 78B 76	ND OSPK TECN or of 1.5 ND OLYA o, limits, OLYA OSPK OSPK	$\begin{array}{c} e^{+} \ e^{-} \rightarrow \\ e^{+} \ e^{-} \end{array}$ $\begin{array}{c} COMMENT \\ \vdots \\ e^{+} \ e^{-} \rightarrow \\ e^{+} \ e^{-} \\ e^{+} \ e^{-} \end{array}$ $\begin{array}{c} e^{+} \ e^{-} \rightarrow \\ e^{+} \ e^{-} \end{array}$	3 _γ Γ ₁₀ /Γ π+ π-
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ 4.4 ± 0.5 $(\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ 6.8 ± 0.5 6.7 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	32 32 32 AVERAGE E se the followin 95 95 95 0/\(\Gamma_{\text{total}} = 3.1) FIT \(\frac{\text{EVTS}}{\text{Error}}\)	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ .	84 76 86 81 85, fits 78B 76	ND OSPK TECN or of 1.5 ND OLYA o, limits, OLYA OSPK OSPK	$e^+e^- \rightarrow e^+e^-$ COMMENT $e^+e^- \rightarrow e^+e^-$ etc. • • • $e^+e^ e^+e^ e^+e^-$	3 _γ Γ ₁₀ /Γ π+ π-
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4. ± 0.5 $(\pi^{+}\pi^{-})/\Gamma \text{ total}$ ALUE (units 10^{-4}) 0.8 ± 0.5 0.04 0.63 ± 0.5 0.08 0.63 ± 0.37 0.28 0.63 ± 0.37 0.81 0.94 ± 0.81 0.64 0.65 0.66 0.66 0.72 0.71 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.8	32 32 32 AVERAGE E se the followin 95 95 95 0/\(\Gamma_{\text{total}} = 3.1) FIT \(\frac{\text{EVTS}}{\text{Error}}\)	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor	84 76 86 81 85, fits 78B 76 N72	ND OSPK TECN OF of 1.5 ND OLYA OLYA OSPK OSPK TECN 3.	$e^+e^- \rightarrow e^+e^-$ COMMENT $e^+e^- \rightarrow e^+e^-$ etc. • • • $e^+e^ e^+e^ e^+e^ e^	3 _γ Γ ₁₀ /Γ π+ π-
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total $4LUE$ (units 10^{-4}) 0.8 ± 0.5 -0.4 0.63 ± 0.37 -0.28 1.94 ± 0.03 $1.94 $	32 32 32 AVERAGE E se the followin 95 95 95 0/\(\Gamma_{\text{total}} = 3.1) FIT \(\frac{\text{EVTS}}{\text{Error}}\)	DRUZHININ COSME DOCUMENT ID 2 GOLUBEV 12 VASSERMAN 12 data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ .	84 76 86 81 85, fits 78B 76 N72	ND OSPK TECN or of 1.5 ND OLYA o, limits, OLYA OSPK OSPK	$e^+e^- \rightarrow e^+e^-$ COMMENT $e^+e^- \rightarrow e^+e^-$ etc. • • • $e^+e^ e^+e^ e^+e^ e^+e^ e^+e^-$	3 _γ Γ ₁₀ /Γ π+ π-
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma \text{ total}$ ALUE (units 10^{-4}) 0.8 ± 0.5 0.04 0.63 ± 0.5 0.08 1.94 ± 1.03 1.94 ± 1.03 0.666 6.66 6.66 6.66 6.67 12 Using $\Gamma(e^+e^-)$ ($K_L^0K_S^0$)/ $\Gamma(K^+$ 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09	32 32 32 AVERAGE E se the followin 95 95 95 0/\(\Gamma_{\text{total}} = 3.1) FIT \(\frac{\text{EVTS}}{\text{Error}}\)	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID cludes scale factor BUKIN	84 76 86 81 85, fits 78B 76 N72	ND OSPK TECN OF of 1.5 ND OLYA OSPK OSPK TECN 3. OLYA	$e^+e^- \rightarrow e^+e^ e^+e^- \rightarrow e^+e^ e^+e^- \rightarrow e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^-$	$ \begin{array}{c} 3\gamma \\ \hline \Gamma_{10}/\Gamma \\ \hline \pi^{+}\pi^{-} \end{array} $ $ \begin{array}{c} \Gamma_{2}/\Gamma_{1} \\ \hline \rightarrow \phi \text{ hyperon} \\ \rightarrow K^{+}K^{-}\Lambda $
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma \text{ total}$ 4.4 ± 0.5 $(\pi^+\pi^-)/\Gamma \text{ total}$ 4.4 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.9 ± 0.5 0.9 ± 0.5 0.9 ± 0.3 0.9 ± 0.3 0.9 ± 0.3 0.9 ± 0.3 0.9 ± 0.3 0.9 ± 0.9 0	22 CL% AVERAGE 6 See the followin 95 95 95 1/\(\Gamma_{\text{total}} = 3.1\) FIT \(\frac{\epsilon VEXTS}{\epsilon VEXTS}\) FIT \(\frac{\epsilon VEXTS}{\epsilon VEXTS}\) AVERAGE	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS	84 76 86 81 88, fits 76 N72	ND OSPK TECN OLYA OSPK TECN OLYA HBC HBC HBC	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-}e^{-}e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	3γ Γ_{10}/Γ $\pi^{+}\pi^{-}$ Γ_{2}/Γ_{1} $ \phi \text{ hyperon }$ $ K^{+}K^{-}\Lambda$ $ \Lambda \phi$
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total $4LUE$ (units 10^{-4}) 0.8 ± 0.5 -0.4 0.63 ± 0.37 -0.28 1.94 ± 0.03 $1.94 $	32 32 32 AVERAGE E se the followin 95 95 95 0/\(\Gamma_{\text{total}} = 3.1) FIT \(\frac{\text{EVTS}}{\text{Error}}\)	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN Ing data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN	84 76 86 81 88, fits 76 N72	ND OSPK TECN OLYA 6, limits, OSPK TECN 3. OLYA HBC HBC	$e^+e^- \rightarrow e^+e^ e^+e^- \rightarrow e^+e^ e^+e^- \rightarrow e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^-$	3γ Γ_{10}/Γ $\pi^{+}\pi^{-}$ Γ_{2}/Γ_{1} $ \phi \text{ hyperon }$ $ K^{+}K^{-}\Lambda$ $ \Lambda \phi$
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total $4LUE$ (units 10^{-4}) 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0 0.9 ± 0.0	AVERAGE E See the following 195 195 195 195 195 195 195 195 195 195	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR	84 76 86 81 88, fits 76 N72	ND OSPK TECN OLYA OSPK TECN OLYA HBC HBC HBC	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • • • • • • • • • • • • • • • • • •	3γ Γ_{10}/Γ $\pi^+\pi^-$ Γ_2/Γ_1 $\rightarrow \phi \text{ hyperon}$ $\rightarrow K^+K^-\Lambda$ $\rightarrow \Lambda \phi$ ρ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total $4LUE$ (units 10^{-4}) 0.8 ± 0.5 OUR 0.63 ± 0.37 0.8 ± 0.5 0.8 ± 0.08 0.94 ± 1.03 0.95 ± 1.03	AVERAGE $ \frac{CL\%}{4} $ AVERAGE E se the followin 95 95 95 $ \frac{FK}{1} = 3.1 $ FIT EVIS EVIS AVERAGE $ \frac{EVIS}{4} $ AVERAGE $ \frac{EVIS}{4} $ $ \frac{EVIS}{4$	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+K-)	84 76 86 81 ss, fits 78 86 N72 of 1.	ND OSPK TECN OLYA OSPK OLYA OSPK TECN OLYA OSPK OLYA OSPK OSPK HBC HBC HBC HBC	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • • $e^{+}e^{-}$ $e^{-}e^{-}$ $e^{+}e^{-}$ $e^{-}e^{-}$ {-}$ $e^{-}e^{-}$ $e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	3γ Γ_{10}/Γ $\pi^{+}\pi^{-}$ Γ_{2}/Γ_{1} $ \phi \text{ hyperon }$ $ K^{+}K^{-}\Lambda$ $ \Lambda \phi$
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma_{\rm total}$ 4 ± 0.6 $(\pi^+\pi^-)/\Gamma_{\rm total}$ 4 ± 0.8 -0.8 -0.8 -0.28 -0.28 -0.9 -0.8 -0.9 -0.8 -0.9 -0.8 -0.9 -0.8 -0.9 -0.8 -0.9 -0.8 -0.9 -0.8 -0.9 -0.8 -0.9 -0.8 -0.9 -0.8 -0.9 -0.8 -0.8 -0.9 -0.8 -0.9 -0.8 -0	JEFASE 32 CL% AVERAGE See the followin 95 95 95 $O(\Gamma \text{total} = 3.1 \text{ evrs})$ FIT Error in AVERAGE 144 $(\pi - \pi^0)$ $(\pi - \pi^0)$ $(\pi - \pi^0)$ $(\pi - \pi^0)$	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR	84 76 86 81 88, fits 78 76 N72	ND OSPK TECN or of 1.5 ND OLYA i, limits, OLYA OSPK TECN OSPK TECN HBC HBC HBC HBC	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • • • • • • • • • • • • • • • • • •	3γ Γ_{10}/Γ $\pi^+\pi^-$ Γ_2/Γ_1 $\rightarrow \phi \text{ hyperon}$ $\rightarrow K^+K^-\Lambda$ $\rightarrow \Lambda \phi$ ρ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $ (\pi^+\pi^-)/\Gamma_{\text{total}} $ 4.4 ± 0.5 $ (\pi^+\pi^-)/\Gamma_{\text{total}} $ 6.8 ± 0.5 6.6 6.0 OUR 6.63 ± 0.37 6.28 6.94 ± 1.03 6.94 ± 0.81 6.4.0 6.	JEFASE 32 CL% AVERAGE See the followin 95 95 95 $O(\Gamma \text{total} = 3.1 \text{ evrs})$ FIT Error in AVERAGE 144 $(\pi - \pi^0)$ $(\pi - \pi^0)$ $(\pi - \pi^0)$ $(\pi - \pi^0)$	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+ K-) DOCUMENT ID	84 76 86 81 85, fits 76 N72 of 1.	ND OSPK TECN or of 1.5 ND OLYA i, limits, OLYA OSPK TECN OSPK TECN HBC HBC HBC HBC	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • • $e^{+}e^{-}$ $e^{-}e^{-}$ $e^{+}e^{-}$ $e^{-}e^{-}$ {-}$ $e^{-}e^{-}$ $e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$ $e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}$	3γ Γ_{10}/Γ $\pi^{+}\pi^{-}$ Γ_{2}/Γ_{1} $ \phi \text{ hyperon}$ $ K^{+}K^{-}\Lambda$ $ \Lambda \phi$ ρ $(\Gamma_{3}+\Gamma_{4})/\Gamma_{1}$
ALUE (units 10^{-3}) .31 ±0.13 OUR AN .30 ±0.13 .4 ±0.5 $ (\pi^+\pi^-)/\Gamma_{\text{total}} $.4. ±0.5 $ (\pi^+\pi^-)/\Gamma_{\text{total}} $.6. $\pi^+\pi^-$).60 .8. ±0.5 $ (\pi^+\pi^-)/\Gamma_{\text{total}} $.8. ±0.5 $ (\pi^+\pi^-)/\Gamma_{\text{total}} $.9. $\pi^+0.5$.9. $\pi^+0.5$.9. $\pi^+0.5$.9. $\pi^+0.37$.9. π^+	See the following 95 95 95 K^- Error in AVERAGE $K^ K^	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ING data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+K-) DOCUMENT ID Cludes scale factor	84 76 86 81 85, fits 76 N72 of 1.	ND OSPK TECN or of 1.5 ND OLYA OSPK OSPK TECN 3. OLYA HBC HBC HBC HBC HBC TECN 7.	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • • $e^{+}e^{-}$ $e^{+}e^{-}$ $e^{+}e^{-}$ $e^{+}e^{-}$ $e^{+}e^{-}$ 3.9.4.6 K ⁻ COMMENT	3γ Γ_{10}/Γ $\pi^{+}\pi^{-}$ Γ_{2}/Γ_{1} $K^{+}K^{-}\Lambda$ $\Lambda \phi$ $\Gamma_{3}+\Gamma_{4}/\Gamma_{1}$ Γ_{p}
ALUE (units 10^{-3}) .31 ±0.13 OUR AN .30 ±0.13 .4 ±0.5 $(\pi^+\pi^-)/\Gamma_{\text{total}}$.4. ±0.5 $(\pi^+\pi^-)/\Gamma_{\text{total}}$.6. ±0.5 0.8 ± 0.5 .0. ±0.5 0.8 ±0.5 0.8 ±0.5 0.94 ±0.37 0.81 • • We do not use the second of the second out the	JEFASE 32 AVERAGE See the following 95 95 95 95 FIT Error in AVERAGE $ \pi^{-}\pi^{0})]/\Gamma(\frac{eVTS}{FIT} $ Fit Error in AVERAGE	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10-4. DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+K-) DOCUMENT ID Cludes scale factor AGUILAR	84 76 86 81 82s, fits 78B 76 N72 of 1. 72B	ND OSPK TECN or of 1.5 ND OLYA a, limits, OLYA OSPK TECN OSPK TECN ABC HBC HBC HBC HBC HBC HBC HBC HBC HBC H	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • • $e^{+}e^{-}$ etc. • • • $e^{+}e^{-}$ $e^{+}e^{-}$ $e^{+}e^{-}$ $e^{+}e^{-}$ 3.9,4.6 K COMMENT 3.9,4.6 K	3γ Γ_{10}/Γ $\pi^{+}\pi^{-}$ Γ_{2}/Γ_{1} $ \phi \text{ hyperon}$ $ K^{+}K^{-}\Lambda$ $ \Lambda \phi$ ρ $(\Gamma_{3}+\Gamma_{4})/\Gamma_{1}$
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total ALUE (units 10^{-4}) 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.94 ± 0.03 0.95 ± 0.03	See the following 95 95 95 K^- Error in AVERAGE $K^ K^	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ING data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+K-) DOCUMENT ID Cludes scale factor	84 76 86 81 82s, fits 78B 76 N72 of 1. 72B	ND OSPK TECN or of 1.5 ND OLYA OSPK OSPK TECN 3. OLYA HBC HBC HBC HBC HBC TECN 7.	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • • $e^{+}e^{-}$ $e^{+}e^{-}$ $e^{+}e^{-}$ $e^{+}e^{-}$ $e^{+}e^{-}$ 3.9.4.6 K ⁻ COMMENT	3γ Γ_{10}/Γ $\pi^{+}\pi^{-}$ Γ_{2}/Γ_{1} $K^{+}K^{-}\Lambda$ $\Lambda \phi$ $\Gamma_{3}+\Gamma_{4}/\Gamma_{1}$ Γ_{p}
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total ALUE (units 10^{-4}) 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.94 ± 0.03 0.95 ± 0.03	JEFASE 32 AVERAGE See the following 95 95 95 95 FIT Error in AVERAGE $ \pi^{-}\pi^{0})]/\Gamma(\frac{eVTS}{FIT} $ Fit Error in AVERAGE	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10-4. DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+K-) DOCUMENT ID Cludes scale factor AGUILAR	84 76 86 81 82s, fits 78B 76 N72 of 1. 72B	ND OSPK TECN or of 1.5 ND OLYA a, limits, OLYA OSPK TECN OSPK TECN ABC HBC HBC HBC HBC HBC HBC HBC HBC HBC H	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • • $e^{+}e^{-}$ etc. • • • $e^{+}e^{-}$ $e^{+}e^{-}$ $e^{+}e^{-}$ $e^{+}e^{-}$ 3.9,4.6 K COMMENT 3.9,4.6 K	3γ Γ_{10}/Γ $\pi^{+}\pi^{-}$ Γ_{2}/Γ_{1} $\to \phi \text{ hyperon}$ $\star K^{+}K^{-}\Lambda$ $\to \Lambda\phi$ ρ $(\Gamma_{3}+\Gamma_{4})/\Gamma_{1}$ Γ_{9}/Γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 $4.\pm0.5$ $(\pi^+\pi^-)/\Gamma$ total 4.10 4.4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total 4.10	See the following 95 95 95 97 FIT Error in AVERAGE $ \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{T}	DRUZHININ COSME DOCUMENT ID TO COUMENT ID TO COUMENT ID DOCUMENT ID DOCUMENT ID COUMENT ID	84 76 86 81 82 87 78 87 77 77 72 96 11.	ND OSPK TECN or of 1.5 ND OLYA of, limits, OLYA OSPK TECN OSPK TECN TECN TECN TECN TECN TECN TECN TEC	$e^+e^- \rightarrow e^+e^ comment$ $e^+e^- \rightarrow e^+e^ e^+e^- \rightarrow e^ e^-e^- \rightarrow e^-$	3γ Γ_{10}/Γ $\pi^{+}\pi^{-}$ Γ_{2}/Γ_{1} $\to \phi \text{ hyperon}$ $\star K^{+}K^{-}\Lambda$ $\to \Lambda\phi$ ρ $(\Gamma_{3}+\Gamma_{4})/\Gamma_{1}$ Γ_{9}/Γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.15 $(\pi^+\pi^-)/\Gamma$ total $4LUE$ (units 10^{-4}) 0.8 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total $4LUE$ (units 10^{-4}) 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.94 ± 0.03	See the following 95 95 95 97 FIT Error in AVERAGE $ \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{FIT} = \frac{EVTS}{T}	DRUZHININ COSME DOCUMENT ID TO COUMENT ID TO COUMENT ID DOCUMENT ID DOCUMENT ID COUMENT ID	84 76 86 81 82 87 78 87 77 77 72 96 11.	ND OSPK TECN or of 1.5 ND OLYA of, limits, OLYA OSPK TECN OSPK TECN TECN TECN TECN TECN TECN TECN TEC	$e^+e^- \rightarrow e^+e^ comment$ $e^+e^- \rightarrow e^+e^ e^+e^- \rightarrow e^ e^-e^- \rightarrow e^-$	$ \begin{array}{c} $
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total $4LUE$ (units 10^{-4}) 0.8 ± 0.5 OUR 0.63 ± 0.37 0.8 ± 0.5 OUR 0.63 ± 0.37 0.81 ± 0.03 0.94 ± 0.03 $0.$	22 22 32 32 AVERAGE 6 See the followin 95 95 95 97 1/Γτοταl = 3.1 FIT Error in AVERAGE 144 π π π 0)]/Γ(FIT Error in 34 I EVTS 7	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+K-) DOCUMENT ID Cludes scale factor AGUILAR	84 76 86 81 88, fits 78 76 N72 of 1.	ND OSPK TECN or of 1.5 ND OLYA ospk OSPK TECN 3. OLYA HBC HBC HBC HBC HBC HBC ND ND	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • • $e^{+}e^{-}$ $e^{-}e^{-}$ $e^{+}e^{-}$ $e^{-}e^{-}$	3γ Γ_{10}/Γ $\pi^{+}\pi^{-}$ Γ_{2}/Γ_{1} $\to \phi \text{ hyperon}$ $\star K^{+}K^{-}\Lambda$ $\to \Lambda\phi$ ρ $(\Gamma_{3}+\Gamma_{4})/\Gamma_{1}$ Γ_{9}/Γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total $4LUE$ (units 10^{-4}) 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.37 0.9 ± 0.37 0.9 ± 0.3	See the following ps ps ps ps ps ps ps ps ps ps ps ps ps	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+K-) DOCUMENT ID GOLUBEV DOCUMENT ID GOLUBEV	84 76 86 81 88, fits 76 N72 of 1. 78c 77 728	ND OSPK TECN OF OF 1.5 ND OLYA i, limits, OLYA OSPK TECN TECN TECN TECN TECN TECN TECN TEC	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{+}e^{-}e^{-}e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	3γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total $4LUE$ (units 10^{-4}) 0.8 ± 0.5 -0.4 0.8 ± 0.5 -0.4 0.8 ± 0.5 -0.4 0.8 ± 0.37 -0.28 1.94 ± 0.03 -0.81 -0.82 -0.83 -0.84 -0.85 -0.85 -0.95 -0	22 22 32 32 AVERAGE 6 See the followin 95 95 95 97 1/Γτοταl = 3.1 FIT Error in AVERAGE 144 π π π 0)]/Γ(FIT Error in 34 I EVTS 7	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+K-) DOCUMENT ID Cludes scale factor AGUILAR	84 76 86 81 88, fits 78 76 N72 of 1.	ND OSPK TECN or of 1.5 ND OLYA ospk OSPK TECN 3. OLYA HBC HBC HBC HBC HBC HBC ND ND	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ etc. • • • $e^{+}e^{-}$ $e^{-}e^{-}$ $e^{+}e^{-}$ $e^{-}e^{-}$	3γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total $4LUE$ (units 10^{-4}) 0.8 ± 0.5 -0.4 0.8 ± 0.5 -0.4 0.8 ± 0.5 -0.4 0.8 ± 0.37 -0.28 1.94 ± 0.03 -0.81 -0.82 -0.83 -0.84 -0.85 -0.85 -0.95 -0	See the following ps ps ps ps ps ps ps ps ps ps ps ps ps	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+K-) DOCUMENT ID GOLUBEV DOCUMENT ID GOLUBEV	84 76 86 81 88, fits 76 N72 of 1. 78c 77 728	ND OSPK TECN OF OF 1.5 ND OLYA i, limits, OLYA OSPK TECN TECN TECN TECN TECN TECN TECN TEC	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{+}e^{-}e^{-}e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	3γ
ALUE (units 10^{-3}) 31 ± 0.13 OUR AN 30 ± 0.13 4 ± 0.5 $(\pi^+\pi^-)/\Gamma$ total ALUE (units 10^{-4}) 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.8 ± 0.5 0.94 ± 0.03 0.95 ± 0.03	See the following ps ps ps ps ps ps ps ps ps ps ps ps ps	DRUZHININ COSME DOCUMENT ID Error includes scale 12 GOLUBEV 12 VASSERMAN ng data for average BUKIN JULLIAN ALVENSLEBE 1 × 10 ⁻⁴ . DOCUMENT ID Cludes scale factor BUKIN LOSTY LAVEN LYONS AGUILAR K+K-) DOCUMENT ID GOLUBEV DOCUMENT ID GOLUBEV	84 76 86 81 85, fits 76 N72 of 1. 78c 77 77 72B	ND OSPK TECN OF OF 1.5 ND OLYA i, limits, OLYA OSPK TECN TECN TECN TECN TECN TECN TECN TEC	$e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}$ $e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{+}e^{-}e^{-}e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	$ \begin{array}{c} $

0.04 CL for 1σ wi	$th \phi \rightarrow K$	$+K^{-}=0.47;0$.09 C	L for 1σ	for num/tota	
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do not use th	ne following	data for average	s, fit	s, limits,	etc. • • •	
< 0.02	95	AGUILAR	728	нвс	3.9,4.6 K ⁻ p	
$\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0})$	Γ _{total}					Γ ₁₈ /Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
<1.5	95	BARKOV	88	CMD	$e^+e^{\pi^+\pi^-\pi^+}$	$-\pi^{-\pi^0}$
$\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{to}$	otal					Γ ₁₆ /Γ
VALUE (units 10 ⁻⁴)	CI %	DOCUMENT ID		TECN	COMMENT	
VALUE (UIIIS 10 ')						
<8.7	90	CORDIER	79	WIRE	$e^+ e^- \rightarrow 4$	π
	90	_	79	WIRE		
<8.7	$\frac{1}{90}$ $(\pi^{+}\pi^{-}\pi^{0})$	_	.,		Γ ₃ /(Γ	
$\overline{<8.7}$ $\Gamma(\rho\pi)/[\Gamma(\rho\pi)+\Gamma(\rho\pi)]$	90 (π+π-π ⁰	$+ \Gamma(\eta \gamma)]$		TECN	Γ ₃ /(Γ ₃	
<8.7 $ \Gamma(\rho\pi)/[\Gamma(\rho\pi) + \Gamma_{VALUE}] $	90 (π+π-π ⁰	$+ \Gamma(\eta \gamma)]$	s, fit:	TECN	Γ ₃ /(Γ ₃	
<8.7	90 $(\pi^{+}\pi^{-}\pi^{0})$ = CL% ne following 90	$ig) + ar{\Gamma}ig(\eta\gammaig)ig]_{DOCUMENT\ ID}$ data for average	s, fit:	<u>TECN</u> s, limits,	Γ ₃ /(Γ ₃	3+Г ₄ +Г ₅)
<8.7 $\Gamma(\rho\pi)/[\Gamma(\rho\pi) + \Gamma(\rho\pi)] + \Gamma(\rho\pi)$ VALUE • • • We do not use the >0.8	90 $(\pi^{+}\pi^{-}\pi^{0})$ = CL% ne following 90	$ig) + ar{\Gamma}ig(\eta\gammaig)ig]_{DOCUMENT\ ID}$ data for average	rs, fits	TECN s, limits, OSPK	$\Gamma_3/(\Gamma_1)$ COMMENT etc. • • • e^+e^-	
<8.7	90 $(\pi^{+}\pi^{-}\pi^{0})$ = CL% ne following 90	$\left(\frac{1}{2} + \Gamma(\eta \gamma)\right] = \frac{DOCUMENT \ ID}{DOCUMENT \ ID}$ data for average	rs, fits	TECN s, limits, OSPK	$\Gamma_3/(\Gamma_1)$ COMMENT etc. • • • e^+e^-	
<8.7 $\Gamma(\rho\pi)/[\Gamma(\rho\pi) + \Gamma(\rho\pi)] + \Gamma(\rho\pi)/[\Gamma(\rho\pi)] +$	90 $(\pi^{+}\pi^{-}\pi^{0}$ CL% ne following 90 $CL%$	$)+\Gamma(\eta\gamma)]_{DOCUMENT\ ID}$ data for average JULLIAN	rs, fits	TECN s, limits, OSPK	$\Gamma_3/(\Gamma_1)$ COMMENT etc. • • • e^+e^-	
<8.7	90 $(\pi^{+}\pi^{-}\pi^{0}$ CL% ne following 90 $CL%$	$)+\Gamma(\eta\gamma)]_{DOCUMENT\ ID}$ data for average JULLIAN	rs, fits	TECN s, limits, OSPK	$\Gamma_3/(\Gamma_1)$ COMMENT etc. • • • e^+e^-	Γ ₁₄ /Γ Γ ₁₉ /Γ

$\phi(1020)$ REFERENCES

DOLINSKY DRUZHININ ARMSTRONG ATKINSON BEBEK	88 88 87 86	SJNP 47 248 YAF 48 442 ZPHY C37 1	+Druzhinin, Dubrovin, Golubev+	(NOVO) (NOVO)
DRUZHININ ARMSTRONG ATKINSON BEBEK	87			
ARMSTRONG ATKINSON BEBEK		ZPHY C37 1	L Dubrovin, Eidelman, Colubert	
ATKINSON BEBEK	86			(NOVO)
ATKINSON BEBEK		PL 166B 245	+Bloodworth, Carney+ (ATHU, BARI, BIRM	
BEBEK	86	ZPHY C30 521	+ (BONN, CERN, GLAS, LANC, MCHS,	
	86	PRL 56 1893		Collab.)
	86	PR 33 2519	(TUFT, ARIZ, FNAL, FSU, NDAM	
	86			
		ZPHY C31 375	+Bailey+ (ANIK, BRIS, CERN, CRAC, MPII	
	86	NP B276 667	+Hughes, Lynch, Minto, McFadzean+	(GLAS)
GOLUBEV	86	SJNP 44 409	+Druzhinin, Ivanchenko, Perevedentsev+	(NOVO)
		Translated from YAF 4		
	85D	PL 153B 343	+Drescher, Binder, Drews+ (ARGUS	
GOLUBEV	85	SJNP 41 756	+Druzhinin, Ivanchenko, Peryshkin+	(NOVO)
		Translated from YAF 4		
	84	PL 144B 136		(NOVO)
ARMSTRONG		NP B224 193	 + (BARI, BIRM, CERN, MILA, LPN 	P, PAVI)
	83	PL 121B 449	+Bareyre, Bonamy+ (SACL, LOIC, SHN	IP, IND)
KURDADZE	83C	JETPL 38 366	+Lelchuk, Root+	(NOVO)
		Translated from ZETFF	38 306.	(,
ARENTON	82	PR D25 2241	+Ayres, Diebold, May, Swallow+ (A)	NL, ILL)
PELLINEN	82	PS 25 599	+Roos	(HELS)
DAUM	81	PL 100B 439	+Bardsley+ (AMST, BRIS, CERN, CRAC,	MPIM+)
IVANOV	81	PL 107B 297		(NOVO)
	82	Private Comm.		(NOVO)
VASSERMAN		PL 99B 62		(NOVO)
	80	NP B172 13	+Delcourt, Eschstruth, Fulda+	
	79	DI 010 200		(LALO)
		PL 81B 389	+Delcourt, Eschstruth, Fulda+	(LALO)
BUKIN	78B	SJNP 27 521	+Kurdadze, Sidorov, Skrinsky+	(NOVO)
BUKIN	78C	Translated from YAF 2	7 985.	
BUKIN	/8C	SJNP 27 516	+Kurdadze, Serednyakov, Sidorov+	(NOVO)
COOPER	78B	Translated from YAF 2		
		NP B146 1	+Gurtu+ (TATA, CERN, CDEF,	
	78	NP B133 38	+Holmgren, Blokzijl+ (CERN, AMST, NIJI	
	77	PRL 39 861	+Ailey, Bintinger, Ditzler+ (FNAL, MICH,	
	77	PRL 38 198	+Fukushima, Harvey, Lobkowicz, May+	(ROCH)
	77	PL 68B 381	+Bohringer, Dorsaz, Hungerbuhler+	(GEVA)
		NP B126 241	+Blockzijl, Heinen+ (AMST, CERN, NIJN	vi, OXF)
COHEN	77	PRL 38 269	+Ayres, Diebold, Kramer, Pawlicki, Wicklund	(ANL)
LAVEN	77	NP B127 43	+Otter, Klein+ (AACH, BERL, CERN, LOIC	
LYONS	77	NP B125 207	+Cooper, Clark	(OXF)
COSME	76	PL 63B 352	+Courau, Dudelzak, Grelaud, Jean-Marie+	(ORSA)
	76	Tbilisi 2 B19	+ course, Ouocizak, Greiaud, Jean-Warie+	(ORSA)
KALBFLEISCH		PR D13 22	+Strand, Chapman (BNL	
	76	PL 63B 357		, MICH)
	76B	PL 630 357	+Grelaud, Cosme, Courau, Dudelzak+	(ORSA)
			+Grelaud, Cosme, Courau, Dudelzak+	(ORSA)
KALBFLEISCH		PR D11 987	+Strand, Chapman (BNL	, MICH)
	74	PRL 32 1463	+Diebold, Greene, Kramer, Levine+	(ANL)
	74	NP B70 257		(BONN)
	74	PL 48B 155	+ Jean-Marie, Jullian, Laplanche+	(ORSA)
COSME	74B	PL 48B 159	+ Jean-Marie, Jullian, Laplanche+	(ORSA)
DEGROOT	74	NP B74 77	+Hoogland, Jongejans, Metzger+ (AMST	, NIJM) C, LBL)
BALLAM	73	PR D7 3150	+Chadwick, Eisenberg, Bingham+ (SLA	C. LBL)
BINNIE	73B	PR D8 2789	+Carr, Debenham, Duane+ (LOIC,	SHMP)
AGUILAR	72B	PR D6 29	Aguilar-Benitez, Chung, Eisner, Samios	(BNL)
ALVENSLEBEN		PRL 28 66	+Becker, Biggs, Binkley+ (MIT,	DESY)
BORENSTEIN		PR D5 1559		, MICH)
	72	NP B50 1		
	71	PL 34B 328		, GLAS)
			+Budker, Pakhtusova, Sidorov, Skrinsky+	(NOVO)
	71	LAL 1247 Thesis		(STRB)
	70	PL 32 416	Bizot, Buon, Chatelus, Jeanjean+	(ORSA)
	71	PR D4 899	+Imlay, Joseph, Keizer, Stein	(CORN)
STOTTLEMYER		ORO 2504 170 Thesis		(UMD)
	70	PL 32 416	+Buon, Chatelus, Jeanjean+	(ORSA)
	69	Liverpool Sym. 69	Perez-y-Jorba	
EARLES	70	PRL 25 1312	+Faissler, Gettner, Lutz, Moy, Tang+	(NEAS)
AUGUSTIN	69	PL 28B 517	+Bizot, Buon, Delcourt, Haissinski+	(ORSA)
MOY	69	Thesis		(NEAS)
	66	PR 147 913	+Smith	(LRL)
	66	PR 143 1034		SYRA)
		PL 17 337	+Demoulin, Barloutaud+ (EPOL, SACL,	
	65	PRL 15 221		
	5 də+	included in LINDSEY	+Smith	(LRL)
SCHLEIN	5 dati 63			(1161.4)
	0.5	PRL 10 368	+Slater, Smith, Stork, Ticho	(UCLA)

 $\phi(1020), h_1(1170), b_1(1235)$

 $h_1(1170)$ was H(1190)

 $I^G(J^{PC}) = 0^-(1^{+-})$

h1(1170) MASS

VALUE (MeV) 1170±21 OUR AVERAGE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
1167±22	² TAKAMATSU				
1190±60	¹ DANKOWY	81	SPEC	0	$8 \pi p \rightarrow 3\pi n$
• • • We do not use the follow	ving data for averages	, fit	s, limits,	etc.	• •
1160±50	ANDO	87	SPEC	0	$8 \pi p \rightarrow 3\pi n$

¹ Uses the model of BOWLER 75.

²This result supersedes ANDO 87.

h₁(1170) WIDTH

VALUE (MeV) 311±33 OUR AVERAGE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
304 ± 45	4 TAKAMATSU	90	SPEC	0	$8 \pi^- p \rightarrow 3\pi n$
320 ± 50	3 DANKOWY	81	SPEC	0	$8 \pi p \rightarrow 3\pi n$
• • • We do not use the follow	ving data for average	es, fit	s, limits,	etc.	
340 1 30	ANDO	97	SPEC	n	8 = 0 - 3 = 0

³ Uses the model of BOWLER 75.

⁴ This result supersedes ANDO 87.

h1(1170) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
$\overline{\Gamma_1}$	ρπ	seen

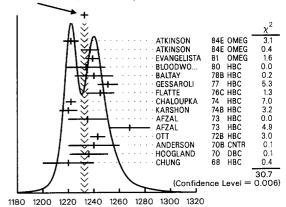
h1(1170) BRANCHING RATIOS

$\Gamma(ho\pi)/\Gamma_{total}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN CHG	COMMENT
seen	ANDO	87	SPEC 0	$8 \pi p \rightarrow 3\pi n$
seen	ATKINSON	84	OMEG	$\begin{array}{c} 20-70 \ \gamma \rho \rightarrow \\ \pi^+ \ \pi^- \ \pi^0 \ \rho \end{array}$
seen	DANKOWY	81	SPEC	$8 \pi p \rightarrow 3\pi n$

h₁(1170) REFERENCES

TAKAMATSU ANDO ATKINSON DANKOWY	87 84 81	Hadron 89 Conf. Hadron 87 Conf. NP B231 15 PRL 46 580	+Ando+ (KEM +Imai, Inaba + (BONN, CERN, GLAS, LANC, MCHS, PNP+ Dankowych+ (TNTO, BNL, CARL, MCGI, OHIC +Game, Aitchison, Dainton	() +) (0)
BOWLER	75	NP B97 227	+Game, Aitchison, Dainton (OXF, DARE	:)

 $b_1(12\overline{35})$ was B(1235)


 $I^{G}(J^{PC}) = 1^{+}(1^{+-})$

b1(1235) MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN		COMMENT
1233 ± 10	OUR ESTIMATE	This is only an edu			
					he published values.
1232.6 ± 3.0	OUR AVERAGE				the ideogram below.
1222 ± 6		ATKINSON	84E OMEG	±	25-55 γ p → ωπΧ
1237 ± 7		ATKINSON	84E OMEG	0	25–55 γ p → ωπΧ
1239 ± 5		EVANGELISTA	81 OMEG	_	$12 \pi^{-} p \rightarrow \omega \pi p$
1234.0 ± 15.0	105	BLOODWO	80 HBC	_	8.2 K ⁻ p
1240.0 ± 15.0	225	BALTAY	788 HBC	+	$15 \pi^+ p \rightarrow p4\pi$
1251.0 ± 8.0	450	GESSAROLI	77 HBC	_	$11 \pi^- p \rightarrow$
					$\pi^{-}\dot{\omega}\rho$
1245.0 ± 11.0	890	FLATTE	76c HBC	_	4.2 K ⁻ p →
					$\pi^- \omega \Sigma^+$
1222 ± 4	1400	CHALOUPKA	74 HBC	-	3.9 π ⁻ p
1220 ± 7	600	KARSHON	74B HBC	+	$4.9 \pi^{+} p$
1235 ± 15		AFZAL	73 HBC	+	11.7 $\pi^{+} p$
1268 ± 16		AFŽAL	73 HBC	_	11.2 $\pi^- p$
1243 ± 6	1163	1 OTT	728 HBC	+	7.1 π^{+} p
1240.0 ± 20.0		ANDERSON	70B CNTR	0	5-18 γp
1236.0 ± 15.0		HOOGLAND	70 DBC	_	$3.0 K^- d$
1220 ±20		CHUNG	68 HBC		3.2,4.2 π^- p
• • • We do	not use the follow	ing data for averages	, fits, limits,	etc.	
1311 ± 10		² TAKAMATSU	90 SPEC	0	$8 \pi^- p \rightarrow \eta \rho \eta$
1275 ± 4		TAKAMATSU	90 SPEC	0	$9\pi^- p \rightarrow \omega \pi^0 n$
1190 ± 10		AUGUSTIN	89 DM2	±	$e^+ e^- \rightarrow 5\pi$
1213 ± 5		ATKINSON	84¢ OMEG	0	20-70 γp
1271 ± 11		COLLICK	84 SPEC	+	$200 \pi^+ Z \rightarrow$
1208.0 ± 18.0	360	GAVILLET	788 HBC	-	$Z\pi\omega$ 4.2 $K^ p$ back-
1228 ± 5		3 FRENKIEL	72 HBC	±	ward 0.0 ρρ, 5π

 $1\,\rm From$ fit of the mass spectrum. $^2\,\rm Breit-Wigner$ fitting of PWA of $\eta\pi\pi$ system. $^3\,\rm Fit$ requires an additional $J^P=1^-$ resonance at 1256 MeV, width 129 MeV.

WEIGHTED AVERAGE 1232.6 ± 3.0 (Error scaled by 1.5)

 $b_1(1235)$ mass (MeV)

b₁(1235) WIDTH

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
150	±10	OUR ESTIMATE	This is only an educ	ated	guess; t	he erro	or given is larger
			than the error of	on th	e averag	ge of th	ne published values.
150	± 7	OUR AVERAGE					
170	± 15		EVANGELISTA	81	OMEG	-	$12 \pi^- p \rightarrow \omega \pi p$
150.0	± 50.0	105	BLOODWO	80	HBC	_	8.2 K ⁻ p
170.0	± 50.0	225	BALTAY	78B	HBC	+	$15 \pi^+ \rho \rightarrow \rho 4\pi$
155.0	± 32.0	450	GESSAROLI	77	HBC	_	11 $\pi^- \rho \rightarrow$
							$\pi^- \omega p$
182.0	± 45.0	890	FLATTE	76c	HBC	-	$4.2 K^- p \rightarrow$
							$\pi^- \omega \Sigma^+$
135	± 20	1400	CHALOUPKA	74	HBC	_	3.9 π ⁻ p
156	± 22	600	KARSHON	74B	HBC	+	4.9 π ⁺ ρ
120	± 50		AFZAL	73	HBC	+	11.7 π^{+} p
130	± 50		AFZAL	73	нвс	-	11.2 π ⁻ p
134	+23	1163	⁴ OTT	72B	нвс	+	7.1 $\pi^{+} p$
			HOOGLAND	70	DBC		3.0 K ⁻ d
	± 20.0		HOOGLAND	70			
150	± 20		CHUNG	68	нвс	-	3.2,4.2 π^- p

 $\Gamma(K\,\overline{K})/\Gamma(\omega\,\pi)$

CL%

90

DOCUMENT ID

BIZZARRI

DAHL <0.02 DAHL 67 HBC - 1.6- \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

VALUE

< 0.08

< 0.10

2. * • • • • • • • • • • • • • • • • • •		. Wo do not	co the followin	~ data for augrana	c fite limite	otc .	
181 ± 7			se the followin				
10 ±19 AUGUSTIN 89 DM2 ± e ⁺ e ⁻ - 5π ATKINSON 84C OMBED 20-70 γρ 203 ± ±29 COLLICK 84 SPEC 200 π ⁺ Z - 2πω collick 84 SPEC + 200 π ⁺ Z - 2πω collick 84 SPEC + 20π collick 8							
321 ±14 ATKINSON 84C OMEG 0 20-70 γp cOLLICK 84 SPEC + 200 π + Z - $Z_{\pi w}$ COLLICK 84 SPEC + 200 π + Z - $Z_{\pi w}$ AFORM fit of the mass spectrum. 6 See in one under the FRENKIEL 72 mass above.							
132 ±29 COLLICK 84 SPEC + 200 π + Z - 2π							
2.66 ±10	232	±29		COLLICK			$200 \pi^+ Z \rightarrow$
	42 n	1 50 0	360	CAVILLET	705 UDC		Zπω
$ b_1(1235) \ \ $	03.0	0±50.8	360	GAVILLE	19B HBC	+	4.2 K p back- ward
$b_1(1235) \text{DECAY MODES}$ $b_1(1235) \text{DECAY MODES}$ $Mode \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	26	± 10		⁶ FRENKIEL	72 HBC	±	
$b_1(1235) \text{DECAY MODES}$ $b_1(1235) \text{DECAY MODES}$ $Mode \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	4 F	rom fit of the	mass spectrum	1.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o B	Breit-Wigner f	itting of PWA	of $\eta \pi \pi$ system.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			b ₁ (1235) DECAY I	MODES		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Mode			Fraction (Γ _i	/F)	Confidence leve
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1				dominant		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			tude ratio =	0.26 ± 0.04			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$\pi^{\pm}\gamma$			(1.5 ± 0.4)) × 10	-3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	$\eta \rho$			seen		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$\pi^{+}\pi^{+}\pi^{-}\pi$.0		< 50	%	84%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5					%	90%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-					-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	$\pi \phi$			< 1.5	%	84%
$\frac{ALUE \ (keV)}{30.0\pm60.0} \qquad \frac{DOCUMENT \ ID}{COLLICK} \qquad \frac{TECN}{84} \frac{CHG}{SPEC} \frac{COMMENT}{200 \pi^{+} Z} \rightarrow \frac{1}{Z\pi \omega}$ $\frac{ALUE}{200\pm0.035} \frac{EVTS}{2004} \qquad \frac{DOCUMENT \ ID}{200\pm0.035} \frac{TECN}{2004} \frac{CHG}{2004} \frac{COMMENT}{2004}$ $\frac{ALUE}{200\pm0.035} \frac{EVTS}{2004} \qquad \frac{DOCUMENT \ ID}{2004} \qquad \frac{TECN}{2004} \frac{CHG}{2004} \frac{COMMENT}{2004}$ $\frac{ALUE}{2005} \frac{EVTS}{2004} \qquad \frac{DOCUMENT \ ID}{2004} \qquad \frac{TECN}{2004} \frac{CHG}{2004} \frac{COMMENT}{2004}$ $\frac{ALUE}{2004} \frac{EVTS}{2004} \qquad \frac{CHUNG}{2004} \frac{75B \ HBC}{2004} + \frac{7.1 \ \pi^{+} p}{2004}$ $\frac{ALUE}{2004} \frac{CHUNG}{2004} \frac{75B \ HBC}{2004} + \frac{7.1 \ \pi^{+} p}{2004}$ $\frac{ALUE}{2004} \frac{DOCUMENT \ ID}{2004} \frac{TECN}{2004} \frac{COMMENT}{2004}$ $\frac{ALUE}{2004} \frac{DOCUMENT \ ID}{2004} \frac{TECN}{2004} \frac{COMMENT}{2004}$ $\frac{ALUE}{2004} \frac{DOCUMENT \ ID}{2004} \frac{TECN}{2004} \frac{COMMENT}{2004}$ $\frac{ALUE}{2004} \frac{DOCUMENT \ ID}{2004} \frac{TECN}{2004} \frac{CHG}{2004} \frac{COMMENT}{2004}$ $\frac{ALUE}{2004} \frac{DOCUMENT \ ID}{2004} \frac{TECN}{2004} \frac{CHG}{2004} \frac{COMMENT}{2004}$ $\frac{ALUE}{2004} \frac{CL\%}{2004} \frac{DOCUMENT \ ID}{2004} \frac{TECN}{2004} \frac{CHG}{2004} \frac{COMMENT}{2004}$ $\frac{CL\%}{2004} \frac{DOCUMENT \ ID}{2004} \frac{TECN}{2004} \frac{CHG}{2004} \frac{COMMENT}{2004}$			b ₁ (1	235) PARTIAL	WIDTHS		
$b_{1}(1235) \ D\text{-wave/S-wave RATIO IN DECAY OF } b_{1}(1235) \rightarrow \omega \pi$ $b_{1}(1235) \ D\text{-wave/S-wave RATIO IN DECAY OF } b_{1}(1235) \rightarrow \omega \pi$ $ALUE \qquad EVTS \\ 1.256 \pm 0.035 \ \text{OUR AVERAGE}$ $1.235 \pm 0.047 \qquad \text{ATKINSON} 84c \text{OMEG} \qquad 20-70 \ \gamma p$ $1.4 + 0.1 \qquad \text{GESSAROLI} 77 \text{HBC} - 11 \ \pi^{-} p \rightarrow \pi^{-} \omega p$ $1.21 \pm 0.08 \qquad \text{CHUNG} 758 \text{HBC} + 7.1 \ \pi^{+} p$ $1.35 \pm 0.1 \qquad \text{CHALOUPKA} 74 \text{HBC} - 3.9-7.5 \ \pi^{-} p$ $1.35 \pm 0.25 \qquad 600 \qquad \text{KARSHON} 74b \text{HBC} + 4.9 \ \pi^{+} p$ $1.35 \pm 0.25 \qquad \text{BRANCHING RATIOS}$ $1.36 \pm 0.1 \qquad \text{CHALOUPKA} 74b \text{HBC} + 4.9 \ \pi^{+} p$ $1.37 + p \rightarrow \pi^{-} p \rightarrow \pi^{-} p$ $1.38 \pm 0.1 \qquad \text{CHALOUPKA} 74b \text{HBC} + 4.9 \ \pi^{+} p$ $1.39 \pm 0.25 \qquad \text{BOUMENT ID} \qquad \text{TECN} \qquad \text{COMMENT} \qquad \text{COMMENT} \qquad \text{COMMENT} \qquad \text{SSEE} \qquad \text{SOLIO} \qquad \text{ATKINSON} 84D \text{OMEG} 20-70 \ \gamma p$ $1.4 + \pi^{-} \pi^{0} / \Gamma(\omega \pi) \qquad \text{ABOLINS} 63 \text{HBC} + 3.5 \ \pi^{+} p$ $1.4 + \pi^{-} \pi^{0} / \Gamma(\omega \pi) \qquad \text{ABOLINS} \qquad 63 \text{HBC} + 3.5 \ \pi^{+} p$ $1.4 + \pi^{-} \pi^{0} / \Gamma(\omega \pi) \qquad \text{ABOLINS} \qquad 63 \text{HBC} \qquad + 3.5 \ \pi^{+} p$ $1.4 + \mu^{-} \qquad \text{CO.25} \qquad 90 \qquad \text{BALTAY} \qquad 67 \text{HBC} \qquad \pm 0.0 \ \overline{p} p$ $1.4 + \mu^{-} \qquad \text{CO.15} \qquad 90 \qquad \text{OTT} \qquad 728 \text{HBC} \qquad + 7.1 \ \pi^{+} p$ $1.4 + \mu^{-} \qquad \text{CO.15} \qquad 90 \qquad \text{OTT} \qquad 728 \text{HBC} \qquad + 7.1 \ \pi^{+} p$ $1.4 + \mu^{-} \qquad \text{CO.15} \qquad 90 \qquad \text{OTT} \qquad 728 \text{HBC} \qquad + 7.1 \ \pi^{+} p$ $1.4 + \mu^{-} \qquad \text{CO.15} \qquad 90 \qquad \text{OTT} \qquad 728 \text{HBC} \qquad + 7.1 \ \pi^{+} p$ $1.4 + \mu^{-} \qquad \text{CO.15} \qquad 90 \qquad \text{OTT} \qquad 728 \text{HBC} \qquad + 7.1 \ \pi^{+} p$ $1.4 + \mu^{-} \qquad \text{CO.15} \qquad 90 \qquad \text{OTT} \qquad 728 \text{HBC} \qquad + 7.1 \ \pi^{+} p$ $1.4 + \mu^{-} \qquad \text{CO.15} \qquad 90 \qquad \text{OTT} \qquad 728 \text{HBC} \qquad + 7.1 \ \pi^{+} p$ $1.4 + \mu^{-} \qquad \text{CO.15} \qquad 90 \qquad \text{OTT} \qquad 728 \text{HBC} \qquad + 7.1 \ \pi^{+} p$ $1.4 + \mu^{-} \qquad \text{CO.15} \qquad 90 \qquad \text{OTT} \qquad 728 \text{HBC} \qquad + 7.1 \ \pi^{+} p$ $1.4 + \mu^{-} \qquad \text{CO.15} \qquad \text{COMMENT} \qquad \text{CO.15} \qquad \text{COMMENT} \qquad \text{CO.15} \qquad \text{COMMENT} \qquad \text{CO.15} \qquad \text{COMMENT} \qquad \text{CO.15} \qquad \text{CO.15} \qquad $	(π^{-})	$^{\pm}\gamma)$					Γ ₂
$b_1(1235) \ D\text{-wave/S-wave RATIO IN DECAY OF } b_1(1235) \to \omega \pi$ $b_1(1235) D\text{-wave/S-wave RATIO IN DECAY OF } b_1(1235) \to \omega \pi$ $DDECAMPORE DECAMPORE DEC$	ALUE	E (keV)		DOCUMENT ID	TECN	CHG	COMMENT
$b_1(1235) \ D\text{-wave}/S\text{-wave RATIO IN DECAY OF} \ b_1(1235) \to \omega\pi$ $\frac{ALUE}{D.260\pm0.035} \ \text{OUR AVERAGE}$ $ATKINSON \ 84C \ \text{OMEG}$ $20-70 \ \gamma p$ $1.4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				COLLICK			
1.235 ± 0.047 1.4 $^{+0.1}$ 1.4 $^{+0.1}$ 1.5 GESSAROLI 77 HBC $^{-0.1}$ 1.7 $^{-0.1}$ 1.8 CHUNG 75B HBC $^{-0.1}$ 1.8 $^{-0.1}$ 1.9 CHALOUPKA 74 HBC $^{-0.1}$ 1.9 $^{-0.1}$ 1.35 ± 0.25 1.0 CHUNG 75B HBC $^{-0.1}$ 1.1 $^{+0.1}$ $^{-0.1}$ 1.35 ± 0.25 1.3 ± 0.1 CHALOUPKA 74 HBC $^{-0.1}$ 1.3 ± 0.1 CHALOUPKA 74 HBC $^{-0.1}$ 1.3 ± 0.25 1.3 ± 0.1 CHALOUPKA 74 HBC $^{-0.1}$ 1.3 ± 0.25 1.3 ± 0.25 1.4 ± 0.25 1.5 ± 0.25 1.6 ± 0.25 1.7 ± 0.25				DOCUMENT ID	TECN	<u>CHG</u>	COMMENT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			AV EI OIGE	ATKINSON	84c OMEG	:	20-70 ~ n
$\begin{array}{c} \begin{array}{c} 1.21 \pm 0.08 \\ 0.3 \pm 0.1 \\ 0.35 \pm 0.25 \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$							
CHUNG 756 HBC $+$ 7.1 $\pi^+ p$ 0.33 ± 0.1 CHALOUPKA 74 HBC $-$ 3.9-7.5 $\pi^- p$ 0.35 ± 0.25 600 KARSHON 74B HBC $+$ 4.9 $\pi^+ p$ 0.35 ± 0.25 600 KARSHON 74B HBC $+$ 4.9 $\pi^+ p$ 0.35 ± 0.25 $0.$	1.4	-0.1		GESSARULI	II HBC	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.21	± 0.08		CHUNG	75B HBC	+	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3	± 0.1		CHALOUPKA	74 HBC		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.35	±0.25	600	KARSHON	74B HBC	+	4.9 $\pi^{+} \rho$
Seen TAKAMATSU 9 FECN COMMENT ON SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC			b ₁ (123	35) BRANCHIN	G RATIOS	;	
TAKAMATSU 90 SPEC $\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$ $\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet \bullet$ $\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ Med onto use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ Med onto use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet$ $\bullet \bullet$ $\bullet \bullet$ We do not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ Med not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet$ Med not use the following data for averages, fits, limits, etc. $\bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet \bullet$ Med not use the following data for averages, fits, limits, etc. $\bullet \bullet							
• We do not use the following data for averages, fits, limits, etc. • • • • $< < 0.10$ ATKINSON 84D OMEG $20-70 \ \gamma \ p$ $\Gamma(\pi^+\pi^+\pi^-\pi^0)/\Gamma(\omega\pi)$ BOCUMENT ID TECN CHG COMMENT $< < 0.5$ BALTAY 67 HBC $< 0.07 \ p$ Γ_6/Γ_1 ALUE CL% DOCUMENT ID TECN CHG COMMENT $< < 0.015 \ p$ OTT 72B HBC $< < 0.015 \ p$ OTT 72B HBC $< < 0.015 \ p$ OTT 72B HBC $< < 0.015 \ p$ OTT < 0.015						<u>сомі</u>	<u>MENT</u>
ATKINSON 84D OMEG 20-70 γ p Γ_4/Γ_1 ALUE DOCUMENT ID TECN CHG COMMENT Γ_5/Γ_1 ABOLINS 63 HBC $+$ 3.5 π^+p Γ_5/Γ_1 ABOLINS 63 HBC $+$ 3.0 p Γ_5/Γ_1 ABOLINS 63 HBC $+$ 3.0 p Γ_5/Γ_1 ABOLINS 63 HBC $+$ 3.0 p Γ_5/Γ_1 ABOLINS 64 HBC $+$ 0.0 p Γ_5/Γ_1 ABOLINS 65 HBC $+$ 0.0 p Γ_5/Γ_1 ABOLINS 67 HBC $+$ 0.0 p Γ_5/Γ_1 ALUE CL% DOCUMENT ID TECN CHG COMMENT $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			oo sha fallanda			-4-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			se the followin				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.1	.u		ATKINSON	84D OMEG	20~7	υγρ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(\pi^{-}$	$+\pi^{+}\pi^{-}\pi^{0}$	/Γ(ωπ)				Γ4/Γ•
ABOLINS 63 HBC + $3.5 \pi^+ p$ $\Gamma_0(\eta \pi)/\Gamma(\omega \pi)$ Gamma(\omega \pi)$ $\Gamma_0(\eta \pi)/\Gamma(\omega \pi)/\Gamma(\omega \pi)/\Gamma(\omega \pi)$ $\Gamma_0(\eta \pi)/\Gamma(\omega \pi)/\Gamma($	•	, .	(··)	DOCUMENT ID	TECN	CHG	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					33 1100		5.5 n p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(\eta \eta$	$\pi)/\Gamma(\omega\pi)$					Γ_5/Γ_1
Co.25 $90 \text{BALTAY} 67 \text{HBC} \pm 0.0 \overline{p}p $ $\Gamma(\pi\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi)/\Gamma(\omega\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega\pi)/\Gamma(\omega\pi)/\Gamma(\omega\pi)/\Gamma(\omega\pi) \Gamma(\pi\pi)/\Gamma(\omega$			CL%	DOCUMENT ID	TECN	<u>CHG</u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			90				
ALUE CL% DOCUMENT ID TECN CHG COMMENT \times CO.15 90 OTT 728 HBC \times 7.1 π^+ p \times CO.15 90 OTT 728 HBC \times 7.1 π^+ p \times CO.3 ADERHOLZ 648 HBC \times 4.0 π^+ p \times CO.3 ADERHOLZ 648 HBC \times 6.0 π^+ p \times CO.8 90 BALTAY 67 HBC \times 0.0 \times P p \times COMMENT \times CO.8 \times CO.8 BALTAY 67 HBC \times CHG COMMENT \times							
Co.15 $90 \text{OTT} 728 \text{ HBC} + 7.1 \pi^{+} \rho$ $\bullet \bullet \text{ We do not use the following data for averages, fits, limits, etc.} \bullet \bullet \bullet$ $<0.3 \text{ADERHOLZ} 648 \text{ HBC} 4.0 \pi^{+} \rho$ $C((K\overline{K})^{\pm} \pi^{0})/\Gamma(\omega \pi)$ $ALUE CL\% DOCUMENT ID TECN CHG COMMENT$ $C(0.08 90 BALTAY 67 HBC \pm 0.0 \overline{\rho} \rho$ $C(K_{S}^{0} K_{L}^{0} \pi^{\pm})/\Gamma(\omega \pi)$ $ALUE CL\% DOCUMENT ID TECN CHG COMMENT$ F_{B}/Γ_{1} $ALUE CL\% DOCUMENT ID TECN CHG COMMENT$	•	,, ,					
• • We do not use the following data for averages, fits, limits, etc. • • • • < <0.3 ADERHOLZ 648 HBC $4.0~\pi^+ p$ Γ_7/Γ_1 ALUE $CL\%$ DOCUMENT ID TECN CHG COMMENT $CL\%$ BALTAY 67 HBC \pm 0.0 \overline{p} \overline{p} Γ_8/Γ_1 ALUE $CL\%$ DOCUMENT ID TECN CHG COMMENT $CL\%$ $CL\%$ $CL\%$ DOCUMENT ID TECN CHG COMMENT $CL\%$ $CL\%$ DOCUMENT ID TECN CHG COMMENT $CL\%$ $CL\%$ DOCUMENT ID TECN CHG COMMENT							
ADERHOLZ 648 HBC 4.0 $\pi^+ \rho$ $ \Gamma((K\overline{K})^{\pm}\pi^0)/\Gamma(\omega\pi) $ $ \Gamma(K\overline{K})^{\pm}\pi^0)/\Gamma(\omega\pi) $ $ \Gamma(K\overline{K})^{\pm}\pi^0)/\Gamma(\omega\pi) $ $ \Gamma(K_S^0)^{\pm}\pi^0)/\Gamma(\omega\pi) $							
$\frac{\Gamma((K\overline{K})^{\pm}\pi^{0})/\Gamma(\omega\pi)}{ALUE} \underbrace{\frac{CL\%}{90} \frac{DOCUMENT ID}{BALTAY} \frac{TECN}{67} \frac{CHG}{4E} \frac{COMMENT}{0.0 \ pp}}{C(K_{S}^{0}K_{L}^{0}\pi^{\pm})/\Gamma(\omega\pi)} \underbrace{\frac{F}{1}}_{CL\%} \frac{CL\%}{DOCUMENT ID} \frac{TECN}{1} \frac{CHG}{1} \frac{COMMENT}{1}$			se the followin			, etc.	
ALUE CL% DOCUMENT ID TECN CHG COMMENT $(0.08 \ 0.07)$ BALTAY 67 HBC ± 0.07 p $(0.08 \ 0.07)$ Fa/ $(0.08 \ 0.07)$ BALTAY $(0.08 \ 0.07)$ Fa/ $(0.08 \ 0.07)$ BALTAY $(0.08 \ 0.07)$ Fa/		1		ADERHOLZ	64в НВС		4.0 $\pi^{+} \rho$
ALUE CL% DOCUMENT ID TECN CHG COMMENT (0.08) 90 BALTAY 67 HBC \pm 0.0 $\overline{\rho}$ ρ Γ_8/Γ_1 ALUE CL% DOCUMENT ID TECN CHG COMMENT							
<0.08 90 BALTAY 67 HBC \pm 0.0 \overline{p}_P $\Gamma(K_S^0 K_L^0 \pi^\pm)/\Gamma(\omega \pi)$ FB/F1 ALUE CLY DOCUMENT ID TECN CHG COMMENT	<0.3		(\				
$\Gamma(K_S^0K_L^0\pi^\pm)/\Gamma(\omega\pi)$ Γ_8/Γ_1 ALUE CL% DOCUMENT ID TECN CHG COMMENT	<0.3	$(\overline{K})^{\pm}\pi^{0})/\Gamma$					
VALUE CL% DOCUMENT ID TECN CHG COMMENT	<0.3 ((K /ALUE	$(\overline{K})^{\pm}\pi^{0})/\Gamma$	CL%			<u>CHG</u>	
VALUE CL% DOCUMENT ID TECN CHG COMMENT	<0.3 ((K /ALUE	$(\overline{K})^{\pm}\pi^{0})/\Gamma$	CL%				COMMENT
	<0.3 -((<i>K</i> /ALUE <0.0	(K) [±] π ⁰)/Γ ε	<u>CL%</u> 90				<u>СОММЕНТ</u> 0.0 7 р
COLUD 90 BALTAY 67 HBC \pm 0.0 $\bar{p}p$	<0.3 ((<i>K</i> /ALUE <0.0	$(\overline{K})^{\pm}\pi^{0})/\Gamma$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	<u>CL%</u> 90 (ωπ)	BALTAY	67 HBC	±	COMMENT 0.0 ρρ Γ ₈ /Γ ₁
	<0.3 ((K <0.0 (K)	$(\overline{K})^{\pm}\pi^{0})/\Gamma$ 18 $SK_{L}^{0}\pi^{\pm})/\Gamma$ 15	<u>CL%</u> 90 (ωπ) <u>CL%</u>	BALTAY	67 HBC	± <u>CHG</u>	COMMENT 0.0 pp Γ ₈ /Γ ₁

$\Gamma(K_S^0 K_S^0 \pi^{\pm})/\Gamma(\omega \pi$)					Γ_{10}/Γ_{1}
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	CHG	COMMENT
<0.02	90	BALTAY	67	HBC	±	0.0 p p
$\Gamma(\pi\phi)/\Gamma(\omega\pi)$						Γ_{11}/Γ_{1}
VALUE	CL%	DOCUMENT ID		<u>TECN</u>	CHG	COMMENT
< 0.015		DAHL	67	HBC		$1.6-4.2 \pi^- p$
 ● ● We do not use th 	e following	data for average	s, fit	s, limits,	etc.	• •
<0.04	95	BIZZARRI	69	нвс	±	0.0 pp

b₁(1235) REFERENCES

TAKAMATSU	90	Hadron 89 Conf.	+Ando+ (KEK)
AUGUSTIN	89	NP B320 1	+ Cosme (DM2 Collab.)
ATKINSON	84C	NP B243 1	 (BONN, CERN, GLAS, LANC, MCHS, LPNP+) JI
ATKINSON	84D	NP B242 269	+ (BONN, CERN, GLAS, LANC, MCHS, LPNP+)
ATKINSON	84E	PL 138B 459	+ (BONN, CERN, GLAS, LANC, MCHS, LPNP+)
COLLICK	84	PRL 53 2374	+Heppelmann, Berg+ (MINN, ROCH, FNAL)
EVANGELISTA	81	NP B178 197	+ (BARI, BONN, CERN, DARE, LIVP+) Bloodworth+ (BIRM, CERN, GLAS, MSU, LPNP)
BLOODWO	80	LNC 27 555	Bloodworth+ (BIRM, CERN, GLAS, MSU, LPNP)
BALTAY	78B	PR D17 62	+Cautis, Cohen, Csorna+ (COLU, BING)
GAVILLET	78B	PL 78B 158	+Dionisi, Gurtu+ (CERN, AMST, NIJM, OXF) Ji
GESSAROLI	77	NP B126 382	 + (BGNA, FIRZ, GENO, MILA, OXF, PAVI) JI
FLATTE	76C	PL 64B 225	+Gay, Blokziji, Metzger+ (CERN, AMST, NIJM, OXF) Ji
CHUNG	75B	PR D11 2426	+Protopopescu, Lynch, Flatte+ (BNL, LBL, UCSC) JF
CHALOUPKA	74	PL 51B 407	+Ferrando, Losty, Montanet (CERN) Ji
KARSHON	74B	PR D10 3608	+Mikenberg, Eisenberg, Pitluck, Ronat+ (REHO) JR
AFZAL	73	LNC 15A 61	+Bassler+ (DURH, GENO, DESY, MILA, SACL) JR
FRENKIEL	72	NP 847 61	+Ghesquiere, Lillestol, Chung+ (CDEF, CERN) JF
OTT	728	LBL-1547 Thesis	(LBL) JF
ANDERSON	70B	PR D1 27	+Gustavson Johnson+ (SLAC CIT LICSB NEAS)
HOOGLAND	70	PL 33B 631	+Kluyver, DeVries+ (SABRE Collab.) +Foster, Gavillet, Montanet+ (CERV, CDEF) +Dahi, Kirz, Miller (LRL) +Franzini, Severiens, Yeh, Zanello (COLU) +Hardy, Hess, Kirz, Miller (LRL)
BIZZARRI	69	NP B14 169	+Foster Gavillet Montanet+ (CERN CDEE)
CHUNG	68	PR 165 1491	+Dahl Kirz Miller (LRI)
BALTAY	67	PRL 18 93	+Eranzini Severians Veh Zanello (COLLI)
DAHL	67	PR 163 1377	+Hardy Hess Kirz Miller (LDI)
ADERHOLZ		PL 10 240	+ (AACH, BERL, BIRM, BONN, HAMB, LOIC+)
ABOLINS	63	PRL 11 381	+Lander, Mehlhop, Nguyen, Yager (UCSD)
ADOLING	03	1 NE 11 JUI	Transcer, Menniop, Mgoyen, Tager (OCSD)

OTHER RELATED PAPERS ---

BRAU	88	PR D37 2379	+Franek+ (SLAC Hybrid Facility Photon Collab.) JP
ATKINSON	84C	NP B243 1	+ (BONN, CERN, GLAS, LANC, MCHS, LPNP+) JP
WONG	81	PRL 46 974	+Key, Frisken, Cline+ (TNTO, YORK, PURD)
DUBOVIKOV	75	SJNP 20 229	+Erofeev (ITEP) JP
_		Translated from YAF 2	
BALLAM	74	NP B76 375	+Chadwick, Bingham, Fretter+ (SLAC, LBL, MPIM)
ARMENISE	73	NC 17A 707	+Forino, Cartacci+ (BARI, BGNA, FIRZ) +Forino, Cartacci+ (BARI, BGNA, FIRZ)
ARMENISE	73B	LNC 8 425	
ARNOLD	73	LNC 6 707	+Engel, Escoubes, Kurtz, Lloret, Paty+ (STRB)
CASON	73	PR D7 1971	+Biswas, Kenney, Madden+ (NDAM)
CASON	73B	NP B64 14	+Madden, Bishop, Biswas, Kenney+ (NDAM)
CHUNG	73	PL 47B 526	+Madden, Bishop, Biswas, Kenney+ +Protopopescu, Lynch, Flatte+ (BNL, LBL, UCSC) JP
COHEN	73C	PR D8 23	+Ferbel, Slattery (ROCH)
SISTERSON	72	NP B48 493	+Harrison, Heyda, Johnson+ (HARV)
DEVONS	71	PRL 27 1614	+Ferbel, Slattery (ROCH) +Harrison, Heyda, Johnson+ (HARV) +Kozlowski, Horwitz+ (COLU, SYRA)
CASO	70	LNC 3 707	+Conte, Tomasini+ (GENO, HAMB, MILA, SACL)
CASON	70	PR D1 851	+Andrews, Biswas, Groves, Harrington+ (NDAM)
EROFEEV	70	SJNP 11 450	+Vetlitsky, Wladimirsky, Grigorev+ (ITEP)
		Translated from YAF 1	1 805.
HONES	70	PR D2 827	+Cason, Biswas, Helland, Kenney+ (NDAM) +VonKrogh, Kopelman, Libby (COLO)
MIYASHITA	70	PR D1 771	+VonKrogh, Kopelman, Libby (COLO)
POLS	70	NP B25 109	+Boeckmann, Cirba+ (BONN, DURH, EPOL, TORI)
WERBROUCK	70	LNC 4 1267	+Rinaudo+ (TORI, NIJM, BONN, LBL) JP
ASCOLI	68B	PRL 20 1411	+Crawley, Mortara, Shapiro (ILL) JP
BOESEBECK	68	NP B4 501	+Deutschmann+ (AACH, BERL, CERN)
CASO	68	NC 54A 983	+Conte, Cords, Diaz+ (GENO, HAMB, MILA, SACL)
LEE	67	PR 159 1156	+Moebs, Roe, Sinclair, VanderVelde (MICH)
SLATTERY	67	NC 50A 377	+Kraybill, Forman, Ferbel (YALE, ROCH)
GOLDHABER	65	PRL 15 118	+Moebs, Roe, Sinclair, VanderVelde (MICH) +Kraybill, Forman, Ferbel (YALE, ROCH) +Goldhaber, Kadyk, Shen (LRL) +Lander, Rindfleisch, Xuong, Yager (UCB) JP
CARMONY	64	PRL 12 254	+Lander, Rindfleisch, Xuong, Yager (UCB) IP
BONDAR	63B	PL 5 209	+Dodd+ (AACH, BIRM, HAMB, LOIC, MPIM)
			,

κĸ Γ_1

 Γ_9/Γ_1

TECN CHG COMMENT

69 HBC ± 67 HBC ±

 $1.6-4.2 \pi^- p$

0.0 pp

$$I^G(J^{PC}) \; = \; 0^+(0^{++})$$

OMITTED FROM SUMMARY TABLE

Seen in phase shift analysis of $K^0_S\,K^0_S$ system. Named g_S by ETKIN 82C. Needs confirmation.

	f ₀ (1240) MASS	
VALUE (MeV) 1240.0±10±20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	f ₀ (1240) WIDTH	
VALUE (MeV) 140.0±10±20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	f ₀ (1240) DECAY MODES	
Mode		

 $f_0(1240), a_1(1260)$

f₀(1240) REFERENCES

ETKIN 82C PR D25 2446 +Foley, Lai+ (BNL, CUNY, TUFT, VAND) JP

 $a_1(1260)$ was $A_1(1270)$

$$I^{G}(J^{PC}) = 1^{-}(1^{++})$$

NOTE ON $a_1(1260)$

For quite some time even the existence as a genuine resonance of this broad bump in the 3π mass spectrum was called into question. Today the $a_1(1260)$ situation appears to be satisfactorily clarified and its resonance parameters are well determined, at least if one restricts the fits to include one resonance only. For an attempt to fit the leptonic data with two resonances see IIZUKA 89.

The experimental data can be grouped into two classes:

- 1) Hadronically-produced $a_1(1260)$. There are two highstatistics experiments, diffractive production from incident π^- (DAUM 80, 81B) and charge-exchange production with low-energy π^- (DANKOWYCH 81), both on hydrogen. The extraction of the $a_1(1260)$ resonance parameters from these hadronic experiments is troubled by the presence of a coherent background, attributed to the Deck effect. Both experiments perform a partial-wave analysis. The phenomenological amplitude used to explain the 1+S0+ data consists of a rescattered Deck amplitude (calculated from one-pion exchange and not allowed to vary) plus a direct resonance production term. Both experiments agree with an $a_1(1260)$ mass of $\simeq 1270$ MeV, but DAUM 81B finds a width somewhat smaller than the one from charge-exchange data (≈300 MeV against ≈380 MeV). Rather lower values for the $a_1(1260)$ mass and width $[(1122\pm17)]$ MeV and (254±11) MeV] have been recently obtained with a partial-wave analysis of the $\pi^+\pi^-\pi^0$ system in a high statistics $\pi^- p$ charge-exchange reaction by TAKAMATSU 90. However in this PWA only Breit Wigner terms are considered.
- 2) Four experiments have reported good data on the heavy lepton decay $\tau \to a_1(1260)\nu_{\tau}~[a_1(1260)\to \rho\pi]$ (RUCKSTUHL 86, SCHMIDKE 86, ALBRECHT 86B, and BAND 87). The significance of this channel is that the $a_1(1260)$ from τ decay is expected to be (almost) free from any background. The four sets of τ decays show some inconsistencies in the values quoted for the $a_1(1260)$ mass; however, according to BOWLER 86, these discrepancies can be attributed to the different assumptions and approximations made in fitting the data. Furthermore, all these τ decays seem to indicate a consistent $a_1(1260)$ width ≥ 400 MeV, considerably larger than the one found by DAUM 81B.

This discrepancy between the hadronic and the τ decay results has stimulated several reanalyses of the experimental data. BOWLER 86, TORNQVIST 87, and ISGUR 89 have studied the process $\tau \to 3\pi\nu_{\tau}$ (BOWLER 86 has made fits to the data of ALBRECHT 86B and SCHMIDKE 86, while TORNQVIST 87 and ISGUR 89 have also taken into account RUCKSTUHL 86). BOWLER 86 assumes that the 3π state is wholly $a_1(1260)$, with no background, coherent or incoherent.

Fits are made to the data, always using the same theoretical form with a "normal" Breit-Wigner shape and various behaviors of the $a_1(1260)$ axial coupling as a function of the 3π mass. TORNQVIST 87 fits a modified Breit-Wigner form to the data that includes, besides $\rho \pi$ and $K^*(892)\overline{K} + \overline{K}^*(892)K$ threshold effects, an energy-dependent real part of the $a_1(1260)$ mass parameter ("running mass shift function"). ISGUR 89 deduces a full mass-dependent covariant amplitude for $\tau \to 3\pi\nu_{\tau}$ from theory; all the ambiguities due to the non-pointlikeness of the hadrons (like unknown off-shell behaviors of propagators and vertices) are associated with a parameterized nonresonant background amplitude. Since this background is small anyway, the $a_1(1260)$ parameters do not depend critically on its form. Despite these quite different approaches, all three analyses find a good overall description of all the τ decay data with an $a_1(1260)$ mass in the range of 1230 MeV, consistent with hadronic data; however their widths (400 MeV for BOWLER 86, 420 MeV for ISGUR 89 and 600 MeV for TORNQVIST 87) continue to stay significantly higher than that extracted from diffractive-hadronic data.

BOWLER 88 has finally returned to the diffractive data and investigated their consistency with an $a_1(1260)$ width ≥ 400 MeV, as required by the heavy-lepton decay. He has verified that a width of ~ 300 MeV is a direct consequence of the fixed particular shape for the Deck amplitude as used in DAUM 81B; freeing this shape, good fits are achieved for an $a_1(1260)$ width of $\simeq 400$ MeV. There is then no longer any contradiction between the hadronic data and the τ decay data and the $a_1(1260)$ parameters are now well constrained. The best estimates found in BOWLER 88 are (1260 ± 25) MeV for the $a_1(1260)$ mass and (396 ± 43) MeV for its width.

VALUE (MeV)	DOCUMENT ID	TE	CN CHG	COMMENT
1260 ±30 OUR ESTIMATE	_			
1260 ±25	1 BOWLER	88 RV	VUE	
• • We do not use the following	g data for average:	s, fits, li	imits, etc. •	• •
1122 ±17	² TAKAMATSU	90 SF	PEC 0	8 π ⁻ p → 3π n
1220 ±15	³ ISGUR	89 RV	VUE	$\tau^{+} \rightarrow$
1166 ±18 ±11	BAND	87 M	AC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$1164 \pm 41 \pm 23$	BAND	87 M	AC	$\tau^+ \xrightarrow{\pi^+ \pi^0 \pi^0 \nu}$
1250 ± 40	3 TORNQVIST	87 R\	VUE	πιπ-π-υ
1046 ±11	4 ALBRECHT	86B AF	RG	$\tau^{+}_{\pi^{+}\pi^{+}\pi^{-}\nu}$
1235 ± 40	3 BOWLER	86 RV	VUE	$\pi^+\pi^-\pi^-\nu$
1056 ±20 ±15	4 RUCKSTUHL		I CO	$\tau^+ \rightarrow$
1194 ±14 ±10	⁴ SCHMIDKE	86 M	RK2	$ \tau^{+} \xrightarrow{\pi^{+} \pi^{+} \pi^{-} \nu} \\ \pi^{+} \xrightarrow{\pi^{+} \pi^{+} \pi^{-} \nu} $
1240.0 ± 80.0	⁵ DANKOWY	81 SF	PEC 0	8.45 $\pi^- p \rightarrow$
1280.0 ± 30.0	⁵ DAUM	81B C	NTR	$63,94 \pi^{-} p \rightarrow p \rightarrow p \rightarrow \pi$
1041.0 ± 13.0	⁶ GAVILLET	77 HI	BC +	$4.2 \text{ K}^- p \rightarrow \Sigma 3\pi$

¹ From a combined reanalysis of ALBRECHT 86B and DAUM 81B.

² Results of Breit–Wigner fitting to intensity distribution of 11 + ρ S_1 + wave.

³ From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.

 $^{^4}$ Included in BOWLER 86, TORNQVIST 87, and ISGUR 89 reviews. 5 Uses the model of BOWLER 75.

⁶ Produced in K⁻ backward scattering

 $\begin{array}{cccc}
8 & \pi^{-} & \rho \rightarrow & n2\pi \\
9 & \pi^{+} & n \rightarrow & \rho & \pi^{+} & \pi^{-} \\
5.1 & \pi^{+} & n \rightarrow & \rho & \pi^{+}
\end{array}$

 $3.7-4.2 \pi^- p$

 $\begin{array}{c} MM^{-} \\ 5.1 \ \pi^{+} \ n \rightarrow \ \rho \pi^{0} \ MM \end{array}$

a₁(1260) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
350 to 500 OUR ESTIMATE 396 ± 43	7 BOWLER		RVUE		
• • We do not use the following	ng data for average	s, fit:	s, limits,	etc.	• • •
254 ± 11	12 TAKAMATSU	90	SPEC	0	$8 \pi^- p \rightarrow 3\pi n$
420 ± 40	⁸ ISGUR	89	RVUE		$\tau^+ \rightarrow + -$
405 ± 75 ±25	BAND	87	MAC		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
419 ±108 ±57	BAND	87	MAC		$\tau^{+} \xrightarrow{\pi^{+} \pi^{+} \pi^{0} \pi^{0} \nu} $
600 ±100	8 TORNQVIST	87	RVUE		π π σ π σ ν
521 ± 27	9 ALBRECHT		ARG		$\tau^+_{\pi^+\pi^+\pi^+\pi^-\nu}$
400 ±100	⁸ BOWLER	86	RVUE		$\pi^+\pi^+\pi^-\nu$
$476 \begin{array}{c} +132 \\ -120 \end{array} \pm 54$	⁹ RUCKSTUHL	86	DLCO		$\tau^+ \rightarrow -$
462 ± 56 ±30	⁹ SCHMIDKE	86	MRK2		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
380.0 ± 100.0	10 DANKOWY	81	SPEC	0	$8.45 \pi^{-} p \rightarrow$
300.0 ± 50.0	¹⁰ DAUM	81B	CNTR		$63,94 \pi^{-} p \rightarrow$
230.0 ± 50.0	¹¹ GAVILLET	77	нвс	+	$ \begin{array}{c} p3\pi \\ 4.2 \text{ K}^- p \rightarrow \Sigma 3 \end{array} $

- ⁷ From a combined reanalysis of ALBRECHT 86B and DAUM 81B.
- ⁸ From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.
- 9 Included in BOWLER 86, TORNQVIST 87, and ISGUR 89 reviews.

 10 Uses the model of BOWLER 75.

 11 Produced in K⁻⁻ backward scattering.
- $^{12}\,\mathrm{Results}$ of Breit–Wigner fitting to intensity distribution of 11 + ρ $\mathit{S}_{1}~+$ wave.

a₁(1260) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ_1	ρπ	dominant	
Γ_2	$\pi \gamma$	seen	
Γ_3	$\pi(\pi\pi)_{S ext{-wave}}$	[a] <0.7 %	90%

[a] This is only an educated guess; the error given is larger than the error on the average of the published values.

a₁(1260) PARTIAL WIDTHS

$\Gamma(\pi \gamma)$				Γ:
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
640.0±246.0	ZIELINSKI	84c SPEC	$200~\pi^+~\text{Z}~\rightarrow~\text{Z}~3\pi$	

a₁(1260) BRANCHING RATIOS

$\Gamma(\pi(\pi\pi)_{S-wave})/\Gamma(\rho\pi)$				Γ_3/Γ_1
VALUE	DOCUMENT ID		TECN	
0.003 ± 0.003	13 LONGACRE	82	RVUE	

 $^{13}\,\rm Uses$ multichannel Aitchison-Bowler model (BOWLER 75). Uses data from GAVILLET 77, DAUM 80, and DANKOWYCH 81.

a₁(1260) REFERENCES

BOWLER 88 PL B209 99	(KEK) (TNTO) (OXF)
	Collab.) (HELS)
ALBRECHT 86B ZPHY C33 7 +Donker, Gabriel, Edwards+ (ARGUS 86) BOWLER 86 PL B182 400	Collab.)
RUCKSTUHL 86 PRL 56 2132 +Stroynowski, Atwood, Barish+ (DELCO SCHMIDKE 86 PRL 57 527 +Abrams, Matteuzzi, Amidei+ (Mark III 6	Collab.)
ZIELINSKI 84C PRL 52 1195 +Berg, Chandlee, Cihangir+ (ROCH, MINN, LONGACRE 82 PR D26 83	FNAL)
DANKOWY 81 PRL 46 580 Dankowych + Hertzberger + (AMST, CERN, CRAC, MPIM, DAUM 4818 NP B182 269 Dankowych + Hertzberger + (AMST, CERN, CRAC, MPIM, BAUM, CRAC, MPIM, Hertzberger + (AMST, CERN, CRAC, MPIM, BIM, CRAC, MPIM, HERTZBER, CRAC, MPIM,	OXF+) OXF+) JP

OTHER RELATED PAPERS -

IIZUKA TORNOVIST	89 87	PR D39 3357 ZPHY C36 695	+Koibuchi, Masuda (NAGO,	IBAR, T:
BASDEVANT	77	PR D16 657	+Berger	(FNAL)
ADERHOLZ	64	PL 10 226	+ (AACH, BERL, BIRM, BONN, DE	SY, HAN
GOLDHABER	64	PRL 12 336	+Brown, Kadyk, Shen+	(LRL, U
LANDER	64	PRL 13 346A	+Abolins, Carmony, Hendricks, Xuong+	(U)
BELLINI	63	NC 29 896	+Fiorini, Herz, Negri, Ratti	(N

$f_2(1270)$

 1258.0 ± 10.0

 1275.0 ± 13.0

1261 ± 5

1270 ± 10

1268.0± 6.0

I

$$I^{G}(J^{PC}) = 0^{+}(2^{++})$$

See also minireview under non-qq candidates.

VALUE (MeV)	OUR ESTIMATE	DOCUMENT ID		<u>TECN</u>	COMMENT
		rror includes scale	facto	or of 1.1.	• _
1269.7 ± 5.2		AUGUSTIN	89	DM2	$e^+ e^- \rightarrow 5\pi$
1283 ± 6	400 ± 50	ALDE	87		$100 \pi^{-} p \rightarrow 4\pi^{0} n$
1274 ± 4		AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
1283.0 ± 6.0		¹ LONGACRE	86	MPS	$22 \pi^{-} p \rightarrow n2K_{5}^{0}$
1276.0 ± 7.0		COURAU	84	DLCO	$e^+e^- \rightarrow e^+e^-\pi^+\pi^-$
1273.3± 2.3		CHABAUD	83	ASPK	$e^+e^-\pi^+\pi^-$ 17 π^-p polarized
1280.0 ± 4.0		CASON	82		$8 \pi^{+} \rho \rightarrow \rho \pi^{+} 2\pi^{0}$
1281.0 ± 7.0		GIDAL	81	MRK2	J/ψ decay
1282.0 ± 5.0		CORDEN	79	OMEG	$12-15 \pi^- p \rightarrow n2\pi$
1269 ± 4	10k	APEL	75	CNTR	$40 \pi^{-} p \rightarrow n2\pi^{0}$
1272 ± 4	4600	ENGLER	74	DBC	$6 \pi^+ n \rightarrow \pi^+ \pi^- p$
1277.0 ± 4.0	5300	FLATTE	71	HBC	7.0 $\pi^{+} \rho$
1265 ± 8		BOESEBECK	68	HBC	8 π ⁺ p
• • • We do	not use the following	g data for averages	, fits	, limits,	etc. • • •
1288.0 ± 12.0		ABACHI	86B	HRS	$e^+ e^- \rightarrow \pi^+ \pi^-$
1270.0 ± 10.0	1665	BREAKSTONE	86	SFM	$\rho \rho \rightarrow \rho \rho \pi^+ \pi^-$
1284.0 ± 30.0	3k	BINON	83	GAM2	$38 \pi^- p \rightarrow n2\eta$
1280.0 ± 20.0	3k	APEL	82	CNTR	$25 \pi^- p \rightarrow n 2\pi^0$
1284.0 ± 10.0	16000	DEUTSCH	76	HBC	16 π ⁺ p

f2(1270) MASS

3 JOHNSON 1276 ±11 RABIN 67 HBC 8.5 π^{+} p $^{1}\,\mbox{From a partial-wave analysis of data using a K-matrix formalism with 5 poles.$

ARMENISE

² ARMENISE

² ARMENISE

1960

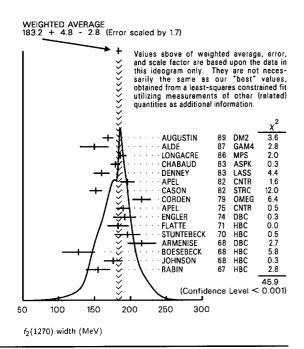
360

- ² Mass errors enlarged by us to $\Gamma/N^{1/2}$; see the note with the K^* (892) mass.
- ³ JOHNSON 68 includes BONDAR 63, LEE 64, DERADO 65, EISNER 67.

f₂(1270) WIDTH

TAKAHASHI 72 HBC

70 HBC


68 DBC

68 DBC

68 HBC

VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
	OUR ESTIMATE					
184.1± 2.8	OUR FIT Error i	nclud	es scale factor	of 1.7		
183.2 ⁺ 4.8 - 2.8	OUR AVERAGE	Error	includes scale	factor	of 1.7.	See the ideogram below.
169.0± 7.5			AUGUSTIN	89	DM2	$e^+e^- \rightarrow 5\pi$
150 ± 20	400 ± 50		ALDE	87	GAM4	$100 \pi^{-} p \rightarrow 4\pi^{0} n$
$186.0^{+}_{-}\ \stackrel{9.0}{2.0}$		4	LONGACRE	86		$22 \pi^- \rho \rightarrow n2K_S^0$
$179.2^{+}_{-} \begin{array}{c} 6.9 \\ 6.6 \end{array}$		5	CHABAUD	83	ASPK	17 $\pi^- p$ polarized
160.0 ± 11.0			DENNEY	83	LASS	10 π^{+} N
196.0 ± 10.0	3k		APEL	82		$25 \pi^- p \rightarrow n2\pi^0$
152.0 ± 9.0			CASON	82	STRC	$8 \pi^{+} \rho \rightarrow \rho \pi^{+} 2\pi^{0}$
216.0 ± 13.0			CORDEN	79	OMEG	$12-15 \pi^- p \rightarrow n2\pi$
190 ±10	10k		APEL	75	CNTR	$40 \pi^{-} p \rightarrow n2\pi^{0}$
192 ± 16	4600		ENGLER	74	DBC	
183.0 ± 15.0	5300		FLATTE	71		$7 \pi^+ p \rightarrow \Delta^{++} f_2$
196.0 ± 18.0			STUNTEBEC	K 70	HBC	$8 \pi^{-} p$, 5.4 $\pi^{+} d^{-}$
216 ± 20	1960	6	ARMENISE	68	DBC	·· ·· / ··
128 ±23			DOECEDECK			™M—
176.0 ± 23		7	BOESEBECK JOHNSON	68 68	HBC HBC	- · ·
176.0 ± 13.0			RABIN	67	HBC	$3.7-4.2 \pi^{-} p$ $8.5 \pi^{+} p$
	not use the follow	don a				
	not use the follow	villig c	-			
196.0 ± 34.0	1665		BREAKSTON		SFM	$p\rho \rightarrow p\rho \pi^+ \pi^-$
240.0 ± 40.0	3k		BINON			$38 \pi^- p \rightarrow n2\eta$
186.0 ± 27.0			GIDAL		MRK2	
187.0 ± 30.0	650	0	ANTIPOV		CIBS	
225.0 ± 38.0	16000	_	DEUTSCH		HBC	
166.0 ± 28.0	600	ю	TAKAHASHI			$8 \pi^- \rho \rightarrow n2\pi$
173.0 ± 25.0			ARMENISE	70	HBC	$9 \pi^+ n \rightarrow \rho \pi^+ \pi^-$

- $\overset{4}{\scriptscriptstyle -}$ From a partial-wave analysis of data using a K-matrix formalism with 5 poles.
- 5 CHABAUD 83 analysis includes HYAMS 75. 6 Width errors enlarged by us to $4\Gamma/N^{1/2}$; see the note with the K^* (892) mass. ⁷ JOHNSON 68 includes BONDAR 63, LEE 64, DERADO 65, EISNER 67.

£ (1070)	DECAN	MODE
15(12/0)	DECAY	MUDES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁	ππ	(85.1 +2.3) %	S=1.3
Γ_2	$\pi^{+}\pi^{-}2\pi^{0}$	$(6.6 \ ^{+1.5}_{-2.6})\%$	S=1.4
Γ_3	ΚK	(4.7 ±0.5)%	S=3.0
Γ_4	$2\pi^{+}2\pi^{-}$	(2.8 ±0.4) %	S=1.2
Γ_5	$\eta \eta$	(4.5 ±1.0) × 10	·3 S=2.4
Γ6	$4\pi^0$	(3.0 ±1.0) × 10	- 3
Γ_7	$\gamma \gamma$	$(1.50\pm0.08)\times10^{-1}$	
Γ8	ηππ	< 9 × 10	·3 CL=95%
Г9	$K^{0}K^{-}\pi^{+}$ + c.c.	< 3.4 × 10	CL=95%
Γ ₁₀	e^+e^-	< 9 × 10 ⁻	·9 CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to the total width, 4 partial widths, and 6 branching ratios uses 44 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=$ 80.8 for 37 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $\mathbf{x}_i = \Gamma_i/\Gamma_{\mathrm{total}}.$ The fit constrains the \mathbf{x}_i whose labels appear in this array to sum to one.

x_2	-91						
<i>x</i> 3	12	-41					
<i>x</i> ₄	11	-36	1				
<i>x</i> ₅	2	-9	0	0			
x_6	0	-7	0	0	0		
×7	23	-22	4	3	1	0	
Γ	-82	76	-13	-9	-3	0	-29
	x_1	<i>x</i> ₂	<i>x</i> 3	×4	<i>x</i> ₅	<i>x</i> ₆	x7

Mode		Rate (K	Scale lactor	
Γ ₁	ππ	156.7	$^{+3.0}_{-1.3}$	
Γ_2	$\pi^{+}\pi^{-}2\pi^{0}$	12.2	+2.9 -4.9	1.4
Γ_3	KK	8.6	±0.9	3.0

$\Gamma_4 = 2\pi^+ 2\pi^-$			5.2	± 0	0.7	1.2
$\Gamma_5 \eta_{\eta}$			0.8			2.4
$\Gamma_6 = 4\pi^0$			0.5		0.18	
$\Gamma_7 \gamma \gamma$			0.0	0276±	0.00014	
	f ₂ (1270) PARTIAL	WID	THS		
$\Gamma(\pi\pi)$						Γ1
VALUE (MeV)		DOCUMENT ID		TECN	COMMENT	_
156.7 ^{+3.0} _{-1.3} OUR FIT						
$157.0^{+6.0}_{-1.0}$	8	LONGACRE	86	MPS	$22 \pi^- p \rightarrow n2K_5^0$	
Γ(<i>Κ</i> Κ)						Г3
VALUE (MeV)		DOCUMENT ID		TECN	COMMENT	
8.6±0.9 OUR FIT			0.			
$9.0^{+0.7}_{-0.3}$	8	LONGACRE	86	MPS	$22 \pi^- p \rightarrow n2K_S^0$	
$\Gamma(\eta\eta)$						Γ5
VALUE (MeV)		DOCUMENT ID		TECN	COMMENT	_
0.83±0.19 OUR FIT		s scale factor of LONGACRE			an = audi	
1.0 ±0.1	·	LONGACRE	86	MPS	$22 \pi^- p \rightarrow n2K_S^0$	
$\Gamma(\gamma\gamma)$						Γ7
VALUE (keV)		DOCUMENT ID		TECN	COMMENT	•
2.76±0.14 OUR FIT						
2.76±0.14 OUR AVE						
$3.2 \pm 0.1 \pm 0.4$	9	AIHARA	86B	TPC	$e^+e^{e^+e^-\pi^+\pi^-}$	
2.5 ±0.1 ±0.5		BEHREND	848	CELL	$e^+e^- \rightarrow$	
2.85 ± 0.25 ± 0.5		BERGER	84	PLUT	$e^{+}e^{-}e^{-}\pi^{+}\pi^{-}$ $e^{+}e^{-}\to e^{+}e^{-}2\pi$	
2.70±0.21		COURAU	84	DLCO	e+e- → e e 2x	
			-		$e^{+}e^{-}\pi^{+}\pi^{-}$	
$2.52 \pm 0.13 \pm 0.38$		SMITH	840	MRK2	e+ e- → e+ e- K+ K-	
$2.3 \pm 0.2 \pm 0.5$		FRAZER	83	JADE	e ⁺ e →	
2.7 ±0.2 ±0.6		EDWARDS	82F	CBAL	$e^{+}e^{-}\pi^{+}\pi^{-}$ $e^{+}e^{-}\rightarrow e^{+}e^{-}2\pi^{0}$	J
3.2 ±0.2 ±0.6		BRANDELIK		TASS		
3.6 ±0.3 ±0.5		ROUSSARIE	81	MRK2		ı
2.3 ±0.8	10	BERGER	80B	PLUT	e^+e^-	
• • • We do not use			s, fits	, limits,	etc. • • •	
$2.9 \begin{array}{c} +0.6 \\ -0.4 \end{array} \pm 0.6$	11	EDWARDS	82F	CBAL	$e^+ e^- \rightarrow e^+ e^- 2\pi^0$	1
Γ(e ⁺ e ⁻)					Г	10
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	
<1.7	90	VOROBYEV	88	ND	$e^{+} e^{-} \rightarrow \pi^{0} \pi^{0}$	_

⁸ From a partial-wave analysis of data using a K-matrix formalism with 5 poles.

fs(1270) BRANCHING RATIOS

 $\Gamma(\pi\pi)/\Gamma_{\text{total}}$

VALUE

2 + 2 -

	- (,			
	EVTS	DOCUMENT ID	TECN	COMMENT	
ıτ	Error i	includes scale factor of	1.3.		

 Γ_1/Γ

 $0.851^{+0.023}_{-0.013}$ OUR FIT 0.837±0.020 OUR AVERAGE 0.849 ± 0.025 CHABAUD 83 ASPK 17 $\pi^- \rho$ polarized

71 HBC $8 \pi^+ p \rightarrow \Delta^{++} f_2$ 70 HBC $1.26 \pi^- p \rightarrow \pi^+ \pi^- n$ 250 BEAUPRE 0.85 ± 0.05 600 0.8 ± 0.04 $\Gamma(\pi^+\pi^-2\pi^0)/\Gamma(\pi\pi)$ Γ_2/Γ_1

Should be twice $\Gamma(2\pi^+ 2\pi^-)/\Gamma(\pi \pi)$ if decay is $\rho \rho$. (See ASCOLI 68D.) EVTS DOCUMENT ID TECN COMMENT $0.078^{f +0.019}_{-0.032}$ OUR FIT $\,$ Error includes scale factor of 1.4.

600 EISENBERG 74 HBC 4.9 π^+ $p \rightarrow \Delta^{++}$ fs 0.15 ± 0.06 • • • We do not use the following data for averages, fits, limits, etc. • • 0.07 **EMMS** 750 DBC $4 \pi^+ n \rightarrow \rho f_2$

 $\Gamma(K\overline{K})/\Gamma(\pi\pi)$ Γ_3/Γ_1 We average only experiments which either take into account $f_2(1270)$ - $g_2(1320)$ inter ference explicitly or demonstrate that a2 (1320) production is negligible.

<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **0.055±0.006 OUR FIT** Error includes scale factor of 2.9.

 $0.040^{+\,0.005}_{-\,0.006}$ OUR AVERAGE

$0.037^{+0.008}_{-0.021}$	ETKIN	828 MPS	$23~\pi^-~\rho~\rightarrow~n2K_S^0$
0.045 ± 0.009	CHABAUD	81 ASPK	17 $\pi^- p$ polarized
0.039 ± 0.008	LOVERRE	80 HBC	$4 \pi^- \rho \rightarrow K \overline{K} N$

⁹ Radiative corrections modify the partial widths; for instance the COURAU 84 value becomes 2.66 ± 0.21 in the calculation of LANDRO 86. ¹⁰ Using mass, width and B($f_2(1270) \rightarrow 2\pi$) from PDG 78.

¹¹ If helicity = 2 assumption is not made.

```
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                              80 OMEG 1-2.2 π<sup>-</sup> ρ → κ<sup>+</sup> κ<sup>-</sup> π
                                        12 COSTA...
0.036 \pm 0.005
0.030 \pm 0.005
                                         13 MARTIN
                                                              79 RVUE
                                         <sup>14</sup> POLYCHRO... 79 STRC 7 \pi^- p \rightarrow n2K_5^0
0.027 \pm 0.009
                                                                             4 \pi^+ n \rightarrow \rho f_2
0.025 \pm 0.015
                                            FMMS
                                                              75D DBC
0.031 \pm 0.012
                                            ADERHOLZ 69 HBC

8 \pi^{+} p \rightarrow K^{+} K^{-} \pi^{+} p

 12 Re-evaluated by CHABAUD 83.
  13 Includes PAWLICKI 77 data.
 <sup>14</sup> Takes into account the f_2(1270) - f_2'(1525) interference.
\Gamma(2\pi^+2\pi^-)/\Gamma(\pi\pi)
                                                                                                   \Gamma_4/\Gamma_1
VALUE EVTS DOCUMENT ID TO 0.033 ± 0.005 OUR FIT Error includes scale factor of 1.2.
0.033±0.004 OUR AVERAGE Error includes scale factor of 1.1.
                                                              75D DBC 4 \pi^{+} n \rightarrow pf_{2}
74 HBC 4.9 \pi^{+} p \rightarrow \Delta^{++} f_{2}
0.024 \pm 0.006
                               160
0.051 \pm 0.025
                                70
                                            EISENBERG 74 HBC
0.043 \substack{+0.007 \\ -0.011}
                               285
                                            LOUIE
                                                              74 HBC
                                                                             3.9 \pi^- p \rightarrow \pi f_2
                                                                              6 \pi^+ n \rightarrow pf_2
0.037 \pm 0.007
                               154
                                            ANDERSON
                                                              73 DBC
0.047 \pm 0.013
                                                               70 HBC
\Gamma(\eta\eta)/\Gamma_{\text{total}}
                                                                                                    \Gamma_5/\Gamma
VALUE (units 10^{-3})
                                            DOCUMENT ID
                                                                    TECN COMMENT
4.5±1.0 OUR FIT Error includes scale factor of 2.4.
3.1±0.8 OUR AVERAGE Error includes scale factor of 1.3.
                                            ALDE
                                                              860 GAM4 100 \pi^- \rho \rightarrow 4\gamma
2.8 \pm 0.7
5.2 \pm 1.7
                                            RINON
                                                              83 GAM2 38 \pi^- p \rightarrow 4\gamma
\Gamma(\eta\eta)/\Gamma(\pi\pi)
                                                                                                   \Gamma_5/\Gamma_1
VALUE
                             CL%
                                           DOCUMENT ID
                                                                  TECN COMMENT
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
 < 0.05
                                            EDWARDS 82F CBAL e^+e^- \rightarrow e^+e^- 2\eta
                              95
                                           EMMS 75D DBC 4 \pi^+ n \rightarrow p f_2
EISENBERG 74 HBC 4.9 \pi^+ p \rightarrow \Delta^{++} f_2
 < 0.016
                               95
 < 0.09
                               95
\Gamma(4\pi^0)/\Gamma_{\rm total}
                                                                                                    \Gamma_6/\Gamma
0.0030±0.0010 OUR FIT
                                            DOCUMENT ID TECN COMMENT
                                                              87 GAM4 100 \pi^- p \rightarrow 4\pi^0 n
0.003 \pm 0.001
                        400 + 50
                                            ALDE
\Gamma(\eta \pi \pi)/\Gamma(\pi \pi)
                                                                                                   \Gamma_8/\Gamma_1
VALUE
                              CL%
                                            DOCUMENT ID
                                                                   TECN COMMENT
                                                               75D DBC 4 \pi^+ n \rightarrow p f_2
 < 0.010
                                            EMMS
\Gamma(K^0K^-\pi^+ + c.c.)/\Gamma(\pi\pi)
                                                                                                   \Gamma_9/\Gamma_1
VALUE
                              CL%
                                            DOCUMENT ID
                                                                  TECN COMMENT
                                                              75D DBC 4 \pi^+ n \rightarrow pf_2
 < 0.004
                                     f<sub>2</sub>(1270) REFERENCES
AUGUSTIN
               89 NP B320 1
```

			(DIVIZ CONSU.)
VOROBYEV	88	YAF 48 436	+Golubev, Dolinsky, Druzhinin+ (NOVO)
ALDE	87	PL B198 286	+Binon, Bricman+ (LANL, BRUX, SERP, LAPP)
AUGUSTIN	87	ZPHY C36 369	+Cosme+ (LALO, CLER, FRAS, PADO)
ABACHI	86B	PRL 57 1990	+Derrick, Biockus+ (PURD, ANL, IND, MICH, LBL)
AIHARA	86B	PRL 57 404	+Alston-Garnjost+ (TPC-2γ Collab.)
ALDE	86D	NP B269 485	+Binon, Bricman+ (BELG, LAPP, SERP, CERN)
BREAKSTONE		ZPHY C31 185	+ (ISU, BGNA, ČERN, DORT, HEID, WARS)
LANDRO	86	PL B172 445	+Mork, Olsen (UTRO)
LONGACRE	86	PL B177 223	+Etkin+ (BNL, BRAN, CUNY, DUKE, NDAM)
BEHREND	84B	ZPHY C23 223	+Fenner, Schachter, Schroeder+ (CELLO Collab.)
BERGER	84	ZPHY C26 199	+Klovning, Burger+ (PLUTO Collab.)
COURAU	84	PL 147B 227	+Johnson, Sherman, Atwood, Baillon+ (CIT, SLAC)
SMITH	84C	PR D30 851	+Burke, Abrams, Blocker, Levi+ (SLAC, LBL, HARV)
BINON	83	NC 78A 313	+Donskov, Duteil+ (BELG, LAPP, SERP, CERN)
Also	83B	SJNP 38 561	Binon, Gouanere+ (BELG, LAPP, SERP, CERN)
		Translated from YAF 3	8 934.
CHABAUD	83	NP B223 1	+Gorlich, Cerrada+ (CERN, CRAC, MPIM)
DENNEY	83	PR D28 2726	+Cranley, Firestone, Chapman+ (IOWA, MICH)
FRAZER	83	Aachen Conf.	(UCSD)
APEL	82	NP B201 197	+Augenstein+ (KARL, PISA, SERP, WIEN, CERN)
CASON	82	PRL 48 1316	+Biswas, Baumbaugh, Bishop+ (NDAM, ANL)
EDWARD\$	82F	PL 110B 82	+Partridge, Peck+ (CIT, HARV, PRIN, STAN, SLAC)
ETKIN	82B	PR D25 1786	+Foley, Lai+ (BNL, CUNY, TUFT, VAND)
BRANDELIK	81B	ZPHY C10 117	+Boerner+ (TASSO Collab.)
CHABAUD	81	APP B12 575	+Boerner+ (TASSO Collab.) +Niczyporuk, Becker+ (CERN, CRAC, MPIM)
GIDAL	81	PL 107B 153	+Goldhaber, Guy, Millikan, Abrams+ (SLAC, LBL)
ROUSSARIE	81	PL 105B 304	+Burke, Abrams, Alam+ (SLAC, LBL)
BERGER	80B	PL 94B 254	+Genzer+ (AACH, BERG, DESY, HAMB, UMD+)
COSTA	80	NP B175 402	Costa De Beauregard+ +Armenteros, Dionisi+ (CERN, CDEF, MADR, STOH)
LOVERRE	80	ZPHY C6 187	+Armenteros, Dionisi+ (CERN, CDEF, MADR, STOH)
CORDEN	79	NP B157 250	+Dowell, Garvey+ (BIRM, RHEL, TELA, LOWC)
MARTIN	79	NP B158 520	+Ozmutlu (DURH)
	79	PR D19 1317	Polychronakos, Cason, Bishop+ (NDAM, ANL)
PDG	78	PL 75B	Bricman+
ANTIPOV	77	NP B119 45	+Busnello, Damgaard, Kienzle+ (SERP, GEVA)
PAWLICKI	77	PR D15 3196	+Ayres, Cohen, Diebold, Kramer, Wicklund (ANL)
DEUTSCH	76	NP B103 426	Deutschmann+ (AACH, BERL, BONN, CERN+)
APEL	75	PL 57B 398	+Augenstein+ (KARL, PISA, SERP, WIEN, CERN)

 $f_1(1285)$ was D(1285)

 1280 ± 3

500

⁴ THUN

72 MMS

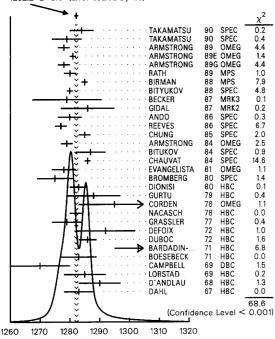
 $I^G(J^{PC}) = 0^+(1^{++})$

See also minireview under non- $q\overline{q}$ candidates.

f1 (1285) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN CHG	COMMENT
1282 ± 5 1282.2± 0.6	OUR ESTIMATE OUR AVERAGE	Error includes sca	le fa	ctor of 1.6. S	ee the ideogram
$1284 ~\pm~ 4$		below. TAKAMATSU	90	SPEC 0	8 π ⁻ ρ →
$1279\ \pm\ 5$		TAKAMATSU	90	SPEC 0	K K π π 8 π − ρ →
1278 ± 2	140 ± 12	ARMSTRONG	89	OMEG	$ \eta \pi^{+} \pi^{-} n $ $ 300 \rho \rho \rightarrow K F - 20 $
$1281\ \pm\ 1$		ARMSTRONG	89E	OMEG	$K\overline{K}\pi\rho\rho$ 300 $\rho\rho \rightarrow$
$1278 \ \pm \ 2$		ARMSTRONG	89 G	OMEG	$ \begin{array}{c} p p 2(\pi^+ \pi^-) \\ 85 \pi^+ p \rightarrow \\ 4\pi \pi p, pp \rightarrow \end{array} $
1280.1± 2.1	60 ± 20	RATH	89	MPS	$ \begin{array}{c} 4\pi \rho \rho \\ 21.4 \pi^{-} \rho \to \\ K_{5}^{0} K_{5}^{0} \pi^{0} n \end{array} $
$1285 \ \pm \ 1$	4750 ± 100	¹ BIRMAN	88	MPS	$ 8 \pi^{-} p \rightarrow K^{+} \overline{K}^{0} \pi^{-} n $
1280 ± 1	504 ± 84	BITYUKOV	88	SPEC	32.5 $\pi^- \rho \rightarrow$
1279 ± 6	±10 16 ± 6	BECKER	87	MRK3	$e^+ e^- \xrightarrow{\pi^0 n} \phi K \overline{K} \pi$
1286 ± 9		GIDAL	87	MRK2	$e^+ \stackrel{e^-}{e^-} \stackrel{\rightarrow}{\underset{e^+}{\rightarrow}} _{\pi^+\pi^-}$
1280 ± 4		ANDO	86	SPEC	$8 \pi^{-} p \rightarrow 0 \pi^{+} \pi^{-}$
1277.0± 2.0	420	REEVES	86	SPEC	$\begin{array}{c} 6.6 p \overline{p} \rightarrow K K \pi \\ X \end{array}$
1285.0± 2.0		CHUNG	85	SPEC	8 π ⁻ ρ →
1279.0± 2.0	604	ARMSTRONG	84	OMEG	$ \begin{array}{c} N \overline{K} \overline{K} \pi \\ 85 \pi^{+} \rho \to \\ K \overline{K} \pi \pi \rho, \\ \rho \rho \to \\ \hline $
1287.0 ± 5.0	353	BITUKOV	84	SPEC	$ \begin{array}{c} K\overline{K}\pi p p \\ 32 \pi^{-} p \rightarrow \\ \end{array} $
1286.0± 1.0		CHAUVAT	84	SPEC	$K^{+}K^{-}\pi^{0}n$ ISR 31.5 pp
1278 ± 4 1275.0± 6.0	31	EVANGELISTA BROMBERG	81 80	OMEG SPEC	$12 \pi^- p \rightarrow \eta \pi p$
1273.0± 0.0 1283.0± 3.0	103	DIONISI	80	HBC	$ \begin{array}{c} 100 \ \pi^{-} \ \rho \rightarrow \\ K K \pi X \end{array} $
1203.01 3.0	103	DIOMISI	00	пвс	$4 \pi^{-} \rho \rightarrow K K \pi n$
1288.0± 9.0	200	GURTU	79	HBC	$4.2 \begin{array}{c} K^- p \rightarrow \\ n\eta 2\pi \end{array}$
1295.0 ± 12.0	85	CORDEN	78	OMEG	$12-15 \pi^- p \rightarrow n5\pi$
1282.0± 2.0	320	NACASCH	78	нвс	0.7,0.76 p̄ρ → K <u>K</u> 3π
1279.0 ± 5.0	210	GRASSLER	77	нвс	$16 \pi^+ \rho$
1292 ±10	150	DEFOIX	72	HBC	$0.7 \overline{p} p \rightarrow 7\pi$
1286 ± 3	180	DUBOC	72	нвс	$1.2 \bar{p}p \rightarrow 2K4\pi$
1303.0± 8.0		BARDADIN		HBC	$8 \pi^+ \rho \rightarrow \rho 6\pi$
1283.0± 6.0		BOESEBECK	71	HBC	$16.0 \pi p \rightarrow p5\pi$
1270.0 ± 10.0		CAMPBELL	69	DBC	$2.7 \pi^{+} d$
1285 ± 7		LORSTAD	69	HBC	0.7 pp, 4,5-body
1290 ± 7		D'ANDLAU	68	HBC	1.2 pp. 5-6 body
1283.0± 5.0		DAHL	67	HBC	$1.6-4.2 \pi^- \rho$
	ot use the following		, fits	, limits, etc. e	• •
~ 1279		² TORNQVIST	82B	RVUE	
~ 1275.0	46	³ STANTON	79	CNTR	$\begin{array}{c} 8.5 \ \pi^- \ \rho \rightarrow \\ n2\gamma \ 2\pi \end{array}$
1271.0 ± 10.0	34	CORDEN	78	OMEG	$12-15 \pi^{-} p \rightarrow \kappa^{+} \kappa^{-} \pi p$

K+ K-πη 13.4 π-ρ


$f_1(1285)$

 1 From partial wave analysis of ${\it K}^+\,\overline{\it K}^0\,\pi^-$ system.

² From a unitarized quark-model calculation.

 $^{4}\,\mathrm{Seen}$ in the missing mass spectrum.

WEIGHTED AVERAGE 1282.2 ± 0.6 (Error scaled by 1.6)

f₁(1285) mass (MeV)

$f_1(1285)$ WIDTH

Only experiments giving width error less than 20 MeV are kept for averaging.

VALUE (MeV) CL% EVTS	DOCUMENT ID	TECN CHG	COMMENT
24 ± 3 OUR ESTIMATE			
24.2± 1.1 OUR AVERAGE			
22 ± 5	TAKAMATSU 90		$8 \pi^- p \rightarrow K \overline{K} \pi n$
25 ± 4 140 ± 12	ARMSTRONG 89	OMEG	300 <i>pp</i> → <i>K K</i> πρρ
31 ± 5	ARMSTRONG 89E	OMEG	$\begin{array}{c} 300 \ pp \rightarrow \\ pp2(\pi^+\pi^-) \end{array}$
41 ±12	ARMSTRONG 89G	OMEG	$ \begin{array}{c} 85 \pi^{+} \rho \rightarrow \\ 4\pi \pi \rho, \rho \rho \rightarrow \\ 4\pi \rho \rho \end{array} $
17.9 ± 10.9 60 ± 20	RATH 89	MPS	$\kappa_{S}^{0} \kappa_{S}^{0} \pi^{0} n$
22 \pm 2 4750 \pm 100	⁵ BIRMAN 88	MPS	$ 8 \pi^{-} \rho \xrightarrow{J} K^{+} \overline{K}^{0} \pi^{-} n $
25 ± 4 504 ± 84	BITYUKOV 88	SPEC	$32.5 \pi^{-} p \xrightarrow{\pi^{-}} n$ $K^{+} K^{-} \pi^{0} n$
$14 \begin{array}{c} +20 \\ -14 \end{array} \pm 10 \qquad 16 \pm 6$	BECKER 87	MRK3	$e^+ e^- \xrightarrow{\phi K \overline{K} \pi}$
19 ± 5	ANDO 86	SPEC	$8 \pi^- p \rightarrow n \pi^+ \pi^-$
32.0± 8.0 420	REEVES 86	SPEC	6.6 pp → KKπ X
22.0 ± 2.0	CHUNG 85	SPEC	$8 \pi^- \rho \rightarrow N K \overline{K} \pi$
32.0± 3.0 604	ARMSTRONG 84	OMEG	85 π ⁺ ρ →
24.0± 3.0	CHAUVAT 84	SPEC	ISR 31.5 pp
26 ±12	EVANGELISTA 81	OMEG	$12 \pi^- \rho \rightarrow \eta \pi \rho$
29.0 ± 10.0 103	DIONISI 80	HBC	4 π [−] ρ →
25.0 ± 15.0 200	GURTU 79	нвс	$ \begin{array}{c} K \overline{K} \pi n \\ 4.2 K^{-} \rho \rightarrow \\ n_{1} 2\pi \end{array} $
28.3± 6.7 320	NACASCH 78	нвс	$0.7, 0.76 \ \overline{p} p \rightarrow K \overline{K} 3\pi$
24.0 ± 18.0 210	GRASSLER 77	HBC	16 π [∓] ρ
10.0 ± 10.0	BOESEBECK 71	HBC	$16.0 \pi p \rightarrow p5\pi$
30.0 ± 15.0	CAMPBELL 69	DBC	$2.7 \pi^+ d$

•	•	We d	o not	use th	ne follov	/ing (data	for	averages,	fits,	limits,	etc.	•	•	•
---	---	------	-------	--------	-----------	--------	------	-----	-----------	-------	---------	------	---	---	---

<20	90	TAKAMATSU	90	SPEC 0	8 π p →
~ 10.0		⁶ STANTON	79	CNTR	$ \eta \pi^{+} \pi^{-} n $ $ 8.5 \pi^{-} \rho \rightarrow $ $ n 2 \gamma 2 \pi $
28 ± 5 46 ± 9 37 ± 5 60 ±15 35.0±10.0	150 180 500	7 DEFOIX 7 DUBOC 8 THUN 7 LORSTAD 7 DAHL	72 72 69	HBC HBC MMS HBC HBC	$0.7 \overline{p}p \rightarrow 7\pi$ $1.2 \overline{p}p \rightarrow 2K4\pi$ $13.4 \pi^{-}p$ $0.7 \overline{p}p, 4,5-\text{body}$ $1.6-4.2 \pi^{-}p$

⁵ From partial wave analysis of $K^+ \overline{K}^0 \pi^-$ system.

⁶ From phase shift analysis of $\eta \pi^+ \pi^-$ system.

⁷ Resolution is not unfolded.
⁸ Seen in the missing mass spectrum.

mass spectrum.

$f_1(1285)$	DECAY	MODES
-------------	-------	-------

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
$\overline{\Gamma_1}$	4π	(38 ±4)%	S=1.1
Γ_2	$\rho \pi \pi$	dominates 4π	
Γ_3	$ ho^0\pi^+\pi^-$		
Γ_4	$\eta \pi \pi$	(50 ±5)%	S=1.1
Γ_5	$a_0(980)\pi$	(37 ±7)%	
Γ_6	$2\pi^{+}2\pi^{-}$		
Γ_7	$K\overline{K}\pi$	(11.9 ± 1.4) %	S=1.1
Γ8	$\phi \gamma$	$(10 \pm 4) \times 10^{-4}$	1
	$\gamma \gamma^*$	$(11 \pm 3) \times 10^{-5}$	5
Γ_{10}	$4\pi^{0}$	< 7 × 10 ⁻⁴	CL=90%
Γ_{11}	$2\pi^+2\pi^-$ (including $\rho^0\pi^+\pi^-$)		
Γ_{12}	$\gamma \gamma$		
Γ_{13}	$K\overline{K}^*$ (892)	not seen	

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 8 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=6.2$ for 6 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta s_i \delta s_j \right\rangle/\left(\delta s_i \cdot \delta s_j\right),$ in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\rm total}.$ The fit constrains the x_i whose labels appear in this array to sum to one.

$$\begin{array}{rrr}
 x_4 & -96 \\
 x_7 & 39 & -62 \\
 & x_1 & x_4
 \end{array}$$

 $\Gamma(\eta\pi\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$

$f_1(1285) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

 $\Gamma_4\Gamma_{12}/\Gamma$

VALUE (KeV)	CL%	DOCUMENT ID		TECN	COMMENT
<0.62	95	GIDAL	87	MRK2	$e^{+}e^{-}_{e^{+}e^{-}\eta\pi^{+}\pi^{-}}$
$\Gamma(\eta\pi\pi)\times\Gamma(\gamma\gamma^*)$	$)/\Gamma_{total}$				$\Gamma_4\Gamma_9/\Gamma$
VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT
1.4 ±0.4 OUR AVE	RAGE Erro	or includes scale f	actor	of 1.4.	
$1.18 \pm 0.25 \pm 0.20$	26 ⁹	.10 AIHARA	88B	TPC	$e^+e^- \rightarrow e^+e^- \eta \pi^+ \pi^-$
2 30 + 0 61 + 0 42	9.	.11 GIDAL	87	MRK2	$e^+e^-\eta\pi^+\pi$

 9 Assuming a ho-pole form factor.

¹⁰ Published value multiplied by $\eta \pi \pi$ branching ratio 0.49.

f₁(1285) BRANCHING RATIOS

The $f_1(1285)$ branching ratios fit is made with the assumptions that the $f_1(1285) \to 4\pi$ decay is all $\rho\pi\pi$ and that the $\pi\pi$ pair has I=1.

$\Gamma(K\overline{K}\pi)/\Gamma(4\pi)$		Γ_7/Γ_1
VALUE	DOCUMENT ID TECN	COMMENT
0.31 ± 0.04 OUR FIT Error in	ncludes scale factor of 1.1.	
0.32±0.04 OUR AVERAGE	Error includes scale factor of 1.2.	
0.28 ± 0.05	12 ARMSTRONG 89E OMEG	
$0.37 \pm 0.03 \pm 0.05$	¹³ ARMSTRONG 89G OMEG	85 π p → 4π X
12 Assuming $\rho\pi\pi$ and a_0 (98)	Nπ intermediate states.	

 12 Assuming $\rho\pi\pi$ and $a_0(980)\pi$ intermediate states 13 4π consistent with being entirely $\rho\pi\pi$.

 $^{^3\,\}mathrm{From}$ phase shift analysis of $\eta\,\pi^+\,\pi^-$ system.

¹¹ Published value divided by 2 and multiplied by the $\eta\pi\pi$ branching ratio 0.49.

$\Gamma(K\overline{K}\pi)/\Gamma(\eta\pi\pi)$					Γ_7/Γ_4
VALUE			<u>TECN</u>	COMMENT	
	r includes scale factor				
0.23±0.06 OUR AVERAGE					
0.42±0.15	GURTU		HBC	4.2 K ⁻ p	
0.5 ±0.2	CORDEN 14 DEFOIX	78		12-15 π ⁻ p	
0.20 ± 0.08		72 69	HBC DBC	$0.7 \overline{p}p \rightarrow 7\pi$ $2.7 \pi^+ d$	
0.16 ± 0.08 $^{-14}$ K \overline{K} system characterize	CAMPBELL d by the / = 1 thresho				as (980)).
$\Gamma(a_0(980)\pi)/\Gamma(\eta\pi\pi)$,			(000 0	Γ ₅ /Γ ₄
VALUE	DOCUMENT IE		TECH	COLUMNIT	15/14
0.74±0.12 OUR AVERAGE	DOCUMENT IL	,	TECN	COMMENT	
0.72 ± 0.15	GURTU	79	нвс	4.2 K p	
0.6 +0.3	CORDEN	78	OMEG	12-15 π ⁻ p	
1.0 ±0.3	GRASSLER	77	HBC	16 $\pi^{\mp} \rho$	
$\Gamma(4\pi)/\Gamma(\eta\pi\pi)$					Γ_1/Γ_4
VALUE	DOCUMENT ID	,	TECN	COMMENT	±, +
0.76±0.16 OUR FIT Error					
0.83±0.24 OUR AVERAGE					
0.64 ± 0.40	GURTU	79	HBC	4.2 K ⁻ p	
0.93 ± 0.30	¹⁵ GRASSLER	77	HBC	16 π [∓] p	
0.93 ± 0.30 15 Assuming $ ho\pi\pi$ and $a_0(9)$			нвс	16 π [∓] p	
15 Assuming $ ho\pi\pi$ and a_0 (9			нвс	16 π [∓] ρ	Г13/Г
15 Assuming $\rho \pi \pi$ and a_0 (9) $\Gamma(K\overline{K}^*(892))/\Gamma_{\text{total}}$		tes.	HBC TECN	·	Γ ₁₃ /Γ
15 Assuming $\rho \pi \pi$ and a_0 (9 $\Gamma(K\overline{K}^*(892))/\Gamma_{\text{total}}$ VALUE	$980)\pi$ intermediate sta	tes.		COMMENT	
15 Assuming $\rho \pi \pi$ and a_0 (\$\frac{\kappa}{\kappa} \overline{\kappa}^* \text{(892)} \rangle \Gamma_{\text{total}} \\ \frac{\kappa \lambda \kappa}{\kappa} \text{(1000 km)} \\ \text{val} \text{UE} \\ \text{oot seen} \end{array}	080)π intermediate sta <u>DOCUMENT IC</u> NACASCH	tes. 78	<u>TECN</u>	·	+ K K 3π
15 Assuming $\rho\pi\pi$ and a_0 (\$\frac{\kappa}{K}\tilde{K}^*(892)\)/\Gamma_{\text{total}} \\ \frac{\kappa_{\ell} \text{LUE}}{\text{total}} \\ \text{rot seen} \\ -(\rho^0 \pi^+ \pi^-)/\Gamma(2\pi^+ 2\pi^-) \\ \ell_{\ell} \text{T} \\ \tex	$\frac{DOCUMENT\ IE}{NACASCH}$ (including $ ho^0\pi^+\pi^-$	78 7-))	<u>TECN</u> HBC	COMMENT	
15 Assuming $\rho\pi\pi$ and a_0 (\$\frac{\kappa}{K}\tilde{K}^*(892)\)/\Gamma_{\text{total}} \\ \frac{\kappa_{\ell} \text{LUE}}{\text{total}} \\ \text{rot seen} \\ -(\rho^0 \pi^+ \pi^-)/\Gamma(2\pi^+ 2\pi^-) \\ \ell_{\ell} \text{T} \\ \tex	080)π intermediate sta <u>DOCUMENT IC</u> NACASCH	78 7-))	<u>TECN</u> HBC	COMMENT	+ K K 3π
15 Assuming $\rho \pi \pi$ and a_0 (\$\frac{\kappa}{\kappa} \overline{\kappa}^* \text{(892)} \rangle \Gamma_{\text{total}} \\ \frac{\kappa \lambda \kappa}{\kappa} \text{(1000 km)} \\ \text{val} \text{UE} \\ \text{oot seen} \end{array}	$\frac{DOCUMENT\ IE}{NACASCH}$ (including $ ho^0\pi^+\pi^-$	78 7-))	TECN HBC	<u>СОММЕНТ</u> 0.7,0.76 рр –	+ K K 3π
15 Assuming $\rho \pi \pi$ and a_0 (\$\frac{\kappa}{\kappa} \tilde{\kappa} \tag{\text{total}} \\ \rac{\kappa}{\kappa} \tag{\text{total}} \\ \rack{\kappa} \\ \rack{\kappa} \tag{\kappa} \\ \rack{\kappa} \\ \r	$\frac{DOCUMENT\ IE}{DOCUMENT\ IE}$	78 7-))	TECN HBC	<u>СОММЕНТ</u> 0.7,0.76 рр –	+ κκκ3π 1/3 / Γ ₁₁
15 Assuming $\rho\pi\pi$ and a_0 (\$\frac{\kappa}{\kappa} \overline{\kappa} \pi \text{(892)} \rangle \Gamma_{\text{total}} \\ \frac{\kappa_{\kappa \kappa} \pi \pi \pi \text{(2\pi^+ 2\pi^-)}{\kappa_{\kappa \kappa} \text{(2\pi^+ 2\pi^-)}{\kappa_{\kappa} \text{(0.5)} \text{(0.5)}} \\ \dots \text{(0.5)} \\ \dots \te	$\frac{DOCUMENT\ B}{DOCUMENT\ B}$ (including $\rho^0\pi^+\pi^ \frac{DOCUMENT\ B}{DOCUMENT\ B}$ GRASSLER	78 77	TECN HBC TECN HBC	COMMENT 0.7,0.76 $\overline{\rho}p$ - COMMENT 16 GeV $\pi^{\pm}p$	+ K K 3π
15 Assuming $\rho \pi \pi$ and a_0 (9) Γ (KK^* (892))/ Γ total MALUE not seen Γ ($\rho^0 \pi^+ \pi^-$)/ Γ ($2\pi^+ 2\pi^-$ MALUE Γ ($\rho \pi \pi$)/ Γ ($\rho \pi \pi$)	DOCUMENT IE DOCUMENT IE NACASCH (including ρ ⁰ π+ DOCUMENT IE GRASSLER	78 77 77	TECN HBC TECN HBC	COMMENT 0.7,0.76 $\overline{p}p$ - COMMENT 16 GeV $\pi^{\pm}p$	+ κκκ3π 1/3 / Γ ₁₁
15 Assuming $\rho \pi \pi$ and a_0 (9) Γ (KK^* (892))/ Γ total MALUE not seen $\Gamma(\rho^0 \pi^+ \pi^-)/\Gamma(2\pi^+ 2\pi^- MALUE)$ 1.0 \pm 0.4 $\Gamma(\rho \pi \pi)/\Gamma(\eta \pi \pi)$ MALUE CLUE of Φ We do not use the fo	$\frac{DOCUMENT\ IL}{NACASCH}$ - (including $\rho^0\pi^+\pi^ \frac{DOCUMENT\ IL}{GRASSLER}$	78 77 77	TECN HBC TECN HBC	COMMENT $0.7, 0.76 \ \overline{\rho} \ \rho -$ $COMMENT$ $16 \ \text{GeV} \ \pi^{\pm} \ \rho$ $COMMENT$ $\text{etc.} \bullet \bullet \bullet$	+ κκκ3π 1/3 Γ ₃ /Γ ₁₁
15 Assuming $\rho\pi\pi$ and a_0 (9) Γ (KK^* (892))/ Γ total ΔUUE not seen $\Gamma(\rho^0\pi^+\pi^-)/\Gamma(2\pi^+2\pi^-)$ ΔUUE 0.0 ± 0.4 $\Gamma(\rho\pi\pi)/\Gamma(\eta\pi\pi)$ ΔUUE Ω Ω . We do not use the follows (0.4 95)	DOCUMENT IE NACASCH (including ρ ⁰ π+π DOCUMENT IE GRASSLER M. DOCUMENT IE Illowing data for average 16 CORDEN	78 77 77 ges, fit	TECN HBC TECN HBC TECN s, limits,	COMMENT 0.7,0.76 $\overline{p}p$ – COMMENT 16 GeV $\pi^{\pm}p$ etc. • • 12–15 $\pi^{-}p$	+ κκκ3π 1/3 Γ ₃ /Γ ₁₁
15 Assuming $\rho \pi \pi$ and a_0 (9) Γ (KK^* (892))/ Γ total ALUE not seen $\Gamma(\rho^0 \pi^+ \pi^-)/\Gamma(2\pi^+ 2\pi^-)$ ($\rho = 0.0 \pm $	DOCUMENT IE NACASCH (including ρ ⁰ π+π DOCUMENT IE GRASSLER M. DOCUMENT IE Illowing data for average 16 CORDEN	78 77 77 ges, fit	TECN HBC TECN HBC TECN s, limits,	COMMENT 0.7,0.76 $\overline{p}p$ – COMMENT 16 GeV $\pi^{\pm}p$ etc. • • 12–15 $\pi^{-}p$	+ K\(\overline{K}\)3π \frac{1}{3}\(\Gamma_3\)/\(\Gamma_{11}\) \Gamma_2/\(\Gamma_4\)
15 Assuming $\rho \pi \pi$ and a_0 (9) Γ (KK^* (892))/ Γ total (ALUE) not seen Γ ($\rho^0 \pi^+ \pi^-$)/ Γ ($2\pi^+ 2\pi^-$).0±0.4 Γ ($\rho \pi \pi$)/ Γ ($\eta \pi \pi$) (ALUE) Γ ($\rho \pi \pi$)/ Γ ($\eta \pi \pi$) (ALUE) Γ (σ • • We do not use the form (0.4) 95 16 Note that CORDEN 78 Γ (σ (σ (σ (σ (σ (σ))/ Γ total	DOCUMENT IL NACASCH (including ρ ⁰ π + π DOCUMENT IL GRASSLER M DOCUMENT IL Illowing data for average 16 CORDEN and GRASSLER 77 are	78 (77)) 77 (ses, fit 78 e in dis	TECN HBC TECN HBC TECN S, limits, OMEG	COMMENT $0.7, 0.76 \overline{p} p - \frac{COMMENT}{16 \text{ GeV } \pi^{\pm} p}$ $\frac{COMMENT}{12-15 \pi^{-} p}$ nt.	+ κκκ3π 1/3 / Γ ₁₁
15 Assuming $\rho \pi \pi$ and a_0 (9) Γ (KK^* (892))/ Γ total ALUE NOT seen Γ ($\rho^0 \pi^+ \pi^-$)/ Γ ($2\pi^+ 2\pi^-$ ALUE 1.0±0.4 Γ ($\rho \pi \pi$)/ Γ ($\eta \pi \pi$) ALUE 0.0±0.4 95 16 Note that CORDEN 78. Γ ($4\pi^0$)/ Γ total ALUE (units 10^{-4}) CL	DOCUMENT IC BOCUMENT IC NACASCH (including ρ ⁰ π + π DOCUMENT IC GRASSLER M DOCUMENT IC Illowing data for average 16 CORDEN and GRASSLER 77 are DOCUMENT IC	78 (77)) 77 (78) (78) (78) (78) (78) (78	TECN HBC TECN HBC TECN S, limits, OMEG Sagreeme	COMMENT $0.7,0.76 \overline{\rho} \rho - \frac{1}{100}$	- K\overline{K}3π \frac{1}{3}\Gamma_3/\Gamma_{11} \tag{Γ}_2/\Gamma_4 \tag{Γ}_{10}/\Gamma
15 Assuming $\rho \pi \pi$ and a_0 (9) Γ (KK^* (892))/ Γ total (ALUE) not seen Γ ($\rho^0 \pi^+ \pi^-$)/ Γ ($2\pi^+ 2\pi^-$) Γ	DOCUMENT IE DOCUMENT IE NACASCH (including ρ ⁰ π+π DOCUMENT IE GRASSLER DOCUMENT IE Illowing data for average 16 CORDEN and GRASSLER 77 are DOCUMENT IE	78 (77)) 77 (ses, fit 78 e in dis	TECN HBC TECN HBC TECN S, limits, OMEG Sagreeme	COMMENT $0.7, 0.76 \overline{p} p - \frac{COMMENT}{16 \text{ GeV } \pi^{\pm} p}$ $\frac{COMMENT}{12-15 \pi^{-} p}$ nt.	$\frac{1}{3}\Gamma_3/\Gamma_{11}$ $\frac{1}{3}\Gamma_3/\Gamma_{11}$ $\frac{\Gamma_2/\Gamma_4}{4\pi^0 n}$
15 Assuming $\rho \pi \pi$ and a_0 (9) $\Gamma(K\overline{K}^*(892))/\Gamma_{\text{total}}$ MALUE not seen $\Gamma(\rho^0 \pi^+ \pi^-)/\Gamma(2\pi^+ 2\pi^-)$ MALUE $L0 \pm 0.4$ $\Gamma(\rho \pi \pi)/\Gamma(\eta \pi \pi)$ MALUE <0.4 95 16 Note that CORDEN 78 $\Gamma(4\pi^0)/\Gamma_{\text{total}}$ MALUE (units 10^{-4}) <7 90 $\Gamma(\phi \gamma)/\Gamma(K\overline{K} \pi)$	DOCUMENT IC BOCUMENT IC NACASCH (including ρ ⁰ π + π DOCUMENT IC GRASSLER M DOCUMENT IC Illowing data for average 16 CORDEN and GRASSLER 77 are DOCUMENT IC	78 (77)) 77 (78) (78) (78) (78) (78) (78	TECN HBC TECN HBC TECN S, Ilmits, OMEG Gagreeme	COMMENT $0.7,0.76 \overline{\rho} \rho - \frac{1}{100}$	- K\overline{K}3π \frac{1}{3}\Gamma_3/\Gamma_{11} \tag{Γ}_2/\Gamma_4 \tag{Γ}_{10}/\Gamma
15 Assuming $\rho \pi \pi$ and a_0 (9) Γ (KK^* (892))/ Γ total (ALUE) not seen Γ ($\rho^0 \pi^+ \pi^-$)/ Γ ($2\pi^+ 2\pi^-$) Γ	DOCUMENT IE NACASCH (including ρ ⁰ π+π DOCUMENT IE GRASSLER M DOCUMENT IE Illowing data for averag 16 CORDEN and GRASSLER 77 are ALDE	78 (r -)) 77 77 78 18 2 in dis	TECN HBC TECN HBC TECN S, limits, OMEG	COMMENT $0.7,0.76 \overline{\rho} \rho - \frac{1}{100}$	$\frac{1}{3}\Gamma_3/\Gamma_{11}$ $\frac{\Gamma_2/\Gamma_4}{\Gamma_{10}/\Gamma_{4\pi^0 n}}$

$f_1(1285)$ REFERENCES

TAKAMATSU	90	Hadron 89 Conf.	+Ando+ (KEK)
ARMSTRONG	89	PL B221 216	+Benayoun+ (CERN, CDEF, BIRM, BARI, ATHU, LPNP) J
ARMSTRONG	89E	PL B228 536	+Benayoun (ATHU, BARI, BIRM, CERN, CDEF, LPNP)
ARMSTRONG	89G	ZPHY C43 55	+Bloodworth (CERN, BIRM, BARI, ATHU, LPNP)
RATH	89	PR D40 693	+Cason+ (NDAM, BRAN, BNL, CUNY, DUKE)
A!HARA	88B	PL B209 107	+Alston-Garnjost+ (TPC-2γ Collab.)
BIRMAN	88	PRL 61 1557	+Alston-Garnjost+ (TPC-2 γ Collab.) +Chung, Peaslee+ (BNL, FSU, IND, SMAS) J +Borisov, Dorofeev+ (SERP)
BITYUKOV	88	PL B203 327	+Borisov, Dorofeev+ (SERP)
ALDE	87	PL B198 286	+Binon, Bricman+ (LANL, BRUX, SERP, LAPP)
BECKER	87	PRL 59 186	+Blaylock, Bolton, Brown+ (Mark III Collab.)
GIDAL	87	PRL 59 2012	+Boyer, Butler, Cords, Abrams+ (LBL, SLAC, HARV)
ANDO	86	PRL 57 1296	+Imai+ (KEK, KYOT, NIRS, SAGA, TOKY, TSUK+) I.
REEVES	86	PR 34 1960	+Chung, Crittenden+ (FLOR, BNL, IND, SMAS) J
CHUNG	85	PRL 55 779	+Fernow, Boehnlein+ (BNL, FLOR, IND, SMAS) J
ARMSTRONG	84	PL 146B 273	+Bloodworth, Burns+ (ATHU, BARI, BIRM, CERN) J
BITUKOV	84	PL 144B 133	+Dorofeev, Dzhelyadin, Golovkin, Kulik+ (SERP)
CHAUVAT	84	PL 148B 382	+Meritet, Bonino+ (CERN, UDCF, UCLA, SACL)
TORNOVIST	82B	NP B203 268	(HELS)
EVANGELISTA	81	NP B178 197	+ (BARI, BONN, CERN, DARE, LIVP+)
BROMBERG	80	PR D22 1513	+Haggerty, Abrams, Dzierba (CIT, FNAL, ILLC, IND)
DIONISI	80	NP B169 1	+Gavillet+ (CERN, MADR, CDEF, STOH)
GURTU	79	NP B151 181	+Gavillet, Blokzijl+ (CERN, ZEEM, NIJM, OXF)
STANTON	79	PRL 42 346	+Brockman+ (OSU, CARL, MCGI, TNTO) J
CORDEN	78	NP B144 253	+Corbett, Alexander+ (BIRM, RHEL, TELA, LOWC) J
NACASCH	78	NP B135 203	+Defoix, Dobrzynski+ (PARI, MADR, CERN)
GRASSLER	77	NP B121 189	+ (AACH, BERL, BONN, CERN, CRAC HEID+)
DEFOIX	72	NP B44 125	+Nascimento, Bizzarri+ (CDEF, CERN) +Goldberg, Makowski, Donald+ (LPNP, LIVP) +Bileden, Finocchiaro, Bowen+ (STON, NEAS)
DUBOC	72	NP B46 429	+Goldberg, Makowski, Donald+ (LPNP, LIVP)
THUN	72	PRL 28 1733	+Blieden, Finocchiaro, Bowen+ (STON NEAS)
BARDADIN	71	PR D4 2711	Bardadin-Otwinowska, Hofmokl+ (WARS)
BOESEBECK	71	PL 34B 659	(AACH, BERL, BONN, CERN, CRAC, HEID, WARS)
CAMPBELL	69	PRL 22 1204	+Lichtman, Loeffler+ (PURD)
LORSTAD	69	NP B14 63	+D'Andlau, Astier+ (CDEF, CERN) J
D'ANDLAU	68	NP B5 693	+Astier, Barlow+ (CDEF, CERN, IRAD, LIVP) I.
DAHL	67	PR 163 1377	+Hardy, Hess, Kirz, Miller (LRL) IJ
			(616)

— OTHER RELATED PAPERS —

AIHARA	88C	PR D38 1	+Alston-Garnjost+ (TPC-2γ Collab.) JPC
ASTON	85	PR D32 2255	+Carnegie, Dunwoodie+ (SLAC, CARL, CNRC)
ATKINSON	84E	PL 138B 459	+ (BONN, CERN, GLAS, LANC, MCHS, LPNP+)
GAVILLET	82	ZPHY C16 119	+Armenteros+ (CERN, CDEF, PADO, ROMA)
DEBILLY	80	NP B176 1	+Briand, Duboc, Levy+ (CURI, LAUS, NEUC, GLAS) JP
IRVING	78	NP B139 327	+Sepangi (LIVP)
HANDLER	76	NP B110 173	+Plano, Brucker, Koller+ (RUTG, STEV, SETO)
VUILLEMIN	76	NC 33A 133	+ (LAUS, NEUĆ, LPNP, LIVP, GLAS) + (LAUS, NEUC, LPNP, LIVP, GLAS) JP
VUILLEMIN	75	LNC 14 165	+ (LAUS, NEUC, LPNP, LIVP, GLAS) JP
WELLS	75	NP B101 333	+Radojicic, Roscoe, Lyons (OXF)
BERENYI	72	NP B37 621	+Prentice, Steenberg, Yoon, Walker (TNTO, WISC)
CHAPMAN	72	NP B42 1	+Church, Lys, Murphy, Ring, VanderVelde (MICH)
GOLDBERG	71	LNC 1 627	+Makowski, Touchard, Donald+ (IPN, LIVP) JP
AMMAR	70	PR D2 430	+Kropac, Davis+ (KANS, NWES, ANL, WISC)
OTWINOWSKI	69	PL 29B 529	(WARS)
DEFOIX	68B	PL 28B 353	+Rivet, Siaud, Conforto+ (CDEF, IPNP, CERN)
BARLOW	67	NC 50A 701	+Lillestol, Montanet+ (CERN, CDEF, IRAD, LIVP)
D'ANDLAU	65	PL 17 347	+Barlow, Adamson+ (CDEF, CERN, IRAD, LIVP)
MILLER	65	PRL 14 1074	+Chung, Dahl, Hess, Hardy, Kirz+ (LRL, UCB)

$\eta(1295)$ was $\eta(1275)$

 $I^G(J^{PC}) = 0^+(0^{-+})$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

$\eta(1295)$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1295±4	¹ TAKAMATSU	90	SPEC	0	$9 \pi^- \rho \rightarrow$
					$\eta \pi^+ \pi^- n$
• • We do not use the fol	lowing data for average	s, fit	s, limits,		
1279±5	ANDO	86	SPEC		$\begin{array}{c} 8 \pi^- \rho \rightarrow \\ n \eta \pi^+ \pi^- \end{array}$
					$n\eta\pi^+\pi^-$
~ 1275	STANTON	79	CNTR		8.4 π p →
1					$n\eta 2\pi$
1 This result supersedes A!	NDO 86				

$\eta(1295)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN C	HG COMMENT
35 ± 6	² TAKAMATSI	J 90	SPEC 0	9 π − ρ →
• • We do not use the folk	nwing data for averag	ec fit	c limite at	$\eta \pi^+ \pi^- \eta$
TO THE GO HOL LISE THE TOIL	string data for averag	,63, 110	3, mmt3, c	.c. • • •
32 ± 10	ANDO	86	SPEC	8 π p →
				$n\eta\pi^+\pi^-$
~ 70	STANTON	79	CNTR	8.4 π ⁻ p →
				$n\eta \pi^+ \pi^-$ $8.4 \pi^- p \rightarrow$ $n\eta 2\pi$
² This result supersedes AN	DO 86.			

η (1295) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ1	$\eta \pi^+ \pi^-$	seen
	$a_0(980)\pi$	seen
Γ_3	$\gamma\gamma$	

η (1295) Γ (i) Γ ($\gamma\gamma$)/ Γ (total)

$\Gamma(\eta\pi^+\pi^-)$ ×	$\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$				$\Gamma_1\Gamma_3/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID	TECN	COMMENT	
• • • We do no	t use the following	data for averag	es, fits, limits	, etc. • • •	
< 0.6	90	AIHARA	88C TPC	$e^+e^- \rightarrow e^+e^- \eta \pi^-$ $e^+e^- \rightarrow e^-$	+
< 0.3		ANTREASYA	N 87 CBAL	$e^+e^- \rightarrow e^-$	['] e − ηππ

$\eta(1295)$ BRANCHING RATIOS

$\Gamma(a_0(980)\pi)/\Gamma_{\text{total}}$				Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
seen	BIRMAN	88	MPS	$8 \pi^- \rho \rightarrow K^+ \overline{K}^0 \pi^- n$
large	ANDO			$8 \pi^- p \rightarrow n \eta \pi^+ \pi^-$
large	STANTON	79	CNTR	$8.4 \pi^- p \rightarrow n\eta 2\pi$

$\eta(1295)$ REFERENCES

TAKAMATSU AIHARA BIRMAN ANTREASYAN ANDO	86	PRL 61 1557 PR D36 2633 PRL 57 1296		(KEK) (TPC-2 γ Collab.) (BNL, FSU, IND, SMAS) JP (Crystal Ball Collab.) NIRS, SAGA, TOKY, TSUK+) JP
STANTON	79	PRL 42 346	+Brockman+	(OSU, CARL, MCGI, TNTO) JP

 $\pi(1300)$, $a_0(1320)$, $a_2(1320)$

 $\pi(1300)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-+})$$

π (1300) MASS

VALUE (MeV) 1300 ±100 OUR EST	DOCUMENT ID	TECN	COMMENT
• • • We do not use the f	ollowing data for averag	es, fits, limit:	s, etc. • • •
1190 ± 30	ZIELINSKI	84 SPEC	$200 \pi^+ Z \rightarrow Z 3\pi$
1240 ± 30	BELLINI	82 SPEC	$40 \pi^- A \rightarrow A3\pi$
1273.0 ± 50.0	¹ AARON	81 RVUE	
1342 ± 20	BONESINI	81 OME	$5.12 \pi^- p \rightarrow p3\pi$
~ 1400	DAUM	81B SPEC	63,94 $\pi^- p$
1			

 $^{^{\}rm 1}$ Uses multichannel Aitchison-Bowler model (BOWLER 75). Uses data from DAUM 80 and DANKOWYCH 81.

π (1300) WIDTH

VALUE (MeV)	DOCUMENT ID	3	ECN	COMMENT
• • • We do not use the following		es, fits,	limits,	etc. • • •
440 ± 80	ZIELINSKI	84 5	PEC	$200 \pi^+ Z \rightarrow Z 3\pi$
360 ±120	BELLINI	82 5	PEC	40 π^- A \rightarrow A 3π
580.0 ± 100.0	² AARON	81 F	RVUE	
220 ± 70	BONESINI	81 (OMEG	$12 \pi^- p \rightarrow p 3\pi$
~ 600	DAUM	81B S	PEC	63.94 π ⁻ ρ

 $^{^2\,\}mbox{Uses}$ multichannel Aitchison-Bowler model (BOWLER 75). Uses data from DAUM 80 and DANKOWYCH 81.

π (1300) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	ρπ	seen	
Γ_2	$\pi(\pi\pi)_{S-wave}$	seen	
Γ_3	$f_0(1400)\pi$		

π (1300) BRANCHING RATIOS

	$ ho\pi \pi \pi (\pi\pi)_{S ext{-wave}}$	seen seen
Γ3	$f_0(1400)\pi$	

VALUE	DOCUMENT	D TECN	
• • • We do not use the following	ng data for avera	ges, fits, limits, etc.	• •
2.12	3 AARON	81 RVUE	

 $\Gamma(\pi(\pi\pi)_{S-wave})/\Gamma(\rho\pi)$

π (1300) REFERENCES

 $a_0(1320)$

$$I^G(J^{PC}) = 1^-(0^{++})$$

OMITTED FROM SUMMARY TABLE

Intensity peaking at the mass of the $a_2(1320)$ and with a comparable width. Needs confirmation.

a₀(1320) MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • We do not use the following of	lata for averages,	fits, limits	, etc. • • •
1322 ± 30	POULET	90 GAM4	$100 \pi^- \rho \rightarrow 4\gamma n$

a₀(1320) WIDTH

/ALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
• • We do not use the following of	data for averages	, fits, limits,	etc. • • •	
130 ± 30	POULET	90 GAM4	100 $\pi^- \rho \rightarrow$	4γ π

a₀(1320) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁ Γ ₂	$\eta \pi^0$ $\eta' \pi^0$	seen

a₀(1320) BRANCHING RATIOS

$\Gamma(\eta \pi^0)/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE		DOCUMENT ID		TECN	COMMENT	
seen		POULET	90	GAM4	100 $\pi^-~\rho$ \rightarrow	$4\gamma n$
$\Gamma(\eta'\pi^0)/\Gamma(\eta\pi^0)$						Γ_2/Γ_1
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.40	95	POULET	90	GAM4	$100~\pi^-~\rho \rightarrow$	4γ n

a₀(1320) REFERENCES

(SERP. BELG. LANL, LAPP, PISA, KEK)

 $a_2(1320)$ was $A_2(1320)$

 3π MODE

 Γ_2/Γ_1

$$I^G(J^{PC}) = 1^-(2^{++})$$

a2(1320) MASS

3π MODE			
VALUE (MeV)	EVTS	DOCUMENT ID TECN CHG COMMENT	
1318.4± 0.7	OUR AVERAGE	Includes data from the datablock that follows this one.	
		Error includes scale factor of 1.1.	
1323.8 ± 2.3		AUGUSTIN 89 DM2 \pm $e^+e^- ightarrow 5\pi$	
1320.6 ± 3.1		AUGUSTIN 89 DM2 0 $e^+e^- \rightarrow 5\pi$	
1317.0 ± 2.0	25000	1 DAUM 80c SPEC - 63,94 $\pi^- p \to 3\pi$	p
1320.0 ± 10.0	1097	¹ BALTAY 788 HBC +0 15 $\pi^+ \rho \rightarrow \rho 4\pi$	
1306.0 ± 8.0		FERRERSORIA78 OMEG – $9 \pi^- \rho \rightarrow \rho 3\pi$	
1318 ± 7	1600	¹ EMMS 75 DBC 0 4 π^+ $n \to \rho(3\pi)^0$	
1315 ± 5		¹ ANTIPOV 73C CNTR $-$ 25,40 $\pi^- p \rightarrow$	
		$p\eta\pi^-$	
1306 ± 9	1580	CHALOUPKA 73 HBC $-$ 3.9 $\pi^ p$	
• • • We do	not use the follow	wing data for averages, fits, limits, etc. • • •	
1310 ± 2		¹ EVANGELISTA 81 OMEG – $12 \pi^- p \rightarrow 3\pi p$	
1343.0 ± 11.0	490	BALTAY 788 HBC 0 15 π^+ $p \rightarrow \Delta 3\pi$	
1285.0 ± 9.0		CORDEN 788 OMEG $-$ 12,15 $\pi^ p \rightarrow 3\pi$	n
1298 ± 8	1200	¹ WAGNER 75 HBC 0 7 $\pi^+ p \rightarrow$	
		$\Delta^{++}(3\pi)^{0}$	
1307 ± 7	160	BLOODWO 72 HBC + 5.45 $\pi^{+} p \rightarrow p 3\pi$	
1304.0 ± 4.5	360	BARNHAM 71 HBC $+$ 3.7 π^+ $ ho$ $ ightarrow$	
		$(3\pi)^{+} \rho$	
1307 ± 5	10000	BINNIE 71 MMS – π ⁻ ρ πeər <i>ə</i> 2 thres old	sh-
1309 ± 5	5000	BINNIE 71 MMS – $\pi^- p$ near a_2 thres	sh-
1307 ± 5	3000	old	
1299.0 ± 6.0	28000	BOWEN 71 MMS $-$ 5 $\pi^- \rho$	
1300 ± 6.0	24000	BOWEN 71 MMS $+$ 5 π^+ p	
1309.0 ± 4.0	17000	BOWEN 71 MMS $-$ 7 $\pi^- p$	
1306.0 ± 4.0	941	ALSTON 70 HBC + 7.0 $\pi^+ \rho \rightarrow 3\pi \rho$	
1313.0 ± 7.0	280	BOECKMANN 70 HBC 0 5 π^+ ρ	
1310.0 ± 14.0		EISENBERG 69 HBC + 4.3,5.3 γp	
1311.0 ± 6.0	260	ARMENISE 688 DBC 0 5.1 π ⁺ d	
1320 ± 10	120	BOESEBECK 68 HBC 0 $8\pi^+p$	
	to $J^P = 2^+ \rho \pi$	partial wave.	

 $^{^3\,\}mbox{Uses}$ multichannel Aitchison-Bowler model (BOWLER 75). Uses data from DAUM 80 and DANKOWYCH 81.

K±K0 MODE

VALUE (MeV)	EV15	DOCUMENT ID		TECN	<u>CHG</u>	
The data in this b	lock is inc	luded in the average	print	ed for a	previo	ous datablock.
1330.0 ± 11.0	1000	^{2,3} CLELAND	82B	SPEC	+	$30 \pi^+ p \rightarrow K_s^0 K^+ p$
1319.0± 5.0	4700	^{2,3} CLELAND	82B	SPEC	+	30 $\pi^{+} p \rightarrow K_{S}^{0} K^{+} p$ 50 $\pi^{+} p \rightarrow K_{S}^{0} K^{+} p$ 50 $\pi^{-} p \rightarrow K_{S}^{0} K^{-} p$
1324.0 ± 6.0	5200	^{2,3} CLELAND	82B	SPEC	_	$50 \pi^- p \rightarrow K_S^{0} K^- p$
1320.0 ± 2.0	4000	CHABAUD	80	SPEC	_	17 π [−] A →
						κ _S κ- A
1312.0 ± 4.0	11000	CHABAUD	78	SPEC		$9.8 \pi^- \rho \rightarrow$
						$\kappa^- \kappa_{SP}^0$
1316.0 ± 2.0	4730	CHABAUD	78	SPEC	-	$18.8 \pi^- \stackrel{\smile}{\rho} \rightarrow$
						$\kappa^- \kappa_S^0 \rho$
1324.0 ± 5.0	350	HYAMS	78	ASPK	+	12.7 $\pi^+ \stackrel{\circ}{p} \rightarrow$
						$\kappa^+ \kappa^0_{5P}$
1318 ± 1		^{2,4} MARTIN	78 D	SPEC	_	$10 \pi^- p \rightarrow K_5^0 K^- p$
1320.0 ± 2.0	2724	MARGULIE	76	SPEC	-	$23 \pi^- p \rightarrow \kappa^- \kappa_S^0 p$

72 CNTR -

71 ASPK -

730

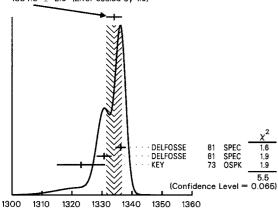
1500

FOLEY

⁴ GRAYER

$\eta\pi$ MODE

 1313.0 ± 4.0


1319.0± 3.0

VALUE (MeV)	EVT5	DOCUMENT ID		TECN CHG	COMMENT
1334.0 ± 2.6 OUR	AVERAGE	Error includes sc	ale fa	ctor of 1.9. S	see the ideogram below.
1336.2 ± 1.7	2561	DELFOSSE	81	SPEC +	$\pi^{\pm} \rho \rightarrow \rho \pi^{\pm} \eta$
1330.7 ± 2.4	1653	DELFOSSE	81	SPEC -	$\pi^{\pm} \rho \rightarrow \rho \pi^{\pm} \eta$
1323 ±8	1000	⁵ KEY	73	OSPK -	$6 \pi^- \rho \rightarrow \rho \pi^- \eta$
• • • We do not	use the folio	wing data for ave	rages	fits, limits, e	tc. • • •
1324 ±8	6200	5,6 CONFORTO	73	OSPK -	$6 \pi^- p \rightarrow p MM^-$

 $^{^{5}}$ Error includes 5 MeV systematic mass-scale error. 6 Missing mass with enriched MMS = $\eta\,\pi^{-}$, $\eta=2\gamma.$

 $a_2(1320)$ mass, $\eta \pi$ mode (MeV)

WEIGHTED AVERAGE 1334.0 \pm 2.6 (Error scaled by 1.9)

a₂(1320) WIDTH

VALUE	MODE E (MeV) '+ 2.2 OU	EVTS IR AVERAGE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
	± 9.7		AUGUSTIN	89	DM2	±	$e^+ e^- \rightarrow 5\pi$
	± 12.5		AUGUSTIN	89	DM2	0	$e^+e^- \rightarrow 5\pi$
	± 5		7 EVANGELISTA		OMEG	•	
				4 01	OMEG	-	$12 \pi^- p \rightarrow 3\pi p$
96.0)± 9.0	25000	⁷ DAUM	80c	SPEC	_	63,94 $\pi^- p \rightarrow 3\pi p$
110.0	± 15.0	1097	⁷ BALTAY	78B	HBC	+0	$15 \pi^+ p \rightarrow p4\pi$
112	±18	1600	⁷ EMMS	75	DBC	0	$4 \pi^{+} n \rightarrow \rho (3\pi)^{0}$
122	±14	1200	^{7,8} WAGNER	75	нвс	0	$7 \pi^+ p \rightarrow$
							$\Delta^{++}(3\pi)^{0}$
115	± 15		7 ANTIPOV	73c	CNTR	_	25,40 π ⁻ p →
							$p\eta\pi^-$
99	± 15	1580	CHALOUPKA	73	HBC	_	$3.9 \pi^{-} p$
105.0	± 5.0	28000	BOWEN	71	MMS	_	5 π ⁻ ρ
99.0	± 5.0	24000	BOWEN	71	MMS	+	5 π ⁺ ρ
103.0	± 5.0	17000	BOWEN	71	MMS	_	7 π ⁻ p

• • • We do no	ot use the follo	wing data for ave	rages,	fits, lim	nits, e	tc. • • •
115.0 ± 14.0	490	BALTAY	78B	HBC	0	$15 \pi^+ \rho \rightarrow \Delta 3\pi$
150.0 ± 20.0		CORDEN	78B	OMEG	_	12,15 $\pi^- p \rightarrow 3\pi n$
111.4 ± 18.0	360	BARNHAM	71	HBC	+	$3.7 \pi^+ p \rightarrow$
						$(3\pi)^{+} \rho$
100	10000	BINNIE	71	MMS	-	$\pi^- p$ near a_2 thresh-
72 ±16	5000	BINNIE	71	MMS	_	$\pi^- p$ near a_2 thresh-
79.0 ± 12.0	941	ALSTON	70	нвс	+	7.0 $\pi^+ p \rightarrow 3\pi p$
96.0 ± 16.0	260	ARMENISE	68B	DBC	0	$5.1 \ \pi^{+} \ d$

⁷ From a fit to $J^P=2^+\ \rho\pi$ partial wave.

$K^{\pm}K_{5}^{0}$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
110 ± 5 OUR	ESTIMAT	ΓE				
109.8 ± 2.4 OUR	AVERAG					
121.0 ± 51.0	1000	9,10 CLELAND	82B	SPEC	+	$30 \pi^+ p \rightarrow K_S^0 K^+ p$
112.0 ± 20.0	4700	9,10 CLELAND	82B	SPEC	+	$50 \pi^+ p \rightarrow K_S^0 K^+ p$
120.0 ± 25.0	5200	9,10 CLELAND	82B	SPEC	-	$50 \pi^- p \rightarrow K_5^0 K^- p$
106.0 ± 4.0	4000	CHABAUD	80	SPEC	-	$\begin{array}{c} 17 \ \pi^- \ A \rightarrow \\ K_0^0 \ K^- \ A \end{array}$
126.0 ± 11.0	11000	CHABAUD	78	SPEC	-	9.8 π p → K - K ⁰ _C p
101.0± 8.0	4730	CHABAUD	78	SPEC	-	$18.8 \pi^{-} \stackrel{3}{p} \rightarrow K^{-} \stackrel{3}{K^{0}} \stackrel{9}{p}$
110.0 ± 18.0	350	HYAMS	78	ASPK	+	$12.7 \pi^{+} \rho \rightarrow K^{+} K_{S}^{0} \rho$
113 ± 4		9,11 MARTIN	78p	SPEC	_	$10 \pi^- p \rightarrow \kappa_5^0 \kappa^- p$
105.0 ± 8.0	2724	¹¹ MARGULIE	76	SPEC	~	$23 \pi^- \rho \rightarrow \kappa^{-} \kappa^{0} \rho$
113.0 ± 19.0	730	FOLEY	72	CNTR	_	20.3 π ⁻ p →
123.0 ± 13.0	1500	¹¹ GRAYER	71	ASPK	-	$ \begin{array}{c} K^{-} K_{S}^{0} \rho \\ 17.2 \pi^{-} \rho \rightarrow \\ K^{-} K_{S}^{0} \rho \end{array} $
^						3"

 $^{^{9}}$ From a fit to $J^{P}=2^{+}$ partial wave.

$\eta\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
113 ±4 OUR A	VERAGE					
112.2 ± 5.7	2561	DELFOSSE	81	SPEC	+	$\pi^{\pm} \rho \rightarrow \rho \pi^{\pm} \eta$
116.6 ± 7.7	1653	DELFOSSE	81	SPEC	-	$\pi^{\pm} \rho \rightarrow \rho \pi^{\pm} \eta$
108 ±9	1000	KEY	73	OSPK	_	$6 \pi^- \rho \rightarrow \rho \pi^- \eta$
• • • We do not	use the fol	lowing data for aver	ages	, fits, lin	nits, et	C. • • •
104 ±9	6200	12 CONFORTO	73	OSPK	_	$6 \pi^- p \rightarrow p MM^-$
12 Model depende	ent.					

$a_2(1320)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ confidence level
Γ_1	$ ho\pi$	(70.1 ± 2.7) %	S=1.2
Γ_2	$\eta \pi$	$(14.5 \pm 1.2) \%$	
Γ_3	$\omega \pi \pi$	(10.6 ± 3.2) %	5=1.3
Γ_4	$\kappa \overline{\kappa}$	(4.9±0.8) %	
Γ_5	$\pi^{\pm}\gamma$	$(2.7\pm0.6)\times10^{-3}$	
Γ_6	$\gamma\gamma$	$(8.2\pm1.0)\times10^{-6}$	
Γ_7	$\pi^{+}\pi^{-}\pi^{-}$	< 8 %	CL=90%
Γ8	$\eta'(958)\pi$	< 1.0 %	CL=95%
Γ9	e^+e^-	$< 2.3 \times 10^{-7}$	CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 18 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=9.3$ for 15 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j),$ in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}.$ The fit constrains the x_i whose labels appear in this array to sum to one.

 $^{^2}$ From a fit to $J^P=2^+$ partial wave.

³ Number of events evaluated by us.

⁴ Systematic error in mass scale subtracted.

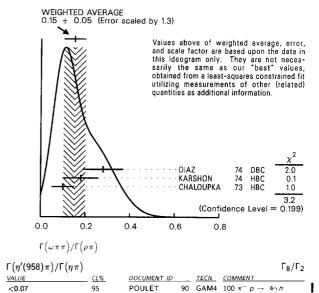
⁸Width errors enlarged by us to $4\Gamma/N^{1/2}$; see the note with the K^* (892) mass.

¹⁰ Number of events evaluated by us.

¹¹ Width errors enlarged by us to $4\Gamma/N^{1/2}$; see the note with the K^* (892) mass.

$a_2(1320)$

<i>a</i> ₂ (1320)						
	a ₂ (1)	320) PARTIAL W	IDTHS			
$\Gamma(\pi^{\pm}\gamma)$	-,-	,	-			Γ ₅
VALUE (keV)		DOCUMENT ID	TECN	CHG	COMMENT	15
295 ± 60			2 SPEC	+	200 π ⁺ A	
• • We do not use	the followin					
461 ± 110		12 MAY 7		±	9.7 γA	
401 ± 110		WA1 /	/ JFLC	_	3.1 JA	
$\Gamma(\gamma\gamma)$						Γ ₆
VALUE (keV)	EVTS .	DOCUMENT ID	TECN CH	G CO	MMENT	
0.90±0.10 OUR AVE						
$0.90 \pm 0.27 \pm 0.15$			TASS 0		$e^- \rightarrow e^+$	$e^-3\pi$
$1.14 \pm 0.20 \pm 0.26$	14	ANTREASYAN 86	CBAL 0	e^{-}	$\stackrel{e^-}{e^+}\stackrel{\rightarrow}{e^-}_{\pi^0}$	
$1.06 \pm 0.18 \pm 0.19$		BERGER 84c I	PLUT 0		$e^- \rightarrow e^+$	
$0.81 \pm 0.19 ^{+ 0.42}_{- 0.11}$			CELL 0	<u>a</u> +	e- → e+	0-3-
$0.84 \pm 0.07 \pm 0.15$			JADE 0 CBAL 0		$e^- \rightarrow e^+$	$e^{-3\pi}$
$0.77 \pm 0.18 \pm 0.27$	22 14	EDWARDS 02F	CBAL 0	٠.	$e^+e^-\pi^0\eta$	
13 From $ ho\pi$ decay m 14 From $\eta\pi^0$ decay	node. mode.				·	
$\Gamma(e^+e^-)$						Гэ
VALUE (eV)	CL%	DOCUMENT ID	TECN	COMM	IENT	. 9
<25	90	VOROBYEV 8			$\rightarrow \pi^0 \eta$	
~~	9 U	VOROBILV 0	0 1412		→ n η	
		(A) DD41:5::::	D.4.T.O.			-
	a ₂ (132	0) BRANCHING	KATIUS			
$\Gamma(K\overline{K})/\Gamma(\rho\pi)$						Γ_4/Γ_1
VALUE	EVTS	DOCUMENT ID	<u>TECN</u>	<u>CHG</u>	COMMENT	
0.070±0.012 OUR F	IT					
0.078±0.017		CHABAUD 7				
• • We do not use				etc. •		
0.056 ± 0.014		15 CHALOUPKA 7		_	$3.9 \pi^{-} p$	
		15 ALSTON 7		+	$7.0 \pi^{+} p$	
0.097 ± 0.018 0.06 ± 0.03		15 ABRAMOVI 7	0в НВС	+	$3.93~\pi^ p$	
$\begin{array}{l} 0.06 & \pm 0.03 \\ 0.054 \pm 0.022 \end{array}$		¹⁵ ABRAMOVI 7 ¹⁵ CHUNG 6	0в НВС	+ - -		
0.06 ± 0.03		¹⁵ ABRAMOVI 7 ¹⁵ CHUNG 6	0в НВС	+ - -	$3.93~\pi^ p$	
$\begin{array}{c} 0.06 & \pm 0.03 \\ 0.054 \pm 0.022 \\ \\ 15 \text{Included in CHAB} \end{array}$	BAUD 78 revi	15 ABRAMOVI 7 15 CHUNG 6 iew.	0в НВС	_	3.93 π ⁻ p 3.2 π ⁻ p	- 2+[4]
$\begin{array}{l} 0.06 & \pm 0.03 \\ 0.054 \pm 0.022 \end{array}$	BAUD 78 revi	15 ABRAMOVI 7 15 CHUNG 6: iew.	0в НВС 8 НВС		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$	- ₂ +Γ ₄)
$0.06\pm0.03 \ 0.054\pm0.022 \ 15$ Included in CHAE $\Gamma(\eta\pi)/\bigl[\Gamma(\rho\pi) +$	BAUD 78 revi $\Gamma(\eta\pi) + \Gamma$	15 ABRAMOVI 7 15 CHUNG 6 iew.	0в НВС		3.93 π ⁻ p 3.2 π ⁻ p	- ₂ +Γ ₄)
$\begin{array}{l} 0.06 \;\; \pm 0.03 \\ 0.054 \pm 0.022 \\ 15 \; \text{Included in CHAE} \\ \Gamma(\eta\pi)/\left[\Gamma(\rho\pi) \; + \; \frac{VALUE}{0.162 \pm 0.012 \; \text{OUR F}} \right. \end{array}$	$rac{\Gamma(\eta\pi)}{\Gamma}+\Gamma$	15 ABRAMOVI 7 15 CHUNG 6 iew. - (KK)] DOCUMENT ID	OB HBC 8 HBC	_ _ <u>СНG</u>	3.93 π ⁻ ρ 3.2 π ⁻ ρ Γ ₂ /(Γ ₁ +Γ	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.140 \pm 0.028 OUR A	$\Gamma(\eta\pi) + \Gamma = \frac{\Gamma(\eta\pi)}{\Gamma}$	15 ABRAMOVI 7 15 CHUNG 6: iew. -(KK)] DOCUMENT ID ESPIGAT 7.	0B HBC 8 HBC - TECN 2 HBC	_ _ 	$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $\Gamma_{2}/(\Gamma_{1}+\Gamma_{COMMENT})$ $0.0 \overline{p}p$	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/\left[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012} \text{ OUR F} \right]$	$rac{\Gamma(\eta\pi)}{\Gamma}+\Gamma$	15 ABRAMOVI 7 15 CHUNG 6 iew. - (KK)] DOCUMENT ID	0B HBC 8 HBC - TECN 2 HBC	_ _ <u>СНG</u>	3.93 π ⁻ ρ 3.2 π ⁻ ρ Γ ₂ /(Γ ₁ +Γ	- ₂ +Γ ₄)
0.06 \pm 0.03 0.054 ± 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi)+\frac{VALUE}{0.162\pm0.012}$ OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 0.15 ± 0.04	$\Gamma(\eta\pi) + \Gamma = \frac{\Gamma(\eta\pi)}{\Gamma}$	15 ABRAMOVI 7 15 CHUNG 6: iew. -(KK)] DOCUMENT ID ESPIGAT 7.	0B HBC 8 HBC - TECN 2 HBC	_ _ 	$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $\Gamma_{2}/(\Gamma_{1}+\Gamma_{COMMENT})$ $0.0 \overline{p}p$	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$	BAUD 78 revi $\Gamma\left(\eta\pi ight)+\Gamma$ IT VERAGE	15 ABRAMOVI 7 15 CHUNG 6: iew. - (KK)	OB HBC 8 HBC TECN 2 HBC 1 HBC	_ 	3.93 $\pi^{-} p$ 3.2 $\pi^{-} p$ $\Gamma_{2}/(\Gamma_{1}+\Gamma_{2})$ $COMMENT$ 0.0 $\overline{p}p$ 3.7 $\pi^{+} p$	$\Gamma_2+\Gamma_4$)
0.06 \pm 0.03 0.054 ± 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi)+\frac{VALUE}{0.162\pm0.012}$ OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 0.15 ± 0.04	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ $\overline{\text{IT}}$ VERAGE 34 $EVTS$	15 ABRAMOVI 7 15 CHUNG 6: iew. -(KK)] DOCUMENT ID ESPIGAT 7.	0B HBC 8 HBC - TECN 2 HBC	_ _ 	$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $\Gamma_{2}/(\Gamma_{1}+\Gamma_{COMMENT})$ $0.0 \overline{p}p$	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE	BAUD 78 revi $\Gamma(\eta\pi) + \Gamma$ IT WERAGE 34 IT EVTS	15 ABRAMOVI 7 15 CHUNG 6: iew. - (KK)	OB HBC 8 HBC TECN 2 HBC 1 HBC	_ 	3.93 $\pi^{-} p$ 3.2 $\pi^{-} p$ $\Gamma_{2}/(\Gamma_{1}+\Gamma_{2})$ $COMMENT$ 0.0 $\overline{p}p$ 3.7 $\pi^{+} p$	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/\left[\Gamma(\rho\pi) + \frac{VALUE}{2}\right]$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{2}$ 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A	BAUD 78 revi $\Gamma(\eta\pi) + \Gamma$ IT WERAGE 34 IT EVTS	15 ABRAMOVI 7 15 CHUNG 6: iew. - (KK)	08 HBC 8 HBC 	_ 	3.93 $\pi^{-} p$ 3.2 $\pi^{-} p$ $\Gamma_{2}/(\Gamma_{1}+\Gamma_{2})$ $COMMENT$ 0.0 $\overline{p}p$ 3.7 $\pi^{+} p$	
0.06 \pm 0.03 0.054 \pm 0.02 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{2}]$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $VALUE$ 0.207 \pm 0.018 OUR F 0.213 \pm 0.02 OUR A 0.18 \pm 0.05 0.22 \pm 0.05	BAUD 78 revi $\Gamma(\eta\pi) + \Gamma$ IT WERAGE 34 EVTS VERAGE THE SECTION OF THE PROPERTY OF THE	15 ABRAMOVI 7 15 CHUNG 6 16 EW. - (KK) - DOCUMENT ID - DOCUMENT ID - DOCUMENT ID - FORINO 7 ANTIPOV 7	08 HBC 8 HBC TECN 2 HBC 1 HBC TECN 6 HBC 3 CNTR	_ 	3.93 $\pi^- p$ 3.2 $\pi^- p$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$ COMMENT 0.0 $\overline{p}p$ 3.7 $\pi^+ p$ COMMENT 11 $\pi^- p$ 40 $\pi^- p$	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/\left[\Gamma(\rho\pi) + \frac{VALUE}{0.012 \text{ OUR F}}\right]$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.15 \pm 0.04 0.15 \pm 0.04 0.162 \pm 0.018 OUR F 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.21 \pm 0.05 0.211 \pm 0.044	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT EVTS VERAGE 34 IT EVTS VERAGE 52 149	15 ABRAMOVI 7 15 CHUNG 6 16 ew. - (KK) DOCUMENT ID ESPIGAT 7 BARNHAM 7 DOCUMENT ID FORINO 7 ANTIPOV 7 CHALOUPKA 7	08 HBC 8 HBC		3.93 $\pi^- p$ 3.2 $\pi^- p$ 7.2/($\Gamma_1+\Gamma_2$ COMMENT 0.0 $\overline{p}p$ 3.7 $\pi^+ p$ COMMENT 11 $\pi^- p$ 40 $\pi^- p$ 3.9 $\pi^- p$	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + VALUE]$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $VALUE$ 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.22 \pm 0.05 0.21 \pm 0.044 0.216 \pm 0.044	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ T T WERAGE 34 T EVTS VERAGE 52 149 167	15 ABRAMOVI 7 15 CHUNG 6 16 (ew.)	08 HBC 8 HBC		3.93 $\pi^- p$ 3.2 $\pi^- p$ 7.2/($\Gamma_1+\Gamma_2$ COMMENT 0.0 $\overline{p}p$ 3.7 $\pi^+ p$ COMMENT 11 $\pi^- p$ 40 $\pi^- p$ 3.9 $\pi^- p$ 7.0 $\pi^+ p$	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{0.207 \pm 0.018}$ OUR F 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.22 \pm 0.05 0.211 \pm 0.044 0.246 \pm 0.044 0.265 \pm 0.09	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS VERAGE 52 149 167 15	15 ABRAMOVI 7 15 CHUNG 6 iew. -(KK)]	08 HBC 8 HBC 7 FCN 2 HBC 1 HBC 7 FCN 6 HBC 3 CNTR 3 HBC 1 HBC 0 HBC		3.93 $\pi^- p$ 3.2 $\pi^- p$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$ 0.0 pp 3.7 $\pi^+ p$ COMMENT 11 $\pi^- p$ 40 $\pi^- p$ 3.9 $\pi^- p$ 7.0 $\pi^+ p$ 5.0 $\pi^+ p$	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{0.207 \pm 0.018}$ OUR A 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.22 \pm 0.05 0.211 \pm 0.04 0.26 \pm 0.04 0.25 \pm 0.09 0.23 \pm 0.09 0.23 \pm 0.09	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ T T WERAGE 34 T EVTS VERAGE 52 149 167	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 4 TECN 6 HBC 3 CNTR 3 HBC 1 HBC 0 HBC 0 HBC 8 HBC		3.93 $\pi^- p$ 3.2 $\pi^- p$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$ 0.0 $\overline{p}p$ 3.7 $\pi^+ p$ COMMENT 11 $\pi^- p$ 40 $\pi^- p$ 3.9 $\pi^- p$ 7.0 $\pi^+ p$ 5 $\pi^- p$	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.012 \text{ OUR F}}$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{0.207 \pm$ 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.21 \pm 0.04 0.24 \pm 0.04 0.24 \pm 0.044 0.246 \pm 0.044 0.246 \pm 0.042 0.23 \pm 0.08 0.12 \pm 0.08	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS VERAGE 52 149 167 15	15 ABRAMOVI 7 15 CHUNG 6 few.	08 HBC 8 HBC 2 HBC 1 HBC		3.93 $\pi^- p$ 3.2 $\pi^- p$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$ 0.0 $\overline{p}p$ 3.7 $\pi^+ p$ $COMMENT$ 11 $\pi^- p$ 40 $\pi^- p$ 3.9 $\pi^- p$ 7.0 $\pi^+ p$ 5.0 $\pi^+ p$ 3.2 $\pi^- p$	
0.06 \pm 0.03 0.054 \pm 0.022 15 included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.140 \pm 0.04 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{0.013 \pm 0.04}$ OUR F 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.04 0.26 \pm 0.05 0.21 \pm 0.04 0.26 \pm 0.05 0.21 \pm 0.04 0.26 \pm 0.04 0.27 \pm 0.09 0.28 \pm 0.09 0.29 \pm 0.09 0.29 \pm 0.08 0.12 \pm 0.08 0.20 \pm 0.09	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT EVTS VERAGE 34 IT EVTS VERAGE 52 149 167 15 22	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC		3.93 $\pi^- p$ 3.2 $\pi^- p$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$ 0.0 $\overline{p}p$ 3.7 $\pi^+ p$ COMMENT 11 $\pi^- p$ 40 $\pi^- p$ 3.9 $\pi^- p$ 7.0 $\pi^+ p$ 5 $\pi^- p$	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + VALUE]$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $VALUE$ 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.21 \pm 0.04 0.26 \pm 0.05 0.21 \pm 0.04 0.26 \pm 0.05 0.21 \pm 0.04 0.26 \pm 0.04 0.27 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.08 0.22 \pm 0.09	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT EVTS VERAGE 34 IT EVTS VERAGE 52 149 167 15 22	15 ABRAMOVI 7 15 CHUNG 6 few. -(KK)]	08 HBC 8 HBC 2 HBC 1 HBC 1 TECN 6 HBC 3 CNTR 3 HBC 1 HBC 0 HBC 8 HBC 7 HBC		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_2 - $	
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.19 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE 0.207 \pm 0.018 OUR F 0.207 \pm 0.018 OUR A 0.13 \pm 0.05 0.22 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.04 0.26 \pm 0.04 0.25 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.08 0.22 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{tota}$ VALUE	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS VERAGE 52 149 167 15 22	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 0 HBC 0 HBC 7 HBC 7 HBC		$3.93 \pi^- p$ $3.2 \pi^- p$ $7.2/(\Gamma_1 + \Gamma_2)$ 7.2	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.19 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE 0.207 \pm 0.018 OUR F 0.207 \pm 0.018 OUR A 0.13 \pm 0.05 0.22 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.04 0.26 \pm 0.04 0.25 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.08 0.22 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{tota}$ VALUE	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS VERAGE 52 149 167 15 22	15 ABRAMOVI 7 15 CHUNG 6 few. -(KK)]	08 HBC 8 HBC 2 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 0 HBC 0 HBC 7 HBC 7 HBC		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_2)$	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{2}]$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.22 \pm 0.05 0.21 \pm 0.040 \pm 0.018 \pm 0.05 0.22 \pm 0.05 0.21 \pm 0.040 \pm 0.042 0.25 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.08 0.12 \pm 0.08 0.12 \pm 0.08 0.12 \pm 0.08 0.12 \pm 0.08 0.12 \pm 0.08 \pm 0.19 $\Gamma(\eta'(958)\pi)/\Gamma_{tota}$	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS VERAGE 52 149 167 15 22	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 8 HBC 7 HBC 8 HBC 7 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC		3.93 $\pi^- p$ 3.2 $\pi^- p$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$ 0.0 $\overline{p}p$ 3.7 $\pi^+ p$ COMMENT 11 $\pi^- p$ 40 $\pi^- p$ 3.9 $\pi^- p$ 7.0 $\pi^+ p$ 5.0 $\pi^+ p$ 5.2 $\pi^- p$ 11.0 $\pi^- p$	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.19 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE 0.207 \pm 0.018 OUR F 0.213 \pm 0.05 0.22 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.09 0.23 \pm 0.09 0.24 \pm 0.04 0.25 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.08 0.12 \pm 0.08 0.12 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{tota}$	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS VERAGE 52 149 167 15 22 al $\Gamma(\eta \pi) + \Gamma(\eta \pi) + \Gamma(\eta \pi)$ EVTS A set the following at	15 ABRAMOVI 7 15 CHUNG 6 iew. -(KK) DOCUMENT ID FORINO 7 ANTIPOV 7 CHALOUPKA 7 ALSTON 7 BOECKMANN 7 ASCOLI 6 CHUNG 6 CONTE 6 DOCUMENT ID g data for averages, 1	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 8 HBC 7 HBC 8 HBC 7 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_2)$	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.02 0.054 \pm 0.02 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.002}]$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE 0.207 \pm 0.018 OUR F 0.213 \pm 0.02 OUR A 0.18 \pm 0.05 0.22 \pm 0.05 0.211 \pm 0.044 0.246 \pm 0.042 0.26 \pm 0.09 0.23 \pm 0.08 0.27 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{\text{total}}$ $VALUE$	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS VERAGE 52 149 167 15 22 at Ethis ethe following	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 8 HBC 7 HBC 8 HBC 7 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC		3.93 $\pi^- p$ 3.2 $\pi^- p$ $\Gamma_2/(\Gamma_1 + \Gamma_2)$ 0.0 $\overline{p}p$ 3.7 $\pi^+ p$ COMMENT 11 $\pi^- p$ 40 $\pi^- p$ 3.9 $\pi^- p$ 7.0 $\pi^+ p$ 5.0 $\pi^+ p$ 5.2 $\pi^- p$ 11.0 $\pi^- p$	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.02 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{1}{24.002}]$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 1.5 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE 0.207 \pm 0.018 OUR F 0.213 \pm 0.02 OUR A 0.18 \pm 0.05 0.22 \pm 0.05 0.211 \pm 0.044 0.246 \pm 0.042 0.25 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.08 0.12 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{\text{tota}}$ VALUE • • • We do not use <0.02 0.004 \pm 0.004 $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVIS WERAGE 52 149 167 15 22 at Ethe following 97	15 ABRAMOVI 7 15 CHUNG 6 iew. -(KK) DOCUMENT ID ESPIGAT 7. BARNHAM 7 DOCUMENT ID FORINO 7 ANTIPOV 7 CHALOUPKA 7 ALSTON 7 BOECKMANN 7 ASCOLI 6 CHUNG 6 CONTE 6 DOCUMENT ID g data for averages, BARNHAM 7 BOESEBECK 6	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 8 HBC 7 HBC 7 HBC 1 HBC 8 HBC 7 HBC 1 HBC 1 HBC 8 HBC 1 HBC 8 HBC 1 HBC 1 HBC 8 HBC 1 HBC		$\begin{array}{l} 3.93 \ \pi^- \ p \\ 3.2 \ \pi^- \ p \\ \hline \\ \Gamma_2/(\Gamma_1 + \Gamma_2) \\ 0.0 \ \overline{p} \ p \\ 3.7 \ \pi^+ \ p \\ \hline \\ COMMENT \\ 11 \ \pi^- \ p \\ 40 \ \pi^- \ p \\ 3.9 \ \pi^- \ p \\ 7.0 \ \pi^+ \ p \\ 5 \ \pi^- \ p \\ 3.2 \ \pi^- \ p \\ 11.0 \ \pi^- \ p \\ \hline \\ COMMENT \\ \bullet \bullet \\ 3.7 \ \pi^+ \ p \\ \end{array}$	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.15 \pm 0.04 0.15 \pm 0.04 0.15 \pm 0.04 0.17 \pm 0.18 OUR F 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.224 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.09 0.25 \pm 0.09 0.25 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{\text{tota}}$ VALUE • • • We do not use <0.02 0.004 \pm 0.004 $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ VALUE $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ VALUE $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ VALUE $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ VALUE $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ VALUE $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ VALUE $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS WERAGE 52 149 167 15 22 at Ethe following 97 π Γ Γ Γ Γ Γ Γ Γ	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 6 HBC 6 HBC 7 HBC 7 HBC 8 HBC 7 HBC 1 HBC 1 HBC 8 HBC 8 HBC 8 HBC 8 HBC 1 HBC 8 HBC 8 HBC 1 HB		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7_2/(\Gamma_1 + \Gamma_2 - \Gamma_2)$ $3.7 \pi^{+} p$ $3.7 \pi^{+} p$ $3.7 \pi^{+} p$ $3.7 \pi^{+} p$ $3.9 \pi^{-} p$ $3.9 \pi^{-} p$ $3.9 \pi^{-} p$ $3.2 \pi^{-} p$ $3.2 \pi^{-} p$ $3.2 \pi^{-} p$ $3.7 \pi^{+} p$ $3.7 \pi^{+} p$ $3.7 \pi^{+} p$ $3.7 \pi^{+} p$	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.022 15 included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162\pm0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{0.207\pm0.018}$ OUR F 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.04 0.264 \pm 0.042 0.265 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.08 0.22 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{\text{tota}}$ $\frac{VALUE}{0.09}$ • • • We do not use • 0.02 0.004 \pm 0.004 $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{0.09}$ • • • We do not use • • • We do not use	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS WERAGE 52 149 167 15 22 at Ethe following 97 π EL% The the following 100 Ethe followin	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 8 HBC 7 HBC 6 HBC 8 HBC 7 HBC 8 HBC 1 HBC 1 HBC 8 HBC 8 HBC 8 HBC 1 HB		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_2 - $	Γ ₂ /Γ ₁
0.06 ± 0.03 0.054 ± 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.012 \text{ OUR F}}$ $0.162 \pm 0.012 \text{ OUR F}$ $0.140 \pm 0.028 \text{ OUR A}$ 0.13 ± 0.04 0.15 ± 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $VALUE$ $0.207 \pm 0.018 \text{ OUR F}$ $0.213 \pm 0.020 \text{ OUR A}$ 0.18 ± 0.05 0.22 ± 0.05 0.211 ± 0.040 $0.213 \pm 0.020 \text{ OUR A}$ 0.18 ± 0.05 0.22 ± 0.05 0.21 ± 0.040 0.213 ± 0.08 0.21 ± 0.08 0.21 ± 0.08 0.12 ± 0.08 0.13 ± 0.08 0.14 ± 0.08 0.15 ± 0.08	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS WERAGE 52 149 167 15 22 at Ethe following 97 π Γ Γ Γ Γ Γ Γ Γ	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 0 HBC 6 HBC 7 HBC 7 HBC 1 HBC 1 HBC 8 HBC 7 HBC 1 HBC 1 HBC 1 HBC 8 HBC 8 HBC 8 HBC 1 HB		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_2)$	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{1}{2}]$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.05 0.211 \pm 0.044 0.26 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{\text{total}}$ VALUE • • • We do not use <0.011 <0.011	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS WERAGE 52 149 167 15 22 at Ethe following 97 π EL% The the following 100 Ethe followin	15 ABRAMOVI 7 15 CHUNG 6 iew. -(KK)) DOCUMENT ID ESPIGAT 7. BARNHAM 7 DOCUMENT ID FORINO 7 ANTIPOV 7 CHALOUPKA A ALSTON 7 BOECKMANN 7 ASCOLI 6 CHUNG 6 CONTE 6 DOCUMENT ID g data for averages, 1 BARNHAM 7 BOESEBECK 6 DOCUMENT ID g data for averages, 2 EISENSTEIN 7 ALSTON 7	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 6 HBC 6 HBC 7 HBC 7 HBC 7 HBC 7 HBC 6 HBC 7 HBC 7 HBC 7 HBC 8 HBC 8 HBC 9 HBC 9 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC		$\begin{array}{l} 3.93 \ \pi^- \ \rho \\ 3.2 \ \pi^- \ \rho \\ \hline \\ \Gamma_2/(\Gamma_1 + \Gamma_2) \\ 0.0 \ \overline{\rho} \ \rho \\ 3.7 \ \pi^+ \ \rho \\ \hline \\ COMMENT \\ 11 \ \pi^- \ \rho \\ 40 \ \pi^- \ \rho \\ 3.9 \ \pi^- \ \rho \\ 7.0 \ \pi^+ \ \rho \\ \hline \\ COMMENT \\ \bullet \ \bullet \\ \hline \\ 5 \ \pi^- \ \rho \\ 7.0 \ \pi^+ \ \rho \\ \hline \end{array}$	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.022 15 included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{1000000000000000000000000000000000000$	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS WERAGE 52 149 167 15 22 at Ethe following 97 π EL% The the following 100 Ethe followin	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 6 HBC 6 HBC 7 HBC 7 HBC 7 HBC 7 HBC 6 HBC 7 HBC 7 HBC 7 HBC 8 HBC 8 HBC 9 HBC 9 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_2)$	Γ ₂ /Γ ₁
0.06 \pm 0.03 0.054 \pm 0.022 15 included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{0.207 \pm 0.018}$ OUR F 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.05 0.211 \pm 0.044 0.246 \pm 0.042 0.25 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.09 0.23 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{tota}$ $\frac{VALUE}{0.040 \pm 0.004}$ $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{0.040 \pm 0.004}$ $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{0.040 \pm 0.004}$ • • • We do not use <0.01 <0.01 <0.01 <0.01 <0.02 0.004	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS WERAGE 52 149 167 15 22 al $CL\%$ e the following 97 π $CL\%$ e the following 90	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 6 HBC 6 HBC 7 HBC 7 HBC 7 HBC 7 HBC 6 HBC 7 HBC 7 HBC 7 HBC 8 HBC 8 HBC 9 HBC 9 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC 1 HBC	± + + CHG + + + + + + + 0 CHG etc. • + + + 0 CHG otc. • 0	$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_2)$ $0.0 \bar{p}p$ $3.7 \pi^{+} p$ $0.0 \pi^{-} p$	Γ ₂ /Γ ₁ Γ ₈ /Γ
0.06 \pm 0.03 0.054 \pm 0.022 15 included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}]$ OUR F 0.162 \pm 0.012 OUR F 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $\frac{VALUE}{0.207 \pm 0.018}$ OUR F 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.21 \pm 0.05 0.211 \pm 0.044 0.246 \pm 0.042 0.25 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.08 0.22 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{\text{tota}}$ $\frac{VALUE}{0.044 \pm 0.004}$ $=$ 0.04 0.004 $=$ 0.004 $=$ 0.004 0.004 $=$ 0.004 $=$ 0.011 0.004 $=$ 0.03 $=$ 0.04 $=$ 0.07 $=$ 0.04 $=$ 0.04 $=$ 0.04 $=$ 0.04 $=$ 0.04 $=$ 0.04 $=$ 0.04 $=$ 0.04 $=$ 0.04 $=$ 0.04 $=$ 0.04 $=$ 0.04 $=$ 0.07 $=$ 0.07 $=$ 0.08 0.09	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT EVTS WERAGE 34 EVTS WERAGE 52 149 167 15 22 al $CL\%$ e the following 97 π $CL\%$ e the following 90 $\Gamma(\eta \pi) + \Gamma(\eta \pi)$	15 ABRAMOVI 7 15 CHUNG 6 few.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 8 HBC 8 HBC 7 HBC 1 HBC 1 HBC 0 HBC 8 HBC 1 HBC		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_2)$	Γ_2/Γ_1 Γ_8/Γ Γ_8/Γ_1
0.06 \pm 0.03 0.054 \pm 0.022 15 included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.162 \pm 0.012 OUR F 0.162 \pm 0.012 OUR A 0.15 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ $VALUE$ 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.05 0.21 \pm 0.08 0.12 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{tota}$ $VALUE$ • • • We do not use <0.02 0.004 \pm 0.004 $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ $VALUE$ • • • We do not use <0.01 <0.04 0.04 0.04 0.04 0.04 0.054 \pm 0.009 OUR F	BAUD 78 revi $\Gamma(\eta\pi) + \Gamma$ IT WERAGE 34 EVTS WERAGE 52 149 167 15 22 al CL% e the following 97 π) $CL\%$ e the following 90 $\Gamma(\eta\pi) + \Gamma(\eta\pi) + \frac{EVTS}{EVTS}$	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 8 HBC 8 HBC 7 HBC 1 HBC 1 HBC 0 HBC 8 HBC 1 HBC		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_2)$ $0.0 \bar{p}p$ $3.7 \pi^{+} p$ $0.0 \pi^{-} p$	Γ_2/Γ_1 Γ_8/Γ Γ_8/Γ_1
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.0120000000000000000000000000000000000$	BAUD 78 revi $\Gamma(\eta\pi) + \Gamma$ IT WERAGE 34 EVTS WERAGE 52 149 167 15 22 al CL% e the following 97 π) $CL\%$ e the following 90 $\Gamma(\eta\pi) + \Gamma(\eta\pi) + \frac{EVTS}{EVTS}$	15 ABRAMOVI 7 15 CHUNG 6 few.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 8 HBC 8 HBC 7 HBC 1 HBC 0 HBC 8 HBC 1 HBC		$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_2)$	Γ_2/Γ_1 Γ_8/Γ Γ_8/Γ_1
0.06 \pm 0.03 0.054 \pm 0.022 15 included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{1}]$ 0.162 \pm 0.012 OUR F 0.140 \pm 0.028 OUR A 0.13 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.22 \pm 0.05 0.21 \pm 0.04 0.246 \pm 0.042 0.25 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.08 0.12 \pm 0.08 0.12 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{\text{tota}}$ VALUE • • • We do not use <0.02 0.004 \pm 0.004 $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ VALUE • • • We do not use <0.011 <0.04 0.04 \pm 0.03 0.04 \pm 0.03 $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ VALUE 0.05 \pm 0.09 OUR F 0.055 \pm 0.009 OUR F 0.055 \pm 0.00	BAUD 78 revi $\Gamma(\eta\pi) + \Gamma$ IT WERAGE 34 EVTS WERAGE 52 149 167 15 22 al CL% The following 97 π) CL% The following 90 $\Gamma(\eta\pi) + \Gamma(\eta\pi) + \frac{EVTS}{EVTS}$	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 6 HBC 7 HBC 7 HBC 7 HBC 1 HBC 1 HBC 1 HBC 7 HBC 1 HB	CHG ± + + CHG CHG etc. • + + 0 CHG + + + + + + + + + + + + + + + + + + +	$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_0)$	Γ_2/Γ_1 Γ_8/Γ Γ_8/Γ_1
0.06 \pm 0.03 0.054 \pm 0.022 15 included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.162 \pm 0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.162 \pm 0.012 OUR A 0.13 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE 0.207 \pm 0.018 OUR F 0.213 \pm 0.020 OUR A 0.18 \pm 0.05 0.22 \pm 0.05 0.211 \pm 0.044 0.25 \pm 0.09 0.23 \pm 0.08 0.12 \pm 0.09 0.246 \pm 0.09 0.25 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{\text{tota}}$ VALUE • • • We do not use <0.02 0.004 \pm 0.004 $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ VALUE • • • We do not use <0.011 <0.04 0.04 \pm 0.03 0.04 \pm 0.03 $\Gamma(KK)/[\Gamma(\rho\pi) + \frac{VALUE}{0.044 \pm 0.012}$ OUR F 0.054 \pm 0.002 0.09 \pm 0.04	BAUD 78 revi $\Gamma(\eta \pi) + \Gamma$ IT WERAGE 34 EVTS VERAGE 52 149 167 15 22 al Ethe following 97 π) Ethe following 90 F $\Gamma(\eta \pi) + \Gamma(\eta \pi)$ EVTS WERAGE	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 8 HBC 7 HBC 1 HB	CHG + +	$\begin{array}{c} 3.93 \ \pi^- \ \rho \\ 3.2 \ \pi^- \ \rho \\ \hline \\ \Gamma_2/(\Gamma_1 + \Gamma_2) \\ 0.0 \ \overline{\rho} \ \rho \\ 3.7 \ \pi^+ \ \rho \\ \hline \\ COMMENT \\ 11 \ \pi^- \ \rho \\ 40 \ \pi^- \ \rho \\ 3.9 \ \pi^- \ \rho \\ 7.0 \ \pi^+ \ \rho \\ \hline \\ 5 \ \pi^- \ \rho \\ 3.2 \ \pi^- \ \rho \\ 11.0 \ \pi^- \ \rho \\ \hline \\ COMMENT \\ \bullet \ \bullet \\ \hline \\ COMMENT \\ \bullet \ \bullet \\ \hline \\ \Gamma_4/(\Gamma_1 + \Gamma_2) \\ \hline \\ 5 \ \pi^+ \ \rho \\ \hline \\ \Gamma_4/(\Gamma_1 + \Gamma_2) \\ \hline \\ 5 \ \pi^+ \ \rho \\ \hline \\ \Gamma_5 \ \pi^+ \ \rho \\ \hline \end{array}$	Γ_2/Γ_1 Γ_8/Γ Γ_8/Γ_1
0.06 \pm 0.03 0.054 \pm 0.022 15 Included in CHAE $\Gamma(\eta\pi)/[\Gamma(\rho\pi) + \frac{VALUE}{0.0162 \pm 0.012}$ OUR F 0.162 \pm 0.012 OUR F 0.1062 \pm 0.012 OUR A 0.13 \pm 0.04 $\Gamma(\eta\pi)/\Gamma(\rho\pi)$ VALUE 0.207 \pm 0.018 OUR A 0.18 \pm 0.05 0.22 \pm 0.05 0.21 \pm 0.00 0.21 \pm 0.00 0.21 \pm 0.00 0.21 \pm 0.00 0.21 \pm 0.00 0.22 \pm 0.05 0.21 \pm 0.09 0.23 \pm 0.09 $\Gamma(\eta'(958)\pi)/\Gamma_{\text{tota}}$ VALUE • • • We do not use <0.02 0.004 \pm 0.004 $\Gamma(\eta'(958)\pi)/\Gamma(\rho\pi)$ VALUE • • • We do not use <0.011 <0.04 0.04 \pm 0.03 0.04 \pm 0.04 0.05 \pm 0.09 OUR F 0.048 \pm 0.012 OUR A 0.05 \pm 0.02	BAUD 78 revi $\Gamma(\eta\pi) + \Gamma$ IT WERAGE 34 EVTS WERAGE 52 149 167 15 22 al CL% The following 97 π) CL% The following 90 $\Gamma(\eta\pi) + \Gamma(\eta\pi) + \frac{EVTS}{EVTS}$	15 ABRAMOVI 7 15 CHUNG 6 iew.	08 HBC 8 HBC 2 HBC 1 HBC 1 HBC 3 CNTR 3 HBC 1 HBC 8 HBC 8 HBC 7 HBC 1 HB	CHG ± + + CHG CHG etc. • + + 0 CHG + + + + + + + + + + + + + + + + + + +	$3.93 \pi^{-} p$ $3.2 \pi^{-} p$ $7.2/(\Gamma_1 + \Gamma_0)$	Γ_2/Γ_1 Γ_8/Γ Γ_8/Γ_1


¹⁶ ESPIGAT

¹⁶ Not averaged because of discrepancy between masses from $K\overline{K}$ and $\rho\pi$ modes.

 0.020 ± 0.004

72 HBC ± 0.0 pp

$\Gamma(\pi^+\pi^-\pi^-)/\Gamma(\mu^{VALUE})$	οπ) CL%	DOCUMENT ID		TECN	CHG	COMMENT	Γ_7/Γ_1
<0.12	90	ABRAMOVI	70		-	3.93 π ⁻ μ	
$\Gamma(\pi^{\pm}\gamma)/\Gamma_{total}$							Γ_5/Γ
VALUE		DOCUMENT ID		TECN	COM	MENT	31
• • • We do not use	e the followi	ng data for average:	s, fit	s, limits	s, etc.		
$0.005^{+0.005}_{-0.003}$		¹⁷ EISENBERG	72	нвс	4.3,5	.25,7.5 γ <i>p</i>	
¹⁷ Pion-exchange m	odel used in	this estimation.					
$\Gamma(\omega\pi\pi)/\Gamma(\rho\pi)$							Γ_3/Γ_1
VALUE	EVT5	DOCUMENT ID		TECN	CHG	COMMENT	
0.15 ± 0.05 OUR FIT		udes scale factor of					
0.15 ± 0.05 OUR AV	E RAGE Er	ror includes scale fa	ctor	of 1.3.	See th		below.
0.28 ± 0.09	60	DIAZ		DBC	0	$6 \pi^+ n$	
0.18 ± 0.08		¹⁸ KARSHON	74	HBC		Avg. of a	bove two
0.10 ± 0.05	279	CHALOUPKA	73	HBC	_	3.9 π p	
• • • We do not use	e the followi	ng data for average:	s, fit	s, limits	, etc.		
0.29 ± 0.08	140	¹⁸ KARSHON	74	HBC	0	4.9 π ⁺ ρ	
0.10 ± 0.04	60	¹⁸ KARSHON	74	HBC	+	4.9 π^{+} p	
0.19 ± 0.08		DEFOIX	73	HBC	0	0.7 pp	
18 KARSHON 74 se explain discrepan systematic spread	icies in bran	Iditional $I = 0$ states sching ratios and m	str lasse	ongly co	oupled t use a	to ωππ wh central val	ich could ue and a

a₂(1320) REFERENCES

OULET	90	Hadron 89 Conf.	+Boutemeur (SERP, BELG, LANL, LAPP, PISA, KEK)
UGUSTIN	89	NP B320 1	+Cosme (DM2 Collab.)
OROBYEV	88	YAF 48 436	+ Golubev, Dolinsky, Druzhinin+ + Boch, Foster, Bernardi+ + Aschman, Besset, Bienlein+ + Klowning, Burger+ (PLUTO Collab.)
LTHOFF	86	ZPHY C31 537	+Boch, Foster, Bernardi+ (TASSO Collab.)
NTREASYAN	86	PR D33 1847	+Aschman, Besset, Bienlein+ (Crystal Ball Collab.)
BERGER	84C	PL 149B 427	+Klovning, Burger+ (PLUTO Collab.)
BEHREND	83B	PL 125B 518	+D'Agostini+ (DESY, KARL, MPIM, LALO, LPNP+)
RAZER	83	Aachen Conf.	(UCSD)
IHANGIR	82	PL 117B 123	+Berg, Biel, Chandlee+ (FNAL, MINN, ROCH)
LELAND	828	NP B208 228	+Delfosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT)
DWARDS	82F	PL 110B 82	+Partridge, Peck+ (CIT, HARV, PRIN, STAN, SLAC)
DELFOSSE	81	NP B183 349	+Guisan, Martin, Muhlemann, Weill+ (GEVA, LAUS)
VANGELISTA	81	NP B178 197	+ (BARI, BONN, CERN, DARE, LIVP+)
HABAUD	80	NP B175 189	+Hyams, Papadopoulou+ (CERN, MPIM, AMST)
DAUM	80C	PL 89B 276	+Hertzberger+ (AMST, CERN, CRAC, MPIM, OXF+) JP
BALTAY	78B	PR D17 62	+Cautis, Cohen, Csorna+ (COLU, BING) +Hyams, Jones, Weilhammer, Blum+ (CERN, MPIM)
HABAUD	78	NP B145 349	+Hyams, Jones, Weilhammer, Blum+ (CERN, MPIM)
ORDEN	78B	NP B138 235	+Corbett, Alexander+ (BIRM, RHEL, TELA, LOWC)
ERRERSORIA	78	PL 74B 287	+Treille+ (ORSA, CERN, CDEF, LPNP)
YAMS	78	NP B146 303	+ Jones, Weilhammer, Blum+ (CERN, MPIM, ATEN)
/ARTIN	78D	PL 74B 417	+Ozmutlu, Baldi, Bohringer, Dorsaz+ (DURH, GEVA) JP
/AY	77	PR D16 1983	+Abramson, Andrews, Busnello+ (ROCH, CORN)
ORINO	76	NC 35A 465	+Gessaroli+ (BGNA, FIRZ, GENO, MILA, OXF, PAVI)
MARGULIE	76	PR D14 667	+Kramer, Foley, Love, Lindenbaum+ (BNL, CUNY)
MMS	75	PL 588 117	+Jones, Kinson, Stacey, Bell+ (BIRM, DURH, RHEL) JP
VAGNER	75	PL 58B 201	+Tabak, Chew (LBL) JP
DIAZ	74	PRL 32 260	+Dibianca, Fickinger, Anderson- (CASE, CMU)
KARSHON	74	PRL 32 852	+Mikenberg, Pitluck, Eisenberg, Ronat+ (REHO)
NTIPOV	73	NP B63 175	+ Ascoli, Busnello, Focacci+ (CERN, SERP) JP
NTIPOV	73C	NP B63 153	+ Ascoli, Busnello, Focacci+ (CERN, SERP) JP
HALOUPKA	73	PL 44B 211	+ Ascoli, Busnello, Focacci+ (CERN, SERP) P - Dobrzynski, Ferrando, Losty+ (CERN)

$a_2(1320)$, $h_1(1380)$, $\omega(1390)$

CONFORTO	73	PL 45B 154	+Mobley, Key+ (EFI, FNAL, TNTO, WISC)
DEFOIX	73	PL 43B 141	+Dobrzynski, Espigat, Nascimento+ (CDEF) +Schultz, Ascoli, loffredo+ (ILL) +Conforto, Mobley+ (TNTO, EFI, FNAL, WISC) +Thuan, Major+ (NIJM, BONN, DURH, TORI)
EISENSTEIN	73	PR D7 278	+Schultz, Ascoli, loffredo+ (ILL)
KEY	73	PRL 30 503	+Conforto, Mobley+ (TNTO, EFI, FNAL, WISC)
TOET	73	NP B63 248	+Thuan, Major+ (NIJM, BONN, DURH, TORI)
BLOODWO	72	NP B37 203	Bloodworth, Jackson, Prentice, Yoon (TNTO)
DAMERI	72	NC 9A 1	+Borzatta, Goussu+ (GENO, MILA, SACL)
EISENBERG	72	PR D5 15	+Ballam, Dagan+ (REHO, SLAC, TELA)
ESPIGAT	72	NP B36 93	+Ballam, Dagan+ (REHO, SLAC, TELA) +Ghesquiere, Lillestol, Montanet (CERN, CDEF)
FOLEY	72	PR D6 747	+Love, Ozaki, Platner, Lindenbaum+ (BNL, CUNY)
ALSTON	71	PL 34B 156	Alston-Garnjost, Barbaro, Buhl, Derenzo+ (LRL)
BARNHAM	71	PRL 26 1494	+Abrams, Butler, Coyne, Goldhaber, Hall+ (LBL)
BINNIE	71	PL 36B 257	+Camilleri, Duane, Faruqi, Burton+ +Earles, Faissler, Blieden+ +Hyams, Jones, Schlein, Blum+ Abramovich, Blumerleid, Bruyant+ (CERN, MPIM)
BOWEN	71	PRL 26 1663	+Earles, Faissler, Blieden+ (NEAS, STON)
GRAYER	71	PL 34B 333	+Hyams, Jones, Schlein, Blum+ (CERN, MPIM)
ABRAMOVI	70B	NP B23 466	Abramovich, Blumenfeld, Bruyant+ (CERN) JP
ALSTON	70	PL 33B 607	Alston-Garnjost, Barbaro, Buhl, Derenzo+ (LRL)
BOECKMANN	70	NP B16 221	+Major+ (BONN, DURH, NIJM, EPOL, TORI)
EISENBERG	69	PRL 23 1322	+Haber, Ballam, Chadwick+ (REHO, SLAC)
ARMENISE	68B	PL 26B 336	+Forino, Cartacci+ (BARI, BGNA, FIRZ, ORSA)
ASCOLI	68	PRL 20 1321	+Crawley, Mortara, Shapiro, Bridges+ (ILL) JP
BOESEBECK	68	NP B4 501	+Deutschmann+ (AACH, BERL, CÈRN) +Dahl, Kirz, Miller (LRL)
CHUNG	68	PR 165 1491	+Dahl, Kirz, Miller (LRL)
CONTE	67	NC 51A 175	+Tomasini, Cords+ (GENO, HAMB, MILA, SACL)

			RELATED PAPERS ———
JENNI	83	PR D27 1031	+Burke, Telnov, Abrams, Blocker+ (SLAC, LBL) + (DESY, KARL, MPIM, LALO, LPNP+) +Hertzberger+ (AMST, CERN, CRAC, MPIM, OXF+)
BEHREND	82C	PL 114B 378 NP B182 269	+ (DESY, KARL, MPIM, LALO, LPNP+)
DAUM	81B 78E	NP B182 269 PRL 40 87	+Hertzberger+ (AMST, CERN, CRAC, MPIM, OXF+)
BALTAY CORDEN	78C	NP B136 77	+Cautis, Kalelkar (COLU) JP +Dowell, Garvey+ (BIRM, RHEL, TELA, LOWC) JP
MARTIN	78B	NP B140 158	+Ozmutlu, Baldi, Bohringer, Dosaz+ (DURH, GEVA) +Blockzijl, Heinen+ (AMST, CERN, NIJM, OXF)
CERRADA	77B	NP B126 241	+Blockzijl, Heinen+ (AMST, CERN, NIJM, OXF)
PAWLICKI HANDLER	77 76	PR D15 3196 NP B110 173	+Ayres, Cohen, Diebold, Kramer, Wicklund (ANL) IJ +Plano, Brucker, Koller+ (RUTG, STEV, SETO)
ABASHIAN	75	PRL 34 691	+Plano, Brucker, Koller+ (RUTG, STEV, SETO) +Beamer, Bross, Eisenstein+ (ILL, ANL, ISU)
LOSTY	75	PL 56B 96	+Chalounka Montanet Gandois+ (CERN SACI) IP
UNDERWOOD Also	75 73	PR D11 2345 PL 45B 154	+Conforto, Key+ (EFI, FNAL, TNTO, WISC) Conforto, Mobley, Key+ (EFI, FNAL, TNTO, WISC) Key, Conforto, Mobley+ (TNTO, EFI, FNAL, WISC) +Rudolph+ (AACH, BERL, BONN, CERN, HEID) JP
Also	73	PRL 30 503	Key, Conforto, Mobley+ (TNTO, EFI, FNAL, WISC)
OTTER	74	NP BRO 1	+Rudolph+ (AACH, BERL, BONN, CERN, HEID) JP
THOMPSON	74B 74D	NP B69 381	+Badewitz, Galdos, Mcliwain+ (PURD) JP
AMMANN	73	PR D9 560 PR D7 1345	+Garoos, McIrwain, Willmann (PURD) JP +Carmony, Garfinkel+ (PURD, IUPU) Ankenbrandt, Brabson, Crittenden, Heinz+ (INO) +Ascoli, Busnello, Focacci+ (CERN, SERP) JP
ANKENBRA	73	DD D0 2706	Ankenbrandt, Brabson, Crittenden, Heinz+ (IND)
ANTIPOV CASON	73B 73B	NP B63 141 NP B64 14 PRL 29 1688	+Ascoli, Busnello, Focacci+ (CERN, SERP) JP
ANKENBRA	73B 72B	NP B64 14 PRI 29 1688	+Madden, Bishop, Biswas, Kenney+ (NDAM) Ankenbrandt, Brabson, Crittenden, Heinz+ (IND)
BERENYI	72	NP B3/ 621	+Prentice, Steenberg, Yoon, Walker (TNTO, WISC)
DIEBOLD	72	Batavia Conf. 3 1	(ANL)
LASSILA MORSE	72 72	PRL 28 1491 NP 843 77	+Young (IOWA) +Oh, Walker, Johnston, Yoon (WISC, TNTO)
AGUILAR	71B	NP B43 77 PR D4 2583	+Oh, Walker, Johnston, Yoon (WISC, TNTO) Aguilar-Benitez, Eisner, Kinson (BNL)
BEKETOV	71	3JN1P 4 703	+Sombkowsky, Konovalov, Krutschinin+ (ITEP) JP
BINNIE	71B	Translated from unknow	n journal. +Camilleri, Duane, Faruqi, Burton+ (LOIC, SHMP)
CRENNELL	71	PL 35B 185	+Camilleri, Duane, Faruqi, Burton+ (LOIC, SHMP) +Gordon, Lai, Scarr (BNL)
FARBER	71	PL 35B 185 NP B29 237	+DePinto, Biswas, Cason, Deery, Kenney+ (NDAM)
FOLEY	71	PRL 26 413	+Love, Ozaki, Platner, Lindenbaum+ (BNL, CUNY)
LYNCH Also 1971	Amste	UCRL 20022 rdam Conference.	(LBL)
RINAUDO	71	NC 5A 239	+ (TORI, BONN, DURH, NIJM, EPOL) JP
ASCOLI	70	PRL 25 962	+Brockway, Crawley, Eisenstein, Hanft+ (ILL) JP
BASILE BAUD	70B 70B	PRL 25 962 LNC 4 838 Phil. Conf. 311	+Dalpiaz, Frabetti, Massam+ (CERN, BGNA, STRB)
BAUD	70C	PL 31B 401 PL 31B 397	+Benz+ (CERN Boson Spectrometer Collab.)
BAUD	70D	PL 31B 397	+Benz+ (CERN Boson Spectrometer Collab.)
BUTLER CAROLL	70 70	UCRL 19845 Thesis	+Firebaugh, Garfinkel, Morse, Oh+ (WISC, TNTO)
CASO	70	PRL 25 1393 LNC 3 707	+Conte, Tomasini+ (GENO, HAMB, MILA, SACL)
DIAZ	70	NP B16 239	+Gavillet, Labrosse, Montanet+ (CERN, CDEF) JP
DZIERBA GARFINKEL	70 70		#3ilepilard, Diswas, Casoli, Jolinson (NDAIVI)
JOHNSTON	70	PL 33B 536 NP B24 253	+Ammann, Carmony, Yen +Key, Prentice, Yoon, Garfinkel+ (TNTO, WISC)
KRUSE	70	Phil. Conf. 359 Phil. Conf. 369	· ALLÝ IP
SUTHERLAND ADERHOLZ	70 69	Phil. Conf. 369 NP B11 259	+Bartsch+ (AACH, BERL, CERN, JAGL, WARS) Aguilar-Benitez, Barlow+ (CERN, CDEF, LIVP) Aguilar-Benitez, Barlow+ (CERN, CDEF)
AGUILAR	69B	NP B11 259	+Bartsch+ (AACH, BERL, CERN, JAGL, WARS)
AGUILAR	69C	PL 29B 62 PL 29B 241	Aguilar-Benitez, Barlow+ (CERN, CDEF)
ANDERSON	69	PRL 22 1390 LNC 2 501	
ARMENISE CHIKOVANI	69 69		+Ghidini, Forino, Cartacci+ (BARI, BGNA, FIRZ) +Focacci+ (CERN Missing Mass Spect. Collab.) JP
CRENNELL	69	PRL 22 1327	+Karshon, Lai+ (BNL) IJP
DONALD	69B	PRL 22 1327 NP B12 325 SJNP 9 596	+Edwards, Foster, Moore (LIVP)
VETLITSKY	69B	SJNP 9 596 Translated from VAF 9	+Grigorev, Grishin+ (ITEP)
BALLAM	68	SJNP 9 596 Translated from YAF 9 PRL 21 934 PL 28B 233	+Brody, Chadwick, Fries, Guiragossian+ (SLAC)
BENZ CASO	68 68	PL 28B 233	+Brody, Chadwick, Fres, Gulfagossian+ (SLAC) +Chikovani+ (CERN Missing Mass Spect, Collab.) +Conte, Cords, Diaz+ (GENO, HAMB, MILA, SACL) +Karshon, Lai, Scarr, Skillicorn (BNL)
CRENNELL	68C	NC 54A 983 PRL 20 1318	+Karshon, Lai, Scarr, Skillicorn (BNI)
DONALD	68	F L 20D 327	Triodescii, Bettilit (EIVF, OSCO, FADO)
FRIDMAN	68 68	PR 167 1268	+Maurer, Michalon, Oudet+ (HEID, STRB)
JUNKMANN KEY	68	NP 88 471 PR 166 1430	+Cocconi+ (AACH, BERL, BONN, CERN, WARS) +Prentice, Cooper, Manner+ (TNTO, ANL, WISC) +Cason, Riswas, Derado, Groves+
LAMSA	68		+Cason, Biswas, Derado, Groves+ (NDAM)
VONKROGH	68	PL 27R 253	+Miyashita Konelman Libby (COLO)
ARMENISE BALTAY	67 67C	PL 25B 53 PL 25B 160	+Forino+ (BARI, BGNA, FIRZ, ORSA)
BARLOW	67	NC 50A 701	+Lillestol, Montanet+ (CERN, CDEF, IRAD, LIVP)
BARTSCH	67	PL 25B 48	+Forino+ +Krisch, Kung, Yeh, Rabin +Klisch, Kung, Yeh, Rabin +Klisch, Montanet+ +Deutschmann, Grote+ +Fischer, Gobbi, Astbury+ +Lamsa, Biswas, Derado, Groves+ (ACH, BER, CERN) (ETH, CERN) (ETH, CERN)
BEUSCH CASON	67 67	PL 25B 357 PRL 18 880	+Fischer, Gobbi, Astbury+ (ETH, CERN)
CHIKOVANI	67	PL 25B 44	+Lamsa, Biswas, Derado, Groves+ (NDAM) +Focacci+ (CERN Missing Mass Spect. Collab.)
CHUNG	67	PRL 18 100	+Dahl, Hardy, Hess, Kirz, Miller (LRL)
Also	66B	UCRL 16832 Thesis	Hess (LRL)
COHN CONFORTO	67 67	NP B1 57 NP B3 469	+McCulloch, Bugg, Condo +Marechal+ (CERN, CDEF, IPNP, LIVP)
DAHL	67	PR 163 1377 NC 51A 801	+Hardy, Hess. Kirz, Miller +French, Simak (CERN)
DANYSZ	67B	NC 51A 801	+French, Simak (CERN)
SLATTERY BARNES	67 66	NC 50A 377 PRL 16 41	+Kraybill, Forman, Ferbel (YALE, ROCH) JP +Fowler, Lai, Orenstein+ (BNL, CUNY)
EHRLICH	66	PR 152 1194	+Selove, Yuta (PENN)
FERBEL	66	PL 21 111	(ROCH)
LEVRAT ABOLINS	66 65	PL 22 714 Athens Conf.	+Tolstrup+ (CERN Missing Mass Spect. Collab.) +Carmony Lander Xuong Yager (ILCSD) I
ADERHOLZ	65	PR 138B 897	+Carmony, Lander, Xuong, Yager (UCSD)! (AACH, BERL, BIRM, BONN, HAMB, LOIC, MPIM) +Baton, Deler, Crussard+ (SACL, BGNA) JP
ALITTI	65	PL 15 69	+Baton, Deler, Crussard+ (SACL, BGNA) JP

$h_1(1380)$

$$I^G(J^{PC}) = ?^-(1^{+?})$$

OMITTED FROM SUMMARY TABLE

h ₁ (1380) MASS						
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT			
1380±20	ASTON	88C LASS	$ \begin{array}{c} 11 \ K^{-} \ p \rightarrow \\ K_{5}^{0} \ K^{\pm} \ \pi^{\mp} \Lambda \end{array} $			
	h ₁ (1380) WID	тн				
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT			
80±30	ASTON	88C LASS	${}^{11} {}_{K_{5}^{-}} {}^{p} \rightarrow {}_{K_{5}^{\pm}} {}^{\pi^{\mp}} \wedge$			
	h ₁ (1380) DECAY	MODES				
$\frac{Mode}{\Gamma_1 K \overline{K}^*(892) + c}$:.c.					
	h ₁ (1380) REFER	ENCES				
ASTON 88C PL B201			LAC, NAGO, CINC, TOKY)			
ASTON 88C PL B201	1 573 +Awaji, Bienz+	(5				
$\omega(1390)$ See also $\omega(160)$		$J^{PC}) = 0^{-1}$				
See also $\omega(160)$	ω(1390) MA	SS	-(1)			
	00).	SS TECN	(1) 			
See also $\omega(160)$ VALUE (MeV) 1391 \pm 18 • • • We do not use the	ω (1390) MA $\frac{DOCUMENT~ID}{DONNACHIE}$ e following data for average	SS 89 RVUE es, fits, limits	$\frac{COMMENT}{e^{+}e^{-} \rightarrow \rho\pi}$			
See also $\omega(160)$ VALUE (MeV) 1391 \pm 18 • • • We do not use the	ω(1390) MA <u>DOCUMENT ID</u> DONNACHIE	SS <u>TECN</u> 89 RVUE	$\frac{COMMENT}{e^{+}e^{-} \rightarrow \rho\pi}$			
See also $\omega(16000000000000000000000000000000000000$	ω (1390) MA $\frac{DOCUMENT~ID}{DONNACHIE}$ e following data for average	SS 89 RVUE 88 RVUE	$\frac{COMMENT}{e^{+}e^{-} \rightarrow \rho\pi}$			
See also $\omega(160^\circ)$ VALUE (MeV) 1391 \pm 18 • • • We do not use the 1425 \pm 25 VALUE (MeV)	ω (1390) MA DOCUMENT ID DONNACHIE Following data for average GOVORKOV ω (1390) WID DOCUMENT ID	SS #ECN 89 RVUE es, fits, limits 88 RVUE TH	$\frac{COMMENT}{e^+e^- \rightarrow \rho\pi}, \text{etc.} \bullet \bullet \bullet$			
See also $\omega(16000000000000000000000000000000000000$	ω (1390) MA DOCUMENT ID DONNACHIE Following data for average GOVORKOV ω (1390) WID DOCUMENT ID DONNACHIE	89 RVUE 88 RVUE TH TECN 89 RVUE	$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $			
See also $\omega(16000000000000000000000000000000000000$	ω (1390) MA DOCUMENT ID DONNACHIE Following data for average GOVORKOV ω (1390) WID DOCUMENT ID	89 RVUE 88 RVUE TH TECN 89 RVUE	$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $			
See also $\omega(16000000000000000000000000000000000000$	ω (1390) MA DOCUMENT ID Following data for average GOVORKOV ω (1390) WID DOCUMENT ID DONNACHIE Following data for average data for av	SS 89 RVUE 88 RVUE TH 7ECN 89 RVUE 88 RVUE 88 RVUE	$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $			
See also $\omega(16000000000000000000000000000000000000$	ω (1390) MA DOUNDERT ID DONNACHIE e following data for average GOVORKOV ω (1390) WID DOUNDERT ID DONNACHIE e following data for average GOVORKOV	SS 89 RVUE 88 RVUE TH 7ECN 89 RVUE 88 RVUE 88 RVUE	$\begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \rho\pi \\ \text{etc.} \bullet \bullet \bullet \end{array}$			
See also $\omega(16000000000000000000000000000000000000$	ω (1390) MA DOUNDERT ID DONNACHIE e following data for average GOVORKOV ω (1390) WID DOUNDERT ID DONNACHIE e following data for average GOVORKOV	SS 89 RVUE es, fits, limits 88 RVUE TH FECN 89 RVUE es, fits, limits 88 RVUE MODES	$\begin{array}{c} COMMENT \\ e^{+}e^{-} \rightarrow \rho\pi \\ \text{etc.} \bullet \bullet \bullet \end{array}$			

ω(1390) Γ(i)Γ(e^+e^-)/Γ(total)

$\Gamma(\rho\pi) \times \Gamma(e^+e^-)$	−)/Γ _{total}	DOCUMENTUR		TECH	COMMENT	$\Gamma_1\Gamma_3/\Gamma$
VALUE (keV)		DOCUMENT ID		TECN	COMMENT	
137 ± 40		DONNACHIE	89	RVUE	e ⁺ e [−] →	$\rho \pi$
=() =()	×					
$\Gamma(\omega\pi\pi) imes\Gamma(e^+$	$e^-)/\Gamma_{\text{total}}$					$\Gamma_2\Gamma_3/\Gamma$
$I(\omega\pi\pi)\times I(e^{-})$	-e-)/Γ _{total}	DOCUMENT ID		TECN	COMMENT	Γ ₂ Γ ₃ /Γ

 $\omega(1390)$, $f_0(1400)$

ω(1390) REFERENCES DONNACHIE GOVORROV 89 ZPHY C42 663 5,NP 48 150 Translated from YAF 48 237. - Clegg (JINR) (CERN, MCHS) (JINR) OTHER RELATED PAPERS ATKINSON 87 ZPHY C34 157 47 NP B231 15 47 NP B231 15 47 NP B231 15 47 NP B231 15 47 NP B231 15 47 NP B231 15 48

 $f_0(1400)$ was $\epsilon(1300)$

$$I^{G}(J^{PC}) = 0^{+}(0^{++})$$

NOTE ON S-WAVE $\pi\pi$, $K\overline{K}$, AND $\eta\eta$ INTERACTIONS

In this note we discuss results on the nonstrange $I^GJ^{PC}=0^+0^{++}$ partial wave (S wave) coupled to the $\pi\pi$, $K\overline{K}$, and $\eta\eta$ systems.

Up to the ρ meson mass region, the I=0 S-wave phase shift δ_0^0 is (qualitatively) uniquely determined: it rises monotonically and reaches 60° to 70° near 700 MeV. In the early phase shift analyses, based on $\pi^+\pi^- \to \pi^+\pi^-$ data, two solutions for δ_0^0 were found in the 700–900 MeV region. This ambiguity could lead to either a resonance under the ρ meson with mass and width similar to those of the ρ meson [the old $\epsilon(800)$] or to an approximately energy-independent phase shift of about 90° , showing no resonant behavior. Today a narrow $\epsilon(800)$ seems to be ruled out: our present knowledge of the low (and high) energy behavior of δ_0^0 can still be summarized by Figure 1 which shows the CERN-Munich phase shift data (GRAYER 74) together with a fit of AU 87.

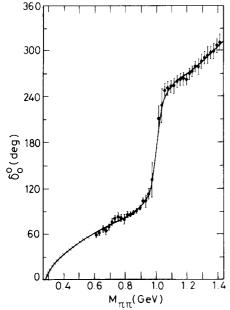


Figure 1. (From AU 87.) The I=0 S-wave phase shift δ_0^0 for $\pi\pi$ scattering from the CERN-Munich group (GRAYER 74). The hatched band represents the continuation down to the threshold provided by the Roy equations. The curve shows a fit typical of all the AU 87 solutions.

Without polarization information, reactions of the type $\pi N \to \pi \pi N$ cannot be analyzed unambiguously since there are more helicity amplitudes than observables. Thus one is obliged to make additional assumptions.

No evidence for a narrow ϵ resonance is obtained in an amplitude analysis (ESTABROOKS 74) of the largest π^-p (unpolarized) $\to \pi^+\pi^-n$ experiment (HYAMS 73, GRAYER 74); the analysis assumes both spin and phase coherence. The advent of π^-p (polarized) $\to \pi^+\pi^-n$ data (BECKER 79) has made both assumptions unnecessary. Analyzing their data, BECKER 79B also confirms that there is no resonant structure in the phase-shift δ_0^0 below 900 MeV.

CASON 83 disagrees with these results: performing an amplitude analysis of the reaction $\pi^+\pi^- \to \pi^0\pi^0$, with the assumption of one-pion exchange dominance, he concludes that the only way to make $\pi^+\pi^- \to \pi^0\pi^0$ and $\pi^+\pi^- \to \pi^+\pi^-$ data self-consistent is a resonant phase-shift solution; however the phase variation is not well represented by a narrow Breit-Wigner resonance. It should be finally pointed out that this conclusion is in disagreement with several other unextrapolated $\pi^0\pi^0$ data which appear to rule out the existence of the $\epsilon(800)$.

The region of elastic $\pi\pi$ scattering is known to extend to about 990 MeV, near the $K\overline{K}$ threshold; beyond 1 GeV we therefore have to consider the two channels $\pi\pi$ and $K\overline{K}$, and beyond 1100 MeV the $\eta\eta$ channel also opens up. In addition, the solutions have inherent ambiguities related to the Barrelet zeroes of the amplitudes. Thus HYAMS 75 finds four solutions in the region 1.0 to 1.8 GeV, ESTABROOKS 74 finds eight solutions and CORDEN 79, extending the $\pi\pi$ analysis to 2.08 GeV, finds another set of eight solutions. Many of these solutions have been ruled out imposing continuity in various forms as well as analyticity and unitarity (FROGGATT 75 77. COMMON 76, MARTIN 78C).

One notes that a model-independent partial-wave analysis (BECKER 79B on polarized targets) agrees qualitatively with solutions β and β' (of MARTIN 78C).

The β and β' amplitudes describe the experimental moments in each bin without any explicit smoothing: they are analytic in s and approximately analytic in $\cos\theta$. They take into account all waves up to L=4. The β solution has a highly elastic S wave, whereas the S wave of solution β' is somewhat inelastic (MARTIN 78C). The unique solution of FROGGATT 77, which has explicit smoothness built in and which takes into account only $L \leq 3$ waves, is rather similar to β . However, it has problems with unitarity, apparently because of the neglected G wave (MARTIN 78C).

The S wave is clearly resonant in the data of BECKER 79B. In the 1150–1400 MeV region both the S-P and S-D phase differences show the presence of a broad resonance, and the intensity of the S wave confirms this by exhibiting a peak at about 1300 MeV with a width of about 300 MeV.

The amplitude analysis of the $\pi^-p \to \pi^+\pi^-n$ experiment of CORDEN 79 has two preferred solutions which are close to β and β' , giving some support for an $f_0(1400)$.

The results on $\pi^+\pi^- \to \pi^0\pi^0$ (CASON 83) establish that the only solutions consistent with the data are β and β' , in agreement with BECKER 79B.

A partial wave analysis performed by AKESSON 86 on the exclusive final state $pp \to pp\pi^+\pi^-$, with the two pions produced centrally, shows that the $\pi\pi$ S wave dominates up to 1.6 GeV; furthermore, no room is left for other scalar mesons besides $f_0(975)$ and $f_0(1400)$. However, using the same data and a smaller sample of K^+K^- exclusive events, a coupled channel analysis $(\pi\pi$ and $K\overline{K})$ together with $\pi\pi$ scattering data has led AU 87 to conclude that a trio of resonances near 1 GeV is required, where the naive quark model expects just two (evidence for the lightest scalar glueball?) (see Figure 2 for a typical Argand plot).

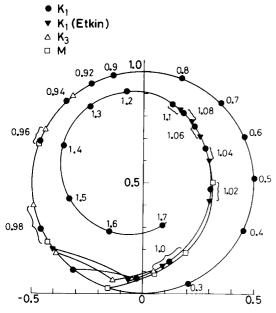


Figure 2. (From AU 87.) The $\pi\pi$ I=0 S-wave amplitude $\rho_1\mathcal{F}_{11}$ shown in an Argand plot comparing the solutions K_1 (\bullet), K_1 (Etkin) (\blacktriangledown), K_3 (\triangle), and M (\square). The last three are shown only where they differ from solution K_1 . The corresponding energies in GeV are displayed on the plot.

Independent evidence for the $f_0(1400)$ comes from studies of the $K\overline{K}$ and $\eta\eta$ systems. In the reaction $\pi^-p\to K_S^0K_S^0\eta$, the S wave has a large intensity in the 1300 MeV region (WETZEL 76, LOVERRE 80, ETKIN 82B) with evidence for a bump. Moreover, the Y_0^2 moment shows a large negative excursion, indicating S-D interference (CASON 76, WETZEL 76, POLYCHRONAKOS 79, GOTTESMAN 80, LOVERRE 80, ETKIN 82B). The main problem is the isospin of the bump; if OPE were the only mechanism, I=0 would be assured. The high statistics experiment (ETKIN 82B) in the restricted t' region below 0.1 GeV 2 strongly argues in favor of OPE dominance and assigns the observed effects to the $I^G=0^+$ state. A simplified scheme of amplitude analysis in the range 1.6–2.4 GeV has been recently applied to the same reaction $\pi^-p\to K_S^0K_S^0n$ at 40 GeV (BOLONKIN 88). The

S-wave intensity clearly shows evidence for a large structure at about 1400 MeV together with another small signal in the region of the $f_2(1720)$. The mass of the $f_0(1400)$ agrees with the finding of ETKIN 82B in the same channel.

The reaction $\pi^-p\to\eta\eta N$ at 100 GeV has been analyzed in a search for scalar glueball candidates (ALDE 86D). A partial wave analysis shows a bump near threshold in the S-wave amplitude which is naturally associated with the $f_0(1400)$, although its mass is somewhat lower than that of the state decaying into $\pi\pi$ and $K\overline{K}$.

The interpretation of the 0^{++} mesons as members of the $q\overline{q}$ 0^{++} nonet may appear controversial, due to some unconventional experimental properties of such states; to solve this problem, several extensive coupled-channel analyses of I=0 S-wave $\pi\pi$ and $K\overline{K}$ final states have been performed. Rather standard properties for the scalar mesons are obtained by TORNQVIST 82 who finds that they can be understood as conventional $q\overline{q}$ states; the $f_0(975)$ and $f_0(1400)$ have large components of $q\overline{q}q\overline{q}$ in the form of virtual two-meson continuum (mainly $K\overline{K}$). ACHASOV 84 disagrees with these conclusions and finds instead that the two scalar mesons can both be interpreted as $q\overline{q}q\overline{q}$ states. WEINSTEIN 83B 89 on the other hand interpret the $f_0(975)$ as a $K\overline{K}$ molecule bound by hyperfine interaction, leaving the $f_0(1400)$ as a 3P_0 $q\overline{q}$ state.

From the experimental point of view, the mass and the width of the $f_0(1400)$ are difficult to extract from these partial wave analyses and also to define in any simple way, since its Breit-Wigner shape is completely distorted by hadronic mass renormalization effects from the $\pi\pi$, $K\overline{K}$, and $\eta\eta$ channels.

	f ₀ (1400) MASS	
VALUE (MeV)	DOCUMENT ID TECN COMME	NΤ
~ 1400 OUR ESTIMATE • • • We do not use the fol	lowing data for averages, fits, limits, etc. • o	• •
1440 ±50	BOLONKIN 88 SPEC 40 π^-	D - KO KO n
1420.0 ± 20.0	BOLONKIN 88 SPEC 40 π^- AKESSON 86 SPEC $pp \rightarrow$	$pp\pi^+\pi^-$
1220.0 ± 40.0	ALDE 860 GAM4 100 π	$n \rightarrow n2n$
1463.0 ± 9.0	ETKIN 82B MPS 23 π^-	$0 \rightarrow n2K_c^0$
$1470.0 \pm 10 \pm 20$	ETKIN 82B MPS 23 π^- 1 ETKIN 82C MPS 23 π^-	$p \rightarrow n2K_{c}^{0}$
~ 1237	TORNQVIST 82 RVUE	J
1425 ±15	WICKLUND 80 SPEC 6πN-	→ K+K-N
~ 1300	POLYCHRO 79 STRC 7 $\pi^ p$	$\rightarrow n2K_c^0$
1256.0	FROGGATT 77 RVUE $\pi^+\pi^-$	
¹ Fit includes interference	with the $f_0(1240)$ resonance.	

	$f_0(1400) \text{ WID}^3$	TH			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
150 to 400 OUR ESTIMATE					
• • We do not use the following	data for average	s, fits	s, limits,	etc. • • •	
250 ± 80	BOLONKIN	88	SPEC	$\begin{array}{ccc} 40 \ \pi^- \ p \rightarrow & K_S^0 \ K_S^0 \ n \\ pp \rightarrow & pp \pi^+ \ \pi^- \end{array}$	
460.0 ± 50.0	AKESSON	86	SPEC	$pp \rightarrow pp\pi^{+}\pi^{-}$	
320.0± 40.0	ALDE	86D	GAM4	$100 \pi^- p \rightarrow n2\eta$	
$118.0^{+138.0}_{-16.0}$	ETKIN	828	MPS	$23 \pi^- p \rightarrow n2K_S^0$	
$140.0 \pm 10 \pm 20$	² ETKIN	8 2 c	MPS	$23 \pi^- \rho \rightarrow n2K_S^{\bar{0}}$	
~ 1400	TORNQVIST			3	
160 ± 30	WICKLUND	80	SPEC	$6 \pi N \rightarrow K^+ K^- N$	
~ 150	POLYCHRO	79	STRC	$7 \pi^- p \rightarrow n2K_S^0$	
~ 400	³ FROGGATT	77	RVUE	$\pi^+\pi^-$ channel	
² Fit includes interference with th	ne f ₀ (1240) reson	ance.			
³ Width defined as distance betw	een 45 and 135°	phas	e shift.		

 $f_0(1400), \hat{\rho}(1405), f_1(1420)$

f₀(1400) DECAY MODES

	Mode	Fraction (Γ_{i}/Γ)	
Γ1	ππ	(93.6 + 1.9) %	
	ΚK	(7.5±0.9) %	
Γ_3	$^{\eta\eta}_{e^+e^-}$	seen	
Γ_4	e+ e-	not seen	

f₀(1400) PARTIAL WIDTHS

Γ(e ⁺ e ⁻)						Γ_4
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	
<20	90	VOROBYEV	88	ND	$e^+~e^-~\rightarrow~\pi^0~\pi^0$	

fo(1400) BRANCHING RATIOS

$\Gamma(\pi\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
$0.936^{+0.019}_{-0.015}$	GORLICH	80	ASPK	17,18 $\pi^- \rho$ polarized
• • We do not use the following	ng data for average	s, fit	s, limits,	etc. • • •
~ 0.93	TORNQVIST	82	RVUE	
0.93				$4 \pi^- p \rightarrow K \overline{K} N$
0.73	HYAMS	75	ASPK	$17.2 \ \pi^- \ p \rightarrow \ n \pi^+ \ \pi^-$
$\Gamma(K\overline{K})/\Gamma(\pi\pi)$				Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT
0.08 ± 0.01	COSTA	80	OMEG	$10~\pi^-~\rho~\rightarrow~K^+~K^-~n$

f₀(1400) REFERENCES

BOLONKIN VOROBYEV	88 88	NP B309 426 YAF 48 436	+Bloshenko, Gorin+ +Golubev, Dolinsky, Druzhin	(ITEP, SERP)
AKESSON	86	NP B264 154	+Albrow, Almehed+	(Axial Field Spec. Collab.)
ALDE	86D	NP B269 485	+Binon, Bricman+	(BELG, LAPP, SERP, CERN)
ETKIN	82B	PR D25 1786	+Foley, Lai+	(BNL, CUNY, TUFT, VAND)
ETKIN	82C	PR D25 2446	+Foley, Lai+	(BNL, CUNY, TUFT, VAND)
TORNOVIST	82	PRL 49 624		(HELS)
COSTA	80	NP B175 402	Costa De Beauregard+	(BARI, BONN, CERN+)
GORLICH	80	NP B174 16	+Niczyporuk+	(CRAC, MPIM, CERN, ZEEM)
LOVERRE	80	ZPHY C6 187	+Armenteros, Dionisi+	(CERN, CDEF, MADR, STOH) UP
WICKLUND	80	PRL 45 1469	+Ayres, Cohen, Diebold, Pay	wlicki (ANL)
POLYCHRO	79	PR D19 1317	Polychronakos, Cason, Bish	iop+ (NDAM, ANL) IJP
FROGGATT	77	NP B129 89	+Petersen	(GLAS, NORD)
HYAMS	75	NP B100 205	+ Jones, Weilhammer, Blum,	DietI+ (CERN, MPIM)

OTHER RELATED PAPERS -

WEINSTEIN ALDE	89 88	UTPT 89 03 PL B201 160	+lsgur +Bellazini, Binon+	(SERP. BELG	(TNTO) , LANL, LAPP, PISA)
AU	87	PR D35 1633	+Morgan, Pennington	*	(DURH, RAL)
ACHASOV	84	ZPHY C22 53	+ Devyanin, Shestakov		(NOVO)
CASON	83	PR D28 1586	+Cannata, Baumbaugh,	Bishop+	(NDAM, ANL)
WEINSTEIN	83B	PR D27 588	+lsgur		(TNTO)
GOTTESMAN	80	PR D22 1503	+Jacobs+		, BRAN, BNL, CINC)
BECKER	79	NP B151 46	+Blanar, Blum+		CERN, ZEEM, CRAC)
BECKER	79B	NP B150 301	+Blanar, Blum+	(MPIM,	CERN, ZEEM, CRAC)
CORDEN	79	NP B157 250	+Dowell, Garvey-	(BIRM,	RHEL, TELA, LOWC) JP
MARTIN	78C	ANP 114 1	+Pennington		(CERN)
CASON	76	PRL 36 1485	+Polychronakos, Bishop,	Biswas+	(NDAM, ANL)IJ
COMMON	76	NP B103 109			(KENT) JP
WETZEL	76	NP B115 208	+Freudenreich, Beusch+		(ETH. CERN, LOIC)
FROGGATT	75	NP B91 454	+Petersen		(GLAS, NORD)
ESTABROOKS	74	NP B79 301	+ Martin		(DURH)
GRAYER	74	NP B75 189	+Hyams, Blum, Dieti+		(CERN, MPIM)
HYAMS	73	NP B64 134	+ Jones, Weilhammer, B	um, Dietl+	(CERN, MPIM)

$\hat{ ho}(1405)$

$$I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

OMITTED FROM SUMMARY TABLE

Seen by ALDE 88B in $\pi^- \rho \to ~\eta \, \pi^0 \, n$ amplitude analysis. Needs confirmation.

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

$\hat{\rho}(1405)$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1406 ± 20	1 ALDE	88B	GAM4	0	$100 \pi^- p \rightarrow \pi^0 n$
					$\eta \pi = n$

 $^1\,\mathrm{Seen}$ in the $P_0\text{-wave intensity of the }\eta\,\pi^0$ system.

$\hat{\rho}(1405)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
180 ± 20	² ALDE	88B	GAM4	0	$100 \pi^- \rho \rightarrow$
					$\eta \pi^0 n$
2 Coon in the D. ways	a intensity of the O sustan				

 2 Seen in the P_0 -wave intensity of the $\eta \pi^0$ system.

$\hat{\rho}(1405)$ DECAY MODES

	Mode	Fraction (Γ_j/Γ)
Γ_1	$\eta \pi^0$	seen
Γ_2	$\rho\pi$	not seen
Γ3	$\eta'\pi$	

p(1405) BRANCHING RATIOS

$\Gamma(\eta \pi^0)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID	TEC	V CHG	COMMENT
seen	³ ALDE	88B GAN	/ 4 0	$100 \pi^- p \rightarrow n\pi^0 p$
• • We do not use the following	ig data for average	es, fits, lim	its, etc.	1
not seen	⁴ APEL	81 NIC	E 0	$40 \frac{\pi^- \rho}{\eta \pi^0 n} \rightarrow$

 $^3\,\mathrm{Seen}$ in the $P_0\text{-}\mathrm{wave}$ intensity of the $\eta\,\pi^0$ system.

 $^{^4}$ A general fit allowing S, D, and P waves (including m=0) is not done because of limited statistics

$\Gamma(\rho\pi)/\Gamma_{\text{total}}$			Γ_2/Γ
VALUE	DOCUMENT ID	_	COMMENT
not seen	⁵ ZIELINSKI	86	200 π^+ Cu,Pb \rightarrow π^+ π^+ π^- X
5 A general fit allowing S. D.	and P waves (including	σm	=0) is not done because of limited

 5 A general fit allowing *S*, *D*, and *P* waves (including m=0) is not done because of limited statistics.

$\Gamma(\eta'\pi)/\Gamma(\eta\pi^0)$				Г	₃ /Γ ₁
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
< 0.80	95	POULET 90	GAM4	100 $\pi^- p \rightarrow 4\gamma n$	

$\hat{\rho}(1405)$ REFERENCES

ALDE ZIELINSKI APEL		PL B205 397 Berkeley HEP 1 736 NP B193 269	+Binon, Boutemeur+ (SI +Berg+ +Augenstein, Bertolucci, Donskov	ERP. BELG, LANL, LAPP) IGJPO (ROCH, MINN, FNAL)				
OTHER RELATED PAPERS								
IDDIR	88	PL B205 564	+Le Yaouanc, Ono+	(LPTP, TOKY)				

IDDIR TUAN ZIELINSKI	88 88 87	PL B205 564 PL B213 537 ZPHY C34 255	+Le Yaouanc, Ono+ +Ferbel, Dalitz	(LPTP, TOKY) (HAWA, ROCH, OXF) (ROCH)
ZIELINSKI	86	Berkeley HEP 1 736	- Berg +	(ROCH, MINN, FNAL)

 $f_1(1420)$ was E(1420)

$$I^{G}(J^{PC}) = 0^{+}(1^{++})$$

See also minireview under non-qq candidates.

NOTE ON $f_1(1420)$

In hadron-induced reactions, the $f_1(1420)$ is observed in centrally produced $K\overline{K}\pi$ systems (DIONISI 80, ARMSTRONG 84, 89) obtained with π and p beams. A Dalitz-plot analysis gives its quantum numbers and the dominant decay mode. For instance, ARMSTRONG 89 finds that the signal is totally consistent with being an 1^{++} state, with a dominant quasi-two-body S-wave decay mode into $K^*(892)\overline{K}$; furthermore, no 0^{-+} or 1^{+-} waves are required to describe the data. A G-parity = +1 is suggested by the positive interference between the two $K^*(892)$ (ARMSTRONG 84). No significant signals in the $\eta\pi\pi$ or 4π decay modes are found by ARMSTRONG 89G in centrally produced 4π systems.

In $\gamma\gamma$ fusion from e^-e^- annihilations, a signal at ≈ 1420 MeV is seen only in single tag events (AIHARA 86C, GIDAL 87B, BEHREND 89, HILL 89) where one of the two photons

is off the mass shell; on the contrary, it is totally absent in the untagged events where both photons are real and hence they cannot produce a spin-1 meson because of the Yang-Landau theorem. This clearly implies J=1 and C=+1. As for the parity, AIHARA 88B, 88C (same analysis as AIHARA 86C, with 25% more statistics) and BEHREND 89 all find from the angular distributions that positive parity is preferred, but negative cannot be excluded.

Although some uncertainties still remain, these two experimental observations (the state seen in hadronic interactions and the one observed in spacelike virtual photon fusion from $e^+e^$ annihilations) are often identified since there are more similarities than differences. In particular, all experiments agree that this state shows up only in $K^*(892)\overline{K}$.

BITYUKOV 88 has studied the radiative decay $1^{++} \rightarrow \phi \gamma$. Since the ϕ is (almost) a pure $s\overline{s}$ state, the $\phi\gamma$ decay seems to be a good analyser to extract the $s\bar{s}$ component in the wave function of the decaying meson. From the observation of an $f_1(1285)$ and the absence of an $f_1(1420)$ signal in the $\phi\gamma$ mass spectrum, BITYUKOV 88 concludes that the $f_1(1420)$ cannot be the $s\bar{s}$ isoscalar member of the axial-vector $q\bar{q}$ nonet of the $f_1(1285)$. On the other hand AIHARA 88C argues that, with the assumption that they both belong to the same nonet and using several hypotheses, the obtained octet-singlet mixing angle turns out to be compatible with the $f_1(1420)$ being mostly $s\overline{s}$, and $f_1(1285)$ mostly $(u\overline{u} + d\overline{d})/\sqrt{2}$, although both requiring large admixtures of other $q\bar{q}$ components.

Arguments in favor of the possibility that the $f_1(1420)$ is a hybrid $q\overline{q}g$ meson or a four-quark state are put forward by ISHIDA 89 and CALDWELL 90 respectively.

f1 (1420) MASS

PRODUCED IN PP ANNIHILATION

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	
1414.9± 3.5 OUR	AVERAGE	Error includes scale	e fact	or of 1.	2.
1417.5± 4		NACASCH	78	HBC	0.7,0.76 pp
1398 ±10	170	DEFOIX	72	HBC	$0.7 \overline{p} p \rightarrow 7\pi$
1406 ± 7	280	DUBOC	72	HBC	$1.2 \bar{p} p \rightarrow 2K4\pi$
1420 ± 7	310	LORSTAD	69	HBC	0.7 pp
1423.0 ± 10.0		FRENCH	67	HBC	3–4 p p

PRODUCED IN OTHER REACTIONS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1425.3 ± 1.3 OUR /	AVERAGE				
1429 ± 3	389 ± 27	ARMSTRONG			$300 pp \rightarrow K\overline{K}\pi pp$
1425 ±10	17	BEHREND	89	CELL	$\gamma \gamma \rightarrow K_5^0 K^{\pm} \pi^{\mp}$
$1442 \pm 5.0^{+10.0}_{-17.0}$	111^{+31}_{-26}	BECKER	87	MRK3	$e^+ \ e^-$, $\omega \ K \ \overline{K} \ \pi$
1423 ± 4		GIDAL	87B	MRK2	$e^+ e^- \rightarrow e^+ e^- K \overline{K} \pi$
1417.0 ± 13.0	13	AIHARA	860	TPC	$e^+ e^- \rightarrow e^+ e^- \kappa \overline{\kappa} \pi$
1425.0 ± 2.0	1520	ARMSTRONG	84	OMEG	85 π^+ ρ , $\rho \rho \rightarrow (\pi^+$,
					$p)(K\overline{K}\pi)$
1422.0 ± 3.0		CHAUVAT	84	SPEC	ISR 31.5 pp
1440.0 ± 10.0		¹ BROMBERG	80	SPEC	$100 \pi^- p \rightarrow K\overline{K}\pi X$
1426.0 ± 6.0	221	DIONISI	80	HBC	$4 \pi^- p \rightarrow K \overline{K} \pi n$
1420 ± 20		DAHL	67	HBC	1.6-4.2 π ⁻ p

 1 Mass error increased to account for a_{0} (980) mass cut uncertainties.

$f_1(1420)$ WIDTH

VALUE (MeV) 55.3± 3.0 OUR A	EVT5	DOCUMENT ID	TECN	COMMENT
58 ± 8	389 ± 27	ARMSTRONG 89	OMEG	$300~\rho\rho \to ~K\overline{K}\pi\rho\rho$

42 ±22	17	BEHREND	89	CELL	$\gamma \gamma \rightarrow \kappa_S^0 \kappa^{\pm} \pi^{\mp}$
40 $^{+17}_{-13}$ ± 5	111^{+31}_{-26}	BECKER	87	MRK3	$e^+ e^-$, $\omega K \overline{K} \pi$
$35.0^{+47.0}_{-20.0}$	13	AIHARA	86c	TPC	$e^+ e^- o e^+ e^- \kappa \overline{\kappa} \pi$
62.0± 5.0	1520	ARMSTRONG	84	OMEG	85 $\pi^+ p$, $\rho p \rightarrow (\pi^+$,
					$p)$ $(K\overline{K}\pi)$
47.0 ± 10.0		CHAUVAT	84	SPEC	ISR 31.5 pp
62.0 ± 14.0		BROMBERG	80	SPEC	$100 \pi^- \rho \rightarrow K\overline{K}\pi X$
40.0 ± 15.0	221	DIONISI	80	HBC	$4 \pi^- \rho \rightarrow K \overline{K} \pi n$
53 ± 20.0		NACASCH	78	HBC	0.7,0.76 pp
50 ±10	170	DEFOIX	72	HBC	$0.7 \overline{p}p \rightarrow 7\pi$
50 ±12	280	DUBOC	72	HBC	$1.2 \overline{p}p \rightarrow 2K4\pi$
60 ±20	310	LORSTAD	69	HBC	0.7 pp
60.0 ± 20.0		DAHL	67	HBC	1.6-4.2 π ⁻ p
45 ± 20		FRENCH	67	HBC	3-4 \(\overline{p} p \)

f1(1420) DECAY MODES

Mode	Fraction (Γ_i/Γ)	
$K\overline{K}\pi$	dominant	
$\eta \pi \pi$	possibly seen	
$a_0(980)\pi$	possibly seen	
$\pi\pi\rho$		
$K\overline{K}^*$ (892) + c.c.		
4π		
$\gamma \gamma$		
	$ \frac{K \overline{K} \pi}{\eta \pi \pi} $ $ \frac{\partial (980) \pi}{\partial \pi} $ $ \frac{\pi \pi \rho}{K \overline{K}^*}(892) + c.c. $ $ 4\pi $	$\begin{array}{cccc} K\overline{K}\pi & & \text{dominant} \\ \eta\pi\pi & & \text{possibly seen} \\ a_0(980)\pi & & \text{possibly seen} \\ \pi\pi\rho & & \\ K\overline{K}^*(892) + \text{c.c.} \\ 4\pi & & \end{array}$

$f_1(1420) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}\pi)\times\Gamma(\gamma\gamma)$	/Γ _{total}				$\Gamma_1\Gamma_7/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT
1.5 ± 0.4 OUR AVER	RAGE				
$2.3^{+1.0}_{-0.9}\pm0.8$		HILL	89	JADE	$\stackrel{e^+e^-}{_{e^+e^-}} \stackrel{\rightarrow}{_{\kappa^\pm}} \kappa^0_{S} \pi^{\mp}$
$1.3 \pm 0.5 \pm 0.3$		AIHARA	88B	TPC	$e^+e^- \rightarrow e^+e^- \kappa^{\pm} \kappa^0_{S} \pi^{\mp}$ $e^+e^- \rightarrow e^+e^- \kappa \overline{\kappa} \pi$
$1.6 \pm 0.7 \pm 0.3$	2,	³ GIDAL	87B	MRK2	$e^+ e^- \rightarrow e^+ e^- K \overline{K} \pi$
• • We do not use:	the following	data for averages	s, fits	, limits,	etc. • • •
<8.0	95	JENNI	83	MRK2	$e^+ e^- o e^+ e^- K \overline{K} \pi$
2 Assume a ρ -pole for 3 Published value div	orm factor. vided by 2.				

f1 (1420) BRANCHING RATIOS

$\Gamma(K\overline{K}^*(892) + c.c.)$	$/\Gamma(K\overline{K}\pi$)				Γ_5/Γ_1
VALUE		DOCUMENT ID		TECN	COMMENT	
• • • We do not use th	e following	data for average	s, fit	s, limits,	etc. • • •	
$\begin{array}{c} 0.76 \pm 0.06 \\ 0.86 \pm 0.12 \end{array}$		BROMBERG DIONISI			$100 \pi^{-} \rho \rightarrow K$ $4 \pi^{-} \rho \rightarrow K\overline{K}$	
$\Gamma(\pi\pi\rho)/\Gamma(K\overline{K}\pi)$	C1.0/	DOCUMENT IN				Γ_4/Γ_1
VALUE		DOCUMENT ID				
• • We do not use th	-	-				
<0.3	95				12-15 π ⁻ p	
<2.0		DAHL	67	HRC	$1.6-4.2 \pi^{-} p$	
$\Gamma(\eta\pi\pi)/\Gamma(K\overline{K}\pi)$						Γ_2/Γ_1
VALUE		DOCUMENT ID				
• • • We do not use th	e following	data for average				
< 0.6	90	GIDAL	87	MRK2	$e^+e^{e^+e^-\eta\pi^+\pi}$	
< 0.5	95	CORDEN	78	OMEG	12-15 π - ρ	
1.5 ± 0.8		DEFOIX	72	HBC	0.7 pp	
<1.5	95	FOSTER	68B	HBC	0.0 p	
$\Gamma(a_0(980)\pi)/\Gamma(\eta\pi\pi$	·)					Γ_3/Γ_2
VALUE		DOCUMENT ID		TECN	COMMENT	
• • • We do not use th	e following	data for average	s, fit:	s, limits,	etc. • • •	
not seen in either mode		ANDO	86	SPEC	8 π ⁻ ρ	
not seen in either mode		CORDEN			12-15 π ⁻ p	
0.4 ± 0.2		DEFOIX	72	HBC	$0.7 \ \overline{p} p \rightarrow 7\pi$	
$\Gamma(4\pi)/\Gamma(K\overline{K}^*(892)$	+ c.c.)					Γ_6/Γ_5
VALUE		DOCUMENT ID				
• • • We do not use th	e following	data for average	s, fits	s, limits,	etc. • • •	
< 0.90	95	DIONISI	80	HBC	4 π ⁻ p	

 $f_1(1420), f_2(1430), \eta(1440)$

• • • We do not	use the followin	<u>DOCUMENT II</u>			
0.65 ± 0.27	use the lonowin		80 HBC		
⁴ Calculated usi	ng $\Gamma(K\overline{K})/\Gamma(\eta)$	π) = 0.24 ± 0.0			
$\Gamma(a_0(980)\pi)/\Gamma$	(KK*(892) -	+ c c)			Γ2/Γε
	(K K*(892) -	+ c.c.) DOCUMENT II	D TECN	COMMENT	Γ3/Γ5
VALUE	CL%	DOCUMENT II			Γ3/Γ5
VALUE	CL%	<u>DOCUMENT II</u> ng data for avera		, etc. • • •	Γ3/Γε
$\Gamma(a_0(980)\pi)/\Gamma$ VALUE • • • We do not < 0.04 $\Gamma(4\pi)/\Gamma(K\overline{K}\pi)$	CL% use the followin 68	<u>DOCUMENT II</u> ng data for avera	ges, fits, limits	, etc. • • •	
<i>VALUE</i> ■ ■ • We do not <0.04	CL% use the followin 68	<u>DOCUMENT II</u> ng data for avera	ges, fits, limits	, etc. • • •	Γ ₃ /Γ ₅

f₁(1420) REFERENCES

DEFOIX 72 NP B44 125 +Nascimento, Bizzarri+ (CDEF, CERN) DUBOC 72 NP B46 429 +Goldberg, Makowski, Donald+ (LPNP, LIVP) LORSTAD 69 NP B14 63 +D'Andlau, Astier+ (CDEF, CERN) JP FOSTER 688 NP B8 174 +Gavillet, Labrosse, Montanet+ (CERN, CDEF) DAHL 67 PR 163 1377 +Hardy, Hess, Kirz, Miller (LRL) LJP Also 65 PRL 14 1074 Miller, Chung, Dahl, Hess, Hardy, Kirz+ (LRL) US
FRENCH 67 NC 52A 438 +Kinson, McDonald, Riddiford + (CERN, BIRM)

— OTHER RELATED PAPERS —

		OIII	EN NEEALED IN ENS	
ISHIDA AIHARA BITYUKOV	88	Hadron 89 PTP 82 119 PR D38 1 PL B203 327 Hadron 87 Conf.	+Oda, Sawazaki, Yamada +Aiston-Garnjost+ +Borisov, Dorofeev+ Protopopescu, Chung	(UCSB) (TNIH) (TPC-2γ Collab.) JPG (SERP) (BNL)

$f_2(1430)$

$$I^G(J^{PC}) = 0^+(2^{++})$$

OMITTED FROM SUMMARY TABLE

This entry lists nearby peaks observed in the D wave of the $K\,\overline{K}$ and $\pi^+\,\pi^-$ systems.

f₂(1430) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • We do not use the	e following data for average	es, fit	s, limits,	etc. • • •
1421 ± 5	AUGUSTIN			$J/\psi \rightarrow \gamma \pi^+ \pi^-$
1480.0 ± 50.0	AKESSON	86	SPEC	$\rho\rho \rightarrow \rho\rho\pi^{+}\pi^{-}$
$1436.0^{+26.0}_{-16.0}$	DAUM			$17-18 \pi^- p \rightarrow \kappa^+ \kappa^- p$
1412.0± 3.0	DAUM	84	CNTR	$63 \frac{K^{+} K^{-} n}{\pi^{-} p \to K_{5}^{0} K_{5}^{0} n,}$ $K^{+} K^{-} n$
1439.0 ⁺ 5.0 6.0	¹ BEUSCH	67	OSPK	$5.7.12 \pi^- \rho \rightarrow K_S^0 K_S^0 n$

¹ Not seen by WETZEL 76.

f₂(1430) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • We do not use the follow	wing data for averag	es, fit	s, limits,	etc. • • •
30 ± 9	AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
150.0 ± 40.0	AKESSON	86	SPEC	$\rho \rho \rightarrow \rho \rho \pi^+ \pi^-$
$81.0 + 56.0 \\ -29.0$	DAUM			17-18 $\pi^{-} p \rightarrow K^{+} K^{-} p$
14.0± 6.0	DAUM	84	CNTR	63 $\pi^{-} p \rightarrow K_{5}^{0} K_{5}^{0} n$, $K^{+} K^{-} n$
$43.0 \begin{array}{l} +17.0 \\ -18.0 \end{array}$	² BEUSCH	67	OSPK	$5.7,12 \pi^- \rho \rightarrow \kappa_S^0 \kappa_S^0 n$
² Not seen by WETZEL 76.				0 0

$f_2(1430)$ DECAY MODES

		· · · · · · · · · · · · · · · · · · ·	
-			
ſ2	$\pi\pi$		
Γ_1	κ Κ		

f₂(1430) REFERENCES

DAUM 84 ZPHY C23 339 +Hertzberger+ (AMST, CERN, CRAC	Hertzberger+ (AMST, CERN, CRAC, MPIM, OXF+) JP Freudenreich, Beusch+ (ETH, CERN, LOIC)	Coll OX LC	Colla OXF LO	ilab. XF+ .OIC	illab.) XF+) .OIC)	oliab XF- LOI	Colla OXF LO	Coll OX L(OX L(Col O> L	Co: (O) L	Cc O	0	,	1,		v	v	v	v				v	N	ı,	1,	1	1	1	٠ ۲	· ·	N	c. N	c. N	c N	c N	c. N	c. N	C.	C.	c. N	c N	IN F	ec IN	ec Pli El	PI E	P 1F		١,	d ,	1	e (į	A	F R/	F	3	i	<	b	۵	,	(ı						•									-	+	'n.	(ct	ISC	15	u	e	3	E			٠,	h	er cl	ei ic	A ge	g	r	V, 0€	t	Z	t	r	er e	e	le	4	A H	A	F	- A	- A	- A	- A	- A	F	F	F	A H	A H	A H	4	1	le	le	le	le	le re	ill le	ill le	ill le	le re	le re	le re	le re	e	ib ei	e	er e	b e						
--	---	------------------	--------------------	----------------------	--------------------------	---------------------	--------------------	------------------	----------	----------------	-----------------	---------	---	---	----	--	---	---	---	---	--	--	--	---	---	----	----	---	---	---	--------	-----	---	---------	---------	--------	--------	---------	---------	----	----	---------	--------	---------	----------	-----------------	---------	---------	--	----	--------	---	--------	---	---	---------	---	---	---	---	---	---	---	---	---	--	--	--	--	--	---	--	--	--	--	--	--	--	--	---	---	-----	---------	-----	----	---	---	---	---	--	--	----	---	----------	----------	---------	---	---	----------	---	---	---	---	---------	---	----	---	--------	---	---	-----	-----	-----	-----	-----	---	---	---	--------	--------	--------	---	---	----	----	----	----	----------	----------	----------	----------	----------	----------	----------	-----------	-----------	-----------	----------	----------	----------	----------	---	----------	---	---------	--------

Mode

$$I^G(J^{PC}) = 0^+(0^{-+})$$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

NOTE ON $\eta(1440)$

The first observation of a meson with $I^GJ^{PC}=0^+0^{-+}$ in the 1400 MeV mass region was made with $p\overline{p}$ annihilations at rest (BAILLON 67) in the channel $\eta(1440)\to K\overline{K}\pi$. It was seen to decay equally into $a_0(980)\pi$ and $\overline{K}^*(892)K$.

The $\eta(1440)$ is now observed in other hadronic reactions: in a partial-wave analysis of the $\eta\pi^+\pi^-$ system, confirming the decay $\eta(1440) \to a_0(980)\pi$ (TAKAMATSU 90), and in a partial-wave analysis of the $K\overline{K}\pi$ system (CHUNG 85, BIRMAN 88). It is also observed in 6 GeV $p\overline{p}$ annihilation (REEVES 86) and in nonperipherally selected $\pi^-p \to K_S^0K_S^0\pi^0n$ (RATH 89). A resonance in this mass region is observed in $\overline{p}p$ annihilation at rest (DUCH 89), with no definite conclusions on its quantum numbers (although the data are incompatible with a dominant $\overline{K}^*(892)K$ decay mode).

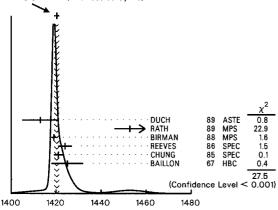
It is, however, not observed in the $s\bar{s}$ -enriched peripheral reaction $K^-p\to K\overline{K}\pi\Lambda$ at 11 GeV/c (ASTON 87). Similarly ARMSTRONG 84, 89, studying $K\overline{K}\pi$ central production in $\pi^+p\to\pi^+(K\overline{K}\pi)p$ and $pp\to p(K\overline{K}\pi)p$ at 85 and 300 GeV/c, do not see the $\eta(1440)$, but the $f_1(1420)$ which is found to be mainly coupled to $\overline{K}^*(892)K$. This is in line with earlier results (DIONISI 80, DEFOIX 72, DUBOC 72, LORSTAD 69, etc.). Note that these earlier data were also dominated by central processes.

The $\eta(1440)$ is also present as a broad enhancement in the $J/\psi(1S)$ radiative decay. In the $K\overline{K}\pi$ channel, however, its mass is higher than observed in hadronic interactions, and its width is larger. It has been shown (TOKI 87) that a two-Breit-Wigner fit (with M=1420 MeV and M=1500 MeV) would give a better description of the data. Moreover, the $\eta\pi^+\pi^-$ channel peaks at 1390 MeV as well as the $\rho^0\gamma$ channel (TOKI 87). A similar conclusion is reached in a large statistics BNL experiment (ZIEMINSKA 88) from a partial-wave analysis of the $K\overline{K}\pi$ system in hadroproduction, where the $0^{-+}a_0(980)$ and the $0^{-+}(K^*(892))$ waves are found to have different mass dependence in the $\eta(1440)$ region.

Also RATH 89 favors the interpretation of two narrow η resonances in the 1410–1480 MeV region with widths of approximately 20 and 50 MeV.

In the present situation, we list under $\eta(1440)$ all the results obtained on the 0^{-+} system in the 1380–1480 MeV mass region.

$\eta(1440)$ MASS


VALUE (MeV)

1440 ± 20 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

PRODUCED BY HADRON BEAM

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1420.3±1.1 OUR	AVERAGE	Error includes scale fa	ctor	of 1.3.	See the ideogram below.
1413 ±8	500	DUCH		ASTE	
		1			$\begin{array}{c} \pi^{+}\pi^{-}\kappa^{\pm}\pi^{\mp}\kappa^{0} \\ 21.4 \pi^{-}\rho \rightarrow \end{array}$
1452.8 ± 6.8	170 ± 15	¹ RATH	89	MPS	$21.4 \pi^- p \rightarrow$
					$\kappa_{s}^{0}\kappa_{s}^{0}\pi^{0}n$
1419 ±1	8800 ± 200	² BIRMAN	88	MPS	$8 \pi^- p \rightarrow K^+ \overline{K}^0 \pi^- n$
1424.0 ± 3.0	620	REEVES			6.6 pp → KKπ X
1421.0 ± 2.0		CHUNG	85	SPEC	$8 \pi^- p \rightarrow K \overline{K} \pi n$
1425 ±7		BAILLON	67	HBC	$0.0 \overline{p}p \rightarrow K\overline{K}\pi\pi\pi$
• • • We do not	use the follow	wing data for averages	, fits	, limits,	etc. • • •
1424 ±4		TAKAMATSU	90	SPEC	$8 \pi^- p \rightarrow a_0(980) \pi n$
1443 ±5		TAKAMATSU	90	SPEC	$8 \pi^- \rho \rightarrow K^*(892) \overline{K} n$
1388 ±4		³ TAKAMATSU	90	SPEC	$9 \pi^- p \rightarrow \eta \pi^+ \pi^- n$
1420 ±5		ANDO	86	SPEC	$8\pi^-p \rightarrow n\eta\pi^+\pi^-$

WEIGHTED AVERAGE 1420.3 ± 1.1 (Error scaled by 1.3)

 $\eta(1440)$ mass, produced by hadron beam (MeV)

PRODUCED IN $J/\psi(1S)$ DECAY

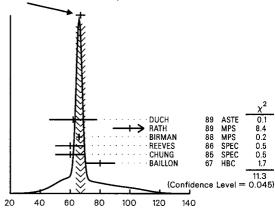
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMEN	IT
1451.9± 2.5 OUR A	VERAGE I	Error includes scale	factor of 1.	1.	
1454 ± 3		WISNIEWSKI			
1444.0 ± 7.0		AUGUSTIN	85 DM2	$J/\psi \rightarrow$	$\kappa^+ \kappa^- \pi^0 \gamma$
1454.0 ± 5.0		AUGUSTIN	85 DM2	$J/\psi \rightarrow$	$\kappa_S^0 \kappa^{\pm} \pi^{\mp} \gamma$
$1440.0 + 20.0 \\ -15.0$	174	EDWARDS	82E CBAL	J/ψ $ o$	$\mathit{K}^+\mathit{K}^-\pi^0\gamma$
$1440.0^{+10.0}_{-15.0}$		SCHARRE	80 MRK2	$J/\psi \rightarrow$	$\kappa_S^0 \kappa^{\pm} \pi^{\mp} \gamma$
• • • We do not use	the following	ng data for averages	s, fits, limits	, etc. • •	•
$1420.0 \pm 15.0 \pm 20.0$		⁴ RICHMAN	85 MRK	$J/\psi \rightarrow$	π^+ $\pi^ 2\gamma$

- 1420.0±15.0±20.0 ⁴ RI

 Best fit with a single Breit Wigner.
- ² From partial wave analysis of $K^+ \overline{K}^0 \pi^-$ state.
- ³ This result supersedes ANDO 86.
- ⁴ This peak in the $\gamma \rho$ channel may not be related to the $\eta(1440)$.

$\eta(1440)$ WIDTH

VALUE (MeV)


60±30 OUR ESTIMATE

This is only an educated guess; the error given is larger than the error on the average of the published values.

PRODUCED BY HADRON BEAM

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG COMMENT
66.9± 3.1 C	OUR AVERAGE	Error includes so	ale fa	ctor of 1	.7. See the ideogram below.
62 ±16	500	DUCH	89	ASTE	p ρ →
99.9±11.4	170 ± 15	⁵ RATH	89	MPS	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
66 ± 2	8800 ± 200	BIRMAN	88	MPS	8 π ⁻ ρ →
60.0 ± 10.0	620	REEVES		SPEC	$6.6 \ p\overline{p} \rightarrow K \underline{K} \pi X$
60.0 ± 10.0		CHUNG	85	SPEC	$8 \pi^- \rho \rightarrow K \overline{K} \pi n$
80 ±10		BAILLON	67	HBC	0.0 ₱ <i>p</i>

WEIGHTED AVERAGE 66.9 ± 3.1 (Error scaled by 1.7)

 $\eta(1440)$ width, produced by hadron beam (MeV)

PRODUCED IN $J/\psi(15)$ DECAY

VALUE (MeV)		DOCUMENT ID		TECN	COMMEN	IT.
• • We do not use						
160 ±11		WISNIEWSKI				
95.0 ± 10.0		AUGUSTIN	85	DM2	$J/\psi \rightarrow$	$\kappa^+ \kappa^- \pi^0 \gamma$
92.0 ± 16.0		AUGUSTIN	85	DM2	$J/\psi \rightarrow$	$K_5^0 K^{\pm} \pi^{\mp} \gamma$ $\pi^{+} \pi^{-} 2 \gamma$
$133.0 \pm 55 \pm 30$		⁷ RICHMAN	85	MRK3	$J/\psi \rightarrow$	$\pi^{+}\pi^{-}2\gamma$
$55.0^{+20.0}_{-30.0}$	174	EDWARD\$	82E	CBAL	$J/\psi \to$	$K^+ K^- \pi^0 \gamma$
$50.0^{+30.0}_{-20.0}$		SCHARRE	80	MRK2	$J/\psi\rightarrow$	$\kappa^0_S \kappa^{\pm} \pi^{\mp} \gamma$

- ⁵ Best fit with a single Breit Wigner.
- ⁶ This result supersedes ANDO 86.

$\eta(1440)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K\overline{K}\pi$	seen
Γ_2	$\eta \pi \pi$	seen
Гз	$a_0(980)\pi$	seen
Γ_4	$\pi\pi\rho$	
Γ_5	$K\overline{K}^*(892) + c.c.$	
Γ_6	4π	
Γ ₇	$\gamma\gamma$	
Γ8	$\rho^0\gamma$	

$\eta(1440) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}\pi) \times \Gamma(\gamma)$	$(\gamma)/\Gamma_{\rm total}$				$\Gamma_1\Gamma_7/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT
<1.2	95	BEHREND	89	CELL	$\gamma \gamma \rightarrow K_5^0 K^{\pm} \pi^{\mp}$
• • • We do not	use the followin	g data for average	s, fit	s, limits,	etc. • • •
<1.6	95	AIHARA	860	TPC	$e^+ e^- \rightarrow \kappa_S^0 \kappa^{\pm} \pi^{\mp}$
<2.2	95	ALTHOFF	85B	TASS	$e^+e^- \rightarrow e^+e^- K \overline{K} \pi$
<8.0	95	JENNI	83	MRK2	$e^+ e^- \rightarrow e^+ e^- K \overline{K} \pi$
$\Gamma(\eta\pi\pi)\times\Gamma(\gamma)$	$\gamma)/\Gamma_{total}$				$\Gamma_2\Gamma_7/\Gamma$
VALUE (keV)		DOCUMENT ID		TECN	COMMENT
• • • We do not	use the followin	g data for average	s, fit	s, limits,	etc. • • •
< 0.3		ANTREASYA	N 87	CBAL	$e^+ e^- \rightarrow e^+ e^- \eta \pi \pi$
$\Gamma(\rho^0\gamma) \times \Gamma(\gamma\gamma)$	/)/F _{total}				$\Gamma_8\Gamma_7/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID		TECN	COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $^{^7}$ This peak in the $\gamma
ho$ channel may not be related to the $\eta(1440)$.

		$\eta(144$	40) BRANCHING RATIOS
$\Gamma(\eta\pi\pi)/\Gamma$	$(K\overline{K}\pi)$)	Γ ₂ /Γ
VALUE		<u>CL%</u>	DOCUMENT ID TECN COMMENT
	o not use		ng data for averages, fits, limits, etc. • • •
<0.5 <1.1		90 90	EDWARDS 83B CBAL $J/\psi \rightarrow \eta \pi \pi \gamma$ SCHARRE 80 MRK2 $J/\psi \rightarrow \eta \pi \pi \gamma$
	-) /F(W	・レー)	
Γ(a ₀ (980) VALUE	π)/I (Λ		T ₃ /F
~ 0.8		500	⁸ DUCH 89 ASTE $\overline{p}p$ →
• • Wed	io not use	the following	$\pi^{+}\pi^{-}\kappa^{\pm}\pi^{\mp}\kappa^{0}$ ng data for averages, fits, limits, etc. • •
~ 0.75			⁸ REEVES 86 SPEC 6.6 $p\overline{p} \rightarrow KK\pi X$
8 Assumin	g that th	e a _O (980) de	ecays only into $K\overline{K}$.
Γ(<i>K</i> K *(8¢	92) + c.	c.)/୮(<i>K</i> \overline{K}	$(\bar{\tau}_{\pi})$ Γ_5/Γ
VALUE	-,		DOCUMENT ID TECN COMMENT
0.50 ± 0.10			BAILLON 67 HBC 0.0 pp
$\Gamma(K\overline{K}^*(89))$	92) + c.	c.)/[F(a ₀ ($(980)\pi) + \Gamma(K\overline{K}^*(892) + c.c.)$
` `	,	// L \ • \	$\Gamma_5/(\Gamma_3+\Gamma_5)$
VALUE		CL%	DOCUMENT ID TECN COMMENT
<0.25	o not use	the following	ng data for averages, fits, limits, etc. • • • EDWARDS 82E CBAL $J/\psi \rightarrow K^+K^-\pi^0\gamma$
(0.23		30	DOVARDS SEE CORE 3/4 R R R R
		n((1440) REFERENCES
TAW A	00	.,	` ,
TAKAMATSU BEHREND	90 Had 89 ZPH 89 ZPH	Iron 89 Conf. 1Y C42 367 1Y 45 223	+-Ando-+ (KEK) +-Criegee+ (CELLO Collab.) +-Heel, Bailey-+ (ASTERIX Collab.) JP
DUCH RATH	89 PR	D40 693	+Cason+ (NDAM, BRAN, BNL, CUNY, DUKE)
BIRMAN ANTREASYAN	187 PR	D36 2633	+Chung, Peaslee+ (BNL, FSU, IND, SMAS) JF +Bartels, Besset+ (Crystal Ball Collab.)
WISNIEWSKI AIHARA	86D PRI	.T-68-1446 . 57 51	(Mark III Collab.) +Alston-Garnjost+ +Imai+ (KEK, KYOT, NIRS, SAGA, TOKY, TSUK+) UI
ANDO REEVES	86 PR	. 57 1296 34 1960	+Chung, Crittenden+ (FLOR, BNL, IND, SMAS) JF
ALTHOFF AUGUSTIN	85 Mor	HY C29 189 riond XX 1 479	+Braunschweig, Kirschfink+ (TASSO Collab.) 9 +Calcaterra, Cosme+ (ORSA, CLER, PADO, FRAS)
CHUNG RICHMAN	85 Mor	iond XX Conf.	+Fernow, Boehnlein+ (BNL, FLOR, IND, SMAS) JF (CIT)
ALTHOFF DWARDS	83B PRI	147B 487 51 859	+Braunschweig, Kirschfink, Luebelsmeyer+ (TASSO Collab.) +Partridge, Peck+ (CIT, HARV, PRIN, STAN, SLAC)
IENNI EDWARDS	82E PRI	D27 1031 49 259	+Burke, Teinov, Abrams, Blocker+ (SLAC, LBL) +Partridge, Peck+ (CIT, HARV, PRIN, STAN, SLAC)
Also CHARRE	80 PL	50 219 97B 329	Edwards, Partridge+ (CIT, HARV, PRIN, STAN+) +Trilling, Abrams, Alam, Blocker+ (SLAC, LBL)
BAILLON	67 NC	50A 393	+Edwards, D'Andlau, Astier+ (CERN, CDEF, IRAD)
		— отн	HER RELATED PAPERS ———
AHMAD ARMSTRONG	89 PL	B (PROC.)8 50 B221 216	+Benayoun+ (CERN, CDEF, BIRM, BARI, ATHU, LPNP)
ZIEMINSKA ARMSTRONG	88 AIP	Conf. HY C34 23	(IND) +Bloodworth+ (CERN, BIRM, BARI, ATHU, LPNP)
ASTON PROTOPOP	87 NP	B292 693 Iron 87 Conf.	+Awaji, D'Amore+ (SLAC, NAGO, CINC, TOKY) Protopopescu, Chung (BNL)
TOKI ARMSTRONG	87 Had	Iron 87 Conf. 146B 273	(TOKY) Bloodworth Burns (ATHU BARL BIRM CERN)
DIONISI DEFOIX	72 NP	B169 1 B44 125	+Gavillet+ (CERN, MADR, CDEF, STOH) +Nascimento, Bizzarri+ (CDEF, CERN) +Goldberg, Makowski, Donald+ (LPNP, LIVP)
OUBOC ORSTAD	72 NP 69 NP	B46 429 B14 63	+Goldberg, Makowski, Donald (LPNP, LIVP) +D'Andlau, Astier+ (CDEF, CERN)
		4	
o/14I	ξ ()		$I^{G}(J^{PC}) = 1^{+}(1^{})$
ρ (14)	5U)		, (3) = 1 (1)
Se.	e the mi	i-review un	nder the $ ho(1700)$.
			ho(1450) MASS
	Е		
ηho^0 MOD		PACE Inclu	DOCUMENT ID TECN COMMENT
VALUE (MeV)	IIO AVET	MUE INCIU	ides data from the 2 datablocks that follow this one. ANTONELLI 88 DM2 $e^+e^- ightarrow \eta\pi^+\pi^-$
VALUE (MeV) 1450± 8 O	UR AVE		
VALUE (MeV)	UR AVE		FUKUI 88 SPEC 8.95 $\pi^- \rho \rightarrow \eta \pi^+ \pi^-$
VALUE (MeV) 1450± 8 O 1470±20 1446±10 MIXED M	ODES		
VALUE (MeV) 1450 ± 8 O 1470 ± 20 1446 ± 10 MIXED M VALUE (MeV)	ODES		DOCUMENT ID TECN
VALUE (MeV) 1450 ± 8 0 1470 ± 20 1446 ± 10 MIXED M VALUE (MeV) The data in	ODES		<u>DOCUMENT ID</u> <u>TECN</u> In the average printed for a previous datablock.
$VALUE\ (MeV)$ 1450 ± 8 O 1470 ± 20 1446 ± 10 MIXED M VALUE (MeV) The data in	ODES	k is included	DOCUMENT ID TECN In the average printed for a previous datablock. DONNACHIE 87 RVUE
WALUE (MeV) 1450± 8 O 1470±20 1446±10 MIXED M WALUE (MeV) The data in 1465±25 ■ ■ We d	ODES	k is included	DOCUMENT ID TECN In the average printed for a previous datablock. DONNACHIE 87 RVUE g data for averages, fits, limits, etc. • • •
WALUE (MeV) 1450± 8 O 1470±20 1446±10 MIXED M VALUE (MeV) The data in 1465±25 ■ ■ We d 1425±25	ODES this bloc	k is included	DOCUMENT ID TECN In the average printed for a previous datablock. DONNACHIE 87 RVUE
ALUE (MeV) ALUE (MeV) ALUE (MeV) ALUE (MeV) The data in ALUE (MeV) The data in ALUE (MeV) ALUE (MeV) AL	IODES this bloc	k is included	DOCUMENT ID TECN In the average printed for a previous datablock. DONNACHIE 87 RVUE ag data for averages, fits, limits, etc. • • • GOVORKOV 88 RVUE
ALUE (MeV) 450 ± 8 0 470 ± 20 446 ± 10 AIXED M ALUE (MeV) The data in 465 ± 25 ■ We d 425 ± 25 The man of the method of the m	ODES this bloc	k is included	DOCUMENT ID TECN In the average printed for a previous datablock. DONNACHIE 87 RVUE ag data for averages, fits, limits, etc. • • • GOVORKOV 88 RVUE

$\pi^+\pi^-\pi^+\pi^-$ MODE	
VALUE (MeV)	DOCUMENT ID TECN COMMENT ing data for averages, fits, limits, etc. • • •
1449±4	¹ ARMSTRONG 89E OMEG 300 pp →
	$pp2(\pi^{+}\pi^{-})$
¹ Not clear whether this obser	vation has $t=1$ or 0.
ωπ MODE VALUE (MeV)	DOCUMENT ID TECN COMMENT
• • • We do not use the follow	ing data for averages, fits, limits, etc. • • •
1250	² ASTON 80C OMEG 20–70 $\gamma p \rightarrow \omega \pi^{0} p$
1290 ± 40	² BARBER 80¢ SPEC 3–5 $\gamma \rho \rightarrow \omega \pi^0 \rho$
2 Not separated from b_1 (1235)	i), not pure $J^P = 1^-$ effect.
φπ MODE VALUE (MeV)	DOCUMENT ID TECN CHG COMMENT
	ing data for averages, fits, limits, etc. • •
1480±40	3 BITYUKOV 87 SPEC 0 32.5 $\pi^ \rho \rightarrow$
	$_{\phi\pi}$ 0 $_{n}$
3 See the minireview for $ ho(170$	00) and ACHASOV 88 for a non-exotic interpretation.
	ρ(1450) WIDTH
ηho^{0} MODE	
VALUE (MeV)	DOCUMENT ID TECN COMMENT
	ides data from the 2 datablocks that follow this one. ANTONELLI 88 DM2 $e^+e^- \rightarrow n\pi^+\pi^-$
230 ± 30 • • • We do not use the follow	ANTONELLI 88 DM2 $e^+e^- \rightarrow \eta \pi^+ \pi^-$ ing data for averages, fits, limits, etc. • •
60 ± 15	FUKUI 88 SPEC 8.95 $\pi^- p \rightarrow \eta \pi^+ \pi^-$
MIXED MODES	, ,
VALUE (MeV)	DOCUMENT ID TECN
The data in this block is include	d in the average printed for a previous datablock.
220 ± 25	DONNACHIE 87 RVUE
	ing data for averages, fits, limits, etc. • • •
240 ± 25	GOVORKOV 88 RVUE
$\pi^+\pi^-$ MODE	
VALUE (MeV)	DOCUMENT ID TECN COMMENT Id in the average printed for a previous datablock.
The data in this block is include	
269±31	BISELLO 89 DM2 $e^+e^- \rightarrow \pi^+\pi^-$
π ⁺ π ⁻ π ⁺ π ⁻ MODE VALUE (MeV)	DOCUMENT ID TECN COMMENT
	ing data for averages, fits, limits, etc. • • •
78±18	4 ARMSTRONG 89E OMEG 300 pp →
⁴ Not clear whether this obser	$p \rho 2(\pi^+ \pi^-)$
	Validit (183) = 1 01 01
ωπ MODE VALUE (MeV)	DOCUMENT ID TECN COMMENT
• • We do not use the follow	ing data for averages, fits, limits, etc. • • •
300	⁵ ASTON 80c OMEG 20–70 $\gamma \rho \rightarrow \omega \pi^0 \rho$
320 ± 100	⁵ BARBER 80¢ SPEC 3–5 $\gamma p \rightarrow \omega \pi^0 p$
5 Not separated from b_{1} (1235)	s), not pure $J^P = 1^-$ effect.
$\phi\pi$ MODE	
VALUE (MeV)	DOCUMENT ID TECN CHG COMMENT ing data for averages, fits, limits, etc. • •
130±60	6 BITYUKOV 87 SPEC 0 32.5 π^{-} $p \rightarrow$
6 See the minireview for $ ho(170$	$\phi\pi^0n$
	(1450) DECAY MODES
·	(1450) DECAY MODES
Mode	Fraction (Γ_j/Γ)
$\Gamma_1 \pi \pi$	seen
Γ ₂ 4π Γ- a+a-	seen
Γ ₃ e ⁺ e ⁻	seen <4 %
$\Gamma_4 = \eta \rho$ $\Gamma_5 = \phi \pi$	· + /0
Γ ₆ ωπ	
•	

ı

	ρ (1450) Γ (i) Γ (e^+e^-),	/Γ(total)		
$\Gamma(\pi\pi) \times \Gamma(e^+e^-)$	F _{total}			$\Gamma_1\Gamma_3/\Gamma$
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use th	e following data for averages,	fits, limits,	etc. • • •	
0.12	7 DIEKMAN	88 RVUE	$e^+ e^- \rightarrow \tau$	τ+ π-

 $^7\,\mbox{Using total width} = 235~\mbox{MeV}.$

 ρ (1450), η (1490), f_1 (1510), f_0 (1525)

$\Gamma(\eta \rho) \times \Gamma(e^+e^-)/\Gamma_{\text{tota}}$		Γ ₄ Γ ₃ /Γ
VALUE (eV)	DOCUMENT ID	TECN COMMENT
91±19	ANTONELLI 88	DM2 $e^+e^- \rightarrow \eta \pi^+\pi^-$
$\Gamma(\phi\pi) \times \Gamma(e^+e^-)/\Gamma_{\text{tota}}$	ıl	$\Gamma_5\Gamma_3/\Gamma$
VALUE (eV) CL%	DOCUMENT ID	TECN COMMENT
< 70 90	AULCHENKO 87	ND $e^+e^- \rightarrow \kappa_S^0 \kappa_L^0 \pi^0$

ρ(1450) BRANCHING RATIOS

	F (-,					
$\frac{\Gamma(\eta \rho)}{\Gamma_{\text{total}}}$		DONNACHIE	970	TECN RVUE		Γ ₄ /Ι	Γ
₹0.04		DOMNACIIL	016	NVOL			
$\Gamma(\phi\pi)/\Gamma(\omega\pi)$						Γ_5/Γ_0	6
VALUE	CL%	DOCUMENT ID		TECN	CHG	COMMENT	_
>0.5	95	BITYUKOV	87	SPEC	0	$32.5 \pi^- \rho \rightarrow \phi \pi^0 n$	
$\Gamma(\omega\pi)/\Gamma(4\pi)$						Γ_6/Γ_1	2
VALUE		DOCUMENT ID		TECN			
< 0.14		CLEGG	88	RVUE			

ρ (1450) REFERENCES

ARMSTRONG	89E	PL B228 536	+Benayoun (ATHU, BARI,	BIRM,	CERN, CDEF, LPNP)
BISELLO	89	PL B220 321	+Busetto+			(DM2 Collab.)
ACHASOV	88	PL B207 199	+Kozhevnikov			(NOVO)
ANTONELLI	88	PL B212 133	+Baldini+			(DM2 Collab.)
CLEGG	88	ZPHY C40 313	+ Donnachie			(MCHS, LANC)
DIEKMAN	88	PRPL 159 101				(BONN)
FUKUI	88	PL B202 441	+ Horikawa +	(SUGI.	NAGO,	KEK, KYOT, MIYA)
GOVORKOV	88	SJNP 48 150				(JINR)
		Translated from				
AULCHENKO	87	PL B186 432	+Dolinsky, Druz	hinin, Dubrovir	١+	(NOVO)
BITYUKOV	87	PL B188 383	+Dzhelyadin, Do	rofeev, Golovk	in+	(SERP)
DONNACHIE	87	ZPHY C33 407	+Mirzaie			(MCHS)
DONNACHIE	87B	ZPHY C34 257	+Clegg			(MCHS, LANC)
ASTON	80C	PL 92B 211	(BO	NN, CERN, E	POL, GI	AS, LANC, MCHS+)
BARBER	80C	ZPHY C4 169	+Dainton, Brod	beck, Brookes-	+	DARE, LANC, SHEF)

OTHER RELATED PAPERS -

		O I HER	RELATED PAPERS ——
BRAU	88	PR D37 2379	+Franek+ (SLAC Hybrid Facility Photon Collab.)
ASTON	87	NP B292 693	+Awaji, D'Amore+ (SLAC, NAGO, CINC, TOKY)
KURDADZE	86	JETPL 43 643	+Lelchuk, Pakhtusova, Sidorov, Skrinskii+ (NOVO)
		Translated from ZETFF	
BARKOV	85	NP B256 365	+Chilingarov, Eidelman, Khazin, Lelchuk+ (NOVO)
BISELLO	85	LAL 85-15	+Augustin, Ajaltouni+ (PADO, LALO, CLER, FRAS)
ABE	84B	PRL 53 751	+Bacon, Ballam+ (SLAC Hybrid Facility Photon Collab.)
ATKINSON	84C	NP B243 1	+ (BONN, CERN, GLAS, LANC, MCHS, LPNP+)
CORDIER	82	PL 109B 129	+Bisello, Bizot, Buon, Delcourt (LALO)
DIBIANCA	81	PR D23 595	+Fickinger, Malko, Dado, Engler+ (CASE, CMU)
ASTON	80	PL 92B 215	(BONN, CERN, EPOL, GLAS, LANC, MCHS+)
KILLIAN	80	PR D21 3005	+Treadwell, Ahrens, Berkelman, Cassel+ (CORN)
COSME	79	NP B152 215	+Dudelzak, Grelaud, Jean-Marie, Jullian+ (IPN)
SIDOROV	79	Batavia Conf. 79 490	(NÒVO)
QUENZER	78	PL 76B 512	+Ribes, Rumpf, Bertrand, Bizot, Chase+ (LALO)
COSME	76	PL 63B 352	+Courau, Dudelzak, Grelaud, Jean-Marie+ (ORSA)
SCHACHT	74	NP B81 205	+Derado, Fries, Park, Yount (MPIM)
BINGHAM	72B	PL 41B 635	+Rabin, Rosenfeld, Smadja+ (LBL, UCB, SLAC)
FRENKIEL	72	NP B47 61	+Ghesquiere, Lillestol, Chung+ (CDEF, CERN)
LAYSSAC	71	NC 6A 134	+Renard (MONP)

$\eta(1490)$

$$I^G(J^{PC}) = 0^+(0^{-+})$$

OMITTED FROM SUMMARY TABLE

Seen at DCI in the 4π system. Needs confirmation.

$\eta(1490)$ MASS

VT .
4πγ

$\eta(1490)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
144±13	3270	² BISELLO	89B	DM2	$J/\psi \rightarrow 4\pi\gamma$
² Estimated by u	s from various	fits.			

$\eta(1490)$ REFERENCES

BISELLO 89B PR D39 701

Busetto-

(DM2 Collab.)

$f_1(1510)$ was D(1530)

$$I^{G}(J^{PC}) = 0^{+}(1^{++})$$

See also minireview under non- $q\overline{q}$ candidates.

f₁(1510) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1512 ± 4					$8 \pi^- p \rightarrow K^+ \overline{K}^0 \pi^- n$
	ise the following	data for averages	s, fits	, limits,	etc. • • •
1530 ±10		ASTON	88 C	LASS	$^{11} \overset{K^-}{\kappa^0} \overset{p}{\kappa^{\pm}} \overset{\rightarrow}{\pi^{\mp}} \Lambda$
1526.0 ± 6.0	271	GAVILLET	82	HBC	4.2 $K^- p \rightarrow \Lambda K K \pi$
¹ From partial wa	ave analysis of A	$\chi^+ \overline{\kappa}^0 \pi^-$ state.			

$f_1(1510)$ WIDTH

VALUE	E (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
35	±15	600 ± 200	² BIRMAN	88	MPS	$8 \pi^- \rho \rightarrow K^+ \overline{K}^0 \pi^- n$
• • •	We do	not use the followin	g data for average	s, fits	, limits,	etc. • • •
100	±40		ASTON	88c	LASS	$ \begin{array}{c} 11 \ K^{-} p \rightarrow \\ K_{S}^{0} K^{\pm} \pi^{\mp} \Lambda \end{array} $
107.0	± 15.0	271	GAVILLET	82	HBC	$4.2 \text{ K}^- p \rightarrow \Lambda K K \pi$
² F	rom parti	al wave analysis of	$K^+ \overline{K}^0 \pi^-$ state.			

f1(1510) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	$K\overline{K}^*$ (892) + c.c.	seen

f₁(1510) REFERENCES

ASTON	PL B201 573	+Awaji, Bienz+	(SLAC. NAGO, CINC, TOKY) JP
BIRMAN	PRL 61 1557	+Chung, Peaslee+	(BNL, FSU, IND, SMAS) JP
GAVILLET	ZPHY C16 119	+Armenteros+	(CERN, CDEF, PADO, ROMA)

$f_0(1525)$

$$I^G(J^{PC}) = 0^+(0^{++})$$

OMITTED FROM SUMMARY TABLE

This entry contains evidence for $K\overline{K}$ S-wave intensity peaking at the mass of the $f_2'(1525)$ and with a comparable width. Needs confirmation.

f₀(1525) MASS

VALUE (MeV)	DOCUMENT ID		COMMENT
● ● We do not use the following	data for average	s, fits, limits	, etc. • • •
~ 1525	ASTON	88D LASS	11 $K^-p \rightarrow K^0_S K^0_S \Lambda$
~ 1525	BAUBILLIER	83	8 K p → K ⁺⁻ K Λ

f₀(1525) WIDTH

VALUE (MeV)	DOCUMENT ID COMMENT
• • We do not use the	following data for averages, fits, limits, etc. • •
~ 90	BAUBILLIER 83 8 $K^- p \rightarrow K^+ K^- \Lambda$

f₀(1525) REFERENCES

ASTON	88D	NP B301 525	+Awaji,	Bienz+	(SLAC, NAGO, CINC, TOKY)
BAUBILLIER	83	ZPHY C17 309	+		(BIRM, CERN, GLAS, MSU, LPNP)

 $f_2'(1525)$

 $f_2'(1525)$ was f'(1525)

$$I^G(J^{PC}) = 0^+(2^{++})$$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

$f_2'(1525)$ MASS

VALUE (MeV) DOCUMENT ID

1525±5 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

PRODUCED BY PION BEAM

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for average	s, fits	s, limits,	etc. • • •
$1547.0^{+10.0}_{-2.0}$		$^{ m 1}$ LONGACRE	86	MPS	22 $\pi^- p \to K_S^0 K_S^0 n$
1496.0 + 9		² CHABAUD	81	ASPK	6 $\pi^- \rho \rightarrow K^+ K^- n$
1497.0 + 8		CHABAUD	81	ASPK	18.4 $\pi^- \rho \rightarrow K^+ K^- n$
1492.0 ± 29.0		GORLICH	80	ASPK	17 $\pi^- \rho$ polarized \rightarrow
1502.0 ± 25.0		³ CORDEN			K^+K^-n $12-15 \pi^-\rho \rightarrow$
1480.0	14	CRENNELL	66	нвс	$6.0 \pi^{+} \pi^{-} n$ $6.0 \pi^{-} \rho \rightarrow K_{5}^{0} K_{5}^{0} n$

PRODUCED BY K± BEAM

PRODUCED BY K	+ RFWM			
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1524.5 ± 1.4 OUR AVE	RAGE in			that follows this one. Er-
		ror includes sca		
1526.8 ± 4.3		ASTON	88D LASS	11 $K^- p \rightarrow K_S^0 K_S^0 \Lambda$
1529.0 ± 3.0				18.5 $K^- p \rightarrow K^- K^+ \Lambda$
1521.0 ± 6.0	650	AGUILAR	818 HBC	$4.2 K^- p \rightarrow \Lambda K^+ K^-$
1521.0 ± 3.0	572			8.25 $K^- p \rightarrow \Lambda K \overline{K}$
1522.0 ± 6.0	123	BARREIRO	77 HBC	$4.15 \ K^- p \rightarrow \Lambda K_5^0 \ K_5^0$
1528 ±7	166	EVANGELISTA	77 OMEG	10 K ⁻ $\rho \rightarrow$
				$K^+K^-(\Lambda,\Sigma)$
1527.0 ± 3.0	120	BRANDENB	76c ASPK	
				$K^+K^-(\Lambda,\Sigma)$
1519 ±7	100	AGUILAR	72B HBC	$3.9,4.6 K^- p \rightarrow$
				$K\overline{K}(\Lambda \Sigma)$

PRODUCED IN $e^+\,e^-$ ANNIHILATION

<u>VALUE (MeV)</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

The data in this block is included in the average printed for a previous datablock.

1519 ± 5 OUR AVERAGE	Error includes scale factor of 1.1.	
1531.6 ± 10.0	AUGUSTIN 88 DM2 $J/\psi \rightarrow \gamma K^+ K^-$	
1515 ± 5	⁴ FALVARD 88 DM2 $J/\psi \rightarrow \phi K^+ K^-$	
1525 ±10 ±10	BALTRUSAIT87 MRK3 $J/\psi ightarrow \gamma K^+ K^-$	
• • • We do not use the follow	ving data for averages, fits, limits, etc. • • •	
1496 ± 2	⁵ FALVARD 88 DM2 $J/\psi \rightarrow \phi K^+ K^-$	

- ¹ From a partial-wave analysis of data using a K-matrix formalism with 5 poles.
- ²CHABAUD 81 is a reanalysis of PAWLICKI 77 data.

 4 From an analysis ignoring interference with $f_2(1720)$. 5 From an analysis including interference with $f_2(1720)$.

f'2(1525) WIDTH

VALUE (MeV)	DOCUMENT ID	COMMENT
76±10 OUR ESTIMATE		ess; the error given is larger than
	the error on the av	erage of the published values.
85± 5 OUR FIT		
76 1 10	DDC 00	Fac fission

PRODUCED BY PION BEAM

VALUE (MeV)			TECN	COMMENT
• • • We do not use the	ne following data for average	s, fit	s, limits,	etc. • • •
108.0^{+}_{-} $\begin{array}{c} 5.0\\ 2.0 \end{array}$	⁶ LONGACRE	86	MPS	22 $\pi^- p \rightarrow K_5^0 K_5^0 n$
69.0^{+22}_{-16}	⁷ CHABAUD	81	ASPK	$6~\pi^-~\rho \rightarrow~K^+~K^-~n$
137.0^{+23}_{-21}	CHABAUD	81	ASPK	18.4 $\pi^- p \rightarrow K^+ K^- n$
$150.0^{+83.0}_{-50.0}$	GORLICH	80	ASPK	17 $\pi^- p$ polarized \rightarrow
165.0 ± 42.0	⁸ CORDEN	79	OMEG	$K^{+}K^{-}n$ $12-15 \pi^{-}p \rightarrow \pi^{+}\pi^{-}p$
92.0 + 39.0	9 POLYCHRO	79	STRC	$7 \pi^{-} p \rightarrow n K_{c}^{0} K_{c}^{0}$

PRODUCED BY K				
VALUE (MeV)	EVTS			COMMENT
78 ± 5 OUR AVER	RAGE Includ			
90.2 ± 11.8		ASTON 8	BBD LASS	$11 K^- p \rightarrow K_5^0 K_5^0 \Lambda$
83.0 ± 15.0		ARMSTRONG 8	33B OMEG	18.5 $K^- p \rightarrow K^- K^+ \Lambda$
85.0 ± 16.0	650	AGUILAR 8	вів НВС	$4.2 K^- p \rightarrow \Lambda K^+ K^-$
$80.0^{+14.0}_{-11.0}$	572	ALHARRAN 8	B1 HBC	8.25 $K^- \rho \rightarrow \Lambda K \overline{K}$
72.0 ± 25.0	166	EVANGELISTA 7	77 OMEG	
				$K^+K^-(\Lambda,\Sigma)$
69 ± 22	100	AGUILAR 7	72в НВС	3.9,4.6 K ⁻ p →
				$K\overline{K}(\Lambda,\Sigma)$
• • We do not use to	the following	data for averages,	fits, limits,	etc. • • •
$62.0^{+19.0}_{-14.0}$	123	BARREIRO 7	77 HBC	$4.15 K^{-} \rho \rightarrow \Lambda K_{S}^{0} K_{S}^{0}$
				, ,
61.0 ± 8.0	120	BRANDENB 7	76C ASPK	
				$K^+K^-(\Lambda,\Sigma)$

PRODUCED IN e^+e^- ANNIHILATION

<u>VALUE (MeV)</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

The data in this block is included in the average printed for a previous datablock.

67	± 9	OUR AVERAGE					
102.	6 ± 29.7		AUGUSTIN				$\gamma K^+ K^-$
62	± 10		¹⁰ FALVARD	88	DM2	$J/\psi \rightarrow$	$\phi K^+ K^-$
85	± 35		BALTRUSAIT	87	MRK3	$J/\psi \rightarrow$	$\gamma K^+ K^-$
• •	 We d 	lo not use the following	data for average	s, fit:	s, limits,	etc. • •	•
100	± 3		¹¹ FALVARD	88	DM2	$J/\psi \to$	$\phi K^+ K^-$

6 From a partial-wave analysis of data using a K-matrix formalism with 5 poles.

⁷CHABAUD 81 is a reanalysis of PAWLICKI 77 data.

⁸ From an amplitude analysis where the $f_2'(1525)$ width and elasticity are in complete disagreement with the values obtained from $K\overline{K}$ channel, making the solution dubious. ⁹ From a fit to the D with $f_2(1270)$ - $f_2'(1525)$ interference. Mass fixed at 1516 MeV.

 $^{10}\,\mathrm{From}$ an analysis ignoring interference with $f_2(1720)$.

 11 From an analysis including interference with $f_2(1720)$.

$f_2'(1525)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	κ κ	$(71.3 \begin{array}{c} +2.1 \\ -2.5 \end{array}) \%$
Γ_2	$\eta \eta$	$(27.9 \begin{array}{c} +2.5 \\ -2.1 \end{array}) \%$
Γ_3	ππ	$(8.2 \pm 1.6) \times 10^{-3}$
Γ_4	$\gamma \gamma$	$(1.27^{+0.28}_{-0.25}) \times 10^{-6}$
	$K\overline{K}^{*}(892) + c.c.$	3.25
Γ_6	$\pi \pi \eta \over \pi K \overline{K}$	
Γ_7	$\pi K \overline{K}$	
Γ8	$\pi^+\pi^+\pi^-\pi^-$	

CONSTRAINED FIT INFORMATION

An overall fit to the total width, 4 partial widths, and 2 branching ratios uses 12 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2=8.9$ for 8 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)
$\overline{\Gamma_1}$	κ κ	61 ±5
Γ_2	$\eta \eta$	$23.9 \begin{array}{c} +2.2 \\ -1.3 \end{array}$
Γ_3	$\pi\pi$	0.70 ± 0.14
Γ_4	$\gamma\gamma$	$(1.08^{+0.23}_{-0.20}) \times 10^{-4}$

$f_2'(1525)$ PARTIAL WIDTHS

$\Gamma(K\overline{K})$			r _:
VALUE (MeV) 61 ±5 OUR FIT	DOCUMENT ID	TECN	COMMENT
63.0+6.0	12 LONGACRE 86	MPS	$22 \pi^- p \rightarrow K_S^0 K_S^0 n$

 $^{^3}$ From an amplitude analysis where the $f_2'(1525)$ width and elasticity are in complete disagreement with the values obtained from $K\overline{K}$ channel, making the solution dubious.

					_
$\Gamma(\pi\pi)$					Гз
VALUE (MeV) 0.70±0.14 OUR FIT	DOCUMENT ID		TECN	COMMENT	
1.4 +1.0	¹² LONGACRE	86	MPS	$22 \pi^- \rho \rightarrow K_S^0 K_S^0 \rho$	1
$\Gamma(\eta\eta)$					Γ2
VALUE (MeV) 23.9 + 2.2 OUR FIT	DOCUMENT ID		TECN	COMMENT	_
-1.3 24.0+3.0 -1.0	¹² LONGACRE	86	MPS	22 $\pi^- p \to K_5^0 K_5^0 p$	1
$\Gamma(\gamma\gamma)$					Г4
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	_
0.108 ^{+0.023} OUR FIT					
0.108 ^{+0.023} OUR AVER	AGE				
$0.11 \begin{array}{c} +0.03 \\ -0.02 \end{array} \pm 0.02$	BEHREND	89c	CELL	$e^{+} e^{-}_{e^{+} e^{-} K^{0}_{5} K^{0}_{5}}$	
$0.10 \begin{array}{c} +0.04 \\ -0.03 \end{array} \begin{array}{c} +0.03 \\ -0.02 \end{array}$	BERGER	88	PLUT	$e^+e^- \rightarrow \kappa_S^0 \kappa_S^0$	
$0.12 \pm 0.07 \pm 0.04$	¹³ AIHARA	86B	TPC	e ⁺ e ⁻ →	
0.11 ±0.02 ±0.04	13 ALTHOFF	83	TASS	e+e- × + K- e+e- → e+e- K7	7
¹² From a partial-wave ar ¹³ Using $B(f'_{*}(1525) \rightarrow$	nalysis of data using a K- $K\overline{K}$) — 1	matrix	formal	ism with 5 poles.	`
Using B($f'_2(1525) \rightarrow$	halysis of data using a K- $(K\overline{K}) = 1$.			ism with 5 poles.	_
$\frac{13 \text{ Using B}(f_2'(1525) \to f_2'(1525) \to f_2'(1525) \to f_2'(1525)}{(\eta \eta)/\Gamma(K\overline{K})}$	$KK) = 1.$ $f_2'(1525)$ BRANCHII	NG R	ATIOS	Γ ₂ /	_
Using $B(P_2(1525) \rightarrow \Gamma(\eta \eta)/\Gamma(K\overline{K})$ WALUE	KK) = 1.	NG R	ATIOS		_
To Using $B(F_2(1525)) \rightarrow \Gamma(\eta \eta)/\Gamma(K\overline{K})$ USING $B(F_2(1525)) \rightarrow \Gamma(\eta \eta)/\Gamma(K\overline{K})$ $O.39^{+0.05}_{-0.04}$ OUR FIT	$KK) = 1.$ $f_2'(1525)$ BRANCHII	NG R	ATIOS	Γ ₂ /	_
Using $B(P_2(1525) \rightarrow \Gamma(\eta \eta)/\Gamma(K\overline{K})$ WALUE	$KK) = 1.$ $f_2'(1525)$ BRANCHII	NG R	ATIOS	Γ ₂ /	_
Using B(P_2 (1525) \rightarrow $\Gamma(\eta\eta)/\Gamma(K\overline{K})$ VALUE 0.39 $^{+0.05}_{-0.04}$ OUR FIT • • • We do not use the feature of the featu	$KK) = 1.$ $F_2'(1525)$ BRANCHII	NG RA	ATIOS TECN , limits	F ₂ / COMMENT etc. • • • 4.6,5.0 K ⁻ p	т ₁
Using $B(F_2(1525)) \rightarrow \Gamma(\eta\eta)/\Gamma(K\overline{K})$ VALUE 0.39 $^+$ 0.05 OUR FIT • • • We do not use the second of the second	$KK) = 1.$ $F_2'(1525)$ BRANCHII DOCUMENT ID following data for averag BARNES	es, fits	ATIOS TECN , limits	F ₂ / COMMENT etc. • • • 4.6,5.0 K ⁻ p	_
Using B($I_2'(1525) \rightarrow I_2'(1525) \rightarrow I_2'(152$	$KK) = 1.$ $F_2'(1525)$ BRANCHII DOCUMENT ID following data for average BARNES DOCUMENT ID	es, fits	ATIOS TECN i, limits, HBC	Γ ₂ / <u>COMMENT</u> etc. • • • 4.6,5.0 K ⁻ p	т ₁
Using B(P_2 (1525) \rightarrow $\Gamma(\eta\eta)/\Gamma(K\overline{K})$ $0.39^{+0.05}_{-0.04}$ OUR FIT • • • We do not use the fixed by the condition of	f' ₂ (1525) BRANCHII DOCUMENT ID following data for averag BARNES CLY DOCUMENT ID T VERAGE COSTA	es, fits	TECN , limits, HBC	Γ ₂ / <u>COMMENT</u> etc. • • • 4.6,5.0 K ⁻ p	/r ₁
13 Using B(P_2 (1525) → $\Gamma(\eta\eta)/\Gamma(K\overline{K})$ VALUE 0.39 $^{+0.05}_{-0.04}$ OUR FIT • • • We do not use the standard	f' ₂ (1525) BRANCHII DOCUMENT ID following data for averag BARNES CLY T VERAGE COSTA 14 GORLICH	es, fits	TECN , limits, HBC	F ₂ / comment etc. • • • 4.6,5.0 K ⁻ p COMMENT	/r ₁
13 Using B(F_2 (1525) \rightarrow $\Gamma(\eta\eta)/\Gamma(K\overline{K})$ 0.39 $^{+0.05}_{-0.04}$ OUR FIT • • • We do not use the second of	f'_2(1525) BRANCHII DOCUMENT ID following data for averag BARNES CLY DOCUMENT ID T VERAGE COSTA 14 GORLICH 14,15 MARTIN	NG R. 67 80 80 79	ATIOS TECN HBC TECN OMEG ASPK RVUE	COMMENT etc. • • • 4.6,5.0 K^-p COMMENT $10 \pi^- p \rightarrow K^+ K^ 17,18 \pi^- p$	/r ₁
13 Using B(F_2 (1525) → $\Gamma(\eta \eta)/\Gamma(K\overline{K})$ 20.39 $^{+0.05}_{-0.04}$ OUR FIT • • • We do not use the following state of the following s	f'2(1525) BRANCHII DOCUMENT ID following data for averag BARNES CLY DOCUMENT ID TYPERAGE COSTA 14 GORLICH 14,15 MARTIN following data for averag	NG R. 67 80 80 79 es, fits	ATIOS TECN i, limits, HBC TECN OMEG ASPK RVUE i, limits,	etc. • • • 4.6,5.0 K^-p COMMENT $ \begin{array}{c} \Gamma_2/\\ \hline COMMENT \end{array} $ $ \begin{array}{c} \Gamma_3\\ \hline COMMENT \end{array} $ $ \begin{array}{c} \Gamma_3\\ \hline 10 \pi^-p \to K^+K^-\\ 17,18 \pi^-p\\ \end{array} $ etc. • • •	/r ₁ //r
To Using B(F_2 (1525) → $ Γ(ηη)/Γ(K\overline{K}) $ 0.39 ± 0.05 OUR FIT • • • We do not use the fixed of the fix	f'_2(1525) BRANCHII DOCUMENT ID following data for averag BARNES CLY DOCUMENT ID T VERAGE COSTA 14 GORLICH 14,15 MARTIN	NG R. 67 80 80 79 es, fits	ATIOS TECN I, limits, HBC TECN OMEG ASPK RVUE I, limits, HBC	COMMENT etc. • • • 4.6,5.0 K^-p COMMENT $10 \pi^- p \rightarrow K^+ K^ 17,18 \pi^- p$	/r ₁ //r
To Using B(P_2 (1525) →	f'2(1525) BRANCHII DOCUMENT ID following data for averag BARNES CLY DOCUMENT ID T VERAGE COSTA 14 GORLICH 14,15 MARTIN following data for averag 05 AGUILAR	80 79 ses, fits 818	ATIOS TECN I, limits, HBC TECN OMEG ASPK RVUE I, limits, HBC	etc. • • • 4.6,5.0 K^-p $COMMENT$ $10 \pi^-p \rightarrow K^+K^-$ $17,18 \pi^-p$ etc. • • • 4.2 $K^-p \rightarrow \Lambda K^+K$	/r ₁ /r

VALUE		<u> CL%</u>	DOCUMENT ID		IECN	COMMENT
0.0082	2±0.0016 O	UR FIT				
0.0079	5±0.0016 O	UR AVERAGE				
	±0.002		COSTA	80	OMEG	$10 \pi^- p \rightarrow K^+ K^- n$
0.027	+0.071 -0.013		¹⁴ GORLICH	80	ASPK	17,18 π ⁻ p
0.0075	5 ± 0.0025	14,	¹⁵ MARTIN	79	RVUE	
• • • W	/e do not use	e the following	data for average	s, fits	i, limits,	etc. • • •
< 0.06		95	AGUILAR	81B	нвс	$4.2 K^- p \rightarrow \Lambda K^+ K^-$
0.19	± 0.03		CORDEN			12-15 $\pi^- p \rightarrow$
< 0.045		95	BARREIRO	77	нвс	$4.15 K^{-} \rho \rightarrow \Lambda K_{5}^{0} K_{5}^{0}$
0.012	± 0.004		¹⁴ PAWLICKI			$6 \pi N \rightarrow K^+ K^- N$
< 0.063		90	BRANDENB	76 C	ASPK	
						$K^+K^-(\Lambda,\Sigma)$
< 0.0086	i		¹⁴ BEUSCH	75B	OSPK	$8.9 \pi^- p \rightarrow K^0 \overline{K}^0 n$
14 Assu	ming that th	e f! (1525) is	aroduced by an on	e nio	n avchan	use production mechanism

 15 MARTIN 79 uses the PAWLICKI 77 data with different input value of the $\it f_2^\prime(1525) \rightarrow$

	ng ratio.				
$\Gamma(\pi\pi)/\Gamma(K\overline{K})$	7)			Гз	/Γ1
VALUE 0.0115±0.0022	OUD FIT	DOCUMENT ID	TECN	COMMENT	
0.075 ±0.035	OUR FIT	AUGUSTIN	87 DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$	
$\Gamma(\pi\pi\eta)/\Gamma(K)$	K)			Г ₆	/Γ1
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
• • • We do no	t use the following	ng data for average	es, fits, limit	s, etc. • • •	
< 0.41	95	AGUILAR	728 HBC	3.9,4.6 K ⁻ p	
< 0.3	67	AMMAR	67 HBC		
C.U. 3					
	+ c.c.) + Γ($\pi K \overline{K})]/\Gamma (K \overline{K})$)	$(\Gamma_5 + \Gamma_7)$	/Γ ₁
	+ c.c.) + Γ(:	$\pi K \overline{K})]/\Gamma (K \overline{K})$) TECN	(3 ,	/Γ ₁
[「(KK*(892)	ÇL%		TECN	COMMENT	/Γ ₁
[「(KK*(892)	ÇL%	DOCUMENT ID	TECN es, fits, limit	COMMENT	/Γ ₁

DOCUMENT ID

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

TECN COMMENT

AGUILAR-... 728 HBC 3.9,4.6 K⁻ ρ

 Γ_8/Γ_1

 $\Gamma(\pi^+\pi^+\pi^-\pi^-)/\Gamma(K\overline{K})$

CL%

VALUE

< 0.32

$f_2'(1525)$ REFERENCES

AUGUSTIN 88 PRL 60 225 PRL 60 225 PRL 96 23 PRL 96 23 PRL 96 24 PR	Ajahtouni+
	Aguilar-Benitez, Chung, Eisner, Samios (BNL)
AMMAR 67 PRL 19 107	1 +Davis, Hwang, Dagan, Derrick+ (NWES, ANL) JP
BARNES 67 PRL 19 964	+Dornan, Goldberg, Leitner+ (BNL, SYRA) IJP
CRENNELL 66 PRL 16 102	5 +Kaibfleisch, Lai, Scarr, Schumann+ (BNL) I

OTHER RELATED PAPERS -

JENNI	83	PR D27 1031	+Burke, Telnov, Abrams, Blocker+ (SLAC, LBL)
ARMSTRONG	82	PL 110B 77	+Baubillier+ (BARI, BIRM, CERN, MILA, LPNP+)
ETKIN	82B	PR D25 1786	+Foley, Lai+ (BNL, CUNY, TUFT, VAND)
LUKE	82	DESY 82/073	(DESY)
BECKER	79	NP B151 46	+Blanar, Blum+ (MPIM, CERN, ZEEM, CRAC)
LAVEN	77	NP B127 43	+Otter, Klein+ (AACH, BERL, CERN, LOIC, WIEN)
LORSTAD	69	NP B14 63	+D'Andlau, Astier+ (CDEF, CERN)
SCOTTER	69	NC 62A 1057	+Erskine, Paler+ (BIRM, GLAS, LOIC, MPIM, OXF)
ALITTI	68B	PRL 21 1705	+Barnes, Crennell, Flaminio, Goldberg+ (BNL)
ABRAMS	67B	PRL 18 620	+Kehoe, Glasser, Sechi-Zorn, Wolsky (UMD)
BARNES	65	PRL 15 322	+Culwick, Guidoni, Kalbfleisch, Goz+ (BNL, SYRA)

$$I^G(J^{PC}) = 0^+(2^{++})$$

OMITTED FROM SUMMARY TABLE

Seen in $\overline{p}p$ annihilation at rest into $\pi^+\pi^-\pi^0$. Needs confirmation. See also minireview under non- $q\overline{q}$ candidates.

f2(1565) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1565 ± 10	MAY	89	ASTE		$\overline{\rho}\rho \rightarrow \pi^+\pi^-\pi^0$
• • • We do not use the	e following data for averag	es, fits	, limits		
1477 ± 5	BRIDGES	86B	DBC	0	$\overline{D}N \rightarrow 3\pi^- 2\pi^+$
1527 ± 5	¹ GRAY	83	DBC	0	$0.0 \overline{p} N \rightarrow 3\pi$
¹ No fit of the Dalitz p	olot has been made.				

f2(1565) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
170±20	MAY	89	ASTE		$\bar{p}p \rightarrow \pi^+\pi^-\pi^0$
• • We do not use the following	ng data for averag	es, fits	, limits	etc.	• • •
116 ± 9	BRIDGES	86B	DBC	0	$\overline{D}N \rightarrow 3\pi^- 2\pi^+$
101 ± 13	² GRAY	83	DBC	0	$0.0 \ \overline{p} N \rightarrow 3\pi$
² No fit of the Dalitz plot has	heen made				•

f2(1565) DECAY MODES

_	Mode	Fraction (Γ_i/Γ)
Γ ₁ Γ ₂	$\pi^{+}\pi^{-}$ $\rho^{0}\rho^{0}$	seen

f2(1565) BRANCHING RATIOS

$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID	TECN	CHG	COMMENT
seen seen	MAY GRAY	89 ASTE 83 DBC	O	$ \overline{p}p \to \pi^+ \pi^- \pi^0 $ $ 0.0 \overline{p}N \to 3\pi $
$\Gamma(\pi^+\pi^-)/\Gamma(\rho^0\rho^0)$			-	Γ_1/Γ_2
0.042±0.013	BRIDGES	86B DBC	<u>снс</u> 0	$\frac{COMMENT}{\overline{p} N \rightarrow 3\pi^{-} 2\pi^{+}}$

f₂(1565) REFERENCES

MAY	PL B225 450	+Duch, Heel+	(ASTERIX Collab.) IJF
BRIDGES	PRL 56 215	+Daftari, Kalogeropoulos, Debbe+	(SYRA, CASE)
GRAY	PR D27 307	+Kalogeropoulos, Nandy, Roy, Zenone	(SYRA)

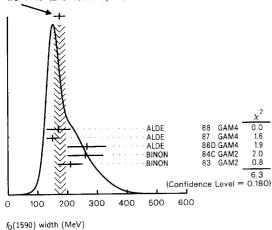
 $f_0(1590), \omega(1600)$

$$I^G(J^{PC}) = 0^+(0^{++})$$

See also the mini-review under non- $q \, \overline{q}$ candidates. (See the index for the page number.)

f₀(1590) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1587 ±11	OUR AVERAGE				
1610 ± 20		ALDE			$300 \pi^- N \rightarrow \eta \eta \pi^- N$
1570 ±20	600 ± 70	ALDE	87	GAM4	$100 \pi^{} \rho \rightarrow 4\pi^{0} n$
1575.0 ± 45.0		¹ ALDE	86D	GAM4	$100 \pi^- \rho \rightarrow 4\gamma n$
1568.0 ± 33.0		BINON	84¢	GAM2	$38 \pi^- \rho \rightarrow 4\gamma n$
1592.0 ± 25.0		BINON	83	GAM2	$38 \pi^- \rho \rightarrow 4\gamma n$


 $^{^{1}\,\}mathrm{From}$ central value and spread of two solutions.

f₀(1590) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID			
175 ±19	OUR AVERAGE	Error includes scale	factor	of 1.3.	See the ideogram below.
170 ± 40		ALDE			$300 \pi^- N \rightarrow \eta \eta \pi^- N$
150 ± 20	600 ± 70		87	GAM4	$100 \ \pi^- \ \rho \rightarrow \ 4\pi^0 \ n$
265.0 ± 65.0		² ALDE			$100 \pi^- \rho \rightarrow 4\gamma n$
260.0 ± 60.0		BINON	84C	GAM2	$38 \pi^- \rho \rightarrow 4\gamma n$
210.0 ± 40.0		BINON	83	GAM2	$38 \pi^- \rho \rightarrow 4\gamma n$

 $^{^{2}\,\}mathrm{From}$ central value and spread of two solutions.

f₀(1590) DECAY MODES

	Mode	Fraction (Γ_I/Γ)	
Γ1	$\eta \eta'(958)$	dominant	
Γ_2	$\eta \eta$	large	
Гз	$4\pi^{0}$	large	
Γ ₃ Γ ₄	$\frac{4\pi^0}{\pi^0\pi^0}$		
Γ ₅	KK		

fo(1590) BRANCHING RATIOS

$\Gamma(\eta\eta'(958))/\Gamma(\eta\eta)$	DOCUMENT ID		TECN	Γ_1/Γ_2
2.7 ± 0.8	BINON	84C	GAM2	$38 \pi^- p \rightarrow 4\gamma n$
$\Gamma(\eta\eta)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ ₂ /Γ
large	ALDE	88	GAM4	$300 \pi^- N \rightarrow \eta \eta \pi^- N$
large	BINON	83	GAM2	38 $\pi^- \rho \rightarrow 4\gamma n$
$\Gamma(4\pi^0)/\Gamma(\eta\eta)$				Γ_3/Γ_2
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
0.8±0.3	ALDE	87	GAM4	$100 \ \pi^- \ p \rightarrow \ 4\pi^0 \ n$
$\Gamma(\pi^0\pi^0)/\Gamma(\eta\eta)$				Γ_4/Γ_2
VALUE	DOÇUMENT ID		<u>TEÇN</u>	COMMENT
• • We do not use the follow	ing data for average	s, fit	s, limits,	etc. • • •

BINON

< 0.3

83 GAM2 38 $\pi^- p \rightarrow 4\gamma n$

$\Gamma(K\overline{K})/\Gamma(\eta\eta)$				Γ_5/Γ
VALUE	DOCUMENT I	D TECN	COMMENT	
• • • We do not use the follow	ving data for avera	ges, fits, limit	s, etc. • • •	
< 0.6	BINON	83 GAM2	2 38 π ⁻ ρ →	4γ π

f₀(1590) REFERENCES

ALDE	88	PL B201 160	+Beltazini, Binon -	(SERP, BELG, LANL, LAPP, PISA) JP
ALDE	87	PL B198 286	+Binon, Bricman+	(LANL, BRUX, SERP, LAPP)
ALDE	86D	NP B269 485	+Binon, Bricman+	(BELG, LAPP, SERP, CERN) IGJP
BINON	84C	NC 80A 363	+Bricman, Donskov+	(BELG, LAPP, SERP, CERN)
BINON	83	NC 78A 313	+Donskov, Duteil+	(BELG, LAPP, SERP, CERN) IGJP
Also	83B	SJNP 38 561	Binon, Gouanere	(BELG, LAPP, SERP, CERN)
		Translated from	VAF 38 934	

--- OTHER RELATED PAPERS -

SLAUGHTER 88 MPL A3 1361

 ω (1600

 $I^G(J^{PC}) = 0^-(1^{--})$

See also $\omega(1390)$.

$\omega(1600)$ M	1ASS
------------------	------

VALUE 1594	±12	EVTS	DOCUMENT ID DONNACHIE	89	RVUE		$\frac{\textit{COMMENT}}{e^+ \ e^- \ \rightarrow \ \rho \pi}$
1625 1670		e lollowing (GOVORKOV ATKINSON	88	RVUE OMEG	etc. •	20-70 γρ → 3π
1657 1679 1652.0		21	CORDIER ESPOSITO COSME	81 80 79	DM1 FRAM OSPK	0	$e^{+} e^{-} \rightarrow \omega 2\pi$ $e^{+} e^{-} \rightarrow 3\pi$ $e^{+} e^{-} \rightarrow 3\pi$

$\omega(1600)$ WIDTH

VALU	E (MeV) E	VTS	DOCUMENT ID		TECN CHG	COMMENT
	±30 • We do not use the	following o	DONNACHIE data for averages			$e^+e^- \rightarrow \rho\pi$
	± 25 ± 20		GOVORKOV ATKINSON	88 83B	RVUE OMEG	20-70 γρ → 3π ×
99	± 46 ± 49 0± 17.0	21	CORDIER ESPOSITO COSME		DM1 FRAM OSPK 0	$e^{+}e^{-} \rightarrow \omega 2\pi$ $e^{-}e^{-} \rightarrow 3\pi$ $e^{+}e^{-} \rightarrow 3\pi$

$\omega(1600)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\rho\pi$	seen
Γ_2	$\omega \pi \pi$	seen
Γ ₃	$\frac{\omega \pi \pi}{e^+ e^-}$	seen

$\omega(1600) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(\rho\pi) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$					I	1 3/I
VALUE (keV)	DOCUMENT ID		TECN	COMMENT		
96±35	DONNACHIE	89	RVUE	$e^+ e^- \rightarrow$	$\rho\pi$	
$\Gamma(\omega \pi \pi) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$					١	$\Gamma_2\Gamma_3/\Gamma$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT		
56 ± 31	DONNACHIE	89	RVUE	$e^+ e^- \rightarrow$	$\omega 2\pi$	

ω (1600) REFERENCES

DONNACHIE	89	ZPHY C42 663	Clegg	(CERN, MCHS)
GOVORKOV	88	SJNP 48 150		(JINR)
ATION CON	83B	Translated from YAF 4 PL 127B 132	18 237. (BONN, CERN, GLAS, LANC,	MCHS LPNP.
ATKINSON				
CORDIER	81	PL 106B 155	+ Bisello, Bizot, Buon, Delcourt, Mane	
ESPOSITO	80	LNC 28 195	+Marini, Patteri- (FRAS, NAPL	
COSME	79	NP B152 215	+Dudelzak, Grelaud, Jean Marie, Jullian-	(iPN)
			R RELATED PAPERS	_
		UITE	I/ I/EFULED LYLEI/2	

(BONN, CERN, GLAS, LANC, MCHS, LPNP) (BONN, CERN, GLAS, LANC, MCHS, LPNP+) ATKINSON ATKINSON

 $f_2(1640), X(1650), \omega_3(1670)$

 $f_2(1640)$

 $I^{G}(J^{PC}) = 0^{+}(2^{++})$

OMITTED FROM SUMMARY TABLE

Seen by ALDE 89B in $\omega\omega$ mass distribution. Needs confirmation.

		f ₂ (1640) MA	SS			
VALUE (MeV) 1635±7	CL%	DOCUMENT ID SINGOVSKY og data for average	90	GAM2		πωω
1643±7	90 persedes ALDE	ALDE			38 π [−] p →	nωω
		f ₂ (1640) WID	тн			
	CL%	DOCUMENT ID		TECN	COMMENT	

$f_2(1640)$	DECAY	MODES
-------------	-------	-------

	Mode	Fraction (Γ_i/Γ)
Γı	ωω	seen

f2(1640) BRANCHING RATIOS

$\Gamma(\omega\omega)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
seen	ALDE	89B GAM2	38 $\pi^- \rho \rightarrow$	$n\omega\omega$

f2(1640) REFERENCES

			Hadron 89 Conf. PL B216 451	(Si +Binon, Bricman+	ERP, BELG, LANL, LAPP, PISA, KEK) (SERP, BELG, LANL, LAPP, TBLI) IGJPO
--	--	--	--------------------------------	-------------------------	---

Mode $\eta' \pi^0$ $I^{G}(J^{PC}) = 1^{-}(?^{??})$

OMITTED FROM SUMMARY TABLE

	X(1650) MAS	5	
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1650±50	POULET	90 GAM4	$100 \pi^- p \rightarrow 4\gamma n$
	X(1650) WIDT	Н	
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
150±50	POULET	90 GAM4	$100 \pi^- p \rightarrow 4\gamma n$

 Fraction $(\Gamma_{\hat{I}}/\Gamma)$
 seen

X(1650) REFERENCES

POULET 90 Hadron 89 Conf. +Boutemeur (SERP, BELG, LANL, LAPP, PISA, KEK) $\omega_{3}(1670)$

 $I^{G}(J^{PC}) = 0^{-}(3^{--})$

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1668 ± 5 OUR	AVERAGE			
1685.0 ± 20.0	60	BAUBILLIER	79 HBC	8.2 K- p backward
1673.0 ± 12.0	430	1,2 BALTAY	78E HBC	$15 \pi^+ p \rightarrow \Delta 3\pi$
1650.0 ± 12.0		CORDEN	788 OMEG	$8-12 \pi^- p \rightarrow N3\pi$
1669 ± 11	600	² WAGNER		$7 \pi^+ p \rightarrow \Delta^{++} 3\pi$
1678 ± 14	500	DIAZ	74 DBC	$6 \pi^+ n \rightarrow \rho 3\pi^0$
1660 ± 13	200	DIAZ	74 DBC	$6 \pi^+ n \rightarrow \rho \omega \pi^0 \pi^0$
1679 ± 17	200	MATTHEWS	71D DBC	$7.0 \ \pi^{+} \ n \rightarrow p 3 \pi^{0}$
1670 ± 20		KENYON	69 DBC	$8 \pi^{+} n \rightarrow \rho 3\pi^{0}$
• • • We do not use	the followi	ing data for average	s, fits, limits,	etc. • • •
~ 1700.0	110	¹ CERRADA	778 HBC	$4.2 K^- p \rightarrow \Lambda 3\pi$
1695.0 ± 20.0		BARNES	69B HBC	$4.6 \text{ K}^- p \rightarrow \omega 2\pi$
1636 ±20		ARMENISE	688 DBC	$5.1 \pi^{+} n \rightarrow \rho 3\pi^{0}$
¹ Phase rotation se ² From a fit to I(J				
- From a fit to 1(3	= 0(3)) $\rho\pi$ partial wave.		

VALUE (Me	V) EVTS	DOCUMENT ID	TECN	COMMENT
166 ±19	OUR ESTIMATE			the error given is larger
		than the error	on the avera	ge of the published value
173 ±1	OUR AVERAGE			
160.0 ± 80	0.0 60		79 HBC	8.2 $K^- p$ backward
173.0 ± 16	5.0 430	4,5 BALTAY	78E HBC	$15 \pi^+ \rho \rightarrow \Delta 3\pi$
253.0 ± 39	9.0	CORDEN	78B OMEC	$8-12 \pi^- p \rightarrow N3\pi$
173 ± 28	600	^{3,5} WAGNER	75 HBC	$7 \pi^+ p \rightarrow \Delta^{++} 3\pi$
167 ±40	500	DIAZ	74 DBC	$6 \pi^+ n \rightarrow \rho 3\pi^0$
122 ± 39	200	DIAZ	74 DBC	$6 \pi^+ n \rightarrow \rho \omega \pi^0 \pi^0$
155 ±40	200	³ MATTHEWS	71D DBC	$7.0 \pi^{+} n \rightarrow \rho 3\pi^{0}$
• • • W	do not use the folio	wing data for average	s, fits, limits	, etc. • • •
90 ± 20)	BARNES	698 HBC	4.6 K ⁻ $\rho \rightarrow \omega 2\pi$
100 ± 40)	KENYON	69 DBC	$8 \pi^+ n \rightarrow p 3\pi^0$
112 ± 60)	ARMENISE	68B DBC	$5.1 \pi^{+} n \rightarrow \rho 3\pi^{0}$
314/2-141		r (a)1/2		1 (* (***)

 3 Width errors enlarged by us to $4\Gamma/N^{1/2};$ see the note with the K^{\bullet} (892) mass. 4 Phase rotation seen for $J^P=3^ \rho\pi$ wave. 5 From a fit to $I(J^P)=0(3^-)$ $\rho\pi$ partial wave.

ω_3 (1670) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
Γ_1	$ ho\pi$	seen
Γ_2	$\omega \pi \pi$	seen
Г3	$b_1(1235)\pi$	possibly seen

ω_3 (1670) BRANCHING RATIOS

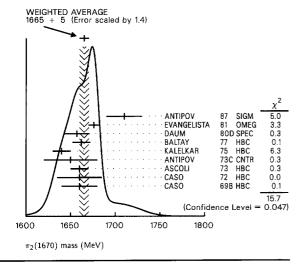
$\Gamma(\omega\pi\pi)/\Gamma(\rho\pi)$	EVTS	DOCUMENT ID		TECN	COMMENT	Γ_2/Γ_1
• • We do not use						
• • • We do not use	the followin	g data for average				
0.71 ± 0.27	100	DIAZ	74	DBC	$6 \pi^+ n \rightarrow$	$\rho 5\pi^{0}$
$\Gamma(b_1(1235)\pi)/\Gamma(\rho)$ VALUE possibly seen	π)	<u>DOCUMENT ID</u> DIAZ		TECN DBC	$\frac{COMMENT}{6 \pi^{+} n \rightarrow}$	$\frac{\Gamma_3/\Gamma_1}{\rho_5\pi^0}$
$\Gamma(b_1(1235)\pi)/\Gamma(\omega$,					Γ_3/Γ_2
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do not use	the followin	g data for average	es, fit	s, limits	, etc. • • •	
>0.75	68	BAUBILLIER	79	HBC	8.2 K ⁻ p I	oackward

$\omega_3(1670)$ REFERENCES

BAUBILLIER BALTAY CORDEN CERRADA WAGNER DIAZ MATTHEWS BARNES KENYON ARMENISE	79 78E 78B 77B 75 74 71D 69B 69 68B	PL 89B 131 PRL 40 87 NP B138 235 NP B126 241 PL 58B 201 PRL 32 260 PR D3 2561 PRL 23 142 PRL 23 146 PL 26B 336	+Cautis, Kalelkar +Corbett, Alexander+ +Blockziji, Heinen+ +Tabak, Chew +Dibianca, Fickinger, Ande +Prentice, Yoon, Carroll+ +Chung, Eisner, Flaminio+ +Kinson, Scarr+ +Forino, Cartaccl+	(TNTO, WISC) (BNL) (BNL, UCND, ORNL) (BARI, BGNA, FIRZ, ORSA)		
OTHER RELATED PAPERS —						
MATTHEWS ARMENISE	71 70	LNC 1 361 LNC 4 199	+Prentice, Yoon, Carroll+ +Ghidini, Foring, Cartacci+	(TNTO, WISC) - (BARI, BGNA, FIRZ)		

$\pi_2(1670)$

 $\pi_2(1670)$ was $A_3(1680)$


$$I^{G}(J^{PC}) = 1^{-}(2^{-+})$$

Our latest mini-review on this particle can be found in the 1984 edition.

$\pi_2(1670)$ MASS

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1665	±20	OUR ESTIMATE	This is only an edu	cate	d guess;	the er	ror given is larger
			than the error of	on th	e averag	e of the	ne published values
1665	± 5	OUR AVERAGE	Error includes scale	facto	or of 1.4.	See t	he ideogram below
1710	± 20	700 ± 150	ANTIPOV	87	SIGM	_	50 π [−] Cu →
							$\mu^{+} \mu^{-} \pi^{-} Cu$
1676	± 6		¹ EVANGELISTA	81	OMEG	-	$12 \pi^- p \rightarrow 3\pi p$
1657 (0 ± 14.0		1,2 DAUM	80D	SPEC	_	$63-94 \pi \rho \rightarrow 3\pi$
100							X
1662.0	0 ± 10.0	2000	¹ BALTAY	77	HBC	+	$15 \pi^+ p \rightarrow p 3\pi$
1640	+10	575	KALELKAR	75	HBC	+	15 π^+ $p \rightarrow$
							$p\pi^+f_2$
1650	± 30		¹ ANTIPOV	73c	CNTR	-	25.40 π-ρ
1660	± 10		1 ASCOLI	73	HBC	_	5-25 π ρ
1000	1.0						$p\pi_2$
1660	± 25	260	CASO	72	HBC	+	11.7 π^{+} p
1660.0	0 ± 20.0		CASO	69B	HBC	_	$11 \pi^- \rho \rightarrow$
							$f_2\pi^-\rho$
	We do	not use the follow	ing data for averages	, fits	, limits,	etc. •	• •

- 1710.0 ± 20.0 1650.0 1600 ±10
- 3 DAUM 818 SPEC -63,94 $\pi^- \rho$ ⁴ PERNEGR $9+13+15~\pi^-~N$ 78 CNTR -THOMPSON 74¢ HBC 13 $\pi^+ p \rightarrow p \pi_2^+$
 - 1 From a fit to $J^{P}=2^{-}$ S-wave $f_{2}(1270)\pi$ partial wave.
 - 2 Clear phase rotation seen in 2^- S, 2^- P, 2^- D waves. We quote central value and spread of single-resonance fits to three channels.
- 3 From a two-resonance fit to four $2^-\,0^+$ waves. This should not be averaged with all the single resonance fits.
- ⁴Clear phase rotation seen in 2⁻ S and 2⁻ P waves.

$\pi_2(1670)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TEC	N CHG	COMMENT
250 ± 20	OUR ESTIMATE	This is only an edu			
		than the error o	on the ave	erage of t	he published values.
247 ± 11	OUR AVERAGE				
170 ± 80	700 ± 150	ANTIPOV	87 SIG	М –	50 π Cu →
		_			$\mu^+\mu^-\pi^-$ Cu
312.0 ± 50.0		⁵ DAUM	81B SPE	C –	63,94 π^{-} p
260 ± 20		⁶ EVANGELISTA	81 OM	EG -	$12 \pi^+ p \rightarrow 3\pi p$
219.0± 20.0		6.7 DAUM	800 SPE	C -	$63-94 \pi p \rightarrow 3\pi$
					X
285.0 ± 60.0	2000	6 BALTAY	77 HB	C +	$15 \pi^+ p \rightarrow p 3\pi$
240 ± 30	575	KALELKAR	75 HB	C +	15 $\pi^+ \rho \rightarrow$
					$p\pi^+ f_2$
300 ± 50		⁶ ANTIPOV	73c CN1	rr –	25,40 $\pi^- p$
270 ± 60		⁶ ASCOLI	73 HBG	: –	5-25 π~ p →
					$\rho \pi_2$
190 ±100	260	CASO	72 HB	C +	11.7 π^{+} ρ
240.0 ± 50.0	297	ARMENISE	69 DB	C +	$5.1~\pi^+~d \rightarrow ~d3\pi$

• • • We do not use the following data for averages, fits, limits, etc. • •

400.0	⁸ PERNEGR	78 CNTR -	$9+13+15 \pi^- N$
310 ± 40	THOMPSON	74c HBC +	$13 \pi^{+} p \rightarrow p \pi_{2}^{+}$
200 to 400	⁶ CASO	72 HBC +	11.7 π ⁺ ρ
130	CASO	69B HBC -	11 $\pi^- p$
150.0	CASO	69в НВС —	$11 \pi^- p \rightarrow$
			f ₂ π ⁻ p

- $^{5}\,\mathrm{From}$ a two-resonance fit to four $2^{-}\,0^{+}$ waves. This should not be averaged with all the single resonance fits. ⁶ From a fit to $J^P = 2^- f_2(1270)\pi$ partial wave.
- ⁷ Clear phase rotation seen in 2^{-} S, 2^{-} P, 2^{-} D waves. We quote central value and spread of single-resonance fits to three channels.
- 8 Clear phase rotation seen in 2^-S and 2^-P waves.

$\pi_2(1670)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$f_2(1270)\pi$	(56.2±3.2) %	
Γ_2	$\rho\pi$	(31 ±4)%	
Γ_3	$f_0(1400)\pi$	(8.7 ± 3.4) %	
Γ_4	$K\overline{K}^*(892) + c.c.$	(4.2±1.4) %	
Γ_5	$\eta\pi$	< 5 %	90%
Γ ₆	$\pi^{\pm} 2\pi^{+} 2\pi^{-}$	< 5 %	90%
Γ ₇	$\pi^{\pm}\pi^{+}\pi^{-}$		

CONSTRAINED FIT INFORMATION

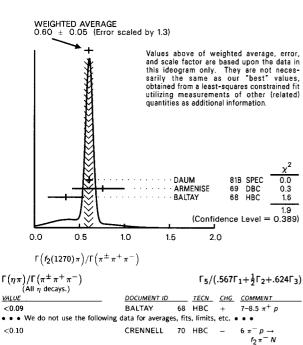
An overall fit to 4 branching ratios uses 6 measurements and one constraint to determine 4 parameters. The overall fit has a χ^2 1.9 for 3 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left<\delta x_i \delta x_j \right>/(\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{ ext{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one

π_2 (1670) BRANCHING RATIOS

$\Gamma(\rho\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-})$		1/2	$\Gamma_2/(.567)$	$\Gamma_1 + \frac{1}{2}\Gamma_2 + .624\Gamma_3$
VALUE	DOCUMENT ID		CN CHG	COMMENT
0.29±0.04 OUR FIT				
0.29 ± 0.05	⁹ DAUM	818 SF	PEC	63,94 π p
• • • We do not use the following	g data for averag	ges, fits, ii	mits, etc.	• • •
< 0.3	BARTSCH	68 HE	3C +	$8 \pi^+ p \rightarrow 3\pi p$
< 0.4	FERBEL	68 R\	/UE ±	

 $\Gamma(f_2(1270)\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-})$ $.567\Gamma_1/(.567\Gamma_1+\frac{1}{2}\Gamma_2+.624\Gamma_3)$ (With $f_2(1270) \rightarrow \pi^+ \pi^-$.)


VALUE		DOCUMENT ID	TECN	CHG	COMMENT
0.604 ± 0.035					
0.60 ± 0.05	OUR AVERAGE	Error includes scale	factor of 1.	See	the ideogram below.
$0.61\ \pm0.04$		¹⁰ DAUM	818 SPEC		63,94 $\pi^- p$
$0.76 \ ^{+ 0.24}_{- 0.34}$		ARMENISE	69 DBC	+	$5.1~\pi^+~d~\rightarrow~d~3\pi$
0.35 ± 0.20		BALTAY	68 HBC	+	7–8.5 $\pi^+ \rho$
• • • We do	not use the follow	ving data for average	s, fits, limit:	s, etc.	• • •
0.59		BARTSCH	68 HBC	-	$8 \pi^+ p \rightarrow 3\pi p$

 $^{10}\,\mathrm{From}$ a two-resonance fit to four $^{2-}\,\mathrm{0}^{+}\,$ waves.

 9 From a two-resonance fit to four 2^-0^+ waves.

< 0.09

 0.22 ± 0.10

• • We do not use the following	g data for average	s, fit	s, limits,	etc.	• • •
< 0.10	CRENNELL	70	HBC	_	$6 \pi^- p \rightarrow$
					$f_2\pi^-N$
$\Gamma(\pi^{\pm} 2\pi^{+} 2\pi^{-})/\Gamma(\pi^{\pm} \pi^{+} \pi^{-}$)		Γ ₆ /(.5671	$_{1}^{+\frac{1}{2}}\Gamma_{2}^{+}.624\Gamma_{3}^{-}$
VALUE	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	COMMENT
< 0.10	CRENNELL	70	HBC	_	6 π p →
					$f_2\pi^+N$
< 0.1	BALTAY	68	HBC	+	7,8.5 $\pi^+ p$
$\Gamma(f_0(1400)\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-})$ (With $f_0(1400) \to \pi^{+}\pi^{-}$.)	.6	524Γ ₃ /(.5671	$\Gamma_1 + \frac{1}{2}\Gamma_2 + .624\Gamma_3$
VALUE	DOCUMENT ID		TECN	COM	MENT
0.10±0.04 OUR FIT	**				
		818	SPEC	63,94	1 π ⁻ ρ
¹¹ From a two-resonance fit to fo	our 2 ⁻⁰⁺ waves.				
$\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma(f_2(12))$	$(270)\pi)$				Γ_4/Γ_1
VALUE	DOCUMENT ID		<u>TEÇN</u>	<u>CHG</u>	COMMENT
0.075±0.025 OUR FIT 0.075±0.025	12 ARMSTRONG	821	OMEG	-	16 π ⁻ p → κ+κ-π- p

π_2 (1670) REFERENCES

DOCUMENT ID

• • • We do not use the following data for averages, fits, limits, etc. • • •

13 DAUM

TECN COMMENT

81B SPEC 63,94 π⁻ p

 12 From a partial-wave analysis of $K^+K^-\pi^-$ system. D-wave/S-wave RATIO FOR $\pi_2(1670) \rightarrow f_2(1270)\pi$

13 From a two-resonance fit to four 2-0+ waves.

ANTIPOV	87	EPL 4 403	+Batarin+ (SERP, JINR, INRM, TBLI, BGNA, MILA)
ARMSTRONG	82B	NP B202 1	+Baccari (AACH, BARI, BONN, CERN, GLAS+)
DAUM	81B	NP B182 269	+Hertzberger+ (AMST, CERN, CRAC, MPIM, OXF+)
EVANGELISTA	81	NP B178 197	+ (BARI, BONN, CERN, DARE, LIVP+)
Also	81B	NP B186 594	Evangelista
DAUM	80D	PL 89B 285	+Hertzberger+ (AMST, CERN, CRAC, MPIM, OXF+) JP
PERNEGR	78	NP B134 436	+Aebischer+ (ETH, CERN, LOIC, MILA)
BALTAY	77	PRL 39 591	+Cautis, Kalelkar (COLU) JP
KALELKAR	75	Nevis 207 Thesis	(COLUÍ
THOMPSON	74C	PRL 32 331	+Badewitz, Gaidos, McIlwain, Paler+ (PURD) JP
Also	74B	NP B69 381	Thompson, Badewitz, Gaidos, McIlwain+ (PURD) JP
ANTIPOV	73C	NP B63 153	+Ascoli, Busnello, Focacci+ (CERN, SERP) JP
ASCOLI	73	PR D7 669	(ILL, TNTO, GENO, HAMB, MILA, SACL) JP
CASO	72	NP B36 349	+Maddock, Bassler+ (DURH, GENO, DESY, MILA+)
CRENNELL	70	PRL 24 781	+Karshon, Lai, Scarr, Sims (BNL)
ARMENISE	69	LNC 2 501	+Ghidini, Forino, Cartacci+ (BARI, BGNA, FIRZ)
CASO	69B	LNC 2 437	+Conte, Tomasini, Cantore+ (GENO, MILA, SACL)
BALTAY	68	PRL 20 887	+Kung, Yeh, Ferbel+ (COLU, ROCH, RUTG, YALE)1
BARTSCH	68	NP B7 345	+Keppel, Kraus+ (AACH, BERL, CERN) JP
FERBEL	68	Phil. Conf. 335	(ROCH)

— OTHER RELATED PAPERS -

CHEN	83B	PR D28 2304	+Fenker+ (ARIZ, FNAL, FLOR, NDAM, TUFT+)
LEEDOM	83	PR D27 1426	+DeBonte, Gaidos, Key, Wong+ (PURD, TNTO)
BELLINI	82B	NP B199 1	+ (CERN, MILA, JINR, BGNA, HELS, PAVI, WARS+)
BALTAY	78	PR D17 52	+Cautis, Cohen, Csorna, Kalelkar+ (COLU, BING)
CORDEN	78C	NP B136 77	+Dowell, Garvey+ (BIRM, RHEL, TELA, LOWC) JP
ROBERTS	78B	PR D18 59	+Kruse, Edetstein+ (ILL, CMU, NWES, ROCH)
CAUTIS	77	Nevis 221 Thesis	(COLU) JP
CERRADA	77B	NP B126 241	+Blockzijl, Heinen+ (AMST, CERN, NIJM, OXF) JP
BEKETOV	75	SJNP 20 379	+Zombkovskii, Kaidalon, Konovalov+ (ITEP)
		Translated from YAF 2	0 709.
EMMS	75B	PL 60B 109	+Jones, Kinson, Bell, Dale+ (BIRM, DURH, RHEL) JP
HORNE	75	PR D11 996	+Hagopian, Hagopian, Bensinger+ (FSU, BRAN)
WAGNER	75	PL 58B 201	+Tabak, Chew (LBL) JP
ASCOLI	74	PR D9 1963	+Cutler, Jones, Kruse, Roberts, Weinstein+ (ILL)
LICHTMAN	74	NP B81 31	+Biswas, Cason, Kenney, McGahan+ (NDAM)
OTTER	74	NP B80 1	+Rudolph+ (AACH, BERL, BONN, CERN, HEID) JP
TABAK	74	Boston Conf.	+Ronat, Rosenfeld, Lasinski+ (LBL, SLAC) JP
ANTIPOV	73B	NP B63 141	+Ascoli, Busnello, Focacci+ (CERN, SERP) JP
ASCOLI	73B	PR D8 3894	+ Jones, Weinstein, Wyld + Bar-Nir, Benary, Dagan+ + Forino, Cartacci+ (BARI, BGNA, FIRZ)
ALEXANDER	72	NP B45 29	+Bar-Nir, Benary, Dagan+ (TELA)
ARMENISE	72	LNC 4 201	+Forino, Cartacci+ (BARI, BGNA, FIRZ)
SALZBERG	72	NP B41 397	+Harrison, Heyda, Johnson, Kim, Law+ +Sombkowsky, Konovalov, Krutschinin+ (ITEP) JP
BEKETOV	71	SJNP 4 765	+Sombkowsky, Konovalov, Krutschinin+ (ITEP) JP
		Translated from unknow	
PALER	71	PRL 26 1675	+Badewitz, Barton, Miller, Palfrey, Tebes (PURD)
BRANDENB		NP B16 369	Brandenburg, Brenner, Ioffredo+ (HARV)
CHIEN	70B	Phil. Conf. 275	(UHL)
MIYASHITA	70	PR D1 771	+VonKrogh, Kopelman, Libby (COLO)
BARNES	69B	PRL 23 142	+Chung, Eisner, Flaminio+ (BNL)
CASO	68	NC 54A 983	+Conte, Cords, Diaz+ (GENO, HAMB, MILA, SACL)
IOFFREDO	68	PRL 21 1212	+Brandenburg, Brenner, Eisenstein+ (HARV)
LAMSA	68	PR 166 1395	+Cason, Biswas, Derado, Groves+ (NDAM)
DANYSZ	67B	NC 51A 801	+French, Simak (CERN)
DUBAL	67	NP B3 435	+Focacci, Kienzle+ (CERN Missing Mass Spect. Collab.)
Also	68	Thesis 1456	Dubal (GEVA)
FOCACCI	66	PRL 17 890	+Kienzle, Levrat, Maglich, Martin (CERN)
LEVRAT	66	PL 22 714	+Tolstrup+ (CERN Missing Mass Spect. Collab.)
LUBATTI	66	Berkeley Thesis	(LRL)
VETLITSKY	66	PŁ 21 579	+Guszavin, Kliger, Zoiganov+ (ITEP)
FORINO	65B	PL 19 68	+Gessaroli+ (BGNA, BARI, FIRZ, ORSA, SACL)

 $\phi(1680)$

 e^+e^- PRODUCTION

121 ± 47

$$I^{G}(J^{PC}) = 0^{-}(1^{--})$$

First identified using Dalitz plot analysis of $e^+\,e^- \to KK^*$ (892) (BIZOT 80, DELCOURT 81). We do not list anymore ω radial excitations under this particle. See also $\omega(1390)$ and $\omega(1600)$.

$\phi(1680)$ MASS

VALUE (MeV)	DOCUMENT ID		COMMENT
1680±50 OUR ESTIMATE	This is only an educat	ted guess; th	e error given is larger than
	the error on th	ie average of	the published values.
• • We do not use the follow	wing data for average	s, fits, limits	s, etc. • • •
1655±17	¹ BISELLO	88B DM2	$e^+ e^- \rightarrow K^+ K^-$
1680 ± 10	² BUON	82 DM1	$e^+ e^- \rightarrow hadrons$
1677 ± 12	³ MANE	82 DM1	$e^+ e^- \rightarrow \kappa_S^0 \kappa \pi$
PHOTOPRODUCTION			,
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • We do not use the folion	wing data for average	s, fits, limits	s, etc. • • •
1726 ± 22	BUSENITZ	89 TPS	$\gamma \rho \rightarrow K^+ K^- X$
1760 ± 20	ATKINSON	85C OMEC	$5.20-70 \gamma p \rightarrow K\overline{K} X$
1690±10	ASTON	81F OME	$5.25-70 \gamma p \rightarrow K^+ K^- X$
1			

 1 From global fit including $\rho,\,\omega,\,\phi$ and $\rho(1700)$ assume mass 1570 MeV and width 510 MeV for ρ radial excitation. From global fit of $\rho,\,\omega,\,\phi$ and their radial excitations to channels $\omega\,\pi^+\,\pi^-,\,K^+\,K^-,\,K^0_0\,K^0_\rho,\,K^0_0\,K^\pm\,\pi^\mp$. Assume mass 1570 MeV and width 510 MeV for ρ radial excitations, mass 1570 and width 500 MeV for ω radial excitation.

³ Fit to one channel only, neglecting interference with ω , $\rho(1700)$.

$\phi(1680)$ WIDTH

e ⁺ e ⁻ PRODUCTION					
VALUE (MeV)	DOCUMENT I			OMMENT	
150±50 OUR ESTIMATE	This is only an educa the error on	ted guess the avera	the err	or given i e publishe	s larger than d values.
• • • We do not use the follow	owing data for avera	ges, fits, I	imits, et	c. • • •	
207 ± 45	4 BISELLO	88B D	M2 e	+ e ⁻ →	K^+K^-
185 ± 22	⁵ BUON			+ e ⁻ →	
102 ± 36	⁶ MANE	82 D	M1 e	+ e ⁻ →	$\kappa_S^0 \kappa_\pi$
PHOTOPRODUCTION					
VALUE (MeV)	DOCUMENT I	<u> </u>	ECN C	OMMENT	
• • • We do not use the follow	owing data for avera	ges, fits, I	imits, et	C. • • •	

89 TPS $\gamma p \rightarrow K^+ K^- X$ 85c OMEG 20-70 $\gamma p \rightarrow K \overline{K} X$ 80 ± 40 ATKINSON 81F OMEG 25-70 $\gamma p \rightarrow K^+ K^- X$ **ASTON**

89 TPS

BUSENITZ

From global fit including ρ , ω , ϕ and ρ (1700) assume mass 1570 MeV and width 510 MeV for ρ radial excitation.

From global fit of ρ , ω , ϕ and their radial excitations to channels $\omega \pi^+ \pi^-$, $K^+ K^-$, K^0_0

⁶ Fit to one channel only, neglecting interference with ω , $\rho(1700)$.

 $\phi(1680)$, $\rho_3(1690)$

$\phi(1680)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ_1	$K\overline{K}^*(892) + c.c.$	dominant	
Γ_2	κ κ	seen	
Γ_3	$e^+ e^-$	seen	
Γ_4	ωππ Κ ⁰ 5 Κ π	possibly seen	
Γ_5	$K_S^0 K \pi$		

$\phi(1680) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into $e^{\pm} \ e^{-}$ and with the total width is obtained from the integrated cross section into channel (l) in e^+ e^- annihilation. We list only data that have not been used to determine the partial width $\Gamma(1)$ or the branching ratio $\Gamma(1)/total$.

VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
• • We do not use the f	ollowing data for average	s, fit	s, limits	, etc. • • •	
0.413 ± 0.033	⁷ BIZOT	80	DM1	$e^+\ e^-$	
$\Gamma(K\overline{K}) \times \Gamma(e^+e^-)/\Gamma$	total				$\Gamma_2\Gamma_3/\Gamma_3$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
• • We do not use the f	ollowing data for average	s, fit	s, limits	, etc. • • •	
0.053 ± 0.035	⁷ BIZOT	80	DM1	$e^+\ e^-$	
$\Gamma(\omega\pi\pi) \times \Gamma(e^+e^-)/\Gamma$	- total				Γ ₄ Γ ₃ /Γ
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the f	ollowing data for average	s, fit	s, limits	, etc. • • •	
~ 0.017	7 BIZOT	80	DM1	e^+e^-	
⁷ Model dependent.					

ϕ (1680) BRANCHING RATIOS

$\Gamma(KK'(892) + \text{c.c.})/\Gamma(K_S^0K\pi)$						
VALUE	DOCUMENT ID		TECN	COMMENT		
dominant	MANE	82	DM1	$e^+ e^- \rightarrow$	$\kappa_S^0 \kappa^{\pm} \pi^{\mp}$	
$\Gamma(K\overline{K})/\Gamma(K\overline{K}^*(892) + c.c.)$					Γ_2/Γ_1	
VALUE	DOCUMENT ID		TECN	COMMENT		
0.07 ± 0.01	BUON	82	DM1	$e^+\ e^-$		
$\Gamma(\omega \pi \pi)/\Gamma(K \overline{K}^*(892) + c.c.)$					Γ_4/Γ_1	
VALUE	DOCUMENT ID		TECN	COMMENT		
<0.10	BUON	82	DM1	$e^+ e^-$		

ϕ (1680) REFERENCES

BUSENITZ BISELLO ATKINSON BUON MANE ASTON DELCOURT	85C 82 82 81F 81	ZPHY C39 13 ZPHY C27 233 PL 118B 221 PL 112B 178 PL 104B 231 PL 99B 257	+ Busetto+ + (BONN, CERN, + Bisello, Bizot, Cordier, De + Bisello, Bizot, Buon, Delco (BONN, CERN, + Bisello, Bizot, Buon, Cord	
BIZOT		Madison Conf. 546		lcourt (LALO, USTL)

OTHER RELATED PAPERS -

ATKINSON	86C	ZPHY C30 541	+	(BONN, CERN, GLAS, LANC, MCHS, LPNP+)
ATKINSON	84	NP B231 15	+	(BONN, CERN, GLAS, LANC, MCHS, LPNP+)
ATKINSON	84B	NP B231 1	+	(BONN, CERN, GLAS, LANC, MCHS, LPNP+)
ATKINSON	83C	NP B229 269	+	(BONN, CERN, GLAS, LANC, MCHS, LPNP+)
CORDIER	81	PL 106B 155	+Bisello,	Bizot, Buon, Delcourt, Mane (ORSA)
MANE	81	PL 99B 261	+ Bisello,	Bizot, Buon, Cordier, Delcourt (ORSA)
ASTON	80F	NP B174 269		(BONN, CERN, EPOL, GLAS, LANC, MCHS+)

 $\rho_{3}(1690)$ was g(1690)

 $I^{G}(J^{PC}) = 1^{+}(3^{--})$

$\rho_3(1690)$ MASS

We include only high statistics experiments in the average for the 2π and $K\,\overline{K}$ modes.

2π MODE						
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1691 ± 5	OUR ESTIMATE	This is only an edu				
		than the error of	on th	e averag	e of the	he published values.
1691.4 ± 2.7	OUR AVERAGE	Includes data from t	the d	atablock	that	follows this one.
1677 ±14		EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow 2\pi p$
1679.0 ± 11.0	476	BALTAY	78B	HBC	0	15 $\pi^+ \rho \rightarrow$
						$\pi^+\pi^-n$
1678.0 ± 12.0	175	1 ANTIPOV	77	CIBS	0	$25 \pi^- p \rightarrow p 3\pi$
1690 ± 7	600	¹ ENGLER	74	DBC	0	$6 \pi^+ n \rightarrow$
		_				$\pi^+\pi^-\rho$
1693 ± 8		² GRAYER	74	ASPK	0	$17 \pi^- p \rightarrow$
						$\pi^+\pi^-n$
1678 ± 12		MATTHEWS	71C	DBC	0	7 π N
• • • We do	not use the follow	ing data for averages	, fits	, limits,	etc. •	• •
1734.0 ± 10.0		3 CORDEN	79	OMEG		12-15 π p
						n 2π
1692 ± 12		2.4 ESTABROOKS	75	RVUE		$17 \pi^- p \rightarrow$
						$\pi^+\pi^-n$
1737.0 ± 23.0		ARMENISE	70	DBC	0	9 π ⁺ N
1650.0 ± 35.0	122	BARTSCH	70B	HBC	+	$8 \pi^+ p \rightarrow N2\pi$
1687 ± 21		STUNTEBECK	70	HDBC	0	$8 \pi^{-} p$, $5.4 \pi^{+} d$
1683 ± 13		ARMENISE	68	DBC	0	$5.1 \pi^{+} d$
1670.0 ± 30.0		GOLDBERG	65	HBC	n	$6 \pi^{+} d, 8 \pi^{-} p$

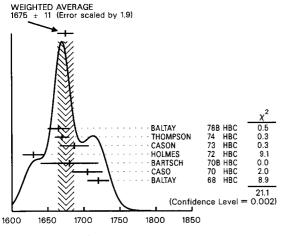
 $^{^1}$ Mass errors enlarged by us to $\Gamma/\textit{N}^{1/2};$ see the note with the K*(892) mass.

$K\overline{K} + K\overline{K}\pi$ MODE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
The data in this block is	included in	the average prin	ted f	or a pre	vious c	fatablock.
1699.0 ± 5.0		ALPER	80	CNTR	0	$62 \pi^- p \rightarrow$
	56	MARTIN				K + K - n
1698 ± 12	6k 5,6	MARTIN	780	SPEC		$10 \pi \rho \rightarrow K_S^0 K^- \rho$
1692 ± 6		BLUM	75	ASPK		18.4 π [∞] ρ →
						$8 \pi^{+} p \rightarrow K \overline{K} \pi$
1690.0 ± 16.0		ADERHOLZ				,
• • We do not use the	following o	data for averages	, fits	, limits,	etc. •	• •
1694.0 ± 8.0	7	COSTA	80	OMEG		10 π p →
						$K^{+}K^{-}n$

$(4\pi)^{\pm}$ MODE

()						
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1675 ±11	OUR AVERAGE	Error includes scale	facto	or of 1.9.	See	the ideogram below.
1665.0 ± 15.0	177	BALTAY	78B	HBC	+	$15 \pi^+ \rho \rightarrow \rho 4\pi$
1670 ± 10		THOMPSON	74	HBC	+	13 π ⁺ ρ
1687 ± 20		CASON	73	HBC	_	$8,18.5 \pi^{-} p$
1630 ± 15		HOLMES	72	HBC	+	10-12 K ⁺ p
1680.0 ± 40.0	144	BARTSCH	70B	HBC	+	$8 \pi^+ p \rightarrow N4\pi$
1705.0 ± 21.0		CASO	70	HBC	_	11.2 $\pi^- p \rightarrow$
						$n\rho 2\pi$
1720 ± 15		BALTAY	68	HBC	+	7, 8.5 π ⁺ ρ
• • • We do	not use the follow	wing data for averages	, fits	, limits,	etc.	• • •
1694 ± 6		⁸ EVANGELISTA	81	OMEG		$12 \pi^- p \rightarrow \rho 4\pi$
1718 ± 10		9 EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow p4\pi$
1673 ± 9		10 EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow p4\pi$
1733 ± 9	66	¹¹ KLIGER	74	HBC	_	$4.5 \pi^- p \rightarrow p4\pi$
1685 ±14		¹¹ CASON	73	HBC	_	8.18.5 $\pi^- \rho$
1689.0 ± 20.0	102	11 BARTSCH	70B	HBC	+	$8 \pi^- p \rightarrow N2\rho$


 $^{^2}$ Uses same data as HYAMS 75 3 From a phase shift solution containing a $t_2^\prime(1525)$ width two times larger than the $K\overline{K}$

result.
4 From phase-shift analysis. Error takes account of spread of different phase-shift solutions.

 $^{^{5}}$ From a fit to $J^{P}=3^{-}$ partial wave. 6 Systematic error on mass scale subtracted. 7

⁷ They cannot distinguish between $ho_3(1690)$ and $\omega_3(1670)$.

 $^{^{8}}$ From ρ^{-} ρ^{0} mode, not independent of the other two EVANGELISTA 81 entries. 9 From $a_{2}(1320)^{-}$ π^{0} mode, not independent of the other two EVANGELISTA 81 entries. 10 From $a_{2}(1320)^{0}$ π^{-} mode, not independent of the other two EVANGELISTA 81 entries. 11 From ρ^{\pm} ρ^{0} mode.

 $ho_3(1690)$ mass, $(4\pi)^\pm$ mode (MeV)

ωπ MODE VALUE (MeV)	DOCUMENT ID	TECN CHG	COMMENT
1680 ± 7 OUR AVERAGE			
1690 ±15	EVANGELISTA 81	OMEG -	$12 \pi^- p \rightarrow \omega \pi p$
1666.0 ± 14.0	GESSAROLI 77	HBC	$11 \pi^- p \rightarrow \omega \pi p$
1686 ± 9	THOMPSON 74	HBC +	13 $\pi^{+} p$
1654 ±24	BARNHAM 70	HBC +	$10 K^+ p \rightarrow \omega \pi$
			X

 $\eta\pi^+\pi^-$ MODE

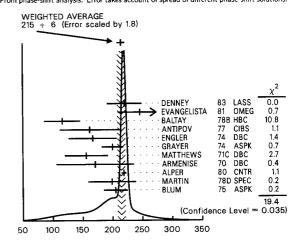
VALUE (MeV)

(For difficulties with MMS experiments, see the $a_2(1320)$ mini-review in the 1973 edition.)

TECN CHG COMMENT

1680 ±15	FUKUI	88	SPEC	0	8.95 $\pi^- \rho \rightarrow$
					$\eta \pi^+ \pi^- n$
■ ● ● We do not use t	he following data for average	s, fit	s, limits,	etc.	• • •
1700.0 ± 47.0	¹² ANDERSON	69	MMS	-	16 π^- p backward
1632 ±15	12,13 FOCACCI	66	MMS	-	$7-12 \pi^- p \rightarrow p$
1700 115	12,13 FOCACCI		MMS		MM
1700 ± 15	FOCACCI	00	MINI	_	7-12 π ⁻ p → p MM
1748 ±15	12,13 FOCACCI	66	MMS	_	$7-12 \pi^- p \rightarrow p$
					MM

DOCUMENT ID


$\rho_{3}(1690)$ WIDTH

We include only high statistics experiments in the average for the 2π and $K\overline{K}$

$2\pi N$	IODE								
VALUE	(MeV)		EVTS		DOCUMENT ID		TECN	CHG	COMMENT
215	± 20	OUR	ESTIMATE	This					or given is larger ne published values.
215	± 6	OUR	AVERAGE	includ	les data from th ror includes sca below.				illows this one. Er- e the ideogram
220	±29				DENNEY	83	LASS		10 π^{+} N
246	± 37				EVANGELISTA	81	OMEG	-	$12 \pi^- p \rightarrow 2\pi p$
116.0	± 30.0		476		BALTAY	78B	HBC	0	15 π^+ $p \rightarrow$
	± 50.0 ± 40		175 600		ANTIPOV ENGLER	77 74	CIBS DBC	0 0	$ \begin{array}{c} \pi^{+} \pi^{-} n \\ 25 \pi^{-} p \rightarrow p 3\pi \\ 6 \pi^{+} n \rightarrow \pi^{+} \pi^{-} p \end{array} $
200	±18			15	GRAYER	74	ASPK	0	$ \begin{array}{ccc} \pi & \pi & \rho \\ 17 & \pi^{-} & \rho & \rightarrow \\ \pi^{+} & \pi^{-} & n \end{array} $
156	± 36				MATTHEWS	710	DBC	0	7 π ^{"+} N "
171.0	± 65.0				ARMENISE	70	DBC	0	$9 \pi^{+} d$
	We d	o not	use the follo	wing d	ata for averages	, fits	, limits,	etc. •	• •
322.0	± 35.0			16	CORDEN	79	OMEG		$12-15 \pi^- p \rightarrow n2\pi$
240	± 30			15,17	ESTABROOKS	75	RVUE		$17 \pi^- p \rightarrow$
180.0	± 30.0		122	!	BARTSCH	7 08	HBC	+	$8 \pi^{+} p \xrightarrow{\pi} N2\pi$
	+ 72 - 46				STUNTEBECK	70	HDBC	0	8 $\pi^ ho$, 5.4 π^+ d
188	±49				ARMENISE	68	DBC	0	$5.1 \pi^{+} d$
180.0	± 40.0				GOLDBERG	65	HBC	0	6 π^+ d, 8 π^- p

 14 Width errors enlarged by us to $^{4}\Gamma/N^{1/2}$; see the note with the $K^*(892)$ mass.

15 Uses same data as HYAMS 75 and BECKER 79. 16 From a phase shift solution containing a t_2^\prime (1525) width two times larger than the $K\overline{K}$ result. 17 From phase-shift analysis. Error takes account of spread of different phase-shift solutions.

 $\rho_3(1690)$ width, $\pi\pi + K\overline{K} + K\overline{K}\pi$ modes (MeV)

$K\overline{K} + K\overline{K}\pi MOD$	E					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
The data in this block i	s included in	the average prin	ited	for a pre	vious	datablock.
219.0 ± 4.0		ALPER	80	CNTR	0	$62 \pi^- \rho \rightarrow K^+ K^- \rho$
199 ±40	6000 1	⁸ MARTIN	780	SPEC		$62 \pi^{-} p \rightarrow K^{+} K^{-} n$ $10 \pi p \rightarrow K^{0} K^{-} p$ $18.4 \pi^{-} p \rightarrow$
205 ± 20		BLUM	75	ASPK	0	$18.4 \pi^{-} p \rightarrow nK^{+}K^{-}$
• • • We do not use the	ne following	data for average	s, fit	s, limits,	etc.	• • •
186.0 ± 11.0	1			OMEG		$10 \pi^- p \rightarrow K^+ K^- p$
112.0 ± 60.0		ADERHOLZ	69	нвс	+	$8 \pi^{+} \stackrel{K^{+} K^{-} n}{\rho \to K \overline{K} \pi}$
18 From a fit to $J^P =$ 19 They cannot disting			ω ₃ (1	670).		

$(4\pi)^{\pm}$ MODE VALUE (MeV)

EVTS

:	L19	±13	OUR AVERAGE						
	105.0	0.00 ± 30.0	17	7	BALTAY	78B	HBC	+	$15 \pi^+ \rho \rightarrow \rho 4\pi$
:		± 25			THOMPSON	74	HBC	+	13 $\pi^{+} p$
	169	+ 70 - 48			CASON	73	HBC	-	8,18.5 π ⁻ p
	130	± 30			HOLMES	72	HBC	+	10−12 K ⁺ p
:	135.0	0.00 ± 30.0	14	4	BARTSCH	70B	HBC	+	$8 \pi^+ \rho \rightarrow N4\pi$
	100	± 35			BALTAY	68	HBC	+	7, 8.5 $\pi^+ p$
	• •	• We d	to not use the foll	lowing d	ata for averages	, fits	, limits,	etc. •	• •
	123	±13			EVANGELISTA				$12 \pi^- p \rightarrow p4\pi$
1	230	± 28		21	EVANGELISTA	81	OMEG	_	$12 \pi^- p \rightarrow p4\pi$
	184	± 33		22	EVANGELISTA	81	OMEG	-	$12 \pi^- p \rightarrow p4\pi$
	150		6	6 23	KLIGER	74	HBC	-	$4.5~\pi^-\rho \rightarrow ~\rho4\pi$
	125	+ 83 - 35				73	нвс	_	8,18.5 $\pi^- \rho$
	180.0	0.00 ± 30.0) 9	0 23	BARTSCH	70B	HBC	+	$8 \pi^+ p \rightarrow N a_2 \pi$
	160.0	0 ± 30.0	10	2	BARTSCH	70B	HBC	+	$8 \pi^+ p \rightarrow N2\rho$
	20 p	rom a	$-a^0$ mode not in	denend	ent of the other	two	EVANG	FLIST	A 81 entries

DOCUMENT ID

TECN CHG COMMENT

 20 From $\rho^ \rho^0$ mode, not independent of the other two EVANGELISTA 81 entries. 21 From $a_2(1320)^ \pi^0$ mode, not independent of the other two EVANGELISTA 81 entries. 22 From $_{
ho}^{2}(1320)^{0}$ $^{\pi}$ mode, not independent of the other two EVANGELISTA 81 entries. 23 From $_{
ho}^{\pm}$ $_{
ho}^{0}$ mode.

ωπ MODE VALUE (MeV) 114 ±20 OUR AVERAGE	DOCUMENT ID	TECN CHG	COMMENT
190 ±65	EVANGELISTA 81	OMEG -	$12 \pi^- p \rightarrow \omega \pi p$
160.0 ± 56.0	GESSAROLI 77	HBC	$11 \pi^- p \rightarrow \omega \pi p$
89 ±25	THOMPSON 74	HBC +	13 $\pi^{+} p$
$130 \begin{array}{c} +73 \\ -43 \end{array}$	BARNHAM 70	НВС +	$10 \text{ K}^+ p \rightarrow \omega \pi$

 $\eta \pi^+ \pi^-$ MODE (For difficulties with MMS experiments, see the $a_2(1320)$ mini-review in the 1973 edition.)

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
106 ±27	FUKUI	88	SPEC	0	$8.95 \pi^- p \rightarrow$
					$\eta \pi^+ \pi^- \eta$

 $^{^{12}}$ Seen in 2.5–3 GeV/c $\overline{\rho}\rho,~2\pi^+\,2\pi^-$, with 0, 1, 2 $\pi^+\,\pi^-$ pairs in ρ band not seen by OREN 74 (2.3 GeV/c $\overline{\rho}\rho)$ with more statistics. (Jan. 1976)

¹³ Not seen by BOWEN 72.

$\rho_3(1690)$

• • • We do not use	the following data for average	s, fit	s, limits	, etc.	• • •
195.0	²⁴ ANDERSON	69	MMS	-	16 $\pi^- p$ backward
< 21	^{24,25} FOCACCI	66	MMS	-	7-12 $\pi^- \rho \rightarrow \rho$
< 30	24,25 FOCACCI	66	MMS		$7-12 \pi^{-} \rho \rightarrow \rho$
< 38	^{24,25} FOCACCI	66	MMS	-	$7-12 \pi^- \rho \rightarrow \rho$

²⁴ Seen in 2.5–3 GeV/c $\bar{p}p$, $2\pi^{+}2\pi^{-}$, with 0, 1, 2 $\pi^{+}\pi^{-}$ pairs in ρ^{0} band not seen by OREN 74 (2.3 GeV/c $\bar{p}p$) with more statistics. (Jan. 1979)

²⁵ Not seen by BOWEN 72.

$\rho_3(1690)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor
Γ1	4π	(71.1 ±1.9)%	
Γ_2	$\pi \pi$	$(23.6 \pm 1.3)\%$	
Γ_3	$K\overline{K}\pi$	$(3.8 \pm 1.2)\%$	
Γ4	ΚK	$(1.58 \pm 0.26)\%$	1.2
Γ_5	$\eta \pi^+ \pi^-$	seen	
۲6	$\pi \pi \rho$ Excluding 2ρ and $a_2(1320)\pi$.		
Γ ₇	$a_2(1320)\pi$		
Γ8	ωπ		
و۲	$\rho \rho$		
Γ ₁₀	$\phi \pi$		
Γ_{11}	$\eta \pi$		
Γ_{12}	$\pi^{\pm} \pi^{+} \pi^{-} \pi^{0}$		
Γ ₁₃	$\pi^{\pm} 2\pi^{+} 2\pi^{-} \pi^{0}$		

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 10 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=$ 14.7 for 7 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{
m total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

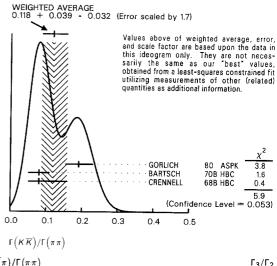
-77 *x*₂ -74 17 *x*3 -15 2 0 x_1 x_2 *x*₃

$ho_3(1690)$ BRANCHING RATIOS

$\Gamma(\pi\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	CHG	Γ ₂ /I
0.236 ± 0.013 OUR FIT 0.243 ± 0.013 OUR AVERAG			JECN	<u>CHG</u>	COMMENT
$0.259 + 0.018 \\ -0.019$	BECKER	79	ASPK	0	$17 \pi^- p$ polarized
0.23 ±0.02			OMEG		$12-15 \pi^- \rho \rightarrow$
0.22 ±0.04 • • • We do not use the fol					$7 \begin{array}{c} n2\pi \\ 7 \pi^+ n \rightarrow \pi^- p \end{array}$
0.245 ± 0.006	²⁷ ESTABROOK				$17 \pi^{-} p \rightarrow $

²⁶One-pion-exchange model used in this estimation.

27 From phase-shift analysis of HYAMS 75 data.


 $0.08 \begin{array}{l} +0.08 \\ -0.03 \end{array}$

rioin phase-smit allarysis	of ITTAMS 15 data.				
$\Gamma \big(\pi \pi \big) / \Gamma \big(\pi^{\pm} \pi^{+} \pi^{-} \pi^{0} \big)$					Γ_2/Γ_{12}
VALUE	DOCUMENT ID		TECN_	CHG	COMMENT
0.35 ± 0.11	CASON	73	HBC		8,18.5 π p
• • • We do not use the fol	lowing data for average	es, fit	s, limits	etc.	• •
< 0.2	HOLMES	72	HBC	+	$10-12 K^+ \rho$
< 0.12	BALLAM	718	HBC	-	16 $\pi^- \rho$
$\Gamma(\pi\pi)/\Gamma(4\pi)$					Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.332 ± 0.026 OUR FIT Err					
0.30 ±0.10	BALTAY	78e	HBC	0	$15 \pi^+ \rho \rightarrow \rho 4\pi$
$\Gamma(K\overline{K})/\Gamma(\pi\pi)$					Γ_4/Γ_2
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.067 ± 0.011 OUR FIT En					
$0.118^{+0.039}_{-0.032}$ OUR AVERAG	E Error includes scale	facto	or of 1.7	'. See	the ideogram below.
$0.191 + 0.040 \\ -0.037$	GORLICH	80	ASPK	0	17,18 $\pi^- \rho$ polarized
0.08 ±0.03	BARTSCH	7∩¤	HBC	_	ized 8 m + n

CRENNELL

68B HBC

 $6.0 \pi^{-} p$

$\Gamma(K\overline{K}\pi)/\Gamma(\pi\pi)$				Γ_3/Γ_2
VALUE	DOCUMENT ID	TECN	CHG	COMMENT
0.16±0.05 OUR FIT				
0.16 ± 0.05	²⁸ BARTSCH	70B HBC	+	8 π ⁺ ρ
²⁸ Increased by us to correspo	nd to B(m (1690) →	$\pi \pi = 0.24$		

 $\left[\Gamma(\pi\pi\rho) + \Gamma(a_2(1320)\pi) + \Gamma(\rho\rho)\right]/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$

((() () () () () ()	<i>")</i>				' 9/ ' 12
VALUE	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
• • • We do not use	the following	ng data for average	s, fits, limit	s, etc.	• • •
0.12 ± 0.11		BALTAY	788 HBC	+	15 $\pi^+ p \rightarrow p4\pi$
0.56	66				$4.5 \pi^- \rho \rightarrow \rho 4\pi$
0.13 ± 0.09		²⁹ THOMPSON	74 HBC	+	13 $\pi^{+} p$
0.7 ± 0.15		BARTSCH	70s HBC	-	8 π ⁺ n

 $^{29}\,\rho\rho$ and $a_2(1320)\,\pi$ modes are indistinguishable.

 0.48 ± 0.16 CASO 68 HBC - 11 π⁻⁻ p

$\Gamma(a_2(1320)\pi)/\Gamma(\pi$	$\pm \pi^{+}\pi^{-}\pi^{0}$				Γ_7/Γ_{12}
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
\bullet \bullet We do not use	the following data for average	s, fits	, limits	, etc.	• •
0.66 ± 0.08	BALTAY		нвс		$15 \pi^+ p \rightarrow p4\pi$
0.36 ± 0.14	30 THOMPSON	74	HBC	+	13 π ⁺ ρ
not seen	CASON	73	HBC	_	$8.18.5 \pi^- \rho$
0.6 ± 0.15	BARTSCH	70B	HBC	+	8 π ⁺ p
0.6	BALTAY	68	HBC	+	7,8.5 $\pi^+ p$

$^{3U} ho ho$ and $a_2(1320)$ π modes are indistinguishable.						
$\Gamma(\omega\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$				Γ_8/Γ_{12}		
VALUE CL%	DOÇUMENT ID	TECN	CHG	COMMENT		
0.23 ± 0.05 OUR AVERAGE	Error includes scale f	factor of :	1.2.			
0.33 ± 0.07	THOMPSON	74 HBC	+	13 $\pi^{+} \rho$		
0.12 ± 0.07	BALLAM	718 HBC	_	16 π ⁻ ρ		
0.25 ± 0.10	BALTAY	68 HBC	+	7,8.5 π^{+} p		
0.25 ± 0.10	JOHNSTON	68 HBC	-	7.0 π ⁻ p		
• • We do not use the follow	wing data for averages,	, fits, limi	ts, etc.	• • •		
< 0.11 95	BALTAY	788 HBC	+	$15 \pi^+ \rho \rightarrow \rho 4\pi$		
< 0.09	KLIGER	74 HBC	-	$4.5 \pi^- p \rightarrow p4\pi$		
$\Gamma(\phi\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})$				Γ_{10}/Γ_{12}		
VALUE	DOCUMENT ID	TECN	<u>CHG</u>	COMMENT		

• • • We do not use the following data for averages, fits, limits, etc. • • • < 0.11 BALTAY 68 HBC + 7,8.5 $\pi^{+} \rho$

```
\Gamma(\pi^{\pm}2\pi^{+}2\pi^{-}\pi^{0})/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})
                                                                                                          \Gamma_{13}/\Gamma_{12}
                                                DOCUMENT ID
                                                                          TECN CHG COMMENT
\bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet
                                                BALTAY
                                                                     68 HBC +
                                                                                            7.8.5 \pi^{+} D
\Gamma(\eta\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-}\pi^{0})
                                                                                                          \Gamma_{11}/\Gamma_{12}
                                                DOCUMENT ID
                                                                        TECN CHG COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                THOMPSON 74 HBC
\Gamma(K\overline{K})/\Gamma_{\text{total}}
                                                                                                               \Gamma_4/\Gamma
VALUE DOCUMENT ID TEC

0.0158±0.0026 OUR FIT Error includes scale factor of 1.2.
                                                                           TECN CHG COMMENT
0.0130 ± 0.0024 OUR AVERAGE

\begin{array}{c}
10 \pi^- p \rightarrow \\
K^+ K^- n \\
10 \pi p \rightarrow
\end{array}

                                                 COSTA...
                                                                     80 OMEG 0
0.013 \pm 0.003
                                            31 MARTIN
0.013 \pm 0.004
                                                                     788 SPEC
                                                                                                  K 0 K - p
 ^{31}\, {\rm From}\; (\Gamma_2\Gamma_4)^{1/2} = 0.056\, \pm\, 0.034 assuming B( \rho_3(1690)\, \rightarrow\, \, \pi\, \pi) = 0.24.
\Gamma(\omega\pi)/[\Gamma(\omega\pi)+\Gamma(\rho\rho)]
                                                                                                    \Gamma_8/(\Gamma_8+\Gamma_9)
                                                 DOCUMENT ID
                                                                         TECN CHG COMMENT
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
0.22 \pm 0.08
                                                 CASON
                                                                     73 HBC
                                                                                              8.18.5 \pi^{-} \rho
\Gamma(\eta \pi^+ \pi^-)/\Gamma_{\text{total}}
                                                                                                               \Gamma_5/\Gamma
VALUE
                                                 DOCUMENT ID
                                                                           TECN COMMENT
                                                                     88 SPEC 8.95 \pi^- p \rightarrow \eta \pi^+ \pi^- n
seen
                                                 FUKUI
```

$\rho_3(1690)$ REFERENCES

```
PL B202 441
PR D28 2726
NP B178 197
PL 94B 422
NP B175 402
                                                                                                                                            +Horikawa+ (SUGI, NAGO, KEK, KTOI, mirry
+Cranley, Firestone, Chapman+
+GRAII, BONN, CERN, DARE, LIVP+
+Becker+ (AMST, CERN, CRAC, MPIM, OXFR++
(FARAII, BONN, CERN+)
     FUKU
    DENNEY
EVANGELISTA
ALPER
                                                  83
81
                                                                                                                                                                                                                               , CERN, CRAC, MPIM, OXF+;
(BARI, BONN, CERN+)
(CRAC, MPIM, CERN, ZEEM)
(MPIM, CERN, ZEEM, CRAC)
(BIRM, RHEL, TELA, LOWC)
(COLU, BING)
(DURH, GEVA)
      COSTA.
                                                   80
                                                                                                                                             Costa De Beauregaro+
h/Kiczyporuk-
h/Kiczyporuk-
H/Sanar, Blum+
+ Blanar, Blum+
+ Dowell, Garvey+
+ Cautis, Cohen, Csorna+
+ Ozmutlu, Baldi, Bohringer, Dorsaz+
+ Busnello, Damgaard, Kienzle+
+ Busnello, Damgaard, Kienzle+
                                                                    NP B175 402
NP B174 16
NP B151 46
NP B157 250
PR D17 62
NP B140 158
PL 74B 417
NP B119 45
     GORLICH
     RECKER
    CORDEN
BALTAY
MARTIN
MARTIN
ANTIPOV
                                                                      PL 74B 417
NP B119 45
                                                                                                                                                                                                                                                                               (DURH, GEVA
(SERP, GEVA
                                                   77
77
75
                                                                                                                                                                                                                                                                              LA, OXF, PAVI)
(CERN, MPIM) JP
GESSANGL.
BLUM 75
ESTABROOKS 75
HYAMS 75
ENGLER 74
GRAYER 74
                                                                                                                                              + (BGNA, FIRZ, GENO, MILA,
+Chabaud, Dietl, Garelick, Grayer+ (C
      GESSAROLI
                                                                      NP B126 382
                                                                      PL 57B 403
                                                                                                                                                                                                                                                                             (CERN, MPIM
(CERN, MPIM
(CMU, CASE
(CERN, MPIM
                                                                      NP B95 322
NP B100 205
                                                                                                                                            +Martin
+Jones, Weilhammer, Blum, Dietl+
+Kraemer, Toaff, Weisser, Diaz+
+Hyams, Blum, Dietl+
+Beketov, Grechko, Guzhavin, Dubovl
B39.
+Cooper, Fields, Rhines, Allison+
+Gaidos, McIlwain, Miller, Mulera+
+Biswas, Kenney, Madden+
+Earles, Faisser, Blieden+
+Ferbel, Slattery, Werner
+Chadwick, Guiraeossian. Johnson+
                                                                      PR D10 2070
NP B75 189
                                                                    Translated from P B71 189 NP B69 220 PR D7 1971 PRL 29 890 PR D6 3336 PR D3 2606 NP B33 1
    OREN
THOMPSON
CASON
BOWEN
HOLMES
BALLAM
MATTHEWS
ARMENISE
                                                                                                                                                                                                                                                                              (ANL, OXF)
(PURD)
(NDAM)
(NEAS, STON)
                                                  71B
71C
                                                                                                                                              +Chadwick, Guiragossian, Johnson+
+Prentice, Yoon, Carroll+
                                                                                                                                                                                                                                                                                                       (SLAC
                                                                                                                                                                                                                                                                               (TNTO.
                                                                                                                                            + Prentice, Yoon, Carroll+

(TNTO, WISC)
- Köhdini, Foring, Cartacci+

(BARI, BGNA, FIRZ)
- Kraus, Tsanos, Grote+

(BACH, BERL, CERN)
- Kraus, Tsanos, Grote+

(BACH, BERL, CERN)
- Koney, Dery, Biswas, Cason, (NDAM)
- Bartsch, Cern, JaGL, WARS)
- Köllinis, Forino+

(BACH, BGNA, FIRZ, ORSA)
- Kollinis, Forino+

(BARI, BGNA, FIRZ, ORSA)
- Kung, Yeh
                                                                                                                                                                                                                                                                                                         WISC
     BARTSCH
                                                                     NP B22 109
   BARTSCH 70E
CASO 70
STUNTEBECK 70
ADERHOLZ 69
ANDERSON 69
ARMENISE 68
BALTAY 68
CASO 68
CRENNELL 68
JOHNSTON 68
ECCACC 66
                                                                    NP B22 105
LNC 3 707
PL 32B 391
NP B11 255
PRL 22 139
NC 54A 995
                                                                 PRL 20 887
NC 54A 983
PL 28B 136
PRL 20 1414
PRL 17 890
                                                                                                                                                                                                                                   (COLU, ROCH, RUTG, YALE) (GENO, HAMB, MILA, SACL)
                                                  68B
68
                                                                                                                                              +Karshon, Lai, Scarr, Skillicorn
+Prentice, Steenberg, Yoon
                                                                                                                                                                                                                                                                                                          (BNL
                                                                                                                                                                                                                                                                              (TNTO, WISC) IJP
                                                                                                                                              +Prentice, Steenberg, 1991

+Kienzle, Levrat, Maglich, Martin (CERN)

+ (CERN, EPOL, ORSA, MILA, CEA, SACL)
     GOLDBERG
```

- OTHER RELATED PAPERS -

BARNETT	83B	PL 120B 455	+Blockus, Burka, Chien, Christian+	(UHU)
EVANGELISTA	79B	NP B154 381	 + (BARI, BONN, CERN, 	
FORINO	78	NP B139 413	+Cartacci+ (BGNA, FIRZ, GEN	O, MILA, OXF, PAVI) JP
MARTIN	78C	ANP 114 1	+Pennington	(CERN)
KALELKAR	75	Nevis 207 Thesis	-	(COLU) I
DUBOVIKOV	74	SJNP 19 568	+ Matsyuk, Nilov, Sokolov	(ITEP)
		Translated from YAF 1	9 1109.	. ,
OREN	74	NP B71 189	+Cooper, Fields, Rhines, Allison+	(ANL, OXF)
ARNOLD	73	LNC 6 707	+Engel, Escoubes, Kurtz, Lloret, Paty	r+ (STRB)
CASON	73B	NP B64 14	+Madden, Bishop, Biswas, Kenney+	(NDAM)
HYAMS	73	NP B64 134	+Jones, Weilhammer, Blum, Dietl+	(CERN, MPIM)
ROBERTSON	73	PR D7 2554	+Walker, Davis	(DUKE, WISC)
ARMENISE	72B	LNC 4 205	+Forino, Cartacci+	(BARI, BGNA, FIRZ)
Also	75	LNC 14 177	Armenise, Fogli-Muciaccia+	(BARI, BGNA, FIRZ) JP
BOWEN	72	PRL 29 890	+Earles, Faissler, Blieden+	(NEAS, STON)
CLAYTON	72	NP B47 81	+Mason, Muirhead, Rigopoulos+	(LIVP, PATR)
GRAYER	72B	Phil. Conf. 5	+Hyams, Jones, Schlein+	(CERN, MPIM)
GRAYER	71B	PL 35B 610	+Hyams, Jones, Schlein, Blum+	
KRAMER	70	PRL 25 396	+Barton, Gutay, Lichtman, Miller+	(PURD)
BARISH	69	PR 184 1375	+Selove, Biswas, Cason+ (P	PENN, NDAM, ROCH)
CASO	69	NC 62A 755	+Conte, Benz+ (GENO, DESY,	HAMB, MILA, SACL)
VETLITSKY	69	5JNP 9 461	+Guzhavin, Kliger, Kolganov, Lebedev	+ (ITEP)
		Translated from YAF 9	789.	, ,

BOESEBECK	68	NP B4 501	+Deutschmann+	(AACH, BERL, CERN)
CRENNELL	68B	PL 28B 136	+Karshon, Lai, Scarr, Skillicorn	(BNL)
ABRAMS	67B	PRL 18 620	+Kehoe, Glasser, Sechi-Zorn, Wolsky	
DUBAL	67	NP B3 435	+Focacci, Kienzle+ (CERN Missin;	g Mass Spect. Collab.)
Also	68	Thesis 1456	Dubal	(GEVA)
FRENCH	67	NC 52A 438	+Kinson, McDonald, Riddiford+	(CERN, BIRM)
EHRLICH	66	PR 152 1194	+Selove, Yuta	(PENN)
LEVRAT	66	PL 22 714		g Mass Spect. Collab.)
SEGUINOT	66	PL 19 712	+Martin+ (CERN Missin	g Mass Spect. Collab.)
BELLINI	65	NC 40A 948	+DiCorato, Duimio, Fiorini	(MILA)
DEUTSCH	65	PL 18 351	Deutschmann+	(AACH, BERL, CERN)
FORINO	65	PL 19 65	+Gessaroli+	(BGNA, ORSA, SACL)

$\rho(1700)$

$$I^G(J^{PC}) = 1^+(1^{--})$$

NOTE ON $\rho(1450)$ AND $\rho(1700)$

In the 1988 edition we replaced the old $\rho(1600)$ entry by two new ones, the $\rho(1450)$ and the $\rho(1700)$, because there was emerging evidence that the 1600 MeV mass region may actually contain two ρ -like resonances. ERKAL 86 had pointed out this possibility with a theoretical analysis on the consistency of 2π and 4π electromagnetic form factors and of the $\pi\pi$ scattering length. DONNACHIE 87, with a full analysis of the data available in the annihilation reactions $e^+e^- \rightarrow \pi^+\pi^-, 2\pi^+2\pi^-, \pi^+\pi^-\pi^0\pi^0$ and in the photoproduction reactions $\gamma p \to \pi^+\pi^- p$, $2\pi^+2\pi^- p$, $\pi^+\pi^-\pi^0\pi^0 p$, had also argued that to obtain a consistent picture it was necessary to postulate two resonances, whose masses and widths could be fixed reasonably well. This picture is supported by the analysis of DONNACHIE 87B of the $J^P = 1^- \eta \rho^0$ mass spectra obtained in photoproduction and in e^+e^- annihilation; the analysis shows the need for a contribution from a ρ meson with a mass of about 1.47 GeV, while this data can say very little about a higher mass resonance (actually the data can be explained without it).

The analysis of DONNACHIE 87 is extended by CLEGG 88 to include new data on 4π systems, produced in e^+e^- annihilation and τ -decay (note that 4π τ -lepton decays and 4π annihilation reactions can be related by the Conserved Vector Current assumption). These systems are successfully analysed in terms of interfering contributions from two ρ -like states and from the tail of the $\rho(770)$ decaying into two-body states. While specific conclusions on $\rho(1450) \to 4\pi$ are obtained, the quality of the data used by CLEGG 88 prevents any conclusion on the $\rho(1700) \to 4\pi$ decay.

Independent supporting evidence for two 1⁻ states is provided by KILLIAN 80 [4π electroproduction at $\langle Q^2 \rangle = 1$ (GeV/c)²] and FUKUI 88 (high statistics sample of the $\eta\pi\pi$ system in the π^-p charge exchange reaction).

This scenario with two overlapping resonances has recently been confirmed by new experimental data. BISELLO 89 has measured the pion form factor in the energy interval 1.35–2.4 GeV with significant statistics (280 $e^+e^- \to \pi^+\pi^-$ events with very low background); a deep minimum is observed around 1.6 GeV, and the best fit to the form factor is obtained with the hypothesis of two ρ -like resonances ≈ 0.25 GeV wide with 1.42 and 1.77 GeV masses. ANTONELLI 88 also finds that the $e^+e^- \to \eta\pi^+\pi^-$ cross section (with three different η

$\rho(1700)$

decay modes) is better fitted with two fully interfering Breit-Wigners, whose parameters are in fair agreement with those of DONNACHIE 87 and BISELLO 89.

These new experimental results (although ANTONELLI 88 is statistically less significant than BISELLO 89) have also solved the previous disagreement between DONNACHIE 87 and FUKUI 88 on the $\rho(1450)$ width in favor of the DONNACHIE 87 value. From this point of view, the two experiments can be considered as a solid confirmation of the $\rho(1450)$.

Several observations in the $\omega\pi$ system in the 1200 MeV mass region (FRENKIEL 72, COSME 76, BARBER 80C, ATKINSON 84C, BRAU 88) may be interpreted either in terms of $J^P = 1^- \rho(770) \rightarrow \pi \omega$ production (LAYSSAC 71) or in terms of $J^P=1^+$ $b_1(1235)$ production (BRAU 88). We argue that no special entry for a $\rho(1250)$ is needed. For completeness the relevant observations are listed under $\rho(1450)$.

$\rho(1700)$ MASS

VALUE (MEV)	DOCOMENT ID
1700±20 OUR ESTIMATE	This is only an educated guess; the error given is larger than
	the error on the average of the published values.

MIXED MODES VALUE (MeV)	DOCUMENT ID	7	TECN	COMMENT
1712±13 OUR AVERAGE	Includes data from the includes scale t			at follows this one. Error
1700 ± 25	DONNACHIE	87 F	RVUE	
• • • We do not use the fo	ollowing data for average	s, fits,	limits,	etc. • • •
1625 ± 25	GOVORKOV		RVUE	
1580 ± 20	1 BUON	82 t	OM1	$e^+e^- \rightarrow \text{hadrons}$
$\eta \rho^0$ MODE				

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
The data in this block is included in	n the average printed	for a pre	vious datablock.

$1740 \pm 20 \\ 1701 \pm 15$	ANTONELLI FUKUI	88 88		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\pi^+\pi^-$ MODE $_{VALUE~(MeV)}$ 1768 ± 21 • • • We do not use the following	DOCUMENT ID BISELLO g data for average	89	DM2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ll} 1546 & \pm 26 \\ 1650 & \\ 1550 & \pm 70 \\ 1590 & \pm 20 \\ 1600.0 \pm 10.0 \end{array}$	GESHKENBEI ² ERKAL ABE ³ ASTON ⁴ ATIYA	85 846 80	RVUE HYBR OMEG	$20-70 \gamma p \rightarrow \gamma \pi$ $20 \gamma p \rightarrow \pi^{+} \pi^{-} p$ $20-70 \gamma p \rightarrow p2\pi$ $50 \gamma C \rightarrow C2\pi$
$1598.0^{+24.0}_{-22.0}$ 1659 ± 25 1575 1610 ± 30 1590 ± 20	BECKER 2 LANG 2 MARTIN 2 FROGGATT 5 HYAMS	79 780 77	RVUE RVUE RVUE	17 $\pi^- p$ polarized 17 $\pi^- p \to \pi^+ \pi^- n$ 17 $\pi^- p \to \pi^+ \pi^- n$ 17 $\pi^- p \to \pi^+ \pi^- n$

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID	TECN	CHG	COMME
• • • We do r	ot use the following	data for averages	s, fits, limits,	etc. •	• •
1582 ± 36	1600	CLELAND	82B SPEC	+	50 πp -

 $K\overline{K}$ MODE

$2(\pi^+\pi^-)$ MODE					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1520 ± 30		³ ASTON	81E	OMEG	20-70 $\gamma p \rightarrow p4\pi$
• • • We do not use	the followin	g data for averages	, fits	, limits,	etc. • • •
1570 ± 20		⁶ CORDIER	82		$e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})$
1654 ± 25		⁷ DIBIANCA	81	DBC	$\pi^+ d \rightarrow pp2(\pi^+\pi^-)$
1666 ± 39		⁶ BACCI	80	FRAG	$e^{+} e^{-} \rightarrow 2(\pi^{+} \pi^{-})$
1780	34	KILLIAN	80	SPEC	$11 e^- p \rightarrow 2(\pi^+ \pi^-)$
1500		⁸ ATIYA	79B	SPEC	50 γC → C4π [±]
1570 ± 60	65	⁹ ALEXANDER	75	HBC	$7.5 \gamma p \rightarrow \rho 4\pi$
1550 ± 60		3 CONVERSI			$e^{-}e^{-} \rightarrow 2(\pi^{+}\pi^{-})$
1550 ± 50	160	SCHACHT	74	STRC	$5.5-9 \gamma p \rightarrow p4\pi$
1450 ± 100	340	SCHACHT	74	STRC	$9-18 \gamma p \rightarrow p4\pi$
1430 ± 50	400	BINGHAM	72B	HBC	$9.3 \gamma p \rightarrow p4\pi$

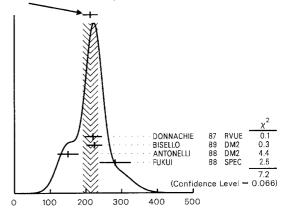
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the f	ollowing data for averages	, fits, limits,	etc. • • •	
1660 ± 30	ATKINSON	85B OMEG	20-70 γp	

 $K_{S}^{0}K_{I}^{0}$, $K_{S}^{0}K^{\pm}\pi^{+}$.

ρ (1700) WIDTH

VALUE (MeV) DOCUMENT ID

235±50 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.


MIXED MODES

300 $\pm\,100$

180

VALUE (MeV)	DOCU MEN T ID	TECN	COMMENT
213±21 OUR AVERAGE			that follow this one. Error See the ideogram below.
220 ± 25	DONNACHIE	87 RVUE	
• • We do not use the	following data for average	s, fits, limits	, etc. • • •
250 ± 25	GOVORKOV	88 RVUE	
340 ± 80	¹⁰ BUON	82 DM1	$e^+e^- \rightarrow \text{hadrons}$

WEIGHTED AVERAGE 213 + 21 (Error scaled by 1.5)

(1700) width mixed modes (MeV)

ho(1700) width	i, mixed modes (MeV)		
$\eta \rho^0$ MODE			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
The data in this block is	included in the average pri	nted for a pr	evious datablock.
150 ± 30	ANTONELLI		$e^+ e^- \rightarrow \eta \pi^+ \pi^-$
282 ± 44	FUKUI	88 SPEC	8.95 $\pi^- p \to \eta \pi^+ \pi^- p$
$\pi^+\pi^-$ MODE			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
The data in this block is	included in the average pri-	nted for a pr	evious datablock.
224 ± 22	BISELLO	89 DM2	$e^+ e^- \rightarrow \pi^+ \pi^-$
• • We do not use the	e following data for average	es, fits, limits	, etc. • • •
620 + 60	GESHKENBEI	IN89 RVUE	
< 315	¹¹ ERKAL	85 RVUE	20-70 $\gamma \rho \rightarrow \gamma \pi$
280 + 30	ABE	848 HYBR	$20~\gammap \rightarrow~\pi^+~\pi^-~p$
230.0 ± 80.0	¹² ASTON	80 OMEG	$320-70 \gamma \rho \rightarrow \rho 2\pi$
283.0 ± 14.0	¹³ ATIYA	79B SPEC	50 γ C → C2π
175.0 ⁺ 98.0 - 53.0	BECKER	79 ASPK	17 $\pi^ p$ polarized
232 ± 34	¹¹ LANG	79 RVUE	
340	11 MARTIN	780 RVUE	$17 \pi^- \rho \rightarrow \pi^+ \pi^- n$

$K\overline{K}$ MODE					
VALUE (MeV)	EVT5	DOCUMENT ID	TECN	CHG	COMME
• • • We do not u	se the following	data for averages,	fits, limits,	etc.	• •

14 HYAMS

 $^{11}\,\mathrm{FROGGATT}$

82B SPEC ± 265 ± 120 1600 CLELAND

77 RVUE 17 π[−] ρ → π⁺

73 ASPK 17 π

² From phase shift analysis of HYAMS 73 data.

 $^{^3 \}mbox{Simple relativistic Breit-Wigner fit with constant width.}$

⁴ An additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape.

⁵ Included in BECKER 79 analysis.

⁶ Simple relativistic Breit-Wigner fit with model dependent width.

⁷One peak fit result.

⁸ Parameters roughly estimated, not from a fit.

⁹ Skew mass distribution compensated by Ross-Stodolsky factor.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
400 ± 50		¹² ASTON	81E	OMEG	$20-70 \gamma p \rightarrow p4\pi$
• • • We do not	use the following	ing data for average	s, fits	, limits,	etc. • • •
510± 40		15 CORDIER	82	DM1	$e^+e^- \rightarrow 2(\pi^+\pi^-)$
400 ± 146		¹⁶ DIBIANCA	81	DBC	$\pi^+ d \rightarrow \rho \rho 2 (\pi^+ \pi^-)$
700 ± 160		¹⁵ BACCI	80	FRAG	$e^+e^- \to 2(\pi^+\pi^-)$
100	34	KILLIAN	80	SPEC	$11 \ e^- \ p \rightarrow \ 2(\pi^+ \ \pi^-)$
600		¹⁷ ATIYA	79B	SPEC	$50 \gamma C \rightarrow C4\pi^{\pm}$
340 ± 160	65	¹⁸ ALEXANDER	75	HBC	$7.5 \gamma \rho \rightarrow \rho 4\pi$
360 ± 100		12 CONVERSI	74	OSPK	$e^+ e^- \rightarrow 2(\pi^+ \pi^-)$
400 ± 120	160	¹⁹ SCHACHT	74	STRC	$5.5-9 \gamma p \rightarrow p4\pi$
850 ± 200	340	¹⁹ SCHACHT	74	STRC	$9-18 \gamma p \rightarrow p4\pi$
650 ± 100	400	BINGHAM	72B	HBC	$9.3 \gamma p \rightarrow p4\pi$

- VALUE (MeV) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ATKINSON 858 OMEG 20-70 γp
- ¹⁰ From global fit of ρ , ω , ϕ and their radial excitations to channels $\omega\pi^+\pi^-$, K^+K^- , $K^0_SK^0_L$, $K^0_SK^\pm\pi^\mp$.

 ¹¹ From phase shift analysis of HYAMS 73 data.
- 12 Simple relativistic Breit-Wigner fit with constant width.
- $^{13}\mathrm{An}$ additional 40 MeV uncertainty in both the mass and width is present due to the choice of the background shape. ¹⁴ Included in BECKER 79 analysis.
- $^{15}\,\mathrm{Simple}$ relativistic Breit-Wigner fit with model-dependent width.
- ¹⁶ One peak fit result.
- 17 Parameters roughly estimated, not from a fit.
- The second substitution of the second substitut

ρ (1700) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\rho\pi\pi$	dominant
Γ_2	$\rho^0\pi^+\pi^-$	large
Гз	$\rho^{0}\pi^{0}\pi^{0}$	
Γ4	$\rho^{\pm}\pi^{\mp}\pi^{0}$	large
Γ ₅	$2(\pi^{+}\pi^{-})$	large
Γ ₆	π ⁺ π ⁻	seen
Γ ₇	$K\overline{K}^*(892) + c.c.$	seen
Γ ₈ Γ ₉	$\overset{\eta ho}{K\overline{K}}$	seen
Γ ₁₀	e ⁺ e ⁻	seen seen
Γ ₁₁	$\rho^0 \rho^0$	seen
Γ ₁₂	$\pi \omega$	

$\rho(1700) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into $e^+\,e^-$ and with the total width is obtained from the cross-section into channel, in $e^+\,e^-$ annihilation.

$\Gamma(2(\pi^+\pi^-)) \times \Gamma(e^+e^-)/\Gamma_{to}$	otal				$\Gamma_5\Gamma_{10}/\Gamma$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
2.64±0.18 OUR AVERAGE	DEL COURT			+ -	a. + ->
2.6 ±0.2 2.83±0.42	DELCOURT BACCI			e ⁺ e ⁻ →	
2.63 ± 0.42	BACCI	80	FRAG	e · e →	2(π · π)
$\Gamma(\pi^+\pi^-) \times \Gamma(e^+e^-)/\Gamma_{ ext{total}}$					$\Gamma_6\Gamma_{10}/\Gamma$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
	data for average	s, fit	s, limits,	etc. • • •	
0.13	²⁰ DIEKMAN	88	RVUE	e^+e^-	$\pi^{+} \pi^{-}$
20 Using total width = 220 MeV.					
$\Gamma(K\overline{K}^*(892) + \text{c.c.}) \times \Gamma(e^+$	e-)/[$\Gamma_7\Gamma_{10}/\Gamma$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	' /' 10/'
• • We do not use the following					
-	, data ioi average ²¹ BIZOT				
0.305 ± 0.071	ET BIZO I	80	DM1	e+ e-	
$\Gamma(\eta ho) imes \Gamma(e^+ e^-) / \Gamma_{ m total}$					$\Gamma_8\Gamma_{10}/\Gamma$
VALUE (eV)	DOCUMENT ID		TECN	COMMENT	
7±3	ANTONELLI	88	DM2	$e^+ \; e^- \; o$	$\eta \pi^+ \pi^-$
$\Gamma(K\overline{K}) \times \Gamma(e^+e^-)/\Gamma_{total}$					$\Gamma_{9}\Gamma_{10}/\Gamma$
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •	
	21 BIZOT		DM1		

$\Gamma(ho\pi\pi) \times \Gamma(e^+e^-)/\Gamma_{ m tot}$			Γ ₁ Γ ₁₀ ,
VALUE (keV) ■ ● We do not use the follow	DOCUMENT ID		
3.510±0.090	²¹ BIZOT	80 DM1	e+ e-
²¹ Model dependent.	0.201	00 51111	
·			
	700) BRANCHIN	G RATIOS	
$\Gamma(\pi^+\pi^-)/\Gamma_{total}$			Γ ₆ ,
VALUE	DOCUMENT ID		
• We do not use the follow			
$0.287^{+0.043}_{-0.042}$	BECKER	79 ASPK	• •
0.15 to 0.30 <0.20	²² MARTIN ²³ COSTA	78C RVUE 77B RVUE	$17 \pi^{-} p \rightarrow \pi^{+} \pi^{-} n$ $e^{+} e^{-} \rightarrow 2\pi, 4\pi$
0.30 ±0.05	²² FROGGATT		$17 \pi^- \rho \rightarrow \pi^+ \pi^- n$
<0.15	²⁴ EISENBERG ²⁵ HYAMS	73 HBC 73 ASPK	$5 \pi^+ \rho \rightarrow \Delta^{++} 2\pi$ $17 \pi^- \rho \rightarrow \pi^+ \pi^- n$
0.25 ±0.05 0.20 ±0.05	MONTANET	73 ASPK 73 HBC	$0.0 \overline{p}p$
²² From phase shift analysis of 23 Estimate using unitarity, til 24 Estimated using one-pion-e 25 Included in BECKER 79 and 19 ECKER 79 E	me reversal invariano exchange model.	e, Breit-Wign	er.
$\Gamma(\pi^{+}\pi^{-})/\Gamma(2(\pi^{+}\pi^{-}))$			Γ ₆ /Ι
VALUE	DOCUMENT ID		COMMENT
• We do not use the following and the following are the follo			
0.13±0.05 <0.14	ASTON 26 DAVIER	80 OMEG 73 STRC	$\begin{array}{ccc} 20-70 & \gamma p \rightarrow & p2\pi \\ 6-18 & \gamma p \rightarrow & p4\pi \end{array}$
<0.2	27 BINGHAM	72B HBC	$9.3 \gamma p \rightarrow p2\pi$
26 Upper limit is estimate. 27 $^{2}\sigma$ upper limit.			
$\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma(26)$	$(\pi^{+}\pi^{-})$		Γ ₇ /!
VALUE	DOCUMENT ID	TECN	
• • We do not use the follow			, etc. • • •
0.15 ± 0.03	28 DELCOURT		± - +
	²⁸ DELCOURT		$e^+e^- \rightarrow \overline{K}K\pi$
28 Assuming $ ho(1700)$ and ω r			
28 Assuming $ ho(1700)$ and ω r			
28 Assuming $ ho(1700)$ and ω r $\Gamma(\eta ho)/\Gamma_{ ext{total}}$	adial excitations to b	e degenerate	in mass. $\Gamma_{8,}$
28 Assuming $ ho(1700)$ and ω r $\Gamma(\eta \rho)/\Gamma_{ ext{total}}$ ~ 0.04	DOCUMENT ID DONNACHIE	e degenerate <u>TECN</u> 87B RVUE	in mass. Γ _{8,}
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $\frac{CL\%}{<0.04}$ \sim • • We do not use the follow	DOCUMENT ID DONNACHIE	e degenerate <u>TECN</u> 87B RVUE	in mass.
28 Assuming ρ (1700) and ω r $\Gamma(\eta \rho)/\Gamma_{\text{total}}$ $\frac{CL\%}{0.04}$ 0.04 0.02 0.02 0.05	adial excitations to b DOCUMENT ID DONNACHIE wing data for average	TECN 87B RVUE es, fits, limits	in mass. $ \Gamma_{8,} $ $ \underbrace{COMMENT}_{\text{etc.} \bullet \bullet \bullet} $, etc. $\bullet \bullet \bullet$: 20–70 γp
28 Assuming ρ (1700) and ω r $\Gamma(\eta \rho)/\Gamma_{\text{total}}$ $VALUE \qquad \qquad CL\%$ < 0.04 • • • We do not use the foliof $< 0.02 \qquad \qquad 58$ $\Gamma(\eta \rho)/\Gamma(2(\pi^+\pi^-))$	adial excitations to b DOCUMENT ID DONNACHIE wing data for average	TECN 87B RVUE es, fits, limits 86B OMEG	in mass. <u>Γ₈, COMMENT</u> , etc. • • • i 20–70 γ p
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $\frac{CL\%}{<0.04}$ \bullet • • • We do not use the follor <0.02 58 $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $\frac{VALUE}{}$ \bullet • • We do not use the follow $\frac{VALUE}{}$	adial excitations to b DOUNACHIE Wing data for average ATKINSON DOCUMENT ID wing data for average	TECN 87B RVUE es, fits, limits 86B OMEG	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ U	DOCUMENT ID DONNACHIE wing data for average ATKINSON DOCUMENT ID wing data for average DOCUMENT ID wing data for average	TECN 87B RVUE es, fits, limits 86B OMEG TECN es, fits, limits	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $UXLUE$	DOCUMENT ID DONNACHIE wing data for average ATKINSON DOCUMENT ID wing data for average DOCUMENT ID wing data for average DELCOURT ASTON	TECN 87B RVUE es, fits, limits 86B OMEG TECN es, fits, limits	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $UXLUE$ $UXLUE$ $CL\%$ <0.04 \bullet • • We do not use the follow <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	DOCUMENT ID DONNACHIE wing data for average ATKINSON DOCUMENT ID wing data for average DOCUMENT ID ATKINSON ATKINSON DOCUMENT ID ATKINSON ATKINSON	7ECN 87B RVUE es, fits, limits 86B OMEG 7ECN es, fits, limits 82 DM1 80 OMEG	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $VALUE$ <0.04 • • • We do not use the folio <0.02 58 $\Gamma(\eta\rho)/\Gamma(2(\pi^{+}\pi^{-}))$ $VALUE$ • • • We do not use the folio 0.123 ± 0.027 ~ 0.1 $\Gamma(\pi^{+}\pi^{-} \text{ neutrals})/\Gamma(2(\pi^{+}VALUE))$	DOCUMENT ID DOWNACHIE wing data for average ATKINSON DOCUMENT ID WING data for average DELCOURT ASTON DOCUMENT ID DOCUMENT ID	TECN 87B RVUE es, fits, limits 86B OMEG TECN es, fits, limits 80 OMEG TECN 80 OMEG	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $VALUE \qquad \qquad CL\%$ < 0.04 • • • We do not use the folior $< 0.02 \qquad \qquad 58$ $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $VALUE$ • • • We do not use the folion 0.123 ± 0.027 ~ 0.1 $\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma(2(\pi^+\chi LUE))$ • • • We do not use the folion $VALUE$ • • • We do not use the folion	DOCUMENT ID DOWNACHIE wing data for average ATKINSON DOCUMENT ID WING data for average DELCOURT ASTON DOCUMENT ID DOCUMENT ID	TECN 87B RVUE es, fits, limits 86B OMEG TECN es, fits, limits 80 OMEG TECN 80 OMEG	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $VALUE \qquad \qquad CL\%$ < 0.04 • • • We do not use the folior $< 0.02 \qquad \qquad 58$ $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $VALUE$ • • • We do not use the folion 0.123 ± 0.027 ~ 0.1 $\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma(2(\pi^+\chi LUE))$ • • • We do not use the folion $VALUE$ • • • We do not use the folion	DOCUMENT ID DONNACHIE Wing data for average ATKINSON DOCUMENT ID DELCOURT ASTON DOCUMENT ID DOCUMENT ID Ming data for average DELCOURT ASTON DOCUMENT ID Wing data for average POCUMENT ID Wing data for average 29 BALLAM	TECN 87B RVUE es, fits, limits 86B OMEG TECN es, fits, limits 82 DM1 80 OMEG	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $VALUE$ <0.04 • • • We do not use the folio <0.02 58 $\Gamma(\eta\rho)/\Gamma(2(\pi^{+}\pi^{-}))$ $VALUE$ • • • We do not use the folio 0.123 ± 0.027 ~ 0.1 $\Gamma(\pi^{+}\pi^{-}\text{ neutrals})/\Gamma(2(\pi^{+}\text{ VALUE}))$ • • • We do not use the folio 0.23 ± 0.027 ~ 0.1	DOCUMENT ID DONNACHIE Wing data for average ATKINSON DOCUMENT ID DELCOURT ASTON DOCUMENT ID DOCUMENT ID Ming data for average DELCOURT ASTON DOCUMENT ID Wing data for average POCUMENT ID Wing data for average 29 BALLAM	TECN 87B RVUE es, fits, limits 86B OMEG TECN es, fits, limits 82 DM1 80 OMEG	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $UXLUE$	DOCUMENT ID DONNACHIE wing data for average ATKINSON DOCUMENT ID DOCUMENT ID DELCOURT ASTON $+\pi^-$)) wing data for average 29 BALLAM DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID	TECN 878 RVUE es, fits, limits 868 OMEG TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $UXLUE$	DOCUMENT ID DONNACHIE wing data for average ATKINSON DOCUMENT ID wing data for average DELCOURT ASTON # \pi -)) DOCUMENT ID wing data for average 29 BALLAM not subtracted. DOCUMENT ID wing data for average 29 BALLAM not subtracted.	TECN 87B RVUE es, fits, limits 86B OMEG TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ VALUE (1.8) < 0.04 • • • We do not use the folloo < 0.02 58 $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ VALUE • • • We do not use the folloo 0.123 \pm 0.027 \sim 0.1 $\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma(2(\pi^+\chi^-))$ VALUE • • • We do not use the folloo 2.6 \pm 0.4 2.9 Upper limit. Background in $\Gamma(K\overline{K})/\Gamma(2(\pi^+\pi^-))$ VALUE • • • We do not use the folloo 0.015 \pm 0.010	DOCUMENT ID DOWNACHIE wing data for average ATKINSON DOCUMENT ID wing data for average DELCOURT ASTON + \(\pi \) DOCUMENT ID wing data for average 29 BALLAM not subtracted. DOCUMENT ID wing data for average 30 DELCOURT	TECN 87B RVUE es, fits, limits 86B OMEG TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 74 HBC	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ VALUE <0.04 • • • We do not use the folio <0.02 58 $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ VALUE • • • We do not use the folio 0.123 ± 0.027 ~ 0.1 $\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma(2(\pi^+\chi))$ VALUE • • • We do not use the folio 0.123 ± 0.027 ~ 0.1 $\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma(2(\pi^+\chi))$ VALUE • • • We do not use the folio 0.123 ± 0.027 ~ 0.15 0.015 ± 0.010 0.015 ± 0.010 <0.04	DOCUMENT ID DOWNACHIE wing data for average ATKINSON DOCUMENT ID wing data for average DELCOURT ASTON # # -)) DOCUMENT ID wing data for average 29 BALLAM not subtracted. DOCUMENT ID wing data for average 30 DELCOURT BINGHAM	TECN 87B RVUE es, fits, limits 86B OMEG TECN 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 81B DM1 72B HBC	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $VALUE$ <0.04 • • • We do not use the followard of t	DOCUMENT ID DOWNACHIE wing data for average ATKINSON DOCUMENT ID wing data for average DELCOURT ASTON # # -)) DOCUMENT ID wing data for average 29 BALLAM not subtracted. DOCUMENT ID wing data for average 30 DELCOURT BINGHAM adial excitations to be	TECN 87B RVUE es, fits, limits 86B OMEG TECN 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 81B DM1 72B HBC	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $VALUE$ <0.04 • • • We do not use the folion <0.02 58 $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $VALUE$ • • • We do not use the folion 0.123 ± 0.027 ~ 0.1 $\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma(2(\pi^+\chi^-))$ $VALUE$ • • • We do not use the folion 0.123 ± 0.027 ~ 0.1 $\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma(2(\pi^+\chi^-))$ $VALUE$ • • • We do not use the folion 0.15 ± 0.010 <0.04 <0.04 0.015 ± 0.010 <0.04 30 Assuming $\rho(1700)$ and ω r $\Gamma(K\overline{K})/\Gamma(K\overline{K}^*(892) + C$ $VALUE$ $VALUE$ 0.04	DOCUMENT ID DOWNACHIE Wing data for average ATKINSON DOCUMENT ID Wing data for average DELCOURT ASTON # # -)) DOCUMENT ID Wing data for average 29 BALLAM not subtracted. DOCUMENT ID Wing data for average 30 DELCOURT BINGHAM adial excitations to b C.C.)	TECN 87B RVUE 87B RVUE es, fits, limits 86B OMEG TECN 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 81B DM1 72B HBC be degenerate	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $\frac{\partial U}{\partial UU} = \frac{\partial U}{\partial U}$ <0.04 •• We do not use the folloo <0.02 $\Gamma(\eta\rho)/\Gamma(2(\pi^+\pi^-))$ $\frac{\partial U}{\partial U} = \frac{\partial U}{\partial U}$ •• We do not use the folloo <0.123±0.027 ~ 0.1 $\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma(2(\pi^+\chi^-))$ $\frac{\partial U}{\partial U} = \frac{\partial U}{\partial U}$ •• We do not use the folloo <0.6±0.4 $\frac{\partial U}{\partial U} = \frac{\partial U}{\partial U}$ •• We do not use the folloo <0.015±0.010 <0.015±0.010 <0.04 $\frac{\partial U}{\partial U} = \frac{\partial U}{\partial U}$ •• We do not use the folloo <0.05±0.010 $\frac{\partial U}{\partial U} = \frac{\partial U}{\partial U}$ •• We do not use the folloo <0.07 (KK)/ $\Gamma(KK$ *(892) + CV $\frac{\partial U}{\partial U} = \frac{\partial U}{\partial U}$ •• We do not use the folloo	DOCUMENT ID DOWNACHIE Wing data for average ATKINSON DOCUMENT ID Wing data for average DELCOURT ASTON # # -)) DOCUMENT ID Wing data for average 29 BALLAM not subtracted. DOCUMENT ID Wing data for average 30 DELCOURT BINGHAM adial excitations to b C.C.)	TECN 87B RVUE 87B RVUE es, fits, limits 86B OMEG TECN 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 81B DM1 72B HBC be degenerate	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ VALUE < 0.04 • • • We do not use the folloon < 0.02 < 0.02 < 0.02 < 0.02 < 0.03 • • We do not use the folloon < 0.02 < 0.02 < 0.02 < 0.03 < 0.04 • • We do not use the folloon < 0.02 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.05 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 $<$	DOCUMENT ID DOWNACHIE Wing data for average ATKINSON DOCUMENT ID Wing data for average DELCOURT ASTON + \pi^-) DOCUMENT ID Wing data for average 29 BALLAM not subtracted. DOCUMENT ID Wing data for average 30 DELCOURT BINGHAM adial excitations to be C.C.) DOCUMENT ID Wing data for average BUON	TECN 878 RVUE es, fits, limits 868 OMEG TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 818 DM1 728 HBC be degenerate TECN es, fits, limits	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $VALUE \qquad \qquad CL\%$ <0.04 • • • We do not use the followood of the follow	DOCUMENT ID DOCUMENT ID DONNACHIE wing data for average ATKINSON DOCUMENT ID Wing data for average DELCOURT ASTON + π-)) DOCUMENT ID Wing data for average 29 BALLAM not subtracted. DOCUMENT ID Wing data for average 30 DELCOURT BINGHAM adial excitations to be c.c.) DOCUMENT ID wing data for average 30 DELCOURT BINGHAM adial excitations to be c.c.) DOCUMENT ID wing data for average BUON	TECN 878 RVUE es, fits, limits 868 OMEG TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 818 DM1 728 HBC be degenerate TECN es, fits, limits 818 DM1 728 HBC TECN es, fits, limits 818 DM1 728 HBC	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $VALUE \qquad \qquad CL\%$ <0.04 • • • We do not use the followood of the follow	DOCUMENT ID DOCUMENT ID DONNACHIE wing data for average ATKINSON DOCUMENT ID Wing data for average DELCOURT ASTON + \pi^-)) DOCUMENT ID wing data for average 29 BALLAM not subtracted. DOCUMENT ID wing data for average 30 DELCOURT BINGHAM adial excitations to be c.c.) DOCUMENT ID wing data for average BUON) DOCUMENT ID wing data for average BUON	TECN 87B RVUE es, fits, limits 86B OMEG TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 82 DM1 72B HBC De degenerate TECN es, fits, limits 81B DM1 72B HBC De degenerate TECN es, fits, limits 82 DM1 TECN es, fits, limits 83 DM1 TECN es, fits, limits 84 DM1 TECN es, fits, limits 85 DM1	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ VALUE <0.04 • • • We do not use the folloon <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.03 <0.02 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.05 <0.04 <0.05 <0.04 <0.05 <0.04 <0.05 <0.04 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	DOCUMENT ID DOCUMENT ID DONNACHIE Wing data for average ATKINSON DOCUMENT ID Wing data for average DELCOURT ASTON + \(\pi \) Wing data for average 29 BALLAM not subtracted. DOCUMENT ID Wing data for average 30 DELCOURT BINGHAM adial excitations to be c.c.) DOCUMENT ID wing data for average BUON) DOCUMENT ID WING data for average DELCOURT SCHACHT	TECN 878 RVUE es, fits, limits 868 OMEG TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 818 DM1 728 HBC TECN es, fits, limits 82 DM1 728 HBC TECN es, fits, limits 818 DM1 TECN es, fits, limits 82 DM1	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $\frac{VALUE}{\sqrt{2000}} = 0.004$ • • • We do not use the follow of the follow o	DOCUMENT ID Wing data for average ATKINSON DOCUMENT ID DOLOWENT ID Wing data for average DELCOURT ASTON + π-)) DOCUMENT ID Wing data for average 29 BALLAM not subtracted. DOCUMENT ID Wing data for average 30 DELCOURT BINGHAM adial excitations to be c.c.) DOCUMENT ID wing data for average BUON DOCUMENT ID wing data for average BUON DOCUMENT ID wing data for average BUON	TECN 878 RVUE es, fits, limits 868 OMEG TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 818 DM1 728 HBC be degenerate TECN es, fits, limits 818 DM1 728 HBC be degenerate s, fits, limits 82 DM1 TECN es, fits, limits 818 DM1	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $\frac{VALUE}{\langle 0.04 \rangle} = 0$ • • We do not use the followood of the followo	DOCUMENT ID Wing data for average ATKINSON DOCUMENT ID DOLOWENT ID Wing data for average DELCOURT ASTON + π-)) DOCUMENT ID Wing data for average 29 BALLAM not subtracted. DOCUMENT ID Wing data for average 30 DELCOURT BINGHAM adial excitations to be c.c.) DOCUMENT ID wing data for average BUON DOCUMENT ID wing data for average BUON DOCUMENT ID wing data for average BUON	TECN 878 RVUE es, fits, limits 868 OMEG TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 818 DM1 728 HBC TECN es, fits, limits 82 DM1 728 HBC TECN es, fits, limits 818 DM1 TECN es, fits, limits 82 DM1	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $\frac{VALUE}{<0.04}$ • • We do not use the followood of t	DOCUMENT ID DOCUMENT ID DONNACHIE wing data for average ATKINSON DOCUMENT ID DOLOWENT ID Wing data for average 29 BALLAM not subtracted. DOCUMENT ID Wing data for average 30 DELCOURT BINGHAM adial excitations to be c.c.) DOCUMENT ID wing data for average 30 DELCOURT BINGHAM adial excitations to be c.c.) DOCUMENT ID wing data for average BUON BUCHACHT 31 BINGHAM ve.	TECN 878 RVUE es, fits, limits 868 OMEG TECN es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 818 DM1 728 HBC TECN es, fits, limits 818 DM1 728 HBC TECN es, fits, limits 818 DM1 728 HBC	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $\frac{VALUE}{\sqrt{2000}} = 0.004$ • • • We do not use the follow 0.02 0.02 0.02 0.03 0.04 • • • We do not use the follow 0.02 0.03 0.04 0.015 ± 0.010 0.015 ± 0.010 0.015 ± 0.010 0.015 ± 0.010 0.04 0.04 0.08 0.08 0.07 0.09	DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for average ATKINSON DOCUMENT ID Wing data for average DELCOURT ASTON + π-)) DOCUMENT ID Wing data for average 29 BALLAM not subtracted. DOCUMENT ID Wing data for average 30 DELCOURT BINGHAM adial excitations to be c.c.) DOCUMENT ID wing data for average BUON) DOCUMENT ID wing data for average BUON) DOCUMENT ID WING data for average BUON) DOCUMENT ID WING data for average BUON) DOCUMENT ID WING data for average BUON) DOCUMENT ID AU DOCUMENT ID OCUMENT ID DOCUMENT ID	TECN 87B RVUE es, fits, limits 86B OMEG es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 81B DM1 72B HBC es, fits, limits 81B DM1 72B HBC res, fits, limits 81B DM1 72B HBC TECN es, fits, limits 81B DM1 74B STRC 72B HBC	in mass.
28 Assuming $\rho(1700)$ and ω r $\Gamma(\eta\rho)/\Gamma_{\text{total}}$ $\frac{VALUE}{<0.04}$ • • We do not use the followood of t	DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for average ATKINSON DOCUMENT ID Wing data for average DELCOURT ASTON + π-)) DOCUMENT ID Wing data for average 29 BALLAM not subtracted. DOCUMENT ID Wing data for average 30 DELCOURT BINGHAM adial excitations to be c.c.) DOCUMENT ID wing data for average BUON) DOCUMENT ID wing data for average BUON) DOCUMENT ID WING data for average BUON) DOCUMENT ID WING data for average BUON) DOCUMENT ID WING data for average BUON) DOCUMENT ID AU DOCUMENT ID OCUMENT ID DOCUMENT ID	TECN 87B RVUE es, fits, limits 86B OMEG es, fits, limits 82 DM1 80 OMEG TECN es, fits, limits 74 HBC TECN es, fits, limits 81B DM1 72B HBC es, fits, limits 81B DM1 72B HBC res, fits, limits 81B DM1 72B HBC TECN es, fits, limits 81B DM1 74B STRC 72B HBC	in mass.

 $\rho(1700), X(1700), f_2(1720)$

ρ(1700) REFERENCES

```
BISELLO
                                                                                                      PL 8220 321
                                                                                                                                                                                                                                                                                                                                                                                                                            (DM2 Collab.)
    GESHKENBEIN 89
                                                                                                     ZPHY 45 351
PL B212 133
PRPL 159 101
                                                                                                                                                                                                                                                                                                                                                                                                                            (ITEP
(DM2 Collab.
    ANTONELLI
                                                                                                                                                                                                                  +Baldini+
                                                                                                 PL 8212 133
PRPL 159 101
PL 8202 441
SUPPL 159 101
PL 8202 441
SUPPL 159 101
PL 8203 441
PL 93 407
PL 93 407
PL 945
PL 138 93
PL 1138   DIEKMAN
                                                                                                                                                                                                                                                                                                                                                                                                                                                        (BONN
                                                                                                                                                                                                                    +Horikawa -
                                                                                                                                                                                                                                                                                                                         (SUGI, NAGO, KEK, KYOT, MIYA
   GOVORKOV
   DONNACHIE
   DONNACHIE
DONNACHIE
ATKINSON
ATKINSON
ERKAL
ABE
ATKINSON
                                                                                                                                                                                                                                                                    (MCHS)
(MCHS, LANC)
(BONN, CERN, GLAS, LANC, MCHS, LPNP+)
(BONN, CERN, GLAS, LANC, MCHS, LPNP)
(WISC)
(BONN, CERN, GLAS, LANC, MCHS, LPNP)
(WISC)
(BONN, CERN, GLAS, LANC, MCHS, CURL+)
                                                                                                                                                                                                                  + Clegg
                                                                                                                                                                                                                    +Bacon, Baliam
                                                                                                                                                                                                                + Bisello, Bizot, Cordier, Delcourt + (LALO, MONP)
+ Delfosse, Oorsaz, Gloor | DURH, GEVA, LAUS, PIT7)
+ Bisello, Bizot, Suon, Delcourt + Bisello, Bizot, Buon, Cordier, Mane (BONN, CERN, EPOL, GLAS, LANC, MCHS+)
Cordier, Bisello, Bizot, Buon, Delcourt + Fickinger, Malko, Dado, Engler + (CASE, CMU)
+ DeZorzi, Pensos, Baldini-Cello+ (ROMA, FRAS)
+ Bisello, Buon, Cordier, Delcourt + Treadwell, Alman, Cassel + (LALO) (LASE, CMU)
   BUON
CLELAND
   CORDIFE
                                                                       82
81E
81B
82
81
80
   DELCOURT
ASTON
   DELCOURT
Also
DIBIANCA
ASTON
BACCI
BIZOT
                                                                                                     Madison Conf
PR D21 3005
   KILLIAN
                                                                          80
79B
                                                                                                                                                                                                                     +Treadwell, Ahrens, Berkelman, Cassel +
                                                                                                                                                                                                                                                                                                                                                                                                   (COLU. ILL. FNAL
   ATIYA
                                                                                                     PRL 43 1691
                                                                                                                                                                                                                    +Holmes, Knapp, Lee, Seto+
                                                                                                   PRL 43 1691
NP B151 46
PR D19 956
ANP 114 1
PL 71B 345
NP B129 89
PL 57B 487
NP B76 375
PL 52B 493
NP B81 205
NP B58 31
                                                                                                                                                                                                                                                                                                                                                (MPIM. CERN. ZEEM CRAC
   RECKER
                                                                                                                                                                                                                     +Blanar Blum-
 BECKER
LANG
MARTIN
COSTA...
FROGGATT
ALEXANDER
BALLAM
CONVERSI
                                                                                                                                                                                                                                                                                                                                                                                                                  N. ZEEM, CRAC
(GRAZ)
(CERN)
(EPOL)
(GLAS, NORD)
(TELA)
AC, LBL, MPAS)
                                                                                                                                                                                                                  + Mas-Parareda
+ Pennington
Costa De Beauregard, Pire. Truong
+ Petersen
+ Benary, Gandsman, Lissauer +
                                                                                                                                                                                                                  + Gertary, Garlosman, Essauer +
- Chadwick, Bingham, Fretter -
- (SL.
+ Paoluzi, Ceradini, Grilli +
- Derado, Fries, Park, Yount
+ Derado, Fries, Liu, Mozley, Odian, Park -
+ Karshon, Mikenberg, Pitluck +
- Jones, Weilhammer, Blum, Dietl +
                                                                                                                                                                                                                                                                                                                                                                                            (SLAC, LBL.
   CONVERSI
                                                                                                                                                                                                                                                                                                                                                                                                                                                             FRAS
   SCHACHT
   DAVIER
                                                                                                                                                                                                                                                                                                                                                                                                                                                           (SLAC
   EISENBERG
HYAMS
                                                                                                     PL 43B 149
NP B64 134
                                                                                                                                                                                                                                                                                                                                                                                                                    (CERN,
                                                                                                                                                                                                                                                                                                                                                                                                   (CERN)
(LBL, UCB, SLAC) IGJF
                                                                                                                                                                                                                    · Rabin, Rosenfeld, Smadja ·
```

```
- OTHER RELATED PAPERS
                                                                                                                            -Kozhevnikov (NOVO)
-Franek+ (SLAC Hybrid Facility Photon Collab.) JP
+Donnachie (MCHS, LANC)
-Awaji, D'Amore+ (SLAC, NAGO, CINC, TOKY)
+Olsson (WISC)
-Chillingarov, Eidelman, Khazin, Lelchuk+ (NOVO)
+Augustin, Ajaltouni+ (PADO, LALO, CLER, FRAS)
-BONN, CERN, GLAS, LANC, MCHS, LPNP+)
+ (BONN, CERN, GLAS, LANC, MCHS, LPNP+)
+ Ayach, Bisello, Baldini+ (LALO, PADO, FRAS)
                                                          PLB 209 373
PR D37 2379
ZPHY C40 313
NP B292 693
ZPHY C31 615
NP B256 365
LAL 85.15
 ACHASOV
BRAU
  BISELLO
                                                            LAL 85-15
NP B243 1
                                                            PL 127B 132
NP B229 269
LAL 83-21
  ATKINSON
  ATKINSON
                                                                                                                             + (BONN, CERN, GLAS, LANC, MCHS, LPRP+)
+Myach, Biselio, Baldini+ (LALO, PADO, FRAS)
-Wilson, Anderson, Francis+ (HARV, EFI, ILL, OXF;
(BONN, CERN, EPOL, GLAS, LANC, MCHS+)
+Biselo, Bizot, Buon, Cordier, Mane
(BONN, CERN, EPOL, GLAS, LANC, MCHS+)
+Dainton, Brodbeck, Brookes+ (DARE, LANC, SHEF)
  AUGUSTIN
                                                            LAL 83-21
PR D26 1
PL 104B 231
PL 99B 257
NP B174 269
ZPHY C4 169
ZPHY C7 169
PR D21 3005
AUGUSTIN
SHAMBROO
ASTON
DELCOURT
ASTON
BARBER
                                                          ZPHY C7 169
PR D21 3005
PR D22 711
PL 86B 234
NP B157 250
PL 81B 389
NP B152 215
Fermilab Symp. 469
Batavia Conf. 79 490
PR D17 1368
PL 76B 512
PL 70B 365
PL 67B 213
  KILLIAN
                                                                                                                             - Treadwell, Ahrens, Berkelman, Cassel-
                                          80
79
79
79
79
79
79
78
78
77
  O'DONNELL
                                                                                                                              -DeZorzi, Penso, Stella+
                                                                                                                                                                                                         (ROMA, BGNA, FRAS)
(BIRM, RHEL, TELA, LOWC)
  BACCI
BACCI
CORDEN
CORDIER
COSME
RICHARD
SIDOROV
GENSINI
QUENZER
                                                                                                                              +Dowell, Garvey+ (BIRM, RH

+Delcourt, Eschstruth, Fulda-

+Dudelzak, Grelaud, Jean-Marie, Julian-
                                                                                                                                -Ribes, Rumpf, Bertrand, Bizot, Chase -
                                                                                                                                                                                                                                                                          (LALO
  COSTA...
                                                                                                                                -Budnev, Serebryakov
Costa De Beauregard, Pham, Pire+
+ (BGNA, FIRZ, GENO, MILA,
                                                             PL 67B 213
NP B126 382
                                                                                                                                                                                                                                                                        (EPOL
                                                                                                                                                                                                                               NO. MILA. OXF. PAVI)
(MULH, STRB, TORI)
  GESSAROLI
                                                          NP B126 382
PL 65B 397
NP B103 109
PL 63B 352
PL 63B 95
NC 30A 136
PR D11 2436
NP B95 322
NP B91 454
NP B100 205
PI 58B 450
 BASSOMPLE
                                                                                                                                 Bassompierre, Binder+
BASSOMPIE...
COMMON
COSME
JOHNSON
ALLES-...
CHUNG
ESTABROOKS
FROGGATT
HYAMS
                                                                                                                            -Courau, Dudeizak, Grelaud, Jean-Marie+
Hartin, Pennington
Alles-Borelli, Bernardini+
+Protopopescu, Lynch, Flatte+
-Martin
-Petersen
+Jones, Weilhammer, Blum, Dietl+
                                                                                                                                                                                                                                           + (ORSA)
(DURH, CERN) JP
RN, BGNA, FRAS)
(BNL, LBL, USC)
(DURH)
(GLAS, NORD)
(CERN, MPIM)
  HYAMS
                                                                                                                              +Stefanescu
                                                                                                                                                                                                                                                                        (KARL)
(PENN)
  LANGACKER
                                                            PR D13 697
                                                                                                                             + Segre
  LEF
                                                            Stanford Conf.
NP B97 165
                                                                                                                                                                                                                          JLL
(HELS)
AA, FRAS)
(CERN)
(DURH)
(ROCH)
(CERN, MPIM)
(HAMB)
(ROMA, FRAS, PADO) IGJP
(BNL, LBL, UCSC)
(MPIM)
(MPIM)
(ROMA, FRAS, PADO)
S, ROMA
                                                                                                                                                                                                                                                                         COLU
  ROOS
BERNABEI
CHALOUPKA
ESTABROOKS
FERBEL
GRAYER
                                                           NP B97 165
LNC 11 261
PL 51B 407
NP B79 301
PR D9 824
NP B75 189
NP B74 211
PL 43B 341
PI 47B 526
                                                                                                                            +Angelo, Spillantini, Valente
+Ferrando, Losty, Montanet
+ Martin
+Slattery
 HIRSHFELD
CERADINI
                                                                                                                              +Conversi, Ekstrand, Grilli+
+Protopopescu, Lynch, Flatte+
  CHUNG
                                                            PL 47B 526
  KREUZER
                                                            PR D8 1431
 OCHS
PARK
                                                            NP B58 45
PARK 73
BACCI 72
BARBARINO 72
BARTOLI 72
BRAMON 72
DIEBOLD 72
EISENBERG 72
FRENKIEL 72
LAYSSAC 72
SMADJA 72
ALVENSLEBEN 71
BRAUN 71
                                                          NP B58 45
PL 38B 551
LNC 3 689
PR D6 2374
LNC 3 693
Batavia Conf. 3 1
PR D5 15
NP B47 61
NC 10A 407
Phil. Conf. 349
PRL 26 273
NP 830 213
PRL 26 149
                                                                                                                                                                                                          ini-Celio (ROMA, FRAS) JPC
(FRAS, ROMA, PADO, UMD) IGJP
(FRAS, ROMA, NAPL) IGJP
                                                                                                                             +Penso, Salvini, Stella, Baldini-Celio
                                                                                                                             +Felicetti, Ogren+
+Greco
                                                                                                                                                                                                                      (FRAS, ROMA, NAPL) IG
(FRAS)
(REHO, SLAC, TELA)
(CDEF, CERN)
(MONP)
(WICK+ (LBL, SLAC)
(DESY, MIT) G
(STRB) G
(SLAC, UMD, IBM, LBL) G
(MONP)
                                                                                                                              + Ballam, Dagan +
+ Ghesquiere, Lillestol, Chung +
+ Renard
                                                                                                                              + Henard

+ Bingham, Fretter, Ballam, Chadwick+

+ Becker, Bertram, Chen+

+ Fridman, Gerber, Givernaud+

+ Busza, Kehoe, Beniston+ (SLA
  BRAUN
  BULOS
LAYSSAC
```


 $I^{G}(J^{PC}) = EVEN^{+}(?^{?+})$

OMITTED FROM SUMMARY TABLE

Enhancement seen in the $\eta\,\pi\,\pi$ system produced in the radiative decay of the $J/\psi(1S)$. May contain significant substructure. Relation to other enhancements seen in radiative $J/\psi(15)$ decay unclear (see HITLIN 83). Tentatively called X(1700) by us.

X(1700) MASS					
VALUE (MeV)	DOCUMENT ID TECN COMMENT				
1700.0±45	EDWARDS 838 CBAL $J/\psi o \eta \gamma 2\pi$ $X(1700)$ WIDTH				
VALUE (MeV)	DOCUMENT ID TECN COMMENT				
520±110	EDWARDS 838 CBAL $J/\psi \rightarrow \eta \gamma 2\pi$				

X(1700) REFERENCES

(CIT, HARV, PRIN, STAN, SLAC) **EDWARDS** 83B PRL 51 859 -Partridge, Peck+

 $I^{G}(J^{PC}) = 0^{+}(2^{++})$ J needs confirmation.

NOTE ON $f_2(1720)$

The $f_2(1720)$ is seen in the "gluon rich" radiative decay $J/\psi(1S) \rightarrow \gamma f_2(1720)$, therefore C = +. It decays into 2η . which implies $I^G = 0^+$. From the decay angular distribution, $J^P = 0^+$ is ruled out, $J^P = 2^+$ being strongly favored (ARM-STRONG 89D). It is also observed in $K\overline{K}$ systems recoiling against ϕ and ω in hadronic $J/\psi(1S)$ decay [FALVARD 88: however $J/\psi(1S) \to \omega f_2(1720)$ is rather controversial]. The $f_2(1720)$ is not seen in the radiative decay $J/\psi(1S) \rightarrow \gamma \rho^0 \rho^0$ (BISELLO 89B), in agreement with the indication (BALTRU-SAITIS 85G) that the $\rho\rho$ enhancement in this region is J^P 0^- , hence unrelated to the $f_2(1720)$.

Clear evidence is seen for the first time in hadroproduction (ARMSTRONG 89D, 300 GeV/c pp central production of the $K\overline{K}$ system), both in K^+K^- and $K_S^0K_S^0$. Mass and width determinations are complicated since the mass spectra are dominated by the overlap with $f_2'(1525)$. The apparent large disagreement between the widths found by ARMSTRONG 89D in the two different channels (\approx 180 MeV in K^+K^- and \approx 100 MeV in $K_{\mathcal{S}}^{0}K_{\mathcal{S}}^{0}$ can be explained by the arbitrariness of the polynomial-exponential background shape which leads to a large systematic error on the width. Note that the $f_2(1720)$ is not observed in the exclusive hypercharge-exchange reaction $K^-p \to K_S^0 K_S^0 \Lambda$ (ASTON 88D).

A partial-wave analysis of the $K_S^0 K_S^0$ system (BOLONKIN 88) finds a D_0 wave $(J^{PC} = 2^{++})$ behavior consistent with $f_2(1720)$, but its width ($\approx 30 \text{ MeV}$) is much narrower than the width observed in $J/\psi(1S)$ decays and in hadroproduction.

See also the minireview under non- $q\overline{q}$ candidates.

f2(1720) MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1713.2+ 1.9 OUR AVERAGE			
1713 ±10	ARMSTRONG	89D OMEO	300 pp → ppK+ K-
1706 ±10	ARMSTRONG	89D OMEC	$300 pp \rightarrow pp K_5^0 K_5^0$
1707.0 ± 10.0			$J/\psi \rightarrow \gamma K^+ K^-$
1698 ±15	AUGUSTIN	87 DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
1720 ±10 ±10	BALTRUSAIT	87 MRK3	$J/\psi \rightarrow \gamma K^+ K^-$
$1730 \begin{array}{c} + 2 \\ -10 \end{array}$	^{1,2} LONGACRE	86 MPS	$22 \pi^- p \rightarrow n2K_S^0$
• • • We do not use the follow	ng data for average	s, fits, limits	, etc. • • •
1700 ±15	BOLONKIN	88 SPEC	$40 \pi^{-} p \rightarrow K_{5}^{0} K_{5}^{0} n$ $J/\psi \rightarrow \phi K^{+} K^{-}$
1638 ±10	³ FALVARD	88 DM2	$J/\psi \rightarrow \phi K^+ K^-$
1690 ± 4	⁴ FALVARD	88 DM2	$J/\psi \rightarrow \phi K^+ K^-$
1670 ±50	BLOOM	83 CBAL	$J/\psi \rightarrow \gamma 2\eta$
1650 ±50	BURKE	82 MRK2	$J/\psi \rightarrow \gamma 2\rho$
1700 0 20 0	ED A NIZI IN	OO MOVO	a+ a- v+ v-

- $^{
 m 1}$ From a partial-wave analysis of data using a K-matrix formalism with 5 poles.
- ² Fit with constrained inelasticity.
- ³ From an analysis ignoring interference with f'_2 (1525).
- ⁴ From an analysis including interference with $f_2'(1525)$.

f₂(1720) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
138 + 12 OUR AVERAGE			
181 ± 30	ARMSTRONG 89D	OMEG	$300 pp \rightarrow ppK^+K^-$
104 ± 30	ARMSTRONG 89D	OMEG	$300 pp \rightarrow ppK_S^0 K_S^0$
166.4± 33.2	AUGUSTIN 88	DM2	$J/\psi \rightarrow \gamma K^+ K^-$
136 ± 28	AUGUSTIN 87		
130 ± 20	BALTRUSAIT87	MRK3	$J/\psi \rightarrow \gamma K^+ K^-$
122 + 74 - 15	^{5,6} LONGACRE 86	MPS	$22 \pi^- \rho \rightarrow n2K_S^0$
• • We do not use the follow	ving data for averages, fits,	, limits,	etc. • • •
30 ± 20	BOLONKIN 88	SPEC	40 $\pi^- \rho \to K_S^0 K_S^0 n$

148	\pm	17			88	DM2	$J/\psi \rightarrow$	$\phi K^+ K^-$
184	±	6	8	FALVARD	88	DM2	$J/\psi \rightarrow$	$\phi K^+ K^-$
160	±	80		BLOOM	83	CBAL	$J/\psi \rightarrow$	$\gamma 2\eta$
200	± 1	100		BURKE	82	MRK2	$J/\psi \rightarrow$	$\gamma 2\rho$
156.0	±	60.)	FRANKLIN	82	MRK2	e+ e	$\rightarrow \gamma K^+ K^-$

- ${}^{\mbox{\scriptsize 5}}\mbox{From a partial-wave analysis of data using a K-matrix formalism with 5 poles.}$
- ⁶ Fit with constrained inelasticity.
- ⁷ From an analysis ignoring interference with $f_2'(1525)$.
- ⁸ From an analysis including interference with \tilde{f}'_2 (1525).

f2(1720) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ1	$\kappa \overline{\kappa}$	(38 + 9) %
Γ_2	$\eta \eta$	$(18.0 \ ^{+}_{-} \ ^{3.0}_{13.0}) \%$
Γ_3	$\pi\pi$	(3.90 + 0.20) %
Γ ₄ Γ ₅	ρρ γγ	possibly seen

$f_2(1720) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(KK) \times \Gamma(\gamma)$	$\gamma)/\Gamma_{total}$				$\Gamma_1\Gamma_5/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID	TECN	COMMENT	
< 0.11	95	⁹ BEHREND	89c CELL	$\gamma \gamma \rightarrow \kappa_5^0 \kappa_5^0$	
• • • We do not	use the followi	ng data for averag	ges, fits, limits	, etc. • • •	
< 0.28	95	⁹ ALTHOFF	85B TASS	$\gamma \gamma \rightarrow K\overline{K}\pi$	
⁹ Assuming helic	city 2.				I

f2(1720) BRANCHING RATIOS

$\Gamma(K\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT	
$0.38^{+0.09}_{-0.19}$	^{10,11} LONGACRE 86	MPS	22 $\pi^- \rho \rightarrow$	n2K ⁰ _S
$\Gamma(\eta\eta)/\Gamma_{total}$				Γ_2/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.18^{+0.03}_{-0.13}$	10,11 LONGACRE 86	MPS	22 $\pi^- \rho \rightarrow$	n2K5

$\Gamma(\pi\pi)/\Gamma_{\text{total}}$			Г ₃ /Г
VALUE	DOCUMENT ID	TECN	COMMENT
$0.039 + 0.002 \\ -0.024$	10,11 LONGACRE 86	MPS	$22 \pi^- \rho \rightarrow n2K_S^0$

 $^{10}\,\mathrm{From}$ a partial-wave analysis of data using a K-matrix formalism with 5 poles.

¹¹ Fit with constrained inelasticity.

f₂(1720) REFERENCES

ARMSTRONG 89	D PL B227 186	+Benayoun (ATHU, BARI, BIRM, CERN, CDE
BEHREND 89	C ZPHY C43 91	+Criegee, Dainton+ (CELLO Colla
AUGUSTIN 88	PRL 60 2238	+Calcaterra+ (DM2 Colla
BOLONKIN 88	NP B309 426	+Bioshenko, Gorin+ (ITEP, SER
FALVARD 88	PR D38 2706	+Ajaitouni+ (CLER, FRAS, LALO, PAD
AUGUSTIN 87	ZPHY C36 369	+Cosme+ (LALO, CLER, FRAS, PAD
BALTRUSAIT 87	PR D35 2077	Baltrusaitis, Coffman, Dubois+ (Mark III Colla
LONGACRE 86	PL B177 223	+Etkin+ (BNL, BRAN, CUNY, DUKE, NDA
ALTHOFF 85	B ZPHY C29 189	+Braunschweig, Kirschfink+ (TASSO Colla
BLOOM 83	ARNS 33 143	+Peck (SLAC, CI
BURKE 82		+Trilling, Abrams, Alam, Blocker+ (LBL, SLA
FRANKLIN 82	SLAC-254	(SLA

OTHER RELATED PAPERS -

BISELLO 898 ASTON 880 AKESSON 86 ARMSTRONG 86B BALTRUSAIT 85G ALTHOFF 82 BARNES 82 BARNES 82B TANIMOTO 82	PR D39 701 NP B301 525 NP B264 154 PL 167B 133 PR D33 1222 PL 121B 216 PL 120B 455 ZPHY C16 13 PL 116B 365 NP B198 360 PL 116B 198	Busetto+ +Awaji, Bienz+ +Albrow, Almehed+ +Bloodworth, Carney+ Baltrusalitis+ +Brandelik, Boerner, Bu +Blockus, Burka, Chien, +Boerner, Burkhardt+ +Close, Monaghan	Christian+ (JHU) (TASSO Collab.) (RHEL) (RHEL, OXF)
TANIMOTO 82	PL 116B 198	r close, monagnan	(BIEL)

 $f_0(1750)$ was S(1730)

 $I^G(J^{PC}) = 0^+(0^{++})$

OMITTED FROM SUMMARY TABLE

Seen in phase-shift analysis of $K_S^0 K_S^0$ system and in $\eta\eta$ mass distribution. We also include ALDE 86C here although the quantum numbers are not certain. Needs confirmation.

f₀(1750) MASS

VALUE (MeV)	DOCUMENT ID	TECI	V COMMENT
• • • We do not use the f	ollowing data for averag	es, fits, lim	its, etc. • • •
1720 ±60	BOLONKIN	88 SPE	$K = 40 \pi^- p \rightarrow K_S^0 K_S^0 n$
1755.0 ± 8.0	ALDE	86c GAN	$M2 38 \pi^- p \rightarrow n2\eta$
1742.0 ± 15.0	WILLIAMS	84 MPS	SF $200 \pi^- N \rightarrow 2K_S^0 X$
1730.0 ± 10 ± 20	1 ETKIN	820 MPS	$5 23 \pi^- p \rightarrow n2K_S^0$
	2 2		. 3

 $^1\,\text{From an amplitude analysis of the } \textit{K}^0_5\,\,\textit{K}^0_5\,\,\,\text{system}.$

f₀(1750) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following data for average	s, fits, limits	, etc. • • •
350 ±150	BOLONKIN	88 SPEC	$40 \pi^{-} p \rightarrow K_{5}^{0} K_{5}^{0} n$
50.0 ± 8.0	ALDE	86c GAM2	$38 \pi^- p \rightarrow n2\eta$
57.0 ± 38.0	WILLIAMS	84 MPSF	$200 \pi^{-} N \rightarrow 2K_{5}^{0} X$
$200.0^{+156.0}_{-9.0}$	² ETKIN	82B MPS	$23 \pi^- p \rightarrow n2K_S^0$

 2 From an amplitude analysis of the κ_S^0 κ_S^0 system.

f₀(1750) DECAY MODES

	Mode	
$\overline{\Gamma_1}$	κK	
Γ_2	$\eta \eta$	

f₀(1750) REFERENCES

BOLONKIN ALDE WILLIAMS ETKIN ETKIN	86C 84 82B	NP B309 426 PL B182 105 PR D30 877 PR D25 1786 PR D25 2446	+ Bloshenko, Gorin+ + Binon, Bricman+ + Diamond+ + Foley, Lai+ + Foley, Lai+	(ITEP, SERP) (SERP, BELG, LANL, LAPP) NDAM. TUFT, ARIZ, FNAL+) (BNL, CUNY, TUFT, VAND) JP (BNL, CUNY, TUFT, VAND)
--	------------------	--	--	---

 $\eta(1760), \pi(1770), f_2(1810)$

 $\eta(1760)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

OMITTED FROM SUMMARY TABLE

Seen at DCI in the 4π system. Needs confirmation.

		$\eta(1760)$ MA	SS		
VALUE (MeV) 1760±11 1 Estimated by u	EVTS 320 as from various	1 BISELLO s fits.		$J/\psi ightarrow 4\pi \gamma$	
		η(1760) WID	тн		
VALUE (MeV) 50 ± 16	<u>EVT5</u> 320	2 BISELLO		$\frac{\textit{COMMENT}}{J/\psi \rightarrow 4\pi \gamma}$	

η(1760) REFERENCES

BISELLO 89B PR D39 701

(DM2 Collab.)

$$I^G(J^{PC}) \; = \; 1^-(0^{-+})$$

OMITTED FROM SUMMARY TABLE

Seen in partial-wave analysis of the diffractively produced 3π system. Needs

		π (1770) MAS	SS			
VALUE (MeV) 1770±30	1100	DOCUMENT ID BELLINI	82	TECN SPEC	<u>СНG</u> —	$\frac{COMMENT}{40 \pi^{-} A \rightarrow 3\pi A}$
		π(1770) WID	ΤН			
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
310±50	1100	BELLINI	82	SPEC		40 π ⁻ A → 3π A

	$\pi(1770)$ DECAY MODES				
	Mode	Fraction (Γ_j/Γ)			
Γ ₁	$f_0(1400)\pi$	dominant			
Γ_2	$\rho\pi$	not seen			

π (1770) BRANCHING RATIOS

$\Gamma(f_0(1400)\pi)/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE	DOCUMENT ID		TECN	CHG	COMMENT	
dominant	BELLINI	82	SPEC	-	40 π ⁻ A →	3π A
$\Gamma(\rho\pi)/\Gamma_{\text{total}}$						Γ_2/Γ
VALUE	DOCUMENT ID		TECN	CHG	COMMENT	
not seen	BELLINI	82	SPEC	-	40 π^- A \rightarrow	$3\pi A$

$\pi(1770)$ REFERENCES

			•	,	
BELLINI	82	PRL 48 1697		+Frabetti, Ivanshin, Litkin+	(MILA, BGNA, JINR)

 $I^{G}(J^{PC}) = 0^{+}(2^{++})$

OMITTED FROM SUMMARY TABLE

From an amplitude analysis of the K^+K^- system seen in $\pi^-p \to K^+K^-$ n at 10 GeV/c. Confirmed by LONGACRE 86. Seen also in $\pi^+\pi^- \to 2\pi^0$ amplitude analysis (CASON 82), in the partial-wave analysis of the $\eta\eta$ system (ALDE 86D) and in the $4\pi^0$ mass spectrum (ALDE 88).

f ₂ (1810) MASS		
DOCUMENT ID	TECN	cc

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do no	t use the following	g data for average	s, fits	, limits,	etc. • • •
1806 ±10 1870 ±40	1600 ± 100	ALDE ¹ ALDE			$100 \pi^{-} p \to 4\pi^{0} n$ $100 \pi^{-} p \to 4\gamma n$
$1858.0^{+18.0}_{-71.0}$		² LONGACRE	86	MPS	Compilation
1799.0 ± 15.0		CASON	82	STRC	$8~\pi^+~\rho~\rightarrow~\rho~\pi^+~2\pi^0$
$1857.0 ^{+ 35.0}_{- 24.0}$		³ COSTA	80	OMEG	$10~\pi^-~\rho \rightarrow~K^+~K^-~n$

- $^{\rm 1}\,{\rm Seen}$ in only one solution.
- From a partial-wave analysis of data using a K-matrix formalism with 5 poles. Includes compilation of several other experiments.
 Error increased by spread of two solutions. Included in LONGACRE 86 global analysis.

f2(1810) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the following	g data for average	s, fits	s, limits,	etc. • • •
190 ± 20	1600 ± 100	ALDE	87	GAM4	$100 \pi^{-} p \rightarrow 4\pi^{0} n$
250 ± 30		⁴ ALDE	86D	GAM4	$100 \pi^- p \rightarrow 4\gamma n$
$388.0^{+}_{-}\ \ \frac{15.0}{21.0}$		⁵ LONGACRE	86	MPS	Compilation
280.0^{+}_{-} $\begin{array}{r} 42.0\\ 35.0 \end{array}$		CASON	82	STRC	$8~\pi^+~\rho~\rightarrow~\rho\pi^+~2\pi^0$
$185.0^{+102.0}_{-139.0}$		⁶ COSTA	80	OMEG	$10~\pi^-~\rho~\rightarrow~K^+~K^-~n$

⁴ Seen in only one solution.

 $\Gamma(\pi\pi)/\Gamma_{\text{total}}$

- From a partial-wave analysis of data using a K-matrix formalism with 5 poles. Includes compilation of several other experiments.
- ⁶ Error increased by spread of two solutions. Included in LONGACRE 86 global analysis.

f2(1810) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	ππ	(21.0 + 2.0) %
Γ2	$\eta \eta$	$(8.0^{+28.0}_{-3.0}) \times 10^{-3}$
Γ3	$4\pi^{0}$	$(6.4^{+23.0}_{-3.4}) \times 10^{-3}$
Γ4	K^+K^-	$(3.0^{+19.0}_{-2.0}) \times 10^{-3}$

fo(1810) BRANCHING RATIOS

 Γ_1/Γ

VALUE	DOCUMENT ID		TECN	COMMENT	
$0.21^{+0.02}_{-0.03}$	⁷ LONGACRE	86	MPS	Compilation	
• • We do not use the follow	wing data for average	es, fit	s, limits,	etc. • • •	
0.44 ± 0.03	⁸ CASON	82	STRC	8 π ⁺ p → μ	$2\pi^{+}2\pi^{0}$
$\Gamma(\eta\eta)/\Gamma_{total}$					Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.008^{+0.028}_{-0.003}$	⁷ LONGACRE	86	MPS	Compilation	
$\Gamma(\pi\pi)/\Gamma(4\pi^0)$					Γ_1/Γ_3
VALUE	DOCUMENT ID		TECN	COMMENT	
• • We do not use the follow	wing data for average	es, fit	s, limits,	etc. • • •	
< 0.75	ALDE	87	GAM4	100 $\pi^- p \rightarrow$	$4\pi^0 n$
$\Gamma(4\pi^0)/\Gamma(\eta\eta)$					Γ_3/Γ_2
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	
0.8 ± 0.3	ALDE	87	GAM4	$100~\pi^-~\rho$ \rightarrow	$4\pi^{0} n$

$f_2(1810)$, $\phi_3(1850)$, $f_2(1920)$, X(1920)

$\Gamma(K^+K^-)/\Gamma_{\text{total}}$					Γ4/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.003^{+0.019}_{-0.002}$	7 LONGACRE	86	MPS	Compilation	
• • • We do not use the follow	wing data for average	s, fit	s, limits,	etc. • • •	
seen	COSTA	80	OMEG	$10 \pi^- p \rightarrow K^+$	⊢ κ ⁻ n

 $^{7}\,\mbox{From a partial-wave analysis of data using a K-matrix formalism with 5 poles. Includes$ compilation of several other experiments

f₂(1810) REFERENCES

		DI DAGE 440	D # D	(CEOD DELC LAND LADD DICA)
ALDE	88	PL B201 160	+Bellazini, Binon+	(SERP, BELG, LANL, LAPP, PISA)
ALDE	87	PL B198 286	+Binon, Bricman+	(LANL, BRUX, SERP, LAPP)
ALDE	86D	NP B269 485	+Binon, Bricman+	(BELG, LAPP, SERP, CERN)
LONGACRE	86	PL B177 223	+Etkin+	(BNL, BRAN, CUNY, DUKE, NDAM)
CASON	82	PRL 48 1316	+Biswas, Baumbaugh.	, Bishop+ (NDAM, ANL)
COSTA	80	NP B175 402	Costa De Beauregar	d+ (BARI, BONN, CERN+)

- OTHER RELATED PAPERS -

CASON	83	PR D28 1586	+Cannata, Baumbaugh, Bishop+	(NDAM, ANL)
ETKIN	82B	PR D25 1786	+Foley, Lai+ (BNL	, CUNY, TUFT, VAND)

 $\phi_3(1850)$ was X(1850)was $\phi_J(1850)$

$$I^{G}(J^{PC}) = 0^{-}(3^{--})$$

Seen in the $K\overline{K}$ and $K\overline{K}\pi$ mass distributions.

$\phi_3(1850)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1854 ± 7 1855 ±10	OUR AVERAGE	ASTON	88E	LASS	11 $K^- p \rightarrow K^- K^+ \Lambda$, $K_0^0 K^{\pm} \pi^{\mp} \Lambda$
1870.0 + 30.0 - 20.0	430				$K_{S}^{+}K^{+}\pi^{+}\Lambda$ $18.5 K^{-}\rho \rightarrow K^{-}K^{+}\Lambda$
1850.0 ± 10.0	123	ALHARRAN	818	нвс	8.25 $K^- p \rightarrow K \overline{K} \Lambda$

$\phi_3(1850)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
87 + 28 - 23	OUR AVERAGE	Error includes scale facto	or of 1.2.	
64 ±31		ASTON 88	E LASS	11 $K^- \rho \rightarrow K^- K^+ \Lambda$, $K_S^0 K^{\pm} \pi^{\mp} \Lambda$
$160.0^{+90.0}_{-50.0}$	430	ARMSTRONG 82	OMEG	18.5 $K^- p \rightarrow K^- K^+ \Lambda$
$80.0^{+40.0}_{-30.0}$	123	ALHARRAN 81	в НВС	8.25 $K^- p \rightarrow K\overline{K} \Lambda$

$\phi_3(1850)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	KR	seen
Γ_2	$K\overline{K}^{*}(892) + c.c.$	seen

ϕ_3 (1850) BRANCHING RATIOS

$\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma(K\overline{K})$				Γ_2/Γ_1
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.55^{+0.85}_{-0.45}$	ASTON	88E LASS	11 $K^- p \rightarrow K$ $K_5^0 K^{\pm} \pi^{\mp}$	- κ+ Λ, 1 Λ
• • • We do not use the following	data for average	s, fits, limits	i, etc. • • •	
C.8 ±0.4	ALHARRAN	81B HBC	8.25 K ⁻ ρ \rightarrow	$K\overline{K}\pi\Lambda$

		ϕ_3	3(1850) REFEREI	NCES
ASTON ARMSTRONG ALHARRAN	82	PL B208 324 PL 110B 77 PL 101B 357	+Awaji, Biewz+ +Baubillier+ +Amirzadeh+	(SLAC, NAGO, CINC, TOKY) IGJPC (BARI, BIRM, CERN, MILA, LPNP+) JP (BIRM, CERN, GLAS, MICH, LPNP)
		—— оті	HER RELATED P	APERS ——
CORDIER	828	PL 110B 335		on, Delcourt, Fayard+ (LALO)

 $f_2(1920)$

$$I^{G}(J^{PC}) = 0^{+}(2^{++})$$

OMITTED FROM SUMMARY TABLE

Seen by ALDE 89B in $\omega\omega$ mass distribution. Needs confirmation.

f2(1920) MASS

VALUE (MeV)	CL%	DOCUMENT ID			COMMENT	
1924 ± 14		² SINGOVSKY	90	GAM2	38 $\pi^ p \rightarrow$	$n\omega\omega$
• • • We do not use th	e followin	g data for average	s, fit	s, limits,	etc. • • •	
1956 ± 20	90	1 ALDE	89E	GAM2	38 $\pi^- \rho \rightarrow$	$n\omega\omega$
¹ Signal seen as super	•	- '	f ₄ (20	150).		
² This result supersed	es ALDE 8	39в.				

f₂(1920) WIDTH

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
91±50		4 SINGOVSKY	90	GAM2	$38 \pi^- p \rightarrow n\omega\omega$
• • • We do not	use the following	ng data for average	s, fit:	s, limits,	etc. • • •
220 ± 60	90	³ ALDE	898	GAM2	$38 \pi^- \rho \rightarrow n\omega \omega$
³ Signal seen as	superimpositio	n of f ₂ (1920) and	f ₄ (20	50).	
4 This regult cur	norcodos ALDE	90p			

f2(1920) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
Γ ₁	$\omega \omega$	seen

f2(1920) BRANCHING RATIOS

$\Gamma(\omega\omega)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
seen	ALDE	89B GAM2	38 $\pi^- \rho \rightarrow$	$n\omega\omega$

f₂(1920) REFERENCES

$$I^G(J^{PC}) = 0^+(?^{?+})$$

OMITTED FROM SUMMARY TABLE

Seen by (ALDE 89) in $\eta \eta'$ mass distribution. Needs confirmation.

	X(1920) MASS	
VALUE (MeV) 1911±10	1 PROKOSHKIN 90	

¹ These results supersede ALDE 89 and ALDE 86c.

X(1920) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
90±35	² PROKOSHKIN 90	GAM2	38 π ⁻ p → ηη n
² These results supersede ALDE	89 and ALDE 86c.		

X(1920) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\eta \eta'$	seen
Γ ₂ Γ ₃	$ \eta \eta $ $ \pi^0 \pi^0 $ $ K_S^0 K_S^0 $	
Γ_4	$K_S^0 K_S^0$	

X(1920) BRANCHING RATIOS

$\Gamma(\eta \eta')/\Gamma_{total}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
seen	ALDE	89	GAM2	$38\pi^- p \rightarrow n\eta\eta'$	

⁸ Included in LONGACRE 86 global analysis.

X(1920), $f_2(2010)$, $a_4(2040)$

$\Gamma(\eta\eta)/\Gamma(\eta\eta')$ VALUE <0.05	<u>CL%</u> 90	DOCUMENT ID 3 PROKOSHKIN 90	TECN GAM2	$\frac{\Gamma_2/\Gamma_1}{\frac{COMMENT}{38 \pi^- p \rightarrow \eta \eta' n}}$
³ These results super	sede ALD	E 89 and ALDE 86c.		,
$\Gamma(\pi^0\pi^0)/\Gamma(\eta\eta')$				Γ_3/Γ_1
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
< 0.1	90	ALDE 89	GAM2	$38\pi^- p \rightarrow n\eta\eta'$
$\Gamma(K_S^0K_S^0)/\Gamma(\eta\eta')$				Γ_4/Γ_1
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
< 0.066	90	BALOSHIN 86	SPEC	$40\pi p \to K_S^0 K_S^0 n$

X(1920) REFERENCES

PROKOSHKIN	90	Hadron 89 Conf.	(SERP, BELG, LANL, LAPP, PISA, KEK)
ALDE	89	PL B216 447 +Binor	Bricman, Donskov+ (SERP, BELG, LANL, LAPP) IG
ALDE	86C	PL B182 105 +Binor	Bricman+ (SERP, BELG, LANL, LAPP)
BALOSHIN	86	SJNP 43 959 + Barko	v, Bolonkin, Vladimirskii, Grigoriev+ (ITEP)
		Translated from YAF 43 1487.	

$f_2(2010)$ was $g_T(2010)$

$$I^G(J^{PC}) = 0^+(2^{++})$$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

f ₂ (2010) MASS					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
2011 + 62 - 76	1 ETKIN	88	MPS	$22~\pi^-~\rho \to ~\phi\phi n$	
1980 ± 20	² BOLONKIN	88	SPEC	40 $\pi^- p \rightarrow K_S^0 K_S^0 n$	
2050.0 ⁺ 90.0 50.0	ETKIN	85	MPS	$22 \pi^- \rho \rightarrow 2\phi n$	
$2120.0^{+}_{-120.0}$	LINDENBAUM	84	RVUE		
2160.0 ± 50.0	ETKIN	82	MPS	$16 \pi^- p \rightarrow 2\phi n$	
2160.0 \pm 50.0 ETKIN 82 MPS $16 \pi^- p \rightarrow 2\phi n$ 1 Includes data of ETKIN 85. The percentage of the resonance going into $\phi \phi$ 2^{++} 5_2 , D_2 , and D_0 is 98^{+}_{-3} , 0^{+}_{-0} , and 2^{+}_{-2} , respectively. 2 Statistically very weak, only 1.4 sigma.					

² Statistically very weak, only 1.4 sigma.					ı	
	f ₂ (2010) WID	ГН				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
202 + 67 - 62	³ ETKIN	88	MPS	$22~\pi^-p\to$	φφη	
• • We do not use the following	data for averages	, fit	s, limits,	etc. • • •		
145 ± 50	⁴ BOLONKIN	88	SPEC	40 $\pi^- \rho \rightarrow$	K0 K0 n	ı
$200.0^{+160.0}_{-50.0}$	ETKIN	85	MPS	$22~\pi^-~\rho \rightarrow$	2φn	
300.0 + 150.0 - 50.0	LINDENBAUM	84	RVUE			
310.0± 70.0	ETKIN	82	MPS	16 $\pi^- p \rightarrow$	2φn	
³ Includes data of ETKIN 85.						

f₂(2010) DECAY MODES

Fraction (Γ_i/Γ)

⁴Statistically very weak, only 1.4 sigma.

Mode

$\Gamma_1 \phi \phi$				seen		
f ₂ (2010) REFERENCES						
BOLONKIN ETKIN ETKIN LINDENBAUM ETKIN Also	88 88 85 84 82 83	NP B309 426 PL B201 568 PL 165B 217 CNPP 13 285 PRL 49 1620 Brighton Conf. 33		+Bloshenko, Gorin+ +Foley, Lindenbaum+ +Foley, Longacre, Lindenbaum+ +Foley, Longacre, Lindenbaum+ Lindenbaum	(ITEP, SERP) (BNL, CUNY) (BNL, CUNY) (CUNY) (BNL, CUNY) (BNL, CUNY) (BNL, CUNY)	
	OTHER RELATED PAPERS					
ARMSTRONG GREEN BOOTH	89B 86 84	PL B221 221 PRL 56 1639 NP B242 51		+Benayoun+ (CERN, CDEF, BIRM +Lai+ (FNAL, ARIZ, FSU, N +Ballance, Carroll, Donald+	I, BARI, ATHU, LPNP) DAM, TUFT, VAND+) (LIVP, GLAS, CERN)	

 $I^{G}(J^{PC}) = 1^{-}(4^{++})$

OMITTED FROM SUMMARY TABLE

Seen in partial-wave analysis of the $K\overline{K}$ and $\pi^+\pi^-\pi^0$ systems. Needs confirmation.

a4(2040) MASS

VALUE (MeV)	DOCUMENT ID	TECN	<u>CHG</u>	COMMENT		
2037 ±26 OUR AVERAGE						
2040.0 ± 30.0	¹ CLELAND 8	82B SPEC	±	$50 \pi p \rightarrow K_S^0 K^{\pm} p$ $15 \pi^- p \rightarrow 3\pi n$		
2030.0 ± 50.0	² CORDEN	78c OMEG	0	$15 \pi^- p \rightarrow 3\pi n$		
1903.0 ± 10.0	³ BALDI	78 SPEC	-	$\begin{array}{c} 10 \ \pi^{-} \ p \rightarrow \\ p \ K_{S}^{0} \ K^{-} \end{array}$		
				pKUK-		

a₄(2040) WIDTH

VALUE (MeV)	DOCUMENT ID)	TECN	CHG	COMMENT
427 ±120 OUR AVERAGE	:				
380.0 ± 150.0	⁴ CLELAND	82B	SPEC	±	$50 \pi \rho \rightarrow K_S^0 K^{\pm} \rho$
510.0 ± 200.0	⁵ CORDEN	78 C	OMEG	0	$15 \pi^- p \rightarrow 3\pi n$
• • We do not use the following the fol	owing data for ave	erages,	fits, lim	its, etc	i. • • •
166.0 ± 43.0	⁶ BALDI	78	SPEC	_	$10 \pi^- \rho \rightarrow$
					$10 \pi^- \rho \rightarrow \rho \kappa_S^0 \kappa^-$

a₄(2040) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
Γ ₁	κ κ	seen
Γ_2	$\pi^+\pi^-\pi^0$	seen

a₄(2040) BRANCHING RATIOS

$\Gamma(K\overline{K})/\Gamma_{total}$	DOCUMENT ID		TECN	CHG	COMMENT	Γ_1/Γ
seen	BALDI	78	SPEC	±	$ \begin{array}{c} 10 \pi^- p \rightarrow \\ K_S^0 K^- p \end{array} $	
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$	0.00.00.00.00.00					Γ_2/Γ
value seen	DOCUMENT ID	7 8c	TECN OMEG	<u>СНС</u> 0	$\frac{COMMENT}{15 \pi^{-} \rho \rightarrow}$	3π n

a₄(2040) REFERENCES

CLELAND 82B NP B208 228	+Delfosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT)
BALDI 78 PL 74B 413	+Bohringer, Dorsaz, Hungerbuhler+ (GEVA) JP
CORDEN 78C NP B136 77	+Dowell, Garvey+ (BIRM, RHEL, TELA, LOWC) JP

OTHER RELATED PAPERS -

DELFOSSE 81 NP B183 349 +Guisan, Martin, Muhlemann, Weill -(GEVA, LAUS)

 $^{^1}$ From an amplitude analysis. 2 $^JP=$ 4 $^+$ is favored, though $^JP=$ 2 $^+$ cannot be excluded. 3 From a fit to the $^{\sqrt{6}}_{\rm S}$ moment. Limited by phase space.

 $^{^4}$ From an amplitude analysis. 5 $J^P=4^+$ is favored, though $J^P=2^+$ cannot be excluded. 6 From a fit to the Y_8^0 moment. Limited by phase space.

 $a_3(2050)$ was A(2050)

$$I^G(J^{PC}) = 1^-(3^{++})$$

OMITTED FROM SUMMARY TABLE

Formerly called A_4 or π . Needs confirmation.

a ₃ (2050) MASS						
ALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2080±40	208	KALELKAR	75	нвс	+	$ \begin{array}{c} 15 \pi^+ \rho \rightarrow \\ \rho \pi^+ \rho_3 \end{array} $
• • We do not	use the follow	ing data for avera	ges,	fits, limi	its, etc.	• • •
		ANTIPOV	77	CIBS		25
2100		ANTIPOV	11	CIDS	_	$\begin{array}{c} 25 \ \pi^- \rho \rightarrow \\ \rho \pi^- \rho_3 \end{array}$

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
340 ± 80	208	KALELKAR	75	нвс	+	15 $\pi^+ \rho \rightarrow$
• • • We do not use	the followin	or data for avera	-oc f	ite limi	er ote	$\rho\pi^+\rho_3$
a a a we do not use	the lollowill	ig data idi averaj	ges, i	11.5, 111111	is, etc.	• • •
~ 500		ANTIPOV	77	CIBS	-	25 $\pi^- \rho \rightarrow$
						$p\pi^-\rho_3$
355 ± 21		BALTAY	77	HBC	0	15 $\pi^- p \rightarrow$
						$\Delta^{++}3\pi$

a₃(2050) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	3π	
Γ_2	$\rho_3(1690)\pi$	dominant

a₃(2050) BRANCHING RATIOS

$\Gamma(\rho_3(1690)\pi)/\Gamma(3\pi)$						Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	CHG	COMMENT	
dominant	KALELKAR	75	HBC	+	$15~\pi^+~p~\rightarrow~p~3\pi$	

a₃(2050) REFERENCES

ANTIPOV BALTAY KALELKAR	77 77 75	NP B119 45 PRL 39 591 Nevis 207 Thesis	+Busnello, Damgaard, Kienzle+ +Cautis, Kalelkar	(SERP, GEVA) (COLU) JP (COLU)		
OTHER RELATED PAPERS						
HARRIS	81	ZPHY C9 275	+Dunn Luhatti Morivasu Podolsky+	(SEAT LICE)		

HARRIS	81	ZPHY C9 275	+Dunn, Lubatti, Moriyasu, Podolsky+	(SEAT, UCB)
BALTAY	78	PR D17 52	+Cautis, Cohen, Csorna, Kalelkar+	(COLU, BING)
CAUTIS	77	Nevis 221 Thesis		(COLU) J
DEUTSCH	75	NP B99 397	Deutschmann, Kirk, Sixel, Boeckmann+(Al	
OREN	74	NP B71 189	+Cooper, Fields, Rhines, Allison+	(ANL, OXF)
BASTIEN	73	Uppsala Conf. 73	+Dunn, Harris, Lubatti, Bingham+	(SEAT, UCB)
CLAYTON	72	NP B47 81	+Mason, Muirhead, Rigopoulos+	(LIVP, PATR)
HARRISON	72	PRL 28 775	+Hevda, Johnson, Kim, Law, Mueller+	(HARV)
SALZBERG	72	NP B41 397	+Harrison, Heyda, Johnson, Kim, Law+	(HARV)
BEMPORAD	71	NP B33 397	+Beusch, Melissinos+ (CERN, ET	TH, LOIC, MILA)
HUSON	68	PL 28B 208		A. MILA. UCLA)
DANYSZ	67B	NC 51A 801	+French, Simak	(CERN)
				,,

 $f_4(2050)$ was h(2030)

 $I^{G}(J^{PC}) = 0^{+}(4^{++})$

f4(2050) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
2049 ±10	OUR AVERAGE E	rror includes scale t	facto	r of 1.2.	
2060 ±20		SINGOVSKY	90	GAM2	$38 \pi^- p \rightarrow n\omega\omega$
2038 ±30		AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
2086 ±15		BALTRUSAIT	.87	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
2000.0 ± 60.0		ALDE	86D	GAM4	$100 \pi^- p \rightarrow \pi 2\eta$
2020.0 ± 20.0	40k	¹ BINON	84B	GAM2	$38 \pi^{-} p \rightarrow n2\pi^{0}$
2015.0 ± 28.0		¹ CASON	82	STRC	$8 \pi^{+} p \rightarrow p \pi^{+} 2\pi^{0}$
2031.0^{+25}_{-36}		ETKIN	82B	MPS	23 $\pi^- p \rightarrow \pi_2 K_5^0$
2020 ± 30	700				$40 \pi^{-} p \rightarrow n2\pi^{0}$
2050 ±25		BLUM	75	ASPK	$18.4 \pi^{-} p \rightarrow nK^{+} K^{-}$
• • • We do	not use the followin	g data for averages	, fits	, limits,	etc. • • •
1978.0 ± 5.0		2 ALPER	80	CNTR	$62 \pi^- p \rightarrow K^+ K^- n$
2040.0 ± 10.0					$18 \pi^- p \rightarrow p \overline{p} n$
1935.0 ± 13.0					$12-15 \pi^- p \to n2\pi$
1988.0 ± 7.0					$10 \pi^- \rho \rightarrow K^+ K^- n$
1922.0 ± 14.0					$25 \pi^- p \rightarrow p 3\pi$
					p pon

 $^1\,\mathrm{From}$ amplitude analysis of reaction $\pi^+\,\pi^-\,\to\,2\pi^0\,.$

f₄(2050) WIDTH

VALUE (MeV)	JR AVERAGE	DOCUMENT ID	_	<u>TECN</u>	COMMENT
203 ± 12 00 170 ± 60 304 ± 60 210 ± 63 400.0±100.0 240.0± 40.0 190.0± 14.0		ALDE	87 .87 86D 84B	DM2 MRK3 GAM4 GAM2	$38 \pi^{-} p \rightarrow n\omega\omega$ $J/\psi \rightarrow \gamma \pi^{+} \pi^{-}$ $J/\psi \rightarrow \gamma \pi^{+} \pi^{-}$ $100 \pi^{-} p \rightarrow n2\eta$ $38 \pi^{-} p \rightarrow n2\pi^{0}$ $10 \pi^{+} n/\pi^{+} p$
$186.0^{+103.0}_{-58.0}$ 305.0^{+36}_{-119}		⁴ CASON ETKIN	8 2 B	MPS	$8 \pi^{+} p \to p \pi^{+} 2\pi^{0}$ $23 \pi^{-} p \to n2K_{S}^{0}$
$ \begin{array}{cccc} 180 & \pm & 60 \\ 225 & +120 \\ & -70 \end{array} $	700	APEL BLUM	75	ASPK	40 $\pi^- p \rightarrow n2\pi^0$ 18.4 $\pi^- p \rightarrow nK^+ K^-$
 • • • We do no 	t use the following	data for averages	, fits	, limits,	etc. • • •
$\begin{array}{c} 243.0 \pm \ 16.0 \\ 140.0 \pm \ 15.0 \\ 263.0 \pm \ 57.0 \\ 100.0 \pm \ 28.0 \\ 107.0 \pm \ 56.0 \end{array}$	`	⁵ ROZANSKA ⁵ CORDEN	80 79 79в	SPRK OMEG OMEG	$62 \pi^{-} p \rightarrow K^{+} K^{-} n$ $18 \pi^{-} p \rightarrow p \overline{p} n$ $12-15 \pi^{-} p \rightarrow n2\pi$ $10 \pi^{-} p \rightarrow K^{+} K^{-} n$ $25 \pi^{-} p \rightarrow p3\pi$

f₄(2050) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
Γ ₁	$\omega\omega$	(25 ±6)%
Γ_2	$\pi \pi$	(17.0 ± 1.5) %
Γ_3	κ κ	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$
Γ_4	$\eta\eta_{_}$	$(2.1\pm0.8)\times10^{-3}$
Γ ₄ Γ ₅	$4\pi^0$	< 1.2 %
۲6	$\gamma\gamma$	

$f_4(2050) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)$	/Γ _{total}				$\Gamma_3\Gamma_6/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID	TECN	COMMENT	
• • We do not use	e the followin	g data for average	s, fits, limits,	etc. • • •	
< 0.29	95	ALTHOFF	858 TASS	$\gamma \gamma \rightarrow K \overline{K} \pi$	

f₄(2050) BRANCHING RATIOS

$\Gamma(\omega\omega)/\Gamma(\pi\pi)$			Γ_1/Γ_2
VALUE	DOCUMENT ID	TECN	COMMENT
1.5 ± 0.3	SINGOVSKY 9	GAM2	$38 \pi^- p \rightarrow n\omega\omega$

 $^{^{2}}I(J^{P})=0(4^{+})$ from amplitude analysis assuming one-pion exchange.

 $^{^3}$ Width errors enlarged by us to $4\Gamma/N^{1/2}$; see the note with the K^* (892) mass.

 $^{^4}$ From amplitude analysis of reaction $\pi^+\pi^-\to 2\pi^0$. $^5\,I(J^P)=0(4^+)$ from amplitude analysis assuming one-pion exchange. 6 Width errors enlarged by us to $4\Gamma/N^{1/2}$; see the note with the K^* (892) mass.

 $f_4(2050)$, $\eta(2100)$, $\pi_2(2100)$, $f_2(2150)$

$\Gamma(\pi\pi)/\Gamma_{total}$				Γ ₂ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.170±0.015 OUR AVERAGE	_			
0.18 ±0.03	⁷ BINON			$38 \pi^- \rho \rightarrow n4\gamma$
0.16 ±0.03	⁷ CASON	82	STRC	$8 \pi^{+} \rho \rightarrow \rho \pi^{+} 2\pi^{0}$
0.17 ±0.02	⁷ CORDEN	79	OMEG	$1215 \pi^- p \rightarrow n2\pi$
⁷ Assuming one pion exchange.				
$\Gamma(K\overline{K})/\Gamma(\pi\pi)$				Γ_3/Γ_2
VALUE	DOCUMENT ID		TECN	COMMENT
$0.04 \begin{array}{l} +0.02 \\ -0.01 \end{array}$	ETKIN	82B	MPS	$23 \pi^- p \rightarrow n2K_S^0$
$\Gamma(\eta\eta)/\Gamma_{total}$				Γ ₄ /Γ
VALUE (units 10 ⁻³)	DOCUMENT ID		TECN	COMMENT
2.1±0.8	ALDE	860	GAM4	$100 \pi^- \rho \rightarrow n4\gamma$
$\Gamma(4\pi^0)/\Gamma_{\text{total}}$				Γ ₅ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
<0.012	ALDE	87	GAM4	$100 \ \pi^- \ \rho \rightarrow \ 4\pi^0 \ n$

f₄(2050) REFERENCES

SINGOVSKY	90	Hadron 89 Conf.	(SERP, BELG, LANL, LAPP, PISA, KEK)
ALDE	87	PL B198 286	+Binon, Bricman+ (LANL, BRUX, SERP, LAPP)
AUGUSTIN	87	ZPHY C36 369	+Cosme+ (LALO, CLER, FRAS, PADO)
BALTRUSAIT	. 87	PR D35 2077	Baltrusaitis, Coffman, Dubois+ (Mark III Collab.)
ALDE	86D		
ALTHOFF			
BINON			+Donskov, Duteil, Gouanere+ (SERP, BELG, LAPP)
BINON		S INP 38 723	+Gouanere, Donskov, Duteil+ (SERP, BRUX+)
D.1.0.1	030	Translated from YAF	
DENNEY	83	PR D28 2726	+Cranley, Firestone, Chapman + (IOWA, MICH)
		PRL 48 1316	+Biswas, Baumbaugh, Bishop+ (NDAM, ANL)
ETKIN			+Foley, Lai+ (BNL, CUNY, TUFT, VAND)
ALPER	80	PL 94B 422	+Becker+ (AMST, CERN, CRAC, MPIM, OXF+)
ROZANSKA	80		
CORDEN	79		+Dowell, Garvey+ (BIRM, RHEL, TELA, LOWC) JP
EVANGELISTA		NP B154 381	(BARI, BONN, CERN, DARE, GLAS, LIVP+)
ANTIPOV			
		PL 57B 398	
BLUM			+Chabaud, Dietl, Garelick, Grayer+ (CERN, MPIM) JP
DCO.		. 2 3.2 703	Chabata, Dietr, Sarater, Staffer (Certif, Millim) 31
		отн	ER RELATED PAPERS ———

 $\eta(2100)$

CASON 83 GOTTESMAN 80 WAGNER 74

 $I^{G}(J^{PC}) = 0^{+}(0^{-+})$

+Cannata, Baumbaugh, Bishop - (NDAM, ANL) +Jacobs+ (SYRA, BRAN, BNL, CINC) (MPIM)

OMITTED FROM SUMMARY TABLE

89B PR D39 701

BISELLO

Seen at DCI in the 4π system. Needs confirmation.

		$\eta(2100)$ MAS	SS			
VALUE (MeV) 2103±50	EVTS 586	DOCUMENT ID 1 BISELLO		TECN DM2		
$^{ m 1}$ Estimated by ι	is from various	fits.				
		η(2100) WID	тн			
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
187 ± 75	586	² BISELLO	89B	DM2	$J/\psi \rightarrow 4\pi\gamma$	
101 T 13						

Busetto -

(2150`

(DM2 Collab.)

 $I^{G}(J^{PC}) = 0^{+}(2^{++})$

(AMST, CERN, CRAC, MPIM, OXF \cdot)

OMITTED FROM SUMMARY TABLE

81B NP B182 269

 $^3\mathrm{From}$ a two-resonance fit to four $2^-\,0^+$ waves.

This entry was previously called \mathcal{T}_0 . Contains results only from formation experiments. For production experiments see the $\overline{N}N(1100-3600)$ entry. See also $\rho(2150)$, $\rho_3(2250)$, $f_4(2300)$, $\rho_5(2350)$.

$\overline{p} p \rightarrow \pi \pi$ VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use th	e following data for averages	s, fits, limits,	etc. • • •
~ 2170.0	¹ MARTIN	808 RVUE	
~ 2150.0	¹ MARTIN	80c RVUE	
~ 2150.0	² DULUDE	788 OSPK	$1-2 \overline{\rho} \rho \rightarrow \pi^0 \pi^0$
	i simultaneous analysis of ρ_i from partial-wave amplitude		and $\pi^0 \pi^0$.

f2(2150) MASS

$\pi_2(2100)$ was A(2100)

 $I^{G}(J^{PC}) = 1^{-}(2^{-+})$

OMITTED FROM SUMMARY TABLE

Seen in the $\rho \pi$, $f_0(1400) \pi$, and $f_2(1270) \pi J^P = 2^-$ waves of the diffractively produced 3π system. Needs confirmation.

 (21	UU/	MA	CC	

VALUE (MeV) DOCUMENT ID TECN COMMENT ¹ DAUM 818 CNTR 63,94 $\pi^- p \rightarrow 3\pi X$ 2100 ± 150

¹ From a two-resonance fit to four 2⁻0⁺ waves.

$\pi_2(2100)$ WIDTH

VALUE (MeV) TECN COMMENT 651 ± 50 81B CNTR 63,94 π⁻ ρ → 3π X

 $^2\,\mbox{From a two-resonance fit to four }2^{\sim}\,0^{+}\,$ waves.

$\pi_2(2100)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	3π	seen
Γ_2	$ ho\pi$	seen
Γ_3	$f_2(1270) \pi$	seen
Γ_4	$f_0(1400)\pi$	seen

$\pi_2(2100)$ BRANCHING RATIOS

$\Gamma(\rho\pi)/\Gamma(3\pi)$				Γ_2/Γ_1
VALUE	DOCUMENT ID	TECN	COMMENT	
0.19 ± 0.05	³ DAUM	818 CNTR	63,94 $\pi^ \rho$	
$\Gamma(f_2(1270)\pi)/\Gamma(3\pi)$				Γ_3/Γ_1
VALUE	DOCUMENT ID	TECN	COMMENT	
0.36 ± 0.09	³ DAUM	81B CNTR	63,94 π ⁻ p	
$\Gamma(f_0(1400)\pi)/\Gamma(3\pi)$				Γ_4/Γ_1
VALUE	DOCUMENT ID	TECN	COMMENT	., •
0.45 ± 0.07	³ DAUM	81B CNTR	63,94 π ⁻ p	
D-wave/S-wave RATIO F	OR $\pi_2(2100) \rightarrow$	$f_2(1270)\pi$		
VALUE	DOCUMENT ID	,	COMMENT	
0.39 + 0.23	3 DAUM	81B CNTR	63.94 π ⁻ D	

$\pi_2(2100)$ REFERENCES

f(2150) a(2150) f(2175)

	$f_2(2150), \rho(2150), f_2(2175)$
S-CHANNEL $\bar{p}p$ or $\bar{N}N$	ρ(2150) WIDTH
• • • We do not use the following data for averages, fits, limits, etc. • • • ~ 2190.0 3 CUTTS 78B CNTR 0.97-3 $\overline{p}p$ → $\overline{N}N$	$\overline{ ho} p ightarrow \pi \pi$ VALUE (MeV) •• • We do not use the following data for averages, fits, limits, etc. •••
2155.0 \pm 15.0 3.4 COUPLAND 77 CNTR 0 0.7 $-$ 2.4 $\overline{p}p \rightarrow \overline{p}p$ 2193 \pm 2 3.5 ALSPECTOR 73 CNTR $\overline{p}p$ S channel 3 Isospins 0 and 1 not separated.	~ 250.0 6 MARTIN 80B RVUE ~ 200.0 6 MARTIN 80C RVUE
Sospins of and Titol separated. From a fit to the total elastic cross section. Referred to as T or T region by ALSPECTOR 73.	S-CHANNEL N N VALUE (MeV) DOCUMENT ID TECN CHG COMMENT
$f_2(2150)$ WIDTH $\overline{ ho} ho ightarrow \pi \pi$	• • • We do not use the following data for averages, fits, limits, etc. • • • $135.0\pm75.0 \qquad 7.8 \text{ COUPLAND} \qquad 77 \text{CNTR} 0 0.7-2.4 \ \overline{p}p \rightarrow \overline{p}p$ $98 \ \pm 8 \qquad 8 \text{ALSPECTOR} 73 \text{CNTR} \qquad \overline{p}p S \text{channel}$ $ \sim 85 \qquad 9 \text{ABRAMS} \qquad 70 \text{CNTR} \qquad S \text{Channel} \overline{p}N$
VALUE (MeV) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • • • COMMENT ~ 250.0 6 MARTIN 80B RVUE ~ 250.0 6 MARTIN 80C RVUE ~ 250.0 7 DULUDE 78B OSPK 1-2 $\bar{p}p \rightarrow \pi^0 \pi^0$ 6 $f(p^P) = 0$ 0 (2+) from simultaneous analysis of $p\bar{p} \rightarrow \pi^- \pi^+$ and $\pi^0 \pi^0$.	$^6 I(J^P)=1(1^-)$ from simultaneous analysis of $\rho \overline{\rho} \to \pi^- \pi^+$ and $\pi^0 \pi^0$. 7 From a fit to the total elastic cross section. 8 isospins 0 and 1 not separated. 9 Seen as bump in $I=1$ state. See also COOPER 68. PEASLEE 75 confirm $\overline{\rho} \rho$ results of ABRAMS 70, no narrow structure.
${}^{7}I^{\overline{G}}(J^{P})=0^{+}(2^{+})$ from partial-wave amplitude analysis. S-CHANNEL $\overline{p}p$ or $\overline{N}N$	ho(2150) REFERENCES
S-CHAINTEL p of NN **Nulle (Mey) • • We do not use the following data for averages, fits, limits, etc. • • • 135.0 \pm 75.0 8.9 COUPLAND 77 CNTR 0 0.7–2.4 $\bar{p}p \rightarrow \bar{p}p$ 98 \pm 8 **Substitute of the total elastic cross section. 9 Isospins 0 and 1 not separated.	MARTIN
risospins U and 1 not separated.	OTHER RELATED PAPERS
f ₂ (2150) DECAY MODES	MARTIN 79B PL 86B 93 +Pennington (DURH) CARTER 78 NF 8132 176 (LOQM) JP CARTER 78B NP 8141 467 (LOQM)
Mode $\Gamma_1 = \pi\pi$	CARTER 77 PL 67B 117 +Coupland, Eisenhandler, Astbury+ (LOQM, RHEL).)P CARTER 77B PL 67B 122 (LOQM) JP CARTER 77C NP B127 202 +Coupland, Atkinson+ (LOQM, DARE, RHEL)
ಕ್ಟ್ (2150) REFERENCES	JONES 77 NP B119 476 + Plano (RUTG) MONTANET 77 B05ton Conf. 260 (CERN) GAY 76 NC 31A 593 + Jeanneret, Bogdanski+ (NEUC, LAUS, LIVP, LPNP) ZEMANY 76 NP B103 537 + HMigMa, Mountz, Smith
MARTIN 80B NP B176 355	DONNACHIE 75 NC 26A 317
BACON 73 PR D7 577	BRICMAN 69 PL 29B 451 + Ferro-Luzzi, Bizard + (CERN, CAEN, SACL) + Cool, Giacomelli, Kycia, Leontic, Li+ (BNL) $f_2(2175)$ $I^G(J^{PC}) = 0^+(2^{++})$
$\rho(2150) \qquad I^{G}(J^{PC}) = 1^{+}(1^{})$	OMITTED FROM SUMMARY TABLE
OMITTED FROM SUMMARY TABLE	Seen in central production of $\eta\eta$ system.
This entry was previously called $T_1(2190)$. Contains results only from for-	f ₂ (2175) MASS
mation experiments. For production experiments see the $\overline{N}N(1100-3600)$ entry. See also $f_2(2150)$, $\rho_3(2250)$, $f_4(2300)$, $\rho_5(2350)$. Our latest mini-review on this particle can be found in the 1984 edition.	VALUE (MeV) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 2175 ± 20 PROKOSHKIN 90 GAM4 $300 \pi^- p \rightarrow \pi^- p \eta \eta$
ρ(2150) MASS	6/2176\ WIDTU
$\overline{p} p o \pi \pi$ VALUE (MeV) DOCUMENT ID TECN	f ₂ (2175) WIDTH VALUE (MeV) DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • • ~ 2170.0	• • • We do not use the following data for averages, fits, limits, etc. • • • 150 ± 35 PROKOSHKIN 90 GAM4 $300~\pi^-p \rightarrow ~\pi^-p\eta\eta$
S-CHANNEL N N VALUE (MeV) DOCUMENT ID TECN CHG COMMENT	f ₂ (2175) DECAY MODES
• • We do not use the following data for averages, fits, limits, etc. • • ~ 2190.0 2 CUTTS	Mode Fraction (Γ_i/Γ)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ_1 ηη seen
2190 \pm 10	$f_2(2175) \ \text{BRANCHING RATIOS} \\ \Gamma(\eta\eta)/\Gamma_{\text{total}} \qquad \qquad \Gamma_1/\Gamma_{\text{total}} \\ \bullet \bullet \bullet \ \text{We do not use the following data for averages, fits, limits, etc.} \bullet \bullet \bullet \\ \text{seen} \qquad \qquad \text{PROKOSHKIN 90}$

ł

 $f_2(2175)$, X(2200), $f_4(2220)$, $\rho_3(2250)$

f₂(2175) REFERENCES

PROKOSHKIN 90 Hadron 89 Conf

(SERP. BELG. LANL. LAPP. PISA. KEK)

$$I^{G}(J^{PC}) = ??(\mathsf{EVEN}^{++})$$

OMITTED FROM SUMMARY TABLE

Seen at DCI in the $K^0_S K^0_S$ system. Not seen in Υ radiative decays (BARU 89). Needs confirmation.

X(2200) N	1ASS
-----------	------

VALUE (MeV)	DOCUMENT ID		TECN	CHG	
2197±17	AUGUSTIN	88	DM2	0	$J/\psi \rightarrow \gamma K_5^0 K_5^0$

X(2200) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
201 ± 51	AUGUSTIN	88	DM2	0	$J/\psi \rightarrow \gamma K_S^0 K_S^0$

X(2200) REFERENCES

AUGUSTIN 88 PRL 60 22	BARU	89	ZPHY C	42
	AUGUSTIN	88	PRL 60	22

+Beilin, Blinov+ +Calcaterra+

(NOVO) (DM2 Collab.)

 $f_4(2220)$ was $\xi(2220)$

$$I^{G}(J^{PC}) = 0^{+}(4^{++})$$

OMITTED FROM SUMMARY TABLE

This state has been seen at SPEAR in the $K\overline{K}$ systems (K^+K^-) and $K_S^0K_S^0$ produced in the radiative decay of $J/\psi(1S)$. Seen in $\eta \eta'$ (ALDE 86B) and in $K_S^0 K_S^0$ (ASTON 88D). Needs confirmation. Not seen in Υ radiative decays nor in B inclusive decay (BEHRENDS 84). Not seen in $\bar{p}p \rightarrow K^+K^$ formation experiment (SCULLI 87). Not seen at DCI in either K^+K^- or $K_S^0 K_S^0$ systems (AUGUSTIN 88).

f4(2220) MASS

VALUE (MeV) 2225± 6 OUR AVERAGE	<u>EVTS</u> G E	DOCUMENT ID	TECN	COMMENT
$2209^{+17}_{-15} \pm 10$		ASTON 8	8F LASS	11 $K^- p \rightarrow K^+ K^- \Lambda$
2230 ± 20		BOLONKIN 8	8 SPEC	$40 \pi^- \rho \to K_S^0 K_S^0 n$
2220 ± 10	41	ALDE 8	6B GAM4	38-100 $\pi p \rightarrow n\eta \eta'$ $e^+ e^- \rightarrow \gamma K^+ K^-$
2230 ± 6 ± 14	93	BALTRUSAIT8	60 MRK3	$e^+ e^- \rightarrow \gamma K^+ K^-$
$2232\pm7\pm7$	23	BALTRUSAIT8	6D MRK3	$e^+ e^- \rightarrow \gamma \kappa_S^0 \kappa_S^0$

f4(2220) WIDTH

VALUE (MeV) E	VTS	DOCUMENT ID		TECN	COMMENT
$38 ^{+}_{-} \ ^{15}_{13}$ our average					
$60 + 107 \\ -57$		ASTON	88F	LASS	11 $K^- p \rightarrow K^+ K^- \Lambda$
80± 30		BOLONKIN	88	SPEC	$40 \pi^{-} \rho \rightarrow K_{S}^{0} K_{S}^{0} n$
$26 {}^{+}_{-} {}^{20}_{16} {}^{\pm} 17$	93	BALTRUSAIT.	. 86 D	MRK3	e+ e γK+ K-
$18 {+\atop -} \begin{array}{l} 23 \\ 15 \end{array} \pm 10$	23	BALTRUSAIT.	.86D	MRK3	$e^+ e^- - \gamma K_5^0 K_5^0$

f₄(2220) DECAY MODES

	Mode
Γ1	KK
Γ ₂ Γ ₃	^{γγ} ηη'(958)

$f_4(2220) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\widetilde{K}) \times \Gamma(\gamma\gamma)$	$\Gamma_{\rm total}$				$\Gamma_1\Gamma_2/\Gamma$
VALUE (keV)	CL%	DOCUMENT ID	TECN	COMMENT	
• • • We do not u	ise the followin	g data for averag	es, fits, limits,	etc. • • •	
<1.0	95	$^{ m 1}$ ALTHOFF	85B TASS	$\gamma \gamma$, $K\overline{K}\pi$	
$1_{\text{True for } I^{P}} =$	0^+ and $I^P =$	2+.			

f4(2220) REFERENCES

ASTON	88D	NP B301 525	+Awaji, Bienz+	(SLAC, NAGO	CINC, TOKY)
ASTON	88F	PL B215 199	+Awaji+	(SLAC, NAGO	. CINC. TOKY) JF
AUGUSTIN	88	PRL 60 2238	+Calcaterra+		(DM2 Collab.)
BOLONKIN	88	NP B309 426	+Bloshenko, Gorin+		(ITEP, SERP)
SCULLI	87	PRL 58 1715	+Christenson, Kreiter, 1	vemethy, Yamin	(NYU, BNL)
ALDE	86B	PL B177 120	+ Binon, Bricman+	(SERP, BELG	, LANL, LAPP)
BALTRUSAIT	86D	PRL 56 107	Baltrusaitis	(CIT, UCSC, ILL,	SLAC, WASH)
ALTHOFF	85B	ZPHY C29 189	+Braunschweig, Kirschfi	ink+ (TASSO Collab.)
BEHRENDS	84	PL 137B 277	 Chadwich, Chauveau, 	Gentile+	(CLEO Collab.)

OTHER RELATED PAPERS —

BARDIN	87	PL B195 292	~ Burgun+ (SACL,	FERR, CERN, PADO, TORI)
YAOUANC	85	ZPHY C28 309	+Oliver, Pene, Raynal, Ono	(ORSA, TOKY)
GODFREY	84	PL 141B 439	+ Kokoski, Isgur	(TNTO)
SHATZ	84	PL 138B 209	-	(CIT)
WILLEY	84	PRL 52 585		(PITT)
EINSWEILER	83	Brighton Conf. 348		(Mark III Čoliab.)
HITLIN	83	Cornell Conf. 746		(CIT)

$\rho_{3}(2250)$

$$I^{G}(J^{PC}) = 1^{+}(3^{--})$$

OMITTED FROM SUMMARY TABLE

Contains results only from formation experiments. For production experiments see the $\overline{N}N(1100-3600)$ entry. See also $\rho(2150)$, $f_2(2150)$, $f_4(2300)$,

$\rho_{3}(2250)$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use th	e following data for averag	ges, fits	, limits,	etc.	
~ 2250.0	¹ MARTIN	80B	RVUE		
~ 2300.0	¹ MARTIN	80c	RVUE		
~ 2140.0	² CARTER	78e	CNTR	0	0.7-2.4 pρ →
	2				$\kappa^-\kappa^+$
~ 2150.0	³ CARTER	77	CNTR	0	0.7-2.4 pp →

- 1 $I(J^{P})=1(3^{-})$ from simultaneous analysis of $p\overline{p} \rightarrow \pi^{-}\pi^{+}$ and $\pi^{0}\pi^{0}$.
- 2I = 0, 1. $J^P = 3^-$ from Barrelet-zero analysis. $3I(J^P) = 1(3^-)$ from amplitude analysis.

S-CHANNEL WN

VALUE (MeV)	DOCUMENT ID	TECN CHO	COMMENT
• • • We do not use the following	lowing data for average	s, fits, limits, etc.	• • •
~ 2190.0	4 CUTTS	78B CNTR	0.97-3 ¬pp → N N
2155.0 ± 15.0 2193 ± 2 2190 ± 10	4.5 COUPLAND 4.6 ALSPECTOR 7 ABRAMS	73 CNTR	$0.7-2.4 pp \rightarrow pp$ $pp S$ channel S channel pN

- ⁴ Isospins 0 and 1 not separated.
- ⁵ From a fit to the total elastic cross section.
- From a fit to the close section.

 Referred to as T or T region by ALSPECTOR 73.

 Seen as bump in I = 1 state. See also COOPER 68. PEASLEE 75 confirm p_P results of ABRAMS 70, no narrow structure.

$\rho_{3}(2250)$ WIDTH

$\overline{p}p \rightarrow \pi\pi \text{ or } K\overline{K}$

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use the	ne following data for averages	s, fits	, limits,	etc.	• •
~ 250.0	⁸ MARTIN	80в	RVUE		
~ 200.0	⁸ MARTIN	80c	RVUE		
~ 150.0	9 CARTER	78B	CNTR	0	0.7-2.4 pp →
~ 200.0	10 CARTER	77	CNTR	0	K^-K^+ 0.7-2.4 $\overline{p}p \rightarrow$
8 1/ 1P) = 1/2=) from	m simultaneous analysis of n		+	and -	ππ -0 _0

 ${8 \ l(J^P)}=1(3^-)$ from simultaneous analysis of $p_1^0=0$, 1. $J^P=3^-$ from Barrelet-zero analysis. ${10 \ l(J^P)}=1(3^-)$ from amplitude analysis.

S-CHANNEL NN

VALUE (MEV)	DOCUMENT ID		IECIV	LHG	COMMENT
• • We do not use the	following data for average	s, fit	s, limits,	etc.	• •
135.0 ± 75.0	11.12 COUPLAND	77	CNTR	0	0.7-2.4 pp → pp
98 ± 8	12 ALSPECTOR	73	CNTR		pp S channel
~ 85	¹³ ABRAMS	70	CNTR		S channel $\overline{p}N$
11					

- From a fit to the total elastic cross section.
- 13 Seen as bump in I = 1 state. See also COOPER 68. PEASLEE 75 confirm $\overline{\rho}\rho$ results of ABRAMS 70, no narrow structure.

$\rho_3(2250)$ REFERENCES

OTHER RELATED PAPERS -

MARTIN	79B	PL 86B 93	+Pennington	(DURH) (LOQM) JP
CARTER CARTER	78 77B	NP B132 176 PL 67B 122		(LOQM) JP
CARTER	77C	NP B127 202	+Coupland, Atkinson+	(LOQM, DARE, RHEL)
MONTANET	77	Boston Conf. 260		(CERN)
ZEMANY	76	NP B103 537	+MingMa, Mountz, Smith	(MSU)
BERTANZA	74	NC 23A 209	+Bigi, Casali, Lariccia+	(PISA, PADO, TORI)
BETTINI	73	NC 15A 563	+ Alston-Garnjost, Bigi+	(PADO, LBL, PISA, TORI)
DONNACHIE	73	LNC 7 285	+Thomas	(MCHS)
NICHOLSON	73	PR D7 2572	+Delorme, Carroll+	(CIT, ROCH, BNL)
FIELDS	71	PRL 27 1749	+Cooper, Rhines, Allison	(ANL, OXF)
YOH	71	PRL 26 922	+Barish, Caroll, Lobkowicz+	(CIT, BNL, ROCH)
ABRAMS	67C	PRL 18 1209	+Cool, Giacomelli, Kycia, Leont	ic, Li+ (BNL)

 $f_2(2300)$ was $g'_{T}(2300)$

 $I^{G}(J^{PC}) = 0^{+}(2^{++})$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

f2(2300) MASS

VALUE_(MeV)	DOCUMENT ID		TECN	COMMENT
2297 ±28	¹ ETKIN	88	MPS	$22 \pi^- p \rightarrow \phi \phi n$
• • • We do not use the follow	ing data for averages	, fit	s, Iimits,	etc. • • •
2220 ±15 ±20	WISNIEWSKI	87	MRK3	$J/\psi \rightarrow 2K^{+} 2K^{-} \gamma$ $J/\psi \rightarrow 2K^{0} K^{+} K^{-} \gamma$
2206 ±20 ±25	WISNIEWSKI	87	MRK3	$J/\psi \rightarrow 2K^0K^+K^-\gamma$
2231.0 ± 10.0	воотн	86	OMEG	$85 \pi^- \text{Be} \rightarrow 2\phi \text{Be}$
$2220.0^{+90.0}_{-20.0}$	LINDENBAUM	84	RVUE	
2320.0 ± 40.0	ETKIN	82	MPS	$16 \pi^- p \rightarrow 2\phi n$
1 Includes data of ETKIN 85 D_2 , and D_0 is 6^{+15}_{-5} , 25^{+}_{-}	. The percentage of $^{18}_{14}$, and 69^{+16}_{-27} , respe	the ectiv	resonano rely.	te going into $\phi\phi$ 2 ⁺⁺ S_2

f2(2300) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
149 ±41	² ETKIN	88	MPS	$22 \pi^- p \rightarrow \phi \phi n$
• • • We do not use the f	ollowing data for averages	, fit	s, limits,	etc. • • •
114 ±45 ±35	WISNIEWSKI	87	MRK3	$J/\psi \rightarrow 2K^{+}2K^{-}\gamma$
150 ±46 ±35	WISNIEWSKI	87	MRK3	$J/\psi \rightarrow 2K^0K^+K^-\gamma$
133.0 ± 50.0	воотн	86	OMEG	$85 \pi^- \text{ Be} \rightarrow 2\phi \text{ Be}$
200.0 ± 50.0	LINDENBAUM	84	RVUE	
220.0 ± 70.0	ETKIN	82	MPS	$16 \pi^- \rho \rightarrow 2\phi n$
2 Includes data of ETKI	N 85			

f2(2300) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\phi \phi$	seen

f ₂ (2300) REFERENCES						
ETKIN WISNIEWSKI	88 87	PL B201 568 CALT-68-1446	+Foley, Lindenbaum+	(BNL, CUNY) (Mark III Collab.)		
BOOTH	86	NP B273 677	+Carroll, Donald, Edwards+	(LIVP, GLAS, CERN)		
ETKIN	85	PL 165B 217	+Foley, Longacre, Lindenbaum+	(BNL, CUNY)		
LINDENBAUM	84	CNPP 13 285		(CUNY)		
ETKIN	82	PRL 49 1620	+Foley. Longacre, Lindenbaum+	(BNL, CUNY)		
Also	83	Brighton Conf. 351	Lindenbaum	(BNL, CUNY)		
	OTHER RELATED PAPERS					
ARMSTRONG GREEN BOOTH	89B 86 84	PL B221 221 PRL 56 1639 NP B242 51		M, BARI, ATHU, LPNP) NDAM, TUFT, VAND+) (LIVP, GLAS, CERN)		

$f_4(2300)$

 $I^{G}(J^{PC}) = 0^{+}(4^{++})$

OMITTED FROM SUMMARY TABLE

This entry was previously called $U_0(2350)$. Contains results only from formation experiments. For production experiments see the $\overline{N}N(1100-3600)$ entry. See also $\rho(2150)$, $f_2(2150)$, $\rho_3(2250)$, $\rho_5(2350)$.

f4(2300) MASS

VALUE (MeV)	DOCUMENT IE		TECN	COMMENT
• • • We do not use t	ne following data for averag	ges, fits	, limits,	etc. • • •
~ 2300	1 MARTIN	80B	RVUE	
~ 2300	¹ MARTIN		RVUE	
~ 2340	² CARTER			$0.7-2.4 \overline{p}p \rightarrow K^- K^+$
~ 2330	DULUDE	78B	OSPK	$1-2 \overline{\rho} \rho \rightarrow \pi^0 \pi^0$
~ 2310	³ CARTER	77	CNTR	$0.7-2.4 \overline{p} p \rightarrow \pi \pi$
$^{1}I(J^{P})=0(4^{+})$ fro	m simultaneous analysis of	$p\bar{p} \rightarrow$	$\pi^-\pi^+$	and $\pi^0 \pi^0$.
$2I(J^P) = 0(4^+)$ fro	m Barrelet-zero analysis.			
$3I(J^P) = 0(4^+)$ fro	m amplitude analysis.			

S-CHANNEL pp or NN

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following data for average	s, fits, limits	, etc. • • •
~ 2380.0			$0.97-3 \overline{p}p \rightarrow \overline{N}N$
2345 ±15.0			0.7-2.4 pp → pp
2359 ± 2	4,6 ALSPECTOR		
2375 ±10	ABRAMS	70 CNTR	5 channel N N
4 leasning 0 and 1 pat of	constrated		

f₄(2300) WIDTH

$\bar{p}p \rightarrow \pi\pi \text{ or } KK$ VALUE (MeV)	DOCUMENT IE		TECN	COMMENT	
• • We do not use the fol	lowing data for averag	ges, fits	, limits,	etc. • • •	
~ 200	7 MARTIN	80 C	RVUE		
~ 150	⁸ CARTER	78B	CNTR	$0.7-2.4 \ \overline{p}p \rightarrow$	K- K+
~ 210	⁹ CARTER	77	CNTR	0.7–2.4 $\overline{p} p \rightarrow$	$\pi\pi$
${7 \atop 8}I(J^P) = 0(4^+)$ from sim ${8 \atop 8}I(J^P) = 0(4^+)$ from Bar ${9 \atop 9}I(J^P) = 0(4^+)$ from am	relet-zero analysis.	ρ - ρ →	π- π+	and $\pi^0 \pi^0$.	

S-CHANNEL $\overline{p}p$ or $\overline{N}N$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use t	he following data for average	s, fit	s, limits,	etc. • • •
$135.0 {}^{+ 150.0}_{- 65.0}$	10,11 COUPLAND	77	CNTR	$0.7-2.4 \ \overline{p}p \rightarrow \ \overline{p}p$
165 + 18 - 8	11 ALSPECTOR	73	CNTR	pp S channel
~ 190	ABRAMS	70	CNTR	S channel $\overline{N}N$
10 From a fit to the to	otal elastic cross section. ot separated.			

f₄(2300) REFERENCES

MARTIN MARTIN CARTER	80B 80C 78B	NP B176 355 NP B169 216 NP B141 467	+ Morgan + Pennington	(LOUC, RHEL) JP (DURH) JP (LOQM)
CUTTS	78B	PR D17 16	+Good, Grannis, Green, Lee+	(STON, WISC)
DULUDE	78B	PL 79B 335	+Lanou, Massimo, Peaslee+	(BROW, MIT, BARI) JP
CARTER	77	PL 67B 117	+Coupland, Eisenhandler, Astbury+	(LOQM, RHEL) JP
COUPLAND	77	PL 71B 460	+Eisenhandler, Gibson, Astbury+	(LOQM, RHEL)
ALSPECTOR	73	PRL 30 511	+Cohen, Cvijanovich+	(RUTG, UPNJ)
ABRAMS	70	PR D1 1917	+Cool, Giacomelli, Kycia, Leontic, Li+	BNL)

- OTHER RELATED PAPERS -

BOWCOCK	80	LNC 28 21	+ Hodgson		(BIRM)
MARTIN	79B	PL 86B 93	+Penningt	on .	(DURH)
CARTER	78	NP B132 176			(LOQM) JP
DULUDE	78	PL 79B 329	+Lanou. N	fassimo, Peaslee+	(BROW, MIT, BARI) JP
CARTER	77B	PL 67B 122			(LOQM) JP
CARTER	77C	NP B127 202	+ Coupland	I. Atkinson+	(LOOM, DARE, RHEL)
MONTANET	77	Boston Conf. 2			(CERN)
DONNACHIE	75	NC 26A 317	+Thomas		(MCHS)
EISENHAND	75	NP B96 109	Fisenhan	dler, Gibson+	(LOOM, LIVP, DARE, RHEL)
HYAMS	74	NP B73 202		/eilhammer. Blum+	(CERN, MPIM)
MINGMA	74	NP B68 214		Zemany, Smith	(MICH)
DONNACHIE	73	LNC 7 285	+Thomas	Lemany, annen	(MCHS)
EASTMAN	73	NP B51 29		Oh, Parker, Smith	
NICHOLSON	73	PR D7 2572	+Delorme.		(CIT, ROCH, BNL)
FIELDS	71	PRL 27 1749		Rhines, Allison	(ANL, OXF)
YOH	71	PRL 26 922		aroll. Lobkowicz+	(CIT, BNL, ROCH)
					(CERN, CAEN, SACL)
BRICMAN	69	PL 29B 451	+Ferro-Lu	zzi, Bizard+	(CLIVA, CALIA, SACE)

From a fit to the total elastic cross section.
Referred to as U or U region by ALSPECTOR 73.

 $f_2(2340)$, $\rho_5(2350)$, $a_6(2450)$

 $f_2(2340)$ was $g_T''(2340)$

$$I^G(J^{PC}) = 0^+(2^{++})$$

See also the mini-review under non- $q\overline{q}$ candidates. (See the index for the page number.)

$f_2(2340)$	MAS\$
-------------	-------

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
			$22 \pi^- p \rightarrow \phi \phi n$
 ◆ ◆ We do not use the following 	data for averages, fits	s, limits,	etc. • • •
2392.0 ± 10.0	BOOTH 86	OMEG	$85 \pi^- \text{Be} \rightarrow 2\phi \text{Be}$
2360.0 ± 20.0	LINDENBAUM 84	RVUE	· ·

 1 Includes data of ETKIN 85. The percentage of the resonance going into $\phi\phi$ 2^{++} S_2 , D_2 , and D_0 is 37 \pm 19. 4 $^{+12}_{-4}$, and 59 $^{+21}_{-19}$, respectively.

f₂(2340) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
319 + 81	² ETKIN 8	8 MPS	22 $\pi^- p \rightarrow \phi \phi n$
• • • We do not use the followin	g data for averages,	fits, limit	s, etc. • • •
198.0 ± 50.0	BOOTH 8	6 OME	G 85 π [−] Be → 2φBe
$150.0 + 150.0 \\ -50.0$	LINDENBAUM 8	4 RVUE	
² Includes data of ETKIN 85.			

		f ₂ (2340) DECAY MODES	
	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	
Γ_1	φφ	seen	_

f₂(2340) REFERENCES

ETKIN BOOTH ETKIN LINDENBAUM	86 85	PL B201 568 NP B273 677 PL 165B 217 CNPP 13 285	+Foley, Lindenbaum + - Carroll, Donald, Edwards+ (LIVP - Foley, Longacre, Lindenbaum +	(BNL, CUNY) GLAS, CERN) (BNL, CUNY) (CUNY)
---------------------------------------	----------	--	--	---

OTHER RELATED PAPERS ~

ARMSTRONG	86	PL B221 221	+Benayoun+ (CERN, CDEF, BIRM, BARI, ATHU, LPNF
GREEN		PRL 56 1639	-Lai- (FNAL, ARIZ, FSU, NDAM, TUFT, VAND+
BOOTH		NP B242 51	-Ballance, Carroll, Donald+ (LIVP, GLAS, CERN

[2350]

$$I^G(J^{PC}) \; = \; 1^+(5^{--})$$

OMITTED FROM SUMMARY TABLE

This entry was previously called $U_1(2400)$. Contains results only from formation experiments. For production experiments see the $\overline{N}N(1100-3600)$ entry. See also $\rho(2150)$, $f_2(2150)$, $\rho_3(2250)$, $f_4(2300)$.

$\rho_5(2350)$ MASS

$\overline{p} \rho \rightarrow$	$\pi\pi$	or	ĸ	κ
---------------------------------	----------	----	---	---

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use t	he following data for averages,	fits	, limits,	etc.	• •
~ 2300	¹ MARTIN 8	0в	RVUE		
~ 2250		0c	RVUE		
~ 2500	² CARTER 7:	8в	CNTR	0	$0.7-2.4 \ \overline{p}p \rightarrow$
~ 2480	³ CARTER 7	7	CNTR	0	$K = K^+$ 0.7-2.4 $\overline{\rho}\rho \rightarrow$
$\frac{1}{2}I(J^P) = 1(5^-)$ from $\frac{2}{3}I(J^P) = 1(5^-)$ from $\frac{1}{3}I(J^P) = 1(5^-)$	m simultaneous analysis of $p\bar{p}$ from Barrelet-zero analysis.		π - π *	and π	.0 π ⁰ .

S-CHANNEL NN

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
• • We do not use the	e following data for average	s, fits, limits	etc.	• • •
~ 2380		78B CNTR		0.97−3 p̄p N N
2345.0 ± 15.0	^{4.5} COUPLAND	77 CNTR	0	0.7-2.4 pp pp
2359 ± 2	4,6 ALSPECTOR			pp S channel
2350 ±10	⁷ ABRAMS	70 CNTR		5 channel N N
2360.0 ± 25.0	⁸ OH	70B HDBC	-0	$\overline{p}(pn)$, $K^* K 2\pi$
4 Isospins 0 and 1 not	senarated			

$\rho_{5}(2350)$ WIDTH

VALUE (MeV)			TECN	CHG	COMMENT
 We do not use 	the following data for average	ges, fits	, limits,	etc.	
~ 250	⁹ MARTIN	80B	RVUE		
~ 300	⁹ MARTIN	80c	RVUE		
~ 150	¹⁰ CARTER	78в	CNTR	0	
- 210	¹¹ CARTER	77	CNTR	0	K^-K^+ 0.7-2.4 $\overline{p}p \rightarrow$
	rom simultaneous analysis of from Barrelet-zero analysi rom amplitude analysis.				ππ

SCHANNEL TON

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
• • We do not use the	following data for average	s, fit:	s, limits,	etc.	• • •
$135.0 + 150.0 \\ - 65.0$	12,13 COUPLAND	77	CNTR	0	$0.7-2.4 \ \overline{p}p \rightarrow \overline{p}p$
165 + 18 - 8	¹³ ALSPECTOR	73	CNTR		pp 5 channel
< 60.0 ~ 140	¹⁴ OH ABRAMS		HDBC CNTR	-0	$\overline{p}(pn)$, $K^*K2\pi$ S channel $\overline{p}N$

$\rho_5(2350)$ REFERENCES

MARTIN	80B	NP B176 355	i Morgan	(LOUC, RHEL) JP
MARTIN	80C	NP B169 216	+Pennington	(DURH) JP
CARTER	78B	NP B141 467		(LOOM)
CUTTS	78B	PR D17 16	+Good, Grannis, Green, Lee-	(STON, WISC)
CARTER	77	PL 67B 117	+Coupland, Eisenhandler, Astbury -	(LOQM, RHEL) JP
COUPLAND	77	PL 71B 460	· Eisenhandler, Gibson, Astbury+	(LOQM, RHEL)
ALSPEC FOR	73	PRL 30 511	+Cohen, Cvijanovich+	(RUTG, UPNJ)
OH	73	NP B51 57	-Eastman, MingMa, Parker, Smith+	(MSU)
CHAPMAN	718	PR D4 1275	-Green, Lys, Murphy, Ring+	(MICH)
ABRAMS	70	PR D1 1917	- Cool, Giacomelli, Kycia, Leontic, Li -	(BNL)
ОН	70B	PRL 24 1257	- Parker, Eastman, Smith, Sprafka, Ma	(MSU)
ABRAMS	67C	PRL 18 1209	-Cool, Giacomelli, Kycia, Leontic, Li-	(BNL)

OTHER RELATED PAPERS -

		OTTIL	N NEEATED TAI ENS
BOWCOCK	80	LNC 28 21	+ Hodgson (BIRM)
MARTIN	79B	PL 86B 93	Pennington (DURH)
CARTER	78	NP B132 176	(LOQM) JE
CARTER	77B	PL 67B 122	(LOQM) JE
CARTER	77C	NP B127 202	+ Coupland, Atkinson + (LOQM, DARE, RHEL)
MONTANET	77	Boston Conf. 260	(CERN)
DONNACHIE	75	NC 26A 317	+Thomas (MCHS)
EISENHAND	75	NP B96 109	Eisenhandler, Gibson+ (LOQM, LIVP, DARE, RHEL)
HYAMS	74	NP B73 202	+Jones, Weilhammer, Blum - (CERN, MPIM)
MINGMA	74	NP B68 214	(MICH)
EASTMAN	73	NP B51 29	+MingMa, Oh, Parker, Smith, Sprafka (MSU)
MINGMA	73	NP B51 77	+Eastman, Oh, Parker, Smith, Sprafka (MSU)
NICHOLSON	73	PR D7 2572	+Delorme, Carroll+ (CIT, ROCH, BNL)
OH	73	NP B51 57	-Eastman, MingMa, Parker, Smith+ (MSU)
FIELDS	71	PRL 27 1749	- Cooper, Rhines, Allison (ANL, OXF)
YOH	71	PRL 26 922	-Barish, Caroll, Lobkowicz+ (CIT, BNL, ROCH)
CASO	70	LNC 3 707	+Conte, Tomasini+ (GENO, HAMB, MILA, SACL)
BRICMAN	69	PL 29B 451	- Ferro-Luzzi, Bizard + (CERN, CAEN, SACL)

$a_6(2450)$

$$I^{G}(J^{PC}) = 1^{-}(6^{++})$$

OMITTED FROM SUMMARY TABLE

Seen in partial-wave analysis of the $K\overline{K}$ system. Needs confirmation.

a ₆ (2450)	MASS
-----------------------	------

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
2450 ± 130	¹ CLELAND	82B SPEC	±	$50 \pi \rho \rightarrow K_S^0 K^{\pm} \rho$
¹ From an amplitude analysis	š.			3

a₆(2450) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT	
400 ± 250	² CLELAND	828 SPEC	±	50 πp →	κ ₅ 0 κ± ρ

² From an amplitude analysis.

a₆(2450) DECAY MODES

Mode $K\overline{K}$

a₆(2450) REFERENCES

CLELAND 828 NP B208 228 +Delfosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT)

Fisospins U and 1 not separated.

From a fit to the total elastic cross section.

Referred to as U or U region by ALSPECTOR 73.

For I = 1 $\overline{N}N$.

No evidence for this bump seen in the $\overline{p}p$ data of CHAPMAN 718. Narrow state not confirmed by OH 73 with more data.

 $^{^{12}}$ From a fit to the total elastic cross section. 13 Isospins 0 and 1 not separated. 14 No evidence for this bump seen in the $\overline{p}p$ data of CHAPMAN 71B. Narrow state not confirmed by OH 73 with more data.

 $f_6(2510)$ was r(2510)

 $I^{G}(J^{PC}) = 0^{+}(6^{++})$

OMITTED FROM SUMMARY TABLE

Seen in $\pi^0 \pi^0$. Needs confirmation.

f6(2	2510)	MASS	S
------	-------	------	---

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2510.0 ± 30.0	BINON 84	в GAM2	$38 \pi^- p \rightarrow n2\pi^0$

f₆(2510) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
240.0±60.0	BINON	84B GAM2	$23 \pi^- \rho \rightarrow n2\pi^0$

f₆(2510) DECAY MODES

_	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$
Γ_1	ππ	(6.0±1.0) %

f₆(2510) BRANCHING RATIOS

$\Gamma(\pi\pi)/\Gamma_{total}$					$\Gamma_1/$
VALUE	DOCUMENT ID		TECN	COMMENT	
0.06 ± 0.01	¹ BINON	83C	GAM2	$38 \pi^- p \rightarrow n4\gamma$	
$^{\mathrm{1}}\mathrm{Assuming}$ one pion exchange.					

f₆(2510) REFERENCES

BINON	LNC 39 41	+Donskov, Duteil, Gouanere+	(SERP, BELG, LAPP).
BINON	SJNP 38 723	+Gouanere, Donskov, Duteil+	(SERP, BRUX+)
	Translated from		(0=111. +110/11)

3-BODY DECAYS

$$I^{G}(J^{PC}) = ?^{?}(?^{??})$$

OMITTED FROM SUMMARY TABLE

Narrow peak observed in several $(\Lambda \overline{\rho} + \text{pions})$ and $(\overline{\Lambda} \rho + \text{pions})$ states. If due to strong decays, this state has exotic quantum numbers $(B{=}0,Q{=}+1,S{=}-1 \text{ for } \Lambda \overline{\rho} \pi^+ \pi^+ \text{ and } I \geq 3/2 \text{ for } \Lambda \overline{\rho} \pi^-)$. See also under non- $q\overline{q}$ candidates. (See the index for the page number.)

X(3100) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the fol	lowing data for average	s, fit	s, limits	, etc. • • •
3060 ± 30	KEKELIDZE	90	BIS2	$X(3100) \rightarrow \Lambda \bar{p} \pi^{+}$
3040 ± 30	KEKELIDZE	90	BI\$2	$X(3100) \rightarrow \overline{\Lambda} \rho \pi^-$
3070 ± 30	KEKELIDZE	90	BIS2	$X(3100) \rightarrow \Lambda \bar{p} \pi^-$
3040 ± 30	KEKELIDZE	90	BIS2	$X(3100) \rightarrow \overline{\Lambda} \rho \pi^{+}$
4-BODY DECAYS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • We do not use the following the fol	lowing data for average	s, fit	s, limits	, etc. • • •
3060 ± 25	KEKELIDZE	90	BI\$2	$X(3100) \rightarrow \Lambda \overline{p} \pi^+ \pi^{\pm}$
3045 ± 25	KEKELIDZE	90	BIS2	$X(3100) \rightarrow \overline{\Lambda} p \pi^- \pi^{\pm}$
3105 ± 30	BOURQUIN	86	SPEC	$X(3100) \rightarrow \Lambda \bar{p} \pi^+ \pi^+$
3115 ± 30	BOURQUIN	86	SPEC	$X(3100) \rightarrow \Lambda \bar{p} \pi^+ \pi^-$
5-BODY DECAYS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	lowing data for average	s, fit	s, limits	, etc. • •
3095 ± 30	BOURQUIN	86	SPEC	$X(3100) \rightarrow$
				$\Lambda \overline{\rho} \pi^+ \pi^+ \pi^-$

X(3100) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the follow	wing data for average	es, fit	s, limits	, etc. • • •
55 ± 15	KEKELIDZE	90	BIS2	$X(3100) \rightarrow \Lambda \bar{p} \pi^{+}$
40 ± 15	KEKELIDZE	90	BIS2	$X(3100) \rightarrow \overline{\Lambda} \rho \pi^-$
70 ± 25	KEKELIDZE	90	BIS2	$X(3100) \rightarrow \Lambda \overline{p} \pi^-$
35 ± 15	KEKELIDZE	90	BIS2	$X(3100) \rightarrow \overline{\Lambda} \rho \pi^{+}$

4-BODY DECAYS	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use	e the followin	ng data for average	s, fits	s, limits	, etc. • • •
30 ± 10		KEKELIDZĘ	90	BI\$2	$X(3100) \rightarrow \Lambda \bar{p} \pi^+ \pi^{\pm}$
30 ± 15		KEKELIDZE	90	BI\$2	$X(3100) \rightarrow \overline{\Lambda} \rho \pi^- \pi^{\pm}$
<30	90	BOURQUIN	86	SPEC	$X(3100) \rightarrow \Lambda \overline{p} \pi^+ \pi^+$
<80	90	BOURQUIN	86	SPEC	$X(3100) \rightarrow \Lambda \overline{p} \pi^+ \pi^-$
5-BODY DECAYS	5				
VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use	e the followin	ng data for average	s, fit:	s, limits	, etc. • • •
<30	90	BOURQUIN	86	SPEC	$\begin{array}{c} X(3100) \rightarrow \\ \Lambda \overline{p} \pi^+ \pi^+ \pi^- \end{array}$

X(3100) DECAY MODES

	Mode
$\overline{\Gamma_1}$	$X(3100)^0 \rightarrow \Lambda \overline{\rho} \pi^+$
Γ_2	$X(3100) \rightarrow \Lambda \overline{p} \pi^-$
Гз	$X(3100) \rightarrow \Lambda \bar{p} \pi^+ \pi^-$
Γ4	$X(3100) \rightarrow \Lambda \overline{p} \pi^+ \pi^+$
Γ_5	$X(3100)^0 \rightarrow \Lambda \overline{p} \pi^+ \pi^+ \pi^-$

X(3100) REFERENCES

		Hadron 89 Conf. PL B172 113	+ Aleev + + Brown +	(BIS-2 Collab.) (GEVA, RAL, HEID, LAUS, BRIS, CERN)
--	--	--------------------------------	------------------------	--

X(3250)

$$I^{G}(J^{PC}) = ?^{?}(?^{??})$$

OMITTED FROM SUMMARY TABLE

Narrow peak observed in several final states with hidden strangeness ($\Lambda \bar{\rho} K^+$, $\Lambda \bar{\rho} K^+ \pi^\pm$, $K^0 p \bar{\rho} K^\pm$). See also under non- $q \bar{q}$ candidates. (See the index for the page number.)

X(3250) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the fo	llowing data for average	s, fit	s, limits,	etc. • • •
3230 ± 30	KEKELIDZE	90	SPEC	$X(3250) \rightarrow \Lambda \bar{p} K^{+}$
3250 ± 30	KEKELIDZE	90	SPEC	$X(3250) \rightarrow \overline{\Lambda} \rho K^-$
4-BODY DECAYS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the fo	lowing data for average	s, fit	s, limits,	etc. • • •
3240±30	KEKELIDZE	90	SPEC	$X(3250) \rightarrow \Lambda \overline{p} K^+ \pi^{\pm}$
	WEWEN 18:35			$X(3250) \rightarrow \overline{\Lambda} p K^- \pi^{\pm}$
3220±30	KEKELIDZE	90		
3220±30 3270±30	KEKELIDZE KEKELIDZE	90	SPEC	$X(3250) \rightarrow K^0 \rho \overline{\rho} K^{\pm}$

3-BODY DECAYS

KEKELIDZE 90 Hadron 89 Conf.

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
ullet $ullet$ We do not use the fo	llowing data for averages, (lits, limits	, etc. • • •
35 ± 15	KEKELIDZE 9	SPEC	$X(3250) \rightarrow \Lambda \overline{p} K^+$
20 ± 10	KEKELIDZE 9	SPEC	$X(3250) \rightarrow \overline{\Lambda} p K^-$
4-BODY DECAYS VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • We do not use the form	llowing data for averages, t	its, limits	, etc. • • •
25 ± 10	KEKELIDZE 9	SPEC	$X(3250) \rightarrow \Lambda \bar{p} K^{+} \pi^{\pm}$
55 ± 20	KEKELIDZE 90) SPEC	$X(3250) \rightarrow \overline{\Lambda} p K^- \pi^{\pm}$
50 ± 20	KEKELIDZE 9	SPEC	$X(3250) \rightarrow K^0 \rho \bar{\rho} K^{\pm}$

X(3250) DECAY MODES

	Mode	_	
Γ ₁	Λ ρ Κ ⁺ Λ ρ Κ ⁺ π [±]		
۲3	$ \Lambda \overline{\rho} K^+ \pi^{\pm} $ $ K^0 \rho \overline{\rho} K^{\pm} $		
		X(3250) REFERENCES	

(BIS-2 Collab.)

+Aleev+

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
3535.0 ± 20.0	BAUD		MMS		14-15.5 π - ρ
~ 30.0	BAUD	70	MMS	-	$14-15.5 \pi^{-} p$

- ¹Seen in J=2 wave in one of the two ambiguous solutions.
- ² Seen in J = 0 wave in one of the two ambiguous solutions.
- Seen in $\rho^-\pi^+\pi^-$ (ω and η antiselected in 4π system). 4 Dominant decay into $\rho^0\rho^0\pi^+$. BALTAY 78 finds confirmation in $2\pi^+\pi^-2\pi^0$ events which contain $\rho^+\rho^0\pi^0$ and $2\rho^+\pi^-$. 5 Seen in $(K\overline{K}\pi\pi)$ mass distribution.

X(1900-3600) REFERENCES

ARMSTRONG ATKINSON ALDE GREEN ATKINSON ATKINSON OENNEY CHLIAPNIK BALTAY THOMPSON TAKAHASHI SABAU BAUD CASO ANDERSON BAUD BAUD BAUD BAUD BAUD BAUD BAUD BAUD	88 86D 86 85 84F 83 80 78 75 74 72 71 70 69 69	PL 8228 536 ZPHY C38 535 NP B269 485 NP B269 485 PR 156 1639 ZPHY C29 333 NP B239 1 PR 028 2726 ZPHY C3 285 ZPHY C3 285 PR D17 52 PRL 135 891 NP B69 220 PR D6 1266 LNC 1 514 PL 31B 549 LNC 3 707 PRL 22 1390 PR D6 1276 PR D7 154 PL 31B 154 PL	+Benayoun (ATHU, BARI, BIRM, CERN, CDEF, LPNP) +Axon+ (BONN, CERN, GLAS, LANC, MCHS, LPNP) +Binon, Bricman+ (BELG, LAPP, SERP, CERN) +Lai+ (FNAL, ARIZ, FSU, NDAM, TUFT, VAND+) + (BONN, CERN, GLAS, LANC, MCHS, PRP+) + (BONN, CERN, GLAS, LANC, MCHS, PRP+) + (Canter, Firestone, Chapman+ (DWA, MCH), Chilapinikov, Gerdyukov+ (SERP, BRUX, MONS) - Clautis, Cohen, Kaselkar, Pisello+ (COLU, BING) - Caidos, McIlwain, Miller, Wulera+ (PURD) - Harishh+ (TOHO, PENN, NDAM, ANIL) - Utretsky - Benz+ (CERN Boson Spectrometer Collab.) - Collins+ (GENO, HAMB, MILA, SACL) - Collins+ (CERN Boson Spectrometer Collab.)
			(00111)

- OTHER RELATED PAPERS -

BALTAY	78	PR D17 52	+Cautis, Cohen, Csorna, Kalelkar+	(COLU, BING)
ANTIPOV	72	PL 40 147	+Kienzle, Landsberg+	(SERP)
CHIKOVANI	66	PL 22 233	+Kienzle, Maglich+	(SERP)

STRANGE MESONS

 $(S = \pm 1, C = B = 0)$

 $^{+}=u\overline{s},\ K^{0}=d\overline{s},\ \overline{K}^{0}=\overline{d}s,\ K^{-}=\overline{u}s,$ similarly for K^{*} 's

 $I(J^P) = \frac{1}{2}(0^-)$

K± MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
493.646 ± 0.009 OUR FIT					
493.646 ± 0.009 OUR AVERAGE					
493.636 ± 0.011	GALL	88	CNTR	_	Kaonic atoms
493.640 ± 0.054	LUM	81	CNTR	_	Kaonic atoms
493.670 ± 0.029	BARKOV	79	EMUL	±	e ⁺ e ⁻ → K ⁺ K ⁻
493.657 ± 0.020	CHENG	75	CNTR	-	Kaonic atoms
493.691 ± 0.040	BACKENSTO.	73	CNTR	_	Kaonic atoms
 • • We do not use the following 	data for average	s, fit	s, limits,	etc.	• • •
493.662±0.19	KUNSELMAN	74	CNTR	_	Kaonic atoms
493.78 ±0.17	GREINER	65	EMUL	+	
493.7 ±0.3	BARKAS	63	EMUL	_	
493.9 ±0.2	COHEN	57	RVUE	+	

K⁺ − K[−] MASS DIFFERENCE

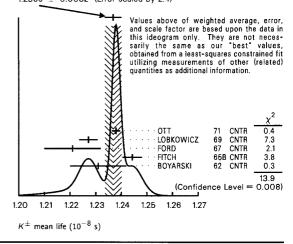
Test of CPT.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	
-0.032 ± 0.090	1.5M	1 FORD	72	ASPK	\pm	
1 FORD 72 uses $m(\pi$	$^{+})-m(\pi$	-) = +28 ± 70 kg	eV.			

K± MEAN LIFE

VALUE (10 ⁻⁸ s)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1.2371 ± 0.0029 OUR	R FIT Error	includes scale fact	or of	2.2.		
1.2369±0.0032 OUR	R AVERAGE	Error includes sca below.	le fac	tor of 2	!.4. S	ee the ideogram
1.2380 ± 0.0016	3M	OTT	71	CNTR	+	Stopping K
1.2272 ± 0.0036		LOBKOWICZ	69	CNTR	+	K in flight
1.221 ± 0.011		FORD	67	CNTR	\pm	
1.2443 ± 0.0038		FITCH	65B	CNTR	+	K at rest
1.231 ± 0.011		BOYARSKI	62	CNTR	+	

• • •	We do	not use the follo	wing data for averag	es, fits	i, limits,	etc. • • •
1.25	$^{+0.22}_{-0.17}$		² BARKAS	61	EMUL	
1.27	+0.36 -0.23	51	² BHOWMIK	61	EMUL	
1.31	± 0.08	293	NORDIN	61	HBC	_
1.24	± 0.07		NORDIN	61	RVUE	_
1.38	± 0.24	33	² FREDEN	60B	EMUL	
1.21	± 0.06		BURROWES	59	CNTR	
1.60	± 0.3	52	² EISENBERG	58	EMUL	


² ILOFF

56 EMUL

 $^2\,\mathrm{Old}$ experiments with large errors excluded from averaging.

 $\begin{array}{cc} 0.95 & +0.36 \\ -0.25 \end{array}$

WEIGHTED AVERAGE 1.2369 ± 0.0032 (Error scaled by 2.4)

$(K^+ - K^-)$ / AVERAGE, MEAN LIFE DIFFERENCE

This quantity is a measure of CPT invariance in weak interactions.

VALUE (%)	DOCUMENT ID	TECN
0.11 ±0.09 OUR AVERAGE	Error includes scale f	actor of 1.2.
0.090 ± 0.078	LOBKOWICZ	69 CNTR
0.47 ± 0.30	FORD	67 CNTR

K+ DECAY MODES

 K^- modes are charge conjugates of the modes below.

	A modes are charge conjugate	es of the modes below.	
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
$\overline{\Gamma_1}$	$\mu^+ \nu_{\mu}$	(63.51±0.19) %	S=1.2
Γ_2	$e^+ \nu_e$	$(1.55 \pm 0.07) \times 10^{-1}$	₀ –5
Γ_3	$\pi^+\pi^0$	(21.17 ± 0.16) %	S=1.1
Γ_4	$\pi^{+}\pi^{+}\pi^{-}$	$(5.59 \pm 0.05)\%$	S=2.0
Γ_5	$\pi^{+} \pi^{0} \pi^{0}$	(1.73±0.04) %	S=1.2
Γ ₆	$\pi^0 \mu^+ \nu_\mu$ Called $K_{\mu 3}$.	(3.18 ± 0.08) %	S=1.6
Γ ₇	$\pi^0 e^+ \nu_e$ Called K_{e3} .	(4.82±0.06) %	S=1.3
	$\pi^0 \pi^0 e^+ \nu_e$	$(2.1 \pm 0.4) \times 10^{-2}$	₀ –5
Г9	$\pi^+\pi^-e^+\nu_e$	$(3.91 \pm 0.17) \times 10^{-1}$	₀ –5
	$\pi^+\pi^-\mu^+ u_\mu$	$(1.4 \pm 0.9) \times 10^{-1}$	
Γ_{11}	$\pi^+\gamma\gamma$	[a] < 8.4 × 1	
	$\pi^+ 3\gamma$	[a] < 1.0 imes 1	
	$e^+ \nu_e \nu_{\overline{\nu}}$	< 6 × 1	0 ⁻⁵ CL=90%
	$\mu^+ \nu_{\mu} \nu \overline{\nu}$	< 6.0 × 1	
Γ ₁₅	$\mu^+ u_\mu e^+ e^-$	$(1.06 \pm 0.32) \times 10^{-1}$	₀ –6
Γ_{16}	$e^+ \nu_e e^+ e^-$	($2.1 \begin{array}{c} +2.1 \\ -1.1 \end{array}$) $ imes 1$	₀ 7
Γ ₁₇	$\mu^+ \nu_\mu \mu^+ \mu^-$	< 4.1 × 1	0 ⁻⁷ CL=90%
Γ_{18}	$\mu^+ u_\mu \gamma$	[a,b] $(5.46\pm0.28)\times1$	₀ -3
Γ_{19}	$\mu^+ u_\mu \gamma \text{ (SD+)}$	$[c,d] < 3.0 \times 1$	0 ⁻⁵ CL=90%
Γ_{20}	$\mu^+ \nu_\mu \gamma$ (SD+INT)	$[c,d] < 2.7 \times 1$	0 ⁻⁵ CL=90%
Γ_{21}	$\mu^+ \nu_\mu \gamma \text{ (SD}^- + \text{SD}^- \text{INT)}$	$[c,d] < 2.6 \times 1$	0 ⁻⁴ CL=90%
Γ_{22}	$e^+ \nu_e \gamma (SD^+)$	[c,d] (1.52±0.23) × 1	
	$e^+ \nu_e \gamma (SD^-)$		0 ⁻⁴ CL=90%

Κ±

Γ ₂₅ Γ ₂₆ Γ ₂₇ Γ ₂₈ Γ ₂₉	$\begin{array}{l} \pi^{+}\pi^{0}\gamma \\ \pi^{+}\pi^{0}\gamma \text{ (DE)} \\ \pi^{+}\pi^{+}\pi^{-}\gamma \\ \pi^{+}\pi^{0}\pi^{0}\gamma \\ \pi^{0}\mu^{+}\nu_{\mu}\gamma \\ \pi^{0}e^{+}\nu_{e}\gamma \end{array}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CL=90%
	$\pi^0 e^+ \nu_e \gamma$ (SD)	$[c,d] < 5.3 \times 10^{-5}$	CL=90%

$\Delta S = \Delta Q$ (SQ), Lepton number (L), Lepton Family number (LF) violating modes or Flavor-Changing neutral current (FC) modes

Γ_{31}	$\pi^+\pi^+e^-\overline{\nu}_e$	SQ	< 1.2	× 10 ⁻⁸	CL=90%
	$\pi^+\pi^+\mu^-\overline{ u}_{\mu}$	5Q	< 3.0	\times 10 ⁻⁶	CL=95%
	$\pi^{+} e^{+} e^{-}$	FC	(2.7	± 0.5) $\times 10^{-7}$	
Γ_{34}	$\pi^{+} \mu^{+} \mu^{-}$	FC	< 2.3	× 10 ⁻⁷	CL=90%
	$\pi^+ \nu \overline{\nu}$	FC	< 3.4	× 10 ⁻⁸	CL=90%
Γ36	$\mu^- u e^+ e^+$	LF	< 2.0	× 10 ⁻⁸	CL=90%
Γ_{37}	$\mu^+ \nu_e$	LF	< 4	$\times 10^{-3}$	CL=90%
	$\pi^{+} \mu^{+} e^{-}$	LF.	< 2.1	$\times 10^{-10}$	CL=90%
Γ_{39}	$\pi^{\pm}\mu^{\mp}e^{+}$	LF,L	[f] < 7	$\times 10^{-9}$	CL=90%
Γ_{40}	$\pi^{-}e^{+}e^{+}$	L	< 1.0	× 10 ⁻⁸	CL=90%
	$\mu^+ \overline{\nu}_e$	L	< 3.3	\times 10 ⁻³	CL=90%
Γ_{42}	$\pi^0 e^+ \overline{\nu}_e$	L	< 3	× 10 ⁻³	CL=90%
Γ_{43}	$\pi^+ \gamma$				
Γ_{44}	$\pi^{+} e^{+} \mu^{-}$				

- [a] See the Listings below for the energy limits used in this measurement.
- [b] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [c] Structure-dependent part with positive (SD⁺) and negative (SD⁻) photon helicity. Interference terms between structure-dependent parts and inner bremsstrahlung (SD⁺INT and SD⁻INT).
- [d] See the Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors in the π^\pm Full Listings for definitions and details.
- [e] Direct-emission branching fraction.
- [f] Value is for the sum of the charge states indicated.

CONSTRAINED FIT INFORMATION

An overall fit to the mean life, 2 partial widths, and 20 branching ratios uses 59 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=74.9$ for 52 degrees of freedom

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta\rho_i\delta\rho_j\right\rangle/(\delta\rho_i\cdot\delta\rho_j)$, in percent, from the fit to parameters ρ_i , including the branching fractions, $x_i\equiv\Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (10^8 s^{-1})	Scale factor
$\overline{\Gamma_1}$	$\mu^+ u_{\mu}$	0.5134 ±0.0020	1.4
	$\pi^{+} \pi^{0}$	0.1711 ± 0.0013	1.1
Γ4	$\pi^{+} \pi^{+} \pi^{-}$	0.0452 ± 0.0004	1.9
Γ_5	$\pi^{+} \pi^{0} \pi^{0}$	0.01400 ± 0.00032	1.2
Γ ₆	$\pi^0 \mu^+ u_\mu$ Called $K_{\mu 3}$.	0.0257 ± 0.0007	1.6
Γ7	$\pi^0e^+ u_e$ Called K_{e3} .	0.0390 ± 0.0005	1.3
Γ8	$\pi^0 \pi^0 e^+ \nu_e$	$(1.70 {}^{+0.34}_{-0.29}) \times 10^{-3}$	-5

K± DECAY RATES

$\Gamma(\mu^+ u_\mu)$				Γ ₁
VALUE (106 s-1)	DOCUMENT ID	TECN	CHG	
51.34 ± 0.20 OUR FIT	Error includes scale factor of 1	.4.		
51.2 ±0.8	FORD 67	CNTR	±	

$\Gamma(\pi^+\pi^+\pi^-)$						Γ ₄
VALUE (10 ⁶ s ⁻¹)	EVTS	DOCUMENT		TECN	CHG	
4.52 ±0.04 OUR	FIT Error in		ctor of 1.	.9.		
4.511 ± 0.024		³ FORD	70	ASPK		
	e the followin	ig data for aver	ages, fit	s, limits,	etc. • •	•
4.529 ± 0.032	3.2M	3 FORD	70	ASPK		
4.496 ± 0.030		³ FORD	67	CNTR	±	
³ First FORD 70 v	ralue is secon	d FORD 70 cor	nbined v	vith FOF	RD 67.	

$(\Gamma(K^+) - \Gamma(K^-)) / \Gamma(K)$

$^+ \rightarrow \mu^+ \nu_\mu$ RATE DIFFERENCE Test of *CPT* conservation.

 VALUE (%)
 DOCUMENT ID
 TECN

 − 0.54 ± 0.41
 FORD
 67
 CNTR

$K^+ \rightarrow \pi^+ \pi^+ \pi^-$ RATE DIFFERENCE

⁴ FORD

 -0.04 ± 0.21 4 FORD 67 CNTR 4 FIRST FORD 70 value is second FORD 70 combined with FORD 67. SMITH 73 value of $K^\pm\to \pi^\pm\pi^+\pi^-$ rate difference is derived from SMITH 73 value of $K^\pm\to \pi^\pm2\pi^0$ rate difference.

70 ASPK

$K^+ \rightarrow \pi^+ \pi^0 \pi^0$ RATE DIFFERENCE

3.2M

 0.10 ± 0.14

Test of CP conservation.

ΔΑΔΕΘ (%) EVTS DOCUMENT ID TECN CHG

0.08 ± 0.58 OSB SMITH 73 ASPK ±

-1.1 ± 1.8 1802 HERZO 69 OSPK

$K^+ \rightarrow \pi^+ \pi^0$ RATE DIFFERENCE

Test of CPT conservation.

 $\Gamma(\mu^+\nu_\mu)/\Gamma(\pi^+\pi^+\pi^-)$

 $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$

 VALUE (%)
 DOCUMENT ID
 TECN

 0.8±1.2
 HERZO
 69
 OSPK

$K^+ \rightarrow \pi^+ \pi^0 \gamma$ RATE DIFFERENCE

Test of CP conservation. VALUE (%) EN OUR AVERAGE DOCUMENT ID TECN CHG COMMENT 0.8 ± 5.8 2461 SMITH 76 WIRE E_π 55-90 MeV 1.0 ± 4.0 4000 ABRAMS 73B ASPK E_{π} 51-100 MeV **EDWARDS** Eπ 58-90 MeV 0.0 ± 24.0 72 OSPK

K+ BRANCHING RATIOS

$\Gamma(\mu^+ \nu_\mu)/\Gamma_{total}$						Γ_1/Γ
VALUE (units 10 ⁻²)	EVT5	DOCUMENT ID		TECN	CHG	COMMENT
63.51 ± 0.19 OUR FIT	Error inc	ludes scale factor of	f 1.2	2.		
63.24±0.44	62k	CHIANG	72	OSPK	+	1.84 GeV/c K+
• • • We do not use	the followin	ig data for average:	s, fit:	s, limits,	etc.	• •
56.9 ±2.6		⁶ ALEXANDER	57	EMUL	+	
58.5 ± 3.0		⁶ BIRGE	56	EMUL	+	
⁶ Old experiments n	ot included	in averaging.				

 VALUE
 EVTS
 DOCUMENT ID
 TECN
 CHG

 11.36±0.12 OUR FIT
 Error includes scale factor of 1.8.

 • • • We do not use the following data for averages, fits, limits, etc. • • •

10.38 ± 0.82 427 7 YOUNG 65 EMUL +

 7 Deleted from overall fit because YOUNG 65 constrains his results to add up to 1. Only YOUNG 65 measured $(\mu\nu)$ directly.

 Γ_1/Γ_4

 Γ_2/Γ_1

 VALUE (units 10⁻⁵)
 EVTS
 DOCUMENT ID
 TECN
 CHG

 2.45±0.11 OUR AVERAGE
 404
 HEINTZE
 76
 SPEC
 +

 2.37±0.17
 534
 HEARD
 758
 SPEC
 +

 2.42±0.42
 112
 CLARK
 72
 OSPK
 +

• • • We do not use the following data for averages, fits, limits, etc. • • • $1.8^{+0.8}_{-0.6}$ 8 MACEK 69 ASPK +

1.9 +0.7 -0.5 10 BOTTERILL 67 ASPK +

70 FMUI

64 HLBC 0.0

0.1

6.3

 Γ_5/Γ_3

 Γ_5/Γ_4

 Γ_6/Γ

 Γ_6/Γ_1

 Γ_6/Γ_4

HBC+HLBC

1.84 GeV/c K+

= 0.100)

```
\Gamma(\pi^+\pi^0)/\Gamma_{\text{total}}
                                                                                                    \Gamma_3/\Gamma
                                                                                                                      • • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                                                              15 TAYLOR
                                                                                                                                                                                    59 EMUL +
                                           DOCUMENT ID
                                                                                                                      1.5 \pm 0.2
VALUE (units 10<sup>-2</sup>)
21.17±0.16 OUR FIT
                            EVTS DOCUMENT ID
Error includes scale factor of 1.1.
                                                                   TECN CHG COMMENT
                                                                                                                                                               15 ALEXANDER 57 EMUL +
                                                                                                                      2.2 \pm 0.4
                                                                                                                                                               <sup>15</sup> BIRGE
                                                             72 OSPK +
                              16k
                                           CHIANG
                                                                                                                      2.1 \pm 0.5
                                                                                                                                                                                    56 EMUL +
21.18 \pm 0.28
• • • We do not use the following data for averages, fits, limits, etc. • •
                                                                                                                        14 Includes events of TAYLOR 59
                                                                                     See \Gamma(\pi^+\pi^0) /
                                                                                                                        15 Earlier experiments not averaged.
                                           CALLAHAN 65 HLBC
21.0 ±0.6
                                                                                        \Gamma(\pi^+\pi^+\pi^-)
                                                                                                                                   WEIGHTED AVERAGE 1.77 ± 0.07 (Error scaled by 1.4)
                                                              65B RVUE
                                            TRILLING
21.6 \pm 0.6
                                         8 ALEXANDER 57 EMUL +
23.2 ±2.2
                                         8 BIRGE
                                                              56 EMUL +
27.7 ±2.7
                                                                                                                                                                           Values above of weighted average, error,
                                                                                                                                                                          and scale factor are based upon the data in
this ideogram only. They are not neces-
sarily the same as our "best" values.
   <sup>8</sup> Earlier experiments not averaged
\Gamma(\pi^+\pi^0)/\Gamma(\mu^+\nu_\mu)
                                                                                                  \Gamma_3/\Gamma_1
obtained from a least-squares constrained fit utilizing measurements of other (related)
                                                                    TECN CHG
                                                                                                                                                                           quantities as additional information.
                              1600
                                        ZELLER 69 ASPK
10 AUERBACH 67 OSPK
0.305 \pm 0.018
0.3277 \pm 0.0065
                             4517
• • We do not use the following data for averages, fits, limits, etc. • •
                                         9 WEISSENBE... 74 STRC +
0.328 \pm 0.005
                               25k
   9WEISSENBERG 76 revises WEISSENBERG 74.
                                                                                                                                                                                    CHIANG
  10 AUERBACH 67 changed from 0.3253 \pm 0.0065. See comment with ratio \Gamma(\pi^0 \mu^+ \nu_\mu) /
                                                                                                                                                                                    PANDOULAS
     \Gamma(\mu^+\nu_\mu).
                                                                                                                                                                                    SHAKLEE
\Gamma(\pi^+\pi^0)/\Gamma(\pi^+\pi^+\pi^-)
                                                                                                   \Gamma_3/\Gamma_4
 <u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u>
3.79±0.05 OUR FIT Error includes scale factor of 1.5.
                                                                                                                                                                                           (Confidence Level
 3.84±0.27 OUR AVERAGE Error includes scale factor of 1.9.
                                                                                                                                                                 2.0
                                                                                                                                                                                 2.5
                                                                                                                                                                                                 3.0
                                                                                                                                  1.0
                                                                                                                                                  1.5
                             1045
                                            CALLAHAN 66 FBC
                                            YOUNG
                                                               65 EMUL +
 3.24 \pm 0.34
                               134
                                                                                                                                   \Gamma(\pi^+\pi^0\pi^0)/\Gamma_{total} (units 10^{-2})
\Gamma(\pi^+\pi^+\pi^-)/\Gamma_{\rm total}
                                                                                                    \Gamma_4/\Gamma
                                                                                                                       \Gamma(\pi^{+}\pi^{0}\pi^{0})/\Gamma(\pi^{+}\pi^{0})
                                                                   TECN CHG COMMENT
 VALUE (units 10^{-2})
                                            DOCUMENT ID
                              EVTS
 5.59±0.05 OUR FIT Error includes scale factor of 2.0.

        VALUE
        EVTS
        DOCUMENT ID
        TEC

        0.0819±0.0020 OUR FIT
        Error includes scale factor of 1.2.

        0.081 ±0.005
        574
        16 LUCAS
        738 HBI

                                                                                                                                                                                           TECN CHG COMMENT
 5.52±0.10 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below.
                                       11 PANDOULAS 70 EMUL +
                                                                                                                                                                                    738 HBC
                                693
 5.34 \pm 0.21
                                                                                                                        ^{16} LUCAS 73B gives N(\pi2\pi^0) = 574 ± 5.9%, N(2\pi) = 3564 ± 3.1%. We quote 0.5N(\pi2\pi^0)/N(2\pi) where 0.5 is because only Dalitz pair \pi^0's were used.
 5.71 \pm 0.15
                                            DEMARCO
                                                               65 HBC
 6.0 \pm 0.4
                                 44
                                             YOUNG
                                                               65
                                                                   FMIII
 5.54 \pm 0.12
                              2332
                                             CALLAHAN
                                                               64
                                                                    HLBC
                                                                                                                       \Gamma(\pi^+\pi^0\pi^0)/\Gamma(\pi^+\pi^+\pi^-)
 5.1 \pm 0.2
                                540
                                             SHAKLEE
                                                               64
                                                                   HLBC
                                            ROE
                                                               61 HLBC
 5.7 \pm 0.3
                                                                                                                       VALUE EVTS DOCUMENT ID TECN CHG COMMENT

0.310±0.007 OUR FIT Error includes scale factor of 1.2.
 • • • We do not use the following data for averages, fits, limits, etc. •
                                                                                                                       0.304 ± 0.009 OUR AVERAGE
                              2330
                                        12 CHIANG
                                                               72 OSPK +
 5.56 \pm 0.20
                                                                                                                       0.303 \pm 0.009
                                         13 TAYLOR
                                                                                                                                                     2027
 5.2 \pm 0.3
                                                               59 EMUL
                                                                                                                                                                   YOUNG
                                                                                                                                                                                      65 EMUL +
                                                                                                                       0.393 \pm 0.099
 6.8 ±0.4
                                         <sup>13</sup> ALEXANDER 57 EMUL
                                         13 BIRGE
                                                               56 EMUL
                                                                                                                       \Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma_{\rm total}
  ^{11} includes events of TAYLOR 59.  
 ^{12} Value is not independent of CHIANG 72 \Gamma(\mu^+\nu\mu)/\Gamma_{total} , \Gamma(\pi^+\pi^0)/\Gamma_{total}
                                                                                                                        <u>VALUE (units 10<sup>-2</sup>)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u>
3.18±0.08 OUR FIT Error includes scale factor of 1.6.
      \Gamma(\pi^+\pi^0\pi^0)/\Gamma_{\rm total}, \Gamma(\pi^0\mu^+\nu_\mu)/\Gamma_{\rm total}, and \Gamma(\pi^0e^+\nu_e)/\Gamma_{\rm total}.
                                                                                                                                                     2345
                                                                                                                                                                   CHIANG
                                                                                                                                                                                    72 OSPK +
                                                                                                                       3.33 \pm 0.16
  13 Earlier experiments not averaged.
                                                                                                                       • • We do not use the following data for averages, fits, limits, etc. • •
                                                                                                                                                                <sup>17</sup> TAYLOR
             WEIGHTED AVERAGE 5.52 ± 0.10 (Error scaled by 1.3)
                                                                                                                       2.8 \pm 0.4
                                                                                                                                                                                     59 EMUL +
                                                                                                                       5.9 \pm 1.3
                                                                                                                                                                17 ALEXANDER 57 EMUL +
                                                                                                                                                                17 BIRGE
                                                                                                                                                                                      56 EMUL
                                                                                                                        2.8 \pm 1.0
                                                     Values above of weighted average, error,
                                                                                                                         17 Earlier experiments not averaged.
                                                    and scale factor are based upon the data in
this ideogram only. They are not neces-
sarily the same as our "best" values,
obtained from a least-squares constrained fit
                                                                                                                        \Gamma\big(\pi^0\,\mu^+\,\nu_\mu\big)/\Gamma\big(\mu^+\,\nu_\mu\big)
                                                                                                                        VALUE EVTS DOCUMENT ID TEC
0.0501±0.0014 OUR FIT Error includes scale factor of 1.6.
                                                                                                                                                                                           TECN CHG
                                                    utilizing measurements of other (related) quantities as additional information.
                                                                                                                        0.0488 ± 0.0026 OUR AVERAGE
                                                                                                                                                                                      69 ASPK +
                                                                                                                        0.054 \pm 0.009
                                                                                                                                                      240
                                                                                                                                                                   ZELLER
                                                                                                                                                                18 GARLAND
                                                                                                                                                       424
                                                                                                                                                                                      68 OSPK +
                                                                                                                        0.0480 \pm 0.0037
                                                                                                                                                                19 AUERBACH 67 OSPK +
                                                                                                                        0.0486 \pm 0.0040
                                                                                                                                                       307
                                                                                                                         ^{18} GARLAND 68 changed from 0.055 \pm 0.004 in agreement with \mu\textsubscript{-spectrum} calculation of GAILLARD 70 appendix B. L.G.Pondrom, (private communication 73).
                                                               PANDOULAS
                                                                                       EMUL
                                                                                                                         ^{19} AUERBACH 67 changed from 0.0602 \pm 0.0046 by erratum which brings the \mu-spectrum
                                                              DEMARCO
                                                                                   65
                                                                                       HBC
                                                                                                     1.6
                                                                                                                            calculation into agreement with GAILLARD 70 appendix B.
                                                                                        EMUL
                                                               YOUNG
                                                                                   65
                                                                                                     1.4
                                                               CALLAHAN
                                                                                        HLBC
                                                                                                    0.0
                                                                                                                        \Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^+ \pi^+ \pi^-)
                                                               SHAKLEE
                                                                                   64
                                                                                        HLBC
                                                                                                                        <u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>T</u>
0.569±0.015 OUR FIT Error includes scale factor of 1.6.
                                                                                                                                                                                           TECN CHG COMMENT
                                                              ROF
                                                                                   61
                                                                                        HLBC
                                                                                                    0.3
                                                                                                    8.6
                                                                                                                        0.517±0.032 OUR AVERAGE Error includes scale factor of 1.8. See the ideogram below.
                                                                       (Confidence Level = 0.127)
                                                                                                                                                                <sup>20</sup> HAIDT
                                                                                                                                                                                      71 HLBC +
                                                                                                                        0.503 \pm 0.019
                                                                                                                                                     1505
                                                                                                                                                                21 BISI
                                                                                                                                                                                      65B BC
                                                                                                                        0.63 \pm 0.07
                                                                                                                                                      2845
                                                                            7.5
                      5.0
                                 5.5
                                            6.0
                                                      6.5
                                                                 7.0
                                                                                                                        0.90 \pm 0.16
                                                                                                                                                        38
                                                                                                                                                                   YOUNG
                                                                                                                                                                                      65 EMUL +
                                                                                                                        • • • We do not use the following data for averages, fits, limits, etc. • • •
             \Gamma(\pi^+\pi^+\pi^-)/\Gamma_{\text{total}} (units 10^{-2})
                                                                                                                                                                <sup>20</sup> EICHTEN
                                                                                                                                                                                      68 HLBC +
                                                                                                                                                     1505
                                                                                                                        0.510 \pm 0.017
 \Gamma(\pi^+\pi^0\pi^0)/\Gamma_{\text{total}}
                                                                                                     \Gamma_5/\Gamma
                                                                                                                         20 HAIDT 71 is a reanalysis of EICHTEN 68.
                                                                                                                         ^{21}\,\mathrm{Error} enlarged for background problems. See GAILLARD 70.
```

1.84 GeV/c K+

1.77±0.07 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

14 PANDOULAS 70 EMUL +

72 OSPK +

HLBC

61 HLBC

CHIANG

SHAKLEE

ROE

1307

198

108

 1.84 ± 0.06

 1.53 ± 0.11 1.8 ±0.2

1.7 ±0.2

```
\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^0)
                                                                                                                                                                                                                                                                                                                                       \Gamma_7/\Gamma_3

        VALUE
        EVTS
        DOCUMENT ID
        I

        0.228±0.004 OUR FIT
        Error includes scale factor of 1.3.

        0.221±0.012
        786
        30 LUCAS
        738 H

                                                                                                                                                                                                                                                                                         TECN CHG COMMENT
                 WEIGHTED AVERAGE
0.517 ± 0.032 (Error scaled by 1.8)
                                                                                                                                                                                                                                                                             738 HBC -
                                                                                                                                                                                     ^{30} LUCAS 73B gives N(K_{e3}) = 786 \pm 3.1%, N(2\pi) = 3564 \pm 3.1%. We divide.
                                                                             Values above of weighted average, error,
                                                                             and scale factor are based upon the data in
this ideogram only. They are not neces-
sarily the same as our "best" values,
obtained from a least-squares constrained fit
                                                                                                                                                                                   \Gamma(\pi^0 e^+ \nu_e)/\Gamma(\pi^+ \pi^+ \pi^-)
                                                                                                                                                                                                                                                                                                                                      \Gamma_7/\Gamma_4
                                                                                                                                                                                   VALUE EVTS DOCUMENT ID T
0.863±0.011 OUR FIT Error includes scale factor of 1.3.
                                                                                                                                                                                                                                                                                        TECN CHG
                                                                                                                                                                                   0.860 ± 0.014 OUR AVERAGE
                                                                             utilizing measurements of other (related) quantities as additional information.
                                                                                                                                                                                   0.867 \pm 0.027
                                                                                                                                                                                                                               2768
                                                                                                                                                                                                                                                     BARMIN
                                                                                                                                                                                                                                                                                 87 XEBC +
                                                                                                                                                                                   0.856 \pm 0.040
                                                                                                                                                                                                                               2827
                                                                                                                                                                                                                                                     BRAUN
                                                                                                                                                                                                                                                                                 75 HLBC
                                                                                                                                                                                                                                               31 HAIDT
                                                                                                                                                                                   0.850 \pm 0.019
                                                                                                                                                                                                                                                                                 71 HLBC
                                                                                                                                                                                   0.94 \pm 0.09
                                                                                                                                                                                                                                 854
                                                                                                                                                                                                                                                     BELLOTTI
                                                                                                                                                                                                                                                                                 678 HLBC
                                                                                                                                                                                                                                                                                64 HBC
                                                                                                                                                                                   0.90 \pm 0.06
                                                                                                                                                                                                                                 230
                                                                                                                                                                                                                                                     BORREANI

    •    • We do not use the following data for averages, fits, limits, etc.    •    •    •

                                                                                                                                                                                                                                               31 EICHTEN
                                                                                                                                                                                   0.846 \pm 0.021
                                                                                                                                                                                                                               4385
                                                                                                                                                                                                                                                                                 68 HLBC +
                                                                                                                                                                                   0.90 \pm 0.16
                                                                                                                                                                                                                                   37
                                                                                                                                                                                                                                                     YOUNG
                                                                                            HAIDT
                                                                                                                                                                                     ^{31}\,\mathrm{HAIDT} 71 is a reanalysis of EICHTEN 68.
                                                                                            BISI
                                                                                                                           65B BC
                                                                                             YOUNG
                                                                                                                           65
                                                                                                                                  EMUL
                                                                                                                                                      5.7
                                                                                                                                                                                   \Gamma(\pi^0 e^+ \nu_e) / [\Gamma(\mu^+ \nu_\mu) + \Gamma(\pi^+ \pi^0)]
                                                                                                                                                                                                                                                                                                                          \Gamma_7/(\Gamma_1+\Gamma_3)
                                                                                                                                                     8.9
                                                                                                                                                                                   VALUE (units 10<sup>-2</sup>) EVTS DOCUMENT ID TECN CHG

5.69±0.08 OUR FIT Error includes scale factor of 1.4.
                                                                                                        (Confidence Level = 0.012)
                                                                                                                                                                                   6.01 ± 0.15 OUR AVERAGE
               0.4
                                  0.6
                                                     0.8
                                                                         1.0
                                                                                                                                                                                                                                                32 WEISSENBE... 76 SPEC +
                                                                                                                                                                                   5.92 \pm 0.65
                                                                                                                                                                                   6.16±0.22
                                                                                                                                                                                                                                                     ESCHSTRUTH 68 OSPK +
                 \Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^+ \pi^+ \pi^-)
                                                                                                                                                                                   5.89 \pm 0.21
                                                                                                                                                                                                                               1679
                                                                                                                                                                                                                                                                             66 OSPK +
                                                                                                                                                                                     <sup>32</sup> Value calculated from WEISSENBERG 76 (\pi^0 e \nu), (\mu \nu), and (\pi \pi^0) values to eliminate
\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\pi^0 e^+ \nu_e)
                                                                                                                                                    \Gamma_6/\Gamma_7
                                                                                                                                                                                          dependence on our 1974 (\pi 2\pi^0) and (\pi \pi^+ \pi^-) fractions.
<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>1</u>
0.660±0.016 OUR FIT Error includes scale factor of 1.5.
                                                                                                      TECN CHG COMMENT
                                                                                                                                                                                   \Gamma(\pi^0\pi^0e^+\nu_e)/\Gamma(\pi^0e^+\nu_e)
                                                                                                                                                                                                                                                                                                                                       \Gamma_8/\Gamma_7
0.680 ± 0.013 OUR AVERAGE
                                                                                                                                                                                   VALUE (units 10-4) CL% EVTS
                                                                                                                                                                                                                                                     DOCUMENT ID TECN CHG
                                                            <sup>22</sup> LUCAS
0.705 \pm 0.063
                                              554
                                                                                              73B HBC
                                                                                                                                Dalitz pairs only
                                                            23 CHIANG
                                                                                                                                                                                         4.3+0.9 OUR FIT
                                                                                              72 OSPK +
0.698 \pm 0.025
                                             3480
                                                                                                                                1.84 GeV/c K
0.667 \pm 0.017
                                             5601
                                                                  BOTTERILL
                                                                                              68B ASPK
                                                            <sup>24</sup> CALLAHAN
                                                                                                                                                                                         4.1^{+1.0}_{-0.7} OUR AVERAGE
0.703 \pm 0.056
                                             1509
                                                                                              668 HLBC
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                                                                                        4.2 ^{\,+\, 1.0}_{\,-\, 0.9}
                                                                                                                                                                                                                                                     BOLOTOV
                                                                                                                                                                                                                                                                                 86B CALO -
                                                            25 HEINTZE
0.670 \pm 0.014
                                                                                             77 SPEC
                                                                  WEISSENBE... 76 SPEC
0.67 \pm 0.12
                                                                                                                                                                                                                                                     LIUNG
                                                            <sup>26</sup> BRAUN
0.608 \pm 0.014
                                             1585
                                                                                              75 HLBC
                                                                                                                                                                                   • • • We do not use the following data for averages, fits, limits, etc. • •
                                                            27 HAIDT
0.596 \pm 0.025
                                                                                              71 HLBC
                                                            27 EICHTEN
                                                                                                                                                                                    <37.0
                                                                                                                                                                                                                    90
                                                                                                                                                                                                                                                     ROMANO
                                                                                                                                                                                                                                                                                71 HLBC +
                                            1398
0.604 \pm 0.022
                                                                                              68 HLBC
  ^{22} LUCAS 73B gives N(K_{\mu3}) \approx 554 \pm 7.6%, N(K_{e3}) \approx 786 \pm 3.1%. We divide.
                                                                                                                                                                                   \Gamma(\pi^0\pi^0e^+\nu_e)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                                                                                                                         \Gamma_8/\Gamma
  <sup>23</sup>CHIANG 72 \Gamma(\pi^0\mu^+\nu_\mu)/\Gamma(\pi^0e^+\nu_e) is statistically independent of CHIANG 72
                                                                                                                                                                                   VALUE (units 10<sup>-5</sup>)
2.1 ±0.4 OUR FIT
                                                                                                                                                                                                                                                     DOCUMENT ID TECN CHG
      \Gamma(\pi^0\mu^+\nu\mu)/\Gamma_{\text{total}} and \Gamma(\pi^0e^+\nu e)/\Gamma_{\text{total}}
  <sup>24</sup> From CALLAHAN 668 we use only the K_{\mu3}/K_{e3} ratio and do not include in the fit the ratios K_{\mu3}/(\pi\pi^+\pi^0) and K_{e3}/(\pi\pi^+\pi^0), since they show large disagreements with
                                                                                                                                                                                   2.54 \pm 0.89
                                                                                                                                                                                                                                                      BARMIN
                                                                                                                                                                                                                                                                                 888 HLBC +
                                                                                                                                                                                                                                                                                                                                       \Gamma_9/\Gamma_4
                                                                                                                                                                                   \Gamma(\pi^+\pi^-e^+\nu_e)/\Gamma(\pi^+\pi^+\pi^-)
  the rest of the data. 25 HEINTZE 77 value from fit to \lambda_0 . Assumes \mu\text{-}e universality.
                                                                                                                                                                                   TECN CHG
  ^{26} BRAUN 75 value is from form factor fit. Assumes \mu-e universality.
  27 HAIDT 71 is a reanalysis of EICHTEN 68. Only individual ratios included in fit (see
                                                                                                                                                                                   7.21 \pm 0.32
                                                                                                                                                                                                                                 30k
                                                                                                                                                                                                                                                     ROSSELET
                                                                                                                                                                                                                                                                                77 SPEC
      \Gamma(\pi^0 \mu^+ \nu_\mu) / \Gamma(\pi^+ \pi^+ \pi^-) and \Gamma(\pi^0 e^+ \nu_e) / \Gamma(\pi^+ \pi^+ \pi^-)).
                                                                                                                                                                                   7.36 \pm 0.68
                                                                                                                                                                                                                                  500
                                                                                                                                                                                                                                                      BOURQUIN
                                                                                                                                                                                                                                                                                 71
                                                                                                                                                                                                                                                                                         ASPK
                                                                                                                                                                                                                                                     SCHWEINB...
                                                                                                                                                                                   7.0 \pm 0.9
                                                                                                                                                                                                                                 106
                                                                                                                                                                                                                                                                                71 HLBC
\begin{bmatrix} \Gamma(\pi^+\pi^0) + \Gamma(\pi^0\mu^+\nu_\mu) \end{bmatrix} / \Gamma_{\text{total}} \tag{$\Gamma_3+\Gamma_6$} / \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{total}} \times \Gamma_{\text{tota
                                                                                                                                          (\Gamma_3+\Gamma_6)/\Gamma
                                                                                                                                                                                   5.83 \pm 0.63
                                                                                                                                                                                                                                  269
                                                                                                                                                                                                                                                     ELY
                                                                                                                                                                                                                                                                                 69 HLBC
                                                                                                                                                                                   • • • We do not use the following data for averages, fits, limits, etc. • • •
           ber because of difficulties of separating them there.
                                                                                                                                                                                                                                                     BIRGE
                                                                                                                                                                                                                                                                                 65 FBC
VALUE (units 10<sup>-2</sup>) EVTS DOCUMENT ID

24.35±0.16 OUR FIT Error includes scale factor of 1.1.
                                                                                                                                                                                   \Gamma(\pi^+\pi^-\mu^+\nu_\mu)/\Gamma_{\rm total}
                                                                                                                                                                                                                                                                                                                                       \Gamma_{10}/\Gamma
24.6 ±1.0 OUR AVERAGE Error includes scale factor of 1.4.
                                                                                                                                                                                   VALUE (units 10<sup>-5</sup>) EVTS
                                                                                                                                                                                                                                                     DOCUMENT ID
                                                                                                                                                                                                                                                                                       TECN CHG
25.4 ±0.9
                                              886
                                                                  SHAKLEE
                                                                                              64 HLBC
                                                                                                                                                                                   • • We do not use the following data for averages, fits, limits, etc. • •
                                                                                              61 HLBC
23.4 \pm 1.1
                                                                  ROE
                                                                                                                                                                                   0.77 + 0.54
                                                                                                                                                                                                                                                     CLINE
                                                                                                                                                                                                                                                                                 65 FBC
\Gamma(\pi^0\,\mathrm{e}^+\nu_e)/\Gamma_{\mathrm{total}}
                                                                                                                                                      \Gamma_7/\Gamma
VALUE (units 10<sup>-2</sup>)
<u>VALUE (units 10<sup>-2</sup>)</u> <u>EVTS</u> <u>DOCUMENT ID</u>

4.82±0.06 OUR FIT Error includes scale factor of 1.3.
                                                                                                     TECN CHG COMMENT
                                                                                                                                                                                   \Gamma(\pi^{+}\pi^{-}\mu^{+}\nu_{\mu})/\Gamma(\pi^{+}\pi^{+}\pi^{-})
                                                                                                                                                                                                                                                                                                                                     \Gamma_{10}/\Gamma_4
                                                                                                                                                                                   VALUE (units 10<sup>-4</sup>) EVTS
                                                                                                                                                                                                                                                     DOCUMENT ID
                                                                                                                                                                                                                                                                                         TECN CHG
4.85 ± 0.09 OUR AVERAGE
                                                                                                                                                                                                                                                                                 67 DBC
                                                                  CHIANG
                                                                                              72 OSPK
                                                                                                                                                                                       2.57 \pm 1.55
                                                                                                                                                                                                                                                     BISI
4.86 \pm 0.10
                                            3516
                                                                                                                                 1.84 GeV/c K+
                                                                                                                                                                                   • • • We do not use the following data for averages, fits, limits, etc. • • •
4.7 \pm 0.3
                                                                  SHAKLEE
                                                                                              64 HLBC
                                              429
5.0 \pm 0.5
                                                                  ROE
                                                                                              61 HLBC
                                                                                                                                                                                   \sim 2.5
                                                                                                                                                                                                                                     1
                                                                                                                                                                                                                                                     GREINER
                                                                                                                                                                                                                                                                                64 EMUL +
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                                                                                   \Gamma(\pi^+ \gamma \gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                                                                                                                       \Gamma_{11}/\Gamma
5.1 \pm 1.3
                                                             28 ALEXANDER 57 EMUL +
                                                                                                                                                                                              All values given here assume a phase space pion energy spectrum.
3.2 \pm 1.3
                                                             28 BIRGE
                                                                                              56 EMUL
                                                                                                                                                                                   VALUE (units 10-4) CL% EVTS
                                                                                                                                                                                                                                                     DOCUMENT ID
                                                                                                                                                                                                                                                                                    TECN CHG COMMENT
  <sup>28</sup> Earlier experiments not averaged.
                                                                                                                                                                                                                     90
                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                                     ASANO
                                                                                                                                                                                                                                                                                 82
                                                                                                                                                                                                                                                                                        CNTR
                                                                                                                                                                                                                                                                                                                   T\pi 117–127 MeV

    ● We do not use the following data for averages, fits, ilmits, etc.

\Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu)
                                                                                                                                                    \Gamma_7/\Gamma_1
                                                                                                                                                                                      -0.42 \pm 0.52
                                                                                                                                                                                                                                                     ABRAMS
                                                                                                                                                                                                                                                                                         SPEC
VALUE EVTS DOCUMENT ID TEC
0.0759±0.0011 OUR FIT Error includes scale factor of 1.4.
                                                                                                                                                                                                                                      n
                                                                                                                                                                                                                                                                                 77
                                                                                                                                                                                                                                                                                                                   T\pi < 92 \text{ MeV}
                                                                                                      TECN_ CHG
                                                                                                                                                                                    < 0.35
                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                                     LJUNG
                                                                                                                                                                                                                                                                                 73
                                                                                                                                                                                                                                                                                        HLBC
                                                                                                                                                                                                                                                                                                                   6-102,114-127
0.0752±0.0024 OUR AVERAGE
                                                                                                                                                                                                                                                                                                                   MeV
Τπ <117 MeV
                                                                                                                                                                                     < 0.5
                                                                                                                                                                                                                                                     KLEMS
                                                                                                                                                                                                                                                                                 71
                                                                                                                                                                                                                                                                                         OSPK
0.069 \pm 0.006
                                              350
                                                                  ZELLER
                                                                                              69 ASPK
                                                                                                                                                                                       -0.1 \pm 0.6
                                                                                                                                                                                                                                                     CHEN
                                                                                                                                                                                                                                                                                         OSPK
                                                                                                                                                                                                                                                                                                                   Tπ 60-90 MeV
0.0775 \pm 0.0033
                                               960
                                                                  BOTTERILL
                                                                                              68c ASPK
                                                                  GARLAND
                                                                                              68 OSPK
                                                                                                                                                                                   \Gamma(\pi^+ 3\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                                                                                                                       \Gamma_{12}/\Gamma
                                                           <sup>29</sup> AUERBACH
                                              295
                                                                                                                                                                                             Values given here assume a phase space pion energy spectrum.
  ^{29} AUERBACH 67 changed from 0.0797 \pm 0.0054. See comment with ratio \Gamma(\pi^0~\mu^+~\nu\mu) /
                                                                                                                                                                                    VALUE (units 10^{-4})
                                                                                                                                                                                                                              CL%
                                                                                                                                                                                                                                                     DOCUMENT ID
                                                                                                                                                                                                                                                                                   TECN CHG
                                                                                                                                                                                                                                                                                                                  COMMENT
      \Gamma(\mu^+
u\mu) . The value 0.0785 \pm 0.0025 given in AUERBACH 67 is an average of
                                                                                                                                                                                                                                                     ASANO
                                                                                                                                                                                                                                                                                 82 CNTR +
                                                                                                                                                                                                                                                                                                                    T(π) 117-127
      AUERBACH 67 \Gamma(\pi^0 e^+ \nu_e)/\Gamma(\mu^+ \nu_\mu) and CESTER 66 \Gamma(\pi^0 e^+ \nu_e)/[\Gamma(\mu^+ \nu_\mu) +
                                                                                                                                                                                   • • • We do not use the following data for averages, fits, limits, etc. • •
      \Gamma(\pi^+\pi^0).
                                                                                                                                                                                    < 3.0
                                                                                                                                                                                                                                 90
                                                                                                                                                                                                                                                     KLEMS
                                                                                                                                                                                                                                                                                71 OSPK +
                                                                                                                                                                                                                                                                                                                   T(\pi) > 117 \text{ MeV}
```

$\Gamma(e^+ u_e u_{\overline{\nu}})/\Gamma(e^+ u_e)$	$\Gamma(e^+\nu_e\gamma(SD^+))/\Gamma(e^+\nu_e)$ Γ_{22}/Γ_2
VALUE CL'S EVTS DOCUMENT ID TECN CHG	Structure-dependent part with $+\gamma$ helicity (SD ⁺ term). See the "Note on π^{\pm} \rightarrow
<3.8 90 0 HEINTZE 79 SPEC +	$\ell^\pm u\gamma$ and $K^\pm o\ell^\pm u\gamma$ Form Factors" in the π^\pm section of the Full Data Listings
$\Gamma(\mu^+ u_\mu u\overline{ u})/\Gamma_{ ext{total}}$	above. <u>VALUE EVTS DOCUMENT ID TECN CHG COMMENT</u>
(μ - μ -)// τοταί	 • • We do not use the following data for averages, fits, limits, etc.
$ \frac{\text{VALUE (units }10^{-6})}{<6.0} \frac{\text{CL\%}}{90} \frac{\text{EVTS}}{0} \frac{\text{DOCUMENT ID}}{33 \text{ PANG}} \frac{\text{TECN}}{73} \frac{\text{CHG}}{\text{CNTR}} + $	$1.05^{+0.25}_{-0.30}$ 56 ³⁹ HEARD 75 SPEC + P(e) 236-247
33 PANG 73 assumes μ spectrum from ν - ν interaction of BARDIN 70.	$^{-0.30}$ 39 This value is included in the first HEINTZE 79 value in the section on $\Gamma(e^+ \nu_e \gamma (\text{SD}^+))/$
	F $(\mu^+ \nu_\mu)$ above.
$\Gamma(\mu^{+}\nu_{\mu}e^{+}e^{-})/\Gamma(\pi^{+}\pi^{-}e^{+}\nu_{e})$ Γ_{15}/Γ_{9}	
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN CHG COMMENT	$\Gamma(e^+\nu_e\gamma(SD^-))/\Gamma_{total}$
27. ±8. 14 34 DIAMANT 76 SPEC + Extrapolated BR	Structure-dependent part with $-\gamma$ helicity (SD ⁻ term). See the "Note on $\pi^{\pm} \rightarrow \ell^{\pm}\nu\gamma$ and $K^{\pm} \rightarrow \ell^{\pm}\nu\gamma$ Form Factors" in the π^{\pm} section of the Full Data Listings
• • • We do not use the following data for averages, fits, limits, etc. • • • $3.3+0.9$ 14 34 DIAMANT 76 SPEC + $m(ee) > 140$	above.
	VALUE (units 10 ⁻⁴) CL% DOCUMENT ID TECN CHG
34 DIAMANT-BERGER 76 quotes this result times our 1975 π^+ $\pi^ e\nu$ BR ratio. The first DIAMANT-BERGER 76 value is the second value extrapolated to 0 to include low mass	<1.6 90 ⁴⁰ HEINTZE 79 SPEC +
e pairs.	40 Implies (axial vector/vector) amplitude ratio outside range from -1.8 to -0.54 .
$\Gamma(e^+\nu_e e^+e^-)/\Gamma(\pi^+\pi^-e^+\nu_e)$ Γ_{16}/Γ_9	$\Gamma(\pi^+\pi^0\gamma)/\Gamma_{\text{total}}$
VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN CHG	VALUE (units 10 ⁻⁴) CL% EVTS DOCUMENT ID TECN CHG COMMENT
	2.75±0.15 OUR AVERAGE
0.54 ^{+0.54} _{-0.27} 4 DIAMANT 76 SPEC +	2.71 ± 0.45 140 BOLOTOV 87 WIRE - $T\pi^-$ 55-90 MeV 2.87 ± 0.32 2461 SMITH 76 WIRE \pm $T\pi^\pm$ 55-90 MeV
$\Gamma(\mu^+ u_\mu\mu^+\mu^-)/\Gamma_{total}$ Γ_{17}/Γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VALUE (units 10 ⁻⁷) CL% DOCUMENT ID TECN CHG	• • We do not use the following data for averages, fits, limits, etc. • •
\[\begin{align*} \text{ALDE [limits 10]} & \text{ 200 } \\ \left* \\ \left* \text{ATIYA} & 89 \text{CNTR} + \]	
	-0.6
$\Gamma(\mu^+ u_\mu\gamma)/\Gamma_{ ext{total}}$	$2.6 {}^{+1.5}_{-1.1}$ 41 LJUNG 73 HLBC + T π^+ 55–90 MeV
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN CHG COMMENT 5.46±0.28 OUR AVERAGE	$6.8 ^{+ 3.7}_{- 2.1}$ 17 41 LJUNG 73 HLBC + $T\pi^+$ 55–102 MeV
5.46 \pm 0.28 OUR AVERAGE 6.0 \pm 0.9 BARMIN 88 HLBC + P(μ) <231.5	2.4 ± 0.8 24 EDWARDS 72 OSPK $T\pi^+$ 58–90 MeV
MeV/c	<1.0 0 42 MALTSEV 70 HLBC + $T\pi^+$ <55 MeV
5.4 ± 0.3 35 AKIBA 85 SPEC $P(\mu) < 231.5$ MeV/ c	<1.9 90 0 EMMERSON 69 OSPK $T\pi^{+}$ 55–80 MeV
	2.2 ± 0.7 18 CLINE 64 FBC + $T\pi^+$ 55-80 MeV
3.2 ± 0.5 57 36 BARMIN 88 HLBC + $E(\gamma) > 20$ MeV	41 The LJUNG 73 values are not independent. 42 MALTSEV 70 selects low π^+ energy to enhance direct emission contribution.
5.8 ± 3.5 12 WEISSENBE 74 STRC + $E(\gamma) > 9$ MeV	
35 Assumes μ -e universality and uses constraints from $K \to e \nu \gamma$.	$\Gamma(\pi^+\pi^0\gamma (DE))/\Gamma_{total}$ Γ_{25}/Γ
³⁶ Not independent of above BARMIN 88 value. Cuts differ.	Direct emission part of $\Gamma(\pi^+\pi^0\gamma)/\Gamma_{ ext{total}}$.
$\Gamma(\mu^+ u_\mu\gamma~(SD^+))/\Gamma_{total}$ Γ_{19}/Γ	VALUE (units 10 ⁻⁵) DOCUMENT ID TECN CHG COMMENT
Structure-dependent part with $+\gamma$ helicity (SD ⁺ term). See the "Note on π^{\pm} \rightarrow	1.8 ±0.4 OUR AVERAGE
$\ell^\pm u\gamma$ and $\mathcal{K}^\pm o\ell^\pm u\gamma$ Form Factors" in the π^\pm section of the Full Data Listings	$2.05 \pm 0.46 ^{+0.39}_{-0.23}$ BOLOTOV 87 WIRE - $7\pi^{-5}$ 55-90 MeV
above. VALUE (units 10 ⁻⁵) CL% DOCUMENT ID TECN	2.3 \pm 3.2 SMITH 76 WIRE \pm T π^{\pm} 55–90 MeV 1.56 \pm 0.35 \pm 0.5 ABRAMS 72 ASPK \pm T π^{\pm} 55–90 MeV
<3.0 90 AKIBA 85 SPEC	100 100 100 100 100 100 100 100 100 100
	$\Gamma(\pi^+\pi^+\pi^-\gamma)/\Gamma_{\text{total}}$
$\Gamma(\mu^+\nu_\mu\gamma ({\sf SD^+INT}))/\Gamma_{\sf total}$	VALUE (units 10 ⁻⁴) DOCUMENT ID TECN CHG COMMENT
Interference term between internal Bremsstrahlung and SD $^+$ term. See the "Note on $\pi^\pm\to \ell^\pm\nu\gamma$ and $K^\pm\to \ell^\pm\nu\gamma$ Form Factors" in the π^\pm section of the Full Data	1.0 \pm 0.4 STAMER 65 EMUL + $E(\gamma) > 11$ MeV
Listings above.	$\Gamma(\pi^{+}\pi^{0}\pi^{0}\gamma)/\Gamma(\pi^{+}\pi^{0}\pi^{0})$ Γ_{27}/Γ_{5}
VALUE (units 10 ⁻⁵) CL% DOCUMENT ID TECN	VALUE (units 10 ⁻⁴) DOCUMENT ID TECN CHG COMMENT
<2.7 90 AKIBA 85 SPEC	WWW.
$\Gamma(\mu^+\nu_\mu\gamma (SD^- + SD^-INT))/\Gamma_{total}$ Γ_{21}/Γ	4.3 $^{+3.2}_{-1.7}$ BOLOTOV 85 SPEC $ E(\gamma) > 10 \text{ MeV}$
Sum of structure-dependent part with $-\gamma$ helicity (SD ⁻ term) and interference term	$\Gamma(\pi^0 \mu^+ \nu_\mu \gamma)/\Gamma_{\text{total}}$ Γ_{28}/Γ
between internal Bremsstrahlung and SD $^-$ term. See the "Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors" in the π^\pm section of the Full Data Listings above.	VALUE (units 10 ⁻⁵) CL% EVTS DOCUMENT ID TECN CHG COMMENT
	<6.1 90 0 LJUNG 73 HLBC + $E(\gamma) > 30$ MeV
<u>VALUE (units 10⁻⁴)</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <2.6 90 37 AKIBA 85 SPEC	
1-1	$\Gamma(\pi^0 e^+ \nu_e \gamma) / \Gamma(\pi^0 e^+ \nu_e) $ Γ_{29} / Γ_7
³⁷ Assumes μ - e universality and uses constraints from $K \to e \nu \gamma$.	VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN CHG COMMENT 0.56±0.04 OUR AVERAGE
$\Gamma(e^+\nu_e\gamma({\rm SD}^+))/\Gamma_{ m total}$ Γ_{22}/Γ	0.56 \pm 0.04 OUR AVERAGE 0.56 \pm 0.04 192 43 BOLOTOV 86B CALO - $E(\gamma) > 10$ MeV
Structure-dependent part with $+\gamma$ helicity (SD $^+$ term). See the "Note on π^\pm $ o$	0.76 \pm 0.28 13 44 ROMANO 71 HLBC $E(\gamma) > 10$ MeV
$\ell^\pm u_{\gamma}$ and $K^\pm o \ell^\pm u_{\gamma}$ Form Factors" in the π^\pm section of the Full Data Listings	 • • We do not use the following data for averages, fits, limits, etc.
above. VALUE (units 10 ⁻⁵) CL% DOCUMENT ID TECN CHG COMMENT	0.48 ± 0.20 16 ⁴⁵ LJUNG 73 HLBC + $E(\gamma) > 30$ MeV
• • • We do not use the following data for averages, fits, limits, etc. • •	$0.22^{+0.15}_{-0.10}$ 45 LJUNG 73 HLBC + $\textit{E}(\gamma) > 30$ MeV
<7.1 90 MACEK 70 OSPK + P(e) 234–247	0.53 ± 0.22 44 ROMANO 71 HLBC + $E(\gamma) > 30$ MeV
	1.2 ± 0.8 BELLOTTI 67 HLBC $+$ $E(\gamma) > 30$ MeV
$\Gamma(e^+\nu_e\gamma~(SD^+))/\Gamma(\mu^+\nu_\mu)$ Γ_{22}/Γ_1	$^{43}\cos\theta(e\gamma)$ between 0.6 and 0.9.
Structure-dependent part with $+\gamma$ helicity (SD ⁺ term). See the "Note on $\pi^{\pm} \rightarrow \ell^{\pm}\nu\gamma$ and $\ell^{\pm} \rightarrow \ell^{\pm}\nu\gamma$ Form Factors" in the π^{\pm} section of the Full Data Listings	44 Both ROMANO 71 values are for $\cos\theta(e\gamma)$ between 0.6 and 0.9. Second value is for
$\ell = \nu \gamma$ and $\kappa = \rightarrow \ell = \nu \gamma$ form Factors. In the π - section of the Pull Data Eistings above.	comparison with second LJUNG 73 value. We use lowest $E(\gamma)$ cut for Summary Table value. See ROMANO 71 for E_{γ} dependence.
VALUE (units 10 ⁻⁵) EVTS DOCUMENT ID TECN CHG	45 First LJUNG 73 value is for $\cos\theta(e\gamma)$ <0.9, second value is for $\cos\theta(e\gamma)$ between 0.6
2.40±0.36 107 ³⁸ HEINTZE 79 SPEC +	and 0.9 for comparison with ROMANO 71.
• • • We do not use the following data for averages, fits, limits, etc. • • •	$\Gamma(\pi^0 e^+ \nu_e \gamma \text{ (SD)})/\Gamma_{\text{total}}$ Γ_{30}/Γ
2.33±0.42 51 ³⁸ HEINTZE 79 SPEC +	Structure-dependent part.
³⁸ First HEINTZE 79 result is second combined with HEARD 75 result from section $\Gamma(e^+\nu_e\gamma({\rm SD}^+))/\Gamma(e^+\nu_e)$ below.	VALUE (units 10 ⁻⁵) CL% DOCUMENT ID TECN CHG
$r(e \cdot \nu e \gamma (3\nu \cdot))/r(e \cdot \nu e)$ below.	<5.3 90 BOLOTOV 86B CALO —

<11

<48

90

0

CAMPAGNARI 88 SPEC + In LEE 90 DIAMANT-... 76 SPEC +

<u>K</u> ±			* * * * * * * * * * * * * * * * * * * *	
$\Gamma(\pi^+\pi^+e^-)$	$\overline{\nu}_e$)/ Γ_{total} $\Delta S = \Delta Q \text{ rule.}$		Γ ₃₁ /Γ	$\Gamma(\pi^{\pm}\mu^{\mp}e^{+})/\Gamma_{ ext{total}}$
	-7) CL% EVTS	DOCUMENT ID TECN C	'uc	VALUE (units 10 ⁻⁸) CL% DOCUMENT ID TECN CHG
		wing data for averages, fits, limits, et		 • • We do not use the following data for averages, fits, limits, etc.
< 9.0	95 0	SCHWEINB 71 HLBC +		<2.8 90 BEIER 72 OSPK \pm
< 6.9	95 0	ELY 69 HLBC -	-	$\Gamma(\pi^{\pm}\mu^{\mp}e^{+})/\Gamma(\pi^{+}\pi^{-}e^{+}\nu_{e})$
<20.	95	BIRGE 65 FBC -	-	Test of lepton family number or total lepton number conservation.
$\Gamma(\pi^+\pi^+e^-$	$\overline{\nu}_e$)/ $\Gamma(\pi^+\pi^-$	$e^+ \nu_e$)	Γ_{31}/Γ_{9}	Sum of $\pi^+\mu^-e^+$ and $\pi^-\mu^+e^+$ modes.
Test of	$\Delta S = \Delta Q$ rule.	•,	. 31/. 9	<u>VALUE (units 10⁻⁴) CL% EVTS DOCUMENT ID TECN CHG</u> <1.9 90 0 ⁵¹ DIAMANT· 76 SPEC →
	-4) CL% EVTS	DOCUMENT ID TECN		
< 3	90 3	46 BLOCH 76 SPEC		51 DIAMANT-BERGER 76 quotes this result times our 1975 π^+ $\pi^ e u$ BR ratio.
<130.	95 0	ving data for averages, fits, limits, et BOURQUIN 71 ASPK	.c. • • •	$\Gamma(\pi^+ e^+ \mu^-)/\Gamma_{ ext{total}}$ $\Gamma_{ ext{44}}/\Gamma$
		BOURQUIN 71 ASPK		VALUE (units 10 8) CL% DOCUMENT ID TECN CHG
		at CL = 95%, we convert.		 • • We do not use the following data for averages, fits, limits, etc.
$\Gamma(\pi^+\pi^+\mu^-$	$\overline{ u}_{\mu})/\Gamma_{\mathrm{total}}$		Γ_{32}/Γ	$<$ 1.4 90 BEIER 72 OSPK \pm
	$\Delta S = \Delta Q$ rule. 6) CL% EVTS	DOCUMENT IO TECH C		$\Gamma(\pi^-e^+e^+)/\Gamma_{\text{total}}$ Γ_{40}/Γ
<3.0	95 0	DOCUMENT ID TECN C	HG_	Test of total lepton number conservation.
		21KGE 03 1 BC 7		VALUE (units 10 ⁻⁵) DOCUMENT ID TECN CHG
$\Gamma(\pi^+e^+e^-)$)/F _{total}		Γ ₃₃ /Γ	 • • We do not use the following data for averages, fits, limits, etc. • •
	$\Delta S = 1$ weak lagnetic interacti	neutral current. Allowed by combin	ed first-order weak and	<1.5 CHANG 68 HBC -
	6) CL% EVTS	DOCUMENT ID TECN C	HG COMMENT	$\Gamma(\pi^-e^+e^+)/\Gamma(\pi^+\pi^-e^+\nu_e)$
		ving data for averages, fits, limits, et		Test of total lepton number conservation.
< 1.7	90	CENCE 74 ASPK +	Three track evts	VALUE (units 10 ⁻⁴) CL% EVTS DOCUMENT ID TECN CHG
< 0.27	90	CENCE 74 ASPK +	Two track events	< 2.5 90 0 ⁵² DIAMANT 76 SPEC +
<32.0 < 4.4	90 90	BEIER 72 OSPK ± BISI 67 DBC +		52 DIAMANT-BERGER 76 quotes this result times our 1975 BR ratio.
< 0.88	90	CLINE 678 FBC +		$\Gamma(\mu^+\overline{ u}_e)/\Gamma_{total}$ Γ_{41}/Γ
< 2.45	90 1	CAMERINI 64 FBC +		Forbidden by total lepton number conservation.
Γ(π+ρ+ρ-)	$)/\Gamma(\pi^+\pi^-e^+$	w ₂)	Γ33/Γ9	VALUE (units 10 ⁻³) CL% DOCUMENT ID TECN COMMENT
		eutral current. Allowed by higher-ord		<3.3 90 COOPER 82 HLBC Wideband ν beam
tions.	3	-		$\Gamma(\pi^0 e^+ \overline{\nu}_e) / \Gamma_{ ext{total}}$ Γ_{42} / Γ
/ALUE (units 10 ⁻ 7.0 ± 1.3	3) <u>EVTS</u> 41	47 BLOCH 75 SPEC +		Forbidden by total lepton number conservation.
		⁴⁷ BLOCH 75 SPEC + It multiplied by our 1974 $\pi^+ \pi^- e\nu$		<u>VALUE CL% DOCUMENT ID TECN COMMENT</u> <0.003 90 COOPER 82 HLBC Widehand µ beam
BLOCH 75	quotes this rest	it multiplied by our 1974 π · π · eν	DR ITACLION.	The state of the s
$\Gamma(\pi^+\mu^+\mu^-)$)/F _{total}		Γ ₃₄ /Γ	$\Gamma(\pi^+\gamma)/\Gamma_{total}$ Γ_{43}/Γ
tions.	$\Delta S = 1$ weak n	eutral current. Allowed by higher-ord	der electroweak interac-	Violates angular momentum conservation. Not listed in Summary Table.
VALUE (units 10	7) CL%	DOCUMENT ID TECN CH	16	<u>VALUE (units 10⁻⁶)</u> <u>CL% DOCUMENT ID TECN CHG</u> • • • We do not use the following data for averages, fits, limits, etc. • • •
< 2.3	90	ATIYA 89 CNTR +		
• • We do n	not use the follow	ing data for averages, fits, limits, et	C. • • •	<pre>1 <1.4 90 ASANO 82 CNTR +</pre>
<24	90	BISI 67 DBC +		⁵³ Test of model of Selleri, NC 60A, 291(1969).
<30	90	CAMERINI 65 FBC +		
$(\pi^+ \nu \overline{\nu})/\Gamma_t$	otal		Γ_{35}/Γ	K^+ LONGITUDINAL POLARIZATION OF EMITTED μ^+
Test for tions.	$\Delta S = 1$ weak n	eutral current. Allowed by higher-ord	ler electroweak interac-	
	B) CL% EVTS	DOCUMENT ID TECN CH	IG COMMENT	$K^+ \rightarrow \mu^+ \nu$
< 3.4	90	ATIYA 90 CNTR +		Tests for right-handed currents in strangeness-changing decay. VALUE DOCUMENT ID TECN CHG
• • We do n	not use the follow	ing data for averages, fits, limits, etc	E. • • •	-0.97 ±0.04 OUR AVERAGE
< 14	90	ASANO 818 CNTR +	T(π) 116-127	-0.970±0.047 YAMANAKA 86 SPEC +
< 94	90	48 CABLE 73 CNTR +	MeV Τ(π) 60-105 MeV	-1.0 ±0.1 CUTTS 69 SPRK ÷ -0.96 ±0.12 COOMBES 57 CNTR ÷
< 56	90	48 CABLE 73 CNTR +	T(π) 60-127 MeV	COUNTRY OF CALL
<5700 < 140	90 0 90	⁴⁹ LJUNG 73 HLBC + ⁴⁸ KLEMS 71 OSPK +	T(=) 117_127	NOTE ON DALITZ PLOT PARAMETERS FOR
			T(π) 117-127 MeV	
48 KLEMS 71	and CABLE 73	assume π spectrum same as K_{e3} dended the KLEMS 71 data for vector interactions.	cay. Second CABLE 73	$K o 3\pi { m DECAYS}$
49 LJUNG 73	nes CABLE 73 a assumes vector i	nd KLEMS 71 data for vector intera- nteraction.	ction.	The Dalitz plot distribution for $K^{\pm} \to \pi^{\pm}\pi^{\mp}\pi^{\mp}$, $K^{\pm} \to \pi^{\pm}\pi^{\pm}\pi^{\mp}$
	$\Gamma / \Gamma (\pi^+ \pi^- e^-)$	$ u_e$) ther conservation.	Γ ₃₆ /Γ ₉	$\pi^0\pi^0\pi^{\pm}$, and $K_L^0\to\pi^+\pi^-\pi^0$ can be parameterized by a series
	3) CL% EVTS	DOCUMENT ID TECN CF	IG.	expansion such as that introduced by Weinberg. 1 We use the
<0.5	90 0	50 DIAMANT 76 SPEC +	<u> </u>	form
50 DIAMANT	BERGER 76 qu	otes this result times our 1975 π^+ π^-	ev BR ratio.	0
-(+)/=			E /E	$\left M ight ^2 \propto 1 + grac{(s_3-s_0)}{m_{-+}^2} + h \left[rac{s_3-s_0}{m_{-+}^2} ight]^2$
$(\mu^+ u_e)/\Gamma_{ m to}$ Forbidder		y number conservation.	Γ ₃₇ /Γ	$m_{\pi^+}^2$ $m_{\pi^+}^2$ $m_{\pi^+}^2$
ALUE	CL% EVTS	DOCUMENT ID TECN CH		и
<0.004	90 0	LYONS 81 HLBC 0	200 GeV K+ nar-	$(s_2 - s_1)$ $[s_2 - s_1]^2$
			row band ν beam	$+j \frac{(s_2-s_1)}{m_{-+}^2} + k \left[\frac{s_2-s_1}{m_{-+}^2} \right]^2 + \cdots ,$ (1)
• • We do n		ing data for averages, fits, limits, etc		m_{π^+} [m_{π^+}]
< 0.012	90	COOPER 82 HLBC	Wideband $ u$ beam	where $m_{\pi^+}^2$ has been introduced to make the coefficients g, h ,
$(\pi^{+}\mu^{+}e^{-})$	$/\Gamma_{\text{total}}$		Г ₃₈ /Г	j, and k dimensionless, and
Test of le	epton family num	ber conservation.	- 30/ •	
ALUE (units 10^{-1}		DOCUMENT ID TECN CH	IG COMMENT	$s_i = (P_K - P_i)^2 = (m_K - m_i)^2 - 2m_K T_i, i = 1, 2, 3,$
< 2.1	90 0	LEE 90 SPEC + ing data for averages, fits, limits, etc		

 $s_0 = \frac{1}{3} \sum_i s_i = \frac{1}{3} (m_K^2 + m_1^2 + m_2^2 + m_3^2) \ .$

Here the P_i are four-vectors, m_i and T_i are the mass and kinetic energy of the i^{th} pion, and the index 3 is used for the odd pion.

The coefficient g is a measure of the slope in the variable s_3 (or T_3) of the Dalitz plot, while h and k measure the quadratic dependence on s_3 and (s_2-s_1) , respectively. The coefficient j is related to the asymmetry of the plot and must be zero if CP invariance holds. Note also that if CP is good, g, h, and k must be the same for $K^+ \to \pi^+\pi^+\pi^-$ as for $K^- \to \pi^-\pi^-\pi^-\pi^+$.

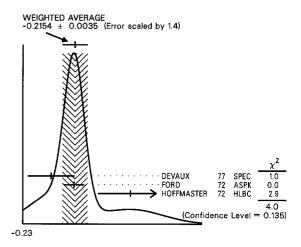
Since different experiments use different forms for M^2 , in order to compare the experiments we have converted to g, h, j, and k whatever coefficients have been measured. Where such conversions have been done, the measured coefficient a_y , a_t , a_u , or a_v is given in the comment at the right. For definitions of these coefficients, details of this conversion, and discussion of the data, see the April 1982 version of this note.²

See also the review of Devlin and Dickey,³ which contains an analysis of $K \to 2\pi$ and $K \to 3\pi$ data in terms of transition amplitudes with appropriate energy dependence.

References

- 1. S. Weinberg, Phys. Rev. Lett. 4, 87 (1960).
- 2. Particle Data Group, Phys. Lett. 111B, 69 (1982).
- T.J. Devlin and J.O. Dickey, Rev. Mod. Phys. 51, 237 (1979).

ENERGY DEPENDENCE OF K^{\pm} DALITZ PLOT

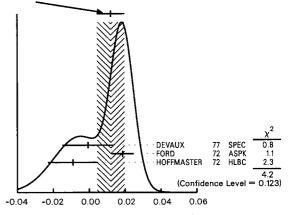

|matrix element| $^2 = 1 + gu + hu^2 + kv^2$ where $u = (s_3 - s_0) / m^2(\pi)$ and $v = (s_1 - s_2) / m^2(\pi)$

LINEAR COEFFICIENT ${\it g}_{\tau^+}$ FOR ${\it K}^+$ ightarrow π^+ π^+ π^-

Some experiments use Dalitz variables x and y. In the comments we give ay = coefficient of y term. See note above on "Dalitz Plot Parameters for $K \to 3\pi$ Decays." For discussion of the conversion of ay to g, see the earlier version of the same note in the 1982 edition of this Review published in Physics Letters 111B, 70 (April 1982).

VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.2154±0.0035 O	JR AVERAGE	E Error includes s below.	cale	factor o	f 1.4.	See the ideogram
-0.2221 ± 0.0065	225k			SPEC		$a_y = .2814 \pm .0082$
-0.2157 ± 0.0028	750k			ASPK		$a_y = .2734 \pm .0035$
-0.200 ± 0.009	39819	54 HOFFMASTER	₹72	HLBC	+	•
• • • We do not use	the following	g data for average	s, fit	s, limits,	etc.	• • •
0.196 ±0.012		⁵⁵ GRAUMAN		HLBC	+	$a_V = 0.228 \pm 0.030$
-0.218 ± 0.016	9994	⁵⁶ BUTLER	68	HBC	+	$a_y = 0.277 \pm 0.020$
-0.22 ± 0.024	5428 56	^{,57} ZINCHENKO	67	HBC	+	$a_y = 0.28 \pm 0.03$
EA						•

 ⁵⁴ HOFFMASTER 72 includes GRAUMAN 70 data.
 55 Emulsion data added — all events included by HOFFMASTER 72

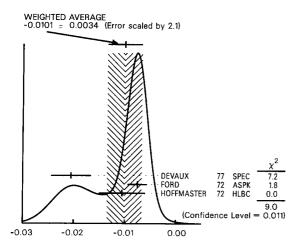


Linear energy dependence for $K^+ \to \pi^+ \pi^+ \pi^-$

QUADRATIC COEFFICIENT h FOR $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

VALUE 0.012 ±0.008	OUR AVERAGE	DOCUMENT ID Error includes scale	TECN CHG e factor of 1.4. See the ideogram
		below.	
-0.0006 ± 0.0143	225k	DEVAUX 77	SPEC +
0.0187 ± 0.0062	750k	FORD 72	ASPK +
-0.009 ± 0.014	39819	HOFFMASTER72	HLBC +

WEIGHTED AVERAGE 0.012 ± 0.008 (Error scaled by 1.4)


Quadratic coefficient h for $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

QUADRATIC COEFFICIENT k FOR $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

VALUE	EVTS	DOCUMENT II	D	TECN	CHG		
-0.0101 ± 0.0034 (OUR AVERAGE	Error include	s scale	factor of	2.1.	See the ideogram	
		below.				•	
-0.0205 ± 0.0039	225k	DEVAUX	77	SPEC	+		
-0.0075 ± 0.0019	750k	FORD	72	ASPK	+		
-0.0105 ± 0.0045	39819	HOFFMAST	ER72	HLBC	+		

⁵⁶ Experiments with large errors not included in average.

⁵⁷ Also includes DBC events.

Quadratic coefficient k for $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

LINEAR COEFFICIENT g_{τ^-} FOR $K^-\to\pi^-\pi^-\pi^+$ Some experiments use Dalitz variables x and y. In the comments we give ay = coefficient of y term. See note above on "Dalitz Plot Parameters for $K\to 3\pi$ Decays." For discussion of the conversion of ay to g, see the earlier version of the same note in the 1982 edition of this Review published in Physics Letters 111B, 70 (April 1982).

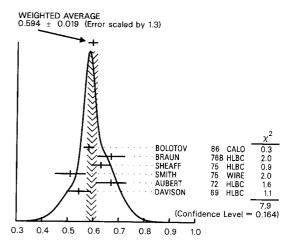
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
-0.217 ± 0.007		Error includes s	cale	factor o	f 2.5.	
-0.2186 ± 0.0028	750k	FORD	72	ASPK	_	$a_y = .2770 \pm .0035$
-0.193 ± 0.010	50919	MAST	69	HBC	_	$a_y = 0.244 \pm 0.013$
• • • We do not	use the following d	lata for averages	, fits	s, limits,	etc. •	• •
-0.199 ± 0.008		LUCAS			-	$a_V = 0.252 \pm 0.011$
-0.190 ± 0.023		MOSCOSO			-	$a_y = 0.242 \pm 0.029$
-0.220 ± 0.035	1347 61	FERRO-LUZZI	61	HBC	-	$\dot{a_y} = 0.28 \pm 0.045$
58 Quadratic den	andanca is required	hu KO avparin	anto	For co	moorie	on we average only

those K^{\pm} experiments which quote quadratic fit values.

⁶¹ No radiative corrections included

QUADRATIC	COEFFICIENT	h FOR K ⁻ →	π^{-}	$\pi^- \pi^+$	
VALUE	EVTS	DOCUMENT ID		TECN	CHG

0.010 ± 0.006	OUR AVERAGE				
0.0125 ± 0.0062	750k	FORD	72	ASPK	~
$-0.001\ \pm0.012$	50919	MAST	69	нвс	-
QUADRATIC C		k FOR K- →	π-	$\pi^-\pi^+$	CUC


-0.0084 ± 0.0019 OUR AVERAGE -0.0083 ± 0.0019 750k FORD 72 ASPK -0.014 ± 0.012 50919 MAST 69 HBC

LINEAR COEFFICIENT g FOR $\mathit{K}^{\pm} \rightarrow \ \pi^{\pm} \, \pi^{0} \, \pi^{0}$

Unless otherwise stated, all experiments include terms quadratic

in $(s_3 - s_0) / m^2(\pi^+)$. See mini-review above. **EVTS** DOCUMENT ID TECN CHG COMMENT

Error includes scale factor of 1.3. See the ideogram below. 0.594 ± 0.019 OUR AVERAGE BOLOTOV 86 CALO 0.582 ± 0.021 43k 0.670 ± 0.054 3263 BRAUN 76B HLBC 75 HLBC 0.630 ± 0.038 5635 0.510 ± 0.060 27k SMITH WIRE AUBERT 72 HLBC 0.67 ± 0.06 1365 $\boldsymbol{0.544 \pm 0.048}$ 4048 DAVISON 69 HLBC Also emulsion • • • We do not use the following data for averages, fits, limits, etc. • 62 BERTRAND 0.806 ± 0.220 4639 76 EMUL + ⁶³ LUCAS 73B HBC 0.484 ± 0.084 574 Dalitz pairs only 62 PANDOULAS 0.527 ± 0.102 70 EMUL 198 63 BISI 0.586 ± 0.098 1874 HLBC Also HBC 63 KALMUS 1792 64 HLBC

Linear energy dependence for $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

QUADRATIC COEFFICIENT h FOR $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

See mini-revie	w above.					
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.035±0.015 OUR	AVERAGE					
0.037 ± 0.024	43k	BOLOTOV	86	CALO	~	
0.152 ± 0.082	3263	BRAUN	76B	HLBC	+	
0.041 ± 0.030	5635	SHEAFF	75	HLBC	+	
0.009 ± 0.040	2 7 k	SMITH	75	WIRE	+	
-0.01 ± 0.08	1365	AUBERT	72	HLBC	+	
0.026 ± 0.050	4048	DAVISON	69	HLBC	+	Also emulsion
• • • We do not use	the following	ng data for averages	s, fits	, limits,	etc.	• •
0.164 ± 0.121	4639	64 BERTRAND	76	EMUL	+	
0.018 ± 0.124	198	64 PANDOULAS	70	EMUL	+	
64 Experiments with	large errors	not included in ave	erage.			

NOTE ON $K_{\ell 3}^{\pm}$ AND $K_{\ell 3}^{0}$ FORM FACTORS

Assuming that only the vector current contributes to $K \to \pi \ell \nu$ decays, we write the matrix element as

$$M \propto f_{+}(t) \left[(P_K + P_{\pi})_{\mu} \bar{\ell} \gamma_{\mu} (1 + \gamma_5) \nu \right]$$

+ $f_{-}(t) \left[m_{\ell} \bar{\ell} (1 + \gamma_5) \nu \right] ,$ (1)

where P_K and P_{π} are the four-momenta of the K and π mesons, m_{ℓ} is the lepton mass, and f_{+} and f_{-} are dimensionless form factors which can depend only on $t = (P_K - P_\pi)^2$, the square of the four-momentum transfer to the leptons. If timereversal invariance holds, f_{+} and f_{-} are relatively real. $K_{\mu3}$ experiments measure f_+ and f_- , while K_{e3} experiments are sensitive only to f_+ because the small electron mass makes the f₋ term negligible.

(a) $K_{\mu 3}$ experiments. Analyses of $K_{\mu 3}$ data frequently assume a linear dependence of f_+ and f_- on t, i.e.,

$$f_{\pm}(t) = f_{\pm}(0) \left[1 + \lambda_{\pm}(t/m_{\pi}^2) \right] .$$
 (2)

Most $K_{\mu 3}$ data are adequately described by Eq. (2) for f_{+} and a constant f_{-} (i.e., $\lambda_{-}=0$). There are two equivalent parametrizations commonly used in these analyses:

(1) $\lambda_{+}, \xi(0)$ parametrization. Analyses of $K_{\mu 3}$ data often introduce the ratio of the two form factors

$$\xi(t) = f_{-}(t)/f_{+}(t)$$
 .

The $K_{\mu3}$ decay distribution is then described by the two parameters λ_{+} and $\xi(0)$ (assuming time reversal invariance

 $^{^{59}\,\}mbox{Experiments}$ with large errors not included in average.

⁶⁰ Also includes DBC events

 $^{^{\}rm 62}\,\mbox{Experiments}$ with large errors not included in average

⁶³ Authors give linear fit only

 K^{\pm}

and $\lambda_{-}=0$). These parameters can be determined by three different methods:

Method A. By studying the Dalitz plot or the pion spectrum of $K_{\mu 3}$ decay. The Dalitz plot density is (see, e.g., Chounet et al.¹):

$$\rho(E_{\pi}, E_{\mu}) \propto f_{+}^{2}(t) \left[A + B\xi(t) + C\xi(t)^{2} \right] ,$$

where

$$A = m_K \left(2E_{\mu}E_{\nu} - m_K E_{\pi}' \right) + m_{\mu}^2 \left(\frac{1}{4} E_{\pi}' - E_{\nu} \right) ,$$

$$B = m_\mu^2 \left(E_\nu - \frac{1}{2} E_\pi' \right) ,$$

$$C = \frac{1}{4} m_\mu^2 E_\pi' \ ,$$

$$E'_{\pi} = E^{\max}_{\pi} - E_{\pi} = (m_K^2 + m_{\pi}^2 - m_{\mu}^2)/2m_K - E_{\pi}$$

Here E_{π} , E_{μ} , and E_{ν} are, respectively, the pion, muon, and neutrino energies in the kaon center of mass. The density ρ is fit to the data to determine the values of λ_{+} , $\xi(0)$, and their correlation.

Method B. By measuring the $K_{\mu 3}/K_{e3}$ branching ratio and comparing it with the theoretical ratio (see, e.g., Fearing et al.²) as given in terms of λ_{+} and $\xi(0)$, assuming μ -e universality:

$$\begin{split} \Gamma(K_{\mu3}^{\pm})/\Gamma(K_{e3}^{\pm}) &= 0.6457 + 1.4115\lambda_{+} + 0.1264\xi(0) \\ &+ 0.0192\xi(0)^{2} + 0.0080\lambda_{+}\xi(0) \ , \\ \Gamma(K_{\mu3}^{0})/\Gamma(K_{e3}^{0}) &= 0.6452 + 1.3162\lambda_{+} + 0.1264\xi(0) \\ &+ 0.0186\xi(0)^{2} + 0.0064\lambda_{+}\xi(0) \ . \end{split}$$

This cannot determine λ_+ and $\xi(0)$ simultaneously but simply fixes a relationship between them.

Method C. By measuring the muon polarization in $K_{\mu3}$ decay. In the rest frame of the K, the μ is expected to be polarized in the direction \mathbf{A} with $\mathbf{P} = \mathbf{A}/|\mathbf{A}|$, where \mathbf{A} is given (Cabibbo and Maksymowicz³) by

$$\mathbf{A} = a_1(\xi)\mathbf{p}_u$$

$$-a_2(\xi)\left[\frac{\mathbf{p}_{\mu}}{m_{\mu}}\left(m_K-E_{\pi}+\frac{\mathbf{p}_{\pi}\cdot\mathbf{p}_{\mu}}{\left|\mathbf{p}_{\mu}^{}\right|^2}(E_{\mu}-m_{\mu})\right)+\mathbf{p}_{\pi}\right]$$

$$+m_K \operatorname{Im} \xi(t)(\mathbf{p}_{\pi} \times \mathbf{p}_{\mu})$$
.

If time-reversal invariance holds, ξ is real, and thus there is no polarization perpendicular to the K-decay plane. Polarization experiments measure the weighted average of $\xi(t)$ over the t range of the experiment, where the weighting accounts for the variation with t of the sensitivity to $\xi(t)$.

(2) λ_+, λ_0 parametrization. Most of the more recent $K_{\mu 3}$ analyses have parameterized in terms of the form factors f_+ and f_0 which are associated with vector and scalar exchange, respectively, to the lepton pair. f_0 is related to f_+ and f_- by

$$f_0(t) = f_+(t) + \left[t/(m_K^2 - m_\pi^2)\right] f_-(t) \ .$$

Here $f_0(0)$ must equal $f_+(0)$ unless $f_-(t)$ diverges at t=0. The earlier assumption that f_+ is linear in t and f_- is constant leads to f_0 linear in t:

$$f_0(t) = f_0(0) \left[1 + \lambda_0 (t/m_\pi^2) \right]$$
.

With the assumption that $f_0(0) = f_+(0)$, the two parametrizations, $(\lambda_+, \xi(0))$ and (λ_+, λ_0) are equivalent as long as correlation information is retained. (λ_+, λ_0) correlations tend to be less strong than $(\lambda_+, \xi(0))$ correlations.

The experimental results for $\xi(0)$ and its correlation with λ_+ are listed in the K^{\pm} and K_L^0 sections of the Full Listings in section ξ_A , ξ_B , or ξ_C depending on whether method A, B, or C discussed above was used. The corresponding values of λ_+ are also listed.

Because recent experiments tend to use the (λ_+, λ_0) parametrization, we include a subsection for λ_0 results. Wherever possible we have converted $\xi(0)$ results into λ_0 results and vice versa.

See the 1982 version of this note⁴ for additional discussion of the $K^0_{\mu3}$ parameters, correlations, and conversion between parametrizations, and also for a comparison of the experimental results.

(b) K_{e3} experiments. Analysis of K_{e3} data is simpler than that of $K_{\mu3}$ because the second term of the matrix element assuming a pure vector current [Eq. (1) above] can be neglected. Here f_+ is usually assumed to be linear in t, and the linear coefficient λ_+ of Eq. (2) is determined.

If we remove the assumption of a pure vector current, then the matrix element for the decay, in addition to the terms in Eq. (2), would contain

$$+2m_K f_S \bar{\ell}(1+\gamma_5)\nu$$

$$+(2f_T/m_K)(P_K)_{\lambda}(P_{\pi})_{\mu}\,\overline{\ell}\,\sigma_{\lambda\mu}(1+\gamma_5)\nu$$
,

where f_S is the scalar form factor, and f_T is the tensor form factor. In the case of the K_{e3} decays where the f_- term can be neglected, experiments have yielded limits on $|f_S/f_+|$ and $|f_T/f_+|$.

References

- L.M. Chounet, J.M. Gaillard, and M.K. Gaillard, Phys. Rep. 4C, 199 (1972).
- H.W. Fearing, E. Fischbach, and J. Smith, Phys. Rev. D2, 542 (1970).
- N. Cabibbo and A. Maksymowicz, Phys. Lett. 9, 352 (1964).
- 4. Particle Data Group, Phys. Lett. 111B, 73 (1982).

K± FORM FACTORS

In the form factor comments, the following symbols are used.

 f_{+} and f_{-} are form factors for the vector matrix element.

 f_S and f_T refer to the scalar and tensor term.

 $f_0 = f_+ + f_- t/(m^2(K) - m^2(\pi)).$

 λ_+ , λ_- , and λ_0 are the linear expansion coefficients of f_+ , f_- , and f_0 .

 λ_+ refers to the $K_{\mu3}$ value except in the K_{e3} sections.

 $d\xi(0)/d\lambda_+$ is the correlation between $\xi(0)$ and λ_+ in $K_{\mu3}$.

 $d\lambda_0/d\lambda_+$ is the correlation between λ_0 and λ_+ in $K_{\mu 3}$.

t= momentum transfer to the π in units of $m^2(\pi)$.

 $\mathsf{DP} = \mathsf{Dalitz} \; \mathsf{plot} \; \mathsf{analysis}.$

 $MU = \mu$ spectrum analysis.

POL= μ polarization analysis.

BR = $K_{\mu 3}/K_{e3}$ branching ratio analysis.

E = positron or electron spectrum analysis.

RC = radiative corrections.

$\xi_A = f_-/f_+$ (determined from spectra)

The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary

VALUE	$d\xi(0)/d\lambda_{\pm}$	EVT5	DOCUMENT ID TECN CHG COMMENT
-0.35 ± 0.15	OUR EVAL	UATION	From a fit discussed in note on K_{e3} form factors in 1982 edition, PL 111B (April 1982).
-0.27 ± 0.25	- 17	3973	WHITMAN 80 SPEC + DP
-0.8 ± 0.8	- 20	490	⁶⁵ ARNOLD 74 HLBC + DP
-0.57 ± 0.24	-9	6527	66 MERLAN 74 ASPK + DP
-0.36 ± 0.40	-19	1897	⁶⁷ BRAUN 73C HLBC + DP
-0.62 ± 0.28	-12	4025	⁶⁸ ANKENBRA 72 ASPK + PI
$+0.45 \pm 0.28$	- 15	3480	⁶⁹ CHIANG 72 OSPK + DP
-1.1 ± 0.56	- 29	3240	⁷⁰ HAIDT
-0.5 ± 0.8	- 26	2041	⁷¹ KIJEWSKI 69 OSPK + PI
$+0.72 \pm 0.93$	-17	444	CALLAHAN 668 FBC + PI
• • • We do	not use the	following	data for averages, fits, limits, etc. • • •
$-0.5\ \pm0.9$	none	78	EISLER 68 HLBC + PI, $\lambda_{+}=0$
$0.0 \begin{array}{c} +1.1 \\ -0.9 \end{array}$		2648	⁷² CALLAHAN 668 FBC + μ , $\lambda_{+}=0$
$+0.7 \pm 0.5$		87	GIACOMELLI 64 EMUL + $MU+BR,\lambda_{+}=0$
-0.08 ± 0.7			⁷³ JENSEN 64 XEBC + DP+BR
$+1.8 \pm 0.6$		76	BROWN 62B XEBC + DP+BR, $\lambda_+=0$

 $^{^{65}}$ ARNOLD 74 figure 4 was used to obtain ξ_A and $d\xi(0)/d\lambda_+$.

- ⁶⁶ MERLAN 74 figure 5 was used to obtain $d\xi(0)/d\lambda_{+}$.
- 67 BRAUN 73c gives $\xi(t)=-0.34\pm0.20$, $d\xi(t)/d\lambda_+=-14$ for $\lambda_+=0.027$, t=6.6. We calculate above $\xi(0)$ and $d\xi(0)/d\lambda_+$ for their $\lambda_+=0.025\pm0.017$.
- 68 ANKENBRANDT 72 figure 3 was used to obtain $d\xi(0)/d\lambda_+$.
- 69 CHIANG 72 figure 10 was used to obtain $d\xi(0)/d\lambda_+$. Fit had $\lambda_-=\lambda_+$ but would not change for $\lambda_-=0.$ L.Pondrom, (private communication 74).
- 70 HAIDT 71 table 8 (Dalitz plot analysis) gives $d\xi(0)/d\lambda_+=(-1.1+0.5)/(0.050-0.029)=-29,$ error raised from 0.50 to agree with $d\xi(0)=0.20$ for fixed λ_+ .
- 71 KIJEWSKI 69 figure 17 was used to obtain $d\xi(0)/d\lambda_{+}$ and errors.
- 72 CALLAHAN 66 table $1~(\pi$ analysis) gives $d\xi(0)/d\lambda_+=(0.72-0.05)/(0-0.04)=-17,$ error raised from 0.80 to agree with $d\xi(0)=0.37$ for fixed λ_+ . t unknown.
- 73 JENSEN 64 gives $\lambda_{+}^{\mu}=\lambda_{+}^{e}=-0.020\pm0.027$. $d\xi(0)/d\lambda_{+}$ unknown. Includes SHAK-LEE 64 $\xi_B(K_{\mu 3}/K_{e3})$.

 $\xi_B=f_-/f_+$ (determined from $K_{\mu3}/K_{e3}$) The $K_{\mu3}/K_{e3}$ branching ratio fixes a relationship between $\xi(0)$ and λ_+ . We quote the author's $\xi(0)$ and associated λ_+ but do not average because the λ_+ values differ. The fit result and scale factor given below are not obtained from these ξ_B values. Instead they are obtained directly from the fitted $K_{\mu3}/K_{e3}$ ratio $\Gamma(\pi^0\,\mu^+\,\nu_\mu)/\Gamma(\pi^0\,e^+\,\nu_e)$, with the exception of HEINTZE 77. The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary Table.

	o the micoon c					
VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
-0.35 ± 0.15 OUR	EVALUATION	From a fit discu	ssed	in note	on K∉3	form factors in
		1982 edition, P	L 11	1B (Apr	il 1982	?).
-0.12 ± 0.12	55k	74 HEINTZE	77	${\sf CNTR}$	+	$\lambda_{+} = 0.029$
• • • We do not u	se the followin	g data for average	s, fits	, limits,	etc. •	• •
0.0 ± 0.15	5825	CHIANG	72	OSPK	+	$\lambda_{+}\!=\!0.03$, fig.10
-0.81 ± 0.27	1505	⁷⁵ HAIDT	71	HLBC	+	$\lambda_{+} = 0.028$, fig.8
-0.35 ± 0.22		⁷⁶ BOTTERILL	70	OSPK	+	$\lambda_{+} = 0.045 \pm 0.015$
$+0.91 \pm 0.82$		ZELLER	69	ASPK	+	$\lambda_{+} = 0.023$
-0.08 ± 0.15	5601	⁷⁶ BOTTERILL	68B	ASPK	+	$\lambda_{+} = 0.023 \pm 0.008$
-0.60 ± 0.20	1398	75 EICHTEN	68	HLBC	+	See note
$+1.0 \pm 0.6$	986	GARLAND	68	OSPK	+	$\lambda_{+}=0$
$+0.75\pm0.50$	306	AUERBACH	67	OSPK	+	$\lambda_{+}=0$
$+0.4 \pm 0.4$	636	CALLAHAN	66B	FBC	+	$\lambda_{+}=0$
$+0.6 \pm 0.5$		BISI	65B	нвс	+	$\lambda_{+}=0$
$+0.8 \pm 0.6$	500	CUTTS	65	OSPK	+	$\lambda_{+}=0$
$-0.17^{+\ 0.75}_{-\ 0.99}$		SHAKLEE	64	XEBC	+	$\lambda_{+} = 0$
74 Calculated by u	s from λ_0 and	λ given below.				

Calculated by us from λ_0 and λ_+ given below.

$\xi_C = f_-/f_+$ (determined from μ polarization in $K_{\mu3}$)

The μ polarization is a measure of $\xi(t)$. No assumptions on λ_{+-} necessary, t (weighted by sensitivity to $\xi(t)$) should be specified. In λ_{+} , $\xi(0)$ parametrization this is $\xi(0)$ for $\lambda_{+}=0$. $d\xi/d\lambda=\xi t$. For radiative correction to muon polarization in $K_{\mu,3}$, see GINSBERG 71. The parameter ξ is redundant with λ_{0} below and is not put into the

Meson Sunini	ary rable.				
VALUE	EVTS	DOCUMENT ID		TECN CHG	COMMENT
-0.35 ± 0.15 OUR I	EVALUATION	From a fit disc	ussed	in note on K	3 form factors in
		1982 edition,	PL 11	.1B (April 19	32).
-0.25 ± 1.20	1585	77 BRAUN	75	HLBC +	PQL, $t=4.2$
-0.95 ± 0.3	3133	⁷⁸ CUTTS	69	OSPK +	Total pol. $t=4.0$
-1.0 ± 0.3	6000	79 BETTELS	68	HLBC +	Total pol. $t=4.9$

•	•	•	We d	o not	use t	he	following	data	for	averages,	fits,	limits,	etc.	٠	•	٠
	_			_			9	٠								٠.

-0.64 ± 0.27	40k	OO MERLAN	74 ASPK +	POL, $d\xi(0)/d\lambda_{+}$ = +1.7
-1.4 ± 1.8	397	⁸¹ CALLAHAN	66в FB С +	Total pol.
$-0.7 \begin{array}{c} +0.9 \\ -3.3 \end{array}$	2950	⁸¹ CALLAHAN	66в FBC +	Long. pol.
$+1.2 \begin{array}{c} +2.4 \\ -1.8 \end{array}$	2100	⁸¹ BORREANI	65 HLBC +	Polarization
-4.0 to +1.7	500	⁸¹ CUTTS	65 OSPK +	Long. pol.

⁷⁷ BRAUN 75 $d\xi(0)/d\lambda_{+} = \xi t = -0.25 \times 4.2 = -1.0$.

IMAGINARY PART OF E

Test of T reversal invariance.

VALUE		EVTS	DOCUMENT ID		TECN	CHG	COMMENT
-0.017	±0.025 OUR AV	ERAGE					
-0.016		20M	CAMPBELL	81	CNTR	+	Pol.
~ 0.3	+ 0.3 - 0.4	3133	CUTTS	69	OSPK	+	Total pol. fig.7
-0.1	± 0.3	6000	BETTELS	68	HLBC	+	Total pol.
0.0	±1.0	2648	CALLAHAN	66B	FBC	+	MU
+1.6	±1.3	397	CALLAHAN	668	FBC	+	Total pol.
0.5	+ 1.4 - 0.5	2950	CALLAHAN	66 B	FBC	+	Long. pol.
• • • V	Ve do not use th	e following o	lata for averages	, fits	, limits,	etc. •	• •
		82					

32M 82 BLATT 83 CNTR Polarization

λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN $K_{\mu3}$ DECAY)

See also the corresponding entries and footnotes in sections ξ_A , ξ_C , and λ_0 . Fradiative correction of $K_{\mu 3}$ Dalitz plot, see GINSBERG 70 and BECHERRAWY 70.

VALUE	EVTS	DOCUMENT ID	TECN	CHG	
0.033 ± 0.008 OU	R EVALUATION				√ ₂₃ form factors in
		1982 edition, Pl	. 111B (Apr	11 1982	2).
$+0.050\pm0.013$	3973	WHITMAN	80 SPEC	+	DP
0.025 ± 0.030	490	ARNOLD	74 HLBC	+	DP
0.027 ± 0.019	6527	MERLAN	74 ASPK	+	DP
0.025 ± 0.017	1897		73c HLBC	+	DP
0.024 ± 0.019	4025 ⁸	³ ANKENBRA	72 ASPK	+	PI
-0.006 ± 0.015	3480	CHIANG	72 OSPK	+	DP
0.050 ± 0.018	3240	HAIDT	71 HLBC	+	DP
0.009 ± 0.026	2041	KIJEWSKI	69 OSPK	+	PI
0.0 + 0.05	444	CALLAHAN	66B FBC	+	PI

⁸³ ANKENBRANDT 72 λ_+ from figure 3 to match $d\xi(0)/d\lambda_+$. Text gives 0.024 \pm 0.022.

λ_0 (Linear energy dependence of f_0 in $K_{\mu3}$ decay)

Wherever possible, we have converted the above values of $\xi(0)$ into values of λ_0 using the associated λ_+^μ and $d\xi/d\lambda$.

VALUE	$d\lambda_0/d\lambda_{\pm}$	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
0.004±0.007 C	UR EVALUA	ATION	From a fit discussed			
			1982 edition, P	L 111B (Af	rii 198:	2).
$+0.029\pm0.011$	-0.37	3973	WHITMAN	80 SPEC	+	DP
$+0.019\pm0.010$	+0.03	55k	84 HEINTZE	77 SPEC	+	BR
$+0.008 \pm 0.097$	+0.92	1585	⁸⁵ BRAUN	75 HLBC	+	POL
-0.040 ± 0.040	-0.62	490	ARNOLD	74 HLBC	+	DP
-0.019 ± 0.015	+0.27	6527	⁸⁶ MERLAN	74 ASPK	+	DP
-0.008 ± 0.020	-0.53	1897	⁸⁷ BRAUN	73c HLBC	+	DP
-0.026 ± 0.013	+0.03	4025	88 ANKENBRA	72 ASPK	+	PI
$+0.030\pm0.014$	-0.21	3480	⁸⁸ CHIANG	72 OSPK	+	DP
-0.039 ± 0.029	-1.34	3240	⁸⁸ HAIDT	71 HLBC	+	DP
-0.056 ± 0.024	+0.69	3133	⁸⁵ CUTTS	69 OSPK	+	POL
-0.031 ± 0.045	-1.10	2041	88 KIJEWSKI	69 OSPK	+	PI
-0.063 ± 0.024	+0.60	6000	85 BETTELS	68 HLBC	+	POL
$+0.058 \pm 0.036$	-0.37	444	⁸⁸ CALLAHAN	66в FBC	+	PI
• • • We do not	use the folk	owing da	ita for averages, fits,	limits, etc.	• • •	
-0.017 ± 0.011			⁸⁹ BRAUN	74 HLBC	+	$K_{\mu 3}/K_{e3}$

- $^{84}\,\mathrm{HEINTZE}$ 77 uses $\lambda_{+}\,=\,0.029\,\pm\,0.003.$ $d\lambda_{0}\,/d\lambda_{+}$ estimated by us.
- $^{85}\lambda_0$ value is for $\lambda_+=$ 0.03 calculated by us from $\xi(0)$ and $d\xi(0)/d\lambda_+$.
- 86 MERLAN 74 λ_0 and $d\lambda_0/d\lambda_+$ were calculated by us from ξ_A , λ_+^μ , and $d\xi(0)/d\lambda_+$. Their figure 6 gives $\lambda_0 = -0.025 \pm 0.012$ and no $d\lambda_0/d\lambda_+$.
- 87 This value and error are taken from BRAUN 75 but correspond to the BRAUN 73c χ_{\pm}^{μ} result. $d\lambda_0/d\lambda_+$ is from BRAUN 73C $d\xi(0)/d\lambda_+$ in ξ_A above.
- $^{88}\lambda_0$ calculated by us from $\xi(0),\,\lambda_+^\mu$, and $d\xi(0)/d\lambda_+$.
- 89 BRAUN 74 is a combined $K_{\mu3}$ K_{e3} result. It is not independent of BRAUN 73C $(K_{\mu3})$ and BRAUN 73B (K_{e3}) form factor results.

⁷⁵ EICHTEN 68 has $\lambda_+ = 0.023 \pm 0.008, \ t = 4$, independent of λ_- . Replaced by

⁷⁶ BOTTERILL 70 is re-evaluation of BOTTERILL 688 with different λ_+ .

⁷⁸ CUTTS 69 t=4.0 was calculated from figure 8. $d\xi(0)/d\lambda_+=\xi t=-0.95\times 4=-3.8$.

 $^{^{79}}$ BETTELS 68 $d\xi(0)/d\lambda_{+} = \xi t = -1.0 \times 4.9 = -4.9.$

⁸⁰ MERLAN 74 polarization result (figure 5) not possible. See discussion of polarization experiments in note on " $K_{\ell 3}$ Form Factors" in the 1982 edition of this Review [Physics Letters 111B (April 1982)].

 $^{^{81}\,} t$ value not given.

 $^{^{82}}$ Combined result of MORSE 80 ($K_{\mu3}^{0}$) and CAMPBELL 81 ($K_{\mu3}^{+}$).

ALUE 0.028±0.004 OI	correction of K_e	NDENCE OF 3 Dalitz plot, see	GINSBERG 67 and	BECHERRAWY 70.	ASANO 82 COOPER 82	PR D27 1 PL 113B 1 PL 112B 5
	<u>EVTS</u>	DOCUMENT ID	TECN CHG	COMMENT		PL 107B
	JK AVEKAGE	90 BRAUN	73B HLBC +	DP, no RC	Also 83	PR D27 1
0.027 ± 0.008 0.029 ± 0.011	4017	CHIANG	72 OSPK +	DP, RC negligble	LUM 81 LYONS 81	PR D23 2 ZPHY C10
		STEINER	72 O3FK +	DP, uses RC	LYONS 81 MORSE 80	PR D21 1
0.027 ± 0.010	2707	BOTTERILL	70 OSPK	PI, uses RC	WHITMAN 80	PR D21 6
0.045 ± 0.015	1458		68c ASPK +	e ⁺ , uses RC	BARKOV 79 HEINTZE 79	NP B148 NP B149
0.08 ±0.04	960	BOTTERILL			HEINTZE 79 ABRAMS 77	PR D15 2
$0.02 \begin{array}{c} +0.08 \\ -0.12 \end{array}$	90	EISLER	68 HLBC +	PI, uses RC	DEVAUX 77	NP B126
	854	BELLOTTI	678 FBC +	DP, uses RC	HEINTZE 77 ROSSELET 77	PL 70B 49 PR D15 5
$0.045^{+0.017}_{-0.018}$					BERTRAND 76	NP B114
0.016 ± 0.016	1393	IMLAY	67 OSPK +	DP, no RC	BLOCH 76 BRAUN 76B	PL 60B 3 LNC 17 5
$0.028 + 0.013 \\ -0.014$	515	KALMUS	67 FBC +	e^+ , PI, no RC	DIAMANT 76	PL 62B 4
					HEINTZE 76	PL 60B 3
0.04 ±0.05	230	BORREANI	64 HBC +	e ⁺ , no RC	SMITH 76 WEISSENBE 76	NP B109 NP B115
0.010 ± 0.029	407	JENSEN	64 XEBC +	PI, no RC	BLOCH 75	PL 56B 2
0.036 ± 0.045	217	BROWN	62B XEBC +	PI, no RC	BRAUN 75	NP B89 2
• We do not	use the following	data for average	es, fits, limits, etc.	• • •	CHENG 75 HEARD 75	NP A254 PL 55B 3
0.025 ± 0.007		⁹¹ BRAUN	74 HLBC +	$K_{\mu 3}/K_{e3}$ vs. t	HEARD 75B	PL 55B 3
				r	SHEAFF 75	PR D12 2
				Ild lower λ_{+}^{e} by 0.002	SMITH 75	NP B91 4
but that radia	tive corrections	of BECHERRAM	/Y 70 disagrees an	d would raise λ_{+}^{e} by	ARNOLD 74 BRAUN 74	PR D9 12 PL 51B 3
0.005.				·	CENCE 74	PR D10 7
⁹¹ BRAUN 74 is	a combined $K_{\mu 3}$	-K _{e3} result. It is	not independent o	of BRAUN 73c ($K_{\mu3}$)	Also 73	Thesis un
	'3в (<i>К_е</i> 3) form f			•	KUNSELMAN 74 MERLAN 74	PR C9 24 PR D9 10
					WEISSENBE 74	PL 48B 4
f_S/f_+ FOR K	e3 DECAY				ABRAMS 73B	PRL 30 5
Ratio of sca	lar to f_+ coupling	igs.			BACKENSTO 73	PL 43B 4 PRL 30 3
	CL% EVTS	-	TECN CHG	COMMENT	BEIER 73 BRAUN 73B	PRL 30 3
					Also 75	NP B89 2
0.12 ^{+0.04} OUI	R AVERAGE E	rror includes scal	e factor of 1.3.		BRAUN 73C	PL 47B 1
0.00 ± 0.10	2827	BRAUN	75 HLBC +		Also 75 CABLE 73	NP B89 2 PR D8 3
					LJUNG 73	PR D8 13
$0.14^{+0.03}_{-0.04}$	2707	STEINER	71 HLBC +	λ_+ , f_5 , f_T , ϕ fit	Also 72	PRL 28 5
	use the following	data for averag	es, fits, limits, etc.	=	Also 72 Also 69	PRL 28 1 PRL 23 3
					LUCAS 73	PR D8 71
< 0.13	90 4017	CHIANG	72 OSPK +		LUCAS 73B	PR D8 7:
< 0.23	90	BOTTERILL	68c ASPK		PANG 73	PR D8 19
< 0.18	90	BELLOTTI	67B HLBC		Also 72 SMITH 73	PL 40B 6
< 0.30	95	KALMUS	67 HLBC +		ABRAMS 72	PRL 29 1
					ANKENBRA 72	PRL 28 1
f_T/f_+ FOR K	63 DECAY				AUBERT 72	NC 12A
Ratio of ter	nsor to f_+ coupli	ngs.			BEIER 72 CHIANG 72	PRL 29 6 PR D6 1
	CL% EVTS		TECN CHO	COMMENT	CLARK 72	PRL 29 1
		DOCUMENT ID			EDWARDS 72	PR D5 2
0.22 ^{+0.15} _{-0.13} OU	R AVERAGE				FORD 72 HOFFMASTER 72	PL 38B 3 NP B36
0.07 ± 0.37	2827	BRAUN	75 HLBC +		BASILE 71C	PL 36B 6
	2021	BRAUN			BOURQUIN 71	PL 36B 6
$0.24^{+0.16}_{-0.14}$	2707	STEINER	71 HLBC +	λ_+ , $f_{\mathcal{S}}$, $f_{\mathcal{T}}$, ϕ fit	GINSBERG 71 HAIDT 71	PR D4 2
	use the followin	a data for averso	es, fits, limits, etc.		Also 69	PL 29B
					KLEMS 71	PR D4 6
<0.75	90 4017	CHIANG	72 OSPK +		Also 70 Also 70B	PRL 24 1
<0.58	90	BOTTERILL	68c ASPK		OTT 71	PR D3 5
<0.58	90	BELLOTTI	67B HLBC		ROMANO 71	PL 36B
<1.1	95	KALMUS	67 HLBC +		SCHWEINB 71	PL 36B
					STEINER 71 BARDIN 70	PL 36B : PL 32B
f_T/f_+ FOR K_μ	3 DECAY				BECHERRAWY 70	PR D1 1
	nsor to f_+ coupli	ngs.			BOTTERILL 70	Pl. 31B
ALUE	EVTS	DOCUMENT ID	TECN_		FORD 70 GAILLARD 70	PRL 25 CERN 70
.02±0.12	1585	BRAUN	75 HLBC		GINSBERG 70	PR D1 2
					GRAUMAN 70	PR D1 1
	FACTORS F	OR $K^{\pm} \rightarrow \pi^{-}$	⁺ π [−] e [±] ν		Also 69 MACEK 70	PRL 23
FCAY FORM		EIER 73, and BA			MACEK 70 MALTSEV 70	SJNP 10
	, ,, DL					Translate
		D v± 0	_0 a±		PANDOULAS 70	PR D2 1
Given in RO	EACTOR ES		r~ e∸ ν		CUTTS 69 Also 68	PR 184 :
Given in RC					DAVISON 69	PR 180
Given in RC	FACTOR FO	O BAKMIN 888.				PR 180
Given in RC		IG BAKMIN 888.			ELY 69	
Given in RC	OLOTOV 86B an				ELY 69 EMMERSON 69	
Given in RC	OLOTOV 86B an	FERENCES F	OR K±	· · ·	ELY 69 EMMERSON 69 HERZO 69	PR 186
Given In RC DECAY FORM Given in BC	OLOTOV 86B an	FERENCES F			ELY 69 EMMERSON 69 HERZO 69 KIJEWSKI 69 LOBKOWICZ 69	PR 186 UCRL 18 PR 185
Given in RC DECAY FORM Given in BC	OLOTOV 86B an	FERENCES F	, Haggerty+ (BNL	, LANL, PRIN, TRIU)	ELY 69 EMMERSON 69 HERZO 69 KIJEWSKI 69 LOBKOWICZ 69 Also 66	PR 186 UCRL 18 PR 185 PRL 17
Given in RC DECAY FORM Given in BC	DLOTOV 86B an RE PRL 64 21 PRL 64 165	FERENCES F +Chiang, Frank +Alliegro, Cam	r, Haggerty+ (BNL pagnari+ (BNL, FNAI	., PSI, WASH, YALE)	ELY 69 EMMERSON 69 HERZO 69 KIJEWSKI 69 LOBKOWICZ 69 Also 66 MACEK 69	PR 186 UCRL 18 PR 185 PRL 17 PRL 22
Given In RC DECAY FORM Given in BC ITIYA 90 EE 90 ITIYA 89	PRL 64 21 PRL 64 165 PRL 63 2177 SINP 47 643	+Chiang, Frank +Alliegro, Cam +Chiang, Frank +Barylov, Davi	r, Haggerty+ (BNL pagnari+ (BNL, FNAI r, Haggerty+ (BNL	., PSI, WASH, YALE) , LANL, PRIN, TRIU)	ELY 69 EMMERSON 69 HERZO 69 KIJEWSKI 69 LOBKOWICZ 69 Also 66 MACEK 69 MAST 69	PR 186 UCRL 16 PR 185 PRL 17 PRL 22 PR 183
Given in RC DECAY FORM Given in BC TIYA 90 EE 90 TIYA 89 JARMIN 88	PRL 64 21 PRL 64 165 PRL 63 2177 SJNP 47 643 Translated from YA	+Chiang, Frank +Alliegro, Cam +Chiang, Frank +Barylov, Davi	c, Haggerty+ (BNL pagnari+ (BNL, FNAI k, Haggerty+ (BNL denko, Demidov, Dolgo	., PSI, WASH, YALE) , LANL, PRIN, TRIU) lenko+ (ITEP)	ELY 69 EMMERSON 69 HERZO 69 KIJEWSKI 69 LOBKOWICZ 69 Also 66 MACEK 69	PR 186 UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 NC 56A
Given in RC DECAY FORM Given in BC TIYA 90 EE 90 TIYA 89 JARMIN 88	PRL 64 21 PRL 64 15 PRL 63 2177 SJNP 47 643 Translated from YA SJNP 48 1032	+ Chiang, Frank + Alliegro, Cam + Chiang, Frank + Barylov, Davi 4F 47 1011. + Barylov, Davi	r, Haggerty+ (BNL pagnari+ (BNL, FNAI r, Haggerty+ (BNL	., PSI, WASH, YALE) , LANL, PRIN, TRIU) lenko+ (ITEP)	ELY 69 EMMERSON 69 HERZO 69 LJEWSKI 69 LOBKOWICZ 69 Also 66 MACEK 69 MAST1 69 EELLER 69 BETTELS 68 Also 71	PR 186 UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 NC 56A PR D3 1
Given in RC DECAY FORM Given in BC STIYA 90 EE 90 LITYA 89 JARMIN 88 JARMIN 88	PRL 64 21 PRL 64 165 PRL 63 2177 SJNP 47 643 Translated from YA SJNP 48 1032 Translated from YA	+ Chiang, Frank + Alliegro, Cam + Chiang, Frank + Barylov, Davi 4F 47 1011. + Barylov, Davi	c, Haggerty+ (BNL pagnari+ (BNL, FNAI c, Haggerty+ (BNL denko, Demidov, Dolgo denko, Demidov, Oolgo	-, PSI, WASH, YALE) , LANL, PRIN, TRIU) lenko+ (ITEP)	ELY 69 EMMERSON 69 HERZO 69 KIJEWSKI 69 LOBKOWICZ 69 Also 66 MACEK 69 MAST 69 ZELLER 69 BETTELS 68 Also 71 BOTTERILL 68B	PR 186 UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 NC 56A PR D3 1 PRL 21
Given in RC DECAY FORM Given in BC STIYA 90 EE 90 LITYA 99 JARMIN 88 JARMIN 88 JAMPAGNARI 88 JAMPAGNARI 88	PRL 64 21 PRL 64 165 PRL 63 2177 SJNP 47 643 Translated from YA SJNP 48 1032 Translated from YA PRL 61 2062	+ Chiang, Fran + Alliegro, Cam + Chiang, Fran + Barylov, Davi 47 1011. + Barylov, Davi + 48 1719. + Alliegro, Chal + Austin	s, Haggerty+ (BNL, pagnari+ (BNL, FNAI s, Haggerty+ (BNL denko, Demidov, Dolgo denko, Demidov, Dolgo oupka+ (BNL, FNAI (BOST, MIT, WILL	., PSI, WASH, YALE) , LANL, PRIN, TRIU) lenko+ (ITEP) lenko+ (ITEP) ., PSI, WASH, YALE) , CIT, CMU, WYOM)	ELY 69 EMMERSON 69 HERZO 69 KJEWSKI 69 LOBKOWICZ 69 Also 66 MACEK 69 MAST 69 ZELLER 68 BETTELS 68 Also 71 BOTTERILL 68B	PR 186 UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 NC 56A PR D3 1 PRL 21 PR 174
Given in RC DECAY FORM Given in BC STIYA 90 EE 90 LITYA 99 JARMIN 88 JARMIN 88 JAMPAGNARI 88 JAMPAGNARI 88	PRL 64 21 PRL 64 165 PRL 63 2177 SJNP 47 643 Translated from YA PRL 61 202 PRL 60 186 SJNP 48 1032	+ Chiang, Frank + Alliegro, Cam + Chiang, Frank + Barylov, Davi 4F 47 1011. + Barylov, Davi 4F 48 1719. + Alliegro, Chal + Austin+ + Barylov, Davi	c, Haggerty+ (BNL pagnari+ (BNL, FNAI c, Haggerty+ (BNL denko, Demidov, Dolgo denko, Demidov, Oolgo	-, PSI, WASH, YALE) , LANL, PRIN, TRIU) lenko+ (ITEP)	ELY 69 EMMERSON 69 HERZO 69 KJEWSKI 69 LOBKOWICZ 69 A/slo 66 MACEK 69 MAST 69 ZELLER 68 Also 71 BOTTERILL 68B BOTTERILL 68B BUTLER 68 CHANG 68	PR 186 UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 NC 56A PR D3 1 PRL 21 PR 174 UCRL 18
Given in RC DECAY FORM Given in BC STIYA 90 EE 90 TIYA 99 ARMIN 88 LARMIN 88 LARMAN 88B LARMAN 88B LARMAN 88 BARMIN 87	PRL 64 21 PRL 64 165 PRL 64 165 PRL 63 2177 SJNP 47 643 Translated from ya FRL 60 186 SJNP 48 62 Translated from ya PRL 60 186 SJNP 48 62 Translated from ya SJNP 45 62 Translated from ya SJNP 45 62 Translated from ya	+ Chiang, Frank + Alliegro, Cam + Chiang, Frank + Barylov, Davi F 47 1011. + Barylov, Davi F 48 1719. + Alliegro, Chal + Austin+ + Barylov, Davi F 497. + Gninenko, Dz	s, Haggerty+ (BNL, pagnari+ (BNL, FNAI s, Haggerty+ (BNL denko, Demidov, Dolgo denko, Demidov, Dolgo oupka+ (BNL, FNAI (BOST, MIT, WILL	., PSI, WASH, YALE), LANL, PRIN, TRIU) lenko+ (ITEP) lenko+ (ITEP) PSI, WASH, YALE), CIT, CMU, WYOM) (ITEP)	ELY 69 EMMERSON 69 HERZO 69 KJEWSKI 69 LOBKOWICZ 69 Also 66 MACEK 69 ZELLER 69 ZELLER 69 BETTEILL 686 Also 71 BOTTERILL 68C CHANG 68 CHANG 68	PR 186 UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 NC 56A PR D3 1 PRL 21 PR 174 UCRL 18 PRL 20 PRL 20
Given in RC DECAY FORM Given in BC STIYA 90 EE 90 TIYA 89 ARMIN 88 LARMAIN 88 LARMAIN 88 LARMAIN 88 LARMAIN 87 LOLOTOV 87	PRL 64 21 PRL 64 155 PRL 64 165 PRL 63 2177 SJNP 47 643 Translated from YA SJNP 48 1032 Translated from YA PRL 61 2062 PRL 60 186 SJNP 45 62 Translated from YA SJNP 45 1023	+ Chiang, Frank + Alliegro, Cam + Chiang, Frank + Barylov, Davi + 10110 + 1011	r, Haggerty+ (BNL pagnari+ (BNL, FNAI r, Haggerty+ (BNL, denko, Demidov, Dolgo denko, Demidov, Dolgo oupka+ (BNL, FNAI (BOST, MIT, WILL denko, Demidov+ hilkibaev, Isakov, Kluba	., PSI, WASH, YALE) , LANL, PRIN, TRIU) lenko+ (ITEP) lenko+ (ITEP), PSI, WASH, YALE) , CIT, CMU, WYOM) (ITEP) kov+ (INRM)	ELY 69 EMMERSON 69 HERZO 69 KJEWSKI 69 LOBKOWICZ 69 AMACEK 69 MAST 69 BETTELS 68 Also 71 BOTTERILL 58B BOTTERILL 56B EUTLER 68 CHANG 68 CHEN 68 EICHTEN 68	PR 186 UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 NC 56A PR D3 1 PRL 21 PR 174 UCRL 18 PRL 20 PRL 20 PRL 20 PRL 20 PL 27B
Given in RC DECAY FORM Given in BC STIYA 90 EE 90 TIYA 89 ARMIN 88 LARMAIN 88 LARMAIN 88 LARMAIN 88 LARMAIN 87 LOLOTOV 87	PRL 64 21 PRL 64 155 PRL 64 155 PRL 63 2177 SINP 47 643 Translated from YA SINP 48 1032 PRL 60 12062 PRL 60 1866 SINP 48 1023 Translated from YA SINP 48 1033 Translated from YA SINP 48 1033 Translated from YA	+ Chiang, Frant + Alliegro, Cam + Chiang, Frant + Barlyov, Davi F4 71 1011. + Barlyov, Davi F4 81 1919. + Alliegro, Chat + Austint + Barlyov, Davi F4 597/v, Davi F4 5152. + Ginenko, Dz F4 51652. + Ginenko, Dz F4 51652.	c. Haggerty+ (BNL, FNAI, Land,	., PSI, WASH, YALE), LANL, PRIN, TRIU) lenko+ (ITEP) lenko+ (ITEP) PSI, WASH, YALE), CIT, CMU, WYOM) (ITEP)	ELY 69 EMMERSON 69 HERZO 69 HUBENOWICZ 69 AISO 66 MACEK 69 ZELLER 69 BETTELL 68 AISO 71 BOTTERILL 68C BUTLER 66 CHANG 66 CHANG 66 EISHER 68	PR 186 UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 PR 56A PR D3 1 PRL 21 PR 174 UCRL 18 PRL 20 PRL 20 PRL 27B PR 169
Given in RC DECAY FORM Given in BC STIYA 90 EEE 90 TITYA 89 TITYA 89 TARMIN 88 ARMIN 88B ARMIN 88B ARMIN 88B ARMIN 87 TOLOTOV 87	PRL 64 21 PRL 64 155 PRL 64 155 PRL 63 2177 SINP 47 643 Translated from YA SINP 48 1032 Translated from YA SINP 44 73 Translated from YA SINP 44 73 Translated from YA SINP 44 73 Translated from YA SINP 44 73 Translated from YA	+ Chiang, Frank + Alliegro, Cam + Alliegro, Cam + Chiang, Frank + Chiang, Cam + Chiang, Cam + Chiang + Can + Chiang + Can + Chiang + Chian	r, Haggerty+ (BNL pagnari+ (BNL, FNAI r, Haggerty+ (BNL, denko, Demidov, Dolgo denko, Demidov, Dolgo oupka+ (BNL, FNAI (BOST, MIT, WILL denko, Demidov+ hilkibaev, Isakov, Kluba	., PSI, WASH, YALE) , LANL, PRIN, TRIU) lenko+ (ITEP) lenko+ (ITEP), PSI, WASH, YALE) , CIT, CMU, WYOM) (ITEP) kov+ (INRM)	ELY 69 EMMERSON 69 HERZO 69 KJEWSKI 69 LOBKOWICZ 69 AMACEK 69 MAST 69 BETTELS 68 Also 71 BOTTERILL 58B BOTTERILL 56B EUTLER 68 CHANG 68 CHEN 68 EICHTEN 68	PR 186 : UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 NC 56A PR D3 1 PRL 21 PR 174 UCRL 18 PRL 20 PRL 20 PRL 20 PR 169 PR 169 PR 165
Given in RC DECAY FORM Given in BC TIYA 90 EEE 90 ARMIN 88 ARMIN 88 ARMIN 88 ARMIN 88 ARMIN 87 ARMIN 88 ARMIN 87 ARMIN	PRL 64 21 PRL 64 21 PRL 64 155 PRL 63 2177 SIMP 47 643 Translated from Y2 SIMP 46 103 Translated from Y2 PRL 61 2062 PRL 60 186 SIMP 48 1023 Translated from Y2 PRL 61 2062 PRL 60 186 SIMP 48 1023 Translated from Y2 Translated from Y2	+ Chiang, Frank + Alliegro, Cam + Alliegro, Cam + Chiang, Frank + Barylov, Davi F 47 1011. + Barylov, Davi F 48 1719. + Alliegro, Chai + Sustini+ + Barylov, Davi F 48 1652. F 46 1672. F 44 167. F 44 167.	t, Haggerty+ (BNL pagnari+ (BNL FNAI), Haggerty+ (BNL FNAI), Haggerty- (BNL FNAI), Haggerty- (BNL FNAI), Haggerty- (BNL FNAI), Haggerty- (BOST, MT, WILL denko, Demidov+ hilkibaev, Isakov+ hilkibaev, Isakov+	, PSI, WASH, YALE) , LANL, PRIN, TRIU) lenko+ (ITEP) lenko+ (ITEP), PSI, WASH, YALE) , CIT, CMU, WYOM) (ITEP) kov+ (INRM) (INRM)	ELY 69 EMMERSON 69 HERZO 69 HERZO 69 LOBKOWICZ 69 AISO 66 MACEK 69 ZELLER 69 BETTELS 68 AISO 71 BOTTERILL 68B GUTLER 68 CHANG 68 CHANG 68 EICHTEN 68 EISLER 68 ESCHSTRUTH 68 GARLAND 68 GARLAND 68 MOSCOSO 68	PR 186 UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 NC 564 PR D3 1 PR 21 PR 174 UCRL 18 PRL 20 PRL 20 PRL 20 PRL 565 PR 165 PR 165 PR 165 PR 165
Given in RC DECAY FORM Given in BC ITIYA 90 EE 90 ITIYA 89 IARMIN 88 IARMIN 88 IARMIN 87 IOLOTOV 87 IOLOTOV 86 IOLOTOV 868 IAMANAKA 86	PRL 64 21 PRL 64 165 PRL 64 165 PRL 63 2177 SINP 47 643 Translated from YA SINP 48 1032 Translated from YA SINP 46 73 Translated from YA SINP 47 37 Translated from YA SINP 48 73 Translated from YA SINP 48 74 75 Translated from YA SINP 48 75 Trans	+ Chiang, Frank + Alliegro, Cam + Alliegro, Cam + Chiang, Frank + Chiang, Cam + Chiang, Cam + Chiang, Cam + Chiang, Cam + Chiang, Cam + Can + Can + Can - Ca	t, Haggerty+ (BNL pagnair+ (BNL FNAM) pagnair+ (BNL FNAM) (Hagerty+ (BNL denko, Demidov, Dolgo denko, Demidov, Dolgo oupka+ (BNL MIT) (BOST, MIT, WILL denko, Demidov+ hilkibaev, Isakov- Hilkibaev, Isakov- Lsakov+ guchi, Ishikawa- Hagerty (BNL MIT)	., PSI, WASH, YALE) LANL, PRIN, TRIU) lenko+ (ITEP), PSI, WASH, YALE) CIT, CMU, WYOM) (ITEP) kov+ (INRM) (INRM) (INRM) (KEK, TOKY)	ELY 69 EMMERSON 69 HERZO 69 HERZO 69 LOBKOWICZ 69 Also 66 MACEK 69 ZELLER 69 ZELLER 69 BETTEILL 686 BOTTERILL 68C CHANG 66 CHANG 66 EICHTEN 68 EISCHSTRUTH 68 GARLAND 68 MOSCOSO 68 AUERBACH 67	PR 186 UCRL 18 PR 185 PRL 17 PRL 27 PR 183 PR 182 NC 56A PR D3 1 PRL 21 PR 174 UCRL 18 PRL 20 PL 20 PL 27B PR 169 PR 165 PR 165 PR 167 Thesis PR 167
Given in RC DECAY FORM Given in BC ITIYA 90 EE 90 ITIYA 89 IARMIN 88 IARMIN 88 IARMIN 87 IOLOTOV 87 IOLOTOV 86	PRL 64 21 PRL 64 155 PRL 64 155 PRL 63 2177 SINP 47 643 Translated from YA SINP 48 1032 Translated from YA T	+ Chiang, Frank + Alliegro, Cam + Alliegro, Cam + Chiang, Frank + Alliegro, Cam + Chiang, Cam + Alliegro, Davi + 48 1719. + Alliegro, Chal + Barylov, Davi + Barylov, Davi + 59 97. + Grinnenko, Dz + 4 Grinnenko, Dz + 4 Grinnenko, Dz + 4 Hayano, Tani, Hayano, Tani, + Hayano, Tani, + Hayano, Tani, + Hayano, Tani, + Hayano, Tani, + Hayano, Tani, + Hayano, Tani, + Hayano, Tani, + Hayano, Tani, + Hayano, Tani, + Hayano, Tani, + Hayano, Tani, - Hayano, Hayano, - Hayano, Ha	t, Haggerty+ (BNL pagnair+ (BNL FNAM pagnair+ (BNL FNAM chenko, Demidov, Dolgo denko, Demidov, Dolgo oupka+ (BNL FNAM (BOST, MIT, WILL denko, Demidov+ hilikibaev, Isakov, Kluba hilikibaev, Isakov+ guchi, Ishikawa+anaka, Taniguchi+ saki+	, PSI, WASH, YALE) , LANL, PRIN, TRIU) lenko+ (ITEP) lenko+ (ITEP), PSI, WASH, YALE) , CIT, CMU, WYOM) (ITEP) kov+ (INRM) (INRM)	ELY 69 EMMERSON 69 HERZO 69 HERZO 69 LOBKOWICZ 69 ANST 69 ZELLER 69 BETTELL 68 AISO 71 BOTTERILL 68B GUHANG 68 CHANG 68 EICHTEN 68 GARLAND 68 GARLAND 68 AUGRBACH 67 AISO 71 A	PR 186 UCRL 18 PR 185 PRL 17 PRL 27 PR 183 PR 182 NC 56A PR D3 1 PRL 21 PR 174 UCRL 18 PRL 20 PL 20 PL 27B PR 169 PR 165 PR 165 PR 167 Thesis PR 167
Given in RC DECAY FORM Given in BC ITIYA 90 EE 90 ITIYA 89 IARMIN 88 IARMIN 88 IARMIN 87 IOLOTOV 87 IOLOTOV 86	PRL 64 21 PRL 64 21 PRL 64 155 PRL 63 2177 PRL 63 2177 PRL 64 165 PRL 63 2177 PRL 61 032 Translated from YA PRL 61 026 PRL 60 186 SINP 46 1023 Translated from YA PRL 61 2062 PRL 60 186 SINP 45 1023 Translated from YA PRL 61 2062 PRL 60 186 SINP 45 1023 Translated from YA PRL 91 204 PRL 92 204 PRL 92 204 PRL 92 2091 PRL 92 2091 PRL 92 2091 PRTPL 42 481	EFERENCES F + Chiang, Frank + Alliegro, Cam + Chiang, Frank + Barylov, Davi F 47 1011. + Barylov, Davi F 48 1719. + Alliegro, Chai + Austini+ + Barylov, Davi F 48 1652. F 45 1652. F 45 1652. F 44 167. + Gninenko, Dz F 44 108. + Hayano, Tam, Hshikawa, Iwaw + Shikawa, Iwaw + Sninenko, Dz	t, Haggerty+ (BNL pagnari+ (BNL, FNAI), Haggerty+ (BNL, FNAI), Haggerty+ (BNL, FNAI), Godenko, Demidov, Dolgo denko, Demidov, Dolgo oupka+ (BNL, FNAI), GBOST, MTT, WILL denko, Demidov+ hilkibaev, Isakov+ hilkibaev, Isakov+ anaka, Taniguchi+	., PSI, WASH, YALE) , LANL, PRIN, TRIU) lenko+ (ITEP) lenko+ (ITEP), PSI, WASH, YALE) , CIT, CMU, WYOM) (ITEP) kov+ (INRM) (INRM) (KEK, TOKY) (TOKY, KEK)	ELY 69 EMMERSON 69 HERZO 69 HERZO 69 LOBKOWICZ 69 Also 66 MACEK 69 ZELLER 69 ZELLER 69 BETTEILL 686 BOTTERILL 68C CHANG 66 CHANG 66 EICHTEN 68 EISCHSTRUTH 68 GARLAND 68 MOSCOSO 68 AUERBACH 67	PR 186 UCRL 18 PR 185 PRL 17 PRL 22 PR 183 PR 182 NC 56A PR D3 1 PRL 21 PRL 21 PRL 20 PRL 20 PRL 20 PR 165 PR 165 PR 165 PR 165 PR 165 PR 165 PR 165
DECAY FORM Given in BO ATIYA 90 EE 90 EN	PRL 64 21 PRL 64 155 PRL 64 155 PRL 63 2177 SINP 47 643 Translated from YA SINP 48 1032 Translated from YA T	EFERENCES F + Chiang, Frank + Alliegro, Cam + Chiang, Frank + Barylov, Davi F 47 1011. + Barylov, Davi F 48 1719. + Alliegro, Chai + Austini+ + Barylov, Davi F 48 1652. F 45 1652. F 45 1652. F 44 167. + Gninenko, Dz F 44 108. + Hayano, Tam, Hshikawa, Iwaw + Shikawa, Iwaw + Sninenko, Dz	t, Haggerty+ (BNL pagnair+ (BNL FNAM pagnair+ (BNL FNAM chenko, Demidov, Dolgo denko, Demidov, Dolgo oupka+ (BNL FNAM (BOST, MIT, WILL denko, Demidov+ hilikibaev, Isakov, Kluba hilikibaev, Isakov+ guchi, Ishikawa+anaka, Taniguchi+ saki+	, PSI, WASH, YALE) LANL, PRIN, TRIU) lenko+ (ITEP), PSI, WASH, YALE) CIT, CMU, WYOM) (ITEP) kov+ (INRM) (INRM) (INRM) (KEK, TOKY) (TOKY, KEK) TINT, TSUK, KEK)	ELY 69 EMMERSON 69 HERZO 69 HERZO 69 LOBKOWICZ 69 Also 66 MACEK 69 ZELLER 69 BETTELL 68 Also 71 BOTTERILL 68C GHANG 66 CHANG 66 EICHTEN 68 EICHTEN 68 EISCHSTRUTH 68 GARLAND 68 MOSCOSO 68 AUERBACH 67 Also 74 Erratum. BELLOTTI 67 BELLOTTI 67	PR 186 I UCRL 18 PR 185 : PRL 17 ! PRL 22 PR 183 : PR 182 : NC 56A PR D3 1 PRL 20 PR 174 UCRL 18 PRL 20 PRL 20 PRL 20 PRL 20 PRL 20 PRL 20 PRL 50 PR 165 PR
Given in RC DECAY FORM Given in BC ITIYA 90 EE 90 ITIYA 89 IARMIN 88 IARMIN 88 IARMIN 87 IOLOTOV 87 IOLOTOV 86	PRL 64 21 PRL 64 21 PRL 64 155 PRL 63 2177 PRL 63 2177 PRL 64 165 PRL 63 2177 PRL 61 032 Translated from YA PRL 61 026 PRL 60 186 SINP 46 1023 Translated from YA PRL 61 2062 PRL 60 186 SINP 45 1023 Translated from YA PRL 61 2062 PRL 60 186 SINP 45 1023 Translated from YA PRL 91 204 PRL 92 204 PRL 92 204 PRL 92 2091 PRL 92 2091 PRL 92 2091 PRTPL 42 481	EFERENCES F + Chiang, Frank + Alliegro, Cam + Chiang, Frank + Barylov, Davi F 47 1011. + Barylov, Davi F 48 1719. + Alliegro, Chai + Austini+ + Barylov, Davi F 48 1652. F 45 1652. F 45 1652. F 44 167. + Gninenko, Dz F 44 108. + Hayano, Tam, Hshikawa, Iwaw + Shikawa, Iwaw + Sninenko, Dz	t, Haggerty+ (BNL pagnair+ (BNL FNAM pagnair+ (BNL FNAM chenko, Demidov, Dolgo denko, Demidov, Dolgo oupka+ (BNL FNAM (BOST, MIT, WILL denko, Demidov+ hilikibaev, Isakov, Kluba hilikibaev, Isakov+ guchi, Ishikawa+anaka, Taniguchi+ saki+	, PSI, WASH, YALE) LANL, PRIN, TRIU) lenko+ (ITEP), PSI, WASH, YALE) CIT, CMU, WYOM) (ITEP) kov+ (INRM) (INRM) (INRM) (KEK, TOKY) (TOKY, KEK) TINT, TSUK, KEK)	ELY 69 EMMERSON 69 HERZO 69 HERZO 69 LOBKOWICZ 69 AISO 66 MACEK 69 ZELLER 69 BETTELS 68 AISO 71 BOTTERILL 68B GOTTERILL 68B CHANG 68 CHANG 68 EICHTEN 68 EICHTEN 68 GARLAND 68 AUERBACH 67 AISO 74 Erratum. BELLOTTI 67	PR 155 PR D9 3 Heidelber NC 52A

		· · · · · · · · · · · · · · · · · · ·
83	PR D27 1056	+Adair, Black, Campbell+ (YALE, BNL)
82 82	PL 113B 195 PL 112B 97	+Kikutani, Kurokawa, Miyachi+ +Guy, Michette, Tyndel, Venus (KEK, TÖKY, OSAK)
81B 81	PL 107B 159 PRI 47 1032	+Kikutani, Kurokawa, Miyachi+ +Black, Blatt, Kasha, Schmidt+ (KEK, TOKY, OSAK)
83 81	PR D27 1056 PR D23 2522	Blatt, Adair, Black, Campbell+ (YALE, BNL) +Wiegand, Kessler, Deslattes, Seki+ (LBL, NBS+)
81 80	ZPHY C10 215 PR D21 1750	+Albaiar, Myatt (OXF)
80	PR D21 652	+Abrams, Carroll, Kycia, Li+ (ILLC, BNL, ILL)
79 79	NP B148 53 NP B149 365	+Heinzelmann lgo-Kemenes+ (HEID, CERN)
77 77	PR D15 22 NP B126 11	+Carroll, Kycia, Li, Michael, Mockett+ +Bloch, Diamant-Berger, Maillard+ (SACL, GEVA)
77 77	PL 70B 482 PR D15 574	+Heinzelmann Igo-Kemenes+ (HEID, CEKN)
76 76	NP B114 387 PL 60B 393	+Extermann, Fischer, Guisan+ (GEVA, SACL) +Sacton+ (BRUX, UBEL, DUUC, LOUC, WARS) +Bunce, Devaux, Diamant-Berger+ (GEVA, SACL)
76B 76	LNC 17 521 PL 62B 485	+Martyn, Erriquez+ (AACH, BARI, BELG, CERN) Diamant-Berger, Bloch, Devaux+ (SACL, GEVA)
76 76	PL 60B 302 NP B109 173	: Heinzelmann Ira Komanor Mundhanka (HEID)
76	NP B115 55	Weissenberg, Egorov, Minervina+ (IIEP, LEBU)
75 75	PL 56B 201 NP B89 210	+Brehin, Bunce, Devaux+ +Cornelssen+ (SACL, GEVA) (AACH, BARI, BRUX, CERN)
75 75	NP A254 381 PL 55B 324	+Asano, Chen, Dugan, Hu, Wu+ (COLU, YALE) +Heintze, Heinzelmann+ (CERN, HEID)
75B 75	PL 55B 327 PR D12 2570	+Heintze, Heinzelmann+ (CERN, HEID) (WISC)
75 74	NP B91 45 PR D9 1221	+Booth, Renshall, Jones+ (GLAS, LIVP, OXF, RHEL) +Roe, Sinclair (MICH)
74 74	PL 51B 393 PR D10 776	+Cornelssen, Martyn+ (AACH, BARI, BRUX, CERN) +Harris, Jones, Morgado+ (HAWA, LBL, WISC)
73	Thesis unpub.	Clarke (WSC) (WYOM)
74 74	PR C9 2469 PR D9 107	+Kasha, Wanderer, Adair+ (YALE, BNL, LASL)
74 73B	PL 48B 474 PRL 30 500	Weissenberg, Egorov, Minervina+ (ITEP, LEBD) +Carroll, Kycia, Li, Menes, Michael+ (BNL)
73 73	PL 43B 431 PRL 30 399	Backenstoss+ (CERN, KARL, HEID, STOH) +Buchholz, Mann, Parker, Roberts (PENN)
73B 75	PL 47B 185	+Cornelssen (AACH, BARI, BRUX, CERN)
73C 75	NP B89 210 PL 47B 182 NP B89 210	Braun, Cornelssen+ (AACH, BARI, BRUX, CERN) +Cornelssen (AACH, BARI, BRUX, CERN) Braun, Cornelssen+ (AACH, BARI, BRUX, CERN)
73	PR D8 3807	+Hildebrand, Pang, Stiening (EFI, LBL) +Cline (WISC)
73 72	PR D8 1307 PRL 28 523	Ljung (WISC)
72 69	PRL 28 1287 PRL 23 326	Cline, Ljung (WISC) Carnerini, Ljung, Sheaff, Cline (WISC)
73 73B	PR D8 719 PR D8 727	+Taft, Willis (YALE) +Taft, Willis (YALE)
73 72	PR D8 1989 PL 40B 699	+Hildebrand, Cable, Stiening (EFI, ARIZ, LBL) Cable, Hildebrand, Pang, Stiening (EFI, LBL) +Booth, Renshall, Jones+ (GLAS, LIVP, OXF, RHEL)
73 72	NP B60 411 PRL 29 1118	+Carroll Kycia, Li, Menes, Michael+ (BNL)
. 72 72	PRL 28 1472 NC 12A 509	Ankenbrandt, Larsen+ (BNL, LASL, FNAL, YALE) +Heusse, Pascaud, Vialle+ (ORSA, BRUX, EPOL)
72	PRL 29 678 PR D6 1254	+Buchholz, Mann, Parker (PENN) +Rosen, Shapiro, Handler, Olsen+ (ROCH, WISC)
72 72	PRL 29 1274 PR D5 2720	+Cork, Elioff, Kerth, McReynolds, Newton+ (LBL)
72 72	PL 38B 335	+Piroue, Remmel, Smith, Souder (PRIN)
R 72 71C	NP B36 1 PL 36B 619	+Koller, Taylor+ (STEV, SETO, LEHI) +Brehin, Diamant-Berger, Kunz+ (SACL, GEVA)
71 71	PL 36B 615 PR D4 2893	+Boymond, Extermann, Marasco+ (GEVA, SACL) (MIT)
71 69	PR D3 10 PL 29B 691	(AACH, BARI, CERN, EPOL, NIĴM+) Haidt+ (AACH, BARI, CERN, EPOL, NIJM, ORSA+)
71 70	PR D4 66	+Hildebrand, Stiening (CHIC, LRL) Klems, Hildebrand, Stiening (LRL, CHIC) Klems, Hildebrand, Stiening (LRL, CHIC)
70B 71	PRL 24 1086 PRL 25 473 PR D3 52	Klems, Hildebrand, Stiening (LRL, CHIC) +Pritchard (LOQM)
71 71	PL 36B 525	+Renton, Aubert, Burban-Lutz (BARI, CERN, ORSA)
71	PL 36B 246 PL 36B 521	(AACH, BARI, CERN, EPOL, ORSA, NIJM, PADO+)
70 Y 70	PL 32B 121 PR D1 1452	+ Bilenky, Pontecorvo (JINR) (ROCH)
70 70	Pl. 31B 325 PRL 25 1370	+Brown, Clegg, Corbett, Culligan+ (OXF) +Piroue, Remmel, Smith, Souder (PRIN)
70 70	CERN 70-14 PR D1 229 PR D1 1277	+Chounet (CERN, ORSA) (HAIF)
70 69	PR D1 1277 PRL 23 737	+Koller, Taylor, Pandoulas+ (STEV, SETO, LEHI) Grauman, Koller, Taylor+ (STEV, SETO, LEHI)
70 70	PR D1 1249	+Mann, McFarlane, Roberts (PENN)
70	SJNP 10 678 Translated from YAF PR D2 1205	+Taylor, Koller, Grauman+ (STEV, SETO)
69 68	PR 184 1380 PRL 20 955	+Stiening, Wiegand, Deutsch (LRL, MIT) Cutts, Stiening, Wiegand, Deutsch (LRL, MIT)
69 69	PR 180 1333 PR 180 1319	+Bacastow, Barkas, Evans, Fung, Porter+ (UCR) +Gidal, Hagopian, Kalmus+ (LOUC, WISC, LRL)
69	PRL 23 393 PR 186 1403	+Quirk (OXF)
69 69	UCRL 18433 Thesis	+Banner, Beier, Bertram, Edwards+ (ILL) (LBL)
69 66	PR 185 1676 PRL 17 548	+ Melissinos, Nagashima, Tewksbury+ (ROCH, BNL) Lobkowicz, Melissinos, Nagashima+ (ROCH, BNL)
69 69	PRL 22 32 PR 183 1200 PR 182 1420	+Mann, McFarlane, Roberts+ (PENN, TEMP) +Gershwin, Alston-Garnjost, Bangerter+ (LRL) +Haddock, Helland, Pahl+ (UCLA, LRL)
69 68	PR 182 1420 NC 56A 1106	+Haddock, Helland, Pahl+ (UCLA, LRL) (AACH, BARI, BERG, CERN, EPOL, NIJM, ORSA+)
71 68B	PR D3 10	(AACH, BARI, BERG, CERN, EPOL, NIJM, ORSA+) Haidt (AACH, BARI, CERN, EPOL, NIJM+) +Brown, Clegg, Corbett+ (OXF)
68C	PR 174 1661	+Brown, Clegg, Corbett+ (OXF) +Bland, Goldhaber, Goldhaber, Hirata+ (LRL) +Yodh, Ehrlich, Plano+ (UMD, RUTG)
68 68	UCRL 18420 PRL 20 510 PRL 20 73	+Yodh, Ehrlich, Plano+ (UMD, RUTG) +Cutts, Kijewski, Stiening+ (LRL, MIT)
68	PL 27B 586	(AACH, BARI, CERN, EPOL, ORSA, PADO, VALE)
68 H 68	PR 169 1090 PR 165 1487	+Fung, Marateck, Meyer, Plano +Franklin, Hughes+ (PRIN, PENN)
68 68	PR 167 1225 Thesis	+ Tsipis, Devons, Rosen+ (COLU, RUTG, WISC) (ORSA)
67 74	PR 155 1505 PR D9 3216	+Dobbs, Mann+ (PENN, PRIN) Auerbach
67	Heidelberg Conf.	+Pullia (MILA)
67B 66B	NC 52A 1287	+Fiorini, Pullia (MILA)
67 67	PL 20 690 PL 25B 572 PRL 19 982	Bellotti, Fiorini, Pullia+ (MILA) +Cester, Chiesa, Vigone (TORI) +Brown, Corbett, Culligan+ (OXF)
68	PR 171 1402	Botterill, Brown, Clegg, Corbett+ (OXF)

 $K^{\pm}, K^{0}, K^{0}_{S}$

BOWEN	67B		+Mann, McFarlane, Hughes+	(PPA)
CLINE Proc. Inte	67B		. Daniela Obusias	
FLETCHER	67	mal School on Elementar PRL 19 98	+Beier, Edwards+	(ILL)
FORD	67	PRL 18 1214	+Lemonick, Nauenberg, Piroue	(PRIN)
GINSBERG	67	PR 162 1570	r Economick, Habenberg, Thode	(MASB)
IMLAY	67	PR 160 1203	+Eschstruth, Franklin+	(PRIN)
KALMUS	67	PR 159 1187	+ Kernan	(LRL)
ZINCHENKO	67	Rutgers Thesis		(RUTG)
CALLAHAN	66	NC 44A 90		(WISC)
CALLAHAN		PR 150 1153	+Camerini+ (W	ISC, LRL, UCR, BARI)
CESTER	66	PL 21 343	+Eschstruth, Oneill+	(PPA)
		in AUERBACH 67.		
Also	67	PR 155 1505	Auerbach, Dobbs, Mann+	(PENN, PRIN)
BIRGE	65	PR 139B 1600	+Ely, Gidal, Camerini, Cline+	(LRL, WISC)
BISI	65	NC 35 768	+Borreani, Cester, Ferraro+	(TORI)
BORREANI	65	PR 139B 1068 PR 140B 1686	+Borreani, Marzari-Chiesa, Rinaudo+ +Gidal, Rinaudo, Caforio+	(TORI)
CALLAHAN	65	PRL 15 129	+Gloal, Kinaudo, Catorio+ +Cline	(BARI, TORI)
CAMERINI	65	NC 37 1795	+Cline, Gidal, Kalmus, Kernan	(WISC) (WISC, LRL)
CLINE	65	PL 15 293	+Cilile, Gibai, Kaimus, Kernan +Frv	
CUTTS	65	PR 138B 969	+Elioff, Stiening	(WISC)
DEMARCO	65	PR 140B 1430	+Grosso, Rinaudo	(LRL) (TORI, CERN)
FITCH		PR 140B 1088	+Quarles, Wilkins	(PRIN, MTHO)
GREINER	65	ARNS 15 67	+ Quality, Wilkins	(LRL)
STAMER	65	PR 138B 440	+Huetter, Koller, Taylor, Grauman	(STEV)
TRILLING	65B		Tradition, Trainer, Taylor, Gradition	(LRL)
		965 Argonne Conference,	page 5.	(LNL)
YOUNG	65	UCRL 16362 Thesis		(LRL)
Also	67	PR 156 1464	Young, Osborne, Barkas	(LRL)
BORREANI	64	PL 12 123	+Rinaudo, Werbrouck	(ŤORÍ)
CALLAHAN	64	PR 136B 1463	+March, Stark	(WISC)
CAMERINI	64	PRL 13 318	+Cline, Fry, Powell	(WISC, LRL)
CLINE	64	PRL 13 101	+Fry	(WISC)
GIACOMELLI	64	NC 34 1134	+Monti, Quareni+	(BGNA, MUNI)
GREINER	64	PRL 13 284	+Osborne, Barkas	(LRL)
JENSEN	64	PR 136B 1431	+Shaklee, Roe, Sinclair	(MICH)
KALMUS	64 64	PRL 13 99	+Kernan, Pu, Powell, Dowd	(LRL, WISC)
SHAKLEE BARKAS	63	PR 136B 1423 PRL 11 26	+ Jensen, Roe, Sinclair	(MICH)
BOYARSKI	62	PR 128 2398	+Dyer, Heckman +Loh, Niemela, Ritson	(LRL)
BROWN	62B		+Kadyk, Trilling, Roe+	(MIT) (LRL, MICH)
BARKAS	61		+Dyer, Mason, Norris, Nickols, Smit	(LRL)
BHOWMIK	61	NC 20 857	+Jain, Mathur	(DELH)
FERRO-LUZZI		NC 22 1087	+Miller, Murray, Rosenfeld+	(LRL)
NORDIN	61	PR 123 2166	Timiler, Marray, Troserreia	(LRL)
ROE	61	PRL 7 346	+Sinclair, Brown, Glaser+	(MICH, LRL)
FREDEN	60B		+Gilbert, White	(LRL)
BURROWES	59	PRL 2 117	+Caldwell, Frisch, Hill+	(MIT)
TAYLOR	59	PR 114 359	+Harris, Orear, Lee, Baumel	(COLU)
EISENBERG	58	NC 8 663	+Koch, Lohrmann, Nikolic+	(BERN)
ALEXANDER	57	NC 6 478	+ Johnston, Oceallaigh	(DUUC)
COHEN	57	Fund. Cons. Phys.	+Crowe, Dumond	(NAAS, LRL, CIT)
COOMBES	57	PR 108 1348	+Cork, Galbraith, Lambertson, Wenze	(LBL)
BIRGE	56	NC 4 834	+Perkins, Peterson, Stork, Whitehead	(LRL)
ILOFF	56	PR 102 927	+Goldhaber, Lannutti, Gilbert+	(LRL)
		OTHER	R RELATED PAPERS -	
CHOUNET	70	DBDI 46 100	. 6-19-1 6-19-1	(ODC)
CHOUNET FEARING	72 70	PRPL 4C 199 PR D2 542	+ Gaillard, Gaillard +Fischbach, Smith	(ORSA, CERN) (STON, BOHR)
HAIDT	69B	PL 29B 696	- (AACH, BARI, CERN. I	
			Contract accord property	

CHOUNET 72	PRPL 4C 199	+ Gaillard, Gaillard	(ORSA, CERN)
FEARING 70	PR D2 542	+Fischbach, Smith	(STON, BOHR)
HAIDT 69B	PL 29B 696	 (AACH, BARI, C 	ERN, EPOL, NIJM, ORSA+)
CRONIN 68B	Vienna Conf. 241		(PRIN)
Rapporteur talk.			, ,
WILLIS 67	Heidelberg Conf. 273		(YALE)
Rapporteur talk.			
CABIBBO 66	Berkeley Conf. 33		(CERN)
ADAIR 64	PL 12 67	+ Leipuner	(YALE, BNL)
CABIBBO 64	PL 9 352	+ Maksymowicz	(CERN)
Also 64B	PL 11 360	Cabibbo, Maksymowicz	(CERN)
Also 65	PL 14 72	Cabibbo, Maksymowicz	(CERN)
BIRGE 63	PRL 11 35	+Ely, Gidal, Camerini+	(LRL, WISC, BARI)
BLOCK 62B	CERN Conf. 371	+Lendinara, Monari	(NWES, BGNA)
BRENE 61	NP 22 553	+ Egardt, Qvist	(NORD)

$$I(J^P) = \frac{1}{2}(0^-)$$

		K ⁰ MASS		
VALUE (MeV) 497.671±0.031 OU	EVTS JR FIT	DOCUMENT ID	TECN	COMMENT
497.676±0.030 OU	JR AVERAGE			
497.661 ± 0.033	3713	BARKOV	87B CMD	$e^+e^- \rightarrow \kappa_1^0 \kappa_2^0$ $e^+e^- \rightarrow \kappa_1^0 \kappa_2^0$
497.742 ± 0.085	780	BARKOV	858 CMD	$e^+e^- \rightarrow \kappa_I^0 \kappa_S^0$
497.44 ±0.50		FITCH	67 OSPI	
498.9 ± 0.5	4500	BALTAY		K^0 from pp
497.44 ±0.33	2223	KIM	658 HBC	K^0 from $\overline{p}p$
498.1 ±0.4		CHRISTENSO	N64 OSPI	<

K⁰ − K[±] MASS DIFFERENCE

VALUE (MeV)	EVT5	DOCUMENT ID	TECN	CHG	COMMENT
4.024 ± 0.032	OUR FIT				
3.92 ± 0.14	OUR AVERAGE				
3.95 ± 0.21	417	HILL	68B DBC	+	$K^+ d \rightarrow K^0 pp$
3.90 ± 0.25	9	BURNSTEIN	65 HBC		
3.71 ± 0.35	7	KIM	65B HBC	_	$K^- p \rightarrow n \overline{K}^0$
5.4 ±1.1		CRAWFORD	59 HBC	+	
3.9 ± 0.6		ROSENFELD	59 HBC	-	

REFERENCES FOR KO

BARKOV	87B	SJNP 46 630	+Vasserman, Vorobev, Ivanov+	(NOVO)
BARKOV	858	Translated from YAF 46 JETPL 42 138	+ Blinov. Vasserman +	(NOVO)
		Translated from ZETFP	42 113.	(NOVO)
HILL	68B	PR 168 1534	+Robinson, Sakitt, Canter	(BNL, CMU)
FITCH	67	PR 164 1711	+Roth, Russ, Vernon	(PRIN)
BALTAY	66	PR 142 932	+Sandweiss, Stonehill-	(YALE, BNL)
BURNSTEIN	65	PR 138B 895	+Rubin	(UMD)
KIM	65B	PR 140B 1334	+Kirsch, Miller	(ĊOLU)
CHRISTENSON	64	PRL 13 138	-Cronin, Fitch, Turlay	(PRIN)
CRAWFORD	59	PRL 2 112	+Cresti, Good, Stevenson, Ticho	(LRL)
ROSENFELD	59	PRL 2 110	+Solmitz, Tripp	(LRL)

$$I(J^P) = \frac{1}{2}(0^-)$$

KO MEAN LIFE

For earlier measurements, beginning with BOLDT 58B, see our our 1986 edition, Physics Letters 170B, 130 (1986).

VALUE (10 ⁻¹⁰ s)	EVTS R AVERAGE	DOCUMENT ID TECN COMMENT
0.8920 ± 0.0044 0.881 ± 0.009 0.8913 ± 0.0032	214k 26k	GROSSMAN 87 SPEC <i>E</i> =100-350 GeV ARONSON 76 SPEC ¹ CARITHERS 75 SPEC
0.8937 ± 0.0048 0.8958 ± 0.0045 • • • We do not us	6M 50k e the followi	GEWENIGER 74B ASPK ² SKJEGGEST 72 HBC ing data for averages, fits, limits, etc. • • •
$\begin{array}{c} 0.905 \;\; \pm 0.007 \\ 0.867 \;\; \pm 0.024 \\ 0.856 \;\; \pm 0.008 \\ 0.872 \;\; \pm 0.009 \\ 0.866 \;\; \pm 0.016 \end{array}$	2173 19994 20000	3 ARONSON 826 SPEC E=30-110 GeV 4 FACKLER 73 OSPK 50 ONALD 686 HBC 5.6 HILL 68 DBC 68 DSC 5 ALFF 666 OSPK
0.843 ± 0.013	5000	⁵ KIRSCH 66 HBC

 1 CARITHERS 75 value is for κ^0_L – κ^0_S mass difference $\Delta(m)=$ 0.5348 \pm 0.0021. The $\Delta(m)$ dependence of the total decay rate (inverse mean life) is $\Gamma(K_S^0) = [(1.122 \pm 1.00)]$ $0.004) + 0.16(\Delta(m) - 0.5348)/\Delta(m)] \, 10^{10}/s$. Value would not change with our current $\Delta(m) = 0.5349 \pm 0.0022$.

 2 HILL 68 has been changed by the authors from the published value (0.865 \pm 0.009) because of a correction in the shift due to η_{+-} . SKJEGGESTAD 72 and HILL 68 give detailed discussions of systematics encountered in this type of experiment. ³ ARONSON 82 find that κ_{S}^{0} mean life may depend on the kaon energy.

⁴ FACKLER 73 does not include systematic errors.

⁵ Pre-1971 experiments are excluded from the average because of disagreement with later more precise experiments.

because of a correction in the shift due to η_{+-} . SKJEGGESTAD 72 and HILL 68 give detailed discussions of systematics encountered in this type of experiment.

K⁰ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level					
	$\pi^+\pi^-$	(68.61 ± 0.28) %	S=1.2					
Γ_2	$\pi^{0}\pi^{0}$	(31.39 ± 0.28) %	S=1.2					
Γ_3	$\pi^+\pi^-\gamma$	[a,b] (1.85 ± 0.10) × 10 ⁻¹	-3					
Γ_4	$\gamma \gamma$	$(2.4 \pm 1.2) \times 10^{\circ}$	-6					
Γ_5	$\pi^{+}\pi^{-}\pi^{0}$ $3\pi^{0}$	< 4.9 × 10 ⁻¹	-5 CL=90%					
Γ_6	$3\pi^{0}$	< 3.7 × 10	-5 CL=90%					
Flavor-Changing neutral current (FC) modes								

$\times 10^{-7}$ < 3.2 CL=90% \times 10⁻⁵ FC < 1.0 CL=90% $\times 10^{-5}$ CL=90%

- [a] See the Listings below for the energy limits used in this measurement.
- [b] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.

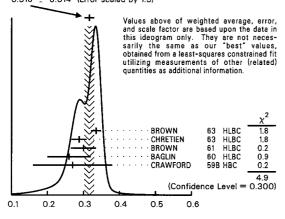
CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 17 measurements and one constraint to determine 2 parameters. The overall fit has a χ^2 = 16.5 for 16 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

$$x_2 - 100$$

KO BRANCHING RATIOS


$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	EVTS	DOCUMENT ID		COMMENT	
0.6861 ± 0.0028 OUR	FIT Error	includes scale fact	or of 1.2.		
0.671 ±0.010 OUR	AVERAGE			_	
0.670 ± 0.010	3447	⁷ DOYLE	69 HBC	$\pi^- p \rightarrow \Lambda K^0$	
0.70 ± 0.08		COLUMBIA	608 HBC		
0.68 ± 0.04		CRAWFORD	59B HBC		
• • • We do not use	the followin	g data for average	s, fits, limits	, etc. • • •	
0.740 ±0.024		⁷ ANDERSON	62B HBC		
7 Anderson result n	ot published	, events added to	Doyle sample	·.	

$\Gamma(\pi^+\pi^-)/\Gamma(\pi^0\pi^0)$					Γ_1/Γ_2
VALUE	<u>EVTS</u>	DOCUMENT ID	_	TECN	COMMENT
2.186±0.028 OUR FIT	Error	includes scale factor of	1	2.	
2.197 ± 0.026 OUR AVE	RAGE				_
2.11 ±0.09	1315	EVERHART 7	76	WIRE	$\pi^- p \rightarrow \Lambda K_2^0$
2.169 ± 0.094	16k	COWELL 7			$\pi^- \rho \rightarrow \Lambda K^0$
2.16 ±0.08	4799	HILL 7			$K^+ d \rightarrow K^0 pp$
2.22 ±0.10	3068				$K^+ p \rightarrow \pi^+ p K^0$
2.22 ±0.08	6380	MORSE 7	72B	DBC	$K^+ n \rightarrow K^0 p$
2.10 ±0.11	701	9 NAGY 7			$K^+ n \rightarrow K^0 p$
2.22 ±0.095	6150	10 BALTAY			$K \rho \rightarrow K^0$ neutrals
2.282 ± 0.043	7944	¹¹ MOFFETT 7	70	OSPK	$K^+ n \rightarrow K^0 p$
2.10 ±0.06	3700	MORFIN 6	59	HLBC	$K^+ n \rightarrow K^0 p$
• • • We do not use the	ne follow	ving data for averages,	fits	, limits,	etc. • • •
2.12 ±0.17	267	9 BOZOKI 6	59	HLBC	
2.285 ± 0.055	3016	¹¹ GOBBI 6	59	OSPK	$K^+ n \rightarrow K^0 p$

- ⁸ The directly measured quantity is $\kappa_S^0 \to \pi^+\pi^-/{\rm all}~\kappa^0 = 0.345 \pm 0.005.$
- ⁹NAGY 72 is a final result which includes BOZOKI 69.
- 10 The directly measured quantity is $\kappa_S^0 \to ~\pi^+ \, \pi^-/{\rm all} ~\overline{K}^0$ $= 0.345 \pm 0.005$.
- 11 MOFFETT 70 is a final result which includes GOBBI 69.

$\Gamma(\pi^0)$	$\pi^0)/\Gamma_{\rm tot}$	tal				Γ_2/Γ
VALUE		<u>EVTS</u>	DOCUMENT ID		TECN	
0.3139	± 0.0028	OUR FIT Error	includes scale fac	tor of	1.2.	
0.316	±0.014	OUR AVERAGE	Error includes so below.	cale fa	ctor of 1.3	. See the ideogram
0.335	± 0.014	1066	BROWN	63	HLBC	
0.288	± 0.021	198	CHRETIEN	63	HLBC	
0.30	± 0.035		BROWN	61	HLBC	
0.26	± 0.06		BAGLIN	60	HLBC	
0.27	±0.11		CRAWFORD	59в	нвс	

WEIGHTED AVERAGE 0.316 \pm 0.014 (Error scaled by 1.3)

- $p_{\gamma} > 50 \text{ MeV}/c$ WEBBER HBC 3.3 ± 1.2 70 10 BELLOTTI 66 HBC p_γ >50 MeV/c 27 no ratio given • • • We do not use the following data for averages, fits, limits, etc. • • ¹⁴ BOBISUT
- 12 TAUREG 76 find direct emission contribution <0.06, CL = 90%.
- 13 BURGUN 73 estimates that direct emission contribution is 0.3 \pm 0.6. 14 BOBISUT 74 not included in average because ho_{γ} cut differs. Estimates direct emission contribution to be 0.5 or less, CL = 95%.

$\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$								Γ ₄ /Γ
VALUE (units 10 ⁻³)	CL%	EVTS		DOCUMENT ID		TECN	COMMENT	
0.0024±0.0012	_	19		BURKHARDT	87	CALO		
• • • We do not use	the foll	owing	data	for averages, fit	ts, lir	nits, etc	. • • •	
< 0.013	90			BALATS	89	SPEC		
< 0.133	90			BARMIN		XEBC		
< 0.2	90			VASSERMAN	86	CALO	$\phi \rightarrow \kappa_S^0 \kappa_l^0$	
< 0.4	90	0		BARMIN		HLBC	• -	
< 0.71	90	0	15	BANNER	72B	OSPK		
< 2.0	90	0			72B	DBC		
< 2.2	90	0		REPELLIN	71	OSPK		
<21.0	90	0	15	BANNER	69	OSPK		
15 These limits are for	or maxi	num ir	terf	erence in K_S^0 - K	0 to	2γ'5		

$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{tota}}$	1					Γ_5/Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
<0.49	90	BARMIN	85	HLBC	K+ 850 MeV	
• • • We do not use	the followin	ng data for average	s, fit	s, limits,	etc. • • •	
< 0.85	90	METCALF	72	ASPK		
$\Gamma(3\pi^0)/\Gamma_{\text{total}}$						Γ_6/Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN		
<0.37	90	BARMIN	83	HLBC		
Mo do not uso	the following	ar data for average	c fit	e limite	etc a a a	

 $\Gamma(\mu^+\mu^-)/\Gamma(\pi^+\pi^-) \\ \text{Test for } \Delta S = 1 \text{ weak neutral current. Allowed by first-order weak interaction combined}$ with electromagnetic interaction.

73 HLBC

BARMIN

VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	
< 0.047	90	GJESDAL	73	ASPK	
• • • We do not us	e the follow	ing data for averag	es, fits	i, limits, e	tc. • • •
<20.0	90	вонм	69	OSPK	
< 1.07	90	HYAMS	69в	OSPK	
<32.6	90	¹⁶ STUTZKE	69	OSPK	
<10.0	90	BOTT	67	OSPK	

¹⁶ Value calculated by us, using 2.3 instead of 1 event, 90% CL.

 $\Gamma(e^+e^-)/\Gamma(\pi^+\pi^-)$ Γ_8/Γ_1 Test for $\Delta S = 1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.

 $\underline{\textit{VALUE (units }10^{-5})}$ CL% DOCUMENT ID TECN < 1.5 90 BARMIN 86 XEBC . • • We do not use the following data for averages, fits, limits, etc. • • • 17 BITSADZE 86 CALO <16.0 90 вонм < 50.0 17 Use B($\pi^+\pi^-$) = 0.6861.

 Γ_9/Γ $\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}$ Test for $\Delta S = 1$ weak neutral current. Allowed by first-order weak interaction combined with electromagnetic interaction.

VALUE (units 10⁻⁵) CL% DOCUMENT ID **GIBBONS**

NOTE ON CP VIOLATION IN $K_S^0 \rightarrow 3\pi$

For $K_S^0 \to 3\pi$, the quantities which measure CP violation are the ratios of amplitudes

$$\eta_{+-0} = \frac{A_S(K_S \to \pi^+ \pi^- \pi^0)}{A_L(K_L \to \pi^+ \pi^- \pi^0)} \ ,$$

$$\eta_{000} = \frac{A_S(K_S \to \pi^0 \pi^0 \pi^0)}{A_L(K_L \to \pi^0 \pi^0 \pi^0)}$$

If one assumes that CPT invariance holds and that there are no transitions to I=3 states, then $Re(\eta_{+-0})$ and $Re(\eta_{000})$ can be neglected, and CP violation would be observed as nonzero values of $Im(\eta_{+-0})$ and $Im(\eta_{000})$. We list the relative rates

$$(\text{Im}\eta_{+-0})^2 = \frac{\Gamma(K_S \to \pi^+\pi^-\pi^0)}{\Gamma(K_L \to \pi^+\pi^-\pi^0)}$$

$$({\rm Im}\eta_{000})^2 = \frac{\Gamma(K_S \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L \to \pi^0 \pi^0 \pi^0)}$$

obtained under the above assumptions.

K_S^0, K_L^0

In the above expressions the three pions are restricted to the dominant symmetric I = 1 state, a CP = -1 state which couples to K_S only if CP is violated. The decay $K_S \to \pi^+\pi^-\pi^0$ also has CP-allowed amplitudes to I = 0 and I = 2 states of the three pions. The angular momenta in these states cannot be S wave so they are strongly suppressed by centrifugal barrier effects, and, for the I=2 state, by the $\Delta I=1/2$ rule as well.

CP-VIOLATION PARAMETERS IN KO DECAY

 $Im(\eta_{+-0})^2$ where $\eta_{+-0} = A(K_S^0 \rightarrow \pi^+\pi^-\pi^0, CP\text{-violating}) / A(K_I^0 \rightarrow \pi^+\pi^-\pi^0)$. CPT assumed valid (i.e. $Re(\eta_{+-0}) = 0$).

VALUE	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
< 0.12	90	384	METCALF	72	ASPK	
	ot use th	e follow	ing data for average	s, fit	s, limits,	etc. • • •
< 0.23	90	601	¹⁸ BARMIN	85	HLBC	K+ 850 MeV
<1.2	90	192	BALDO	75	HLBC	
< 0.71	90	148	MALLARY	73	OSPK	$Re(A) = -0.05 \pm 0.17$
< 0.66	90	180	JAMES	72	HBC	
<1.2	90	99	JONES	72	OSPK	
<1.2	90	99	CHO	71	DBC	
<1.0	90	98	JAMES	71	HBC	Incl. in JAMES 72
<1.2	95	50	¹⁹ MEISNER	71	HBC	CL=90% not avail.
< 0.8	90	71	WEBBER	70	HBC	
< 0.45	90		BEHR	66	HLBC	
<3.8	90	18	ANDERSON	65	HBC	Incl. in WEBBER 70

 $^{^{18}}$ BARMIN 85 find Re($\eta_{+-0})=(0.05\pm0.17)$ and Im($\eta_{+-0})=(0.15\pm0.33).$ Includes events of BALDO-CEOLIN 75. 19 These authors find Re(A) $=2.75\pm0.65,$ above value at Re(A) =0.

where $\eta_{000}={\rm A}(K^0_5\to 3\pi^0)$ / ${\rm A}(K^0_I\to 3\pi^0)$. See text header for section "Im $(\eta_{+-0})^2$ " above. This limit determines branching ratio $\Gamma(3\pi^0)/\Gamma_{\rm total}$ above.

VALUE	CL%	EVT5	DOCUMENT ID		TECN	COMMENT	
< 0.1	90	632	²⁰ BARMIN	83	HLBC		
• • • We do	not use the	follow	ing data for averag	es, fits	, limits,	etc. • • •	
< 0.28	90		²¹ GJESDAL	74B	SPEC	Indirect meas.	
<1.2	90	22	BARMIN	73	HLBC		
20							

 $^{^{20}}$ BARMIN 83 find Re($\eta_{000})=(-0.08\pm0.18)$ and Im($\eta_{000})=(-0.05\pm0.27)$. Assuming CPT invariance they obtain the limit quoted above.

REFERENCES FOR K_s^0

BALATS	89	SJNP 49 828	+Berezin, Bogdanov, Vishnevskii, Vishnyakov+ (ITEP)
		Translated from	
GIBBONS	88	PRL 61 2661	+Papadimitriou+ (EFI, ELMT, FNAL, PRIN, SACL)
BURKHARDT	87	PL B199 139	 (CERN, DORT, EDIN, MANZ, ORSA, PISA, SIEG)
GROSSMAN	87	PRL 59 18	+Heller, James, Shupe+ (MINN, MICH, RUTG)
BARMIN	86	SJNP 44 622	+Barylov, Davidenko, Demidov+ (ITEP)
0.401444	04.0	Translated from	
BARMIN	86B	NC 96A 159	+Barylov, Chistyakova, Chuvilo+ (ITEP, PADO)
BITSADZE	86	PL 167B 138	+Budagov (BRAT, SOFI, SERP, TBLI, JINR, BAKU+)
VASSERMAN	86	JETPL 43 588	+Golubev, Gluskin, Druzhinin+ (NOVO)
BARMIN	85	Translated from NC 85A 67	+Barylov, Chistyakova, Chuvilo+ (ITEP, PADO)
	85B	CIND 41 750	Barmin, Barylov, Volkov+ (ITEP)
Also	920	Translated from	VAE AL LIGT
BARMIN	83	PL 128B 129	+Barylov, Chistyakova, Chuvilo+ (ITEP, PADO)
Also	84	SJNP 39 269	Barmin, Barvlov, Golubchikov+ (ITEP, PADO)
Also	04	Translated from	
ARONSON	82	PRL 48 1078	+Bernstein+ (BNL, CHIC, STAN, WISC)
ARONSON	82B	PRL 48 1306	+Bock, Cheng, Fischbach (BNL, CHIC, PURD)
Also	82B	PL 116B 73	Fischbach, Cheng+ (PURD, BNL, CHIC)
Also	83	PR D28 476	Aronson, Bock, Cheng+ (BNL, CHIC, PURD)
Also	83B	PR D28 495	Aronson, Bock, Cheng+ (BNL, CHIC, PURD)
ARONSON	76	NC 32A 236	+McIntyre, Roehrig+ (WISC, EFI, UCSD, ILLC)
EVERHART	76	PR D14 661	+Kraus, Lande, Long, Lowenstein+ (PENN)
TAUREG	76	PL 65B 92	+Zech, Dydak, Navarria+ (HEID, CERN, DORT)
BALDO	75	NC 25A 688	Baldo-Ceolin, Bobisut, Calimani + (PADO, WISC)
CARITHERS	75	PRL 34 1244	+Modis, Nygren, Pun+ (COLU, NYU)
BOBISUT	74	LNC 11 646	+Huzita, Mattioli, Puglierin (PADO)
COWELL	74	PR D10 2083	+Lee-Franzini, Orcutt, Franzini+ (STON, COLU)
GEWENIGER	74B	PL 48B 487	+Gjesdal, Presser+ (CERN, HEID)
GJESDAL	74B	PL 52B 119	+Presser, Steffen+ (CERN, HEID)
BARMIN	73	PL 46B 465	+Barylov, Davidenko, Demidov+ (ITEP)
BARMIN	73B	PL 47B 463	+Barylov, Davidenko, Demidov+ (ITEP)
BURGUN	73	PL 46B 481	+Bertranet, Lesquoy, Muller, Pauli+ (SACL, CERN)
FACKLER	73	PRL 31 847	+Frisch, Martin, Smoot, Sompayrac (MIT)
GJESDAL	73	PL 44B 217	+Presser, Steffen, Steinberger+ (CERN, HEID)
HILL	73	PR D8 1290	+Sakitt, Samios, Burris, Engler - (BNL, CMU)
MALLARY	73	PR D7 1953	+Binnie, Gallivan, Gomez, Peck, Sciulli+ (CIT)
ALITTI	72	PL 39B 568	+Lesquoy, Muller (SACL)
BANNER	72B	PRL 29 237	+Cronin, Hoffman, Knapp, Shochet (PRIN)
JAMES	72	NP B49 1	+Montanet, Paul, Saetre+ (CERN, SACL, OSLO)
JONES	72	NC 9A 151	+Abashian, Graham, Mantsch, Orr, Smith+ (ILL)
METCALF	72	PL 40B 703	+Neuhofer, Niebergall+ (CERN, IPN, WIEN)
MORSE	72B	PRL 28 388	+Nauenberg, Bierman, Sager+ (COLO, PRIN, UMD)
	. 20	25 500	(0000, 11114, 0110)

NAGY	72	NP B47 94	+Telbisz, Vestergombi	(BUDA)
Also	69	PL 30B 498	Bozoki, Fenyves, Gombosi, Nagy+	(BUDA)
SKJEGGEST	. 72	NP B48 343	Skjeggestad, James+ (OSLO, CERN, SACL)
BALTAY	71	PRL 27 1678	+Bridgewater, Cooper, Gershwin, Habi	
Also	71	Nevis 187 Thesis	Cooper	(COLU)
CHO	71	PR D3 1557	+Dralle, Canter, Engler, Fisk+	(CMU, BNL, CASE)
JAMES	71	PL 35B 265		CERN, SACL, OSLO)
MEISNER	71	PR D3 59		(MASA, BNL, YALE)
REPELLIN	71	PL 36B 603	+Wolff, Chollet, Gaillard, Jane+	(ORSA, CERN)
MOFFETT	70	BAPS 15 512	+Gobbi, Green, Hakel, Rosen	(ROCH)
WEBBER	70	PR D1 1967	+Solmitz, Crawford, Aiston-Garnjost	(LRL)
Also	69	UCRL 19226 Thesis	Webber	(LRL)
BANNER	69	PR 188 2033	+Cronin, Liu, Pilcher	(PRIN)
BOHM	69	Thesis	resonant etat rinenes	(AACH)
BOZOKI	69	PL 30B 498	+Fenyves, Gombosi, Nagy+	(BUDA)
DOYLE	69	UCRL 18139 Thesis	remites, dombosi, rangy	(LRL)
GOBBI	69	PRL 22 682	+Green, Hakel, Moffett, Rosen+	(ROCH)
HYAMS	69B	PL 29B 521	+Koch, Potter, VonLindern, Lorenz+	
MORFIN	69	PRL 23 660	+Sinclair	(CERN, MIFIN) (MICH)
STUTZKE	69	PR 177 2009	+Abashian, Jones, Mantsch, Orr, Smit	
DONALD	68B			CERN, IPNP, CDEF)
HILL	68	PR 171 1418	+Robinson, Sakitt+	(BNL, CMU)
BOTT	67	PL 24B 194	Bott-Bodenhausen, DeBouard, Cassel	
ALFF	66B		Alff-Steinberger, Heuer, Kleinknecht+	
BEHR	66	PL 22 540		MILA, PADO, ORSA)
BELLOTTI	66	NC 45A 737	+Pullia, Baldo-Ceolin+	(MILA, PADO, ORSA)
KIRSCH	66	PR 147 939	+Schmidt	
ANDERSON	65	PRL 14 475		(COLU)
BROWN	63	PR 130 769	+Crawford, Golden, Stern, Binford+ +Kadyk, Trilling, Roe+	(LRL, WISC)
CHRETIEN	63	PR 131 2208		(LRL, MICH)
ANDERSON	62B		+ (BRAN, +Crawford+	BROW, HARV, MIT)
BROWN	61	NC 19 1155	+Bryant, Burnstein, Glaser, Kadyk+	(LRL)
BAGLIN	90 01	NC 19 1155 NC 18 1043		(MICH)
COLUMBIA	60B		+Bloch, Brisson, Hennessy+ Schwartz+	(EPOL)
CRAWFORD	59B	PRL 2 266		(COLU)
BOLDT	58B	PRL 2 200 PRL 1 150	+Cresti, Douglass, Good, Ticho+	(LRL)
BOLDI	200	PRE 1 150	+Caldwell, Pal	(MIT)
		OTHE	R RELATED PAPERS	_
TRILLING	65B	UCRL 16473		(LRL)
Updated f	rom 19	965 Argonne Conference,	page 115.	` '
CRAWFORD	62	CERN Conf. 827	· -	(LRL)
FITCH	61	NC 22 1160	+Piroue, Perkins	(PRIN, LASL)
GOOD	61	PR 124 1223	+Matsen, Muller, Piccioni	(LRL)
BIRGE	60	Rochester Conf. 601	+Ely+	(LRL, WISC)
MULLER	60	PRL 4 418	+Birge, Fowler, Good, Piccioni+	(LRL, BNL)
				,,,

$$I(J^P) = \frac{1}{2}(0^-)$$

$m(K_L^0) - m(K_S^0)$

For earlier measurements, beginning with GOOD 61 and FITCH 61, see our our 1986 edition, Physics Letters 170B, 132 (1986).

VALUE (10 ¹⁰ ħ s ⁻¹)	DOCUMENT ID	TECN	COMMENT
0.5351 ± 0.0024 OUR AVERAGE			
$0.5340 \pm 0.00255 \pm 0.0015$	¹ GEWENIGER	74C SPEC	Gap method
$0.5334 \pm 0.0040 \pm 0.0015$	¹ GJESDAL	74 SPEC	Charge asymmetry
0.542 ±0.006	CULLEN	70 CNTR	
• • We do not use the following	data for average	s, fits, limits	, etc. • • •
0.482 ± 0.014	² ARONSON		E=30-110 GeV
0.534 ±0.007	³ CARNEGIE	71 ASPK	Gap method
0.542 ± 0.006	³ ARONSON	70 ASPK	Gap method

¹ These two experiments have a common systematic error due to the uncertainty in the momentum scale, as pointed out in WAHL 89.

 2 ARONSON 82 find that $\Delta(m)$ may depend on the kaon energy.

 3 ARONSON 70 and CARNEGIE 71 use \textit{K}_{S}^0 mean life = $(0.862 \pm 0.006) \times 10^{-10}$ s. We have not attempted to adjust these values for the subsequent change in the K_c^0 mean life or in η_{+-}

KI MEAN LIFE

VALUE (10 ⁻⁸ s) 5.17 ±0.04 OUR FIT 5.15 ±0.04 OUR AVE		DOCUMENT ID		TECN
5.154 ± 0.044	0.4M	VOSBURGH	72	CNTR
5.15 ± 0.14	0.4141	DEVLIN	67	CNTR
• • • We do not use the	ne following	data for average	s, fit	s, limits, etc. • • •
5.0 ±0.5		4 LOWYS	67	HLBC
$6.1 \begin{array}{c} +1.5 \\ -1.2 \end{array}$	1700	ASTBURY	650	CNTR
5.3 ±0.6		FUJII	64	OSPK
$5.1 \begin{array}{c} +2.4 \\ -1.3 \end{array}$	15	DARMON	62	FBC
$8.1 \begin{array}{c} +3.2 \\ -2.4 \end{array}$	34	BARDON	58	CNTR
⁴ Sum of partial deca	y rates.			

 $^{^{21}\, {\}rm GJESDAL}$ 74B uses ${\it K}2\pi,~{\it K}_{\mu3},$ and ${\it K}_{e3}$ decay results, unitarity, and ${\it CPT}.$ Calculates $|(\eta_{000})|=0.26\pm0.20$. We convert to upper limit.

κ_L^0 decay modes						
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level			
Γ1	$3\pi^{0}$	(21.6 ±0.8) %	S=1.5			
	$\pi^{+}\pi^{-}\pi^{0}$	$(12.38\pm0.21)\%$	S=1.5			
Γ3	$\pi^{\pm}\mu^{\mp} u$ Called $K_{\mu 3}$.	[a] $(27.0 \pm 0.4)\%$	S=1.3			
Γ_4	$\pi^-\mu^+ u_\mu$					
Γ_5	$\pi^+ \mu^- \overline{\nu}_{\mu}$					
Γ ₆	$\pi^{\pm} e^{\mp} \nu$ Called K_{e3} .	[a] $(38.7 \pm 0.5)\%$	S=1.4			
Γ_7	$\pi^-e^+ u_e$					
Γ8	$\pi^+ e^- \overline{\nu}_e$					
Γg	2γ	$(5.70\pm0.27)\times10^{-1}$				
Γ10	$\pi^0 2\gamma$	< 2.7 × 10	-6 CL=90%			
Γ_{11}	$\pi^0\pi^\pm e^\mp u$	[a] $(6.2 \pm 2.0) \times 10^{-1}$	-5			
Γ_{12}	$(\pi \mu \text{ atom}) \nu$	$(1.05\pm0.11)\times10^{-1}$	-7			
Γ_{13}	$\pi^{\pm} e^{\mp} \nu_e \gamma$	[b,c] (1.3 ±0.8) %				
Γ_{14}	$\pi^+\pi^-\gamma$	$[b,c]$ $(4.41\pm0.32)\times10^{-1}$	-5			

Charge conjugation × Parity (CP) or Lepton Family number (LF) violating modes, or Flavor-Changing neutral current (FC) modes

		_	-	` ,	
Γ_{15}	$\pi^+\pi^-$	CP	(2.03±0	$(0.04) \times 10^{-3}$	S=1.2
۲ ₁₆	$\pi^{0}\pi^{0}$	CP		0.35) × 10 ⁻⁴	S=1.8
Γ ₁₇	$e^{\pm}\mu^{\mp}$	LF	[a] < 2.2		CL=90%
Γ_{18}	$\mu^+\mu^-$	FC	(6.3 ±	l.1) × 10 ⁻⁹	
	$\mu^+\mu^-\gamma$	FC	(2.8 ±	2.8) × 10 ⁷	
Γ20	$\pi^{0}\mu^{+}\mu^{-}$	FC	< 1.2	× 10 ⁻⁶	CL=90%
	e^+e^-	FC	< 3.2	× 10 ⁻¹⁰	CL=90%
Γ_{22}	$e^+e^-\gamma$	FC	(1.7 ±	$0.9) \times 10^{-5}$	
	$\pi^0 e^+ e^-$	FC	< 4	× 10 ⁻⁸	CL=90%
Γ ₂₄	$\pi^{+}\pi^{-}e^{+}e^{-}$	FC	< 2.5	× 10 ⁻⁶	CL=90%
Γ_{25}	$\mu^{+}\mu^{-}e^{+}e^{-}$	FC	< 4.9	× 10 ⁻⁶	CL=90%
Γ_{26}	e+ e- e+ e-	FC	< 2.6	× 10 ⁻⁶	CL=90%

- [a] Value is for the sum of the charge states indicated.
- [b] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [c] See the Listings below for the energy limits used in this measurement.

CONSTRAINED FIT INFORMATION

An overall fit to the mean life, 4 partial widths, and 12 branching ratios uses 53 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=$ 54.8 for 46 degrees of

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (10^8 s^{-1})	Scale factor
Γ ₁	$3\pi^{0}$	0.0419±0.0016	1.4
Γ_2	$\pi^{+}\pi^{-}\pi^{0}$	0.0239 ± 0.0004	1.4
Γ3	$\pi^{\pm}\mu^{\mp}\nu$ Called $K_{\mu 3}$.	[a] 0.0522 ± 0.0008	1.2
Γ ₆		[a] 0.0749 ± 0.0011	1.3
Г9	2γ	$(1.10 \pm 0.05) \times 10^{-4}$	1.9
Γ_{15}	$\pi^+\pi^-$	$(3.92 \pm 0.08) \times 10^{-4}$	1.2
Γ ₁₆	$\pi^{0}\pi^{0}$	$(1.76 \pm 0.07) \times 10^{-4}$	1.7

KI DECAY RATES

$\Gamma(3\pi^{0})$						Γ1
VALUE (106 s-1)	EVTS	DOCUMENT ID		TECN	COMMENT	
4.19±0.16 OUR F	IT Error inclu	des scale factor of	1.4.			
$5.22^{+1.03}_{-0.84}$	54	BEHR	66	HLBC	Assumes CP	
$\Gamma(\pi^+\pi^-\pi^0)$						Γ2
VALUE $(10^6 s^{-1})$	EVTS	DOCUMENT ID		TECN	COMMENT	
2.39±0.04 OUR F	IT Error inclu	des scale factor of	f 1.4.			
2.38±0.09 OUR A	VERAGE					
$2.32^{+0.13}_{-0.15}$	192	BALDO	75	HLBC	Assumes CP	
2.35 ± 0.20	180	5 JAMES	72	HBC	Assumes CP	
2.71 ± 0.28	99	CHO	71	DBC	Assumes CP	
2.12 ± 0.33	50	MEISNER	71	HBC	Assumes CP	
2.20 ± 0.35	53	WEBBER	70	HBC	Assumes CP	
$2.62^{+0.28}_{-0.27}$	136	BEHR	66	HLBC	Assumes CP	
• • • We do not i	use the followin	g data for average	es, fit	s, limits	, etc. • • •	
2.5 ±0.3	98	5 JAMES	71	нвс	Assumes CP	
3.26 ± 0.77	18	ANDERSON	65	HBC		
1.4 ± 0.4	14	FRANZINI		HBC		
		I determined by t				
-(+-0)	$\sqrt{r} = r + r = 1$	D		·/_+ _=	For this to	acan the

 $\Gamma(\pi^+\pi^-\pi^0)/\left[\Gamma(\pi^+\pi^-\pi^0)+\Gamma(\pi^\pm\mu^\mp
u)+\Gamma(\pi^\pm\,e^\mp
u)\right]$. For this reason the discrepancy between the $\Gamma(\pi^+\,\pi^-\,\pi^0)$ measurements does not affect the scale factor of the overall fit.

 5 JAMES 72 is a final measurement and includes JAMES 71.

$\Gamma(\pi^{\pm}\mu^{\mp}\nu)$				Γ3
VALUE (10 ⁶ s ⁻¹)	EVTS	DOCUMENT ID	TECN	
5 22 ± 0 08 OHR FIT	Frror inclu	ides scale factor of 1.2		

 $4.54 + 1.24 \\
-1.08$ LOWYS 19

 $\Gamma(\pi^{\pm}e^{\mp}\nu)$ Γ_6 TECN COMMENT 7.7 ±0.5 OUR AVERAGE 7.81 ± 0.56 620 CHAN 71 HBC

 $7.52^{+0.85}_{-0.72}$ AUBERT 65 HLBC $\Delta S = \Delta Q, CP$ assumed

 $\Gamma(\pi^+\pi^-\pi^0) + \Gamma(\pi^{\pm}\mu^{\mp}\nu) + \Gamma(\pi^{\pm}e^{\mp}\nu)$ $(\Gamma_2 + \Gamma_3 + \Gamma_6)$ $K_L^0 \rightarrow \text{charged}.$

 $\frac{\textit{VALUE} \ (10^6 \ s^{-1})}{\textbf{15.10 \pm 0.19 OUR FIT}} \quad \frac{\textit{EVTS}}{\textit{Error}} \quad \frac{\textit{DOCUMENT ID}}{\textit{Includes scale factor of } 1.3.}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

AUERBACH 66B OSPK

 $\Gamma(\pi^{\pm}\mu^{\mp}\nu) + \Gamma(\pi^{\pm}e^{\mp}\nu)$ $(\Gamma_3 + \Gamma_6)$ DOCUMENT ID TECN COMMENT EVTS

12.70±0.18 OUR FIT Error includes scale factor of 1.3. 11.9 ±0.6 OUR AVERAGE Error includes scale factor of 1.2. $\begin{array}{ccc} K^+ \, \rho \rightarrow & K^0 \, \rho \pi^+ \\ K^- \, \rho \rightarrow & n \overline{K}^0 \\ K^+ \, n \rightarrow & K^0 \, \rho \end{array}$ 6 BURGUN 72 HBC 410 12.4 ± 0.7 6 WEBBER $13.1\ \pm1.3$ 252 71 HBC 6,7 CHO 11.6 ± 0.9 393 70 DBC ⁶ FRANZINI

65 HBC

 $9.85 + 1.15 \\
-1.05$ • • • We do not use the following data for averages, fits, limits, etc. • • •

 $\begin{array}{ccc} \kappa^- \, p \to & n \overline{K}^0 \\ \kappa^+ \, n \to & \kappa^0 \, p \end{array}$ 6 MANN 8.47 ± 1.69 126 72 HBC 7 HILL 10.3 ± 0.8 335 67 DBC

⁶ Assumes $\Delta S = \Delta Q$ rule.

 0.24 ± 0.08

⁷CHO 70 includes events of HILL 67.

109

KI BRANCHING RATIOS

$\Gamma(3\pi^0)/\Gamma(\pi^+\pi^-$	π^0				Γ_1/Γ_2
VALUE	EVT5	DOCUMENT ID		TECN	COMMENT
1.75 ± 0.08 OUR FI	T Error inclu	des scale factor of	1.4.		
1.81 ± 0.13 OUR AV	/ERAGE				
1.80 ± 0.13	1010	BUDAGOV	68	HLBC	
2.0 ± 0.6	188	ALEKSANYAN	√ 64B	FBC	
• • • We do not us	se the followin	g data for average	s, fits,	, limits,	etc. • • •
1.65 ± 0.07	883	BARMIN	72B	HLBC	Error statistical only
$\Gamma(3\pi^0)/[\Gamma(\pi^+\pi$	$-\pi^0$) + $\Gamma(\tau$	$r^{\pm}\mu^{\mp}\nu) + \Gamma(\pi$	±e∓	$\nu)]$	$\Gamma_1/(\Gamma_2+\Gamma_3+\Gamma_6)$
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	$\Gamma_1/(\Gamma_2+\Gamma_3+\Gamma_6)$ COMMENT
· // L ·	<u>EVTS</u>	DOCUMENT ID		TECN	-, ,,
VALUE	FIT Error in	DOCUMENT ID		TECN	-, ,,
0.277±0.013 OUR	FIT Error in	DOCUMENT ID	of 1.5	<u>TÉCN</u> 5.	-, ,,
0.277±0.013 OUR 0.260±0.011 OUR	FIT Error inc	<u>DOCUMENT ID</u> cludes scale factor	of 1.5	TÉCN 5. HLBC	COMMENT

ANIKINA

10 LUERS

 $^{10}\text{This}$ mode not measured independently from $\Gamma(\pi^+\pi^-\pi^0)/\left[\Gamma(\pi^+\pi^-\pi^0)+\Gamma(\pi^\pm\mu^\mp\nu)+\Gamma(\pi^\pm\pi^\mp\nu)\right]$ and $\Gamma(\pi^\pm\pi^\mp\nu)/\left[\Gamma(\pi^+\pi^-\pi^0)+\Gamma(\pi^\pm\mu^\mp\nu)+\Gamma(\pi^\pm\mu^\mp\nu)+\Gamma(\pi^\pm\pi^\mp\nu)\right]$

64 HBC

251

 0.356 ± 0.07

 $\lceil (\pi^{\pm} e^{\mp} \nu) \rceil$.

```
\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}
                                                                                                          \Gamma_2/\Gamma
                                                                                                                             \Gamma(\pi^{\pm}e^{\mp}\nu)/[\Gamma(\pi^{+}\pi^{-}\pi^{0})+\Gamma(\pi^{\pm}\mu^{\mp}\nu)+\Gamma(\pi^{\pm}e^{\mp}\nu)]
                                                                                                                                                                                                                    \Gamma_6/(\Gamma_2+\Gamma_3+\Gamma_6)
VALUE DOCUMENT ID

0.1238±0.0021 OUR FIT Error includes scale factor of 1.5.
                                                                                                                             VALUE EVTS DOCUMENT ID TECN

0.4958±0.0032 OUR FIT Error includes scale factor of 1.1.
                                                                                                                             \bullet \,\bullet\, We do not use the following data for averages, fits, limits, etc. \,\bullet\, \,\bullet\,
 \Gamma(\pi^{+}\pi^{-}\pi^{0})/[\Gamma(\pi^{+}\pi^{-}\pi^{0}) + \Gamma(\pi^{\pm}\mu^{\mp}\nu) + \Gamma(\pi^{\pm}e^{\mp}\nu)] \Gamma_{2}/(\Gamma_{2}+\Gamma_{3}+\Gamma_{6})
                                                                                                                             0.498 \pm 0.052
                                                                                                                                                             500
                                                                                                                                                                           KULYUKINA 68 CC
VALUE EVTS DOCUMENT ID TECN COMMENT

0.1586±0.0026 OUR FIT Error includes scale factor of 1.6.

0.1588±0.0024 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram
                                                                                                                             0.46 \begin{array}{c} +0.08 \\ -0.10 \end{array}
                                                                                                                                                             202
                                                                                                                                                                           ASTBURY
                                                                                                                                                                                              65 CC
                                                                                                                             0.487 ±0.05
                                                                                                                                                             153
                                                                                                                                                                           LUERS
                                                                                                                                                                                               64 HBC
                                              below.
                                                                                                                             0.46 \pm 0.11
0.163 \pm 0.003
                               6499
                                              CHO
                                                                  77 HBC
0.1605 \pm 0.0038
                               1590
                                               ALEXANDER 73B HBC
                                                                                                                             \Gamma(\pi^{\pm}e^{\mp}\nu)/[\Gamma(\pi^{\pm}\mu^{\mp}\nu)+\Gamma(\pi^{\pm}e^{\mp}\nu)]
0.146 \pm 0.004
                               3200
                                               BRANDENB... 73 HBC
                                                                                                                                                                                                                           \Gamma_6/(\Gamma_3+\Gamma_6)
0.159 \pm 0.010
                                 558
                                              EVANS
                                                                  73 HLBC
                                                                                                                                                          EVTS
                                                                                                                                                                          DOCUMENT ID TECN
                                                                                                                             0.5893±0.0033 OUR FIT
0.167 \pm 0.016
                               1402
                                               KULYUKINA
                                                                 68
                                                                       CC
0.161 \pm 0.005
                                               HOPKINS
                                                                  67 HBC
                                                                                                                             • • • We do not use the following data for averages, fits, limits, etc. • • •
0.162 \pm 0.015
                                 126
                                               HAWKINS
                                                                       HBC
                                                                                                                             0.415 \pm 0.120
                                                                                                                                                             320
                                                                                                                                                                           ASTIER
0.159 \pm 0.015
                                              ASTBURY
                                 326
                                                                  65B CC
0.178 \pm 0.017
                                 566
                                              GUIDONI
                                                                  65 HBC
                                                                                                                             \left[\Gamma(\pi^{\pm}\mu^{\mp}\nu) + \Gamma(\pi^{\pm}e^{\mp}\nu)\right]/\Gamma_{\text{total}}
                                                                                                                                                                                                                             (\Gamma_3 + \Gamma_6)/\Gamma
 • • • We do not use the following data for averages, fits, limits, etc. • •
                                                                                                                                                                           DOCUMENT ID
0.15 \begin{array}{c} +0.03 \\ -0.04 \end{array}
                                                                                                                             0.656±0.007 OUR FIT Error includes scale factor of 1.5.
                                  66
                                              ASTBURY
                                                                  65 CC
                                                                                 See HOPKINS 67
0.144 \pm 0.004
                               1729
                                              HOPKINS
                                                                  65 HBC
                                                                                                                             \Gamma(2\gamma)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                     \Gamma_9/\Gamma
0.151 \pm 0.020
                                  79
                                              ADAIR
                                                                  64 HBC
                                                                                                                             VALUE (units 10-4)
0.157 \begin{array}{l} +0.03 \\ -0.04 \end{array}
                                                                                                                                                            EVTS
                                                                                                                                                                          DOCUMENT ID
                                                                                                                                                                                                    TECN COMMENT
                                  75
                                              LUERS
                                                                  64 HBC
                                                                                                                             5.70±0.27 OUR FIT Error includes scale factor of 1.9.
0.185 \pm 0.038
                                  59
                                              ASTIER
                                                                  61 CC
                                                                                                                             4.9 ±0.5 OUR AVERAGE
                                                                                                                             4.54 \pm 0.84
                                                                                                                                                                       11 BANNER
                                                                                                                                                                                               728 OSPK
              WEIGHTED AVERAGE
                                                                                                                                                                           ENSTROM
                                                                                                                             4.5 \pm 1.0
                                                                                                                                                               23
                                                                                                                                                                                              71 OSPK K_L^0 1.5–9 GeV/c
             0.1588 \pm 0.0024 (Error scaled by 1.4)
                                                                                                                             5.5 \pm 1.1
                                                                                                                                                               90
                                                                                                                                                                           KUNZ
                                                                                                                                                                                              68 OSPK Norm.to 3 π(C+N)
                                                                                                                             6.7 \pm 2.2
                                                                                                                                                               32
                                                                                                                                                                           TODOROFF 67 OSPK Repl. CRIEGEE 66
                                                       Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our best values.
                                                                                                                             \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet
                                                                                                                                                                      12 REPELLIN
                                                                                                                             5.0 \pm 1.0
                                                                                                                                                                                              71 OSPK
                                                                                                                             7.4 ±1.6
                                                                                                                                                                      <sup>13</sup> CRONIN
                                                                                                                                                                                               67 OSPK
                                                                                                                                                                      <sup>14</sup> CRIEGEE
                                                       obtained from a least-squares constrained fit utilizing measurements of other (related)
                                                                                                                                                                                              66 OSPK
                                                                                                                              ^{11} This value uses (\eta_{00}/\eta_{+-})^2=1.05\pm0.14. In general, \Gamma(2\gamma)/\Gamma_{\mbox{total}}=\left[\left(4.32\pm0.55\right)\times10^{-2}\right]
                                                       quantities as additional information.
                                                                                                                                 10^{-4} [(\eta_{00}/\eta_{+-})^2].
                                                                                                                              ^{12}\mathrm{Assumes} regeneration amplitude in copper at 2 GeV is 22 mb. To evaluate for a given
                                                                                                                                 regeneration amplitude and error, multiply by (regeneration amplitude/22mb)^2.
                                                                                      77 HBC
                                                                 CHO
                                                                                                                              <sup>13</sup>CRONIN 67 replaced by KUNZ 68.
                                                                 ALEXANDER
                                                                                      738 HBC
                                                                                                        0.2
                                                                                                                              14 CRIEGEE 66 replaced by TODOROFF 67.
                                                                 BRANDENB ...
                                                                                      73 HBC
                                                                 FVANS
                                                                                      73
                                                                                           HLBC
                                                                                                                            \Gamma\big(2\gamma\big)/\Gamma\big(3\pi^0\big)
                                                                                                                                                                                                                                   \Gamma_9/\Gamma_1
                                                                 KULYUKINA
                                                                                      68
                                                                                           CC
                                                                                                        0.3
                                                                                                         0.2
                                                                                           HBC
                                                                                                                            VALUE (units 10<sup>-3</sup>)
                                                                 HOPKINS
                                                                                      67
                                                                                                                                                            EVTS
                                                                                                                                                                          DOCUMENT ID
                                                                                                                                                                                                   TECN COMMENT
                                                                                                                             2.64±0.16 OUR FIT Error includes scale factor of 1.7.
                                                                 HAWKINS
                                                                                      66
                                                                                                         0.1
                                                                                           HBC
                                                                                                                             2.24 ± 0.22 OUR AVERAGE
                                                                 ASTRURY
                                                                                      65B CC
                                                                                                        0.0
                                                                 GUIDONI
                                                                                      65 HBC
                                                                                                         1.3
                                                                                                                             2.13 \pm 0.43
                                                                                                                                                              28
                                                                                                                                                                           BARMIN
                                                                                                                                                                                              71 HLBC
                                                                                                       14 2
                                                                                                                             2.24 \pm 0.28
                                                                                                                                                                           BANNER
                                                                                                                                                                                              69 OSPK
                                                                        (Confidence Level = 0.077)
                                                                                                                                                                           ARNOLD
                                                                                                                             2.5 \pm 0.7
                                                                                                                                                              16
                                                                                                                                                                                              68B HLBC Vacuum decay
                                                                                                                             \Gamma(2\gamma)/\Gamma(\pi^0\pi^0)
                                                  0.18
                                                                0.20
                                                                                                                                                                                                                                  \Gamma_9/\Gamma_{16}
                                                                                                                            <u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>T</u>
0.627 ± 0.019 OUR FIT Error includes scale factor of 2.2.
            \Gamma(\pi^+\pi^-\pi^0)/[\Gamma(\pi^+\pi^-\pi^0) + \Gamma(\pi^{\pm}\mu^{\mp}\nu) + \Gamma(\pi^{\pm}e^{\mp}\nu)]
                                                                                                                             0.632 \pm 0.004 \pm 0.008
                                                                                                                                                                           BURKHARDT 87 CALO
\Gamma(\pi^{\pm}\mu^{\mp}\nu)/\Gamma(\pi^{\pm}e^{\mp}\nu)
                                                                                                       \Gamma_3/\Gamma_6
                                                                                                                            \Gamma\big(\pi^0\,2\gamma\big)/\Gamma_{\mathsf{total}}
                                                                                                                                                                                                                                   \Gamma_{10}/\Gamma
DOCUMENT ID TECN COMMENT
                                                                                                                             VALUE (units 10-6) CL% EVTS
                                                                                                                                                                          DOCUMENT ID
0.697±0.010 OUR AVERAGE
                                                                                                                             < 2.7
                                                                                                                                                   90
                                                                                                                                                                          PAPADIMITR...89 CALO
0.702 \pm 0.011
                                33k
                                              CHO
                                                                 80 HBC
                                                                                                                             • • • We do not use the following data for averages, fits, limits, etc. • • •
0.662 \pm 0.037
                                10k
                                              WILLIAMS
                                                                 74 ASPK
                                                                                                                                                   90
                                                                                                                                                               0
                                                                                                                                                                          BANNER
                                                                                                                                                                                          69 OSPK
                                                                                                                             <230
                                              BRANDENB... 73 HBC
0.741 \pm 0.044
                               6700
0.662 \pm 0.030
                               1309
                                              EVANS
                                                                 73 HLBC
                                                                                                                            \Gamma(\pi^0\pi^{\pm}e^{\mp}\nu)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                    \Gamma_{11}/\Gamma
                                                                 68 HLBC
0.71 \pm 0.05
                                770
                                              BUDAGOV
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                                                                                                             VALUE (units 10-3) CL% EVTS
                                                                                                                                                                          DOCUMENT ID
0.68 \pm 0.08
                              3548
                                              BASILE
                                                                 70 OSPK
                                                                                                                               0.062 \pm 0.020
                                                                                                                                                              16
                                                                                                                                                                          CARROLL
                                                                                                                                                                                             80c SPEC
                                           8 BEILLIERE

    • • We do not use the following data for averages, fits, limits, etc. • •
0.71 \pm 0.04
                                569
                                                                 69 HLBC
0.648 \pm 0.030
                               1309
                                              EVANS
                                                                 69 HLBC Repl. by EVANS 73
                                                                                                                                                                      <sup>15</sup> DONALDSON 74 SPEC
                                                                                                                             < 2.2
                                                                                                                                                  90
                                           9 KULYUKINA
0.67 \pm 0.13
                                                                 68 CC
                                                                                                                              <sup>15</sup> DONALDSON 74 uses K_L^0 \rightarrow \pi^+\pi^-\pi^0/(\text{all } K_L^0) decays = 0.126.
                                              DEBOUARD
                                                                       OSPK
0.82 \pm 0.10
                                                                 67
                                              HAWKINS
                                                                       HBC
0.7 \pm 0.2
                                273
                                                                 67
                                                                                                                            \Gamma((\pi \mu \text{ atom}) \nu)/\Gamma(\pi^{\pm} \mu^{\mp} \nu)
                                                                                                                                                                                                                                  \Gamma_{12}/\Gamma_3
0.81 \pm 0.08
                                              HOPKINS
                                                                 67 HBC
0.81 ±0.19
                                              ADAIR
                                                                 64 HBC
                                                                                                                             VALUE (units 10<sup>-7</sup>)
                                                                                                                                                      EVTS
                                                                                                                                                                          DOCUMENT ID
                                                                                                                                                                                                    TECN
  ^8 BEILLIERE 69 is a scanning experiment using same exposure as BUDAGOV 68. ^9 KULYUKINA 68 \Gamma(\pi^\pm\mu^\mp\nu)/\Gamma(\pi^\pm e^\mp\nu) is not measured independently from
                                                                                                                                                                      16 ARONSON
                                                                                                                            3.90 \pm 0.39
                                                                                                                                                            155
                                                                                                                                                                                             86 SPEC

    •    • We do not use the following data for averages, fits, limits, etc.    •    •
    \Gamma(\pi^{+}\pi^{-}\pi^{0})/[\Gamma(\pi^{+}\pi^{-}\pi^{0})^{+} + \Gamma(\pi^{\pm}\mu^{\mp}\nu) + \Gamma(\pi^{\pm}e^{\mp}\nu)] and \Gamma(\pi^{\pm}e^{\mp}\nu)/[\Gamma(\pi^{+}\pi^{-}\pi^{0})^{+}]
                                                                                                                            seen
                                                                                                                                                             18
                                                                                                                                                                          COOMBES 76 WIRE
     \left[\Gamma(\pi^{+}\pi^{-}\pi^{0}) + \Gamma(\pi^{\pm}\mu^{\mp}\nu) + \Gamma(\pi^{\pm}e^{\mp}\nu)\right].
                                                                                                                             ^{16}\,\text{ARONSON} 86 quote theoretical value of (4.31 \pm 0.08) \times 10 ^{-7} .
\Gamma(\pi^{\pm}\mu^{\mp}\nu)/[\Gamma(\pi^{+}\pi^{-}\pi^{0}) + \Gamma(\pi^{\pm}\mu^{\mp}\nu) + \Gamma(\pi^{\pm}e^{\mp}\nu)] - \Gamma_{3}/(\Gamma_{2}+\Gamma_{3}+\Gamma_{6})
                                                                                                                            \Gamma(\pi^{\pm} e^{\mp} \nu_e \gamma) / \Gamma(\pi^{\pm} e^{\mp} \nu)
                                                                                                                                                                                                                                  \Gamma_{13}/\Gamma_{6}
                                             DOCUMENT ID
                                                                                                                                                        EVTS
\begin{array}{c} \underline{\textit{VALUE}} & \underline{\textit{EVTS}} \\ \textbf{0.3456} \pm \textbf{0.0030} \ \textbf{OUR} \ \textbf{FIT} \end{array}
                                                                                                                            VALUE (units 10<sup>-2</sup>)
                                                                                                                                                                          DOCUMENT ID
                                                                                                                                                                                                  TECN COMMENT
                                                                                                                            3.3 \pm 2.0
                                                                                                                                                              10
                                                                                                                                                                          PEACH
                                                                                                                                                                                              71 HLBC \gamma KE >15 MeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                         10 KULYUKINA 68 CC
0.335\ \pm0.055
                               330
0.39 \begin{array}{c} +0.08 \\ -0.10 \end{array}
                                        <sup>10</sup> ASTBURY
```

 0.32 ± 0.15

 0.90 ± 0.30

 0.46 ± 0.11

not seen

$(\pi^+\pi^-\gamma)/\Gamma_{total}$				Γ_{14}/Γ
LUE (units 10 ⁻³)	CL% EV7	S DOCUMEN	T IDTECN	COMMENT
0.0441±0.0032	106	17		
We do not use to	the followin			
0.0152 ± 0.0016	51	6 18 CARROL	L 80B SPE	C E _γ >20 MeV
0.0289 ± 0.0028	54			
3.2	90	BOBISUT		C E $_{\gamma}$ >40 MeV
0.062 ± 0.021			SON 74c SPE	
0.46	90	WOO	74 SPE	
0.4 5.0	90	THATCH		K E $_{\gamma}$ 20–170 MeV C E $_{\gamma}$ 40–130 MeV
3.0		0 BELLOT		K E _γ 120 MeV
15.0		ANIKINA		10 Ly 120 MeV
Both components.	LICAC KO			Λ 1239
Internal Bremsstra			(L) decays =	0.1207.
Direct γ emission				
Uses $\kappa_L^0 \rightarrow \pi^+\pi^-$	$-\pi^0/(all$	K_0^0) decays = 0.13	26.	
COSCO ALE	/ (=	L) ******		
$(\pi^+\pi^-)/\Gamma_{total}$				Γ ₁₅ /Γ
Violates CP con	servation.			
LUE (units 10 ⁻³)		DOCUMENT ID		
3 ±0.04 OUR FI	F Error in			
101 ± 0.065		²¹ ETAFIT	90	0 0
This ETAFIT value	is compu	ted from fitted val	ies of $ \eta_{+-} $, the	ne K_{L}^{0} and K_{S}^{0} lifetimes,
		nching fraction.	See the discussi	on in the "Note on CP
violation in \mathcal{K}_L^0 de	cay."			
+ -)/=/ + -	0\			- /-
$(\pi^+\pi^-)/\Gamma(\pi^+\pi^-)$				Γ_{15}/Γ_2
Violates CP con	FVTS	DOCUMENT ID	TECN (OMMENT
LUE (units 10 ⁻²) 539±0.032 OUR FI	T Error in	ncludes scale factor	of 1.1.	
64 ±0.04	4200	MESSNER	73 ASPK 1	$g_{+-} = 2.23$
$(\pi^+\pi^-)/[\Gamma(\pi^{\pm}\mu$	$\iota^{\mp}\nu)+1$	$[(\pi^{\pm} e^{\mp} \nu)]$		$\Gamma_{15}/(\Gamma_3+\Gamma_6)$
Violates CP con				
LUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN C	OMMENT
09±0.06 OUR FIT		udes scale factor o	11.2.	
09±0.10 OUR AVE 13±0.14	1687	COUPAL	85 SPEC 7	$\eta_{+-} = 2.28 \pm 0.06$
04 ± 0.14	2703	DEVOE		$\eta_{+-} = 2.25 \pm 0.05$
• • We do not use				
	309	22 DEBOUARD		n ₊₋ =2.00 ± 0.09
51 ± 0.23 35 ± 0.19	525	22 FITCH		$\eta_{+-} = 2.00 \pm 0.09$ $\eta_{+-} = 1.94 \pm 0.08$
- Old experiments ex	Cluded Iro	m nt. See subsection	of those ove	ction on "PARAMETERS
discrepancy.	ECAY DE	low for average η_{\dashv}	or these exp	eriments and for note on
$(\pi^{+}\pi^{-})/[\Gamma(\pi^{+}\pi^{-})]$	$(\pi^{-}\pi^{0}) +$	$\Gamma(\pi^{\pm}\mu^{\mp}\nu)$ +	$\lceil (\pi^{\pm} e^{\mp} \nu) \rceil$	$\Gamma_{15}/(\Gamma_2+\Gamma_3+\Gamma_6)$
Violates CP con	servation.			
LUE (units 10 ⁻³)	EVTS		TECN C	COMMENT
60 ±0.05 OUR FI				
• We do not use				
60 ±0.07	4200	23 MESSNER		$\eta_{+-} = 2.23 \pm 0.05$
93 ±0.26		²⁴ BASILE ²⁴ BOTT		$\eta_{+-} = 1.92 \pm 0.13$
93 ± 0.080		24 BOTT	66 OSPK	$\eta_{+-} = 1.95 \pm 0.04$
8 ± 0.35	54	24 GALBRAITH	65 OSPK	$\eta_{+-} = 1.99 \pm 0.16$
± 0.4	45	_		$\eta_{+-} = 1.95 \pm 0.20$
	is $\Gamma(\pi^+\pi^-$	$^{-})/\Gamma(\pi^{+}\pi^{-}\pi^{0})$ N	1ESSNER 73, b	ut with different normal-
ization.		6 1 6 1 1 1 1 1 1 1 1 1 1 		
Old experiments e	cluded fro	m fit. See subsection	on on η_{+-} in sec	ction on "PARAMETERS
	ECAY" be	elow for average η_{\dashv}	of these exp	eriments and for note on
discrepancy.				
$(\pi^0\pi^0)/\Gamma_{\text{total}}$				Γ ₁₆ /Γ
Violates CP cor	servation.			. 10/ •
LUE (units 10 ⁻³)	EVTS	DOCUMENT ID		COMMENT
909±0.035 OUR FI	T Error i			
• We do not use	the follow		es, fits, limits, e	etc. • • •
5 ± 0.8	189	²⁵ GAILLARD	69 OSPK	$\eta_{00} = 3.6 \pm 0.6$
+1.5 -1.2	7	²⁶ CRIEGEE	66 OSPK	
			_	
⁵ Latest result of th				
⁶ CRIEGEE 66 expe				
			-	
$(\pi^0\pi^0)/\Gamma(3\pi^0)$				Γ_{16}/Γ_{1}
Violates CP cor		DOCUMENT :	7564	COMMENT
LUE (units 10 ⁻²)	EVTS	DOCUMENT ID	r of 1 6	COMMENT
ואח ביו חוום בי			, OI 1.U.	
				See the ideogram below
44 ±0.09 OUR A	/ERAGE	Error includes scal	e factor of 1.6.	See the ideogram below. $m_0 = 3.8 \pm 0.5$
420±0.023 OUR FI 44 ±0.09 OUR AV 21 ±0.30 37 ±0.08			e factor of 1.6. 76 OSPK	See the ideogram below. $\eta_{00} = 3.8 \pm 0.5$ $\eta_{00} = 2.02 \pm 0.23$

²⁸ FAISSNER

BANNER

BARTLETT

172

```
    • • We do not use the following data for averages, fits, limits, etc.

                                         <sup>27</sup> CENCE
                                                                 69 OSPK \eta_{00} = 3.7 \pm 0.5
                               133
1.31 \pm 0.31
                                         <sup>29</sup> CRONIN
                                                                 67 OSPK \eta_{00} = 4.9 \pm 0.5
1.89 \pm 0.31
                                109
                                         <sup>29</sup> CRONIN
                                                                 678 OSPK \eta_{00} = 3.92 \pm 0.3
1.36 \pm 0.18
 ^{27} CENCE 69 events are included in REY 76. ^{28} FAISSNER 70 contains same 2\pi^0 events as GAILLARD 69 \Gamma(\pi^0\,\pi^0)/\Gamma_{\rm total}
 <sup>29</sup>CRONIN 67B is further analysis of CRONIN 67, now both withdrawn.
            WEIGHTED AVERAGE 0.44 ± 0.09 (Error scaled by 1.6)
                                                      Values above of weighted average, error,
                                                     and scale factor are based upon the data in
this ideogram only. They are not neces-
sarily the same as our "best" values,
obtained from a least-squares constrained fit
                                                      utilizing measurements of other (related) quantities as additional information.
                                                                                     76 OSPK
70 HLBC
                                                                                                        6.6
0.7
                                                                BARMIN
                                                                BUDAGOV
                                                                                     70
                                                                                          HLBC
                                                                                                        0.6
                                                                FAISSNER
                                                                                           OSPK
                                                                BANNER
                                                                                           OSPK
                                                                                                       0.0
                                                                                                      10.4
                                                                       (Confidence Level
                                                                                                  = 0.035)
           0.0
                                                                2.0
                                                                              2.5
            \Gamma(\pi^0\pi^0)/\Gamma(3\pi^0) (units 10^{-2})
\Gamma(\pi^0\pi^0)/\Gamma(\pi^+\pi^-)
                                                                                                    \Gamma_{16}/\Gamma_{15}
        Violates CP conservation.
VALUE DOCUMENT ID

0.448 ±0.015 OUR FIT Error includes scale factor of 2.4.
                                          30 ETAFIT
0.4518 \pm 0.0066
                                                                 90
  ^{30}\,\text{This} ETAFIT value is computed from fitted values of |\eta_{00}\>/\>\eta_{+-}|\> and the \Gamma(K_S^0\>\to
     \pi^+\pi^-)/\Gamma(K_S^0\to\pi^0\pi^0) branching fraction. See the discussion in the "Note on CP"
     violation in K_I^0 decay."
 \Gamma(e^{\pm}\,\mu^{\mp})/\Gamma_{\rm total}  Test of lepton family number conservation.
                                                                                                       \Gamma_{17}/\Gamma
 VALUE (units 10<sup>-10</sup>) CL%
                                              DOCUMENT ID
                                                                       TECN COMMENT
 < 2.2
                                90
                                              MATHIAZHA...89 SPEC
 • • • We do not use the following data for averages, fits, limits, etc. • • •
                                                              89 SPEC
 < 4.3
                                90
                                              INAGAKI
                                              SCHAFFNER 89 SPEC
 < 19
                                90
                                                                 88 SPEC
 <110
                                90
                                              COUSINS
                                              GREENLEE
                                                                                 Repl. by
SCHAFFNER 89
 < 67
                                90
                                                                 88 SPEC
                                          ^{31}\,\mathrm{CLARK}
                                                                 71 ASPK
  ^{31} Possible (but unknown) systematic errors. See note on CLARK 71 \Gamma(\mu^+\;\mu^-)\,/\Gamma(\pi^+\;\pi^-)
 \Gamma(e^{\pm}\mu^{\mp})/\big[\Gamma(\pi^{+}\pi^{-}\pi^{0}) + \Gamma(\pi^{\pm}\mu^{\mp}\nu) + \Gamma(\pi^{\pm}e^{\mp}\nu)\big]  Test of lepton family number conservation.
 VALUE (units 10<sup>-4</sup>) CL%
                                              DOCUMENT ID
 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet
 < 0.1
                                90
                                              BOTT-...
                                                                 67 OSPK
 < 0.08
                                 90
                                              FITCH
                                                                  67 OSPK
                                              CARPENTER 66 OSPK
                                              ANIKINA
 \Gamma(\mu^+\mu^-)/\left[\Gamma(\pi^+\pi^-\pi^0)+\Gamma(\pi^\pm\mu^\mp\nu)+\Gamma(\pi^\pm e^\mp\nu)\right] \Gamma_{18}/(\Gamma_2+\Gamma_3+\Gamma_6)  Test for \Delta S=1 weak neutral current. Allowed by higher-order electroweak interaction.
 VALUE (units 10<sup>-6</sup>) CL%
                                              DOCUMENT ID TECN
 • • • We do not use the following data for averages, fits, limits, etc. • •
  < 2.0
                                90
                                              BOTT-...
                                                                  67 OSPK
  < 35.0
                                                                  67 OSPK
                                               FITCH
  <250.0
                                 90
                                               ALFF-
                                                                  66B OSPK
  <100.0
                                               ANIKINA
                                                                  65 CC
 \Gamma(\mu^+\mu^-)/\Gamma(\pi^+\pi^-) \\ \text{Test for } \Delta S = 1 \text{ weak neutral current. Allowed by higher-order electroweak interaction.}
 2.8 \ \pm 0.3 \ \pm 0.2
                                        87
                                                    MATHIAZHA...89B SPEC
```

 $4.0 \begin{array}{c} +1.4 \\ -0.9 \end{array}$

 $4.2 \begin{array}{c} +5.1 \\ -2.6 \end{array}$

 $5.8 \begin{array}{c} +2.3 \\ -1.5 \end{array}$

 $\eta_{00} = 1.9 \pm 0.5$

 $\eta_{00} = 3.2 \pm 0.5$

 $\eta_{00} = 2.2 \pm 0.3$

See η_{00} below

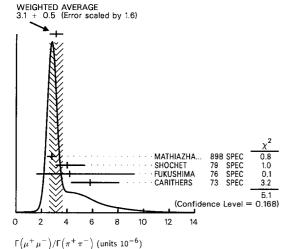
70 HLBC

OSPK

70 OSPK

68 OSPK

15


3

SHOCHET 79 SPEC

32 FUKUSHIMA 76 SPEC

33 CARITHERS 73 SPEC

	90	54	INAGAKI	89	SPEC Stat. error only		
1.53	90	0	³⁴ CLARK	71	SPEC		
18.	90	0	DARRIULAT	70	SPEC		
.40.	90	0	FOETH	69	SPEC		
 90 0 FOETH 69 SPEC 32 FUKUSHIMA 76 errors are at CL = 90%. 33 CARITHERS 73 errors are at CL = 68%, W.Carithers, (private communication 79). 34 CLARK 71 limit raised from 1.2 × 10⁻⁶ by FIELD 74 reanalysis. Not in agreement wit subsequent experiments. So not averaged. 							

 $\frac{\Gamma(\mu^+\mu^-\gamma)/\Gamma_{\rm total}}{{\rm Test~for~}\Delta S=1~{\rm weak~neutral~current.~Allowed~by~higher-order~electroweak~interaction.}$ • • • We do not use the following data for averages, fits, limits, etc. • • • ³⁶ DONALDSON 74 SPEC 90 $\begin{array}{ll} {\rm 35\,Uses}\; {\it K}_L^0 \to \ \pi^+\,\pi^-\,\pi^0/({\rm all}\; {\it K}_L^0)\; {\rm decays} = 0.1239. \\ {\rm 36\,Uses}\; {\it K}_L^0 \to \ \pi^+\,\pi^-\,\pi^0/({\rm all}\; {\it K}_L^0)\; {\rm decays} = 0.126. \end{array}$ $\Gamma(\pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$ Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction.
 VALUE (units 10⁻⁵)
 CL%
 EVTS
 DOCUMENT ID
 TECN

 <0.12</td>
 90
 0
 37
 CARROLL
 80D SPEC
 • • • We do not use the following data for averages, fits, limits, etc. • • ³⁸ DONALDSON 74 SPEC 90

VALUE (units 10	0-10) CL% EVTS	DOCUMENT ID		TECN	COMMENT
< 3.2	90	MATHIAZHA.	89	SPEC	
• • • We do	not use the follow	ing data for average	s, fit	s, limits	, etc. • • •
< 5.6	90	INAGAKI	89	SPEC	
< 110	90	COUSINS	88	SPEC	
< 45	90	GREENLEE	88	SPEC	Repl. by JASTRZEMB- SKI 88
< 12	90	JASTRZEM	88	SPEC	3.11 00
	90	³⁹ CLARK	71	ASPK	
< 15.7	20				

 39 Possible (but unknown) systematic errors. See note on CLARK 71 $\Gamma(\mu^+\,\mu^-)/\Gamma(\pi^+\,\pi^-)$

 $\Gamma(e^+e^-)/[\Gamma(\pi^+\pi^-\pi^0) + \Gamma(\pi^\pm\mu^\mp\nu) + \Gamma(\pi^\pm e^\mp\nu)] \qquad \Gamma_{21}/(\Gamma_2+\Gamma_3+\Gamma_6)$ Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction. DOCUMENT ID CL% • • • We do not use the following data for averages, fits, limits, etc. • • • < 23.0 90 BOTT-... 67 OSPK < 200.0 ALFF-... 668 OSPK <1000.0 ANIKINA 65 CC

 $\Gamma(e^+e^-\gamma)/\Gamma_{\rm total} \qquad \qquad \Gamma_{22}/\Gamma_{\rm total} \qquad \qquad \Gamma_{23}=1$ Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction DOCUMENT ID TECN CHG 80D SPEC ±0 • • • We do not use the following data for averages, fits, limits, etc. • • • 72 HLBC

90 0 ⁴¹ BARMIN $\begin{array}{ll} ^{40}\, \text{Uses}\,\, {\it K}_L^0 \, \to \, \pi^+\,\pi^-\,\pi^0/(\text{all}\,\,{\it K}_L^0)\,\, \text{decays} = 0.1239. \\ ^{41}\, \text{Uses}\,\, {\it K}_L^0 \, \to \, 3\pi^0/\text{total} = 0.214. \end{array}$

 $\begin{array}{ll} 37 \, \text{Uses} \, \, \mathcal{K}_{Q}^{0} \, \to \, \pi^{+} \, \pi^{-} \, \pi^{0} / (\text{all} \, \, \mathcal{K}_{Q}^{0}) \, \, \text{decays} = 0.1239. \\ 38 \, \text{Uses} \, \, \mathcal{K}_{Q}^{0} \, \to \, \pi^{+} \, \pi^{-} \, \pi^{0} / (\text{all} \, \, \mathcal{K}_{Q}^{0}) \, \, \text{decays} = 0.126. \end{array}$

otal				Г23 /Г			
= 1 we	ak neutral	current. Allowed	by hi	gher-order electroweak interaction.			
CL%	EVTS	DOCUMENT ID		TECN			
90		BARR	88	SPEC			
90		GIBBONS	88	SPEC			
 ● We do not use the following data for averages, fits, limits, etc. 							
90		JASTRZEM	88	SPEC			
90	0 4	¹² CARROLL	80D	SPEC			
+ π ⁻	$\pi^0/(\operatorname{all} K_i^0)$	decays $= 0.12$	39.				
$)/\Gamma_{tot}$	al			Γ ₂₄ /Γ			
		current. Allowed	by hi	gher-order electroweak interaction.			
CL%	EVTS	DOCUMENT ID		<u>TECN</u>			
90	0	BALATS	83	SPEC			
use the	following	data for averages	s, fits	s, limits, etc. • • •			
90	4	3 DONALDSON	76	SPEC			
		ANIKINA	73	STRC			
	$CL\%$ 90 90 use the 90 90 $+\pi$ $ -$	$= 1 \text{ weak neutral} \\ \frac{CL\%}{90} = \frac{EVTS}{90} \\ 90 \\ 90 \\ \text{use the following} \\ 90 \\ 90 \\ 0 \\ 6 \\ 4 \\ + \pi^- \pi^0/\text{(all } K_1^0) \\ \frac{V}{\Gamma} \\ \text{total} \\ 1 \text{ weak neutral} \\ \frac{CL\%}{20} = \frac{EVTS}{90} \\ 0 \\ \text{use the following} $	$= 1 \text{ weak neutral current.} \text{Allowed} \\ \frac{CL\%}{2} \frac{EVTS}{90} & \text{BARR} \\ 90 & \text{BARR} \\ 90 & \text{GIBBONS} \\ \text{use the following data for average} \\ 90 & \text{JASTRZEM} \\ 90 & 0 & ^{42}\text{CARROLL} \\ + \pi^-\pi^0/(\text{all } K_L^0) \text{ decays} = 0.12} \\ {}/\Gamma_{\text{total}} \\ = 1 \text{ weak neutral current.} \text{Allowed} \\ \frac{CL\%}{90} \frac{EVTS}{90} & \frac{DOCUMENT ID}{90} \\ 90 & 0 & \text{BALATS} \\ \text{use the following data for average} \\ 90 & 43 \text{ DONALDSON} \\ \end{cases}$	= 1 weak neutral current. Allowed by his			

 $\Gamma(\mu^+\mu^-e^+e^-)/\Gamma_{\rm total}$ Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interaction. VALUE (units 10⁻⁶) CL% DOCUMENT ID TECN BALATS

 $\Gamma(e^+e^-e^+e^-)/\Gamma_{\rm total} \qquad \qquad \Gamma_{\rm 26}/\Gamma_{\rm Total} \qquad \qquad \Gamma_{\rm 26}/\Gamma_{\rm 30}/\Gamma_{\rm 100} = 1$ The standard of the surrent. Allowed by higher-order electroweak interaction. VALUE (units 10⁻⁶) CL% DOCUMENT ID TECN BALATS

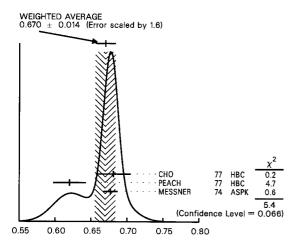
ENERGY DEPENDENCE OF K_i^0 DALITZ PLOT

For discussion, see note on Dalitz plot parameters in the K^{\pm} section of the Full Listings above. For definitions of a_V , a_T , a_U , and a_V , see the earlier version of the same note in the 1982 edition of this Review published in Physics Letters 111B, 70

$$|\text{matrix element}|^2 = 1 + gu + hu^2 + jv + kv^2$$

where $u = (s_3 - s_0) / m^2(\pi)$ and $v = (s_1 - s_2) / m^2(\pi)$

LINEAR COEFFICIENT g FOR $K_L^0 \rightarrow \pi^+ \pi^- \pi^0$ VALUE EVTS DOCUMENT ID TECN COMMENT


43 Uses $K_I^0 \to \pi^+ \pi^- \pi^0/(\text{all } K_I^0)$ decays = 0.126.

0.670 ± 0.014	OUR AVERAGE	Erro	r includes scale	facto	or of 1.6.	See the ideogram below.
0.681 ± 0.024	6499		CHO	77	HBC	
0.620 ± 0.023	4709		PEACH	77	HBC	
0.677 ± 0.010	509k		MESSNER	74	ASPK	$a_V = -0.917 \pm 0.013$
ullet $ullet$ We do	not use the follo	wing d	ata for averages	, fits	, limits,	etc. • • •
0.69 ± 0.07	192	44	BALDO	75	HLBC	
0.590 ± 0.022	56k	44	BUCHANAN	75	SPEC	$a_U = -0.277 \pm 0.010$
0.619 ± 0.027	20k	44,45	BISI	74	ASPK	$a_t = -0.282 \pm 0.011$
0.612 ± 0.032		44	ALEXANDER	73в	HBC	•
0.73 ± 0.04	3200	44	BRANDENB	73	HBC	
0.50 ± 0.11	180	44	JAMES	72	HBC	
0.608 ± 0.043	1486	44	KRENZ			$a_t = -0.277 \pm 0.018$
0.688 ± 0.074	384	44	METCALF	72	ASPK	$a_t = -0.31 \pm 0.03$
0.650 ± 0.012	29k	44	ALBROW			$a_V = -0.858 \pm 0.015$
0.593 ± 0.022	36k	44,46		70	SPEC	$a_U = -0.278 \pm 0.010$
$\boldsymbol{0.664 \pm 0.056}$	4400	44	SMITH		OSPK	$a_t = -0.306 \pm 0.024$
0.400 ± 0.045	2446	44	BASILE	688	OSPK	$a_t = -0.188 \pm 0.020$
0.649 ± 0.044	1350	44	HOPKINS			$a_t = -0.294 \pm 0.018$
0.428 ± 0.055	1198		NEFKENS	67		$a_U = -0.204 \pm 0.025$
0.64 ± 0.17	280		ANIKINA	66	CC	$a_V = -8.2^{+0.9}_{-1.3}$
0.70 ±0.12	126		HAWKINS	66	HBC	$a_V = -8.6 \pm 0.7$
0.32 ± 0.13	66	44	ASTBURY	65		$a_V = -5.5 \pm 1.5$
0.51 ± 0.09	310		ASTBURY	65B	CC	$a_V = -7.3^{+0.6}_{-0.8}$
0.55 ± 0.23	79		ADAIR	64	HBC	$a_V = -7.6 \pm 1.7$
0.51 ± 0.20	77	44	LUERS	64	HBC	$a_V = -7.3 \pm 1.6$

44 Quadratic dependence required by some experiments. (See sections on "QUADRATIC COEFFICIENT h" and "QUADRATIC COEFFICIENT k" below.) Correlations prevent us from averaging results of fits not including g, h, and k terms.

45 BISI 74 value comes from quadratic fit with quad. term consistent with zero. g error is thus larger than if linear fit were used.

46 BUCHANAN 70 result revised by BUCHANAN 75 to include radiative correlations and to use more reliable \mathcal{K}_I^0 momentum spectrum of second experiment (had same beam).

Linear coeff. g for $K_I^0 \rightarrow \pi^+\pi^-\pi^0$ matrix element squared

QUADRATIC COEFFICIENT h FOR $K_I^0 \rightarrow \pi^+\pi^-\pi^0$

VALUE	EVTS	DOCUMENT ID		TECN
0.079±0.007 OUI	R AVERAGE			
0.095 ± 0.032	6499	CHO	77	HBC
0.048 ± 0.036	4709	PEACH	77	HBC
0.079 ± 0.007	509k	MESSNER	74	ASPK

• • • We do not use the following data for averages, fits, limits, etc. • •

⁴⁷ ALBROW -0.011 ± 0.018 29k 70 ASPK 47 SMITH 0.043 ± 0.052 4400 70 OSPK

See notes in section "LINEAR COEFFICIENT g FOR $K_I^0 \to \pi^+\pi^-\pi^0$ | MATRIX ELEMENT|2" above.

 47 Quadratic coefficients h and k required by some experiments. (See section on "QUADRATIC COEFFICIENT k" below.) Correlations prevent us from averaging results of fits not including $g,\ h,\ \text{and}\ k$ terms.

QUADRATIC COEFFICIENT k FOR $K_{i}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$

VALUE	EVT5	DOCUMENT ID	TECN	
0.0098±0.0018 OUF	R AVERAGE			
0.024 ± 0.010	6499	СНО	77	HBC
-0.008 ± 0.012	4709	PEACH	77	HBC
0.0097 ± 0.0018	509k	MESSNER	74	ASPK

LINEAR COEFFICIENT j FOR $K_i^0 \rightarrow \pi^+\pi^-\pi^0$ (CP-VIOLATING TERM)

Listed in CP-violation section below.

K_I^0 FORM FACTORS

For discussion, see note on form factors in the \mathcal{K}^\pm section of the Full Listings

In the form factor comments, the following symbols are used.

 f_{+} and f_{-} are form factors for the vector matrix element.

 f_S and f_T refer to the scalar and tensor term.

 $f_0 = f_+ + f_- t/(m^2(K) - m^2(\pi)).$

 λ_+ , λ_- , and λ_0 are the linear expansion coefficients of f_+ , f_- , and f_0 .

 λ_+ refers to the $K_{\mu3}$ value except in the K_{e3} sections.

 $d\xi(0)/d\lambda_+$ is the correlation between $\xi(0)$ and λ_+ in $K_{\mu\beta}$.

 $d\lambda_0/d\lambda_+$ is the correlation between λ_0 and λ_+ in $K_{\mu3}$.

t = momentum transfer to the π in units of $m^2(\pi)$.

DP = Dalitz plot analysis.

 $PI = \pi$ spectrum analysis

 $MU = \mu$ spectrum analysis.

POL= μ polarization analysis.

 $\mathsf{BR} = \mathit{K}_{\mu 3} / \mathit{K}_{e 3}$ branching ratio analysis.

E = positron or electron spectrum analysis.

RC = radiative corrections.

$\xi_{\partial} = f_{-}/f_{+}$ (determinded from spectra)

The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary

Table.						
VALUE	$d\xi(0)/d\lambda_{+}$	EVT5	DOCUMENT ID		TECN	COMMENT
-0.11 ± 0.09	OUR EVALUAT	ION Fro	om a fit discussed in	note	e on Kg3	form factors in
			1982 edition, F	'L 11	1B (Apr	il 1982).
-0.10 ± 0.09	-12	150k	48 BIRULEV	81	SPEC	DP
$+0.26 \pm 0.16$	-13	14k	⁴⁹ CHO	80	HBC	DP
$+0.13 \pm 0.23$	- 20	16k	⁴⁹ HILL			DP
-0.25 ± 0.22	- 5.9	32k	⁵⁰ BUCHANAN	75	SPEC	DP

-0.11±0.07 -1.00±0.45 -1.5 ±0.7 +1.2 ±0.8	-17 -20 -28 -18	1.6M 1385 9086 1341	51 DONALDSON 52 PEACH 53 ALBROW 54 CARPENTER	73 72	HLBC ASPK	DP DP
• • • We do no	ot use the follo	wing da	ta for averages, fits,	limit	s, etc. •	
$+0.50\pm0.61$ -3.9 ±0.4	unknown	16k 3140	⁵⁵ DALLY ⁵⁶ BASILE		ASPK OSPK	DP DP, indep of λ_+
$-0.68^{+0.12}_{-0.20}$	- 26	16k	⁵⁵ CHIEN	70	ASPK	DP

⁴⁸ BIRULEV 81 error, $d\xi(0)/d\lambda_+$ calculated by us from λ_0 , λ_+ . $d\lambda_0/d\lambda_+=0$ used.

 $^{49}\,\mathrm{HILL}$ 79 and CHO 80 calculated by us from λ_0 , λ_+ , and $d\lambda_0/d\lambda_+$.

 50 BUCHANAN 75 is calculated by us from λ_0 , λ_+ and $d\lambda_0/d\lambda_+$ because their appendix A value -0.20 ± 22 assumes $\xi(t)$ constant, i.e. $\lambda_-=\lambda_+$.

 51 DONALDSON 748 gives $\xi=-0.11\pm0.02$ not including systematics. Above error and $d\xi(0)/d\lambda_+$ were calculated by us from λ_0 and λ_+ errors (which include systematics) and $d\lambda_0/d\lambda_+$.

52 PEACH 73 gives $\xi(0) = -0.95 \pm 0.45$ for $\lambda_{+} = \lambda_{-} = 0$. K.Peach, private communication (1974). $=\lambda_{-}=0.025$. The above value is for

 53 ALBROW 72 fit has λ_- free, gets $\lambda_-=-0.030\pm0.060$ or $\Lambda=+0.15^{+0.17}_{-0.11}$

⁵⁴ CARPENTER 66 $\xi(0)$ is for $\lambda_{+}=0$. $d\xi(0)/d\lambda_{+}$ is from figure 9.

55 CHIEN 70 errors are statistical only. $d\xi(0)/d\lambda_+$ from figure 4. DALLY 72 is a reanalysis of CHIEN 70. The DALLY 72 result is not compatible with assumption $\lambda_-=0$ so not included in our fit. The nonzero λ_- value and the relatively large λ_+ value found by DALLY 72 come mainly from a single low t bin (figures 1,2). The (f_+,ξ) correlation was ignored. We estimate from figure 2 that fixing $\lambda_-=0$ would give $\xi(0)=-1.4\pm0.3$ and would add 10 to χ^2 . $d\xi(0)/d\lambda_+$ is not given.

 $^{56}\,\mathrm{BASILE}$ 70 is incompatible with all other results. Authors suggest that efficiency estimates might be responsible.

 $\xi_b=f_-/f_+$ (determined from $K_{\mu3}/K_{e3}$) The $K_{\mu3}/K_{e3}$ branching ratio fixes a relationship between $\xi(0)$ and λ_+ . We quote The author's $\xi(0)$ and associated λ_+ but do not average because the λ_+ values differ. The fit result and scale factor given below are not obtained from these ξ_b values. Instead they are obtained directly from the authors $K_{\mu3}/K_{e3}$ branching ratio via the fitted $K_{\mu3}/K_{e3}$ ratio $(\Gamma(\pi^\pm\,\mu^\mp\,\nu)/\Gamma(\pi^\pm\,e^\mp\,\nu))$. The parameter ξ is redundant with λ_0 below and is not put into the Meson Summary Table.

VALUE EVTS DOCUMENT ID TECN COMMENT -0.11 ± 0.09 OUR EVALUATION From a fit discussed in note on κ_3 form factors in 1982 edition, PL 111B (April 1982).

0.5 ± 0.4 - 0.08 ± 0.25 - 0.5 ± 0.5 + 0.45 ± 0.28	6700 1309 3548 569	⁵⁷ EVANS	73 70	HLBC OSPK	BR, $\lambda_{+} = 0.019 \pm 0.013$ BR, $\lambda_{+} = 0.02$ BR, $\lambda_{+} = 0.02$ BR, $\lambda_{-} = 0.02$
-0.22 ± 0.30		C 7		HLBC	bit, x ₊ =0
$+0.2 \begin{array}{c} +0.8 \\ -1.2 \end{array}$		KULYUKINA	68	cc	BR, $\lambda_{+}=0$
$+1.1 \pm 1.1$	389	ADAIR	64	HBC	BR, $\lambda_{+}=0$
$+0.66^{+0.9}_{-1.3}$		LUERS	64	нвс	BR, $\lambda_{+}=0$

57EVANS 73 replaces EVANS 69.

$\xi_{c} = f_{-}/f_{+}$ (determined from μ polarization in $K_{\mu 3}$)

The μ polarization is a measure of $\xi(t)$. No assumptions on λ_{+-} necessary, t (weighted by sensitivity to $\xi(t)$) should be specified. In λ_{+} , $\xi(0)$ parametrization this is $\xi(0)$ for $\lambda_{+}=0$. $d\xi/d\lambda=\xi t$. For radiative correction to μ polarization in $K_{\mu 3}$, see GINSBERG 73. The parameter ξ is redundant with λ_{0} below and is not put into the

Meson St	illinary rable.					
VALUE		DOCUMENT ID		COMMENT		
-0.11 ± 0.09	OUR EVALUATIO	N From a fit di	scussed in no	te on Ky3 form factors in		
		1982 edition, F				
$+0.178 \pm 0.105$	207k	⁵⁸ CLARK	77 SPEC	POL.		
				$d\xi(0)/d\lambda_{+}=+0.68$		
-0.385 ± 0.105	2.2M	⁵⁹ SANDWEISS	73 CNTR	POL, $d\xi(0)/d\lambda_{+} = -6$		
$-1.81 \begin{array}{l} +0.50 \\ -0.26 \end{array}$		- ^		POL. t=3.3		
4.24						
● ● ● We don	ot use the following	; data for average	s, fits, limits	, etc. • • •		
-1.6 ± 0.5	638	61 ABRAMS	68B OSPK	Polarization		
-1.2 ± 0.5	2608	⁵¹ AUERBACH	66B OSPK	Polarization		
58 CLARK 77	$t = \pm 3.80 \ dE(0)/d$	$d\lambda = \epsilon(t)t = 0$	178 × 3 80 -	±0.68		
58 CLARK 77 $t=+3.80,$ dξ(0)/dλ $_+=$ ξ(t)t $=0.178\times3.80=+0.68.$ 59 SANDWEISS 73 is for $\lambda_+=0$ and $t=0.$						
60	13 13 101 X ₊ = 0	and t = 0.				
LONGO 69	t = 3.3 calculated t	from $d\xi(0)/d\lambda_{+}$	= – 6.0 (tabl	e 1) divided by $\xi=-1.81$.		
61 t value not	given.					

IMAGINARY PART OF ξ

rest or r rever	sai invarianc	e.			
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.007±0.026 OUR	AVERAGE				
0.009 ± 0.030	12M	MORSE	80	CNTR	Polarization
0.35 ± 0.30	207k	⁶² CLARK	77	SPEC	POL, $t=0$
-0.085 ± 0.064	2.2M	⁶³ SANDWEISS	73	CNTR	POL, $t=0$
-0.02 ± 0.08		LONGO	69	CNTR	POL, $t=3.3$
-0.2 ± 0.6		ABRAMS	68B	OSPK	Polarization
• • We do not use	the followin	ig data for average	es, fit	s, limits,	etc. • • •
0.012 ± 0.026		SCHMIDT	79	CNTR	Repl. by MORSE 80

⁶²CLARK 77 value has additional $\xi(0)$ dependence ± 0.21 Re[$\xi(0)$].

 $^{63}\hspace{-0.05cm}\mathsf{SANDWEISS}$ 73 value corrected from value quoted in their paper due to new value of $Re(\xi)$. See footnote 4 of SCHMIDT 79

 λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN $K_{\mu3}$ DECAY)
See also the corresponding entries and notes in section " $\xi_A=f_-/f_+$ " above and section " λ_0 (LINEAR ENERGY DEPENDENCE OF f_0 IN $K_{\mu3}$ DECAY)" below. For radiative correction of $K_{\mu3}$ Dalitz plot see GINSBERG 70 and BECHERRAWY 70.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.034 ±0.005 OU	R EVALUATION	From a fit dis	cusse	d in not	te on K ₀₃ form factors in
		1982 edition, P	L 111	LB (Apr	il 1982).
0.0427 ± 0.0044	150k	BIRULEV	81	SPEC	DP
0.028 ± 0.010	14k	CHO	80	HBC	DP
0.028 ± 0.011	16k	HILL	79	STRC	DP
0.046 ± 0.030	32k	BUCHANAN	75	SPEC	DP
0.030 ± 0.003	1.6M	DONALDSON	74B	SPEC	DP
0.085 ± 0.015	9086	ALBROW	72	ASPK	DP
• • • We do not us	se the following o	data for averages	, fits,	, limits,	etc. • • •
0.0337 ± 0.0033	129k	DZHORD	77	SPEC	Repl. by BIRULEV 81
0.046 ± 0.008	82k	ALBRECHT	74	WIRE	Repl. by BIRULEV 81
0.11 ± 0.04	16k	DALLY	72	ASPK	DP
0.07 ± 0.02	16k	CHIEN	70	ASPK	Repl. by DALLY 72

λ_0 (LINEAR ENERGY DEPENDENCE OF f_0 IN $K_{\mu3}$ DECAY)

Wherever possible, we have converted the above values of $\xi(0)$ into values of λ_0 using the associated λ_μ^μ and $d\xi(0)/d\lambda_+$.

01	ic associat	ieu x ₊ and uç	(0)/ 624	٠.				
VALUE		$d\lambda_0/d\lambda_+$	EVTS		DOCUMENT ID		TECN	COMMENT
0.025	± 0.006	OUR EVALUA	ATION	Fro	m a fit discussed	l in r	ote on	Kg3 form factors
					in 1982 edition,	PL	111B (April 1982).
0.0341	1 ± 0.0067	unknown	150k	64	BIRULEV	81	SPEC	DP
+0.050	± 0.008	-0.11	14k		CHO	80	HBC	DP
+0.039	± 0.010	-0.67	16k		HILL	79	STRC	DP
+0.047	± 0.009	1.06	207k	65	CLARK		SPEC	POL.
+0.025	± 0.019	+0.5	32k	66	BUCHANAN	75	SPEC	D₽
+0.019	± 0.004	-0.47	1.6M	67	DONALDSON	74B	SPEC	DP
-0.060	± 0.038	-0.71	1385	68	PEACH	73	HLBC	DP
-0.018	± 0.009	+0.49	2.2M	65	SANDWEISS	73	CNTR	POL
-0.043	±0.052	-1.39	9086	69	ALBROW	72	ASPK	DP
-0.140	+0.043 -0.022	+0.49			LONGO	69	CNTR	POL
+0.08	± 0.07	-0.54	1371	65	CARPENTER	66	OSPK	DP
• • • V	Ve do not	use the follow	ing data	for .	averages, fits, lir	nits,	etc. •	• •
0.041	± 0.008		14k	70	СНО	80	HBC	BR, $\lambda_{+} = 0.028$
+0.0485	± 0.0076		47k		DZHORD	77	SPEC	In BIRULEV 81
+0.024	± 0.011		82k		ALBRECHT	74	WIRE	In BIRULEV 81
+0.06	± 0.03		6700	71	BRANDENB	73	HBC	BR,
								$\lambda_{\pm} = 0.019 \pm$
0 067	±0.227	unknown	16k	72	DALLY	72	ASPK	0.013 DP
-0.333		+1.	3140		BASILE	70	OSPK	DP
		T 4.				,,,	031 K	

 $^{^{64}}$ BIRULEV 81 gives $d\lambda_0/d\lambda_+=-1.5$, giving an unreasonably narrow error ellipse which dominates all other results. We use $d\lambda_0/d\lambda_+=0.$

λ_{+} (LINEAR ENERGY DEPENDENCE OF f_{+} IN K_{e3} DECAY)

For radiative correction of Ke3 DP, see GINSBERG 67 and BECHERRAWY 70

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.0300 ± 0.00	16 OUR AVERAGE	Error includes s	cale	factor of	1.2.
0.0306 ± 0.00		BIRULEV	81	SPEC	DP
0.025 ± 0.00	5 12k ⁷⁴	ENGLER	78B	HBC	DP
0.0348 ± 0.00	44 18k	HILL	78	STRC	DP
0.0312 ± 0.00	25 500k	GJESDAL	76	SPEC	DP
0.0270 ± 0.00	28 25k	BLUMENTHAL	.75	SPEC	DP
0.044 ± 0.00	6 24k	BUCHANAN	75	SPEC	DP
0.040 ± 0.01	2 2171	WANG	74	OSPK	DP
0.045 ± 0.01	4 5600	ALBROW	73	ASPK	DP
0.019 ± 0.01	3 1871	BRANDENB	73	HBC	PI transv.
0.022 ± 0.01	4 1910	NEUHOFER	72	ASPK	PI
0.023 ± 0.00	5 42k	BISI	71	ASPK	DP
0.05 ± 0.01	16k	CHIEN	71	ASPK	DP, no RC
0.02 ± 0.01	3 1000	ARONSON	68	OSPK	PI
$+0.023 \pm 0.01$	2 4800	BASILE	68	OSPK	DP, πο RC
-0.01 ± 0.02	762	FIRESTONE	67	HBC	DP, no RC
$+0.01$ ± 0.01	5 531	KADYK	67	HBC	e,PI, no RC
$+0.08 ^{+0.10}_{-0.08}$		LOWYS	67	FBC	PI
$+0.15 \pm 0.08$	577	FISHER	65	OSPK	DP, no RC
$+0.07$ ± 0.06	153	LUERS	64	HBC	DP, no RC

 • • We do not use t 	he followi	ng data for avera	ges, fit	s, limits	, etc. • • •
0.029 ±0.005	19k	⁷⁴ CHO	80	нвс	DP
0.0286 ± 0.0049	26k	BIRULEV	79	SPEC	Repl. by BIRULEV 81
0.032 ± 0.0042	48k	BIRULEV	76	SPEC	Repl. by BIRULEV 81

 $^{^{74}}$ ENGLER 78B uses an unique κ_{e3} subset of CHO 80 events and is less subject to systematic effects

$|f_S/f_+|$ FOR K_{e3} DECAY

Ratio of scalar to f_+ couplings.

VALUE	CL%	EVT5	DOCUMENT ID		TECN_	COMMENT
< 0.04	68	25k	BLUMENTHA	L75	SPEC	
• • • We do no	ot use ti	he followir	ng data for average	s, fit	s, limits,	etc. • • •
< 0.095	95	18k	HILL	78	STRC	
< 0.07	68	48k	BIRULEV	76	SPEC	See also BIRULEV 81
< 0.19	95	5600	ALBROW	73	ASPK	
< 0.15	68		KULYUKINA	67	CC	

$|f_T/f_+|$ FOR K_{e3} DECAY

Ratio of tensor to f_{\perp} couplings

VALUE	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
< 0.23	68	25k	BLUMENTHA	L75	SPEC	
• • • We do	not use t	he followin	ng data for average	s, fit	s, limits	, etc. • • •
< 0.40	95	18k	HILL	78	STRC	
< 0.34	68	48k	BIRULEV	76	SPEC	See also BIRULEV 81
<1.0	95	5600	ALBROW	73	ASPK	
<1.0	68		KULYUKINA	67	CC	
f= /f. FO	R K . F	FCAV				

Ratio of tensor to f_+ couplings.

VALUE	DOCUMENT ID		TECN
0.12 ± 0.12	BIRULEV	81	SPEC

NOTE ON CP VIOLATION IN K_L^0 DECAY

(by L. Wolfenstein, Carnegie-Mellon University and T. Trippe, LBL)

Experimentally Measured Parameters

CP violation has been observed in the semi-leptonic decays $K_L^0 \to \pi^{\mp} \ell^{\pm} \nu$ and in the nonleptonic decay $K_L^0 \to 2\pi$. The experimental numbers that have been measured are

$$\delta = \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^- \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}$$
(1)

$$\eta_{+-} = A(K_L^0 \to \pi^+ \pi^-) / A(K_S^0 \to \pi^+ \pi^-)$$

$$= |\eta_{+-}| e^{i\phi_{+-}}$$
(1b)

$$\eta_{00} = A(K_L^0 \to \pi^0 \pi^0) / A(K_S^0 \to \pi^0 \pi^0)
= |\eta_{00}| e^{i\phi_{00}}$$
(1c)

Thus there are five real numbers, three magnitudes and two phases. We list $\delta(\mu)$ for $K_L^0 \to \pi \mu \nu$ and $\delta(e)$ for $K_L^0 \to \pi e \nu$ separately and a weighted average δ . Experimentally for the $K_L^0 \to \pi^0 \pi^0$ decay the quantities directly measured (and also of greatest theoretical interest) are $|\eta_{00}/\eta_{+-}|$ and $\phi_{00} - \phi_{+-}$

Analysis Based on CPT Invariance²

CP violation can occur either in the $K^0 - \overline{K}^0$ mixing or in the decay amplitudes. The mixing is described by:

$$\mid K_L^0 \rangle = \left[(1 + \epsilon) \mid K^0 \rangle - (1 - \epsilon) \mid \overline{K}^0 \rangle \right]$$

$$/ \left[2(1 + \mid \epsilon \mid^2) \right]^{1/2}$$
(2a)

$$|K_S^0\rangle = \left[(1+\epsilon) |K^0\rangle + (1-\epsilon) |\overline{K}^0\rangle \right]$$

$$/ \left[2(1+|\epsilon|^2) \right]^{1/2}$$
(2b)

 $^{^{65}\}lambda_0$ value is for $\lambda_+=0.03$ calculated by us from $\xi(0)$ and $d\xi(0)/d\lambda_+$.

 $^{^{66}}$ BUCHANAN 75 value is from their appendix A and uses only $K_{\mu3}$ data. $d\lambda_0/d\lambda_+$ was obtained by private communication, C.Buchanan, 1976.

 $^{^{67}}$ DONALDSON 74B $d\lambda_0/d\lambda_+$ obtained from figure 18.

 $^{^{68}}$ PEACH 73 assumes $\lambda_+=$ 0.025. Calculated by us from $\xi(0)$ and $d\xi(0)/d\lambda_+$.

 $^{^{69}}$ ALBROW 72 λ_0 is calculated by us from ξ_A , λ_+ and $d\xi(0)/d\lambda_+$. They give $\lambda_0=-0.043\pm0.039$ for $\lambda_-=0$. We use our larger calculated error.

 $^{^{70}\}mathrm{CHO}$ 80 BR result not independent of their Dalitz plot result.

 $^{^{71}}$ Fit for λ_0 does not include this value but instead includes the $K_{\mu3}/K_{e3}$ result from this experiment

⁷² DALLY 72 gives $f_0=1.20\pm0.35$, $\lambda_0=-0.080\pm0.272$, $\lambda_0'=-0.006\pm0.045$, but with a different definition of λ_0 . Our quoted λ_0 is his λ_0/f_0 . We cannot calculate true λ_0 error without his (λ_0,f_0) correlations. See also note on DALLY 72 in section ξ_A .

 $^{^{73}}$ BASILE 70 λ_0 is for $\lambda_+=0$. Calculated by us from ξ_A with $d\xi(0)/d\lambda_+=0$. BASILE 70 is incompatible with all other results. Authors suggest that efficiency estimates might be

where ϵ measures the CP violation. The decay amplitudes are written

$$\langle I = 0 \mid T \mid K^0 \rangle = e^{i\delta_0} A_0 \tag{3a}$$

$$\langle I = 2 \mid T \mid K^0 \rangle = e^{i\delta_2} A_2 \tag{3b}$$

where δ_I are the $\pi\pi$ scattering phase shifts at the K^0 mass and I is the isospin of the final state. CP violation is measured by $(\text{Im}A_I/\text{Re}A_I)$. Only two of the three quantities ϵ , $(\text{Im}A_I/\text{Re}A_I)$ are meaningful because of the ambiguity in defining the phase of K^0 . The standard phase convention due to Wu and Yang³ sets $Im A_0 = 0$. One can then write

$$\eta_{+-} = \epsilon + \epsilon' \tag{4a}$$

$$\eta_{00} = \epsilon - 2\epsilon' \tag{4b}$$

where

$$\epsilon' = \frac{i}{\sqrt{2}} e^{i(\delta_2 - \delta_0)} \operatorname{Im}(A_2/A_0)$$

neglecting small corrections of order ϵ' times $\operatorname{Re}(A_2/A_0)$. A nonzero value of ϵ' provides definite evidence for CP violation in the decay amplitudes independent of phase convention.

By applying CPT invariance and unitarity it is possible to relate δ to ϵ and to determine the phases of ϵ and ϵ' . If one assumes the $\Delta S = \Delta Q$ rule (see below "Note on the $\Delta S = \Delta Q$ rule in K^0 Decay") the expression for δ becomes

$$\delta = 2 \operatorname{Re} \epsilon / (1 + |\epsilon|^2) \approx 2 \operatorname{Re} \epsilon$$
 (5)

This quantity is independent of phase convention and is seen from Eq. (2) to equal $\langle K_L^0 \mid K_S^0 \rangle$. The phases of ϵ and ϵ' are given by

$$\phi(\epsilon) \approx \tan^{-1} \frac{(2\Delta m \tau_s)}{\hbar} = 43.67 \pm 0.13^{\circ}$$
 (6a)

$$\phi(\epsilon') = \delta_2 - \delta_0 + \frac{\pi}{2} \approx 47 \pm 5^{\circ} \tag{6b}$$

The approximation in Eq. (6a) depends on the neglect of CP violation in decays other than $K^0 \rightarrow 2\pi$ and is known to be good to a few tenths of a degree. Eq. (6a) is evaluated using the values of the $K_L^0 - K_S^0$ mass difference $\Delta m = (0.5349 \pm 0.0022) \times 10^{10} \hbar \mathrm{s}^{-1}$ and the K_S^0 mean life $\tau_{\rm s} = (0.8922 \pm 0.0020) \times 10^{-10} \rm s$ from the current edition. The value of the $\pi\pi$ phase shifts used in Eq. (6b) is taken from the fit given by Devlin and Dickey⁴. However, Kleinknecht¹ uses $\phi(\epsilon') = 37 \pm 5^{\circ}$ and Wahl⁵ uses $\phi(\epsilon') = 45^{\circ} \pm 15^{\circ}$. The most important point for the analysis is that $\cos[\phi(\epsilon') - \phi(\epsilon)] \simeq 1$. The consequence of this analysis is that only two real quantities need be measured, the magnitude of ϵ and the value of (ϵ'/ϵ) including its sign. The measured quantity $|\eta_{00}/\eta_{+-}|^2$ which is very close to unity, is given to a good approximation by

$$|\eta_{00}/\eta_{+-}|^2 \approx 1 - 6\text{Re}\left(\epsilon'/\epsilon\right)$$

$$= 1 - 6(\epsilon'/\epsilon)\cos\left[\phi(\epsilon') - \phi(\epsilon)\right] \tag{7}$$

Since the cos in Eq. (7) is expected theoretically to be very close to unity it is customary to say that $|\eta_{00}/\eta_{+-}|^2$ determines ϵ'/ϵ .

It is possible to use the values of the ϕ_{+-} and $\phi_{00} - \phi_{+-}$ to set limits on CPT violation. [See Tests of Conservation Laws.]

Models

In the superweak $model^6$ CP violation is restricted to the mass mixing so that to a high degree of accuracy one expects $\epsilon' = 0$. The phase $\phi(\epsilon)$ is given in this model exactly by Eq. (6a) so that this has sometimes been referred to as the superweak phase; however, as noted above, all CPT invariant models give Eq. (6a) as a very good approximation. In the Standard Model CP violation is entirely due to the phase in the Cabibbo-Kobayashi-Maskawa mixing matrix (q.v.). Since CP violation occurs in first order in decay amplitudes and in second order in mass-matrix mixing, one expects a significant non-zero value of ϵ' . The calculation is uncertain partly because m_t and V_{td} are not well known and primarily because of the difficulty of estimating hadronic matrix elements.⁸ The theoretical results for ϵ'/ϵ in the standard model are generally in the range 3×10^{-4} to 5×10^{-3} .

Fitting procedures

We list measurements of $|\eta_{+-}|$, $|\eta_{00}|$, and $|\eta_{00}/\eta_{+-}|$. Independent information on $|\eta_{+-}|$ and $|\eta_{00}|$ can be obtained from measurements of the K_L^0 and K_S^0 lifetimes (au) and branching ratios (B) to $\pi\pi$, using the relations

$$\begin{split} |\eta_{+-}| &= \left[\frac{\mathrm{B}(K_L^0 \to \pi^+ \pi^-)}{\tau(K_L^0)} \; \frac{\tau(K_S^0)}{\mathrm{B}(K_S^0 \to \pi^+ \pi^-)} \right]^{1/2} \; , \\ |\eta_{00}| &= \left[\frac{\mathrm{B}(K_L^0 \to \pi^0 \pi^0)}{\tau(K_L^0)} \; \frac{\tau(K_S^0)}{\mathrm{B}(K_S^0 \to \pi^0 \pi^0)} \right]^{1/2} \; . \end{split}$$

We approximate a global fit to these independent sources by first performing two independent fits: 1) BRFIT, a fit to the K_L^0 branching ratios, rates, and mean life, and 2) ETAFIT, a fit to the $|\eta_{+-}|$, $|\eta_{00}|$, and $|\eta_{+-}/\eta_{00}|$ measurements. The results from fit 1,

$$\begin{split} \tau(K_L^0) &= (5.17 \pm 0.04) \times 10^{-8} \, \mathrm{s} \ , \\ \mathrm{B}(K_L^0 \to \pi^+ \pi^-) &= (2.04 \pm 0.05) \times 10^{-3} \, \, (\mathrm{S^*} = 1.2) \ , \\ \mathrm{B}(K_L^0 \to \pi^0 \pi^0) &= (7.9 \pm 0.6) \times 10^{-4} \, \, (\mathrm{S^*} = 1.2) \ , \end{split}$$

along with the K_S^0 values from this edition are used to compute the values

$$|\eta_{+-}|_{\text{BRFIT}} = (2.265 \pm 0.030) \times 10^{-3},$$

 $|\eta_{00}|_{\text{BRFIT}} = (2.084 \pm 0.080) \times 10^{-3}.$

These values are included as measurements in the $|\eta_{00}|$ and $|\eta_{+-}|$ sections with a document ID of BRFIT 90. The fit to $|\eta_{+-}|$, $|\eta_{00}|$, and $|\eta_{+-}|$, $|\eta_{00}|$ is then redone to include the BRFIT 90 information. Thus the fit values given in this edition,

$$|\eta_{+-}| = (2.268 \pm 0.023) \times 10^{-3} \text{ (S}^* = 1.1),$$

 $|\eta_{00}| = (2.253 \pm 0.024) \times 10^{-3} \text{ (S}^* = 1.1),$

include both the direct measurements and the results from the branching ratio fit.

The process is reversed in order to include the direct $|\eta|$ measurements in the branching ratio fit. The results from fit 2 above (before including BRFIT 90 values),

$$|\eta_{+-}| = (2.299 \pm 0.034) \times 10^{-3}$$
,
 $|\eta_{00}/\eta_{+-}| = 0.9938 \pm 0.0035$ (S* = 1.4),

are used along with the K_L^0 and K_S^0 mean lives and the $K_S^0 \to \pi\pi$ branching fractions to compute the K_L^0 branching

$$B(K_L^0 \to \pi^+ \pi^-)_{ETAFIT} = (2.101 \pm 0.065) \times 10^{-3}$$

$$\left[\frac{{\rm B}(K_L^0\to\pi^0\pi^0)}{{\rm B}(K_L^0\to\pi^+\pi^-)}\right]_{\rm ETAFIT} = 0.4518\pm0.0066~.$$

 $|\eta_{00}/\eta_{+-}|$ is used because it is precisely determined and almost uncorrelated with $|\eta_{+-}|$ whereas $|\eta_{00}|$ is highly correlated with $|\eta_{+-}|$ because of the precise measurements of $|\eta_{00}/\eta_{+-}|$.

These branching ratio values are included as measurements in the branching ratio sections $\Gamma(K_L^0 \to \pi^+\pi^-)/\Gamma(\text{total})$ and $\Gamma(K_L^0 \to \pi^0 \pi^0)/\Gamma(K_L^0 \to \pi^+ \pi^-)$ with a document ID of ETAFIT 90. Thus the K_L^0 branching ratio fit results in this edition include the results of direct measurements of $|\eta_{+-}|$, $|\eta_{00}|$, and $|\eta_{00}/\eta_{+-}|$.

Note the large scale factor (S* = 1.4) on $|\eta_{00}/\eta_{+-}|$. This arises from the discrepancy between the ϵ'/ϵ result from the Chicago experiment (PATTERSON 90) which is consistent with zero and the CERN experiment (BURKARDT 88) which is three sigma above zero. Our fitted value is

$$\frac{\epsilon'}{\epsilon} = (2.1 \pm 1.2) \times 10^{-3} \text{ (S}^* = 1.4) .$$

A separate constrained fit is done to combine measurements of the phases ϕ_{+-} and ϕ_{00} , and their difference $\phi_{00} - \phi_{+-}$. The phase difference is now rather precisely determined by the CERN result (CAROSI 90) so that our evaluation, $\phi_{00} - \phi_{+-} =$ 2.5 ± 4.5 ($S^* = 1.8$), is consistent with zero, i.e., not suggesting CPT violation.

Footnotes and References

- * The S values in parentheses are scale factors by which the errors have been increased to account for discrepancies in the data.
- 1. K. Kleinknecht in CP Violation (ed. C. Jarlskog), World Scientific, (1989), p. 41.
- 2. V. Barmin, et al., Nucl. Phys. B247, 293 (1984); and L. Wolfenstein, Ann. Rev. Nuc. Sci. 36, 137 (1986).
- 3. T.T. Wu and C.N. Yang, Phys. Rev. Lett. 13, 380 (1964).
- 4. T.J. Devlin and J.D. Dickey, Rev. Mod. Phys. 51, 237
- 5. H. Wahl, Cisatlantic Rare Kaon Decays. Talk given at Rare Decay Symposium, Vancouver, Canada, December 1988, CERN-EP/89-86 (July 1989).
- 6. L. Wolfenstein, Phys. Rev. Lett. 13, 562 (1964).
- M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 659 (1973).
- $8.\ \mathrm{J.F.}$ Donoghue et al., Phys. Reports $\mathbf{131},\ 320\ (1986).$

CP-VIOLATION PARAMETERS IN K1 DECAYS

CHARGE ASYMMETRY IN LEPTONIC DECAYS

Such asymmetry violates CP. It is related to $Re(\epsilon)$.

$$\delta(\mu) = \left[\Gamma \big(\pi^- \mu^+ \nu_\mu \big) - \Gamma \big(\pi^+ \mu^- \overline{\nu}_\mu \big) \right] / \left[\Gamma \big(\pi^- \mu^+ \nu_\mu \big) + \Gamma \big(\pi^+ \mu^- \overline{\nu}_\mu \big) \right]$$

$$(\Gamma_4 - \Gamma_5) / (\Gamma_4 + \Gamma_5)$$

Only the combined value below is put into the Meson Summary Table.									
VALUE (%)	EVTS	DOCUMENT ID		TECN					
0.304 ± 0.025 OUR A	WERAGE								
0.313 ± 0.029	15M	GEWENIGER	74	ASPK					
0.278 ± 0.051	7.7M	PICCIONI	72	ASPK					
0.60 ± 0.14	4.1M	MCCARTHY	73	CNTR					
0.57 ± 0.17	1M	75 PACIOTTI	69	OSPK					
0.403 ± 0.134	1M	⁷⁵ DORFAN	67	OSPK					

⁷⁵ PACIOTTI 69 is a reanalysis of DORFAN 67 and is corrected for $\mu^+ \mu^-$ range difference

$$\delta(\mathbf{e}) = \left[\Gamma(\pi^- \mathbf{e}^+ \nu_{\mathbf{e}}) - \Gamma(\pi^+ \mathbf{e}^- \overline{\nu}_{\mathbf{e}})\right] / \left[\Gamma(\pi^- \mathbf{e}^+ \nu_{\mathbf{e}}) + \Gamma(\pi^+ \mathbf{e}^- \overline{\nu}_{\mathbf{e}})\right] / \left[\Gamma(\pi^- \mathbf{e}^+ \nu_{\mathbf{e}}) + \Gamma(\pi^+ \mathbf{e}^- \overline{\nu}_{\mathbf{e}})\right] / \Gamma(\pi^+ \Gamma_8)$$

Only the combined value below is put into the Meson Summary Table

VALUE (%)	EVTS	DOCUMENT ID		TECN	
0.333 ± 0.014 OUR	AVERAGE				
0.341 ± 0.018	34M	GEWENIGER	74	ASPK	
0.318 ± 0.038	40M	FITCH	73	ASPK	
0.346 ± 0.033	10M	MARX	70	CNTR	
0.246 ± 0.059	10M	⁷⁶ SAAL	69	CNTR	
■ ● ■ We do not us ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	se the followi	ng data for average	es, fit	s, limits, etc. • • •	
0.36 ±0.18	600k	ASHFORD	72	ASPK	
0.224 ± 0.036	10M	⁷⁶ BENNETT	67	CNTR	

⁷⁶ SAAL 69 is a reanalysis of BENNETT 67.

$\delta =$ weighted average of $\delta(\mu)$ and $\delta(e)$

(Combination of the above two sections.)

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
0.327 ± 0.012 OUR	AVERAGE				
0.313 ± 0.029	15M	GEWENIGER	74	ASPK	$\kappa_{\mu 3}$
0.341 ± 0.018	34M	GEWENIGER	74	ASPK	K _{e3}
0.318 ± 0.038	40M	FITCH	73	ASPK	K _{e3}
0.333 ± 0.050	33M	WILLIAMS	73	ASPK	$K_{\mu 3} + K_{e3}$
0.278 ± 0.051	7.7M	PICCIONI	72	ASPK	$K'_{\mu 3}$
0.346 ± 0.033	10M	MARX	70	CNTR	K _{e3}
0.246 ± 0.059	10M	SAAL	69	CNTR	K _{e3}
 • • We do not ι 	use the followin	g data for average	s, fit	s, limits,	etc. • • •
0.60 ± 0.14	4.1M	MCCARTHY	73	CNTR	$\kappa_{\mu 3}$
0.36 ±0.18	600k	ASHFORD	72	ASPK	
0.57 ± 0.17	1 M	PACIOTTI	69	OSPK	$\kappa_{\mu 3}$

PARAMETERS FOR
$$K_L^0 \rightarrow 2\pi$$
 DECAY $\eta_{+-} = A(K_L^0 \rightarrow \pi^+\pi^-) / A(K_S^0 \rightarrow \pi^+\pi^-) / A(K_S^0 \rightarrow \pi^0\pi^0) / A(K_S^0 \rightarrow \pi^0\pi^0)$

The fitted values of $|\eta_{+-}|$ and $|\eta_{00}|$ given below are the results of a fit to $|\eta_{+-}|$, $|\eta_{00}|$, $|\eta_{00}/\eta_{+-}|$, and $\text{Re}(\epsilon'/\epsilon)$. Independent information on $|\eta_{+-}|$ and $|\eta_{00}|$ can be obtained from the fitted values of the $\mathcal{K}^0_L o \pi\pi$ and $\mathcal{K}^0_S o \pi\pi$ branching ratios and the K_I^0 and K_S^0 lifetimes. This information is included as data in the $|\eta_{+-}|$ and $|\eta_{00}|$ sections with a Document ID "BRFIT." See the "Note on CP Violation in K_L^0 Decay" above for details.

$$|\eta_{00}| = |A(K_L^0 \to 2\pi^0) / A(K_S^0 \to 2\pi^0)|$$

<u>VALUE (units 10 3)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>T</u> 2.253±0.024 OUR FIT Error includes scale factor of 1.1. TECN COMMENT 2.12 ±0.09 OUR AVERAGE Error includes scale factor of 1.2. 2.084 ± 0.080 CHRISTENSON79 ASPK 2.33 ± 0.18 • • • We do not use the following data for averages, fits, limits, etc. • • • 78 WOLFE 71 OSPK Cu reg., 4γ 's 2.71 ± 0.37 ⁷⁸ CHOLLET 70 OSPK Cu reg., 4γ 's

 77 This BRFIT value is computed from fitted values of the κ_L^0 and κ_S^0 lifetimes and branching fractions to $\pi\pi$. See the discussion in the "Note on CP violation in K_I^0

78 CHOLLET 70 gives $|\eta_{00}|=(1.23\pm0.24)\times$ (regeneration amplitude, 2 GeV/c Cu)/10000mb. WOLFF 71 gives $|\eta_{00}|=(1.13\pm0.12)\times$ (regeneration amplitude, 2 GeV/c Cu)/10000mb. We compute both $|\tau_{00}|$ values for (regeneration amplitude, 2 GeV/c Cu) = 24 ± 2mb. This regeneration amplitude results from averaging over FAISS-NER 69, extrapolated using optical-model calculations of Bohm et al., Phys. Lett. 278, 594 (1988) and the data of BALATS 71. (From H. Faissner, private communication).

```
|\eta_{+-}| = |A(K_L^0 \to \pi^+\pi^-) / A(K_S^0 \to \pi^+\pi^-)|
79 BRFIT
2.265 \pm 0.030
                                          CHRISTENSON79B ASPK
2.27 \pm 0.12
                                           GEWENIGER 74B ASPK
2.30 \pm 0.035
• • • We do not use the following data for averages, fits, limits, etc. • •
                                                            85 SPEC P(K)=70 GeV/c
82B SPEC E=30-110 GeV
                                       80 COUPAL
                            1687
2.28 \pm 0.06
                                       81 ARONSON
2.09 \pm 0.02
 ^{79}This BRFIT value is computed from fitted values of the K_L^0 and K_S^0 lifetimes and
    branching fractions to \pi\pi. See the discussion in the "Note on CP violation in K_i^0
 occay.

80 COUPAL 85 concludes: no energy dependence of |\eta_{+-}|, because their value is consistent with above values which occur at lower energies. Not independent of COUPAL 85
    \Gamma(\pi^+\pi^-)/\Gamma(\pi\ell\nu) measurement. Enters |\eta_{+-}| via BRFIT value. In editions prior to
    1990, this measurement was erroneously also included in our |\eta_{+-}| average and fit. We thank H. Wahl (WAHL 89) for informing us.
 81 ARONSON 82B find that |\eta_{+-}| may depend on the kaon energy.
|\eta_{00}/\eta_{+-}|
<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u>
0.9935±0.0032 OUR FIT Error includes scale factor of 1.3.
0.9907±0.0030 OUR AVERAGE
0.9899 \pm 0.0020 \pm 0.0025
                                                82 BURKHARDT 88 CALO
                                                83 WOODS
0.9904 \pm 0.0084 \pm 0.0036
                                                                     88 SPEC
                                                   BERNSTEIN
1.014 \pm 0.016 \pm 0.007
                                     3152
                                                                     85B SPEC
0.995 \pm 0.025
                                     1122
                                                   BLACK
                                                                      85 SPEC
1.00 ±0.09
                                                84 CHRISTENSON79 ASPK
1.03 ±0.07
                                       124
                                                   BANNER
                                                                      72 OSPK
1.00 \pm 0.06
                                       167
                                                   HOLDER
 ^{82} This is the square root of the ratio R given by BURKHARDT 88. ^{83} We calculate |\eta_{00}/\eta_{+-}|=1-3(\epsilon'/\epsilon) from WOODS 88 (\epsilon'/\epsilon) value
 <sup>84</sup>Not independent of |\eta_{+-}| and |\eta_{00}| values which are included in fit.
       \epsilon'/\epsilon \approx \text{Re}(\epsilon'/\epsilon) = (1-|\eta_{00}/\eta_{+-}|)/3. See "Note on CP violation in K_I^0 decay."
\frac{\textit{VALUE (units } 10^{-3})}{2.2 \pm 1.1 \; \text{OUR FIT}} \quad \frac{\textit{DOCUMENT ID}}{\textit{Error includes scale factor of } 1.3.} \quad \text{$TECN$}
                                          PATTERSON 90 SPEC
 -0.4 \pm 1.4 \pm 0.6
• • • We do not use the following data for averages, fits, limits, etc. • •
                                        85 BURKHARDT 88 CALO
                                       85 WOODS
   3.2 \pm 2.8 \pm 1.2
                                                             88 SPEC
  ^{85}	ext{These} values are derived from \left|\eta_{00}/\eta_{+-}
ight| measurements and enter the fit via the
     |\eta_{00}/\eta_{+-}| section.
\phi_{+-}, PHASE of \eta_{+-}
        The dependence of the phase on the \mathcal{K}^0_L – \mathcal{K}^0_S mass difference is given for each
```

experiment in the comments below, where DM is (mass difference/ \hbar) in units 10^{10} s⁻¹. We have evaluated these mass dependences using our April 1990 value, DM = 0.5351 ± 0.0024 to obtain the values and average quoted below. We also give the

regeneration phase ϕ_f in the comments below.

VALUE (*)		DUCUMENT ID		TECN	COMMENT
46.0± 1.2 OUR EVALUATION					
46.0± 1.2 OUR AVERAGE					
46.9± 1.4±1.7	86	CAROSI	90	CALO	
41.7± 3.5		CHRISTENSON			
45.6 ± 2.9	87	CARITHERS	75	SPEC	C regenerator
46.6 ± 1.7	88	GEWENIGER	74B	ASPK	Vacuum regen.
• • • We do not use the following	go	lata for averages	, fits	, limits,	etc. • • •
35.3 ± 3.9	89	ARONSON	82B	SPEC	E=30-110 GeV
36.2 ± 6.1	90	CARNEGIE	72	ASPK	Cu regenerator
37.2 ± 12.0	91	BALATS	71	OSPK	Cu regenerator
40.7 ± 4.2	92	JENSEN	70	ASPK	Vacuum regen.
34.2 ± 10.0	93	BENNETT	69	CNTR	Cu regenerator
45.4±12.0	94	вонм	69B	OSPK	Vacuum regen.
45.2± 7.4	95	FAISSNER	69	ASPK	Cu regenerator
51.3±11.0	96	BENNETT	68B	CNTR	Cu reg. uses
70.0 ± 21.0	97	BOTT	67B	OSPK	C regenerator
25.0 ± 35.0	97	MISCHKE	67	OSPK	Cu regenerator
30.0 ± 45.0	97	FIRESTONE	66	HBC	
45.0 ± 50.0	97	FITCH	65	OSPK	Be regenerator
86 Systematic error is quadratic	su	m of experiment	al sy	stemati	errors ($\pm 0.7^{\circ}$) and the

systematic errors due to the current uncertainties in r_5 (±0.6°) and Δm (±1.4°). 87 CARITHERS 75 ϕ_{+-} = (45.5 ± 2.8)+224[$\Delta (m)$ -0.5348]°. ϕ_f = -40.9 ± 2.6°. 88 GEWENIGER 748 ϕ_{+-} = (49.4 ± 1.0)+565[$\Delta (m)$ -0.540]°.

89 ARONSON 82 find that ϕ_{+-} may depend on the kaon energy.

 90 CARNEGIE 72 ϕ_{+-} is insensitive to $\Delta(m)$. $\phi_f=-56.2\pm5.2^\circ$

91 BALATS 71 $\phi_{+-}=(39.0\pm12.0)+198[\Delta(m)-0.544]^\circ$. $\phi_f=-43.0\pm4.0^\circ$. 92 JENSEN 70 $\phi_{+-}=(42.4\pm4.0)+576[\Delta(m)-0.538]^\circ$.

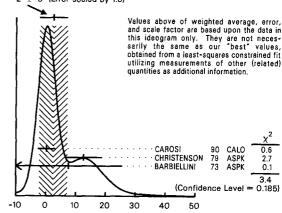
 93 BENNETT 69 uses measurement of (ϕ_{+-}) – (ϕ_f) of ALFF-STEINBERGER 668. BEN-NETT 69 $\phi_{+-} = (34.9 \pm 10.0) + 69 [\Delta(m) - 0.545]^{\circ}$. $\phi_f = -49.9 \pm 5.4^{\circ}$.

94 BOHM 69B $\phi_{+-} = (41.0 \pm 12.0) + 479(\Delta(m) - 0.526)^{\circ}$.

 95 FAISSNER 69 error enlarged to include error in regenerator phase. FAISSNER 69 ϕ_{+--} = $(49.3 \pm 7.4) + 205[\Delta(m) - 0.555]^{\circ}$. $\phi_f = -42.7 \pm 5.0^{\circ}$.

96 BENNETT 69 is a re-evaluation of BENNETT 688.
97 Old experiments with large errors not included in average.

ϕ_{00} , PHASE OF η_{00}					
VALUE (°)	EVT5	DOCUMENT ID	_	TECN	COMMENT
48.5± 3.1 OUR EVALUA	TION	Error includes so	ale fa	ctor of 1	.3.
48.7± 3.3 OUR AVERAGE	E E		factor	of 1.3.	
47.1 ± 2.1 ± 1.8		⁹⁸ CAROSI	90	CALO	
55.7 ± 5.8		CHRISTENS	ON79	ASPK	
• • • We do not use the	follow	ing data for averag	ges, fit	s, limits	, etc. • • •
38.0±25.0	56	⁹⁹ WOLFF			Cu reg., 4γ's
51.0 ± 30.0		100 CHOLLET	70	OSPK	Cu reg., 4γ's
first quadrant preferred		GOBBI	698	OSPK	
98 Systematic error is que systematic errors due 99 WOLFF 71 uses reger	to the	current uncertaint	ies in	$\tau_5 (\pm 0.$	ic errors $(\pm 1.0^\circ)$ and the 5°) and $\Delta m~(\pm 1.4^\circ)$.
100 CHOLLET 70 uses rea	zenera	tor phase $\phi_c = -4$	465+	- 4 4°	


PHASE DIFFERENCE ϕ_{00} -- ϕ_{+-}

Test of CPT.		
VALUE (°)		TECN
2.5 ± 4.5 OUR EVALUATION	ON Error includes scale fa	ctor of 1.8.
2 ± 5 OUR AVERAGE		of 1.8. See the ideogram below.
0.2 ± 2.6 ± 1.2	¹⁰¹ CAROSI 90	
12.6± 6.2	101 CHRISTENSON79	
7.6 ± 18.0	102 BARBIELLINI 73	ASPK

 101 Not independent of ϕ_{+-} and ϕ_{00} values. This is taken into account in our evaluation, which consists of a special fit to include correlations, with the errors scaled by the same factors as found for the averages.

102 Independent of regenerator mechanism, $\Delta(m)$, and lifetimes

WEIGHTED AVERAGE 2 ± 5 (Error scaled by 1.8)

Phase difference $\phi_{00} - \phi_{+-}$ (°)

ı

- CHARGE ASYMMETRY IN $\pi^+ \pi^- \pi^0$ DECAYS -----

CP-VIOLATION COEFFICIENT j FOR $K_L^0 \rightarrow \pi^+\pi^-\pi^0$

Defined at beginning of section "LINEAR COEFFICIENT g FOR $\kappa_I^0 \to \pi^+ \pi^- \pi^0$ above. See also note on Daltitz plot parameters in K^{\pm} section and note on CP violation in K^0_L decay above.

VALUE	EVTS	DOCUMENT ID		TECN
0.0011±0.0008 OUF	RAVERAGE			
0.001 ± 0.011	6499	CHO	77	
-0.001 ± 0.003	4709	PEACH	77	
0.0013 ± 0.0009	3M	SCRIBANO	70	
0.0 ± 0.017	4400	SMITH	70	OSPK
0.001 ± 0.004	238k	BLANPIED	68	

NOTE ON $\Delta S = \Delta Q$ IN K^0 DECAYS

The relative amount of $\Delta S \neq \Delta Q$ component present is measured by the parameter x, defined as

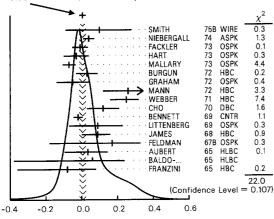
$$x = A(\overline{K}^0 \to \pi^- \ell^+ \nu) / A(K^0 \to \pi^- \ell^+ \nu) \ .$$

We list $Re\{x\}$ and $Im\{x\}$ for K_{e3} and $K_{\mu3}$ combined.

$x = (\Delta S = -\Delta Q \text{ AMPLITUDE}) / (\Delta S = +\Delta Q \text{ AMPLITUDE})$

VALUE	<u>EVTS</u>		DOCUMENT ID		TECN	COMMENT
0.006±0.018 (OUR AVERAGE	Er	ror includes sca below.	le fac	tor of 1	.3. See the ideogram
$0.10 \begin{array}{l} +0.18 \\ -0.19 \end{array}$	79		SMITH	75в	WIRE	$\pi^- p \rightarrow \kappa^0 \Lambda$
0.04 ± 0.03	4724		NIEBERGALL	74	ASPK	$K^+ p \rightarrow K^0 p \pi^+$
-0.008 ± 0.044	1757		FACKLER	73	OSPK	K_{e3} from K_{e3}^0
-0.03 ± 0.07	1367		HART	73	OSPK	K_{e3}^{e3} from K_{e3}^{0} Λ
-0.070 ± 0.036	1079		MALLARY	73	OSPK	K_{e3} from $K^0 \wedge X$
0.03 ± 0.06	410		BURGUN	72	нвс	$K^+ \rho \rightarrow K^0 \rho \pi^+$
-0.05 ± 0.09	442	104	GRAHAM	72	OSPK	$\pi^- p \rightarrow K^0 \Lambda$
$0.26 \begin{array}{c} +0.10 \\ -0.14 \end{array}$	126		MANN	72	нвс	$K^- \rho \rightarrow n \overline{K}^0$
$0.25 \begin{array}{l} +0.07 \\ -0.09 \end{array}$	252		WEBBER	71	нвс	$K^- \rho \rightarrow n \overline{K}^0$
0.12 ± 0.09	215		СНО	70	DBC	$K^+ d \rightarrow K^0 \rho \rho$
-0.020 ± 0.025		106	BENNETT	69	CNTR	Charge asym+ Cu regen.
$0.09 \begin{array}{l} +0.14 \\ -0.16 \end{array}$	686		LITTENBERG	69	OSPK	$K^+ n \rightarrow K^0 \rho$
$0.09 \begin{array}{l} +0.07 \\ -0.09 \end{array}$	121		JAMES	68	нвс	$\overline{p}p$
$0.17 \begin{array}{l} +0.16 \\ -0.35 \end{array}$	116		FELDMAN	67в	OSPK	$\pi^- p \rightarrow \kappa^0 \Lambda$
$0.035^{+0.11}_{-0.13}$	196		AUBERT	65	HLBC	K^+ charge exchange
$0.06 \begin{array}{l} +0.18 \\ -0.44 \end{array}$	152	107	BALDO	65	HLBC	K ⁺ charge exchange
$-0.08 ^{+ 0.16}_{- 0.28}$	109	108	FRANZINI	65	нвс	$\overline{\rho} \rho$
• • • We do no	t use the followi	ng d	ata for average	s, fits	, limits,	etc. • • •

0.04	+0.10 -0.13	100	¹⁰⁴ GRAHAM	72	OSPK	$K_{\mu 3}$ from $K^0 \Lambda$
-0.13		342	¹⁰⁴ MANTSCH	72	OSPK	K_{e3} from $K^0 \Lambda$
0.04	+0.07 -0.08	222	103 BURGUN	71	HBC	$\kappa^+ \rho \rightarrow \kappa^0 \rho \pi^+$
	±0.03		106 BENNETT		CNTR	
0.17	± 0.10	335	105 HILL	67	DBC	$K^+ d \rightarrow K^0 \rho \rho$


103 BURGUN 72 is a final result which includes BURGUN 71.
104 First GRAHAM 72 value is second GRAHAM 72 value combined with MANTSCH 72.
105 CHO 70 is analysis of unambiguous events in new data and HILL 67.

106 BENNETT 69 is a reanalysis of BENNETT 68.

107 BALDO-CEOLIN 65 gives x and θ converted by us to Re(x) and Im(x).

108 FRANZINI 65 gives x and θ for Re(x) and Im(x). See SCHMIDT 67.

WEIGHTED AVERAGE 0.006 ± 0.018 (Error scaled by 1.3)

Re(x) ($\Delta S = -\Delta Q$ amplitude)

IMAGINARY PART OF x

Assumes $m(K_L^0) - m(K_S^0)$ positive. See Listings above.

	1, , 5, ,		~		
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.003±0.026 OUI	R AVERAGE E	rror includes sca	le fa	ctor of 1	.2.
$-0.10 \begin{array}{c} +0.16 \\ -0.19 \end{array}$	79	SMITH			$\pi^- \rho \rightarrow \kappa^0 \Lambda$
-0.06 ± 0.05	4724	NIEBERGALL	74	ASPK	$K^+ p \rightarrow K^0 p \pi^+$ K_{e3} from K^0
-0.017 ± 0.060	1757	FACKLER	73	OSPK	K_{e3} from K^0
0.09 ± 0.07	1367	HART	73	O5PK	K_{e3} from $K^0 \Lambda$
$0.107 + 0.092 \\ -0.074$	1079	MALLARY	73	OSPK	K_{e3} from $K^0 \wedge X$
$0.07 \begin{array}{l} +0.06 \\ -0.07 \end{array}$		BURGUN			$K^+ p \rightarrow K^0 p \pi^+$
0.05 ± 0.13	442 110	GRAHAM	72	OSPK	$\pi^- p \rightarrow \kappa^0 \Lambda$
$0.21 \begin{array}{c} +0.15 \\ -0.12 \end{array}$	126	MANN	72	HBC	$K^- \rho \rightarrow n \overline{K}^0$

0.0 ± 0.08	252	WEBBER 71 HBC $K^- p \rightarrow n \overline{K}^0$
-0.08 ± 0.07	215	¹¹¹ CHO 70 DBC $K^+ d \rightarrow K^0 pp$
$-0.11 \begin{array}{c} +0.10 \\ -0.11 \end{array}$	686	LITTENBERG 69 OSPK $K^+ n \rightarrow K^0 p$
$+0.22 \begin{array}{c} +0.37 \\ -0.29 \end{array}$	121	JAMES 68 HBC $\overline{p}p$
0.0 ± 0.25	116	FELDMAN 67B OSPK $\pi^- p \rightarrow K^0 \Lambda$
$-0.21 \begin{array}{c} +0.11 \\ -0.15 \end{array}$	196	AUBERT 65 HLBC K ⁺ charge exchange
$-0.44 \begin{array}{l} +0.32 \\ -0.19 \end{array}$	152	112 BALDO 65 HLBC K^+ charge exchange
$+0.24 \begin{array}{c} +0.40 \\ -0.30 \end{array}$	109	113 FRANZINI 65 HBC $\bar{p}p$
• • • We do not use the	follow	ving data for averages, fits, limits, etc. • • •
$0.12 \begin{array}{c} +0.17 \\ -0.16 \end{array}$	100	$^{110}{ m GRAHAM}$ 72 OSPK $\kappa_{\mu 3}$ from $\kappa^0{ m \Lambda}$
-0.04 ± 0.16	342	110 MANTSCH 72 OSPK K_{e3} from K^{0} Λ
0.12 +0.08 -0.09	222	109 BURGUN 71 HBC $K^{+} p \rightarrow K^{0} p \pi^{+}$
-0.20 ± 0.10	335	111 HILL 67 DBC $K^+ d \rightarrow K^0 pp$
109 BURGUN 72 is a fina	l result	t which includes BURGUN 71.

109 BURGUN 72 is a final result which includes BURGUN 71. 110 First GRAHAM 72 value is second GRAHAM 72 value combined with MANTSCH 72. 111 Footnote 10 of HILL 67 should read +0.58, not -0.58 (private communication) CHO 70 is analysis of unambiguous events in new data and HILL 67. 112 BALDO-CEOLIN 65 gives x and θ converted by us to Re(x) and Im(x). 113 FRANZINI 65 gives x and θ for Re(x) and Im(x). See SCHMIDT 67.

REFERENCES FOR K_I^0

BRFIT	90		
CAROSI	90	PL B237 303 + Clarke+ (CERN, EDIN, MANZ, ORSA, PISA, SIEG	(
ETAFIT	90	RPP	
PATTERSON	90	PRL (to be pub.) +Barker+ (EFI, ELMT, CHIC, FNAL, PRIN. SACL	_)
INAGAKI	89	PR D40 1712 + Kobayashi. Sato. Shinkawa+ (KEK, TOKY, KYOT	j –
MATHIAZHA		PRL 63 2181 Mathiazhagan+ (UCI, UCLA, LANL, PENN, STAN+ PRL 63 2185 Mathiazhagan+ (UCI, UCLA, LANL, PENN, STAN+	.)
MATHIAZHA	898	PRL 63 2185 Mathiazhagan+ (UCI, UCLA, LANL, PENN, STAN+	3
PAPADIMITR.	. 89 . 89	PRL 63 28 Papadimitriou, Gibbons+(EFI, ELMT, FNAL, PRIN, SACI PR D39 990 +Greenlee, Kasha, Mannelli, Ohl+ (YALE, BNL	-/
SCHAFFNER WAHL	89	PR D39 990 +Greenlee, Kasha, Mannelli, Ohl+ (YALE, BNL	ď
BARR	88	CERN-EP/89-86, H. Wahl — Rare Decay Symposium, Vancouver (CERN-PL B214 303 +-Clarke+ (CERN, EDIN, MANZ, ORSA, PISA, SIEC PL B206 169 - (CERN, DORT, EDIN, MANZ, ORSA, PISA, SIEC	á
BURKHARDT	88	PI B206 169 - (CERN, DORT, EDIN, MANZ, ORSA, PISA, SIEC	ñ
COUSINS	88	PL B206 169 - (CERN, DORT, EDIN, MANZ, ORSA, PISA, SIEC PR D38 2914 - Konigsberg+ (UCLA, LASL, PENN, STAN, TEMP, WILL	.)
GIBBONS	88	PRL 61 2661 +Papadimitriou+ (EFI, ELMT, FNAL, PRIN, SACU	.)
GREENLEE	88	PRI 60 893 + Kasha, Mannelli, Mannelli+ (YALE, BNL PRI 61 2300 Jastrzembski, Larsen, Leipuner, Morse- (BNL, YALE	.)
JASTRZEM	88	PRL 61 2300 Jastrzembski, Larsen, Leipuner, Morse+ (BNL, YALE PRL 60 1695 +Nishikawa+ (EFI, CHIC, FNAL, PRIN, SACL	.)
WOODS	88	PRL 60 1695 +Nishikawa+ (EFI, CHIC, FNAL, PRIN, SACL	.)
BURKHARDT	87	PL B199 139 + (CERN, DORT, EDIN, MANZ, ORSA, PISA, SIEC	i) -
ARONSON	86	PR D33 3180 +Bernstein, Bock+ (BNL, CHIC, STAN, WISC PRL 48 1078 Aronson, Bernstein+ (BNL, CHIC, STAN, WISC	.)
Also	82	PRL 48 1078 Aronson, Bernstein+ (BNL, CHIC, STAN, WISC PRL 54 1631 +Bock, Carlsmith, Coupal+ (CHIC, SACL	-)
BERNSTEIN BLACK	85B 85	PRL 54 1631 +Bock, Carlsmith. Coupal+ (CHIC, SACL PRL 54 1628 +Blatt, Campbell, Kasha, Mannelli+ (BNL, YALE	3
COUPAL	85	PRL 54 1628 +Blatt, Campbell, Kasha, Mannelli+ (BNL, YALE PRL 55 566 +Bernstein, Bock, Carlsmith+ (CHIC, SACL	1
BALATS	83	SJNP 38 556 +Berezin, Bogdanov, Vishnevsky- (ITEP	ń
BALAIS	0.5	Translated from YAE 38 927	
ARONSON	82	PRL 48 1078 Bernstein (BNL, CHIC, STAN, WISC PRL 48 1306 Bock, Cheng, Fischbach (BNL, CHIC, PURC	1)
ARONSON	82B	PRL 48 1306 - Bock, Cheng, Fischbach (BNL, CHIC, PURD))
Also	82B	Pt 116B 73 Fischbach, Cheng+ (PURD, BNL, CHIC	-)
Also	83	PR D28 476 Aronson, Bock, Cheng+ (BNL, CHIC, PURC PR D28 495 Aronson, Bock, Cheng+ (BNL, CHIC, PURC	1)
Also	83B	PR D28 495 Aronson, Bock, Cheng+ (BNL, CHIC, PURE	1)
BIRULEV	81	NP B182 1 + Dzhordzhadze, Genchev, Grigalashvili - (JINR	
Also	80	SJNP 31 622 Birulev, Vestergombi, Genchev+ (JINR Translated from YAF 31 1204.	:1
CARROLL	ana	PRL 44 529 +Chiang, Kycia, Li, Littenberg, Marx+ (BNL, ROCH	10
CARROLL	80C	PL 96B 407 +Chiang, Kycia, Li, Littenberg, Marx+ (BNL, ROCH	ñ
CARROLL	80D	PL 96B 407 +Chiang, Kycia, Li, Littenberg, Marx+ (BNL, ROCH PRL 44 525 +Chiang, Kycia, Li, Littenberg, Marx+ (BNL, ROCH	ń
CHO	80	PR D22 2688 + Derrick, Miller, Schlereth, Engler+ (ANL, CMU	ΙŃ
MORSE	80	PR D21 1750 +Leipuner, Larsen, Schmidt, Blatt+ (BNL, YALE	÷)
BIRULEV	79	SINP 29 778 +Vestergombi, Gyakhariya, Genchev+ (JINP	ŧ)
		Translated from YAF 29 1516.	
CHRISTENSON		PRL 43 1209 + Goldman, Hummel, Roth ~ (NYL	
CHRISTENSO	V 79B	PRL 43 1212 +Goldman, Hummel, Roth+ (NYL	1)
HILL	79	NP B153 39 +Sakitt, Snape, Stevens+ (BNL, SLAC, SBEF	Q .
SCHMIDT	79	PRL 43 556 +Blatt, Campbell, Grannan+ (YALE, BNI	-)
SHOCHET	79	PR D19 1965 + Linsay, Grosso-Pilcher, Frisch (EFI, ANU PRL 39 59 Shochet, Linsay, Grosso-Pilcher+ (EFI, ANU	- /
Also	77		3
ENGLER HILL	78B 78	PR D18 623 +Keyes, Kraemer, Tanaka, Cho- (CMU, ANL PL 73B 483 +Sakitt, Snape, Stevens+ (BNL, SLAC, SBEF	2)
CHO	77	PR D15 587 + Derrick, Lissauer, Miller, Engler+ (ANL. CML	ň.
CLARK	77	PR D15 553 +Field, Holley, Johnson, Kerth, Sah, Shen (LBL	Υ
Also	75	LBL-4275 Thesis Shen (LBL	. i
DEVOE	77	PR D16 565 + Cronin, Frisch, Grosso-Pilcher + (EFI, ANL	
DZHORD	77	SJNP 26 478 Dzhordzhadze, Kekelidze, Krivokhizhin+ (JINF	
		Translated from YAF 26 910.	
PEACH	77	NP B127 399 Cameron+ (BGNA, EDIN, GLAS, PISA, RHEI	
BIRULEV	76	SJNP 24 178 +Vestergombi, Vovenko, Votruba+ (JINF	<)
COOMBES	76	Translated from YAF 24 340. PRL 37 249 +Flexer, Hall, Kennelly, Kirkby+ (STAN, NYU	13
DONALDSON		PR D14 2839 • Hitlin, Kennelly, Kirkby, Liu - (SLAC	-1
Also	74	SLAC-184 Thesis Donaldson (SLAC	ží.
FUKUSHIMA	76	PRL 36 348 - Jensen, Surko, Thaler+ (PRIN, MASA	4)
GJESDAL	76	NP B109 118 Kamae, Presser, Steffen + (CERN, HEIL))
REY	76	PR D13 1161 —Cence, Jones, Parker+ (NDAM, HAWA, LBI	L)
Also	69	PRI 22 1210 Cence Jones Peterson Stenger+ (HAWA, LRI	-)
BALDO	75	NC 25A 68B Baldo-Ceolin, Bobisut, Calimani+ (PADO, WISC PRL 34 164 +Frankel, Nagy+ (PENN, CHIC, TEMI	2)
BLUMENTHA		PRL 34 164 +Frankel, Nagy+ (PENN, CHIC, TEMI	7)
BUCHANAN	75	PR D11 457 + Drickey, Pepper, Rudnick+ (UCLA, SLAC, JHL	싟
CARITHERS	75	PRL 34 1244 + Modis, Nygren, Pun+ (COLU, NYC	33
SMITH	758	UCSD Thesis unpub. PL 48B 393 (JINR, BERL, BUDA, PRAG, SERP, SOP PL 50B 504 +Ferrero (TOR	2)
ALBRECHT BISI	74 74	PL 48B 393 (JINR, BERL, BUDA, PRAG, SERP, SOF PL 50B 504 +Ferrero (TOR	3
BOBISUT	74	LNC 11 646 +Huzita, Mattioli, Puglierin (PADO	37
DONALDSON		LNC 11 646 + Huzita, Mattioli, Puglierin (PADC SLAC-184 Thesis (SLAC	
Also	76	PR D14 2839 Donaldson, Hitlin, Kennelly, Kirkby, Liu+ (SLAC	C)
DONALDSON		PR D9 2960 + Fryberger, Hitlin, Liu + (SLAC, UCS)	c)
Also	73B	PR D9 2960 + Fryberger, Hitlin, Liu + (SLAC, UCSC PRL 31 337 Donaldson, Fryberger, Hitlin, Liu + (SLAC, UCSC CSLAC, c)	
DONALDSON	74C	PRL 33 554 + Hittin, Kennelly, Kirkby- (SLAC	C)
Also	74	SLAC 184 Thesis Donaldson (SLAC	
Aiso	76	PR D14 2839 Donaldson, Hitlin, Kennelly, Kirkby, Liu+ (SLAG	
FIELD	74	SLAC PUB-1498 unpub. (SLA	-)
GEWENIGER	74	PL 48B 483 + Gjesdal, Kamae, Presser+ (CERN, HEID	
Also	74 74	CERN Int. 74-4 Thesis Luth (HEII	2)
Also GEWENIGER	74 74 74B	CERN Int. 74-4 Thesis Luth (HEII	2)
Also GEWENIGER Also	74 74 74B 74B	CERN int. 74.4 Thesis Luth (HEIZ PL 48B 487 + Gjesdal, Presser+ (CERN, HEIZ PL 52B 119 Gjesdal, Presser, Steffen+ (CERN, HEIZ	D) D) D)
Also GEWENIGER	74 74 74B	CERN Int. 74-4 Thesis Luth (HEII	D) D) D)

GJESDAL	74	PL 52B 113	+Presser, Kamae, Steffen+	(CERI	N, HEID)	PACIOTTI	69	UCRL 19446
VIESSNER VIEBERGALL	74 74	PRL 33 1458 PL 49B 103	+Franklin, Morse+ +Regler, Stier+	(COLO, SLAC (CERN, ORS.		SAAL ABRAMS	69 68B	Thesis PR 176 1603
WANG WILLIAMS	74 74	PR D9 540 PRL 33 240	+Smith, Whatley, Zorn, Hornbostel	(UM	ID, BNL) L. YALE)	ARNOLD ARONSON	68B 68	PL 28B 56 PRL 20 287
WOO	74	LNC 10 38	+Larsen, Leipuner, Sapp. Sessoms+ +Buchanan, Pepper		(UCLA)	Also	69	PR 175 1708
ALBROW ALEXANDER	73 73B	NP B58 22 NP B65 301	+Aston, Barber, Bird, Ellison+ +Benary, Borowitz, Lande+	(MCHS	5, DARE) A, HEID)	BARTLETT BASILE	68 68	PRL 21 558 PL 26B 542
ANIKINA	73	JINR P1 7539	+Balashov, Bannik+	,	(JINR) (CERN)	BASILE BENNETT	68B 68	PL 28B 58
BARBIELLINI BRANDENB	73 73	PL 43B 529 PR D8 1978	+Darriulat, Fainberg+ Brandenburg, Johnson, Leith, Loos-	+	(SLAC)	BENNETT	68B	PL 27B 244 PL 27B 248
ARITHERS Also	73 73B	PRL 31 1025 PRL 30 1336	+Nygren, Gordon+ Carithers, Modis, Nygren+	(COLU, BNI (COLU, CER		BLANPIED BUDAGOV	68 68	PRL 21 1650 NC 57A 182
VANS	73	PR D7 36	+Muir, Peach, Budagov+	(EDIN	N. CERN) N. CERN)	Also	68B	PL 28B 215
Also ACKLER	69 73	PRL 23 427 PRL 31 847	Evans, Golden, Muir, Peach+ +Frisch, Martin, Smoot, Sompayrac	(EDIN	M, CERN) (MIT)	JAMES Also	68 68	NP B8 365 PRL 21 257
ITCH Also	73 72	PRL 31 1524 COO-3072-13 Thesis	+Hepp, Jensen, Strovink, Webb Webb		(PRIN) (PRIN)	KULYUKINA	68	JETP 26 20 Translated fro
INSBERG	73	PR D8 3887	+Smith		r, šton)	KUNZ	68	PU 46 Thesis
∹ART MALLARY	73 73	NP B66 317 PR D7 1953	+Hutton, Field, Sharp, Blackmore+ +Binnie, Gallivan, Gomez, Peck, Scii	(CAVI	E, RHEL) (CIT)	THATCHER BENNETT	68 67	PR 174 1674 PRL 19 993
Also	70	PRL 25 1214 PR D7 687	Sciulli, Gallivan, Binnie, Gomez+		(CIT)	BOTT BOTT	67 67B	PL 24B 194 PL 24B 438
ACCARTHY Also	73 72	PL 42B 291	+Brewer, Budnitz, Entis, Graven, Mi McCarthy, Brewer, Budnitz, Entis,		(LBL) (LBL)	Also	66B	PL 20 212
Also IESSNER	71 73	LBL-550 Thesis PRL 30 876	McCarthy +Morse, Nauenberg, Hitlin+	(COLO, SLA	(LBL)	Also CRONIN	66 67	PL 23 277 PRL 18 25
EACH	73	PL 43B 441	+Evans, Muir, Hopkins, Krenz	(EDIN, CERN	N, AACH)	CRONIN	67B	Princeton 11,
ANDWEISS VILLIAMS	73 73	PRL 30 1002 PRL 31 1521	+Sunderland, Turner, Willis, Keller +Larsen, Leipuner, Sapp, Sessoms+	(YAI	LE, ANL) IL, YALE)	DEBOUARD Also	67 65	NC 52A 662 PL 15 58
LBROW	72	NP B44 1	+Aston, Barber, Bird, Ellison+	(MCH	S, DARE)	DEVLIN Also	67 68	PRL 18 54 PR 169 1045
SHFORD ANNER	72 72	PL 38B 47 PRL 28 1597	+Brown, Masek, Maung, Miller, Rud +Cronin, Hoffman, Knapp, Shochet	erman+	(UCSD) (PRIN)	DORFAN	67	PRL 19 987
ANNER	728	PRL 29 237 SJNP 15 636	+Cronin, Hoffman, Knapp, Shochet +Davidenko, Demidov, Dolgolenko+		(PRIN) (ITEP)	FELDMAN FIRESTONE	67B 67	PR 155 1611 PRL 18 176
ARMIN	72	Translated from YAF 15	1149.			FITCH	67	PR 164 1711
ARMIN	72B	SJNP 15 638 Translated from YAF 15	+Barylov, Davidenko, Demidov+ 1152.		(ITEP)	GINSBERG HAWKINS	67 67	PR 162 1570 PR 156 1444
URGUN	72	NP B50 194 PR D6 2335	+Lesquoy, Muller, Pauli+	(SACL, CER	N. OSLO) (PRIN)	HILL	67	PRL 19 668
ARNEGIE ALLY	72 72	PL 41B 647	+Cester, Fitch, Strovink, Sulak +Innocenti, Seppi+	(SLAC, JH	U, UCLA)	HOPKINS KADYK	67 67	PRL 19 185 PRL 19 597
Also Also	70 71	PL 33B 627 PL 35B 261	Chien, Cox, Ettlinger+ Chien, Cox, Ettlinger+	(JHU, SLAC (JHU, SLAC	C, UCLA)	KULYUKINA LOWYS	67	Preprint
RAHAM	72	NC 9A 166	+Abashian, Jones, Mantsch, Orr+	(IL	L, NEAS)	MISCHKE	67 67	PL 24B 75 PRL 18 138
OLDER AMES	72 72	PL 40B 141 NP B49 1	+Radermacher, Staude+ +Montanet, Paul, Saetre+	(AACH, CER (CERN, SAC	N, TORI) L. OSLO)	NEFKENS SCHMIDT	67 67	PR 157 1233 Nevis 160 Th
RENZ	72	LNC 4 213	+Hopkins, Evans, Muir, Peach +Kofler, Meisner, Hertzbach+	(AACH, CER	N, EDIN)	TODOROFF	67	Thesis
ANTSCH	72 72	PR D6 137 NC 9A 160	+Abashian, Graham, Jones, Orr+	(MASA, BN	L, NEAS)	ALFF ANIKINA	66B 66	PL 21 595 SJNP 2 339
CCARTHY	72 72	PL 42B 291 PL 40B 703	+Brewer, Budnitz, Entis, Graven+	(CERN, IP!	(LBL)	AUERBACH	66B	Translated fro PRL 17 980
EUHOFER	72	PL 41B 642	+Neuhofer, Niebergall+ +Niebergall, Regler, Stier+	(CERN, ORS	SA, VIEN)	BASILE	66	Balaton Conf
ICCIONI Also	72 74	PRL 29 1412 PR D9 2939	+Coombes, Donaldson, Dorfan, Fryb Piccioni, Donaldson+	erger+ (SLAC, UCSC	(SLAC) C. COLO)	BEHR BELLOTTI	66 66	PL 22 540 NC 45A 737
OSBURGH	72	PR D6 1834	+Devlin, Esterling, Goz, Bryman+	(RUTO	5, MASA)	BOTT	66	PL 23 277
Also ALATS	71 71	PRL 26 866 SJNP 13 53	Vosburgh, Devlin, Esterling, Goz+ +Berezin, Vishnevsky, Galanina+	(RUTC	3, MASA) (ITEP)	CARPENTER CRIEGEE	66 66	PR 142 871 PRL 17 150
ARMIN	71	Translated from YAF 13 PL 35B 604	93. +Barylov, Veselovsky, Davidenko+		(ITEP)	FIRESTONE	66	PRL 16 556
IISI	71	PL 36B 533	+Darriulat, Ferrero, Rubbia+	(AACH, CER	N, TORI)	HAWKINS Also	66 67	PL 21 238 PR 156 1444
URGUN ARNEGIE	71 71	LNC 2 1169 PR D4 1	+Lesquoy, Muller, Pauli+ +Cester, Fitch, Strovink, Sulak	(SACL, CER	N, OSLO) (PRIN)	NEFKENS ANDERSON	66 65	PL 19 706 PRL 14 475
HAN	71	LBL-350 Thesis			(LBL)	ANIKINA	65	JINR P 2488
HIEN Also	71 72	PL 35B 261 PL 41B 647	+Cox, Ettlinger+ Dally, Innocenti, Seppi+	(JHU, SLA (SLAC, JH	C, UCLA) U, UCLA)	ASTBURY Also	65 65	PL 16 80 HPA 39 523
но	71	PR D3 1557	+Dralle, Canter, Engler, Fisk+	(CMU, BN	IL, CASE)	ASTBURY	65B	PL 18 175
LARK Also	71 70	PRL 26 1667 UCRL 19709 Thesis	+Elioff, Field, Frisch, Johnson, Kerth Johnson	1+	(LRL) (LRL)	ASTBURY AUBERT	65C 65	PL 18 178 PL 17 59
Also Also	71 74	UCRL 20264 Thesis SLAC-PUB-1498 unpub.	Frisch Field		(LRL) (SLAC)	Also	67	PL 24B 75
NSTROM	71	PR D4 2629	+Akavia, Coombes, Dorfan+	(SLA	C, STAN)	BALDO FISHER	65 65	NC 38 684 ANL 7130 83
Also AMES	70 71	SLAC-125 Thesis PL 35B 265	Enstrom +Montanet, Paul, Pauli+	(CERN, SAC	(STAN) L. OSLO)	FITCH FRANZINI	65 65	PRL 15 73 PR 140B 12
MEISNER	71	PR D3 59	+Mann, Hertzbach, Kofler+	(MASA, BN	IL, YALE)	GALBRAITH	65	PRL 14 383
EACH EPELLIN	71 71	PL 35B 351 PL 36B 603	+Evans, Muir, Budagov, Hopkins+ +Wolff, Chollet, Gaillard, Jane+	(ORS/	N, CERN) A, CERN)	GUIDONI HOPKINS	65 65	Argonne Con Argonne Con
VEBBER Also	71 68	PR D3 64 PRL 21 498	+Solmitz, Crawford, Alston-Garnjost Webber, Solmitz, Crawford, Alston-	Carninet	(LRL) (LRL)	ADAIR	64	PL 12 67
Also	69	UCRL 19226 Thesis	Webber		(LRL)	ALEKSANYAN Also	64	Dubna Conf. JETP 19 101
OLFF LBROW	71 70	PL 36B 517 PL 33B 516	+Chollet, Repellin, Gaillard+ +Aston, Barber, Bird, Ellison+		A, CERN) S, DARE)	ANIKINA	64	Translated fre JETP 19 42
RONSON	70	PRL 25 1057	+Ehrlich, Hofer, Jensen+	(EFI, ILL	.C, SLAC) EP, JINR)			Translated from
ARMIN ASILE	70 70	PL 33B 377 PR D2 78	+Barylov, Borisov, Bysheva+ +Cronin, Thevent, Turlay, Zylberajch	(IT) +	EP, JINR) (SACL)	CHRISTENSON FUJII	64	PRL 13 138 Dubna Conf.
BECHERRAWY BUCHANAN	70 70	PR D1 1452 PL 33B 623		(SLAC, JH	(ROCH)	LUERS DARMON	64 62	PR 133B 12
Also	71	Private Comm.	+Drickey, Rudnick, Shepard+ Cox			ASTIER	61	Aix Conf. 1
UDAGOV Also	70 68B	PR D2 815 PL 28B 215	+Cundy, Myatt, Nezrick+ Budagov, Cundy, Myatt+	(CERN, ORS.		FITCH GOOD	61 61	NC 22 1160 PR 124 1223
HIEN	70	PL 33B 627	+Cox, Ettlinger+	(JHU, SLA		NYAGU	61	PRL 6 552 JETP 13 113
Also :HO	71 70	Private Comm. PR D1 3031	Cox +Dralle, Canter, Engler, Fisk+	(CMU, BN	IL. CASE)	Also	618	Translated from
Also	67	PRL 19 668	Hill, Luers, Robinson, Sakitt+		NL, CMU)	BARDON	58	ANP 5 156
HOLLET ULLEN	70 70	PL 31B 658 PL 32B 523	+Gaillard, Jane, Ratcliffe, Repellin+ +Darriulat, Deutsch, Foeth+	(AACH, CER	(CERN) N, TORI)			
ARRIULAT AISSNER	70 70	PL 33B 249 NC 70A 57	+Ferrero, Grosso, Holder+ +Reithler, Thome, Gaillard+	(AACH, CER	RN, TORI)			
INSBERG	70	PR D1 229	+Reither, Thome, Galiaro+	(AACH, CER	(HAIF)	KLEINKNECHT GINSBERG	Г76 73	ARNS 26 1 PR D8 3887
ENSEN Also	70 69	Thesis PRL 23 615	Jensen, Aronson, Ehrlich, Fryberge	+	(EFI) (EFI, ILL)	GINSBERG	70	PR D1 229
MARX	70	PL 32B 219	+Nygren, Peoples+	(COLU, HAR	V, CERN)	HEUSSE CRONIN	70 68C	LNC 3 449 Vienna Conf.
Also CRIBANO	70B 70	Nevis 179 Thesis PL 32B 224	Marx +Mannelli, Pierazzini, Marx+	(PISA, COLU	(COLU) U. HARV)	RUBBIA Also	67 66C	PL 24B 531
MITH	70	PL 32B 133	+Wang, Whatley, Zorn, Hornbostel		MD, BNL)	Also	66C	PL 23 167 PL 20 207
VEBBER Also	70 69	PR D1 1967 UCRL 19226 Thesis	+Solmitz, Crawford, Alston-Garnjost Webber		(LRL) (LRL)	Also AUERBACH	66B 66	PL 21 595 PR 149 1052
BANNER Also	69 68	PR 188 2033 PRL 21 1103	+Cronin, Liu, Pilcher Banner, Cronin, Liu, Pilcher		(PRIN) (PRIN)	Also	65	PRL 14 192
Also	68	PRL 21 1107	Cronin, Liu, Pilcher		(PRIN)	FIRESTONE BEHR	66B 65	PRL 17 116 Argonne Con
BEILLIERE BENNETT	69 69	PL 30B 202 PL 29B 317	+Boutang, Limon +Nygren, Saal, Steinberger+	(CO	(EPOL) LU, BNL)	MESTVIRISH	65	JINR P 2449
BOHM	69B	NP B9 605	+Darriulat, Grosso, Kaftanov+	(50	(CERN)	TRILLING Updated fi	65B rom 1	UCRL 16473 965 Argonne C
	68 69	PL 27B 321 PRL 22 1210	Bohm, Darriulat, Grosso, Kaftanov +Jones, Peterson, Stenger+	(HA)	(CERN) WA, LRL)	JOVANOV	63	BNL Conf.
Also		PRL 23 427	+Golden, Muir, Peach+		N, CERN)			
Also CENCE EVANS	69			CAACU CCC	N TODI)			
Also CENCE EVANS FAISSNER FOETH	69 69	PL 30B 204 PL 30B 282	+Foeth, Staude, Tittel+ +Holder, Radermacher+	(AACH, CER (AACH, CER	RN, TORI) RN, TORI)			
Also CENCE EVANS FAISSNER FOETH GAILLARD	69 69	PL 30B 204 PL 30B 282 NC 59A 453	+Foeth, Staude, Tittel+ +Holder, Radermacher+ +Galbraith, Hussri, Jane+	(AACH, CER (AACH, CER (CERN, RHE	RN, TORI) RN, TORI) L. AACH)			
Also CENCE EVANS FAISSNER FOETH	69 69 69 67 69B	PL 30B 204 PL 30B 282	+Foeth, Staude, Tittel+ +Holder, Radermacher+	(AACH, CER (AACH, CER (CERN, RHE (CERN, RHE	RN, TORI) RN, TORI) L. AACH)			

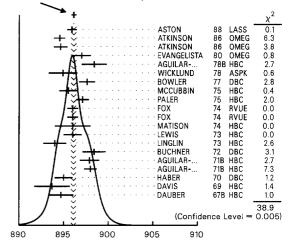
PACIOTTI	69	UCRL 19446 Thesis		(LRL)
SAAL	69	Thesis		(LRL) (COLU)
ABRAMS ARNOLD	68B 68B	PR 176 1603	+Abashian, Mischke, Nefkens, Smith+ +Budagov, Cundy, Aubert+	(ILL)
ARONSON	68	PL 28B 56 PRL 20 287		
Aiso	69	PR 175 1708	Aronson, Chen	(PRIN)
BARTLETT BASILE	68 68	PRL 21 558	+Carnegie, Fitch+	(PRIN) (SACL)
BASILE	68B	PL 26B 542 PL 28B 58	+ Chen Aronson, Chen + Carnegie, Fitch+ + Cronin, Thevenet, Turlay+ + Cronin, Thevenet, Turlay, Zylberajch+	(SACL)
BENNETT BENNETT	68	PL 27B 244	+Nygren, Steinberger+ +Nygren, Steinberger+	
BENNETT BLANPIED	68B 68	PL 27B 248	+Nygren, Steinberger+	(COLU, CERN)
BUDAGOV	68	NC 57A 182 PL 28B 215 NP B8 365	+Levit, Engels+ (+Burmeister, Cundv+ (CASE, HARV, MCGI) CERN, ORSA, IPNP) CERN, ORSA, EPOL) (IPNP, CERN) (UCLA, MICH)
Also	68B	PL 28B 215	+Burmeister, Cundy+ (Budagov, Cundy, Myatt+	CERN, ORSA, EPOL)
JAMES Also	68 68	NP B8 365 PRL 21 257	+Briand Helland, Longo, Young	(IPNP, CERN)
KULYUKINA	68	JETP 26 20	+ Mestvirishvili, Nvagii+	(JINR)
KUNZ	68	Translated from ZETF	53 29.	(PRIN)
THATCHER	68	PU 46 Thesis PR 174 1674	+Abashian, Abrams, Carpenter+	(FKIN) (JLL)
BENNETT	67	PR 174 1674 PRL 19 993 PL 24B 194	+Nygren, Saal, Steinberger+	(ILL) (COLU)
BOTT BOTT	67 67B	PL 24B 194 PL 24B 438	Bott-Bodenhausen, DeBouard, Cassel- Bott-Bodenhausen, Debouard, Dekker	+ (CERN) rs+ (CERN)
Also	66B	PL 20 212	Bott-Bodenhausen, Debouard, Cassel-	+ (CERN)
Also	66	PL 20 212 PL 23 277	Bott-Bodenhausen, Debouard, Cassel- Bott-Bodenhausen, DeBouard, Cassel-	+ (CERN)
CRONIN	67 67B	PRL 18 25 Princeton 11/67	+Kunz, Risk, Wheeler +Kunz, Risk, Wheeler	(PRIN) (PRIN)
DEBOUARD	67	NC 52A 662 PL 15 58		(CERN)
Also	65	PL 15 58	DeBouard, Dekkers, Scharff+ +Solomon, Shepard, Beall+	ERN, ORSA, MPIM)
DEVLIN Also	67 68	PRL 18 54 PR 169 1045 PRL 19 987	Saver Reall Devlin Shenhard+	ERN, ORSA, MPIM) (PRIN, UMD) (UMD, PPA, PRIN) (SLAC, LRL)
DORFAN	67	PRL 19 987	Sayer, Beall, Devlin, Shephard+ +Enstrom, Raymond, Schwartz+ +Frankel, Highland, Sloan	(SLAC, LRL)
FELDMAN	67B 67	PR 155 1611 PRL 18 176	+Frankei, Highland, Sloan	
FIRESTONE FITCH	67	PR 164 1711	+Kim, Lach, Sandweiss+ +Roth, Russ, Vernon	(YALE, BNL) (PRIN)
GINSBERG	67	PR 162 1570	, ,	(MASB)
HAWKINS HILL	67 67	PR 156 1444 PRL 19 668	Lluore Pohineon Cakitt	(YALE) (BNL, CMU)
HOPKINS	67	PRL 19 185	+Luers, Robinson, Sakitt+ +Bacon, Eisler	(BNL)
KADYK	67	PRL 19 597	+Bacon, Eisler +Chan, Drijard, Oren, Sheldon +Mestvirishvili, Nyagu+ +Aubert, Chounet, Pascaud+	(LRL)
KULYUKINA LOWYS	67 67	Preprint PL 24B 75	+ Mestvirishvill, Nyagu+ + Aubert Chounet Pascaud+	(ĴINR) (EPOL, ORSA)
MISCHKE	67	PRL 18 138 PR 157 1233	+Abashian, Abrams+	(ILL)
NEFKENS SCHMIDT	67	PR 157 1233	+Abashian, Abrams+ +Abashian, Abrams, Carpenter, Fisher-	+ (ILL)
TODOROFF	67 67	Nevis 160 Thesis Thesis		(COLU) (ILL)
ALFF	66B	PL 21 595	Alff-Steinberger, Heuer, Kleinknecht+	(CERN)
ANIKINA	66	SJNP 2 339 Translated from YAE 2	+Vardenga, Zhuravleva+	(JINR)
AUERBACH	66B	Translated from YAF 2 PRL 17 980 Balaton Conf.	+Mann, McFarlane, Sciulli	(PENN)
BASILE BEHR	66 66	Balaton Cont. Pl 22 540	+Cronin, Thevenet+ +Brisson, Petiau+ (EPOL,	(SACL) MILA, PADO, ORSA) (MILA, PADO)
BELLOTTI	66	PL 22 540 NC 45A 737	+Pullia, Baldo-Ceolin+	(MILA, PADO)
BOTT CARPENTER	66 66	PL 23 277 PR 142 871	Bott-Bodenhausen, DeBouard, Cassel +Abashian, Abrams, Fisher +Fox, Frauenfelder, Hanson, Moscat+	+ (CERN)
CRIEGEE FIRESTONE	66	PRL 17 150 PRL 16 556	+Fox, Frauenfelder, Hanson, Moscat+	(ILL) (ILL)
FIRESTONE	66	PRL 16 556	+Kim, Lach, Sandweiss+	(YALE, BNL) (YALE)
HAWKINS Also	66 67	PL 21 238 PR 156 1444	Hawkins	(YALE)
NEFKENS	66	Pl 19 706	+Abashian, Abrams, Carpenter+ +Crawford, Golden, Stern, Binford+	(ILL)
ANDERSON ANIKINA	65 65	PRL 14 475 JINR P 2488	+Crawford, Golden, Stern, Binford+	(ILL) (LRL, WISC)
ASTBURY	65	PI 16 80	+Vardenga, Zhuravleva, Kotlya+ +Finocchiaro, Beusch+	(JINR) (CERN, ZURI)
Also	65	HPA 39 523 PL 18 175	Pepin	
ASTBURY ASTBURY	65B 65C	PL 18 175	+Michelini, Beusch+ +Michelini, Beusch+	(CERN, ZURI) (CERN, ZURI) (EPOL, ORSA) (EPOL, ORSA)
AUBERT	65	PL 18 178 PL 17 59	+Behr, Canavan, Chounet+	(EPOL, ORSA)
Also	67	PL 24B 75 NC 38 684	+Behr, Canavan, Chounet+ Lowys, Aubert, Chounet, Pascaud+ Baldo-Ceolin, Calimani, Ciampolillo+	(EPOL, ORSA)
BALDO FISHER	65 65	NC 38 684 ANI 7130 83	+Abashian, Abrams, Carpenter+	(PADO) (ILL)
FITCH	65	ANL 7130 83 PRL 15 73	+Abashian, Abrams, Carpenter+ +Roth, Russ, Vernon	(PRIN)
FRANZINI GALBRAITH	65 65	PR 140B 127 PRL 14 383	+Kirsch, Plano+	(COLU, RUTG)
GUIDONI	65	Argonne Conf. 49	+Manning, Jones+ +Barnes, Foelsche, Ferbel, Firestone+ +Bacon, Eisler	(AERE, BRIS, RHEL) (BNL, YALE) (VAND, RUTG)
HOPKINS	65	Argonne Conf. 49 Argonne Conf. 67	+Bacon, Eisler	(VAND, RUTG)
ADAIR ALEKSANYAN	64 1 64B	PL 12 67 Dubna Conf. 2 102	+Leipuner +Alikhanyan, Vartazaryan+	(YALE, BNL)
Also	64	JETP 19 1019	Aleksanyan+ ((YALE, BNL) (YERE) (LEBD, MPEI, YERE)
ANIKINA	64	Translated from ZETF JETP 19 42	Aleksanyan+ 46 1504. +Zhuravleva+ 46 59. +Cronin, Fitch, Turlay +Jovanovich, Turkot+	(GEOR, JINR)
CHRISTENSO	N 64	rranslated from ZETF PRL 13 138	4b 59. +Cronin, Fitch, Turlay	(PRIN)
FUJII	64	PRL 13 138 Dubna Conf. 2 146	+ Jovanovich, Turkot+	(BNL, UMD, MIT)
LUERS DARMON	64	PR 133B 1276 PL 3 57	+Mittra, Willis, Yamamoto	(BNL)
ASTIER	62 61	Aix Conf. 1 227	+Rousset, Six +Blaskovic, Rivet, Siaud+	(ÉPOL) (EPOL)
FITCH	61	Aix Conf. 1 227 NC 22 1160 PR 124 1223	+Piroue, Perkins	(PRIN, LASL)
GOOD NYAGU	61 61		+Matsen, Muller, Piccioni+ +Okonov, Petrov, Rosanova, Rusakov	(LRL) (JINR)
Also	618	JETP 13 1138	Nyagu, Okonov, Petrov, Rozanova+ 40 1618.	(JINR)
BARDON	58	Translated from ZETF ANP 5 156	40 1618. +Lande, Lederman	(COLU, BNL)
		ОТНЕ	R RELATED PAPERS	
			R RELATED PAPERS —	
KLEINKNECH GINSBERG	T 76	ARNS 26 1		(DORT)
KLEINKNECH GINSBERG GINSBERG HEUSSE	T 76 73 70 70		+Smith	(DORT) (MIT, STON) (HAIF) (ORSA)

KLEINKNECHT	76	ARNS 26 1			(DORT)
GINSBERG	73	PR D8 3887		+Smith	(MIT, STON)
GINSBERG	70	PR D1 229			(HAIF)
HEUSSE	70	LNC 3 449		+Aubert, Pascaud, Vialle	(ÒR5A)
CRONIN	68C	Vienna Conf. 281			(PRIN)
RUBBIA	67	PL 24B 531		+Steinberger	(CERN, COLU)
Also	66C	PL 23 167		Rubbia, Steinberger	(CERN, COLU)
Also	66C	PL 20 207		Alff-Steinberger, Heuer, Kleinknecht+	(CERN)
Also	66B	PL 21 595		Alff-Steinberger, Heuer, Kleinknecht+	(CERN)
AUERBACH	66	PR 149 1052		+Dobbs, Lande, Mann, Sciulli+	(PENN)
Also	65	PRL 14 192		Auerbach, Lande, Mann, Sciulli, Uto+	(PENN)
FIRESTONE	66B	PRL 17 116		+Kim, Lach, Sandweiss+	(YALE, BNL)
BEHR	65	Argonne Conf. 59	€	+Brisson, Bellotti+ (EPOL	., MILA, PADO)
MESTVIRISH	65	JINR P 2449		Mestvirishvili, Nyagu, Petrov, Rusakov+	(JINR)
TRILLING	65B	UCRL 16473			(LRL)
		65 Argonne Confei			
JOVANOV	63	BNL Conf. 42		Jovanovich, Fischer, Burris+	(BNL, UMD)

 $K^*(892)$

K*(892

 $I(J^{\rho}) = \frac{1}{2}(1^{-})$


K*(892) MASS

CHARGED ON		Meson Summary	Table			
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
891.83±0.24 OUI 890.4 ±2 ±5.7	79709 ± 801	¹ BIRD	89	LASS		$\begin{array}{c} 11 \ K^- \ p \rightarrow \\ \overline{K}^0 \ \pi^- \ p \end{array}$
892.6 ±0.5	5840	BAUBILLIER	84B	нвс	-	$ \begin{array}{ccc} & \pi & p \\ 8.25 & K^{-} & p \rightarrow \\ & \overline{K}^{0} & \pi^{-} & p \end{array} $
888.0 ±3.0		NAPIER	84	SPEC	+	$200 \pi^{-} p \rightarrow 2K_{5}^{0} X$
891.0 ±1.0		NAPIER	84	SPEC	-	$200 \pi^{-1} \rho \rightarrow 2K_{S}^{0} X$
891.7 ± 2.1	3700	BARTH	83	нвс	+	$70 K^{+} \rho \rightarrow K^{0} \pi^{+} X$
891.0 ±1.0	4100	TOAFF	81	нвс		$6.5 \stackrel{K}{K^{-}} \stackrel{p}{\rho} \rightarrow \frac{1}{K^{0}} \pi^{-} \stackrel{p}{\rho}$
892.8 ±1.6		AJINENKO	80	нвс	+	$\begin{array}{c} 32 \ K^{+} \ p \rightarrow \\ K^{0} \ \pi^{+} \ X \end{array}$
890.7 ±0.9	1800	AGUILAR	78B	нвс	±	$0.76 \overline{p}p \rightarrow \\ \kappa^{\mp} \kappa^{0}_{S} \pi^{\pm}$
$886.6\ \pm2.4$	1225	BALAND	78	HBC	±	$12 \overline{p} p \to (K \pi)^{\pm}$
$891.7\ \pm0.6$	6706	COOPER	78	нвс	±	$0.76 \overline{p}p \rightarrow (K\pi)^{\pm} X$
$891.9\ \pm0.7$	9000	² PALER	75	нвс	-	$14.3 K^{-} \rho \rightarrow (K\pi)^{-} X$
892.2 ± 1.5	4404	AGUILAR	71B	нвс	-	3.9,4.6 $K^- p \rightarrow$
891.0 ± 2.0	1000	CRENNELL	69D	DBC	-	$3.9 \underset{K^0}{K^-} \underset{\pi^-}{N} \xrightarrow{p}$
894 ±1.0	2886	³ FRIEDMAN	69	нвс	-	2.1 K [−] p →
892 ±2	728	FRIEDMAN	69	нвс	-	$ \frac{\overline{K}^{0}\pi^{-}\rho}{2.45 K^{-}\rho \rightarrow \overline{K}^{0}\pi^{-}\rho} $
892 ± 1.0	3229	FRIEDMAN	69	нвс	-	$ \overline{K}^{0} \pi^{-} \rho $ 2.6 $K^{-} \rho \rightarrow \overline{K}^{0} \pi^{-} \rho$
892 ± 1.6	1027	FRIEDMAN	69	нвс	-	$2.7 \stackrel{K^{-}}{K^{0}} \stackrel{\rho}{\pi^{+}} \stackrel{\rightarrow}{\rho}$
890 ± 3.0	720	BARLOW	67	нвс	±	$ \begin{array}{ccc} K^{\circ}\pi & p \\ 1.2 \overline{p}p \to \\ (K^{\circ}\pi)^{\pm} & K^{\mp} \end{array} $
889 ±3.0	600	BARLOW	67	нвс	\pm	$ \begin{array}{c} (K & \pi) \\ 1.2 \overline{p}p \to \\ (K^0 \pi)^{\pm} K \pi \end{array} $
891 ± 2.3	620	³ DEBAERE	67B	нвс	+	$3.5 \begin{array}{c} K^{+} \rho \rightarrow \\ K^{0} \pi^{+} \rho \end{array}$
891.0 ±1.2	1700	⁴ WOJCICKI	64	нвс	-	$1.7 \stackrel{K}{K^0} \stackrel{\rho}{\pi^-} \stackrel{\rho}{\rho}$
• • • We do not		g data for average			etc. •	• •
890.0 ±2.3	800	3.4 CLELAND	82	SPEC	+	30 $K^+ p \rightarrow K^0_S \pi^+ p$
896.0 ±1.1	3200	^{3,4} CLELAND	82	SPEC	+	50 $K^+ p \rightarrow K_0^0 \pi^+ p$
$893.0\ \pm1.0$	3600	^{3,4} CLELAND	82	SPEC	-	$50 \begin{array}{c} K^{+} p \rightarrow \\ K^{0} \pi^{-} p \end{array}$
896.0 ± 1.9	380	DELFOSSE	81	SPEC	+	$50 \stackrel{K^{\frac{3}{2}}}{K^{\pm}} \stackrel{p}{\to} \stackrel{\rightarrow}{K^{\pm}} \stackrel{\rightarrow}{\pi^0} \stackrel{\rightarrow}{p}$
$886.0\ \pm2.3$	187	DELFOSSE	81	SPEC	-	$\begin{array}{c} 50 \ K^{\pm} p \rightarrow \\ K^{\pm} \pi^{0} p \end{array}$
894.2 ±2.0	765	³ CLARK	73	нвс	-	$ \begin{array}{c} K - \pi^{-} p \\ 3.13 K^{-} p \rightarrow \\ \overline{K}^{0} \pi^{-} p \end{array} $
$894.3 \ \pm 1.5$	1150	^{3,4} CLARK	73	нвс	-	$3.3 K^- p \rightarrow$
888 ± 2.5	540	³ DEWIT	68	нвс	-	$\overline{K}^0 \pi^- p$ 3 $K_{-0}^- n \rightarrow$
892.0 ±2.6	341	³ SCHWEING	68	нвс	-	$ \begin{array}{c} 3 & K & n \rightarrow \\ \overline{K}^0 & \pi^- & n \\ 5.5 & K^- & \rho \rightarrow \\ \overline{K}^0 & \pi^- & \rho \end{array} $
NEUTRAL ON	Y					л π р

VALUE (MeV)	EVIS	DOCUMENT ID		IECN	CHG	COMMENT
896.10±0.28	OUR AVERAGE	Error includes scale	facto	or of 1.4.	See	the ideogram below.
895.9 ±0.5 ±	0.2	ASTON	88	LASS	0	11 K ⁻ p →
		_				$K^-\pi^+n$
894.52 ± 0.63	25k	² ATKINSON	86	OMEG		20-70 γp
894.63 ± 0.76	20k	² ATKINSON	86	OMEG		20-70 γp
897 ±1	28k	EVANGELISTA	80	OMEG	0	10 $\pi^- \rho \rightarrow$
						$K^{+}\pi^{-}(\Lambda,\Sigma)$
898.4 ±1.4	1180	AGUILAR	78B	HBC	0	0.76 pp →
						$\kappa^{\pm} \kappa_{S}^{0} \pi^{\pm}$
894.9 ±1.6		WICKLUND	78	ASPK	0	3.4.6 $K^{\pm}N \rightarrow$
						$(K\pi)^{0}N$
897.6 ±0.9		BOWLER	77	DBC	0	5.4 K+ d
						$K^+\pi^-pp$
895.5 ±1.0	3600	MCCUBBIN	75	HBC	0	3.6 K $^ \rho \rightarrow$
		2				$K^-\pi^+$ n
897.1 ±0.7	22k	² PALER	75	HBC	0	14.3 $K^- \rho \rightarrow$
						(<i>K</i> π) ⁰ Χ

896.0	±0.6	10k	FOX	74	RVUE	0	$2~K^-~\rho \rightarrow$
896.0	±0.6		FOX	74	RVUE	0	$2 \stackrel{K^-}{K^+} \stackrel{\pi^+}{n} \rightarrow$
896	±2		⁵ MATISON	74	нвс	0	$K^+\pi^-\rho$ 12 $K^+\rho \rightarrow$
896.0	±1.0	3186	LEWIS	73	нвс	0	$K^{+}\pi^{-}\Delta$ 2.1-2.7 $K^{+}p \rightarrow$
894.0	±1.3		⁵ LINGLIN	73	нвс	0	$K \pi \pi \rho$ 2-13 $K^+ \rho \rightarrow$
898.4	±1.3	1700	³ BUCHNER	72	DBC	0	$K^{+}\pi^{-}\pi^{+}\rho$ 4.6 $K^{+}\eta \rightarrow$
897.9	±1.1	2934	3 AGUILAR	71B	нвс	0	$K^{+}\pi^{-}p$ 3.9,4.6 $K^{-}p \rightarrow$
898.0	± 0.7	5362	³ AGUILAR	71B	нвс	0	$K^-\pi^+\pi$ 3.9,4.6 $K^-p \rightarrow$
895.0	+10	4300	⁴ HABER	70	DBC	0	$K^-\pi^+\pi^-\rho$ 3 $K^-N \rightarrow$
893.7		10k	DAVIS		нвс	0	$K^-\pi^+ \times 12 K^+\rho \rightarrow$
894.7		1040	3 DAUBER		нвс	0	$K^{+}\pi^{-}\pi^{+}\rho$
						_	$\begin{array}{c} 2.0 \ K^- \ p \rightarrow \\ K^- \ \pi^+ \ \pi^- \ p \end{array}$
• • •	We do not use the	e following	data for averages	, fits	, limits,	etc. •	• •
900.7	±1.1	5900	BARTH	83	нвс	0	70 $K^+ p \rightarrow K^+ \pi^- \chi$

WEIGHTED AVERAGE 896.10 ± 0.28 (Error scaled by 1.4)

 $K^*(892)^0$ mass (MeV)

NOTE ON $K^*(892)$ MASSES AND MASS DIFFERENCES

Unrealistically small errors are reported by some experiments. We use simple "realistic" tests for the minimum errors on the determination of mass and width from a sample of Nevents:

$$\delta_{\min}(m) = \frac{\Gamma}{\sqrt{N}}, \quad \delta_{\min}(\Gamma) = 4\frac{\Gamma}{\sqrt{N}}$$
.

(For a detailed discussion, see the 1971 edition of this note.) We consistently increase unrealistic errors before averaging.

K*(892) ⁰ -	K*(892) [±] MASS	DIFFER	ENCE	Ė
EVTS	DOCUMENT ID	TECN	CHG	<u>co</u>

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
6.7 ± 1.2 OUR AVE	RAGE				
7.7 ± 1.7	2980	AGUILAR	788 HBC	±0	
					$\kappa^{\mp} \kappa^{0}_{5} \pi^{\pm}$
5.7 ± 1.7	7338	AGUILAR	71B HBC	-0	3.9,4.6 K p
6.3 ± 4.1	283	6 BARASH	67B HBC		0.0 00

 $^{^{6}\,\}mathrm{Number}$ of events in peak reevaluated by us.

 $^{^{\}mathrm{1}}$ From a partial wave amplitude analysis.

² Inclusive reaction. Complicated background and phase-space effects. ³ Mass errors enlarged by us to $\Gamma/N^{1/2}$. See note.

⁴ Number of events in peak reevaluated by us.

⁵ From pole extrapolation.

 $K^*(892)$

	K*(892) RANGE PA	RAM	ETER		
ALUE (GeV-1)	DACE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
3.6±0.7 OUR AVE 2.1±3.2±3.0	RAGE	⁷ BIRD	89	LASS	+	$\begin{array}{c} 11 \ K^- \ p \rightarrow \\ \overline{K}^0 \ \pi^- \ p \end{array}$
3.4±0.7		ASTON	88	LASS	0	$ \begin{array}{c} K^-\pi^-p \\ 11 K^-p \rightarrow \\ K^-\pi^+n \end{array} $
⁷ From a partial v	vave amplitu	ide analysis.				Κ π· 11
· · · · · · · · · · · · · · · · · · ·		K*(892) WII	отн			
HARGED ONL	Y	` /				
This is what a ALUE (MeV)	appears in ti	ne Meson Summary DOCUMENT ID			CHG	COMMENT
9.8±0.8 OUR FIT 9.8±0.8 OUR AVE						
	709 ± 801	⁸ BIRD	89	LASS		11 K [−] p →
9.0±2.0	5840	BAUBILLIER	84B	нвс	_	$\overline{K}^0 \pi^- p$ 8.25 $K^- p \rightarrow$
6.0 ± 4.0		NAPIER	84	SPEC	_	$\overline{K}^0\pi^-\rho$
1.0 ± 2.0	4100	TOAFF	81	нвс	_	$2K_{S}^{0} \times 6.5 K_{P}^{-} p \rightarrow$
	4100	-	80	нвс	_	$\overline{K}^{0}\pi^{-}\rho$
0.5±5.6 5.8±3.6	1800	AJINENKO AGUILAR		нвс	+ ±	$\begin{array}{c} 32 \ K^{+} \ \rho \rightarrow \\ K^{0} \ \pi^{+} \ X \\ 0.76 \ \overline{\rho} \ \rho \rightarrow \end{array}$
		_				κ∓ κ ⁰ π [±]
2.0 ± 2.5	6706	9 COOPER	78	нвс	±	$.76 \overline{p}p \rightarrow (K\pi)^{\pm} X$
2.1 ± 2.2	9000	10 PALER	75	нвс	-	$\begin{array}{c} 14.3 \ K^{-} \ p \rightarrow \\ (K \pi)^{-} \ X \end{array}$
6.3±6.7	765	9 CLARK	73	нвс	_	$3.13 \ K^- \ \rho \rightarrow \overline{K}^0 \ \pi^- \ \rho$
8.2±5.7	1150	9,11 CLARK	73	нвс	-	$3.3 \overset{K^-}{\overline{K}^0} \overset{p}{\pi^-} \overset{\longrightarrow}{p}$
4.3±3.3	4404	⁹ AGUILAR	71B	НВС	-	$3.9,4.6 \ K^{-} \ p \rightarrow (K \pi)^{-} \ p$
3 ±4.0	2886	⁹ FRIEDMAN	69	HBC	_	$\begin{array}{c} 2.1 \ K^- \ \rho \rightarrow \\ \overline{K}^0 \ \pi^- \ \rho \end{array}$
9 ±7.3	728	⁹ FRIEDMAN	69	HBC	-	$\begin{array}{c} 2.45 \ K^{-} \ p \rightarrow \\ \overline{K}^{0} \ \pi^{-} \ p \end{array}$
6 ± 3.2	3229	⁹ FRIEDMAN	69	нвс	-	$2.6 \begin{array}{c} K^{-} p \rightarrow \\ \overline{K}^{0} \pi^{-} p \end{array}$
9 ±6.1	1027	⁹ FRIEDMAN	69	нвс	-	$2.7 \stackrel{\kappa^{-1}}{\kappa^{-1}} \stackrel{\rho}{\rho} \rightarrow \frac{1}{\kappa^{0}} \stackrel{\pi^{-1}}{\pi^{-1}} \stackrel{\rho}{\rho}$
6.0 ± 5.0	1700	9,11 WOJCICKI	64	нвс	_	1.7 $K^- p \rightarrow$
• • We do not u	se the follow	ving data for avera	ges, fit:	s, limits,	etc.	$\overline{\kappa}^0 \pi^- \rho$
2.8 ± 7.1	3700	BARTH	83	нвс	+	70 $K^+ p \rightarrow 0$
4.0 ± 9.2	800	9,11 CLELAND	82	SPEC	+	$ \begin{array}{c} K^{0}\pi^{+} \times \\ 30 K^{+} p \rightarrow \\ K^{0}_{5}\pi^{+} p \end{array} $
2.0 ± 4.4	3200	9,11 CLELAND	82	SPEC	+	$50 K^+ p \rightarrow$
5.0 ± 4.0	3600	9,11 CLELAND	82	SPEC	_	$K_{S}^{0}\pi^{+}p$ 50 $K_{S}^{+}p\rightarrow$
2.6±3.8	380	DELFOSSE	81	SPEC	+	$K^0_{\tilde{S}}\pi^-p$ 50 $K^{\pm}p \rightarrow$
0.5±3.9	187	DELFOSSE	81	SPEC	_	$ \begin{array}{c} \kappa^{\pm} \pi^{0} p \\ 50 \kappa^{\pm} p \rightarrow \end{array} $
						$\kappa^{\pm}\pi^{0}\rho$
NEUTRAL ONL' (ALUE (MeV)	Y <u>EVTS</u>	DOCUMENT II		TECN	<u>CHG</u>	COMMENT
	Error inc	ludes scale factor o	f 1.1.			
0.8±0.8±0.9		ASTON	88	LASS	0	11 $K^- \rho \rightarrow K^- \pi^+ \pi$
6.5 ± 4.3	5900	BARTH	83	нвс	0	70 $K^+ \rho \rightarrow K^+ \pi^- X$
64 ±2	28k	EVANGELIS	TA 80	OMEG	0	$ \begin{array}{c} K^{+}\pi^{-} \times \\ 10 \pi^{-}\rho \to \\ K^{+}\pi^{-}(\Lambda,\Sigma) \end{array} $
5.9 ± 4.8	1180	AGUILAR	. 78E	нвс	0	$0.76 \overline{p}p \rightarrow K^{\mp} K_{c}^{0} \pi^{\pm}$
1.2±1.7		WICKLUND	78	ASPK	0	$3,4,6 K^{\pm} N \rightarrow (K\pi)^{0} N$
8.9 ± 2.5		BOWLER	77	DBC	0	$5.4 \begin{array}{c} K^+ d \rightarrow \\ K^+ \pi^- pp \end{array}$
18 +3 -2	3600	MCCUBBIN	75	нвс	0	$3.6 \ K^- p \rightarrow$
0.6 ± 2.5	22k	10 PALER	75	нвс	0	$ \begin{array}{c} K^-\pi^+ n \\ 14.3 \ K^- p \rightarrow \\ (K\pi)^0 X \end{array} $
17 ±2	10k	FOX	74	RVUE		$2 K^- p \rightarrow$

51 ±2		FOX	74 RVU	E 0	$\begin{array}{ccc} 2 & K^{+} & n \rightarrow \\ & K^{+} & \pi^{-} & p \end{array}$
46.0 ± 3.3	3186	9 LEWIS	73 HBC	0	2.1-2.7 K ⁺ p → Kππρ
51.4 ± 5.0	1700	⁹ BUCHNER	72 DBC	0	$ \begin{array}{c} K \pi \pi p \\ 4.6 K^{+} n \rightarrow \\ K^{+} \pi^{-} p \end{array} $
$55.8^{+4.2}_{-3.4}$	2934	9 AGUILAR	71B HBC	0	3.9,4.6 $K^- \rho \rightarrow K^- \pi^+ \eta$
48.5 ± 2.7	5362	AGUILAR	718 HBC	0	$3.9,4.6 \ K^{-} p \rightarrow K^{-} \pi^{+} \pi^{-} p$
54.0 ± 3.3	4300	9,11 HABER	70 DBC	0	$3 K^- N \rightarrow$
53.2 ± 2.1	10k	9 DAVIS	69 HBC	0	$12 \begin{array}{c} K^{-} \pi^{+} X \\ K^{+} \rho \rightarrow \\ K^{+} \pi^{-} \pi^{+} \rho \end{array}$
44 ±5.5	1040	⁹ DAUBER	67B HBC	0	$2.0 \ K^- p \rightarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$

⁸ From a partial wave amplitude analysis.

K*(892) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	Κπ	~ 100	%
Γ_2	$(K\pi)^{\pm}$	(99.899 ± 0.009)) %
Γ_3	$(K\pi)^0$	(99.770 ± 0.020)) %
Γ4	$\kappa^0\gamma$	(2.30 ± 0.20)	$) \times 10^{-3}$
Γ_5	$\mathcal{K}^{\pm}\gamma$	(1.01 ± 0.09)	$) \times 10^{-3}$
Γ_6	Κππ	< 7	× 10 ⁻⁴ 95%

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 18 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=15.2$ for 16 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

$$\begin{array}{cccc}
x_5 & -100 \\
\Gamma & 17 & -17 \\
& x_2 & x_5
\end{array}$$

M	ode	Rate	(MeV)
Γ ₂ Γ ₅ Κ	$(K\pi)^{\pm}$		±0.8 50±0.005

CONSTRAINED FIT INFORMATION

An overall fit to the total width and a partial width uses 18 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=18.4$ for 16 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)	Scale factor
Γ ₃	$(\kappa_{\pi})^{0}$ $\kappa^{0}\gamma$	50.4 ± 0.6 0.117 ± 0.010	1.1

K*(892) PARTIAL WIDTHS

$\Gamma(K^0\gamma)$						Γ ₄
VALUE (keV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
117 ±10 OUR FIT						
116.5 ± 9.9	584	CARLSMITH	86	SPEC	0	K ⁰ ₁ A → K ⁰ ₂ π ⁰ A

⁹ Width errors enlarged by us to $4 \times \Gamma/N^{1/2}$; see note.

 $^{^{}m 10}$ inclusive reaction. Complicated background and phase-space effects.

¹¹ Number of events in peak reevaluated by us.

 $K^*(892), K_1(1270)$

$\Gamma(K^{\pm}\gamma)$ VALUE (keV)	DOCUMENT ID		TECN	CHG	COMMENT	Γį
50 ± 5 OUR FIT 50 ± 5 OUR AVERAGE						
48.0 ± 11.0	BERG	83	SPEC	_	156 K [−] A → KπA	
51.0 ± 5.0	CHANDLEE	83	SPEC	+	200 K [∓] A → KπA	

K*(892) BRANCHING RATIOS

	11 (032	, bitalecilie	0 11	A1103		
$\Gamma(K^0\gamma)/\Gamma_{\text{total}}$ $\frac{VALUE\ (units\ 10^{-3})}{2.30\pm0.20\ \text{OUR}\ \text{FIT}}$ • • • We do not use the	e following	DOCUMENT ID	es, fit	<i>TECN</i> s, limits,	<u>СНБ</u> etc. •	Γ ₄ /Γ
$1.5\ \pm0.7$		CARITHERS	75E	CNTR	0	8–16 $\overline{\mathcal{K}}^0$ A
$\frac{\Gamma(K^{\pm}\gamma)/\Gamma_{\text{total}}}{\frac{\text{VALUE (units }10^{-3})}{1.01\pm0.09\text{ OUR FIT}}}$ • • • We do not use th		DOCUMENT ID	 s, fit	<u>TECN</u> s, limits,	<u>СНБ</u> etc.	Γ ₅ /Γ
<1.6	95	BEMPORAD	73	CNTR	-	10−16 K ⁺ A
$\frac{\Gamma(K\pi\pi)/\Gamma((K\pi)^{\pm})}{\stackrel{VALUE}{<} 0.0007}$	_ <u>CL%</u> 95	DOCUMENT ID	78	<u>TECN</u> HBC	<u>CHG</u>	$\begin{array}{c} \Gamma_6/\Gamma_2 \\ \frac{COMMENT}{4 \ K^- \ p \ \rightarrow} \\ p \overline{K}^0 \ 2\pi \end{array}$
• • • We do not use th	e following	data for average	s, fit	s, limits,	etc.	• •
<0.002		WOJCICKI	64	НВС	-	$1.7 \frac{K^- \rho}{K^0} \xrightarrow{\pi^- \rho}$

K*(892) REFERENCES

BIRD
ATKINSON 86 ZPHY C30 521 + (BONN, CERN, GLAS, LANC, MCHS, LENP+) CARLSMITH 86 PRL 56 18 Bernstein, Peyaud, Turlay BAUBILLIER 84B ZPHY C20 37 + Chen+ (TUDT, ARIZ, FAMA, FLOR, NDMS+) BARTH 83 NP B223 296 + Chen+ (TUDT, ARIZ, FAMA, FLOR, NDMS+) BARTH 83 NP B233 296 + Chen+ (TUDT, ARIZ, FAMA, FLOR, NDMS+) BERG 83 Thesis CHANDLEE 83 PRL 51 168 + Chen+ (TUDT, ARIZ, FAMA, FLOR, NDMS+) CLELAND 80 NP B208 189 + Defosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT) DELFOSSE 81 NP B183 349 + Guisse, Changir, Collick+ (ROCH, FNAL, MINN) TOAFF 81 PR D23 1500 + Belfosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT) DELFOSSE 81 NP B183 349 + Guisse, Collick+ (ROCH, FNAL, MINN) TOAFF 81 PR D23 1500 + Belfosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT) DELFOSSE 81 NP B183 349 + Guisse, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + Guisse, Changir, Collick+ (ROCH, MINN) AJINENKO 80 ZPHY 5 177 + GUISSE, CHAN, CANC
CARLSMITH 86 PRL 56 18 BABUBILIER 84 PL 1498 514 NAPIER 84 PL 1498 514 HCH- (TUFT, ARIZ, FNAL, FLOR, NDAM-) BERG 83 Thesis CHANDLEE 83 PRL 51 188 CLELAND 82 NP B203 189 HDELFOSSE 81 NP B183 349 TOAFF 81 PR D23 1500 HDELFOSSE 81 NP B183 349 TOAFF 81 PR D23 1500 AJINENKO 80 ZPHY 5 177 EVANGELISTA 80 NP B165 383 AGUILAR 788 NP B140 120 HOSPIT 84 PR D24 177 HOSPIT 85 PR D25 177 HOSPIT 86 PR D27 177 HOSPIT 87 PR D28 177 HOSPIT
BAUBILLIER
NAPIER
BARTH 83 NP B223 296 + Drevermann+ (BRUX, CERN, GENO, MONS+) BERG 83 Thesis CHANDLEE 83 PRL 51 168 + Berg, Cihangir, Collick+ CLELAND 82 NP B208 189 + Delfosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT) DELFOSSE 81 NP B183 349 + Guissan, Martin, Muhlemann, Weill+ (GEVA, LAUS) AJINEMRO 80 ZPHY 5 177 + Guissan, Martin, Muhlemann, Weill+ (GEVA, LAUS) AJINEMRO 80 ZPHY 5 177 + Guissan, Martin, Muhlemann, Weill+ (GEVA, LAUS) AJINEMRO 80 ZPHY 5 177 + Guissan, Martin, Muhlemann, Weill+ (GEVA, LAUS) AGUIRar 788 NP B185 383 + Bart, Dujardin+ (SERP, LIBH, MONS, SACL) AGUIRar 788 NP B196 220 + Grard- (MONS, BELG, CERN, LOIC, LALO) COOPER 78 NP B196 250 + Grard- (MONS, BELG, CERN, LOIC, LALO) DONGEJANS 78 NP B193 833 + Gerarda - (MONS, BELG, CERN, LOIC, LALO) CARITHERS 758 PR L 35 349 + Muhlemann, Underwood- (ROCH, MCGI) PALER 75 NP B96 1 + Toeve, Shah, Spiro- (RHEL, SACL, EPOL) FOX 74 NP B90 430 + Grissan - (LBL) BEMPORAD 73 NP B51 1 + Gasteri, Alston-Garanjost, Flatte, Friedman + (LBL) EMPORAD 73 NP B51 2 + Gasteri, Alston-Garanjost, Flatte, Friedman + (LBL) EMPORAD 73 NP B56 283 + Halen, Jacobs+ (LOWC, LOIC, CDEF) LEWIS 73 NP B56 283 + Halen, Jacobs+ (LOWC, LOIC, CDEF) CRANNELL 690 PRL 22 487 + Kaptander+ (REHO, SACL, BGNA, EPOL) FOR 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRICA 71 NP B11 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRICA 72 NP B45 331 Halen, Jacobs+ (LOWC, LOIC, CDEF) FABRICA 73 NP B51 482 + Lyons, Radojicic + CERN, BGNA AGUILAR 718 PR D4 2583 + Alen, Jacobs+ (LOWC, LOIC, CDEF) FABRICA 74 NP B80 283 + Alen, Jacobs+ (LOWC, LOIC, CDEF) FABRICA 75 NP B91 1 + FORM 25 331 + Alen, Jacobs+ (LOWC, LOIC, CDEF) FABRICA 75 NP B91 17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRICA 75 NP B91 17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRICA 75 NP B91 17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRICA 75 NP B91 17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRICA 75 NP B91 17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRICA 75 N
BERG 83 Thesis (ROCH) CHANDLEE 83 PRL 51 18 +Berg, Cihangir, Collick+ (ROCH, FNAL, MNN) CLELAND 82 NP 8208 189 +Berg, Cihangir, Collick+ (ROCH, FNAL, MNN) DELFOSSE 81 NP 8183 49 +Guisan, Mariin, Muhlemann, Weil+ (GEVA, LAUS, PITT) AJIMEMKO 80 ZPHY 5 177 + Musgrave, Ammar, Davis, Ecklund+ (ANL, KANS) AGUILAR 788 NP 8165 383 + Musgrave, Ammar, Davis, Ecklund+ (ANL, KANS) BAALMO 788 NP 8160 220 + Musgrave, Ammar, Davis, Ecklund+ (ANL, KANS) BAGULAR 78 NP 8160 38 + Musgrave, Ammar, Davis, Ecklund+ (ANL, ANL) BOOPER 18 NP 8160 38 + Musgrave, Ammar, Davis, Ecklund+ (ANL, ANL) BOWLER 78 NP 8161 36 + Grade (MONS, SACL) 4 COPER 18 NP 8139
CHANDLEE 83 PRL 51 168 +Berg. Changir, Collick+ ROC-H, FNAL, MINN) CLELAND 2 NP B208 199 befosse, Doszez, Gloor (DIRH, GEVA, LUS, PITT) DCLFOSSE 81 NP B183 349 +GENBARD Helmsgrave, Ammar, Davis, Esklund+ (ANL, KANS) AJINENKO 80 ZPHY 5 177 +GURIAR KERLUND (ANL, KANS) AGUILAR 788 NP B165 383 + (BARI, BONN, CERN, DARE, GLAS, LIVP+) +Barth, Dujardin+ (SERP, LIBH, MONS, SACL) +Barth, Dujardin+ (SERP, LIBH, MONS, SACL) +Barth, Dujardin+ +CHANL, KANS +BCLG, CERN, LOIC, LALO +GOPTE +GARI, BONN, CERN, DARE, GLAS, LIVP+) +GARI, BONN, CERN, DARE, GLAS, LIVP+) +GARI, SONN, CERN, DARE, GLAS, LIVP+) +GARI, GURIAR +G
CLELAND 62 NP B208 189
DELFOSSE 81 NP B183 349
TOAFF 81
AJNENKO 80 ZPHY 5 177 FBT FBT SACL FBT SA
EVANCELISTA 80 NP B165 383
AGUILAR 78B NP B141 101 Aguidar Bentiez + (MADR, TATA, CERN+) BALAND 78 NP B136 256 + Grard- (MONS, BELG, CERN, LOFEF-) JONGEJANS 78 NP B139 383 + Gerrard- (MONS, BELG, CERN, LOFEF-) JONGEJANS 78 NP B139 383 + Gerrard- (MONS, BELG, CERN, LOFEF-) JONGEJANS 78 NP B139 383 + Gerrard- (MONS, BELG, CERN, LOFEF-) JONGEJANS 78 NP B16 31 + Ayres, Diebold, Greene, Kramer, Pawlicki (ANL) DAVICUBBIN 75 NP B86 13 + Hyors (DXF) PALER 75 NP B96 1 + Tovey, Shah, Spiro+ (RHEL, SACL, EPOL) FOX 74 NP B90 43 + Tovey, Shah, Spiro+ (RHEL, SACL, EPOL) FOX 73 NP B91 1 + Tovey, Shah, Spiro+ (RHEL, SACL, EPOL) FOX 73 NP B95 1 + Gastieri, Aiston-Garnjost, Flatte, Friedman+ (LBL) BEMPORAD 73 NP B51 1 + Hegusch, Freudenreich+ (LGR) CLARK 73 NP B56 283 + Hylen, Jacobs+ (LGWC, LOIC, CDEF-) LINGLIN 73 NP B56 283 + Allen, Jacobs+ (LGWC, LOIC, CDEF-) BUCHNER 72 NP B45 333 + Debm, Shah, Spiro+ (REHO, SACL, BGNA, EPOL) AGUILAR 71B PR D4 2583 + Aguilar-Benitez, Eisner, Kinson BUCHNER 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) FABRORAD 70 NP B17 299 + Shapira,
Topic Topi
Topic Topi
Topic Topi
WICKLUND 78
BOWLER
PALER 75 NP 896 1 *Towe, Shah, Spiro+ (RHEL, SACL, EPOL) FOX 7 NP B90 43 *First (CIT) MATISON 74 PR 09 1872 +Galtieri, Aiston-Garnjost, Flatte, Friedman + (LBL) BEMPORAD 73 NP B56 432 +Lyons, Radojicic (CERN, ETH, LDIC, COEF) LEWIS 73 NP 850 283 +Allen, Jacobs+ (LOWC, LOIC, COEF) BUCHNER 72 NP 845 333 +Dehm, Charriere, Cornet+ (MPIM, CERN, BRUX) AGUILAR 718 PR D4 2583 Aguilar-Benitez, Eisner, Kinson (BNL) HABER 70 NP B17 298 +Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) DAVIS 699 PRL 22 487 +Varshon, Lai, O'Neall, Scarr DEVENDER 70 NP B17 298 +Shapira, Alexander+ (REHO, SACL, BGNA, EPOL)
PALER 75 NP 896 1 *Towe, Shah, Spiro+ (RHEL, SACL, EPOL) FOX 7 NP B90 43 *First (CIT) MATISON 74 PR 09 1872 +Galtieri, Aiston-Garnjost, Flatte, Friedman + (LBL) BEMPORAD 73 NP B56 432 +Lyons, Radojicic (CERN, ETH, LDIC, COEF) LEWIS 73 NP 850 283 +Allen, Jacobs+ (LOWC, LOIC, COEF) BUCHNER 72 NP 845 333 +Dehm, Charriere, Cornet+ (MPIM, CERN, BRUX) AGUILAR 718 PR D4 2583 Aguilar-Benitez, Eisner, Kinson (BNL) HABER 70 NP B17 298 +Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) DAVIS 699 PRL 22 487 +Varshon, Lai, O'Neall, Scarr DEVENDER 70 NP B17 298 +Shapira, Alexander+ (REHO, SACL, BGNA, EPOL)
PALER 75 NP 896 1 *Towe, Shah, Spiro+ (RHEL, SACL, EPOL) FOX 7 NP B90 43 *First (CIT) MATISON 74 PR 09 1872 +Galtieri, Aiston-Garnjost, Flatte, Friedman + (LBL) BEMPORAD 73 NP B56 432 +Lyons, Radojicic (CERN, ETH, LDIC, COEF) LEWIS 73 NP 850 283 +Allen, Jacobs+ (LOWC, LOIC, COEF) BUCHNER 72 NP 845 333 +Dehm, Charriere, Cornet+ (MPIM, CERN, BRUX) AGUILAR 718 PR D4 2583 Aguilar-Benitez, Eisner, Kinson (BNL) HABER 70 NP B17 298 +Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) DAVIS 699 PRL 22 487 +Varshon, Lai, O'Neall, Scarr DEVENDER 70 NP B17 298 +Shapira, Alexander+ (REHO, SACL, BGNA, EPOL)
FOX 74 NP 880 403 + Griss (CIT) MATISON 74 PR D9 1872 + Galtieri, Alston-Garnjost, Flatte, Friedman + (LBL) BEMPORAD 73 NP 851 1 + Beusch, Freudenreich + (CERN, ETH, LOIC) CLARK 73 NP 864 422 + Lyons, Radojic (OXF) LEWIS 73 NP 860 283 + Allen, Jacobs + (LOWC, LOIC, COEF) LINCLIN 73 NP 855 408 + Allen, Jacobs + (LOWC, LOIC, COEF) BUCHNER 72 NP 845 333 + Dehm, Charriere, Cornet + (MPIM, CERN, BRUX) AGUILAR 71B PR D4 2583 Aguilar-Genitez, Eisner, Kinson (BNL) HABER 70 NP B17 299 + Shapira, Alexander + (REHO, SACL, BGNA, EPOL) CRENNELL 69D PRL 22 487 + Karshon, Lai, O'Neall, Scarr DAVIS 69 PRL 23 1071 + Derenzo, Flatte, Garnjost, Lynch, Solmitz (LRL)
MATISON 74 PR D9 1872 +Galtieri, Alston-Garnjost, Flatte, Friedman (LBL) BEMPORAD 73 NP B56 1 +Besush, Freudenreich (CERN, ETH, LDIC) CLARK 73 NP B56 283 +Lyons, Radojicic (LOWC, LOIC, CDEF) LINGLIN 73 NP B50 283 +Allen, Jacobs (CERN, BOLA) (LOWC, LOIC, CDEF) BUCHRER 72 NP B45 333 +Dehm, Charrière, Cornet (MPIM, CERN, BRUX) AGUILAR 718 PR D4 2583 Aguilar-Benitez, Eisner, Kinson HABER 70 NP B17 299 +Shapira, Alexander (REHO, SACL, BGNA, EPOL) CRENNELL 699 PRL 22 487 +Varshon, Lai, O'Neall, Scarr (BNL) DAVIS 69 PRL 23 1071 +Derenzo, Flatte, Garnjost, Ljunch, Solmitz (LR)
BEMPORAD 73 NP B51 + Beusch, Freudenreich+ (CERN, ETH, LOIC) CLARK 73 NP B54 42 + Lyons, Radojic (OXF) LEWIS 73 NP B60 283 + Allen, Jacobs+ (LOWC, LOIC, CDEF) LINGLIN 73 NP B55 408 + Dehm, Charriere, Cornet+ (MPIM, CERN, BGNZ) BUCHNER 72 NP B45 333 + Dehm, Charriere, Cornet+ (MPIM, CERN, BGNZ) AGUILAR 71B PR D 4 2583 Aguilar-Genitez, Eisner, Kinson (REHO, SACL, BGNA, EPOL) CRENNELL 69D PRL 22 487 + Karshon, Lai, O'Neall, Scarr (REHO, SACL, BGNA, EPOL) DAVIS 69 PRL 23 1071 + Derenzo, Flatte, Garnjost, Lynch, Solmitz (LRL)
CLARK 73 NP B54 432 +Lyons, Radojicic (GXF) LEWIS 3 NP B60 283 +Allen, Jacobs+ (LOWC, LOIC, CDEF) LINGLIN 73 NP B55 408 +Dehm, Charriere, Cornet+ (MPIM, CERN, BRUX) AGUILAR 71B PR D4 2583 +Dehm, Charriere, Cornet+ (MPIM, CERN, BRUX) HABER 70 NP B17 269 +Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) CRENNELL 690 PRL 22 487 +Karshon, Lai, O'Neall, Scarr (BNL) DAVIS 69 PRL 23 1071 +Derenzo, Flatte, Garnjost, Lynch, Solmitz (LRL)
DICHNET 72 NP 845 333
DICHNET 72 NP 845 333
DICHNET 72 NP 845 333
AGUILAR 71B PR D4 2583 Aguilar-Benitez, Elsner, Kinson (BNL) HABER 70 NP B17 289 + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) CRENNELL 690 PRL 22 487 + Karshon, Lai, O'Neall, Scarr (BNL) DAVIS 69 PRL 23 1071 + Derenzo, Flatte, Garnjost, Lynch, Solmitz (LRL)
HABER 70 NP B17 289 HSÑapira, Alexander+ (REHO, SACL, BGNA, ÉPOL) CRENNELL 690 PRL 22 487 HKarshon, Lai, O'Neall, Scarr (BNL) DAVIS 69 PRL 23 1071 + Derenzo, Flatte, Garnjost, Lynch, Solmitz (LRL)
CRENNELL 69D PRL 22 487 + Karshon, Lai, O'Neall, Scarr (BNL) DAVIS 69 PRL 23 1071 + Derenzo, Flatte, Garnjost, Lynch, Solmitz (LRL)
DAVIS 69 PRL 23 1071 + Derenzo, Flatte, Garnjost, Lynch, Solmitz (LRL)
FRIEDMAN 69 UCRL 18860 Thesis (LRL)
DEWIT 68 Thesis (ANIK)
SCHWEING 68 PR 166 1317 Schweingruber, Derrick, Fields (ANL, NWES)
BARASH 67B PR 156 1399 +Kirsch, Miller, Tan (COLU)
BARLOW 67 NC 50A 701 +Lillestol, Montanet+ (CERN, CDEF, IRAD, LIVP)
DAUBER 67B PR 153 1403 +Schlein, Slater, Ticho (UCLA)
DEBAERE 67B NC 51A 401 + Goldschmidt-Clermont, Henri+ (BRUX, CERN)
WOJCICKI 64 PR 135B 484 (LRL)

OTHER RELATED PAPERS

NAPIER CLELAND	84 82	PL 149B 514 NP B208 189	+Chen+ (TUFT, ARIZ, FNAL, FLOR, NDAM+) +Delfosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT)
BERG	81	PL 98B 119	+Chandlee, Biel+ (ROCH, FNAL, MINN)
LANG	79	PR D19 956	+Mas-Parareda (GRAZ)
BALAND	78	NP B140 220	+Grard+ (MONS, BELG, CERN, LOIC, LALO)
BALDI	78B	NP B134 365	+Bohringer, Dorsaz, Hungerbuhler+ (GEVA)
ESTABROOKS	78	NP B133 490	+Carnegie+ (MONT, CARL, DURH, SLAC)
Also	78B	PR D17 658	Estabrooks, Carnegie- (MONT, CARL, DURH+)
MARTIN	78	NP B134 392	+Shimada, Baldi, Bohringer+ (DURH, GEVA)
MATISON	74	PR D9 1872	-Galtieri, Alston-Garnjost, Flatte, Friedman+ (LBL)
LEWIS	73	NP B60 283	+Allen, Jacobs+ (LOWC, LOIC, CDEF)
BINGHAM	72	NP B41 1	+Dunwoodie, Drijard+ (International K ⁺ Collab.)
MERCER	71	NP B32 381	+Antich, Callahan, Chien, Cox+ (JHU)
YUTA	71	PRL 26 1502	+Derrick, Engelmann, Musgrave (ANL, EFI)
DEWIT	68	Thesis	(ANIK)
FICENEC	68	PR 169 1034	+Hulsizer, Swanson, Trower (ILL)
FICENEC	68B	PR 175 1725	+ Gordon, Trower (ILL)
BARLOW	67	NC 50A 701	+Lillestol, Montanet+ (CERN, CDEF, IRAD, LIVP)
CONFORTO	67	NP B3 469	+Marechal + (CERN, CDEF, IPNP, LIVP)
DEBAERE	67B	NC 51A 401	+Goldschmidt-Clermont, Henri+ (BRUX, CERN)
ALEXANDER	62	PRL 8 447	+Kalbfleisch, Miller, Smith (LRL) -Ticho, Wojcicki (LRL) +Astrer, Montanet (CERN, CDEF) -Gelfand+ (COLU, RUTG)
ALSTON	62B	CERN Conf. 291	-Ticho, Wojcicki - (LRL)
ARMENTEROS	62C	CERN conf 295	+Astrer, Montanet - (CERN, CDEF)
COLLEY	62B	CERN Conf. 315	
ALSTON	61	PRL 6 300	+Alvarez, Eberhard, Good+ (LRL)

 $K_1(1270)$ was Q(1280)

 $I(J^P) = \frac{1}{2}(1^+)$

Our latest mini-review on this particle can be found in the 1984 edition.

K₁(1270) MASS

DOCUMENT ID

1270±10 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

PRODUCED	BY	BEAMS	OTHER	THAN	K	MESONS
----------	----	--------------	-------	------	---	--------

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
$1242.0^{+9.0}_{-10.0}$		¹ ASTIER	69	нвс	0	$\overline{\rho} \rho$
• • • We do not i	ise the followin	ng data for average	es, fit	s, limits	, etc. •	• • •
1294 ±10	310	RODEBACK	81	нвс		$4 \pi^- p \rightarrow \Lambda K 2\pi$
1300	40	CRENNELL	72	HBC	0	4.5 $\pi^- \rho \rightarrow$
1300	45	CRENNELL	67	нвс	0	$\begin{array}{c} \Lambda K 2\pi \\ 6 \pi^{-} \rho \rightarrow \Lambda K 2\pi \end{array}$
1						

¹ This was called the C meson.

PRODUCED BY K^- , BACKWARD SCATTERING, HYPERON EXCHANGE EVTS DOCUMENT ID TECN CHG COMMENT GAVILLET 78 HBC - 4.2 K p -VALUE (MeV) 1275.0±10.0

270.01 20.0	700	Griffee	,,,	1100		$\Xi^-(K\pi\pi)^+$
RODUCED BY	K BEAMS					
ALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
1270 ±10		DAUM	810	CNTR	-	63 K ⁻ ρ \rightarrow
						$\overline{K} 2\pi \rho$

				1 = n p
• • We do not use the foll	owing data for average	s, fits, limits	, etc.	• • •
~ 1276.0	² TORNQVIST	828 RVUE		
~ 1300.0	VERGEEST	79 HBC	_	4.2 K $^ \rho \rightarrow$
1289.0 ± 25.0	³ CARNEGIE	77 ASPK	±	$(\overline{K}\pi\pi)^- \rho$ 13 $K^{\pm} \rho \rightarrow$
				$(K\pi\pi)^{\pm} \rho$ 13 $K^{\pm} \rho \rightarrow$
~ 1300	BRANDENB	76 ASPK	\pm	13 $K^{\pm} p \rightarrow$
				$(K\pi\pi)^{\pm} \rho$

 $[\]sim 1270.0$ OTTER 76 HBC --10,14,16 $K^-p \rightarrow$

K₁(1270) WIDTH

 $^3\mathrm{From}$ a model-dependent fit with Gaussian background to BRANDENBURG 76 data.

DOCUMENT ID

90±20 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

PRODUCED BY BEAMS OTHER THAN K MESONS FOR DOCUMENT ID TECH CHG COMMENT

$127.0 + 7.0 \\ -25.0$ ASTIER 69 HBC 0 $\bar{p}p$	
 • • We do not use the following data for averages, fits, limits, etc. 	
66 ± 15 310 RODEBACK 81 HBC 4 $\pi^- \rho$	→ Λ K 2π
60 40 CRENNELL 72 HBC 0 4.5 π^-	
60 45 CRENNELL 67 HBC 0 6 $\pi^- \rho$	π → Λ <i>K</i> 2π

PRODUCED BY K-, BACKWARD SCATTERING, HYPERON EXCHANGE

VALUE (MeV) EVTS	DOCUMENT ID		ECN	CHG	COMMENT
75.0 ± 15.0 700	GAVILLET	78 F	1BC	+	4.2 K ⁻ p \rightarrow
					$\Xi^{-}K\pi\pi$
PRODUCED BY K BEAMS	DOCUMENT ID	7	FCN	CHG	COMMENT

PRODUCED	ΒY	Λ	REAMS
VALUE (Mal/)			

VALUE (IVIEV)	DOCUMENT		1 L CIV	0110	COMMENT
90 ± 8	DAUM	810	CNTR	-	$63 \frac{K^-}{K} p \rightarrow \frac{K}{2\pi} p$
• • • We do not use the following	ng data for average:	s, fits	, limits,	etc.	
\sim 150.0	VERGEEST	79	HBC	-	$4.2 \ \underline{K}^- \ \rho \rightarrow$
150.00 ± 71.0	⁴ CARNEGIE	77	ASPK	±	$(\overline{K}\pi\pi)^{-} p$ 13 $K^{\pm} p \rightarrow (K\pi\pi)^{\pm} p$
~ 200	BRANDENB	76	ASPK	±	13 K [±] p →
					$(K\pi\pi)^{\pm}p$
120	DAVI5	72	HBC	+	12 K ⁺ p
188 ±21	FIRESTONE	72B	DBC	+	12 K ⁺ d
⁴ From a model-dependent fit v	with Gaussian back	grour	d to BF	RANDE	ENBURG 76 data.

 $^{(\}overline{K}\pi\pi)^{-} p$ 12 K⁺ p
12 K⁺ d DAVIS 72 HBC 1260 1234 ± 12 FIRESTONE 728 DBC $^2\,\mbox{From a unitarized quark-model calculation.}$

Meson Full Listings $K_1(1270)$

	$K_1(1270)$ DECAY MODES
Mode	Fraction (Γ_j/Γ)
₁ Κρ	(42 ±6)%
$K_0^*(1430)\pi$	(28 ±4)%
$K^*(892)\pi$	(16 ±5)%
4 Κω - Κ6(1400)	(11.0±2.0) % (3.0±2.0) %
5 K f ₀ (1400)	(3.0±2.0) /6
ı	K ₁ (1270) PARTIAL WIDTHS
$(K\rho)$	T ₁
We do not use the fol	llowing data for averages, fits, limits, etc. • •
7.0±5.0	MAZZUCATO 79 HBC + 4.2 $K^- \rho \rightarrow$
-0160	$\Xi^{-}(K\pi\pi)^{+}$ CARNEGIE 77B ASPK ± 13 $K^{\pm}p \rightarrow$
5.0 ± 6.0	CARNEGIE 77B ASPK \pm 13 $K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
$(K_0^*(1430)\pi)$	Γ_2
ALUE (MeV)	DOCUMENT ID TECN CHG COMMENT
	ollowing data for averages, fits, limits, etc. • • •
6.0±6.0	CARNEGIE 778 ASPK \pm 13 $K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
(K*(892) _#)	Гз
(K* (892)π) ALUE (MeV)	DOCUMENT ID TECN CHG COMMENT
	ollowing data for averages, fits, limits, etc. • • •
4.0 ± 11.0	MAZZUCATO 79 HBC + 4.2 $K^- p \rightarrow$
2.0± 2.0	CARNEGIE 77B ASPK \pm 13 $K^{\pm} \rho \rightarrow (K \pi \pi)^{\pm} \rho$
.(14.)	_
(Κω)	DOCUMENT ID TECN CHG COMMENT
ALUE (MeV) ■ • We do not use the fo	ollowing data for averages, fits, limits, etc. • •
4.0±4.00	MAZZUCATO 79 HBC + 4.2 $K^- p \rightarrow$
	$\equiv^- (\kappa \pi \pi)^+$
4.0 ± 3.0	CARNEGIE 77B ASPK \pm 13 $K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p$
(K f ₀ (1400))	Γ ₅
/ALUE (MeV)	DOCUMENT ID TECN CHG COMMENT
	ollowing data for averages, fits, limits, etc. • •
22.0 ± 5.0	CARNEGIE 77B ASPK \pm 13 $K^{\pm} \rho \rightarrow (K \pi \pi)^{\pm} \rho$
	(1270) BRANCHING RATIOS
$\Gamma(K\rho)/\Gamma_{\text{total}}$	Γ ₁ /Γ
ALUE	DOCUMENT ID TECN COMMENT
0.42±0.06	⁵ DAUM 81C CNTR 63 $K^- p \rightarrow \overline{K} 2\pi p$ ollowing data for averages, fits, limits, etc. • •
dominant	RODEBACK 81 HBC 4 $\pi^- p \rightarrow \Lambda K 2\pi$
$\Gamma(K_0^*(1430)\pi)/\Gamma_{\text{total}}$	Γ ₂ /Γ
0.28 ± 0.04	5 DAUM 81c CNTR 63 $K^- p \rightarrow \overline{K} 2\pi p$
$\Gamma(K^*(892)\pi)/\Gamma_{\text{total}}$	Γ ₃ /Γ
VALUE	DOCUMENT ID TECN COMMENT
0.16 ± 0.05	⁵ DAUM 81¢ CNTR 63 $K^- p \rightarrow \overline{K} 2\pi p$
$\Gamma(K\omega)/\Gamma_{\text{total}}$	F4/F
VALUE 0.11±0.02	
$\Gamma(K\omega)/\Gamma(K\rho)$	Γ ₄ /Γ ₃
VALUE CI	L% DOCUMENT ID TECN COMMENT
• • • We do not use the for <0.30	ollowing data for averages, fits, limits, etc. • • • RODEBACK 81 HBC $4\pi^- p \rightarrow \Lambda K 2\pi$
Γ(K f ₀ (1400))/Γ _{total}	Γ ₅ /Ι <u>DOCUMENT ID TECN COMMENT</u>
0.03±0.02	5 DAUM 81C CNTR $63 K^- p \rightarrow \overline{K} 2\pi p$
D-wave/S-wave RATIO	FOR $K_1(1270) \to K^*(892)\pi$
VALUE	DOCUMENT ID TECN COMMENT
1.0±0.7	⁵ DAUM 81¢ CNTR 63 $K^- p \rightarrow \overline{K} 2\pi p$

 5 Average from low and high $\it t$ data.

K₁(1270) REFERENCES

TORNOVIST	82B	NP B203 268	(HELS)
DAUM	81C	NP B187 1	+Hertzberger+ (AMST, CERN, CRAC, MPIM, OXF+)
RODEBACK	81	ZPHY C9 9	+Sjogren+ (CERN, CDEF, MADR, STOH)
MAZZUCATO	79	NP B156 532	+Pennington+ (CERN, ZEEM, NIJM, OXF)
VERGEEST	79	NP B158 265	+ Jongejans, Dionisi+ (NIJM, AMST, CERN, OXF)
GAVILLET	78	PL 76B 517	+Diaz, Dionisi+ (AMST, CERN, NIJM, OXF) JP
CARNEGIE	77	NP B127 509	+Cashmore, Davier, Dunwoodie, Lasinski+ (SLAC)
CARNEGIE	77B	PL 68B 287	+Cashmore, Dunwoodie, Lasinski+ (SLAC)
BRANDENB	76	PRL 26 703	Brandenburg, Carnegie, Cashmore+ (SLAC) JP
OTTER	76	NP B106 77	+ (AACH, BERL, CERN, LOIC, VIEN, LPNP+) JP
CRENNELL	72	PR D6 1220	+Gordon, Lai, Scarr (BNL)
DAVIS	72	PR D5 2688	+Alston-Garnjost, Barbaro, Flatte, Friedman, Lynch+ (LBL)
FIRESTONE	72B	PR D5 505	+Goldhaber, Lissauer, Trilling (LBL)
ASTIER	69	NP B10 65	+Marechal, Montanet+ (CDEF, CERN, IPNP, LIVP) IJP
CRENNELL	67	PRL 19 44	+Kalbfleisch, Lai, Scarr, Schumann (BNL) I

OTHER RELATED PAPERS ---

		011121	TREETIED I'M ENG
BAUBILLIER	82B	NP B202 21	+ (BIRM, CERN, GLAS, MSU, LPNP)
FERNANDEZ	82	ZPHY C16 95	+Aguilar-Benitez+ (MADR, CERN, CDEF, STOH) JP
GAVILLET	82	ZPHY C16 119 NP B181 1	+Armenteros+ (CERN, CDEF, PADO, ROMA) (AACH, BERL, LOIC, VIEN, BIRM, BELG, CERN+)
OTTER BACON	81 80	NP B162 189	+Barrey, Butterworth, Ansorge+ (LOIC, CAVE)
DIONISI	80	NP B169 1	+Gavillet+ (CERN, MADR, CDEF, STOH)
ETKIN	80	PR D22 42	+Foley, Lindenbaum, Kramer+ (BNL, CUNY) JP
IRVING	80	JP G6 153	(LIVP)
RADFORD	80 79	NP 8167 181 PR D19 246	+Brandenburg (MIT) +Berger (ANL)
BASDEVANT BEUSCH	78	PL 74B 282	+Birman, Konigs, Otter+ (CERN, AACH, ETH) JP
WOHL	78	NP B132 401	+Paler, Chaurand+ (LPNP, RHEL, SACL)
BASDEVANT	76	PRL 37 977	+Berger (FNAL, ANL)
BOAL	76	PR D14 2998	+Edwards, Kamal, Torgeson (ALBE)
BOWLER VERGEEST	76 76	JP G3 775 PL 62B 471	(OXF) +Engelen, Jongejans+ (AMST, CERN, NIJM, OXF) JP
ANTIPOV	75	NP B86 381	+Ascoli, Busnello, Kienzle+ (SERP, CERN, ILL) JP
BOWLER	75	NP B97 227	+Game, Aitchison, Dainton (OXF, DARE)
DORE	75	LNC 13 265	+Guidoni, Laakso, Marini, Conforto+ (ROMA, RHEL) +Borenstein+ (EPOL, BOHR, CDEF) JP
DREVILLON DUNWOODIE	75 75	PL 55B 245 NP B91 189	+Borenstein+ (EPOL, BOHR, CDEF) JP +Grant+ (CERN, BELG, MONS, MPIM) JP
OTTER	75	NP B84 333	(AACH RERI CERN LOIC VIEN ATHILL) IP
OTTER	75B	NP B93 365	+Rudolph+ (AACH, BERL, CERN, LOIC, VIEN) JP
OTTER	75C	NP B96 29	+Rudolph+ (AACH, BERL, CERN, LOIC, VIEN) IJP
TOVEY ANGELOPO	75 74	NP B95 109 NC 20A 49	+Rudolph+ (AACH, BERL, CERN, LOIC, WEN) JP +Rudolph+ (AACH, BERL, CERN, LOIC, VIEN) JP +Hansen, Borenstein, Borg+ (RHEL, EPOL, SACL) JP Angelopoulos+ (ATHU, ATEN, LIVP, VIEN) JP
BOWLER	74	NP B74 493	+Dainton, Kaddoura, Alterison (UAF)
DAVIDSON	74B	PR D9 77	(MICH)
DEUTSCH	74	PL 49B 388	Deutschmann+ (AACH, BERL, CERN, LOIC, VIEN) JP
BARLOUTAUE BINGHAM	73	NP B59 374 NP B52 31	+Drevillon, Shah+ (SACL, EPOL, RHEL) JP +Farwell+ (LBL, ORSA, BNL, SACL, MILA) JP
DEJONGH	73	NP B58 110	+Cornet, Charriere+ (BRUX, MONS, CERN, MPIM)
JONES	73	NP B52 383	(CERN) JP
LEWIS	73	NP B60 283	+Allen, Jacobs+ (LOWC, LOIC, CDEF) +Slattery, Ferbel (ROCH)
WERNER ANDERSON	73 72	PR D7 1275 PR D6 1823	+Slattery, Ferbel (ROCH) +Franklin, Godden, Kopelman, Libby, Tan (COLO)
BINGHAM	72C	NP B48 589	+Eisenstein, Grard, Herquet+ (CERN, BRUX)
BRANDENB		PRL 28 932	Brandenburg, Johnson, Leith, Loos+ (SLAC)
BRANDENB		NP B45 397	Brandenburg, Brody, Johnson, Leith+ (SLAC)
FIRESTONE FRATI	72 72	NP B47 348 PR D6 2361	(CIT) +Halpern, Hargis, Snape+ (PENN, CINC)
HAATUFT	72	NP B48 78	+Arnold, Haguenauer+ (BERG, STRB, EPOL, MADR)
BARNHAM	71B	NP B25 49	+Colley, Griffiths, Alper+ (BIRM, GLAS, OXF)
DENEGRI	71	NP B28 13	+Antich, Callahan, Carson, Chien, Cox+ (JHU)
FORMAN GARFINKEL	71 71	PR D3 2610 PRL 26 1505	+Gelfand, Leary, Moser, Seidl, Wolfson (EFI) +Holland, Carmony, Lander+ (PURD, UCD)
ABRAMS	70B	PR D1 2433	+Eisenstein, Kim, Marshall, O'Halloran+ (ILL)
ANTICH	70	NP B20 201	+Carson, Chien, Cox, Denegri, Ettlinger+ (JHU)
BOWLER	70	PL 31B 318	(OXF)
FARBER	70 69B	PR D1 78 NP B13 503	+Ferbel, Slattery, Yuta (ROCH) +Firestone, Goldhaber+ (LRL)
ALEXANDER ANDREWS	69	PRL 22 731	+Lach, Ludlam, Sandweiss, Berger+ (YALE, LRL)
BARBARO	69	PRL 22 1207	Barbaro-Galtieri, Davis, Flatte+ (LRL)
BETTINI	69	NC 62A 1038	
BISHOP CHIEN	69 69	NP B9 403 PL 29B 433	+Goshaw, Erwin, Walker (WISC) +Malamud, Mellema, Rudnick, Schlein+ (UCLA)
CHUNG	69	PR 182 1443	+Eisner, Bali, Luers (BNL)
COLLEY	69	NC 59A 519	+Eastwood+ (BIRM, GLAS, LOIC, MPIM, OXF+)
ERWIN	69	NP B9 364	+Walker, Goshaw, Weinberg (WISC, PRIN, VAND)
FRIEDMAN WERNER	69 69	UCRL 18860 Thesis PR 188 2023	(LRL) +Ammar, Davis, Kropac, Yarger+ (NWES, ANL)
BARTSCH	68B	NP B8 9	+Cocconi+ (AACH, BERL, CERN, LOIC, VIEN)
BOMSE	68	PRL 20 1519	+Borenstein, Callahan, Cole, Cox+ (JHU)
DENEGRI	68	PRL 20 1194	+Callahan, Ettlinger, Gillespie+ (JHU)
BASSOMPIE BERLINGHIEF		PL 26B 30 PRL 18 1087	Bassompierre, Goldschmidt+ (CERN, BRUX, BIRM) IJP +Farber, Ferbel, Forman (ROCH) IJP
DEBAERE	67	NC 49A 374	+Debaisieux, Fast, Filippas+ (CERN, BRUX)
Also	67	Private Comm.	Jongejans
GOLDHABER		PRL 19 976	(LBL)
SHEN	66 66	PRL 17 726 Private Comm.	+Butterworth, Fu. Goldhaber, Trilling (LRL) Goldhaber (LRL)
Also ALMEIDA	65	PL 16 184	+Atherton, Byer, Dornan, Forson+ (CAVE)
ARMENTERO	S 64	PL 9 207	+Edwards, D'Andlau+ (CERN, CDEF)
Also	66	PR 145 1095	Barash, Kirsch, Miller, Tan (COLU)
ARMENTERO Also	05 64B 64C		+Edwards, D'Andlau+ (CERN, CDEF) Armenteros
MISU	D4C	Dauna Com. 1 017	Minutes

 $K^*(1370), K_1(1400)$

 $K^*(1370)$ was K*(1410)

 $I(J^P) = \frac{1}{2}(1^-)$

	K*(1370) MA	SS				
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
1367±54	¹ BIRD	89	LASS		$\begin{array}{c} 11 \ K^{-} \ p \rightarrow \\ \overline{K}^{0} \ \pi^{-} \ p \end{array}$	İ
• • • We do not use the fo	ollowing data for average	s, fits	, limits	, etc. •		
$1380 \pm 21 \pm 19$	ASTON	88	LASS	0	11 K ⁻ p →	
1420± 7±10	ASTON	87	LAS5	0	$11 \begin{array}{c} K^- \pi^+ n \\ 11 \begin{array}{c} K^- \rho \rightarrow \end{array}$	
1474 ± 25	BAUBILLIER	828	нвс	0	$ \begin{array}{c} \overline{K}^{0}\pi^{+}\pi^{-}n\\ 8.25 K^{-}p\rightarrow \end{array} $	
1500 ± 30	ETKIN	80	MP\$	0	$ \begin{array}{c} \overline{K}^{0} 2\pi n \\ 6 \overline{K}^{-} \rho \rightarrow \\ \overline{K}^{0} \pi^{+} \pi^{-} n \end{array} $	
¹ From a partial wave am	plitude analysis.				$K^{\circ}\pi^{+}\pi^{-}n$	ļ

K*(1370) WIDTH						
VALUE (MeV)	DOCUMENT ID		<u>TECN</u>	CHG	COMMENT	
114±101	² BIRD	89	LASS		$\begin{array}{c} 11 \ K^{-} \ p \rightarrow \\ \overline{K}^{0} \ \pi^{-} \ p \end{array}$	
 We do not use the following 	ng data for average	s, fits	i, limits,	etc.	• •	
176± 52±22	ASTON	88	LAS5	0	$11 K^- p \rightarrow K^- \pi^+ n$	
240 ± 18 ± 12	ASTON	87	LASS	0	$ \begin{array}{ccc} 11 & K^- & p \rightarrow \\ \overline{K}^0 & \pi^+ & \pi^- & n \end{array} $	
275± 65	BAUBILLIER	82в	нвс	0	$8.25 \stackrel{R}{K}^{-} \stackrel{p}{p} \rightarrow $ $\overline{K}^{0} 2\pi n$	
500 ± 100	ETKIN	80	MPS	0	$ \begin{array}{c} K - \rho \rightarrow \\ \overline{K}^{0} \pi^{+} \pi^{-} n \end{array} $	
² From a partial wave amplitude analysis.						

K*(1370) DECAY MODES

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	Confidence level
Γ_1	K*(892)π	> 40 %	95%
Γ_2	$K\pi$	(6.6±1.3) %	
Γ_3	$K \rho$	< 7 %	95%

K*(1370) BRANCHING RATIOS

$\Gamma(K\rho)/\Gamma(K^*(892))$) π)					Γ_3/Γ_1
VALUE	CL%	DOCUMENT ID		TECN	CHG	COMMENT
< 0.17	95	ASTON	84	LASS	0	$\begin{array}{c} 11 \ K^- \ \rho \rightarrow \\ \overline{K}^0 \ 2\pi \ n \end{array}$
$\Gamma(K\pi)/\Gamma(K^*(892$)π)					Γ_2/Γ_1
VALUE	CL%	DOCUMENT ID		TECN.	CHG	COMMENT
<0.16	95	ASTON	84	LASS	0	$\begin{array}{c} 11 \ K^- \ p \rightarrow \\ \overline{K}^0 \ 2\pi \ n \end{array}$
$\Gamma(K\pi)/\Gamma_{\text{total}}$						Γ_2/Γ
VALUE		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.066 ± 0.010 ± 0.008		ASTON	88	LASS	0	$11 \begin{array}{c} K^- p \rightarrow \\ K^- \pi^+ n \end{array}$

K*(1370) REFERENCES

BIRD ASTON ASTON ASTON BAUBILLIER	89 88 87 84 82B	SLAC-332 NP 8296 493 NP 8292 693 PL 1498 258 NP 8202 21	+Awaji, D'Amore+ (5 +Carnegie, Dunwoodie+	(SLAC) LAC, NAGO, CINC, TOKY) LAC, NAGO, CINC, TOKY) (SLAC, CARL, OTTA) JP CERN GLAS MSU LPNP)
BAUBILLIER	82B	NP B202 21		CERN, GLAS, MSU, LPNP)
ETKIN	80	PR D22 42		(BNL, CUNY) JP

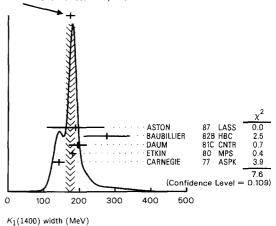
 $K_1(1400)$ was Q(1400)

 $I(J^P) = \frac{1}{2}(1^+)$

	K ₁ (1400) MA	SS		
VALUE (MeV) 1402 ± 7 OUR AVERAGE	DOCUMENT ID	TECN	СН6	COMMENT
1373 ±14 ±18	1 ASTON	87 LASS	0	11 K ⁻ p →
1392 ±18	BAUBILLIER	828 HBC	0	$ \overline{K}^{0} \pi^{+} \pi^{-} n $ 8.25 $K^{-} p \rightarrow$ $K_{0}^{0} \pi^{+} \pi^{-} n$
1410 ± 25	DAUM	81c CNTR	-	
1415 ±15	ETKIN	80 MPS	0	$6 K^- \rho \rightarrow$
1404.0 ± 10.0	² CARNEGIE	77 ASPK	±	$ \overline{K}^{0'}_{\pi}^{+}_{\pi}^{-}_{n} $ $ 13 K^{\pm} p \rightarrow (K \pi \pi)^{\pm} p $
We do not use the following	g data for average	s, fits, limits.	etc.	,
1350	3 TORNQVIST	82B RVUE		
- 1400.0	VERGEEST	79 HBC	-	$4.2 K^{-} p \rightarrow (\overline{K} \pi \pi)^{-} p$
~ 1400	BRANDENB	76 ASPK	±	$(\overline{K}\pi\pi)^{-} \rho$ $13 K^{\pm} \rho \rightarrow (K\pi\pi)^{\pm} \rho$
1420	DAVIS	72 HBC	+	12 K ⁺ p
1368 ±18	FIRESTONE	72B DBC	+	12 K ⁺ d
1 From partial-wave analysis of	κ0 π+ π− system			

From partial-wave analysis of $K^0 \pi^+ \pi^-$ system.

³ From a unitarized quark-model calculation.


K₁(1400) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
174 ±13 OUR AVERAGE	Error includes scal below.	le factor of 1	.6. See	the ideogram
188 ±54 ±60	⁴ ASTON	87 LASS	0	$\begin{array}{c} 11 \ K^{-} \rho \rightarrow \\ \overline{K}^{0} \pi^{+} \pi^{-} \rho \end{array}$
276 ±65	BAUBILLIER	828 HBC	0	$ \begin{array}{c} K^{\circ}\pi^{+}\pi^{-}n\\ 8.25 K^{-}\rho \rightarrow\\ K^{\circ}S^{\pi^{+}\pi^{-}}n \end{array} $
195 ±25	DAUM	81c CNTR	-	$63 \frac{K^2}{K} \rho \rightarrow \frac{1}{K} 2\pi \rho$
180 ±10	ETKIN	80 MPS	0	6 K ⁻ p →
142.0 ± 16.0	⁵ CARNEGIE	77 ASPK	±	$ \begin{array}{c} \overline{K}^{0}\pi^{+}\pi^{-}n \\ 13 K^{\pm}\rho \rightarrow \\ (K\pi\pi)^{\pm}\rho \end{array} $
• • We do not use the follow	ing data for average	s, fits, limits	etc. •	

~ 200.0 VERGEEST 79 HBC - $(\overline{K}\pi\pi)^{-} \rho$ $13 K^{\pm} \rho \rightarrow (K\pi\pi)^{\pm} \rho$ ~ 160 BRANDENB... 76 ASPK ± 80 DAVIS 72 HBC 12 K+ p 12 K+ d 241 ± 30 FIRESTONE 72B DBC

 $^4_- {\rm From~partial\text{-}wave~analysis~of~} {\it K}^0\,\pi^+\,\pi^-$ system.

WEIGHTED AVERAGE 174 + 13 (Error scaled by 1.6)

²From a model-dependent fit with Gaussian background to BRANDENBURG 76 data.

⁵From a model-dependent fit with Gaussian background to BRANDENBURG 76 data.

Meson Full Listings $K_1(1400)$, $K_0^*(1430)$

			·					
	lode			Fraction (Γ_i/Γ)				
	(*(8	92):	π	(94 ±6) %				
_	(ρ (f ₀ ()	1400))	(3.0±3.0) % (2.0±2.0) %				
	(ω		- /	(1.0±1.0) %				
Γ ₅ Κ	(*(1	430) π					
			к	1(1400) PARTIAL WIDTHS				
Γ(K*(-	,		Γ ₁				
VALUE (N			,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
Γ(<i>K</i> ρ)				$(\kappa_{\pi\pi})^{\pm} p$ Γ_2				
VALUE (DOCUMENT ID TECN CHG COMMENT				
2.0±1.0)			CARNEGIE 77 ASPK \pm 13 $K^{\pm}p \rightarrow (K\pi\pi)^{\pm}p$				
Γ(Κω))			Γ ₄				
VALUE (DOCUMENT ID TECN CHG COMMENT				
23.0±1	2.0			CARNEGIE 77 ASPK \pm 13 $K^{\pm} \rho \rightarrow (K \pi \pi)^{\pm} \rho$				
			K ₁ ((1400) BRANCHING RATIOS				
Γ(K *(8	892)	$\pi)/$		Γ ₁ /Γ				
<u>VALUE</u> 0.94±0	06			DOCUMENT ID TECN COMMENT 6 DAUM 81C CNTR 63 $K^- p \rightarrow \overline{K} 2\pi p$				
Γ(Κρ) VALUE	/I to	otal		Γ ₂ /Γ <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>				
0.03±0	.03			6 DAUM 81c CNTR 63 $K^-p \rightarrow \overline{K} 2\pi p$				
Γ(<i>K f</i> ₀ ((140	0)).	/Γ _{total}	Г ₃ /Г				
VALUE			10101	DOCUMENT ID TECN COMMENT				
0.02±0				⁶ DAUM 81c CNTR 63 $K^- p \rightarrow \overline{K} 2\pi p$				
Γ(Κω) VALUE	/Γ _t	otal		Γ ₄ /Γ <u>DOCUMENT ID</u> TECN COMMENT				
0.01±0	.01			6 DAUM 81C CNTR 63 $K^-p \rightarrow \overline{K} 2\pi p$				
$\Gamma(K_0^*($	1430))π)	/Γ _{total}	Г ₅ /Г				
YALUE				DOCUMENT ID TECN COMMENT				
~ 0.00	ve a	o not	use the folio	wing data for averages, fits, limits, etc. $ullet$ $ullet$ $ullet$ $ullet$ DAUM 81c CNTR 63 $K^-p ightarrow \overline{K} 2\pi p$				
	e/ <i>S</i> -	wav	e RATIO F	OR $K_1(1400) \to K^*(892)\pi$				
<u>VALUE</u> 0.04±0	01			$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
		from	low and high	•				
	_			*****				
ASTON		07	ND D202 (02	K ₁ (1400) REFERENCES				
BAUBILLI		82B 82B	NP B292 693 NP B202 21 NP B203 268	+Awaji, D'Amore+ (SLAC, NAGO, CINC, TOKY) + (BIRM, CERN, GLAS, MSU, LPNP) (HELS)				
DAUM ETKIN		81C 80	NP B187 1 PR D22 42	+Hertzberger+ (AMST, CERN, CRAC, MPIM, OXF+)				
VERGEES		79 77	NP B158 265 NP B127 509	+Foley, Lindenbaum, Kramer+ (BNL, CUNY) JP +Jongejans, Dionisi+ (NIJM, AMST, CERN, OXF) +Cashmore, Davier, Dunwoodie, Lasinski+ (SLAC)				
BRANDE! DAVIS		76 72	PRL 26 703 PR D5 2688	Brandenburg, Carnegie, Cashmore+ (SLAC) JP +Alston-Garnjost, Barbaro, Flatte, Friedman, Lynch+ (LBL)				
FIRESTO	ΝE	72B	PR D5 505	+Asson-Garajost, Barbaro, Fratte, Friedman, Lynch+ (LBL) +Goldhaber, Lissauer, Trilling (LBL)				
FERNANI)F7	82	C ZPHY C16 95	+Aguilar-Benitez+ (MADR, CERN, CDEF, STOH)				
OTTER RODEBAG		81 81	NP B181 1 ZPHY C9 9	+Aguilar-Benitez+ (MADR, CERN, CDEF, STOH) (AACH, BERL, LOIC, VIEN, BIRM, BELG, CERN+) +Sjogren+ (CERN, CDEF, MADR, STOH)				
BACON DIONISI	-11	80 80	NP B162 189 NP B169 1	+Barrey, Butterworth, Ansorge+ (LOIC, CAVE)				
IRVING RADFORE	,	80 80	JP G6 153 NP B167 181	(LIVP)				
BASDEVA	NT	79	PR D19 246	+Brandenburg (MIT) +Berger (ANL)				
MAZZUCA BEUSCH		79 78	NP B156 532 PL 74B 282	+Berger (ANL) +Pennington+ (CERN, ZEEM, NIJM, OXF) +Birman, Konigs, Otter+ (CERN, AACH, ETH) JP				
GAVILLET WOHL		78 78	PL 76B 517 NP B132 401	+Paler, Chaurand+ (LPNP, RHEL, SACL)				
BASDEVA		77B 76	PL 68B 287 PRL 37 977	+Cashmore, Dunwoodie, Lasinski+ (SLAC) +Berger (FNAL, ANL)				
BOAL BOWLER		76 76	PR D14 2998 JP G3 775	+Edwards, Kamal, Torgeson (ALBE) (OXF)				
OTTER VERGEES		76 76	NP B106 77 PL 62B 471 NP B86 381	+ (AACH, BERL, CERN, LOIC, VIEN, LPNP+) JP +Engelen, Jongejans+ (AMST, CERN, NIJM, OXF) JP				
ANTIPOV BOWLER		75 75	NP B97 227	+Ascoli, Busnello, Kienzle+ (SERP, CERN, ILL) JP +Game, Aitchison, Dainton (OXF, DARE)				
DORE		75 75	LNC 13 265 PL 55B 245	+ Guidoni, Laakso, Marini, Conforto+ (ROMA, RHEL) + Borenstein+ (EPOL, BOHR, CDEF) JP				
OTTER	DIE	75 75	NP B91 189 NP B84 333	+ (AACH, BERL, CERN, LOIC, VIEN, ATHU+) JP				
OTTER		75B 75C	NP B93 365 NP B96 29	+Rudolph+ (AACH, BERL, CERN, LOIC, VIEN) JP +Rudolph+ (AACH, BERL, CERN, LOIC, VIEN) IJP				

TOVEY ANGELOPO	75 74	NP B95 109 NC 20A 49	+Hansen, Borenstein, Borg+ (RHEL, EPOL, SACL) II. Angelopoulos+ (ATHU, ATEN, LIVP, VIEN) JI
BOWLER	74	NP B74 493	+Dainton, Kaddoura, Aitchison (OXF)
DAVIDSON		PR D9 77	
DEUTSCH	740	PL 49B 388	+ Chapman, Green, Lys, Roe (MICH)
BARLOUTAUD		NP B59 374	Deutschmann+ +Drevillon, Shah+ (AACH, BERL, CERN, LOIC, VIEN) JI (SACL, EPOL, RHEL) JI
	73	NP B52 31	+Farwell+ (LBL, ORSA, BNL, SACL, MILA) JI
DEJONGH	73	NP B58 110	+Cornet, Charriere+ (BRUX, MONS, CERN, MPIM)
JONES	73	NP B52 383	(CERN) Ji
EWIS	73	NP B60 283	+Allen, Jacobs+ (LOWC, LOIC, CDEF)
WERNER	73	PR D7 1275	+Slattery, Ferbel (ROCH)
ANDERSON	72	PR D6 1823	+Franklin, Godden, Kopelman, Libby, Tan (COLO)
BINGHAM	72C		+Eisenstein, Grard, Herquet+ (CERN, BRUX)
	72	PRL 28 932	Brandenburg, Johnson, Leith, Loos+ (SLAC)
BRANDENB			Brandenburg, Brody, Johnson, Leith+ (SLAC)
CRENNELL	72	PR D6 1220	+Gordon, Lai, Scarr (BNL)
FIRESTONE	72	NP B47 348	(CIT)
FRATI	72	PR D6 2361	+Halpern, Hargis, Snape+ (PENN, CINC)
HAATUFT	72	NP B48 78	+Arnold, Haguenauer+ (BERG, STRB, EPOL, MADR)
BARNHAM		NP B25 49	+Colley, Griffiths, Alper+ (BIRM, GLAS, OXF)
DENEGRI	71	NP B28 13	+Antich, Callahan, Carson, Chien, Cox+ (JHU)
FORMAN	71	PR D3 2610	+Gelfand, Leary, Moser, Seidl, Wolfson (EFI)
GARFINKEL	71	PRL 26 1505	+Holland, Carmony, Lander+ (PURD, UCD)
ABRAMS		PR D1 2433	+Eisenstein, Kim, Marshall, O'Halloran+ (ILL)
ANTICH	70	NP B20 201	+Carson, Chien, Cox, Denegri, Ettlinger+ (JHU)
BOWLER	70	PL 31B 318	(OXF)
FARBER	70	PR D1 78	+Ferbel, Slattery, Yuta (ROCH)
ALEXANDER		NP B13 503	+Firestone, Goldhaber+ (LRL)
ANDREWS	69	PRL 22 731	+Lach, Ludiam, Sandweiss, Berger+ (YALE, LRL)
ASTIER	69	NP B10 65	+Marechal, Montanet+ (CDEF, CERN, IPNP, LIVP) IJ
BARBARO	69	PRL 22 1207	Barbaro-Galtieri, Davis, Flatte+ (LRL)
	69	NC 62A 1038	+Cresti, Limentani, Bertanza, Bigi+ (PADO, PISA) I
	69	NP B9 403	+Goshaw, Erwin, Walker (WISC)
CHIEN	69	PL 29B 433	+Malamud, Mellema, Rudnick, Schlein+ (UCLA)
	69	PR 182 1443	+Eisner, Bali, Luers (BNL)
COLLEY	69	NC 59A 519	+Eastwood+ (BIRM, GLAS, LOIC, MPIM, OXF+)
RWIN	69	NP B9 364	+Walker, Goshaw, Weinberg (WISC, PRIN, VAND)
RIEDMAN	69	UCRL 18860 Thesis	(LRL)
VERNER	69	PR 188 2023	+Ammar, Davis, Kropac, Yarger+ (NWES, ANL)
BARTSCH	68B		+Cocconi+ (AACH, BERL, CERN, LOIC, VIEN)
BOMSE	68	PRL 20 1519	+Borenstein, Callahan. Cole, Cox+ (JHU)
DENEGRI	68	PRL 20 1194	+Callahan, Ettlinger, Gillespie+ (JHU)
BASSOMPIE			Bassompierre, Goldschmidt+ (CERN, BRUX, BIRM) IJ
BERLINGHIERI		PRL 18 1087	+Farber, Ferbel, Forman (ROCH) IJ
CRENNELL	67	PRL 19 44	+Kalbfleisch, Lai, Scarr, Schumann (BNL) I
DEBAERE	67	NC 49A 374	+Debaisieux, Fast, Filippas+ (CERN, BRUX)
Also	67	Private Comm.	Jongeians
GOLDHABER			(LBL)
SHEN	66	PRL 17 726	+Butterworth, Fu. Goldhaber, Trilling (LRL)
Also	66	Private Comm.	Goldhaber (LRL)
ALMEIDA	65	PL 16 184	+Atherton, Byer, Dornan, Forson+ (CAVE)
ARMENTEROS		PL 9 207	+Edwards, D'Andlau+ (CERN, CDEF)
Also	66	PR 145 1095	Barash, Kirsch, Miller, Tan (COLU)
ARMENTEROS			+Edwards, D'Andlau+ (CERN, CDEF)
		Dubna Conf. 1 617	Armenteros (CEIO)

 $K_0^*(1430)$ was $K_0^*(1350)$ was $\kappa(1350)$

 $I(J^P) = \frac{1}{2}(0^+)$

Our latest mini-review on this particle can be found in the 1984 edition.

K ₀ *(1430) MASS								
VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT			
1429 ±4±5	ASTON	88	LASS	0	$11 \begin{array}{c} K^- p \rightarrow \\ K^- \pi^+ n \end{array}$			
• • • We do not use the following data for averages, fits, limits, etc. • • •								
~ 1430	BAUBILLIER	84 B	нвс	-	$8.25 K^- p \rightarrow \overline{K}^0 \pi^- p$			
~ 1425	1,2 ESTABROOKS	78	ASPK					
~ 1450.0	MARTIN	78	SPEC		13 $K^{\pm} p \rightarrow K^{\pm} \pi^{\pm} (n, \Delta)$ 10 $K^{\pm} p \rightarrow K^{0} \pi p$			
1 Mass defined by pole position 2 From elastic $K\pi$ partial-way	on. ve analysis.				3 ·			

K*(1430) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
$287 \pm 10 \pm 21$	ASTON 88	B LASS	0	11 K [−] p →
• • We do not use the following	g data for averages, f	its, limits,	etc.	K ⁻ π ⁺ n
~ 200	BAUBILLIER 84	4в НВС	_	8.25 K ⁻ p →
200 to 300	³ ESTABROOKS 78	B ASPK		$ \frac{\overline{K}^{0}\pi^{-}\rho}{13 \ K^{\pm}\rho \rightarrow K^{\pm}\pi^{\pm}(n,\Delta)} $

 3 From elastic $K\pi$ partial-wave analysis.

K*(1430) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Κπ	(93±10) %

 $K_0^*(1430), K_2^*(1430)$

	K*(1430)	BRANCHING	RATIOS
--	----------	------------------	--------

$\Gamma(K\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
$0.93 \pm 0.04 \pm 0.09$	ASTON	88	LASS	0	11 K [−] p →
					$\kappa^-\pi^+n$

K₀*(1430) REFERENCES

ASTON	88	NP B296 493	+ Awaji, Bienz, Bird	+ (SLAC, NAGO	i, CINC, TOKY)
BAUBILLIER	84B	ZPHY C26 37	+	(BIRM, CERN, GLAS	, MICH, LPNP)
ESTABROOKS	78	NP B133 490	+ Carnegie +	(MONT, CARL	, DURH, SLAC)
MARTIN	78	NP B134 392	+Shimada, Baldi, Be	ohringer-	(DURH, GEVA)

- OTHER RELATED PAPERS -

0 / / El (
TORNQVIST	82	PRL 49 624		(HELS)				
TOAFF	81	PR D23 1500	+Musgrave, Ammar, Davis, Ecklund+	(ANL, KANS)				
ESTABROOKS	79	PR D19 2678		(CARL)				
LANG	79	PR D19 956	+Mas-Parareda	(GRAZ)				
BALDI	78B	NP B134 365	+Bohringer, Dorsaz, Hungerbuhler+	(GEVA)				
ENGELEN	78	NP 8134 14	+Jongejans+ (NIJM, ZE	EM, CERN, OXF)				
BOWLER	77	NP B126 31	+Dainton, Drake, Williams	(OXF)				
SPIRO	77	NP B125 162	+Barloutaud, Comber, Paler+ (SA	CL, RHEL, ÉPOL)				
CHIEN	76	NP B106 355	+Feiock, Lucas, Pevsner, Zoanis	(JHU)				
BAKER	75	NP B99 211	+Banerjee, Campbell, Allen+	(LOIC, LOWC)				
LAUSCHER	75	NP B86 189	+Otter, Wieczorek+	(ABCLV Collab.)				
MORGAN	75	Argonne Conf. 45		(RHEL)				
FOX	74	NP B80 403	+ Griss	(CIT)				
MORGAN	74	PL 51B 71		(RHEL)				
CORDS	73	NP B54 109	+Carmony, Lander, Meiere+ (PI					
GALTIERI	73	LBL-1772	+Matison, Alston-Garnjost, Flatte, Friedm					
LINGLIN	73	NP B55 408		(CERN)				
YUTA	73	NP B52 70	+Engelmann, Musgrave, Forman+	(ANL, EFI)				
AGUILAR	72	PR D6 I1	Aguilar-Benitez, Chung, Eisner	(BNL)				
BINGHAM	72	NP B41 1		tional K Collab.)				
BUCHNER	72	NP B45 333	+Dehm, Charriere, Cornet - (MP)	IM, CERN, BRUX)				
CHUNG	72	PRL 29 1570	+Eisner, Aguilar-Benitez	(BNL)				
CRENNELL	72	PR D6 1220	+ Gordon, Lai, Scarr	(BNL)				
DIEBOLD	72B	Batavia Conf. 3 17		(ANL)				
ENGELMANN	72	PR D5 2162	+Musgrave, Forman+	(ANL, EFI)				
FRATI	72	PR D6 2361	+ Halpern, Hargis, Snape+	(PENN, CINC)				
MATISON	72	LBL-1537 Thesis		(LBL)				
ROUGE	72	NP B46 29	+Videau, Volte, DeBrion+	(EPOL, SACL)				
FIRESTONE	71C	PRL 26 1460	+ Goldhaber, Lissauer	(LRL)				
MERCER	71	NP B32 381	+Antich, Callahan, Chien, Cox+	(JHU)				
YUTA	71	PRL 26 1502	+Derrick, Engelmann, Musgrave	(ANL, EFI)				
GOLDBERG	69	PL 308 434	+Huffer, Laloum+	(SABRE Collab.)				
SCHLEIN	69	Argonne Conf. 446		(UCLA)				
TRIPPE	68	PL 28B 203	+ Chien, Malamud, Mellema, Schlein-	(UCLA)				

 $K_2^*(1430)$

 $I(J^P) = \frac{1}{2}(2^+)$

We consider that phase-shift analyses provide more reliable determinations of the mass and width.

K*(1430) MASS

CHARGED ONLY, WITH FINAL STATE $K\pi$								
VALUE (MeV)				TECN	CHG	COMMENT		
1425.4 ± 1.3 OUR A	WERAGE E		facto	or of 1.1				
$1423.4 \pm 2 \pm 3.248$	09 ± 820	¹ BIRD	89	LASS		11 K [−] p →		
1420 ± 4	1587	BAUBILLIER	84B	нвс	-	$ \frac{\overline{K}^{0}\pi^{-}p}{8.25 \ K^{-}p} \rightarrow \frac{\overline{K}^{0}\pi^{-}p}{\overline{K}^{0}\pi^{-}p} $		
1436 ± 5.5	400	^{2,3} CLELAND	82	SPEC	+	30 K ⁺ p → K ⁰ π ⁺ p		
1430 ± 3.2	1500	^{2,3} CLELAND	82	SPEC	+	50 $K^+ p \rightarrow K^0 \pi^+ p$		
1430 ± 3.2	1200	^{2,3} CLELAND	82	SPEC	-	$50 \begin{array}{c} K^{+} p \rightarrow \\ K^{0}_{S} \pi^{-} p \end{array}$		
1423.0 ± 5.0	935	TOAFF	81	нвс	-	$6.5 \overset{3}{K^{-}} p \rightarrow \overset{3}{K^{0}} \pi^{-} p$		
1428.0 ± 4.6		⁴ MARTIN	78	SPEC	+	$ \begin{array}{c} 10 \ K^{\pm} p \rightarrow \\ K^{0}_{c} \pi p \end{array} $		
1423.8± 4.6		⁴ MARTIN	78	SPEC	-	10 κ ¹ ρ κ ⁰ ςπρ		
1420.0± 3.1	1400	AGUILAR	71B	нвс	_	3.9,4.6 K ⁻ p		
1425 ± 8.0		2,3 BARNHAM		HBC	+	$K^+ p \rightarrow$		
1120 1 010						$\kappa^0\pi^+\rho$		
1416.0 ± 10.0	220	CRENNELL	69D	DBC	-	3.9 K [−] N →		
1414 ± 13.0	60	² LIND	69	нвс	+	$ \begin{array}{c} \overline{K}^{0}\pi^{-}N\\ 9K^{+}p\rightarrow\\ K^{0}\pi^{+}p \end{array} $		
1427.0 ± 12.0	63	² SCHWEING	68	нвс	-	$5.5~K^-~\rho \rightarrow$		
1423 ±11.0	39	² BASSANO	67	нвс	-	$ \begin{array}{c} \overline{K} \pi N \\ 4.6-5.0 K^{-} \rho \rightarrow \\ \overline{K}^{0} \pi^{-} \rho \end{array} $		

NEUTRAL ONLY	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
1432.4± 1.3 OUR A 1431.2± 1.8± 0.7	VERAGE	⁵ ASTON	88	LASS	0	11 K $^ \rho$ \rightarrow
1434 ± 4 ± 6		⁵ ASTON	87	LASS	0	$11 \begin{array}{c} K^- \pi^+ n \\ 11 \begin{array}{c} K^- p \rightarrow \end{array}$
1433 ± 6 ±10		⁵ ASTON	8 4 B	LASS	0	$\overline{K}^0 \pi^+ \pi^- n$ 11 $K^- \rho \rightarrow$
1471 ±12		⁵ BAUBILLIER	82в	нвс	0	$ \frac{\overline{K}^{0}}{8.25} \frac{2\pi}{K^{-}} \frac{n}{\rho} \rightarrow N \frac{K_{S}^{0}}{\pi} \frac{\pi}{\pi} $
1428 ± 3		⁵ ASTON	810	LASS	0	11 $K^-p \rightarrow$
1434.0 ± 2.0		5 ESTABROOKS	78	ASPK	0	$K^-\pi^+\pi$ 13 $K^{\pm} p \rightarrow p K \pi$
1440.0 ± 10.0		⁵ BOWLER	77	DBC	0	5.5 $K^+ d \rightarrow K \pi p p$
• • • We do not use	the following	ng data for averages	, fits	, limits,	etc.	
1420.0± 7.0	300	HENDRICK	76	DBC		$8.25 K^+ N \rightarrow$
1421.6 ± 4.2	800	MCCUBBIN	75	нвс	0	$K^+ \pi N$ 3.6 $K^- p \rightarrow$
1420.1± 4.3		⁶ LINGLIN	73	нвс	0	$2-13 K^+ p \rightarrow$
1419.1± 3.7	1800	AGUILAR	71B	нвс	0	K ⁺ π ⁻ X 3.9,4.6 K ⁻ ρ
1416 ± 6	600	CORDS	71	DBC	0	9 K ⁺ n →
1421.1 ± 2.6	2200	DAVIS	69	нвс	0	$K^+\pi^-p$ 12 $K^+p \rightarrow$
1						$K^+\pi^-$ X

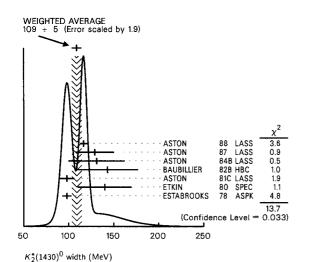
CHARGED ONLY, WITH FINAL STATE $K\pi$

VALUE (MeV) EVT5

ı

K₂*(1430) WIDTH

DOCUMENT ID TECN CHG COMMENT


00	4± 2.3 OUF	DEIT						
	4± 2.3 OUF 4± 2.4 OUF							
98		24809 ± 820	7	BIRD	89	LASS		11 K ⁻ p →
109	± 22	400	8,9	CLELAND	82	SPEC	+	$\overline{K}^0\pi^+\rho$ 30 $K^+\rho \rightarrow$
124	±12.8	1500	8,9	CLELAND	82	SPEC	+	$K_{S}^{0}\pi^{+}p$ 50 $K_{P}^{+}\rightarrow$
113	±12.8	1200	8,9	CLELAND	82	SPEC	_	$K_S^0 \pi^+ \rho$ 50 $K_T^+ \rho \rightarrow$
85.	0 ± 16.0	935		TOAFF	81	нвс	_	$K_S^0 \pi^- \rho$ 6.5 $K^- \rho \rightarrow$
96.	5 ± 3.8			MARTIN	78	SPEC	+	$\overline{K}^0\pi^-\rho$ 10 $K^{\pm}\rho \rightarrow$
97.	7± 4.0			MARTIN	78	SPEC	_	$K^0_{\mathbf{S}} \pi \rho$ 10 $K^{\pm} \rho \rightarrow$
04	7 + 15.1 7 - 12.5	1400		AGUILAR	710	нвс		$K_5^0 \pi \rho$ 3.9.4.6 $K^- \rho$
	' – 12.5 JTRAL ON			AGGILAR	718	пьс	-	3.9,4.0 N p
	JIRAL ON IE (MeV)	EVTS		DOCUMENT ID		TECN	CHG	COMMENT
			rror		actor			ie ideogram below.
	5 ± 3.6 ± 1.			ASTON	88	LASS	0	11 $K^- \rho \rightarrow$
	± 3.6± 1.	. (ASTON	87	LASS	0	$K^-\pi^+\pi$ 11 $K^-p \rightarrow$
131	±24 ±20			ASTON		LASS	0	$\frac{\overline{K}^0 \pi^+ \pi^- n}{11 \ K^- \rho \rightarrow}$
143	± 34			BAUBILLIER	82B	нвс	0	$\overline{K}^0 2\pi n$ 8.25 $K^- p \rightarrow$
98	± 8		10	ASTON	81c	LASS	0	$NK_{S}^{0}\pi\pi$ 11 $K^{-}\rho \rightarrow$
140	± 30			ETKIN	80	SPEC	0	$K^-\pi^+\pi$ 6 $K^-\pi^+\pi$
	0± 5.0			ESTABROOKS		ASPK	0	$ \overline{K}^{0}_{\pi}^{+} + \pi^{-} n $ 13 $K^{\pm} p \rightarrow p K \pi$
• •	We do not	t use the follow	-	-	s, fits	, limits,	etc. •	• •
	0 ± 29.0	300	8	HENDRICK	76	DBC		$8.25 K^+ N \rightarrow K^+ \pi N$
116	± 18	800		MCCUBBIN	75	нвс	0	$3.6 \ K^- \ \rho \rightarrow$
61.	0±14.0		11	LINGLIN	73	нвс	0	$K^-\pi^+\pi$ 2-13 $K^+\rho \to K^+\pi^- X$
116.	$6 + 10.3 \\ -15.5$	1800		AGUILAR	71B	HBC	0	3.9,4.6 K ⁻ p
	± 24.0	600	8	CORDS	71	DBC	0	$9 \stackrel{K^+}{K^+} \stackrel{n}{\pi^-} \stackrel{\rightarrow}{p}$
101	±10	2200		DAVIS	69	нвс	0	$ \begin{array}{ccc} $

 $^{^1}$ From a partial wave amplitude analysis. 2 Errors enlarged by us to $\Gamma/N^{1/2}$; see the note with the K^* (892) mass.

³ Number of events in peak re-evaluated by us.

Systematic ror added by us.
 From phase shift or partial-wave analysis.
 From pole extrapolation, using world K⁺ p data summary tape.

Meson Full Listings $K_2^*(1430)$

⁷ From a partial wave amplitude analysis.

- ⁸ Errors enlarged by us to $4\Gamma/N^{1/2}$; see the note with the K^* (892) mass.
- ⁹ Number of events in peak re-evaluated by us.
- 10 From phase shift or partial-wave analysis. 11 From pole extrapolation, using world K^+p data summary tape.

K*(1430) DECAY MODES

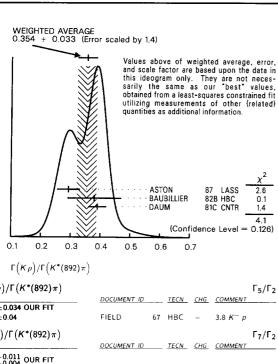
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁	Κπ	(49.7±1.2) %	
Γ_2	$K^*(892)\pi$	(25.2 ± 1.7) %	
Γ3	$K^*(892)\pi\pi$	(13.0 ± 2.3) %	
Γ4	Kρ	(8.8±0.8) %	S=1.2
Γ ₅	Κω	(2.9±0.8) %	
۲6	$K^+\gamma$	$(2.4\pm0.5)\times10^{-3}$	
Γ7	$K\eta$	$(1.4^{+2.8}_{-0.9}) \times 10^{-3}$	S=1.1
Γ8	$K\omega\pi$	$< 7.2 \times 10^{-4}$	CL=95%
Γģ	$K^0\gamma$	< 9 × 10 ⁻⁴	CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, and 10 branching ratios uses 28 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=19.5$ for 21 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta p_i \delta p_j \rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i/\Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

x_2	-16						
<i>x</i> ₃	-33	-75					
<i>x</i> ₄	-12	39	-54				
<i>x</i> 5	-11	-3	-25	-8			
<i>x</i> ₆	-1	-1	-1	1	0		
<i>x</i> ₇	-3	-6	-4	-4	-2	0	
Γ	0	0	0	0	0	-13	0
	V+	Yo	Yo	٧.	Y-	٧.	V-


	Mode	Rate (MeV)	Scale factor
Γ1	Κπ	48.9 ±1.7	
Γ_2	$K^*(892)\pi$	24.8 ±1.7	
Γ_3^-	$K^*(892)\pi\pi$	12.8 ± 2.3	
Γ_4	$K\rho$	8.7 ±0.8	1.2
Гъ	Kω	2.9 ±0.8	
Γ ₆	$K^+\gamma$	0.24 ± 0.04	
Γ ₇	Κη	$0.14^{+0.28}_{-0.09}$	1.1

K*(1430) PARTIAL WIDTHS

$\Gamma(K^+\gamma)$							Γ_6
VALUE (keV) 240±40 OUR FIT		DOCUMENT ID		TECN	CHG	COMMENT	
240±45 OUR FIT		CIHANGIR	82	SPEC	+	$200 \ K^{+} \ Z \xrightarrow{\pi^{0}}$ $Z \ K^{0} \ \pi^{+}$	
$\Gamma(K^0\gamma)$							Гэ
VALUE (keV)	CL%	DOCUMENT ID		TECN	CHG	COMMENT	
<84	90	CARLSMITH	87	SPEC	0	60-200 K ⁰ A	
						κ ⁰ ς π ⁰ Α	

K₂(1430) BRANCHING RATIOS

$\Gamma(K\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.497±0.012 OUR FIT	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	Γ ₁ /Γ
0.488±0.014 OUR AVERAGE 0.485±0.006±0.020	12 ASTON	88	LASS	0	11 K ⁻ p →
0.49 ±0.02	12 ESTABROOK			±	11 $K^- p \rightarrow K^- \pi^+ n$ 13 $K^{\pm} p \rightarrow p K \pi$
$\Gamma(K^*(892)\pi)/\Gamma(K\pi)$					$\Gamma_2/(\Gamma_1+\Gamma_2+\Gamma_4)$
VALUE	DOCUMENT ID				
• • We do not use the following	•				
0.47 ± 0.10 0.45 ± 0.13	BASSANO 13 BADIER		нвс нвс	-0 -	4.6,5.0 K ⁻ ρ 3 K ⁻ ρ
$\Gamma(K\rho)/\Gamma(K\pi)$ VALUE	DOCUMENT ID		TECN	<u>CHG</u>	$\Gamma_4/(\Gamma_1+\Gamma_2+\Gamma_4)$ COMMENT
• • We do not use the following	ng data for average	es, fits	, limits,	etc.	• • •
$\begin{array}{c} 0.14 \pm 0.10 \\ 0.14 \pm 0.07 \end{array}$	BASSANO ¹³ BADIER		нвс нвс	-0 -	4.6,5.0 K ⁻ ρ 3 K ⁻ ρ
$\Gamma(K^*(892)\pi)/\Gamma(K\pi)$					Γ_2/Γ_1
VALUE 0.51 ± 0.04 OUR FIT	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.48±0.05 OUR AVERAGE					
0.44 ± 0.09	ASTON	84B	LA\$\$	0	$\begin{array}{c} 11 \ K^{-} \rho \rightarrow \\ \overline{K}^{0} 2\pi n \end{array}$
0.62 ± 0.19	LAUSCHER	75	HBC	0	$ \begin{array}{ccc} & 10,16 & K^{-} & p \to \\ & K^{-} & \pi^{+} & n \\ & 4.6 & K^{+} & N \end{array} $
0.54 ± 0.16	DEHM	74	DBC	0	$K^-\pi^+ n$ 4.6 $K^+ N$
0.47 ± 0.08	AGUILAR	71B	HBC		3.9,4.6 K ⁻ p
$\Gamma(K\omega)/\Gamma(K\pi)$	DOCUMENT ID		TECN	<u>CHG</u>	Γ_5/Γ_1
0.059±0.017 OUR FIT	<u>BOCOMENT IB</u>		12011	<u>cc</u>	<u>commen</u>
0.070±0.035 OUR AVERAGE 0.05 ±0.04	AGUILAR	71 B	нвс		3.9,4.6 K ⁻ p
0.13 ±0.07	BASSOMPIE.			0	5 K ⁺ p
$\Gamma(K\rho)/\Gamma(K\pi)$					Γ_4/Γ_1
VALUE 0.178±0.018 OUR FIT Error in	<u>DOCUMENT ID</u> ncludes scale factor			<u>CHG</u>	COMMENT
0.153 ^{+0.034} _{-0.018} OUR AVERAGE	icidaes scale lactor	0, 1			
0.18 ±0.05	ASTON	84B	LASS	0	11 K p →
$0.02 \begin{array}{c} +0.10 \\ -0.02 \end{array}$	DEHM	74	DBC	0	K ⁰ 2π π 4.6 K ⁺ N
0.16 ± 0.05	AGUILAR	71B	нвс		3.9,4.6 K ⁻ p
$\Gamma(K\rho)/\Gamma(K^*(892)\pi)$					Γ_4/Γ_2
VALUE 0.351±0.032 OUR FIT Error i	<u>DOCUMENT ID</u> ncludes scale factor		<u>TECN</u> 5.	<u>CHG</u>	COMMENT
				. See	the ideogram below.
$0.293 \pm 0.032 \pm 0.020$	ASTON	87	LASS	0	$11 \ K^- \rho \rightarrow$
0.38 ±0.09	BAUBILLIER	82в	нвс	0	$ \begin{array}{c} 11 \ K^{-} \ \rho \rightarrow \\ \overline{K}^{0} \ \pi^{+} \ \pi^{-} \ n \\ 8.25 \ K^{-} \ \rho \rightarrow \\ N \ K_{0}^{0} \ \pi \ \pi \end{array} $
0.39 ±0.03	DAUM	810	CNTR		$63 \frac{K^{-} p}{K 2\pi p} \rightarrow$

$\Gamma(K\omega)/\Gamma(K^*(892)\pi)$					Γ_5/Γ_2
VALUE	DOCUMENT ID		TECN	CHG	
0.116±0.034 OUR FIT					
0.10 ±0.04	FIELD	67 I	нвс		3.8 K ⁻ p
$\Gamma(K\eta)/\Gamma(K^*(892)\pi)$					Γ_7/Γ_2
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.006 ^{+0.011} _{-0.004} OUR FIT					
0.07 ±0.04	FIELD	67 I	нвс	-	3.8 K ⁻ p
$\Gamma(K\eta)/\Gamma(K\pi)$					Γ_7/Γ_1
VALUE CL%	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.0028+0.0057 OUR FIT					
0 ± 0.0056	¹⁴ ASTON	88B I	LASS	-	11 K ⁻ ρ →
M/- d +b - f-H-		C+-	12		$K^{-}\eta p$
• • We do not use the follo	wing data for averages,	, rits,	limits,	etc. •	• •
< 0.04 95		71B f	нвс		3.9,4.6 K ⁻ p
< 0.065	13 BASSOMPIE	69 H	HBC		5.0 K ⁺ p
< 0.02	BISHOP	69 H	1BC		3.5 $K^+ p$
E(1/#(000))/E					E /E
$\Gamma(K^*(892)\pi\pi)/\Gamma_{\text{total}}$					Γ_3/Γ
VALUE	DOCUMENT ID	3	TECN	<u>CHG</u>	COMMENT
0.130 ± 0.023 OUR FIT	15 couppens				
0.12 ±0.04	¹⁵ GOLDBERG	76 H	HBC	-	3 K ⁻ ρ →
					$\rho \overline{K}^0 \pi \pi \pi$
$\Gamma(K^*(892)\pi\pi)/\Gamma(K\pi)$					Γ_3/Γ_1
VALUE	DOCUMENT ID	1	TECN	CHG	COMMENT
0.26±0.05 OUR FIT	12.15				
0.21 ± 0.08	13,15 JONGEJANS	78 H	HBC	_	4 K ⁻ p →
					$\rho \overline{K}^0 \pi \pi \pi$
$\Gamma(K\omega\pi)/\Gamma_{ ext{total}}$					Γ ₈ /Γ
VALUE (units 10 ⁻³) CL% EVTS	DOCUMENT ID	,	ΓΕζΝ	COMN	IENT
					^

 $^{12}_{\scriptscriptstyle \perp}$ From phase shift analysis.

 $^{13}\,\mathrm{Restated}$ by us.

The state by us. 14 ASTON 88B quote < 0.0092 at CL=95%. We convert this to a central value and 1 sigma error in order to be abe to use it in our constrained fit. 15 Assuming $\pi\pi$ system has isospin 1, which is supported by the data.

JONGEJANS 78 HBC 4 $K^- p \rightarrow p \overline{K}^0 4\pi$

K₂*(1430) REFERENCES

BIRD	89	SLAC-332	(SLAC)
ASTON	88	NP B296 493	+Awaji, Bienz, Bird - (SLAC, NAGO, CINC, TOKY)
ASTON	88B	PL B201 169	+Awaji, Bienz+ (SLAC, NAGO, CINC, TOKY)
ASTON	87	NP B292 693	+Awaii, D'Amore+ (SLAC, NAGO, CINC, TOKY)
CARLSMITH	87	PR D36 3502	+Bernstein, Bock, Coupal, Peyaud, Turlay+ (EFI, SACL)
ASTON	84B	NP B247 261	+Carnegie, Dunwoodie+ (SLAC, CARL, OTTA)
BAUBILLIER	84B	ZPHY C26 37	+ (BIRM, CERN, GLAS, MICH, LPNP)
BAUBILLIER	82B	NP B202 21	+ (BIRM, CERN, GLAS, MSU, LPNP)
CIHANGIR	82	PL 117B 123	+Berg, Biel, Chandlee+ (FNAL, MINN, ROCH)
CLELAND	82	NP B208 189	+Delfosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT)
ASTON	81C	PL 106B 235	+Carnegie, Dunwoodie+ (SLAC, CARL, OTTA) JP
DAUM	81C	NP B187 1	+Hertzberger+ (AMST, CERN, CRAC, MPIM, OXF+)
TOAFF	81	PR D23 1500	+Musgrave, Ammar, Davis, Ecklund+ (ANL, KANS)
ETKIN .	80	PR D22 42	+Foley, Lindenbaum, Kramer+ (BNL, CUNY) JP
ESTABROOKS	78	NP B133 490	+Carnegie+ (MONT, CARL, DURH, SLAC)
Aiso	78B	PR D17 658	+Carnegie+ (MONT, CARL, DURH, SLAC) Estabrooks, Carnegie+ (MONT, CARL, DURH+) +Cerrada+ (ZEEM, CERN, NIJM, OXF)
JONGEJANS	78	NP B139 383	+Cerrada+ (ZEEM, CERN, NIJM, OXF)
MARTIN	78	NP B134 392	+Shimada, Baldi, Bohringer+ (DURH, GEVA)
BOWLER	77	NP B126 31	+Dainton, Drake, Williams (OXF)

GOLDBERG	76	LNC 17 253		(HAIF)
HENDRICK	76	NP B112 189	+Vignaud, Burlaud+ (MON	IS, SACL, LPNP, BELG)
LAUSCHER	75	NP B86 189	+Otter, Wieczorek+	(ABCLV Collab.) JF
MCCUBBIN	75	NP B86 13	+Lyons	(OXF)
DEHM	74	NP B75 47	+ Goebel, Wittek+ (MPIM.	BRUX, MONS, ČERNÍ
LINGLIN	73	NP B55 408	,	(CERN)
AGUILAR	71B	PR D4 2583	Aguilar-Benitez, Eisner, Kinson	(BNL)
BARNHAM	71C	NP B28 171	+Colley, Jobes, Griffiths, Hughes+	(BIRM, GLAS)
CORD\$	71	PR D4 1974	+Carmony, Erwin, Meiere+	(PURD, UCD, IUPU)
BASSOMPIE	69	NP B13 189	Bassompierre+	(CERN, BRUX) JP
BISHOP	69	NP B9 403	+Goshaw, Erwin, Walker	(WISC)
CRENNELL	69D	PRL 22 487	+Karshon, Lai, O'Neall, Scarr	(BNL)
DAVIS	69	PRL 23 1071	+Derenzo, Flatte, Garnjost, Lynch,	Solmitz (LRL)
LIND	69	NP B14 1	- Alexander, Firestone, Fu, Goldhabe	er (LRL) JP
SCHWEING	68	PR 166 1317	Schweingruber, Derrick, Fields+	
Also	67	Thesis	Schweingruber	(NWES, NWES)
BASSANO	67	PRL 19 968	+Goldberg, Goz, Barnes, Leitner-	(BNL, SYRA)
FIELD	67	PL 24B 638	+Hendricks, Piccioni, Yager	(UCSD)
BADIER	65C	PL 19 612	-Demoulin, Goldberg+	(EPOL, SACL, AMST)

OTHER RELATED PAPERS -

ATKINSON BAUBILLIER DELFOSSE ESTABROOKS AISO ETKIN VERGEEST OTTER FRATI ABRAMS HABER ANTICH DAHL AISO GOLDHABER SHEN CHUNG FOCARDI HAQUE	788 76 76 75 72 708 70 68 67 65 66 65 65 65	ZPHY C 30 521 NP B202 21 NP B183 349 NP B133 490 PR D17 658 PRL 36 1482 PR D6 2361 PR D6 2361 PR D6 2361 PR D1 2433 NP B17 289 PRL 21 1842 PRL 137 726 PRL 17 726 PRL 17 726 PRL 17 726 PRL 17 726 PRL 17 726 PRL 17 726 PRL 17 325 PL 16 351 PL 16 351 PL 16 351 PL 16 351 PL 16 351 PL 16 351	+ (BONN, CERN, GLAS, LANC, MCHS, LPNP+) (GUSan, Martin, Muhlemann, Weill+ (GEVA, LAUS) + Carregie+ (MONT, CARL, DURH, SLAC) Estabrooks, Carnegie+ (MONT, CARL, DURH+) + Foley, Goldman, Lindenbaum, Kim+ (BNL, CUNY) - Engelen, Jongejans+ (AMST, CERN, NIJM, OXF) JP (AACH, BERL, CERN, LOIC, VIEN, ATHU+) + Halpern, Hargis, Snape+ - Eisenstein, Kim, Marshall, O'Halloran+ (ILL) + Shapira, Alexander+ (REHO, SACL, BGNA, EPOL) + Callahan, Carson, Cox, Denegri+ (JHU) + Hardy, Hesx, Kirz, Miller (LRL) + Hardy, Chung, Dahl, Hess, Kirz, Miller (LRL) - Butterworth, Fu, Goldhaber, Trilling (LRL) Goldhaber (LRL) - Dahl, Hardy, Hess, Jacobs, Kirz (BGNA, SACL) + Ranzi, Serra- (BGNA, SACL)
HARDY	65	PRL 14 401	+ Chung. Dahl, Hess, Kirz. Miller (LRL)

K(1460)was K(1400)

> Mode $K^*(892)\pi$

 ~ 34

 $I(J^P) = \frac{1}{2}(0^-)$

OMITTED FROM SUMMARY TABLE

Observed in $K \pi \pi$ partial-wave analysis. Not seen by VERGEEST 79. Wait confirmation.

K(1460) MASS

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
• • • We do not use the	following data for averages	, fits, limits,	etc.	• •
~ 1460	DAUM	81¢ CNTR	-	63 $\frac{K^-}{K} p \rightarrow \frac{K^-}{K} 2\pi p$
~ 1400	$^{ m 1}$ BRANDENB	768 ASPK	±	13 K [±] p → KππN
$^{ m 1}$ Coupled mainly to K	б (1400). Decay into <i>K</i> * (89	92)π seen.		

K(1460) WIDTH

VALUE (MeV)	DOCUMENT ID		ECN	CHG	COMMENT
• • We do not use the fol	lowing data for averag	es, fits,	limits, e	tc.	• • •
~ 260	DAUM	81¢ C	NTR	-	63 $K^- \rho \rightarrow \overline{K} 2 - \rho$
∼ 250	² BRANDENB.	. 76в А	SPK	±	13 K [±] p ΚππΝ

²Coupled mainly to $K f_0(1400)$. Decay into $K^*(892)\pi$ seen.

K(1460) DECAY MODES

	K(1460) PARTIAL	WIDTHS		
$\Gamma(K^*(892)\pi)$ VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	Γ1
	following data for average			
~ 109	DAUM	81C CNTR	$63~K^-~\rho \rightarrow ~\overline{K}~2\pi~\rho$	>
$\Gamma(K\rho)$				Γ_2
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	

81C CNTR 63 $K^- \rho \rightarrow \overline{K} 2\pi \rho$

DAUM

 $K(1460), K_2(1580), K_1(1650), K^*(1680)$

 $K_1(1650)$

$$I(J^P) = \frac{1}{2}(1^+)$$

OMITTED FROM SUMMARY TABLE

This entry contains various peaks in strange meson systems $(K^+\phi, K\pi\pi)$ reported in partial-wave analysis in the 1600–1900 mass region.

$K_1(1650)$	MASS
-------------	------

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1650±50	FRAME 8	6	OMEG	+	13 K ⁺ p →
					φK ⁺ p

~ 1840 ARMSTRONG 83 OMEG − 18.5 $K^- p \rightarrow 3K p$ ~ 1800 DAUM 81c CNTR − 63 $K^- p \rightarrow \overline{K} 2\pi p$

K₁(1650) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	_
150±50	FRAME	86	OMEG	+	13 K ⁺ $\rho \rightarrow$	
					$\phi K^+ \rho$	
• • We do not use the fo	llowing data for average	es, fits	s, limits,	etc.	• •	
- 250	DAHM	810	CNTR	_	63 K = n -	

$\frac{1}{K} 2\pi p$

K₁(1650) DECAY MODES

K	ππ		
Κ	ф		

Mode

Γ₁

 Γ_2

K₁(1650) REFERENCES

FRAME	86	NP	B276	667	+Hughes,							(GLAS)
ARMSTRONG	83	NΡ	B221	1	+		(BARI,	BIRN	1, CERI	N, MILA	A, LPNP	, PAVI)
DAUM	81C	NΡ	B187	1	+Hertzber	ger+	(AN	IST.	CERN,	CRAC.	MPIM,	OXF+)

$$I(J^P) = \frac{1}{2}(1^-)$$

K*(1680) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
1678±64	¹ BIRD	89	LASS		$\begin{array}{c} 11 \ K^- \ \rho \rightarrow \\ \overline{K}^0 \ \pi^- \ \rho \end{array}$
• • We do not use the form	ollowing data for averages	s, fit:	s, limits,	etc.	• •
$1677 \pm 10 \pm 32$	ASTON	88	LASS	0	$11 K^- \rho \rightarrow K^- \pi^+ \rho$
$1735 \pm 10 \pm 20$	ASTON	87	LASS	0	$11 \stackrel{K}{K^-} \stackrel{n}{p} \rightarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $
1800 ± 70	ETKIN	80	MPS	0	$6K^-p \rightarrow 0$
~ 1650	ESTABROOKS	78	ASPK	0	$ \begin{array}{c} K^{\bullet} \pi^{+} \pi^{-} n \\ 13 K^{\pm} p \rightarrow \\ K^{\pm} \pi^{\pm} n \end{array} $

 $^{^{\}mathrm{1}}$ From a partial wave amplitude analysis.

K*(1680) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
454 ± 270	² BIRD	89	LASS	-	$ \begin{array}{c} \frac{11 \ K^- \ p \rightarrow}{K^0 \ \pi^- \ p} \end{array} $
 We do not use the following 	g data for average	s, fit	s, limits,	etc. •	• •
205 ± 16 ± 34	ASTON	88	LASS	0	11 K ⁻ p →
423 ± 18 ± 30	ASTON	87	LASS	0	$11 \begin{array}{c} K^- \pi^+ n \\ 11 \begin{array}{c} K^- p \rightarrow \end{array}$
170± 30	ETKIN	80	MPS	0	$\overline{K}^0 \pi^+ \pi^- n$ 6 $K^- p \rightarrow$
250 to 300	ESTABROOKS	5 78	ASPK	0	$ \overline{K}^{0}_{\pi}^{+}\pi^{-}n $ 13 $K^{\pm}p \rightarrow$ $K^{\pm}\pi^{\pm}n$
25					$K^{\pm}\pi^{\pm}n$

² From a partial wave amplitude analysis.

,	•	_

$\Gamma(K_0^*(1430)\pi)$				Гз
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the follo	wing data for averages	, fits, limits,	etc. • • •	
~ 117	DAUM	81c CNTR	63 $K^- \rho \rightarrow$	$\overline{K} 2\pi p$

K(1460) REFERENCES

DAUM VERGEEST	NP B187 1 NP B158 265		, CRAC, MPIM, OXF+) M, AMST, CERN, OXF)
	PRL 36 1239	Brandenburg, Carnegie, Cashmore	

OTHER RELATED PAPERS —

 BARNES
 22
 PL 116B 365
 +Close
 (RHEL)

 TANIMOTO
 82
 PL 116B 198
 +Jongejans, Dionisi+
 (NIJM. AMST, CERN, OXF)

 VERGEEST
 79
 NP B138 265
 +Jongejans, Dionisi+
 (NIJM. AMST, CERN, OXF)

 $K_2(1580)$ was L(1580)

$$I(J^P) = \frac{1}{2}(2^-)$$

OMITTED FROM SUMMARY TABLE

Seen in partial-wave analysis of the $K^-\pi^+\pi^-$ system. Needs confirmation.

K2(1580) MASS

VALUE (MeV)	DOCUMENT ID		HG	COMMENT
$\bullet~\bullet~$ We do not use the following	data for average	s, fits,	limits	, etc. • • •
~ 1580	OTTER	79 -	-	10,14,16 K ⁻ p

K₂(1580) WIDTH

VALUE (MeV)	DOCUMENT ID	CHG	COMMENT
• • • We do not use the following	data for averages	, fits, limi	ts, etc. • • •
~ 110	OTTER	79 –	10,14,16 K ⁻ p

K2(1580) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	$K^*(892)\pi$	seen
Γ_2	$K_2^*(1430)\pi$	possibly seen

K2(1580) BRANCHING RATIOS

K ₂ (1580) REFERENCES							
possibly seen	OTTER	79	нвс	_	10,14,16 K ⁻ ρ		
$\Gamma(K_2^*(1430)\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	<u>CHG</u>	Γ ₂ /Γ		
seen	OTTER	79	нвс	-	10,14,16 K ⁻ p		
$\Gamma(K^*(892)\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	<u>CHG</u>	Γ ₁ /Γ		

M2(1300) REFERENCES

OTTER 79 NP B147 1 +Rudolph+ (AACH, BERL, CERN, LOIC, WIEN) JP

$K^*(1680), K_2(1770)$

K*(1680) DECAY MODES

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$
Γ_1	Κπ	(38.7 ± 2.5) %
Γ_2	$K\rho$	(31.4+4.7) %
Γ3	$K^*(892)\pi$	(29.9+2.2) %

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 4 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=$ 3.0 for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

$$x_2$$
 -36
 x_3 -39 -72
 x_1 x_2

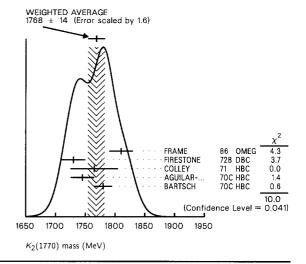
K*(1680) BRANCHING RATIOS

$\Gamma(\kappa\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	Γ ₁ /Γ
0.387±0.026 OUR FIT 0.388±0.014±0.022	ASTON	88	LASS	0	$11 \stackrel{K^-}{K^-} \stackrel{p \to}{\pi^+} \stackrel{n}{n}$
$\Gamma(K\pi)/\Gamma(K^*(892)\pi)$ VALUE	DOCUMENT ID		TECN	<u>CHG</u>	Γ_1/Γ_3
$1.30^{+0.23}_{-0.14}$ OUR FIT 2.8 ± 1.1	ASTON	84	LASS	0	$\begin{array}{c} 11 \ K^- \ \rho \rightarrow \\ \overline{K}^0 \ 2\pi \ n \end{array}$
$\Gamma(K\rho)/\Gamma(K\pi)$	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	Γ_2/Γ_1
$0.81^{+0.14}_{-0.09}$ OUR FIT 1.2 ± 0.4	ASTON	84	LASS	0	$11 \underset{-0}{K^{-}} \rho \rightarrow$
$\frac{\Gamma(K\rho)/\Gamma(K^*(892)\pi)}{VALUE}$	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	$ \overline{K}^0 2\pi n $ $ \Gamma_2/\Gamma_3 $ COMMENT
$1.05^{+0.27}_{-0.11}$ OUR FIT $0.97 \pm 0.09^{+0.30}_{-0.10}$	ASTON	87	LASS	0	$11 \overset{K^-}{\cancel{\nu}^0} \xrightarrow{+} \xrightarrow{-} "$

K*(1680) REFERENCES

BIRD	89	SLAC-332					(SLAC)
ASTON	88	NP B296 493	-Awaji, Bienz, Bird +	(SLAC,	NAGO,	CINC,	TOKY)
ASTON	87	NP B292 693	Awaji, D'Amore+	(SLAC,	NAGO,	CINC.	TOKY)
ASTON	84	PL 149B 258	+Carnegie, Dunwoodie+		(SLAC,	CARL,	OTTA) JP
ETKIN	80	PR D22 42	+Foley, Lindenbaum, Kramer	+		(BNL.	CUNY) JP
ESTABROOKS	78	NP B133 490	Carnegie	(MONT,	CARL,	DURH	SLAC) JP

$$I(J^P) = \frac{1}{2}(2^-)$$


Our latest mini-review on this particle can be found in the 1984 edition.

K₂(1770) MASS							
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
1768 ±14 OU	JR AVERAGE	Error includes sca	le fac	ctor of 1	.6. Se	e the ideogram	
1810 ±20		below. FRAME	86	OMEG	_	13 $K^+ \rho \rightarrow$	
1010 ±20		11001112	00	ONLEG		φ K + p 12 K + d	
1730 ± 20	306		72B	DBC	+	12 K^{+} d	
1765.0 ± 40.0		² COLLEY	71	HBC	+	10 $K^+ \rho \rightarrow$	
1745.0 ± 20.0		AGUILAR	700	нвс		K 2π N 4.6 K ⁻ p	
1780.0 ± 15.0		BARTSCH	70c	HBC	400	10.1 K p	

•	 We do not use the 	ne following	data for averages	s, fits	, limits,	etc. •	• •
~	1730		ARMSTRONG	83	OMEG	-	$\begin{array}{c} 18.5 \ K^{-} \ p \rightarrow \\ 3K \ p \end{array}$
~	1820		DAUM	810	CNTR	-	63 K ⁻ p → K 2π p
	1710 ±15	60	CHUNG	74	нвс	-	7.3 K ⁻ $\rho \rightarrow$
	1767 ± 6		BLIEDEN	72	MMS	_	K⁻ωρ 11-16 K⁻ρ
	1740.0		DENEGRI	71	DBC	_	$12.6 K^- d \rightarrow$
	1760.0 ± 15.0		LUDLAM	70	нвс	_	$\overline{K} 2\pi d$ 12.6 $K^- p$

¹ Produced in conjunction with excited deuteron.

 $^{^2\,\}mbox{Systematic errors}$ added correspond to spread of different fits.

			K	₂ (1770) WID	TH			
VALUE		EVTS		DOCUMENT ID		TECN		COMMENT
136	± 18	OUR AVERAGE	Err	or includes scale	fact	or of 1.	2.	
140	± 40			FRAME	86	OMEG	+	13 $K^+ \rho \rightarrow$
								$\phi K^+ p$
110	± 50	60		CHUNG	74	HBC	-	7.3 K ⁻ p →
								K [—] ω ρ
100	± 26				72	MMS	_	11-16 K p
210	± 30	306	3	FIRESTONE	72B	DBC	+	
90	± 70		4	COLLEY	71	HBC	+	
100	0±50.0			AGUILAR	700	нвс	_	K 2π N
								•
	0 ± 40.0			BARTSCH			-	p
• • •	We do i	not use the followi	ng d	lata for averages	, fits	, limits,	etc. •	• •
~ 220				ARMSTRONG	83	OMEG	_	18.5 $K^- p \rightarrow$
								3 <i>K p</i>
~ 200				DAUM	81€	CNTR	-	63 <u>K</u> − p →
								Κ 2π p
130.	0			DENEGRI	71	DBC		$12.6 K^- d \rightarrow K^2 \pi d$
50	0 + 40.0 - 20.0			LUDLAM	70	нвс	_	12.6 K ⁻ p
30.	– 20.0			LODEAM	10	HBC	_	12.0 K p
3 Pro	oduced i	n conjunction with	ı exc	ited deuteron.				

K2(1770) DECAY MODES

	Mode	Fraction (Γ_f/Γ)	
Γ ₁	$K_2^*(1430)\pi$	dominant	
Γ_2	$K^{*}(892)\pi$	seen	
Γ_3	K f ₂ (1270)	seen	
Γ_4	$K\phi$	seen	
Γ_5	Κππ		
Γ_6	$K\omega$	seen	

K2(1770) BRANCHING RATIOS

For discussion of the experimental evidence on other decay modes, see HUGHES 71, SLATTERY 71, EISNER 74.

$\frac{\Gamma(K_2^*(1430)\pi)/\Gamma(K\pi\pi)}{(K_2^*(1430)\to K\pi)}$					Γ_1/Γ_1
VALUE	DOCUMENT ID	TECN	CHG	COMMENT	
0.2 ± 0.2	AGUILAR	70c HBC	-	4.6 K- p	

⁴ Systematic errors added correspond to spread of different fits.

Meson Full Listings $K_2(1770), K_3^*(1780)$

·				
• • We do not use the following	data for averages	, fits, limit	s, etc.	• • •
~ 0.6	DAUM	81c CNTF	?	63 <u>K</u> − p →
~ 1.0	⁵ FIRESTONE	728 DBC	+	Κ 2π ρ 12 Κ ⁺ d
<1.0	COLLEY	71 HBC 70c HBC		10 K ⁺ p 10.1 K ⁻ p
<1.0 1.0	BARTSCH BARBARO		+	10.1 K p 12.0 K+ p
5 Produced in conjunction with		0, 1100		22.0 p
$\Gamma(K^*(892)\pi)/\Gamma(K\pi\pi)$				Γ_2/Γ_5
VALUE	DOCUMENT ID	TECN	сом	-, -
• • We do not use the following				
~ 0.24	DAUM			$(-p \rightarrow \overline{K} 2\pi p)$
$\Gamma(K f_2(1270))/\Gamma(K \pi \pi)$ $(f_2(1270) \to \pi \pi)$				Γ_3/Γ_5
VALUE	DOCUMENT ID	TECN	сом	MENT
 We do not use the following 	g data for average	s, fits, limit	s, etc.	• • •
~ 0.16	DAUM	81c CNT	R 63 #	$(-\rho \rightarrow \overline{K} 2\pi \rho)$
$\Gamma(K\phi)/\Gamma_{\text{total}}$				Γ ₄ /Γ
VALUE	DOCUMENT ID	TECN	CHG	
seen	ARMSTRONG	83 OME	G -	18.5 $K^- p \rightarrow K^- \phi N$
$\Gamma(K\omega)/\Gamma_{total}$				Γ ₆ /Γ
VALUE	DOCUMENT ID	TECN		COMMENT
seen	OTTER	81 HBC	_	
seen	CHUNG	74 HBC	-	7.3 K p → K ω p
	(1770) REFER	ENCES		
FRAME 86 NP B276 667 ARMSTRONG 83 NP B221 1 DAUM 81C NP B187 1 OTTER 81 NP B181 1 CHUNG 74 PL 51B 413 EISNER 74 Boston Conf. 140	+Hertzberger+	(BARI, BIRN (AMST, BERL, LOIC,	I, CERN, CERN, C VIEN, BI	(GLAS) MILA, LPNP, PAVI) RAC, MPIM, OXF+) RM, BELG, CERN+) (BNL)

FRAME	86	NP B276 667	+Hughes, Lynch, Minto, McFadzean+	(GLAS)
ARMSTRONG	83	NP B221 1	 + (BARI, BIRM, CERN, MIL 	.A. LPNP, PAVI)
DAUM	81C	NP B187 1	+Hertzberger+ (AMST, CERN, CRAC	, MPIM, OXF+)
OTTER	81	NP B181 1	(AACH, BERL, LOIC, VIEN, BIRM,	BELG, CERN+)
CHUNG	74	PL 51B 413	+Eisner, Protopopescu, Samios, Strand	(BNL)
EISNER	74	Boston Conf. 140		(BNL)
BLIEDEN	72	PL 39B 668	+Finocchiaro, Bowen, Earles+	(STON, NEAS)
FIRESTONE	72B	PR D5 505	+Goldhaber, Lissauer, Trilling	(LBL)
COLLEY	71	NP B26 71	+Jobes, Kenyon, Pathak, Hughes+	(BIRM, GLAS)
DENEGRI	71	NP B28 13	+Antich, Callahan, Carson, Chien, Cox+	(JHU) JP
HUGHES	71	Bologna Conf. 293		(GLAS)
SLATTERY	71	UR-875-332		(ROCH)
AGUILAR	70C	PRL 25 54	Aguilar-Benitez, Barnes, Bassano, Chung+	(BNL)
BARTSCH	70C	PL 33B 186	+Deutschmann+ (AACH, BERL, CEF	
LUDLAM	70	PR D2 1234	+Sandweiss, Slaughter	(YALE)
BARBARO	69	PRL 22 1207	Barbaro-Galtieri, Davis, Flatte+	(LRL)

- OTHER RELATED PAPERS -

OTTER	79	NP B147 1	+Rudolph+ (AACH, BERL, CERN, LOIC, WIEN) JF
ANTIPOV	75	NP B86 381	+Ascoli, Busnello, Kienzie+ (SERP, CERN, ILL) JP
OTTER	75 B	NP B93 365	+Rudolph+ (AACH, BERL, CERN, LOIC, VIEN) JF
DEUTSCH	74	PL 49B 388	Deutschmann+ (AACH, BERL, CERN, LOIC, VIEN) JF
3ARLOUTAUD	73	NP B59 374	+Drevillon, Shah+ (SACL, EPOL, RHEL)
BINGHAM	73	NP B52 31	+Farwell+ (LBL, ORSA, BNL, SACL, MILA)
CHARRIERE	73	NP B51 317	+Drijard, DeBaere+ (CERN, BELG)
ANDERSON	72	PR D6 1823	+Franklin, Godden, Kopelman, Libby, Tan (COLO)
ANDREWS	69	PRL 22 731	+Lach, Ludlam, Sandweiss, Berger+ (YALE, LRL)
COLLEY	69	NC 59A 519	+Eastwood+ (BIRM, GLAS, LOIC, MPIM, OXF+)
BARTSCH	68B	NP B8 9	+Cocconi+ (AACH, BERL, CERN, LOIC, VIEN)
DENEGRI	68	PRL 20 1194	+Callahan, Ettlinger, Gillespie+ (JHU)
BERLINGHIERI	67	PRL 18 1087	+Farber, Ferbel, Forman (ROCH) I
CARMONY	67	PRL 18 615	+Hendricks, Lander (UCSD)
JOBES	67	PL 26B 49	+Bassompierre, DeBaere+ (BIRM, CERN, BRUX)
BARTSCH	66	PL 22 357	+Deutschmann+ (AACH, BERL, CERN+)

 $K_3^*(1780)$ was $K^*(1780)$

$$I(J^P) = \frac{1}{2}(3^-)$$

Our latest mini-review on this particle can be found in the 1984 edition.

	K ₃ (1780) MASS							
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT		
1774 ± 8	OUR AVERAGE Error		tor o	of 1.2.				
1720 ±31 :	± 20 6111 ± 780	1 BIRD	89	LASS		11 K ⁻ $p \rightarrow$		
1781 ± 8 :	± 4	² ASTON	88	LASS	0	$\overline{K}^0 \pi^- p$ 11 $K^- p \rightarrow$		
1740 ±14	±15	² ASTON	87	LASS	0	$K^-\pi^+\pi$ 11 $K^-\rho \rightarrow$		
1779.0 ± 11.0		³ BALDI	76	SPEC	+	$ \overline{K}^{0}\pi^{+}\pi^{-}n $ $ 10 K^{+}\rho \rightarrow $ $ \kappa^{0} + n $		
1776 ± 26		⁴ BRANDENB	76D	ASPK	0	$ \begin{array}{c} K^0\pi^+p \\ 13 K^{\pm}\rho \to \\ K^{\pm}\pi^{\mp}N \end{array} $		

• • • We do not use the	following da	ta for averages,	fits, limits,	etc. • (• •
1749 ±10		ASTON	888 LASS	-	11 $K^-p \rightarrow$
1780.0± 9.0	300	BAUBILLIER	84B HBC	-	$ \begin{array}{c} K^{-} \eta p \\ 8.25 K^{-} p \rightarrow \\ \overline{K}^{0} \pi^{-} p \end{array} $
1790.0 ± 15.0		BAUBILLIER	82B HBC	0	8.25 $K^- p \rightarrow K_S^0 2\pi N$
1784.0 ± 9.0	2060	CLELAND	82 SPEC	±	50 $K^{+}_{S} \rho \rightarrow K^{0}_{S} \pi^{\pm} \rho$
1786 ±15	!	5 ASTON	81D LASS	0	11 K − ρ →
1762.0± 9.0	190	TOAFF	81 HBC	-	$ \begin{array}{c} K^{-}\pi^{+}n\\ 6.5 K^{-}p \rightarrow \\ \overline{K}^{0}\pi^{-}p \end{array} $
1850 ±50		ETKIN	80 MPS	0	$\begin{array}{c} 6 \ K^{-} \rho \rightarrow \\ \overline{K}^{0} \pi^{+} \pi^{-} \end{array}$
1812.0 ± 28.0		BEUSCH	78 OME	G	10 K $^-$ p \rightarrow
1786.0± 8.0		CHUNG	78 MPS	0	$ \begin{array}{c} \overline{K}^{0}\pi^{+}\pi^{-}n\\ 6 K^{-}p \to \\ K^{-}\pi^{+}n \end{array} $

¹ From a partial wave amplitude analysis.

K*(1780) WIDTH

VALUE	(MeV)		EVTS		DOCUMENT ID		TECN	CHG	COMMENT
164	±17	OUR	AVERAGE	Error	includes scale fa	ctor	of 1.1.		
187	± 31	± 20	6111 ± 780	6	BIRD	89	LASS		$\begin{array}{c} 11 \ K^- \ \rho \rightarrow \\ \overline{K}^0 \ \pi^- \ \rho \end{array}$
203	± 30	± 8		7	ASTON	88	LASS	0	11 K ⁻ $\rho \rightarrow$
171	±42	±20		7	ASTON	87	LASS	0	$K^-\pi^+\eta$ 11 $K^-p \rightarrow$
135.	0 ± 22.0)		8	BALDI	76	SPEC	+	$ \begin{array}{c} \overline{K}^{0}\pi^{+}\pi^{-}n\\ 10\ K^{+}\rho\rightarrow\\ K^{0}\pi^{+}\rho \end{array} $
• • •	We do	not us	e the followi	ng data	for averages, f	its, li	mits, et	c. • •	
193	+51 -37				ASTON	88B	LASS	-	11 K ⁻ p →
99.	0±30.0)	300		BAUBILLIER	84B	нвс	-	$K^{-}\eta p$ 8.25 $K^{-}p \rightarrow$
~ 130	0				BAUBILLIER	82B	нвс	0	$\overline{K}^0 \pi^- \rho$ 8.25 $K^- \rho \rightarrow$ $K_0^0 2\pi N$
191.	0 ± 24.0)	2060	•	CLELAND	82	SPEC	±	$50 \begin{array}{c} K^{+} p \rightarrow \\ K^{0}_{5} \pi^{\pm} p \end{array}$
225	±60			9	ASTON	81D	LASS	0	11 $K^- \rho \rightarrow$
~ 80			190		TOAFF	81	нвс	-	$6.5 \begin{array}{c} K^- \pi^+ n \\ 6.5 K^- p \rightarrow \\ \overline{K}^0 \pi^- p \end{array}$
240	±50				ETKIN	80	MPS	0	6 K ⁻ p →
181	0 ± 44.	0		10	BEUSCH	78	OMEG		$\overline{K}^0_{\pi}^+_{\pi}^-$ 10 $K^{\rho}^ \rho \rightarrow$
96	0 ± 31.	0			CHUNG	78	MPS	0	$\overline{K}^0\pi^+\pi^-\pi$
270	±70			11	BRANDENB	76D	ASPK	0	$ \begin{array}{c} K^{-}\pi^{+}\pi \\ 13 K^{\pm}\rho \rightarrow \\ K^{\pm}\pi^{\mp}N \end{array} $
									$K = \pi^{\top} N$

⁶From a partial wave amplitude analysis.

K*(1780) DECAY MODES

	Mode	Fraction (Γ_{i}/Γ)	Confidence level
$\overline{\Gamma_1}$	Κρ	(45 ±4)%	5=1.4
Γ_2	$K^*(892)\pi$	(27.3 ± 3.2) %	S=1.5
Γ_3	$K\pi$	(19.3 ± 1.0) %	
Γ_4	$K\eta$	(8.0±1.5) %	S=1.4
Γ_5	$K_2^*(1430)\pi$	< 21 %	CL=95%

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 5 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=$ 2.2 for 2 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{
m total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

² From energy-independent partial-wave analysis. ³ From a fit to Y_6^2 moment. $J^P = 3^-$ found.

 $^{^4}$ Confirmed by phase shift analysis of ESTABROOKS 78, yields $\it J^P=3^-$. 5 From a fit to the $\it Y^0_0$ moment.

From a partial wave amplitude analysis. 8 From a fit to Y_2^0 moment. $J^0 = 3^-$ found. 9 From a fit to Y_2^0 moment.

 $^{^{10}}$ Errors enlarged by us to $^{4\Gamma/N^{1/2}}$; see the note with the K^* (892) mass.

 $^{^{11}}$ ESTABROOKS 78 find that BRANDENBURG 76D data are consistent with 175 MeV width. Not averaged.

VALUE

< 0.78

Meson Full Listings

 $K_3^*(1780)$, K(1830), $K_0^*(1950)$

x_2	-84		
<i>x</i> ₃	-33	4	
x_4	-35	-14	26
	x_1	x_2	<i>x</i> 3

K₃*(1780) BRANCHING RATIOS

$\Gamma(K\rho)/\Gamma(K^*(892)\pi)$					Γ_1/Γ_2
VALUE 1.66±0.31 OUR FIT E	POCUMENT ID rror includes scale factor of		TECN	<u>CHG</u>	COMMENT
1.52±0.21±0.10					43.46
1.52±0.21±0.10	ASTON	87	LASS	0	${11 \atop \overline{K}^0}_{\pi^+\pi^-}^{\rho \to}$
$\Gamma(K^*(892)\pi)/\Gamma(K\pi)$)				Γ_2/Γ_3
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
1.42±0.19 OUR FIT E	rror includes scale factor of	1.4.			
1.09 ± 0.26	ASTON	848	LASS	0	$\begin{array}{c} 11 \ K^{-} \ p \rightarrow \\ \overline{K}^{0} 2\pi \ n \end{array}$
$\Gamma(K\pi)/\Gamma_{total}$					Γ_3/Γ
VALUE			TECN	CHG	COMMENT
0.193 ± 0.010 OUR FIT					
0.188 ± 0.010 OUR AVER	RAGE				
$0.187 \pm 0.008 \pm 0.008$	ASTON	88	LASS	0	11 K ⁻ p →
0.19 ±0.02	ESTABROOKS	78	ASPK	0	$13 \begin{array}{c} K^- \pi^+ n \\ K^{\pm} \rho \rightarrow \\ K \pi N \end{array}$
$\Gamma(K\eta)/\Gamma(K\pi)$					Γ_4/Γ_3
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.41 ± 0.07 OUR FIT E	Error includes scale factor of	f 1.5			
0.41 ± 0.050	¹² BIRD	89	LASS		$ \begin{array}{c} 11 \ K^- \ \rho \rightarrow \\ \overline{K}^0 \ \pi^- \ \rho \end{array} $
• • • We do not use the	following data for averages	, fits	, limits,	etc. •	
0.50 ± 0.18	ASTON	888	LASS		$\begin{array}{c} 11 \ K^- \ \rho \rightarrow \\ K^- \ \eta \ \rho \end{array}$
12 This result supersedes	S ASTON 88B.				
$\Gamma(K_2^*(1430)\pi)/\Gamma(K^*)$	$(892)\pi)$				Γ ₅ /Γ ₂
	· · ·				-, -

K₃*(1780) REFERENCES

DOCUMENT ID

ASTON

TECN CHG COMMENT

 $\begin{array}{c} 11 \ {\color{red} K^- \ \rho \rightarrow \over \overline{K}^0 \ \pi^+ \ \pi^- \ n} \end{array}$

87 LASS 0

CL%

95

BIRD	89	SLAC-332	(SLAC)
A5TON	88	NP B296 493	+Awaji, Bienz, Bird+ (SLAC, NAGO, CINC, TOKY)
ASTON	88B	PL B201 169	+Awaji, Bienz+ (SLAC, NAGO, CINC, TOKY) JP
ASTON	87	NP B292 693	+Awaji, D'Amore+ (SLAC, NAGO, CINC, TOKY	
ASTON	84B	NP B247 261	+Carnegie, Dunwoodie - (SLAC, CARL, OTTA	
BAUBILLIER	84B	ZPHY C26 37	 (BIRM, CERN, GLAS, MICH, LPNP) 	
BAUBILLIER	82B	NP B202 21	+ (BIRM, CERN, GLAS, MSU, LPNP	
CLELAND	82	NP B208 189	+Delfosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT	í
ASTON	81D	PL 998 502	+Dunwoodie, Durkin, Fieguth - (SLAC, CARL, OTTA	ÍJΡ
TOAFF	81	PR D23 1500	+Musgrave, Ammar, Davis, Ecklund+ (ANL, KANS	
ETKIN	80	PR D22 42	+Foley, Lindenbaum, Kramer+ (BNL, CUNY	
BEUSCH	78	PL 74B 282	+Birman, Konigs, Otter+ (CERN, AACH, ETH	
CHUNG	78	PRL 40 355	+Etkin+ (BNL, BRAN, CUNY, MASA, PENN	ĴJΡ
ESTABROOKS	78	NP B133 490	+Carnegie+ (MONT, CARL, DURH, SLAC	AL (
Also	78B	PR D17 658	Estabrooks, Carnegie+ (MONT, CARL, DURH+	
BALDI	76	PL 63B 344	+Boehringer, Dorsaz, Hungerbuhler+ (GEVA	JΡ
BRANDENB	76D	PL 60B 478	Brandenburg, Carnegie, Cashmore+ (SLAC	JP.

- OTHER RELATED PAPERS -

CLELAND	80	PL 97B 465	+Dorsaz, Martin, Nef+ (PITT, GEVA, LAUS, DURH) JF
ENGELEN	80	NP B167 61	+Jongejans, Dionisi + (NIJM, AMST, CERN, OXF) JF
BOWLER	77	NP B126 31	+Dainton, Drake, Williams (OXF) JF
GRASSLER	77B	NP B125 189	+Klugow+ (AACH, BERL, CERN, LOIC, VIEN)
AGUILAR	73	PRL 30 672	Aguilar-Benitez, Chung, Eisner+ (BNL)
WALUCH	73	PR D8 2837	+Flatte, Friedman (LBL)
CARMONY	71	PRL 27 1160	-Cords, Clopp, Erwin, Meiere+ (PURD, UCD, IUPU)
FIRESTONE	71	PL 36B 513	+Goldhaber, Lissauer, Trilling (LBL)

K(1830)

 $I(J^P) = \frac{1}{2}(0^-)$

OMITTED FROM SUMMARY TABLE

Seen in partial-wave analysis of ${\cal K}^-\,\phi$ system. Needs confirmation.

K(1830) MASS

 VALUE (MeV)
 DOCUMENT ID
 TECN
 CHG
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • • •
 ∼ 1830.0
 ARMSTRONG 83
 OMEG
 −
 $18.5 \text{ K}^- \rho \rightarrow 3 \text{ K} \rho$

K(1830) WIDTH

 VALUE (MeV)
 DOCUMENT ID
 TECN
 CHG
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc.
 • • •

 ~ 250.0
 ARMSTRONG 83
 OMEG
 $18.5 K^- p \rightarrow 3K p$

K(1830) DECAY MODES

 $\frac{\mathsf{Mode}}{\mathsf{\Gamma}_1} \frac{\mathsf{K}\,\phi}{\mathsf{K}\,\phi}$

K(1830) REFERENCES

ARMSTRONG 83 NP B221 1

(BARI, BIRM, CERN, MILA, LPNP, PAVI) JP

 $I(J^P) = \frac{1}{2}(0^+)$

OMITTED FROM SUMMARY TABLE

K*(1950) MASS

 $^{1}\,\mathrm{We}$ take the central value of the two solutions and the larger error given.

K*(1950) WIDTH

 $^{2}\,\mathrm{We}$ take the central value of the two solutions and the larger error given.

K*(1950) DECAY MODES

K_0^* (1950) BRANCHING RATIOS

 $^{-3}\,\mathrm{We}$ take the central value of the two solutions and the larger error given.

K*(1950) REFERENCES

ASTON 88 NP B296 493

+Awaji, Bienz, Bird -

(SLAC, NAGO, CINC, TOKY)

 $K_2^*(1980), K_4^*(2045)$

N ₂ (1900)

 $I(J^P) = \frac{1}{2}(2^+)$

OMITTED FROM SUMMARY TABLE

K*i	(1980)	MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	_
1978±40	241 ± 47	1 BIRD	89	LASS		11 $K^- \rho \rightarrow$	- 1
		ne data for avorace	_			$\overline{\kappa}^0\pi^-p$	

ASTON 87 LASS 0 11 K- p -1973 ± 8 ± 25

 $^{\mathbf{1}}$ From a partial wave amplitude analysis.

K*(1980) WIDTH

VALUE (MeV)	EVTS	DOCUMENT	1D	TECN	CHG	COMMENT	_
398±47	241 ± 47	² BIRD	89	LASS		11 $K^- \rho \rightarrow$	
		_	_			$\overline{\kappa}^0\pi^-\rho$	
• • • We do no	ot use the following	ng data for aver	ages, fit	s, limits	, etc. •	• • •	

 $373 \pm 33 \pm 60$ ASTON 87 LASS 0

² From a partial wave amplitude analysis.

K*(1980) DECAY MODES

	Mode		
Γ_1	K*(892)π		
Γ_2	Κρ		

K*(1980) BRANCHING RATIOS

$\Gamma(K\rho)/\Gamma(K^*(892)\pi)$					Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
1.49±0.24±0.09	ASTON	87	LASS	0	$\begin{array}{c} 11 \ K^{-} \rho \rightarrow \\ \overline{K}^{0} \pi^{+} \pi^{-} n \end{array}$

K2(1980) REFERENCES

BIRD ASTON

+Awaji, D'Amore+

(SLAC, NAGO, CINC, TOKY)

 $K_4^*(2045)$ was K*(2060)

 $I(J^P) = \frac{1}{2}(4^+)$

K*(2045) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2045 ± 9 OUR AVERAG			tor c	of 1.1.		
2062 ± 14 ± 13	1	ASTON	86	LASS	0	11 $K^- \rho \rightarrow$
2039± 10	400 2,3	CLELAND	82	SPEC	±	$ \begin{array}{c} K^- \pi^+ n \\ 50 K^+ \rho \to \\ K_S^0 \pi^{\pm} \rho \end{array} $
2070 ^{+ 100} _{- 40}	4	ASTON	81c	LASS	0	$11 \begin{array}{c} K^- \rho \rightarrow \\ K^- \pi^+ \rho \end{array}$
• • • We do not use the	following o	lata for averages	, fits	, limits,	etc. •	• •
2079± 7	431	TORRES	86	MPSF		400 pA → 4K X
2088 ± 20	650	BAUBILLIER	82	нвс	_	8.25 K ⁻ p →
						$\kappa_{S}^{0}\pi^{-}\rho$
2115 ± 46	488	CARMONY	77	HBC	0	9 K ⁺ d →
						K+π's X

¹ From a fit to all moments. ² From a fit to 8 moments.

³ Number of events evaluated by us.

⁴ From energy-independent partial-wave analysis.

K₄*(2045) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
198± 30 OUR AVE	RAGE					
221 ± 48 ± 27		⁵ ASTON	86	LASS	0	11 $K^- \rho \rightarrow$
100 25	400	6,7 CLELAND	00	CDEC		$K^{-}\pi^{+}n$ 50 $K^{+}\rho \rightarrow$
189± 35	400	V, CLELAND	82	SPEC	±	$\kappa_{\rho}^{0} \pi^{\pm} \rho$
						$\kappa_{\tilde{S}}^{\pi+p}$

•	•	We do not	use the	following	data for	averages,	fits,	limits,	etc.	•	٠	•
---	---	-----------	---------	-----------	----------	-----------	-------	---------	------	---	---	---

61 ± 58	431	TORRES	86 MPSF	400 pA → 4K X
170^{+100}_{-50}	650	BAUBILLIER	82 HBC -	8.25 $K^- p \rightarrow K_S^0 \pi^- p$
$240 + 500 \\ -100$		⁸ ASTON	81c LASS 0	11 $K^- \rho \rightarrow K^- \pi^+ \rho$
300 ± 200		CARMONY	77 HBC 0	$ \begin{array}{c} K^{-}\pi^{+}\pi\\ 9 K^{+}d \rightarrow\\ K^{+}\pi^{'5}X \end{array} $

⁵ From a fit to all moments.

6 From a fit to 8 moments.
7 Number of events evaluated by us.

⁸ From energy-independent partial-wave analysis.

K₄(2045) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	Κπ	(9.9±1.2) %	_
Γ_2	$K^*(892)\pi\pi$	(9 ±5)%	
Γ3	$K^*(892)\pi\pi\pi$	(7 ±5)%	
Γ_4	$\rho K \pi$	$(5.7 \pm 3.2) \%$	
Γ_5	$\omega K \pi$	$(4.9 \pm 3.0) \%$	
Γ ₆	$\phi K \pi$	$(2.8 \pm 1.4) \%$	
Γ_7	φK*(892)	$(1.4 \pm 0.7) \%$	

K*(2045) BRANCHING RATIOS

$\Gamma(K\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	COMMENT
0.099 ± 0.012	ASTON	88	LASS	0	11 K $^-$ p \rightarrow
					$K^-\pi^+n$
$\Gamma(K^*(892)\pi\pi)/\Gamma(K\pi)$					Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.89±0.53	BAUBILLIER	82	HBC		8.25 K ⁻ p →
					ρK ⁰ 53π
$\Gamma(K^*(892)\pi\pi\pi)/\Gamma(K\pi)$					Γ_3/Γ_1
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.75±0.49	BAUBILLIER	82	нвс	_	8.25 K ⁻ p →
					$pK_{5}^{0}3\pi$
$\Gamma(\rho K\pi)/\Gamma(K\pi)$					Γ_4/Γ_1
VALUE	DOCUMENT ID		TECN	CHG	
0.58±0.32	BAUBILLIER	82	НВС	_	8.25 K ⁻ p →
					ρK ⁰ _S 3π
$\Gamma(\omega K\pi)/\Gamma(K\pi)$					Γ_5/Γ_1
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.50±0.30	BAUBILLIER	82	нвс	_	8.25 K [−] p →
					$pK_S^03\pi$
$\Gamma(\phi K \pi)/\Gamma_{\text{total}}$					Г ₆ /Г
· (Ψ····//· total					16/1

0.028±0.014 9 TORRES 86 MPSF 400 pA → 4K X ⁹ Error determination is model dependent.

$\Gamma(\phi K^*(892))/\Gamma_{\text{total}}$				Γ ₇ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.014±0.007	10 TORRES	86	MPSF	400 pA → 4K X

DOCUMENT ID

TECN COMMENT

 $^{10}\,\mathrm{Error}$ determination is model dependent.

VALUE

K*(2045) REFERENCES

ASTON	88	NP B296 493	+Awaji, Bienz, Bird+ (SLAC, NAGO, CINC, TOKY)
ASTON	86	PL B180 308	+Awaji, D'Amore+ (SLAC, NAGO, CINC, TOKY)
TORRES	86	PR 34 707	+Lai+ (VPI, ARIZ, FNAL, FSU, NDAM, TUFT+)
BAUBILLIER	82	PL 118B 447	+Burns+ (BIRM, CERN, GLAS, MSU, LPNP)
CLELAND	82	NP B208 189	+Delfosse, Dorsaz, Gloor (DURH, GEVA, LAUS, PITT)
ASTON	81C	PL 106B 235	+Carnegie, Dunwoodie+ (SLAC, CARL, OTTA) JP
CARMONY	77	PR D16 1251	+Clopp, Lander, Meiere, Yen+ (PURD, UCD, IUPU)

OTHER RELATED PAPERS -

STON	87	NP B292 693	+Awaji, D'Amore+	(SLAC, NAGO, CINC, TOKY)
ROMBERG	80	PR D22 1513	+Haggerty, Abrams, Dzierba	(CIT, FNAL, ILLC, IND)
LELAND	80	PL 97B 465	+Dorsaz, Martin, Nef+	(PITT, GEVA, LAUS, DURH) JF
ADMONIV	71	DDI 27 1160	Corde Clong Engin Major	(DUDD HCD HIDH)

 $K_2(2250)$, $K_3(2320)$, $K_5^*(2380)$, $K_4(2500)$

 $K_2(2250)$ was K(2250)

 $I(J^P) = \frac{1}{2}(2^-)$

OMITTED FROM SUMMARY TABLE

This entry contains various peaks in strange meson systems reported in the 2100–2300 MeV region, as well as enhancements seen in the antihyperonnucleon system, either in the mass spectra or in the $J^P=2^-$ wave.

K2(2250) MASS

VALUE (MeV)		DOCUMENT ID		TECN	CHG	COMMENT
2247 ±17 OU 2200.0 ± 40.0		1 ARMSTRONG	830	OMEG	_	18 K ⁻ $p \rightarrow \Lambda \overline{p}$
2235 ±50		¹ BAUBILLIER	81	нвс	_	$\begin{array}{c} X \\ 8 \ K^{-} \ p \rightarrow \Lambda \overline{p} \ X \\ 50 \ K^{+} \ p \rightarrow \Lambda \overline{p} \end{array}$
2260 ± 20		¹ CLELAND	81	SPEC	±	$50 \begin{array}{c} K^+ p \rightarrow \Lambda \overline{p} \end{array}$
• • • We do not	use the following	data for averages	, fits	, limits,	etc. •	• •
$2147 \ \pm \ 4$	37	CHLIAPNIK	79	нвс		$32 K^+ \rho \rightarrow \overline{\Lambda} \rho$
2240 ± 20	20	LISSAUER	70	HBC		9 K+ p
$^{1}J^{P}\equiv 2^{-}$ from	m moments analys	sis.				

K₂(2250) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID			CHG	COMMENT
180 ±30 O	UR AVERAGE I	Error includes scale				
150.0 ± 30.0						18 $K^- \rho \rightarrow \Lambda \overline{\rho}$
210 ± 30		² CLELAND	81	SPEC	±	$50 \overset{X}{\overset{F}}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}{\overset{F}}}{\overset{F}}}}}}}}}$
• • • We do not	use the following	g data for averages				
~ 200		² BAUBILLIER	81	HBC	_	$\begin{array}{ccc} 8 \ K^{-} \ \rho \rightarrow & \Lambda \overline{\rho} \ X \\ 32 \ K^{+} \ \rho \rightarrow & \overline{\Lambda} \ \rho \end{array}$
~ 40	37	CHLIAPNIK	79	HBC	+	
80 ±20	20	LISSAUER	70	нвс		9 K+ p
$^{2}J^{P}=2^{-}$ fro	m moments analy	ysis.				

K2(2250) DECAY MODES

	Mode
_	

 $\Gamma_1 \quad K \pi \pi$ $\Gamma_2 \quad \Lambda \overline{p}$

K₂(2250) REFERENCES

+ (BARI, BIRM, CERN, MILA, LPNP, PAVI) + Nef, Martin - (BIRM, CERN, GLAS, MSU, LPNP) JP - Nef, Martin - (PITT, GEVA, LAUS, DURH) JP Chilapnikov, Gerdyukov + (CERN, BELG, MONS) + Alexander, Firestone, Goldhaber

----- OTHER RELATED PAPERS -

ALEXANDER 68B PRL 20 755

+Firestone, Goldhaber, Shen (LRL)

 $I(J^P) = \frac{1}{2}(3^+)$

OMITTED FROM SUMMARY TABLE

This entry contains enhancements seen in the $\it J^P=3^+$ wave of the antihyperon-nucleon system.

K₃(2320) MASS

VALUE (MeV)	DOCUMENT ID	TE	CN CHG	COMMENT
2324 ±24 OUR AVERAGE				
2330.0 ± 40.0	¹ ARMSTRONG	83C O	ИEG —	$18 K^- \rho \rightarrow \Lambda \overline{\rho}$
2320.0 ± 30.0	¹ CLELAND	81 SP	EC ±	$50 \overset{X}{K}^{+} \rho \rightarrow \Lambda \overline{\rho}$
1.0				^

 $^{1}J^{P}=3^{+}$ from moments analysis.

K₃(2320) WIDTH

	N3(2320) WID I	п		
VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
150.0 ± 30.0	² ARMSTRONG	83c OMEC	i	$18 K^- \rho \rightarrow \Lambda \bar{\rho}$
• • • We do not use the	e following data for averages,	fits, limits	, etc.	•••
~ 250.0	² CLELAND	81 SPEC	±	$\begin{array}{ccc} 50 \ K^+ \ \rho \rightarrow \ \Lambda \overline{\rho} \\ X \end{array}$
$^{2}J^{p}=3^{+}$ from mom	ents analysis.			

K₃(2320) DECAY MODES

Mode

1 Λ<u>p</u>

K₃(2320) REFERENCES

ARMSTRONG 83C NP B227 365 CLELAND 81 NP B184 1 + (BARI, BIRM, CERN, MILA, LPNP, PAVI) +Nef. Martin+ (PITT, GEVA, LAUS, DURH)

 $K_5^*(2380)$

 $I(J^P) = \frac{1}{2}(5^-)$

OMITTED FROM SUMMARY TABLE

Seen in partial wave analysis of the $K^-\pi^+$ system. Needs confirmation.

K*(2380) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
2382±14±19	1 ASTON	86	LA\$\$	0	11 K [−] ρ →
					$K^-\pi^+n$

 $^{\mathrm{1}}$ From a fit to all the moments.

K*(2380) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
178 ± 37 ± 32	² ASTON 86	LASS	0	11 K [−] ρ →
				$\kappa^{-}\pi^{+}n$

 $^{2}\operatorname{From}$ a fit to all the moments.

K₅(2380) DECAY MODES

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$
Γ1	Κπ	(6.1±1.2) %

K*(2380) BRANCHING RATIOS

VALUE DOCUMENT ID TECN CHG COMMENT	Γ_1/Γ
VALUE DOCUMENT ID TECH CHIE COMMENT	
0.061 ± 0.012 ASTON 88 LASS 0 11 $K^ p \rightarrow$	

K₅*(2380) REFERENCES

ASTON 88 NP B296 493 + Awaji, Bienz, Bird± (SLAC, NAGO, CINC, TOKY)
ASTON 86 PL B180 308 + Awaji, D'Amore+ (SLAC, NAGO, CINC, TOKY)

 $K_4(2500)$ was K(2500)

 $I(J^P) = \frac{1}{2}(4^-)$

OMITTED FROM SUMMARY TABLE

This entry contains enhancements seen in the $J^P=4^-$ wave of the antihyperon-nucleon system.

K₄(2500) MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT	
2490.0 ± 20.0	1 CLELAND	81	SPEC	±	$50 K^+ p \rightarrow \Lambda \bar{p}$	
$^{1}J^{P}=4^{-}$ from moments analysis.						

K₄(2500) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
• • • We do not use the	following data for averages	, fits	s, limits,	etc.	
~ 250.0	² CLELAND	81	SPEC	±	$50 K^+ p \rightarrow \Lambda \overline{p}$
$^2J^P=4^-$ from mom	ents analysis.				

K₄(2500) DECAY MODES

Mode A \overline{n}

K₄(2500) REFERENCES

CLELAND 81 NP B184 1 +Nef, Martin+

(PITT, GEVA, LAUS, DURH)

CHARMED MESONS

 $(C=\pm 1) \\ D^+=c\overline{d},\, D^0=c\overline{u},\, \overline{D}^0=\overline{c}\, u,\, D^-=\overline{c}\, d,\quad \text{similarly for } D^*\text{'s}$

 $I(J^P) = \frac{1}{2}(0^-)$

D± MASS

The fit includes the D^\pm , D^0 , D_5^\pm , and $D_5^{*\pm}$ masses and the D^0 – D^\pm , D_5^\pm – D^\pm , and $D_s^{*\pm} - D_s^{\pm}$ mass differences.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1869.3± 0.4 OUR F						
1869.4± 0.5 OUR A	VERAGE					
$1870.0 \pm 0.5 \pm 1.0$	317	BARLAG	90c	CCD		π^- Cu 230 GeV
1875 ±10	9	ADAMOVICH	87	EMUL		Photoproduction
1863 ± 4		DERRICK	84	HRS		$E_{cm}^{ee} = 29 \text{ GeV}$
1869.4± 0.6		¹ TRILLING	81	RVUE	\pm	E <i>ee</i> = 3.77 GeV
• • We do not use	the followin	g data for average	s, fits	s, limits,	etc.	• •
1860 ±16	6	ADAMOVICH	84	EMUL		Photoproduction
1868.4± 0.5		1 SCHINDLER	81	MRK2	±	$E_{cm}^{ee} = 3.77 \text{ GeV}$
1874 ± 5		GOLDHABER	77	MRK1	±	D^0 , D^+ recoil
						spectra
1868.3± 0.9		¹ PERUZZI	77	MRK1	±	$E_{cm}^{ee} = 3.77 \text{ GeV}$
1874 ± 11		PICCOLO	77	MRK1	±	E _{cm} = 4.03, 4.41
1876 ±15	50	PERUZZI	76	MRK1	±	$\kappa^{\mp}_{\pi^{\pm}}^{GeY}_{\pi^{\pm}}$

 1 PERUZZI 77 and SCHINDLER 81 errors do not include the 0.13% uncertainty in the absolute SPEAR energy calibration. TRILLING 81 uses the high precision $J/\psi(1.5)$ and $\psi(2.5)$ measurements of ZHOLENTZ 80 to determine this uncertainty and combines the PERUZZI 77 and SCHINDLER 81 results to obtain the value quoted.

D± MEAN LIFE

VALUE (10 ⁻¹³ s)	EVT5	DOCUMENT ID		TECN	COMMENT
10.62 ± 0.28 OUR A	VERAGE				
$10.5 \begin{array}{c} +0.77 \\ -0.72 \end{array}$	317	² BARLAG	90c	CCD	π^- Cu 230 GeV
$9.2 \begin{array}{c} +1.7 \\ -1.3 \end{array} \pm 1.6$		AVERILL	89	HRS	E ^{ee} _{CM} = 29 GeV
$10.5 \pm 0.8 \pm 0.7$		ALBRECHT	881	ARG	Ecm = 10 GeV
$10.90 \pm 0.30 \pm 0.25$	3000	RAAB	88	SILI	Photoproduction
$5.0 \begin{array}{c} +1.5 \\ -1.0 \end{array} \pm 1.9$	27	ADAMOVICH	87	EMUL	Photoproduction
$11.2 \begin{array}{c} +1.4 \\ -1.1 \end{array}$	149	AGUILAR	8 7 D	HYBR	$\pi^- ho$ and $ ho ho$
$10.9 \begin{array}{c} +1.9 \\ -1.5 \end{array}$	59	BARLAG	87 B	SILI	K^- and π^- 200 GeV
$11.4 \pm 1.6 \pm 0.7$	526	CSORNA	87	CLEO	Ecm = 10 GeV
10.9 ± 1.4	74	³ PALKA	87B	SILI	π Be 200 GeV
$8.6 \pm 1.3 \begin{array}{l} +0.7 \\ -0.3 \end{array}$	48	ABE	86	HYBR	SLAC γp 20 GeV
$8.9 \begin{array}{c} +3.8 \\ -2.7 \end{array} \pm 1.3$	23	GLADNEY	86	MRK2	$E_CM^{\it ee} = 29 \; GeV$
$1.1.1 \begin{array}{c} +4.4 \\ -2.9 \end{array}$	28	USHIDA	86	EMUL	u wideband
$10.6 \begin{array}{c} +3.6 \\ -2.4 \end{array}$	28	BAILEY	85	SILI	π^- Be 200 GeV
$9.5 \begin{array}{c} +3.1 \\ -1.9 \end{array}$	70	⁴ ALBINI	82	SILI	CERN γ Si
■ ● ● We do not u	se the foll	owing data for ave	rages	, fits, lir	nits, etc. • • •
$6.3 \begin{array}{l} +5.0 \\ -2.7 \end{array}$	7	BADERT	83	HYBR	CERN π^- N
$2.2 \begin{array}{c} +2.3 \\ -1.1 \end{array}$	1	⁵ BALLAGH	81	HYBR	FNAL 15-ft, ν He- 2 H
$2.5 \begin{array}{c} +2.2 \\ -1.1 \end{array}$	4	ALLASIA	80	EMUL	u wideband
$10.4 \begin{array}{c} +3.9 \\ -2.9 \end{array}$		⁶ BACINO	80	DLCO	$E_CM^{ee} = 3.77 \; GeV$
² BARLAG 90c e	stimate sv	stematic error to b	oe ne	gligible.	

² BARLAG 90c estimate systematic error to be negligible. ³ PALKA 87B observed this in $D^+ \rightarrow K^*(892)e\nu$.

 4 ALBINI 82 assumes $\it D$ momentum is 1/2 beam momentum.

BALLAGH 81 value quoted here assumes that all dilepton events contain D^0 or D^+ , each with equal numbers of semileptonic decays. 6 Uses theoretical rate $D \to (Ke\nu) = 1.4 \times 10^{11} \text{ s}^{-1}$.

D+ DECAY MODES

 $\ensuremath{D^-}$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
	Inclusiv	e modes	
1	e^+ anything	$(19.2^{+}_{-}\ \overset{1.7}{1.4})\ \%$	
2	K^- anything	(16.2± 3.5) %	
3	K ⁺ anything	(6.6± 2.8) %	
4	K^0 any $+ \overline{K}^0$ any	(48 ±15)%	
	η anything	[a] < 13 %	CL=90%
	μ^+ anything	(-)	
7	$\mu^+\mu^-$ anything		
	Leptonic and ser	nileptonic modes	
8	$\mu_{0}^{+}\nu_{\mu}$	< 7.2 × 10) ⁻⁴ CL=90%
9	$K^0 \mu^+ \nu_\mu K^- \pi^+ e^+ \nu_e$		
10	$K^-\pi^+e^+\nu_e$	< 5.7 %	CL=90%
11	$K^*(892)^0 e^+ \nu_e$	(2.5 ± 0.5) %	
	$\times B(\overline{K}^*(892)^0 \to K^-\pi^+)$		_
2	$K^-\pi^+e^+\nu_e$ (non-resonant)	< 7 × 10) ⁻³ CL=90%
3	$\overline{K}^0\pi^+\pi^-e^+\nu_e$	$(2.2^{+}_{-})^{5.0}$	
	$\mathcal{K}^-\pi^+\pi^0e^+ u_e$	(4.4 + 5.2) %	
5	$\pi^+\pi^-e^+\nu_e$	< 5.7 %	CL=90%
	A fraction of the following mode ha	s already appeared above.	
16	$\overline{K}^*(892)^0 e^+ \nu_e$	(3.8 ± 0.7) %	
	Hadronic mod	les with one K	
. 7	$\overline{K}^0\pi^+$	(2.8± 0.4) %	S=1.1
,	$\overline{K}^0\pi^+\pi^0$	(8.3 ± 1.9) %	5 2.2
B	In the fit as $\frac{1}{3}\Gamma_{30} + \Gamma_{20} + \Gamma_{21}$,		
9	\overline{K}^* (892) $^0\pi^+$	(0.6± 0.3) %	
7	$\begin{array}{c} \times \ B(\overline{K}^*(892)^0 \to \overline{K}^0 \pi^0) \\ \overline{K}^0 \rho^+ \end{array}$	(0.01 0.0) /2	
	\mathcal{F}_{0}^{0}	((() 17) 9/	
0	π ρ·	(6.6± 1.7) %	
1	$\overline{\mathcal{K}}^0\pi^+\pi^0$ (non-resonant)	$(1.2^{+}_{-0.7})\%$	
2	$K^-\pi^+\pi^+$	(7.7 ± 1.0) %	S=1.2
	In the fit as $\frac{2}{3}\Gamma_{30} + \Gamma_{24}$, where	$\frac{2}{3}\Gamma_{30} = \Gamma_{23}$.	
3	$\overline{K}^*(892)^0\pi^+$	(1.1± 0.5) %	
	$\times B(\overline{K}^*(892)^0 \to K^- \pi^+)$ $K^- \pi^+ \pi^+ \text{ (non-resonant)}$		
4	$K^-\pi^+\pi^+$ (non-resonant)	$(6.6 \pm 1.1)\%$	S=1.2
	$K^0\pi^+\pi^+\pi^-$	(7.0± 1.5) %	S=1.2
6		(4.2 ± 1.0) %	S=1.1
7	$\overline{K}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	$(4.4^{+}_{-1.5}^{5.2})\%$	
	$\kappa^-\pi^+\pi^+\pi^0\pi^0$		
		$(2.2^{+}_{-0.9})\%$	
9	$K^-\pi^+\pi^+\pi^+\pi^-$	< 5 %	CL=90%
	A fraction of the following mode ha	s already appeared above.	
30	$\overline{K}^*(892)^0\pi^+$	(1.7± 0.8) %	
0	•		
	+ 0 Pionic	modes	a_3 ci aaa
31	$\begin{array}{c} \pi^+ \pi^0 \\ \pi^+ \pi^+ \pi^- \end{array}$	< 5.3 × 10	
		(2.8± 0.7) × 10	0 ⁻³ CL=90%
33 34		$< 1.2 \times 10$ $(2.1 \pm 0.6) \times 10$	
4	$\pi^+\pi^+\pi^-\pi^0$	< 3.1 %	CL=90%
15 16	$n\pi^+ \times B(n \rightarrow \pi^+\pi^-\pi^0)$		0 ⁻³ CL=90%
36 37			0 ⁻³ CL=90%
88			0 ⁻³ CL=90%
9		seen	22-7076
	Francisco Color Color		
	Fractions of the following modes ha		
40		< 9 × 1	0 ⁻³

 D^{\pm}

	Hadronic modes with two K's								
Γ_{42}	\overline{K}^0K^+	(8.4 ± 2.1	$7) \times 10^{-3}$						
Γ_{43}	$K^+K^-\pi^+$	(9.6 ± 1.0	$(5) \times 10^{-3}$	S=1.2					
	In the fit as $\frac{1}{2}\Gamma_{53} + \frac{2}{3}\Gamma_{54} + \Gamma_{46}$, v	where $\frac{1}{2}\Gamma_{53}=\Gamma$	44 and ₹F	$\Gamma_{45} = \Gamma_{45}$					
Γ_{44}	$\phi\pi^+ imes B(\phi o K^+K^-)$	(2.9± 0.6							
Γ_{45}		(2.9± 0.1	$7) \times 10^{-3}$						
	$\times B(\overline{K}^*(892)^0 \rightarrow K^-\pi^+)$								
Γ ₄₆	$K^+K^-\pi^+$ (non-resonant)	(3.9 ± 0.9	$9) \times 10^{-3}$	S=1.1					
Γ47	$K^{+}K^{-}\pi^{+}\pi^{0}$								
Γ48	$\phi \pi^+ \pi^0 \times B(\phi \rightarrow K^+ K^-)$	< 1.1	%	CL=90%					
Γ49	$K^{+}K^{-}\pi^{+}\pi^{0}$ (non- ϕ)	< 1.9	%	CL=90%					
	$K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-}$								
	$K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-}$ (non-res.)	< 3	%	CL=90%					
Γ_{52}	$\phi \pi^+ \pi^+ \pi^- \times B(\phi \to K^+ K^-)$	< 1	\times 10 ⁻³	CL=90%					
	Fractions of the following modes have								
	$\phi \pi^+$	(5.7 ± 1.1)	,	S=1.1					
T ₅₄	$\overline{K}^*(892)^0 K^+$	(4.3± 1.0		S=1.1					
Γ ₅₅	$\phi \pi^+ \pi^0$	< 2.2	%	CL=90%					
1 56	$\phi \pi^+ \pi^+ \pi^-$	< 2	$\times 10^{-3}$	CL=90%					
	Lepton Family numb								
	Flavor-Changing neur								
	or Doubly Cabibbo supp	oressed (DC) m	odes						
	$\pi^+ e^{\pm} \mu^{\mp}$ LF	< 3.8	$\times 10^{-3}$	CL=90%					
		< 2.6		CL=90%					
	$\pi^+\mu^+\mu^-$ FC		$\times 10^{-3}$	CL=90%					
Γ ₆₀	$K^+\pi^+\pi^-$	< 4	\times 10 ⁻³	CL=90%					
	Mode needed for f	itting purposes							
Γ ₆₁	other fit modes	(68 ± 4) %	S=1.2					

[a] This is a weighted average of D^{\pm} (44%) and D^{0} (56%) branching fractions. See D^{\pm} section for D^{\pm} and $D^{0} \rightarrow \eta$.

CONSTRAINED FIT INFORMATION

An overall fit to 9 products of a cross section and a partial width, a cross section, and 8 branching ratios uses 30 measurements and one constraint to determine 12 parameters. The overall fit has a $\chi^2=16.0$ for 19 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta \rho_i \delta \rho_j \rangle / (\delta \rho_i \cdot \delta \rho_j)$, in percent, from the fit to parameters ρ_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₂₀	34									
x ₂₁	10	-18								
x ₂₄	56	35	11							
×25	39	22	7	37						
×26	40	23	7	44	27					
<i>x</i> 30	17	4	0	34	12	12				
×46	39	22	7	50	26	30	12			
<i>x</i> 53	48	27	9	61	32	37	14	41		
<i>x</i> 54	41	23	7	52	27	32	12	35	43	
×61	-6 9	-63	-24	-67	-68	-62	-22	-49	-59	~51
σ	-77	-44	-14	-72	-51	-52	-23	51	-62	-53
	<i>x</i> ₁₇	×20	x ₂₁	×24	×25	×26	×30	×46	×53	×54

NOTE ON CHARM MESON BRANCHING FRACTIONS AND NEW RESULTS ON CHARM MESON DECAYS

Beginning in the previous edition of the Particle Data Book, we have restructured the listings to both clarify and reduce the uncertainty in the normalization of D meson branching fractions. In addition, we have improved the propagation of errors in the fits for the branching ratios. Wherever possible we have entered only the information actually measured by an experiment and have not used derived quantities. Topological normalizations (e.g. AGUILAR-BENITEZ 84) have been

retained, but where experiments have measured only relative branching fractions, only those ratios have been included in the fits. Experiments that measure production cross sections times branching fractions in e^+e^- annihilation at the $\psi(3770)$ have been listed separately as $\sigma\cdot B$ at the $\psi(3770)$. They are normalized by averaging the cross section at the $\psi(3770)$, derived either by resonance scans or by the direct method of BALTRU-SAITIS 86 updated in ADLER 88C. A separate section heading titled Charm Production Cross Sections is now included. The effect of this technique can best be seen by comparison of direct D^0 or D^+ branching fractions (ADLER 88C) with the PDG fit. For example $B(D^0\to K^-\pi^+)=0.042\pm0.004\pm0.004$ and $B(D^+\to K^-\pi^+\pi^-)=0.091\pm0.013\pm0.004$ from ADLER 88C become $0.038^{+0.004}_{-0.003}$ and $0.078^{+0.011}_{-0.008}$, respectively, in the PDG fit. See SCHINDLER 87 for further discussion.

This year's Listings show improved measurements from the Mark III and the TPS experiments on values for the semileptonic decays of D mesons. TPS results on $D^0 \to K^-e^+\nu_e$ and $D^+ \to \overline{K}^*(892)^0e^+\nu_e$ decays suggest the $D_{\ell 4}$ decays are dominated ($\geq 80\%$) by a single resonance, and the branching fraction compared to the $D_{\ell 3}$ channel is considerably smaller than expected from simple models for the form factors. The data of the TPS also suggest that the vector meson in the decay is longitudinally polarized, in the $D_{\ell 4}$ channel.

The first observation of the Cabibbo-suppressed semileptonic decay $D^0 \to \pi^- e^+ \nu_e$ by the Mark III experiment allows a measurement of the ratio of $\mid V_{cd}/V_{cs}\mid^2$ which is consistent with the C-K-M angle from strange-particle decays and unitarity.

In the spectroscopy of weak-hadronic decays, detailed measurements of the resonant substructure of the four-body $D^0 \to K^-\pi^+\pi^+\pi^-$ final states have been made by the Mark III (Ref. 1). The data suggest that, as previously found in the three-body final states, the nonresonant portion is small (about 25%) and the final state is dominated by quasi-two-body modes consisting of two vectors or a pseudoscalar and an axial vector. This pattern is also predicted by the factorization models which describe well the three-body final states of the D mesons.

In the previous issue of the PDG, the first measurements of rare D decays (flavor-changing and family-violating decays) were presented. In this issue, small improvements in these limits have been made, both by both fixed-target and e^+e^- collider experiments.

Reference

 J. Adler et al., SLAC-PUB-5130 (1989), submitted to Phys. Rev. Lett.

D+ BRANCHING RATIOS $\Gamma(e^+ \text{ anything})/\Gamma_{\text{total}}$ Γ_1/Γ VALUE EVTS TECN COMMENT $0.192^{+\,0.017}_{-\,0.014}$ OUR AVERAGE $0.20 \ ^{+\, 0.09}_{-\, 0.07}$ AGUILAR-... 87ε HYBR πρ, ρρ 360, 400 GeV $0.170 \pm 0.019 \pm 0.007$ 158 BALTRUSAIT...858 MRK3 Ecm = 3.77 GeV 0.168 ± 0.064 23 SCHINDLER 81 MRK2 $E_{cm}^{ee} = 3.771 \text{ GeV}$ $0.220 + 0.044 \\ -0.022$ BACINO 80 DLCO Eee = 3.77 GeV

O+

D^+ and $D^0 \rightarrow (e^+$ anythin			$\Gamma(\mu^+ u_\mu)/\Gamma_{total}$	Г ₈ /Г
If measured at the $\psi(3770)$, this quantity is a weighted av		VALUE CL% EVTS DOCUMENT ID TECN COMME	
	hing fractions. Only experiment	s at $E_{cm} = 3.77$ GeV are	<0.00072 90 ¹⁴ ADLER 888 MRK3 E ^{ee} _{Cm} =	
included in the average. ALUE	DOCUMENT ID TECN	COMMENT	• • • We do not use the following data for averages, fits, limits, etc. •	
110±0.011 OUR AVERAGE	error includes scale factor of 1.1		< 0.02 90 0 ¹⁵ AUBERT 83 SPEC μ^+ Fe.	
117±0.011 295	BALTRUSAIT85B MRK3		¹⁴ Using 10.9 ps for the D^+ lifetime and $ Vcd ^2 = 0.0493$ ADLER	
10 ±0.032	7 SCHINDLER 81 MRK2		hadronic axial vector decay constant of the D^+ to be $f_D < 290$ Me 15 AUBERT 83 obtain upper limit 0.014 assuming that final state conf	
072±0.028		E ^{ee} _{Cm} = 3.772 GeV	of (D^+, D^-) , (D^+, \overline{D}^0) , (D^-, D^0) , and (D^0, \overline{D}^0) . We quote the lin	mit which they get
We do not use the following	_		under more general assumptions.	, 8
096±0.007±0.015		E ^{ee} _{cm} = 29 GeV	$\Gamma(\overline{L}^0, +, \cdot) / \Gamma(\cdot + \text{anything})$	Γ9/Γ6
$116^{+0.011}_{-0.009}$	_	Ecm = 29 GeV	$\Gamma(\overline{K}^0\mu^+\nu_\mu)/\Gamma(\mu^+ \text{ anything})$ VALUE EVTS DOCUMENT ID COMMENT	19/16
$091 \pm 0.009 \pm 0.013$	8 AIHARA 85 TPC		0.76±0.06 84 16 AOKI 88 π emulsion	
092±0.046		Ecm = 34.6 GeV	16 From topological branching ratios in emulsion with identified muon.	
091 ± 0.013 08 ± 0.015		Repl. by PAL 86 $E_{cm}^{ee} = 3.772 \text{ GeV}$		
⁷ Isolates D^+ and $D^0 \rightarrow e^+$		5.11	$\frac{\Gamma(c/\overline{c} \to e^+e^- \text{ anything})/\Gamma(c/\overline{c} \to \text{ anything})}{c_{L\%} \underbrace{\text{EVTS}} \underbrace{\text{DOCUMENT.ID}} \underbrace{\text{TECN}} \underbrace{\text{COMM.}}$	ENT
8 Average BR for charm → e	$^+$ X. Unlike $E_{Cm} = 3.77$ GeV,	the admixture of charmed	• • • We do not use the following data for averages, fits, limits, etc. •	
mesons is unknown.			$< 2.2 \times 10^{-3}$ 90 0.1 ¹⁷ HAAS 88 CLEO E ^{ee} _{cm} =	
anything)/ Γ_{total} (D^0).	INO 80 $\Gamma(e^+$ anything)/ Γ	total (D1) and I(e1	17 The normalization uses a continuum charm production estimate.	10 000
$(K^- \text{ anything})/\Gamma_{\text{total}}$		Γ_2/Γ	$\Gamma(c/\overline{c} \rightarrow e^{+}\mu^{-} \text{ anything})/\Gamma(c/\overline{c} \rightarrow \text{ anything})$	
ALUE EVTS	DOCUMENT ID TECN	COMMENT	VALUE CL'S EVTS DOCUMENT ID TECN COMM	ENT
.162±0.035 OUR AVERAGE	AGUILAR 87E HYBR	πρ. n.n. 360 .400 .Ge\/		
17 ±0.07 19 ±0.05 26	SCHINDLER 81 MRK2		$< 3.7 \times 10^{-3}$ 90 0.2 ¹⁸ HAAS 88 CLEO E ^{ee} _{CM} =	10 GeV
10 ±0.07 3	VUILLEMIN 78 MRK1		¹⁸ The normalization uses a continuum charm production estimate.	
We do not use the following				F //
16 +0.08 -0.07	AGUILAR 86B HYBR	Repl. by AGUII AR-	$\Gamma(K^-\pi^+e^+ u_e)/\Gamma_{ ext{total}}$ VALUE CL% DOCUMENT ID TECN COMM	Γ ₁₀ /Ι
-0.07		BENITEZ 87E	<u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMM</u> <0.057 90 ¹⁹ AGUILAR 87F HYBR πρ, ρ	
$(K^+ \text{ anything})/\Gamma_{\text{total}}$		Γ ₃ /Γ	19 AGUILAR-BENITEZ 87F computed the branching ratio by topologic	•
LUE EVTS	DOCUMENT ID TECN			
066±0.028 OUR AVERAGE			$\Gamma(K^-\pi^+e^+\nu_e \text{ (non-resonant)})/\Gamma_{\text{total}}$	Γ ₁₂ /
08 +0.06 -0.05	AGUILAR 87E HYBR	πp, pp 360, 400 GeV	<u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMM</u> <0.007 90 ²⁰ ANJOS 89B TPS Photo	
06 ±0.04 12	SCHINDLER 81 MRK2	E ^{ee} _{cm} = 3.771 GeV	1	
06 ±0.06 2	VUILLEMIN 78 MRK1		²⁰ ANJOS 89B have assumed a B($D^+ \rightarrow K^- \pi^+ \pi^+$) = 9.1 \pm 1.3 \pm	0.4%.
$\Gamma(K^0 \text{ any}) + \Gamma(\overline{K}^0 \text{ any})$	(F	F /F	$\Gamma(\overline{K}^0\pi^+\pi^-e^+ u_e)/\Gamma_{total}$	Γ ₁₃ /Ι
		Γ ₄ /Γ	VALUE EVTS DOCUMENT ID TECN COMM	ENT
48±0.15 OUR AVERAGE	DOCOMENT ID TECH	COMMENT	$0.022^{+0.047}_{-0.006} \pm 0.004$ 1 21 AGUILAR 87F HYBR πp , p	p 360,400 GeV
.52 ± 0.18 15	SCHINDLER 81 MRK2	E ^{ee} _{Cm} = 3.771 GeV	21 AGUILAR-BENITEZ 87F computed the branching ratio by topologic	al normalization.
.39±0.29 3	VUILLEMIN 78 MRK1	E ^{ee} _{Cm} = 3.772 GeV		
D^+ and $D^0 o (\eta$ anything	Ω / (total Ω^+ and Ω^0)		$\Gamma(K^-\pi^+\pi^0e^+\nu_e)/\Gamma_{\text{total}}$	Γ ₁₄ /
), this quantity is a weighted a	verage of D ⁺ (44 percent)	VALUE EVTS DOCUMENT ID TECN COMM	
and D^0 (56 percent) brand	hing fractions. Only the experi		$0.044^{+0.052}_{-0.013} \pm 0.007$ 2 22 AGUILAR 87F HYBR $\pi \rho$, ρ	p 360,400 GeV
used. ALUE	DOCUMENT ID TECN	COMMENT	²² AGUILAR-BENITEZ 87F computed the branching ratio by topologic	al normalization.
<0.13	PARTRIDGE 81 CBAL		$\Gamma(\pi^+\pi^-e^+ u_e)/\Gamma_{\text{total}}$	Γ ₁₅ /
We do not use the following	ng data for averages, fits, limits		VALUE CL% DOCUMENT ID TECN COMM	IENT
<0.02	10 BRANDELIK 79 DASP	E ^{ee} _{cm} = 4.03 GeV	$<$ 0.057 90 23 AGUILAR 87F HYBR πp , F	p 360,400 GeV
10 BRANDELIK 79 result based	on absence of η signal at E _{CM} =	4.03 GeV. PARTRIDGE 81	²³ AGUILAR-BENITEZ 87F computed the branching ratio by topologic	al normalization.
	η cross section at $E_{Cm} = 4.03$		$\Gamma(\overline{K}^*(892)^0 e^+ u_e) / \Gamma(K^- \pi^+ \pi^+)$	$\Gamma_{16}/(\Gamma_{24}+\frac{2}{3}\Gamma_{30})$
$(c/\overline{c} \rightarrow \mu^+ \text{ anything})/\Gamma($	$c/\overline{c} \rightarrow \text{anvthing}$		VALUE DOCUMENT ID TECN COMM	
ALUE	· · · · · · · · · · · · · · · · · · ·	COMMENT		oproduction
079 ^{+0.011} _{-0.010} OUR AVERAGE		-	$^{24}K^*(892)$ polarization $\sigma_I/\sigma_S = 2.4^{+1.7}_{-0.9} \pm 0.2$.	
	11 ONG 88 MRK	5 E66 - 30 CaV	0.5	
.078±0.009±0.012		2 E ^{ee} _{Cm} = 29 GeV E ^{ee} _{cm} = 34.6 GeV	$\sigma(e^+e^- o\psi(3770)) imes\Gamma(\overline{K}^0\pi^+)/\Gamma_{total}$	σ Γ_{17}
$078 \pm 0.015 \pm 0.02$		****	VALUE (nanobarns) EVTS DOCUMENT ID TECN COMM	
$082^{+0.023}_{-0.016}$		E _{cm} = 34.5 GeV	0.136±0.013 OUR FIT	
	ng data for averages, fits, limit		0.136±0.013 OUR AVERAGE 0.135±0.012±0.010 161 BALTRUSAIT86€ MRK3 E ^{ee} _m :	= 3.77 GeV
089±0.018±0.025		Repl. by BARTEL 87	$0.13 \pm 0.012 \pm 0.010$ 101 BALTINGSAIT262 WINGS C_{em} 0.14 ± 0.03 36 SCHINDLER 81 MRK2 C_{em} C_{em}	
Average BR for charm → μ actually contain states other	+ X. The mixture of charmed p. than D mesons.	articles is unknown and may	0.14 ±0.05 17 PERUZZI 77 MRK1 Ecm =	
			r(K 0-+)/r/K+-+	F /(F 2 F
$(c/\overline{c} \rightarrow \mu^+\mu^- \text{ anything})$		COMMENT	· // /	Γ ₁₇ /(Γ ₂₄ +⅔Γ ₃ 45ΝΤ
	ng data for averages, fits, limits		• • • We do not use the following data for averages, fits, limits, etc. •	
TO GO HOL USE THE HOHOW	-	Eem = 10 GeV	< 0.45 90 25 PICCOLO 77 MRK1 E_{em}^{em}	
1.8 × 10 ⁻² 90 0.3	117 U O CELO			
	13 ALTHOFF 84G TASS	Eco = 34.5 GeV		
0.007 95		E ^{ee} _{Cm} = 34.5 GeV	25 Obtained from $\sigma imes$ BR values of table I.	
0.007 95 ² The normalization uses a condition $\frac{3}{4}$ Average BR for charm $\frac{1}{4}$	ntinuum charm production estir $^+\mu^-$ X. The mixture of charm	nate.	$\sigma(e^+e^- o\psi(3770)) imes\Gamma(\overline{K}^0 ho^+)/\Gamma_{ ext{total}}$	
0.007 95 The normalization uses a col	ntinuum charm production estir $^+\mu^-$ X. The mixture of charm	nate.	$\sigma(e^+e^- \to \psi(3770)) \times \Gamma(\overline{K}^0\rho^+)/\Gamma_{\text{total}}$ VALUE (nanobarns) DOCUMENT ID TECN COMM	
$<$ 0.007 95 12 The normalization uses a col 13 Average BR for charm $ ightarrow \mu$	ntinuum charm production estir $^+\mu^-$ X. The mixture of charm	nate.	$\sigma(e^+e^- o\psi(3770)) imes\Gamma(\overline{K}^0 ho^+)/\Gamma_{ ext{total}}$	

 D^{\pm}

VALUE (nanobarns) EVTS	$\overline{K}^0\pi^+\pi^0)/\Gamma_{\text{total}}$	$\sigma(\Gamma_{20}+\Gamma_{21}+\frac{1}{3}\Gamma_{30})/\Gamma$	$\Gamma(K^-\pi^+\pi^+\pi^0\pi^0)/\Gamma_{\text{total}}$	DOCUMENT ID TECN COMMENT	Γ ₂₈ /
0.40 ±0.08 OUR FIT 0.44 ±0.11 OUR AVERAGE	7200		$0.022^{+0.047}_{-0.008} \pm 0.004 \qquad 1$	30 AGUILAR 87F HYBR πρ, pp 360,400	GeV
$0.417 \pm 0.081 \pm 0.075$ 159	BALTRUSAIT86E MRKS	Ecm = 3.77 GeV		g data for averages, fits, limits, etc. • • •	
0.78 ±0.48 10	SCHINDLER 81 MRK2	E ^{ee} _{Cm} = 3.771 GeV	seen 1	AGUILAR 86B HYBR $\pi^- p$ 360 GeV puted the branching ratio by topological normaliz	
$\Gamma(\overline{K}^0\pi^+\pi^0)/\Gamma_{\text{total}}$		$(\Gamma_{20} + \Gamma_{21} + \frac{1}{3}\Gamma_{30})/\Gamma$			
VALUE 0.083±0.019 OUR FIT	DOCUMENT ID	, , , , , , , , _	$\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(0)$ VALUE (nanobarns) CL%	K π π π π π)/I total comment	σΓ ₂₉ /ί
	z 0 + 0 (/F F /F	<0.23 90	SCHINDLER 81 MRK2 Eee 3.771 GeV	v
$\sigma(e^+e^- o \psi(3770)) imes \Gamma(\overline{k}_{VALUE\ (nanobarns)})$	$\pi^+\pi^{\circ}$ (non-resonant))		$\Gamma(K^-\pi^+\pi^+\pi^+\pi^-)/\Gamma_{total}$		Γ ₂₉ /
0.057+0.047 OUR FIT			VALUE EVTS	DOCUMENT ID TECN COMMENT	
0.05 ±0.03 ±0.04	ADLER 87 MRK3	Eee = 3.77 GeV	• • • We do not use the following seen 2	g data for averages, fits, limits, etc. • • • AGUILAR 86B HYBR π ⁻ p 360 GeV	
$\sigma(e^+e^- o \psi(3770)) imes \Gamma(h)$	$(-\pi^+\pi^+$ (non-resonant)	$/\Gamma_{\text{total}}$ $\sigma\Gamma_{24}/\Gamma$	$\sigma(e^+e^- o \psi(3770)) imes \Gamma(e^+e^-)$		σΓ ₃₀ /Ι
VALUE (nanobarns)	DOCUMENT ID TECN	COMMENT	VALUE (nanobarns) CL% EVT:		30/1
0.32 ± 0.04 OUR FIT Error includ $0.31 \pm 0.03 \pm 0.10$		Ecm = 3.77 GeV	0.08 ± 0.04 OUR FIT $0.08 \pm 0.01 \pm 0.04$	ADLER 87 MRK3 Ecm = 3.77	GeV
$\sigma(e^+e^- o \psi(3770)) imes \Gamma(E$				g data for averages, fits, limits, etc. • •	
VALUE (nanobarns) EVTS	DOCUMENT ID TECN	$\sigma(\Gamma_{24} + \frac{2}{3}\Gamma_{30})/\Gamma$ COMMENT	< 0.27 90	SCHINDLER 81 MRK2 E ^{ee} _{cm} = 3.771	
0.373±0.024 OUR FIT 0.381±0.024 OUR AVERAGE			92	P DRIJARD 79 SFM pp Ecm = 53	
0.388 ± 0.013 ± 0.029 1164	BALTRUSAIT86E MRK3	E ^{ee} _{Cm} = 3.77 GeV	$\Gamma(\pi^+\pi^0)/\Gamma_{ m total}$ VALUE CL% EVTS	DOCUMENT ID TECN COMMENT	Γ ₃₁ /Ι
0.38 ±0.05 239 0.36 ±0.06 85	SCHINDLER 81 MRK2 PERUZZI 77 MRK1	$E_{\text{cm}}^{\text{ee}} = 3.771 \text{ GeV}$ $E_{\text{cm}}^{\text{ee}} = 3.77 \text{ GeV}$	<0.0053 90 1	BALTRUSAIT85E MRK3 Eee = 3.77 GeV	
	PERUZZI // MRKI	_	$\Gamma(\pi^+\pi^0)/\Gamma(\overline{K}^0\pi^+)$	r.	31/F ₁
$\Gamma(K^-\pi^+\pi^+)/\Gamma_{\text{total}}$	DOCUMENT ID TECN	$(\Gamma_{24} + \frac{2}{3}\Gamma_{30})/\Gamma$	VALUE CL%	DOCUMENT ID TECN COMMENT	31/1
0.077 ± 0.010 OUR FIT Error incl	ludes scale factor of 1.2.			g data for averages, fits, limits, etc. • •	
$0.063^{+0.028}_{-0.014} \pm 0.011$ 8 2	²⁶ AGUILAR 87F HYBR	πρ, ρρ 360,400 GeV	<0.30 90	SCHINDLER 81 MRK2 Ecm = 3.771 GeV	V
²⁶ AGUILAR-BENITEZ 87F comp	uted the branching ratio by to	pological normalization.	$\Gamma(\pi^+\pi^+\pi^-)/\Gamma(K^-\pi^+\pi^+)$	Γ ₃₂ /(Γ ₂₄ +	+ 2 7 ₃₀
$\sigma(e^+e^- \to \psi(3770)) \times \Gamma(\overline{k})$	$(\overline{\zeta}^0\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$	$\sigma\Gamma_{25}/\Gamma$	0.036±0.007 OUR AVERAGE		
/ALUE (nanobarns) EVTS 1.34 ±0.06 OUR FIT Error incl		COMMENT	$0.035 \pm 0.007 \pm 0.003$ $0.042 \pm 0.016 \pm 0.010$	ANJOS 89 TPS Photoprodu 57 BALTRUSAIT85E MRK3 E ^{ee} = 3.77	
0.31 ±0.06 OUR AVERAGE Er	ror includes scale factor of 1.2			g data for averages, fits, limits, etc. • •	,
0.291 ± 0.047 ± 0.029 168 0.51 ± 0.18 21	ADLER 88c MRK3 SCHINDLER 81 MRK2	E ^{ee} _{cm} = 3.77 GeV E ^{ee} _{cm} = 3.771 GeV	<0.084 90	SCHINDLER 81 MRK2 E _{Cm} = 3.77 31 PICCOLO 77 MRK1 E _{Cm} = 4.03	
			<0.08 90 31 Obtained from $\sigma imes$ BR values	Cili	3 GeV
$(\overline{K}^0\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$	DOCUMENT ID TECN	Γ ₂₅ /Γ	$\Gamma(\rho^0\pi^+)/\Gamma(K^-\pi^+\pi^+)$		2
1.070±0.015 OUR FIT Error incl	udes scale factor of 1.2.		VALUE CL%	Γ ₃₃ /(Γ ₂₄ +	⊤ 3 130.
$0.243^{+0.064}_{-0.041} \pm 0.041$ 11 2		π p. p p 360.400 GeV			
	²⁷ AGUILAR 87F HYBR		<0.015 90	ANJOS 89 TPS Photoproduction	
²⁷ AGUILAR-BENITEZ 87F comp	uted the branching ratio by to	pological normalization.	$\Gamma(\pi^+\pi^+\pi^- \text{ (non-resonant)})$	$/\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+$	_
27 AGUILAR-BENITEZ 87F composer $(e^+e^- ightarrow \psi(3770)) imes \Gamma(K$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{ m total}$	pological normalization. $\sigma \Gamma_{26}/\Gamma$		$\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+$	⊦ 2 βΓ30
27 AGUILAR-BENITEZ 87F compi $f(e^+e^- o \psi(3770)) imes \Gamma(K)$ ALUE (nanobarns) EVTS	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{ ext{total}}$	pological normalization.	$\Gamma(\pi^+\pi^+\pi^- \text{ (non-resonant)}),$ $\frac{VALUE}{0.027 \pm 0.007 \pm 0.002}$	$\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+$ $\Gamma_{34}/(\Gamma_{24$	+ 2 / ₃ Γ ₃₀
27 AGUILAR-BENITEZ 87F composite $(e^+e^- o \psi(3770)) imes \Gamma(K)$ ALUE (nanobarns) 20 ± 0.04 OUR FIT Error includ	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{ ext{total}}$	pological normalization. $\sigma \Gamma_{26}/\Gamma$	$\Gamma(\pi^+\pi^+\pi^- \text{ (non-resonant)})$	$\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+$ $\Gamma_{34}/(\Gamma_{24$	+ 2 / ₃ Γ ₃₀
27 AGUILAR-BENITEZ 87F compute $(e^+e^- o \psi(3770)) imes \Gamma(K) imes VTS \ \ \ \ \ \ \ \ $	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{ m total}$ $\frac{DOCUMENT\ ID}{ m tes}$ $\frac{TECN}{ m SCALE}$ les Scale factor of 1.1.	pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{\text{COMMENT}}$ $E_{CM}^{ee} = 3.77 \text{ GeV}$ Γ_{26}/Γ		$/\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{34})$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24})$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24})$ $\Gamma_{35}/(\Gamma_{24}+\Gamma_{24}$	+ 2 / ₃ Γ ₃₀
27 AGUILAR-BENITEZ 87F compute $(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $(E^-e^- \rightarrow \psi(3770)) \times \Gamma(K)$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{ m total}$ $\frac{DOCUMENT\ ID}{ m tes}$ $\frac{TECN}{ m SCALE}$ les Scale factor of 1.1.	pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{CM}^{ep} = 3.77 \text{ GeV}$		$/\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{34})$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24})$ $\Gamma_{35}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24})$ $\Gamma_{35}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24})$ $\Gamma_{38}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24})$ $\Gamma_{38}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24})$	$+\frac{2}{3}\Gamma_{30}$
27 AGUILAR-BENITEZ 87F compute $r(e^+e^- o \psi(3770)) imes \Gamma(Ke^+e^- o \psi(3770)) imes \Gamma(Ke^+e^- o \psi(3770)) imes \Gamma(Ke^-e^- o \psi(3770)) ime$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{ m total}$ $\frac{DOCUMENT\ ID}{ m tes}$ $\frac{TECN}{ m SCALE}$ les Scale factor of 1.1.	pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{CM}^{ep} = 3.77 \text{ GeV}$ Γ_{26}/Γ $\underline{COMMENT}$		$/\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{34})$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{24})$ $\Gamma_{35}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{24})$ amma_{24})$ $\Gamma_{35}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24}+\Gamma_{24})$ $\Gamma_{35}/(\Gamma_{24}+\Gamma_{$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$
$\begin{array}{ll} ^{27}\text{AGUILAR-BENITEZ 87F compi}\\ r\left(e^{+}e^{-}\rightarrow\psi(3770)\right)\times\Gamma\left(K^{ALUE(nanobaras)}\right)\times\Gamma\left(K^{ALUE(nanobaras)}\right)\times\Gamma\left(K^{ALUE(nanobaras)}\right)\times\Gamma\left(K^{ALUE(nanobaras)}\right)\times\Gamma\left(K^{-}\pi^{+}\pi^{+}\pi^{0}\right)/\Gamma\left(\Gamma\left(K^{-}\pi^{+}\pi^{+}\pi^{0}\right)/\Gamma\left(\Gamma\left(K^{-}\pi^{+}\pi^{+}\pi^{0}\right)\right)\times\Gamma\left(K^{-}\pi^{+}\pi^{+}\pi^{0}\right)/\Gamma\left(\Gamma\left(K^{-}\pi^{+}\pi^{+}\pi^{0}\right)/\Gamma\left(\Gamma\left(K^{-}\pi^{+}\pi^{+}\pi^{0}\right)\right)\times\Gamma\left(K^{-}\pi^{0}\right)\times\Gamma\left(K^{0}\right)\times\Gamma\left(K^{-}\pi^{0}\right)\times\Gamma\left(K^{0}\right$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID}$ $\frac{TECN}{IECN}$ BALTRUSAIT86E MRK3 $\frac{DOCUMENT\ ID}{IECN}$ udes scale factor of 1.1. 87F HYBR data for averages, fits, limits,	pological normalization. $\sigma\Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{\rm CM}^{ep} = 3.77~{\rm GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp~360.400~{\rm GeV}$ etc. • • •		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$
27 AGUILAR-BENITEZ 87F compine $C(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K-e^+e^- \rightarrow \psi(3770)) \times \Gamma(K-e^+e^- \rightarrow \psi(3770)) \times \Gamma(K-e^-e^- \rightarrow \psi(3770)) \times$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID}$ TECN BALTRUSAIT86E MRK3 DOCUMENT ID udes scale factor of 1.1. 28 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR	pological normalization. $\sigma\Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{\rm CM}^{\rm ee} = 3.77~{\rm GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp~360.400~{\rm GeV}$ etc. • • • • $\pi^- p~360~{\rm GeV}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$
27 AGUILAR-BENITEZ 87F compute $^{\circ}$ ($e^+e^- \rightarrow \psi(3770)$) $\times \Gamma(K^{\circ}$ EVTS $\times 1000$ 175 Error including $\times 1000$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID}$ $\frac{TECN}{DOCUMENT\ ID}$ $\frac{1}{1}$ pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{CM}^{eg} = 3.77 \text{ GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • $\pi^- p 360 \text{ GeV}$ pological normalization.	$ \begin{array}{c c} \Gamma(\pi^{+}\pi^{+}\pi^{-} \; (\text{non-resonant})), \\ \hline \nu_{ALUE} \\ \textbf{0.027} \pm \textbf{0.007} \pm \textbf{0.002} \\ \hline \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi$	$/\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{2$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$	
27 AGUIL AR-BENITEZ 87F compire ($e^+e^- \rightarrow \psi(3770)$) × $\Gamma(K)$ ALUE (nanobaras) EVTS 1.20 ± 0.04 OUR FIT Error includ 1.18 ± 0.04 ± 0.04 EVTS 1.75 EVTS	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID}$ $\frac{TECN}{DOCUMENT\ ID}$ $\frac{1}{1}$ pological normalization. $\sigma\Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{CM}^{ep} = 3.77 \text{ GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • $\pi^- p 360 \text{ GeV}$ pological normalization. $\Gamma_{26}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$	$ \begin{array}{l} \Gamma(\pi^{+}\pi^{+}\pi^{-} \; (\text{non-resonant})), \\ \frac{VALUE}{0.027 \pm 0.007 \pm 0.002} \\ \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+}\frac{VALUE}{20.4} \\ < 0.4 & 90 \\ \Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi\frac{VALUE}{20.019} \\ < 0.019 & 90 \\ \Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0})/\Gamma_{\text{total}} \\ \frac{VALUE}{20.019} & \frac{EVTS}{20.019} \\ \text{Seen} & 2 \\ \Gamma(\eta\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+}) \end{array} $	/ $\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{2$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$	
27 AGUILAR-BENITEZ 87F compine $r(e^+e^- o \psi(3770)) imes \Gamma(K^-e^+e^- o \psi(3770)) imes \Gamma(K^-e^+e^- o \psi(3770)) imes \Gamma(K^-e^+e^- o \psi(3770)) imes \Gamma(K^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID}$ $\frac{TECN}{DOCUMENT\ ID}$ $\frac{TECN}{DOCUMENT\ ID}$ $\frac{TECN}{DOCUMENT\ ID}$ $\frac{TECN}{DOCUMENT\ ID}$ $\frac{TECN}{DOCUMENT\ ID}$ $\frac{TECN}{DOCUMENT\ ID}$ $\frac{11.1}{28}$ AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR uted the branching ratio by to $\frac{11.1}{100}$	pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{CM}^{eg} = 3.77 \text{ GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • $\pi^- p 360 \text{ GeV}$ pological normalization.	$ \begin{array}{c c} \Gamma(\pi^{+}\pi^{+}\pi^{-} \; (\text{non-resonant})), \\ \hline \nu_{ALUE} \\ \textbf{0.027} \pm \textbf{0.007} \pm \textbf{0.002} \\ \hline \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi$	$/\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{2$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$
27 AGUILAR-BENITEZ 87F compine $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(E)$ $r(e^+e^- \rightarrow \psi$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{ES}$ scale factor of 1.1. BALTRUSAIT86E MRK3 DOCUMENT ID TECN udes scale factor of 1.1. 28 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR uted the branching ratio by to	pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $\mathcal{E}_{CM}^{ep} = 3.77 \text{ GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp 360.400 \text{ GeV}$ etc. • • • • $\pi^- p 360 \text{ GeV}$ pological normalization. $\Gamma_{26}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $\underline{COMMENT}$	$ \begin{array}{c c} \Gamma(\pi^{+}\pi^{+}\pi^{-} \ (\text{non-resonant})), \\ \hline \nu_{ALUE} \\ \textbf{0.027} \pm \textbf{0.007} \pm \textbf{0.002} \\ \hline \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi$	/ $\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{34}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{20CUMENT\ ID})$ $\Gamma_{35}/(\Gamma_{24}+\Gamma_{24}+\Gamma_{20}+\Gamma_{24}+$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ Γ_{39}/Γ_{30}
27 AGUILAR-BENITEZ 87F compute $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^-e^- \rightarrow \psi(3770)) \times \Gamma(E)$ $r(e^-e^-e^- \rightarrow \psi(3770)) \times \Gamma(E)$ $r(e^-e^-e^- \rightarrow \psi(3770)) \times \Gamma(E)$ $r(e^-e^-e^- \rightarrow \psi(3770)) \times \Gamma(E)$ $r(e^-e^- \rightarrow \psi(3770)) \times \Gamma(E)$ $r(e$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT ID}{E}$ tes scale factor of 1.1. BALTRUSAIT86E MRK3 DOCUMENT ID IECN udes scale factor of 1.1. 28 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR uted the branching ratio by to $\frac{1}{1000}$ DOCUMENT ID IECN ANJOS 89E TPS	pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{CM}^{ep} = 3.77 \text{ GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp 360.400 \text{ GeV}$ etc. • • • $\pi^- p 360 \text{ GeV}$ pological normalization. $\Gamma_{26}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $\underline{COMMENT}$ Photoproduction	$ \begin{array}{l} \Gamma(\pi^{+}\pi^{+}\pi^{-} \ (\text{non-resonant})), \\ \frac{VALUE}{0.027 \pm 0.007 \pm 0.002} \\ \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+} \\ \frac{VALUE}{< 0.4} \\ = \frac{CL\%}{90} \\ \Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-} \\ \frac{VALUE}{< 0.019} \\ = \frac{CL\%}{90} \\ \Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0})/\Gamma_{\text{total}} \\ \frac{VALUE}{2} \\ \text{seen} \\ 2 \\ \Gamma(\eta\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+}) \\ \frac{VALUE}{< 0.12} \\ = \frac{CL\%}{90} \\ \Gamma(\omega\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+}) \\ \frac{VALUE}{< 0.12} \\ = \frac{CL\%}{90} \\ \end{array} $	////////////////////////////////////	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ Γ_{39}/Γ_{30}
27 AGUILAR-BENITEZ 87F compine $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ AGUE (nanobaras) 20±0.04 OUR FIT Error include 1.18±0.04±0.04 175 ($K^-\pi^+\pi^+\pi^0$)/Γ total EVTS 2.04±0.010 OUR FIT Error include 1.02±0.047 2.002±0.047 2.006±0.004 1 2 2.006±0.004 1 2 2.006±0.005 2.007 2.008±0.004 1 2 2.009±0.007 2	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT ID}{E}$ tes scale factor of 1.1. BALTRUSAIT86E MRK3 DOCUMENT ID IECN udes scale factor of 1.1. 28 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR uted the branching ratio by to $\frac{1}{1000}$ DOCUMENT ID IECN ANJOS 89E TPS	pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $\mathcal{E}_{CM}^{ep} = 3.77 \text{ GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp 360.400 \text{ GeV}$ etc. • • • • $\pi^- p 360 \text{ GeV}$ pological normalization. $\Gamma_{26}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $\underline{COMMENT}$	$ \begin{array}{lll} \Gamma(\pi^{+}\pi^{+}\pi^{-} \ (\text{non-resonant})), \\ \frac{VALUE}{O.027\pm0.007\pm0.002} \\ \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+} \\ \frac{VALUE}{<0.4} & 90 \\ \Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi \\ \frac{VALUE}{<0.019} & 90 \\ \Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0})/\Gamma_{\text{total}} \\ \frac{VALUE}{AULUE} & EVTS \\ \text{seen} & 2 \\ \Gamma(\pi^{+}\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+}) \\ \frac{VALUE}{<0.12} & 90 \\ \Gamma(\omega\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+}) \\ \frac{VALUE}{<0.08} & 90 \\ \end{array} $	$/\Gamma(K^-\pi^+\pi^+) \qquad \Gamma_{34}/(\Gamma_{24}+\frac{DOCUMENT\ ID}{ANJOS} \qquad 39 \qquad TPS \qquad Photoproduction$ $T_{35}/(\Gamma_{24}+\frac{DOCUMENT\ ID}{ANJOS} \qquad 39 \qquad TPS \qquad Photoproduction$ $T_{38}/(\Gamma_{24}+\frac{COMMENT\ ID}{ANJOS} \qquad 39 \qquad TPS \qquad Photoproduction$ $T_{38}/(\Gamma_{24}+\frac{DOCUMENT\ ID}{ANJOS} \qquad TPS \qquad Photoproduction$ $T_{40}/(\Gamma_{24}+\frac{DOCUMENT\ ID}{ANJOS} \qquad TPS \qquad TPS \qquad COMMENT \qquad TPO 360 GeV$ $T_{40}/(\Gamma_{24}+\frac{DOCUMENT\ ID}{ANJOS} \qquad TPS \qquad TPS \qquad Photoproduction$ $T_{41}/(\Gamma_{24}+\frac{TP}{2$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ Γ_{39}/Γ_{30}
$(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^-e^- \to \psi(3770)$ $(e^-e^- \to \psi(3770)) \times \Gamma(K)$ $(e^-e^- \to \psi(3770)$ $(e^-e^- \to \psi(377$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID}$ $\frac{TECN}{1}$ es scale factor of 1.1. BALTRUSAIT86E MRK3 $\frac{DOCUMENT\ ID}{1}$ $\frac{TECN}{1}$ udes scale factor of 1.1. 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR uted the branching ratio by to $\frac{TECN}{1}$	pological normalization. $\sigma\Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{CM}^{ee} = 3.77 \text{ GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. ••• $\pi^- p 360 \text{ GeV}$ pological normalization. $\Gamma_{26}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $\underline{COMMENT}$ Photoproduction $\pi^- p, 360 \text{ GeV}$	$ \begin{array}{c c} \Gamma(\pi^{+}\pi^{+}\pi^{-} \ (\text{non-resonant})), \\ \hline \nu_{ALUE} \\ \hline \textbf{0.027} \pm \textbf{0.007} \pm \textbf{0.002} \\ \hline \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ Γ_{39}/Γ_{30}
27 AGUILAR-BENITEZ 87F compine $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^-e^- \rightarrow \psi(3770)) \times \Gamma(K)$ $r(e^-e^- \rightarrow \psi(3770)) \times \Gamma(E^-e^- \rightarrow \psi(3770))$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID}$ $\frac{TECN}{DOCUMENT\ ID}$	pological normalization. $\sigma\Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{Cm}^{ee} = 3.77 \text{ GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • $\pi^- p 360 \text{ GeV}$ pological normalization. $\Gamma_{26}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $\underline{COMMENT}$ Photoproduction $\pi^- p, 360 \text{ GeV}$ Γ_{27}/Γ $\underline{COMMENT}$	$ \begin{array}{c c} \Gamma(\pi^{+}\pi^{+}\pi^{-} \ (\text{non-resonant})), \\ \hline \nu_{ALUE} \\ \hline \textbf{0.027} \pm \textbf{0.007} \pm \textbf{0.002} \\ \hline \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0})/\Gamma_{\text{total}} \\ \hline \nu_{ALUE} & \underline{\nu_{ALUE}} & \underline{\nu_{VIS}} \\ \hline seen & 2 \\ \hline \Gamma(\eta\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+}) \\ \hline \nu_{ALUE} & \underline{\nu_{ALUE}} \\ \hline < 0.12 & 90 \\ \hline \Gamma(\omega\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+}) \\ \hline \nu_{ALUE} & \underline{\nu_{IS}} \\ \hline < 0.08 & 90 \\ \hline \Gamma(\overline{K}^{0}K^{+})/\Gamma(\overline{K}^{0}\pi^{+}) \\ \hline \nu_{ALUE} & \underline{\nu_{IS}} \\ \hline < 0.30 \pm 0.08 \ \ \text{OUR AVERAGE} \\ \hline \end{array} $	////////////////////////////////////	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$
27 AGUILAR-BENITEZ 87F compine $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(e^-e^- ^- ^- \to \psi(3770)$ $(e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID}$ TECN udes scale factor of 1.1. BALTRUSAIT86E MRK3 DOCUMENT ID TECN udes scale factor of 1.1. 88 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR uted the branching ratio by to DOCUMENT ID TECN ANJOS 89E TPS AGUILAR 83B HYBR DOCUMENT ID TECN POCUMENT ID TECN ANJOS 89E TPS AGUILAR 83B HYBR	pological normalization. $\sigma\Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $E_{CM}^{ee} = 3.77 \text{ GeV}$ Γ_{26}/Γ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • $\pi^- p 360 \text{ GeV}$ pological normalization. $\Gamma_{26}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $\underline{COMMENT}$ $Photoproduction$ $\pi^- p, 360 \text{ GeV}$ Γ_{27}/Γ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$	$ \Gamma(\pi^{+}\pi^{+}\pi^{-} \text{ (non-resonant)}), \\ \frac{VALUE}{0.027 \pm 0.007 \pm 0.002} $ $ \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+} \frac{VALUE}{0.019} - \frac{CL\%}{90} $ $ \sim \frac{CL\%}{0.019} - \frac{CL\%}{90} $ $ \Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-})/\Gamma_{\text{total}} $ $ \frac{VALUE}{VALUE} - \frac{EVTS}{2} $ seen $ 2 $ $ \Gamma(\eta\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+}) $ $ \frac{VALUE}{0.12} - \frac{CL\%}{90} $ $ \sim \frac{CL\%}{0.08} - \frac{CL\%}{90} $ $ \Gamma(\overline{K}^{0}K^{+})/\Gamma(\overline{K}^{0}\pi^{+}) $ $ VALUE - \frac{CL\%}{90} $ $ \Gamma(\overline{K}^{0}K^{+})/\Gamma(\overline{K}^{0}\pi^{+}) $ $ VALUE - \frac{CL\%}{0.019} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ Γ_{39}/Γ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$
27 AGUILAR-BENITEZ 87F compine $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ ALUE (nanobarns) EVTS .20 \pm 0.04 OUR FIT Error includ .18 \pm 0.04 \pm 0.04 175 .175 .04 \pm 0.04 0.00 IT FIT Error includ .022 \pm 0.000 OUR FIT Error includ .022 \pm 0.006 1 2 • We do not use the following .28 AGUILAR-BENITEZ 87F compine ($K^-\pi^+\pi^+\pi^0$)/ $\Gamma(K^-\pi^+\pi^+\pi^0)$ / $\Gamma(K^-\pi^+\pi^0)$ / $\Gamma(K^-\pi^+\pi^0)$ / $\Gamma(K^-\pi^+\pi^0)$ / $\Gamma(K^-\pi^0)$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{E}$ Es scale factor of 1.1. BALTRUSAIT86E MRK3 DOCUMENT ID TECN udes scale factor of 1.1. 28 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR DOCUMENT ID TECN ANJOS 89E TPS AGUILAR 83B HYBR DOCUMENT ID TECN 29 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR	pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • $\pi^- p 360 \text{ GeV}$ pological normalization. $\Gamma_{26}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $\underline{COMMENT}$ Photoproduction $\pi^- p, 360 \text{ GeV}$ Γ_{27}/Γ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • • • • • • • • • • • • • • • •	$ \begin{array}{lll} \Gamma(\pi^{+}\pi^{+}\pi^{-} & (\text{non-resonant})), \\ \frac{VALUE}{O.027\pm0.007\pm0.002} \\ \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+}) \\ \frac{VALUE}{<0.4} & \frac{Ct\frac{3c}{2c}}{90} \\ \Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-})/\Gamma_{\text{total}} \\ \frac{VALUE}{\sqrt{ALUE}} & \frac{Ct\frac{3c}{2c}}{2c} \\ \Gamma(\eta\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+}) \\ \frac{VALUE}{\sqrt{ALUE}} & \frac{Ct\frac{3c}{2c}}{90} \\ \Gamma(\omega\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+}) \\ \frac{VALUE}{\sqrt{ALUE}} & \frac{Ct\frac{3c}{2c}}{90} \\ \Gamma(\overline{K}^{0}K^{+})/\Gamma(\overline{K}^{0}\pi^{+}) \\ \frac{VALUE}{\sqrt{ALUE}} & \frac{Ct\frac{3c}{2c}}{2c} \\ 0.30\pm0.08 & \text{OUR AVERAGE} \\ 0.317\pm0.086\pm0.048 & 31 \\ 0.25\pm0.15 & 6 \end{array} $	////////////////////////////////////	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ Γ_{39}/Γ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$
27 AGUILAR-BENITEZ 87F compine $r(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $r(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $r(e^-e^- \to \psi(3770)) \times \Gamma(K)$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{E}$ Es scale factor of 1.1. BALTRUSAIT86E MRK3 DOCUMENT ID TECN udes scale factor of 1.1. 28 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR DOCUMENT ID TECN ANJOS 89E TPS AGUILAR 83B HYBR DOCUMENT ID TECN 29 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR	pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • $\pi^- p 360 \text{ GeV}$ pological normalization. $\Gamma_{26}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $\underline{COMMENT}$ Photoproduction $\pi^- p, 360 \text{ GeV}$ Γ_{27}/Γ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • • • • • • • • • • • • • • • •	$\Gamma(\pi^{+}\pi^{+}\pi^{-} \text{ (non-resonant)}), \frac{VALUE}{0.027 \pm 0.007 \pm 0.002}$ $\Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+}\frac{VALUE}{0.019} - \frac{CL\%}{90}$ $\Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma(K^{-}\pi^{+}\frac{VALUE}{0.019} - \frac{CL\%}{90}$ $\Gamma(\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0})/\Gamma_{\text{total}}\frac{VALUE}{0.12} - \frac{EVTS}{90}$ seen $\Gamma(\pi\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+})$ $\frac{VALUE}{0.12} - \frac{CL\%}{90}$ $\Gamma(\omega\pi^{+})/\Gamma(K^{-}\pi^{+}\pi^{+})$ $\frac{VALUE}{0.08} - \frac{CL\%}{90}$ $\Gamma(\overline{K}^{0}K^{+})/\Gamma(\overline{K}^{0}\pi^{+})$ $\frac{VALUE}{0.30 \pm 0.08 \text{ OUR AVERAGE}}$ $0.317 \pm 0.086 \pm 0.048 - 31$ $0.25 \pm 0.15 - 6$ $\Gamma(K^{+}K^{-}\pi^{+})/\Gamma_{\text{total}}$ $VALUE - EVTS$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ Γ_{39}/Γ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$
27 AGUILAR-BENITEZ 87F comping $(e^+e^- \to \psi(3770)) \times \Gamma(K)$ $(ALUE (nanobans)) \times \Gamma(K)$ $(ALUE (nanoba$	uted the branching ratio by to $(-\pi^+\pi^+\pi^0)/\Gamma_{\rm total}$ $\frac{DOCUMENT\ ID}{E}$ Es scale factor of 1.1. BALTRUSAIT86E MRK3 DOCUMENT ID TECN udes scale factor of 1.1. 28 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR DOCUMENT ID TECN ANJOS 89E TPS AGUILAR 83B HYBR DOCUMENT ID TECN 29 AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 87F HYBR data for averages, fits, limits, AGUILAR 86B HYBR	pological normalization. $\sigma \Gamma_{26}/\Gamma$ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • $\pi^- p 360 \text{ GeV}$ pological normalization. $\Gamma_{26}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $\underline{COMMENT}$ Photoproduction $\pi^- p, 360 \text{ GeV}$ Γ_{27}/Γ $\underline{COMMENT}$ $\pi p, pp 360,400 \text{ GeV}$ etc. • • • • • • • • • • • • • • • • • • •	$ \Gamma(\pi^{+}\pi^{+}\pi^{-} \text{ (non-resonant)}), \\ \frac{VALUE}{0.027 \pm 0.007 \pm 0.002} $ $ \Gamma(\pi^{+}\pi^{+}\pi^{-}\pi^{0})/\Gamma(K^{-}\pi^{+}\pi^{+} \frac{VALUE}{0.04} - \frac{CL\%}{90} - \frac{CL\%}{0.04} - \frac{CL\%}{90} - \frac{CL\%}{0.019} - \frac{CL\%}{90} - \frac{CL\%}{0.019}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ $+\frac{2}{3}\Gamma_{30}$ Γ_{39}/Γ_{39

 $D^0\pi^+$ using ADLER 88c.

LUE CLY, EVTS DOCUMENT ID TECN COMMENT 10 124±0.012 OUR FIT • We do not use the following data for averages, fits, limits, etc. • • • 0.25 ±0.20 5 38 BAILEY 84 SILL Hadroproduction 10.14 90 SCHINDLER 81 MRX $\mathbb{E}_{Cn}^{Sp} = 3.771 \text{ GeV}$ 10.15 90 34 PICCOLO 77 MRK1 $\mathbb{E}_{Cn}^{Sp} = 3.771 \text{ GeV}$ 10.15 90 34 PICCOLO 77 MRK1 $\mathbb{E}_{Cn}^{Sp} = 3.771 \text{ GeV}$ 10.15 90 34 PICCOLO 77 MRK1 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.15 90 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.15 90 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.15 90 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.15 90 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.15 90 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.15 90 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.15 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.15 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.15 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.15 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.16 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.16 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.16 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.16 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.16 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.16 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.16 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.16 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.16 $\mathbb{E}_{Cn}^{Sp} = 4.03 \text{ GeV}$ 10.17	ALUE CLS EVTS DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • • • 1.25 ±0.20 5 33 BAILEY 84 SILI Hadroproduction 2.5 ±0.20 5 34 PICCOLO 77 MRK1 $E_{m}^{SC} = 3.771 \text{ GeV}$ 2.60.15 90 34 PICCOLO 77 MRK1 $E_{m}^{SC} = 3.771 \text{ GeV}$ 3.30 ne event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. 3.40 Obtained from $\sigma \times BR$ values of table I. $(K + K - \pi^{+} \text{ (non-resonant)}) / \Gamma_{\text{total}} \qquad \Gamma_{\text{total}} \qquad \Gamma_{\text{total}} = \frac{1}{10039 \pm 0.0009} \text{ OUR FIT} \qquad POCUMENT ID TECN COMMENT}$ 1.050 ±0.009 OUR FIT Error includes scale factor of 1.1. $(K + K - \pi^{+} \text{ (non-resonant)}) / \Gamma_{\text{K}} (K - \pi^{+} \pi^{+}) \qquad \Gamma_{\text{total}} = \frac{1}{10039 \pm 0.0009} \text{ OUR FIT} \qquad Photoproduction}$ 1.050 ±0.009 OUR FIT Error includes Solid Fig. SBALTRUSAIT85E MRK3 $E_{m}^{SC} = 3.77 \text{ GeV}$ 35 This measurement excludes contributions to $K^{+} K^{-} \pi^{+}$ from $\phi \pi^{+}$ and $K^{*} (892)^{0} K^{+}$. 1. $(K + K - \pi^{+} \pi^{0} \text{ (non-}\phi)) / \Gamma_{\text{K}} (K - \pi^{+} \pi^{+}) \qquad \Gamma_{\text{total}} = \frac{1}{1003 \pm 0.009} \text{ OUR AVERAGE}$ 1.050 ±0.009 OUR FIT Error includes Solid Fig. SBALTRUSAIT85E MRK3 $E_{m}^{SC} = 3.77 \text{ GeV}$ 35 This measurement excludes contributions to $K^{+} K^{-} \pi^{+}$ from $\phi \pi^{+}$ and $K^{*} (892)^{0} K^{+}$. 1. $(K + K - \pi^{+} \pi^{0} \text{ (non-}\phi)) / \Gamma_{\text{K}} (K - \pi^{+} \pi^{+}) \qquad \Gamma_{\text{total}} = \frac{1}{1003 \pm 0.009} \text{ ODG}$ 36 ANJOS 89 ETPS Photoproduction Photoproductio	"(K+K-π+) These mea	$/\Gamma(K^-\pi^+\pi^+)$	+) ot distinguish possil	(Γ ₄	6+ ½Γ5. onant si	$_{3}+\frac{2}{3}\Gamma_{54})/(\Gamma_{24}+\frac{2}{3}\Gamma_{30})$
0.25 ± 0.20 5 33 BAILEY 84 SILI Hadroproduction SCHINDLER 81 MRK2 $\frac{1}{25}$ $\frac{1}{65}$ -3.771 GeV $\frac{3}{10}$ pour scholars with $\frac{1}{10}$ $\frac{1}{$	0.25 ± 0.20 5 33 BAILEY 84 SILI Hadroproduction CO.14 90 SCHINDLER 81 MRK2 $E_{m}^{e} = 3.771 \text{ GeV}$ 33 One event consistent with $D^{\pm} \rightarrow \phi \pi^{+}$. 34 Obtained from $\sigma \times \text{BR}$ values of table I. $(K^{+}K^{-}\pi^{+} \text{ (non-resonant)})/\Gamma_{\text{total}} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	0.124±0.012	<u>CL%EVT5</u> OUR FIT	DOCUMENT ID		<u>TECN</u>	COMMENT
SCHINDLER 81 MRK2 $\frac{E_{CR}^{ch}}{E_{CR}^{ch}} = 3.771 \text{GeV}$ 3d PICCOLO 77 MRK1 $\frac{E_{CR}^{ch}}{E_{CR}^{ch}} = 4.03 \text{GeV}$ 3d One event consistent with $\frac{1}{2} + \frac{1}{2}	CO.14 90 34 PICCOLO 77 MRK1 $E_{\rm cm}^{\rm em} = 3.771~{\rm GeV}$ (C.15 90 $3^4 {\rm PICCOLO}$ 77 MRK1 $E_{\rm cm}^{\rm em} = 3.771~{\rm GeV}$ $3^4 {\rm PICCOLO}$ 77 MRK1 $E_{\rm cm}^{\rm em} = 4.03~{\rm GeV}$ $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $1^3 {\rm One}$ event consistent with $D^$						
30.15 90 $\frac{34}{\text{PICCOLO}}$ 77 MRK1 $\frac{\text{E}_{CTN}^{\text{eff}}}{\text{Comment}} = 4.03 \text{ GeV}$ 30.3 one event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. $\frac{4}{\text{Obtained from } \sigma \times \text{BR values of table I}}$. $K^{+}K^{-}\pi^{+}$ (non-resonant))/ Γ_{total} $\frac{DOCUMENT\ ID}{DOSP+0.0009\ OUR\ FIT}$ $\frac{DOCUMENT\ ID}{DOSP+0.0009\ OUR\ FIT}$ $\frac{EVTS}{DOCUMENT\ ID}$ $\frac{DOCUMENT\ ID}{IECN}$ $\frac{FECN}{COMMENT}$	34 PICCOLO 77 MRK1 $E_{\rm Cm}^{\rm ee} = 4.03~{\rm GeV}$ 33 One event consistent with $D^{\pm} \rightarrow \phi \pi^{+}$. 33 One event consistent with $D^{\pm} \rightarrow \phi \pi^{+}$. 34 Obtained from $\sigma \times {\rm BR}$ values of table 1. $(K^{+}K^{-}\pi^{+} ({\rm non-resonant}))/\Gamma_{\rm total} \qquad \Gamma_{46}/\Gamma_{\rm AUE} \qquad DOCUMENT 1D \qquad DOCUMENT 1D \qquad COMMENT						
3 One event consistent with $D^{\pm} \rightarrow \phi \pi^{+}$. 4 Obtained from $\sigma \times BR$ values of table I. $K^{+}K^{-}\pi^{+}$ (non-resonant))/ Γ_{total} $D_{\text{COMMENT ID}}$ D_{\text	33 One event consistent with $D^{\pm} \rightarrow \phi \pi^{\pm}$. 34 Obtained from $\sigma \times$ BR values of table I. $(K^{+}K^{-}\pi^{+} (\text{non-resonant}))/\Gamma_{\text{total}} \qquad \Gamma_{46}/\Gamma_{\text{20039}\pm0.0009} \text{ OUR FIT} \qquad \Gamma_{\text{error}} \text{ includes scale factor of} 1.1.$ $(K^{+}K^{-}\pi^{+} (\text{non-resonant}))/\Gamma_{\text{(}}K^{-}\pi^{+}\pi^{+}) \qquad \Gamma_{46}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $(K^{+}K^{-}\pi^{+} (\text{non-resonant}))/\Gamma_{\text{(}}K^{-}\pi^{+}\pi^{+}) \qquad \Gamma_{46}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $(K^{+}K^{-}\pi^{+} (\text{non-resonant}))/\Gamma_{\text{(}}(K^{-}\pi^{+}\pi^{+}) \qquad \Gamma_{46}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $(K^{+}K^{-}\pi^{+} (\text{non-resonant}))/\Gamma_{\text{0050}\pm0.009} \text{ OUR FIT} \qquad \Gamma_{\text{0050}\pm0.009} \text{ OUR FIT}$ $(L^{09}\pm0.008\pm0.006 \qquad 95 \qquad \text{ANJOS} \qquad 88 \qquad \text{SILI} \qquad \text{Photoproduction}$ $(L^{09}\pm0.002\pm0.006 \qquad 95 \qquad \text{ANJOS} \qquad 88 \qquad \text{SILI} \qquad \text{Photoproduction}$ $(K^{+}K^{-}\pi^{+}\pi^{0} (\text{non-}\phi))/\Gamma_{\text{(}}(K^{-}\pi^{+}\pi^{+}) \qquad \Gamma_{49}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $(K^{+}K^{-}\pi^{+}\pi^{0} (\text{non-}\phi))/\Gamma_{\text{(}}(K^{-}\pi^{+}\pi^{+}) \qquad \Gamma_{49}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{0} (\text{non-res.}))/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{001}}$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-} (\text{non-res.}))/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{001}}$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-} (\text{non-res.}))/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{001}}$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-} (\text{non-res.}))/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{001}}$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-} (\text{non-res.}))/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{001}}$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-} (\text{non-res.}))/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{001}}$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-} (\text{non-res.}))/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{001}}$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-} (\text{non-res.}))/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{001}}$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{+}\pi^{-} (\text{non-res.}))/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{001}}$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{+})/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{001}}$ $(L^{0}K^{+}K^{-}\pi^{+}\pi^{+})/\Gamma_{\text{total}} \qquad \Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{\text{51}}/\Gamma_{51$						
A Obtained from $\sigma \times$ BR values of table I. $K^+K^-\pi^+ \text{ (non-resonant)}/\Gamma_{\text{total}} \qquad \Gamma_{46}/\Gamma_{\text{DOCUMENT ID}} \qquad \Gamma_{\text{DOCUMENT ID}} \qquad \Gamma_{DOCUMENT I$	34 Obtained from $\sigma \times$ BR values of table I. $\frac{(K+K-\pi^+ (\text{non-resonant}))}{\Gamma_{\text{total}}} = \frac{DOCUMENT\ ID}{DOCOMPNT\ ID} = \frac{DOCUMENT\ ID}{DOCOMPNT\ ID} = \frac{DOCUMENT\ ID}{TECN} = \frac{C(K+K-\pi^+ (\text{non-resonant}))}{\Gamma_{\text{total}}} = \frac{DOCUMENT\ ID}{TECN} = \frac{COMMENT}{COMMENT} = \frac{C(K+K-\pi^+ (\text{non-resonant}))}{\Gamma_{\text{total}}} = \frac{CVTS}{DOCUMENT\ ID} = \frac{DOCUMENT\ ID}{TECN} = \frac{COMMENT}{COMMENT} = \frac{COMMENT}{35} = C$				17	MKKI	Ecm = 4.03 GeV
$\frac{DOCUMENT iD}{K^+K^-\pi^+ (non-resonant)}/\Gamma(K^-\pi^+\pi^+) \frac{DOCUMENT iD}{EVTS} \frac{DOCUMENT iD}{DOCUMENT iD} \frac{COMMENT}{TECN} \frac{COMMENT}{COMMENT} \frac{COMMENT}{TECN} \frac{COMMENT}{TECN} \frac{COMMENT}{COMMENT} \frac{COMMENT}{TECN} \frac{COMMENT}{TEC$	DOCUMENT ID 1.0039±0.0009 OUR FIT Error includes scale factor of 1.1. 1.1.						
$K + K - \pi^{+} \text{ (non-resonant)}) / \Gamma (K - \pi^{+} \pi^{+}) \qquad \qquad \Gamma_{46} / (\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $LUE \qquad \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LOBO + 0.009 \text{ OUR ANERAGE}$ $LOBO + 0.009 \text{ OUR ANERAGE}$ $LOBO + 0.009 \text{ 37} \qquad 35 \text{ BALTRUSAIT85E MRK3} \qquad E_{em}^{em} = 3.77 \text{ GeV}$ $5 \text{ This measurement excludes contributions to } K + K - \pi^{+} \text{ from } \phi \pi^{+} \text{ and } K^{*} (892)^{0} K^{+}.$ $K + K - \pi^{+} \pi^{0} \text{ (non-}\phi)) / \Gamma (K - \pi^{+} \pi^{+}) \qquad \Gamma_{49} / (\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $LUE \qquad CLS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ $LUE \qquad CLS \qquad EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$ LUE	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALUE		DOCUMENT ID			Γ ₄₆ /Γ
EVTS DOCUMENT ID TECN COMMENT SO ±0.009 OUR FIT SO ±0.009 OUR AVERAGE M9 ±0.008 ±0.006 95 AN JOS 88 SILI Photoproduction SO ±0.009 OUR AVERAGE M9 ±0.008 ±0.009 37 AN JOS 88 SILI Photoproduction $\mathcal{E}_{CM}^{ep} = 3.77 \text{ GeV}$ This measurement excludes contributions to $K^+K^-\pi^+$ from $\phi\pi^+$ and K^* (892) K^+ . $K^+K^-\pi^+\pi^0$ (non- ϕ))/ $\Gamma(K^-\pi^+\pi^+)$ LUE CLY DOCUMENT ID OL25 90 36 AN JOS 89 ETPS Photoproduction $K^+K^-\pi^+\pi^+\pi^-$ (non-res.))/ Γ_{total} LUE CLY EVTS DOCUMENT ID TECN COMMENT Photoproduction $K^+K^-\pi^+\pi^+\pi^-$ (non-res.))/ Γ_{total} EVTS DOCUMENT ID TECN COMMENT TECN TECN COMMENT TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TECN TECN COMMENT TECN	$\frac{ALUE}{0.050\pm0.009} \underbrace{\text{CUMENT ID}}_{0.050\pm0.009} \underbrace{\text{COMMENT}}_{0.050\pm0.009} \underbrace{\text{COMMENT}}_{0.050\pm0.009} \underbrace{\text{COMMENT}}_{0.050\pm0.009} \underbrace{\text{COMMENT}}_{0.050\pm0.009} \underbrace{\text{COMMENT}}_{0.050\pm0.0000} \underbrace{\text{COMMENT}}_{0.050\pm0.0000} \underbrace{\text{COMMENT}}_{0.050\pm0.000} \underbrace{\text{COMMENT}}_{0.050\pm0.000} \text$.0039±0.0009	OUR FIT Erro	or includes scale fac	tor of	1.1.	
350 ±0.009 OUR AVERAGE 149 ±0.008 ±0.006 95 AN JOS 88 SILI Photoproduction 159 ±0.026 ±0.009 37 35 BALTRUSAIT85E MRK3 $E_{\rm cm}^{\rm ge} = 3.77 {\rm GeV}$ 5 This measurement excludes contributions to $K^+ K^- \pi^+$ from $\phi \pi^+$ and $K^* (892)^0 K^+$. $K^+ K^- \pi^+ \pi^0 ({\rm non-}\phi))/\Gamma (K^- \pi^+ \pi^+)$ $E_{\rm LUE}$ 0.25 90 36 AN JOS 89E TPS 6 Total minus ϕ component. $E_{\rm LUE}$ 10.25 90 36 AN JOS 89E TPS 6 Total minus ϕ component. $E_{\rm LUE}$ 10.30 90 12 AN JOS 88 SILI Photoproduction $E_{\rm LUE}$ 10.31 Photoproduction $E_{\rm LUE}$ 10.32 Photoproduction $E_{\rm LUE}$ 10.33 90 12 AN JOS 88 SILI Photoproduction $E_{\rm LUE}$ 10.44 EVTS 10.55 Photoproduction $E_{\rm LUE}$ 10.56 Photoproduction $E_{\rm LUE}$ 10.57 Photoproduction	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALUE	EVTS	t))/Γ(Κ ⁻ π ⁺ π ⁺ <u>DOCUMENT ID</u>	·) —–	TECN	$\frac{\Gamma_{46}/(\Gamma_{24}+\frac{2}{3}\Gamma_{30})}{\frac{COMMENT}{}}$
35 BALTRUSAIT85E MRK3 $E_{Cm}^{ee} = 3.77 \text{ GeV}$ 5 This measurement excludes contributions to $K^+K^-\pi^+$ from $\phi\pi^+$ and $K^*(892)^0K^+$. $K^+K^-\pi^+\pi^0$ (non- ϕ))/ $\Gamma(K^-\pi^+\pi^+)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
This measurement excludes contributions to $K^+K^-\pi^+$ from $\phi\pi^+$ and $K^*(892)^0K^+$. $K^+K^-\pi^+\pi^0$ (non- ϕ))/ $\Gamma(K^-\pi^+\pi^+)$ $\Gamma_{49}/(\Gamma_{24}+\frac{2}{3}\Gamma_{30})$ $\Gamma_{49}/(\Gamma_{44}+\frac{2}{3}\Gamma_{44})$ $\Gamma_{49}/(\Gamma_{44}+\frac{2}{3}\Gamma_{44$	35 This measurement excludes contributions to $K^+K^-\pi^+$ from $\phi\pi^+$ and $K^*(892)^0K^+$. $(K^+K^-\pi^+\pi^0 \pmod{\phi})/\Gamma(K^-\pi^+\pi^+) \qquad \qquad \Gamma_{49}/(\Gamma_{24}+\frac{2}{3}\Gamma_{30})$ $(K^+K^-\pi^+\pi^0 \pmod{\phi})/\Gamma(K^-\pi^+\pi^+) \qquad \qquad \Gamma_{49}/(\Gamma_{24}+\frac{2}{3}\Gamma_{30})$ $(K^+K^-\pi^+\pi^0 \pmod{\phi})/\Gamma(K^-\pi^+\pi^+) \qquad \qquad \Gamma_{49}/(\Gamma_{24}+\frac{2}{3}\Gamma_{30})$ $(K^+K^-\pi^+\pi^+\pi^-\pmod{\phi})/\Gamma(10) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+)/\Gamma(10) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-K^-\pi^+\pi^+) \qquad \qquad \Gamma_{50}/\Gamma(10)$ $(K^-\pi^+\pi^+\pi^-)/\Gamma(10) \qquad \Gamma_{50}/\Gamma(10)$ $(K^-\pi^+\pi^0)/\Gamma(10) \qquad \Gamma_{50}/\Gamma(10)$ $(K^-\pi^+\pi^0)/\Gamma(10) \qquad \Gamma_{50}/\Gamma(10)$ $(K^-\pi^+\pi^0)/\Gamma(10) \qquad \Gamma_{50}/\Gamma(10)$ $(K^-\pi^+\pi^-)/\Gamma_{50}/\Gamma(10)$ $(K^-\pi^+\pi^-)/\Gamma_{$	$.049 \pm 0.008 \pm 0$.006 95	ANJOS	88	SILI	Photoproduction
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{(K+K-\pi^+\pi^0 \ (\text{non-}\phi))/\Gamma(K^-\pi^+\pi^+)}{\text{ALUE}} \qquad \frac{\text{CL}\%}{\text{SO}} \qquad \frac{\text{DOCUMENT ID}}{\text{36 ANJOS}} \qquad \frac{\text{TECN}}{\text{89E}} \qquad \frac{\text{COMMENT}}{\text{Photoproduction}}$ $\frac{36 \ \text{Total minus} \ \phi \ \text{component}}{\text{CO.03}} \qquad \frac{36 \ \text{ANJOS}}{\text{90}} \qquad \frac{89E}{\text{TPS}} \qquad \frac{\text{TPS}}{\text{Photoproduction}}$ $\frac{16 \ (K+K^-\pi^+\pi^+\pi^- \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.03}} \qquad \frac{\Gamma_{\text{51}}/\Gamma_{\text{COMMENT ID}}}{\text{ANJOS}} \qquad \frac{1ECN}{\text{88 SILI}} \qquad \frac{COMMENT}{\text{Photoproduction}}$ $\frac{16 \ (K+K^-\pi^+\pi^+\pi^- \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.03}} \qquad \frac{12 \ \text{ANJOS}}{\text{88 SILI}} \qquad \frac{1ECN}{\text{Photoproduction}}$ $\frac{16 \ (K+K^-\pi^+\pi^+\pi^- \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.03}} \qquad \frac{12 \ \text{ANJOS}}{\text{88 SILI}} \qquad \frac{1ECN}{\text{Photoproduction}}$ $\frac{16 \ (K+K^-\pi^+\pi^+\pi^- \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.057} \pm 0.001} \qquad \frac{1ECN}{\text{COMMENT ID}} \qquad \frac{1ECN}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+\pi^- \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{Co.003}} \qquad \frac{12 \ \text{ANJOS}}{\text{ANJOS}} \qquad \frac{88}{\text{SILI}} \qquad \frac{1}{\text{Photoproduction}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \pi^+ \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{COMMENT ID}} \qquad \frac{1ECN}{\text{COMMENT}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \pi^+ \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.000}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \pi^+ \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \pi^+ \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \ (\text{non-res.})}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \ (\text{non-res.})/\Gamma_{\text{total}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \ (\text{non-res.})/\Gamma_{\text{total}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \ (\text{non-res.})/\Gamma_{\text{total}}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \ (\text{non-res.})/\Gamma_{\text{total}}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $16 \ (K+K^+\pi^+\pi^+ \ $	$.059 \pm 0.026 \pm 0$.009 37	35 BALTRUSAI	Γ85∈	MRK3	$E_{cm}^{ee} = 3.77 \text{ GeV}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{(K+K-\pi^+\pi^0 \ (\text{non-}\phi))/\Gamma(K^-\pi^+\pi^+)}{\text{ALUE}} \qquad \frac{\text{CL}\%}{\text{SO}} \qquad \frac{\text{DOCUMENT ID}}{\text{36 ANJOS}} \qquad \frac{\text{TECN}}{\text{89E}} \qquad \frac{\text{COMMENT}}{\text{Photoproduction}}$ $\frac{36 \ \text{Total minus} \ \phi \ \text{component}}{\text{CO.03}} \qquad \frac{36 \ \text{ANJOS}}{\text{90}} \qquad \frac{89E}{\text{TPS}} \qquad \frac{\text{TPS}}{\text{Photoproduction}}$ $\frac{16 \ (K+K^-\pi^+\pi^+\pi^- \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.03}} \qquad \frac{\Gamma_{\text{51}}/\Gamma_{\text{COMMENT ID}}}{\text{ANJOS}} \qquad \frac{1ECN}{\text{88 SILI}} \qquad \frac{COMMENT}{\text{Photoproduction}}$ $\frac{16 \ (K+K^-\pi^+\pi^+\pi^- \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.03}} \qquad \frac{12 \ \text{ANJOS}}{\text{88 SILI}} \qquad \frac{1ECN}{\text{Photoproduction}}$ $\frac{16 \ (K+K^-\pi^+\pi^+\pi^- \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.03}} \qquad \frac{12 \ \text{ANJOS}}{\text{88 SILI}} \qquad \frac{1ECN}{\text{Photoproduction}}$ $\frac{16 \ (K+K^-\pi^+\pi^+\pi^- \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.057} \pm 0.001} \qquad \frac{1ECN}{\text{COMMENT ID}} \qquad \frac{1ECN}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+\pi^- \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{Co.003}} \qquad \frac{12 \ \text{ANJOS}}{\text{ANJOS}} \qquad \frac{88}{\text{SILI}} \qquad \frac{1}{\text{Photoproduction}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \pi^+ \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{COMMENT ID}} \qquad \frac{1ECN}{\text{COMMENT}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \pi^+ \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.000}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \pi^+ \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \pi^+ \ (\text{non-res.}))/\Gamma_{\text{total}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \ (\text{non-res.})}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \ (\text{non-res.})/\Gamma_{\text{total}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \ (\text{non-res.})/\Gamma_{\text{total}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \ (\text{non-res.})/\Gamma_{\text{total}}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $\frac{16 \ (K+K^-\pi^+\pi^+ \ (\text{non-res.})/\Gamma_{\text{total}}}}{\text{CO.200}} \qquad \frac{1}{\text{COMMENT ID}} \qquad \frac{1}{\text{ECN}} \qquad \frac{1}{\text{COMMENT}}$ $16 \ (K+K^+\pi^+\pi^+ \ $	35 This measure	ement excludes	contributions to K	+ K-	π^+ from	0.00000000000000000000000000000000000
0.25 90 36 ANJOS 89E TPS Photoproduction 6 Total minus ϕ component. $K^+K^-\pi^+\pi^+\pi^- \text{ (non-res.))/}\Gamma_{\text{total}} \qquad \qquad \Gamma_{51}/\Gamma_{\text{LUE}} \qquad \qquad CL_{\frac{N}{2}} EVTS \qquad DOCUMENT ID \qquad TECN \\ 0.03 90 12 ANJOS 88 SILI Photoproduction \phi\pi^+)/\Gamma_{\text{total}} \qquad \qquad EVTS \qquad DOCUMENT ID \qquad TECN \\ 0.057 \pm 0.0011 \text{ OUR FIT} \qquad Error includes scale factor of 1.1.} • • We do not use the following data for averages, fits, limits, etc. • • • en 234 GEORGIO 85 SPEC + pN 400 GeV \phi\pi^+)/\Gamma(K^-\pi^+\pi^+) \qquad \qquad \Gamma_{53}/\Gamma_{24} + \frac{2}{3}\Gamma_{30} \frac{DOCUMENT ID}{173 \pm 0.010 \text{ OUR FIT}} \qquad \frac{EVTS}{173 \pm 0.010 \text{ OUR FIT}} \qquad \frac{DOCUMENT ID}{173 \pm 0.010 \text{ OUR FIT}} \qquad \frac{TECN}{173 \pm 0.010 \text{ OUR FIT}} \qquad \frac{EVTS}{173 \pm 0.010 \text{ OUR FIT}} \qquad \frac{DOCUMENT ID}{173 \pm 0.010 \text{ OUR AVERAGE}} \qquad \frac{EVTS}{184 \pm 0.021 \pm 0.011} \qquad 21 \qquad \text{BALTRUSAIT85E} \qquad MRK3 \qquad E_{CT}^{ee} = 3.77 \text{ GeV} \overline{K}^*(892)^0K^+)/\Gamma(K^-\pi^+\pi^+) \qquad \qquad \Gamma_{54}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30}) \qquad \frac{1}{100 \pm 0.000} \qquad \frac{1}{100 \text{ OUR FIT}} \qquad \frac{1}$	CO.25 90 36 ANJOS 89E TPS Photoproduction 36 Total minus ϕ component. $ (K+K-\pi^+\pi^+\pi^- (\text{non-res.}))/\Gamma_{\text{total}} \Gamma_{51}/\Gamma_{\text{ALUE}} CL\%_{\text{eVTS}} DOCUMENT ID TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TE$	$(K^+K^-\pi^+)$	π ⁰ (non-φ))/I	$\Gamma(K^-\pi^+\pi^+)$			[49/([24+\frac{2}{5}[30]
$K^+K^-\pi^+\pi^+\pi^-$ (non-res.))/Γtotal $K^+K^-\pi^+\pi^+\pi^-$ (non-res.))/Γtotal $K^+K^-\pi^+\pi^+\pi^-$ (non-res.))/Γtotal $K^-K^-\pi^+\pi^+\pi^-$ i^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			DOCUMENT ID		TECN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			36 ANJOS	89E	TPS	Photoproduction
LUE CLYS DOCUMENT ID TECN COMMENT $\phi\pi^+)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID TECN CHG COMMENT • • We do not use the following data for averages, fits, limits, etc. • • • en 234 GEORGIO 85 SPEC + pN 400 GeV $\phi\pi^+)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID TECN CHG COMMENT $\phi\pi^+)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID TECN COMMENT $\phi\pi^+)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID TECN COMMENT $\phi\pi^+)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID TECN COMMENT $\phi\pi^+)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID TECN COMMENT $\phi\pi^+)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID TECN COMMENT $\phi\pi^+)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID TECN COMMENT $\phi\pi^+)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID TECN COMMENT $\phi\pi^+, \phi^-)/\Gamma_{\text{total}}$ EVTS DOCUMENT ID TECN COMMENT $\phi\pi^+, \phi^ \phi\pi^+, \phi\pi^+$ $\phi\pi^+, \phi\pi^+$ $\phi\pi^+, \phi\pi^+$ $\phi\pi^+, \phi\pi^+$ $\phi\pi^+, \phi\pi^+$ $\phi\pi^+$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			oc))/F			Γ /Γ
90 12 ANJOS 88 SILI Photoproduction	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					wc.c	
$\phi \pi^{+}$ / Γ _{total} LUE EVTS DOCUMENT ID TECN ONS7 \pm 0.0011 OUR FIT Error includes scale factor of 1.1. • We do not use the following data for averages, fits, limits, etc. • We do not use the following data for averages, fits, limits, etc. • We do not use the following data for averages, fits, limits, etc. • • We do not use the following data for averages, fits, limits, etc. • • • • EVTS DOCUMENT ID TECN COMMENT TECN TECN COMMENT TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TECN COMMENT TECN TECN TECN COMMENT TECN TECN COMMENT TECN TECN TECN COMMENT TECN TECN TECN COMMENT TECN TECN TECN COMMENT TECN	$\frac{(\phi \pi^+)/\Gamma_{\text{total}}}{\text{ALUE}} = \underbrace{\text{EVTS}}_{\text{DOCUMENT ID}} \underbrace{\text{DOCUMENT ID}}_{\text{IECN}} \underbrace{\text{CHG}}_{\text{COMMENT}} \underbrace{\text{COMMENT}}_{\text{COMMENT}} \underbrace{\text{COMMENT}}$						
DOCUMENT ID TECN COMMENT EVTS DOCUMENT ID TECN CHAPTOR TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • • • 234 GEORGIO 85 SPEC + pN 400 GeV $(p\pi^+)/\Gamma(K^-\pi^+\pi^+)$ $(p\pi^+)/\Gamma(K$	ALUE				-	5,2,	
• • We do not use the following data for averages, fits, limits, etc. • • • • • en 234 GEORGIO 85 SPEC + pN 400 GeV $ \phi\pi^+)/\Gamma(K^-\pi^+\pi^+) $	• • We do not use the following data for averages, fits, limits, etc. • • • end of the following data for averages, fits, limits, etc. • • • end of the following data for averages, fits, limits, etc. • • • end of the following data for averages, fits, limits, etc. • • • end of the following data for averages, fits, limits, etc. • • • end of the following data for averages, fits, limits, etc. • • • end of the following data for averages, fits, limits, etc. • • • end of the following data for averages, fits, limits, etc. • • • end of the following data for averages, fits, limits, etc. • • • • end of the following data for averages, fits, limits, etc. • • • • end of the following data for averages, fits, limits, etc. • • • • • end of the following data for averages, fits, limits, etc. • • • • • end of the following data for averages, fits, limits, etc. • • • • • • end of the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	ALUE	EVTS	DOCUMENT ID		<u>TECN</u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{(\phi\pi^+)/\Gamma(K^-\pi^+\pi^+)}{\text{LOTS}} = \frac{\text{EVTS}}{\text{DOCUMENT ID}} = \frac{\text{TECN}}{\text{TECN}} = \frac{\text{COMMENT}}{\text{COMMENT}} = \frac{2}{3}\Gamma_{30} $ $ \frac{\text{LOUE}}{\text{LOT3} \pm 0.010 \text{ OUR FIT}} = \frac{\text{EVTS}}{\text{LOT3} \pm 0.010 \text{ OUR AVERAGE}} = \frac{\text{DOCUMENT ID}}{\text{LOT3} \pm 0.010 \text{ OUR AVERAGE}} = \frac{\text{NAIOS}}{\text{SALTRUSAIT85E}} = \frac{\text{SILI}}{\text{MRK3}} = \frac{\text{Photoproduction}}{\text{Em}} = \frac{2}{3}.77 \text{ GeV} $ $ \frac{(K^+(892)^0 K^+)/\Gamma(K^-\pi^+\pi^+)}{\text{LOS6} \pm 0.010 \text{ OUR FIT}} = \frac{\text{DOCUMENT ID}}{\text{LOS6} \pm 0.010 \text{ OUR AVERAGE}} = \frac{\text{DOCUMENT ID}}{\text{LOS6} \pm 0.010 \text{ OUR AVERAGE}} = \frac{\text{DOCUMENT ID}}{\text{LOS6} \pm 0.021 \pm 0.011} = \frac{14}{14} = \frac{\text{BALTRUSAIT85E}}{\text{BALTRUSAIT85E}} = \frac{\text{MRK3}}{\text{MRK3}} = \frac{2}{\text{Cm}} = \frac{2}{3}.77 \text{ GeV} $ $ \frac{(\phi\pi^+\pi^0)/\Gamma(K^-\pi^+\pi^+)}{\text{LOUE}} = \frac{\text{CL}_{N}^{N}}{\text{LOCMENT ID}} = \frac{\text{TECN}}{\text{COMMENT}} = \frac{\text{COMMENT}}{\text{COMMENT}} = \frac{1}{12} = \frac{1}{$						etc. • • •
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{4 \cup E}{0.073 \pm 0.010} \underbrace{\frac{EVTS}{0.073 \pm 0.010}} \underbrace{\frac{EVTS}{0.073 \pm 0.010}} \underbrace{\frac{OOCUMENT ID}{OOE RFIT}} \underbrace{\frac{FEN}{0.073 \pm 0.010}} \underbrace{\frac{COMMENT}{0.073 \pm 0.010}} \underbrace{\frac{EVTS}{0.007}} \underbrace{\frac{BALTRUSAIT85E}{BALTRUSAIT85E}} \underbrace{\frac{EVE}{MRK3}} \underbrace{\frac{EVE}{0.007}} \underbrace{\frac{EVTS}{0.007}} \underbrace{\frac{EVTS}{0.$			GEORGIO	85	SPEC	+ pN 400 GeV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.073 ± 0.010 OUR FIT .073 ± 0.010 OUR AVERAGE .071 ± 0.008 ± 0.007 84 ANJOS 88 SIL1 Photoproduction .084 ± 0.021 ± 0.011 21 BALTRUSAIT85E MRK3 $E_{\rm ce}^{\rm ec} = 3.77~{\rm GeV}$ $(\overline{K}^*(892)^0 K^+)/\Gamma(K^-\pi^+\pi^+)$ $F_{54}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})$ $F_{55}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30$	$(\phi \pi^+)/\Gamma(K)$	$^{-}\pi^{+}\pi^{+})$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	073+0.010.01	IR FIT	DOCUMENT_ID		TECN	COMMENT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.073±0.010 O	UR AVERAGE				
$ \frac{K^*(892)^0K^+)/\Gamma(K^-\pi^+\pi^+)}{LUE} = \frac{\text{EVTS}}{DOCUMENT\ ID} = \frac{\text{DOCUMENT\ ID}}{IECN} = \frac{\text{FSA}/(\Gamma_{24} + \frac{2}{3}\Gamma_{30})}{COMMENT} $ $ \frac{LOE}{DS6 \pm 0.010 \ OUR FIT} = \frac{\text{EVTS}}{DS6 \pm 0.010 \ OUR \ FIT} = \frac{\text{DOCUMENT\ ID}}{IECN} = \frac{\text{TECN}}{IECN} = \frac{\text{COMMENT}}{COMMENT} = \frac{\text{COMMENT}}{IECN} = \frac{1}{3}\Gamma_{30$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$.071 \pm 0.008 \pm 0$	0.007 84				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALUE	$0.084 \pm 0.021 \pm 0$.011 21	BALTRUSAI	T., 85E	MRK3	$E_{Cm}^{ee} = 3.77 \text{ GeV}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALUE	$(K^*(892)^0 K$	$^{+})/\Gamma(K^{-}\pi^{+}$	$\pi^+)$			$\Gamma_{54}/(\Gamma_{24}+\frac{2}{3}\Gamma_{30})$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALUE	EVTS			<u>TECN</u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ANIOS	99	SILI	Photograduction
$\frac{(\rho \pi^+ \pi^0)}{(\rho \pi^+ \pi^0)} / \Gamma(K^- \pi^+ \pi^+) \qquad \qquad \Gamma_{55} / (\Gamma_{24} + \frac{2}{3} \Gamma_{30}) \\ \frac{LUE}{0.28} \qquad \qquad \frac{CL\%}{90} \qquad \frac{DOCUMENT ID}{ANJOS} \qquad \frac{TECN}{89E} \qquad \frac{COMMENT}{Photoproduction} \\ \frac{(\rho \pi^+ \pi^+ \pi^-)}{\rho \pi^+ \pi^+ \pi^-} / \Gamma_{total} \qquad \qquad \Gamma_{56} / \Gamma_{total} \\ \frac{LUE}{0.002} \qquad \qquad \frac{CL\%}{90} \qquad 0 \qquad \text{ANJOS} \qquad 88 \qquad \text{SILI} \qquad \frac{COMMENT}{Photoproduction} \\ \pi^+ e^\pm \mu^\mp) / \Gamma_{total} \qquad \qquad \Gamma_{57} / \Gamma_{total} \qquad \Gamma_{57} / \Gamma_{total} \\ \text{Test of lepton family number conservation.} \\ \frac{LUE}{\rho \pi^+ \pi^+} \qquad \frac{CL\%}{EVTS} \qquad \frac{DOCUMENT ID}{DOCUMENT ID} \qquad \frac{TECN}{IECN} \qquad \frac{COMMENT}{COMMENT}$	$\frac{(\phi \pi^+ \pi^0)/\Gamma(K^- \pi^+ \pi^+)}{(0.24 + \frac{2}{3} \Gamma_{30})} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 89\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{24} + \frac{2}{3} \Gamma_{30})}{(0.28 90 \text{ANJOS} 90\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{55} + \frac{2}{3} \Gamma_{50})}{(0.28 90 \text{ANJOS} 90\text{ETPS}} = \frac{\Gamma_{55}/(\Gamma_{55}$						
LUE CL% DOCUMENT ID TECN COMMENT $\phi \pi^+ \pi^+ \pi^-$)/ Γ_{total} $UE CL\% EVTS DOCUMENT ID TECN COMMENT \pi^+ e^\pm \mu^\mp)/\Gamma_{\text{total}} Test of lepton family number conservation. LUE CL% EVTS DOCUMENT ID TECN COMMENT \Gamma_{57}/\Gamma \Gamma_{57}/\Gamma$	ALUE CL% DOCUMENT ID TECN COMMENT $(0\pi^+\pi^+\pi^-)/\Gamma_{ ext{total}}$ $(0\pi^+\pi^+\pi^-)/\Gamma_{ ext{total}}$ $(0\pi^+\pi^+\pi^-)/\Gamma_{ ext{total}}$ $(0\pi^+\pi^+\pi^-)/\Gamma_{ ext{total}}$ $(0\pi^+\pi^+\pi^-)/\Gamma_{ ext{total}}$ $(0\pi^+\pi^+\pi^-)/\Gamma_{ ext{total}}$ Test of lepton family number conservation. ALUE CL% EVTS DOCUMENT ID TECN COMMENT $(\pi^+e^\pm\mu^\mp)/\Gamma_{ ext{total}}$ Test of lepton family number conservation. ALUE CL% EVTS DOCUMENT ID TECN COMMENT						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			DOCUMENT ID	_	TECN	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALUE CL% EVTS DOCUMENT ID TECN COMMENT $(0.002 ext{ 90} ext{ 0} ext{ ANJOS} ext{ 88 SILI Photoproduction}$ $ (\pi^+ e^\pm \mu^\mp)/\Gamma_{\text{total}} ext{ Test of lepton family number conservation.} $ ALUE CL% EVTS DOCUMENT ID TECN COMMENT	<0.28					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALUE CL% EVTS DOCUMENT ID TECN COMMENT $(0.002 ext{ 90} ext{ 0} ext{ ANJOS} ext{ 88 SILI Photoproduction}$ $ (\pi^+ e^\pm \mu^\mp)/\Gamma_{\text{total}} ext{ Test of lepton family number conservation.} $ ALUE CL% EVTS DOCUMENT ID TECN COMMENT	·(+-+-+) /F				F /F
0.002 90 0 ANJOS 88 SILI Photoproduction $\pi^+ e^\pm \mu^\mp)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{57}/\Gamma_{\text{Test of lepton family number conservation.}}$	<0.002 $(\pi^+ e^\pm \mu^\mp)/\Gamma_{ ext{total}}$ Test of lepton family number conservation. ALUE CLY, EVIS DOCUMENT ID TECN COMMENT COMMENT	$(\varphi_{\mathcal{H}}, \mathcal{H}, \mathcal{H})$	// total	000000000000000000000000000000000000000		TECH	
$\pi^+e^\pm\mu^\mp)/\Gamma_{ ext{total}}$ $\Gamma_{ ext{57}}/\Gamma$ Test of lepton family number conservation.	$(\pi^+e^\pm\mu^\mp)/\Gamma_{ ext{total}}$ $\Gamma_{ ext{57}}/\Gamma$ Test of lepton family number conservation.	< 0.002					
Test of lepton family number conservation. LUE	Test of lepton family number conservation. ALUE CL% EVTS DOCUMENT ID TECN COMMENT				••		
		Test of leg	oton family num	ber conservation.			
	< 3.8 × 10 9 90 58 9 HAAS 88 (LEQ ESS = 10 GeV						

	, and an experience of the contract of the con	F)/	90)/F _{total}	ANJOS <u>DOCUMENT ID</u> ANJOS ber conservation. <u>DOCUMENT ID</u>	89E 88	TPS TECN SILI TECN	Photoproduction
4	The branching ratios are normalized to $D^0 \to K^-\pi^+$, $D^+ \to K^-\pi^+\pi^+$, and $D^{*+} \to D^0\pi^+$ using ADLER 88c.	37 The branchin $^{00}\pi^+$ using $^{10}\pi^+e^+e^-)/^{10}$	ng ratios are norm ADLER 880.	malized to $\mathcal{D}^0 o \kappa$	_π +	, D ⁺ ~→	$K^-\pi^+\pi^+$, and $D^{*+}\rightarrow$
$D^0\pi^+$ using ADLER 88c. $\pi^+e^+e^-)/\Gamma_{ m total}$	$(\pi^+e^+e^-)/\Gamma_{ ext{total}}$ Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interac-	tions.					
$D^0\pi^+$ using ADLER 88c. $\pi^+e^+e^-)/\Gamma_{\rm total} \qquad \qquad \Gamma_{\rm 58}/\Gamma$ Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions.	Test for $\Delta C = 1$ weak neutral current. Allowed by higher-order electroweak interactions.			38 HAAS			
$D^0\pi^+$ using ADLER 88C. $\pi^+e^+e^-)/\Gamma_{\rm total}$ Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. $\frac{CL\%}{LUE} = \frac{CL\%}{LVTS} = \frac{DOCUMENT\ ID}{LUE} = \frac{TECN}{LUE} = \frac{COMMENT}{LUE}$	Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. CLY, EVTS DOCUMENT ID TECN COMMENT	³⁸ The branchir	g ratios are norr				*****
$D^0\pi^+$ using ADLER 88C. $\pi^+e^+e^-)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{\text{58}}/\Gamma_{\text{Test for }\Delta C} = 1 \text{ weak neutral current.} \text{Allowed by higher-order electroweak interactions.}$ $\frac{CLE}{2.6 \times 10^{-3}} \qquad \frac{CLE}{90} \qquad \frac{CLE}{38} \qquad \frac{EVTS}{38} \qquad \frac{DOCUMENT\;ID}{38\; HAAS} \qquad \text{88 CLEO} \qquad \frac{ECm}{ECm} = 10\; \text{GeV}$ $^8\text{ The branching ratios are normalized to } D^0 \rightarrow K^-\pi^+, D^+ \rightarrow K^-\pi^+\pi^+, \text{ and } D^{*+} \rightarrow K^-\pi^+\pi^+, \text{ and } D^{$	Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. ALUE CLY EVTS DOCUMENT ID TECN COMMENT $<2.6 \times 10^{-3}$ 90 39 38 HAAS 88 CLEO $E_{\rm cm}^{\rm ee}=10$ GeV $<2.6 \times 10^{-3}$ 90 $\times 10^{-3}$ 87 The branching ratios are normalized to $E_{\rm cm}^{\rm ee}=10$ GeV		Γ _{total}	witral current Allo	wad b	v higher	Γ ₅₉ /Γ
$D^0\pi^+$ using ADLER 88C. $\pi^+e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{\text{58}}/\Gamma$ Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. Γ_{total} $\Gamma_{\text{58}}/\Gamma$	Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. ALUE CLY EVTS DOCUMENT ID TECN COMMENT COM	$(\pi^+\mu^+\mu^-)/$	C = 1 weak ne				
$D^0\pi^+$ using ADLER 88C. $\pi^+e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. $\frac{CLK}{L} = \frac{CLK}{L} = \frac{EVTS}{39} = \frac{DOCUMENT\ ID}{38\ \text{HAAS}} = \frac{TECN}{8} = \frac{COMMENT}{8} = 10\ \text{GeV}$ 8 The branching ratios are normalized to $D^0 \to K^-\pi^+$, $D^+ \to K^-\pi^+\pi^+$, and $D^{*+} \to D^0\pi^+$ using ADLER 88C. $\pi^+\mu^+\mu^-)/\Gamma_{\text{total}}$ Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions.	Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. ALUE CL% EVTS DOCUMENT ID TECN COMMENT (2.6 \times 10 ⁻³ 90 39 38 HAAS 88 CLEO EC = 10 GeV 38 The branching ratios are normalized to $D^0 \to K^-\pi^+$, $D^+ \to K^-\pi^+\pi^+$, and $D^{*+} \to D^0\pi^+$ using ADLER 88c. $(\pi^+\mu^-\mu^-)/\Gamma_{\rm total}$ F59/ Γ Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions,	Test for △ tions,	C = 1 weak ne		-	_	
$D^0\pi^+$ using ADLER 88C. $\pi^+e^+e^-)/\Gamma_{total}$ Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. $CLK=0$ AB DOCUMENT ID TECN COMMENT 10 GeV 8 The branching ratios are normalized to $D^0\to K^-\pi^+$, $D^+\to K^-\pi^+\pi^+$, and $D^{*+}\to D^0\pi^+$ using ADLER 88C. $\pi^+\mu^+\mu^-)/\Gamma_{total}$ Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. $\pi^+\mu^+\mu^-$ DOCUMENT ID TECN COMMENT	Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. ALUE CL% EVTS DOCUMENT ID TECN COMMENT $<2.6 \times 10^{-3}$ 90 39 38 HAAS 88 CLEO $E_{\rm CM}^{\rm ee}=10$ GeV 38 The branching ratios are normalized to $D^0 \to K^-\pi^+$, $D^+ \to K^-\pi^+\pi^+$, and $D^{*+} \to D^0\pi^+$ using ADLER 88C. $(\pi^+\mu^+\mu^-)/\Gamma_{\rm total}$ Test for $\Delta C=1$ weak neutral current. Allowed by higher-order electroweak interactions. ALUE CL% EVTS DOCUMENT ID TECN COMMENT	Test for △	.C = 1 weak ne <u>CL%EVTS</u>	DOCUMENT ID		<u>TECN</u>	COMMENT

D^{\pm} PRODUCTION CROSS SECTION AT $\psi(3770)$

A compilation of the cross sections for the direct production of D^{\pm} mesons at or near the $\psi(3770)$ peak in $e^{+}e^{-}$ production. These cross sections are used for normalization of product branching fractions.

VALUE (nanobarns)			COMMENT
4.8 ±0.6 OUR FIT Error	r includes scale factor of 1.	2.	
4.8 ±0.5 OUR AVERAGE			
$4.2 \pm 0.6 \pm 0.3$	⁴¹ ADLER 8	8c MRK3	Ecm = 3.768 GeV
5.5 ±1.0	⁴² PARTRIDGE 8	4 CBAL	Ecm = 3.771 GeV
$6.00 \pm 0.72 \pm 1.02$	43 SCHINDLER 8	0 MRK2	Ecm = 3.771 GeV
• • • We do not use the fo	llowing data for averages,	fits, limits,	etc. • • •
9.1 ±2.0	44 PERUZZI 7	7 MRK1	Eee = 3.774 GeV

- ⁴¹ This measurement compares events with one detected D to those with two detected D mesons, to determine the the absolute cross section. ADLER 88c measure the ratio of cross sections (neutral to charged to be 1.36 \pm 0.23 \pm 0.14. This measurement does not include the decays of the $\psi(3770)$ not associated with charmed particle production.
- not include the decays of the $\psi(3770)$ not associated with charmed parases production. 42 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. PARTRIDGE 84 measures 6.4 ± 1.15 nb for the cross section. We take the phase space division of neutral and charged D mesons in $\psi(3770)$ decay to be 1.33, and we assume that the $\psi(3770)$ is an isosinglet to evaluated the cross sections. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction.
- 43 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. SCHINDLER 80 assume the phase space division of neutral and charged D mesons in $\psi(3770)$ decay to be 1.33, and that the $\psi(3770)$ is an isosinglet. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction.
- 44 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. The phase space division of neutral and charged D mesons in $\psi(3770)$ decay is taken to be 1.33, and $\psi(3770)$ is assumed to be an isosinglet. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction. We exclude this measurement from the average because of uncertainties in the contamination from τ lepton pairs. Also see RAPIDIS 77.

REFERENCES FOR D^{\pm}

BARLAG 90C 2PHY C (to be pub.) + Becker, Boehringer, Bosman+ ACCMOR Collab.) ANJOS 89 PRL 62 722 + Appel, Bean, Bracker+ (TPS Collab.) ANJOS 89E PL B223 267 + Appel, Bean, Bracker+ (TPS Collab.) AVERILL 89 PR D39 123 + Blockus, Brabson+ (HRS Collab.) AVERILL 89 PR D39 123 + Blockus, Brabson+ (HRS Collab.) ADLER 886 PRL 60 89 + Becker, Blaylock+ (Mark III Collab.) ALBRECHT 881 PL B210 267 + Becker, Blaylock+ (Mark III Collab.) ALBRECHT ANJOS 88 PRL 509 113 + Appel, Bean, Bracker+ (TPS Collab.) ANJOS 88 PRL 500 817 + Appel, Bean, Bracker+ (Mark III Collab.) ANJOS 88 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 88 PRL 500 137 + Appel, Bean, Bracker+ (Mark III Collab.) ANJOS 88 PRL 500 137 + Appel, Bean, Bracker+ (TPS Collab.) ANJOS 88 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 88 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 88 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 88 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 48 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 89 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 89 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 48 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 48 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 48 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 48 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 48 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 48 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 48 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 48 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS ANJOS 48 PRL 500 137 + Appel, Bean, Bracker+ (TRS Collab.) ANJOS 48				
ANJOS 898 PRL 62 722 + Appel. Bean, Bracker+ (TPS Collab.) AVERILL 89 PR D39 123 + Bebckus, Brabson- (HRS Collab.) AVERILL 89 PR D39 123 + Bebckus, Brabson- (HRS Collab.) ADLER 886 PRL 60 1375 + Beacker, Blaylock + (Mark III Collab.) ADLER 887 PRL 891 PR D39 123 + Bebckus, Brabson- (HRS Collab.) ADLER 888 PRL 60 1375 + Beacker, Blaylock + (Mark III Collab.) ALBRECHT 888 PRL 890 137 + Beacker, Blaylock + (Mark III Collab.) ANJOS 88 PRL 60 897 + Appel + Beacker, Blaylock + (Mark III Collab.) ANJOS 88 PRL 60 1914 + Beacker, Blaylock, Brabson- (ARGLIS Collab.) ANJOS 88 PRL 60 1914 + Hempstead, Jensen+ (CLEC Collab.) ANJOS 88 PRL 60 1914 + Hempstead, Jensen+ (CLEC Collab.) ANJOS 88 PRL 60 1914 + Hempstead, Jensen+ (CLEC Collab.) ADAMOVICH 87 EPL 4 887 + Weir, Abrans, Amidei+ (Mark III Collab.) ADAMOVICH 87 EPL 4 887 + Appel Beacker+ (FNAL TPS Collab.) ADAMOVICH 87 EPL 4 887 + Appel Beacker+ (FNAL TPS Collab.) ANJOS 88 CANTON BASE AND AND AND ADAMOVICH 87 EPL 4 887 + Appel Beacker+ (PANL TPS Collab.) AGUILAR- 87 PL B193 140 + Appel Beacker, Blaylock, Bolton+ (Agril III Collab.) AGUILAR- 87 PL B193 140 + Appel Beacker, Blaylock, Bolton+ (LEBC-EHS Collab.) AGUILAR- 87 PL B193 180 + Appel Beacker, Blaylock, Brown+ (Mark III Collab.) AGUILAR- 86 PR D33 2708 + Backer, Felst, Haldth + (LEBC-EHS Collab.) ABLATRUSAIT- 85E PRL 55 150 BALTRUSAIT- 85E PRL 56 1767 + Alton-Garbas Beacker, Playlock, Brown+ (Mark III Collab.) BALTRUSAIT- 85E PRL 56 1767 + Alton-Garbas Beacker, Playlock, Brown+ (Mark III Collab.) BALTRUSAIT- 85E PRL 56 1767 + Alton-Garbas Beacker, Playlock, Brown+ (Mark III Collab.) BALTRUSAIT- 85E PRL 56 1767 + Alton-Garbas Beacker, Playlock, Brown+ (Mark III Collab.) BALTRUSAIT- 85E PRL 56 1767 + Alton-Garbas Beacker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT- 85E PRL 56 1767 + Alton-Garbas Beacker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT- 85E PRL 56 1767 + Alton-Garbas Beacker, Playlock, Brown+ (Mark III Collab.) BALTRUSAIT- 85E PRL 56 1767 + Alton-Garbas Beacker, Playlock, Brown+ (Mark III Collab.) B	BARLAG	90C	ZPHY C (to be pub.)	+Becker, Boehringer, Bosman+ (ACCMOR Collab.)
ANJOS 89 PL B223 267 + Appel. Bean, Bracker+ (TPS Collab) AVERILL 89 PR D39 123 + Blockus, Brabson- (HRS Collab) ADLER 88 PRL 60 1375 + Becker, Blaylock+ (Mark III Collab) ALBRECHT 881 PL B210 267 + Becker, Blaylock+ (Mark III Collab) ALBRECHT 881 PL B210 267 + Becker, Blaylock+ (Mark III Collab) ALBRECHT 881 PL B210 267 + Becker, Blaylock+ (Mark III Collab) ALBRECHT 881 PL B210 267 + Becker, Blaylock+ (Mark III Collab) ALBRECHT 881 PL B209 113 + Arnold, Baroni+ (Tagged Photon Spectrometer Collab) AOKI 88 PL B209 113 + Arnold, Baroni+ (Tagged Photon Spectrometer Collab) AOKI 88 PRL 60 2587 + Hempstrad, Jensen+ (CLEG Collab) AOKI 88 PRL 60 2587 + Weir, Abrams, Amidei+ (Mark III Collab) AND ARAB 88 PR D37 2391 + Arnjos, Appel, Bracker+ (FNAL TPS Collab) ADAMOVICH 87 PL 4 887 + Alexandrov, Bolta+ (Photon Emulsion Collab) AGUILAR 877 PL B193 140 Aguilar-Benitez, Allison+ (LEBC-EHS Collab) AGUILAR 877 PL B193 140 Aguilar-Benitez, Allison+ (LEBC-EHS Collab) AGUILAR 872 PYHY C40 321 Aguilar-Benitez, Allison+ (LEBC-EHS Collab) AGUILAR 875 PYHY C35 551 Aguilar-Benitez, Allison+ (LEBC-EHS Collab) AGUILAR 877 PYHY C35 551 Aguilar-Benitez, Allison+ (LEBC-EHS Collab) AGUILAR 878 PYHY C33 339 PL B304 2601 PAL 86 PR D33 2708 + Becker, Blaylock, Brown+ (ACCMOR Collab) PAL 86 PR D33 2708 + Becker, Blaylock, Brown+ (Mark III Collab) PAL 86 PR D33 2708 + Becker, Blaylock, Brown+ (Mark III Collab) PAL 86 PR D33 2708 + Alson- (AICH, FNAL, GIFL, CYCH, OKARCH, COLLAB) PAL 1305 CORRAN 87 PL B193 318 + Becker, Blaylock, Brown+ (Mark III Collab) PAL 1305 CORRAN 87 PL B193 319 + Becker, Blaylock, Brown+ (Mark III Collab) PAL 86 PR D33 2708 + Alson- (AICH, FNAL, GIFL, CYCH, OKARCH, COLLAB) PAL 1305 CORRAN 97 PAL 1308 PAL 1305 CORRAN 97 PAL 1308 PA	ANJOS			+Appel, Bean, Bracker+ (TPS Collab.)
AVERILL 89 PR D39 123 + Blockus, Brabson- (HRS Collab.) ADLER 886 PRL 60 1375 + Becker, Blaylock+ (Mark III Collab.) ADLER 887 PRL 60 89 + Becker, Blaylock+ (Mark III Collab.) ADLER 888 PRL 60 897 + Boeckmann, Glasser+ (ARGUS Collab.) ANJOS 88 PRL 60 897 + Appet+ (Tagged Photon Spectrometre Collab.) ANJOS 88 PRL 60 1914 + Hempstead, Jensen+ (CLEG Collab.) ANJOS 88 PRL 60 1914 + Hempstead, Jensen+ (CLEG Collab.) ANJOS 88 PRL 60 1914 + Hempstead, Jensen+ (CLEG Collab.) ADAMOVICH 87 EPL4 887 - Welr, Abrans, Amidei+ (Mark III Collab.) ADAMOVICH 87 EPL4 887 - PL B199 107 + Alexandrov, Bolta+ (Photon Emulsion Collab.) ADLER 87 PL B199 1107 + Alexandrov, Bolta+ (Photon Emulsion Collab.) AGUILAR- 870 PL B199 140 - Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) AGUILAR- 877 EPHY C39 529 erratum AGUILAR- 878 PRL 8191 318 - Becker, Blaylock, Botton+ (LEBC-EHS Collab.) ABARLAG 878 EPHY C37 17 - Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) ABARTAG 878 PRT C37 139 + Becker, Bentinger, Bosman+ (ACCMOR Collab.) ABARTAG 878 PRHY C37 149 - Beather, Parkinsh, Word+ (LEBC-EHS Collab.) ABARTAG 878 PRHY C37 149 - Beather, Parkinsh, Word+ (LEBC-EHS Collab.) ABARTAG 878 PRHY C37 149 - Beather, Parkinsh, Word+ (LEBC-EHS Collab.) ABARTAG 878 PRHY C37 149 - Beather, Parkinsh, Word+ (LEBC-EHS Collab.) ABARTAG 878 PRHY C37 149 - Beather, Parkinsh, Word+ (LEBC-EHS Collab.) ABARTAG 878 PRHY C37 149 - Beather, Parkinsh, Word+ (LEBC-EHS Collab.) ABARTAG 878 PR B193 180 - PARKA 878 PR B193 180 - PARKA 878 PR B193 180 - PARKA 879			PRL 62 722	+Appel, Bean, Bracker+ (TPS Collab.)
ADLER 88B PRL 60 1375 + Becker, Blaylock+ (Mark III Collab.) ALBRECHT 88I PL B210 267 + Becker, Blaylock+ (Mark III Collab.) ALBRECHT 88I PL B210 267 + Becker, Blaylock+ (Mark III Collab.) ALBRECHT 88I PL B210 267 + Becker, Blaylock+ (Mark III Collab.) ALBRECHT 88I PL B210 267 + Becker, Blaylock+ (Mark III Collab.) ACMI 88 PRL 60 897 + Appel+ (Tagged Photon Spectrometer Collab.) ACMI 88 PRL 60 1614 + Arnold, Baroni+ (Tagged Photon Spectrometer Collab.) ACMI 88 PRL 60 1614 + Hempstead, Jensen+ (CLEG. Collab.) ACMI 88 PRL 60 1614 + Hempstead, Jensen+ (CLEG. Collab.) ACMI 87 PR 1819 107 + Anjos, Appel, Bracker+ (FNAL TPS Collab.) ADAMOVICH 87 FPL 4 887 + Alexandrov, Bolta+ (Photon Emulsion Collab.) AGUILAR 877 PL B193 1140 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) AGUILAR 877 PVH C40 321 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) AGUILAR 877 PVH C40 321 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) AGUILAR 877 PVH C35 520 erratum BARLAG 878 ZPHY C33 339 Erratum 878 ZPHY C33 139 + Becker, Blaylock, Botton+ (LEBC-EHS Collab.) AGUILAR 878 ZPHY C33 339 Erratum 878 ZPHY C31 519 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) AGUILAR 878 ZPHY C31 519 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) AGUILAR 878 ZPHY C31 519 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) AGUILAR 878 ZPHY C31 519 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) AGUILAR 878 ZPHY C31 519 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) AGUILAR 868 ZPHY C31 510 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) AGUILAR 868 ZPHY C31 519 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar	ANJOS		PL B223 267	+Appel, Bean, Bracker+ (TPS Collab.)
ADLER 88C PRL 60 89	AVERILL		PR D39 123	+Blockus, Brabson+ (HRS Collab.)
ALBRECHT S81 PL B210 267 +Boeckmann, Glaeser+ (ARGUS Collab.) ANJOS S8 PRL B0 897 +Appel+ (Tagged Photon Spectrometer Collab.) ANJOS S8 PRL B0 1931 +Annold, Baroni+ (Tagged Photon Spectrometer Collab.) ANJOS S8 PRL B0 1913 +Annold, Baroni+ (Tagged Photon Spectrometer Collab.) ANJOS S8 PRL B0 1913 +Annold, Baroni+ (CLEG Collab.) ANJOS S8 PRL B0 1914 +Anjos, Appel, Bracker+ (FNAL TPS Collab.) ANJOS AN	ADLER	88B	PRL 60 1375	+Becker, Blaylock+ (Mark III Collab.)
ANJOS 88 PRL 60 997 + App6+ (Tagged Photon Spectrometre Collab.) AOKI 88 PL B209 113 + Arnold, Baroni+ (CLEC Collab.) HAAS 88 PRL 60 1514 + Hempstead, Jensen+ (CLEC Collab.) RABB 88 PRL 60 2587 + Weir, Abrans, Amidei+ (CLEC Collab.) RABB 88 PRL 60 2587 + Weir, Abrans, Amidei+ (CLEC Collab.) RABB 88 PRL 61 872 Ppl 8195 107 + Alexandrov, Boltz+ (Photon Emulsion Collab.) ADLER 87 PL B199 1107 + Alexandrov, Boltz+ (Photon Emulsion Collab.) ADLER 87 PL B199 140 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) ASIA 88 C ZPHY C30 321 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-	ADLER		PRL 60 89	+Becker, Blaylock+ (Mark III Collab.)
AGNI	ALBRECHT	881	PL B210 267	+Boeckmann, Glaeser+ (ARGUS Collab.)
HAAS				+Appel+ (Tagged Photon Spectrometer Collab.)
DNG				+Arnold, Baroni+ (WA75 Collab.)
PAAB	HAAS	88	PRL 60 1614	+Hempstead, Jensen+ (CLEO Collab.)
ADAMOVICH 87				
ADULER 87 PL B195 107 + Becker, Blaylock, Bolton+ (Mark III Collab.) AGUILAR 87D PL B193 140 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Also 88C ZPHY C30 321 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Also 88C ZPHY C30 521 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Also 88C ZPHY C30 521 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Also 88C ZPHY C30 520 eratum BARLAG 87F ZPHY C31 179 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Also 88C ZPHY C30 520 eratum BARLAG 878 ZPHY C31 179 HScker, Boetninger, Bosman+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (ACCMOR Collab.) Aguilar-Benitez, Allison+ (ACCMOR Collab.) Aguilar-Benitez, Allison+ (ACCMOR Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (Aguilar-Benitez, Allison+ (Aguilar-Benitez, Allison+ (Aguilar-Benitez, Allison+ (Aguilar-				
AGUILAR				
AGUILAR 886 ZPHY C49 321 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Also 88C ZPHY C49 321 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Also 88C ZPHY C49 321 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Also 88C ZPHY C39 529 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Aguilar-Benitez, Allison+ (Aguilar-Benitez, Allison+ (Aguilar-				
AGUILAR				
AGUILAR 886 PR D34 291 AGUILAR 866 PR D34 2601 AGATRUSAIT 856 PR L56 2140 GLADNEY 86 PR D34 2601 AJHARA 87 PL BHY C27 37 AJHARA 87 PL BHY C37 17 AGATRUSAIT 856 PR L56 2140 GLADNEY 86 PR D34 2601 AJHARA 87 PL BHY C37 151 AGUILAR 866 PR D34 2601 AJHARA 87 PL BHY C37 151 AGUILAR 866 PR D34 2601 AJHARA 87 PR L57 EAVEN C37 151 AGUILAR 866 PR D34 2601 AJHARA 87 PR D37 2708 AJHARA 87 PR L57 EAVEN C37 151 AGUILAR 866 PR D34 2601 AJHARA 87 PR L56 2140 AJHARA 87 PR L56 2140 AJHARA 87 PR L56 2140 AJHARA 87 PR L56 2140 AJHARA 87 PR L56 2140 AJHARA 87 PR L57 EAVEN PR L57 E				
AGUILAR 87F ZPHY C38 559 Aguilar-Benitez, Allison+ (LEBC-EHS Collab.) Also 88 ZPHY C39 120 erratum BARTAG 878 ZPHY C39 120 erratum BARTAG 878 ZPHY C39 131 + Becker, Beeninger, Bosman+ (ACCMOR Collab.) BARTAG 878 ZPHY C39 131 + Becker, Felst, Haldrt (LEBC-EHS Collab.) ABC 878 ZPHY C31 491 + Becker, Felst, Haldrt (LEBC-EHS Collab.) ABE 878 ZPHY C31 491 + Becker, Felst, Haldrt (LEBC-EHS Collab.) ABE 878 ZPHY C31 491 + Balley, Becker (LEBC-EHS Collab.) ABULTAR 868 ZPHY C31 491 + Balley, Becker (LEBC-EHS Collab.) BALTRUSAIT 866 PR D33 2708 + Alwood, Barish, Bonneaud+ (Mark III Collab.) CALADNEY 86 PR D33 2708 + HAWOOD, Barish, Bonneaud+ (Mark III Collab.) PAL 86 PR D33 2708 + HAWOOD, Barish, Bonneaud+ (Mark III Collab.) PAL 86 PR D33 2708 + HAWOOD, Barish, Bonneaud+ (Mark III Collab.) PAL 87 ZPHY C27 39 + Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 858 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 858 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BARTEL 85 ZPHY C27 39 Halton-Garnjost, Badtke, Bakken+ (TPC Collab.) BARTEL 85 ZPHY C28 357 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 858 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 858 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 859 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 859 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 859 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 859 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 859 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 859 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 859 PR L54 1976 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Collab.) BALTRUSAIT 859 PR L54 1976 Baltrusaitis, Beck				
ASIO 88 ZPHY C38 520 erratum BARILAG 878 ZPHY C37 17 BARTEL 87 ZPHY C37 33 BARTEL 87 ZPHY C37 33 BARTEL 87 ZPHY C37 33 BARTEL 87 ZPHY C37 33 BARTEL 87 ZPHY C37 33 BARTEL 87 ZPHY C37 33 BARTEL 87 ZPHY C37 33 BARTEL 87 ZPHY C37 31 BARTEL 87 ZPHY C37 31 BARTEL 86 PR D33 1 BALTRUSAIT 86E PR D34 2601 BALTRUSAIT 86E PR D34 2601 USHIDA 86 PR D37 2708 BALTRUSAIT 85E PRL 56 1767 HAINDA 85 ZPHY C27 39 BALTRUSAIT 85E PRL 56 1767 BALTRUSAIT 85E PRL 56 1767 BALTRUSAIT 85E PRL 56 1967 BALTRUSAIT 85E PRL 55 190 BA				
BARTEL 87				
BARTEL 87				
CSCORNA 87				
PALKA 878 ZPHY C35 151 +Balley, Becker + (ACCMOR Collab.) AGUILAR 868 PR D33 1 AGUILAR 868 ZPHY C31 491 AGUILAR 868 PR D34 2601 AGUILAR 869 PR D34 2601 AGUILAR 869 PR D34 2601 AGUILAR 869 PR D33 2708 AGUILAR 869 PR D33 2708 AGUILAR 869 PR D33 2708 AGUILAR 400 AGUILA				
ABE 86 PR D33 1 AGUILAR 868 PRL 56 2140 GLADNEY 86 PR D37 4501 PAL 86 PR D37 4501 PAL 86 PR D37 4501 PAL 86 PR D37 4501 PAL 86 PR D37 4501 PAL 86 PR D37 4501 PAL 86 PR D37 4501 PAL 86 PR D37 4501 PAL 86 PR D37 4501 PAL 86 PR D37 4501 PAL 86 PR D37 4501 PAL 87 PR D37 4501 PAR 87 PR D37 47 PAR 98 PR				
AGUILAR 868 ZPHY C31 491 BAITRUSAIT 86E PR D34 2601 FAL WAS BERNEZ AILSON-BUSINESS BERNEZ BERNEZ AILSON-BUSINESS BERNEZ AILSON-BUSINESS BERNEZ AILSON-BUSI				
BALTRUSAIT 866 PR D 33 2708 All Collab.) CANDREY 86 PR D 33 2708 All Collab.) PAL				
GLADNEY 86 PR D34 2601				
PAL 86 PR D33 2708 +Atwood, Barish, Bonneaud+ (DELCO Collab.)				
USHIDA				
AlHARA				
BAILEY				
BALTRUSAIT 858 PRL 54 1976 BALTRUSAIT 858 PRL 55 150 BARTEL 851 PL 163B 277 ECOPGIOJ 85 PL 163B 277 ECORGIOJ 85 PL 152B 428 ADAMOVICH 84 PL 1408 119 ALTHOFF 84G ZPHY C22 219 ALTHOFF 84G ZPHY C22 119 HY C22 119 ALTHOFF 84G ZPHY C22 119 ZPHY C22 119 ALTHOFF 84G ZPHY C22 119 ZPHY C22 119 ZPHY C22 119 ZPHY C22 119 ZPHY C22 119 ZPHY C22 119 ZPHY C22 119 ZPHY C22 119 ZPHY C22 119 ZPHY C22				
BALTRUSAIT 858 PRL 55 150 Baltrusaitis, Becker, Blaylock, Brown+ (Mark III Colab.)				
BARTEL 85J PL 163B 277 +Becker, Cords, Felst+				
GEORGIO				
ADAMOVICH 84 PL 1408 119 +Alexandrox, Bolta, Bravo+ (WASa Collab.) ALTHOFF 840 ZPHY C22 19 +Baunschweig, Kirschfink+ (TASSO Collab.) ALTHOFF 841 PL 146B 443 +Banschweig, Kirschfink+ (TASSO Collab.) ALTHOFF 84 PL 1398 20 +Belau, Bohringer, Bosman+ (ACCMOR Collab.) DERRICK 84 PRL 53 1971 +Belau, Bohringer, Bosman+ (ACCMOR Collab.) COPP ARTRIDGE 84 Cal Tech 1984 Thesis AGUILAR				
ALTHOFF 84G ZPHY C22 219				
ALTHOFF 84J PL 146B 443 +Baraschweig, Kirschfink+ (TASS) Collab.)				
BAILEY				
DERRICK 84 PRL 53 1971 +Fernandez, Fries, Hyman+ (HRS Collab.)				
KOOP 84 PRI 52 970 +Sakuda, Atwood, Baillon+ (DELCO Collab.) PARTRIDGE 83 PRI 238 98 PRI 238 97 PRI 238				
PARRIDGE				
AGUILAR 838 PL 123B 98 Aguilar-Benitez, Aliison- AUBERT 83 NP B213 31 BADERT 83 PL 123B 47 BALBIN 82 PL 110B 339 BALLAGH 81 PR D24 7 Also 80 PL 898 423 BALLAGH 81 PR D24 7 Also 80 PL 898 423 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 81 PR D24 7 BALLAGH 80 PR D24 7 BALLAGH 8				
AUBERT 83 NP B213 31				
BADERT				
ALBIN 82 PL 110B 339				
BALLAGH				
Also				
PARTRIDGE				
SCHINDLER 81 PR D 24 78 +Alam, Boyarski, Breidenbach+ (Mark II, Collab.) (Mark II, Collab.) (LBL, UCB.) (L				
TRILLING				
ALLÁSIA 80 NP B176 13 + (ANKA, LIBH, CERN, DUUC, LOUC, KEYN+) BACINO 80 PRL 45 329 + Ferguson+ (UCLA, SLAC, STAN, UCI, STON) SCHINDLER 80 PR D21 2716 + Siegris, Alam, Boyarskir, Also 81 SJNP 34 814 + Kurdádze, Lelchuk, Mishnev+ (NOVO) Also 81 SJNP 34 814 - Zholentz, Kurdádze, Lelchuk + (NOVO)				
BACINO 80 PRL 45 329 +Ferguson+ (UCLA, SLAC, STAN, UCL, STON) SCHINDLER 80 PR D21 2716 +Siegrist, Alam, Boyarshi (Mark II Collab) JHOLENTZ 80 PL 96B 214 +Kurdadze, Lelchuk, Mishnev+ (NOVO) Also 81 SJNP 34 814 Zholentz, Kurdadze, Lelchuk + (NOVO)				
SCHINDLER 80 PR D21 2716 + Siegrist, Alam, Boyarski+ (Mark II Collab.) ZHOLENTZ 80 PL 96B 214 + Kurdadze, Lelchuk, Mishnev+ (NOVO) Also 81 5JNP 34 814 Zholentz, Kurdadze, Lelchuk, Holland (NOVO)				
ZHOLENTZ 80 PL 96B 214 + Kurdadze, Lelchuk, Mishnev+ (NOVO) Also 81 SJNP 34 814 Zholentz, Kurdadze, Lelchuk+ (NOVO)				
Also 81 SJNP 34 814 Zholentz, Kurdadze, Lelchuk+ (NOVO)				
	UISO	V1		

 D^{\pm} , D^{0}

BRANDELIK 79 PL 80B 412 +Braunschweig, Martyn, Sander+ CERN, CERN	S, HAWA) S, HAWA) BL, SLAC) S, HAWA) LAC, LBL) I Collab.)
Cities and Carrell Darbard Carrell (Millian	LAC, LBL)

OTHER RELATED PAPERS -

SCHINDLER 88 High Energy Electron-Positron Physics 234 Editors: A. Ali and P. Soeding, World Scientific, Singapore	(SLAC)
GRAB 87 SLAC-PUB-4372	(SLAC)
EPS Conference - Uppsala	(·-)
SCHUBERT 87 IHEP-HD/87-7	(HEID)
EPS Conference - Uppsala, Proc., Vol. 2, p. 791	(
SNYDER 87 IUHEEE-87-11	(IND)
Symp. on Prod. and Decay of Heavy Flavors, Stanford	()
SCHINDLER 86 SLAC-PUB-4136	(SLAC)
World Press International	, ,
SCHINDLER 86B SLAC-PUB-4248	(SLAC)
SLAC Summer Institute	(/
KIRKBY 79 SLAC-PUB-2419	(SLAC)
Batavia Lepton Photon Conference.	(
BARBARO 78 LBL-8537 Erice 1978 Barbaro-Galtieri	(LBL)
WOJCICKI 78 SLAC-PUB-2232	(SLAC)
SLAC Summer Institute. SLAC Summer Institute.	,,
GOLDHABER 76 PRL 37 255 +Pierre, Abrams, Alam+	(LBL, SLAC)
WISS 76 PRL 37 1531 +Goldhaber, Abrams, Alam, Boyarski+	(LBL, SLAC)

 $I(J^P) = \frac{1}{2}(0^-)$

ı

D⁰ MASS

The fit includes the D^{\pm} , D^{0} , D_{5}^{\pm} , and $D_{5}^{*\pm}$ masses and the D^{0} – D^{\pm} , D_{5}^{\pm} – D^{\pm} , and $D_S^{\star\pm}$ – D_S^{\pm} mass differences.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
1864.5± 0.5 OUR F	IT			
1864.1 ± 1.0 OUR A	VERAGE			
$1864.6 \pm 0.3 \pm 1.0$	641	BARLAG	90c CCD	π^- Cu 230 GeV
1852 ± 7	16	ADAMOVICH	87 EMUL	Photoproduction
1861. ± 4.0		DERRICK	84 HR\$	Ecm = 29 GeV
• • • We do not use	the followin	ng data for averages	s, fits, limits	, etc. • • •
1856 ±36	22	ADAMOVICH		Photoproduction
1847 ± 7	1	FIORINO	81 EMUL	$\gamma N \rightarrow \overline{D}^0 +$
1863.8± 0.5		$^{ m 1}$ SCHINDLER	81 MRK2	$E_{cm}^{ee} = 3.77 \text{ GeV}$
1864.7 ± 0.6		¹ TRILLING	81 RVUE	Ecm = 3.77 GeV
1863.0± 2.5	238	ASTON		$\gamma p \rightarrow \overline{D}^0$
1860 ± 2	143	² AVERY	80 SPEC	$\gamma N \rightarrow D^{*+}$
1869 ± 4	35	² AVERY		$\gamma N \rightarrow D^{*+}$
1854 ± 6	94	² ATIYA		$\gamma N \rightarrow D^0 \overline{D}^0$
1850 ± 15	64	BALTAY	78¢ HBC	$\nu N \rightarrow \kappa^0 \pi \pi$
1863 ± 3			77 MRK1	D^0 , D^+ recoil spectra
1863.3± 0.9		1 PERUZZI	77 MRK1	$E_{cm}^{ee} = 3.77 \text{ GeV}$
1868 ±11		PICCOLO	77 MRK1	$E_{CM}^{ee} = 4.03, 4.41 \; GeV$
1865 ±15	234	GOLDHABER	76 MRK1	$K\pi$ and $K3\pi$
100000000000000000000000000000000000000	COLUMBIA			

 1 PERUZZI 77 and SCHINDLER 81 errors do not include the 0.13% uncertainty in the absolute SPEAR energy calibration. TRILLING 81 uses the high precision $J/\psi(15)$ and $\psi(25)$ measurements of ZHOLENTZ 80 to determine this uncertainty and combines the PERUZZI 77 and SCHINDLER 81 results to obtain the value quoted. Omitted from the fit because it is redundant with the data on the D^\pm mass and $D^\pm-D^0$ mass difference. 2 Error does not include possible systematic mass scale shift, estimated to be less than 5 MeV.

$|m_{D_1^0} - m_{D_2^0}|$, MASS DIFFERENCE

 D_1^0 and D_2^0 are the mass eigenstates of the D^0 meson.

VALUE (10 ⁻⁴ eV)	CL%	DOCUMENT ID		ECN	COMMENT
<1.3 • • • We do not use the	90 o foliou				Photoproduction
• • • we do not use th	ie ioliow				
< 2.6	90	³ ALBRECHT	87ĸ A	RG	$E^{ee}_CM = 10 \; GeV$
<1.6	90				$\pi^-\mathrm{W}$ 225 GeV
<7	90	^{3,6} ҮАМАМОТО			
< 6.5	90	⁵ BODEK	82 5	PEC	π^- , pFe $\rightarrow D^0$

 $^3\,\text{Limit}$ inferred from \mathcal{D}^0 - $\overline{\mathcal{D}}^0$ mixing ratio $\Gamma(\mathcal{K}^+\,\pi^- \,\,\text{(via}\,\,\overline{\mathcal{D}}^0))/\Gamma(\mathcal{K}^-\,\pi^+)$ below. ⁴ Calculated by us using $\Delta m=(2r/(1-r))^{1/2}\hbar/4.21\times 10^{-13}$ s where r is the $D^0-\overline{D}^0$ mixing ratio.

⁵Limit inferred from D^0 - \overline{D}^0 mixing ratio $\Gamma(\mu^-$ anything (via $\overline{D}^0))/\Gamma(\mu^+$ anything)

below. 6 YAMAMOTO 85 gives $\Delta \emph{m}/\Gamma <~0.44.$ We use $\Gamma = \hbar/4.3 \times 10^{-13} \, s.$

${\it D}^{\pm}$ – ${\it D}^{0}$ MASS DIFFERENCE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4.77 ± 0.27 OUR FIT				***************************************
4.74 ± 0.28 OUR AVERAGE				
4.7 ±0.3	⁷ SCHINDLER	81	MRK2	Ecm = 3.77 GeV
5.0 ±0.8	⁷ PERUZZI	77	MRK1	E _{cm} = 3.77 GeV
7				****

 7 See the footnote on TRILLING 81 in the ${\it D}^0$ and ${\it D}^\pm$ sections.

D⁰ MEAN LIFE

VALUE (10 ⁻¹³ s) 4.21±0.10 OUR	CL% EVTS	DOCUMENT ID	TECN	COMMENT
$3.88 + 0.23 \\ -0.21$	641	⁸ BARLAG	90c CCD	π^- Cu 230 GeV
4.4 ±1.0 ±0.6		AVERILL	89 HRS	Eee = 29 GeV
$4.8 \pm 0.4 \pm 0.3$		ALBRECHT	88 ARG	
$3.4 \begin{array}{c} +0.6 \\ -0.5 \end{array} \pm 0.3$		AMENDOLIA	88 SPE	C Photoproduction
$4.22 \pm 0.08 \pm 0.10$	4200	RAAB	88 SILI	Photoproduction
$3.6 \begin{array}{c} +1.2 \\ -0.8 \end{array} \pm 0.7$	44	ADAMOVICH	87 EML	L Photoproduction
$\begin{array}{cc} 4.6 & +0.6 \\ -0.5 \end{array}$	145	AGUILAR	870 HYB	R $\pi^- p$ and pp
$4.3 \begin{array}{c} +2.0 \\ -1.4 \end{array} \pm 0.8$	15	ALTHOFF	87 TAS	ŝ e ⁺ e ⁻ 42.2 GeV
4.2 ±0.5	90	BARLAG	878 SILI	K^- and π^- 200 GeV
$5.0 \pm 0.7 \pm 0.4$	345	CSORNA	87 CLE	D Ecm = 10 GeV
$4.4 \begin{array}{c} +1.2 \\ -1.1 \end{array} \pm 0.6$	53	WAGNER	87 MRK	2 Ecm = 29 GeV
$6.1 \pm 0.9 \pm 0.3$	50	ABE	86 HYB	R SLAC γρ 20 GeV
$4.7 {}^{+ 0.9}_{- 0.8} \pm 0.5$	74	GLADNEY	86 MRK	2 Ecm = 29 GeV
$\begin{array}{cccc} 4.3 & +0.7 & +0.1 \\ -0.5 & -0.2 \end{array}$	58	USHIDA	868 EMU	L $ u$ wideband
$3.7 \begin{array}{c} +1.0 \\ -0.7 \end{array}$	26	BAILEY	85 SILI	π^- Be 200 GeV
$4.6 \pm 1.5 \begin{array}{l} +0.6 \\ -0.5 \end{array}$	269	⁹ ҮАМАМОТО	85B DLC	O E <i>ee</i> = 29 GeV
• • • We do not us	e the following	data for averages, f	its, limits,	etc. • • •
$4.1 \begin{array}{c} +0.7 \\ -0.6 \end{array}$	60	AGUILAR	87∈ HYB	R Repl. by AGUILAR-
$4.35 \pm 0.15 \pm 0.10$	1360	ANJOS	87 SILI	BENITEZ 87D Repl. by RAAB 88
$6.8 \begin{array}{l} +2.3 \\ -1.8 \end{array}$	22	ABE	84 HYB	R Repl. by ABE 86
$2.11 ^{+ 1.21 + 0.8}_{- 0.63 - 0.7}$	22	ADAMOVICH	848 EMU	L Repl. by ADAMO- VICH 87
$3.5 \begin{array}{c} +1.4 \\ -0.9 \end{array}$	11	AGUILAR	84B HYB	
$4.2 \begin{array}{c} +1.6 \\ -1.4 \end{array}$	27	YELTON	84 MRK	
$4.1 \begin{array}{c} +1.3 \\ -0.9 \end{array}$	16	AGUILAR	83 HYB	R Repl. by AGUILAR- BENITEŽ 87D
$4.1 \begin{array}{l} +2.6 \\ -1.4 \end{array}$	9	BADERT	83 HYB	R CERN π ⁻ N
$2.3 \begin{array}{c} +0.8 \\ -0.5 \end{array}$	16	¹⁰ USHIDA	82 EMU	L Repl. by USHIDA 86B
2.1	1	¹¹ ADEVA	81 HYB	R LEBC CERN-SPS
5.9	1	¹¹ ADEVA	81 HYB	π ⁻ ρ R LEBC CERN-SPS π ⁻ ρ
$2.8 \begin{array}{c} +2.2 \\ -1.3 \end{array}$	2	¹² BALLAGH	81 HYB	,
$3.1 \begin{array}{c} +2.0 \\ -1.6 \end{array}$	5	FUCHI	81 EMU	L CERN-SPS π ⁻ N
$0.53^{+0.57}_{-0.25}$	3	¹³ ALLASIA		L $ u$ wideband
< 2.1	95	¹⁴ BACINO	80 DLC	D E <i>ee</i> = 3.77 GeV
<8.0	90	ARMENISE		$R \nu p \rightarrow dimuons + X$

 $^{8}\,\mathrm{BARLAG}$ 90c estimate systematic error to be negligible. ⁹ Uses impact parameter technique.

 11 ADEVA 81 first and second values are proper lifetimes of D^0 and $\overline{D}{}^0$ from single event. Detection efficiency low for lifetimes 10^{-13} sec or less.

13 ALLASIA 80 assumes no long-length losses. Visibility problems in the emulsion. ¹⁴ Uses theoretical rate $D \to (Ke\nu) = 1.4 \times 10^{11} \text{ s}^{-1}$.

$| au_{D_1^0}$ – $au_{D_2^0}|/ au_{D^0}$, MEAN LIFE DIFFERENCE/AVERAGE

 D_1^0 and D_2^0 are the mass eigenstates of the D^0 meson.

VALUE	CL%		DOCUMENT ID		TECN	COMMENT
< 0.17	90	15,16	ANJOS	880	SILI	Photoproduction

¹⁰ USHIDA 82 have 3 semi-leptonic decays not included in this number, but believed to have much longer lifetimes.

 $^{^{12}}$ BALLAGH 81 value quoted here assumes that all dilepton events contain ${\it D}^{0}$ or ${\it D}^{+}$, each with equal numbers of semileptonic decays.

 $\overline{K}^0 \omega \times B(\omega \to \pi^+ \pi^- \pi^0)$

 $\overline{K}^0 \phi \times B(\phi \to K^+ K^-)$

 \overline{K}^0 (K^+K^-) non-resonant

In the fit as $\frac{1}{2}\Gamma_{54}+\Gamma_{37}$, where $\frac{1}{2}\Gamma_{54}=\Gamma_{36}$.

 Γ_{32} $K^-\pi^+\pi^+\pi^-\pi^0$

 $\Gamma_{33} \ \overline{K}^0 \pi^+ \pi^+ \pi^- \pi^-$

 $\Gamma_{35} \ \overline{K}^0 K^+ K^-$

 Γ_{38} $K^+K^-\overline{K}^0\pi^0$

 $\Gamma_{34} \ \overline{K}^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^-$

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

S=1.5

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

CI = 90%

CL=90%

• • We do not u	-	verages, fits, limits, etc. • • •			Fractions of many of the following	modes have already ap	peared above.	
0.21	90 ¹⁷ LOUIS	86 SPEC π^{-} W 225			$K^*(892)^-\pi^+$	(4.6 ± 0.6)) %	
5		IOTO 85 DLCO Eee = 29		Γ ₄₀	$\overline{K}^*(892)^0 \pi^0$	(2.0 ± 0.6)) %	
	90 ¹⁷ BODEK			Γ_{41}	$K^- a_1(1260)^+$	(7.8 ± 1.5)) %	
inferred f	rom ${\it D}^0 ext{-}\overline{\it D}^0$ mixing ratio ${\it \Gamma}$	$(K^+\pi^- \text{ (via } \overline{D}^0))/\Gamma(K^-\pi^+$) below.	Γ_{42}	$K^- a_2(1320)^+$	< 5	× 10 ⁻³	(
culated by i	us using $\Delta\Gamma = (8r/(1+r))$	$1^{1/2}\hbar/4.21 imes 10^{-13}$ s where I	is the $D^0-\overline{D}^0$	Γ ₄₃	$\overline{K}^*(892)^0 \pi^+ \pi^-$	(1.7 ± 0.5)	5)%	
xing ratio.	α – 0	,		Γ ₄₄	$\overline{K}^*(892)^{\cup} \rho^0$	(1.7 ± 0.6)%	
it inferred w.	from D^{U} - \overline{D}^{U} mixing ratio	$Γ(μ^-$ anything (via \overline{D}^0))/Γ	$(\mu^+$ anything)	Γ ₄₅	\overline{K}^* (892) ρ^0 (S-wave _{Transverse}	(1.7 ± 0.6		
				Γ ₄₆	$\overline{K}^*(892)^0 \rho^0$ (S-wave _{Longitud} .)	< 2.9	× 10 ⁻³	(
	0 -			Γ_{47}	\overline{K}^* (892) ^u ρ^0 (<i>P</i> -wave)	< 2.9	\times 10 ⁻³	(
	D ^o DECA	Y MODES			$K_1(1270)^-\pi^+$	(1.6 ± 0.8)	3)%	
5 ⁰ modes	are charge conjugates of	the modes below.			$K^*(1370)^-\pi^+$	< 1.0	%	(
			Scale factor/	Γ ₅₀	$K_{1}(1400)^{-}\pi^{+}$	< 1.0	%	(
		Fraction (Γ_i/Γ)	Confidence level	Γ ₅₁	$\overline{\kappa}^0_{\omega}$	(3.7 ± 1.5)	5)%	
		· / /		Γ ₅₂	$\overline{K}^0\eta$	< 2.4	%	(
		e modes	_	Γ ₅₃	$\overline{K}_{0}^{*}(892)^{0}\eta$	< 2.6	%	(
nythir		$(7.7 \pm 1.2)\%$	S=1.1	Γ ₅₄	$\overline{K}^0\phi$	(8.0 ± 1.6	i) × 10 ⁻³	
anythir		(40 5 \ 10'				c modes		
anythi	-	(43 ± 5)%		۲۰۰	$\pi^+\pi^-$	(1.14 ± 0.3	31) × 10 ⁻³	
nythi	· .	$(6.4 + 2.6 \atop -1.7)\%$. 55 Let	$\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}\pi^{0}$	(1.2 ± 0.4		
<i>/</i> +	\overline{K}^0 any	(33 ±10)%			$\pi^{+} \pi^{+} \pi^{-} \pi^{-}$			
thing/	•	[a] < 13 %	CL=90%			(3.5 + 1.4)		
	C			Γ ₅₈	$\pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	(4.8 + 2.8) %	
a+	Semilepto	nic modes		Гьо	$\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$	(4.0 ± 3.0		
$e^+ \nu_e$		(3.4 ± 0.4) %	2	. 59		`	. , = -	
$e^+ \nu_e$		$(3.9 + 2.3 \times 10^{-1}) \times 10^{-1}$	-3	_	Hadronic mod	les with two K's		
$\pi^{0}(\pi^{0})$	$e^+\nu_e$	(2.3 + 5.0)%		l 60	K+K-	(4.5 ± 0.7)		
				l 61	$\overline{K}^0 K^0$	< 4	× 10 ⁻³	(
($\pi^0)e^+ u_e$	(7.9 + 6.9 - 2.4)%		I 62	$\overline{K}_{S}^{0}K_{S}^{0}$	(5 ± 4)) × 10 ⁻⁴	
	Hadaania madaai	4h 4h 1/1-			$K^{0}K^{-}\pi^{+} + \text{c.c.}$		2	
1	rrauronic modes Wi	th one or three K's $(2.7 \pm 1.2)\%$		Γ ₆₄	$\overline{K}^*(892)^0 K^0 + \text{c.c}$	< 4	× 10 ⁻³	(
+		$(2.7 \pm 1.2)\%$ $(3.71 \pm 0.25)\%$	S=1.1	-	$\times B(\overline{K}^*(892)^0 \to K^-\pi^+)$			
π-		$(5.3 \pm 0.5)\%$	S=1.1	Γ ₆₅	$K^*(892)^+ K^- + \text{c.c}$ $\times B(K^*(892)^+ \to K^0 \pi^+)$	(5 ± 3) × 10 ⁻³	
it 2	$s \Gamma_{14} + \frac{2}{3}\Gamma_{39} + \Gamma_{16}$	where $\frac{2}{\pi}\Gamma_{20} = \Gamma_{10}$	3=1.1	г.	\times B(K*(892)* \rightarrow K* π *) K*0 K*- π * (non-res.)+c.c.	. 10	0/	
ρ^0	14 (3.39 (10)	-	-3	Γ ₆₆	$K^{+}K^{-}\pi^{0}\pi^{0}$	< 1.2 seen	%	(
,		$(4.3 + 3.1 \atop -1.9) \times 10^{-1}$	-3		(K^+K^-) $\pi^+\pi^-$ non-res.	seen (1.7 ± 0.6	5) v 1n-3	
K*(892)	_	$(3.1 \pm 0.4)\%$			$\phi \pi^+ \pi^- \times B(\phi \to K^+ K^-)$	(1.7 ± 0.6)		
	$(*(892)^- \to \overline{K}^0 \pi^-)$			Γ ₇₀	$K^0K^-\pi^+\pi^0$	(1.5 ± 0.5	,, 10	
$^{\circ}\pi^{+}\pi$	(non-resonant)	$(1.8 \pm 0.5)\%$. 10		30011		
$\pi^{+}\pi^{0}$	•	(11.9 + 1.2)%	_		Fractions of the following modes h	ave already appeared a	bove.	
e fit a	$5\Gamma_{18} + \frac{1}{3}\Gamma_{39} + \frac{2}{3}\Gamma_{40}$	+ Γ_{21} , where $\frac{1}{3}\Gamma_{39} = \Gamma_{19}$	$\frac{2}{3}\Gamma_{40}$	Γ-1	$\overline{K}^*(892)^0 K^0 + \text{c.c.}$	< 5	× 10 ⁻³	í
	· ·				$K^*(892)^+K^- + c.c.$	(8 ± 4		•
+	- +	(7.8 ± 1.1) %	S=1.1		$\phi \pi^+ \pi^-$	(3.0 ± 1.0)		
*(892)		$(1.5 \pm 0.2)\%$. 13				
	$(892)^{-} \rightarrow K^{-} \pi^{0}$	(10 : 01)			Lepton Family number (L			
₹*(892)		$(1.3 \pm 0.4)\%$			neutral current (FC),			
× B(<i>K</i>	$(892)^0 \to K^- \pi^+$			-	or Doubly Cabibbo s			
	.0 (non-resonant)	(1.2 ± 0.6)%	S=1.2		$K^+\pi^-$ D		× 10 ⁻⁴	(
+π+ -+-		[b] $(7.8 \pm 0.6)\%$	S=1.1	<u> </u>	$K^+\pi^-$ (via \overline{D}^0) M	X < 1.4	× 10 ⁻⁴	(
π'π	$^{+}\pi^{-}$ non-resonant 0 3-body	(1.9 ± 0.5) %	- 3	<u> </u>	$K^{+}\pi^{+}\pi^{-}\pi^{-}$		%	(
- π · ρ - π · ρ	$^{\circ}_{0}$ $^{\circ}_{\pi^{+}\pi^{-}}$ 3-body	$(7 \pm 4) \times 10^{-1}$	-	77	$\mu^+\mu^-$	C < 1.1	× 10 ⁻⁵	(
(092)	$(892)^0 \rightarrow K^-\pi^+$	$(1.1 \pm 0.4)\%$		[₇₈	e ⁺ e ⁻ Fi		× 10 ⁻⁴	(
$\frac{\times}{K}$ 892)	$ \begin{pmatrix} (092)^{-} \rightarrow K \pi^{+} \end{pmatrix} $	(11 01)		! 79 _	$\mu^{\pm} e^{\mp}$		× 10 ⁻⁴	(
n (892)	ρ- 7*(000)0	$(1.1 \pm 0.4)\%$		<u> </u>	$\overline{K}^0 e^+ e^-$		× 10 ⁻³	(
	$(892)^0 \rightarrow K^- \pi^+)$	(20 (20) (F ₈₁	$\rho^0 e^+ e^-$		× 10 ⁻⁴	(
$a_1(1$	260) ⁺	(3.8 ± 0.8) %		F82	$\rho^0 \mu^+ \mu^-$ FO		× 10 ⁻⁴	(
	$(1260)^+ \rightarrow \pi^+ \pi^+ \pi^-$			Γ ₈₃	μ^- anything (via \overline{D}^0) M	X		
) ⁻ π ⁺ (-(1270) ⁻	(0.5 ± 0.3) %			Mode needed f	or fitting purposes		
$^{0}_{\pi^{0}_{7}}$	$(1(1270)^- \to K^- \pi^+ \tau_0^-)$,		Γ.,	other fit modes	61.6 ± 2.8	3.1%	
π· 7	$\tau^{0}(\pi^{0})$	(15 ± 5)%		' 84	San in modes	(01.0 ± 2.0	. / 10	
π π 7	τ-(π-)			[c]	This is a weighted average of D	± (440/) and D0 (6	56%) branchi	i,

 $(3.3 \pm 1.3)\%$

 $(4.0 + 2.1 \atop -1.5)\%$

(1.16 ± 0.21) %

(2.4 + 3.3)%

(7 \pm 4) \times 10⁻³

 $(4.0 + 5.0 \times 10^{-3}) \times 10^{-3}$

 $(4.0 \pm 0.8) \times 10^{-3}$

 $(7.6 + 2.0 \times 10^{-3}) \times 10^{-3}$

 $(61.6 \pm 2.8)\%$ S = 1.1

- [a] This is a weighted average of D^{\pm} (44%) and D^{0} (56%) branching fractions. See D^{\pm} section for D^{\pm} and $D^{0} \rightarrow \eta$.
- [b] The whole is less than the sum of the parts due to interference effects; see ADLER 90.
- [c] Value is for the sum of the charge states indicated.

CONSTRAINED FIT INFORMATION

An overall fit to 14 products of a cross section and a partial width. a cross section, and 21 branching ratios uses 66 measurements and one constraint to determine 17 parameters. The overall fit has a $\chi^2=$ 30.2 for 50 degrees of freedom.

D^0

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta\rho_i\delta\rho_j\right\rangle/(\delta\rho_i\cdot\delta\rho_j),$ in percent, from the fit to parameters $\rho_i,$ including the branching fractions, $x_i\equiv\Gamma_i/\Gamma_{\rm total}.$ The fit constrains the x_i whose labels appear in this array to sum to one.

×11	4									
×12	35	11								
×14	3	1	8							
<i>x</i> ₁₆	6	3	17	-22						
<i>x</i> ₁₈	12	6	35	6	14					
x ₂₁	2	1	4	1	3	-27				
x ₂₂	23	9	66	6	13	27	3			
X37	6	3	19	6	14	10	1	14		
x39	12	6	34	-10	-28	12	-1	26	16	
x ₄₀	5	3	14	2	5	-6	-5	11	4	7
<i>x</i> 54	8	4	24	11	27	13	1	18	-3	25
×55	7	2	19	1	3	6	1	12	3	6
×60	14	4	39	3	7	13	2	26	7	13
×72	3	2	10	1	3	6	1	8	3	6
×84	-37	-54	-68	-10	-25	-53	-13	-62	-26	-41
σ	-27	-14	-77	-10	-23	-45	-6	-59	-24	-44
	<i>x</i> ₇	<i>x</i> ₁₁	x ₁₂	×14	x ₁₆	x ₁₈	^x 21	x ₂₂	×37	<i>x</i> 39
×54	5									
X ₅₅	3	4								
×60	6	9	7							
×72	2	4	2	4						
×84	-27	-33	-14	-28	-23					
σ	-19	-30	-14	-30	-13	74				
	<i>X</i> 40	×54	×55	×60	×72	x ₈₄				

D⁰ BRANCHING RATIOS

<u>VALUE</u> <u>CL%</u> <u>EVTS</u> <u>DOCUMENT ID</u> 0.077±0.012 OUR AVERAGE Error includes scale factor of 1.1.

 $\Gamma(e^+ \text{ anything})/\Gamma_{\text{total}}$

 0.15 ± 0.05

See note in ${\it D}^\pm$ section concerning revisions to hadronic branching fractions, and new measurements of ${\it D}^+$ and ${\it D}^0$ decays.

 Γ_1/Γ

TECN COMMENT

AGUILAR-... 87E HYBR πρ, ρρ 360,

0.15 ± 0.05		AGUILAN	K 8/E	HYBK :	τ <i>ρ, ρρ</i> 360, 400 GeV
$0.075 \pm 0.011 \pm 0.004$	137	BALTRU	SAIT856	MRK3	=ee = 3.77 GeV
0.055 ± 0.037	12	SCHIND	LER 81	MRK2	ee 3.771 GeV
• • • We do not use the folio	wing data for a	verages, fits,	limits, etc	. • • •	0.1
$0.17 \begin{array}{l} +0.08 \\ -0.06 \end{array}$	7	¹⁸ AGUILAF	R 86	HYBR :	τ ⁻ ρ 360 GeV
$0.051^{+0.048}_{-0.014}$	3	AGUILAF	R 83	HYBR :	тр, рр
<0.04	95 0	BACINO	80	DLCO I	ee cm = 3.77 GeV
18 Includes (e^- anything) wh	nich is expected	to be small.			
$\Gamma(K^- \text{ anything})/\Gamma_{\text{total}}$					Γ_3/Γ
VALUE EVTS	DOCUME	NT ID	TECN CO	MMENT	3,
0.43±0.05 OUR AVERAGE					
0.42 ± 0.08	AGUILA	R 87E	HYBR π	o, pp 360,	400 GeV
0.55 ± 0.11 121	SCHINE	DLER 81	MRK2 E	m = 3.771	GeV
0.35±0.10	VUILLE		MRK1 E		
• • We do not use the folion					
	_				
$0.44^{+0.11}_{-0.10}$	¹⁹ AGUILA	R 86	HYBR π	p 360 G	eV
19 Includes K^+ anything.					
$\Gamma(K^+ \text{ anything})/\Gamma_{\text{total}}$					Γ_4/Γ
VALUE EVTS	DOCUME	NT ID	TECN CO	MMENT	
0.064+0.026 OUR AVERAGE	į				
0.03 +0.05 -0.02	AGUILA	R 87E	HYBR π,	o, <i>pp</i> 360,	400 GeV
0.08 ±0.03 25	SCHINE	DLER 81	MRK2 E	em = 3.771	GeV
[=(x0) - =(x 0	\] /r				c /c
$[\Gamma(K^0 \text{ any}) + \Gamma(\overline{K}^0 \text{ any})]$					Γ_5/Γ
VALUE EVTS	DOCUME	NT ID	TECN CO	MMENT	
0.33 ± 0.10 OUR AVERAGE			_		
0.00 0.11	CCUINT	NED 01	いりょう こも	E _ 2 771	Ga\/
0.29 ± 0.11 13 0.57 ± 0.26 6			MRK2 E		

```
\Gamma(K^-e^+\nu_e)/\Gamma_{\rm total}
                                                                                                \Gamma_7/\Gamma
VALUE (units 10<sup>-3</sup>) CL% EVTS
                                               DOCUMENT ID
                                                                  TECN COMMENT
   34±4 OUR FIT
                                    55 <sup>20</sup> ADLER
                                                                 89 MRK3 E<sup>ee</sup><sub>cm</sub> = 3.77 GeV
\bullet \,\bullet\, We do not use the following data for averages, fits, limits, etc. \,\bullet\, \,\bullet\,
                                            <sup>21</sup> AGUILAR-... 87F HYBR \pi p, pp 360,400 GeV
                          90
 ^{20} Experiment gives |V_{\it Cd}/V_{\it CS}|^2 = 0.057^{+0.038}_{-0.015} \pm 0.005.
 21 AGUILAR-BENITEZ 87F computed the branching ratio by topological normalization.
\Gamma(K^-e^+\nu_e)/\Gamma(K^-\pi^+)
                                                                                              \Gamma_7/\Gamma_{12}
VALUE
                                          DOCUMENT ID
                                                              TECN COMMENT
0.91±0.11 OUR FIT
                                           ANJOS
                                                             89F TPS
0.91 \pm 0.07 \pm 0.11
\Gamma(\pi^-e^+\nu_e)/\Gamma_{\rm total}
                                                                                                \Gamma_8/\Gamma
VALUE (units 10<sup>-3</sup>) CL% EVTS
                                               DOCUMENT ID TECN COMMENT
                       7 <sup>22</sup> ADLER 89 MRK3 E<sup>ee</sup><sub>cm</sub> = 3.77 GeV

    • • We do not use the following data for averages, fits, limits, etc.

                                           23 AGUILAR-... 87F HYBR πρ, ρρ 360,400 GeV
 <sup>22</sup> Experiment gives |V_{cd}/V_{CS}|^2 = 0.057^{+0.038}_{-0.015} \pm 0.005.
 23 AGUILAR-BENITEZ 87F computed the branching ratio by topological normalization.
\Gamma(K^-\pi^0(\pi^0)e^+\nu_e)/\Gamma_{\text{total}}
                                          DOCUMENT ID TECN COMMENT
0.023^{\,+\,0.050}_{\,-\,0.006}\,{\pm}\,0.001
                                1 <sup>24</sup> AGUILAR-... 87F HYBR πp, pp 360,400 GeV
 ^{24} AGUILAR-BENITEZ 87F computed the branching ratio by topological normalization. Does not distinguish presence of a second \pi^0 .
\Gamma(\overline{K}^0\pi^-\pi^-(\pi^0)e^+\nu_e)/\Gamma_{\text{total}}
                                                                                               \Gamma_{10}/\Gamma
                                          DOCUMENT ID TECN COMMENT
               EVTS
0.079^{\,+\,0.069}_{\,-\,0.023}\,{\pm}\,0.005
                                3 <sup>25</sup> AGUILAR-... 87F HYBR πρ, ρρ 360,400 GeV
 ^{25} AGUILAR-BENITEZ 87F computed the branching ratio by topological normalization. Does not distinguish presence of a second \pi^0 .
\sigma(e^+e^- 	o \psi(3770)) 	imes \Gamma(\overline{K}^0\pi^0)/\Gamma_{\text{total}}
VALUE (nanobarns) CL% EVTS
0.18 ± 0.08 OUR FIT
                                                       DOCUMENT ID TECN COMMENT
                                                        SCHINDLER 81 MRK2 Ecm = 3.771
• • • We do not use the following data for averages, fits, limits, etc. • •
                                             70 <sup>26</sup> SCHINDLER 868 MRK3 Eee 3.77
                                                                          GeV
78 MRK1 Eee 3.77
                                                        SCHARRE
                                   90
 ^{26}\,\mathrm{The} value has not been published as of this printing.
\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K^-\pi^+)/\Gamma_{\text{total}}
                                                                                             \sigma\Gamma_{12}/\Gamma
                                                 DOCUMENT ID
VALUE (nanobarns)
                                EVTS
0.246 ± 0.011 OUR FIT
0.245 ± 0.012 OUR AVERAGE
                                     930
                                                  BALTRUSAIT...86E MRK3 Ecm = 3.77 GeV
0.248 \pm 0.009 \pm 0.014
                                                  SCHINDLER 81 MRK2 E_{CM}^{\it ee} = 3.771~{\rm GeV}
0.24 \pm 0.02
                                     263
0.25 \pm 0.05
                                     130
                                                  PERUZZI
                                                                   77 MRK1 Eee = 3.77 GeV
\Gamma(K^-\pi^+)/\Gamma_{total}
                                                                                               \Gamma_{12}/\Gamma
                                   EVTS
                                                  DOCUMENT ID
                                                                      TECN COMMENT
0.0371±0.0025 OUR FIT Error includes scale factor of 1.1.
0.041 ±0.005 OUR AVERAGE
0.040 \begin{array}{l} +0.007 \\ -0.006 \end{array}
                                              27 BARLAG
                                                                    898 CCD π Cu 230 GeV
                                     139
                                              <sup>28</sup> ABACHI
0.045 \pm 0.008 \pm 0.005
                                      56
                                                                    88 HRS Ecm = 29 GeV
0.040 \begin{array}{l} +0.021 \\ -0.010 \end{array} \pm 0.002
                                             ^{29} AGUILAR-... 87F HYBR \pi \rho, \rho \rho 360,400 GeV
 27 BARLAG 89B computed the branching ratio using topological normalization.
 <sup>28</sup> ABACHI 88 branching ratio computed by tagging D^* (2010)<sup>+</sup> \rightarrow D^0 \pi^+ through excess
     low momentum \pi^+ over background.
  <sup>29</sup> AGUILAR-BENITEZ 87F computed the branching ratio by topological normalization.
\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(\overline{K}^0\rho^0)/\Gamma_{\text{total}}
VALUE (nanobarns) EVTS
                                          DOCUMENT ID
                                                               TECN COMMENT
0.028^{+\,0.020}_{-\,0.012} OUR FIT
0.027^{+0.020}_{-0.008} OUR AVERAGE
0.04\ \pm0.01\ \pm0.02
                                           ADLER
                                                             87 MRK3 E<sup>ee</sup><sub>cm</sub> = 3.77 GeV
0.006 + 0.040 \\ -0.009
                                           SCHINDLER 81 MRK2 Ecm = 3.771 GeV
```

 $\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(\overline{K}^0\pi^+\pi^-)/\Gamma_{\text{total}}$

```
VALUE (nanobarns) EVTS DOCUMENT ID T.

0.349 ± 0.028 OUR FIT Error includes scale factor of 1.1.
0.36 ±0.04 OUR AVERAGE
                                                                  87 MRK3 E_{CM}^{ee} = 3.77 \text{ GeV}
0.37 \pm 0.03 \pm 0.03
                                              ADLER
0.30 \pm 0.08
                                              SCHINDLER 81 MRK2 Eee = 3.771 GeV
                                              PERUZZI
                                                                 77 MRK1 E<sup>ee</sup><sub>CM</sub> = 3.77 GeV
0.46 \pm 0.12
                                  28
\Gamma(\overline{K}^0\pi^+\pi^-)/\Gamma_{\rm total}
                                                                                   (\Gamma_{14} + \Gamma_{16} + \frac{2}{3}\Gamma_{39})/\Gamma
VALUEEVTSDOCUMENT ID10.053±0.005 OUR FITError includes scale factor of 1.1.
                                                                        TECN COMMENT
0.039+0.011 OUR AVERAGE
                                         ^{30} BARLAG 898 CCD \pi^- Cu 230 GeV
0.037 \pm 0.011
                                  25
0.045^{+0.059}_{-0.014} \pm 0.003
                                  2 <sup>31</sup> AGUILAR-... 87F HYBR πρ, ρρ 360,400 GeV
 ^{30}\,\mathrm{BARLAG} 898 computed the branching ratio using topological normalization.
 ^{31}\,\mathrm{AGUILAR}\text{-BENITEZ} 87F computed the branching ratio by topological normalization.
\Gamma(\overline{K}^0\pi^+\pi^-)/\Gamma(K^-\pi^+)
                                                                                (\Gamma_{14}+\Gamma_{16}+\frac{2}{3}\Gamma_{39})/\Gamma_{12}
                              <u>EVTS</u>
                                              DOCUMENT ID
                                                                      TECN COMMENT
1.42±0.13 OUR FIT Error includes scale factor of 1.1.
2.1 ±0.6 OUR AVERAGE
                                                                  80 SPEC \gamma N \rightarrow D^{*+}
1.7 \pm 0.8
                                               AVERY
                                                                  77 MRK1 Eee = 4.03, 4.41 GeV
                                              PICCOLO
2.8 \pm 1.0
\sigma(e^+e^- \to \psi(3770)) \times \Gamma(\overline{K}^0\pi^+\pi^- \text{(non-resonant)})/\Gamma_{\text{total}}
\( \frac{\frac{\VALUE (nanobarns)}{0.117 \pm 0.030 \text{ OUR FIT} } \) \( \frac{EVTS}{1} \)
                                              DOCUMENT ID TECN COMMENT
0.11 ±0.04 OUR AVERAGE
0.12 \pm 0.02 \pm 0.04
                                              ADLER
                                                                  87 MRK3 Eem = 3.77 GeV
0.090^{\,+\,0.075}_{\,-\,0.069}
                                              SCHINDLER 81 MRK2 Eee = 3.771 GeV
                                  10
\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K^-\rho^+)/\Gamma_{\text{total}}
                                                                                                      \sigma\Gamma_{18}/\Gamma
VALUE (nanobarns)
                              EVTS
                                              DOCUMENT ID
                                                                      TECN COMMENT
0.52±0.06 OUR FIT Error includes scale factor of 1.1.
0.61 ± 0.09 OUR AVERAGE
0.62 \pm 0.02 \pm 0.09
                                              ADLER
                                                                  87 MRK3 Eee = 3.77 GeV
0.58 + 0.22 \\ -0.23
                                              SCHINDLER 81 MRK2 Eem = 3.771 GeV
                                  31
\sigma(e^+\,e^-\,\rightarrow\,\,\psi(3770))\,\times\,\Gamma\big(K^-\,\pi^+\,\pi^0\big)/\Gamma_{\rm total}\,\,\,\,\,\sigma(\Gamma_{18}+\Gamma_{21}+\tfrac{1}{3}\Gamma_{39}+\tfrac{2}{3}\Gamma_{40})/\Gamma_{\rm total}
VALUE (nanobarns)
\begin{array}{c} \frac{\textit{VALUE (nanobarns)}}{0.79 \pm 0.06} \quad \begin{array}{c} \textit{EVTS} \\ \textit{OUR FIT} \\ \\ \textit{0.75} \ \pm 0.09 \end{array} \quad \begin{array}{c} \textit{OUR FIX} \\ \textit{OUR AVERAGE} \\ \end{array}
                                              DOCUMENT ID TECN COMMENT
                                               BALTRUSAIT...86E MRK3 E = 3.77 GeV
0.759 \pm 0.044 \pm 0.083
                                              SCHINDLER 81 MRK2 Eee 3.771 GeV
0.68 +0.23
                                37
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                              SCHARRE 78 MRK1 Eee = 3.77 GeV
\Gamma(K^-\pi^+\pi^0)/\Gamma_{\text{total}}
                                                                          (\Gamma_{18} + \Gamma_{21} + \frac{1}{3}\Gamma_{39} + \frac{2}{3}\Gamma_{40})/\Gamma
VALUE EVTS
0.119±0.012 OUR FIT
                                              DOCUMENT ID
                                                                    0.091+0.032 OUR AVERAGE
0.073 \pm 0.036 \pm 0.009
                                  13
                                          32 BARLAG
                                                                  898 CCD π Cu 230 GeV
0.106^{\,+\,0.061}_{\,-\,0.028}\,\pm\,0.006
                                          33 AGUILAR-... 87F HYBR πp, pp 360,400 GeV
                                  5
 32 BARLAG 89B computed the branching ratio using topological normalization.
 33 AGUILAR-BENITEZ 87F computed the branching ratio by topological normalization.
\Gamma(K^-\pi^+\pi^0)/\Gamma(K^-\pi^+)
                                                                       (\Gamma_{18} + \Gamma_{21} + \frac{1}{3}\Gamma_{39} + \frac{2}{3}\Gamma_{40})/\Gamma_{12}
<u>VALUE</u> <u>EVTS</u>
3.21 ± 0.28 OUR FIT
                                              DOCUMENT ID
                                                                     TECN COMMENT
4.2 ±1.4
                                              SUMMERS
                                                                  84 TPS Photoproduction
\Gamma(K^-\rho^+)/\Gamma(K^-\pi^+\pi^0)
                                                                       \Gamma_{18}/(\Gamma_{18}+\Gamma_{21}+\frac{1}{3}\Gamma_{39}+\frac{2}{3}\Gamma_{40})
<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

0.66±0.06 OUR FIT Error includes scale factor of 1.1.
                                  13
                                              SUMMERS 84 TPS Photoproduction
\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K^-\pi^+\pi^0 \text{ (non-resonant)})/\Gamma_{\text{total}}
                                                                                                      \sigma\Gamma_{21}/\Gamma

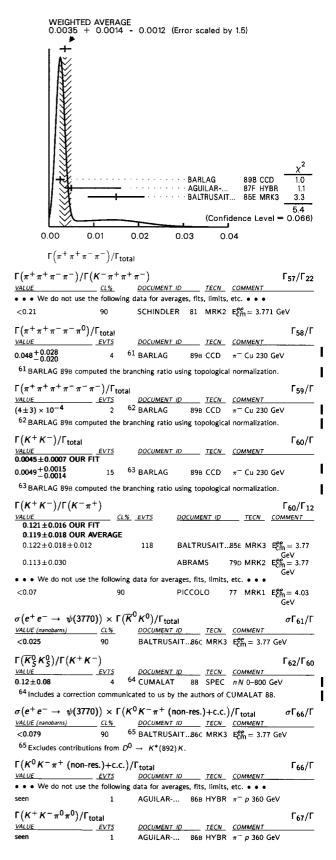
    VALUE (nanobarns)
    CL%
    DOCUMENT ID
    TECN
    COMMENT

    0.08±0.04 OUR FIT
    Error includes scale factor of 1.2.

   0.07 \pm 0.02 \pm 0.03
                                              ADLER 87 MRK3 Eee = 3.77 GeV
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                90
                                              SCHINDLER 81 MRK2 Eem = 3.771 GeV
\Gamma(K^-\pi^+\pi^0 \text{ (non-resonant)})/\Gamma(K^-\pi^+\pi^0)
                                                                       \Gamma_{21}/(\Gamma_{18}+\Gamma_{21}+\frac{1}{3}\Gamma_{39}+\frac{2}{3}\Gamma_{40})
<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>
0.10±0.05 OUR FIT Error includes scale factor of 1.2.
                                  21
                                              SUMMERS 84 TPS Photoproduction
0.51 \pm 0.22
```

 $\sigma(\Gamma_{14}+\Gamma_{16}+\frac{2}{3}\Gamma_{39})/\Gamma$

TECN COMMENT


```
\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                             \sigma\Gamma_{22}/\Gamma
VALUE (nanobarns) EVTS DOCUMENT ID

0.521 ± 0.035 OUR FIT Error includes scale factor of 1.1.
                                                                     TECN COMMENT
0.52 ±0.07 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below.
0.525 \pm 0.026 \pm 0.054
                                     992
                                                 BALTRUSAIT...86E MRK3 Ecm = 3.77 GeV
0.68 \pm 0.11
                                     185
                                                 SCHINDLER 81 MRK2 Ecm = 3.771 GeV
0.36 \pm 0.10
                                                 PERUZZI
                                                                  77 MRK1 Eee = 3.77 GeV
                                      44
           WEIGHTED AVERAGE 0.52 ± 0.07 (Error scaled by 1.5)
                                                 Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our "best" values,
                                                 obtained from a least-squares constrained fit utilizing measurements of other (related)
                                                  quantities as additional information.
                                                           BALTRUSAIT...
                                                                              86E MRK3
                                                           SCHINDLER
                                                                                  MRK2
                                                                 (Confidence Level = 0.096)
                   0.2
                              0.4
                                      0.6
                                                  8.0
           \sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}} \text{ (nanobarns)}
\Gamma(K^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                               \Gamma_{22}/\Gamma
<u>VALUE</u> <u>FVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>
0.078±0.006 OUR FIT Error includes scale factor of 1.1.
0.079 ± 0.011 OUR AVERAGE
                                      34 BARLAG
0.082 \pm 0.012
                             399
                                                            89B CCD π Cu 230 GeV
0.065^{\,+\,0.017}_{\,-\,0.011}\,\pm\,0.019
                         13 <sup>35</sup> AGUILAR-... 87F HYBR πρ, ρρ 360,400 GeV
AGUILAR-... 84 HYBR \pi^- p pp 360 GeV
0.10 ±0.04
                               8
                                          AGUILAR-... 84B HYBR \pi^- p 360 GeV
 ^{34}\,\mathrm{BARLAG} 898 computed the branching ratio using topological normalization.
 35 AGUILAR-BENITEZ 87F computed the branching ratio by topological normalization.
\Gamma(K^-\pi^+\pi^+\pi^-)/\Gamma(K^-\pi^+)
                                                                                            \Gamma_{22}/\Gamma_{12}
<u>VALUE</u> <u>FUTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>
2.12±0.13 OUR FIT Error includes scale factor of 1.1.
2.13±0.16 OUR AVERAGE
                                          BORTOLETTO88 CLEO E = 10.55 GeV
2.12 \pm 0.16 \pm 0.09
                                                      86 SILI \pi^- Be fixed target
2.0 ±0.9
                                          BAILEY
2.17 \pm 0.28 \pm 0.23
                                       36 ALBRECHT 85F ARG
                                                                          Ecm = 10 GeV
                                                        83B SPEC \pi^{-} Be \rightarrow D^{0}
77 MRK1 E<sub>CM</sub><sup>ee</sup> = 4.03, 4.41 GeV
2.0 ±1.0
                                          BAILEY
                                     37 PICCOLO
2.2 \pm 0.8
 ^{36} Not independent of (K^-3\pi)/\text{total}.
 37 This channel dominated by K^-\pi^+\rho^0 (85 ± 15%). K^*\pi^+\pi^- and K^-\partial_2(1320)^+ consistent with zero, K^*\rho^0 fraction is 0.1 ± 0.1.
\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K^-\pi^+\rho^0 \text{ 3-body})/\Gamma_{\text{total}}
                                                                                             \sigma\Gamma_{24}/\Gamma
                                          DOCUMENT ID TECN COMMENT
VALUE (nanobarns)
0.044 \pm 0.012 \pm 0.021
                                          ADLER
                                                            90 MRK3 Em = 3.77 GeV
\Gamma(K^-\pi^+\rho^0 3-body)/\Gamma(K^-\pi^+\pi^+\pi^-)
                                                                                            \Gamma_{24}/\Gamma_{22}
                                        DOCUMENT ID TECN COMMENT
VALUE CL% EVTS
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.2 \pm 0.2
                  90
                              2
                                          BAILEY
                                                            838 SPEC \pi Be \rightarrow D^0
                                          PICCOLO
                                                            77 MRK1 Eee = 4.03, 4.41 GeV
\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K^-\pi^+\pi^+\pi^- \text{ non-resonant})/\Gamma_{\text{total}}
VALUE (nanobarns)
                                          DOCUMENT ID TECN COMMENT
0.127±0.015±0.032
                                                             90 MRK3 Ecm = 3.77 GeV
                                          ADLER
\Gamma(K^-\pi^+\pi^0\pi^0)/\Gamma_{\text{total}}
                                                                                              \Gamma_{29}/\Gamma
                         EVTS
VALUE
                                          DOCUMENT ID
                                                               ______TECN COMMENT
                              24 38 ADLER
0.149 \pm 0.037 \pm 0.030
                                                            88c MRK3 Ecm = 3.77 GeV
```

< 0.066

```
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                 \sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K^*(892)^- \pi^+)/\Gamma_{\text{total}}
                                                                                                                                                                                                              \sigma \Gamma_{39}/\Gamma
0.153 \pm 0.044 \pm 0.013 23 39 BARLAG 89B CCD \pi^- Cu 230 GeV
                                                                                                                 VALUE (nanobarns) EVTS
0.31 ± 0.04 OUR FIT
                                                                                                                                                           DOCUMENT ID
                                                                                                                                                                               TECN COMMENT
0.209^{\,+\,0.074}_{\,-\,0.043}\,\pm\,0.012
                                      ^{39} AGUILAR-... 87F HYBR \pi p, pp 360,400 GeV
                              9
                                                                                                                 0.30 ± 0.04 OUR AVERAGE
                                          AGUILAR-... 868 HYBR \pi^-\, p 360 GeV
seen
                                                                                                                 0.28 \pm 0.04 \pm 0.08
                                                                                                                                                           ADLER
                                                                                                                                                                             87 MRK3 Using K^{*-} \rightarrow K^- \pi^0
                                                           81 HYBR \pi^- p \rightarrow D^0 \overline{D}^0
                                                                                                                                                                             87 MRK3 Using K^{*-} \rightarrow \overline{K}^0 \pi^-
                                          ADEVA
                                                                                                                 0.31 \pm 0.02 \pm 0.05
                                                                                                                                                           ADLER
 ^{38} ADLER 88c uses an absolute normalization method finding this decay channel opposite a detected {\it D}^0 \to {\it K}^-\pi^+ in pure {\it D}\,\overline{\it D} events.
                                                                                                                 0.31^{+0.11}_{-0.12}
                                                                                                                                                           SCHINDLER 81 MRK2 Eee = 3.771 GeV
 39 AGUILAR-BENITEZ 87F and BARLAG 89B computed the branching ratio by topological
                                                                                                                 \Gamma(K^*(892)^-\pi^+)/\Gamma(K^-\pi^+\pi^0)
                                                                                                                                                                                \Gamma_{39}/(\Gamma_{18}+\Gamma_{21}+\frac{1}{3}\Gamma_{39}+\frac{2}{3}\Gamma_{40})
    normalization. Does not distinguish presence of a third \pi^0 and thus is not included in
                                                                                                                 VALUE EVTS
0.39±0.06 OUR FIT
                                                                                                                                                           DOCUMENT ID TECN COMMENT
\Gamma(\overline{K}^0\pi^+\pi^-\pi^0(\pi^0))/\Gamma_{\text{total}}
                                                                                                                 0.33^{+0.36}_{-0.24}
                                                                                                                                                           SUMMERS 84 TPS Photoproduction
                                         DOCUMENT ID TECN COMMENT
                   EVTS
                                                                                                                 \sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(\overline{K}^*(892)^0\pi^0)/\Gamma_{\text{total}}
\bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet
                                                                                                                                                                                                             \sigma\Gamma_{40}/\Gamma
0.148 ± 0.063 ± 0.015 12 40 BARLAG
                                                        89B CCD π Cu 230 GeV
                                                                                                                 VALUE (nanobarns) EVTS
0.13±0.04 OUR FIT
                                                                                                                                                           DOCUMENT ID TECN COMMENT
0.106 \, {}^{+\, 0.073}_{-\, 0.029} \pm 0.006
                                     40 AGUILAR-... 87F HYBR πρ, ρρ 360,400 GeV
                               4
                                                                                                                 0.15 ± 0.04 OUR AVERAGE
                                         AGUILAR-... 868 HYBR \pi^- \rho 360 GeV
                               7
                                                                                                                 0.15 \pm 0.02 \pm 0.04
                                                                                                                                                           ADLER
                                                                                                                                                                            87 MRK3 E<sup>ee</sup><sub>cm</sub> = 3.77 GeV
 ^{40}\,\mathrm{AGUILAR\text{-}BENITEZ} 87F and BARLAG 89B computed the branching ratio by topological
                                                                                                                 0.11 + 0.18 \\ -0.14
                                                                                                                                                           SCHINDLER 81 MRK2 Ecm = 3.771 GeV
    normalization. Does not distinguish presence of a third \pi^0 and thus is not included in
    the average.
                                                                                                                 \Gamma(\overline{K}^*(892)^0\pi^0)/\Gamma(K^-\pi^+\pi^0)
                                                                                                                                                                                \Gamma_{40}/(\Gamma_{18}+\Gamma_{21}+\frac{1}{3}\Gamma_{39}+\frac{2}{3}\Gamma_{40})
\Gamma(K^-\pi^+\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}
                                                                                                                 VALUE
0.17±0.05 OUR FIT
                                                                                                                                                           DOCUMENT ID TECN COMMENT
                                         DOCUMENT ID TECN COMMENT
                                                                                                                 0.09 + 0.14
0.040 \,{}^{+\, 0.021}_{-\, 0.015}
                                    <sup>41</sup> BARLAG
                                                           89B CCD π Cu 230 GeV
                                                                                                                                                           SUMMERS 84 TPS Photograduction
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                 \sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K^-a_1(1260)^+)/\Gamma_{\text{total}}
                                                                                                                                                                                                             \sigma\Gamma_{41}/\Gamma
           6 AGUILAR-... 868 HYBR π<sup>-</sup> p 360 GeV
                                                                                                                 VALUE (nanobarns)
                                                                                                                                                           DOCUMENT ID TECN COMMENT
 ^{\rm 41}\,{\rm BARLAG} 89B computed the branching ratio using topological normalization.
                                                                                                                 0.517 \pm 0.036 \pm 0.088
                                                                                                                                                           ADLER
                                                                                                                                                                             90 MRK3 E = 3.77 GeV
\Gamma(\overline{K}^0\pi^+\pi^+\pi^-\pi^-)/\Gamma_{\text{total}}
                                                                                              \Gamma_{33}/\Gamma
                                                                                                                 \sigma(e^+e^-
ightarrow~\psi(3770)) 	imes \Gamma(K^-a_2(1320)^+)/\Gamma_{total}
                                                                                                                                                                                                             \sigma\Gamma_{42}/\Gamma
                                         DOCUMENT ID TECN COMMENT
                       EVTS
                                                                                                                                                           DOCUMENT ID TECN COMMENT
                                                                                                                 VALUE (nanobarns) CL%
                     8 42 BARLAG
                                                           89B CCD \pi^- Cu 230 GeV
                                                                                                                                                           ADLER
                                                                                                                                                                             90 MRK3 Em = 3.77 GeV
 ^{
m 42}BARLAG 89B computed the branching ratio using topological normalization
                                                                                                                 \Gamma(K^-a_2(1320)^+)/\Gamma(K^-\pi^+\pi^+\pi^-)
                                                                                                                                                                                                            \Gamma_{42}/\Gamma_{22}
                                                                                                                      Followed by decay a_2(1320)^+ \rightarrow \pi^+ \pi^+ \pi^- (BR = 0.35)
\Gamma(\overline{K}^0\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-)/\Gamma_{\text{total}}
                                                                                              \Gamma_{34}/\Gamma
                                                                                                                 VALUE
                                                                                                                                                         DOCUMENT ID TECN COMMENT
                                         DOCUMENT ID
                                                                                                                 1 43 BARLAG
                                                           89B CCD \pi^- Cu 230 GeV
                                                                                                                                                      48 PICCOLO 77 MRK1 Eee = 4.03, 4.41 GeV
                                                                                                                 < 0.17
 ^{
m 43}\,{\rm BARLAG} 898 computed the branching ratio using topological normalization.
                                                                                                                  <sup>48</sup>We have corrected the reported number < 0.06 to account for B(a_2(1320)^+ \rightarrow
\Gamma(\overline{K}^0K^+K^-)/\Gamma(\overline{K}^0\pi^+\pi^-)
                                                                                                                     \pi^+ \pi^+ \pi^-) = 0.35.
                                                            (\Gamma_{37} + \frac{1}{2}\Gamma_{54})/(\Gamma_{14} + \Gamma_{16} + \frac{2}{3}\Gamma_{39})
DOCUMENT ID TECN COMMENT
                                                                                                                 \sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(\overline{K}^*(892)^0\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                             \sigma\Gamma_{43}/\Gamma
                                                                                                                 VALUE (nanobarns)
                                                                                                                                                           DOCUMENT ID TECN COMMENT
0.20 \pm 0.05 OUR AVERAGE
                                      44 BEBEK
0.24 ±0.08
                                                           86 CLEO e^+e^- near \Upsilon(4S)
                                                                                                                 0.110 \pm 0.015 \pm 0.032
                                                                                                                                                           ADLER
                                                                                                                                                                             90 MRK3 Ecm = 3.77 GeV
                              52 44 ALBRECHT 858 ARG Em = 10 GeV
0.185 \pm 0.055
                                                                                                                 \Gamma(\overline{K}^*(892)^0\pi^+\pi^-)/\Gamma(K^-\pi^+\pi^+\pi^-)
                                                                                                                                                                                                            \Gamma_{43}/\Gamma_{22}
 <sup>44</sup> Resonant contributions to \overline{K}^0 K^+ K^- are not distinguished (\overline{K}^0 \phi is included).
                                                                                                                        Followed by decay \overline{K}^*(892)^0 \rightarrow K^-\pi^+ (BR = 0.67)
\sigma(e^+e^- \to \psi(3770)) \times \Gamma(\overline{K}^0 (K^+K^-) \text{ non-resonant})/\Gamma_{\text{total}}
                                                                                                                 VALUE CL% EVTS
                                                                                                                                                      DOCUMENT ID TECN COMMENT
                                                                                                                 • • • We do not use the following data for averages, fits, limits, etc. • •
                                                                                            \sigma\Gamma_{37}/\Gamma
                                                                                                                                 90 0 <sup>49</sup> BAILEY
                                                                                                                                                                            838 SPEC \pi \, \text{Be} \rightarrow \, \mathcal{D}^0
                                         DOCUMENT ID TECN COMMENT
VALUE (nanobarns)
                                                                                                                                                0 50 PICCOLO
                                                                                                                                                                           77 MRK1 Eee = 4.03, 4.41 GeV
0.050^{+0.013}_{-0.011} OUR FIT
0.05 \begin{array}{c} +0.02 \\ -0.01 \end{array} \pm 0.01
                                                                                                                  <sup>49</sup> We have corrected the reported number < 0.18 to account for B(\overline{K}^* (892)^0 \rightarrow K^- \pi^+)
                                     45 BALTRUSAIT...86c MRK3 Eco = 3.77 GeV
                                                                                                                  ^{50} Corresponds to < 0.5 at 90% CL. We have corrected the reported numbers to account for B(\overline{K}^*(892)^0 \to K^-\pi^+) = 0.67.
 <sup>45</sup> Excludes contributions from D^0 \rightarrow \overline{K}^0 \phi.
\Gamma(\overline{K}^0 (K^+K^-) \text{ non-resonant})/\Gamma_{\text{total}}
                                                                                              \Gamma_{37}/\Gamma
                                                                                                                 \Gamma(\overline{K}^*(892)^0\rho^0)/\Gamma(K^-\pi^+\pi^+\pi^-)
                                         DOCUMENT ID TECN COMMENT
VALUE EVTS
                                                                                                                        Followed by decay \overline{K}^*(892)^0 \rightarrow K^- \pi^+ \text{ (BR = 0.67)}
0.0076^{\,+\,0.0020}_{\,-\,0.0018} OUR FIT
                                                                                                                 VALUE CL% EVTS
                                                                                                                                                       DOCUMENT ID TECN COMMENT
                                                                                                                 • • • We do not use the following data for averages, fits, limits, etc. • • •
                              13 46 BARLAG
                                                           89B CCD π Cu 230 GeV
                                                                                                                                  90 5 51 BAILEY 83B SPEC \pi Be \rightarrow D^0
                                                                                                                 0.75 \pm 0.3
 <sup>46</sup> BARLAG 89B computed the branching ratio using topological normalization.
                                                                                                                                               20 52 PICCOLO 77 MRK1 E_{cm}^{ee} = 4.03, 4.41 \text{ GeV}
                                                                                                                 0.15 + 0.16 \\ -0.15
\Gamma(\mathit{K}^{+}\mathit{K}^{-}\overline{\mathit{K}}^{0}\pi^{0})/\Gamma_{total}
                                                                                              \Gamma_{38}/\Gamma
                                                                                                                  ^{51} We have corrected the reported number (0.5 \pm 0.2) to account for B(\overline{\textit{K}}^{*} (892)^{0} \rightarrow
VALUE
                                         DOCUMENT ID TECN COMMENT
                                                                                                                  <sup>52</sup>We have corrected the reported number (0.10^{+0.11}_{-0.10}) to account for B(\overline{K}^{*}(892)<sup>0</sup> \rightarrow
0.024^{+0.033}_{-0.017}
                              1 47 BARLAG
                                                       89B CCD π<sup>-</sup> Cu 230 GeV
 47 BARLAG 89B computed the branching ratio using topological normalization.
                                                                                                                 \sigma(e^+\,e^-\,\rightarrow\,\psi(3770))\,\times\,\Gamma(\overline{K}^*(892)^0\,\rho^0\,\,(\text{S-wave}_{\text{Transverse}}))/\Gamma_{\text{total}}\,\,\sigma\Gamma_{45}/\Gamma_{\text{total}}
\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K_1(1270)^-\pi^+)/\Gamma_{\text{total}}
                                                                                                                 VALUE (nanobarns)
                                                                                                                                                           DOCUMENT ID
                                                                                                                                                                               TECN COMMENT
VALUE (nanobarns)
                                         DOCUMENT ID TECN COMMENT
                                                                                                                                                           ADLER
                                                                                                                                                                             90 MRK3 Ecm = 3.77 GeV
                                                           90 MRK3 Ecm = 3.77 GeV
0.103 \pm 0.030 \pm 0.047
                                          ADLER
                                                                                                                 \sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(\overline{K}^*(892)^0 \rho^0 (S-wave_{Longitud.}))/\Gamma_{total} = \sigma\Gamma_{46}/\Gamma
\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K^*(1370)^-\pi^+)/\Gamma_{\text{total}}
                                                                                            \sigma\Gamma_{49}/\Gamma
                                                                                                                 VALUE (nanobarns) CL%
                                                                                                                                                           DOCUMENT ID TECN COMMENT
                                         DOCUMENT ID TECN COMMENT
VALUE (nanobarns) CL%
                                                                                                                  < 0.019
                                                                                                                                              90
                                                                                                                                                           ADLER
                                                                                                                                                                             90 MRK3 Eee = 3.77 GeV
                                         ADLER
                                                           90 MRK3 E<sup>ee</sup><sub>cm</sub> = 3.77 GeV
                                                                                                                 \sigma(e^+e^- 	o \psi(3770)) \times \Gamma(\overline{K}^*(892)^0 \rho^0 (P\text{-wave}))/\Gamma_{\text{total}}
                                                                                                                                                                                                             \sigma\Gamma_{47}/\Gamma
\sigma(e^+e^- \rightarrow \psi(3770)) \times \Gamma(K_1(1400)^-\pi^+)/\Gamma_{\text{total}}
                                                                                            \sigma\Gamma_{50}/\Gamma
                                                                                                                                                           DOCUMENT ID TECN COMMENT
                                                                                                                 VALUE (nanobarns)
                                                                                                                                          CL%
                                                              TECN COMMENT
VALUE (nanobarns) CL%
                                         DOCUMENT ID
                                                                                                                                                                             90 MRK3 E<sup>ee</sup><sub>cm</sub> = 3.77 GeV
                                                                                                                                                           ADLER
                                                           90 MRK3 Eee = 3.77 GeV
                                          ADLER
```

$(\overline{K}^0\omega)/\Gamma(K^-\pi^+)$		DOCUMENT ID	TECN	COMMENT	
.00±0.36±0.20		ALBRECHT	890 ARG	Ecm = 10 Ge	V
$(\overline{K}^0\eta)/\Gamma(K^-\pi^+)$	l				Γ_{52}/Γ_{12}
ALUE	CL%	DOCUMENT ID	TECN	COMMENT	
< 0.64	90	ALBRECHT	89D ARG	Ecm = 10 Ge	V
· / · · / · · · · · · · · · · · · · · · ·	. 13				
$(\overline{K}^*(892)^0\eta)/\Gamma(F)$					Γ_{53}/Γ_{12}
ALUE	<u>CL%</u>	DOCUMENT ID	<u>TECN</u>	COMMENT	
<0.70	90	ALBRECHT	89D ARG	Eee = 10 Ge	V
$(\overline{K}^0 \phi)/\Gamma_{\text{total}}$					Γ_{54}/Γ
ALUE	EVTS	DOCUMENT ID	TECN	COMMENT	. 54/ .
.0080±0.0016 OUR	FIT			,	
0.016 ±0.008	6	⁵³ BARLAG	89B CCD	π ⁻ Cu 230 G	
⁵³ BARLAG 89B com	puted the b	ranching ratio usi	ing topologica	al normalization	١.
$(\overline{K}^0 \phi)/\Gamma(\overline{K}^0 \pi^+ \tau)$	c-)			Γ ₅₄ /(Γ ₁₄ +Γ	16+ ² [20)
ALUE	ÉVTS	DOCUMENT ID	TECN	COMMENT	10 - 3 - 3 - 3 - 3 - 3
.151 ± 0.026 OUR FIT	Γ				
0.150±0.028 OUR AV	ERAGE	⁵⁴ ALBRECHT	07c ADC	cee _ 10 0-	v
1.155±0.033 1.14 ±0.05	29	BEBEK	87E ARG 86 CLEO	$E_{Cm}^{ee} = 10 \text{ Ge}$ $e^+ e^- \text{ near}$	
14 ±0.05 • • We do not use:					· (+3)
0.186 ± 0.052	26	ALBRECHT	85B ARG	Repl. by AL-	
				BRECHT	87E
54 ALBRECHT 87E a	Iso report I	-(K ^U K ⁺ K− non	$-\phi)=0.0064$	\pm 0.0015 \pm 0	.0009 where
they used $B(D^0 -$	$K^0\pi^+\pi$	$^{-}) = 0.076 \pm 0.0$	007 ± 0.008 .		
$(\pi^+\pi^-)/\Gamma_{\text{total}}$					Γ_{55}/Γ
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		EVTS DOCU	MENT ID	TECN COMI	
ALUE	OUR FIT			TECN COMI	
0.00114± 0.00031 9 ± 6	OUR FIT	⁻⁴ OUR AVERAG	GE		MENT
0.00114± 0.00031 9 ± 6 8 ± 6) × 10) × 10	-4 OUR AVERAG -4 3 55 BARL	GE _AG 89	B CCD π ⁻ C	u 230 GeV
0.00114± 0.00031 9 ± 6 8 ± 6	OUR FIT	-4 OUR AVERAG -4 3 55 BARL	GE _AG 89	BCCD π ⁻ C FHYBR πρ,	u 230 GeV
0.00114± 0.00031 9 ± 6 8 ± 6 50 + 120 - 20) × 10) × 10 ± 40) × 10	-4 OUR AVERAG -4 3 55 BARI -4 1 ⁵⁶ AGUI	GE _AG 890 LAR 870	B CCD π [—] C F HYBR π <i>p</i> , G	u 230 GeV
ALUE 0.00114± 0.00031 9 ± 6 8 ± 6 50 + 120 - 20 55 BARLAG 898 com	OUR FIT) \times 10) \times 10 \pm 40) \times 10 puted the b	-4 OUR AVERAGE -4 3 55 BARU -4 1 56 AGUI	GE _AG 89I LAR 87I	B CCD π^- C F HYBR πp , G al normalization	u 230 GeV pp 360,400 eV
0.00114± 0.00031 9 ± 6 8 ± 6 50 + 120 - 20 55 BARLAG 898 com 56 AGUILAR-BENITE) × 10) × 10) × 10 ± 40) × 10 puted the the 2Z 87F com	-4 OUR AVERAGE -4 3 55 BARU -4 1 56 AGUI	GE _AG 89I LAR 87I	B CCD π^- C F HYBR πp , G al normalization	u 230 GeV pp 360,400 eV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OUR FIT) \times 10) \times 10 \pm 40) \times 10 puted the best 2 87F come	-4 OUR AVERAGE -4 3 55 BARU -4 1 56 AGUI oranching ratio us puted the branchi	GE LAG 891 LAR 871 ing topologica ing ratio by to	B CCD π^- C F HYBR $\pi \rho$, Go al normalization opological norm	u 230 GeV pp 360,400 eV nalization. F55/F12
ALUE 0.00114 ± 0.00031 9 ± 6 8 ± 6 50 + 120 55 BARLAG 898 com 56 AGUILAR-BENITE $^{-}(\pi^{+}\pi^{-})/\Gamma(K^{-}\pi^{-})$) × 10) × 10 ± 40) × 10 puted the text of the set o	-4 OUR AVERAGE -4 3 55 BARU -4 1 56 AGUI oranching ratio us puted the branchi	GE _AG 89I LAR 87I	B CCD π^- C F HYBR $\pi \rho$, Go al normalization opological norm	u 230 GeV pp 360,400 eV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OUR FIT) × 10) × 10 \pm 40) × 10 puted the total set of the	-4 OUR AVERAGE -4 3 55 BARU -4 1 56 AGUI oranching ratio us puted the branchi	GE LAG 891 LAR 871 ing topologica ing ratio by to	B CCD π^- C F HYBR $\pi \rho$, Go al normalization opological norm	u 230 GeV pp 360,400 eV nalization. F55/F12
$\frac{\text{ALUE}}{\text{0.00114} \pm \text{0.00031}}$ $\frac{9}{8} \pm \frac{6}{50}$ $\frac{120}{20}$ $\frac{55}{6}$ ARLAG 898 com $\frac{56}{6}$ AGUILAR-BENITE $\frac{1}{6}$ (π ⁺ π ⁻)/Γ (K ⁻ π $\frac{3}{6}$ ALUE $\frac{3}{6}$ 0.031±0.008 OUR) × 10) × 10) × 10 ± 40) × 10 puted the test of the second of the	-4 OUR AVERAL -4 3 55 BARU -4 1 56 AGUI oranching ratio us puted the branchi	GE .AG 89I LAR 87I ing topologics ing ratio by to	B CCD π^- C F HYBR $\pi \rho$, Go al normalization opological norm	u 230 GeV pp 360,400 eV nalization. \[\sum_{55} / \sum_{12} \] \[\com_{12} \] \[\com_{13} \] \[\com_{14} \] \[\com_{15}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) × 10) × 10) × 10 ± 40) × 10 puted the test of the second of the	-4 OUR AVERAGE -4 3 55 BARU -4 1 56 AGUI oranching ratio us puted the branchi ### EVTS DE 39 B	GE AG 899 LAR 871 ing topologicating ratio by to OCUMENT ID ALTRUSAIT.	B CCD π^- C F HYBR $\pi\rho$, all normalization oppological norm $\frac{TECN}{2}$ C	u 230 GeV pp 360,400 eV nalization. 55/ 12
$\begin{array}{c} \text{ALUE} \\ \textbf{0.00114} \pm & \textbf{0.00031} \\ \textbf{9} & \pm & 6 \\ 8 & \pm & 6 \\ 50 & - & 20 \\ \end{array}$ $\begin{array}{c} 55 \text{ BARLAG 898 com} \\ 56 \text{ AGUILAR-BENITE} \\ \hline (\pi^{+}\pi^{-})/\Gamma \left(K^{-}\pi^{-}\right) \\ \textbf{0.031} \pm \textbf{0.008 OUR} \\ \textbf{0.033} \pm \textbf{0.009 OUR} \end{array}$) × 10) × 10) × 10 ± 40) × 10 puted the test of the second of the	-4 OUR AVERAGE -4 3 55 BARU -4 1 56 AGUI oranching ratio us puted the branchi ### EVTS DE 39 B	GE .AG 89I LAR 87I ing topologics ing ratio by to	B CCD π^- C F HYBR $\pi\rho$, all normalization oppological norm $\frac{TECN}{2}$ C	u 230 GeV pp 360,400 eV nalization. \[\sum_{55} / \sum_{12} \] \[\com_{12} \] \[\com_{13} \] \[\com_{14} \] \[\com_{15}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OUR FIT) × 10) × 10 ± 40) × 10 puted the to Z 87F com +) FIT AVERAGE 6	-4 OUR AVERAL -4 3 55 BARU -4 1 56 AGUI branching ratio us puted the branchi ** EVTS Date 39 B A	GE AG 899 LAR 871 ing topologicating ratio by to OCUMENT ID ALTRUSAIT. BRAMS	B CCD π ⁻ C F HYBR πρ, Gi al normalizatior opological norm TECN C .85E MRK3 E 79D MRK2 E i, etc. • • •	u 230 GeV pp 360,400 eV 1. Γ55/Γ12 ΟΜΜΕΝΤ GEW = 3.77 GeV
ALUE 0.00114 \pm 0.00031 \pm 6 8 \pm 6 8 \pm 6 50 \pm 20 55 BARLAG 898 com 56 AGUILAR-BENITE $(\pi^{+}\pi^{-})/\Gamma(K^{-}\pi^{-})$ 0.031 \pm 0.008 OUR 0.033 \pm 0.010 \pm 0.00 0.033 \pm 0.015 \pm • • We do not use	OUR FIT) × 10) × 10 ± 40) × 10 puted the to Z 87F com +) FIT AVERAGE 6	-4 OUR AVERAM -4 3 55 BARU -4 1 56 AGUI branching ratio us puted the branchi <u>** EVTS Dataset</u> 39 B A and a data for average	GE AG 899 LAR 871 ing topologicating ratio by to OCUMENT ID ALTRUSAIT. BRAMS	B CCD π ⁻ C F HYBR πρ, Gi al normalizatior opological norm TECN C .85E MRK3 E 79D MRK2 E i, etc. • • •	u 230 GeV pp 360,400 eV 1. T55/\(\Gamma\) COMMENT GEV GEV GEV GEV GEV GEV GEV GE
$\frac{\text{ALUE}}{\text{0.00114} \pm \text{0.00031}}$ 9 ± 6 8 ± 6 50 + 120 55 BARLAG 898 com 56 AGUILAR-BENITE $\frac{\pi}{\pi}(\pi^{+}\pi^{-})/\Gamma(K^{-}\pi^{-})$ 0.031±0.008 OUR 0.033±0.009 OUR 0.033±0.010±0.00 0.033±0.015 • • We do not use <0.07	OUR FIT) × 10) × 10 ± 40) × 10 puted the tezz 87F com +) FIT AVERAGE 6 the followin 90	-4 OUR AVERAM -4 3 55 BARU -4 1 56 AGUI branching ratio us puted the branchi <u>** EVTS Dataset</u> 39 B A and a data for average	GE AG 891 LAR 871 ing topologicating ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits	B CCD π ⁻ C F HYBR πρ, Gi al normalizatior opological norm TECN C .85E MRK3 E 79D MRK2 E i, etc. • • •	u 230 GeV pp 360,400 eV 1. Γ55/Γ12 ΟΜΜΕΝΤ GEW = 3.77 GeV
$\frac{\text{ALUE}}{\text{0.00114} \pm \text{0.00031}}$ 9 ± 6 8 ± 6 50 + 120 55 BARLAG 898 com 56 AGUILAR-BENITE $\frac{\pi}{\pi}(\pi^{+}\pi^{-})/\Gamma(K^{-}\pi^{-})$ 0.031±0.008 OUR 0.033±0.009 OUR 0.033±0.010±0.00 0.033±0.015 • • We do not use <0.07	OUR FIT) × 10) × 10 ± 40) × 10 puted the tezz 87F com +) FIT AVERAGE 6 the followin 90	-4 OUR AVERAM -4 3 55 BARU -4 1 56 AGUI branching ratio us puted the branchi <u>** EVTS Dataset</u> 39 B A and a data for average	GE AG 891 LAR 871 ing topologicating ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits	B CCD π ⁻ C F HYBR πρ, Gi al normalizatior opological norm TECN C .85E MRK3 E 79D MRK2 E i, etc. • • •	u 230 GeV pp 360,400 eV 1. T55/\(\Gamma\) COMMENT GEV GEV GEV GEV GEV GEV GEV GE
ALUE 0.00114 ± 0.00031 9 ± 6 8 ± 6 50 + 120 55 BARLAG 898 com 56 AGUILAR-BENITE $(\pi^+\pi^-)/\Gamma(K^-\pi^-)$ 0.031 ± 0.008 OUR 0.033 ± 0.009 OUR 0.033 ± 0.015 • • We do not use <0.07 $(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ ALUE $(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$	OUR FIT) × 10) × 10 10 ± 40) × 10 puted the to iz 87F com +) FIT AVERAGE 6 the following 90	-4 OUR AVERAM -4 3 55 BARU -4 1 56 AGUI branching ratio us puted the branchi <u>** EVTS Dataset</u> 39 B A and a data for average	GE .AG 89 .LAR 87 87 100 .	B CCD π^- C F HYBR πp , Grail normalization opological norm TECN © .85E MRK3 E 79D MRK2 E 6, etc. • • •	230 GeV pp 360,400 eV 1. πalization. Γ55/Γ12 οΜΜΕΝΤ GEW Em = 3.77 GeV Em = 4.03 GeV
$\begin{array}{lll} & \Delta LUE & & \Delta LUE & \\ & \mathbf{0.00114 \pm} & 0.00031 \\ & 9 & \mathbf{\pm} & 6 \\ & 8 & \mathbf{\pm} & 6 \\ & 50 & -20 \\ & 55 & \mathbf{BARLAG} & 898 & \mathbf{com} \\ & 56 & \mathbf{AGUILAR-BENITE} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$	OUR FIT) × 10) × 10 10 ± 40) × 10 puted the to iz 87F com +) FIT AVERAGE 6 the following 90	-4 OUR AVERAL -4 3 55 BARL -4 1 56 AGUI oranching ratio us puted the branchi 34 EVTS DI 39 B A ag data for averag PI DOCUMENT ID	GE .AG 89 .LAR 87 87 100 .	B CCD π^- C F HYBR πp , Gal normalization oppological norm TECN G .85E MRK3 E 79D MRK2 E i, etc. • • • 77 MRK1 E	(u 230 GeV pp 360,400 eV n). halization. \[\int_{55} / \Gamma_1 2 \\ \text{OMMENT} \] \[\text{GeV} \\ \text{cm} = 3.77 \\ \text{GeV} \\ \text{cm} = 3.77 \\ \text{GeV} \\ \text{cm} = 3.77 \\ \text{GeV} \\ \text{GeV} \\ \text{T} \\ \text{GeV} \\ \text{T} \\ \text{GeV} \\ \text{T} \\ \text{GeV} \\ \text{T} \\ \t
$\begin{array}{lll} & \Delta LUE & & \Delta LUE & \\ & \mathbf{0.00114 \pm} & 0.00031 \\ & 9 & \mathbf{\pm} & 6 \\ & 8 & \mathbf{\pm} & 6 \\ & 50 & -20 \\ & 55 & \mathbf{BARLAG} & 898 & \mathbf{com} \\ & 56 & \mathbf{AGUILAR-BENITE} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$	OUR FIT) × 10) × 10 10 ± 40) × 10 puted the to iz 87F com +) FIT AVERAGE 6 the following 90	-4 OUR AVERAGE -4 3 55 BARU -4 1 56 AGUI oranching ratio us puted the branchi <u>8 EVTS</u> Di 39 B A ng data for averag	GE .AG 89 .LAR 87 87 100 .	B CCD π^- C F HYBR πp , Grail normalization opological norm TECN Grail Section 1.85 E MRK3 E 790 MRK2 E 1, etc. • • • 77 MRK1 E	(u 230 GeV pp 360,400 eV n). halization. \[\int_{55} / \Gamma_1 2 \\ \text{OMMENT} \] \[\text{GeV} \\ \text{cm} = 3.77 \\ \text{GeV} \\ \text{cm} = 3.77 \\ \text{GeV} \\ \text{cm} = 3.77 \\ \text{GeV} \\ \text{GeV} \\ \text{T} \\ \text{GeV} \\ \text{T} \\ \text{GeV} \\ \text{T} \\ \text{GeV} \\ \text{T} \\ \t
$\frac{\Delta LUE}{0.00114 \pm 0.00031}$ 9 ± 6 8 ± 6 50 +120 55 BARLAG 898 com 56 AGUILAR-BENITE $\frac{(\pi^+\pi^-)}{\Gamma(K^-\pi^-)}$ 0.031±0.008 OUR 0.033±0.009 OUR 0.033±0.010±0.00 0.033±0.010 0.07 $\frac{(\pi^+\pi^-\pi^0)}{\Gamma(K^-\pi^-)}$ 0.07 $\frac{(\pi^+\pi^-\pi^0)}{\Gamma(K^-\pi^-)}$ 0.1012±0.004 OUR AV 0.036+0.033±0.001	OUR FIT) × 10) × 10 10 ± 40) × 10 puted the to iz 87F com +) FIT AVERAGE 6 the following 90 EVTS TERAGE	-4 OUR AVERAL -4 3 55 BARL -4 1 56 AGUI oranching ratio us puted the branchi 34 EVTS DI 39 B A ag data for averag PI DOCUMENT ID	GE AG 89I LAR 87I ing topologics ing ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits ICCOLO 1ECN 89B CCD	B CCD π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of the second section π^- Corrections of π^- Corrections o	### 230 GeV ### 2
$\frac{\Delta LUE}{0.00114\pm}$ 0.00031 9 ± 6 8 ± 6 50 + 120 55 BARLAG 898 com 56 AGUILAR-BENITE $\frac{(\pi^+\pi^-)}{\Gamma(K^-\pi^-)}$ (K = $\frac{\pi^-}{4}$ 0.031±0.008 OUR 0.033±0.009 OUR 0.033±0.010±0.00 0.033±0.015 • • We do not use <0.07 $\frac{(\pi^+\pi^-\pi^0)}{\Gamma(\pi^+\pi^-\pi^0)}$ (Γ total $\frac{\pi^-}{4}$ 1.012±0.004 OUR AV 1.036+0.033±0.001 1.011±0.004±0.002 57 BARLAG 898 com	OUR FIT) × 10) × 10 ± 40) × 10 puted the test est est est est est est est est e	-4 OUR AVERAGE -4 3 55 BARLAG -4 1 56 AGUI oranching ratio us puted the branchi 39 B A ag data for average PI 57 BARLAG 58 BALTRUSAIT oranching ratio us	GE LAG 89I LAR 87I ing topologics ing ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits ICCOLO ### TECN 89B CCD F85E MRK3	B CCD π^- Coff HYBR πp , Gal normalization opological norm TECN Gallows ARK3 E 790 MRK2 E 77 MRK1 E COMMENT π^- Cu 230 G 8 E $_{\rm m}^{\rm eq}$ = 3.77 G	### 230 GeV ### 2
ALUE 0.00114 ± 0.00031 9 ± 6 8 ± 6 50 - 20 55 BARLAG 898 com 56 AGUILAR-BENITE $(\pi^+\pi^-)/\Gamma(K^-\pi^-)$ 0.031 ± 0.008 OUR 0.033 ± 0.010 ± 0.00 0.033 ± 0.015 • • We do not use <0.07 $(\pi^+\pi^-\pi^0)/\Gamma$ total ALUE 0.012 ± 0.004 OUR AV 0.036 + 0.031 ± 0.001 0.011 ± 0.004 ± 0.002	OUR FIT) × 10) × 10 ± 40) × 10 puted the test est est est est est est est est e	-4 OUR AVERAGE -4 3 55 BARLAG -4 1 56 AGUI oranching ratio us puted the branchi 39 B A ag data for average PI 57 BARLAG 58 BALTRUSAIT oranching ratio us	GE LAG 89I LAR 87I ing topologics ing ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits ICCOLO ### TECN 89B CCD F85E MRK3	B CCD π^- Coff HYBR πp , Gal normalization opological norm TECN Gallows ARK3 E 790 MRK2 E 77 MRK1 E COMMENT π^- Cu 230 G 8 E $_{\rm m}^{\rm eq}$ = 3.77 G	### 230 GeV ### 2
$\frac{\Delta LUE}{0.00114 \pm 0.00031}$ $\frac{9}{2} \pm \frac{6}{6}$ $\frac{8}{8} \pm \frac{6}{6}$ $\frac{120}{5} \pm \frac{120}{5}$ $\frac{55}{5}$ BARLAG 898 com $\frac{56}{5}$ AGUILAR-BENITE $\frac{(\pi^+\pi^-)}{\Gamma(K^-\pi^-)}$ $\frac{\Delta LUE}{0.031 \pm 0.008}$ OUR $\frac{\Delta UE}{0.033 \pm 0.010 \pm 0.009}$ OUR $\frac{\Delta UE}{0.033 \pm 0.010 \pm 0.009}$ OUR $\frac{(\pi^+\pi^-\pi^0)}{\Gamma(\pi^+\pi^-\pi^0)}$ $\frac{(\pi^+\pi^-\pi^0)}{\Gamma(total_{\Delta LUE})}$ $\frac{(\pi^+\pi^-\pi^0)}{0.012 \pm 0.004}$ OUR AV $\frac{(\pi^+\pi^-\pi^0)}{0.011 \pm 0.004 \pm 0.002}$ $\frac{57}{5}$ BARLAG 898 com $\frac{58}{5}$ All events consiste	OUR FIT) × 10) × 10 ± 40) × 10 puted the test of the following of th	-4 OUR AVERAGE -4 3 55 BARLAG -4 1 56 AGUI oranching ratio us puted the branchi 39 B A ag data for average PI 57 BARLAG 58 BALTRUSAIT oranching ratio us	GE LAG 89I LAR 87I ing topologics ing ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits ICCOLO ### TECN 89B CCD F85E MRK3	B CCD π^- Coff HYBR πp , Gal normalization opological norm TECN Gallows ARK3 E 790 MRK2 E 77 MRK1 E COMMENT π^- Cu 230 G 8 E $_{\rm m}^{\rm eq}$ = 3.77 G	######################################
$\frac{\Delta LUE}{0.00114 \pm 0.00031}$ 9 ± 6 8 ± 6 50 +120 55 BARLAG 89B COM 56 AGUILAR-BENITE $\frac{\Delta LUE}{0.031 \pm 0.008}$ OUR 0.031±0.008 OUR 0.033±0.010±0.00 0.033±0.015 • • We do not use <0.07 $\frac{\Delta LUE}{0.004 \pm 0.0021}$ 0.01±0.004 OUR AV 0.036+0.021±0.001 0.01±0.004±0.002 57 BARLAG 89B COM 58 All events consiste $\frac{\Delta LUE}{0.004 \pm 0.002}$	OUR FIT $) \times 10$ $) $	-4 OUR AVERAGE -4 3 55 BARL -4 1 56 AGUI oranching ratio us puted the branchi % EVTS DE 39 B A ag data for averag PI DOCUMENT ID 57 BARLAG 58 BALTRUSAIT oranching ratio us x0.	GE LAG 891 LAR 871 ing topologicating ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits ICCOLO ### ### ### ### ### ### ### ### #### ####	B CCD π^- Coff HYBR πp , Gal normalization opological norm TECN Gallows ARK3 E 790 MRK2 E 77 MRK1 E COMMENT π^- Cu 230 G 8 E $_{\rm m}^{\rm eq}$ = 3.77 G	(u 230 GeV pp 360,400 eV 1. Inalization. \(\sigma_{\text{cm}} = 3.77 \) \(\sigma_{\text{cm}} = 3.77 \) \(\sigma_{\text{cm}} = 4.03 \) \(\sigma_{\text{cm}} = 60 \) \(\sigma_{\
$\frac{\Delta LUE}{0.00114 \pm 0.00031}$ 9 ± 6 8 ± 6 50 + 120 55 BARLAG 89B com 56 AGUILAR-BENITE $\frac{\Delta LUE}{0.031 \pm 0.008}$ OUR 0.031±0.008 OUR 0.033±0.010±0.00 0.033±0.015 • • We do not use <0.07 $\frac{\Delta LUE}{0.001 \pm 0.004}$ OUR AV 0.036 + 0.031 ± 0.001 0.011±0.004 OUR AV 0.036 + 0.031 ± 0.001 0.011±0.004 EV 0.005 BARLAG 89B com 58 AII events consiste $\frac{\Delta LUE}{0.001 \pm 0.004}$ Consiste $\frac{\Delta LUE}{0.001 \pm 0.004}$ Consiste	OUR FIT $) \times 10$ $) $	-4 OUR AVERAGE -4 3 55 BARL -4 1 56 AGUI oranching ratio us puted the branchi % EVTS DE 39 B A ag data for averag PI DOCUMENT ID 57 BARLAG 58 BALTRUSAIT oranching ratio us x0.	GE LAG 891 LAR 871 ing topologicating ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits ICCOLO 89B CCD T85E MRK3 ing topologications	B CCD π^- COMMENT π^- CU 230 G B EEM = 3.77 (all normalization oppological normalization	(a) 230 GeV (b) p 360,400 (c) 1. (c) 1. (c) 20MMENT (c) 20MMENT (c) 3.77 (c) 3.77 (c) 4.03 (c) 6.07 (c) 6.07 (c) 6.07 (c) 7.57 (c
$\frac{ALUE}{0.00114 \pm 0.00031}$ 9 ± 6 8 ± 6 50 − 20 55 BARLAG 898 com 56 AGUILAR-BENITE $\frac{ACUE}{0.031 \pm 0.008}$ OUR 0.033±0.009 OUR 0.033±0.010±0.00 0.033±0.015 • • We do not use <0.07 $\frac{(\pi^{+}\pi^{-}\pi^{0})}{\Gamma_{0.001}}$ F total $\frac{ACUE}{0.0012 \pm 0.004}$ OUR AV 0.036 + 0.031 ± 0.001 0.011±0.004 OUR AV 0.036 + 0.031 ± 0.001 0.011±0.004 ± 0.002 57 BARLAG 898 com 58 All events consiste $\frac{(\pi^{+}\pi^{+}\pi^{-}\pi^{-})}{\Gamma_{0.001}}$	OUR FIT $) \times 10$ $) $	-4 OUR AVERAGE -4 3 55 BARL -4 1 56 AGUI oranching ratio us puted the branchi % EVTS Date 39 B A and data for average PI DOCUMENT ID 57 BARLAG 58 BALTRUSAIT oranching ratio us x0.	GE LAG 891 LAR 871 ing topologics ing ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits ICCOLO ### ### ### ### ### ### ### ### ### 898 CCD ### ### ### ### ### ### ### ### #### ### ####	B CCD π^- COMMENT π^- CU 230 G B EEM = 3.77 (all normalization oppological normalization	(a) 230 GeV (b) p 360,400 (c) 1. (c) 1. (c) 20MMENT (c) 20MMENT (c) 3.77 (c) 3.77 (c) 4.03 (c) 6.07 (c) 6.07 (c) 6.07 (c) 7.57 (c
$\frac{\Delta LUE}{0.00114 \pm 0.00031}$ $\frac{1}{2}$ $$	OUR FIT $) \times 10$ $) $	-4 OUR AVERAGE -4 3 55 BARL -4 1 56 AGUI oranching ratio us puted the branchi % EVTS DE 39 B A ag data for averag PI DOCUMENT ID 57 BARLAG 58 BALTRUSAIT oranching ratio us x0.	GE LAG 891 LAR 871 ing topologics ing ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits ICCOLO ### ### ### ### ### ### ### ### ### 898 CCD ### ### ### ### ### ### ### ### #### ### ####	B CCD π^- COF HYBR πp , Grant G	(a) 230 GeV (b) p 360,400 (c) 1. (c) 1. (c) 20MMENT (c) 20MMENT (c) 3.77 (c) 3.77 (c) 4.03 (c) 6.07 (c) 6.07 (c) 6.07 (c) 7.57 (c
$\frac{\partial LUE}{\partial LUE}$ 0.00114± 0.00031 9 ± 6 8 ± 6 50 +120 55 BARLAG 898 com 56 AGUILAR-BENITE -(π+π-)/Γ(K-π ΔLUE 0.031±0.008 OUR 0.033±0.010±0.009 0.033±0.010±0.00 0.033±0.015 • • We do not use <0.07 -(π+π-π ⁰)/Γtotal ΔLUE 0.012±0.004 OUR AV 0.036+0.031±0.001 0.011±0.004±0.002 57 BARLAG 898 com 58 All events consiste -(π+π+π-π)/Γ ΔLUE 0.0035±0.0012 OUR 0.0035±0.0014 OUR	OUR FIT $) \times 10$ $) \times 10$ $) \times 10$ $\pm 40) \times 10$ puted the to the total pute total pute tota	-4 OUR AVERAGE -4 3 55 BARL -4 1 56 AGUI oranching ratio us puted the branchi % EVTS Date 39 B A and data for average PI DOCUMENT ID 57 BARLAG 58 BALTRUSAIT oranching ratio us x0.	GE LAG 89I LAR 87I ing topologicating ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits ICCOLO TECN 89B CCD F85E MRK3 ing topologications ENT ID cale factor of KG 89B	B CCD π^- CU	######################################
$\frac{ALUE}{0.00114 \pm 0.00031}$ $\frac{4}{9} \pm \frac{6}{6}$ $\frac{8}{8} \pm \frac{6}{6}$ $\frac{1}{50} + \frac{120}{20}$ $\frac{55}{56}$ BARLAG 898 com $\frac{56}{66}$ AGUILAR-BENITE $\frac{ALUE}{0.031 \pm 0.008}$ OUR $\frac{ALUE}{0.033 \pm 0.009}$ OUR $\frac{33}{0.033 \pm 0.010 \pm 0.00}$ $\frac{6}{0.033 \pm 0.010 \pm 0.00}$ $\frac{6}{0.033 \pm 0.010 \pm 0.00}$ $\frac{6}{0.033 \pm 0.010 \pm 0.00}$ $\frac{6}{0.031 \pm 0.003}$ $\frac{6}{0.021 \pm 0.001}$ $\frac{6}{0.011 \pm 0.001}$ $\frac{6}{0.011 \pm 0.001}$ $\frac{6}{0.0035 \pm 0.0010}$ $\frac{6}{0.0035 \pm 0.0010}$ $\frac{6}{0.0025 \pm 0.0010}$ $\frac{6}{0.0025 \pm 0.0010}$ $\frac{6}{0.0025 \pm 0.0010}$ $\frac{6}{0.0025 \pm 0.0010}$ $\frac{6}{0.0025 \pm 0.0010}$	OUR FIT) × 10) × 10 ± 40) × 10 puted the test 2 87F com +) FIT AVERAGE 6 the following 90 TERAGE 2 10 puted the test with ρ0 total EVIS AVERAGE 1	-4 OUR AVERAL -4 3 55 BARL -4 1 56 AGUI oranching ratio us puted the branchi 32 EVTS Di 39 B A ag data for averag PI DOCUMENT ID 57 BARLAG 58 BALTRUSAIT oranching ratio us x0. Error includes so below. 10 59 BARLA 1 60 AGUIL	GE LAG 89I LAR 87I ing topological ing ratio by to DCUMENT ID ALTRUSAIT. BRAMS es, fits, limits DCCOLO TECN 89B CCD T85E MRK3 ing topological ing to	B CCD π^- Coff HYBR πp , Grant	######################################
$\frac{\Delta LUE}{0.00114 \pm 0.00031}$ $\frac{\Delta LUE}{0.00114 \pm 0.00031}$ $\frac{\Delta LUE}{0.00114 \pm 0.00031}$ $\frac{\Delta LUE}{0.00114 \pm 0.00114}$ $\frac{\Delta LUE}{0.00114 \pm 0.00114}$ $\frac{\Delta LUE}{0.00114 \pm 0.0014}$ $\frac{\Delta LUE}{0.0015 \pm 0.0014}$ $\frac{\Delta LUE}{0.0015 \pm 0.0014}$ $\frac{\Delta LUE}{0.00015 \pm 0.0010}$	OUR FIT) × 10) × 10 \pm 40) × 10 puted the test strength of the following strength of the	-4 OUR AVERAL -4 3 55 BARL -4 1 56 AGUI oranching ratio us puted the branchi 39 B A ag data for averag Pi DOCUMENT ID 57 BARLAG 58 BALTRUSAIT oranching ratio us x0. Error includes so below. 10 59 BARLA 1 60 AGUIL 9 BALTRI	GE LAG 89I LAR 87I ing topologicating ratio by to OCUMENT ID ALTRUSAIT. BRAMS es, fits, limits ICCOLO TECN 89B CCD T85E MRK3 ing topologicating topologicating cale factor of AG 89B AR 87F RUSAIT85E	B CCD π^- Coff HYBR πp_1 , Grant Gran	### 230 GeV ### 240 GeV ### 25

.((Λ'Λ')π ⁻	+π ⁻ non-	res.)/Γ	total				Γ ₆₈ / Γ
ALUE	EV		DOCUMENT ID				
.0017±0.0006			BARLAG		CCD	π Cu 230 GeV	
⁶⁶ BARLAG 898	computed	the brai	nching ratio usi	ng top	pologica	normalization.	
$(K^0K^-\pi^+\pi^0)$	0)/E _{total}						Γ ₇₀ /Γ
ALUE	EV	TS	DOCUMENT ID		TECN	COMMENT	. 707.
een		1	AGUILAR			π ⁻ p 360 GeV	
$\psi(e^+e^- \rightarrow \psi)$: ((3770))	× Γ(<i>Κ</i> ΄	$(892)^{0}K^{0} +$	c.c.	$)/\Gamma_{tota}$	1 (₇ Γ ₇₁ /Γ
ALUE (nanobarns)	<u>CL</u>	%	DOCUMENT ID		TECN	COMMENT	
<0.036	90)	BALTRUSAIT	86∈	MRK3	$E_{cm}^{ee} = 3.77 \text{ GeV}$	
(a+a	(2770)	. F(V*	((000) ± K-) /r		- /-
$\psi(e^+e^- \to \psi)$	(3110))	× 1 (N					₇ Γ ₇₂ /Γ
ALUE (nanobarns) .050±0.024 OU	R FIT	_	DOCUMENT ID		TECIV	COMMENT	
.050±0.023±0.			BALTRUSAIT	86c	MRK3	Ecm = 3.77 GeV	
						CIII	
$(\phi \pi^+ \pi^-)/\Gamma_t$							Γ_{73}/Γ
ALUE	EV		DOCUMENT ID			COMMENT	
0030 ± 0.0010			BARLAG		CCD	π ⁻ Cu 230 GeV	
⁵⁷ BARLAG 89B	computed	the brar	iching ratio usir	ng top	ological	normalization.	
$(K^+\pi^-)/\Gamma(F$	$(-\pi^+)$					Γ	74/F ₁₂
` Doubly Cat	oibbo súppr						. ,, . 12
	<u>CL% EV1</u>		DOCUMENT ID			COMMENT	
(0.015	90	2	ANJOS	88C	SILI	Photoproduction	
$(K^+\pi^-$ (via	\overline{D}^0))/ Γ (4	(-π+)				г.	/F
This is a D	0_ 0 0 misin	a limit				1	75/F ₁₂
	CL% EV7		DOCUMENT ID		TECN	COMMENT	
0.0037	90	1 68	ANJOS		SILI	Photoproduction	
• We do not		lowing d	ata for average				
0.014	90		ALBRECHT		ARG	Eee = 10 GeV	
0.04	90		ABACHI		HRS	Ecm = 10 GeV Ecm = 29 GeV	
0.07		0 68	BAILEY		SILI	π Be fixed targe	.+
0.11		2	ALBRECHT		ARG	E _{Cm} = 10 GeV	
0.081	90		YAMAMOTO			E66 = 30 CeV	
0.23	90	69	ALTHOFF			Cm - 29 GeV	
			AVERY		TASS	$E_{Cm}^{ee} = 34.4 \text{ GeV}$ $\gamma N \rightarrow D^{*+}$	
(0.11	90						
0.16	00				SPEC	D*+ D0 -+	
	90 90	69	FELDMAN	77B	MRK1	$D^{*+} \rightarrow D^0 \pi^+$	
0.18	90	69 69	FELDMAN GOLDHABER	77в 77	MRK1 MRK1	$D^{*+} \rightarrow D^0 \pi^+$	
ior our denom	90 ment also u as $\Gamma(K^+\pi)$ inator.	69 69 ses <i>K</i> =-)/[Γ(<i>I</i>	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w $(-\pi^+)+\Gamma(K^+)$	77в 77	MRK1 MRK1	$D^{*+} \rightarrow D^{0} \pi^{+}$. not change sign	ificantly
50.18 This measurer 59 Results given for our denom	90 ment also u as $\Gamma(K^+\pi)$ inator.	$\begin{array}{c} 69 \\ 69 \\ \hline \\ (-1)/[\Gamma(I)] \\ \pi^+\pi^+ \end{array}$	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w $(-\pi^+)+\Gamma(K^+)$	77в 77	MRK1 MRK1	$D^{*+} \rightarrow D^0 \pi^+$. not change sign	ificantiy 76/F ₂₂
58 This measurer 59 Results given for our denom $(K^+\pi^+\pi^-\pi^-$ doubly Cabi	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ ibbo suppre	69 69 $\kappa = \frac{\kappa^{-1}}{\Gamma(I)}$ $\kappa = \frac{\kappa^{-1}}{\Gamma(I)}$ essed	FELDMAN GOLDHABER $\pi^+\pi^+\pi^-$ as w $(K^+\pi^+)+\Gamma(K^+\pi^-)$	77Β 77 /ell as (π)	MRK1 MRK1 K = π ⁺ but do	$D^{*+} \rightarrow D^0 \pi^+$ o not change sign	
0.18 This measurer Results given for our denom (K+π+π-π- doubly Cabi	90 ment also u as $\Gamma(K^+\pi)$ inator. $\Gamma(K^-)/\Gamma(K^-\pi)$ ibbo suppre	69 69 $\kappa = \kappa = \frac{\kappa}{\Gamma}$ $\kappa = \frac{\kappa}{\Gamma} = \frac{\kappa}{\Gamma}$ essed	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w $(C^- \pi^+) + \Gamma(K^+)$ π^-	77Β 77 vell as	MRK1 MRK1 K-π+ but do	$D^{*+} \rightarrow D^0 \pi^+$. On the change sign Γ	
50.18 This measurer Results given for our denom $(K^+\pi^+\pi^-\pi^-$ doubly Cabi	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-$ ibbo suppre - $\frac{CL\%}{90}$	69 69 ses K^- $\pi^+ \pi^+$ ssed $\frac{3}{5}$	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w $(x^- \pi^+) + \Gamma(K^+)$ π^-) DOCUMENT ID ANJOS	77Β 77 vell as (π)	MRK1 MRK1 K-π ⁺ but do	$D^{*+} \rightarrow D^0 \pi^+$. not change sign Γ . COMMENT Photoproduction	₇₆ /Г ₂₂
50.18 Shis measurer Results given for our denome $(K^+\pi^+\pi^+\pi^-$ doubly Cabi	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-$ ibbo suppre - $\frac{CL\%}{90}$	69 69 ses K^- $\pi^+ \pi^+$ ssed $\frac{3}{5}$	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w $(x^- \pi^+) + \Gamma(K^+)$ π^-) DOCUMENT ID ANJOS	77Β 77 vell as (π)	MRK1 MRK1 K-π ⁺ but do	$D^{*+} \rightarrow D^0 \pi^+$. not change sign Γ . COMMENT Photoproduction	₇₆ /Г ₂₂
50.18 Shis measurer Results given for our denome $(K^+\pi^+\pi^+\pi^-$ doubly Cabi	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-$ ibbo suppre - $\frac{CL\%}{90}$	69 69 ses K^- $\pi^+ \pi^+$ ssed $\frac{3}{5}$	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w $(x^- \pi^+) + \Gamma(K^+)$ π^-) DOCUMENT ID ANJOS	77Β 77 vell as (π)	MRK1 MRK1 K-π ⁺ but do	$D^{*+} \rightarrow D^0 \pi^+$. not change sign Γ . COMMENT Photoproduction	₇₆ /Г ₂₂
:0.18 18 This measurer speed for our denome ($K^+\pi^+\pi^-\pi^-$ doubly Cabi $\frac{MUE}{E}$:0.018 ($\mu^+\mu^-$)/ Γ tot. Test for ΔC bined with C	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ ibbo suppre - $\frac{CL\%}{90}$ $\frac{EVT}{90}$ al = 1 weak electromage	69 69 Ses K^- : T^-	FELDMAN GOLDHABER $\pi^+ + \pi^+ = \text{as w.}$ $(X - \pi^+) + \Gamma(K^+ + \pi^-)$ DOCUMENT ID ANJOS current. Allower action.	77B 77 yell as π)	MRK1 MRK1 $K^-\pi^+$ but do	$D^{*+} \rightarrow D^0 \pi^+$ onot change sign F: COMMENT Photoproduction Her weak interaction	₇₆ /Г ₂₂
(0.18) 8 This measurer of the measurer of t	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-$ ibbo suppre - $\frac{CL\%}{90}$	69 69 Ses K^- T^- T^+ $T^$	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w $(x^- \pi^+) + \Gamma(K^+)$ π^-) DOCUMENT ID ANJOS	77Β 77 vell as π)	MRK1 MRK1 $K^-\pi^+$] but do	$D^{*+} \rightarrow D^{0} \pi^{+}$ not change sign F: COMMENT Photoproduction ler weak interaction COMMENT	₇₆ /Г ₂₂
0.18 8 This measurer 19 Results given for our denom $(K^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ ibbo suppre - $\frac{CL\%}{90}$ $\frac{EVT}{EVT}$ 90	69 69 ses $K^ ^-$)/[$\Gamma(I)$ $\pi^+\pi^+$ sesed 5 5 6 neutral netic interest	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^- $ as w. $(x^- \pi^+) + \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS current. Alloweraction. DOCUMENT ID LOUIS	77B 77 yell as π)	MRK1 MRK1 $K^-\pi^+$ but do	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^{-} W 225 GeV	₇₆ /Г ₂₂
0.18 88 This measurer 98 Results given for our denom ($K^+\pi^+\pi^-\pi^-$ doubly Cabi $\frac{kUU}{0.0018}$ ($\mu^+\mu^-$)/ Γ tot. Test for ΔC bined with $\frac{kUU}{0.0018}$ • • We do not	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-\pi)$ bbo supprescribe $\frac{CL\%}{2} = 1$ weak electromage $\frac{CL\%}{2} = \frac{EVT}{90}$ use the following as the following the supprescribe $\frac{CL\%}{2} = \frac{EVT}{2}$	69 69 ses $K^ ^-$)/[$\Gamma(K^-)$ $\pi^+\pi^+$ sessed 5 5 c neutral netic interesting the second seco	FELDMAN GOLDHABER $\pi^+ + \pi^+ = \text{as } w$ $(x^- \pi^+) + \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS current. Allow raction. DOCUMENT ID LOUIS ata for averages	77B 77 yell as π)	MRK1 MRK1 $K^- \pi^+$ but do TECN SILI first-ord TECN SPEC limits,	$D^{*+} \rightarrow D^0 \pi^+$ o not change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^- W 225 GeV etc. • •	₇₆ /Г ₂₂
0.18 .8 This measurer for our denom $(K^+\pi^+\pi^-\pi^- doubly Cabi)$.0.018 $(\mu^+\mu^-)/\Gamma_{\rm tot}$ $(\mu^+\mu^-)/\Gamma_{\rm tot}$ $(\mu^+\mu^-)/\Gamma_{\rm tot}$	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-\pi)$ bbo supprescribe $\frac{CL\%}{2} = 1$ weak electromage $\frac{CL\%}{2} = \frac{EVT}{90}$ use the following as the following the supprescribe $\frac{CL\%}{2} = \frac{EVT}{2}$	69 69 69 Sees K^- . $-$. $/[\Gamma(K^-)]$ $\pi^+\pi^+$. $\pi^+\pi^+$. Seed $\frac{5}{5}$ $\frac{5}{5}$ So neutral netic interest $\frac{5}{5}$ lowing d $\frac{3}{70}$.	FELDMAN GOLDHABER $\pi^+ + \pi^+ - \text{as } w < \pi^+) + \Gamma(K^+ - \text{as})$ $\pi^-)$ DOCUMENT ID ANJOS current. Allower action. DOCUMENT ID LOUIS ata for averages ALBRECHT	778 77 vell as π)	MRK1 MRK1 $K^- \pi^+$ but do TECN SILI first-ord TECN SPEC , limits, ARG	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^{-} W 225 GeV	₇₆ /Г ₂₂
0.18 .8 This measurer per service of the control o	90 ment also \mathbf{u} as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ bbb supprescribes supprescribes supprescribes $\frac{CL\&}{EVT}$ 90 al = 1 weak electromage $\frac{CL\&}{EVT}$ 90 use the foll 90 90	69 69 69 $\pi^+\pi^+$ $\pi^+\pi^+$ 65 6 neutral nettic inter 65 6 lowing d. 3 70	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w. $(\pi^+)^+ \Gamma(K^+)^+$ ANJOS CURRENT ID ANJOS CURRENT ID ANJOS CURRENT ID LOUIS at a for a verages ALBRECHT AUBERT	778 77 vell as π)) 88C ed by 86 6, fits, 88G 85	MRK1 MRK1 K = \pi + but do TECN SILI first-ord TECN SPEC limits. ARG EMC	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign Figure 1. The production of the producti	₇₆ /Г ₂₂
0.18 .8 This measurer for our denom $(K^+\pi^+\pi^-\pi^- doubly Cabi)$ $(K^+\pi^+\pi^-\pi^- doubly Cabi)$ $(K^+\mu^-)/\Gamma$ tot. Test for ΔC bined with $(K^+\mu^-)/\Gamma$ tot.	90 ment also \mathbf{u} as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ bbb supprescripts as $\frac{CK}{2} = 1$ weak electromage $\frac{CK}{2} = \frac{EVT}{2}$ 90 use the foll 90 90 gratios are	69 69 69 $\pi^+\pi^+$ $\pi^+\pi^+$ 65 6 neutral nettic inter 65 6 lowing d. 3 70	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w. $(\pi^+)^+ \Gamma(K^+)^+$ ANJOS CURRENT ID ANJOS CURRENT ID ANJOS CURRENT ID LOUIS at a for a verages ALBRECHT AUBERT	778 77 vell as π)) 88C ed by 86 6, fits, 88G 85	MRK1 MRK1 K = \pi + but do TECN SILI first-ord TECN SPEC limits. ARG EMC	$D^{*+} \rightarrow D^0 \pi^+$ not change sign F: COMMENT Photoproduction ler weak interaction COMMENT π^- W 225 GeV etc. • • • $E_{\rm cm}^{\rm e} = 10$ GeV Deep inelast. μ^-	76/F ₂₂
0.18 8 This measurer for our denom $(K^+\pi^+\pi^-\pi^- \text{doubly Cability})$ 0.018 $(\mu^+\mu^-)/\Gamma \text{ tot.}$ Test for ΔC bined with ϵ 1.1×10^{-5} • • We do not τ 7.0 × 10 ⁻⁴ 0 The branching $(e^+e^-)/\Gamma_{\text{total}}$	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ (bbo suppressible 2 = 1 weak electromage CL% EVT 90 use the foll 90 90; ratios are	69 69 $K^ Ses K^-$	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w. $(-\pi^+) + \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS CUrrent. Allower exaction. DOCUMENT ID LOUIS at a for averages at ALBRECHT AUBERT and to $B(D^0 \to 0.00)$	778 77 vell as π) 88c 86 s, fits, 88G 85 κ –	MRK1 MRK1 $K^-\pi^+$ but do TECN SILI first-ord SPEC limits, ARG EMC π^+), us	$D^{*+} \rightarrow D^0 \pi^+$ o not change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^- W 225 GeV etc. • • • $E_{\rm CM}^{\rm em} = 10 \; {\rm GeV}$ Deep inelast. μ^- ing ADLER 88c.	76/F22
0.18 8 This measurer for our denom $(K^+\pi^+\pi^-\pi^- \text{doubly Cability})$ 0.018 $(\mu^+\mu^-)/\Gamma \text{ tot.}$ Test for ΔC bined with ϵ 1.1×10^{-5} • • We do not τ 7.0 × 10 ⁻⁴ 0 The branching $(e^+e^-)/\Gamma_{\text{total}}$	90 ment also u ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ (bbo suppressible suppressible $\frac{CL\%}{90}$ = 1 weak electromage $\frac{CL\%}{90}$ use the following $\frac{CL\%}{90}$ = $\frac{EV7}{90}$ (ratios are	69 69 $K^ -$	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as χ $(\pi^+) + \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS CURRENT ID ANJOS CURRENT ID ANJOS LOUIS ata for averages ALBRECHT AUBERT red to B($D^0 \rightarrow$ current. Allower	778 77 vell as π) 88c 86 s, fits, 88G 85 κ –	MRK1 MRK1 $K^-\pi^+$ but do TECN SILI first-ord SPEC limits, ARG EMC π^+), us	$D^{*+} \rightarrow D^0 \pi^+$ not change sign F: COMMENT Photoproduction ler weak interaction COMMENT π^- W 225 GeV etc. • • • $E_{\rm cm}^{\rm e} = 10$ GeV Deep inelast. μ^-	76/F22
0.18 8 This measurer properties of the properti	90 ment also \mathbf{u} as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-\pi)$ ibbo supprescribes supprescribes $\Sigma = 1$ weak electromagn $\Sigma = 1$ weak electromagn $\Sigma = 1$ weak electromagn $\Sigma = 1$ weak electromagn.	69 69 ses $K^ -$)/ $[\Gamma(I)$ $\pi^+\pi^+$ essed $\frac{5}{5}$ 6 neutral netic integration of the second of	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as χ $(\pi^+) + \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS CURRENT ID ANJOS CURRENT ID ANJOS LOUIS ata for averages ALBRECHT AUBERT red to B($D^0 \rightarrow$ current. Allower	778 77 77 886 α θ by 86 85, fits, 886 85 κ –	MRK1 MRK1 $K^ \pi^+$ but do SILI first-ord SPEC limits, ARG EMC π^+), us	$D^{*+} \rightarrow D^0 \pi^+$ o not change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^- W 225 GeV etc. • • • $E_{\rm CM}^{\rm em} = 10 \; {\rm GeV}$ Deep inelast. μ^- ing ADLER 88c.	76/F22
0.18 8 This measurer properties of the properti	90 ment also \mathbf{u} as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-\pi)$ ibbo supprescribes supprescribes $\Sigma = 1$ weak electromagn $\Sigma = 1$ weak electromagn $\Sigma = 1$ weak electromagn $\Sigma = 1$ weak electromagn.	69 69 sees K— —)/[r(I π+π+ sseed 5 5 coneutral netic inte s lowing d 3 70 normaliz neutral netic inte	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as we will also the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the section of the second section of the section of the section of the second section of the secti	778 77 vell as π^-) 88c 86 by 86 s, fits, 88c 85 κ^-	MRK1 MRK1 $K^-\pi^+$ but do SILI first-ord TECN SPEC limits, ARG EMC π^+), us	$D^{*+} \rightarrow D^{0} \pi^{+}$ onot change sign Figure 1. Photoproduction ler weak interaction COMMENT T^{-} W 225 GeV etc. • • • $E_{CM}^{em} = 10 \text{ GeV}$ Deep inelast. μ^{-} ing ADLER 88c.	76/F22
0.18 8 This measurer for our denom $(K^+\pi^+\pi^-\pi^- \text{doubly Cabilities})$ 0.018 $(\mu^+\mu^-)/\Gamma \text{ tot.}$ Test for ΔC bined with ϵ ωE 1.1 × 10 ⁻⁵ 3.4 × 10 ⁻⁴ 0 The branching $(e^+e^-)/\Gamma$ totates for ΔC bined with ϵ ωE 1.3 × 10 ⁻⁴	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ libbo supprescribe 2 = 1 weak electromage. CL% EVT 90 use the foll 90 90; ratios are $\Gamma = 1$ weak electromage. $\Gamma = 1$ weak electromage. $\Gamma = 1$ weak electromage. $\Gamma = 1$ weak electromage. $\Gamma = 1$ weak	69 69 $\pi^+\pi^+$ $\pi^+\pi^+\pi^+$ $\pi^+\pi^+\pi^+$ $\pi^+\pi^+\pi^+$ $\pi^+\pi^+\pi^+\pi^+$ $\pi^+\pi^+\pi^+\pi^+\pi^+\pi^ \pi^+\pi^+\pi^+\pi^-\pi^ \pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w. $(-\pi^+) + \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS CUITENT. Allower exaction. DOCUMENT ID LOUIS at a for averages at a for average to the B($D^0 \rightarrow 0$) CUITENT. ALBRECHT AUBERT and to B($D^0 \rightarrow 0$) CUITENT. Allower exaction.	778 77 vell as x = 1) 88c = 86 s, fits, 88c = 85 s = K = 40 by	MRK1 $K^-\pi^+$ but do TECN SILI first-orce Llimits, ARG EMC π^+), us first-orce MRK3	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^{-} W 225 GeV etc. • • • Egg = 10 GeV Deep inelast. μ^{-} ing ADLER 88c. Her weak interaction COMMENT Egg = 3.77 GeV	76/F22
0.18 8 This measurer properties of the second of the seco	90 al also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ (bbo suppression of the suppression of t	69 69 69 69 69 69 69 69 69 69 69 69 69 6	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as we will also be considered by the second section of the second section of the second section of the second section of the section of th	778 77 vell as x = 1) 88c = 86 s, fits, 88c = 85 s = K = 40 by	MRK1 MRK1 $K^-\pi^+$ but do $K^$	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^{-} W 225 GeV etc. • • • Egg = 10 GeV Deep inelast. μ^{-} ing ADLER 88c. Her weak interaction COMMENT Egg = 3.77 GeV	76/F22
0.18 8 This measurer for our denom $(K^+\pi^+\pi^-\pi^-\text{doubly Cabi})$ ($K^+\pi^+\pi^-\pi^-\text{doubly Cabi}$ ($K^+\mu^-$)/ Γ tot. Test for ΔC bined with C We do not C C C C C C C C C C	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ ibbo suppression of $\Gamma(K$	69 69 69 69 69 69 69 69 69 69 69 69 69 6	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as $\chi^- \chi^- \chi^- \chi^- \chi^- \chi^- \chi^- \chi^- \chi^- \chi^- $	778 77 (ell as π) 88c π) 86 s, fits, 88G κ – ed by 88 s, fits, 88G	MRK1 MRK1 $K^-\pi^+$ but do TECN SILI first-orc SPEC limits, ARG EMC TECN ARG ARG ARG ARG	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^{-} W 225 GeV etc. • • • Ecc. = 10 GeV Deep inelast. μ^{-} ing ADLER 88c. Her weak interaction COMMENT Ecc. = 3.77 GeV etc. • • •	76/F22
0.18 88 This measurer 98 Results given for our denom ($K^+\pi^+\pi^-\pi^-$ doubly Cabin ($\mu^+\mu^-$)/ Γ tot. Test for ΔC bined with ϵ 1.11 \times 10 ⁻⁵ • • We do not 7.0 \times 10 ⁻⁴ 0 The branching (e^+e^-)/ Γ totates for ΔC bined with ϵ 1.12 \times 10 ⁻⁴ 0 The branching (ϵ 1.3 \times 10 ⁻⁴ • • We do not 1.7 \times 10 ⁻⁴	90 ment also \mathbf{u} as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-$ fibbo supprescribes supprescribes $\Sigma = 1$ weak electromagn $\Sigma = 1$	69 69 69 69 69 69 69 69 69 69 69 69 69 6	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w. $(\pi^+ \pi^+)^+ \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS CUTTENT. Allower action. DOCUMENT ID LOUIS ata for averages ALBRECHT AUBERT red to B($D^0 \rightarrow$ CUTTENT. Allower action. DOCUMENT ID ADLER ata for averages ALBRECHT ALBRECHT ALBRECHT ALBRECHT ALBRECHT HAAS	778 77 77 78 78 88 88 86 85 65 65 66 87 88 88 88 88 88 88 88 88 88 88 88 88	MRK1 $K^ K^ $	D*+ → D ⁰ π+ not change sign F: COMMENT Photoproduction ler weak interaction COMMENT π W 2.5 GeV etc. • • • Ecm = 10 GeV Deep inelast. μ ⁻ ing ADLER 88c. ler weak interaction COMMENT Ecm = 3.77 GeV etc. • • • Ecm = 10 GeV Ecm = 10 GeV Ecm = 10 GeV	76/F ₂₂ F ₇₇ /F on com-
0.18 .8 This measurer .8 This measurer .9 Results given for our denom $(K^+\pi^+\pi^-\pi^-\text{doubly Cabi})$.1.1 × 10 ⁻⁵ . • We do not .7.0 × 10 ⁻⁵ .3.4 × 10 ⁻⁴ .0 The branching $(e^+e^-)/\Gamma$ totates for ΔC bined with e^- .1.3 × 10 ⁻⁴ .0 • We do not .1.7 × 10 ⁻⁴ .2.2 × 10 ⁻⁴	90 ment also u ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ (bbo suppression of the sup	69 69 69 69 69 69 69 69 69 69 69 69 69 6	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w. $(\pi^+ \pi^+)^+ \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS CUTTENT. Allower action. DOCUMENT ID LOUIS ata for averages ALBRECHT AUBERT red to B($D^0 \rightarrow$ CUTTENT. Allower action. DOCUMENT ID ADLER ata for averages ALBRECHT ALBRECHT ALBRECHT ALBRECHT ALBRECHT HAAS	778 77 77 78 78 88 88 86 85 65 65 66 87 88 88 88 88 88 88 88 88 88 88 88 88	MRK1 $K^ K^ $	D*+ → D ⁰ π+ not change sign COMMENT Photoproduction ler weak interaction COMMENT T W 225 GeV etc. • • • E ^{cc} _m = 10 GeV Deep inelast. μ ⁻ ing ADLER 88c. ler weak interaction COMMENT E ^{cc} _m = 3.77 GeV etc. • • • E ^{cc} _m = 10 GeV	76/F ₂₂ F ₇₇ /F on com-
0.18 8 This measurer 9 Results given for our denom ($K^+\pi^+\pi^-\pi$ doubly Cabi LUE) 0.018 ($\mu^+\mu^-$)/ Γ tot. Test for ΔC bined with ϵ 1.1 × 10-5 • We do not 7.0 × 10-5 3.4 × 10-4 0 The branching (e^+e^-)/ Γ tota Test for ΔC bined with ϵ 1.1 × 10-4 1.1 × 10-4 1.1 × 10-4 1.1 × 10-4 1.1 × 10-4 1.1 × 10-4 1.2 × 10-4 1.3 × 10-4 1.4 × 10-4 1.5 × 10-4 1.7 × 10-4 1.7 × 10-4 1.8 × 10-4 1.9	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ ibbo suppression of $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ ibbo suppression of $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-\pi)$ weak electromagn use the following states are 1 weak electromagn $\Gamma(K^+\pi)$ is the following states are 1 weak electromagn $\Gamma(K^+\pi)$ in $\Gamma($	69 69 69 69 69 69 69 69 69 69 69 69 69 6	FELDMAN GOLDHABER $\pi^+ + \pi^+ \pi^-$ as $\mathbf{w} \leftarrow \pi^+ + \pi^+ \pi^-$ as $\mathbf{w} \leftarrow \pi^+ + \pi^- \pi^-$ and $\mathbf{w} \leftarrow \pi^+ + \pi^- \pi^-$ and $\mathbf{w} \leftarrow \pi^+ + \pi^- \pi^-$ and $\mathbf{w} \leftarrow \pi^+ + \pi^- \pi^-$ and $\mathbf{w} \leftarrow \pi^+ + \pi^- \pi^-$ and $\mathbf{w} \leftarrow \pi^+ + \pi^- \pi^-$ and $\mathbf{w} \leftarrow \pi^+ + \pi^- \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^- \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^- \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^- + \pi^-$ and $\mathbf{w} \leftarrow \pi^-$ and	778 77 77 78 78 88 88 86 85 65 65 66 87 88 88 88 88 88 88 88 88 88 88 88 88	MRK1 $K^ K^ $	D*+ → D ⁰ π+ not change sign F: COMMENT Photoproduction ler weak interaction COMMENT π W 2.5 GeV etc. • • • Ecm = 10 GeV Deep inelast. μ ⁻ ing ADLER 88c. ler weak interaction COMMENT Ecm = 3.77 GeV etc. • • • Ecm = 10 GeV Ecm = 10 GeV Ecm = 10 GeV	76/F ₂₂ F ₇₇ /F on com-
10.18 18 This measurer por Results given for our denom $(K^+\pi^+\pi^-\pi^-\text{doubly Cabi})$ 18 This measurer for our denom $(K^+\pi^+\pi^-\pi^-\text{doubly Cabi})$ 18 LUE 10.0018 18 $(\mu^+\mu^-)/\Gamma$ totath of the standard for ΔU 18 We do not (π^0, π^0) 19 The branching $(e^+e^-)/\Gamma$ totath of $(e^+e^-)/\Gamma$ totath	90 ment also \mathbf{u} as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ ibbo suppression of $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ ibbo suppression of $\Gamma(K^+\pi)$ is electromage.	69 69 69 69 69 69 69 $K = \frac{1}{2} \left(\frac{1}{2} \right)^{2} \left[\frac{1}{2} \left(\frac{1}{2} \right)^{2} \right]$ $K = \frac{1}{2} \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{2}$ $K = \frac{1}{2} \left(\frac{1}{2$	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as we will also be a substitute of the property of the proper	778 77 78 77 886 86 86 85 κ- ed by 88 88 88 88 κ- 88 88 κ- 88 κ- 88 88	MRK1 $K^ \pi^+$ but K^- but K	$D^{*+} \rightarrow D^{0} \pi^{+}$ not change sign F: COMMENT Photoproduction ler weak interaction COMMENT π^{-} W 225 GeV etc. • • • $E_{cm}^{co} = 10 \text{ GeV}$ Deep inelast. μ^{-} ing ADLER 88c. ler weak interaction COMMENT $E_{cm}^{co} = 3.77 \text{ GeV}$ etc. • • • $E_{cm}^{co} = 10 \text{ GeV}$ $E_{cm}^{co} = 10 \text{ GeV}$ ing ADLER 88c. $E_{cm}^{co} = 10 \text{ GeV}$ ing ADLER 88c. $E_{cm}^{co} = 10 \text{ GeV}$ ing ADLER 88c. $E_{cm}^{co} = 10 \text{ GeV}$	Γ ₇₇ /Γ 22 Γ ₇₇ /Γ 27 27 27 27 27 27 27 27 27 27 27 27 27
10.18 Properties of the prope	90 al = 1 weak electromage C1% EVT 90 gratios are 1 weak electromage C1% EVT 90 use the foll 90 gratios are 1 weak electromage C1% EVT 90 gratios ar	69 69 69 69 69 69 69 $K^ M^+\pi^+$ $M^+\pi^+$ M	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w. $(-\pi^+) + \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS CUTTENT. Allows exaction. DOCUMENT ID ALBRECHT AUBERT and to B($D^0 \to K^-$) AUBERCHT ALBRECHT ALBRECHT AUBERT at a for averages ALBRECHT ALBRECHT ALBRECHT AUBERT and to $D^0 \to K^-$ CONSTRUCTION AND ALBRECHT A	778 77 78 77 88C 86 86 88 85 κ- ed by 88 88 88 88 κ- π+	MRK1 MRK1 $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but	$D^{*+} \rightarrow D^{0} \pi^{+}$ onot change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^{-} W 225 GeV etc. • • • $E^{ecn}_{cm} = 10$ GeV Deep inelast. μ^{-} ing ADLER 88c. Her weak interaction COMMENT $E^{ecn}_{cm} = 3.77$ GeV etc. • • • $E^{ecn}_{cm} = 10$ GeV $E^{ecn}_{cm} = 10$ GeV $E^{ecn}_{cm} = 10$ GeV $E^{ecn}_{cm} = 10$ GeV $E^{ecn}_{cm} = 10$ GeV $E^{ecn}_{cm} = 10$ GeV $E^{ecn}_{cm} = 10$ GeV $E^{ecn}_{cm} = 10$ GeV $E^{ecn}_{cm} = 10$ GeV $E^{ecn}_{cm} = 10$ GeV	Γ ₇₇ /Γ 22 Γ ₇₇ /Γ 27 27 27 27 27 27 27 27 27 27 27 27 27
10.18 Page 10.18 Page 10.18 Page 10.18 Page 10.18 Page 10.10 Page	90 The state of the state of	699 699 699 699 699 699 699 $\pi^+\pi^+$ $\pi^+\pi^+$ 69 699 699 699 $\pi^+\pi^+$ 699 699 699 699 699 699 699 699 699 69	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w. $(-\pi^+) + \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS CUTTENT. Allower action. DOCUMENT IO LOUIS ata for averages ALBRECHT AUBERT and to $B(D^0 \to K^-)$ ADLER ata for averages ALBRECHT HARAS AL	778 77 yell as 88 c ed by 86 s, fits, 88 s κ - ed by 88 s κ - π + 88 s κ - π +	MRK1 MRK1 $K^-\pi^+$ but do $K^$	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign Figure 10 feet weak interaction of the service of the	Γ ₇₇ /Γ 22 Γ ₇₇ /Γ 27 27 27 27 27 27 27 27 27 27 27 27 27
0.18 8 This measurer properties of the properti	90 al = 1 weak electromage CL% EVT 90 use the foll 90 gratios are 1 weak electromage CL% EVT 90 use the foll 90 gratios are 1 ratios are	69 69 69 69 69 69 69 69 69 69 69 69 69 6	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as we will also be considered by the construction of	778 77 78 77 888c ed by 86 85 κ- ed by 88 88 88 κ- π+ 886 88 κ- π+	MRK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1 MK1 M	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign Figure 10 devices the second sign of the seco	Γ ₇₇ /Γ 22 Γ ₇₇ /Γ 27 27 27 27 27 27 27 27 27 27 27 27 27
0.18 8.8 18 measurer 96 Results given for our denom $(K^+\pi^+\pi^-\pi^-\text{doubly Cabi})$ $(\mu^+\mu^-)/\Gamma$ tot. Test for ΔC bined with $(\mu^+\mu^-)/\Gamma$ tot. $(\mu^+\mu^-)/$	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ ibbo suppreside electromage $CL\%$ EVT 90 use the foll 90 90 ratios are -1 weak electromage $CL\%$ EVT 90 use the foll 90 90 ratios are -1 weak electromage $CL\%$ EVT 90 use the foll 90 90 ratios are -1 weak electromage $CL\%$ EVT 90 use the foll 90 90 ratios are -1 weak electromage $CL\%$ EVT 90 use the foll 90 use the foll 90	699 See $K^ \rightarrow$ $//\Gamma(I)$ $\pi^+\pi^+$ $\pi^+\pi^+$ See 5 Ineutral aetic interior int	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w. $(\pi^+ \pi^+)^+ \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS CURTENT. Allower action. DOCUMENT ID LOUIS at a for a verages ALBRECHT AUBERT red to B($D^0 \rightarrow C^0$) ADLER at a for a verages ALBRECHT HAAS ed to B($D^0 \rightarrow C^0$) ADLER at a for a verages ALBRECHT HAAS ed to B($D^0 \rightarrow C^0$) ADLER at a for a verages ALBRECHT HAAS ed to B($D^0 \rightarrow C^0$) ADLER at a for a verages ALBRECHT HAAS	886 88 K^- 886 K^- 886 K^- 886 K^- 886 K^- 886 K^- 886 K^- 886 K^- 887 K^- 888 K^-	MRK1 MRK1 $K^-\pi^+$ but dc $K^$	$D^*+ \rightarrow D^0 \pi^+$ not change sign F: COMMENT Photoproduction ler weak interaction COMMENT π^- W 225 GeV etc. • • • Eem = 10 GeV Deep inelast. μ^- ing ADLER 88c. ler weak interaction COMMENT Eem = 3.77 GeV etc. • • • • Eem = 10 GeV ng ADLER 88c. $K^-\pi^+\pi^+$, and $K^-\pi^+\pi^+$.	Γ ₇₇ /Γ 22 Γ ₇₇ /Γ 27 27 27 27 27 27 27 27 27 27 27 27 27
10.18 This measurer properties of the propertie	90 al = 1 weak electromage CL% EVT 90 you se the foll 90 gratios are 1 weak electromage CL% EVT 90 gratios are 2 weak electromage CL% EVT 90 gratios are 1 weak electromage CL% EVT 90 gratios are 1 weak electromage CL% EVT 90 gratios are 1 weak electromage CL% EVT 90 gratios are 1 weak electromage CL% EVT 90 gratios are 1 weak electromage CL% EVT 90 gratios are 1 weak electromage PO 90 gratios are	699 699 $SES K^ T$ T T T T T T T T T	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as we will also be considered by the construction of	778 77 77 77 78 77 88 88 86 85 6 88 88 88 6 88 88 88 88 87 88 87	MRK1 $K^ K^ $	$D^{*+} \rightarrow D^0 \pi^+$ not change sign Figure 10 GeV Deep inelast. μ^- ing ADLER 88c. Her weak interaction COMMENT Eem = 3.77 GeV etc. • • • • • • • • • • • • • • • • • • •	Γ ₇₇ /Γ 22 Γ ₇₇ /Γ 27 27 27 27 27 27 27 27 27 27 27 27 27
0.18 8 This measurer properties of the properti	90 al a last u as Γ(K+π inator. -)/Γ(K-bbo supprediction of the suppr	699 698 698 698 698 698 698 698 698 698	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as w. $(\kappa^+ \pi^+) + \Gamma(K^+ \pi^-)$ DOCUMENT ID ANJOS CUrrent. Allower exaction. DOCUMENT ID LOUIS ata for averages ALBRECHT AUBERT and to $B(D^0 \to K^-)$ ANDOS CURRENT ID ADLER ata for averages ALBRECHT HAAS ALBRECHT HAAS ed to $B(D^0 \to K^-)$ CONSERVATION ALBRECHT ID ALBRECHT Tata for averages ALBRECHT Tata for averages BECKER PALKA	778 77 77 78 77 78 88 86 87 88 88 88 88 88 88 88 88 88 88 88 88	MRK1 MRK1 $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ but $K^-\pi^+$ but $K^-\pi^+$ are $K^-\pi^+$ but $K^-\pi^+$ are $K^-\pi^+$ but $K^-\pi^+$ are $K^-\pi^+$ but $K^-\pi^+$ are $K^-\pi^+$ but $K^-\pi^+$ are $K^-\pi^+$ but $K^-\pi^+$ but $K^-\pi^+$ are $K^-\pi^+$ but $K^-\pi^+$	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^{-} W 225 GeV etc. • • • • • • • • • • • • • • • • • • •	Γ ₇₇ /Γ 22 Γ ₇₇ /Γ 27 27 27 27 27 27 27 27 27 27 27 27 27
0.18 8 This measurer PRESURE given for our denom $(K^+\pi^+\pi^-\pi^- \text{doubly Cabi})$ LUE 0.018 $(\mu^+\mu^-)/\Gamma$ tot. Test for ΔC bined with ϵ LUE 1.1 × 10-5 • We do not 7.0 × 10-5 3.4 × 10-4 0 The branching $(e^+e^-)/\Gamma$ tota Test for ΔC bined with ϵ LUE 1.3 × 10-4 • We do not 1.7 × 10-4 2.2 × 10-4 1 The branching $D^0\pi^+$ using $D^$	90 al = 1 weak electromage CL% EVT 90 use the foll 90 gratios are ratios are	69 69 69 69 69 69 69 69 69 69 69 69 69 6	FELDMAN GOLDHABER $\pi^+ + \pi^+ = -1$ as $\pi^+ + \pi^+ = -1$ as $\pi^+ + \pi^+ = -1$ be of the second of the	778 77 77 77 78 77 886 86 86 87 87 87	MRK1 MRK1 $K^-\pi^+$ but dc $K^-\pi^+$ but dc $K^-\pi^+$ SILI first-ord $K^-\pi^+$ but $K^$	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign COMMENT Photoproduction ler weak interaction COMMENT T^{-} W 225 GeV etc. • • • $E_{CM}^{em} = 10 \text{ GeV}$ Deep inelast. μ^{-} ing ADLER 88c. ler weak interaction COMMENT $E_{CM}^{em} = 3.77 \text{ GeV}$ etc. • • • $E_{CM}^{em} = 10 \text{ GeV}$ ng ADLER 88c. $K^{-} \pi^{+} \pi^{+}$, and in COMMENT $E_{CM}^{em} = 10 \text{ GeV}$ etc. • • • $E_{CM}^{em} = 10 \text{ GeV}$ etc. • • • $E_{CM}^{em} = 10 \text{ GeV}$ etc. • • • $E_{CM}^{em} = 10 \text{ GeV}$ etc. • • • $E_{CM}^{em} = 10 \text{ GeV}$ etc. • • • $E_{CM}^{em} = 10 \text{ GeV}$ etc. • • • $E_{CM}^{em} = 10 \text{ GeV}$ etc. • • • $E_{CM}^{em} = 10 \text{ GeV}$	Γ ₇₇ /Γ 22 Γ ₇₇ /Γ 27 27 27 27 27 27 27 27 27 27 27 27 27
0.18 .8 This measurer per Results given for our denom $(K^+\pi^+\pi^-\pi^-doubly \ Cabi LUE)$ 0.018 $(\mu^+\mu^-)/\Gamma$ tot. Test for ΔC bined with a LUE line of the branching $(e^+e^-)/\Gamma$ total Test for ΔC bined with a LUE line with a LUE line of the branching $(e^+e^-)/\Gamma$ total Test for ΔC bined with a LUE line with a LUE line of the branching $(e^+e^-)/\Gamma$ total Test for ΔC bined with a LUE line $(\mu^+e^-)/\Gamma$ total Test for ΔC bined with a LUE line $(\mu^+e^-)/\Gamma$ total Test for ΔC bined with a LUE line $(\mu^+e^-)/\Gamma$ total Test for $(\mu^+e^-)/\Gamma$ total Test for lept $(\mu^+e^-)/\Gamma$ total Test for lept $(\mu^+e^-)/\Gamma$ total Test for lept $(\mu^+e^-)/\Gamma$ total Test for lept $(\mu^+e^-)/\Gamma$ total Test $(\mu^$	90 ment also u as $\Gamma(K^+\pi)$ inator. -)/ $\Gamma(K^-)$ ibbo suppression of a su	699 See $K^ \rightarrow$ $//\Gamma(I)$ $\pi^+\pi^+$ $\pi^+\pi^+$ See Σ 5 Ineutral aetic interior interi	FELDMAN GOLDHABER $\pi^+ \pi^+ \pi^-$ as we will also be considered by the construction of	778 77 77 77 78 77 886 86 86 87 88 87 87 87	MRK1 MRK1 $K^-\pi^+$ but dc $K^$	$D^{*+} \rightarrow D^{0} \pi^{+}$ o not change sign F: COMMENT Photoproduction Her weak interaction COMMENT π^{-} W 225 GeV etc. • • • • • • • • • • • • • • • • • • •	76/Γ22 Γ77/Γ N Γ78/Γ Omicom

```
\Gamma(\overline{K}^0\,e^+\,e^-)/\Gamma_{\rm total} Test for \Delta C=1 weak neutral current. Allowed by first-order weak interaction com-
 VALUE
                            CL%
                                            DOCUMENT ID TECN COMMENT
 < 0.0017
                               90
                                            ADLER
                                                              89C MRK3 Ecm = 3.77 GeV
\Gamma(\rho^0\,e^+\,e^-)/\Gamma_{\rm total} Test for \Delta\,C=1 weak neutral current. Allowed by higher-order electroweak interac-
       tions.
VALUE
                     CL% EVTS
                                           DOCUMENT ID TECN COMMENT
                             2 76 HAAS
                                                              88 CLEO E_{\rm CM}^{\it ee}=10~{\rm GeV}
 <sup>76</sup> The branching ratios are normalized to D^0 \to K^- \pi^+ , D^+ \to K^- \pi^+ \pi^+ , and D^{*+} \to \blacksquare
\Gamma(\rho^0\,\mu^+\,\mu^-)/\Gamma_{\rm total} \qquad \qquad \Gamma_{\rm 82}/\Gamma_{\rm Test\ for\ }\Delta\,C=1\ \mbox{weak\ neutral\ current.} \ \mbox{Allowed\ by\ higher-order\ electroweak\ interaction}
VAL<u>UE</u>
                     CL% EVTS
                                           DOCUMENT ID TECN COMMENT
 <8.1 × 10<sup>-4</sup>
                             5 77 HAAS
                     90
                                                              88 CLEO E_{cm}^{ee} = 10 \text{ GeV}
 <sup>77</sup> The branching ratios are normalized to D^0 \to K^-\pi^+, D^+ \to K^-\pi^+\pi^+, and D^{*+} \to \blacksquare
    D^0\pi^+ using ADLER 88c.
\Gamma(\mu^- \text{ anything (via } \overline{D}^0))/\Gamma(\mu^+ \text{ anything)}
                                                                                                \Gamma_{83}/\Gamma_2
       This is a D^0 \overline{D}^0 mixing limit. See the somewhat better limit in the section above on D^0 \to K^+\pi^- (via \overline{D}^0).
VALUE
                          CL%
                                           DOCUMENT ID
                                                                TECN COMMENT
<5.6 × 10<sup>-3</sup>
                              90
                                           LOUIS
                                                              86 SPEC \pi^-\,\mathrm{W} 225 GeV

    • • • We do not use the following data for averages, fits, limits, etc. • • •
 < 0.012
                              90
                                           BENVENUTI 85 CNTR \muC, 200 GeV
 < 0.044
                              90
                                           BODEK
                                                              82 SPEC \pi^-, pFe \rightarrow D^0
                  D^0 PRODUCTION CROSS SECTION AT \psi(3770)
          A compilation of the cross sections for the direct production of \mathcal{D}^0 mesons at or
          near the \psi(3770) peak in e^+\,e^- production. These cross sections are used for
          normalization of product branching fractions.
```

DOCUMENT ID TECN COMMENT VALUE (nanobarns)
6.6 ±0.4 OUR FIT 6.5 ± 0.6 OUR AVERAGE ⁷⁸ ADLER $5.8 \pm 0.5 \pm 0.6$ 88c MRK3 Eee = 3.768 GeV 79 PARTRIDGE 84 CBAL Eee = 3.771 GeV 7.3 ± 1.3

 80 SCHINDLER 80 MRK2 $^{ee}_{
m Cm} = 3.771~{
m GeV}$

77 MRK1 Eee 3.774 GeV

 $8.00 \pm 0.95 \pm 1.21$

 78 This measurement compares events with one detected $\it D$ to those with two detected $\it D$ mesons, to determine the the absolute cross section. ADLER 88c find the ratio of cross sections (neutral to charged) to be 1.36 \pm 0.23 \pm 0.14.

• • • We do not use the following data for averages, fits, limits, etc. • • • ⁸¹ PERUZZI

79 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. PARTRIDGE 84 measures 6.4 ± 1.15 nb for the cross section. We take the phase space division of neutral and charged D mesons in $\psi(3770)$ decay to be 1.33, the control of the cross sections. and we assume that the $\psi(3770)$ is an isosinglet to evaluate the cross sections. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and

may amount to a few percent correction. 80 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. SCHINDLER 80 assume the phase space division of neutral and charged D mesons in $\psi(3770)$ decay to be 1.33, and that the $\psi(3770)$ is an isosinglet. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction.

81 This measurement comes from a scan of the $\psi(3770)$ resonance and a fit to the cross section. The phase space division of neutral and charged D mesons in $\psi(3770)$ decay is taken to be 1.33, and $\psi(3770)$ is assumed to be an isosinglet. The noncharm decays (e.g. radiative) of the $\psi(3770)$ are included in this measurement and may amount to a few percent correction. We exclude this measurement from the average because of uncertainties in the contamination from au lepton pairs. Also see RAPIDIS 77.

REFERENCES FOR DO

ADLER	90	SLAC-PUB-5130 (PRL)	+Blaylock, Bolton +	(Mark III C	lollab.}
BARLAG	90C	ZPHY C (to be pub.)	+Becker, Boehringer, Bosman+	(ACCMOR C	ollab.)
ADLER	89	PRL 62 1821	+Becker, Blaylock, Bolton+	(Mark III C	ollab.)
ADLER	89C	PR D40 906	+Bai, Becker, Blaylock, Bolton+	(Mark III C	ollab.)
ALBRECHT	89D	ZPHY C43 181	+Boeckmann, Glaeser, Harder+	(ARGUS C	ollab.)
ANJOS	89F	PRL 62 1587	+Appel, Bean, Bracker, Browder+	(TPS C	.ollab.)
AVERILL	89	PR D39 123	+ Blockus, Brabson+	(HRS C	ollab.)
BARLAG	89B	PL B232 561	+ Becker, Boehringer, Bosman+	(ACCMOR C	ollab.)
ABACHI	88	PL B205 411	+Akerlof, Baringer	(HRS C	ollab.)
ADLER	88	PR D37 2023	+Becker, Blaylock-	(Mark III C	ollab.)
ADLER	88C	PRL 60 89	+ Becker, Blaylock+	(Mark III C	ollab.)
ALBRECHT	88G	PL B209 380	+ Boeckmann, Glaeser -	(ARGUS C	ollab.)
ALBRECHT	881	PL B210 267	+ Boeckmann, Glaeser+	(ARGUS C	ollab.)
AMENDOLIA	88	EPL 5 407	+ Bagliesi, Batignani+	(NA1 C	ollab.)
ANJOS	88C	PRL 60 1239	+Appel+ (Tagged Phot	on Spectrometer C	ollab.)
BORTOLETTO	88	PR D37 1719	+ Goldberg, Horwitz, Mestayer, Mor	neti+ (CLEO C	ollab.)
Also	89D	PR D39 1471 erratum			
CUMALAT	88	PL B210 253	+ Shipbaugh, Binkley +	(E-400 C	ollab.)
HAAS	88	PRL 60 1614	+ Hempstead, Jensen +	(CLEO C	ollab.)
RAAB	88	PR D37 2391	+Anjos, Appel, Bracker+	(FNAL TPS C	ollab.)
ADAMOVICH	87	EPL 4 887	+Alexandrov, Bolta+ (Photon Emulsion C	ollab.)
ADLER	87	PL B196 107	- Becker, Blaylock, Bolton -	(Mark III C	ollab.)
AGUILAR	87C	ZPHY C34 143	Aguilar-Benitez, Allison+	(LEBC-EHS C	
AGUILAR	87D	PL B193 140	Aguilar-Benitez, Allison+	(LEBC-EHS C	
Also	88C	ZPHY C40 321	Aguilar-Benitez, Allison+	(LEBC-EHS C	ollab.)
AGUILAR	87E	ZPHY C36 551	Aguilar-Benitez, Allison+	(LEBC-EHS C	
Also	88C	ZPHY C40 321	Aguilar-Benitez, Allison+	(LEBC-EHS C	ollab.)

Meson Full Listings D^0 , $D^*(2010)^{\pm}$

AGUILAR	87F	ZPHY C36 559 ZPHY C38 520 erra	Aguilar-Benitez, Allison+	(LEBC-EHS Collab.)
Also	88	ZPHY C38 520 erra	itum	(ADCUS Cellah)
ALBRECHT ALBRECHT	87E 87K	ZPHY C33 359 PL B199 447	+Binder, Boeckmann, Glaser+ +Andam, Binder, Boeckmann+	(ARGUS Collab.) (ARGUS Collab.)
ALTHOFF	87	ZPHY C32 343	+Braunschweig, Gerhards+	(TASSO Collab.)
ANJOS	87	PRL 58 311	+Appel, Bracker, Browder+	(FNAL TPS Collab.)
BARLAG	87B	ZPHY C37 17	+Becker, Boehringer, Bosman+	(ACCMOR Collab.)
BECKER	87C 87D	PL B193 147 PL B198 590	+Blaylock, Bolton, Brown+ Becker, Blaylock, Bolton+	(Mark III Collab.) (Mark III Collab.)
Also Erratum.	ψıυ	PL B190 390	Becker, Blaylock, Bolton+	(IWAIK III CONAD.)
CSORNA	87	PL B191 318	+Mestayer, Panvini, Word+	(CLEO Collab.)
PALKA	87	PL B189 238	+Bailey, Becker, Belau+	(ACCMOR Collab.)
RILES	87	PR D35 2914 PR D36 2850	+Dorfan, Abrams, Amidei+	(Mark II Collab.) (Mark II Collab.)
WAGNER ABACHI	87 86D	PL B182 101	+Hinshaw, Ong, Abrams+ +Akerlof, Baringer, Ballam+	(HRS Collab.)
ABE	86	PR D33 1	+ (SLAC Hybi	rid Facility Photon Collab.)
AGUILAR	86	PL 168B 170	Aguilar-Benitez, Allison+	(LEBC-EHS Collab.)
AGUILAR	86B	ZPHY C31 491	Aguilar-Benitez, Allison+	(LEBC-EHS Collab.)
BAILEY BALTRUSAIT	86 86C	ZPHY C30 51 PRL 56 2136	+Belau, Boehringer, Bosman+ Baltrusaitis, Becker, Blaylock, B	(ACCMOR Collab.) frown+ (Mark III Collab.)
BALTRUSAIT.		PRL 56 2140	Baltrusaitis, Becker, Blaylock, B	rown+ (Mark III Collab.)
BEBEK	86	PRL 56 1893	+Berkelman, Blucher, Cassel+	(CLEO Collab.)
GLADNEY	86	PR D34 2601	+Jaros, Ong, Barklow+	(Mark II Collab.)
LOUIS	86 86B	PRL 56 1027 SLAC-PUB-4248	+Adolphsen, Alexander+	(PŘIN, CHIC, ISÚ) (SLAC)
SCHINDLER SLAC Sun				(SEAC)
USHIDA	86B	PRL 56 1771	+Kondo+ (AICH, FNA	L, KOBE, SEOU, MCGI+)
A_BRECHT	85B	PL 158B 525	+Binder, Harder, Philipp+	(ARGUS Collab.)
ALBRECHT	85F	PL 150B 235	+Binder, Harder, Philipp+	(ARGUS Collab.) + (EMC Collab.)
AUBERT BAILEY	85 85	PL 155B 461 ZPHY C28 357	+Bassompierre, Becks, Benchouk- +Belau, Boehringer, Bosman+	(ABCCMR Collab.)
BALTRUSAIT.		PRL 54 1976	Baltrusaitis, Becker, Blaylock, B Baltrusaitis, Becker, Blaylock, B	Brown+ (Mark III Collab.)
BALTRUSAIT.		PRL 54 1976 PRL 55 150	Baltrusaitis, Becker, Blaylock, B	Brown+ (Mark III Collab.)
BENVENUTI	85	PL 158B 531	+Bollini, Bruni, Camporesi+	(BCDMS Collab.)
YAMAMOTO YAMAMOTO	85 85B	PRL 54 522 PR D32 2901	+Yamamoto, Atwood, Baillon+ +Yamamoto, Atwood, Baillon+	(DELCO Collab.) (DELCO Collab.)
ABE	84	PR D30 1	+ (SLAC Hyb	rid Facility Photon Collab.)
ADAMOVICH	84B	PL 140B 123	+Alexandrov, Bravo, Cartacci+	(WA58 Collab.)
AGUILAR	84	PL 135B 237	Aguilar-Benitez, Allison+	(LEBC-EHS Collab.)
AGUILAR ALTHOFF	84B 84B	PL 146B 266 PL 138B 317	Aguilar-Benitez, Allison+ +Braunschweig, Kirschfink+	(LEBC-EHS Collab.) (TASSO Collab.)
DERRICK	848	PRL 53 1971	+Fernandez, Fries, Hyman+	(HRS Collab.)
PARTRIDGE	84	Cal Tech 1984 The	sis	(Crystal Ball Collab.)
SUMMERS	84	PRL 52 410	+ (UCSB, CARL, COLO, FN. +Gladney, Goldhaber, Abrams+	AL, TNTO, OKLA, CNRC)
YELTON	84	PRL 52 2019	+Gladney, Goldhaber, Abrams+	(Mark II Collab.)
AGUILAR BADERT	83 83	PL 122B 312 PL 123B 471	Aguilar-Benitez, Allison+ Badertscher, Hahn, Hugentobler	(LEBC-EHS Collab.) + (BERN, MPIM)
BAILEY	83B	PL 132B 237	Bardsley Becker Blanar Bardsley Becker Becker Blanar Bardsley Becker Becker Blanar Bardsley Becker	(ACCMOR Collab.)
BODEK	82	PL 113B 82	+Breedon+ (ROCH,	CIT, CHIC, FNAL, STAN) OU, MCGI, NAGO, OSU+) (LEBC-EHS Collab.)
USHIDA	82	PRL 48 844	+ (AICH, FNAL, KOBE, SE	OU, MCGI, NAGO, OSU+)
ADEVA BALLAGH	81 81	PL 102B 285 PR D24 7	+Aguilar-Benitez, Allison+ +Bingham+ (LBL, UCB, FN	AL, HAWA, WASH, WISC)
Also	80	PL 89B 423	Ballagh+ (LBL, UCB, FN	AL, HAWA, WASH, WISC)
FIORINO	81	LNC 30 166	+ (Photon-Emulsion a	and Omega-Photon Collab.)
FUCHI	81	LNC 31 199		GO, AICH, TOKY, YOKO)
SCHINDLER TRILLING	81 81	PR D24 78	+Alam, Boyarski, Breidenbach+	(Mark II Collab.) (LBL, UCB) J
ALLASIA	80	PRPL 75 57 NP B176 13	+ (ANKA, LIBH, CERF	N, DUUC, LOUC, KEYN+)
ASTON	80E	PL 94B 113	 + (BONN, CERN, EPO 	DL, GLAS, LANC, MCHS+)
AVERY	80	PRL 44 1309	+Wiss, Butler, Gladding+	(ILL, FNAL, COLU)
BACINO	80 80	PRL 45 329 PR D21 2716	+Ferguson+ (UCLA, +Siegrist, Alam, Boyarski+	SLAC, STAN, UCI, STON) (Mark II Collab.)
SCHINDLER ZHOLENTZ	80	PL 96B 214	+Kurdadze, Lelchuk, Mishnev+	(NOVO)
Also	81	SJNP 34 814	Zholentz, Kurdadze, Lelchuk+	(NOVO)
	79D	Translated from YA	F 34 1471.	
ABRAMS ARMENISE	79D	PRL 43 481 PL 86B 115	+Alam, Blocker, Boyarski+ +Erriquez+ (BARI, CI	(SLAC, LBL) FRN. FPOL. MILA. ORSA)
ATIYA	79	PRL 43 414	+Holmes, Knapp, Lee+	ERN, EPOL, MILA, ORSA) (COLU, ILL, FNAL)
BALTAY	78C	PRL 41 73	+Caroumbalis, French, Hibbs, Hy	riton+ (COLU, BNL)
SCHARRE	78	PRL 40 74	+Barbaro-Galtieri+ (S	LAC, LBL, NWES, HAWA)
VUILLEMIN FELDMAN	78 77B	PRL 41 1149 PRL 38 1313		BL, SLAC, NWES, HAWA) + (SLAC, LBL)
GOLDHABER	77	PL 69B 503	+Wiss, Abrams, Alam+	(LBL, SLAC)
PERUZZI	77	PRL 39 1301	+Piccolo, Feldman+ (S	LAC, LBL, NWES, HAWA)
PICCOLO	77	PL 70B 260	+Peruzzi, Luth, Nguyen, Wiss, A	.brams+ (SLAC, LBL)
RAPIDIS GOLDHABER	77 76	PRL 39 526 PRL 37 255	+Peruzzi, Piccolo, Abrams, Alam +Wiss, Abrams, Alam+ +Piccolo, Feldman+ +Peruzzi, Luth, Nguyen, Wiss, A +Gobbi, Luke, Barbaro-Galtieri+ +Pierre, Abrams, Alam+	(Mark I Collab.) (LBL, SLAC)
GOLDHABER	10	1 1/2 3/ 200	Tilette, Aprailis, Alainit	(LDL, JLAC)
		—— отн	IER RELATED PAPERS -	
				40:

SCHINDLER 88 High Energy Electron-Positron Physics 234	(SLAC)
Editors: A. Ali and P. Soeding, World Scientific, Singapore GRAB 87 SLAC-PUB-4372	(SLAC)
EPS Conference – Uppsala SCHUBERT 87 IHEP-HD/87-7	(HEID)
EPS Conference – Uppsala, Proc., Vol. 2, p. 791 SNYDER 87 IUHEEE-87-11	(IND)
Symp. on Prod. and Decay of Heavy Flavors, Stanford SCHINDLER 86 SLAC-PUB-4136 World Press International	(SLAC)
SCHINDLER 86B SLAC-PUB-4248 SLAC Summer Institute	(SLAC)
KIRKBY 79 SLAC-PUB-2419 Batavia Lepton Photon Conference.	(SLAC)
BARBARO 78 LBL-8537 Erice 1978 Barbaro-Galtieri WOJCICKI 78 SLAC-PUB-2232	(LBL) (SLAC)
SLAC Summer Institute. SLAC Summer Institute. NGUYEN 77 PRL 39 262 +Wiss, Abrams, Alam, Boyarski+	(LBL, SLAC) J

$D^*(2010)^{\pm}$

 $I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirmation.

$D^*(2010)^{\pm}$ MASS

 VALUE (MeV)
 DOCUMENT ID
 TECN
 CHG
 COMMENT

 2010.1±0.6 OUR EVALUATION
 From \mathcal{D}^0 mass and mass difference below.

 • • We do not use the following data for averages, fits, limits, etc. • •

 2008 ±3
 1 GOLDHABER 77
 MRK1 ± e^+e^-

 208.6±1.0
 MRK1 ± e^+e^-

 1 From simultaneous fit to $D^*(2010)^+$, $D^*(2010)^0$, D^+ , and D^0 ; not independent of FELDMAN 778 mass difference below. 2 PERUZZI 77 mass not independent of FELDMAN 778 mass difference below and PE-

² PERUZZI 77 mass not independent of FELDMAN 778 mass difference below and PE-RUZZI 77 D⁰ mass value.

$D^*(2010)^+ - D^0$ MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
145.44 ± 0.06 OUR A	VERAGE				
$145.40 \pm 0.05 \pm 0.10$		ABACHI	88B	HRS	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
$145.46 \pm 0.07 \pm 0.03$		ALBRECHT	85F	ARG	
145.8 ± 1.5	16	AHLEN	83	HRS	
145.1 ± 1.8	12	BAILEY	83	SPEC	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.5 ± 0.3	28	BAILEY	83	SPEC	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.1 ± 0.5	14	BAILEY	83	SPEC	$D^{*\pm} \rightarrow D^0 \pi^{\pm}$
145.5 ± 0.5	14	YELTON	82	MRK2	29 e^+ $e^ \rightarrow$ $K^ \pi^+$
145.5 ± 0.3	60	FITCH	81	SPEC	π^- A
145.2 ±0.6	2	BLIETSCHAU	79	BEBC	νρ
145.3 ±0.5	30	FELDMAN	77B	MRK1	$D^{*+} \rightarrow D^0 \pi^+$
• • We do not use ti	ne following	data for average	s, fits	, limits,	etc. • • •
~ 145.5		AVERY	80	SPEC	γ A

$D^*(2010)^+ - D^*(2010)^0$ MASS DIFFERENCE

 3 Not independent of FELDMAN 77B mass difference above, PERUZZI 77 $\it D^0$ mass, and GOLDHABER 77 $\it D^*(2010)^0$ mass.

D*(2010)* WIDTH

VALUE (MeV)	CL% E	VTS	DOCUMENT ID ABACHI	88B	TECN HRS	$\frac{\textit{COMMENT}}{\textit{D}^{*\pm} \rightarrow \textit{D}^{0} \pi^{\pm}}$
• • • We do not	use the f	following o	lata for averages	, fits	, limits,	etc. • • •
<2.2						$e^+ e^- \rightarrow K^- \pi^+ \pi^-$
< 2.0	90	30	FELDMAN	77B	MRK1	$D^{*+} \rightarrow D^0 \pi^+$

$D^*(2010)^+$ DECAY MODES

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_j/Γ)
Γ ₁	$D^0\pi^+$	(55 ±4)%
	$D^+\pi^0$	(27.2±2.5) %
Γ3	$D^+ \gamma$	(18 ±4)%

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=$ 2.6 for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta s_i \delta s_j \right\rangle (\delta s_i \cdot \delta s_j),$ in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\rm total}.$ The fit constrains the x_i whose labels appear in this array to sum to one.

$$\begin{array}{rrrr}
 x_2 & -19 \\
 x_3 & -82 & -41 \\
 & x_1 & x_2
 \end{array}$$

 $D^*(2010)^{\pm}$, $D^*(2010)^{0}$, $D_1(2420)^{0}$

$D^*(2010)^+$ BRANCHING RATIOS

$\Gamma(D^0\pi^+)/\Gamma_{total}$						Γ_1/Γ
VALUE	DOCUMENT ID		TECN	CHG	COMMENT	
0.55 ± 0.04 OUR FIT						
0.54±0.05 OUR AVERAGE						
$0.57 \pm 0.04 \pm 0.04$	ADLER	88D	MRK3		$e^+ e^-$	
0.44 ± 0.10	COLES	82	MRK2		$e^+ e^-$	
0.6 ± 0.15	⁴ GOLDHABER	77	MRK1	+	$e^+ e^-$	
4 Assuming that Isospin is con	nearward in the decay					

⁴ Assuming that isospin is co	nserved in the decay.				
$\Gamma(D^+\pi^0)/\Gamma_{\rm total}$					Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.272±0.025 OUR FIT					
0.271±0.028 OUR AVERAGE	Error includes scale	facto	or of 1.1		
$0.26 \pm 0.02 \pm 0.02$	ADLER	88D	MRK3	$e^+ e^-$	
0.34 ±0.07	COLES	82	MRK2	$e^+ e^-$	
$\Gamma(D^+\gamma)/\Gamma_{total}$					Γ_3/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.18 ± 0.04 OUR FIT					
$0.17 \pm 0.05 \pm 0.05$	ADLER	88D	MRK3	e^+ e^-	
• • • We do not use the follow	ving data for average	s, fits	, limits,	etc. • • •	
0.22 ± 0.12	⁵ COLES	82	MRK2	e+ e-	

D*(2010)[±] REFERENCES

 5 Not independent of $\Gamma(D^0\,\pi^+)/\Gamma_{\rm total}$ and $\Gamma(D^+\,\pi^0)/\Gamma_{\rm total}$ measurement.

ABACHI	88B	PL B212 533	+Akerlof+ (ANL, IND, MICH, PURD, LBL)
ADLER	88D	PL B208 152	+Becker+ (Mark III Collab.)
ALBRECHT	85F	PL 150B 235	+Binder, Harder, Philipp+ (ARGUS Collab.)
AHLEN	83	PRL 51 1147	+Akerlof+ (ANL, IND, LBL, MICH, PURD, SLAC)
BAILEY	83	PL 132B 230	+Bardsley+ (AMST, BRIS, CERN, CRAC, MPIM+)
COLES	82	PR D26 2190	+Abrams, Blocker, Blondel+ (LBL, SLAC)
YELTON	82	PRL 49 430	+Feldman, Goldhaber+ (SLAC, LBL, UCB, HARV)
FITCH	81	PRL 46 761	+Devaux, Cavaglia, May+ (PRIN, SACL, TORI, BNL)
AVERY	80	PRL 44 1309	+Wiss, Butler, Gladding+ (ILL, FNAL, COLU)
BLIETSCHAU	79	PL 86B 108	 + (AACH, BONN, CERN, MPIM, OXF)
FELDMAN	77B	PRL 38 1313	+Peruzzi, Piccolo, Abrams, Alam+ (SLAC, LBL)
GOLDHABER	77	PL 69B 503	+Wiss, Abrams, Alam+ (LBL, SLAC)
PERUZZI	77	PRL 39 1301	+ Piccolo, Feidman+ (SLAC, LBL, NWES, HAWA)

- OTHER RELATED PAPERS -

ALTHOFF	83C	PL 126B 493	+ Fischer.	Burkhardt		(TASSO Collab.)
BEBEK	82	PRL 49 610	+	(HARV, OSU.	ROCH,	RUTG, SYRA, VAND+)
TRILLING	81	PRPL 75 57				(LBL, UCB)
PERUZZI	76	PRL 37 569	+Piccolo,	Feldman, Nguyer	, Wiss+	(SLAC, LBL)

 $D^*(2010)^0$

$$I(J^P) = \frac{1}{2}(1^-)$$

 $I, J, P \text{ need confirmation.}$

J consistent with 1, value 0 ruled out (NGUYEN 77).

D*(2010)0 MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT		
2007.1±1.4 OUR EVALUATION	From D^0 mass and n	ass diffe	erence below.		
• • • We do not use the following	data for averages, fit	s, limits,	etc. • • •		
2006 ±1.5	¹ GOLDHABER 77	MRK1	$e^+ e^-$		
¹ From simultaneous fit to $D^*(2010)^+$, $D^*(2010)^0$, D^+ , and D^0 .					

$D^*(2010)^0 - D^0$ MASS DIFFERENCE

VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
142.5±1.3 OUR AVERAGE				
142.2 ± 2.0	SADROZINSKI 80			$D^{*0} \rightarrow D^0 \pi^0$
142.7 ± 1.7	² GOLDHABER 77	MRK1	0	e+ e-
² From simultaneous fit to	D*(2010)+, D*(2010)0, E) ⁺ , and	D^0 .	

*D**(2010)⁰ WIDTH

<2.1	90	3 ABACHI		
	90	ABACHI	88B HRS	$D^{*0} \rightarrow D^{+} \pi^{-}$
• • • We do not use	e the followin	ig data for average	s, fits, limits	, etc. • • •
<5		GOLDHABER	768 MRK1	$e^+e^- \rightarrow D^*D^*$

D* (2010)0 DECAY MODES

 $\overline{\it D}^*(2010)^0$ modes are charge conjugates of modes below.

Mode	Fraction (Γ_i/Γ)
$D^0 \pi^0$ $D^0 \gamma$	(55±6) % (45±6) %

CONSTRAINED FIT INFORMATION

An overall fit to a branching ratio uses 5 measurements and one constraint to determine 2 parameters. The overall fit has a $\chi^2=0.9$ for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta s_i t_i \delta s_j \right\rangle (\delta s_i \cdot \delta s_j),$ in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{Total}}.$ The fit constrains the x_i whose labels appear in this array to sum to one

D*(2010)0 BRANCHING RATIOS

$\Gamma(D^0\gamma)/[\Gamma(D^0\pi^0) + \Gamma(D^0)]$	$[\gamma)]$		$\Gamma_2/(\Gamma_1+\Gamma_2)$	
VALUE	DOCUMENT ID	TECN	COMMENT	
0.45±0.06 OUR FIT				
0.45±0.06 OUR AVERAGE				
$0.37 \pm 0.08 \pm 0.08$	ADLER	88D MRK3	e+ e-	- 1
0.47 ± 0.23	LOW	87 HRS	29 GeV e ⁺ e ⁻	
0.53 ± 0.13	BARTEL	85G JADE	e ⁺ e ⁻ , hadrons	
0.47 ± 0.12	COLES	82 MRK2		
0.45 ± 0.15	⁴ GOLDHABER	77 MRK1	$e^+ e^-$	

 4 We quote the normal fit value from table 1. The isospin-constrained fit is now known to give a $D^0\gamma$ fraction which is too large. See details in footnote 21 of FELDMAN 77C review.

D*(2010)0 REFERENCES

ABACHI	88B	PL B212 533	-Akerlof- (ANL	IND, MICH, PURD, LBL)
ADLER	88D	PL B208 152	+Becker+	(Mark III Collab.)
LOW	87	PL 8183 232	+Abachi, Akerlof, Baringer+	(HRS Collab.)
BARTEL	85G	PL 161B 197	+Dietrich, Ambrus+	(JADE Collab.)
COLES	82	PR D26 2190	+Abrams, Blocker, Biondel+	(LBL, SLAC)
SADROZINSKI	80	Madison Conf. 681	+ (PRIN,	CIT, HARV, SLAC, STAN)
FELDMAN	77C	Banff Sum. Inst. 75	* *	(SLAC)
GOLDHABER	77	PL 69B 503	+Wiss, Abrams, Alam+	(LBL, SLAC)
NGUYEN	77	PRL 39 262	+Wiss, Abrams, Alam, Boyarski-	(LBL, SLAC) J
GOLDHABER	76B	SLAC Conf. 379		(LBL, SLAC)
Available a	e I RI	-5534		

— OTHER RELATED PAPERS ——

TRILLING FELDMAN GOLDHABER		PRPL 75 57 Banff Sum. Inst. 75 PRL 37 255	+Pierre, Abrams, Alam+	(LBL, UCB) (SLAC) (LBL, SLAC)
----------------------------------	--	---	------------------------	-------------------------------------

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

Seen in $D^*(2010)^+\pi^-$. $J^P=1^+$ according to ALBRECHT 89B and ALBRECHT 89H. The $D_J(2420)^0$ entry of 1988 is a superposition of $D_1(2420)^0$ and $D_2^*(2460)^0$ according to ALBRECHT 89H and AVERY 90.

D1(2420)0 MASS

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
2424 ± 6 OUR A	VERAGE Error			
$2428 \pm 3 \pm 2$	279 ± 34	AVERY	90 CLEO	$e^+ e^- \rightarrow D^{*+} \pi^- X$
$2414 \pm 2 \pm 5$	171+-22	ALBRECHT	89н ARG	$e^+ e^- \rightarrow D^{*+} \pi^- \times$
• • • We do no	t use the followin	g data for averag	es, fits, limits	, etc. • • •
$2428\pm8\pm5$	$171 + 43 \\ -58$	ANJOS	89C TP\$	$\gamma N \rightarrow D^{*+} \pi^{-} X$
2421 ± 5		$^{ m 1}$ PRENTICE	87 ARG	$e^+ e^- \rightarrow D^{*+} \pi^- X$
1 Includes dat	of ALDDECHT	965		

Meson Full Listings

 $D_1(2420)^0$, $D_J(2440)^{\pm}$, $D_2^*(2460)^0$

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
20 + 9 OUR AVE	RAGE				
23 + 8 + 10 -6 - 3	279 ± 34	AVERY		$e^+ e^- \rightarrow D^{*+} \pi^- X$	
$13 \pm 6^{+10}_{-5}$	171+-22	ALBRECHT	89H ARG	$e^+ e^- \rightarrow D^{*+} \pi^- X$	ı
• • • We do not	use the followin	g data for average	es, fits, limits,	etc. • • •	
$58\pm14\pm10$	171^{+43}_{-58}	ANJOS	89¢ TPS	$\gamma N \rightarrow D^{*+} \pi^{-} X$ $e^{+} e^{-} \rightarrow D^{*+} \pi^{-} X$	ı
62 ± 14		² PRENTICE	87 ARG	$e^+e^- \rightarrow D^{*+}\pi^- X$	
² Includes data	of ALBRECHT	86E.			

$D_1(2420)^0$ DECAY MODES

 $\overline{\mathcal{D}}_1(2420)^0$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$D^*(2010)^+\pi^-$	seen
Γ_2	$D^+\pi^-$	

D1(2420)0 BRANCHING RATIOS

$\Gamma(D^*(2010)^+\pi^-)/\Gamma_{\text{total}}$			Γ_1/Γ
VALUE	DOCUMENT ID	TECN	COMMENT
seen	AVERY	90 CLEO	$e^+e^- \rightarrow D^{*+}\pi^- X$
seen	ALBRECHT	89H ARG	$e^+ e^- \rightarrow D^* \pi^- X$
seen	ANJOS	89c TPS	$\gamma N \rightarrow D^{*+} \pi^{-} X$
$\Gamma(D^{+}\pi^{-})/\Gamma(D^{*}(2010)^{+}\pi^{-})$			Γ_2/Γ_1
VALUE CL%	DOCUMENT ID	<u>TECN</u>	COMMENT
<0.24 90	AVERY	90 CLEO	$e^+ e^- \rightarrow D^+ \pi^- X$

D₁(2420)⁰ REFERENCES

AVERY	90	PR D41 774		+ Besson	(CLEO	Collab.)
ALBRECHT	89B	PL B221 422		+Boeckmann+	(ARGUS	Collab.)
ALBRECHT	89H	PL 232 398		+Glaser, Harder+	(ARGUS	Collab.) JP
ANJOS	89C	PRL 62 1717		+Appel+	(TPS	Collab.)
PRENTICE	87	Uppsala Conf. p. 9:	10	+	(ARGUS	Collab.)
ALBRECHT	86E	PRL 56 549		+Binder, Harder+	(ARGUS	Collab.)

$D_{J}(2440)^{\pm}$

VALUE (MeV)

 $I(J^P) = \frac{1}{2}(?^?)$ I needs confirmation.

DOCUMENT ID TECN COMMENT

OMITTED FROM SUMMARY TABLE

Possibly seen in $D^*(2010)^0 \pi^+$. $J^P = 0^+$ ruled out.

$D_{J}(2440)^{\pm}$ MASS

2443±7±5	190 + 77	SOLNA	89c TPS	$\gamma N \rightarrow D^0 \pi^+ X^0$	ı
		اD _J (2440) کار	DTH		
VALUE (MeV) 41 ± 19 ± 8	190+77 - 44	DOCUMENT ID	890 TPS	$\frac{\textit{COMMENT}}{\gamma \ N \to \ \mathcal{D}^0 \ \pi^+ \ X^0}$	_

$D_J(2440)^{\pm}$ DECAY MODES

 $D_I^*(2440)^-$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$D^*(2010)^0\pi^+$	seen

D_I(2440)[±] BRANCHING RATIOS

$\Gamma(D^*(2010)^0\pi^+)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		COMMENT	
seen	ANJOS	89c TP\$	$\gamma N \rightarrow D^0 \pi^+ X^0$	

D_J(2440)[±] REFERENCES

89C PRL 62 1717 ANJOS

+Appel+

(TPS Collab.)

$D_2^*(2460)^0$

 $I(J^P) = \frac{1}{2}(2^+)$ I, J, P need confirmation.

 $J^P = 2^+$ assignment strongly favored (ALBRECHT 89B).

$D_2^*(2460)^0$ MASS

VALUE (MeV) 2459.4 ± 2.2 OUR		DOCUMENT ID	TECN	COMMENT
2461 ±3 ±1 2455 ±3 ±5 2459 ±3 ±2	$440 \pm 97 \\ 337 \pm 100 \\ 153 + 42 \\ -37$	AVERY ALBRECHT ANJOS	89B ARG	$e^+e^- \rightarrow D^{*+}\pi^- \times e^+e^- \rightarrow D^+\pi^- \times e^+e^- \rightarrow D^+\pi^- \times D^+\pi^-$

$D_2^*(2460)^0$ WIDTH

VALUE (MeV) 19 ± 7 OUR AVE		DOCUMENT ID		TECN	COMMENT
20^{+	440 ± 97	AVERY	90	CLEO	$e^+ e^- \rightarrow D^{*+} \pi^- X$
$15 + 13 + 5 \\ -10 - 10$	337 ± 100	ALBRECHT	89B	ARG	$e^+ \; e^- \; o \; D^+ \; \pi^-$
$20 \pm 10 \pm 5$	153^{+42}_{-37}	ANJOS	89 C	TPS	$\gamma N \rightarrow D^+ \pi^-$

$D_2^*(2460)^0$ DECAY MODES

 $\overline{D}_2^*(2460)^0$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	D+ π-	seen
Γ_2	$D^*(2010)^+\pi^-$	seen

D₂(2460)⁰ BRANCHING RATIOS

$ \begin{array}{c c} \Gamma(D^+\pi^-)/\Gamma_{\rm total} & \\ \hline \nu_{ALUE} & \underline{EVTS} \\ \text{seen} & 337 \pm 100 \\ \text{seen} & \end{array} $	DOCUMENT ID ALBRECHT ANJOS	7ECN 89B ARG 89C TPS	$\begin{array}{c} \Gamma_1/\Gamma \\ \frac{COMMENT}{e^+e^-\rightarrowD^+\pi^-} \\ \gamma\;N\rightarrowD^+\pi^- \end{array}$
$\Gamma(D^*(2010)^+\pi^-)/\Gamma_{ ext{total}}$ $\frac{VALUE}{ ext{seen}}$	DOCUMENT ID AVERY ALBRECHT	90 CLEO 89H ARG	$\begin{array}{c} \Gamma_2/\Gamma \\ \frac{COMMENT}{e^+ e^- \rightarrow D^{*+} \pi^- X} \\ e^+ e^- \rightarrow D^* \pi^- X \end{array}$
$\frac{\Gamma(D^+\pi^-)/\Gamma\big(D^*(2010)^+\pi^-\big)}{^{VALUE}_{2.4\pm0.7~OUR~AVERAGE}}$ $^{2.3\pm0.8}_{3.0\pm1.1\pm1.5}$	DOCUMENT ID AVERY ALBRECHT	<u>теси</u> 90 CLEO 89н ARG	$\begin{array}{c} \Gamma_1/\Gamma_2 \\ \hline {\it COMMENT} \\ e^+ e^- \\ e^+ e^- \rightarrow D^* \pi^- X \end{array}$

D*(2460)0 REFERENCES

AVERY 90 PR D41 774 Besson (CLEO Coli.) ALBRECHT 89B PL B221 422 Boeckmann+ (ARGUS Coll.) ALBRECHT 89H PL 232 398 Glaser, Harder+ (ARGUS Coll.) ANJOS 89C PRL 62 1717 +-Appel+ (TPS Coll.)	lab.) JP lab.) JP
---	----------------------

 $D_J^*(2470)^{\pm}, D_S^{\pm}$

 $D_J^*(2470)^{\pm}$

 $I(J^P) = \frac{1}{2}(?^?)$ I needs confirmation.

OMITTED FROM SUMMARY TABLE

Seen in $D^0\pi^+$.

 $D_I^*(2470)^{\pm}$ MASS

VALUE (MeV)
2469±4±6

ALBRECHT 89F ARG $e^+e^- o D^0 \, \pi^+ \, X$

 $D_J^*(2470)^{\pm} - D_2^*(2460)^0$ MASS DIFFERENCE

VALUE (MeV) 14±5±8 ALBRECHT 89F ARG $e^+e^- \rightarrow D^0\pi^+$

 $D_J^*(2470)^+$ DECAY MODES

 $D_{J}^{*}(2470)^{-}$ modes are charge conjugates of the modes below

 $\begin{array}{ccc} {\rm Mode} & {\rm Fraction} \; (\Gamma_i/\Gamma) \\ \\ \Gamma_1 & {\rm D}^0 \pi^+ & {\rm seen} \end{array}$

D*,(2470)+ BRANCHING RATIOS

 $\Gamma(D^0\pi^+)/\Gamma_{\text{total}}$ VALUE

seen

 $D_{i}^{*}(2470)^{\pm}$ REFERENCES

ALBRECHT 89F PL B231 208

→ Glaeser

(ARGUS Collab.)

CHARMED STRANGE MESONS

 $(C=S=\pm 1)$ $D_s^+=c\overline{s},\,D_s^-=\overline{c}s,\quad \text{similarly for }D_s^*\text{'s}$

 D_s^\pm was F^\pm

 $I(J^P) = 0(0^-)$

Quantum numbers not measured. Values are assigned here assuming charmed-strange ground state $D_{\rm S}$ meson. CHEN 83B observations are consistent with J=0. BLAYLOCK 87 observations are consistent with $J^P=0^-$.

NOTE ON THE D_s DECAYS

(by W.H. Toki, SLAC)

New data on D_s decays in this edition come from the CLEO, ACCMOR, NA14', Mark III, and ARGUS groups. This brief note discusses new results in hadronic decays, the absolute branching ratios, and the P-wave D_s candidates, obtained from recent publications, preprints, and summaries.¹

The new D_s hadronic modes and recent measurements which differ substantially from previous measurements are listed in Table 1 by mode. The mode $K^0K^*(892)^+$ is analogous to the K^0K^+ and $K^*(892)^0K^+$ modes previously observed and is seen at a comparable rate to that of $\phi\pi$. The existence of these $K\overline{K}$ decays indicates that the strength of the internal W emission diagrams is sizeable. The $\phi\pi^+\pi^0$ mode is seen only in one experiment, and due to the limited statistics, it is not possible to determine if the decay is through the quasi-two body mode $\phi\rho^0$. The $f^0\pi$ mode has now been seen in the

three-pion Dalitz plot by E691 and confirmed by Mark III. The $f^0\pi$ mode is predicted by the weak spectator decay as the f^0 is believed to be the scalar with hidden strangeness below $K\overline{K}$ threshold. The evidence for the $\eta\pi$ and $\eta'\pi$ modes is still controversial. A previous Mark II measurement reported a rate relative to $\phi\pi$ of 3.0 ± 1.1 and 4.8 ± 2.1^{10} for these modes respectively. Recently E691 and Mark III have set upper limits whereas NA14′ has now seen a very large signal in $\eta'\pi$. The final answer may lie somewhere in between and will have to await more experimental data.

Table 1. D_s Hadronic Decay Modes

Decay Mode	$\Gamma(\mathrm{Mode})/\Gamma(D_s^\pm\to\phi\pi^\pm)$	Group
$K^0K^*(892)^+$	0.89 ± 0.32	ACCOR ²
$K^0K^*(892)^+$	1.20 ± 2.1	CLEO^3
$\phi \pi^+ \pi^0$	<3.5 at $90\%\mathrm{CL}$	$NA14'^4$
$\phi \pi^+ \pi^0$	$2.4 \pm 1.0 \pm 0.5$	TPS^5
$\pi^{+}\pi^{-}\pi^{+}\pi^{0}$	< 3.3 at $90\%\mathrm{CL}$	TPS^5
$\omega\pi^+$	<0.5 at $90\%\mathrm{CL}$	TPS^5
$f^0\pi$	$0.28 \pm 0.21 \pm 0.28$	TPS^6
$f^0\pi$	$0.58 \pm 0.21 \pm 0.28$	$Mark~III^7$
$\eta\pi^+$	<1.5 at $90\%\mathrm{CL}$	TPS^5
$\eta\pi^+$	< 2.5 at $90%CL$	Mark III ⁸
$\eta'\pi^+$	< 1.9 at $90%CL$	Mark III ⁸
$\eta'\pi^+$	$6.9 \pm 2.4 \pm 1.4$	NA14′ ⁹

All branching ratios of the D_s are currently normalized to that of the $\phi\pi$ mode. Therefore knowledge of $B(\phi\pi)$ is required to derive the absolute branching ratios of the other modes. There are three different approaches to estimate this ratio, all from e^+e^- production:

The first method experimentally measures the inclusive rate of $\sigma_{\rm exp}(e^+e^- \to D_s, \ D_s \to \phi\pi)$ and theoretically determines the total D_s cross section, $\sigma_{\rm th}(e^+e^- \to D_s)$, from estimates of the total charm content in R and estimates of the strange sea. The absolute branching ratio is then

$$B(D_s \to \phi \pi) = \frac{\sigma_{\rm exp}(e^+e^- \to D_s, \ D_s \to \phi \pi)}{\sigma_{\rm th}(e^+e^- \to D_s)} \ . \label{eq:beta}$$

The second method from the CLEO group attempts a more precise estimate of $\sigma_{\text{th}}(e^+e^- \to D_s)$ by again estimating the total charm content in R and by measuring all the charm baryons and mesons (except the D_s) and attributing the remaining missing charm from e^+e^- production to the D_s .

The third method searches for associated production of exclusive D_s pairs in e^+e^- production into various decay modes near threshold and compares the rate to the inclusive D_s production in the same decay modes. Thus the branching ratio for the $\phi\pi$ mode is equal to

$$B(D_s \to \phi \pi) = \frac{\sigma_{\rm exp}(e^+e^- \to D_s^+ D_s^-, \ D_s^+ \to \phi \pi^+, \ D_s^- \to \phi \pi^-)}{\sigma_{\rm exp}(e^+e^- \to D_s^\pm, \ D_s^\pm \to \phi \pi^\pm)} \ .$$

This technique, often called the double-tag method, was attempted by the Mark III for the D_s but because of limited statistics no events were found and an upper limit was set.

The first two approaches are model dependent and require several theoretical estimates. The last approach is model independent but will require more data to obtain a measurement. As the $\phi\pi$ branching ratio drops, we expect that there exist many more decays that have not been measured. These missing decay modes should contain hidden strangeness and are probably attributed to states with high-charged multiplicities and/or many neutral secondaries.

Table 2. Absolute $D_s \to \phi \pi$ Branching Ratio Estimates

Method	Absolute $B(D_s \to \phi \pi)$	Group
Charm continuum estimate	1.7 - 13%	Many groups ¹¹
All inclusive measurement	$2\pm1\%$	${ m CLEO^{12}}$
Associated production	<4.1 at $90\%\mathrm{CL}$	$ m Mark~III^{13}$

Table 3. Excited P-Wave D_s Candidate

Decay Mode	Mass	Width	Group
$D^{*+}K^0$	$2535.9{\pm}0.6\pm2.0~{\rm MeV}/c^2$	$<4.6~{ m MeV}/c^2$	ARGUS ¹⁴
$D^{*+}K^{0}$	$2535.6{\pm}0.7 \pm 0.4~{\rm MeV}/c^2$	$<5.44~{\rm MeV}/c^2$	${ m CLEO^{15}}$

Both ARGUS and CLEO observe a narrow resonance in the mode $D_{sJ}(2536)^+ \to D^*(2010)^+ K^0$ as shown in Table 3. This can be identified as the P-wave $c\bar{s}$ state that strongly decays into charmed and strange mesons. The lack of evidence of the mode D^+K^0 suggests that the state is not the lowestlying P-wave scalar but possibly the ${}^{1}P_{1}$ or ${}^{3}P_{1}$ state. The mass is roughly 100 MeV/ c^2 above the P-wave $c\overline{u}$ candidate at 2428 MeV/ c^2 . This is where the P-wave $c\bar{s}$ candidate is expected since the P-wave mass splittings between charm-strange and charm-nonstrange mesons should follow the S-wave splittings, $M(c\overline{s}, {}^{1}S_{0}) - M(c\overline{u}, {}^{1}S_{0}) \approx M(c\overline{s}, {}^{3}S_{1}) - M(c\overline{u}, {}^{3}S_{1}) \approx$ 100 MeV/ c^2 . The width is surprisingly narrow but may be a consequence of mixing between the two 1+ states.

References

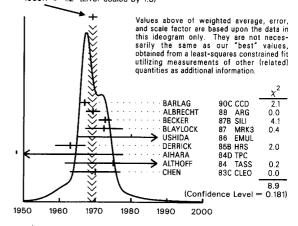
- 1. For recent reviews see P. Karchin, Proceedings of the 1989 International Symposium on Lepton Photon Interactions at High Energies, Stanford University, Stanford, CA (August 1989) and R. Morrison and M. Witherell, Ann. Rev. of Nucl. and Part. Sci. 39, 183 (1989).
- 2. S. Barlag et al., preprint CERN-EP/88-103, (August 1988).
- W. Chen et al., Phys. Lett. **B226**, 192 (1989).
- 4. M. Alvarez et al., CERN-EP/88-148, (October 1988).
- 5. J. Anjos et al., Phys. Lett. **B223**, 267 (1989).
- 6. J.C. Anjos et al., Phys. Rev. Lett. 62, 267 (1989).
- J. Adler et al., SLAC-PUB-5052, (August 1989).
- 8. T. Browder, SLAC-PUB-5118, (October 1989).
- 9. G. Wormser, LBL-89-10, (May 1989).
- 10. G. Wormser et al., Phys. Rev. Lett. 61, 1057 (1988).

- 11. S. Wasserbaech, unpublished Ph.D. thesis, Stanford University, June 1989, see Table 6.1.
- 12. W. Chen et al., Phys. Lett. **B226**, 192 (1989).
- 13. J. Adler et al., Phys. Rev. Lett. 64, 169 (1990).
- H. Albrecht et al., Phys. Lett. B230, 163 (1989).
- 15. P. Avery et al., Phys. Rev. **D41**, 774 (1990).

DE MASS

The fit includes the D^{\pm} , D^0 , D_S^{\pm} , and $D_S^{*\pm}$ masses and the D^0 – D^{\pm} , D_S^{\pm} – D^{\pm} , and $D_s^{*\pm} - D_s^{\pm}$ mass differences.

VALUE (Me		EVTS	DOCUMENT ID		CHG COMMENT
1968.8±			des scale factor of		
1969.1±	1.2 OUR AVE	RAGE Erro	or includes scale fac	tor of 1.3. Se	e the ideogram
1067.0	10110		below. ¹ BARLAG	00- 660	- 6 000
1967.0±	1.0 ± 1.0	54	* BARLAG	90c CCD	π Cu 230
1969.3±	1.4 ± 1.4		² ALBRECHT	88 ARG	GeV Eee =
					9.4-10.6
			2		GeV
		290	3 ANJOS	88 SILI	Photoproduc-
1972.7±	1.5 ± 1.0	21	BECKER	87B SILI	tion 200 GeV
1912.1 I	1.5± 1.0	21	DECKER	0/8 3ILI	$\pi_{i}K_{i}p$
1972.4±	3.7 ± 3.7	27	BLAYLOCK	87 MRK3	Ecm = 4.14
2,7,2	J., _ J.,	~,	DEMICOCK	07 1111113	GeV
1980.0±	15.0	6	USHIDA	86 EMUL	ν wideband
1963 ±	3 ± 3	30	DERRICK	85B HRS	$E_{cm}^{ee} = 29$
.,,,	3 1 3	30	DZ. III. C. I	000	GeV
1948 ±	28 ±10	65	AIHARA	84D TPC	Ecm = 29
					GeV
1975 ±	9 ±10	49	ALTHOFF	84 TASS	\pm E _{Cm} = 14-25
					GeV
1970 ±	5 ± 5	104	CHEN	83c CLEO	$\pm E_{cm}^{ee} = 10.5$
147.				14 15	GeV
• • • vve	do not use the	tollowing da	ata for averages, fit	s, limits, etc.	
$1973.6\pm$	2.6 ± 3.0	163	ALBRECHT	85D ARG	$E_{cm}^{ee} = 10$
					GeV
$1975.0 \pm$	4.0	3	BAILEY	84 SILI	hadron+
					Be $\rightarrow \phi \pi^+ X$
2017 ±	13	17	4 ATKINSON	83 OMEG	
2020 ±		460	5 ASTON	81 OMEG	- ''
2049 ±		30	ASTON		- ,,-
2049 ±		30 1	AMMAR	818 OMEG 80 HYBR	
-		_			+ ν wideband
2026 ±	50	1	USHIDA	808 EMUL	– FNAL ν wide
2089 ±1	21	1	USHIDA	808 EMUL	band + FNAL ν wide-
		•	00111071	555 EIIIOE	band
2030 ±	60	6	BRANDELIK	79 DASP	± E _{cm} = 4.42
					GeV
2030 ±	60	4	BRANDELIK	77B DASP	± In BRANDE-
					LIK 79


¹ BARLAG 90c use 54 $D_s^+ \rightarrow K^+ K^- \pi^+$ decays.

ALBRECHT 88 calculate their mass using the ARGUS value of $m(D^0)=1864.1\pm1.4$ MeV which is 0.5 MeV lower than the world average. 3 ANJOS 88 enters fit via the $D_5^\pm-D^\pm$ mass difference (see below). Their mass value is

 4 ATKINSON 83 mass error includes systematic uncertainties.

⁵ Error quoted by ASTON 81 is 10 MeV statistical and <20 MeV systematic average of three modes listed in sections $\Gamma(\eta\pi^+)/\Gamma(\phi\pi^+)$, $\Gamma(\eta\pi^+\pi^+\pi^-)/\Gamma_{\rm total}$, and $\Gamma(\eta'(958)\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$ below.

WEIGHTED AVERAGE 1969.1 ± 1.2 (Error scaled by 1.3)

Ds mass (MeV)

D_s^{\pm} – D^{\pm} MASS DIFFERENCE

VALUE (MeV) 99.5±0.6 OUR FIT	EVTS Error include	DOCUMENT es scale factor		TECN	COMMENT
99.5±0.7 OUR AV	ERAGE				
98.5 ± 1.5	555	CHEN	89	CLEO	$E_{cm}^{ee} = 10.5 \text{ GeV}$
99.8 ± 0.8	290	ANJOS	88	SILI	Photoproduction

D^{\pm}	MAG	A NI	11	-
D_{ε}^{\pm}	IVIL	MIN.	1	

VALUE (10 ⁻¹³ s)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
4.45 ^{+0.35} _{-0.29} OUR AVE	RAGE					
4.69 + 1.02 - 0.86	54	⁶ BARLAG	90 C	CCD		π^- Cu 230 GeV
$3.1 \ ^{+2.4}_{-2.0} \ \pm 0.5$		AVERILL	89	HRS		E <i>ee</i> = 29 GeV
$5.6 \begin{array}{c} +1.3 \\ -1.2 \end{array} \pm 0.8$		ALBRECHT	88	ARG		Eee 10 GeV
$4.7 \pm 0.4 \pm 0.2$	230	RAAB	88	SILI		Photoproduction
$3.3 \begin{array}{c} +1.0 \\ -0.6 \end{array}$	21	⁷ BECKER	87B	SILI		200 GeV π , K , ρ
$5.7 \ ^{+3.6}_{-2.6} \ \pm 0.9$	9	BRAUNSCH	87	TASS		$\mathrm{E}_{\mathrm{cm}}^{ee} = 35 ext{-44 GeV}$
$4.7 \pm 2.2 \pm 0.5$	141	CSORNA	87	CLEO		$E_CM^{ee} = 10 \; GeV$
$3.5 \begin{array}{c} +2.4 \\ -1.8 \end{array} \pm 0.9$	17	JUNG	86	HRS	+	$e^+\;e^-\;\rightarrow\;\phi\pi^+X$
$2.6 \begin{array}{c} +1.6 \\ -0.9 \end{array}$	6	USHIDA	86	EMUL		u wideband
• • • We do not use	the following	data for averages	s, fits	, limits,	etc. •	• •
$4.8 \ \ ^{+\ 0.6}_{-\ 0.5}\ \pm 0.2$	99	ANJOS	87в	SILI		Repl. by RAAB 88
$3.2 \begin{array}{c} +3.0 \\ -1.3 \end{array}$	3	BAILEY	84	SILI		hadron ⁺ Be $\rightarrow \phi \pi^+ X$
1.9 + 1.3	4	USHIDA	83	EMUL		Repl. by USHIDA 86
1.4	1	AMMAR	80	HYBR	+	ν wideband

 $^{2.24 + 2.78 \\ -1.05}$ $^6\, \rm BARLAG$ 90c estimate systematic error to be negligible. $^7\, \rm BECKER$ 87B say systematic error was negligible.

D_S⁺ DECAY MODES

USHIDA

 $D_{\rm S}^-$ modes are charge conjugates of the modes below.

Values are all based on rough estimate of $\mathcal{D}_{\mathbf{S}}^{\pm}$ to total charm production. Only ratios of each fraction to the $\phi\pi^+$ mode are well known.

80B EMUL

 ν wideband

	Mode	Fraction (Γ_j/Γ)	Confidence level
Γ ₁	$\phi \pi^+$	(2.7±0.7) %	
Γ_2^-	$\phi \pi^{+} \pi^{+} \pi^{-}$	(1.3 ± 0.6) %	
Гэ	$0^{0}\pi^{+}$	< 2.1 × 10	3 90%
Ги	$\kappa^0\pi^+$	< 6 × 10 ⁻¹	3 90%
Γ_5	K 6 K +	(2.6 ± 0.8) %	
Γ_6	$\overline{K}^*(892)^0 K^+$	(2.6 ± 0.7) %	
Γ ₇	$K^*(892)^+ \overline{K}^0$	(3.2 ± 1.1) %	
	$K^+K^-\pi^+$ (non-resonant)	$(6.7 \pm 2.9) \times 10^{-2}$	3
ΓĢ	$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{+}$ (non-res.)	< 9 × 10 ⁻	3 90%
Γ ₁₀	$\mu^+ \nu$	< 3 %	
Γ11	$\eta \pi^+$	< 4 %	90%
Γ12	$\eta \pi^+ \pi^+ \pi^-$	possibly seen	
Γ_{13}	$\eta'(958)\pi^{+}\pi^{+}\pi^{-}$	possibly seen	
Γ_{14}	$\phi \rho^+$	possibly seen	
Γ_{15}	$\eta'(958)\pi^+$	seen	
	$f_0(975)\pi^+$	$(7.5 \pm 3.4) \times 10^{-1}$	-3
	$\pi^{+}\pi^{-}\pi^{+}$	(1.2 ± 0.4) %	
Γ_{18}	$\pi^+\pi^-\pi^+$ (non-resonant)	$(7.8 \pm 3.2) \times 10^{-1}$	
Γ_{19}	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}$	< 8 × 10	3 90%
	$\pi^{+} \pi^{-} \pi^{+} \pi^{0}$	< 9 %	90%
Γ_{21}	$\omega \pi^+$	< 1.3 %	90%
Γ22	$\phi \pi^+ \pi^0$	$(6.4 \pm 3.4) \%$	
	$K^+K^-\pi^+\pi^0$ (non- ϕ)	< 6 %	90%
Γ ₂₄	η anything		

D' BRANCHING RATIOS

$\Gamma(\phi\pi^+)/\Gamma_{ m total}$		
VALUE 0.027±0.007 O	UR AVERA	
< 0.041	90	0
0.02 ± 0.01		405
$0.033 \pm 0.016 \pm 6$	0.010	9
0.033 ± 0.011		30

			Γ_1/Γ	
DOCUMENT ID		TECN	COMMENT	
8 ADLER	90B	MRK3	E ^{ee} = 4.14 GeV	
⁹ CHEN	89	CLEO	Ecm = 10 GeV	
⁹ BRAUNSCH	87	TASS	Ecm = 35-44 GeV	
9 DERRICK	8 5 B	HRS	Ecm = 29 GeV	

 $\Gamma\big(\eta\,\pi^+\,\pi^+\,\pi^-\big)/\Gamma_{\mathsf{total}}$

Possibly seen OUR EVALUATION

		g data for averag				
seen	64			88 SP	thing 0-	800 Ge\
+00	100	_		850 AR	Citi	
$0.13 \pm 0.03 \stackrel{+0.0}{-0.0}$	7 49	71211101		84 TA	CITI	
seen 0.044	104	ARGUS 9 CHEN		83 AR 83∈ CL		
8 ADLER 90 used	a technique ba	ased on full recor	structi	ion of D	$D_s^+ D_s^-$ pairs (do	uble tags
8 ADLER 90 used to obtain branch 9 Values based on additional negati are statistical on	crude estima ve error for <i>D</i>	ite of D_5^{\pm} produ	ıction	level.	ALTHOFF 84 ei	rors hav
$-(\phi\pi^+\pi^+\pi^-)/\Gamma$ VALUE	$(\phi \pi^+)$ EVTS	DOÇUMENT ID		<u>TECN</u>	COMMENT	Γ_2/Γ
0.48±0.20 OUR AV		r includes scale f			COMMENT	
$0.42 \pm 0.13 \pm 0.07$ $1.11 \pm 0.37 \pm 0.28$	19 62	ANJOS ALBRECHT		SILI ARG	Photoproduction Eee = 10 GeV	n
$-(\rho^0 \pi^+)/\Gamma(\phi \pi^+)$)				ciii	Γ_3/Γ
/ALUE) CL%	DOCUMENT ID		TECN	COMMENT	J/ ·
<0.08	90	ANJOS		TPS	Photoproductio	n
• • We do not us < 0.22	e the following 90	data for average ALBRECHT		, limits, ARG	etc. • • • $E_{CM}^{ee} = 10 \text{ GeV}$	
$\Gamma(K^0\pi^+)/\Gamma(\phi\pi^+)$	-)					Γ ₄ /Γ
ALUE	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.21	90	ADLER	89B	MRK3	E _{CM} = 4.14 GeV	/
$-(\overline{K}^0K^+)/\Gamma(\phi\pi^-)$	+)					Γ_5/Γ
/ALUE 0.97±0.17 OUR AV	ERAGE	DOCUMENT ID		TECN	COMMENT	
$0.92 \pm 0.32 \pm 0.20$		ADLER	89B	MRK3	Eee = 4.14 Ge	/
0.99 ± 0.17 ± 0.10		CHEN			Ecm = 10 GeV	
$(\overline{K}^*(892)^0K^+)$	(,					Γ ₆ /Γ
ALUE 0.96 ± 0.11 OUR AV	<u>EVTS</u> ERAGE	DOCUMENT ID		TECN	COMMENT	
$0.84 \pm 0.30 \pm 0.22$		ADLER	89B	MRK3	Eee = 4.14 Ge	/
$1.05 \pm 0.17 \pm 0.12$		CHEN		CLEO	Ecm = 10 GeV	
0.87 ± 0.13 ± 0.05 1.44 ± 0.37	117 87	ANJOS ALBRECHT		SILI ARG	Photoproductio Ecm = 10 GeV	n
= (\(\(\)	re/ (±\					
$(K^*(892)^+\overline{K}^0)$	$\Gamma(\phi\pi^{+})$	DOCUMENT IO		TECN	COMMENT	Γ ₇ /Γ:
/ALUE 1.20±0.21±0.13		CHEN		<u>TECN</u> CLEO	$\frac{COMMENT}{E_{CM}^{ee}} = 10 \text{ GeV}$	
(K+K-π+ (no	n-resonant))	$/\Gamma(\phi\pi^+)$				Γ ₈ /Γ
ALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
$0.25 \pm 0.07 \pm 0.05$	48	ANJOS	88	SILI	Photoproductio	n
$K^+K^-\pi^+\pi^+\tau$						٦/و٦
	<u>EVTS</u> 0 10	DOCUMENT ID		TECN SILI	COMMENT Photograduction	•
	<i>y</i> 10	COLNIA	ŏο	JILI	Photoproductio	
$(\mu^+ \nu)/\Gamma_{\text{total}}$	FUTC	DOCUMENT IO		TECN	COMMENT	Γ ₁₀ /Ι
/ALUE <0.03	<u>EVIS</u>	10 AUBERT			<u>COMMENT</u> μ ⁺ Fe, 250 Ge\	,
10 AUBERT 83 obt production rate.						
$\Gamma(\eta \pi^+)/\Gamma(\eta \text{ any})$	thing)					Γ ₁₁ /Γ ₂ ,
ALUE Dossibly seen OUR E	<u>EVTS</u>	DOCUMENT ID		TECN		
• • We do not us		data for averag	es, fits,	, limits,	etc. • • •	
0.09±0.06		¹¹ BRANDELIK				/
11 Denominator is i	nconsistent wi	th PARTRIDGE	81 (Cr	ystal Ba	ill).	- /-
$\Gamma(\eta\pi^+)/\Gamma(\phi\pi^+)$	L% EVTS	DOCUMENT ID		TECN	COMMENT	Γ ₁₁ /Γ
JALUE C				TPS	Photoproductio	n
<1.5 9		ANJOS				
<1.5 9: • • • We do not us	e the following	data for averag	es, fits,			
<1.5 9	e the following		es, fits, 88		E ^{ee} _{Cm} = 29 GeV	

 Γ_{12}/Γ

TECN COMMENT

81 OMEG γp

DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • • • ASTON

 D_s^{\pm}, D_s^{\ast}

 Γ_1/Γ

$(\eta'(958)\pi^{+}\pi^{+}\pi)$)/ total <u>EVTS</u>	DOCUMENT II	2	TECN	COMMENT	Γ ₁₃ /Γ
ossibly seen OUR E		DOCOME!!!				
• • We do not use		g data for averag	ges, fits	, limits,	etc. • • •	
	60	ASTON	81	OMEG	γp	
$(\phi \rho^+)/\Gamma_{\text{total}}$						Γ_{14}/Γ
VALUE	EVTS	DOCUMENT I		<u>TECN</u>	COMMENT	
ossibly seen OUR E						
• • We do not use		-	-			
	83	ASTON	81 B	OMEG	γp	
$(\eta'(958)\pi^{+})/\Gamma(6$	ϕ_{π^+}					Γ_{15}/Γ_{1}
ALUE	<i>γ")</i>	DOCUMENT II	כ	TECN	COMMENT	. 13/ . 1
een		13 WORMSER			Eee = 29 Ge	·V
¹³ The $\eta' \pi^+$ decay $\phi \pi^+$).	mode is obs	erved with a br	anching	g ratio (or about 5 tin	ies B(D ₅ →
-(+ - +\/r//	+1					F /F
$-(\pi^+\pi^-\pi^+)/\Gamma(\phi$	νπ')	00011145115		TECH	COLUMENT	Γ_{17}/Γ_1
VALUE		DOCUMENT II	89	TECN_	COMMENT Photogradus	tion
0.44±0.10±0.04		COLVIA	09	173	Photoproduc	.uon
$-(\pi^{+}\pi^{-}\pi^{+})$ (non-	resonant))	$/\Gamma(\phi\pi^+)$				Γ_{18}/Γ_{1}
VALUE		DOCUMENT I	<u> </u>	TECN	COMMENT	
0.29±0.09±0.03		ANJOS	89	TPS	Photoproduc	tion
$\Gamma(f_0(975)\pi^+)/\Gamma(6666)$	ለπ ⁺ ነ					Γ_{16}/Γ_{1}
1 (10(313)71)/1 (1	Ψ")	DOCUMENT I	n	TECN	COMMENT	16/11
0.28±0.10±0.03		ANJOS	89	TPS	Photoproduc	tion
			•,		otop.out	
$\Gamma(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-$	$^{+})/\Gamma(\phi\pi^{+})$)				Γ_{19}/Γ_{1}
V.4LUE	CL%	DOCUMENT I	D	TECN	COMMENT	
<0.29	90	SOLNA	89	TPS	Photoproduc	tion
$\Gamma(\pi^{+}\pi^{-}\pi^{+}\pi^{0})/\Gamma$	-(A_+)					Γ_{20}/Γ_{1}
,		DOCUMENT	n	TECN	COMMENT	1 20/11
<u>VALUE</u> <3.3	<u>CL%</u> 90	DOCUMENT I		TPS	Photoproduc	tion
	70	VIA102	0 7 5	. 11 3	, notoproduc	.c.orr
$\Gamma(\omega\pi^+)/\Gamma(\phi\pi^+)$						Γ_{21}/Γ_{1}
VALUE	CL%	DOCUMENT I	<u> </u>	<u>TECN</u>	COMMENT	
<0.5	90	ANJOS	89E	TPS	Photoproduc	tion
$\Gamma(\phi\pi^+\pi^0)/\Gamma(\phi\pi$	+1					Γ_{22}/Γ_1
ι (φπ·π-)/ι (φπ <u>VALUE</u>		DOCUMENT I	n	TECN	COMMENT	' 22/ ' 1
2.4±1.0±0.5	11	ANJOS		TPS	Photoproduc	rtion
			090	. 113	. notoproduc	
-/ + O /	non- ϕ) $)/\Gamma($	$(\phi\pi^+)$				Γ_{23}/Γ_1
Ι (Κ ⁺ Κ ⁻ π ⁺ π ^ο (DOCUMENT I	D	TECN	COMMENT	
$ \Gamma(K^+K^-\pi^+\pi^0) $ $ \stackrel{VALUE}{<2.4} $	<u> CL%</u> 90	14 ANJOS		TPS		

REFERENCES FOR D_s^{\pm}

ADLER	90	SLAC-PUB-5130 (PRL)	+Blaylock, Bolton+	(Mark III Collab.)
ADLER	90B	PRL 64 169	+Bai, Blaylock, Bolton+	(Mark III Collab.)
BARLAG	90C	ZPHY C (to be pub.)	+Becker, Boehringer, Bosman+	(ACCMOR Collab.)
ADLER	89B	PRL 63 1211	+Bai, Becker, Blaylock, Bolton+	(Mark III Collab.)
ANJO5	89	PRL 62 125	+Appel, Bean, Bracker+	(TPS Collab.)
ANJOS	89E	PL B223 267	+Appel, Bean, Bracker+	(TPS Collab.)
AVERILL	89	PR D39 123	+Blockus, Brabson+	(HRS Collab.)
CHEN	89	PL B226 192	+McIlwain, Miller, Ng, Shibata+	(ČLEO Collab.)
ALBRECHT	88	PL B207 349	+Binder, Boeckmann+	(ARGUS Collab.)
ALBRECHT	881	PL B210 267	+Boeckmann, Glaeser+	(ARGUS Collab.)
ANJOS	88	PRL 60 897		oton Spectrometer Collab.)
RAAB	88	PR D37 2391	+Anjos, Appel, Bracker+	(FNAL TPS Collab.)
SHIPBAUGH	88	PRL 60 2117	+Wiss, Binkley+	(E-400 Collab.)
WORMSER	88	PRL 61 1057	+Abrams, Amidei, Baden+	(Mark II Collab.)
ALBRECHT	87F	PL B179 398	+Binder, Boeckmann, Glaeser+	(ARGUS Collab.)
ALBRECHT	87G	PL B195 102	+Andam, Binder, Boeckmann+	(ARGUS Collab.)
ANJOS	87B	PRL 58 1818	+Appel, Bracker, Browder+	(FNAL TPS Collab.)
BECKER	87B	PL B184 277		(NA11 and NA32 Collab.)
BLAYLOCK	87	PRL 58 2171	+Bolton, Brown, Bunnell+	(Mark III Collab.)
BRAUNSCH	87	ZPHY C35 317	Braunschweig, Gerhards+	(TASSO Collab.)
CSORNA	87	PL B191 318	+Mestayer, Panvini, Word+	(CLEO Collab.)
JUNG	86	PRL 56 1775	+Abachi+	(HRS Collab.)
USHIDA	86	PRL 56 1767	+Kondo+ (AICH, FNAL, GIFU	. GYEO, KOBE, SEOU+)
ALBRECHT	85D	PL 153B 343	+Drescher, Binder, Drews+	(ARGUS Collab.)
DERRICK	85B	PRL 54 2568	+Fernandez, Fries, Hyman+	(HRS Collab.)
AIHARA	84D	PRL 53 2465	+Alston-Garnjost, Badtke, Bakken	+ (TPC Collab.)
ALTHOFF	84	PL 136B 130	+Braunschweig, Kirschfink+	(TÀSSO Collab.)
BAILEY	84	PL 139B 320	+Belau, Bohringer, Bosman+	(ACCMOR Collab.)
ARGUS	83	CERN Cour. 23 423	. •	(ARGUS Collab.)
Preliminary				, ,
ATKINSON	83	ZPHY C17 1	 (BONN, CERN, GLAS, LA 	NC, MCHS, LPNP, RL+)
AUBERT	83	NP B213 31	+Bassompierre, Becks, Best+	
CHEN	83B	PR D28 2304	+Fenker+ (ARIZ, FNAL	FLOR, NDAM, TUFT+)
CHEN	83C	PRL 51 634	+Alam, Giles, Kagan+	(CLEO Collab.)
USHIDA	83	PRL 51 2362	 + (AICH, FNAL, KOBE 	, SEOU, MCGI, NAGO+)
ASTON	81	Pt. 100B 91	 + (BONN, CERN, EPOL 	., GLAS, LANC, MCHS+)
ASTON	81B	NP B189 205	 (BONN, CERN, EPOL 	., GLAS, LANC, MCHS+)
PARTRIDGE	81	PRL 47 760	+Peck, Porter, Gu+	(Crystal Ball Collab.)
AMMAR	80	PL 94B 118	+ (KANS, FNAL, SERP, ITE	
USHIDA	808	PRL 45 1053	+ (AICH, FNAL, KOBE, SEC	U, MCGI, NAGO, OSU+)
BRANDELIK	79	PL 80B 412	+Braunschweig, Martyn, Sander+	
BRANDELIK	778	PL 70B 132	+Braunschweig, Martyn, Sander+	(DASP Collab.)

- OTHER RELATED PAPERS	
SCHINDLER 88 High Energy Electron-Positron Physics 234 Editors: A. Ali and P. Soeding, World Scientific, Singapore	(SLAC)
GRAB 87 SLAC-PUB-4372 EPS Conference – Uposala	(SLAC)
SCHUBERT 87 IHEP-HD/87-7 EPS Conference - Uposala, Proc., Vol. 2, p. 791	(HEID)
SNYDER 87 IUHEEE-87-11 Symp. on Prod. and Decay of Heavy Flavors, Stanford	(IND)
SCHINDLER 86 SLAC-PUB-4136 World Press International	(SLAC)
SCHINDLER 86B SLAC-PUB-4248 SLAC Summer Institute	(SLAC)
TRILLING 81 PRPL 75 57	(LBL, UCB)

 $\Gamma(D_s \gamma)/\Gamma_{\text{total}}$

 $I(J^P) = ?(??)$

D* MASS

The fit includes the ${\it D}^\pm$, ${\it D}^0$, ${\it D}_{\rm S}^\pm$, and ${\it D}_{\rm S}^{*\pm}$ masses and the ${\it D}^0$ – ${\it D}^\pm$, ${\it D}_{\rm S}^\pm$ – ${\it D}^\pm$, and $D_s^{*\pm}$ – D_s^{\pm} mass differences.

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2110.3±2.0 OUR FIT	Error includes scale factor of 1.3		
2106.6 ± 2.1 ± 2.7	¹ BLAYLOCK 87	MRK3	$e^+ e^- \rightarrow D_S X$
1 Assuming Da mass	- 1069 7 + 0.0 MeV		

D_s^* – D_s MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
141.5± 1.9 OUR FIT	Error inc	ludes scale factor of	of 1.3.	
142.4 ± 1.7 OUR AVE	RAGE			
$142.5 \pm 0.8 \pm 1.5$		² ALBRECHT	88 ARG	$e^+ e^- \rightarrow D_5 \gamma$ FNAL 15-ft, ν -2 H
143.0 ± 18.0	8	ASRATYAN	85 HLBC	FNAL 15-ft, ν- ² H
139.5± 8.3±9.7	60	AIHARA		$e^+ e^- \rightarrow hadrons$
110 ±46		BRANDELIK	79 DASP	$e^+ e^- \rightarrow D_5 \gamma$
² Result includes data	of ALBR	ECHT 84B		

D* WIDTH

VALUE (MeV)	CL%	DOCUMENT ID	TECN	COMMENT
< 4.5	90	ALBRECHT 88	ARG	E ^{ee} _{Cm} = 10.2 GeV
• • • We do not use th	e following	data for averages, fit	s, limits,	etc. • • •
<22	90	BLAYLOCK 87	MRK3	$e^+ e^- \rightarrow D_5 X$

D* DECAY MODES

 $\overline{{\cal D}}_{{\cal S}}^{*}$ modes are charge conjugates of the modes below.

	Mode	Fraction $(\Gamma_{\tilde{I}}/\Gamma)$
Γ ₁	D ₅ γ	dominant
_		

D* BRANCHING RATIOS

VALUE dominant OUR EVAL	DOCUMENT ID	TECN COMMENT
	the following data for averages,	fits, limits, etc. • • •
seen	ALBRECHT :	88 ARG $e^+e^- \rightarrow D_S \gamma$
seen	ASRATYAN	85
seen	AIHARA	84D
seen	ALBRECHT :	84B
seen	BRANDELIK	79

D* REFERENCES

			-		
ALBRECHT BLAYLOCK ASRATYAN	88 87 85	PL B207 349 PRL 58 2171 PL 156B 441	+Binder, Boeckmann+ +Bolton, Brown, Bunnell+ +Fedotov, Ammosov, Burtovoy+	(ARGUS Collab.) (Mark III Collab.) (ITEP, SERP)	
AIHARA	84D	PRL 53 2465	+Alston-Garnjost, Badtke, Bakken+	(TPC Collab.)	
ALBRECHT	84B	PL 146B 111	+Drescher, Heller+	(ARGUS Collab.)	
BRANDELIK	79	PL 80B 412	+Braunschweig, Martyn, Sander+	(DASP Collab.)	
OTHER RELATED PAPERS					

BRANDELIK	78C	PL 76B 361	+Cords+	(AACH, DESY,	HAMB, MPIM, TOKY)
BRANDELIK	77B	PL 70B 132	+Braunschweig,	Martyn, Sander+	(DASP Collab.)

 $D_{s1}(2536)^{\pm}$, $D_{sJ}(2564)^{\pm}$, Bottom Mesons

$D_{s1}(2536)^{\pm}$

 $I(J^P) = 0(1^+)$ I, J, P need confirmation.

Seen in $D^*(2010)^+ K^0$. Not seen in $D^+ K^0$. $J^P = 1^+$ assignment strongly favored.

$D_{s1}(2536)^{\pm}$ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2536.5 ± 0.8 OUR AVERAGE			
2536.6 ± 0.7 ± 0.4	AVERY	90 CLEO	$e^+ e^- \rightarrow D^{*+} \kappa^0$
2535.9 ± 0.9 ± 2.0	ALBRECHT	89E ARG	$D_{c1}^{*} \rightarrow D^{*}(2010) K^{0}$
2535 ± 28	¹ ASRATYAN	88 HLBC	$\nu \stackrel{\text{31}}{N} \rightarrow D_{5} \gamma \gamma X$
1 Not seen in D* K			

$D_{s1}(2536)^{\pm} - D_{s}^{*}(2111)$ MASS DIFFERENCE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
424±28	ASRATYAN	88	HLBC	$D_S^* \gamma$	ı

$D_{s1}(2536)^{\pm}$ WIDTH

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
< 5.44	90	AVERY	90	CLEO	$e^+ e^- \rightarrow D^{*+} K^0 X$
<4.6	90	ALBRECHT	89E	ARG	$D_{51}^* \rightarrow D^*(2010) K^0$

$D_{s1}(2536)^+$ DECAY MODES

 $D_{\rm S1}(2536)^-$ modes are charge conjugates of the modes below

	Mode	Fraction (Γ_i/Γ)	
Γ_1	$D^*(2010)^+ K^0$	seen	
Γ_2	D^+K^0		
Γ_3	$D_s^* \gamma$	possibly seen	

D_{s1}(2536)⁺ BRANCHING RATIOS

$\Gamma(D^+K^0)/\Gamma(D^*($	$2010)^+ K^0$			Γ_2/Γ_1	
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
< 0.43	90	ALBRECHT 8	B9E ARG	$D_{s1}^* \rightarrow D^*(2010) K^0$	I
$\Gamma(D_s^*\gamma)/\Gamma_{\text{total}}$				Г ₃ /Г	
VALUE		DOCUMENT ID	TECN	COMMENT	
possibly seen		ASRATYAN 8	88 HLBC	νN → Ds γγ X	

D_{s1}(2536)[±] REFERENCES

AVERY	90	PR D41 774	- Besson	(CLEO Collab.
ALBRECHT	89E	PL B230 162	Glaser, Harder	(ARGUS Collab.
ASRATYAN	88	ZPHY C40 483	Fedotov	(ITEP, SERP

 $I(J^P) = ?(?^?)$

OMITTED FROM SUMMARY TABLE

	$D_{sJ}(2564)^{\pm}$ MASS	
VALUE (MeV) 2564.3±4.4	DOCUMENT ID TECN COMMENT ASRATYAN 88 HLBC D* K	
•	$D_{sJ}(2564)^\pm$ WIDTH	
<u>VALUE (MeV)</u> <2.5	ASRATYAN 88 HLBC D* K	

$D_{sJ}(2564)^+$ DECAY MODES

 $D_{s,J}({\it 2564})^-$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_j/Γ)
Γ ₁	D* K	seen

$D_{s,I}(2564)^+$ BRANCHING RATIOS

$\Gamma(D^*K)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
seen	ASRATYAN	88	HLBC	D* K	

$D_{s,I}(2564)^{\pm}$ REFERENCES

ASRATYAN 88 ZPHY C40 483 - Fedotov+ (ITEP, SERP)

BOTTOM MESONS

 $(B=\pm 1)$ $B^+=u\overline{b},\ B^0=d\overline{b},\ \overline{B}^0=\overline{d}\,b,\ B^-=\overline{u}\,b,$ similarly for B^* 's

HIGHLIGHTS OF B MESON PHYSICS

(by R.H. Schindler, SLAC)

The results obtained since our last edition are based largely on samples of B decays from ARGUS and CLEO taken at the $\Upsilon(4S)$, the $\Upsilon(5S)$, and in the nearby continuum, and represent an approximate doubling of data over that available in our last edition. The data samples reported amount to 0.2– $0.4~{\rm fb}^{-1}$. In 1990 the new CLEO-II detector started taking data at the CESR ring. CESR itself is approved for major upgrades, and thus we may anticipate significantly larger samples (1–10 fb⁻¹) over the next few years, resulting in marked improvements in all the areas discussed below.

Since our last edition, the discrepancy between ARGUS and CLEO on the open (D,D_s) and closed (ψ) charm content of B decays has largely been resolved, with both experiments obtaining for the average number of c-quarks per B decay the value 1.0 ± 0.1 (Ref. 1) under the same assumptions for D_s , Λ_c , and ψ inclusive branching ratios. This is about one standard deviation less than the predicted value of 1.15 c-quarks per B decay. While the so-called charm deficit has largely vanished, the small remaining discrepancy leaves open the possibilities: (a) that the assumed charmed branching ratios are too large, (b) that the number of B mesons in the $\Upsilon(4S)$ normalization is too high, or (c) both.

For the $\psi(3770)$, hadronic (e.g., $\psi(3770) \rightarrow J/\psi \pi \pi$) and electromagnetic transitions have been identified,² and some evidence exists for direct $\psi(3770)$ decays to light mesons.³ For the $\Upsilon(4S)$, CLEO previously set model-dependent limits on non- $B\overline{B}$ decays, and now, with more data, has observed such events.⁴ The evidence takes the form of $\Upsilon(4S)$ decays to J/ψ which are a) beyond the kinematic limit for decays via $B\overline{B}$ and b) beyond the rate expected from the continuum under the $\Upsilon(4S)$. While the measured branching fraction is small (about 0.2%), this is for a limited kinematic range $(x_{J/\psi} \ge 0.38)$ and for only one specific meson. The mechanism for this OZI forbidden process is unknown. It may be due to a complicated hadronic rescattering effect, or to the admixture of $b\bar{b}g$ and $b\bar{b}$ states at the $\Upsilon(4S)$, or perhaps even to the production of new four-quark states near the $B\overline{B}$ threshold. As in the case of the evidence from $\psi(3770)$ decays, the large partial width makes it unlikely to be ordinary bottomonium transitions, implying the total $\Upsilon(4S) \to \text{non-}B\overline{B}$ width may be substantial. Because of theoretical uncertainties in the mechanism, the total width is indeterminate until at least one absolute B meson branching fraction can be established.

If the observation of substantial non- $B\overline{B}$ decays of the $\Upsilon(4S)$ is confirmed, it will require rescaling (upward) of all B meson branching fractions, since they are not absolute measurements. New measurements of the B^0 and B^+ mass splitting, 0.4 ± 0.6 MeV from CLEO⁵ and 0.0 ± 1.6 MeV from ARGUS⁶, imply the production of B^0 and B^+ at the $\Upsilon(4S)$ is closer to equal than previously thought. However, large (18%) coulomb corrections are suggested by Atwood and Marciano⁷ to the neutral and charged pair-production rates, once again clouding the issue of the branching ratio scale.

As in the D meson system, the data for exclusive semileptonic decays of B mesons have improved substantially. These decays provide a sensitive measure of the C-K-M parameter V_{bc} . In the past year, B^0 and $B^+ \to \overline{D}^* \ell \nu$ decays as well as $B^+ \to \overline{D}^0 \ell \nu$ decays have been measured. The ratio of vector to pseudoscalar rates are found to be about 1.5 while the ratio of B^+ to B^0 vector rates (approximating the ratio of their total widths, or lifetimes) is close to unity with an error of about 20%. The D^* in these decays is found to be polarized, with the ratio of longitudinal to transverse polarization being about 0.6–0.9 when $p(\text{lepton}) \geq 1$ GeV, in good agreement with the prediction of models such as Korner-Schuler's. 9

In addition to exclusive semileptonic decays, CLEO and subsequently ARGUS reported last year the first observations of excess leptons in the region of the inclusive spectrum populated predominantly by $b \to u$ transitions. The observation of a nonvanishing C-K-M parameter V_{bu} is a necessary requirement for CP violation arising in the C-K-M matrix phase. Using models to correct for acceptance both CLEO and ARGUS obtain values of $|V_{bu}/V_{bc}| \approx 0.1$ (see FULTON 90 and ALBRECHT 90).

While semileptonic decays provided the first evidence for the V_{bu} transition, there is no evidence yet for the analogous weak-hadronic decays. Evidence from ARGUS for charmless B decays to $p\bar{p}\pi$ and $p\bar{p}\pi^+\pi^-$ was confirmed neither by CLEO nor by subsequent data from ARGUS. Our Tables this edition contain limits from searches for many other charmless B decays, all about one order of magnitude above the levels predicted by models.

Evidence for $B^0-\overline{B}^0$ mixing, first presented by ARGUS (ALBRECHT 87E), has been confirmed by CLEO (ARTUSO 89) and improved upon by subsequent ARGUS measurements. The large value of the mixing parameter $r_d\approx 0.2$ for the B^0 meson suggests the nearly complete mixing of the B^0_s meson. Experimentally, this conclusion is consistent with observations in high energy e^+e^- and $p\bar{p}$ experiments, but has not been directly confirmed.

 $B_s^0 - \overline{B}_s^0$ mixing would provide one avenue to measure the C-K-M matrix element V_{ts} directly. The alternate method is

to observe $b \to s$ transitions in one loop radiative or hadronic Penguin decays. Our Tables this edition provide extensive sets of limits on these decays. As in the case of $b \to u$ transitions in hadronic decays, the experiments are still about one order of magnitude above the levels needed to observe these decays.

References

- A. Golutvin, Heavy Quark Physics, AIP Conference Proceedings 196 (1989); and N. Katayama, Heavy Quark Physics, AIP Conference Proceedings 196 (1989).
- R. Schindler, Proceedings of the XXIV International Conference on High Energy Physics, Munich (August 1988), p. 484.
- Y. Zhu, PhD thesis CALTECH 68-1513 (1988), unpublished.
- 4. J. Alexander et al., Cornell Preprint CLNS -90/975 (1990).
- M. Danilov, XIV International Symposium on Lepton and Photon Interactions, Stanford, CA August 1989.
- W.Y. Chen, XIV International Symposium on Lepton and Photon Interactions, Stanford, CA August 1989.
- 7. D. Atwood and W.J. Marciano, "Radiative Corrections and Semileptonic B Decays", BNL preprint (1989).
- N. Katayama, Heavy Quark Physics, AIP Conference Proceedings 196 (1989); H. Albrecht et al., Phys. Lett. B232, 554 (1989).
- 9. J. Korner and G. Schuler, Z. Phys. C38, 511 (1988).

 B^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

Quantum numbers not measured. Values shown are quark-model predictions.

This section also includes measurements which do not identify the charge state of B.

B± MASS

The fit uses the \mathcal{B}^\pm and \mathcal{B}^0 mass and mass difference measurements. These experiments actually measure the difference between half of E_{CM} and the \mathcal{B} mass.

VALUE (MeV)	EVT5	DOCUMENT ID	TECN	COMMENT
5277.6 ± 1.4 OUR FIT				
5277.8 ± 1.6 OUR AVE	RAGE			
$5275.8 \pm 1.3 \pm 3.0$	32	ALBRECHT	87c ARG	$e^+ e^- \rightarrow \Upsilon(4S)$
$5278.2 \pm 1.8 \pm 3.0$	12	¹ ALBRECHT	87D ARG	$e^+ e^- \rightarrow \Upsilon(4S)$
$5278.6 \pm 0.8 \pm 2.0$		BEBEK	87 CLEO	$e^+ e^- \rightarrow \Upsilon(45)$

 $^{1}\,\mathrm{Found}$ using fully reconstructed decays with $J/\psi.$ ALBRECHT 870 assume $m(\Upsilon(4S))$ = 10577 MeV.

B MEAN LIFE

Unless stated otherwise, the measurements of the B mean life do not distinguish the charge state (B^{\pm} or B^{0}) and the lifetime is an average over bottom particles produced, weighted by their semileptonic branching ratios.

VALUE (10 ⁻¹³ s)	CL%_EVTS	DOCUMENT ID		TECN	COMMENT	
11.8±1.1 OUR AVE	ERAGE					
$12.0 + 5.2 + 1.6 \\ -3.6 - 1.4$	15	² WAGNER	90	MRK2	B^0 , $E_{cm}^{ee} = 29 \text{ GeV}$	ļ
$13.5 \pm 1.0 \pm 2.4$		BRAUNSCH	89B	TASS	Ecm = 35 GeV	
$9.8 \pm 1.2 \pm 1.3$		ONG	89	MRK2	Ecm = 29 GeV	1
$11.7^{+2.7}_{-2.2}^{+1.7}_{-1.6}$		KLEM	88	DLCO	E ^{ee} cm = 29 GeV	
$12.9 \pm 2.0 \pm 2.6$		³ ASH	87	MAC	Eee = 29 GeV	
$10.2^{+4.2}_{-3.9}$	301	⁴ BROM	87	HRS	Eee = 29 GeV	
$14.6 \pm 2.2 \pm 3.4$		⁵ w∪	87	RVUE	JADE result	
$18 \begin{array}{c} +5 \\ -4 \end{array} \pm 4$	25	BARTEL	86B	JADE	Eee = 35 GeV	

 B^{\pm}

• •	•	We do not	use the	following	data for	averages,	fits,	limits, etc.	٠	٠	٠
-----	---	-----------	---------	-----------	----------	-----------	-------	--------------	---	---	---

$8.2^{+5.7}_{-3.7}\pm 2.7$			⁶ AVERILL	89 HRS	Eee = 29 GeV
		2	⁷ ALBANESE	85 HYBR	350 GeV π ρ emulsion
18.3 + 3.8 + 3.7 - 3.4			ALTHOFF	84H TASS	$\mathrm{E}_{\mathrm{CM}}^{ee} = 3046.8 \; \mathrm{GeV}$
$11.6^{+3.7}_{-3.4}\pm 2.3$		46	KLEM	84 DLCO	Repl. by KLEM 88
$18 \pm 6 \pm 4$			FERNANDEZ	838 MAC	E <i>ee</i> = 29 GeV
$12.0 + 4.5 \pm 3.0$			⁸ LOCKYER	83 MRK2	Repl. by ONG 89
<14.	95		BARTEL		e ⁺ e ⁻ , average

 $^{^2}$ WAGNER 90 tagged B^0 mesons by their decays into D^{*-} e^+ ν and D^{*-} μ^+ ν where the D^{*-} is tagged by its decay into $\pi^ \overline{D}^0$.

B+ DECAY MODES

Scale factor/

CL=90%

 $B^{\,\circ\,}$ modes are charge conjugates of the modes below.

	Mode		Fraction $(\Gamma_{\hat{I}}/\Gamma$		ale factor/ dence level
Γ1	B ⁺ →	\overline{D}^0 π^+	(2.9 ± 1.4) × 10 ⁻³	S=1.5
Γ2	B ⁺ →	$\overline{D}^0 \rho^+$	(2.1 ± 1.2		
Γ3	$B^+ \rightarrow$	$D^- \pi^+ \pi^+$	(2.5 + 4.8) × 10 ⁻³	
Гд	$B^+ \rightarrow$	$\overline{D}^*(2010)^0 \pi^+$) × 10 ⁻³	
Γ ₅		$D^*(2010)^-\pi^+\pi^+$	(2.5 + 1.5		
Γ ₆		$D^*(2010)^-\pi^+\pi^+\pi^0$	(4.3 ± 2.9		
Γ ₇		$J/\psi(1S)K^{+}$	(8.0 ± 2.8		
., Γ8	$B^+ \rightarrow$	$J/\psi(1S)K^{+}\pi^{+}\pi^{-}$	(1.1 ± 0.7		
Га		$\psi(2S)K^+$	(2.2 ± 1.7		
Γ10	B^+ \rightarrow		< 2.3	× 10 · 3	CL=90%
Γ11	B ⁺ →	$\pi^{+}\pi^{+}\pi^{-}$	< 1.7	× 10 ⁴	CL=90%
Γ ₁₂	$B^+ \rightarrow$	$\rho^{0} \pi^{+}$	< 1.5	× 10 ⁻⁴	CL=90%
Γ ₁₃	$B^+ \rightarrow$	$\pi^+ f_0(975)$	< 1.2	× 10 ⁴	CL=90%
Γ_{14}	$B^+ \rightarrow$	$\pi^+ f_2(1270)$	< 2.1	× 10 · 4	CL=90%
Γ_{15}	B ⁺ →	$\rho^0 a_1(1260)^+$	< 5.4	× 10 ⁴	CL=90%
Γ_{16}	B ⁺ →	$\rho^0 a_2(1320)^+$	< 6.3	× 10 · 4	CL=90%
Γ_{17}	$B^+ \rightarrow$	$\kappa^0\pi^+$	< 9	\times 10 $^{-5}$	CL=90%
Γ_{18}		$K^*(892)^0\pi^+$	< 1.3	× 10 ⁴	CL=90%
Γ_{19}	$B^+ \rightarrow$	$K^+\pi^-\pi^+$ (no charm)	< 1.7	$\times 10^{-4}$	CL=90%
Γ_{20}	B^+ \rightarrow		< 7	× 10 ⁻⁵	CL=90%
Γ_{21}	$B^+ \rightarrow$	K + φ	< 8	× 10 ⁻⁵	CL=90%
Γ_{22}		$K + f_0(975)$	< 7	× 10 ⁻⁵	CL=90%
Γ_{23}		$K^*(892)^+ \gamma$	< 5.5	× 10 ⁻⁴	CL=90%
Γ_{24}		$K_1(1270)^+ \gamma$	< 6.6	× 10 ⁻³	CL=90%
Γ_{25}		$K_1(1400)^+\gamma$	< 2.0	× 10 · 3	CL=90%
Γ_{26}		$K_2^*(1430)^+ \gamma$	< 1.3	× 10 - 3	CL=90%
Γ_{27}	$B^+ \rightarrow$	$K^*(1680)^+ \gamma$	< 1.7	× 10 ⁻³	CL=90%
Γ_{28}		$K_3^*(1780)^+ \gamma$	< 5	× 10 ³	CL=90%
Γ_{29}	$B^+ \rightarrow$	$K_4^*(2045)^+ \gamma$	< 9.0	\times 10 ⁻³	CL=90%
Γ_{30}	Β' →	$p\overline{p}\pi^+$	< 1.4	× 10 ⁻⁴	CL=90%
Γ_{31}	$B^+ \rightarrow$	$p\overline{p}\pi^+\pi^+\pi^-$	< 4.7	× 10 4	CL=90%
Γ ₃₂	Β* →	$\rho \overline{\Lambda}$	< 5	× 10 - 5	CL=90%
Γ33	B ⁺ →	$p \overline{\Lambda} \pi^+ \pi^-$	< 1.8	× 10 ⁻⁴	CL=90%
Γ ₃₄	B^+ \rightarrow	$\overline{\Delta}^0 \rho$	< 3.3	× 10 ⁴	CL=90%
Γ ₃₅	$B^+ \rightarrow$	$\Delta^{++} \overline{p}$	< 1.3	× 10 ⁻⁴	CL=90%

Flavor-Changing neutral current (FC) modes × 10⁻⁴ Γ_{36} $B^+ \rightarrow K^+ \mu^+ \mu^-$ FC < 1.5 CL=90% × 10⁻⁻⁵ Γ_{37} $B^+ \rightarrow K^+ e^+ e^-$

< 5

FC

```
For the following modes, the charge of B was not determined.
\Gamma_{38} B \rightarrow \ell^+ anything
\Gamma_{39} B \rightarrow \ell \nu hadrons
                                                                          (23.1 \pm 1.1 ) %
\Gamma_{40}
            B \rightarrow e^{\pm} \nu_e hadrons
                                                                  [a] (12.1 \pm 0.6)\%
            B \rightarrow \mu^{\pm} \bar{\nu_{\mu}} hadrons
\Gamma_{41}
                                                                  [a] (11.0 \pm 0.9)%
\Gamma_{42}
            B \rightarrow \ell \nu noncharm-hadrons
               B \rightarrow K^+ \ell^+ anything
\Gamma_{43}
                B \to K^- \ell^+ anything
\Gamma_{44}
                B \to K^0/\overline{K}^0 \ell^+ anything
\Gamma_{45}
       B \rightarrow D^{\pm} anything
\Gamma_{46}
                                                                  [a] (17 ± 6 )%
\Gamma_{47} B \rightarrow D^0/\overline{D}^0 anything
                                                                          (39
                                                                                 ± 6 )%
\Gamma_{48} B \rightarrow D^*(2010)^{\pm} anything
                                                                                  + 8 )%
                                                                       (22
\begin{array}{ccc} \Gamma_{49} & B \longrightarrow D_{5}^{\pm} \text{ anything} \\ \Gamma_{50} & B \longrightarrow \overline{D}^{0} \pi^{+}, D^{-} \pi^{+}, \\ & \overline{D}^{*} (2010)^{0} \pi^{+}, \text{ or} \end{array}
                                                                  [a] (12.5 \pm 3.5) %
              D^*(2010)^-\pi^+
\Gamma_{51} B \rightarrow Charmed-baryon anything
                                                                       < 11.2
                                                                                                               CL=90%
\Gamma_{52} B \rightarrow J/\psi(1S) anything
                                                                         ( 1.12 ± 0.18) %
                                                                         ( 4.6 \pm 2.0 ) \times\,10^{-3}
\Gamma_{53} B \rightarrow \psi(2S) anything
\Gamma_{54} B \rightarrow K^{\pm} anything
                                                                         (85 \pm 11)\%
         B \rightarrow K^+ anything B \rightarrow K^- anything
\Gamma_{56}
\Gamma_{57} B \rightarrow K^0/\overline{K}^0 anything
                                                                         (63 ± 8 )%
\Gamma_{58} B \rightarrow \phi anything
                                                                         (2.3 \pm 0.8)\%
\Gamma_{59} B \rightarrow K^*(892)\gamma
                                                                       < 2.4
                                                                                              \times 10^{-4}
                                                                                                               CL=90%
\Gamma_{60} B \rightarrow K_1(1400)\gamma
                                                                                               \times\,10^{-4}
                                                                       < 4.1
                                                                                                               CL=90%
\Gamma_{61} \quad B \rightarrow K_2^*(1430) \gamma
                                                                       < 8.3
                                                                                                               CL=90%
                                                                                               \times 10^{-3}
\Gamma_{62} B \rightarrow K_3^*(1780) \gamma
                                                                       < 3.0
                                                                                                               CI = 90\%
\Gamma_{63} B \rightarrow p anything
                                                                         (8.2 \pm 1.4)\%
\Gamma_{64} B \rightarrow \rho (direct) anything
                                                                         (5.5 \pm 1.6)\%
\Gamma_{65} B \rightarrow \Lambda anything
                                                                          (4.2 \pm 0.8)\%
\Gamma_{66} B \rightarrow \Xi^- \text{ anything}
                                                                         ( 2.8 \pm 1.4 ) \times 10^{-3}
\Gamma_{67} B \rightarrow baryons anything
                                                                         (7.6 \pm 1.4)\%
\Gamma_{68} B \rightarrow p \overline{p} anything
                                                                         (2.50 \pm 0.28)\%
\Gamma_{69} B \rightarrow \Lambda \overline{p} anything
                                                                         (2.3 \pm 0.5)\%
                                                                                               \times 10^{-3}
\Gamma_{70} B \rightarrow \Lambda \overline{\Lambda} anything
                                                                       < 8.8
                                                                                                               CL=90%
                          Flavor-Changing neutral current (FC) modes
                                                                                               \times 10<sup>-3</sup>
\Gamma_{71} B \rightarrow e^+ e^- any +
                                                         FC
```

$$\Gamma_{71} \quad B \rightarrow e^+ \, e^- \, \text{any} \, + \qquad FC \qquad < 2.4 \qquad \times 10^{-3} \quad \text{CL=90\%}$$

$$\mu^+ \, \mu^- \, \text{any}$$

B+ BRANCHING RATIOS

Г	$(\overline{D}^0\pi^+)/\Gamma_{total}$					Γ_1/Γ	
	ALUE	EVTS	DOCUMENT ID		COMMENT		
q	.0029 ± 0.0014 OUR AVER						_
0	$.0019 \pm 0.0010 \pm 0.0006$	7	9 ALBRECHT	88k ARG	e ⁻ e - →	Y(45)	I
0	$.0047 {}^{+ 0.0016}_{- 0.0013} - 0.0008$	14	¹⁰ вевек	87 CLEO	e- e- →	Y(4 <i>S</i>)	
	9 ALBRECHT 88k assum 10 BEBEK 87 assume the $^{\circ}$ 0.4)% and B($D^0 \rightarrow K$	es B ⁰ B̄ ⁰ Υ(4S) de - π + π +	$(:B^+B^- \text{ ratio is 4})$ cays 43% to B^0B^0 $(\pi^-) = (9.1 \pm 0.8)$	$(5:55.)$ $B(D^0 \rightarrow B)$ $0:500$	$(-\pi^+) = (4.7)$ re used.	2 ± 0.4 ±	1

$\Gamma(\overline{D}^0 \rho^+)/\Gamma_{total}$					Γ_2/Γ
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
$0.021 \pm 0.008 \pm 0.009$	10	11 ALBRECHT	88k ARG	e^+ $e^ \rightarrow$	Y (45)
11 ALBRECHT 88k as	ssumes <i>B</i> ($\overline{B}^0:B^+B^-$ ratio is	45:55.		

 12 BEBEK 87 assume the \Upsilon(4S) decays 43% to $B^0\overline{B}^0$. B(D^- \rightarrow K⁺ $\pi^ \tau^-$) = (9.1 \pm 1.3 \pm 0.4)% is assumed. $\Gamma(\overline{D}^*(2010)^0\pi^+)/\Gamma_{total}$ Γ_4/Γ

 $^{^3}$ We have added an overall scale error of 15% linearly to the systematic error of ± 0.7 to obtain ± 2.6 systematic error.

⁴Statistical and systematic errors were combined by BROM 87.

⁵ The errors quoted here came from a private communication from the Jade collaboration. This result will be submitted to Zeit. Phys. in 1990, along with a different technique which yields $13.2^{+2.8}_{-2.5}$.

 $^{^6}$ This is an estimate of the B^0 mean lifetime assuming that $B^0 \to D^{*+} + X$ always. 7 The mean flight time for the one B^0 was 5×10^{-13} s while the one B^- was 0.8×10^{-13} s. Possible evidence for difference in B^0 and B^\pm lifetime.

⁸ The lifetime is an average over bottom particles produced.

[[]a] Value is for the sum of the charge states indicated.

VALUE DOCUMENT ID TECN COMMENT 13 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

¹³ This is a derived branching ratio, using the inclusive pion spectrum and other two-body ${\cal B}$ decays. BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to ${\cal B}^{\dot 0}\, \overline{\cal B}^0$.

$(D^*(2010)^-\pi^+\pi^+)/\Gamma_{\text{total}}$		$\Gamma_{16}/$
ALUE EVTS DOCUMENT ID TECN COMMENT	VALUE CL% DOCUMENT ID TECN COMMENT	
.0025 ^{+0.0015} _{-0.0013} OUR AVERAGE	<6.3 \times 10 ⁻⁴ 90 30 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • •)
.005 $\pm 0.002 \pm 0.003$ 7 14 ALBRECHT 87C ARG $e^+e^- \rightarrow \Upsilon(4S)$	$<2.3 \times 10^{-3}$ 90 31 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$	1
$0.0020^{+0.0014}_{-0.0013} + 0.0008$ 3 ¹⁵ BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$	30 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	
14 ALBRECHT 87c use PDG 86 branching ratios for D and D*(2010) and assume	31 BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	
$B(\Upsilon(4S) \to B^+B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0\overline{B}^0) = 45\%$. ¹⁵ BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. $B(D^*(2010)^+ \to \pi^+D^0) =$	$\Gamma(K^0\pi^+)/\Gamma_{ ext{total}}$	Γ ₁₇ /
(60 + $\frac{1}{5}$)%, B(D ⁰ $\rightarrow K^-\pi^+$) = (4.2 ± 0.4 ± 0.4)%, and B(D ⁰ $\rightarrow K^-\pi^+\pi^+\pi^-$)	VALUE CL% DOCUMENT ID TECN COMMENT	' 17/
$= (9.1 \pm 0.8 \pm 0.8)\%$ were used.	$<9 imes 10^{-5}$ 90 32 AVERY 89B CLEO $e^+e^- o \Upsilon(45)$,
$(D^*(2010)^-\pi^+\pi^+\pi^0)/\Gamma_{\text{total}}$ Γ_6/Γ	• • We do not use the following data for averages, fits, limits, etc. • • •	
ALUE EVTS DOCUMENT ID TECN COMMENT	$<6.8 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$,
.043±0.013±0.026 24 16 ALBRECHT 87¢ ARG e^+e^- → T(45)	³² Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	
¹⁶ ALBRECHT 87c use PDG 86 branching ratios for D and $D^*(2010)$ and assume		Γ_{18}
$B(\Upsilon(4S) \to B^+ B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0 \overline{B}^0) = 45\%$.	VALUE CL% DOCUMENT ID TECN COMMENT $< 1.3 \times 10^{-4}$ 90 33 AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(45)$	
$(J/\psi(1S)K^+)/\Gamma_{\text{total}}$ Γ_7/Γ	• • • We do not use the following data for averages, fits, limits, etc. • •	,
ALUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT .0±2.8 OUR AVERAGE	$<2.6 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$)
± 4 3 17 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(4S)$	³³ Assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$.	
$\pm 6 \pm 2$ 3 18 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	$\Gamma(K^+\pi^-\pi^+ \text{ (no charm)})/\Gamma_{ ext{total}}$	r/
± 5 3 19 ALAM 86 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 17 ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45.	VALUE CL% DOCUMENT ID TECN COMMENT	Γ ₁₉ /
18 BEBEK 87 assume the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}^0$.	$<1.7 \times 10^{-4}$ 90 34 AVERY 898 CLEO $e^{+}e^{-} \rightarrow \Upsilon(45)$)
¹⁹ ALAM 86 assumes B^{\pm}/B^0 ratio is 60/40.	34 Assumes the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}{}^0$.	
$(J/\psi(1S)K^+\pi^+\pi^-)/\Gamma_{total}$ Γ_{8}/Γ	$\Gamma(K^+ ho^0)/\Gamma_{ m total}$	Γ ₂₀ /
$(J/\psi(1S)K^+\pi^+\pi^-)/\Gamma_{ ext{total}}$ Γ_8/Γ	VALUE CL% DOCUMENT ID TECN COMMENT	- 20/
.0011 \pm 0.0007 6 20 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(45)$	$<7 \times 10^{-5}$ 90 35 AVERY 89B CLEO $e^{+}e^{-} \rightarrow \Upsilon(45)$	1
ALBRECHT 87p assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. Analysis explicitly removes	• • • We do not use the following data for averages, fits, limits, etc. • • • $<2.6\times10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$	
$B^+ \rightarrow \psi(2S) K^+$.	$<2.6 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 35 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	
$(\psi(2S)K^+)/\Gamma_{\text{total}}$ Γ_9/Γ		
ALUE EVTS DOCUMENT ID TECN COMMENT		$\Gamma_{21}/$
9022±0.0017 3 21 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(45)$ 21 ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45.	VALUE CL% DOCUMENT ID TECN COMMENT $< 8 \times 10^{-5}$ 90 36 AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$	
	• • • We do not use the following data for averages, fits, limits, etc. • •	
$(\pi^+\pi^0)/\Gamma_{ m total}$ $\Gamma_{ m 10}/\Gamma$	$<2.1 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$,
ALUE <u>CL% DOCUMENT ID TECN COMMENT</u> (0.0023 90 22 BEBEK 87 CLEO e ⁺ e [−] → ↑(45)	36 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	
²² BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$.	$\Gamma(K^+ f_0(975))/\Gamma_{\text{total}}$	Γ ₂₂ /
(+ + -) /5	VALUE CL% DOCUMENT ID TECN COMMENT	. 22/
$(\pi^+\pi^+\pi^-)/\Gamma_{ ext{total}}$ $\Gamma_{11}/\Gamma_{ ext{NUE}}$ CL% DOCUMENT ID TECN COMMENT	$<7 \times 10^{-5}$ 90 37 AVERY 898 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	
²³ Assumes the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$.	$\Gamma(K^*(892)^+\gamma)/\Gamma_{\text{total}}$	Γ ₂₃ /
$(ho^0\pi^+)/\Gamma_{ m total}$ Γ_{12}/Γ	VALUE CL% DOCUMENT ID TECN COMMENT	
$(ho^{\sigma}\pi^{+})/!$ total Γ_{12}/Γ	<5.5 \times 10 ⁻⁴ 90 ³⁸ ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • •	
$24 \text{ BORTOLETTO89 CLEO } e^+e^- \rightarrow \Upsilon(4S)$	$<5.5 \times 10^{-4}$ 90 39 AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(45)$	
• • We do not use the following data for averages, fits, limits, etc. • • •	$<1.8 \times 10^{-3}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$	
$(2 \times 10^{-4} 90)$ 25 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $(6 \times 10^{-4} 90)$ 0 GILES 84 CLEO Repl. by BEBEK 87	³⁸ Assumes the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}^0$.	
14 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	³⁹ Assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$.	
²⁵ BEBEK 87 assume the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$.	$\Gamma(K_1(1270)^+\gamma)/\Gamma_{total}$	Γ ₂₄ /Ι
(+ c (ope)) /=	VALUE CL% DOCUMENT ID TECN COMMENT	
(π ' f ₀ (9/5))/1 total Γ ₁₃ /Γ <u>LLUE CL% DOCUMENT ID TECN COMMENT</u>	<0.0066 90 40 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$	
$1.2 \times 10^{-4} \qquad 90 \qquad ^{26} \stackrel{\text{BORTOLETTO89}}{\text{EDRTOLETTO89}} \stackrel{\text{CLEO}}{\text{CLEO}} \stackrel{e^+ e^- \rightarrow \Upsilon(45)}{\text{CLEO}}$	40 Assumes the $\Upsilon(45)$ decays 45% to $B^0\overline{B}^0$.	
⁶ Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	$\Gamma(K_1(1400)^+\gamma)/\Gamma_{total}$	Γ ₂₅ /Ι
$(\pi^+ f_2(1270))/\Gamma_{\text{total}}$ Γ_{14}/Γ	VALUE CL% DOCUMENT ID TECN COMMENT	
π ⁺ t ₂ (1270))/Γ _{total} Γ ₁₄ /Γ	<0.0020 90 41 ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$	
2.1×10^{-4} 90 27 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	⁴¹ Assumes the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}^0$.	
Assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$.	$\Gamma(K_2^*(1430)^+\gamma)/\Gamma_{\text{total}}$	Γ ₂₆ /Ι
$(ho^0 a_1(1260)^+)/\Gamma_{total}$ Γ_{15}/Γ	VALUE CL% DOCUMENT ID TECN COMMENT	
LUE CL% DOCUMENT ID TECN COMMENT	<0.0013 90 ⁴² ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ 42 Assumes the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}^0$.	
5.4 \times 10 ⁻⁴ 90 ²⁸ BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(45)$	· · · ·	
• • We do not use the following data for averages, fits, limits, etc. • • • 3.2×10^{-3} 90 29 BEBEK 87 CLEO e ⁺ e ⁻ $\rightarrow \Upsilon(45)$		Γ ₂₇ /[
0. C220 C C = 1(45)	VALUE CL% DOCUMENT ID TECN COMMENT <0.0017 90 43 ALBRECHT 89G ARG e^+e^- → T(45)	
8 Assumes the $\Upsilon(4S)$ decays 43% to B^0 \overline{B}^0 . 9 BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to B^0 \overline{B}^0 .	43 Assumes the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}^0$.	
or sessing the first occays to a to D' D .	. assumes the T(45) decays 45/6 to B-B.	
(, , ,		
() / / / / / / / / / / / / / / / / / /	$\Gamma(K_3^*(1780)^+\gamma)/\Gamma_{ ext{total}}$ $ ext{VALUE}$ $ ext{CL\%}$ DOCUMENT ID TECN COMMENT	Γ ₂₈ /Ι

 $^{44}\,\text{Assumes the }\Upsilon(4S)$ decays 45% to $\textit{B}^{0}\,\overline{\textit{B}}^{0}\,.$

NELSON

 50 Using data above $\rho(e)=2.4$ GeV, WACHS 89 determine $\sigma(B\to e\nu~{\rm up})/\sigma(B\to e\nu~{\rm charm})<0.065$ at 90% CL. 51 Ratio $\sigma(b\to e\nu~{\rm up})/\sigma(b\to e\nu~{\rm charm})<0.055$ at CL =90%.

 $0.116 \pm 0.021 \pm 0.017$

83 MRK2 $E_{cm}^{ee} = 29 \text{ GeV}$

$\Gamma(K_4^*(2045)^+\gamma)$	/ Ttotal DOCUMENT	ID TECN	COMMENT	Γ ₂₉ /Γ	$\Gamma(\mu^{\pm} u_{\mu} ext{ hadrons})/\Gamma_{ ext{total}}$ The average of the for	ur high-energy results	is 0.117 ± 0	0.013.	Γ_{41}/Γ These experiment
<0.0090	90 ⁴⁴ ALBRECHT			Υ(45)	produce other bottom p				
F(-= +\/F				- /-	<u>VALUE</u> 0.110±0.009 OUR AVERAGE	<u>DOCUMENT ID</u>	<u>TECN</u>	COMME	ENT
$\Gamma(p\bar{p}\pi^+)/\Gamma_{\text{total}}$				Γ ₃₀ /Γ	0.108±0.006±0.01	CHEN	84 CLEO	Direct	μ at Υ(45)
VALUE	CL% DOCUMEN		<u>COMMEN</u>		$0.112 \pm 0.009 \pm 0.01$	LEVMAN			μ at Υ(45)
	c 10 ⁴ 90 BEBEK	89 CLE		→ Y (4S)	• • We do not use the folk				
	se the following data for avera	_			$0.118 \pm 0.012 \pm 0.010$	ONG	88 MRK2	Eee =	29 GeV
$(5.2 \pm 1.4 \pm 1.9) \times$	10 ⁻⁴ ALBRECH	HT 88F ARG	e+ e~ -	→ Y(4S)	$0.117 \pm 0.016 \pm 0.015$	BARTEL	87 JADE	CIII	34.6 GeV
$\Gamma(\rho \overline{\rho} \pi^+ \pi^+ \pi^-)$	/Fratal			Γ_{31}/Γ	$0.114 \pm 0.018 \pm 0.025$	BARTEL	851 JADE		by BARTEL 87
VALUE	CL% DOCUMENT	ID TECN	COMMENT	. 31/.	$0.117 \pm 0.028 \pm 0.010$	ALTHOFF	846 TASS		34.5 GeV
<4.7 × 10 ⁻⁴	90 ALBRECHT		$e^+e^- \rightarrow$	Υ(45)	$0.105 \pm 0.015 \pm 0.013$	ADEVA	838 MRKJ		33-38.5 GeV
		30. 7		.(.5)	$0.155 + 0.054 \\ -0.029$	FERNANDEZ			
$\Gamma(\rho \overline{\Lambda})/\Gamma_{\text{total}}$				୮ ₃₂ /୮	0.135 - 0.029	FERNANDEZ	83D MAC	Ečm≃	29 GeV
VALUE	CL% DOCUMENT I		COMMENT		$\Gamma(\ell\nu \text{ noncharm-hadrons})$	$/\Gamma(\ell\nu)$ hadrons)			Γ ₄₂ /Γ ₃₉
<5 × 10 ⁻⁵	90 ⁴⁵ AVERY	89B CLEO		Y (45)	ℓ denotes e or μ but not		iments measi	ire this r	
	se the following data for avera	= .	etc. • • •	_	momentum intervals.				acio in vary minece
$< 8.5 \times 10^{-5}$	90 ALBRECHT	88F ARG	$e^+ e^- \rightarrow$	 (4 <i>S</i>)			MENT ID		COMMENT
45 Assumes the T(45) decays 43% to $B^0 \overline{B}^0$.			ı	• • We do not use the following the fol			etc. •	• •
-(- + -\/-						41 ⁵² ALBF	RECHT 90	ARG	e+ e−
$\Gamma(p\overline{\Lambda}\pi^+\pi^-)/\Gamma_{tc}$				Г ₃₃ /Г		76 ⁵³ FULT	ON 90	CLEO	Υ(45) • e ⁺ e ⁻ →
VALUE	CL%DOCUMENT I		COMMENT			76 1061	ON 90	CLEO	Ϋ́(4S)
$<1.8 \times 10^{-4}$	90 ALBRECHT	88F ARG	$e^+ e^- \rightarrow$	T(45)	< 0.04 90) ⁵⁴ BEHI	RENDS 87	CLEO	e+ e - →
$\Gamma(\overline{\Delta}^0 p)/\Gamma_{\text{total}}$				F /F	<0.04 90	CHE!	u 04	CLEO	Υ(45)
(A P)/ total	CL% DOCUMENT I	ID TECN	COMMENT	Γ_{34}/Γ	<0.04 90	Chei	v 84	CLEO	Direct e at $\Upsilon(4S)$
<3.3 × 10 ⁻⁴		TTO89 CLEO		Υ/45)	< 0.055 90) KLOF	PFEN 83	в CUSB	Direct e at
		11009 CELO	e e →	1(43)					T(45)
Assumes the T	4S) decays 43% to $B^0 \overline{B}{}^0$.				52 ALBRECHT 90 observes	41 ± 10 excess <i>e</i> an	d μ (lepton)	events	in the momentum
$\Gamma(\Delta^{++}\overline{p})/\Gamma_{\text{total}}$				Γ ₃₅ /Γ	interval $p = 2.3-2.6$ GeV correspond to a model-dep	signaling the presence	of V_{bar}/V_{ca}	υ tran: ∩ 10	sition. The events $0 + 0.01$
VALUE	CL% DOCUMENT	D TECN	COMMENT	. 35/ .	53 FILLTON 90 observe 76 +	20 excess e and u (le	enton) events	in the n	nomentum interva
<1.3 × 10 ⁻⁴		TO89 CLEO		T(45)	53 FULTON 90 observe 76 \pm $p = 2.4-2.6$ GeV signaling	the presence of the b	→ u transitio	on. The	average branching
	45) decays 43% to $B^0 \overline{B}^0$.	.007 0220		.(,5)	ratio, $(1.8 \pm 0.4 \pm 0.3)$	< 10 ⁻⁴ , corresponds	to a model-d	ependen	nt measurement of
				. .	approximately $ V_{bu}/V_{bc} $ 54 The quoted possible limits				
$\Gamma(K^+\mu^+\mu^-)/\Gamma_{\rm t}$	otal	and the brings		Γ ₃₆ /Γ	model or momentum rang	e is chosen. We selec	t the most co	onservati	ive limit they have
Test for $\Delta B =$	otaí = 1 weak neutral current. All	owed by higher-	order electro		model or momentum rang calculated. This correspon	e is chosen. We selected to a limit on $ V_{h_i} $	t the most co $ / V_{hc} <$	onservati 0.20. V	ive limit they have Vhile the endpoint
Test for $\Delta B =$ tions.	= 1 weak neutral current. All	, -	order electro		model or momentum rang calculated. This correspon technique employed is mor	e is chosen. We selected to a limit on $ V_{bi} $ in a robust than their properties.	t the most co $_{\mathcal{U}} / V_{\mathcal{DC}} <$ evious results	onservati 0.20. V	ive limit they have Vhile the endpoint
Test for $\Delta B = tions$. VALUE $< 1.5 \times 10^{-4}$	= 1 weak neutral current. All <u>CL%</u> <u>DOCUMENT II</u> 90 48 AVERY	0 <u>TECN</u> 898 CLEO	COMMENT e ⁺ e ⁻ →	oweak interac-	model or momentum rang calculated. This correspon technique employed is mor do not provide a numerica	e is chosen. We selected to a limit on $ V_{bi} $ e robust than their problem in the	t the most co $_{\mathcal{U}} / V_{\mathcal{DC}} <$ evious results	onservati 0.20. V	ive limit they have While the endpoint N 84, these results
tions. VALUE $<1.5 \times 10^{-4}$	= 1 weak neutral current. All	0 <u>TECN</u> 898 CLEO	COMMENT e ⁺ e ⁻ →	oweak interac-	model or momentum rang calculated. This correspon technique employed is mor do not provide a numerica $\Gamma\left(K^+\ell^+\text{ anything}\right)/\Gamma\left(\ell^+\right)$	e is chosen. We selected to a limit on $ V_{bi} $ be robust than their problem of improvement in the anything)	t the most couply $ / V_{bc} < v_{bc} < v_{bc} $ evious results limit.	onservati 0.20. V	ive limit they have Vhile the endpoint
Test for ΔB = tions. VALUE < 1.5 × 10 ⁻⁴	= 1 weak neutral current. All <u>CL%</u> <u>DOCUMENT II</u> 90 48 AVERY	0 <u>TECN</u> 898 CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \rightarrow \\ \text{etc.} \bullet \bullet \bullet \end{array}$	$\Upsilon(45)$	model or momentum rang calculated. This correspon technique employed is mor do not provide a numerica $\Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ WALUE})$	e is chosen. We selected to a limit on $ V_{bi} $ e robust than their problem of improvement in the anything) **DOCUMENT ID**	t the most couply $ V_{bc} < v_{bc}$ the most couply $ V_{bc} < v_{bc}$ evious results limit.	onservati 0.20. V in CHE	ive limit they have While the endpoint N 84, these results Γ_{43}/Γ_{38}
Test for $\Delta B = \frac{VALUE}{1000}$ $< 1.5 \times 10^{-4}$ • • • We do not us $< 3.2 \times 10^{-4}$	= 1 weak neutral current. Alk CL% DOCUMENT II 90 48 AVERY se the following data for avera 90 AVERY	898 CLEO ges, fits, limits,	$\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \rightarrow \\ \text{etc.} \bullet \bullet \bullet \end{array}$	$\Upsilon(45)$	model or momentum rang calculated. This correspon technique employed is mor do not provide a numerica $\Gamma\left(K^+\ell^+\text{ anything}\right)/\Gamma\left(\ell^+\right)$	e is chosen. We selecteds to a limit on $ V_{bl} $ erobust than their problems of improvement in the anything) DOCUMENT ID wing data for average	t the most couply $ V_{bc} < v_{bc}$ the most couply $ V_{bc} < v_{bc}$ evious results limit.	onservati 0.20. V in CHE	ive limit they have While the endpoint N 84, these results Γ_{43}/Γ_{38}
Test for ΔB = tions. VALUE <1.5 × 10 ⁻⁴ • • • We do not us <3.2 × 10 ⁻⁴ 48 Assumes the Υ (-	= 1 weak neutral current. All	898 CLEO ges, fits, limits,	$\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \rightarrow \\ \text{etc.} \bullet \bullet \bullet \end{array}$	$\Upsilon(45)$ $\Upsilon(45)$	model or momentum rang calculated. This correspon technique employed is mor do not provide a numerica $\Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ WALUE})$	e is chosen. We selected to a limit on $ V_{bi} $ e robust than their problem of improvement in the anything) **DOCUMENT ID**	t the most couply $ V_{bc} < v_{bc}$ the most couply $ V_{bc} < v_{bc}$ evious results limit.	O.20. V in CHE	ive limit they have While the endpoint N 84, these results \[\Gamma_{43} / \Gamma_{38} \] \[\Chi_{0} \]
Test for $\Delta B = \frac{VALUE}{1.5 \times 10^{-4}}$ • • • • We do not us $< 3.2 \times 10^{-4}$ 48 Assumes the $\Upsilon(\cdot)$	= 1 weak neutral current. All	898 CLEO liges, fits, limits, 87 CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+ \ e^- \ \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+ \ e^- \ \rightarrow \end{array}$	T(45) Γ Γ_{37}/Γ	model or momentum rang calculated. This correspon technique employed is mor do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{2}\right)$ • • We do not use the folion of the second of t	e is chosen. We selected to a limit on V _{DI} e robust than their primprovement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon	t the most co $_{j}$ $ / V_{bc} $ < evious results limit. TECN s, fits. limits, 878 CLEO correlations.	COMME etc. • e+ e-	ive limit they have While the endpoint N 84, these results
Test for $\Delta B = \frac{1}{100}$ tions. WALUE <1.5 × 10 ⁻⁴ • • • We do not us <3.2 × 10 ⁻⁴ 48 Assumes the T($\Gamma(K^+e^+e^-)/\Gamma_{tc}$ Test for $\Delta B = \frac{1}{100}$	= 1 weak neutral current. All	898 CLEO liges, fits, limits, 87 CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+ \ e^- \ \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+ \ e^- \ \rightarrow \end{array}$	T(45) Γ Γ_{37}/Γ	model or momentum rang calculated. This correspon technique employed is mor do not provide a numerica $\Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ VALUE})$ • • • We do not use the folio $0.54 \pm 0.07 \pm 0.06$	e is chosen. We selected to a limit on V _{DI} e robust than their primprovement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon	t the most co $_{j}$ $ / V_{bc} $ < evious results limit. TECN s, fits. limits, 878 CLEO correlations.	COMME etc. • e+ e-	ive limit they have While the endpoint N 84, these results
Test for ΔB = tions. VALUE <1.5 × 10 ⁻⁴ • • • We do not us <3.2 × 10 ⁻⁴ 48 Assumes the T($\Gamma(K^+e^+e^-)/\Gamma$ Test for ΔB = tions.	= 1 weak neutral current. All	898 CLEO sges, fits, limits, 87 CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+ \ e^- \ \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+ \ e^- \ \rightarrow \end{array}$	T(45) Γ Γ_{37}/Γ	model or momentum rang calculated. This correspontechnique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{2}\right)$ • • • We do not use the folion of the summary of t	e is chosen. We select of the condition	t the most co $_{j}$ $ / V_{bc} $ < evious results limit. TECN s, fits. limits, 878 CLEO correlations.	COMME etc. • e+ e-	ive limit they have While the endpoint N 84, these results
Test for ΔB = tions. VALUE <1.5 × 10 ⁻⁴ • • • We do not us <3.2 × 10 ⁻⁴ 48 Assumes the T($\Gamma(K^+e^+e^-)/\Gamma$ to Test for ΔB = tions.	= 1 weak neutral current. All	898 CLEO sges, fits, limits, 87 CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \rightarrow \\ etc. \bullet \bullet \bullet \\ e^+ e^- \rightarrow \\ \\ \hline COMMENT \end{array}$	Υ(45) Υ(45) Γ ₃₇ /Γ roweak interac-	model or momentum rang calculated. This correspon technique employed is mor do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{2}\right)$ • • We do not use the folion of the second of t	e is chosen. We selected to a limit on V _{Di} e robust than their primerovement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus removed anything)	t the most co $ / V_{BC} < $ evious results limit. TECN s, fits. limits, 87B CLEO correlations. d it from the	COMME etc. • e+ e- It does average.	ive limit they have while the endpoint N 84, these results
Test for ΔB = tions. VALUE <1.5 × 10 ⁻⁴ • • • We do not us <3.2 × 10 ⁻⁴ 48 Assumes the Υ (. $\Gamma(K^+e^+e^-)/\Gamma_{tc}$ Test for ΔB = tions. VALUE <5 × 10 ⁻⁵	= 1 weak neutral current. All	898 CLEO 898 CLEO 87 CLEO weed by higher- mathematical interpretation of the company of the	$\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \rightarrow \\ e^+ e^- \rightarrow \\ \end{array}$ order electrons $\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \rightarrow \\ \end{array}$	Υ(45) Υ(45) Γ ₃₇ /Γ roweak interac-	model or momentum rang calculated. This correspontechnique employed is more do not provide a numerica $ \Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ NALUE}) $ • • • We do not use the folio $0.54 \pm 0.07 \pm 0.06$ 55 ALAM 87B measurement possibility of $B\overline{B}$ mixing. $ \Gamma(K^-\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ NALUE}) $	e is chosen. We selected to a limit on V _{bl} e robust than their print improvement in the anything) DOCUMENT ID Wing data for average 55 ALAM relies on lepton-kaon We have thus removed anything) DOCUMENT ID	t the most co / V _{bc} < evious results limit.	COMME COMME COMME COMME COMME COMME COMME COMME	ive limit they have While the endpoint N 84, these results
Test for ΔB = tions. VALUE $< 1.5 \times 10^{-4}$ • • • We do not us $< 3.2 \times 10^{-4}$ < 48 Assumes the Υ (. $\Gamma(K^+e^+e^-)/\Gamma_{tc}$ Test for ΔB = tions. VALUE • • • We do not us	= 1 weak neutral current. All	898 CLEO 899 CLEO ges, fits, limits, 87 CLEO owed by higher- D IECN 898 CLEO ges, fits, limits,	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow$	$\Upsilon(45)$ $\Upsilon(45)$ $\Gamma(45)$ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ	model or momentum rang calculated. This correspont technique employed is more do not provide a numerica $ \Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ ALUE}) $ • • • We do not use the folion of the possibility of $B \overline{B}$ mixing. $ \Gamma(K^-\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ ALUE}) $ • • • We do not use the folion of the possibility of $B \overline{B}$ mixing.	e is chosen. We selected to a limit on $ V_{bl} $ or orbust than their profit improvement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus removed anything) DOCUMENT ID wing data for average	t the most co / / V _{bC} < evious results limit.	COMME t does average. COMME comme	ive limit they have while the endpoint N 84, these results
Test for ΔB = tions. VALUE $< 1.5 \times 10^{-4}$ • • • We do not us $< 3.2 \times 10^{-4}$ 4 Assumes the Υ ($\Gamma (K^{+}e^{+}e^{-})/\Gamma_{tc}$ Test for ΔB = tions. VALUE • • We do not us $< 2.1 \times 10^{-4}$	= 1 weak neutral current. All	898 CLEO 898 CLEO 87 CLEO weed by higher- mathematical interpretation of the company of the	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow$	$\Upsilon(45)$ $\Gamma(45)$ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ	model or momentum rang calculated. This correspont technique employed is more do not provide a numerica $\Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \frac{VALUE}{2}) = \bullet \bullet \text{ We do not use the folicy} = 0.54 \pm 0.07 \pm 0.06$	e is chosen. We selected to a limit on V _{bl} e robust than their profit improvement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus removed anything) DOCUMENT ID wing data for average 56 ALAM	t the most cc V_{bc} <	comme etc. • e^+e^- COMME etc. • e^+e^-	ive limit they have While the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38}
Test for $\Delta B = \frac{1}{1000}$ tions. VALUE <1.5 × 10 ⁻⁴ • • • We do not us <3.2 × 10 ⁻⁴ 48 Assumes the T($\Gamma(K^+e^+e^-)/\Gamma_{tc}$ Test for $\Delta B = \frac{1}{1000}$ tions. VALUE • • • We do not us <2.1 × 10 ⁻⁴	= 1 weak neutral current. All	898 CLEO 899 CLEO ges, fits, limits, 87 CLEO owed by higher- D IECN 898 CLEO ges, fits, limits,	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow$	$\Upsilon(45)$ $\Gamma(45)$ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ	model or momentum rang calculated. This corresponte technique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ NALUE}\right)$ • • • We do not use the folio $0.54 \pm 0.07 \pm 0.06$ 55 ALAM 878 measurement possibility of BB mixing. $\Gamma\left(K^-\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ NALUE}\right)$ • • • We do not use the folio $0.10 \pm 0.05 \pm 0.02$ 56 ALAM 878 measurement	e is chosen. We selected to a limit on V _{DI} e robust than their primovement in the anything) bocument in the anything bocument in the anything bocument in the anything bocument in the anything bocument in the anything) bocument in the anything bocument in the anything data for average anything bocument in the anything and anything and anything and anything anything bocument in the anything and anything and anything anyth	t the most cc V _{DC} < _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC} < v _{DC}	comme etc. • e^+e^- It does average.	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38}
Test for $\Delta B = \frac{1}{1000}$ tions. VALUE <1.5 × 10 ⁻⁴ • • • We do not us <3.2 × 10 ⁻⁴ 48 Assumes the T($\Gamma(K^+e^+e^-)/\Gamma_{tc}$ Test for $\Delta B = \frac{1}{1000}$ tions. VALUE • • • We do not us <2.1 × 10 ⁻⁴	= 1 weak neutral current. All	898 CLEO 899 CLEO ges, fits, limits, 87 CLEO owed by higher- D IECN 898 CLEO ges, fits, limits,	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow$	$\Upsilon(45)$ $\Gamma(45)$ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ	model or momentum rang calculated. This correspont technique employed is more do not provide a numerica $\Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \frac{VALUE}{2}) = \bullet \bullet \text{ We do not use the folicy} = 0.54 \pm 0.07 \pm 0.06$	e is chosen. We selected to a limit on V _{DI} e robust than their primovement in the anything) bocument in the anything bocument in the anything bocument in the anything bocument in the anything bocument in the anything) bocument in the anything bocument in the anything data for average anything bocument in the anything and anything and anything and anything anything bocument in the anything and anything and anything anyth	t the most cc V_{Dc} < {Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V	comme etc. • e^+e^- It does average.	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38}
Test for $\Delta B = \frac{1}{1000}$ tions. VALUE <1.5 × 10 ⁻⁴ • • • We do not us <3.2 × 10 ⁻⁴ 48 Assumes the T($\Gamma(K^+e^+e^-)/\Gamma_{tc}$ Test for $\Delta B = \frac{1}{1000}$ tions. VALUE • • • We do not us <2.1 × 10 ⁻⁴	= 1 weak neutral current. All	898 CLEO 899 CLEO ges, fits, limits, 87 CLEO owed by higher- D IECN 898 CLEO ges, fits, limits,	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^- \rightarrow$	$\Upsilon(45)$ $\Gamma(45)$ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ Γ_{37}/Γ	model or momentum rang calculated. This correspont technique employed is mor do not provide a numerica $\Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ VALUE})$ • • • We do not use the folion of the	e is chosen. We selected to a limit on $ V_b $ or robust than their profit improvement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus removed anything) DOCUMENT ID wing data for average 56 ALAM relies on lepton-kaon We have thus removed by the selection of the se	t the most cc V_{Dc} < {Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V_{Dc} < V	comme etc. • e^+e^- It does average.	ive limit they have While the endpoint N 84, these results N 84, these results
Test for $\Delta B = \frac{\text{tions.}}{\text{tions.}}$ <1.5 × 10 ⁻⁴ • • We do not us <3.2 × 10 ⁻⁴ ⁴⁸ Assumes the T(- Test for $\Delta B = \frac{\text{tions.}}{\text{tions.}}$ value <5 × 10 ⁻⁵ • • We do not us <2.1 × 10 ⁻⁴ ⁴⁹ Assumes the T(- For all of the deciral consists of the deciral con	= 1 weak neutral current. All	898 CLEO ges, fits, limits, 87 CLEO owed by higher- D <u>TECN</u> 898 CLEO ges, fits, limits, 87 CLEO	$\begin{array}{cccc} \underline{COMMeNT} & e^+ e^- & \longrightarrow & \text{etc.} & \bullet & \bullet & \bullet \\ e^+ e^- & \longrightarrow & & \text{conder electro} & & & \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	T(45) T(45) T(45) F37/ Γ Dweak interaction Γ T(45) T(45)	model or momentum rang calculated. This correspont technique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{\ell}\right)$ • • We do not use the folic 0.54 \pm 0.07 \pm 0.06 55 ALAM 87B measurement possibility of \$B\$ mixing. $\Gamma\left(K^-\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{\ell}\right)$ • • We do not use the folic 0.10 \pm 0.05 \pm 0.02 56 ALAM 87B measurement possibility of \$B\$ mixing. $\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{\ell}\right)$	e is chosen. We selected to a limit on $ V_{bl} $ or obust than their profimprovement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus removed anything) DOCUMENT ID wing data for average 56 ALAM relies on lepton-kaon We have thus removed the average 160 ALAM relies on lepton-kaon We have thus removed the average 160 ALAM	t the most cc V_{bc} <	COMME etc. comme etc. comme etc. comme etc. comme etc. comme etc. comme etc. comme etc. comme etc.	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38} Γ_{45}/Γ_{38}
Test for ΔB = tions. 21.5 × 10 ⁻⁴ • • • We do not us $<3.2 \times 10^{-4}$ 48 Assumes the T(. Test for ΔB = tions. VALUE $<5 \times 10^{-5}$ • • • We do not us $<2.1 \times 10^{-4}$ 49 Assumes the T(.	= 1 weak neutral current. All	898 CLEO ges, fits, limits, 87 CLEO owed by higher- D <u>TECN</u> 898 CLEO ges, fits, limits, 87 CLEO	$\begin{array}{cccc} \underline{COMMeNT} & e^+ e^- & \longrightarrow & \text{etc.} & \bullet & \bullet & \bullet \\ e^+ e^- & \longrightarrow & & \text{conder electro} & & & \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	T(45) T(45) T(45) F37/ Γ Dweak interaction Γ T(45) T(45)	model or momentum rang calculated. This corresponte technique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ ALUE}\right)$ • • • We do not use the folion of	e is chosen. We selected to a limit on V _{Di} e robust than their primprovement in the anything) DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID Wing data for average 55 ALAM relies on lepton-kaon We have thus removed anything) DOCUMENT ID Relies on lepton-kaon We have thus removed ALAM relies on lepton-kaon We have thus removed (\$\ell(\ell)^+\$ anything) DOCUMENT ID	t the most cc y V _{bc} < evious results limit. IECN s, fits. limits, 87B CLEO correlations. d it from the IECN s, fits, limits, a7B CLEO correlations. d it from the	COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME COMME	ive limit they have while the endpoint N 84, these results
Test for ΔB = tions. 21.5 × 10 ⁻⁴ • • • We do not us $<3.2 \times 10^{-4}$ 48 Assumes the T(. Test for ΔB = tions. VALUE $<5 \times 10^{-5}$ • • • We do not us $<2.1 \times 10^{-4}$ 49 Assumes the T(.	= 1 weak neutral current. All	898 CLEO ges, fits, limits, 87 CLEO owed by higher- D <u>TECN</u> 898 CLEO ges, fits, limits, 87 CLEO	$\begin{array}{cccc} \underline{COMMeNT} & e^+ e^- & \longrightarrow & \text{etc.} & \bullet & \bullet & \bullet \\ e^+ e^- & \longrightarrow & & \text{conder electro} & & & \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	T(45) T(45) T(45) F37/ Γ Dweak interaction Γ T(45) T(45)	model or momentum rang calculated. This corresponte technique employed is more do not provide a numerica $\Gamma\left(K^{+}\ell^{+} + \operatorname{anything}\right)/\Gamma\left(\ell^{+}\right)$ $\bullet \bullet \text{We do not use the folio}$ $0.54 \pm 0.07 \pm 0.06$ $^{55} \text{ ALAM 878 measurement possibility of B mixing.}$ $\Gamma\left(K^{-}\ell^{+} + \operatorname{anything}\right)/\Gamma\left(\ell^{+}\right)$ $VALUE$ $\bullet \bullet \text{We do not use the folio}$ $0.10 \pm 0.05 \pm 0.02$ $^{56} \text{ ALAM 878 measurement possibility of B mixing.}$ $\Gamma\left(K^{0}/\overline{K}^{0}\ell^{+} + \operatorname{anything}\right)/\Gamma\left(K^{0}/\overline{K}^{0}\ell^{+}\right)$ $VALUE$ $\bullet \bullet \text{We do not use the folio}$	e is chosen. We selected to a limit on V _{Di} e robust than their print improvement in the anything) Mind and a for average 55 ALAM relies on lepton-kaon We have thus removed anything) DOCUMENT ID wing data for average 56 ALAM relies on lepton-kaon We have thus removed with the relies on lepton-kaon We have thus removed (ℓ+ anything) DOCUMENT ID DOCUMENT ID wing data for average with the removed the relies on lepton-kaon we have thus removed the relies on lepton-kaon with the removed the	t the most cc y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} < y V _{bc} <	COMME etc. • · · · · · · · · · · · · · · · · · ·	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38} Γ_{45}/Γ_{38}
Test for ΔB = tions. VALUE $\langle 1.5 \times 10^{-4} \rangle$ • • • We do not us $\langle 3.2 \times 10^{-4} \rangle$ $\langle 48 \rangle$ Assumes the $\Upsilon(\cdot)$ $\Gamma(K^+e^+e^-)/\Gamma_{tc}$ Test for ΔB = tions. VALUE $\langle 5 \times 10^{-5} \rangle$ • • • We do not us $\langle 2.1 \times 10^{-4} \rangle$ $\langle 49 \rangle$ Assumes the $\Upsilon(\cdot)$ For all of the decay. $\langle B^0, \overline{B}^0, B^+, \text{ or } \rangle$	= 1 weak neutral current. All $\frac{CL\%}{90}$ AVERY 48 AVERY 20 Ethe following data for avera 90 AVERY 45) decays 43% to $B^0 \overline{B}^0$. Stal = 1 weak neutral current. All $\frac{CL\%}{90}$ 49 AVERY 45) decays 43% to $B^0 \overline{B}^0$. AVERY 45) decays 43% to $B^0 \overline{B}^0$.	898 CLEO ges, fits, limits, 87 CLEO owed by higher- D <u>TECN</u> 898 CLEO ges, fits, limits, 87 CLEO	$\begin{array}{cccc} \underline{COMMeNT} & e^+ e^- & \longrightarrow & \text{etc.} & \bullet & \bullet & \bullet \\ e^+ e^- & \longrightarrow & & \text{conder electro} & & & \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	T(45) T(45) T(45) F37/F oweak interaction T(45) T(45) determined	model or momentum rang calculated. This correspontechnique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ ALUE}\right)$ • • • We do not use the folio 0.54 \pm 0.07 \pm 0.06 55 ALAM 878 measurement possibility of $B\overline{B}$ mixing. $\Gamma\left(K^-\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ VALUE}\right)$ • • • We do not use the folio 0.10 \pm 0.05 \pm 0.02 56 ALAM 878 measurement possibility of $B\overline{B}$ mixing. $\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)/\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)/\Gamma$	e is chosen. We selected to a limit on V _{Di} e robust than their print improvement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus removed anything) DOCUMENT ID wing data for average 56 ALAM relies on lepton-kaon We have thus removed (ℓ+ anything) DOCUMENT ID DOCUMENT ID DOCUMENT ID wing data for average 57 ALAM	t the most cc tyle	COMME etc. • e+e- It does average. COMME etc. • e+e- It does average.	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} • • • • Γ_{45}/Γ_{38} NT • • • Γ_{44}/Γ_{38} NT • • • Γ_{45}/Γ_{38} Full Figure 1.5 in the consideration the consideration the consi
Test for $\Delta B = \frac{\text{tions.}}{\text{tions.}}$ $< 1.5 \times 10^{-4}$ $\bullet \bullet \bullet \text{ We do not us}$ $< 3.2 \times 10^{-4}$ 48 Assumes the $\Upsilon(\cdot)$ $\Gamma(K^+e^+e^-)/\Gamma_{\text{tc}}$ $= \frac{\text{tions.}}{\text{tions.}}$ $< 5 \times 10^{-5}$ $\bullet \bullet \text{ We do not us}$ $< 2.1 \times 10^{-4}$ $= \frac{49}{49}$ Assumes the $\Upsilon(\cdot)$ $= \frac{49}{49}$ Assumes the $\Upsilon(\cdot)$ $= \frac{60}{49}$ Assumes the $\Upsilon(\cdot)$	= 1 weak neutral current. All $\frac{CL\%}{90}$ $\frac{DOCUMENT III}{48 \text{ AVERY}}$ se the following data for avera 90 AVERY 45) decays 43% to $8^{O} \overline{B}^{O}$. Stal = 1 weak neutral current. All $\frac{CL\%}{90}$ $\frac{DOCUMENT III}{49 \text{ AVERY}}$ se the following data for avera 90 AVERY 45) decays 43% to $8^{O} \overline{B}^{O}$. Average $\frac{1}{4}$ and $\frac{1}{4}$ $\frac{1}{$	898 CLEO 898 CLEO ges, fits, limits, 87 CLEO weed by higher- 998 CLEO ges, fits, limits, 87 CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+ e^- & \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- & \rightarrow \\ \end{array}$ order electron $\begin{array}{c} \underline{COMMENT} \\ e^+ e^- & \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- & \rightarrow \\ \end{array}$	T(45) T(45) T(45) F37/ Γ Dweak interaction Γ T(45) T(45)	model or momentum rang calculated. This correspont technique employed is more do not provide a numerica $\Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ ALUE})$ • • • We do not use the folio $0.54 \pm 0.07 \pm 0.06$ 55 ALAM 87B measurement possibility of $B\overline{B}$ mixing. $\Gamma(K^-\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ ALUE})$ • • • We do not use the folio $0.10 \pm 0.05 \pm 0.02$ 56 ALAM 87B measurement possibility of $B\overline{B}$ mixing. $\Gamma(K^0/\overline{K}^0\ell^+ \text{ anything})/\Gamma$	e is chosen. We selected to a limit on V _{bi} e robust than their print improvement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus remover 40 ALAM relies on lepton-kaon We have thus remover 56 ALAM relies on lepton-kaon We have thus remover 60 ALAM relies on lepton-kaon We have thus remover 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 10 ALAM relies on lepton-kaon 10 ALAM relies on lepton-kaon lepton-kaon	t the most cc the most cc the most cc the following the the tensor the te	onservation of the comment of the c	ive limit they have While the endpoint N 84, these results N 84, these results $-\frac{743}{738}$ $-\frac{745}{8}$ s not consider the $-\frac{744}{738}$ s not consider the $-\frac{745}{8}$ s not consider the
Test for ΔB = tions. VALUE $\langle 1.5 \times 10^{-4} \rangle$ • • • We do not us $\langle 3.2 \times 10^{-4} \rangle$ $\langle 48 \rangle$ Assumes the $\Upsilon(\cdot)$ Test for ΔB = tions. VALUE $\langle 5 \rangle \times 10^{-5} \rangle$ • • We do not us $\langle 2.1 \times 10^{-4} \rangle$ $\langle 49 \rangle$ Assumes the $\Upsilon(\cdot)$ For all of the decay $\langle B^0, B^0, B^+, \text{ or } \rangle$ Te [±] ν_e hadrons) Only the expe	= 1 weak neutral current. All 90 48 AVERY 48 AVERY 48 CAVERY 49 AVERY 445) decays 43% to $B^0 \overline{B}^0$. Otal = 1 weak neutral current. All 90 49 AVERY 49 AVERY 45) decays 43% to $B^0 \overline{B}^0$. Otal = $\frac{CL_0^4}{90}$ 49 AVERY 45) decays 43% to $B^0 \overline{B}^0$. Avery 45) decays 43% to $B^0 \overline{B}^0$. Applied to the following data for avera 90 AVERY 45) decays 43% to $B^0 \overline{B}^0$. Applied to the charge of 1 B^-). If total riments at the $\Upsilon(4S)$ are used $DOCUMENTLE$	898 CLEO 898 CLEO ges, fits, limits, 87 CLEO weed by higher- 998 CLEO ges, fits, limits, 87 CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+ e^- & \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- & \rightarrow \\ \end{array}$ order electron $\begin{array}{c} \underline{COMMENT} \\ e^+ e^- & \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+ e^- & \rightarrow \\ \end{array}$	T(45) T(45) T(45) F37/F oweak interaction T(45) T(45) determined	model or momentum rang calculated. This correspontechnique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{\ell}\right)$ • • • We do not use the folion of the possibility of BB mixing. $\Gamma\left(K^-\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{\ell}\right)$ • • We do not use the folion of the possibility of BB mixing. $\Gamma\left(K^-\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{\ell}\right)$ • • We do not use the folion of the possibility of BB mixing. $\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)/\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)/\Gamma\left(K$	e is chosen. We selected to a limit on V _{bi} e robust than their print improvement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus remover 40 ALAM relies on lepton-kaon We have thus remover 56 ALAM relies on lepton-kaon We have thus remover 60 ALAM relies on lepton-kaon We have thus remover 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 10 ALAM relies on lepton-kaon 10 ALAM relies on lepton-kaon lepton-kaon	t the most cc the most cc the most cc the following the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the	onservation of the comment of the c	ive limit they have While the endpoint N 84, these results N 84, these results $-\frac{743}{738}$ $-\frac{745}{8}$ s not consider the $-\frac{744}{738}$ s not consider the $-\frac{745}{8}$ s not consider the
Test for ΔB = tions. 21.5 × 10 ⁻⁴ • • • • We do not us 23.2 × 10 ⁻⁴ 48 Assumes the Υ (. $\Gamma(K^+e^+e^-)/\Gamma_{tc}$ Test for ΔB = tions. 25. × 10 ⁻⁵ • • • We do not us 21. × 10 ⁻⁴ 49 Assumes the Υ (. For all of the dec. $(B^0, \overline{B}^0, B^+, \text{ or})$ $\Gamma(e^{\pm} \nu_e \text{ hadrons})$ Only the expe	= 1 weak neutral current. All CL% 90 48 AVERY 48 AVERY 45) decays 43% to B ⁰ B Cotal = 1 weak neutral current. All CL% 90 49 AVERY 45) decays 43% to B ⁰ B AVERY 45) decays 43% to B ⁰ B AVERY 46 the following data for avera 90 AVERY 47 AVERY 48 decays 43% to B ⁰ B AVERY 49 AVERY 49 AVERY 49 AVERY 40 AVERY 41 AVERY 42 AVERY 43 AVERY 44 AVERAGE	898 CLEO 899 CLEO ges, fits, limits, 87 CLEO owed by higher- 9 IECN 898 CLEO ges, fits, limits, 87 CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \longrightarrow \\ etc. \bullet \bullet \bullet \\ e^+e^- \longrightarrow \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	meak interactive for the following powers of the following powers for	model or momentum rang calculated. This correspontechnique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{\ell}\right)$ • • • We do not use the folion of the possibility of BB mixing. $\Gamma\left(K^-\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{\ell}\right)$ • • We do not use the folion of the possibility of BB mixing. $\Gamma\left(K^-\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \frac{VALUE}{\ell}\right)$ • • We do not use the folion of the possibility of BB mixing. $\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)/\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)/\Gamma\left(K$	e is chosen. We selected to a limit on V _{bi} e robust than their print improvement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus remover 40 ALAM relies on lepton-kaon We have thus remover 56 ALAM relies on lepton-kaon We have thus remover 60 ALAM relies on lepton-kaon We have thus remover 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 10 ALAM relies on lepton-kaon 10 ALAM relies on lepton-kaon lepton-kaon	t the most cc the most cc the most cc the following the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the	onservation of the comment of the c	ive limit they have While the endpoint N 84, these results N 84, these results $-\frac{743}{738}$ $-\frac{745}{8}$ s not consider the $-\frac{744}{738}$ s not consider the $-\frac{745}{8}$ s not consider the
Test for $\Delta B = \frac{1}{100}$ tions. $< 1.5 \times 10^{-4}$ • • • • • We do not us $< 3.2 \times 10^{-4}$ < 48 Assumes the T(. $\Gamma(K^+e^+e^-)/\Gamma$ to Test for $\Delta B = \frac{1}{100}$ tions. $< 2.1 \times 10^{-5}$ • • We do not us $< 2.1 \times 10^{-4}$ < 49 Assumes the T(. For all of the decice $(B^0, \overline{B}^0, B^+, \text{ or } \Gamma(e^{\pm} \nu_e \text{ hadrons})$ Only the expendicular to $= \frac{1}{100}$ to $= \frac{1}{100$	= 1 weak neutral current. All $\frac{CL\%}{90}$ $\frac{DOCUMENT III}{48 \text{ AVERY}}$ se the following data for avera 90 AVERY 45) decays 43% to $8^{0} \overline{B}^{0}$. Otal = 1 weak neutral current. All $\frac{CL\%}{90}$ $\frac{DOCUMENT III}{45}$ se the following data for avera $\frac{DOCUMENT III}{45}$ decays 43% to $8^{0} \overline{B}^{0}$. Avery $\frac{AVERY}{45}$ decays 43% to $\frac{B^{0} \overline{B}^{0}}{8}$. Avery $\frac{AVERY}{45}$ $\frac{AVERY}{45}$ are used $\frac{DOCUMENT III}{45}$ are used $\frac{DOCUMENT III}{45}$ $\frac{DOCUMENT III}{45}$ $\frac{DOCUMENT III}{45}$ $\frac{DOCUMENT III}{45}$ $\frac{DOCUMENT III}{45}$ $\frac{DOCUMENT III}{45}$	898 CLEO 899 CLEO swed by higher- 998 CLEO 898 CLEO 898 CLEO 898 CLEO the decaying is the deca	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^-e^-e^- \rightarrow e^-e^-e^-e^- \rightarrow e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e^-e$	meak interactive $T(4S)$ T(4S) F37/ Γ meak interactive $T(4S)$ T(4S) determined Γ_{40}/Γ $T(4S)$	model or momentum rang calculated. This correspont technique employed is more do not provide a numerica $\Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ ALUE})$ • • • We do not use the folio $0.54 \pm 0.07 \pm 0.06$ 55 ALAM 87B measurement possibility of $B\overline{B}$ mixing. $\Gamma(K^-\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ ALUE})$ • • • We do not use the folio $0.10 \pm 0.05 \pm 0.02$ 56 ALAM 87B measurement possibility of $B\overline{B}$ mixing. $\Gamma(K^0/\overline{K}^0\ell^+ \text{ anything})/\Gamma$	e is chosen. We selected to a limit on V _{bi} e robust than their print improvement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus remover 40 ALAM relies on lepton-kaon We have thus remover 56 ALAM relies on lepton-kaon We have thus remover 60 ALAM relies on lepton-kaon We have thus remover 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 60 ALAM relies on lepton-kaon 10 ALAM relies on lepton-kaon 10 ALAM relies on lepton-kaon lepton-kaon	t the most cc the most cc the most cc the country the	onservation 0.20 .	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38}
Test for $\Delta B = \frac{VALUE}{1000}$ (1.5 × 10 ⁻⁴ • • • • We do not us • 3.2 × 10 ⁻⁴ • 48 Assumes the Υ (. $\Gamma(K^+e^+e^-)/\Gamma_{tt}$ Test for $\Delta B = \frac{VALUE}{1000}$ • • • We do not us • • • We do not us • • • We do not us • • • We do not us • • • We do not us • • • To all of the deci • • • We do not us • • • To all of the deci • • • Only the expe • VALUE 0.121±0.006 OUR • 0.117±0.006 OUR • 0.117±0.006 OUR • 0.117±0.0004±0.010	= 1 weak neutral current. All $\frac{CL\%}{90}$ AVERY 48 AVERY 2. et het following data for avera 90 AVERY 44. S) decays 43% to $B^0 \overline{B}^0$. Stal = 1 weak neutral current. All 90 AVERY 49 AVERY 49 AVERY 45) decays 43% to $B^0 \overline{B}^0$. average AVERY 45) decays 43% to $B^0 \overline{B}^0$. AVERY 45) decays 43% to $B^0 \overline{B}^0$. Average B^0 AVERY 45) decays 43% to $B^0 \overline{B}^0$. AVERY 45) decays 43% to $B^0 \overline{B}^0$. AVERY 46. Shows the charge of 1 B^-). Average B^0 AVERY 65. AVER	898 CLEO weed by higher- 898 CLEO weed by higher- 898 CLEO ges, fits, limits, 87 CLEO the decaying if t	COMMENT $e^{+}e^{-} \rightarrow etc. \bullet \bullet \bullet e^{+}e^{-} \rightarrow etc. \bullet \bullet \bullet \bullet e^{+}e^{-} \rightarrow etc. \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	T(45) T(45) T(45) Γ37/Γ T(45) T(45)	model or momentum rang calculated. This correspontechnique employed is more do not provide a numerica $\Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ NALUE}) = \bullet \bullet \text{ We do not use the folio} \\ 0.54 \pm 0.07 \pm 0.06 \\ 55 \text{ ALAM 87B measurement possibility of } B \overline{B} \text{ mixing.} \\ \Gamma(K^-\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ NALUE}) = \bullet \bullet \text{ We do not use the folio} \\ 0.10 \pm 0.05 \pm 0.02 \\ 56 \text{ ALAM 87B measurement possibility of } B \overline{B} \text{ mixing.} \\ \Gamma(K^0/\overline{K}^0\ell^+ \text{ anything})/\Gamma \\ \hline NALUE} = \bullet \bullet \text{ We do not use the folio} \\ 0.39 \pm 0.06 \pm 0.04 \\ 57 \text{ ALAM 87B measurement possibility of } B \overline{B} \text{ mixing.} \\ \Gamma(c/\overline{c})/\Gamma_{\text{total}} \\ \Gamma(c/\overline{c})/\Gamma_{\text{total}}$	e is chosen. We selected to a limit on V _{Di} e robust than their priming of the limit on V _{Di} e robust than their priming between the limit of	t the most cc t the most cc t yellow is results timit. TECN s, fits, limits, 87B CLEO correlations, d it from the TECN s, fits, limits, 87B CLEO correlations, d it from the TECN s, fits, limits, d it from the	nservati 0.20 , 0.2	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38}
Test for ΔB = tions. 24.10 \(\) \(\text{VE} \) \(\text	= 1 weak neutral current. All $\frac{CL\%}{90}$ AVERY 48 AVERY 2. the following data for avera 90 AVERY 45) decays 43% to $B^0 \overline{B}^0$. Stal = 1 weak neutral current. All 90 AVERY 49 AVERY 45) decays 43% to $B^0 \overline{B}^0$. The following data for avera 90 AVERY 45) decays 43% to $B^0 \overline{B}^0$. Average the following data for avera 90 AVERY 45) decays 43% to $B^0 \overline{B}^0$. Average 50 AVERY 50 AVERY 6. The charge of 1 B average 6. So WACHS 6. CHEN 51 KLOPFEN	898 CLEO wwed by higher- By CLEO sys, fits, limits, 87 CLEO wed by higher- By CLEO ges, fits, limits, 87 CLEO the decaying in the average of the cleon 15 CLEO 89 CBAL 89 CBAL 89 CBAL 84 CLEO 838 CUSB	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^$	T(45) T(45) T(45) Γ37/Γ T(45) T(45)	model or momentum rang calculated. This corresponte technique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ NALUE}\right)$ • • • We do not use the folion of the same possibility of \$B\$ mixing. $\Gamma\left(K^-\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ NALUE}\right)$ • • • We do not use the folion of the foli	e is chosen. We selected to a control of the contro	t the most cc t the most cc t you will be to be	on 200. O 20.	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38}
Test for ΔB = tions. VALUE <1.5 × 10 ⁻⁴ ••• We do not us <3.2 × 10 ⁻⁴ 48 Assumes the Υ (. $\Gamma(K^+e^+e^-)/\Gamma_{tc}$ Test for ΔB = tions. VALUE 5 × 10 ⁻⁵ •• We do not us <2.1 × 10 ⁻⁴ 49 Assumes the Υ (. For all of the decay	= 1 weak neutral current. All $\frac{CL\%}{90}$ AVERY 48 AVERY 45) decays 43% to $B^0 \overline{B}^0$. 10 Avery 45) decays 43% to $B^0 \overline{B}^0$. 10 Avery 46 AVERY 47 AVERY 48 AVERY 49 AVERY 49 AVERY 49 AVERY 49 AVERY 40 AVERY 41 AVERY 42 AVERY 43 AVERY 44 AVERY 45) decays 43% to $B^0 \overline{B}^0$. 10 Avery 45) decays 43% to $B^0 \overline{B}^0$. 11 Average of 1 Avery 12 Avery 13 Avery 14 Avery 15 Avery 16 Avery 17 Avery 18 Ave	898 CLEO 898 CLEO ges, fits, limits, 87 CLEO 898 CLEO 698 CLEO ges, fits, limits, 87 CLEO the decaying in the average of the cleo 89 CBAL 84 CLEO 838 CUSB ges, fits, limits,	COMMENT $e^+e^- \rightarrow etc.$ etc. • • • $e^+e^- \rightarrow etc.$ corder electro $e^+e^- \rightarrow e^- \rightarrow e^+e^- \rightarrow e^-$ etc. • • • $e^+e^- \rightarrow e^- \rightarrow e^+e^- \rightarrow e^-$ Direct e at Direct e at etc. • • •	meak interactive form of the following properties of the	model or momentum rang calculated. This corresponte technique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ ALUE}\right)$ • • • We do not use the folion of the state of the folion of	e is chosen. We selected to a limit on V _{Di} e robust than their print improvement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus removed anything) DOCUMENT ID wing data for average 56 ALAM relies on lepton-kaon We have thus removed the selection of the provided of the selection of the sele	t the most cc t the most cc t you will be to be	onservation 0.20 .	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38}
Test for $\Delta B = \frac{\text{tions.}}{\text{tions.}}$ $<1.5 \times 10^{-4}$ • • • • We do not us $<3.2 \times 10^{-4}$ 48 Assumes the T($(\Gamma(K^+e^+e^-)/\Gamma_{\text{tr}})$ $<5 \times 10^{-5}$ • • • We do not us $<2.1 \times 10^{-4}$ 49 Assumes the T($(B^0, \overline{B}^0, B^+, \text{or})$ $\Gamma(e^{\pm} \nu_e \text{ hadrons})$ $0.117 \pm 0.004 \pm 0.016$ $0.120 \pm 0.007 \pm 0.008$ $0.132 \pm 0.008 \pm 0.014$ • • • We do not us $0.112 \pm 0.009 \pm 0.011$	= 1 weak neutral current. All $\frac{CL\%}{90}$ AVERY 48 AVERY 45) decays 43% to $B^0 \overline{B}^0$. 10 Avery 45 beta neutral current. All $\frac{CL\%}{90}$ AVERY 46 the following data for avera 47 AVERY 48 the following data for avera 49 AVERY 49 AVERY 49 AVERY 40 AVERY 41 AVERY 42 AVERY 43 AVERY 45) decays 43% to $B^0 \overline{B}^0$. 16 Average of the following data for avera 20 AVERY 45) decays 43% to $B^0 \overline{B}^0$. 21 Average 32 AVERY 45 AVERY 46 AVERY 47 AVERY 48 AVERY 49 AVERY 49 AVERY 40 AVERY 41 AVERY 41 AVERY 42 AVERY 43 AVERY 44 AVERY 45 AVERY 46 AVERY 47 AVERY 48 AVERY 48 AVERY 49 AVERY 49 AVERY 40 AVERY 41 AVERY 41 AVERY 42 AVERY 43 AVERY 44 AVERY 45 AVERY 46 AVERY 47 AVERY 48 AVERY 48 AVERY 48 AVERY 48 AVERY 49 AVERY 40 AVERY 41 AVERY 41 AVERY 41 AVERY 42 AVERY 43 AVERY 44 AVERY 45 AVERY 46 AVERY 46 AVERY 47 AVERY 48 AVERY 48 AVERY 49 AVERY 49 AVERY 40 AVERY 41 AVERY 41 AVERY 41 AVERY 42 AVERY 43 AVERY 44 AVERY 45 AVERY 46 AVERY 46 AVERY 47 AVERY 47 AVERY 48 AVERY 48 AVERY 49 AVERY 40 AVERY 45 AVERY 46 AVERY 47 AVERY 47 AVERY 48 AVERY 49 AVERY 40 AVERY 45 AVERY 46 AVERY 47 AVERY 47 AVERY 48 AVERY 48 AVERY 49 AVERY 49 AVERY 40 AVERY 40 AVERY 41 AVERY 41 AVERY 41 AVERY 41 AVERY 41 AVERY 42 AVERY 43 AVERY 44 AVERY 45 AVERY 46 AVERY 46 AVERY 47 AVERY 47 AVERY 48 AVERY 48 AVERY 49 AVERY 49 AVERY 49 AVERY 40 AVERY 40 AVERY 41 AVERY 41 AVERY 41 AVERY 41 AVERY 41 AVERY 41 AVERY 41 AVERY 41 AVERY 41 AVERY 41 AVERY 42 AVERY 43 AVERY 44 AVERY 45 AVERY 46 AVERY 46 AVERY 47 AVERY 48 AVERY 48 AVERY 48 AVERY 49 AVERY 49 AVERY 49 AVERY 49 AVERY 40 AVERY 40 AVERY 40 AVERY 40 AVERY 40 AVERY 41	898 CLEO 898 CLEO ges, fits, limits, 87 CLEO 898 CLEO 898 CLEO ges, fits, limits, 87 CLEO the decaying in the average of the cleo 89 CBAL 84 CLEO 838 CUSB ges, fits, limits, 88 MRK2	COMMENT $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^$	T(45) T(45) T(45) Γ37/Γ weak interaction (45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45)	model or momentum rang calculated. This corresponte technique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ ALUE}\right)$ • • • We do not use the folion of the provide of the provided of the pr	e is chosen. We selected to a limit on V _{Di} e robust than their print improvement in the anything) DOCUMENT ID wing data for average 55 ALAM relies on lepton-kaon We have thus removed the selection with the selection with the selection on lepton-kaon We have thus removed (ℓ+ anything) DOCUMENT ID wing data for average 57 ALAM relies on lepton-kaon We have thus removed the selection will be selected by the selection of lepton-kaon We have thus removed by the selection of lepton-kaon we have thus removed by the selection of lepton-kaon we have thus removed by the selection of lepton-kaon we have thus removed by the selection of lepton-kaon we have thus removed by the selection of lepton-kaon we have thus removed by the selection of lepton-kaon we have the selection of lepton-kaon we have the selection of lepton-kaon we have the selection of lepton-kaon we have	t the most cc view of the most cc view of the view of	nservati on 20, 20. V on 20.	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38} $\Gamma_{45}/\Gamma_{45}/\Gamma_{45}$ $\Gamma_{45}/\Gamma_{45}/\Gamma_{45}/\Gamma_{45}$ Surrement relies on
Test for $\Delta B = \frac{VALUE}{1008}$. $\frac{VALUE}{1008}$. \frac{VALUE} . $\frac{VALUE}{1008}$. $\frac{VALUE}{1008}$. $\frac{VALUE}{1008}$. \frac	= 1 weak neutral current. All $\frac{CL\%}{90}$ AVERY 48 AVERY 45) decays 43% to $B^0 \overline{B}^0$. 10 Avery 45) decays 43% to $B^0 \overline{B}^0$. 10 Avery 46 AVERY 47 AVERY 48 AVERY 49 AVERY 49 AVERY 49 AVERY 49 AVERY 49 AVERY 40 AVERY 41 AVERY 42 AVERY 43 AVERY 45) decays 43% to $B^0 \overline{B}^0$. 10 Avery 45) decays 43% to $B^0 \overline{B}^0$. 11 Average of 1 Avery 12 Avery 13 Avery 14 Avery 15 Avery 16 Avery 17 Avery 18 Ave	898 CLEO 898 CLEO ges, fits, limits, 87 CLEO 898 CLEO 898 CLEO ges, fits, limits, 87 CLEO the decaying in the average of the cleo 89 CBAL 84 CLEO 838 CUSB ges, fits, limits, 88 MRK2	COMMENT $e^+e^- \rightarrow etc.$ etc. • • • $e^+e^- \rightarrow etc.$ corder electro $e^+e^- \rightarrow e^- \rightarrow e^+e^- \rightarrow e^-$ etc. • • • $e^+e^- \rightarrow e^- \rightarrow e^+e^- \rightarrow e^-$ Direct e at Direct e at etc. • • •	T(45) T(45) T(45) Γ37/Γ weak interaction (45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45)	model or momentum rang calculated. This correspontechnique employed is more do not provide a numerica $\Gamma(K^+\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ ALUE}) \bullet \bullet \text{ We do not use the folio} 0.54 \pm 0.07 \pm 0.06$ $55 \text{ ALAM 878 measurement possibility of B mixing.}$ $\Gamma(K^-\ell^+ \text{ anything})/\Gamma(\ell^+ \text{ VALUE}) \bullet \bullet \text{ We do not use the folio} 0.10 \pm 0.05 \pm 0.02$ $56 \text{ ALAM 878 measurement possibility of B mixing.}$ $\Gamma(K^0/\overline{K}^0\ell^+ \text{ anything})/\Gamma \text{ VALUE} \bullet \bullet \text{ We do not use the folio} 0.39 \pm 0.06 \pm 0.04$ $57 \text{ ALAM 878 measurement possibility of B mixing.}$ $\Gamma(c/\overline{c})/\Gamma_{\text{total}} \text{ VALUE} \bullet \bullet \text{ We do not use the folio} 0.39 \pm 0.06 \pm 0.04$ $57 \text{ ALAM 878 measurement possibility of B mixing.}$ $\Gamma(c/\overline{c})/\Gamma_{\text{total}} \text{ VALUE} \bullet \bullet \text{ We do not use the folio} 0.98 \pm 0.16 \pm 0.12$ $58 From the difference between the service of the service o$	e is chosen. We selected to a limit on V _{Di} e robust than their pri improvement in the anything) more proposed to be anything DOCUMENT ID more proposed	t the most cc view of the most cc view of the view of	nservati on 20, 20. V on 20.	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38} $\Gamma_{45}/\Gamma_{45}/\Gamma_{45}$ $\Gamma_{45}/\Gamma_{45}/\Gamma_{45}/\Gamma_{45}$ Surrement relies on
Test for ΔB = tions. VALUE <1.5 × 10 ⁻⁴ ••• We do not us <3.2 × 10 ⁻⁴ 48 Assumes the T(-10 Test for ΔB = tions. VALUE $(F(K^+e^+e^-)/\Gamma_{tc} = 0.0000000000000000000000000000000000$	= 1 weak neutral current. All $\frac{CL\%}{90}$ AVERY 48 AVERY 45) decays 43% to $B^0 \overline{B}^0$. 10 Avery 45 beta neutral current. All $\frac{CL\%}{90}$ AVERY 46 the following data for avera 47 AVERY 48 the following data for avera 49 AVERY 49 AVERY 49 AVERY 40 AVERY 41 AVERY 42 AVERY 43 AVERY 45) decays 43% to $B^0 \overline{B}^0$. 20 AVERY 45) decays 43% to $B^0 \overline{B}^0$. 21 AVERY 45 B^- AVERY 46 AVERAGE 50 AVERY 47 AVERY 50 AVERY 48 AVERY 49 AVERY 49 AVERY 40 AVERY 41 AVERAGE 51 AVERAGE 52 AVERAGE 53 AVERY 44 AVERY 54 AVERY 55 AVERAGE 65 AVERAGE 66 AVERAGE 67 AVERY 68 AVERY 69 AVERY 69 AVERY 69 AVERY 60 AVERY 60 AVERY 60 AVERY 60 AVERY 60 AVERY 61 AVERAGE 61 AVERAGE 62 AVERY 63 AVERY 64 AVERY 65 AVERY 66 AVERY 66 AVERY 67 AVERY 68 AVERY 69 AVERY 69 AVERY 60 AVERY 60 AVERY 60 AVERY 60 AVERY 60 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 61 AVERY 62 AVERY 63 AVERY 64 AVERY 65 AVERY 65 AVERY 66 AVERY 67 AVERY 68 AVE	898 CLEO 898 CLEO ges, fits, limits, 87 CLEO 898 CLEO 898 CLEO ges, fits, limits, 87 CLEO the decaying in the average of the cleo 89 CBAL 84 CLEO 838 CUSB ges, fits, limits, 88 MRK2	comment $e^+e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^+e^- \rightarrow e^-e^- \rightarrow e^$	T(45) T(45) T(45) Γ37/Γ weak interaction (45) T(45)	model or momentum rang calculated. This corresponte technique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ ALUE}\right)$ • • • We do not use the folion of the same properties o	e is chosen. We selected to a limit on V _{Di} e robust than their pri improvement in the anything) more proposed to be anything DOCUMENT ID more proposed	t the most cc view of the most cc view of the view of	nservati on 20, 20. V on 20.	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38} $\Gamma_{45}/\Gamma_{45}/\Gamma_{45}$ $\Gamma_{45}/\Gamma_{45}/\Gamma_{45}/\Gamma_{45}$ Γ_{45}/Γ_{45
Test for $\Delta B = \frac{\text{tions.}}{\text{tions.}}$ $< 1.5 \times 10^{-4}$ • • • • We do not us $< 3.2 \times 10^{-4}$ < 48 Assumes the T(. $\Gamma (K^+ e^+ e^-)/\Gamma_{\text{tr}}$ Test for $\Delta B = \frac{\text{tions.}}{\text{tions.}}$ $< 5 \times 10^{-5}$ • • • We do not us $< 2.1 \times 10^{-4}$ < 49 Assumes the T(. For all of the dec. $(B^0, \overline{B}^0, B^+, \text{or})$ $\Gamma (e^{\pm} \nu_e \text{ hadrons.})$ Only the expe $\frac{\text{VALUE}}{\text{0.0120} \pm 0.007 \pm 0.012}$ 0.112 ± 0.009 ± 0.012 • • • We do not us 0.112 ± 0.009 ± 0.013 0.112 ± 0.009 ± 0.013 0.112 ± 0.009 ± 0.013 0.114 ± 0.019 0.110 ± 0.018 ± 0.016	= 1 weak neutral current. All CL% 90 48 AVERY 48 AVERY 45) decays 43% to B ⁰ B 10 20 49 AVERY 45 decays 43% to B ⁰ B 49 AVERY 45 decays 43% to B ⁰ B 49 AVERY 45 decays 43% to B ⁰ B AVERY 46 the following data for avera 90 AVERY 47 AVERY 48 decays 43% to B ⁰ B AVERY 49 AVERY 49 AVERY 40 decays 43% to B ⁰ B AVERY 40 decays 43% to B ⁰ B AVERY 41 AVERY 42 AVERY 43 decays 43% to B ⁰ B AVERY 45 decays 43% to B ⁰ B AVERY 46 decays 43% to B ⁰ B AVERY 47 AVERY 48 DOCUMENT III AVERAGE 50 WACHS AVERAGE 51 KLOPFEN 6 the following data for avera 10 ONG PAL AIHARA	By TECN 898 CLEO ges, fits, limits, 87 CLEO 898 CLEO 898 CLEO ges, fits, limits, 87 CLEO the decaying I d in the average TECN 89 CBAL 84 CLEO 89 CBAL 84 CLEO 88 CUSB ges, fits, limits, 88 MRK2 86 DLCO 85 TPC	etc. • • • e e e e e e e e e e e e e e e e	T(45) T(45) Γ37/Γ T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45)	model or momentum rang calculated. This corresponte technique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ ALUE}\right)$ • • • We do not use the folion of the same possibility of \$B\$ mixing. $\Gamma\left(K^-\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ ALUE}\right)$ • • • We do not use the folion of the same possibility of \$B\$ mixing. $\Gamma\left(K^-\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ ALUE}\right)$ • • • We do not use the folion of the same possibility of \$B\$ mixing. $\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)/\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)/\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)$ • • • We do not use the folion of the same possibility of \$B\$ mixing. $\Gamma\left(C/\overline{C}\right)/\Gamma_{\text{total}}$ • • • We do not use the folion of the same possibility of \$B\$ mixing. $\Gamma\left(K^0/\overline{K}^0\ell^+ \text{ anything}\right)/\Gamma_{\text{total}}$ • • • We do not use the folion of the same possibility of t	e is chosen. We selected to a limit on V _{Di} e robust than their profile improvement in the anything) more proposed to be a consider to anything more profile in the anything more pr	t the most cc t the most cc t the most cc	onservation 0.20 .	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38} Γ_{45}/Γ_{45} Γ_{45}/Γ_{45} $\Gamma_{45}/\Gamma_{45}/\Gamma_{45}$ $\Gamma_{45}/\Gamma_{45}/\Gamma_{45}/\Gamma_{45}$ $\Gamma_{45}/$
Test for ΔB = tions. VALUE <1.5 × 10 ⁻⁴ ••• We do not us <3.2 × 10 ⁻⁴ 48 Assumes the T(-10 Test for ΔB = tions. VALUE $(F(K^+e^+e^-)/\Gamma_{tc} = 0.0000000000000000000000000000000000$	= 1 weak neutral current. All CL% 90 48 AVERY 48 AVERY 45) decays 43% to B ⁰ B 10 20 49 AVERY 45 decays 43% to B ⁰ B 49 AVERY 45 decays 43% to B ⁰ B 49 AVERY 45 decays 43% to B ⁰ B AVERY 46 the following data for avera 90 AVERY 47 AVERY 48 decays 43% to B ⁰ B AVERY 49 AVERY 49 AVERY 40 decays 43% to B ⁰ B AVERY 40 decays 43% to B ⁰ B AVERY 41 AVERY 42 AVERY 43 decays 43% to B ⁰ B AVERY 45 decays 43% to B ⁰ B AVERY 46 decays 43% to B ⁰ B AVERY 47 AVERY 48 DOCUMENT III AVERAGE 50 WACHS AVERAGE 51 KLOPFEN 6 the following data for avera 10 ONG PAL AIHARA	898 CLEO 898 CLEO ges, fits, limits, 87 CLEO 898 CLEO 898 CLEO ges, fits, limits, 87 CLEO the decaying in the average of the cleo special control of the cleo special	etc. • • • e+ e- → comment e+ e- → co	T(45) T(45) Γ37/Γ T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45) T(45)	model or momentum rang calculated. This corresponte technique employed is more do not provide a numerica $\Gamma\left(K^+\ell^+ \text{ anything}\right)/\Gamma\left(\ell^+ \text{ ALUE}\right)$ • • • We do not use the folion of the same properties o	e is chosen. We selected to a limit on V _{Di} e robust than their pri improvement in the anything) more proposed to be anything DOCUMENT ID more proposed	t the most cc t the most cc t the most cc evious results limit. IECN s, fits, limits, 87B CLEO correlations. d it from the IECN s, fits, limits, 87B CLEO correlations. d it from the IECN s, fits, limits, 87B CLEO correlations. d it from the IECN s, fits, limits, 87B CLEO correlations. d it from the IECN s, fits, limits, 87B CLEO correlations. d it from the	COMME COMME ct. • ct. ct. ct. ct. ct. ct. ct. ct.	ive limit they have while the endpoint N 84, these results Γ_{43}/Γ_{38} Γ_{43}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{44}/Γ_{38} Γ_{45}/Γ_{38} Γ_{46}/Γ_{38}

 $0.17 \pm 0.04 \pm 0.04$

20k 59 BORTOLETTO87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

 $^{59}\,\mathrm{BORTOLETTO}$ 87 uses old MARK III (BALTRUSAITIS 86E) branching ratio for

 $K^-\pi^+\pi^+=0.116\pm0.014\pm0.007$. The product branching ratio for B($B\to D^+$ X) B($D^+\to K^-\pi^+\pi^+$) is 0.019 $\pm0.004\pm0.002$.

$\Gamma(D^0/\overline{D}^0 \text{ anything})/\Gamma_{\text{total}}$ Γ_{47}/Γ	$\Gamma(K^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{54}/Γ
VALUE EVTS DOCUMENT ID TECN COMMENT	VALUE DOCUMENT ID TECN COMMENT
0.39±0.05±0.04 21k 60 BORTOLETTO87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • •	0.85±0.07±0.09 ALAM 878 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • •
0.57±0.14±0.12 61 GREEN 83 CLEO Repl. by BORTO-	seen 73 BRODY 82 CLEO $e^+e^- \rightarrow \Upsilon(45)$
LETTO 87	seen 74 GIANNINI 82 CUSB $e^+e^- \rightarrow \Upsilon(45)$
⁶⁰ BORTOLETTO 87 uses old MARK III (BALTRUSAITIS 86E) branching ratio for $K^-\pi^+$ = 0.056 ± 0.004 ± 0.003. The product branching ratio for B(B \rightarrow D ⁰ X) B(D ⁰ \rightarrow	⁷³ Assuming $\Upsilon(4S) \to B\overline{B}$, a total of $3.38 \pm 0.34 \pm 0.68$ kaons per $\Upsilon(4S)$ decay is found (the second error is systematic). In the context of the standard B-decay model, this
$K^-\pi^+$) is 0.0210 \pm 0.0015 \pm 0.0021.	leads to a value for (b-quark $ ightarrow$ c-quark)/(b-quark $ ightarrow$ all) of 1.09 \pm 0.33 \pm 0.13.
⁶¹ Corrected by us using assumptions B($D^0 \to K^- \pi^+$) = (0.042 ± 0.006). The product branching ratio is B($B^0 \to D^0 X$)B($D^0 \to K^- \pi^+$) = 0.024 ± 0.006 ± 0.004.	⁷⁴ GIANNINI 82 at CESR-CUSB observed 1.58 ± 0.35 K^0 per hadronic event much higher than 0.82 ± 0.10 below threshold. Consistent with predominant $b \rightarrow c$ X decay.
Γ(D*(2010) [±] anything)/Γ _{total} Γ ₄₈ /Γ VALUE EVTS DOCUMENT ID TECN COMMENT	$\Gamma(K^+ \text{ anything})/\Gamma_{\text{total}}$ VALUE DOCUMENT ID TECN COMMENT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• • • We do not use the following data for averages, fits, limits, etc. • •
• • • We do not use the following data for averages, fits, limits, etc. • •	$0.66 \pm 0.05 \pm 0.07$ 75 ALAM 87B CLEO $e^+ e^- \rightarrow \Upsilon(4S)$
	75 ALAM 878 measurement relies on lepton-kaon correlations. It does not consider the
-0.06 LETTO 87	possibility of $B\overline{B}$ mixing. We have thus removed it from the average.
⁶² BORTOLETTO 87 uses old MARK III (BALTRUSAITIS 86E) branching ratios $B(D^0 \rightarrow D^0)$	$\Gamma(K^- \text{ anything})/\Gamma_{\text{total}}$ Γ_{56}/Γ
$K^-\pi^+)=0.056\pm0.004\pm0.003$ and also assumes B($D^*(2010)^+\to D^0\pi^+)=0.60^+0.08$. The product branching ratio for B($B\to D^*(2010)^+)$ B($D^*(2010)^+\to D^0\pi^+$)	<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> • • • We do not use the following data for averages, fits, limits, etc. • • •
$D^0\pi^+$) is $0.13 \pm 0.02 \pm 0.012$.	$0.19\pm0.05\pm0.02$ 76 ALAM 87B CLEO $e^+e^- \rightarrow \Upsilon(4S)$
63 V-A momentum spectrum used to extrapolate below $p=1$ GeV. We correct the value	76 ALAM 878 measurement relies on lepton-kaon correlations. It does not consider the
assuming B($D^0 \to K^-\pi^+$) = 0.042 ± 0.006 and B($D^{*+} \to D^0\pi^+$) = 0.6 $^{+0.08}_{-0.15}$. The product branching fraction is B($B \to D^{*+}$ X)B($D^{*+} \to \pi^+D^0$)B($D^0 \to K^-\pi^+$)	possibility of $B\overline{B}$ mixing. We have thus removed it from the average.
$= (68 \pm 15 \pm 9) \times 10^{-4}.$	$\Gamma(K^0/\overline{K}^0 \text{ anything})/\Gamma_{\text{total}}$ Γ_{57}/Γ
$\Gamma(D_s^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{49}/Γ	VALUE DOCUMENT ID TECN COMMENT
VALUE DOCUMENT ID TECN COMMENT	0.63±0.06±0.06 ALAM 87B CLEO e^+e^- → $\Upsilon(45)$
0.125±0.035 OUR AVERAGE 0.13 ±0.05 6^4 ALBRECHT 87H ARG $e^+e^- \rightarrow \Upsilon(45)$	$\Gamma(\phi \text{ anything})/\Gamma_{\text{total}}$ Γ_{58}/Γ VALUE DOCUMENT ID TECN COMMENT
0.13 ±0.05 ALBRECH BIR ARG $e^+e^- \rightarrow \Upsilon(45)$ 0.12 ±0.05 65 HAAS 86 CLEO $e^+e^- \rightarrow \Upsilon(45)$	VALUEDOCUMENT IDTECNCOMMENT $0.023 \pm 0.006 \pm 0.005$ BORTOLETTO86CLEO $e^+ e^- \rightarrow \Upsilon(4S)$
⁶⁴ ALBRECHT 87H measure B($B \to D_S^+ X$) B($D_S^+ \to \phi \pi^+$) = 0.0042 ± 0.0009 ± 0.0006	
and we obtain the result shown by dividing by B($D_S^+ \to \phi \pi^+$) = 0.033 \pm 0.010. 46 \pm 16% of $B \to D_S$ X decays are 2-body.	$\Gamma(K^*(892)\gamma)/\Gamma_{\text{total}}$ Γ_{59}/Γ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interac-
65 HAAS 86 measure B($B \rightarrow D_5^+$ X)B($D_5^+ \rightarrow \phi \pi^+$) = 0.0038 \pm 0.001 and we obtain	tions. VALUE CL% DOCUMENT ID TECN COMMENT
the result shown by dividing by B($D_S^+ o \phi \pi^+$) = 0.033 \pm 0.010. 64 \pm 22% decays	$<2.4 \times 10^{-4}$ 90 ALBRECHT 88H ARG $e^+e^- \rightarrow \Upsilon(45)$
are 2-body.	$\Gamma(K_1(1400)\gamma)/\Gamma_{\text{total}}$ Γ_{60}/Γ
$\Gamma(\overline{D}^0\pi^+, D^-\pi^+, \overline{D}^*(2010)^0\pi^+, \text{ or } D^*(2010)^-\pi^+)/\Gamma_{\text{total}}$ Γ_{50}/Γ	$\Gamma(K_1(1400)\gamma)/\Gamma_{total}$ Γ_{60}/Γ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interac-
<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> • • • We do not use the following data for averages, fits, limits, etc. • • •	tions. VALUE CL% DOCUMENT ID TECN COMMENT
0.0162 ± 0.0032 66 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	$<4.1 \times 10^{-4}$ 90 ALBRECHT 88H ARG $e^+e^- \rightarrow \Upsilon(4S)$
$0.020 \pm 0.006 \pm 0.005$ 67 GILES 84 CLEO Repl by BEBEK 87	$\Gamma(K_2^*(1430)\gamma)/\Gamma_{\text{total}}$ Γ_{61}/Γ
⁶⁶ BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$. This measurement is independent	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interac-
of D and $D^*(2010)$ meson branching fractions. 67 No dependence on D used fast- π momentum.	tions. <u>VALUE CL% DOCUMENT ID TECN COMMENT</u>
- /	$< 8.3 \times 10^{-4}$ 90 ALBRECHT 88H ARG $e^+ e^- ightarrow \Upsilon(45)$
Γ(Charmed-baryon anything)/Γ _{total} Γ ₅₁ /Γ <u>VALUE</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>	$\Gamma(K_3^*(1780)\gamma)/\Gamma_{\text{total}}$ Γ_{62}/Γ
<0.112 $\overline{\qquad \qquad }$ 90 $\overline{\qquad }$ 68 ALAM 87 CLEO $\overline{\qquad } e^{+} e^{-} \rightarrow \Upsilon (45)$	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.
• • We do not use the following data for averages, fits, limits, etc. • •	VALUE CL% DOCUMENT ID TECN COMMENT
0.14 \pm 0.09 69 ALBRECHT 88E ARG $e^+e^- \rightarrow \Upsilon(45)$	$<3.0 \times 10^{-3}$ 90 ALBRECHT 88H ARG $e^+e^- \rightarrow \Upsilon(45)$
68 Assuming all baryons result from charmed baryons, ALAM 86 conclude the branching fraction is 7.4 \pm 2.9%. The limit given above is model independent.	$\Gamma(p \text{ anything})/\Gamma_{\text{total}}$ Γ_{63}/Γ
⁶⁹ ALBRECHT 88E measured B($B \to \Lambda_C^+ X$)B($\Lambda_C^+ \to pK^-\pi^+$) = (0.30 ± 0.12 ± 0.06)%	Values are for $[B(B \to p X) + B(B \to \overline{p} X)]/2$ and include protons from Λ decay.
and used B($\Lambda_c^+ \to p K^- \pi^+$) = (2.2 ± 1.0)% from ABRAMS 80 to obtain above number.	$\frac{VALUE}{0.082 \pm 0.005 \pm 0.010}$ $\frac{EVTS}{2}$ $\frac{DOCUMENT ID}{10.000}$ $\frac{TECN}{2}$ $\frac{COMMENT}{2}$ $\frac{COMMENT}{2}$ $\frac{1}{2}$
$\Gamma(J/\psi(1S) \text{ anything})/\Gamma_{\text{total}}$ Γ_{52}/Γ	• • • We do not use the following data for averages, fits, limits, etc. • • •
VALUE (units 10 ⁻²) CL% EVTS DOCUMENT ID TECN COMMENT 1.12±0.18 OUR AVERAGE	>0.021 78 ALAM 83B CLEO $e^+e^- \rightarrow \Upsilon(45)$
$1.07\pm0.16\pm0.22$ 120 ⁷⁰ ALBRECHT 87D ARG $e^+e^- ightarrow \Upsilon(4S)$	77 ALBRECHT 89k include direct and nondirect protons.
1.09 \pm 0.16 \pm 0.21 52 ALAM 86 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	⁷⁸ ALAM 83B reported their result as $> 0.036 \pm 0.006 \pm 0.009$. Data are consistent with equal yields of p and \overline{p} . Using assumed yields below cut, B($B \rightarrow p + X$) = 0.03 not
1.4 $^{+0.6}_{-0.5}$ 7 71 ALBRECHT 85H ARG $e^+e^- \rightarrow \Upsilon(45)$	including protons from Λ decays.
• • • We do not use the following data for averages, fits, limits, etc. • • • 1.1 ±0.21±0.23 46 72 HAAS 85 CLEO Repl. by ALAM 86	$\Gamma(p \text{ (direct) anything})/\Gamma_{\text{total}}$ Γ_{64}/Γ
1.1 ±0.21±0.23 46 72 HAAS 85 CLEO Repl. by ALAM 86 <4.9 90 MATTEUZZI 83 MRK2 E ^{ee} _{CM} = 29 GeV	VALUE EVTS DOCUMENT ID TECN COMMENT
⁷⁰ ALBRECHT 87D find the branching ratio for J/ψ not from $\psi(2S)$ to be 0.0081 \pm 0.0023.	0.055±0.016 1220 ⁷⁹ ALBRECHT 89K ARG e^+e^- → $\Upsilon(45)$
⁷¹ Statistical and systematic errors were added in quadrature. ALBRECHT 85H also report a CL = 90% limit of 0.007 for $B \to J/\psi(1S) + X$ where $m(X) < 1$ GeV.	79 ALBRECHT 89K subtract contribution of Λ decay from the inclusive proton yield.
⁷² Dimuon and dielectron events used.	$\Gamma(\Lambda \text{ anything})/\Gamma_{\text{total}}$ Γ_{65}/Γ
$\Gamma(\psi(2S) \text{ anything})/\Gamma_{\text{total}}$ Γ_{53}/Γ	<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> 0.042±0.005±0.006 943 ALBRECHT 89K ARG $e^+e^- \rightarrow \Upsilon(45)$
VALUE EVTS DOCUMENT ID TECN COMMENT	• • • We do not use the following data for averages, fits, limits, etc. • • •
0.0046±0.0017±0.0011 8 ALBRECHT 87D ARG $e^+e^- \to \Upsilon(4S)$	>0.011 80 ALAM 83B CLEO $e^+e^- ightarrow \Upsilon(4S)$
	80 ALAM 83B reported their result as $> 0.022 \pm 0.007 \pm 0.004$. Values are for $(B(\Lambda X) + B(\overline{\Lambda} X))/(2 + B(\overline$
	X))/2. Data are consistent with equal yields of p and \bar{p} . Using assumed yields below cut, B($B \rightarrow \Lambda$ X) = 0.03.
	$\Gamma(\Xi^- \text{ anything})/\Gamma_{\text{total}}$ Γ_{66}/Γ
	· · · · · · · · · · · · · · · · · · ·
	VALUE EVTS DOCUMENT ID TECN COMMENT

 B^{\pm} , B^{0}

Γ(baryons anythi	-,,	DOCUMENT ID	TECN	COMMENT	Γ ₆₇ /Γ
0.076±0.014		A .	89K ARG	$e^+ e^- \rightarrow \Upsilon(4$	5)
direct protons a (5.5 ± 1.6)% for	and (4.2 \pm 0.5 or neutron proc	sult by adding their \pm 0.6)% for inclusduction and add it stain (7.6 \pm 1.4)%.	ive A prod	uction. They the	n assume
$\Gamma(ho\overline{ ho}$ anything)/	$\Gamma_{ ext{total}}$				Γ ₆₈ /Γ
VALUE	EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT	
0.025 ±0.002 ±0.	002 918	ALBRECHT	89k ARG	$e^+ e^- \rightarrow \Upsilon(4$	5)
$\Gamma(\Lambda \overline{\rho} \text{ anything})/$					Γ ₆₉ /Γ
VALUE	EVTS	DOCUMENT ID		COMMENT	
$0.023 \pm 0.004 \pm 0.00$	3 165	ALBRECHT	89k ARG	$e^+ e^- \rightarrow \Upsilon(4$	5)
$\Gamma(\Lambda\overline{\Lambda} \text{ anything})/$					Γ ₇₀ /Γ
VALUE (TECN	COMMENT	<u> </u>
< 0.0088	90 12	ALBRECHT	89k ARG	$e^+ e^- \rightarrow \Upsilon(4$	5}
$[\Gamma(e^+e^-\text{ anythin})]$	(μ^+) = 1 weak neutr	μ^- anything)]/[total		Γ ₇₁ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
< 0.0024	90	⁸² BEAN	B7 CLEO	$e^+ e^- \rightarrow \Upsilon(4$	5)
• • • We do not us	se the following	g data for averages,	fits, limits,	etc. • • •	
<0.0062 <0.008	90 90		84 CLEO 83 MRK2	Repl. by BEAN $E_{cm}^{ee} = 29 \text{ GeV}$	87
⁸² BEAN 87 report ⁸³ Determine ratio $\Gamma(e^+e^- \text{ anything}$ Test for $\Delta B = VALUE$	of B ⁺ to B ⁰	semileptonic decays	to be in th	ne range 0.25–2.9	
<0.0024 OUR LIMI					
(0.0024 OOK EIIIII	00, 30%	anything) $/\Gamma_{\text{tot}}$		g, γ (μ μ	
• • • We do not us	se the following	data for averages,		etc. • • •	
< 0.05	90	BEBEK	B1 CLEO	$e^+ e^- \rightarrow \Upsilon(4$	S)
VALUE	= 1 weak neutr <u>CL%</u>	DOCUMENT ID			
<0.0024 OUR LIMI	II Our 90%	CL limit, using [Γ(ε anything)]/Γ _{tot:}		hing) + $\Gamma(\mu^+ \mu^-)$	
• • • We do not us	se the following	,		etc. • • •	
<0.02	95			Ecm = 34.5 Ge\	,
V.02	,,,				
<0.007	95	ADEVA :			/\د
<0.007	95 95			$E_{cm}^{ee} = 30-38 \text{ G}$	
<0.007 <0.007 <0.017	95 95 90	BARTEL	38 JADE	$E_{\text{Cm}}^{\text{ee}} = 30-38 \text{ G}$ $E_{\text{Cm}}^{\text{ee}} = 33-37 \text{ G}$ $e^+e^- \rightarrow \Upsilon(4.6)$	eV

REFERENCES FOR B±

ALBRECHT 90	PL B234 409	Glaeser, Harder, Krueger+	(ARGUS Collab.)
FULTON 90		-Hempstead, Jensen, Johnson+	(CLEO Collab.)
WAGNER 90		+Hinshaw, Ong, Snyder-	(Mark II Collab.)
ALBRECHT 89		+Glaeser, Harder, Krueger+	(ARGUS Collab.)
ALBRECHT 89		-Boeckmann, Glaeser, Harder	(ARGUS Collab.)
AVERILL 89		+ Biockus. Brabson+	(HRS Collab.)
AVERY 89		+ Besson, Garren, Yelton+	(CLEO Collab.)
BEBEK 89		+Berkelman, Blucher+	(CLEO Collab.)
BORTOLETTO 89		+Goldberg, Horwitz, Mestayer+	(CLEO Collab.)
BRAUNSCH 89		Braunschweig, Gerhards, Kirschfink	(TASSO Collab.)
ONG 89		- Jaros, Abrams, Amidei, Baden+	(Mark II Collab.)
WACHS 89		+Antreasyan, Bartels, Bieler+	(Crystal Bail Collab.)
ALBRECHT 88		+ Boeckmann. Glaeser-	(ARGUS Collab.)
ALBRECHT 88		-Boeckmann, Glaeser -	(ARGUS Collab.)
ALBRECHT 88		- Boeckmann, Glaeser+	(ARGUS Collab.)
ALBRECHT 88		- Boeckmann, Glaeser -	(ARGUS Collab.)
KLEM 88		+Atwood. Barish +	(DELCO Collab.)
ONG 88		+Weir, Abrams, Amidei+	(Mark II Collab.)
ALAM 87		+ Kitukama, Kim, Li+	(CLEO Collab.)
ALAM 87		+Katayama, Kim, Sun+	(CLEO Collab.)
ALBRECHT 87		-Binder, Boeckmann, Glaser+	(ARGUS Collab.)
ALBRECHT 87		+Andam, Binder, Boeckmann+	(ARGUS Collab.)
ALBRECHT 87		-Binder, Boeckmann, Glaser+	(ARGUS Collab.)
ASH 87	PRL 58 640	-Band, Bloom, Bosman-	(MAC Collab.)
AVERY 87		-Besson, Bowcock, Giles+	(CLEO Collab.)
BARTEL 87	ZPHY C33 339	-Becker, Felst, Haidt+	(JADE Collab.)
BEAN 87	PR D35 3533	-Bobbink, Brock, Engler-	(CLEO Collab.)
BEBEK 87	PR D36 1289	- Berkelman, Blucher, Cassel -	(CLEO Collab.)
BEHRENDS 87	PRL 59 407	Morrow, Guida, Guida -	(CLEO Collab.)
BORTOLETTO 87	PR D35 19	+Chen, Garren, Goldberg+	(CLEO Collab.)
BROM 87	PL B195 301	-Abachi, Akerlof, Baringer+	(HRS Collab.)
WU 87	Lepton-Photon Conf.		(WISC, DESY)
DESY 87/164	and CERN-EP/87-235		
ALAM 86	PR D34 3279	+Katayama, Kim, Sun :	(CLEO Collab.)
BALTRUSAIT 86	E PRL 56 2140	Baltrusaitis, Becker, Blaylock, Brown	+ (Mark III Collab.)
BARTEL 86	B ZPHY C31 349	-Becker, Cords, Felst, Haidt+	(JADE Collab.)
BORTOLETTO 86	PRL 56 800	~Chen, Garren, Goldberg+	(CLEO Collab.)

HAAS PAL	86 86	PRL 56 2781 PR D33 2708	+Hempstead, Jensen, Kagan+ Atwood, Barish, Bonneaud+	(CLEO Collab.)
PDG	86	PL 170B	Aguilar-Benitez, Porter+	(DELCO Collab.)
AIHARA	85	ZPHY C27 39	+Alston-Garnjost, Badtke, Bakken+	(TPC Collab.)
AL BANESE	85	PL 158B 186	+Alpe, Aoki+ (BARI, CERN, DL	
WA75 exp			+Aipe, Auxi+ (BARI, CERN, DC	OC, LOUC, NAGO+)
ALBRECHT	85H	PL 162B 395	-Binder, Harder-	(ARGUS Collab.)
BARTEL	85.1	PL 163B 277	- Becker, Cords, Feist+	(JADE Collab.)
CSORNA	85	PRL 54 1894	Garren, Mestayer, Panvini+	(CLEO Collab.)
HAAS	85	PRL 55 1248	+Hemostead, Jensen, Kagan+	(CLEO Collab.)
ALTHOFF	84G	ZPHY C22 219	→ Braunschweig, Kirschfink+	(TASSO Collab.)
ALTHOFF	84H	PL 149B 524	- Braunschweig, Kirschfink+	(TASSO Collab.)
ALTHOFF	84J	PL 146B 443	- Branschweig, Kirschfink	(TASSO Collab.)
AVERY	84	PRL 53 1309	- Bebek, Berkelman, Cassel+	(CLEO Collab.)
CHEN	84	PRL 52 1084	+Goldberg, Horwitz, Jawahery+	(CLEO Collab.)
GILES	84	PR D30 2279	+Hassard, Hempstead, Kinoshita+	(CLEO Collab.)
KLEM	84	PRL 53 1873	+Dubois, Young, Atwood+	(DELCO Collab.)
KOOP	84	PRL 52 970	+Sakuda, Atwood, Baillon+	(DELCO Collab.)
LEVMAN	84	PL 1418 271	+Sreedhar, Han, Imlay+	(CUSB Collab.)
ADEVA	83	PRL 50 799	-Barber, Becker, Berdugo+	(Mark-J Collab.)
ADEVA	83B	PRL 51 443	+Barber, Becker, Berdugo+	(Mark-J Collab.)
ALAM	83B	PRL 51 1143	-Csorna, Garren, Mestayer+	(CLEO Collab.)
BARTEL	83B	PL 132B 241	+Becker, Bowdery, Cords+	(JADE Collab.)
FERNANDEZ	83B	PRL 51 1022	+Ford, Read, Smith+	(MAC Collab.)
FERNANDEZ	83D	PRL 50 2054	+Ford, Read, Smith+	(MAC Collab.)
GREEN	83	PRL 51 347	 Hicks, Sannes, Skubic+ 	(CLEO Collab.)
KLOPFEN	83B	PL 130B 444	Klopfenstein, Horstkotte+	(CUSB Collab.)
LOCKYER	83	PRL 51 1316	+ Jaros, Nelson, Abrams+	(Mark # Collab.)
MATTEUZZI	83	PL 129B 141	+Abrams, Amidei, Blocker+	(Mark II Collab.)
NELSON	83	PRL 50 1542	+Blondel, Trilling, Abrams+	(Mark II Collab.)
BARTEL	82C	PL 114B 71	+ Cords, Dittmann, Eichler+	(JADE Collab.)
BRODY	82	PRL 48 1070	+Chen, Goldberg, Horwitz+	(CLEO Collab.)
GIANNINI	82	NP B206 1	+ Finocchiaro, Franzini+	(CUSB Collab.)
BEBEK	81	PRL 46 84	+Haggerty, izen, Longuemare+	(CLEO Collab.)
CHADWICK	81	PRL 46 88	+Ganci, Kagar, Kass+	(CLEO Collab.)
ABRAMS	80	PRL 44 10	- Alam, Blocker, Boyarski -	(\$LAC, LBL)
		OT	HER RELATED PAPERS -	
		01	HER RELATED PAPERS	
SCHINDLER	88		tron-Positron Physics 234	(SLAC)
SCHUBERT	87	and P. Soeding, W IHEP-HD/87-7	orld Scientific, Singapore	(HEID)
		- Uppsala, Proc.,	Vol. 2. p. 791	(HEID)
_ 5 com			100 DE P. 110	

 B^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Quantum numbers not measured. Values shown are quark-model predictions. See also the Listings for the ${\it B}$ (following this entry) for measurements which do not identify the charge state.

For measurements of the B mean life and for branching ratios in which the charge of the decaying B is not determined, see the B^\pm section.

In this issue we have attempted to bring the oldest measurements of branching ratios up to date wherever possible, and to explicitly state the input assumptions that the author(s) have made. Our own best fits to the ${\cal D}$ branching fractions now differ somewhat from the ones that have been used to calculate the ${\cal B}$ branching fractions. Whenever possible, the product branching fractions (the measured quantities) have been given.

See the Note at the beginning of the ${\cal B}^\pm$ section.

BO MASS

The fit uses the B^\pm and B^0 mass and mass difference measurements. These experiments actually measure the difference between half of E_{CM} and the B mass.

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
5279.4 ± 1.5 OUR FIT					
5278.8 ± 2.3 OUR AVI	ERAGE				
$5278.2 \pm 1.0 \pm 3.0$	40			$e^+ e^- \rightarrow \Upsilon(4S)$	
$5279.5 \pm 1.6 \pm 3.0$	7	1 ALBRECHT	87D ARG	$e^+ e^- \rightarrow \Upsilon(45)$	
• • • We do not use	the following	ng data for averag	es, fits, limits,	etc. • • •	
$5280.6 \pm 0.8 \pm 2.0$		² BEBEK	87 CLEO	$e^+ e^- \rightarrow \Upsilon(45)$	
¹ Found using fully	reconstruct	ed decays with J	ψ. ALBRECH	HT 87D assume $m(\Upsilon)$	45))

Found using fully reconstructed decays with J/ψ . ALBRECHT 87D assume $m(\Upsilon(4S)) = 10577$ MeV.

2 Redundant with data in the mass difference listing below. Enters fit via the mass difference.

$|m_{B_1^0} - m_{B_2^0}|$, MASS DIFFERENCE

VALUE (10 ⁻¹⁰ MeV) 4.0±0.8 OUR AVERAGE	DOCUMENT ID	 TECN	COMMENT	_
3.8 ± 1.1 4.1 ± 1.1	³ ARTUSO ³ ALBRECHT		$e^+e^- \rightarrow \Upsilon(45)$ $e^+e^- \rightarrow \Upsilon(45)$	i

 3 Calculated by us using $\Delta m = (2r/(1-r))^{1/2}\hbar/\tau_{B^0}$ where $\tau_{B^0} = (11.8 \pm 1.1) \times 10^{-13} \, \mathrm{s}$ and r is the $B^0-\overline{B}^0$ mixing ratio $\Gamma(B^0 \to \overline{B}^0 \to \mu^-$ anything)/ $\Gamma(B^0 \to \mu^+$ anything).

BO - B+ MASS DIFFERENCE

The fit uses the B^{\pm} and B^0 mass and mass difference measurements.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1.9±1.1 OUR FIT				
$2.0 \pm 1.1 \pm 0.3$	⁴ BEBEK	87	CLEO	$e^+ e^- \rightarrow \Upsilon(45)$

⁴ BEBEK 87 actually measure the difference between half of E_{CM} and the B^{\pm} or B^{0} mass, so the B^0-B^\pm mass difference is more accurate. Assume $m(\Upsilon(45))=10580$ MeV.

MEAN LIFE RATIO $\tau(B^0)/\tau(B^+)$

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
0.44 to 2.05	90	⁵ BEAN	87B CLEO	$e^+ e^- \rightarrow \Upsilon(45)$

⁵ BEAN 87B assume the fraction of $B^0 \overline{B}^0$ events at the $\Upsilon(4S)$ is 0.41.

BO DECAY MODES

 \overline{B}^0 modes are charge conjugates of the modes below. Decays in which the charge of the B is not determined are in the B^\pm section.

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ1	μ^+ anything		
Γ2	$D^-\ell^+\nu\ (\ell=e\ { m or}\ \mu)$	$(1.8 \pm 0.8) \%$	
Γ3	$D^*(2010)^- \ell^+ \nu \ (\ell = e \text{ or } \mu)$	$(9.8 \pm 1.5)\%$	
Γ4	$\hat{D}^*(20\dot{1}0)^- e^+ \hat{\nu}_e$	` ,	
Γ ₅	$D^*(2010)^- \mu^+ \nu_{\mu}$		
Г6	$D^-\pi^+$	$(3.7 \pm 1.5) \times 10^{-1}$	-3
Γ7	$D_{-}^{-}\rho^{+}$	$(2.2 \pm 1.5)\%$	
Γa	$\overline{D}^0\pi^+\pi^-$	< 3.9 %	90%
Γģ	$\overline{\mathcal{D}}^0 ho^0$	< 3 × 10 ⁻	
Γ ₁₀	$D^*(2010)^-\pi^+$	$(3.3^{+1.2}_{-1.0}) \times 10^{-1}$	
Γ ₁₁	$D^*(2010)^-\pi^+\pi^0$	$(1.5\pm1.1)\%$	
Γ ₁₂	$D^*(2010)^- \rho^+$	(8 +7) %	
Γ ₁₃	$D^*(2010)^-\pi^+\pi^+\pi^-$	(3.3±1.8) %	
Γ ₁₄	$J/\psi(1S)K^0$	(3.3±1.8) % < 5 × 10 ⁻¹	3 90%
「14 「15	$J/\psi(15)K^{+}\pi^{-}$	< 1.3 × 10	
Γ ₁₆	$J/\psi(1S)K^*(892)^0$	(3.7±1.3) × 10	
T ₁₇	$\pi^{+}\pi^{-}$	< 9 × 10 ⁻	
Γ ₁₈	$\pi^{\pm} \rho^{\mp}$	$[a] < 6.1 \times 10^{-}$	
Γ ₁₉	$\pi^{\pm} a_1 (1260)^{\mp}$	$[a] < 0.1 \times 10^{-}$ $[a] < 5.7 \times 10^{-}$	
L ₂₀	$\pi^{\pm} a_{2}(1320)^{\mp}$	$[a] < 3.7 \times 10^{-1}$	
\(\(\gamma_{21}\)	$\rho^{0} \rho^{0}$	< 3.4 × 10	
Γ22	$a_1(1260)^+ a_1(1260)^-$	< 3.2 × 10	
Γ23	$K^{+}\pi^{-}$	< 9 × 10	
Γ24	$\kappa^0 \rho^0$	< 5.8 × 10 ⁻	
Γ ₂₅	$\kappa^0 \phi$	< 4.9 × 10	
Γ ₂₆	K ⁰ f ₀ (975)	< 4.2 × 10 ⁻	
Γ27	$K^*(892)^+\pi^-$	< 4.4 × 10	
Γ28	$K^*(892)^0 \rho^0$	< 6.7 × 10 ⁻	
Γ29	$K^*(892)^0 \phi$	< 4.4 × 10	
Γ30	K*(892) ⁰ f ₀ (975)	< 2.0 × 10	
Γ31	$K^*(892)^0 \gamma$	< 2.8 × 10 ⁻	
Γ32	$K_1(1270)^0\gamma$	< 7.8 × 10	
Γ33	$K_1(1400)^0 \gamma$	< 4.8 × 10	
Γ ₃₄	$K_2^*(1430)^0 \gamma$	< 4.4 × 10 ⁻	
Γ35	$K^*(1680)^0\gamma$	< 2.2 × 10	
Γ ₃₆	$K_3^*(1780)^0 \gamma$	< 1.1 %	90%
Γ ₃₇	$K_4^*(2045)^0\gamma$	< 4.8 × 10	
Γ ₃₈	$p\overline{p}$	< 4 × 10 ⁻	
Γ39	$p\overline{p}\pi^+\pi^-$	$(6.0\pm3.0)\times10^{-}$	
Γ40	$p\overline{\Lambda}\pi^-$	< 2.0 × 10 ⁻	
Γ41	$\Delta^0 \overline{\Delta}^0$	< 1.8 × 10 ⁻	
Γ42	$\Delta^{++}\Delta^{}$	< 1.3 × 10 ⁻	
	Lepton Family number (La		•

neutral current (FC), or decay via Mixing (MX) modes

	$\mu^+\mu^-$	FC	< 5	× 10 ⁻⁵	90%
ľ ₄₄	e+ e-	FC	< 3	\times 10 ⁻⁵	90%
Γ45	$\mathcal{K}^0_{-}\mu^+\mu^-$	FC	< 4.5	× 10 ⁻⁴	90%
Γ ₄₆	$K^0 e^+ e^-$	FC	< 6.5	× 10 ⁻⁴	90%
	$e^{\pm}\mu^{\mp}$	LF	[a] < 4	× 10 ⁻⁵	90%
Γ48	μ^- anything (via \overline{B}^0)	MX			

Measurements which do not identify the charge state of B appear in the B^{\pm} section.

[a] Value is for the sum of the charge states indicated.

BO BRANCHING RATIOS

For branching ratios in which the charge of the decaying B is not determined, see the B^{\pm} section.

$$\Gamma(D^-\ell^+\nu\;(\ell=e\;\text{or}\;\mu))/\Gamma_{\text{total}} \qquad \qquad \Gamma_2/\Gamma_{\text{COMMENT ID}} \qquad \qquad \Gamma_{\text{COMMENT}} \qquad \qquad \Gamma_2/\Gamma_{\text{COMMENT ID}} \qquad \qquad \Gamma_{\text{COMMENT ID}} \qquad \qquad \Gamma_{\text{COMMENT ID}} \qquad \qquad \Gamma_{\text{COMMENT ID}} \qquad \Gamma_{\text{C$$

$[\Gamma(D^*(2010)^-e^+\nu$	$_{e}) + \Gamma(I$	$0*(2010)^{-} \mu^{+} \nu_{\mu}$	$_{\mu})]/\Gamma_{total}$		$(\Gamma_4 + \Gamma_5)/\Gamma$
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
0.098 ± 0.015 OUR AV	ERAGE				
$0.120 \pm 0.020 \pm 0.028$		7 ALBRECHT	89J ARG	$e^+ e^- \rightarrow$	Y(45)
$0.092 \pm 0.010 \pm 0.014$		7 ALBRECHT 8 BORTOLETT	O89B CLEO	$e^+ e^- \rightarrow$	T(45)
• • • We do not use t	he followir				` '
		9 ALBRECHT	89c ARG	$e^+e^- \rightarrow$	T(45)
$0.140 \pm 0.024 \pm 0.038$	47	10 ALBRECHT	87) ARG	Repl. by A	L-

⁷ ALBRECHT 89J is ALBRECHT 87J value rescaled using B($D^*(2010)^- \rightarrow D^0 \pi^-$) = | $0.57 \pm 0.04 \pm 0.04$.

8 We have taken 2 times the BORTOLETTO 89B value to get the sum for electrons and muons. The measurement suggests a \emph{D}^* polarization parameter value $lpha=0.65\pm0.66\pm$ 0.25. Assumes the $\Upsilon(45)$ decays 50% to B^0B^0 , $B(D^0 \to K^-\pi^+) = 4.2 \pm 0.4 \pm 0.4\%$, $B(D^0 \to K^-\pi^+\pi^-\pi^+) = 9.1 \pm 1.3 \pm 0.4\%$, and $B(D^{*+} \to D^0\pi^+) = 57 \pm 4 \pm 4\%$. ⁹ The measurement of ALBRECHT 89c suggests a D^* polarization γ_L/γ_T of 0.85 \pm 0.45. or $\alpha = 0.7 \pm 0.9$.

10 ALBRECHT 87J assume μ -e universality, the B($\Upsilon(4S) \rightarrow B^0 \overline{B}^0$) = 0.45, the B($D^0 \rightarrow B^0 \overline{B}^0$) $K^-\pi^+$) = (0.042 ± 0.004 ± 0.004), and the B(D^* (2010) $^- \rightarrow D^0\pi^-$) = 0.49 ± 0.08.

 11 ALBRECHT 88 κ assumes ${\it B}^{0} \, \overline{\it B}^{0} : {\it B}^{+} \, {\it B}^{-}$ production ratio is 45:55.

¹²BEBEK 87 assume the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}^0$ and $B(D^- \rightarrow K^+ \pi^- \pi^-) =$ $(9.1 \pm 1.3 \pm 0.4)\%$

$\Gamma(D^-\rho^+)/\Gamma_{ ext{total}}$					Γ_7/Γ
VALUE	EVT5	DOCUMENT ID	TECN	COMMENT	
$0.022 \pm 0.012 \pm 0.009$	6	13 ALBRECHT	88K ARG	e ⁺ e [−] →	↑ (45)
13	_	∩ = 0 - +			

¹³ALBRECHT 88k assumes $B^0\overline{B}^0:B^+B^-$ production ratio is 45:55. $\Gamma(\overline{D}^0\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_8/Γ VALUE CL% EVTS DOCUMENT ID TECN COMMENT 14 BEBEK < 0.039 90 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

¹⁵ BEHRENDS 83 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 5 ¹⁴ BEBEK 87 assume the $\Upsilon(45)$ decays 43% to $B^0 \, \overline{B}^0$. B($D^0 \to K^- \pi^+$) = (4.2 ± 0.4 ±

0.4)% and B($D^0 \rightarrow K^-\pi^+\pi^+\pi^-$) = (9.1 ± 0.8 ± 0.8)% were used. 15 Corrected by us using assumptions: B($D^0 \rightarrow K^-\pi^+$) = (0.042 \pm 0.006) and $B(\Upsilon(45) \rightarrow B^0 \overline{B}^0) = 0.40 \pm 0.02$. The product branching ratio is $B(B^0 \rightarrow B^0 \overline{B}^0) = 0.40 \pm 0.02$. $\overline{D}^0\pi^+\pi^-)B(\overline{D}^0\to K^+\pi^-)=(0.39\pm0.26)\times10^{-2}$

 $\Gamma(\overline{D}^0\rho^0)/\Gamma_{\text{total}}$ Γ_9/Γ DOCUMENT ID TECN COMMENT 4 16 ALBRECHT 88K ARG $e^+e^- \rightarrow \Upsilon(4S)$ < 0.003 90 ¹⁶ ALBRECHT 88K assumes $B^0 \overline{B}^0: B^+ B^-$ production ratio is 45:55.

 $\Gamma(D^*(2010)^-\pi^+)/\Gamma_{\text{total}}$ Γ_{10}/Γ DOCUMENT ID TECN COMMENT $0.0033^{+\,0.0012}_{-\,0.0010}$ OUR AVERAGE 17 ALBRECHT 87c ARG $e^+ \, e^- \, \rightarrow \, \Upsilon(4S)$ $0.0027 \pm 0.0014 \pm 0.0010$ $0.0031 + 0.0017 + 0.0011 \\ -0.0013 - 0.0007$ 18 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 19 ALBRECHT

0.017 ±0.005 ±0.005 ²⁰ GILES 84 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 41 17 ALBRECHT 87c use PDG 86 branching ratios for D and D*(2010) and assume $B(\Upsilon(4S) \to B^+B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0\overline{B}^0) = 45\%$.

86F ARG $e^+e^- \rightarrow \Upsilon(4S)$

 $0.0035 \pm 0.002 \pm 0.002$

¹⁸ BEBEK 87 assume the T(45) decays 43% to $B^0 \overline{B}^0$. B($D^*(2010)^+ \rightarrow \pi^+ D^0$) =

¹⁹ ALBRECHT 86F uses pseudomass that is independent of D^0 and D^+ branching ratios. 20 Assumes B($D^*(2010)^+ \rightarrow D^0 \pi^+$) = 0.66 $^+0.08^-$ Assumes B($T(45) \rightarrow B^0 \overline{B}^0$) = 0.40 \pm 0.02 Does not depend on D branching ratios.

B^0

	
$\Gamma(D^*(2010)^-\pi^+\pi^0)/\Gamma_{\text{total}}$ Γ_{11}/Γ	$\Gamma(a_1(1260)^+ a_1(1260)^-)/\Gamma_{\text{total}}$ Γ_{22}/Γ
VALUE EVTS DOCUMENT ID TECN COMMENT	VALUE CL% DOCUMENT ID TECN COMMENT
0.015±0.008±0.008 8 21 ALBRECHT 87c ARG $e^+e^- \rightarrow \Upsilon(4S)$ 21 ALBRECHT 87c use PDG 86 branching ratios for D and D*(2010) and assume	<0.0032 90 34 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 34 Assumes the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$.
$B(\Upsilon(4S) \rightarrow B^+B^-) = 55\%$ and $B(\Upsilon(4S) \rightarrow B^0\overline{B}^0) \approx 45\%$.	
$\Gamma(D^*(2010)^-\rho^+)/\Gamma_{\text{total}}$	$\Gamma(K^+\pi^-)/\Gamma_{\text{total}}$ Γ_{23}/Γ VALUE CL% DOCUMENT ID IECN COMMENT
<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> $0.081 \pm 0.029 + 0.059 \atop -0.024$ 19 ²² CHEN 85 CLEO e^+e^- → ↑(45)	<9 × 10 ⁻⁵ 90 ³⁵ AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • •
²² Uses B($D^* \rightarrow D^0 \pi^+$) = 0.6 ± 0.15 and B($\Upsilon(45) \rightarrow B^0 \overline{B}^0$) = 0.4. Does not depend	$< 3.2 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+ e^- \rightarrow \Upsilon(45)$
on D branching ratios.	³⁵ Assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$.
$\Gamma(D^*(2010)^-\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{13}/Γ VALUE CL% EVIS DOCUMENT ID TECN COMMENT	$\Gamma(K^0 \rho^0)/\Gamma_{\text{total}}$ Γ_{24}/Γ
0.033±0.009±0.016 27 23 ALBRECHT 87C ARG $e^+e^- \rightarrow \Upsilon(4S)$	$<5.8 \times 10^{-4}$ 90 36 AVERY 898 CLEO $e^+e^- \to \Upsilon(45)$
• • • We do not use the following data for averages, fits, limits, etc. • • •	• • • We do not use the following data for averages, fits, limits, etc. • • • <0.08 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$
<0.046 90 24 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$	36 Assumes the $\Upsilon(4S)$ decays 43% to ${\cal B}^0\overline{\cal B}^0$.
²³ ALBRECHT 87c use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(45) \rightarrow B^+B^-) = 55\%$ and $B(\Upsilon(45) \rightarrow B^0\overline{B}^0) = 45\%$.	$\Gamma(K^{0}\phi)/\Gamma_{\text{total}}$ Γ_{25}/Γ
²⁴ BEBEK 87 assume the T(45) decays 43% to $B^0 \overline{B}^0$. B(D^* (2010) ⁺ $\rightarrow \pi^+ D^0$) =	VALUE CL% DOCUMENT ID TECN COMMENT
$(60^{+8}_{-15})\%$, B(D ⁰ $\rightarrow K^{-}\pi^{+}$) = $(4.2 \pm 0.4 \pm 0.4)\%$, and B(D ⁰ $\rightarrow K^{-}\pi^{+}\pi^{+}\pi^{-}$)	$<4.9 \times 10^{-4}$ 90 ³⁷ AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • •
$= (9.1 \pm 0.8 \pm 0.8)\%$ were used.	$<1.3 \times 10^{-3}$ 90 AVERY 87 CLEO e ⁺ e ⁻ $\rightarrow \Upsilon(45)$
$\Gamma(J/\psi(1S)K^0)/\Gamma_{\text{total}}$ Γ_{14}/Γ	37 Assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$.
VALUE CL% DOCUMENT ID TECN COMMENT < 0.005 90 ALAM 86 CLEO $e^+e^- \rightarrow \Upsilon(45)$	$\Gamma(K^0 f_0(975))/\Gamma_{\text{total}}$ Γ_{26}/Γ
	VALUE CL% DOCUMENT ID TECN COMMENT
$\Gamma(J/\psi(1S)K^+\pi^-)/\Gamma_{\text{total}}$ VALUE CL% EVTS DOCUMENT ID TECH COMMENT	-4.2×10^{-4} 90 38 AVERY 89B CLEO $e^+e^- \to \Upsilon(45)$
<0.0013 90 25 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(4S)$	38 Assumes the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$.
• • • We do not use the following data for averages, fits, limits, etc. • • • < < 0.0063 90 2 GILES 84 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	$\Gamma(K^*(892)^+\pi^-)/\Gamma_{\text{total}}$ VALUE CL% DOCUMENT ID TECN COMMENT
25 ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. $K\pi$ system is specifically se-	$<4.4 \times 10^{-4}$ 90 39 AVERY 898 CLEO $e^+e^- \to \Upsilon(45)$
lected as nonresonant.	• • We do not use the following data for averages, fits, limits, etc. • •
$\Gamma(J/\psi(1S)K^*(892)^0)/\Gamma_{\text{total}}$ Γ_{16}/Γ PALUE EVTS DOCUMENT ID TECN COMMENT	$<7 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$
0.0037±0.0013 OUR AVERAGE	39 Assumes the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$.
0.0033 \pm 0.0018 5 26 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(45)$ 0.0041 \pm 0.0019 \pm 0.0003 5 27 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$	$\Gamma(K^*(892)^0 \rho^0)/\Gamma_{\text{total}}$ Γ_{28}/Γ
• • • We do not use the following data for averages, fits, limits, etc. • •	VALUE CL% DOCUMENT ID TECN COMMENT $<6.7 \times 10^{-4}$ 90 40 AVERY 898 CLEO $e^+e^- \rightarrow \Upsilon(45)$
0.0041±0.0018 5 ²⁸ ALAM 86 CLEO Repl. by BEBEK 87	• • • We do not use the following data for averages, fits, limits, etc. • •
²⁶ ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45.	$<1.2 \times 10^{-3}$ 90 AVERY 87 CLEO $e^{+}e^{-} \rightarrow \Upsilon(45)$
²⁷ BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. ²⁸ ALAM 86 assumes B^{\pm}/B^0 ratio is 60/40. The observation of the decay $B^+\to$	⁴⁰ Assumes the Υ (45) decays 43% to $B^0 \overline{B}^0$.
$J/\psi K^*(892)^+$ (HAAS 85) has been retracted in this paper.	$\Gamma(K^*(892)^0\phi)/\Gamma_{\text{total}}$ Γ_{29}/Γ
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{17}/Γ	VALUE . CL% DOCUMENT ID TECN COMMENT
VALUE CL% EVTS DOCUMENT ID TECN COMMENT	$<4.4 \times 10^{-4}$ 90 41 AVERY 898 CLEO $e^{+}e^{-} \rightarrow \Upsilon(45)$
$<9 \times 10^{-5}$ 90 29 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(45)$	• • • We do not use the following data for averages, fits, limits, etc. • • • $<4.7 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$
• • • We do not use the following data for averages, fits, limits, etc. • • • $<3 \times 10^{-4}$ 90 29 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$	$<4.7 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ ⁴¹ Assumes the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}^0$.
$<3 \times 10^{-4}$ 90 29 BEBEK 87 CLEO $e^+e^- \to \Upsilon(4S)$ $<5 \times 10^{-4}$ 90 4 GILES 84 CLEO $e^+e^- \to \Upsilon(4S)$	* / -
²⁹ Assume the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}^0$.	$\Gamma(K^*(892)^0 f_0(975))/\Gamma_{\text{total}}$ Γ_{30}/Γ
$\Gamma(\pi^{\pm} ho^{\mp})/\Gamma_{ m total}$ $\Gamma_{ m 18}/\Gamma$	VALUE CL% DOCUMENT ID TECN COMMENT $<2.0 \times 10^{-4}$ 90 42 AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$
VALUECL% DOCUMENT ID TECN COMMENT	42 Assumes the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$.
<0.0061 90 30 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	
30 BEBEK 87 assume the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$.	$\Gamma(K^*(892)^0\gamma)/\Gamma_{ ext{total}}$ $\Gamma_{31}/\Gamma_{ ext{VALUE}}$ Γ_{01}/Γ_{02} $\Gamma_{02}/\Gamma_{03}/\Gamma_{03}$
$\Gamma(\pi^{\pm} a_1(1260)^{\mp})/\Gamma_{\text{total}}$ Γ_{19}/Γ	$<2.8 \times 10^{-4}$ 90 43 AVERY 898 CLEO $e^+e^- \rightarrow \Upsilon(4S)$
VALUE CL% DOCUMENT ID TECN COMMENT	
<5.7 \times 10 ⁻⁴ 90 ³¹ BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • •	$<4.2 \times 10^{-4}$ 90 ALBRECHT 896 ARG $e^+e^- \rightarrow \Upsilon(45)$ $<2.1 \times 10^{-3}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$
$<1.2 \times 10^{-3}$ 90 31 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	$<2.1 \times 10^{-3}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 43 Assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$.
31 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	
$\Gamma(\pi^{\pm} a_2(1320)^{\mp})/\Gamma_{\text{total}}$ Γ_{20}/Γ	
	$\Gamma(K_1(1270)^0\gamma)/\Gamma_{\text{total}}$ Γ_{32}/Γ
VALUE CL% DOCUMENT ID TECN COMMENT	$(K_1(1270)^\circ \gamma)/1 \text{ total}$ 132/1 VALUE CL% DOCUMENT ID TECN COMMENT <0.0078 90 ALBRECHT 89G ARG e ⁺ e ⁻ \rightarrow T(45)
VALUE CL% DOCUMENT ID TECN COMMENT $< 3.5 \times 10^{-4}$ 90 32 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(45)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
VALUE CL% DOCUMENT ID TECN COMMENT $< 3.5 \times 10^{-4}$ 90 32 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • •	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
VALUE CL% DOCUMENT ID TECN COMMENT <3.5 × 10 ⁻⁴ 90 32 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • <1.6 × 10 ⁻³ 90 32 BEBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
VALUE CLY DOCUMENT ID TECN COMMENT $< 3.5 \times 10^{-4}$ 90 32 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • • We do not use the following data for averages, fits, limits, etc. • • • • $< 1.6 \times 10^{-3}$ 90 32 BBBEK 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 32 Assumes the $\Upsilon(45)$ decays 43% to \mathcal{B}^0 $\overline{\mathcal{B}}^0$.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 R^0

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALUE CLY DOCUMENT ID TECN COMMENT (K4{2045} 0 0)/ 0 total ALUE CLY DOCUMENT ID TECN COMMENT (DD)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DD)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DD)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DD)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DD)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DE)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DE)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DD)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DD)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DD)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DD)/ 0 Total ALUE CLY DOCUMENT ID TECN COMMENT (DOCUMENT ID TECN COMMENT (CA++ \(\D \))-//\(\D \) Total ALUE CLY DOCUMENT ID TECN COMMENT (ALUE CLY DOCUMENT	$(K_3^*(1780)^0\gamma)/\Gamma_{tc}$	otal					Γ ₃₆ /Γ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CL%					
ALUE CO.0048 90 ALBRECHT B 896 ARG $e^+e^- \rightarrow T(45)$ ALUE C C C C C C C C C C	ALUE CO.0048 90 ALBRECHT B 30 ARG $e^+e^- \rightarrow T(45)$ $(P\bar{P})/\Gamma$ total ALUE C 4 BORTOLETTO89 CLEO $e^+e^- \rightarrow T(45)$ • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	<0.011	90	ALBRECHT	89G	ARG	$e^+ e^- \rightarrow \Upsilon$	(45)
ALUE CO.0048 90 ALBRECHT B 896 ARG $e^+e^- \rightarrow T(45)$ ALUE C C C C C C C C C C	ALUE CO.0048 90 ALBRECHT B 30 ARG $e^+e^- \rightarrow T(45)$ $(P\bar{P})/\Gamma$ total ALUE C 4 BORTOLETTO89 CLEO $e^+e^- \rightarrow T(45)$ • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	$(K_{A}^{*}(2045)^{0}\gamma)/\Gamma_{to}$	otal					Γ_{37}/Γ
The state of the	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			DOCUMENT ID		<u>TEÇN</u>	COMMENT	
ALUE CLY DOCUMENT ID TECN COMMENT (4 × 10^-5 90 44 BORTOLETTO89 CLEO $e^+e^- \rightarrow T(45)$ 0 • • We do not use the following data for averages, fits, limits, etc. • • • • (1.3 × 10^-4 90 44 BEBEK 87 CLEO $e^+e^- \rightarrow T(45)$ 44 Assumes the $T(45)$ decays 43% to $B^0\overline{B}^0$. $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^+ \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^- \pi^- \pi^-)/\Gamma_{\text{total}} $ $ T_0 \overline{p} \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^- \pi^-$	ALUE 10-5 90 44 BORTOLETTOB9 CLEO $e^+e^- \rightarrow T(45)$ • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	<0.0048	90	ALBRECHT	89 G	ARG	$e^+ e^- \rightarrow \Upsilon$	(45)
ALUE CLS	ALUE 10-5 90 44 BORTOLETTOB9 CLEO $e^+e^- \rightarrow T(45)$ • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	(pā)/[Γ ₂₀ / Ι
	• • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	CL%	DOCUMENT ID		TECN	COMMENT	. 30/
• • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	• • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •							(45)
44 Assumes the T(45) decays 43% to $B^0\overline{B}^0$. $(p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	44 Assumes the T(45) decays 43% to $B^0 \overline{B}^0$. ($P \overline{P} \pi^+ \pi^-$)/ Γ_{total}	We do not use to	the followin	ng data for average	s, fits	, limits,	etc. • • •	
44 Assumes the T (45) decays 43% to $B^0 \overline{B}^0$. $(p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	44 Assumes the T(45) decays 43% to $B^0\overline{B}^0$. $(p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $			ALBRECHT				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			- ^	87	CLEO	e ⁺ e [−] → Υ	(45)
ALDE (units 10^{-4}) DOCUMENT ID ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ $e^+e^- \rightarrow $	ALUE (units 10^-4) $0.0\pm 2.0\pm 2.0$ 1.0 ± 2.0 $1.0\pm 2.0\pm 2.0$	44 Assumes the T(45) decays 4	3% to <i>B^OB^O</i> .				
ALDE (units 10^{-4}) DOCUMENT ID ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ ALBRECHT 88F ARG $e^+e^- \rightarrow \Upsilon(45)$ $e^+e^- \rightarrow $	ALUE (units 10^-4) $0.0\pm 2.0\pm 2.0$ 1.0 ± 2.0 $1.0\pm 2.0\pm 2.0$	$(p\bar{p}\pi^+\pi^-)/\Gamma_{\text{total}}$	ı					Γ39/1
$\frac{(p \overline{h} \pi^{-})/\Gamma_{total}}{(ALUE)} = \frac{(L)_{1}^{4}}{90} = \frac{DOCUMENT\ ID}{ALBRECHT} = \frac{IECN}{88F} = \frac{COMMENT}{e^{+}e^{-}} \rightarrow \Upsilon(45)$ $\frac{(AUB)}{(AC)} = \frac{(L)_{2}^{4}}{90} = \frac{DOCUMENT\ ID}{45} = \frac{IECN}{BORTOLETTO89} = \frac{COMMENT}{e^{+}e^{-}} \rightarrow \Upsilon(45)$ $\frac{(ALUE)}{(AC)} = \frac{(L)_{2}^{4}}{90} = \frac{DOCUMENT\ ID}{46} = \frac{IECN}{BORTOLETTO89} = \frac{COMMENT}{e^{+}e^{-}} \rightarrow \Upsilon(45)$ $\frac{(ALUE)}{(AC)} = \frac{(L)_{2}^{4}}{90} = \frac{DOCUMENT\ ID}{46} = \frac{IECN}{BORTOLETTO89} = \frac{COMMENT}{e^{+}e^{-}} \rightarrow \Upsilon(45)$ $\frac{(ALUE)}{(AC)} = \frac{(L)_{2}^{4}}{90} = \frac{DOCUMENT\ ID}{46} = \frac{IECN}{BORTOLETTO89} = \frac{COMMENT}{e^{+}e^{-}} \rightarrow \Upsilon(45)$ $\frac{(ALUE)}{(AC)} = \frac{(L)_{2}^{4}}{90} = \frac{DOCUMENT\ ID}{46} = \frac{IECN}{BORTOLETTO89} = \frac{COMMENT}{e^{+}e^{-}} \rightarrow \Upsilon(45)$ $\frac{(ALUE)}{(AC)} = \frac{(L)_{2}^{4}}{47} = \frac{DOCUMENT\ ID}{47} = \frac{IECN}{47} = \frac{COMMENT}{47} = \frac{(AS)}{47}$ $\frac{(AUB)}{(AC)} = \frac{(L)_{2}^{4}}{90} = \frac{DOCUMENT\ ID}{47} = \frac{IECN}{47} = \frac{COMMENT}{47} = \frac{(AS)}{47} = ($	$\frac{(\rho \bar{h} \pi^-)/\Gamma_{\text{total}}}{ALUE} = \frac{(L\% - DOCUMENT ID)}{ALBRECHT 88F} \frac{TECN - COMMENT}{ARG} = \frac{(1.6)}{e^+ e^-} \rightarrow \Gamma(4.5)$ $\frac{(\Delta^0 \bar{\Delta}^0)}{A} / \Gamma_{\text{total}} = \frac{(L\% - DOCUMENT ID)}{45} \frac{TECN - COMMENT}{ABF ARG} = \frac{(1.6)}{e^+ e^-} \rightarrow \Gamma(4.5)$ $\frac{(\Delta^0 \bar{\Delta}^0)}{45} / \Gamma_{\text{total}} = \frac{(L\% - DOCUMENT ID)}{45} \frac{TECN - COMMENT}{ABF ARG} = \frac{(1.6)}{e^+ e^-} \rightarrow \Gamma(4.5)$ $\frac{(\Delta^0 \bar{\Delta}^0)}{45} / \Gamma_{\text{total}} = \frac{(L\% - DOCUMENT ID)}{45} \frac{TECN - COMMENT}{ABF ARG} = \frac{(1.6)}{e^+ e^-} \rightarrow \Gamma(4.5)$ $\frac{(\Delta^0 \bar{\Delta}^0)}{45} / \Gamma_{\text{total}} = \frac{(L\% - DOCUMENT ID)}{45} \frac{TECN - COMMENT}{ABF ARG} = \frac{(1.6)}{e^+ e^-} \rightarrow \Gamma(4.5)$ $\frac{(\Delta^0 \bar{\Delta}^0)}{45} / \Gamma_{\text{total}} = \frac{(L\% - DOCUMENT ID)}{45} \frac{TECN - COMMENT}{ABF ARG} = \frac{(1.6)}{e^-} \rightarrow \Gamma(4.5)$ $\frac{(\Delta^0 \bar{\Delta}^0)}{46} / \Gamma_{\text{total}} = \frac{(L\% - DOCUMENT ID)}{160} \frac{TECN - COMMENT}{160} = \frac{(1.6)}{e^+ e^-} \rightarrow \Gamma(4.5)$ $\frac{(\Delta^0 \bar{\Delta}^0)}{46} / \Gamma_{\text{total}} = \frac{(L\% - DOCUMENT ID)}{46} = \frac{TECN - COMMENT}{46} = \frac{(1.6)}{e^-} \rightarrow \Gamma(4.5)$ $\frac{(\Delta^0 \bar{\Delta}^0)}{46} / \Gamma_{\text{total}} = \frac{(L\% - DOCUMENT ID)}{47} \frac{TECN - COMMENT}{47} = \frac{(1.6)}{47} = \frac{(1.6)}$	· · · · · · · · · · · · · · · · · · ·		DOCUMENT ID		TECN	COMMENT	
ALUE CL% DOCUMENT ID TECN COMMENT (45) $\frac{1}{4}$ ALBRECHT 88F ARG $\frac{1}{4}$ ARG $\frac{1}{4}$ $\frac{1}{4}$ ALBRECHT 88F ARG $\frac{1}{4}$	$\frac{\lambda L \cup E}{\langle 2.0 \times 10^{-4} \rangle} = \frac{CL_N^4}{90} \frac{DOCUMENT ID}{ALBRECHT} \frac{TECN}{88F} \frac{COMMENT}{ARG} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{\Gamma(\Delta^0 \overline{\Delta}^0)}{45} \frac{\Gamma(\Delta^0 \overline{\Delta}^0)}{80RTOLETTO89} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{ALUE}{45} \frac{CL_N^4}{80RTOLETTO89} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{ALUE}{45} \frac{CL_N^4}{80RTOLETTO89} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{ALUE}{46} \frac{CL_N^4}{90} \frac{DOCUMENT ID}{46} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{ALUE}{46} \frac{CL_N^4}{90} \frac{DOCUMENT ID}{46} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{ALUE}{46} \frac{CL_N^4}{90} \frac{DOCUMENT ID}{46} \frac{TECN}{E^- \to T(45)}$ $\frac{ALUE}{46} \frac{CL_N^4}{90} \frac{DOCUMENT ID}{46} \frac{TECN}{46} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{47} \frac{CL_N^4}{90} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^- \to T(45)}$ AL	0.0±2.0±2.2		ALBRECHT	88F	ARG	$e^+~e^-~ ightarrow~\Upsilon$	(45)
ALUE CL% DOCUMENT ID TECN COMMENT (45) decays 43% to $B^0 \overline{B}^0$. C($\Delta^0 \overline{\Delta}^0$)/ Γ_{total} Tech Comment (45) decays 43% to $B^0 \overline{B}^0$. C($\Delta^+ + \Delta^$	$\frac{\lambda L \cup E}{\langle 2.0 \times 10^{-4} \rangle} = \frac{CL_N^4}{90} \frac{DOCUMENT ID}{ALBRECHT} \frac{TECN}{88F} \frac{COMMENT}{ARG} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{\Gamma(\Delta^0 \overline{\Delta}^0)}{45} \frac{\Gamma(\Delta^0 \overline{\Delta}^0)}{80RTOLETTO89} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{ALUE}{45} \frac{CL_N^4}{80RTOLETTO89} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{ALUE}{45} \frac{CL_N^4}{80RTOLETTO89} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{ALUE}{46} \frac{CL_N^4}{90} \frac{DOCUMENT ID}{46} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{ALUE}{46} \frac{CL_N^4}{90} \frac{DOCUMENT ID}{46} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^- \to T(45)}$ $\frac{ALUE}{46} \frac{CL_N^4}{90} \frac{DOCUMENT ID}{46} \frac{TECN}{E^- \to T(45)}$ $\frac{ALUE}{46} \frac{CL_N^4}{90} \frac{DOCUMENT ID}{46} \frac{TECN}{46} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{47} \frac{CL_N^4}{90} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^+ e^- \to T(45)}$ $\frac{ALUE}{48} \frac{DOCUMENT ID}{48} \frac{TECN}{48} \frac{CLEO}{E^- \to T(45)}$ AL	·(ρ\(\overline{\Pi}_{\pi}\)=)/Γ						F., /
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(2.0 \times 10^{-4} \qquad 90 \qquad \text{ALBRECHT} \qquad 88\text{F} \ \text{ARG} \qquad e^+ e^- \rightarrow \text{T}(45)$ $(2.0 \times 10^{-4}) / \Gamma_{\text{total}} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $		CI%	DOCUMENT ID		TECN	COMMENT	1 40/1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{(\Delta^0\overline{\Delta}^0)}{(\Delta^0D^0)}/\Gamma_{\text{total}} = \frac{(L)^4}{45 \text{ BORTOLETTO89}} \frac{DOCUMENT ID}{CLEO} = \frac{TECN}{e^+e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ BORTOLETTO89}} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ Assumes the } \Upsilon(45) \text{ decays } 43\% \text{ to } B^0\overline{B}^0.$ $\frac{(\Delta^0D^0)}{45 \text{ BORTOLETTO89}} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ Assumes the } \Upsilon(45) \text{ decays } 43\% \text{ to } B^0\overline{B}^0.$ $\frac{(\Delta^0D^0)}{45 \text{ BORTOLETTO89}} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ BORTOLETTO89}} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ BORTOLETTO89}} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ ASSumes the } \Upsilon(45) \text{ decays } 43\% \text{ to } B^0\overline{B}^0.$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{e^+e^-}{e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ ASSumes the } \Upsilon(45) \text{ decays } 43\% \text{ to } B^0\overline{B}^0.$ $\frac{(\Delta^0D^0)}{45 \text{ ASSumes the } \Upsilon(45) \text{ decays } 43\% \text{ to } B^0\overline{B}^0.$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ BORTOLETTO89}} \frac{TECN}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ ASSumes the } \Upsilon(45) \text{ decays } 43\% \text{ to } B^0\overline{B}^0.$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $\frac{(\Delta^0D^0)}{45 \text{ AVERY}} \frac{B9}{80 \text{ CLEO}} \frac{CDOMENT}{e^-e^-} \rightarrow \Upsilon(45)$ $(\Delta$							(45)
ALUE COMMENT ID SOCKMENT ID SOCKMENT ID SOCKMENT (A5) decays 43% to B^0 \overline{B}^0 . $(A++\Delta^{})/\Gamma_{\text{total}} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	ALUE CLY DOCUMENT ID TECN COMMENT $e^+e^- \rightarrow \Upsilon(4S)$ 45 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. $\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE $\Gamma(\Delta^++\Delta^-)/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations.		-	- 1		-		` '
<0.0018 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 45 Assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$. $\frac{\Gamma(\Delta^{++}\Delta^{})}{\Gamma(\Delta^{++}\Delta^{})} = \frac{\Gamma(4S)}{46}$ 46 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 46 Assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}^0$. $\frac{\Gamma(\Delta^{++}\mu^{-})}{\Gamma(\Delta^{++}\mu^{-})} = \frac{\Gamma(\Delta^{++}\mu^{-})}{\Gamma(\Delta^{++}\mu^{-})} = \frac{\Gamma(\Delta^{++}\mu$							Γ ₄₁ /Ι
$ ^{45} \text{Assumes the } \Upsilon(45) \text{ decays } 43\% \text{ to } B^0 \overline{B}^0. $ $ \Gamma(\Delta^{++}\Delta^{})/\Gamma_{\text{total}} $ $ \frac{CL\%}{46} \frac{DOCUMENT \ ID}{46} \frac{TECN}{CLEO} \frac{COMMENT}{e^+e^-} \rightarrow \Upsilon(45) $ $ ^{46} \text{Assumes the } \Upsilon(45) \text{ decays } 43\% \text{ to } B^0 \overline{B}^0. $ $ \Gamma(\mu^+\mu^-)/\Gamma_{\text{total}} $ $ \text{Test for } \Delta B = 1 \text{ weak neutral current.} \text{Allowed by higher-order electroweak intertions.} $ $ \frac{CL\%}{65 \times 10^{-5}} \frac{DOCUMENT \ ID}{90} \frac{TECN}{47} \frac{COMMENT}{4000000000000000000000000000000000000$	45 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. $\frac{(\Delta^{++}\Delta^{})/\Gamma_{total}}{ALUE} = \frac{(L\%)}{90} = \frac{DOCUMENT\ ID}{46} = \frac{TECN}{BORTOLETTO89} = \frac{CLEO\ e^+e^- \to \Upsilon(4S)}{CLEO\ e^+e^- \to \Upsilon(4S)}$ 46 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. $\frac{(\mu^+\mu^-)/\Gamma_{total}}{Test\ for\ \Delta B} = 1 \text{ weak neutral current.} \text{Allowed by higher-order electroweak interations.}$ $\frac{ALUE}{CS \times 10^{-5}} = \frac{CL\%}{90} = \frac{DOCUMENT\ ID}{47} = \frac{TECN}{AVERY} = \frac{COMMENT}{89B} = \frac{CLEO\ e^+e^- \to \Upsilon(4S)}{68 \times 10^{-5}} = \frac{47}{90} = \frac{AVERY}{89B} = \frac{87}{200} = \frac{CLEO\ e^+e^- \to \Upsilon(4S)}{690} = \frac{47}{200} =$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{(\Delta^{++}\Delta^{})/\Gamma_{\text{total}}}{A \text{LUE}} = \frac{C \text{L}\%}{90} = \frac{DOCUMENT \text{ ID}}{46 \text{ BORTOLETTO89}} = \frac{C \text{LEO}}{c^+ e^-} \rightarrow \Upsilon(4S)$ $\frac{A \text{LUE}}{46 \text{ Assumes the } \Upsilon(4S) \text{ decays } 43\% \text{ to } B^0 \overline{B}^0.$ $\frac{(\mu^+\mu^-)/\Gamma_{\text{total}}}{\Gamma_{\text{est for }} \Delta B} = 1 \text{ weak neutral current. Allowed by higher-order electroweak interations.}$ $\frac{A \text{LUE}}{47 \text{ AVERY}} = \frac{C \text{L}\%}{898} = \frac{DOCUMENT \text{ ID}}{27 \text{ AVERY}} = \frac{T \text{ECN}}{898} = \frac{C \text{LEO}}{27 \text{ AVERY}} = \frac{e^+ e^-}{27 \text{ AVERY}} = \frac{T \text{COMMENT}}{27 \text{ AVERY}} = \frac{17 \text{ CLO}}{27 \text{ CLO}} = \frac{17 \text{ CLO}}{27 \text{ AVERY}} = \frac{17 \text{ CLO}}{27 \text{ CLO}} = \frac{17 \text{ CLO}}{27 \text{ AVERY}} = \frac{17 \text{ CLO}}{27 \text{ CLO}} = \frac{17 \text{ CLO}}{27 $				O89	CLEO	e ⊤ e ⁻ → 1	(45)
ALUE CLS AD $^{-4}$ 90 46 BORTOLETTOB TECN CHOMENT TO CLEO $e^+e^ \Upsilon(45)$ 46 Assumes the $\Upsilon(45)$ decays 43% to B^0 \overline{B}^0 .	ALUE CLS 40-4 90 46 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 46 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	43 Assumes the $\Upsilon(4S)$) decays 4	3% to <i>B</i> [∪] <i>B</i> [∪] .				
ALUE CL3 \times ALUE \times	ALUE CLS 40-4 90 46 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 46 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.	$(\Delta^{++}\Delta^{})/\Gamma_{tot}$	al					Γ ₄₂ /Ι
<1.3 × 10 ⁻⁴ 90 46 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ 46 Assumes the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. $\Gamma(\mu^+\mu^-)/\Gamma \text{ total}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak intetions. VALUE $\sqrt{5} \times 10^{-5}$ $\sqrt{5} \times 10^{-5}$ $\sqrt{6} \times 10^{-5}$	C1.3 × 10 ⁻⁴ 90 46 BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(45)$ 46 Assumes the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}^0$. $ \frac{\Gamma(\mu^+\mu^-)}{\Gamma \text{total}} \qquad \qquad \frac{\Gamma_{43}}{\Gamma \text{tons.}} $ $ \frac{\Gamma(\mu^+\mu^-)}{\Gamma \text{total}} \qquad \qquad \frac{\Gamma_{43}}{\Gamma \text{tons.}} $ $ \frac{AUUE}{C} \qquad \qquad \frac{CL\%}{47} \qquad \frac{DOCUMENT\ iD}{47\ \text{AVERY}} \qquad \frac{TECN}{89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^+e^- \rightarrow \Upsilon(45)} $ $ < > \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^+e^- \rightarrow \Upsilon(45)} $ $ < > \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 87\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 87\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-4} \qquad 90 \qquad \text{GILES} \qquad 84\ \text{CLEO}} \qquad \text{Repl. by AVERY } 87 $ $ \frac{47}{47} \text{Assumes the } \Upsilon(45) \text{ decays } 43\% \text{ to } B^0 \overline{B}^0. $ $ \frac{F(e^+e^-)}{\Gamma(total)} \qquad \frac{\Gamma_{44}}{\Gamma_{25}} $ $ \frac{F(e^+e^-)}{\Gamma(total)} \qquad \frac{\Gamma_{45}}{\Gamma_{45}} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 89B\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 87\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 87\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 87\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 87\ \text{CLEO}} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < < \times 10^{-5} \qquad 90 \qquad \text{AVERY} \qquad 87\ \text{CLEO} \qquad \frac{e^+e^- \rightarrow \Upsilon(45)}{e^-e^- \rightarrow \Upsilon(45)} $ $ < \times 1$	VALUE					COMMENT	,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<1.3 × 10 ⁻⁴	90	⁴⁶ BORTOLETT	O89	CLEO	$e^+ e^- \rightarrow \Upsilon$	(45)
• • We do not use the following data for averages, fits, limits, etc. • • • • $<9 \times 10^{-5}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $<2 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<4^7$ Assumes the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}^0$. $ \frac{(e^+e^-)/\Gamma_{\text{total}}}{\text{Test for } \Delta B = 1} $	• • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	Test for $\Delta B =$ tions.						Γ ₄₃ /Ι veak interac
$<9 \times 10^{-5}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $<2 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 47 Assumes the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}^0$. $^{6} (e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak inte tions. $^{6} \times 10^{-5}$ 90 $^{48} \times 10^{-5}$ 898 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $\times 10^{-5}$ 90 $\times 10^{-5}$ 898 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $\times 10^{-5}$ 90 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(45)$	$<9 \times 10^{-5}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $<2 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 47 Assumes the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$. Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. $\frac{ALUE}{4}$ $\frac{CL\%}{4}$ $\frac{DOCUMENT\ ID}{4}$ 898 CLEO $e^+e^- \rightarrow \Upsilon(45)$ \bullet 8 We do not use the following data for averages, fits, limits, etc. \bullet \bullet \bullet 88 \times 10 ⁻⁵ 90 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(45)$ $<8 \times 10^{-5}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 90 GILES 94 CLEO Repl. by AVERY 87 $<3 \times 10^{-4}$ 95 GILES 95 $<3 \times 10^{-4}$ 96 GILES 95 $<3 \times 10^{-4}$ 96 GILES 95 $<3 \times 10^{-4}$ 97 GILES 95 $<3 \times 10^{-4}$ 97 GILES 95 $<3 \times 10^{-4}$ 90 GILES 95 $<3 \times 10^{-4}$ 90 GILES 95 $<3 \times 10^{-4}$ 90 GILES 95 $<3 \times 10^{-4}$ 90 GILES 95 $<3 \times 10^{-4}$ 90 GILES 95 $<3 \times 10^{-4}$ 90 GILES 95 $<3 \times 10^{-4}$ 90 GILES 95 $<3 \times 10^{-4}$ 90 GILES 95 $<3 \times 10^{-4}$ 90 GILES	Test for $\Delta B = \frac{\Delta LUE}{5 \times 10^{-5}}$	<u>CL%</u> 90	47 AVERY	89B	TECN CLEO	$\frac{COMMENT}{e^+ e^-} \rightarrow \Upsilon$	eak interac
$<2 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 47 Assumes the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}^0$.	$<2\times10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 47 Assumes the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$. $\Gamma(e^+e^-)/\Gamma_{\rm total}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. $\frac{ALUE}{48}$ DOCUMENT ID TECN COMMENT $\frac{AUE}{48}$ AVERY 898 CLEO $\frac{e^+e^- \rightarrow \Upsilon(45)}{48}$ AVERY 870 ARG $\frac{e^+e^- \rightarrow \Upsilon(45)}{48}$ $\frac{(8.5\times10^{-5})}{48}$ 90 ALBRECHT 870 ARG $\frac{e^+e^- \rightarrow \Upsilon(45)}{48}$ $\frac{(8.5\times10^{-5})}{48}$ 90 GILES 84 CLEO Repl. by AVERY 87 $\frac{48}{48}$ Assumes the $\Upsilon(45)$ decays 43% to $\frac{B^0\overline{B}^0}{8}$. $\Gamma(K^0\mu^+\mu^-)/\Gamma_{\rm total}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. $\frac{AUE}{48}$ DOCUMENT ID TECN COMMENT	Test for $\Delta B = \frac{1}{1000}$ tions. 4000×10^{-5} 600×10^{-5} 600×10^{-5}	90 90	DOCUMENT ID 47 AVERY ALBRECHT	89B 87D	TECN CLEO ARG	$\begin{array}{c} \underline{\textit{COMMENT}} \\ e^+ \ e^- \ \rightarrow \ \Upsilon \\ e^+ \ e^- \ \rightarrow \ \Upsilon \end{array}$	eak interac
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Test for $\Delta B =$ tions. ALUE $<5 \times 10^{-5} < 5 \times 10^{-5}$ • • We do not use	<u>CL%</u> 90 90 the followi	DOCUMENT ID 47 AVERY ALBRECHT ng data for average	898 870 es, fit	TECN CLEO ARG s, limits	$\begin{array}{c} \underline{COMMENT} \\ e^+ \ e^- \ \rightarrow \ \Upsilon \\ e^+ \ e^- \ \rightarrow \ \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \end{array}$	(45) (45)
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak inte tions. ALUE CL% DOCUMENT ID TECN COMMENT $48 \times 10^{-5} = 00$ • • We do not use the following data for averages, fits, limits, etc. • • • • $48 \times 10^{-5} = 00$ ALBRECHT 87D ARG $40 \times 10^{-5} = 00$	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE CL% DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • • • (8.5 \times 10 ⁻⁵ 90 ALBRECHT 87D ARG e ⁺ e ⁻ \rightarrow Υ (4.5) (8.5 \times 10 ⁻⁵ 90 AVERY 87 CLEO e ⁺ e ⁻ \rightarrow Υ (4.5) (8. \times 10 ⁻⁵ 90 AVERY 87 CLEO e ⁺ e ⁻ \rightarrow Υ (4.5) (3. \times 10 ⁻⁴ 90 GILES 84 CLEO Repl. by AVERY 87 ABAssumes the Υ (4.5) decays 43% to B^0 \overline{B}^0 .	Test for $\Delta B =$ tions. (ALUE) (5 × 10 ⁻⁵ (5 × 10 ⁻⁵ • • We do not use $< 9 \times 10^{-5}$	<u>CL%</u> 90 90 the followi 90	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY	898 870 es, fit:	TECN CLEO ARG s, limits CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^{+} e^{-} \rightarrow \Upsilon \\ e^{+} e^{-} \rightarrow \Upsilon \\ , \text{ etc. } \bullet \bullet \bullet \\ \end{array}$	(45) (45)
Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak intetions. ALUE CL% DOCUMENT ID TECN COMMENT 3 × 10^-5 90 48 AVERY 898 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • $<8.5 \times 10^{-5}$ 90 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(4S)$	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE CL% DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • • • (8.5 \times 10 ⁻⁵ 90 ALBRECHT 87D ARG e ⁺ e ⁻ \rightarrow Υ (4.5) (8.5 \times 10 ⁻⁵ 90 AVERY 87 CLEO e ⁺ e ⁻ \rightarrow Υ (4.5) (8. \times 10 ⁻⁵ 90 AVERY 87 CLEO e ⁺ e ⁻ \rightarrow Υ (4.5) (3. \times 10 ⁻⁴ 90 GILES 84 CLEO Repl. by AVERY 87 ABAssumes the Υ (4.5) decays 43% to B^0 \overline{B}^0 .	Test for $\Delta B =$ tions. ALUE $<5 \times 10^{-5}$ $<5 \times 10^{-5}$ $\bullet \bullet$ We do not use $<9 \times 10^{-5}$ $<2 \times 10^{-4}$	26.% 90 90 the followi 90 90	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES	898 870 es, fit:	TECN CLEO ARG s, limits CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^{+} e^{-} \rightarrow \Upsilon \\ e^{+} e^{-} \rightarrow \Upsilon \\ , \text{ etc. } \bullet \bullet \bullet \\ \end{array}$	(45) (45)
ALUE CL% DOCUMENT ID TECN COMMENT $6^+e^- \rightarrow \Upsilon(45)$ 48×10^{-5} 90 48 AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 48×10^{-5} 89B CLEO $e^+e^- \rightarrow \Upsilon(45)$ 48×10^{-5} 80 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(45)$	ALUE CL% DOCUMENT ID TECN COMMENT \times 48 AVERY 898 CLEO \times \times 0.10-5 90 AVERY 898 CLEO \times \times 0.10-5 90 ALBRECHT 87D ARG \times 0.10-5 90 AVERY 87 CLEO \times 0.10-5 90 AVERY 87 CLEO \times 0.10-5 90 AVERY 87 CLEO \times 0.10-6 90 GILES 84 CLEO Repl. by AVERY 87 CLEO \times 0.10-4 90 GILES 84 CLEO Repl. by AVERY 87 ARG \times 0.10-4 90 GILES 84 CLEO Repl. by AVERY 87 ARG \times 0.10-4 90 GILES 84 CLEO Repl. by AVERY 87 ARG \times 0.10-4 90 GILES 84 CLEO Repl. by AVERY 87 ARG \times 0.10-6 AVERY 87 ARG \times 0.10-6 AVERY 87 ARG \times 0.10-6 AVERY 87 ARG \times 0.10-6 AVERY 87 ARG \times 0.10-6 AVERY 87 ARG \times 0.10-6 AVERY 87 ARG \times 0.10-6 AVERY 87 ARG \times 0.10-6 AVERY 87 AVERY 87 ARG \times 0.10-6 AVERY 87 AVERY 87 AVERY 87 AVERY 89. AVERY 898 AVERY 898 AVERY 898 AVERY 898 AVERY 898 AVERY 898 AVERY 898 AVERY 899 AVERY	Test for $\Delta B =$ tions. ALUE $<5 \times 10^{-5}$ $<5 \times 10^{-5}$ $< \bullet$ We do not use $<9 \times 10^{-5}$ $<2 \times 10^{-4}$ 47 Assumes the T(45)	26.% 90 90 the followi 90 90	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES	898 870 es, fit:	TECN CLEO ARG s, limits CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^{+} e^{-} \rightarrow \Upsilon \\ e^{+} e^{-} \rightarrow \Upsilon \\ , \text{ etc. } \bullet \bullet \bullet \\ \end{array}$	(45) (45) (45) (45) ERY 87
<3 × 10^{-5} 90 ⁴⁸ AVERY 89B CLEO e^+e^- → Υ (45) • • • We do not use the following data for averages, fits, limits, etc. • • • • <8.5 × 10^{-5} 90 ALBRECHT 87D ARG e^+e^- → Υ (45)	$<3 \times 10^{-5}$ 90 48 AVERY 898 CLEO $e^+e^- \rightarrow \Upsilon(45)$ • • We do not use the following data for averages, fits, limits, etc. • • • $<8.5 \times 10^{-5}$ 90 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(45)$ $<8 \times 10^{-5}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 48 Assumes the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$. Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE DOCUMENT ID TECN COMMENT COMM	Test for $\Delta B =$ tions. ALUE $<5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 9 \times 10^{-5} < 2 \times 10^{-4}$ 47 Assumes the $\Upsilon(4S)$ $<(e^+e^-)/\Gamma$ total Test for $\Delta B =$	26% 90 90 the followi 90 90 5) decays 4	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES 13% to B ^O B 0	898 870 es, fits 87 84	TECN CLEO ARG s, limits CLEO CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+ \ e^- \ \to \ \Upsilon \\ e^+ \ e^- \ \to \ \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+ \ e^- \ \to \ \Upsilon \\ \text{Repl. by AVS} \end{array}$	(45) (45) (45) (45) ERY 87
$<8.5 \times 10^{-5}$ 90 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(4S)$	$<8.5 \times 10^{-5}$ 90 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(45)$ $<8 \times 10^{-5}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 48 Assumes the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$. $\Gamma_{45}/\Gamma_$	Test for $\Delta B =$ tions. ALUE $<5 \times 10^{-5}$ $<5 \times 10^{-5}$ $<5 \times 10^{-5}$ $<9 \times 10^{-5}$ $<2 \times 10^{-4}$ 47 Assumes the $\Upsilon(45)$ Test for $\Delta B =$ tions. ALUE	21.% 90 90 the followi 90 90 5) decays 4	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES 3% to $B^0 \overline{B}^0$. utral current. Allow	89B 87D es, fit: 87 84	TECN CLEO ARG s, limits CLEO CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ e^+e^- \to \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \to \Upsilon \\ \text{Repl. by AV} \\ \text{order electrow} \end{array}$	(45) (45) (45) (45) ERY 87
	$<8 \times 10^{-5}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$ $<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 48 Assumes the $\Upsilon(45)$ decays 43% to $B^0\overline{B}^0$. $-(K^0\mu^+\mu^-)/\Gamma_{\text{total}}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE CL% DOCUMENT ID TECN COMMENT	Test for $\Delta B =$ tions. Test for $\Delta B =$ tions. ALUE $< 5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 0 \times 10^{-5} < 0 \times 10^{-5} < 0 \times 10^{-4}$ 47 Assumes the $\Upsilon(4S = 0)$ Test for $\Delta B =$ tions. ALUE $< 3 \times 10^{-5}$	21% 90 90 the followi 90 90 5) decays 4 1 weak nea	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES 33% to $B^0 \overline{B}^0$. utral current. Allov DOCUMENT ID 48 AVERY	898 870 85, fit: 87 84 wed b	TECN CLEO ARG S, limits CLEO CLEO y higher	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ e^+e^- \to \Upsilon \\ \text{, etc.} \bullet \bullet \\ e^+e^- \to \Upsilon \\ \text{Repl. by AV} \\ \text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ \end{array}$	(45) (45) (45) ERY 87
$< 0 \times 10^{-}$ 90 AVERY 8/ CLEU e'e \rightarrow 1(45)	$<3 \times 10^{-4}$ 90 GILES 84 CLEO Repl. by AVERY 87 48 Assumes the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}^0$. $ \frac{\Gamma(K^0 \mu^+ \mu^-)}{\Gamma(K^0 \mu^+ \mu^-)} = 1 $ weak neutral current. Allowed by higher-order electroweak interations. $ \frac{\Delta LUE}{L} = \frac{LL}{L} $	Test for $\Delta B =$ tions. ALUE $< 5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 2 \times 10^{-4}$ $< 47 \text{ Assumes the } \Upsilon(4S)$ $= \text{tions.}$ ALUE $< 3 \times 10^{-5} < 2 \times 10^{-4}$ $= \text{tions.}$ WALUE $< 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} < 3 \times 10^{-5} <$	90 the followi 90 90 5) decays 4 1 weak ner CL% 90 the followi	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES 13% to $B^0 \overline{B}^0$. utral current. Allov DOCUMENT ID 48 AVERY ng data for average	898 870 es, fit: 87 84 ved b	TECN CLEO ARG S, limits CLEO CLEO Y higher TECN CLEO S, limits	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ e^+e^- \to \Upsilon \\ \text{etc.} \bullet \bullet \bullet \\ e^+e^- \to \Upsilon \\ \text{Repl. by AVI} \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ \end{array}$	(45) (45) (45) (45) (45) (45) (44) (44)
<3 × 10 ⁻⁴ 90 GILES 84 CLEO Rept by ΔVERV 87	⁴⁸ Assumes the $\Upsilon(45)$ decays 43% to $B^0 \overline{B}^0$. $ \lceil (K^0 \mu^+ \mu^-) / \Gamma_{\text{total}} \qquad \qquad \Gamma_{\text{45}} / \Gamma_{\text{total}} $ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interations. $ \frac{\langle ELW \rangle}{\langle ELW \rangle} \qquad \langle $	Test for $\Delta B = \frac{74 LUE}{1000000000000000000000000000000000000$	21% 90 90 90 90 50 60 90 90 60 60 60 60 60 60 60 60 60 60 60 60 60	DOCUMENT ID 47 AVERY ALBRECHT ING data for average AVERY GILES 33% to B ^O B 48 AVERY ING data for average ALBRECHT	898 870 85, fit: 87 84 wed b	TECN CLEO ARG S, limits CLEO CLEO Y higher TECN CLEO S, limits	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \end{array}$	(45) (45) (45) (45) (45) (45) (45) (45)
	$\Gamma(K^0\mu^+\mu^-)/\Gamma_{total}$	Test for $\Delta B = \text{tions.}$ **Test for $\Delta B = \text{tions.}$ **ALUE** $< 5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 2 \times 10^{-4} < 4^{7}$ Assumes the $\Upsilon(4S = \text{tions.})$ **Test for $\Delta B = \text{tions.}$ **ALUE** $< 3 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8$	21.% 90 90 the followi 90 90 5) decays 4 1 weak ner 21.% 90 the followi 90 90	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES 48 AVERY DOCUMENT ID 48 AVERY ng data for average ALBRECHT AVERY	898 870 87 87 84 84 898 898 870 87	TECN CLEO ARG s, limits CLEO CLEO y higher TECN CLEO ARG CLEO ARG CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \Upsilon \\$	(45) (45) (45) (45) (45) (45) (45) (45)
	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. (ALUE	Test for $\Delta B = \text{tions.}$ Test for $\Delta B = \text{tions.}$ $< 5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 0 \times 0$ $< 9 \times 10^{-5} < 2 \times 10^{-4} < 0$ 47 Assumes the $\Upsilon(4S = \text{tions.})$ Test for $\Delta B = \text{tions.}$ $< 3 \times 10^{-5} < 0 \times 0$ $< 8.5 \times 10^{-5} < 0 \times 0$ $< 8.5 \times 10^{-5} < 0 \times 0$ $< 8.5 \times 10^{-5} < 0 \times 0$ $< 8.5 \times 10^{-5} < 0 \times 0$ $< 8.5 \times 10^{-5} < 0 \times 0$ $< 8.5 \times 10^{-5} < 0 \times 0$ $< 8.5 \times 10^{-5} < 0 \times 0$ $< 8.5 \times 10^{-5} < 0 \times 0$	26.5% 90 90 90 90 90 5) decays 4 1 weak ner 62.5% 90 90 90 90	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES 33% to 80 000 48 AVERY ng data for average ALBRECHT AVERY GILES	898 870 87 87 84 84 898 898 870 87	TECN CLEO ARG s, limits CLEO CLEO y higher TECN CLEO ARG CLEO ARG CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \Upsilon \\$	(45) (45) (45) (45) (45) (45) (45) (45)
$\Gamma(K^{U}\mu^{+}\mu^{-})/\Gamma_{\text{total}}$	tions. <u>ALUE CL% DOCUMENT ID TECN COMMENT</u>	Test for $\Delta B = \text{tions.}$ Test for $\Delta B = \text{tions.}$ $<5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 2 \times 10^{-4} < 47$ Assumes the $\Upsilon(45 - 45) = 0$ Test for $\Delta B = 0$ tions. Test for $\Delta B = 0$ tions. $<3 \times 10^{-5} < 0 \times 0$ We do not use $<6.5 \times 10^{-5} < 0$ $<6.5 \times 10^{-5} < 0$ $<6.5 \times 10^{-5} < 0$ ABASSUMES the $\Upsilon(45 - 45) = 0$ Test for ~ 0 Test for	2£% 90 90 the followi 90 5) decays 4 1 weak nee 2£% 90 the followi 90 90 90 5) decays 4	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES 33% to 80 000 48 AVERY ng data for average ALBRECHT AVERY GILES	898 870 87 87 84 84 898 898 870 87	TECN CLEO ARG s, limits CLEO CLEO y higher TECN CLEO ARG CLEO ARG CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \Upsilon \\$	(45) (45) (45) (45) (45) (45) (45) (45)
	ALUE CL% DOCUMENT ID TECN COMMENT	Test for $\Delta B = \text{tions.}$ Test for $\Delta B = \text{tions.}$ $<5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 0 \times 0$ $<9 \times 10^{-5} < 2 \times 10^{-4} < 0$ $<47 \text{ Assumes the } \Upsilon(45 \text{ Test for } \Delta B = \text{tions.}$ $<3 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$ $<8.5 \times 10^{-5} < 0 \times 0$	26.8/90 90 90 the following 90 90 90 90 90 90 90 90 90 90 90 90 90	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES 48 AVERY DOCUMENT ID 48 AVERY ng data for average ALBRECHT AVERY GILES 48 AVERY GILES 48 AVERY GILES 48 AVERY GILES 48 AVERY GILES 48 AVERY GILES	898 870 87 87 84 898 898 870 87 87	TECN CLEO ARG S, limits CLEO CLEO TECN CLEO ARG CLEO ARG CLEO CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \end{array}$	(45) (45) (45) (45) (45) (45) (45) (45)
VALUE CL% DOCUMENT ID TECN COMMENT	$<4.5 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(45)$	Test for $\Delta B =$ tions. **Test for $\Delta B =$ tions. **Simple for the second se	26.8/90 90 90 the following 90 90 90 90 90 90 90 90 90 90 90 90 90	DOCUMENT ID 47 AVERY ALBRECHT ng data for average AVERY GILES 48 AVERY DOCUMENT ID 48 AVERY ng data for average ALBRECHT AVERY GILES 48 AVERY GILES 48 AVERY GILES 48 AVERY GILES 48 AVERY GILES 48 AVERY GILES	898 870 87 87 84 898 898 870 87 87	TECN CLEO ARG S, limits CLEO CLEO TECN CLEO ARG CLEO ARG CLEO CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{, etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \end{array}$	(45) (45) (45) (45) (45) (45) (45) (45)
$<4.5 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$		Test for $\Delta B =$ tions. ALUE $<5 \times 10^{-5}$ $<5 \times 10^{-5}$ $<5 \times 10^{-5}$ $<2 \times 10^{-4}$ 47 Assumes the $\Upsilon(45)$ $= (e^+e^-)/\Gamma$ total Test for $\Delta B =$ tions. ALUE $<3 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 $	2£% 90 90 the followi 90 5) decays 4 1 weak nee 2£% 90 the followi 90 90 90 5) decays 4	DOCUMENT ID 47 AVERY ALBRECHT ING data for average AVERY GILES 33% to B ^O B 48 AVERY ING data for average ALBRECHT AVERY GILES AVERY GILES AVERY GILES AVERY GILES AVERY GILES AVERY AVERY GILES AVERY AVERY GILES AVERY AVERY GILES AVERY AVERY GILES AVERY AVERY GILES AVERY AVERY GILES AVERY AVERY GILES AVERY AVERY GILES AVERY AV	898 870 87 87 84 898 898 87 87 87 84	TECN (CLEO ARG S, limits CLEO CLEO CLEO CLEO CLEO CLEO CLEO CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline -\text{order electrow} \\ \\ \hline -\text{order electrow} \\ \\ \hline -\text{order electrow} \\ \\ \hline -\text{order electrow} \\ \\ \hline \\ \hline -\text{order electrow} \\ \\ \hline \\ \hline \\ \hline -\text{order electrow} \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $	(45) (45) (45) (45) (45) (45) (45) (45)
		Test for $\Delta B =$ tions. **Test for $\Delta B =$ tions. **Simple of the state of the s	26.8/90 90 90 5) decays 4 1 weak net 26.8/90 90 90 90 90 90 90 90 1 weak net	DOCUMENT ID 47 AVERY ALBRECHT ING data for average AVERY GILES 48 AVERY GILES 48 AVERY ING data for average ALBRECHT AVERY GILES 48 AVERY GILES 48 AVERY GILES 48 AVERY GILES 48 AVERY GILES 48 AVERY GILES 49 BO BO 40 COLUMENT ID 40 COLUMENT ID 40 COLUMENT ID	898 870 87 87 84 898 898 87 87 87 84	TECN (CLEO ARG S, limits CLEO CLEO CLEO CLEO CLEO CLEO CLEO CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline -\text{order electrow} \\ \\ \hline -\text{order electrow} \\ \\ \hline -\text{order electrow} \\ \\ \hline -\text{order electrow} \\ \\ \hline \\ \hline -\text{order electrow} \\ \\ \hline \\ \hline \\ \hline -\text{order electrow} \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $	(45) (45) (45) (45) (45) (45) (45) (45)
$\Gamma(K^0e^+e^-)/\Gamma_{ ext{total}}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak inte tions. VALUE CL% DOCUMENT ID TECN COMMENT	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE	Test for $\Delta B =$ tions. **Test for $\Delta B =$ tions. **Simple of the state of the s	20	DOCUMENT ID 47 AVERY ALBRECHT IN Glata for average AVERY GILES 13% to BOBO 48 AVERY IN GATE AVERY IN GATE AVERY IN GATE AVERY GILES 13% to BOBO 50 BOBO 14 AVERY GILES 14 AVERY GILES 15 AVERY GILES 16 AVERY GILES 17 AVERY GILES 18 AVERY GILES	898 870 870 87 84 wed b 898 87 87 84 87 87	TECN CLEO ARG S, limits CLEO CLEO CLEO CLEO CLEO CLEO CLEO CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ \end{array}$	(45) (45) (45) (45) (45) (45) (45) (45)
$\Gamma(K^0e^+e^-)/\Gamma_{ ext{total}}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak inte tions.	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE	Test for $\Delta B =$ tions. Test for $\Delta B =$ tions. ALUE $<5 \times 10^{-5}$ $<5 \times 10^{-5}$ $<5 \times 10^{-5}$ $<2 \times 10^{-4}$ 47 Assumes the $\Upsilon(45)$ $= (e^+e^-)/\Gamma$ total Test for $\Delta B =$ tions. ALUE $<3 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 10^{-5}$ $<6 \times 1$	20	DOCUMENT ID 47 AVERY ALBRECHT IN Glata for average AVERY GILES 13% to BOBO 48 AVERY IN GATE AVERY IN GATE AVERY IN GATE AVERY GILES 13% to BOBO 50 BOBO 14 AVERY GILES 14 AVERY GILES 15 AVERY GILES 16 AVERY GILES 17 AVERY GILES 18 AVERY GILES	898 870 870 87 84 wed b 898 87 87 84 87 87	TECN CLEO ARG S, limits CLEO CLEO CLEO CLEO CLEO CLEO CLEO CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ \end{array}$	(45) (45) (45) (45) (45) (45) (45) (45)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE CL% DOCUMENT ID TECN COMMENT (6.5×10^{-4} 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4.5)$ $(e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$	Test for $\Delta B = \text{tions.}$ Test for $\Delta B = \text{tions.}$ ALUE $< 5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 0 \times 0$ $< 9 \times 10^{-5} < 2 \times 10^{-4} < 0$ 47 Assumes the $\Upsilon(45 - 1)$ Test for $\Delta B = \text{tions.}$ ALUE $< 3 \times 10^{-5} < 0 \times 0$ $< 8 \times 10^{-5} < 0 \times 0$ 8. $< 10^{-5} < 0 \times 0$ 8. $< 10^{-5} < 0 \times 0$ 8. $< 10^{-5} < 0 \times 0$ 48 Assumes the $\Upsilon(45 - 1)$ Test for $\Delta B = \text{tions.}$ ALUE $< 4.5 \times 10^{-4} < 0$ Test for $\Delta B = 0$ Test f	90 90 the followi 90 90 5) decays 4 1 weak net 90 90 5) decays 4 1 weak net 90 90 5) decays 4 1 weak net 1 weak net 90 90 1 weak net 90 90 1 weak net	DOCUMENT ID 47 AVERY ALBRECHT ING data for average AVERY GILES 13% to B ⁰ B 50 . utral current. Allov DOCUMENT ID AVERY GILES 13% to B ⁰ B 13% to B ⁰ B 148 AVERY IN THE STANFORM IN T	898 870 870 87 84 wed b 898 87 87 84 87 87	TECN CLEO ARG S, limits CLEO CLEO CLEO CLEO CLEO CLEO CLEO CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ \\ \\ \end{array}$	(45) (45) (45) (45) (45) (45) (45) (45)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE CL% DOCUMENT ID TECN COMMENT (6.5 × 10 ⁻⁴ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ [$e^\pm \mu^\mp$)/ Γ total Test of lepton family number conservation.	Test for $\Delta B =$ tions. 7.4.1UE $< 5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 2 \times 10^{-4} < 47$ Assumes the $\Upsilon(45)$ $< (e^+e^-)/\Gamma$ total Test for $\Delta B =$ tions. 7.4.1UE $< 3 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^{-5} < 6 \times 10^$	2 CL% 90 90 the followi 90 5) decays 4 1 weak nee 2 CL% 90 the followi 90 90 90 1 weak nee 2 CL% 90 1 weak nee 3 CL% 90 1 all weak nee 4 CL% 90 1 amily numli	DOCUMENT ID 47 AVERY ALBRECHT ING data for average AVERY GILES 33% to B ⁰ B 48 AVERY ING data for average ALBRECHT AVERY ING data for average ALBRECHT AVERY GILES 13% to B ⁰ B 50 L 148 AVERY A	89B 87D 87 87 84 89B 89B 87 87 84 87 87 87	TECN CLEO y higher CLEO ARG CLEO y higher CLEO y higher TECN CLEO y higher TECN CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ e^+e^- \to \Upsilon \\ \text{e}^+e^- \to \Upsilon \\ \text{Repl. by AVI} \\ \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ \text{etc.} \bullet \bullet \bullet \\ e^+e^- \to \Upsilon \\ \text{Repl. by AVI} \\ \\ -\text{order electrow} \\ \\ \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ \\ -\text{order electrow} \\ \\ $	(45) (45) (45) (45) (45) (45) (45) (45)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE CL% DOCUMENT ID TECN CLEO $e^+e^- \rightarrow \Upsilon(4S)$ Test of lepton family number conservation. ALUE CL% DOCUMENT ID TECN COMMENT TECN COMMENT	Test for $\Delta B =$ tions. ALUE (5 × 10 ⁻⁵ (5 × 10 ⁻⁵ (5 × 10 ⁻⁵ (5 × 10 ⁻⁵ (2 × 10 ⁻⁴ 47 Assumes the Υ (45 (e ⁺ e ⁻)/ Γ total Test for $\Delta B =$ tions. ALUE (3 × 10 ⁻⁵ (8 × 10 ⁻⁵ (8 × 10 ⁻⁵ (8 × 10 ⁻⁵ (8 × 10 ⁻⁵ (3 × 10 ⁻⁴ 48 Assumes the Υ (45 Γ (K ⁰ μ ⁺ μ ⁻)/ Γ total Test for $\Delta B =$ tions. (ALUE (4.5 × 10 ⁻⁴ (-(K ⁰ e ⁺ e ⁻)/ Γ total Test for $\Delta B =$ tions. (ALUE (5.5 × 10 ⁻⁴ (6.5 × 10 ⁻⁴ Test for $\Delta B =$ tions. (6.5 × 10 ⁻⁴ Test of lepton for $\Delta B =$ tions.	26.8 90 90 the followi 90 5) decays 4 1 weak nee 26.8 90 5) decays 4 1 weak nee 26.8 90 1 weak nee 26.8 90 1 weak nee 26.8 90 amily numli	DOCUMENT ID 47 AVERY ALBRECHT IN data for average AVERY GILES 13% to BOBO 48 AVERY IN DOCUMENT ID AVERY GILES 13% to BOBO 48 AVERY IN GATE ALBRECHT AVERY GILES 13% to BOBO 48 AVERY IN TOP AVERY GILES 14TAL CURRENT ID AVERY ULTRI CURRENT ID AVERY DOCUMENT ID AVERY DOCUMENT ID AVERY DOCUMENT ID AVERY	898 870 87 87 84 898 898 87 87 84 87 87 87 87	TECN CLEO ARG ARG CLEO ARG CLEO CLEO CLEO TECN CLEO TECN CLEO TECN CLEO TECN CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{e+} e^- \rightarrow \Upsilon \\ \text{Repl. by AVI} \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVI} \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \hline \\ -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \hline \\ \hline \\ \hline \\ COMMENT \\ \hline \\ \\ COMMENT \\ \hline \\ \\ \hline \\ COMMENT \\ \hline \\ \hline \\ \\ COMMENT \\ \hline \\ \\ COMMENT \\ \hline \\ \\ COMMENT \\ \hline \\ \\ COMMENT \\ \hline \\ \\ COMMENT \\ \hline \\ \\ COMMENT \\ \hline \\ COMMENT \\ \\ COMMENT \\ \hline \\ COMMENT \\ \hline \\ COMMENT \\ \hline \\ COMMENT \\ \hline \\ COMMENT \\ \hline \\ COMMENT \\ \hline \\ COMMENT \\ \hline \\ COMMENT \\ \hline \\ COMMENT \\ \hline \\ COMMENT \\ \hline \\ COMMENT \\ C$	(45) (45) (45) (45) (45) (45) (45) (45)
$\Gamma(K^0e^+e^-)/\Gamma_{\text{total}}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak intertaions. VALUE $CL\%$ $ODCUMENT ID$ $ODCUMENT I$	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE CL% DOCUMENT ID TECN COMMENT ($<6.5 \times 10^{-4}$ 90 AVERY 87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$	Test for $\Delta B = \text{tions}$. Test for $\Delta B = \text{tions}$. $<5 \times 10^{-5} < 5 \times 10^{-5} < 5 \times 10^{-5} < 2 \times 10^{-5} < 2 \times 10^{-4} < 47 \text{ Assumes the } \Upsilon(45 \text{ Fr}(e^+e^-)/\Gamma \text{total rest for } \Delta B = \text{tions}$. $<3 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 8 \times 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < 10^{-5} < $	90 90 the followi 90 5) decays 4 1 weak nee CL% 90 90 6) decays 4 1 weak nee CL% 90 1 weak nee CL% 90 1 weak nee CL% 90 1 weak nee CL% 90	DOCUMENT ID 47 AVERY ALBRECHT IN Glata for average AVERY GILES 13% to BOBO 48 AVERY IN GATE AVERY IN GATE AVERY IN GATE AVERY IN GATE AVERY GILES 13% to BOBO AVERY GILES 13% to BOBO AVERY ULTRI AVERY ULTRI AVERY ULTRI AVERY DOCUMENT ID AVERY AVERY DOCUMENT ID AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY	89B870 87 88 87 88 89 89 89 89 88 87 88 8 8 8 8	TECN CLEO ARG S, limits CLEO CLEO CLEO CLEO CLEO CLEO CLEO CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ e^+e^- \rightarrow \Upsilon \\ \text{e+} e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \text{Repl. by AVE} \\ \\ \hline -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \\ \hline -\text{order electrow} \\ \underline{COMMENT} \\ e^+e^- \rightarrow \Upsilon \\ \\ \hline \end{array}$	(45) (45) (45) (45) (45) (45) (45) (45)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE CL% DOCUMENT ID TECN CHOMENT CLS OCCUMENT ID Test of lepton family number conservation. ALUE CL% DOCUMENT ID TECN COMMENT CMENT CL% DOCUMENT ID TECN COMMENT CMENT AVERY 89 BCLEO $e^+e^- \rightarrow \Upsilon(4S)$ ••• We do not use the following data for averages, fits, limits, etc. ••• <5 × 10^{-5} 90 ALBRECHT 87D ARG $e^+e^- \rightarrow \Upsilon(4S)$	Test for $\Delta B =$ tions. 7.4.1.UE $<5 \times 10^{-5}$ $<5 \times 10^{-5}$ $<5 \times 10^{-5}$ $<9 \times 10^{-5}$ $<2 \times 10^{-4}$ 47 Assumes the $\Upsilon(45)$ $= (e^+e^-)/\Gamma$ total Test for $\Delta B =$ tions. 7.4.1.UE $<3 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$ $<9 \times 10^{-5}$	20	DOCUMENT ID 47 AVERY ALBRECHT ING data for average AVERY GILES 13% to BOBO 48 AVERY INTERPRETATION 48 AVERY INTERPRETATION 48 AVERY INTERPRETATION 49 AVERY GILES 13% to BOBO 40 BOBO 40 BOBO 40 AVERY AVE	89B 87C 87 84 87 84 87 84 87 84 87 88 88	TECN OCLEO O ARG S, limits CLEO CLEO O ARG CLEO O Higher OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG OCLEO O ARG	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ e^+e^- \to \Upsilon \\ \text{etc.} \bullet \bullet \bullet \\ e^+e^- \to \Upsilon \\ \text{Repl. by AVI} \\ \\ \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ \text{etc.} \bullet \bullet \bullet \\ e^+e^- \to \Upsilon \\ \text{Repl. by AVI} \\ \\ \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ \\ \underline{COMMENT} \\ COMMENT$	(45) (45) (45) (45) (45) (45) (45) (45)
$\Gamma(K^0e^+e^-)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{\text{46}} \\ \text{Test for } \Delta B = 1 \text{ weak neutral current. Allowed by higher-order electroweak intertions.} \\ \frac{\text{VALUE}}{\text{constant}} \qquad \frac{\text{CL\%}}{90} \qquad \frac{\text{DOCUMENT ID}}{\text{AVERY}} \qquad \frac{\text{TECN}}{\text{CLEO}} \qquad \frac{\text{COMMENT}}{e^+e^-} \rightarrow \Upsilon(4S) \\ \frac{\text{CL\%}}{90} \qquad \frac{\text{DOCUMENT ID}}{\text{AVERY}} \qquad \frac{\text{TECN}}{90} \qquad \frac{\text{COMMENT}}{\text{CLEO}} \\ \frac{\text{CL\%}}{90} \qquad \frac{\text{DOCUMENT ID}}{\text{AVERY}} \qquad \frac{\text{TECN}}{90} \qquad \frac{\text{COMMENT}}{\text{CLEO}} \\ \frac{\text{CL\%}}{90} \qquad \frac{\text{DOCUMENT ID}}{\text{AVERY}} \qquad \frac{\text{TECN}}{90} \qquad \frac{\text{COMMENT}}{\text{CLEO}} \\ \frac{\text{CL\%}}{90} \qquad \frac{\text{AVERY}}{\text{AVERY}} \qquad \frac{898}{90} \text{ CLEO} \qquad \frac{e^+e^-}{90} \rightarrow \Upsilon(4S) \\ \frac{\text{CL}}{90} \qquad \text$	Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interations. ALUE CL% DOCUMENT ID TECN COMMENT ($e^{\pm}\mu^{\mp}$)/ Γ total Test of lepton family number conservation. ALUE CL% DOCUMENT ID TECN COMMENT ($e^{\pm}\mu^{\mp}$)/ Γ total Test of lepton family number conservation. ALUE CL% DOCUMENT ID TECN COMMENT C4×10 ⁻⁵ 90 49 AVERY 89B CLEO $e^{+}e^{-} \rightarrow \Upsilon(45)$ 0 • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	Test for $\Delta B =$ tions. 25 × 10 ⁻⁵ <5 × 10 ⁻⁵ <5 × 10 ⁻⁵ <6 × 10 ⁻⁵ <7 × 10 ⁻⁶ <7 ×	26.8 90 90 90 the following 90 90 90 90 90 90 90 90 90 90 90 90 90	DOCUMENT ID 47 AVERY ALBRECHT ING data for average AVERY GILES 33% to B ⁰ B 48 AVERY ING data for average ALBRECHT AVERY ING data for average ALBRECHT AVERY AVERY AVERY AVERY AVERY AVERY AVERY AVERY UITAL CURRENT ID AVERY DOCUMENT ID AVERY AVERY AVERY AUBRECHT AVERY AVERY AUBRECHT AVERY ALBRECHT AVERY	89B 87c 87 87 88 89B 87 87 88 87 88 87 88 87 88 87 88 87 88 87 88 87 87	TECN y higher CLEO y higher CLEO y higher TECN CLEO y higher TECN CLEO ARG CLEO y higher TECN CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO ARG CLEO	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \to \Upsilon \\ e^+e^- \to \Upsilon \\ e^+e^- \to \Upsilon \\ \text{Repl. by AVI} \\ \\ \hline \\ -\text{order electrow} \\ \\ \underline{cOMMENT} \\ e^+e^- \to \Upsilon \\ \text{Repl. by AVI} \\ \\ \hline \\ -\text{order electrow} \\ \\ \\ -\text{order electrow} \\ \\ \\ -\text{order electrow} \\ \\ \\ -\text{order electrow} \\ \\ \\ -\text{order electrow} \\ \\ \\ -\text{order electrow} \\ \\ \\ -\text{order electrow} \\ \\ \\ -\text{order electrow} \\ \\ \\ -\text{order electrow} \\ \\ \\ -\text{order electrow} \\ \\ \\ \\ -\text{order electrow} \\ \\ \\ \\ -\text{order electrow} \\ \\ \\ \\ -\text{order electrow} \\ \\ \\ \\ -\text{order electrow} \\ \\ \\ \\ -\text{order electrow} \\ \\ \\ \\ \\ -\text{order electrow} \\ \\ \\ \\ \\ \\ -\text{order electrow} \\ \\ \\ \\ \\ \\ -\text{order electrow} \\ \\ \\ \\ \\ \\ \\ \\ $	(45) (45) (45) (45) (45) (45) (45) (45)

```
\Gamma(\mu^- \text{ anything (via } \overline{B}^0))/\Gamma(\mu^{\pm} \text{ anything)}
                                                                                                                                                \Gamma_{48}/(\Gamma_1+\Gamma_{48})
           This is a B^0-\bar{B}^0 mixing measurement. Violates \Delta B \neq 2 rule. Two different variables, \chi and r, are used. We have converted all results to \chi.
                  \chi = \Gamma(B \rightarrow \mu^- X)/\Gamma(B \rightarrow \mu^{\pm} X)
                           = \Gamma(\overline{B} \to \mu^{+} X) / \Gamma(\overline{B} \to \mu^{\pm} X)
            or r = \chi/(1-\chi).
            Note that the experiments other than those at the \Upsilon(45) have not separated \chi_d from
            \chi_S where the subscripts indicate B^0(\overline{b}d) or B^0_S(\overline{b}s), so they are not included in the
            The experiments at \Upsilon(4S) make an assumption about the {\cal B}^0\,\overline{\cal B}^0\, fraction and about
           the ratio of the B^{\pm} and B^{0} semileptonic branching ratios (usually that it equals one).
                                                 C1 %
                                                                        DOCUMENT ID TECN COMMENT
    0.16 ±0.04 OUR AVERAGE
    0.158 + 0.052 \\ -0.059
                                                                  <sup>50</sup> ARTUSO
                                                                                                      89 CLEO e^+e^- \rightarrow \Upsilon(4S)
                                                                  ^{51} ALBRECHT 871 ARG e^+\,e^-\,
ightarrow\,\Upsilon(45)
    0.17\phantom{0} \pm 0.05\phantom{0}
• • • We do not use the following data for averages, fits, limits, etc. • •
    0.21 \ ^{+\, 0.29}_{-\, 0.15}
                                                                 <sup>52</sup> BAND
                                                                                                       88 MAC Eee = 29 GeV
                                                                  52 BAND
 >0.02
                                                                                                       88 MAC Eee = 29 GeV
                                                            52,53 ALBAJAR
                                                                                                      87C UA1 p\overline{p} 546-630 GeV
87B CLEO e^+e^- \rightarrow \Upsilon(4S)
   0.121 \pm 0.047
                                                                 <sup>54</sup> BEAN
 < 0.19
                                                  90 52,55 SCHAAD
                                                                                                       85 MRK2 E<sup>ee</sup><sub>cm</sub> = 29 GeV
 < 0.12
                                                                 56 AVERY
                                                                                                       84 CLEO e^+e^- \rightarrow \Upsilon(4S)
                                                 90
 < 0.27
  ^{50}\chi is calculated as r/(1+r). They also give \Delta m/\Gamma=0.69\pm0.17. The authors take the
       B^+B^- fraction as 55% of the \Upsilon(45). The measurement is an average of \mu\mu, \mu e, and
  e e events.
51 Measured inclusively with like-sign dileptons, with tagged B decays plus leptons, and one fully reconstructed event. ALBRECHT 871 measured r=0.21 \pm 0.08. We converted to \chi
  ^{52} These experiments see a combination of \mathcal{B}_{\mathcal{S}} and \mathcal{B}_{\mathcal{d}} mesons.
  53 ALBAJAR 87c measured \chi = (\overline{B}^0 \to B^0 \to \mu^+ X) divided by the average production
        weighted semileptonic branching fraction for B hadrons at 546 and 630 GeV
  <sup>54</sup> BEAN 87B measured r < 0.24; we converted to \chi.
  ^{55} Limit is average probability for hadron containing B quark to produce a positive lepton.
  ^{56} Same-sign dilepton events. Limit assumes semileptonic BR for \mathcal{B}^+ and \mathcal{B}^0 equal. If
        B^0/B^\pm ratio <0.58, no limit exists. The limit was corrected in BEAN 87B from r < 0.30 to r < 0.37. We converted this limit to \chi.
                                                              REFERENCES FOR BO
                                                                          + Bockmannn, Glasser, Harder+
Glasser, Harder, Krueger+
Glaser, Harder, Krueger+
Bebek, Berkelman, Blucher-
Besson, Garren, Yetton+
Goldberg, Horwitz, Mestayer-
Goldberg, Horwitz, Mestayer-
Hockmann, Glasser-
Hockmann, Glasser-
Hockmann, Glasser-
Homores, Chadwick+
Albrow, Allkofer, Arnison+
Brinder, Bockmann, Glasser+
Andam, Binder, Bockmann-
Andam, Binder, Bockmann-
Andam, Binder, Bockmann-
Hosson, Bowcock, Gilser-
Hesson, Bowcock, Gilser-
                                                                                                                                               (ARGUS Collab.)
(ARGUS Collab.)
(ARGUS Collab.)
(CLEO Collab.)
(CLEO Collab.)
(CLEO Collab.)
(CLEO Collab.)
(CLEO Collab.)
(ARGUS Collab.)
(MAC Collab.)
(MAC Collab.)
(MAC Collab.)
(MAC Collab.)
(ARGUS Collab.)
(ARGUS Collab.)
(ARGUS Collab.)
(ARGUS Collab.)
(ARGUS Collab.)
(CARGUS Collab.)
(CARGUS Collab.)
(CLEO Collab.)
(CLEO Collab.)
(CLEO Collab.)
(CLEO Collab.)
(CLEO Collab.)
(CLEO Collab.)
(CLEO Collab.)
 ALBRECHT
ALBRECHT
ALBRECHT
                                  PL B219 121
PL B229 304
PL B229 175
PRL 62 2233
 ARTUSO
                          89
89B
                                   PL B223 470
PRL 62 2436
PRL 63 1667
 AVERY
 BORTOLETTO 89
BORTOLETTO 89B
 ALBRECHT.
                                    PL B209 119
PL B215 424
 ALBRECHT
                                  PL B215 424
PL B200 221
PL B186 247
PL B199 451
PL B199 451
PL B197 245
PL B183 429
PRL 58 183
PR D36 1289
PR D34 3279
PR D34 3279
ALBRECHT
BAND
ALBAJAR
ALBRECHT
ALBRECHT
ALBRECHT
ALBRECHT
                          871
87J
                                                                         - Andam, Binder, Boeckmann+
Besson, Bowcok, Gilles+
Bobbink, Brock, Engler+
Berkelma, Bucher, Casel-
Hatayama, Kim, Sun+
Binder, Boeckmann, Glaser+
Aguila-Benitez, Porter+
Aguila-Benitez, Porter+
Goldberg, Horwitz, Jawahery+
Hempstead, Jensen, Kagan+
Nelson, Abrams, Amidel+
Bebek, Berkelman, Cassel+
Habsand, Hempstead, Kinoshita+
- Chadwick, Chauveau, Ganci+
                          87
87B
87
 AVERY
 BEAN
 BEBEK
BEBEK
ALAM
ALBRECHT
PDG
CHEN
HAAS
SCHAAD
AVERY
GUES
                                  PR D34 3279
PL B182 95
PL 170B
PR D31 2386
PRL 55 1248
PL 160B 188
PRL 53 1309
PR D30 2279
PRL 50 881
                                                                                                                                               (ARGUS Collab.
                                                                                                                                               (CLEO Collab.)
(CLEO Collab.)
(Mark II Collab.)
(CLEO Collab.)
(CLEO Collab.)
 BEHRENDS
                                                                                                                                                  (CLEO Collab.)
```

— OTHER RELATED PAPERS -

(SLAC)

SCHINDLER 88 High Energy Electron-Positron Physics 234
Editors: A. Ali and P. Soeding, World Scientific, Singapore
SCHUBERT 87 HEP-HO/87-7
EPS Conference – Uppsala, Proc., Vol. 2, p. 791

B^* , Charmonium, $\eta_c(1S) = \eta_c(2980)$

 B^*

 $I(J^P) = ?(?^?)$ I, J, P need confirmation.

OMITTED FROM SUMMARY TABLE

B* MASS

VALUE (MeV)

DOCUMENT ID

5331.3 \pm 4.7 OUR EVALUATION From mass difference below and ${\cal B}^\pm$ and ${\cal B}^0$ masses 5279.3 \pm 1.4 MeV.

5330 ±5 OUR FIT

B* - B MASS DIFFERENCE

VALUE (MeV)	EVTS
52 ±4 OUR FIT	
52 0 ± 2 ± 4	1400

DOCUMENT ID TECN COMMENT

HAN 85 CUSB $e^+e^- \rightarrow \gamma e^- X$

B* REFERENCES

HAN

85 PRL 55 36

-Klopfenstein, Mageras-

(COLU. LSU. MPIM. STON)

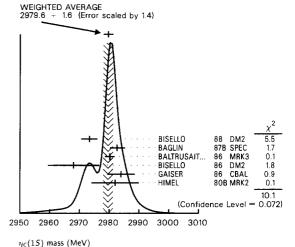
cc MESONS

$$\eta_c(1S)$$
 or $\eta_c(2980)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

Observed in the inclusive γ spectrum generated from $\psi(2S)$ decay, therefore C=+. From the 4π decay G=+, therefore I=0. From angular distribution in $J/\psi(1S) \to -\eta_C \gamma$, $\eta_C \to -\phi \phi$, $J^P=0^-$ (BALTRUSAITIS 84).

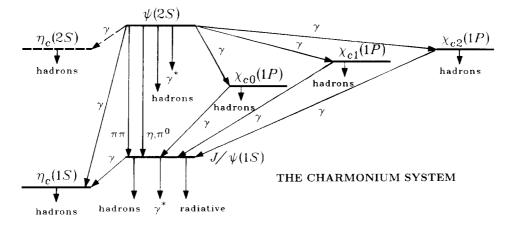
$\eta_c(1S)$ MASS


VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
2979.6±1.6 OUR	AVERAGE	Error includes scale fa	actor	of 1.4.	See the ideogram below.
2973.3 ± 2.7	137 ± 23	BISELLO	88	DM2	$J/\psi \rightarrow \gamma 2\pi^+ 2\pi^-$
2982.6 + 2.7	12	BAGLIN	87B	SPEC	$\overline{p}p \rightarrow \gamma \gamma$
2980.2 ± 1.6		¹ BALTRUSAIT.	.86	MRK3	$J/\psi \rightarrow \eta c \gamma$
2968.0 ± 5 ± 7	19	BISELLO	86	DM2	$J/\psi \rightarrow \gamma \phi \phi$
2984 $\pm 2.3 \pm 4.0$		GAISER	86	CBAL	$J/\psi \rightarrow \gamma X, \psi(2S) \rightarrow$
2982 +8	18	² HIMEL	80s	MRK2	γ X _e + _e -

• • • We do not use the following data for averages, fits, limits, etc. • • • 2976 ± 8 3 BALTRUSAIT...84 MRK3 $J/\psi \rightarrow 2\phi \gamma$ 2980 ± 9 2 PARTRIDGE 80B CBAL e^+e^-

2980 ± 9 2 P $\frac{1}{2}$ Average of several decay modes.

 2 Mass adjusted by us to correspond to $J/\psi(1S)$ mass = 3097 MeV.


 $3 \eta_C \rightarrow \phi \phi$.

HC(13) Mass (MeV)

$\eta_c(15)$ WIDTH DOCUMENT ID VALUE (MeV) CL% EVTS TECN COMMENT 10.3 + 3.8 OUR AVERAGE 878 SPEC $\bar{p}p \rightarrow \gamma \gamma$ $10.1^{+33.0}_{-8.2}$ ⁴ BALTRUSAIT...86 MRK3 $J/\psi \rightarrow \gamma p \overline{p}$ 23 ± 11 86 CBAL $J/\psi \rightarrow \gamma X$, $\psi(2S) \rightarrow \gamma X$ 11.5 ± 4.5 GAISER • • • We do not use the following data for averages, fits, limits, etc. • • • <40 HIMEL 80в MRK2 e+ e-<20 PARTRIDGE 80B CBAL e+ e-

⁴ Positive and negative errors correspond to 90% confidence level.

 $J^{PC} = 0^{-+}$

1--

0++

1++

2++

The current state of knowledge of the charmonium system and transitions, as interpreted by the charmonium model. Uncertain states and transitions are indicated by dashed lines. The notation γ^* refers to decay processes involving intermediate virtual photons, including decays to e^+e^- and $\mu^+\mu^-$.

 $\eta_c(1S) = \eta_c(2980)$

$\eta_c(1S)$ DECAY MODES	$\Gamma(a_0(980)\pi)/\Gamma_{ ext{total}}$ Γ
$\begin{array}{ccc} & & & & & & & \\ & & & & & & \\ \text{Mode} & & & & & \\ \text{Fraction} & (\Gamma_{\hat{I}}/\Gamma) & & & \\ \text{Confidence level} & & & \\ \end{array}$	<0.02 90 7.8 BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta c \gamma$
Decays involving hadronic resonances	$\Gamma(a_2(1320)\pi)/\Gamma_{total}$
$\eta'(958)\pi\pi$ (4.1 ±1.7)%	VALUE CL% DOCUMENT ID TECN COMMENT
$\rho \rho$ (2.6 ±0.9)%	<0.02 90 ⁷ BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta_{\rm C} \gamma$
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$ (2.0 ±0.7)%	$\Gamma(f_2(1270)\eta)/\Gamma_{\text{total}}$
$K^*(892)\overline{K}^*(892)$ (9 ±5)×10 ⁻³	VALUE CL% DOCUMENT ID TECN COMMENT
$\phi \phi$ (3.4 ±1.2) × 10 ⁻³ S=1.5	<0.011 90 7 BALTRUSAIT86 MRK3 $J/\psi ightarrow \eta_{C} \gamma$
$a_0(980)\pi$ < 2 % CL=90%	$\Gamma(\omega\omega)/\Gamma_{ m total}$
$a_2(1320)\pi$ < 2 % CL=90%	VALUE CL% DOCUMENT ID TECN COMMENT
$f_2(1270)\eta$ < 1.1 % CL=90%	<0.0031 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$\omega \omega$ < 3.1 × 10 ⁻³ CL=90%	F/VV-\/F
Decays into stable hadrons	$\Gamma(K\overline{K}\pi)/\Gamma_{ ext{total}}$ Γ_1 VALUE CL% EVTS DOCUMENT ID TECH. COMMENT
$_{0}$ $K\overline{K}\pi$ (5.5 ± 0.8)%	0.055 ±0.008 OUR AVERAGE
$11 \eta \pi \pi$ (5.0 ±1.1)%	0.0613 ± 0.0122 $\frac{7}{70}$ AUGUSTIN 86 DM2 $J/\psi \rightarrow \eta c \gamma$
$2 \pi^{+} \pi^{-} K^{+} K^{-} \qquad (2.04 \pm 0.28) \%$	0.048 ± 0.011 96 ± 18 7.9 BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta_{\rm C} \gamma$
$3 2(\pi^+\pi^-)$ (1.17±0.28) %	$0.079 \ {}^{+0.042}_{-0.032}$ $10{,}11$ HIMEL 80B MRK2 $\psi(25) ightarrow \eta c \gamma$
4 $p\bar{p}$ (1.04±0.19) × 10 ⁻³	• • • We do not use the following data for averages, fits, limits, etc. • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.107 90 7 PARTRIDGE 80B CBAL $J/\psi o \eta_C \gamma$
0 " " PP \ \1.2 % \ \L=90%	$\Gamma(\eta\pi\pi)/\Gamma_{ m total}$
Radiative decays	VALUE EVTS DOCUMENT ID TECN COMMENT
$7 \ \gamma \gamma$ (6 $^{+6}_{-5}$) × 10 ⁻⁴	0.050±0.011 OUR AVERAGE
·3	0.054 \pm 0.013 75 \pm 11 7 BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta_{\rm C} \gamma$ 0.036 \pm 0.024 18 7 PARTRIDGE 808 CBAL $J/\psi \rightarrow \eta \pi^+ \pi^- \gamma$
(1C) DADTIAL WESTIG	
$\eta_{c}(1S)$ PARTIAL WIDTHS	$\Gamma(\pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}$
$(\gamma \gamma)$ Γ_{17}	VALUE EVTS DOCUMENT ID TECN COMMENT 0.0204±0.0028 OUR AVERAGE
LUE (keV) DOCUMENT ID TECN COMMENT	0.021 \pm 0.003 110 \pm 17 ⁷ BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta_{\rm C} \gamma$
+ 7 OUR AVERAGE Error includes scale factor of 1.4.	$0.009 \ ^{+0.014}_{-0.006} \ ^{10}$ HIMEL 808 MRK2 $\psi(25) ightharpoonup \eta_{C} \gamma$
<u>.</u>	
$4^{+}_{-} 5.0_{-}$ AIHARA 88D TPC $e^{+}e^{-} \rightarrow e^{+}e^{-}$ X	$\Gamma(2(\pi^+\pi^-))/\Gamma_{ ext{total}}$
± 15 5 BERGER 86 PLUT $\gamma \gamma \rightarrow K\overline{K}\pi$	VALUE EVTS DOCUMENT ID TECN COMMENT
⁵ Re-evaluated by AIHARA 88D.	0.0117 ± 0.0028 OUR AVERAGE $0.0105 \pm 0.0038 \ 137 \pm 23 \pm 7$ BISELLO 88 DM2 $J/\psi \to \eta_{\rm C} \gamma$
	0.013 ± 0.005 25 \pm 9 ⁷ BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$
$\eta_{c}(1S) \; \Gamma(i) \Gamma(\gamma \gamma) / \Gamma(total)$	$0.013 \ ^{+0.009}_{-0.006}$ 10 HIMEL 80B MRK2 $\psi(25) ightarrow \eta_{c} \gamma$
$(K\overline{K}\pi) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\Gamma_{10}\Gamma_{17}/\Gamma$	
ALUE (keV) CL% EVTS DOCUMENT ID TECN COMMENT	$\Gamma(p\overline{p})/\Gamma_{\text{total}}$
1.2 ±0.4 OUR AVERAGE	VALUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT 10.4 ± 1.9 OUR AVERAGE
1.06 \pm 0.41 \pm 0.27 11 \pm 4 BRAUNSCH 89 TASS $\gamma\gamma \rightarrow K\overline{K}\pi$	10.4 ± 1.9 GOR AVERAGE 10 ± 2 $\frac{7}{4}$ AUGUSTIN 86 DM2 $J/\psi \rightarrow \eta_C \gamma$
1.5 $^{+0.60}_{-0.45}$ ±0.3 7 6 BERGER 86 PLUT $\gamma\gamma \to K\overline{K}\pi$	11 \pm 6 23 \pm 11 ⁷ BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta_{\rm C} \gamma$
 ◆ We do not use the following data for averages, fits, limits, etc. 	20 $^{+20}_{-10}$ 10 HIMEL 80B MRK2 $\psi(25) ightarrow \eta_{C} \gamma$
(0.63 95 6 BEHREND 89 CELL $\gamma \gamma \rightarrow K_S^0 K^{\pm} \pi^{\mp}$	
4.4 95 ALTHOFF 858 TASS $\gamma \gamma \to K \overline{K} \pi$	$\Gamma(K\overline{K}\eta)/\Gamma_{\text{total}}$
${}^6K^{\pm}K^0_{S}\pi^{\mp}$ corrected to $K\overline{K}\pi$ by factor 3.	VALUE CL% DOCUMENT ID TECN COMMENT
	<0.031 90 ⁷ BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta_{\rm C} \gamma$
$\eta_c(1S)$ BRANCHING RATIOS	$\Gamma(\pi^+\pi^-p\overline{p})/\Gamma_{total}$
., ,	VALUE CL% DOCUMENT ID TECN COMMENT
HADRONIC DECAYS ——	<0.012 90 HIMEL 80B MRK2 $\psi(25) ightarrow \eta_{\mathcal{C}} \gamma$
$(\eta'(958)\pi\pi)/\Gamma_{\text{total}}$ Γ_1/Γ	$\Gamma_I \Gamma_f / \Gamma_{\text{total}}^2 \text{ in } p \overline{p} \rightarrow \eta_c(1S) \rightarrow \phi \phi$ $\Gamma_{14} \Gamma_5$
LUE EVTS DOCUMENT ID TECN COMMENT	VALUE (units 10^{-5}) DOCUMENT ID TECH COMMENT
14 ± 4 BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	125
DALIKUSAHIDO MIKKS $J/\psi o \eta_{C} \gamma$	
	(
$(ho ho)/\Gamma_{ m total}$ Γ_2/Γ	⁷ The quoted branching ratios use B($J/\psi(1S) \rightarrow \gamma \eta_C(1S)$) = 0.0127 ± 0.0036.
$(ho ho)/\Gamma_{ ext{total}}$ $\Gamma_2/\Gamma_{ ext{LUE (units }10^{-3})}$ CL% EVTS DOCUMENT ID TECN COMMENT	⁸ We are assuming $B(a_0(980) \rightarrow n\pi) > 0.5$.
$(\rho\rho)/\Gamma_{ ext{total}}$ $\Gamma_2/\Gamma_{ ext{1}}$ $\Gamma_2/\Gamma_{ ext{1}}$ $\Gamma_2/\Gamma_{ ext{2}}$ Γ_2/Γ	8 We are assuming B($a_0(980) \rightarrow \eta \pi$) >0.5. 9 Average from $K^+K^-\pi^0$ and $K^\pm K^0$'s π^\mp decay channels. 10 Estimated using B($\psi(2S) \rightarrow \gamma \eta_C(1S)$) = 0.0043; the errors do not contain the u
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁸ We are assuming B($a_0(980) \rightarrow \eta \pi$) >0.5. ⁹ Average from $K^+K^-\pi^0$ and $K^\pm K^0$ ${}^s\pi^\mp$ decay channels. ¹⁰ Estimated using B($\psi(25) \rightarrow \gamma \eta_C(15)$) = 0.0043; the errors do not contain the ularinty in the $\psi(25)$ decay.
$(\rho\rho)/\Gamma_{\text{total}}$ LUE (units 10^{-3}) CL% EVTS DOCUMENT ID TECN COMMENT 26±8±5 • We do not use the following data for averages, fits, limits, etc. • • • 140 90 7 BALTRUSAIT86 MRK3 $J/\psi \rightarrow \eta_C \gamma$	8 We are assuming B($a_0(980) \rightarrow \eta \pi$) >0.5. 9 Average from $K^+K^-\pi^0$ and $K^\pm K^0$'s π^\mp decay channels. 10 Estimated using B($\psi(2S) \rightarrow \gamma \eta_C(1S)$) = 0.0043; the errors do not contain the u
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁸ We are assuming B(a ₀ (980) $\rightarrow \eta \pi$) >0.5. ⁹ Average from $K^+K^-\pi^0$ and $K^\pm K^0$, π^\pm decay channels. ¹⁰ Estimated using B($\psi(25) \rightarrow \gamma \eta_C(15)$) = 0.0043; the errors do not contain the ularinty in the $\psi(25)$ decay.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁸ We are assuming $B(a_0(980) \rightarrow \eta \pi) > 0.5$. ⁹ Average from $K^+ K^- \pi^0$ and $K^\pm K^0 \cdot_5 \pi^\mp$ decay channels. ¹⁰ Estimated using $B(\psi(2S) \rightarrow \gamma \eta_C(1S)) = 0.0043$; the errors do not contain the u tainty in the $\psi(2S)$ decay. ¹¹ Not seen by Partridge in $K^+ K^- \pi^0$. RADIATIVE DECAYS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 We are assuming B(a ₀ (980) $\rightarrow \eta \pi$) >0.5. 9 Average from $K^{+}K^{-}\pi^{0}$ and $K^{\pm}K^{0}$; π^{\mp} decay channels. 10 Estimated using B(ψ (2S) $\rightarrow \gamma \eta_{C}(1S)$) = 0.0043; the errors do not contain the utainty in the ψ (2S) decay. 11 Not seen by Partridge in $K^{+}K^{-}\pi^{0}$. RADIATIVE DECAYS $\Gamma(\gamma \gamma)/\Gamma_{\text{total}}$.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 We are assuming $B(a_0(980) \rightarrow \eta \pi) > 0.5$. 9 Average from $K^+ K^- \pi^0$ and $K^\pm K^0 \cdot s_\pi \mp$ decay channels. 10 Estimated using $B(\psi(25) \rightarrow \gamma \eta_C(15)) = 0.0043$; the errors do not contain the u tainty in the $\psi(25)$ decay. 11 Not seen by Partridge in $K^+ K^- \pi^0$. RADIATIVE DECAYS $\Gamma(\gamma \gamma)/\Gamma_{\text{total}}$ $VALUE (units 10^{-4})$ CL% DOCUMENT ID TECN COMMENT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 We are assuming $B(a_0(980) \rightarrow \eta \pi) > 0.5$. 9 Average from $K^+ K^- \pi^0$ and $K^\pm K^0 \cdot s_\pi \mp$ decay channels. 10 Estimated using $B(\psi(25) \rightarrow \gamma \eta_C(15)) = 0.0043$; the errors do not contain the u tainty in the $\psi(25)$ decay. 11 Not seen by Partridge in $K^+ K^- \pi^0$. RADIATIVE DECAYS $\Gamma(\gamma \gamma)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{1} \Gamma_{2} \Gamma_{3} \Gamma_{4} \Gamma_{4} \Gamma_{5} \Gamma_$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 We are assuming $B(a_0(980) \rightarrow \eta \pi) > 0.5$. 9 Average from $K^+ K^- \pi^0$ and $K^\pm K^0 \cdot s_\pi \mp$ decay channels. 10 Estimated using $B(\psi(25) \rightarrow \gamma \eta_C(15)) = 0.0043$; the errors do not contain the u tainty in the $\psi(25)$ decay. 11 Not seen by Partridge in $K^+ K^- \pi^0$. RADIATIVE DECAYS $\Gamma(\gamma \gamma)/\Gamma_{\text{total}}$ $VALUE (units 10^{-4})$ CL% DOCUMENT ID TECN COMMENT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 We are assuming $B(a_0(980) \rightarrow \eta \pi) > 0.5$. 9 Average from $K^+ K^- \pi^0$ and $K^\pm K^0$'s π^\mp decay channels. 10 Estimated using $B(\psi(25) \rightarrow \gamma \eta_C(15)) = 0.0043$; the errors do not contain the u tainty in the $\psi(25)$ decay. 11 Not seen by Partridge in $K^+ K^- \pi^0$. RADIATIVE DECAYS $\Gamma(\gamma \gamma)/\Gamma \text{total} \qquad \qquad \Gamma_1$ VALUE (units 10^{-4}) CL% DOCUMENT ID TECN COMMENT $6 + \frac{4}{3} \pm 4 \qquad \qquad BAGLIN \qquad 878 \text{ SPEC} \qquad \overline{p}p \rightarrow \gamma \gamma$ • • We do not use the following data for averages, fits, limits, etc. • • • < <18 90 12 BLOOM 83 CBAL $J/\psi \rightarrow \eta_C \gamma$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 We are assuming $B(a_0(980) \rightarrow \eta \pi) > 0.5$. 9 Average from $K^+ K^- \pi^0$ and $K^\pm K^0 \cdot s_\pi \mp$ decay channels. 10 Estimated using $B(\psi(25) \rightarrow \gamma \eta_C(15)) = 0.0043$; the errors do not contain the u tainty in the $\psi(25)$ decay. 11 Not seen by Partridge in $K^+ K^- \pi^0$. RADIATIVE DECAYS $\Gamma(\gamma \gamma)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{1} \qquad \qquad \Gamma_{2} \qquad \Gamma_{3} \qquad \Gamma_{4} \qquad \Gamma_{5} \qquad $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 We are assuming $B(a_0(980) \rightarrow \eta \pi) > 0.5$. 9 Average from $K^+ K^- \pi^0$ and $K^\pm K^0$'s π^\pm decay channels. 10 Estimated using $B(\psi(25) \rightarrow \gamma \eta_C(15)) = 0.0043$; the errors do not contain the u tainty in the $\psi(25)$ decay. 11 Not seen by Partridge in $K^+ K^- \pi^0$. RADIATIVE DECAYS $\Gamma(\gamma \gamma)/\Gamma_{\text{total}} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 We are assuming $B(a_0(980) \to \eta \pi) > 0.5$. 9 Average from $K^+ K^- \pi^0$ and $K^\pm K^0$'s π^\pm decay channels. 10 Estimated using $B(\psi(25) \to \gamma \eta_C(15)) = 0.0043$; the errors do not contain the u tainty in the $\psi(25)$ decay. 11 Not seen by Partridge in $K^+ K^- \pi^0$. RADIATIVE DECAYS $\Gamma(\gamma \gamma)/\Gamma_{\text{total}} \qquad \Gamma_1$ VALUE (units 10^{-4}) CL% DOCUMENT ID TECN COMMENT 6 $\frac{1}{3} \pm 4$ BAGLIN 878 SPEC $\overline{p}p \to \gamma \gamma$ • • • We do not use the following data for averages, fits, limits, etc. • • • < 18 90 12 BLOOM 83 CBAL $J/\psi \to \eta_C \gamma$ 12 Using $B(J/\psi(15) \to \gamma \eta_C(15)) = 0.0127 \pm 0.0036$. $\Gamma_1 \Gamma_1 \Gamma_1 \Gamma_1 \Gamma_1 \Gamma_2 \Gamma_1 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_3 \Gamma_4 \Gamma_4 \Gamma_4 \Gamma_5 \Gamma_4 \Gamma_5 \Gamma_5 \Gamma_4 \Gamma_5 \Gamma_5 \Gamma_5 \Gamma_5 \Gamma_5 \Gamma_5 \Gamma_5 \Gamma_5 \Gamma_5 \Gamma_5$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 We are assuming $B(a_0(980) \rightarrow \eta \pi) > 0.5$. 9 Average from $K^+ K^- \pi^0$ and $K^\pm K^0$'s π^\pm decay channels. 10 Estimated using $B(\psi(25) \rightarrow \gamma \eta_C(15)) = 0.0043$; the errors do not contain the u tainty in the $\psi(25)$ decay. 11 Not seen by Partridge in $K^+ K^- \pi^0$. RADIATIVE DECAYS $\Gamma(\gamma \gamma)/\Gamma_{\text{total}} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $

$\eta_c(1S) = \eta_c(2980), J/\psi(1S) = J/\psi(3097)$

$\frac{\eta(10)}{\eta(10)} \frac{\eta(10)}{\eta(10)} \frac{\eta(10)}{\eta(10)}$					
$\eta_c(1S)$ REFERENCES		$\phi K^{\pm} K^0_S \pi^{\mp}$		$(7.2 \pm 0.9) \times 10^{-4}$	
BAGLIN 89 PL B231 557 +Baird, Bassompierre		$\phi\eta$		7.14 ± 0.30) × 10^{-4} 6.8 ±2.4) × 10^{-4}	
BEHREND 89 ZPHY C42 367 +Criegee+ BRAUNSCH 89 ZPHY C41 533 Braunschweig, Bock+	(TASSO Collab.)	$\omega f_1(1420)$ $\Xi(1530)^-\overline{\Xi}^+$		$5.9 \pm 1.5 \times 10^{-4}$	
AIHARA 88D PRL 60 2355 +AIston-Garnjost+ BISELLO 88 PL B200 215 +Busetto+ (PADO, CLE	(TPC Collab.) 36 R, FRAS, LALO) [37	$pK = \Sigma(1385)^0$		$5.1 \pm 3.2 \times 10^{-4}$	
BAGLIN 87B PL B187 191 +Baird, Bassompierre, Borreani+	(R704 Collab.) R, PADO, FRAS)			4.8 ± 0.7) × 10^{-4}	
BALTRUSAIT 86 PR D33 629 Baitrusaitis, Coffman, Hauser+	(Mark III Collab.)		,	$3.8 \pm 0.4 \times 10^{-4}$	S=1.6
BERGER 86 PL 167B 120 +Genzel, Lackas, Pielorz+ BISELLO 86 PL B179 289 +Busetto, Castro, Limentani+	(DM2 Collab.) F40	$\phi f_0(975)$	(3.2 ± 0.5) $\times 10^{-4}$	S=1.3
ALTHOFF 85B ZPHY C29 189 +Braunschweig, Kirschfink+	ystal Ball Collab.) (TASSO Collab.)	$\Xi(1530)^{0}\overline{\Xi}^{0}$	($3.2 \pm 1.4 \times 10^{-4}$	
BLOOM 83 ARNS 33 143 +Peck		$\Sigma(1385)^{-}\overline{\Sigma}^{+}$ (or c.c.)	[a] (3.1 ± 0.5) $\times 10^{-4}$	
HIMEL 808 PRL 45 1146 +Trilling, Abrams, Alam+ (S PARTRIDGE 808 PRL 45 1150 +Peck+ (CIT, HARV, PR		$\rho\eta$		$1.93 \pm 0.32) \times 10^{-4}$	
OTHER RELATED PAPERS		$\omega \eta'(958)$ $\omega f_0(975)$		1.66 ± 0.25) × 10^{-4} 1.41 ± 0.34) × 10^{-4}	
	Γú	$\rho \eta'(958)$,	$9.6 \pm 1.8 \times 10^{-5}$	S=1.2
ARMSTRONG 89 PL B221 216 +Benayoun+ (CERN, CDEF, BIRM, BAI BLOOM 79 Fermilab Symp. 92 (CIT, HARV, PR	KI, AIMU, LEWE)	1. 1. 1. 1		$8 \pm 5) \times 10^{-5}$	S=2.2
	Γ ₄₈	$\rho \overline{\rho} \phi$		4.5 ± 1.5) $\times 10^{-5}$	
	Γ ₄₉		[a] <	2	CL=90%
$J/\psi(1S)$ $I^{G}(J^{PC}) = 0^{-(1^{-1})}$	Γ ₅₀			4.0×10^{-3}	CL=90%
or $J/\psi(3097)$		$K^{*}(892)^{0} \overline{K}^{*}(892)^{0}$		2.9×10^{-3} 5×10^{-4}	CL=90% CL=90%
0. 3/ \$(3031)		$\phi f_2(1270)$		3.7 × 10 ⁻⁴	CL=90%
		$\rho \overline{\rho} \rho$		3.1 × 10 ⁻⁴	CL=90%
$J/\psi(1S)$ MASS	Γ ₅₅	$\phi \eta(1440) \rightarrow \phi \eta \pi \pi$	<	2.5×10^{-4}	CL=90%
VALUE (MeV) EVTS DOCUMENT ID TECN COMME		$\omega f_2'(1525)$		2.2×10^{-4}	CL=90%
3096.93±0.09 OUR AVERAGE		$\Sigma(1385)^0\overline{\Lambda}$		2 × 10 ⁻⁴	CL=90%
3096.95 \pm 0.1 \pm 0.3 193 BAGLIN 87 SPEC $\bar{p}p \rightarrow$		$\frac{\Delta(1232)^+}{\Sigma^0\overline{\Lambda}}$	<	1×10^{-4} 9 $\times 10^{-5}$	CL=90% CL=90%
3098.4 ± 2.0 38k LEMOIGNE 82 GOLI 190 Go 3096.93 ± 0.09 502 ZHOLENTZ 80 REDE e^+e^-	$eV \pi^- Be \rightarrow 2\mu$ Γ_{60}			6.8 × 10 ⁻⁶	CL=90%
3097.0 ± 1 BRANDELIK 79c DASP e^+e^-	50	Decays into sta			
¹ From a simultaneous fit to e^+e^- , $\mu^+\mu^-$ and hadronic channels a	ssuming $\Gamma(e^+ e^-)$	$2(\pi^+\pi^-)\pi^0$		(3.42±0.31) %	
$=\Gamma(\mu^+\mu^-).$	Γ ₆₂	$3(\pi^{+}\pi^{-})\pi^{0}$		2.9 ±0.6)%	
1/-//1 C) MIDTH		$\pi^+\pi^-\pi^0$	([1.50±0.15) %	
$J/\psi(1S)$ WIDTH	Γ ₆₄	$\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}$		1.20±0.30) %	
VALUE (keV) DOCUMENT ID	r .	$4(\pi^+\pi^-)\pi^0 \\ \pi^+\pi^-K^+K^-$		$(9.0 \pm 3.0) \times 10^{-3}$ $(7.2 \pm 2.3) \times 10^{-3}$	
68±10 OUR EVALUATION Uses F(ee) from ALEXANDER 89 and B(from BOYARSKI 75.		$\kappa \overline{\kappa}_{\pi}$		$(6.1 \pm 1.0) \times 10^{-3}$	
		$\rho \overline{\rho} \pi^+ \pi^-$		$(6.0 \pm 0.5) \times 10^{-3}$	S=1.3
$J/\psi(1S)$ DECAY MODES		$2(\pi^{+}\pi^{-})$		$(4.0 \pm 1.0) \times 10^{-3}$	
		$3(\pi^+\pi^-)$		$(4.0 \pm 2.0) \times 10^{-3}$	
Mode Fraction (Γ_{j}/Γ)	~ ~ ~	$n \overline{n} \pi^+ \pi^- \Sigma \overline{\Sigma}$		$(4 \pm 4) \times 10^{-3}$ $(3.8 \pm 0.5) \times 10^{-3}$	
Γ_1 hadrons (86.0 ± 2.0)%	Γ ₇₃	$2(\pi^{+}\pi^{-})K^{+}K^{-}$		$(3.1 \pm 1.3) \times 10^{-3}$	
Γ_2 virtual $\gamma \rightarrow$ hadrons (17.0 ± 2.0) %		$\rho \overline{\rho} \pi^+ \pi^- \pi^0$		$(2.3 \pm 0.9) \times 10^{-3}$	S=1.9
$\Gamma_3 e^+ e^- \qquad \qquad (6.9 \pm 0.9) \% $ $\Gamma_4 \mu^+ \mu^- \qquad (6.9 \pm 0.9) \%$		ρ <u>P</u>		$(2.16\pm0.11)\times10^{-3}$	
	' 76 Г ₇₇	ρ <u>ρ</u> η ρ <u>π</u> π-		$(2.09\pm0.18)\times10^{-3}$ $(2.00\pm0.10)\times10^{-3}$	
Decays involving hadronic resonances	Γ ₇₈			$(1.8 \pm 0.4) \times 10^{-3}$	S=1.8
$\Gamma_5 \rho \pi$ (1.28±0.10)% $\Gamma_6 \rho^0 \pi^0$ (4.2±0.5)×10	Γ ₇₉	n n		$(1.8 \pm 0.9) \times 10^{-3}$	
$\Gamma_7 = a_2(1320)\rho$ (9.2 ±1.1)×10	2 '80	^ <u>⊼</u>		$(1.35 \pm 0.14) \times 10^{-3}$	S=1.2
$\Gamma_8 \omega \pi^+ \pi^+ \pi^- \pi^- $ (8.5 ±3.4) × 1	₂₋₃ '81	$\rho \overline{\rho} \pi^0$		$(1.09\pm0.09)\times10^{-3}$	
$\Gamma_9 = \omega \pi^+ \pi^- $ (7.0 ±0.7)×1	Гол.	$\Lambda \overline{\Sigma}^- \pi^+$ (or c.c.)		$(1.06\pm0.12)\times10^{-3}$	
$\Gamma_{10} K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$ (6.7 ±2.6) × 10	, -	$ \begin{array}{ccc} pK^- \Lambda \\ 2(K^+ K^-) \end{array} $	($(8.9 \pm 1.6) \times 10^{-4}$ $(7.0 \pm 3.0) \times 10^{-4}$	
$\Gamma_{11} \omega K^*(892) \overline{K} + \text{c.c.}$ (5.3 ±2.0) × 1. $\Gamma_{12} \omega f_2(1270)$ (4.1 ±0.4) × 1.	, · _	$pK - \overline{\Sigma}^0$		$(2.9 \pm 0.8) \times 10^{-4}$	
$\Gamma_{12} \omega f_2(1270)$ (4.1 ±0.4) × 10 $\Gamma_{13} K^+ \overline{K}^* (892)^- + \text{c.c.}$ (3.8 ±0.7) × 10	-3 ₅₋₂₀ Γ ₈₆	K ⁺ K ⁻		$(2.37 \pm 0.31) \times 10^{-4}$	
$\Gamma_{14} K^0 \overline{K}^* (892)^0 + \text{c.c.}$ (3.7 ±0.8) × 10	n_3 c n 187	$\Lambda \overline{\Lambda} \pi^0$		$(2.2 \pm 0.7) \times 10^{-4}$	
$\Gamma_{15} \omega \pi^0 \pi^0$ (3.4 ±0.8)×1	₀ –3	$\pi^{+}\pi^{-}$ $K_{S}^{0}K_{L}^{0}$		$(1.47\pm0.23)\times10^{-4}$	
$\Gamma_{16} b_1(1235)^{\pm} \pi^{\mp}$ [a] (3.0 ±0.5) × 10	·	$\Lambda \frac{S}{\Sigma} + c.c.$		$(1.01\pm0.18) \times 10^{-4}$ 1.5 $\times 10^{-4}$	CL=90%
$\Gamma_{17} \omega K^{\pm} K_{S}^{0} \pi^{\mp}$ [a] (2.9 ±0.7)×1	ζ	$K_S^0 K_S^0$		5.2 × 10 ⁻⁶	CL=90%
$\Gamma_{18} b_1(1235)^0 \pi^0$ (2.3 ±0.6) × 10 $\Gamma_{19} \phi K^*(892) \overline{K}$ + c.c. (2.04±0.28) × 1					
$\Gamma_{20} \omega K \overline{K} \qquad (2.04\pm0.20) \times 10^{-10}$ $\Gamma_{20} \omega K \overline{K} \qquad (1.9\pm0.4) \times 10^{-10}$	1	Radiative $\gamma \eta_{\mathcal{C}}(1S)$	-		
$\Gamma_{21} \qquad \omega f_2(1720) \rightarrow \omega K \overline{K} \qquad (4.8 \pm 1.1) \times 1$	0-4 Γ93	$\gamma \pi^{+} \pi^{-} 2\pi^{0}$		$(1.3 \pm 0.4)\%$ $(8.3 \pm 3.1) \times 10^{-3}$	
$\Gamma_{22} \omega \eta \qquad \qquad (1.71 \pm 0.22) \times 10^{-2}$	0 ⁻³ Γ ₉₄	$\gamma \eta \pi \pi$		$(6.1 \pm 1.0) \times 10^{-3}$	
$\Gamma_{23} \phi 2(\pi^+\pi^-)$ (1.60±0.32)×1	^_3	$\gamma \eta(1440) \rightarrow \gamma K \overline{K} \pi$	[c] ($(4.8 \pm 0.8) \times 10^{-3}$	
$\Gamma_{24} \Delta (1232)^{++} \bar{p} \pi^{-} \qquad (1.6 \pm 0.5) \times 1$ $\Gamma_{25} \phi K \overline{K} \qquad (1.48 \pm 0.22) \times 1$	3	γρρ ~~*(058)		$(4.5 \pm 0.8) \times 10^{-3}$	
$\Gamma_{26} \phi f_2(1720) \to \phi K \overline{K} $ (1.46±0.22)×1 (3.6 ±0.6)×1	A	$\gamma \eta'(958) \ \gamma 2\pi^+ 2\pi^-$		$(4.2 \pm 0.4) \times 10^{-3}$ $(2.8 \pm 0.5) \times 10^{-3}$	S=1.9
$\Gamma_{27} p \overline{p} \omega $ (1.30±0.25) × 1	2	$\gamma f_4(2050)$		$(2.8 \pm 0.5) \times 10^{-3}$	3=1.9
$\Gamma_{28} \Delta (1232)^{++} \overline{\Delta} (1232)^{} $ (1.10±0.29) × 1	0 ⁻³ Γ ₁₀	ο γωω		$(1.59\pm0.33)\times10^{-3}$	
$\Gamma_{29} \Sigma (1385)^{-} \Sigma (1385)^{+} \text{ (or c.c.)}$ [a] $(1.03\pm0.13) \times 1$	Γ_{10}	$_1 \gamma \eta (1490) \rightarrow \gamma \rho^0 \rho^0$	($(1.4 \pm 0.4) \times 10^{-3}$	
$\Gamma_{30} \rho \overline{\rho} \eta'(958)$ (9 ±4)×1 $\Gamma_{31} \phi f'_{2}(1525)$ (8 ±4)×1		$_{2} \gamma f_{2}(1270)$		$(1.38 \pm 0.14) \times 10^{-3}$	
$\Gamma_{32} \phi \pi^+ \pi^-$ (7.8 ±1.0)×1	1	$\begin{array}{ccc} & & & & & & & & & & & & & & & & \\ & & & & $		$(9.7 \pm 1.2) \times 10^{-4}$ $(8.6 \pm 0.8) \times 10^{-4}$	

 Γ_1/Γ

 Γ_7/Γ

Meson Full Listings

 $J/\psi(1S) = J/\psi(3097)$

TECN COMMENT

$\Gamma_{105} \gamma f_2'(1525)$	(6.3 ± 1.0)	0)×10 ⁻⁴	
$\Gamma_{106} \gamma p \overline{p}$	(3.8 ± 1.4)	0) $\times 10^{-4}$	
$\Gamma_{107} \gamma \phi \phi$	$(3.1 \pm 0.$	$8) \times 10^{-4}$	
$\Gamma_{108} \ \gamma \eta(2100) \rightarrow \ \gamma \rho^0 \rho^0$	$(2.4 \begin{array}{c} +1 \\ -1 \end{array})$	$_{0}^{5}) \times 10^{-4}$	
$\begin{array}{ccc} \Gamma_{109} \ \gamma \eta(1760) \rightarrow & \gamma \rho^0 \rho^0 \\ \Gamma_{110} \ \gamma \pi^0 \end{array}$	(1.3 ±0.	9)×10 ⁻⁴	
$\Gamma_{110} \gamma \pi^0$	(3.9 ±1.	$3) \times 10^{-5}$	
$\Gamma_{111} \gamma f_1(1285)$	< 6	× 10 ⁻³	CL=90%
$\Gamma_{112} \gamma \rho \overline{\rho} \pi^+ \pi^-$	< 7.9	× 10 ⁻⁴	CL=90%
$\Gamma_{113} \gamma \gamma$	< 5	× 10 ⁻⁴	CL=90%
$\Gamma_{114} \gamma \Lambda \overline{\Lambda}$	< 1.3	× 10 ⁻⁴	CL=90%
Γ ₁₁₅ 3γ	< 5.5	× 10 ⁻⁵	CL=90%
$\Gamma_{116} \gamma X(2200)$			
$\Gamma_{117} \gamma f_4(2220)$			

- [a] Value is for the sum of the charge states indicated.
- [b] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [c] See $\eta(1440)$ mini-review.

VALUE (eV)

< 5.4

$J/\psi(1S)$ PARTIAL WIDTHS Γ(hadrons) Γ_1 VALUE (keV) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • BALDINI-... 75 FRAG e+e-59 ± 24 BOYARSKI 75 MRK1 e+e- 59 ± 14 50 ± 25 **ESPOSITO** 75B FRAM e+ e- Γ_2 $\Gamma(\text{virtual } \gamma \rightarrow \text{hadrons})$ VALUE (keV) DOCUMENT ID TECN COMMENT 2 BOYARSKI 75 MRK1 e+e- 12 ± 2 2 Included in $\Gamma(\text{hadrons})$. $\Gamma(e^+e^-)$ Гз VALUE (keV) DOCUMENT ID TECN COMMENT 4.72 ± 0.35 ALEXANDER 89 RVUE See ↑ mini-review • • • We do not use the following data for averages, fits, limits, etc. • • 3 BRANDELIK 79C DASP e+e-4.4 ±0.6 4 BALDINI-... 75 FRAG e+e- 4.6 ± 0.8 75 MRK1 e+e-BOYARSKI 4.8 ± 0.6 75B FRAM e+ e-**ESPOSITO** 4.6 ± 1.0 ³ From a simultaneous fit to e^+e^- , $\mu^+\mu^-$, and hadronic channels assuming $\Gamma(e^+e^-)$ $=\Gamma(u^+u^-).$ ⁴ Assuming equal partial widths for $e^+\,e^-$ and $\mu^+\,\mu^-$. Γ4 $\Gamma(\mu^+\mu^-)$ TECN COMMENT VALUE (keV) DOCUMENT ID \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet 4.8 ± 0.6 BOYARSKI 75 MRK1 e⁺ e⁻ 5.0 ± 1.0 **ESPOSITO** 75B FRAM e+ e- $\Gamma(\gamma\gamma)$ Γ113

$J/\psi(1S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

DOCUMENT ID

CL%

This combination of a partial width with the partial width into $e^+\,e^-\,$ and with the total width is obtained from the integrated cross section into channel in the $e^+\ e^$ annihilation.

BRANDELIK 79c DASP e+e-

TECN COMMENT

$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma_{\text{to}}$	tal			$\Gamma_1\Gamma_3/\Gamma$
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the following	ig data for average	s, fits, limits	, etc. • • •	
4 ±0.8 3.9 ±0.8	⁵ BALDINI ⁵ ESPOSITO			
$\Gamma(e^+e^-) \times \Gamma(e^+e^-)/\Gamma_{\text{tota}}$				$\Gamma_3\Gamma_3/\Gamma$
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
• • We do not use the following	ng data for average	s, fits, limits	, etc. • • •	
0.35 ± 0.02	BRANDELIK			
0.32 ± 0.07	⁵ BALDINI	75 FRAG	e+ e-	
0.34 ± 0.14	BEMPORAD		e+ e-	
0.34 ± 0.09	⁵ ESPOSITO	75B FRAN	l e ⁺ e [−]	
0.36 ± 0.10	⁵ FORD	75 SPEC	e+ e-	

VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use t	he following data for average	s, fits	, limits,	etc. • • •	
0.31 ± 0.09	BEMPORAD	75	FRAB	e^+ e^-	
0.51 ± 0.09	DASP				
0.38 ± 0.05	⁵ ESPOSITO				
0.46 ± 0.10	⁵ LIBERMAN	75	SPEC	$e^+ e^-$	
5 Data redundant wir	th branching ratios or partial	width	s above		

$J/\psi(1S)$ BRANCHING RATIOS

DOCUMENT ID

 $\Gamma(hadrons)/\Gamma_{total}$

 $\Gamma(a_2(1320)\rho)/\Gamma_{\text{total}}$

85 + 34

VALUE

VALUE

For the first four branching ratios, see also the partial widths, and (partial widths)× $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ above.

VALUE	DOCUMENTID		TECIV	COMMENT	
0.86±0.02	BOYARSKI	75	MRK1	e+ e-	
$\Gamma(\text{virtual } \gamma \rightarrow \text{hadrons})/\Gamma_{\text{tr}}$	otal				Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.17±0.02	6 BOYARSKI	75	MRK1	$e^+ e^-$	
6 Included in $\Gamma(\text{hadrons})/\Gamma_{\text{total}}$	al·				
$\Gamma(e^+e^-)/\Gamma_{\rm total}$					Γ_3/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.069 ± 0.009	BOYARSKI	75	MRK1	e^+ e^-	
$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$					Γ_4/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.069±0.009	BOYARSKI	75	MRK1	e^+ e^-	
$\Gamma(e^+e^-)/\Gamma(\mu^+\mu^-)$					Γ_3/Γ_4
VALUE	DOCUMENT ID		TECN	COMMENT	
0.98±0.04 OUR AVERAGE					
1.00 ± 0.05	BOYARSKI		MRK1		
0.91 ± 0.15	ESPOSITO		FRAM		
0.93 ± 0.10	FORD	75	SPEC	e+ e-	
	HADRONIC DE	CAY	s —		

VALUE	EVT5	DOCUMENT ID		TECN	COMMENT	
0.0128±0.0010 OUR AVE	RAGE					
$0.0142 \pm 0.0001 \pm 0.0019$		COFFMAN		MRK3		
0.013 ±0.003	150	FRANKLIN	83 0	MRK2	$e^+ e^-$	
0.016 ±0.004	183	ALEXANDER	78	PLUT	$e^+ e^-$	
0.0133 ± 0.0021		BRANDELIK	78B	DASP	$e^+ e^-$	
0.010 ±0.002	543	BARTEL	76	CNTR	e+ e-	
0.013 ± 0.003	153	JEAN-MARIE	76	MRK1	e^+ e^-	
$\Gamma(\rho^0\pi^0)/\Gamma(\rho\pi)$						Γ6/Γ5

VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT
0.328±0.005±0.027	COFFMAN	88 MRK3	e+ e-
• • We do not use the following	data for averages,	, fits, limits	, etc. • • •
0.36 ±0.03	SCHARRE	798 MRK1	$e^+ e^-$
0.35 ±0.08	ALEXANDER	78 PLUT	e^+e^-
0.32 ±0.08	BRANDELIK	78B DASP	$e^+ e^-$
0.39 ±0.11	BARTEL	76 CNTR	$e^+ e^-$
0.37 ±0.09	JEAN-MARIE	76 MRK1	e+ e-

VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
9.2 ± 1.1 OUR AVE	RAGE				
$11.7 \pm 0.7 \pm 2.5$	7584	AUGUSTIN	89	DM2	e+ e-
$8.6 \pm 0.3 \pm 1.3$		AUGUSTIN	86	DM2	$J/\psi \rightarrow \text{hadrons}$
8.4 ± 4.5	36	VANNUCCI	77	MRK1	$e^+ e^- \rightarrow 2(\pi^+ \pi^-) \pi^0$
$\Gamma(\omega\pi^+\pi^+\pi^-\pi^-)$	$/\Gamma_{\text{total}}$				Г ₈ /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT

85±34
 140
 VANNUCCI
 77
 MRK1

$$e^+e^- \rightarrow 3(\pi^+\pi^-)\pi^0$$
 $\Gamma(\omega\pi^+\pi^-)/\Gamma_{\text{total}}$
 VALUE (units 10^{-3})
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

 7.0±0.7 OUR AVERAGE
 7.0±1.6
 AUGUSTIN
 89
 DM2
 e^+e^-

 6.6±1.0±0.6
 AUGUSTIN
 80
 DM2
 $J/\psi \rightarrow$ hadrons

VANNUCCI

 7.8 ± 1.6 215 BURMESTER 77D PLUT 77 MRK1 $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0$ VANNUCCI $\Gamma(\omega\pi^+\pi^-)/\Gamma(2(\pi^+\pi^-)\pi^0)$ Γ_9/Γ_{61}

DOCUMENT ID

TECN COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • • • 7 JEAN-MARIE 76 MRK1 e+e-0.3

⁷ Final state $(\pi^+\pi^-)\pi^0$ under the assumption that $\pi\pi$ is isospin 0.

$Meson\,Full\,Listings$

$J/\psi(1S) = J/\psi(3097)$

$\Gamma(K^*(892)^0\overline{K}_2^*(1430)^0 + c.$			Γ_{10}/Γ	$\Gamma(\phi K^*(892)\overline{K} + c$,				Γ
LUE (units 10 ⁻⁴) EVTS		COMMENT		VALUE (units 10" 4) 20.4±2.8 OUR AVER		DOCUM EN T ID	TECN	COMMENT	
7±26 40	VANNUCCI 77 M	RK1 $e^+ e^{\pi^+\pi^-} + K^+ K$		$20.7 \pm 2.4 \pm 3.0$			DM2	$J/\psi \rightarrow \text{hadrons}$	
$(\omega K^*(892)\overline{K} + \text{c.c.})/\Gamma_{\text{tot.}}$	al		Γ_{11}/Γ		55 ± 20	BECKER 87	MRK3	$e^+e^- o hadron$	
ALUE (units 10^{-4}) EVTS		CN COMMENT		$\Gamma(\omega K \overline{K})/\Gamma_{\text{total}}$					ſ
$3\pm14\pm14$ 530 ± 140	BECKER 87 M	IRK3 $e^+e^- \rightarrow \text{hadro}$	ons	VALUE (units 10 ⁻⁴) 19 ± 4 OUR AVER		DOCUMENT ID	TECN	COMMENT	
$(\omega f_2(1270))/\Gamma_{total}$			Γ_{12}/Γ	$19.8 \pm 2.1 \pm 3.9$	8		DM2	$J/\psi ightarrow hadrons$	s
ALUE (units 10 ⁻³) EVTS	DOCUMENT ID TE	COMMENT		16 ±10			MRK1	e+ e-	
.1±0.4 OUR AVERAGE .3±0.2±0.6 5860	AUGUSTIN 89 DI	M2 e ⁺ e ⁻	1	⁸ Addition of ωK^+		branching ratio	s.		
0.0 ± 0.6	AUGUSTIN 86 DI	M2 $J/\psi ightarrow$ hadrons	•	$\Gamma(\omega f_2(1720) \rightarrow \omega$	$K\overline{K})/\Gamma_{total}$				Γ
.0±1.6 70 • • We do not use the following	BURMESTER 77D PL			VALUE (units 10 ⁻⁴)		DOCUMENT ID	TECN		
.9±0.8 81		RK1 $e^+e^- \rightarrow 2(\pi^+$	- _π - _{\π} 0	$4.8 \pm 1.1 \pm 0.3$			DM2	$J/\psi ightarrow { m hadrons}$	S
				9 Includes unknown 10 Addition of f_2 (172	branching fracti	ion $t_2(1/20) \rightarrow t_2(1/20)$	κ. κ0π ⁰ h	ranching ratios	
$(K^+\overline{K}^*(892)^- + \text{c.c.})/\Gamma_{tc}$			Γ_{13}/Γ		.o) → K K	and 12(1720) -	K K U	rancining ratios.	
ALUE (units 10 ⁻³) EVTS .8 ±0.7 OUR AVERAGE Ero		COMMENT 2.0. See the ideogram	below.	$\Gamma(\omega\eta)/\Gamma_{total}$					Γ
5.26 ± 0.13 ± 0.53	COFFMAN 88 M	RK3 $J/\psi \rightarrow K^{\pm} K_S^0$	π [∓] ,	VALUE (units 10 ⁻³) 1.71±0.08±0.20		DOCUMENT ID COFFMAN 88	TECN MDK2	$\frac{COMMENT}{e^+ e^- \rightarrow 3\pi \eta}$	
	55.11VVVVV 00-14	RK2 $J/\psi \rightarrow K^+K^-$. 0			COFFMAN B	MICKS	e e → 3#11	_
2.6 ±0.6 24 3.2 ±0.6 48	FRANKLIN 83c M VANNUCCI 77 M	RK2 $J/\psi \rightarrow K^{+}K^{-}$ RK1 $J/\psi \rightarrow K^{\pm}K^{0}_{S}$	π ⁻ . π ⁻	$\Gamma(\phi 2(\pi^+\pi^-))/\Gamma_{\text{to}}$					Γ
1.1 ±1.2 39	BRAUNSCH 76 DA			VALUE (units 10 ⁻⁴) 16.0 ± 1.0 ± 3.0		DOCUMENT ID FALVARD 88	TECN DM2	$\frac{COMMENT}{J/\psi \rightarrow \text{hadrons}}$	_
WEIGHTED AVERA	GE.					INLVARD 88	. UIVIZ	J/ψ → Hadrons	
3.8 ± 0.7 (Error s				$\Gamma(\Delta(1232)^{++}\overline{p}\pi^{-}$					Γ
	_			VALUE (units 10 · 3) 1.58 ± 0.23 ± 0.40		DOCUMENT ID EATON 84	TECN MRK2	COMMENT e+ e-	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	' /				33∠	LATUN 8	iviKK2	c. c	
	<i>7,</i>			$\Gamma(\phi K \overline{K})/\Gamma_{\text{total}}$					ſ
	/,			VALUE (units 10 ⁻⁴) 14.8 ± 2.2 OUR AVER		DOCUMENT ID	TECN	COMMENT	_
	<i>/</i> ,			$14.6 \pm 0.8 \pm 2.1$		FALVARD 88	DM2	$J/\psi ightarrow hadrons$	s
	% Λ			18 ±8			MRK1	$e^+ e^-$	
	Z/\			11 Addition of ϕ K $^+$ $^+$	K^- and $\phi K^0 \overline{K}$	O branching ratio	i.		
	6/ \			$\Gamma(\phi f_2(1720) \rightarrow \phi$	$(K\overline{K})/\Gamma_{\text{total}}$				ļ
	// 1								
				VALUE (units 10 ⁻⁴)	,	DOCUMENT ID	TECN	COMMENT	
			χ ²				TECN DM2	$\frac{\textit{COMMENT}}{J/\psi \rightarrow \text{hadrons}}$	
	COFFM		7.1	VALUE (units 10 ⁻⁴) 3.6 ± .2 ± 0.6 12 Including interferer	12.13 nce with $f_2'(152)$	FALVARD 88 25).	DM2		
	FRANKI	LIN 83C MRK2 JCCI 77 MRK1	4.1 1.0	VALUE (units 10 ⁻⁴) 3.6 ± .2 ± 0.6	12.13 nce with $f_2'(152)$	FALVARD 88 25).	DM2		
	∕,····· \·····FRANKI	LIN 83C MRK2 JCCI 77 MRK1	4.1 1.0 0.1	VALUE (units 10 ⁻⁴) 3.6± .2±0.6 12 Including interferer 13 Includes unknown	12.13 nce with $f_2'(152)$	FALVARD 88 25).	DM2		s
	FRANKI VANNU BRAUN	LIN 83C MRK2 JCCI 77 MRK1 ISCH 76 DASP	4.1 1.0 0.1	VALUE (units 10^{-4}) 3.6 ± .2 ± 0.6 12 Including interferer 13 Includes unknown $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ VALUE (units 10^{-3})	12.13 nce with $f_2'(152)$ branching fraction	FALVARD 88 25). ion $f_2(1720) \rightarrow i$	DM2		5
	FRANKI VANNU BRAUN	LIN 83C MRK2 JCCI 77 MRK1 ISCH 76 DASP Confidence Level =	4.1 1.0 0.1	VALUE (units 10^{-4}) 3.6 ± .2 ± 0.6 12 Including interferer 13 Includes unknown $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 1.30 ± 0.25 OUR AVEF	12.13 nce with $f_2'(152)$ branching fraction \underline{EVTS}	FALVARD 88 25). ion $f_2(1720) \rightarrow i$ DOCUMENT ID cludes scale facto	DM2 (K. TECN r of 1.3.	$J/\psi ightarrow $ hadrons	5
0 2 4	FRANKI VANNU BRAUN	LIN 83C MRK2 JCCI 77 MRK1 ISCH 76 DASP	4.1 1.0 0.1	VALUE (units 10^{-4}) 3.6 ± .2 ± 0.6 12 Including interferer 13 Includes unknown $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ VALUE (units 10^{-3})	12.13 nce with $f_2'(152)$ branching fraction $EVTS$ RAGE Error in 486	FALVARD 88 25). ion $f_2(1720) \rightarrow i$ DOCUMENT ID cludes scale facto EATON 84	DM2	$J/\psi ightarrow { m hadrons}$ $COMMENT$ $e^+ e^-$	5
	FRANKI VANNU BRAUN (C	LIN 83C MRK2 JCCI 77 MRK1 ISCH 76 DASP Confidence Level =	4.1 1.0 0.1	VALUE (units 10^{-4}) 3.6 ± .2 ± 0.6 12 Including interferer 13 Includes unknown $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3	12.13 nce with f'_2 (152 branching fraction in the second sec	FALVARD 88 25). ion $f_2(1720) \rightarrow i$ DOCUMENT ID Cludes Scale facto EATON 84 PERUZZI 78	DM2 (K. TECN TOF 1.3. MRK2	$J/\psi ightarrow { m hadrons}$ $COMMENT$ $e^+ e^-$	Γ
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-}+c\right)$	FRANKI VANNU BRAUN (C 6 8	LIN 83C MRK2 JCCI 77 MRK1 ISCH 76 DASP Confidence Level =	4.1 1.0 0.1 12.2 0.007)	$VALUE (units 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interferer 13 Includes unknown $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ $VALUE (units 10^{-3})$ 1.30 ± 0.25 OUR AVER 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma(\Delta(1232)^{++}\overline{\Delta}(12^{-4}))$	12.13 has been supported by the second seco	FALVARD 88 25). ion $f_2(1720) \rightarrow i$ DOCUMENT ID ICLIUDES SCALE FACTO EATON 84 PERUZZI 78	DM2 TECN TOF 1.3. MRK2 MRK1	$J/\psi ightarrow $ hadrons	Γ
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c\right)$ $\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma_{tot}$	FRANKI VANNU BRAUN 6 8 c.)/\(\Gamma_{\text{total}}\) (units 10^{-3})	LIN 83C MRK2 ICCI 77 MRK1 ISCH 76 DASP Confidence Level =	4.1 1.0 0.1	VALUE (units 10^{-4}) 3.6 ± .2 ± 0.6 12 Including interferer 13 Includes unknown $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3	12.13 12.13 12.13 12.13 12.13 12.14 12.15	FALVARD 88 25). ion f ₂ (1720) — i DOCUMENT ID cludes scale facto EATON 84 PERUZZI 78 tal DOCUMENT ID	DM2 (K. TECN TOF 1.3. MRK2	$J/\psi ightarrow { m hadrons}$ ${ m COMMENT}$ $e^+ e^ e^+ e^ { m COMMENT}$	
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + \text{c.c.}\right)/\Gamma_{\text{tot}}$ $\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + \text{c.c.}\right)/\Gamma_{\text{tot}}$ $\Gamma\left(K^{0}\overline{K}^{*}(892)^{-} + \text{c.c.}\right)/\Gamma_{\text{tot}}$ $\Gamma\left(K^{0}\overline{K}^{*}(892)^{-} + \text{c.c.}\right)/\Gamma_{\text{tot}}$ $\Gamma\left(K^{0}\overline{K}^{*}(892)^{-} + \text{c.c.}\right)/\Gamma_{\text{tot}}$	FRANK VANNU BRAUN (C 6 8 c.)/Γ _{total} (units 10 ⁻³)	LIN 83C MRK2 JCCI 77 MRK1 JSCH 76 DASP Confidence Level = 10	4.1 1.0 0.1 12.2 0.007)	$VALUE\ (units\ 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interference 13 Includes unknown $\Gamma\left(p\overline{p}\omega\right)/\Gamma_{\rm total}$ $VALUE\ (units\ 10^{-3})$ 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma\left(\Delta(1232)^{++}\overline{\Delta}(1232)^{++}\overline{\Delta}(1232)^{++}\overline{\Delta}(1232)^{++}\overline{\Delta}(1232)^{++}$ 1.10 ± 0.09 ± 0.28	12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17 12.17 12.18	FALVARD 88 25). Ion f ₂ (1720) — i DOCUMENT ID Cludes scale facto EATON 84 PERUZZI 78 Ial DOCUMENT ID EATON 84	TECN MRK1	$J/\psi ightarrow { m hadrons}$ ${ m COMMENT}$ $e^+ e^ e^+ e^ { m COMMENT}$	r
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{tot}$ $\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma_{tot}$ (ALUE (units 10^{-3}) $= VTS$ $\pm 0.8 \text{ OUR AVERAGE} \text{Erri}$	FRANKI VANNU BRAUN 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) al \(\text{DOCUMENT ID}\) \(\text{TE}\) or includes scale factor of 2	LIN 83C MRK2 JCCI 77 MRK1 JSCH 76 DASP Confidence Level = 10	4.1 1.0 0.1 12.2 0.007)	$VALUE\ (units\ 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interferer 13 Includes unknown $\Gamma\left(p\overline{p}\omega\right)/\Gamma_{\rm total}$ $VALUE\ (units\ 10^{-3})$ 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma\left(\Delta(1232)^{++}\overline{\Delta}(12^{-3})^{-1}\right)$ 1.10 ± 0.09 ± 0.28 $\Gamma\left(\Sigma(1385)^{-}\overline{\Sigma}(1388^{-3})^{-1}\right)$	12.13 12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17	FALVARD 88 25). FOOCUMENT ID Cludes scale factor EATON 84 PERUZZI 78 Table Table FATON 84 PERUZZI 78 Table FATON 84 PERUZZI 78 Table FATON 84 PERUZZI 78 Table FATON 84	TECN MRK2	$J/\psi \rightarrow { m hadrons}$ $COMMENT$ $e^+ e^ e^+ e^ COMMENT$ $e^+ e^-$	r
$\Gamma(K^+\overline{K}^*(892)^- + c.c.)/\Gamma_{tot}$ $\Gamma(K^0\overline{K}^*(892)^0 + c.c.)/\Gamma_{tot}$ $I_{ALUE (units 10^{-3})}$ EVTS $I_{ALUE (units 10^{-3})}$ EVTS	FRANKI VANNU BRAUN (C 6 8 .c.)/F _{total} (units 10 ⁻³) al DOCUMENT ID TE TOT includes scale factor of 2 COFFMAN 88 M	LIN 83C MRK2 JCCI 77 MRK1 JSCH 76 DASP Confidence Level = 10 ECN COMMENT 2.1.	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ	$VALUE\ (units\ 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interference 13 Includes unknown $\Gamma\left(p\overline{p}\omega\right)/\Gamma_{\rm total}$ $VALUE\ (units\ 10^{-3})$ 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma\left(\Delta(1232)^{++}\overline{\Delta}(1232)^{++}\overline{\Delta}(1232)^{++}\overline{\Delta}(1232)^{++}\overline{\Delta}(1232)^{++}$ 1.10 ± 0.09 ± 0.28	12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17	FALVARD 88 25). Ion f ₂ (1720) — i DOCUMENT ID Cludes scale facto EATON 84 PERUZZI 78 Ial DOCUMENT ID EATON 84	TECN MRK2	$J/\psi ightarrow { m hadrons}$ ${ m COMMENT}$ $e^+ e^ e^+ e^ { m COMMENT}$	r r
$\Gamma(K^+\overline{K}^*(892)^- + c.c.)/\Gamma_{tot}$ $\Gamma(K^0\overline{K}^*(892)^0 + c.c.)/\Gamma_{tot}$	FRANKI VANNU BRAUN (C 6 8 .c.)/F _{total} (units 10 ⁻³) rail DOCUMENT ID TE TO includes scale factor of 2 COFFMAN 88 M VANNUCCI 77 M	LIN 83C MRR2 JCCI 77 MRK1 J/ ψ — $\kappa^{\pm} \kappa_{S}^{0}$ RRK1 J/ ψ — $\kappa^{\pm} \kappa_{S}^{0}$	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ	$VALUE\ (units\ 10^{-4})$ 3.6 ± 2±0.6 12 Including interference 13 Includes unknown $\Gamma\left(p\overline{p}\omega\right)/\Gamma_{\rm total}$ $VALUE\ (units\ 10^{-3})$ 1.30±0.25 OUR AVER 1.10±0.17±0.18 1.6 ±0.3 $\Gamma\left(\Delta(1232)^{++}\overline{\Delta}(12^{-3})^{-1}\right)$ 1.10±0.09±0.28 $\Gamma\left(\Sigma(1385)^{-2}\overline{\Sigma}(1385)^{-3}\right)$ 1.10±0.13 OUR AVER	12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17	FALVARD 88 25). ion f ₂ (1720) — i cludes scale facto EATON 84 PERUZZI 78 tal DOCUMENT ID EATON 84 // Total DOCUMENT ID HENRARD	TECN TECN TOF 1.3. MRK2 MRK1 TECN MRK2 MRK2 MRK2 TECN MRK2	$J/\psi \rightarrow \text{hadrons}$ $COMMENT$ $e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^ e^+e^-$	r
$\Gamma(K^{+}\overline{K}^{*}(892)^{-} + c.c.)/\Gamma_{tot}$ $\frac{ALUE [units 10^{-3}]}{1.7 \pm 0.8} \frac{EVTS}{0.00000000000000000000000000000000000$	FRANKI VANNU BRAUN (C 6 8 .c.)/F _{total} (units 10 ⁻³) rai DOCUMENT ID TE TO includes scale factor of 2 COFFMAN 88 M VANNUCCI 77 M (+ K*(892)* + c.c.)	LIN 83C MRK2 JCCI 77 MRK1 J/ ψ — $K^{\pm} K_{S}^{0}$ LRK1 J/ ψ — $K^{\pm} K_{S}^{0}$	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ	$VALUE\ (units\ 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interference 13 Includes unknown $\Gamma\left(p\overline{p}\omega\right)/\Gamma_{\rm total}$ $VALUE\ (units\ 10^{-3})$ 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma\left(\Delta\left(1232\right)^{++}\overline{\Delta}\left(12\right)^{-4}$ $VALUE\ (units\ 10^{-3})$ 1.10 ± 0.09 ± 0.28 $\Gamma\left(\Sigma\left(1385\right)^{-}\overline{\Sigma}\left(138\right)^{-4}$ $VALUE\ (units\ 10^{-3})$ 1.03 ± 0.13 OUR AVEF 1.00 ± 0.04 ± 0.21 1.19 ± 0.04 ± 0.25	12.13 hace with $f_2'(152)$ branching fractions are simple fractions. The following fractions are simple fractions are simple fractions. The following fractions are simple fractions are simple fractions. The following fractions are simple fractions are simple fractions are simple fractions. The following fractions are simple fractions are simple fractions are simple fractions. The following fractions are simple fractions are simple fractions are simple fractions. The following fractions are simple fractions are simple fra	FALVARD 88 25). ion f ₂ (1720) — i DOCUMENT ID cludes scale facto EATON 84 PERUZZI 78 tal DOCUMENT ID EATON 84	TECN TECN TECN TECN TECN TECN TECN TECN	$\begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline COMMENT \\ e^+ e^- \\ e^+ e^- \\ \hline \\ \hline COMMENT \\ e^+ e^- \\ \hline \\ N & COMMENT \\ \hline \\ 12 & e^+ e^- \rightarrow \Sigma \\ \hline \\ 12 & e^+ e^- \rightarrow \Sigma \\ \hline \end{array}$	s
$\Gamma(K^{+}\overline{K}^{*}(892)^{-} + c.c.)/\Gamma_{tot}$ $\frac{F(K^{0}\overline{K}^{*}(892)^{0} + c.c.)/\Gamma_{tot}}{1.7 \pm 0.8 \text{ OUR AVERAGE}} \text{ Error}$ $\frac{EVTS}{1.7 \pm 0.8 \text{ OUR AVERAGE}}$ $\frac{EVTS}{1.33 \pm 0.12 \pm 0.45}$ $\frac{1.33 \pm 0.12 \pm 0.45}{1.7 \pm 0.6}$ $\frac{1.7 \pm 0.6}{1.7 \pm 0.6$	FRANKI VANNU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) al \(\text{DOCUMENT ID} \) \(\text{Terminal}\) TE OFFMAN 88 M VANNUCCI 77 M (+\(\bar{K}^*(892)^+ + \text{C.C.} \) \(\text{DOCUMENT ID} \) \(\text{TEQUENT ID} \) \(\text{TEQUENT ID} \) \(\text{TEQUENT ID} \) \(\text{TEQUENT ID} \)	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 76 DASP Confidence Level = 10 $\frac{COMMENT}{COMMENT}$ L1. IRK3 $J/\psi \rightarrow K^{\pm}K_{S}^{0}$	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π ⁺	$VALUE\ (units\ 10^{-4})$ 3.6 ± 2±0.6 12 Including interference 13 Includes unknown $\Gamma\left(p\overline{p}\omega\right)/\Gamma_{\rm total}$ $VALUE\ (units\ 10^{-3})$ 1.30±0.25 OUR AVER 1.10±0.17±0.18 1.6 ±0.3 $\Gamma\left(\Delta(1232)^{++}\overline{\Delta}(12^{-3})^{-1}\right)$ 1.10±0.09±0.28 $\Gamma\left(\Sigma(1385)^{-2}\overline{\Sigma}(1385)^{-3}\right)$ 1.10±0.13 OUR AVER	12.13 12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17	FALVARD 88 25). ion f ₂ (1720) — i cludes scale facto EATON 84 PERUZZI 78 tal DOCUMENT ID EATON 84 // Total DOCUMENT ID HENRARD HENRARD	TECN OF 1.3. MRK2 MRK1 TECN MRK2 MRK2 MRK2 MRK3 MRK2 MRK4 MRK4 MRK4 MRK4	$\begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline COMMENT \\ e^+ e^- \\ e^+ e^- \\ \hline \\ \hline COMMENT \\ e^+ e^- \\ \hline \\ N & COMMENT \\ \hline \\ 12 & e^+ e^- \rightarrow \Sigma \\ \hline \\ 12 & e^+ e^- \rightarrow \Sigma \\ \hline \end{array}$	s
$\Gamma(K^{+}\overline{K}^{*}(892)^{-} + c.c.)/\Gamma_{tot}$ $\Gamma(K^{0}\overline{K}^{*}(892)^{0} + c.c.)/\Gamma_{tot}$ $I.7 \pm 0.8 \text{OUR AVERAGE} \text{Erion}$ $I.33 \pm 0.12 \pm 0.45$ $I.7 \pm 0.6 \qquad 45$ $\Gamma(K^{0}\overline{K}^{*}(892)^{0} + c.c.)/\Gamma(K^{0})$ $I.4 = 0.6$ $I.5 = 0.6$ $I.6 = 0.6$	FRANKI VANNU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) al \(\text{DOCUMENT ID} \) \(\text{Terminal}\) TE OFFMAN 88 M VANNUCCI 77 M (+\(\bar{K}^*(892)^+ + \text{C.C.} \) \(\text{DOCUMENT ID} \) \(\text{TEQUENT ID} \) \(\text{TEQUENT ID} \) \(\text{TEQUENT ID} \) \(\text{TEQUENT ID} \)	LIN 83C MRK2 JCCI 77 MRK1 JCCI 77 MRK1 JCCH 76 DASP Confidence Level = 10 $\frac{COMMENT}{2.1}$ LRK3 $J/\psi - \kappa^{\pm} \kappa_{S}^{Q}$ RK1 $J/\psi - \kappa^{\pm} \kappa_{S}^{Q}$	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π ⁺	$VALUE\ (units\ 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interference 13 Includes unknown $\Gamma(p\overline{p}\omega)/\Gamma_{\rm total}$ $VALUE\ (units\ 10^{-3})$ 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma(\Delta(1232)^{++}\overline{\Delta}(12)^{-4}$ $VALUE\ (units\ 10^{-3})$ 1.10 ± 0.09 ± 0.28 $\Gamma(\Sigma(1385)^{-}\overline{\Sigma}(138)^{-4}$ 1.03 ± 0.13 OUR AVEF 1.00 ± 0.04 ± 0.21 1.19 ± 0.04 ± 0.25 0.86 ± 0.18 ± 0.22 1.03 ± 0.24 ± 0.25	12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17	FALVARD 88 25). ion f ₂ (1720) — i cludes scale facto EATON 84 PERUZZI 78 tal bocument id EATON 84 // Total bocument id HENRARD HENRARD EATON EATON	TECN OF 1.3. MRK2 MRK1 TECN MRK2 MRK2 MRK2 MRK3 MRK2 MRK4 MRK4 MRK4 MRK4	$\begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline COMMENT \\ e^+ e^- \\ e^+ e^- \\ \hline \\ COMMENT \\ e^+ e^- \\ \hline \\ N & COMMENT \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 13 & e^- e^- \rightarrow \Sigma \\ 14 & e^- e^- e^- \rightarrow \Sigma \\ 14 & e^- e^- \rightarrow \Sigma \\ 1$	s
$\Gamma(K^{+}\overline{K}^{*}(892)^{-} + c.c.)/\Gamma_{tot}$ $\Gamma(K^{0}\overline{K}^{*}(892)^{0} + c.c.)/\Gamma_{tot}$ $RALUE (units 10^{-3}) \qquad EVTS$ $1.7 \pm 0.8 \text{OUR AVERAGE} \text{End}$ $1.33 \pm 0.12 \pm 0.45$ $2.7 \pm 0.6 \qquad 45$ $\Gamma(K^{0}\overline{K}^{*}(892)^{0} + c.c.)/\Gamma(K^{0}\overline{K}^{*}(892)^{0} + c.c.)$ $1.82 \pm 0.05 \pm 0.09$	FRANKI VANNU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) al \(\text{DOCUMENT ID} \) \(\text{Terminal}\) TE OFFMAN 88 M VANNUCCI 77 M (+\(\bar{K}^*(892)^+ + \text{C.C.} \) \(\text{DOCUMENT ID} \) \(\text{TEQUENT ID} \) \(\text{TEQUENT ID} \) \(\text{TEQUENT ID} \) \(\text{TEQUENT ID} \)	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 76 DASP Confidence Level = 10 $\frac{COMMENT}{COMMENT}$ L1. IRK3 $J/\psi \rightarrow K^{\pm}K_{S}^{0}$	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π ⁺	$\begin{array}{l} \text{VALUE (units 10^{-4})} \\ \textbf{3.6} \pm .2 \pm 0.6 \\ \textbf{12} \text{ Including interferer} \\ \textbf{13} \text{ Includes unknown} \\ \hline & (\rho \overline{p} \omega) / \Gamma_{\text{total}} \\ \textbf{VALUE (units 10^{-3})} \\ \textbf{1.30} \pm 0.25 \text{ OUR AVEF} \\ \textbf{1.10} \pm 0.17 \pm 0.18 \\ \textbf{1.6} \pm 0.3 \\ \hline & (\Delta(1232)^{++} \overline{\Delta}(12 \\ \textbf{VALUE (units 10^{-3})} \\ \textbf{1.10} \pm 0.09 \pm 0.28 \\ \hline & (\Sigma(1385)^{-} \overline{\Sigma}(138 \\ \textbf{VALUE (units 10^{-3})} \\ \textbf{1.03} \pm 0.13 \text{ OUR AVEF} \\ \textbf{1.00} \pm 0.04 \pm 0.21 \\ \textbf{1.19} \pm 0.04 \pm 0.25 \\ \textbf{0.86} \pm 0.18 \pm 0.22 \\ \textbf{1.03} \pm 0.24 \pm 0.25 \\ \hline & (\rho \overline{p} \eta'(958)) / \Gamma_{\text{tot}} \end{array}$	12.13 12.13	FALVARD 88 25). ion f ₂ (1720) — i cludes scale facto EATON 84 PERUZZI 78 ial DOCUMENT ID EATON 84 DOCUMENT ID HENRARD HENRARD EATON EATON EATON EATON	TECN MRK1 TECN MRK1 TECN MRK1 TECN MRK2 TECN MRK2 TECN MRK2	$\begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline COMMENT \\ e^+ e^- \\ e^+ e^- \\ \hline \\ COMMENT \\ e^+ e^- \\ \hline \\ N & COMMENT \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 13 & e^- e^- \rightarrow \Sigma \\ 14 & e^- e^- e^- \rightarrow \Sigma \\ 14 & e^- e^- \rightarrow \Sigma \\ 1$	s [
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{tot}$ $\frac{ALUE \left(units\ 10^{-3}\right)}{.7\ \pm 0.8\ OUR\ AVERAGE} Eri.$ $.33 \pm 0.12 \pm 0.45$ $.7\ \pm 0.6$ 45 $\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= $	FRANKI VANNU 6 8 al DOCUMENT ID TE COFFMAN 88 M VANNUCCI 77 M (+K*(892) + c.c.) DOCUMENT ID COFFMAN 88 M DOCUMENT ID COFFMAN 88 M DOCUMENT ID COFFMAN 88 M DOCUMENT ID TE COFFMAN 88 M DOCUMENT ID TE COFFMAN 88 M	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRX1 JCCI	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓]	$VALUE \ (units\ 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interference 13 Includes unknown $\Gamma \left(p \overline{p} \omega \right) / \Gamma_{\text{total}}$ $VALUE \ (units\ 10^{-3})$ 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma \left(\Delta \left(1232 \right)^{++} \overline{\Delta} \left(12 \right)^{-4} \right)$ 1.10 ± 0.09 ± 0.28 $\Gamma \left(\Sigma \left(1385 \right)^{-} \overline{\Sigma} \left(138 \right)^{-4} $ 1.03 ± 0.13 OUR AVEF 1.00 ± 0.04 ± 0.21 1.19 ± 0.04 ± 0.25 0.86 ± 0.18 ± 0.22 1.03 ± 0.24 ± 0.25 $\Gamma \left(p \overline{p} \eta' \left(958 \right) \right) / \Gamma_{\text{tot}}$ 1.24 Use $\left(units\ 10^{-3} \right)$ 1.35 ± 0.13 OUR AVEF 1.36 ± 0.18 ± 0.22 1.37 ± 0.25 ± 0.25 $\Gamma \left(p \overline{p} \eta' \left(958 \right) \right) / \Gamma_{\text{tot}}$ 1.37 ± 0.13 OUR AVEF 1.38 ± 0.14 OUR AVEF 1.39 ± 0.44 OUR AVEF 1.49 ± 0.44 OUR AVEF 1.49 ± 0.44 OUR AVEF 1.49 ± 0.44 OUR AVEF 1.49 ± 0.44 OUR AVEF 1.49 ± 0.44 OUR AVEF 1.40 ± 0.45 OUR AVEF 1.4	12.13 12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17 12.17 12.17 12.18	FALVARD 88 25). ion f ₂ (1720) — i cludes scale facto EATON 84 PERUZZI 78 tal DOCUMENT ID EATON 84 // Total DOCUMENT ID HENRARD HENRARD EATON EATON EATON DOCUMENT ID Cludes scale facto	TECN TECN TECN TECN TECN TECN TECN TECN	$\begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline COMMENT \\ e^+ e^- \\ e^+ e^- \\ \hline \\ \hline COMMENT \\ e^+ e^- \\ \hline \\ N COMMENT \\ 12 e^+ e^- \rightarrow \Sigma \\ 12 e^+ e^- \rightarrow \Sigma \\ 12 e^+ e^- \rightarrow \Sigma \\ 12 e^+ e^- \rightarrow \Sigma \\ 12 e^+ e^- \rightarrow \Sigma \\ 12 e^+ e^- \rightarrow \Sigma \\ 13 e^- e^- \rightarrow \Sigma \\ 14 e^- e^- \rightarrow \Sigma \\ 15 e^- e^- \rightarrow \Sigma \\ 16 e^- e^- \rightarrow \Sigma \\ 17 e^- e^- \rightarrow \Sigma \\ 18 $	s [
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{tot}$ $\frac{ALUE \left(units\ 10^{-3}\right)}{.7\ \pm 0.8\ OUR\ AVERAGE} Eri.$ $.33 \pm 0.12 \pm 0.45$ $.7\ \pm 0.6$ 45 $\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right) + \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= \frac{1}{2}\left(10^{-3} + c.c.\right)$ $= $	FRANK VANNU 6 8 a.c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) all \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{TOFFMAN}\) 88 M VANNUCCI 77 M C+\(\vec{K}^*(892)^- + \text{c.c.}\) \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{TE}\) \(\text{COFFMAN}\) 88 M	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRX1 JCCI	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓]	$VALUE \ (units \ 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interference 13 Includes unknown $\Gamma \left(p \overline{p} \omega \right) / \Gamma_{\text{total}}$ $VALUE \ (units \ 10^{-3})$ 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma \left(\Delta \left(1232 \right)^{++} \overline{\Delta} \left(12 \right)^{-4} \right)$ 1.10 ± 0.09 ± 0.28 $\Gamma \left(\Sigma \left(1385 \right)^{-} \overline{\Sigma} \left(138 \right)^{-2} \right)$ 1.03 ± 0.13 OUR AVEF 1.00 ± 0.04 ± 0.21 1.19 ± 0.04 ± 0.25 0.86 ± 0.18 ± 0.22 1.03 ± 0.24 ± 0.25 $\Gamma \left(p \overline{p} \eta' \left(958 \right) \right) / \Gamma_{\text{tot}}$ 1.4 ULE \((units \ 10^{-3}) \) 0.9 ± 0.4 OUR AVEF 0.68 ± 0.23 ± 0.17	12.13 12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17	FALVARD 88 25). ion f ₂ (1720) — i cludes scale facto EATON 84 PERUZZI 78 ial DOCUMENT ID EATON 84)// total DOCUMENT ID HENRARD HENRARD EATON EATON EATON DOCUMENT ID cludes scale facto EATON 84	TECN TECN TECN TECN TECN TECN TECN TECN	$\begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline COMMENT \\ e^+ e^- \\ e^+ e^- \\ \hline \\ \hline COMMENT \\ e^+ e^- \\ \hline \\ N & COMMENT \\ \hline \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 13 & e^+ e^- \rightarrow \Sigma \\ 14 & e^+ e^- \rightarrow \Sigma \\ 15 & e^+ e^- \rightarrow \Sigma \\ 16 & e^+ e^- \rightarrow \Sigma \\ 17 & e^+ e^- \rightarrow \Sigma \\ 18 & e^+ e^- \rightarrow \Sigma \\ 1$	s
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{tot}$ $\frac{ALUE (units 10^{-3})}{ALUE (units 10^{-3})} \frac{EVTS}{EVTS}$ 7.7 ±0.8 OUR AVERAGE End. 3.3 ±0.12 ±0.45 7. ±0.6 45 $\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.$	FRANKI VANNU 6 8 al DOCUMENT ID TE COFFMAN 88 M VANNUCCI 77 M (+K*(892) + c.c.) DOCUMENT ID COFFMAN 88 M DOCUMENT ID COFFMAN 88 M DOCUMENT ID COFFMAN 88 M DOCUMENT ID TE COFFMAN 88 M DOCUMENT ID TE COFFMAN 88 M	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRX1 JCCI	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓] 14/Γ ₁₃ 392) Γ ₁₅ /Γ	$VALUE\ (units\ 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interference 13 Includes unknown $\Gamma\left(p\overline{p}\omega\right)/\Gamma_{\rm total}$ $VALUE\ (units\ 10^{-3})$ 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma\left(\Delta\left(1232\right)^{++}\overline{\Delta}\left(12\right)^{-4}$ $VALUE\ (units\ 10^{-3})$ 1.10 ± 0.09 ± 0.28 $\Gamma\left(\Sigma\left(1385\right)^{-}\overline{\Sigma}\left(138\right)^{-4}$ 1.03 ± 0.13 OUR AVEF 1.00 ± 0.04 ± 0.21 1.19 ± 0.04 ± 0.25 0.86 ± 0.18 ± 0.22 1.03 ± 0.24 ± 0.25 $\Gamma\left(p\overline{p}\eta'(958)\right)/\Gamma_{\rm tot}$ $VALUE\ (units\ 10^{-3})$ 0.9 ± 0.4 OUR AVEF 0.68 ± 0.23 ± 0.17 1.8 ± 0.6	12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17 12.17 12.17 12.17 12.18	FALVARD 88 25). ion f ₂ (1720) — i cludes scale facto EATON 84 PERUZZI 78 ial DOCUMENT ID EATON 84)// total DOCUMENT ID HENRARD HENRARD EATON EATON EATON DOCUMENT ID cludes scale facto EATON 84	TECN TECN TECN TECN TECN TECN TECN TECN	$\begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline COMMENT \\ e^+ e^- \\ e^+ e^- \\ \hline \\ \hline COMMENT \\ e^+ e^- \\ \hline \\ N & COMMENT \\ \hline \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 13 & e^+ e^- \rightarrow \Sigma \\ 14 & e^+ e^- \rightarrow \Sigma \\ 15 & e^+ e^- \rightarrow \Sigma \\ 16 & e^+ e^- \rightarrow \Sigma \\ 17 & e^+ e^- \rightarrow \Sigma \\ 18 & e^+ e^- \rightarrow \Sigma \\ 1$	s
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + \text{c.c.}\right)/\Gamma_{\text{tot}}$ $\frac{ALUE [umits 10^{-3}]}{1.7 \pm 0.8} \frac{EVTS}{0.33 \pm 0.12 \pm 0.45}$ $\frac{.7 \pm 0.6}{1.7 \pm 0.6} \frac{45}{0.5 \pm 0.09}$ $\frac{EVTS}{1.7 \pm 0.6} \frac{45}{0.5 \pm 0.09}$ $\frac{EVTS}{1.7 \pm 0.6} \frac{EVTS}{0.5 \pm 0.09}$ $\frac{EVTS}{1.7 \pm 0.6} \frac{EVTS}{0.5 \pm 0.09}$ $\frac{EVTS}{1.7 \pm 0.05 \pm 0.09} \frac{EVTS}{0.9 \pm 0.09}$ $\frac{EVTS}{1.7 \pm 0.09} \frac{EVTS}{0.9 \pm 0.09}$ $\frac{EVTS}{1.7 \pm 0.09} \frac{EVTS}{0.9 \pm 0.09}$ $\frac{EVTS}{1.7 \pm 0.09} \frac{EVTS}{0.9 \pm 0.09}$ $\frac{EVTS}{1.7 \pm 0.09} \frac{EVTS}{0.9 \pm 0.09}$ $\frac{EVTS}{1.7 \pm 0.09} \frac{EVTS}{0.9 \pm 0.09}$ $\frac{EVTS}{1.7 \pm 0.09} \frac{EVTS}{0.9 \pm 0.09}$ $\frac{EVTS}{0.9 \pm 0.09} \frac{EVTS}{0.9 \pm 0.09}$	FRANK VANNU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) (a) \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{TOT includes scale factor of Z} \) \(\text{COFFMAN}\) 88 M VANNUCCI 77 M (C+\(\vec{K}^*(892)^- + \text{C.C.})\) \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{COFFMAN}\) 88 M \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{AUGUSTIN}\) 89 DI	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRX1 JCCI	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓]	$\begin{array}{l} \text{VALUE (units 10^{-4})} \\ 3.6 \pm 2 \pm 0.6 \\ 12 \text{ Including interferer} \\ 13 \text{ Includes unknown} \\ \hline \Gamma(p\overline{p}\omega)/\Gamma_{\text{total}} \\ \hline \text{VALUE (units 10^{-3})} \\ 1.30 \pm 0.25 \text{ OUR AVEF} \\ 1.10 \pm 0.17 \pm 0.18 \\ 1.6 \pm 0.3 \\ \hline \Gamma(\Delta(1232)^{++} \overline{\Delta}(12 \\ \hline \text{VALUE (units 10^{-3})} \\ 1.10 \pm 0.09 \pm 0.28 \\ \hline \Gamma(\Sigma(1385)^{-} \overline{\Sigma}(138 \\ \hline \text{VALUE (units 10^{-3})} \\ 1.03 \pm 0.13 \text{ OUR AVEF} \\ 1.00 \pm 0.04 \pm 0.21 \\ 1.19 \pm 0.04 \pm 0.25 \\ 0.86 \pm 0.18 \pm 0.22 \\ 1.03 \pm 0.24 \pm 0.25 \\ \hline \Gamma(p\overline{p}\eta'(958))/\Gamma_{\text{tot}} \\ \hline \text{VALUE (units 10^{-3})} \\ 0.9 \pm 0.4 \text{ OUR AVEF} \\ 0.68 \pm 0.23 \pm 0.17 \\ 1.8 \pm 0.6 \\ \hline \Gamma(\phi f'_2(1525))/\Gamma_{\text{tot}} \\ \hline \end{array}$	12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17 12.17 12.17 12.18	FALVARD 88 25). ion f ₂ (1720) — i cludes scale factor EATON 84 PERUZZI 78 tal DOCUMENT ID EATON 84 // Total DOCUMENT ID HENRARD HENRARD EATON	TECN TECN TECN MRK1 TECN MRK2 MRK2 MRK2 MRK2 MRK2 MRK2 MRK2 MRK2	$\begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline COMMENT \\ e^+ e^- \\ e^+ e^- \\ \hline \\ \hline COMMENT \\ e^+ e^- \\ \hline \\ N \hline COMMENT \\ 12 e^+ e^- \rightarrow \Sigma \\ 12 e^+ e^- \rightarrow \Sigma \\ 12 e^+ e^- \rightarrow \Sigma \\ 12 e^+ e^- \rightarrow \Sigma \\ 12 e^+ e^- \rightarrow \Sigma \\ 13 e^+ e^- \rightarrow \Sigma \\ 14 e^+ e^- e^+ e^- \\ 15 e^+ e^- e^+ e^- \\ 16 e^+ e^- \\ 17 e^+ e^- \\ 18 e^+ e^- e^+ e^- \\ 18 e^+ e^- \\ 18 e^+ e^- e^+ e^- \\ 18 e^+ e^- e^+ e^- \\ 18 e^+ e^- e^+ e^- \\ 18 e^+ e^- e^+ e^- \\ 18 e^+ e^- e^+ e^- e^- e^- \\ 18 e^+ e^- e^- e^- e^- e^- e^- e^- e^- e^- e^- $	s
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{tot}$ $\frac{ALUE (umits 10^{-3})}{1.7 \pm 0.8} \frac{EVTS}{0.33 \pm 0.12 \pm 0.45}$ $\frac{.7 \pm 0.8}{0.12 \pm 0.45} \frac{EVTS}{0.7 \pm 0.6}$ $\frac{.7 \pm 0.6}{45}$ $\frac{.7 \pm 0.6}{0.6} \frac{.45}{0.6}$ $\frac{.7 \pm 0.6}{0.6} \frac{.65}{0.6}$ $\frac{.7 \pm 0.6}{0.6} \frac{.7 \pm 0.6}{0.6}$	FRANKI VANNU BRAUN 6 8 c.c.)/\Gamma_total (units 10^{-3}) all \[\textit{DOCUMENT ID} \tag{TE} \] TOT INCLUDES SCALE FACTOR OF COFFMAN 88 M VANNUCCI 77 M VANNUCCI 77 M CH \(\overline{K}^*(892)^- + c.c. \) \(\textit{DOCUMENT ID} \) \(\textit{TE} \) \(\textit{COFFMAN} \) 88 M \(\textit{DOCUMENT ID} \) \(\textit{TE} \) \(\textit{DOCUMENT ID} \) \(\textit{TE} \) \(\textit{DOCUMENT ID} \) \(\textit{TE} \) \(\textit{DOCUMENT ID} \) \(\textit{TE} \) \(\textit{DOCUMENT ID} \) \(\textit{TE} \)	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 LOWERT LOWER	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓] 14/Γ ₁₃ 392) Γ ₁₅ /Γ	$VALUE$ (units 10 ⁻⁴) 3.6 ± 2±0.6 12 Including interferent 13 Includes unknown Γ ($p\bar{p}\omega$)/Γ total $VALUE$ (units 10 ⁻³) 1.30±0.25 OUR AVEI 1.10±0.17±0.18 1.6 ±0.3 Γ (Δ(1232) ⁺⁺ $\bar{\Delta}$ (12 $VALUE$ (units 10 ⁻³) 1.10±0.09±0.28 Γ (Σ(1385) ⁻ $\bar{\Sigma}$ (138: $VALUE$ (units 10 ⁻³) 1.0±0.13 OUR AVEI 1.0±0.13 OUR AVEI 1.0±0.04±0.25 0.86±0.18±0.22 1.03±0.13 OUR AVEI 1.0±0.04±0.25 Γ ($p\bar{p}$ η'(958))/Γ tot $VALUE$ (units 10 ⁻³) 0.9±0.4 OUR AVEI 0.68±0.23±0.17 1.8 ±0.6 Γ (ϕ f' ₂ (1525))/Γ tot $VALUE$ (units 10 ⁻⁴)	12.13 nce with f'_2(152) branching fracti RAGE Error in 486 77 232) -)/F tot - EVTS 233 5) + (or c.c.)) RAGE 631 ± 25 754 ± 27 56 68 al - EVTS RAGE Error in 19 19 tal EVTS	FALVARD 88 25). ion f ₂ (1720) — i cludes scale facto EATON 84 PERUZZI 78 tal DOCUMENT ID EATON 84)// total DOCUMENT ID HENRARD HENRARD EATON EATON EATON EATON DOCUMENT ID Cludes scale facto EATON 84 PERUZZI 78	TECN TECN TECN TECN TECN TECN TECN TECN	$\begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline COMMENT \\ e^+ e^- \\ e^+ e^- \\ \hline \\ \hline COMMENT \\ e^+ e^- \\ \hline \\ N & COMMENT \\ \hline \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 13 & e^+ e^- \rightarrow \Sigma \\ 14 & e^+ e^- \rightarrow \Sigma \\ 15 & e^+ e^- \rightarrow \Sigma \\ 16 & e^+ e^- \rightarrow \Sigma \\ 17 & e^+ e^- \rightarrow \Sigma \\ 18 & e^+ e^- \rightarrow \Sigma \\ 1$	s
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + \text{c.c.}\right)/\Gamma_{\text{tot}}$ $\frac{AUUE (units 10^{-3})}{1.7 \pm 0.8} \frac{EVTS}{0.33 \pm 0.12 \pm 0.45}$ $\frac{AUUE}{0.7 \pm 0.6} \frac{EVTS}{0.7 \pm 0.6}$ $\frac{AUUE}{0.33 \pm 0.12 \pm 0.45}$ $\frac{AUUE}{0.33 \pm 0.12 \pm 0.45}$ $\frac{AUUE}{0.33 \pm 0.12 \pm 0.45}$ $\frac{AUUE}{0.33 \pm 0.12 \pm 0.09}$ $\frac{AUUE}{0.33 \pm 0.09}$ $\frac{AUUE (units 10^{-3})}{0.4 \pm 0.33 \pm 0.7}$ $\frac{EVTS}{0.99}$ $\frac{AUUE (units 10^{-4})}{0.45 \pm 0.12}$ $\frac{EVTS}{0.45 \pm 0.12}$ $\frac{EVTS}{0.45 \pm 0.12}$ $\frac{EVTS}{0.99}$ $\frac{EVTS}{0.9$	FRANKI VANNU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) (a) \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{TOT includes scale factor of Z} \) \(\text{COFFMAN}\) 88 M VANNUCCI 77 M (C+\(\vec{K}^*(892)^- + \text{C.C.})\) \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{COFFMAN}\) 88 M \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{AUGUSTIN}\) 89 DI	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 76 DASP Confidence Level = 10 10 ECN COMMENT LIL J/ ψ — K^{\pm} K^{0} RK1 J/ψ — K^{\pm} K^{0} RK3 J/ψ — K^{\pm} K^{0} RK3 J/ψ — K^{\pm} K^{0} $+$ c.c. ECN COMMENT M2 e^{+} e^{-} ECN COMMENT M2 e^{+} e^{-}	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓] 14/Γ ₁₃ 392) Γ ₁₅ /Γ	$\begin{array}{l} \text{VALUE (units 10^{-4})} \\ 3.6 \pm \ \ 2 \pm 0.6 \\ 12 \text{Including interferer} \\ 13 \text{Includes unknown} \\ \hline \Gamma(p\overline{p}\omega)/\Gamma_{\text{total}} \\ \hline \text{VALUE (units 10^{-3})} \\ 1.30 \pm 0.25 \text{ OUR AVEF} \\ 1.10 \pm 0.17 \pm 0.18 \\ 1.6 \pm 0.3 \\ \hline \Gamma(\Delta(1232)^{++} \overline{\Delta}(12 \\ \hline \text{VALUE (units 10^{-3})} \\ 1.10 \pm 0.09 \pm 0.28 \\ \hline \Gamma(\Sigma(1385)^{-} \overline{\Sigma}(138 \\ \hline \text{VALUE (units 10^{-3})} \\ 1.03 \pm 0.13 \text{ OUR AVEF} \\ 1.00 \pm 0.04 \pm 0.21 \\ 1.19 \pm 0.04 \pm 0.25 \\ 0.86 \pm 0.18 \pm 0.22 \\ 1.03 \pm 0.24 \pm 0.25 \\ \hline \Gamma(p\overline{p}\eta'(958))/\Gamma_{\text{tot}} \\ \hline \text{VALUE (units 10^{-3})} \\ 0.9 \pm 0.4 \text{ OUR AVEF} \\ 0.68 \pm 0.23 \pm 0.17 \\ 1.8 \pm 0.6 \\ \hline \Gamma(\phi f'_2(1525))/\Gamma_{\text{tot}} \\ \hline \end{array}$	12.13 12.13 12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.16 12.17	FALVARD 88 25). ion f ₂ (1720) — i cludes scale factor EATON 84 PERUZZI 78 tal DOCUMENT ID EATON 84 PERURARD HENRARD HENRARD EATON	TECN TOT 1.7. MRK1 TECN TOT 1.3. MRK1 TECN MRK1 TECN MRK2 87 DM 84 MR 84 MR 87 DM 84 MR 84 MR 87 DM 84 MR 88 MR 88 MR 88 MR 88 MR 88 MR 88 MR 88 MR 88 MR 88 MR 88 MR 88 MR 88 MR 88 MR 88 MR	$ \begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline COMMENT \\ e^+ e^- \\ e^+ e^- \\ \hline \\ \hline COMMENT \\ e^+ e^- \\ \hline \\ N & COMMENT \\ \hline \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 12 & e^+ e^- \rightarrow \Sigma \\ 13 & e^+ e^- \rightarrow \Sigma \\ 14 & e^+ e^- \rightarrow \Sigma \\ 15 & e^+ e^- \rightarrow \Sigma \\ 16 & e^+ e^- \rightarrow \Sigma \\ 17 & e^+ e^- \rightarrow \Sigma \\ $	s
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + \text{c.c.}\right)/\Gamma_{\text{tot}}$ $\frac{EVTS}{(K^{0}\overline{K}^{*}(892)^{0} + \text{c.c.})} = \frac{EVTS}{(T \pm 0.8 \text{ OUR AVERAGE})}$ $\frac{EVTS}{(T \pm 0.6 \text{ OUR AVERAGE})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 \text{ out})}$ $\frac{EVTS}{(T \pm 0.6 \text{ out})} = \frac{EVTS}{(T \pm 0.6 $	FRANKI VANNU BRAUN 6 8 c.c.)/\Gamma_total (units 10^{-3}) all \[\textit{DOCUMENT ID} \tag{TE} \] TOT INCLUDES SCALE FACTOR OF COFFMAN 88 M VANNUCCI 77 M VANNUCCI 77 M CH \(\overline{K}^*(892)^- + c.c. \) \(\textit{DOCUMENT ID} \) \(\textit{TE} \) \(\textit{COFFMAN} \) 88 M \(\textit{DOCUMENT ID} \) \(\textit{TE} \) \(\textit{DOCUMENT ID} \) \(\textit{TE} \) \(\textit{DOCUMENT ID} \) \(\textit{TE} \) \(\textit{DOCUMENT ID} \) \(\textit{TE} \) \(\textit{DOCUMENT ID} \) \(\textit{TE} \)	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 76 DASP Confidence Level = 10 10 ECN COMMENT LIL J/ ψ — K^{\pm} K^{0} RK1 J/ψ — K^{\pm} K^{0} RK3 J/ψ — K^{\pm} K^{0} RK3 J/ψ — K^{\pm} K^{0} $+$ c.c. ECN COMMENT M2 e^{+} e^{-} ECN COMMENT M2 e^{+} e^{-}	4.1 10 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓] Γ ₁₄ /Γ ₁₃ 392) Γ ₁₅ /Γ	$\begin{array}{c} \text{VALUE (units 10^{-4})} \\ 3.6 \pm 2 \pm 0.6 \\ 12 \text{Including interferer} \\ 13 \text{Includes unknown} \\ \Gamma\left(\overline{p} \overline{p} \omega\right) / \Gamma \text{ total} \\ \text{VALUE (units 10^{-3})} \\ 1.30 \pm 0.25 \text{ OUR AVEI} \\ 1.0 \pm 0.17 \pm 0.18 \\ 1.6 \pm 0.3 \\ \Gamma\left(\Delta(1232)^{++} \overline{\Delta}(12 + 0.18) \right) \\ \text{VALUE (units 10^{-3})} \\ 1.10 \pm 0.09 \pm 0.28 \\ \Gamma\left(\overline{\Sigma}(1385)^{-1} \overline{\Sigma}(138 + 0.13 \text{ OUR AVEI}) \right) \\ \text{VALUE (units 10^{-3})} \\ 1.03 \pm 0.13 \text{ OUR AVEI} \\ 1.00 \pm 0.04 \pm 0.25 \\ 0.86 \pm 0.18 \pm 0.22 \\ 1.03 \pm 0.24 \pm 0.25 \\ \Gamma\left(\overline{p} \overline{p} \eta'(958)\right) / \Gamma_{\text{tot}} \\ \text{VALUE (units 10^{-3})} \\ 0.9 \pm 0.4 \text{OUR AVEI} \\ 0.68 \pm 0.23 \pm 0.17 \\ 1.8 \pm 0.6 \\ \Gamma\left(\phi f_2'(1525)\right) / \Gamma_{\text{tot}} \\ \text{VALUE (units 10^{-4})} \\ 8 \pm 4 \text{OUR AVEI} \\ 1.23 \pm 0.6 \pm 2.0 \\ 4.8 \pm 1.8 \\ \end{array}$	12.13 12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.16 12.17 12.17 12.17 12.18 12.18 12.18 12.18 12.18 12.18 12.18 12.18 12.18 12.18 12.18 12.18 12.18 13.18 14.18	FALVARD 88 25). ion f ₂ (1720) — i cludes scale facto EATON 84 PERUZZI 78 ial DOCUMENT ID EATON 84 DOCUMENT ID EATON 84 DOCUMENT ID HENRARD EATON EATON EATON EATON DOCUMENT ID Cludes scale factor EATON 87 PERUZZI 78 DOCUMENT ID Iudes scale factor EATON 88 PERUZZI 78 DOCUMENT ID Iudes scale factor FALVARD 88 GIDAL 88	TECN TECN TECN TECN TECN TECN TECN TECN	$ \begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline \\ COMMENT \\ e^+e^-\\ e^+e^- \\ \hline \\ COMMENT \\ e^+e^- \\ \hline \\ N & COMMENT \\ \hline \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 13 & e^+e^- \rightarrow \Sigma \\ 14 & e^+e^- \rightarrow \Sigma \\ 15 & e^+e^- \rightarrow \Sigma \\ 17 & e^+e^- \rightarrow \Sigma $	s
$ \Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{\text{tot}} $ $ \Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma_{\text{tot}} $ $ \Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma_{\text{tot}} $ $ \Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma\left($	FRANKU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) (a) \(\Delta_{\text{DOCUMENT ID}}\) \(\Text{TE}\) FOO INCLUMENT ID \(\text{TK}^*(892)^- + c.c.)\) \(\Delta_{\text{DOCUMENT ID}}\) \(\Text{TE}\) \(\text{COFFMAN}\) 88 M \(\Delta_{\text{DOCUMENT ID}}\) \(\Text{TE}\) \(\Text{AUGUSTIN}\) 89 DI \(\Delta_{\text{DOCUMENT ID}}\) \(\Text{TE}\)	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 76 DASP COMMENT JCCI COMMENT JCCI COMMENT JCCI COMMENT JCCI COMMENT M2 e^+e^- LUT e^+e^- LUT e^+e^-	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓] 14/Γ ₁₃ 392) Γ ₁₅ /Γ	$VALUE \ (units\ 10^{-4})$ 3.6 ± 2±0.6 12 Including interference 13 Includes unknown $\Gamma \left(p \overline{p} \omega \right) / \Gamma \text{ total}$ $VALUE \ (units\ 10^{-3})$ 1.30±0.25 OUR AVER 1.10±0.17±0.18 1.6 ±0.3 $\Gamma \left(\Delta \left(1232 \right)^{++} \overline{\Delta} \left(1232 \right)^{++} \overline{\Delta} \left(1232 \right)^{-4}$ 1.10±0.09±0.28 $\Gamma \left(\Sigma \left(1385 \right)^{} \overline{\Sigma} \left(1385 \right)^{-3} \right)$ 1.30±0.13 OUR AVER 1.00±0.04±0.21 1.19±0.04±0.25 0.86±0.18±0.22 1.03±0.13 OUR AVER 0.68±0.23±0.17 1.8 ±0.6 $\Gamma \left(p \overline{p} \eta' \left(958 \right) \right) / \Gamma \text{ tot}$ $VALUE \ \left(units\ 10^{-3} \right)$ 0.9 ±0.4 OUR AVER 0.68±0.23±0.17 1.8 ±0.6 $\Gamma \left(\phi f'_2 \left(1525 \right) \right) / \Gamma \text{ tot}$ $VALUE \ \left(units\ 10^{-4} \right)$ 8 ±4 OUR AVER 1.3±0.6±2.0 4.8±1.8 • • • We do not use	12.13 12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.16 12.17	FALVARD 88 25). ion f ₂ (1720) — ion f	TECN TECN TECN TECN TECN TECN TECN TECN	$ \begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline \\ COMMENT \\ e^+e^-\\ e^+e^- \\ \hline \\ COMMENT \\ e^+e^- \\ \hline \\ N \\ COMMENT \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 13 \\ COMMENT \\ e^+e^-\\ e^+e^- \\ COMMENT \\ f^+\psi^-\\ e^+e^-\\ etc. \bullet \bullet \bullet \\ \end{array} $	
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{tot}$ $\frac{ALUE (units 10^{-3})}{C.7 \pm 0.8 \text{ OUR AVERAGE}} \text{ Error}$ $.7. \pm 0.8 \text{ OUR AVERAGE}$ $.7. \pm 0.6 \qquad 45$ $(K^{0}\overline{K}^{*}(892)^{0} + c.c.)/\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma\left(K$	FRANKI VANNU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) (a) \(\Delta_{\text{corr}}\) (units 10^{-3}) (a) \(\Delta_{\text{corr}}\) (corrected factor of Z \(\text{COFFMAN}\) 88 M VANNUCCI 77 M (C) \(\text{K*(892)}^+ + \text{C.C.}\) \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{COFFMAN}}\) 88 M \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 Confidence Level = 10 Comment LIN LIN LIN LIN LIN LIN LIN LIN LIN LIN	4.1 10 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓] π ⁷ Γ ₁₆ /Γ	$VALUE$ (units 10^{-4}) 3.6 ± 2±0.6 12 Including interferer 13 Includes unknown Γ ($p\overline{p}\omega$)/Γ total $VALUE$ (units 10^{-3}) 1.30±0.25 OUR AVEF 1.10±0.17±0.18 1.6 ±0.3 Γ (Δ(1232) ⁺⁺ $\overline{\Delta}$ (12 $VALUE$ (units 10^{-3}) 1.10±0.09±0.28 Γ (Σ(1385) ⁻ $\overline{\Sigma}$ (138) $VALUE$ (units 10^{-3}) 1.03±0.13 OUR AVEF 1.00±0.04±0.21 1.19±0.04±0.25 0.86±0.18±0.22 1.03±0.24±0.25 Γ ($p\overline{p}$ η'(958))/Γ tot $VALUE$ (units 10^{-3}) 0.9 ±0.4 OUR AVEF 0.68±0.23±0.17 1.8 ±0.6 Γ (ϕ f' ₂ (1525))/Γ tot $VALUE$ (units 10^{-4}) 8 ±4 OUR AVER 12.3±0.6±2.0 4.8±1.8 • • We do not use 4.6±0.5	12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.16 12.17 12.17 12.17 12.18	FALVARD 88 25). ion f ₂ (1720) — ion f	TECN TECN TECN TECN TECN TECN TECN TECN	$ \begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline \\ COMMENT \\ e^+e^-\\ e^+e^- \\ \hline \\ COMMENT \\ e^+e^- \\ \hline \\ N & COMMENT \\ \hline \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 12 & e^+e^- \rightarrow \Sigma \\ 13 & e^+e^- \rightarrow \Sigma \\ 14 & e^+e^- \rightarrow \Sigma \\ 15 & e^+e^- \rightarrow \Sigma \\ 17 & e^+e^- \rightarrow \Sigma $	[[[] [] [] [] [] [] [] [] []
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{tot}$ $\frac{ALUE\ [units\ 10^{-3}]}{6.7\ \pm 0.8} \frac{EVTS}{0.33\pm 0.12\pm 0.45}$ $E.7\ \pm 0.6 \qquad 45$ $E.7\ \pm 0.6 \qquad 45$ $E.7\ \pm 0.6 \qquad 45$ $E.7\ \pm 0.6 \qquad 45$ $E.7\ \pm 0.6 \qquad 45$ $E.7\ \pm 0.6 \qquad 45$ $E.7\ \pm 0.6 \qquad 45$ $E.7\ \pm 0.6 \qquad 45$ $E.7\ \pm 0.6 \qquad 45$ $E.82\pm 0.05\pm 0.09$ $= \left(\omega_{\pi} \sigma^{0}\right)/\Gamma_{total}$ $\frac{ALUE\ [units\ 10^{-3}]}{3.4\pm 0.3\pm 0.7} \qquad \frac{EVTS}{509}$ $E.7\ \pm 0.1235)^{\pm} \pi^{\mp}\right)/\Gamma_{total}$ $\frac{ALUE\ [units\ 10^{-4}]}{3.1\pm 6} \qquad \frac{EVTS}{4600}$ $\frac{ALUE\ [units\ 10^{-4}]}{3.7} \qquad \frac{EVTS}{600}$ $\frac{EVTS}{600}$ $\frac{EVTS}{600}$ $\frac{EVTS}{600}$ $\frac{EVTS}{600}$ $\frac{EVTS}{600}$ $\frac{EVTS}{600}$ $\frac{EVTS}{600}$ $\frac{EVTS}{600}$ $\frac{EVTS}{600}$ $\frac{EVTS}{6000}$ $ $\frac{EVTS}{600000}$ $\frac{EVTS}{60000000}$ $\frac{EVTS}{60000000000000$	FRANKI VANNU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) all \(\text{DOCUMENT ID}\) \(\text{TE}\) TO includes scale factor of \(\text{Z}\) COFFMAN 88 M VANNUCCI 77 M (+\(\vec{K}^*(892)^- + \text{c.c.}\) \(\text{DOCUMENT ID}\) \(\text{TE}\) COFFMAN 88 M \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{AUGUSTIN}\) 89 DI \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{AUGUSTIN}\) 89 DI \(\text{BURGESTER}\) 770 PI	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 76 DASP COMMENT JCCI COMMENT JCCI COMMENT JCCI COMMENT JCCI COMMENT M2 e^+e^- LUT e^+e^- LUT e^+e^-	4.1 10 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓] π ⁷ Γ ₁₆ /Γ	$VALUE \ (units 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interference 13 Includes unknown $\Gamma \left(p \overline{p} \omega \right) / \Gamma_{\text{total}}$ $VALUE \ (units 10^{-3})$ 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma \left(\Delta \left(1232 \right)^{++} \overline{\Delta} \left(12 \right)^{-4} \right)$ 1.10 ± 0.09 ± 0.28 $\Gamma \left(\Sigma \left(1385 \right)^{-} \overline{\Sigma} \left(138 \right)^{-4} \right)$ 1.00 ± 0.09 ± 0.28 $\Gamma \left(\Sigma \left(1385 \right)^{-} \overline{\Sigma} \left(138 \right)^{-4} \right)$ 1.03 ± 0.13 OUR AVEF 1.00 ± 0.04 ± 0.21 1.19 ± 0.04 ± 0.25 0.86 ± 0.18 ± 0.22 1.03 ± 0.24 ± 0.25 $\Gamma \left(p \overline{p} \eta' \left(958 \right) \right) / \Gamma_{\text{tot}} VALUE \ (units 10^{-3})$ 0.9 ± 0.4 OUR AVEF 0.68 ± 0.23 ± 0.17 1.8 ± 0.6 $\Gamma \left(\phi f_2' \left(1525 \right) \right) / \Gamma_{\text{tot}} VALUE \ (units 10^{-4})$ 8 ± 4 OUR AVER 12.3 ± 0.6 ± 2.0 4.8 ± 1.8 • • • We do not use 4.6 ± 0.5 14 Re-evaluated using	12.13 12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17 12.17 12.17 12.18	FALVARD 88 25). ion f ₂ (1720) — ion f	TECN TECN TECN TECN TECN TECN TECN TECN	$ \begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline \\ COMMENT \\ e^+e^-\\ e^+e^- \\ \hline \\ COMMENT \\ e^+e^- \\ \hline \\ N \\ COMMENT \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 13 \\ COMMENT \\ e^+e^-\\ e^+e^- \\ COMMENT \\ f^+\psi^-\\ e^+e^-\\ etc. \bullet \bullet \bullet \\ \end{array} $	F
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{tot}$ $\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma_{tot}$ 3.7 ± 0.8 OUR AVERAGE En. 3.3 $\pm 0.12 \pm 0.45$ 2.7 ± 0.6 45 $\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma$	FRANKI VANNU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) (a) \(\Delta_{\text{corr}}\) (units 10^{-3}) (a) \(\Delta_{\text{corr}}\) (corrected factor of Z \(\text{COFFMAN}\) 88 M VANNUCCI 77 M (C) \(\text{K*(892)}^+ + \text{C.C.}\) \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{COFFMAN}}\) 88 M \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 Confidence Level = 10 Comment LIN LIN LIN LIN LIN LIN LIN LIN LIN LIN	4.1 10 0.1 12.2 0.007) Γ ₁₄ /Γ π [∓] π [∓] π ⁷ Γ ₁₆ /Γ	$VALUE (units 10^{-4})$ 3.6 ± 2±0.6 12 Including interferer 13 Includes unknown Γ ($p\bar{p}\omega$)/Γ total $VALUE (units 10^{-3})$ 1.30±0.25 OUR AVEI 1.10±0.17±0.18 1.6 ±0.3 Γ (Δ (1232) ⁺⁺ $\bar{\Delta}$ (12 $VALUE (units 10^{-3})$ 1.10±0.09±0.28 Γ (Σ(1385) ⁻ $\bar{\Sigma}$ (138) $VALUE (units 10^{-3})$ 1.03±0.13 OUR AVEI 1.00±0.04±0.21 1.19±0.04±0.25 0.86±0.18±0.22 1.03±0.24±0.25 Γ ($p\bar{p}\eta'$ (958))/Γ tot $VALUE (units 10^{-3})$ 0.9 ±0.4 OUR AVEI 0.68±0.23±0.17 1.8 ±0.6 Γ (ϕ f' ₂ (1525))/Γ tot $VALUE (units 10^{-4})$ 8 ±4 OUR AVER 12.3±0.6±2.0 4.8±1.8 • • We do not use 4.6±0.5 14 Re-evaluated using 15 Including Interfere	12.13 12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17 12.17 12.17 12.18	FALVARD 88 25). ion f ₂ (1720) — ion f	TECN TECN TECN TECN TECN TECN TECN TECN	$ \begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline \\ COMMENT \\ e^+e^-\\ e^+e^- \\ \hline \\ COMMENT \\ e^+e^- \\ \hline \\ N \\ COMMENT \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 13 \\ COMMENT \\ e^+e^-\\ e^+e^- \\ COMMENT \\ f^+\psi^-\\ e^+e^-\\ etc. \bullet \bullet \bullet \\ \end{array} $	s
$ \Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{tot} $ $ \Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma_{tot} $ $ \Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma_{tot} $ $ \Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma\left(K^{0}\overline{K}^{*}(892)^{0} + c.c.\right)/\Gamma\left(K^{0}\overline{K}$	FRANKI VANNU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) (a) \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{Total}\) (units 10^{-3}) (C) \(\text{OFFMAN}\) 88 M VANNUCCI 77 M (C) \(\text{VANNUCCI}\) 77 M (C) \(\text{VANNUCCI}\) 77 M (C) \(\text{VANNUCCI}\) 77 M (C) \(\text{VANNUCCI}\) 77 M (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{AUGUSTIN}\) 89 DI (D) \(\text{DOCUMENT ID}\) TE (D) \(\text{DOCUMENT ID}\) TE (D) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 76 DASP Confidence Level = 10 V_{COMMENT} L1. V_{COMMENT}	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π ⁺ π ⁺ Γ ₁₄ /Γ Γ ₁₆ /Γ Γ ₁₆ /Γ	$VALUE \ (units\ 10^{-4})$ 3.6 ± 2±0.6 12 Including interference 13 Includes unknown $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ $VALUE \ (units\ 10^{-3})$ 1.30±0.25 OUR AVEF 1.10±0.17 ±0.18 1.6 ±0.3 $\Gamma(\Delta(1232)^{++}\overline{\Delta}(12)^{-4}$ $VALUE \ (units\ 10^{-3})$ 1.10±0.09±0.28 $\Gamma(\Sigma(1385)^{-}\overline{\Sigma}(138)^{-4}$ $VALUE \ (units\ 10^{-3})$ 1.03±0.13 OUR AVEF 1.00±0.04±0.21 1.19±0.04±0.25 0.86±0.18±0.22 1.03±0.24±0.25 $\Gamma(p\overline{p}\eta'(958))/\Gamma_{\text{tot}}$ $VALUE \ (units\ 10^{-3})$ 0.9 ±0.4 OUR AVEF 0.68±0.23±0.17 1.8 ±0.6 $\Gamma(\phi f'_2(1525))/\Gamma_{\text{tot}}$ $VALUE \ (units\ 10^{-4})$ 8 ±4 OUR AVER 12.3±0.6±2.0 4.8±1.8 • • We do not use 4.6±0.5 14 Re-evaluated using 15 including interference $\Gamma(\phi \pi^+\pi^-)/\Gamma_{\text{total}}$	12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17	FALVARD 88 25). ion f ₂ (1720) — ion f	TECN TECN MRK2 MRK2 MRK2 MRK2 MRK2 FOR DM MRK2 MRK2 MRK1 TECN MRK2 MRK1 MRK2 MRK1 MRK2 MRK1 MRK2 MRK1 MRK2 MRK1 MRK2 MRK1 MRK2 MRK2 MRK1 MRK2 MRK2 MRK1	$J/\psi \rightarrow \text{hadrons}$ $\frac{COMMENT}{e^+ e^-}$ $\frac{COMMENT}{e^+ e^-}$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $13 e^+ e^- \rightarrow \Sigma$ $14 e^+ e^- \rightarrow \Sigma$ $15 e^+ e^- \rightarrow \Sigma$ $17 e^- e^- \rightarrow \Sigma$ $17 $	F F F F F F F F F F F F F F F F F F F
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{-} + c.c.\right)/\Gamma_{tot}$ $\frac{F(K^{0}\overline{K}^{*}(892)^{0} + c.c.)}{3.7 \pm 0.8 \text{ OUR AVERAGE}} \text{ End}$ $\frac{3.7 \pm 0.8 \text{ OUR AVERAGE}}{3.33 \pm 0.12 \pm 0.45} \text{ End}$ $\frac{3.33 \pm 0.12 \pm 0.45}{2.7 \pm 0.6} \text{ 45}$ $\frac{F(K^{0}\overline{K}^{*}(892)^{0} + c.c.)}{45} / \Gamma(K^{0}\overline{K}^{*}(892)^{0} + c.c.)/\Gamma(K^{0}\overline{K}^{*}(892)^{0} + c.c.)/\Gamma$	FRANKU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) (a) \(\Delta_{\text{DOCUMENT ID}}\) TE \(\text{COFFMAN}\) 88 M VANNUCCI 77 M (+\(\vec{K}^*(892)^- + c.c.)\) \(\Delta_{\text{DOCUMENT ID}}\) TE \(\text{COFFMAN}\) 88 M \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{AUGUSTIN}}\) 89 DI \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE \(\Delta_{\text{DOCUMENT ID}}\) TE	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 76 DASP Confidence Level = 10 V_{COMMENT} L1. V_{COMMENT}	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π ⁺ π ⁺ Γ ₁₄ /Γ Γ ₁₆ /Γ Γ ₁₆ /Γ	$VALUE \ (units 10^{-4})$ 3.6 ± .2 ± 0.6 12 Including interference 13 Includes unknown $\Gamma \left(p \overline{p} \omega \right) / \Gamma_{\text{total}}$ $VALUE \ (units 10^{-3})$ 1.30 ± 0.25 OUR AVEF 1.10 ± 0.17 ± 0.18 1.6 ± 0.3 $\Gamma \left(\Delta \left(1232 \right)^{++} \overline{\Delta} \left(12 \right)^{-4} \right)$ $VALUE \ (units 10^{-3})$ 1.10 ± 0.09 ± 0.28 $\Gamma \left(\Sigma \left(1385 \right)^{-} \overline{\Sigma} \left(138 \right)^{-4} $ 1.00 ± 0.04 ± 0.21 1.09 ± 0.04 ± 0.21 1.19 ± 0.04 ± 0.25 0.86 ± 0.18 ± 0.22 1.03 ± 0.24 ± 0.25 $\Gamma \left(p \overline{p} \eta' \left(958 \right) \right) / \Gamma_{\text{tot}}$ $VALUE \ (units 10^{-3})$ 0.9 ± 0.4 OUR AVEF 0.68 ± 0.23 ± 0.17 1.8 ± 0.6 $\Gamma \left(\phi f'_2 \left(1525 \right) \right) / \Gamma_{\text{tot}}$ $VALUE \ (units 10^{-4})$ 8 ± 4 OUR AVER 12.3 ± 0.6 ± 2.0 4.8 ± 1.8 • • We do not use 4.6 ± 0.5 14 Re-evaluated using 15 Including interference $\Gamma \left(\phi \pi^+ \pi^- \right) / \Gamma_{\text{total}}$ $VALUE \ (units 10^{-3})$	12.13 12.13 12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17	FALVARD 88 25). ion f ₂ (1720) — ion f	TECN TECN TECN TECN TECN TECN TECN TECN	$ \begin{array}{c} J/\psi \rightarrow \text{ hadrons} \\ \hline \\ COMMENT \\ e^+e^-\\ e^+e^- \\ \hline \\ COMMENT \\ e^+e^- \\ \hline \\ N \\ COMMENT \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 12 \\ e^+e^- \rightarrow \Sigma \\ 13 \\ COMMENT \\ e^+e^-\\ e^+e^- \\ COMMENT \\ f^+\psi^-\\ e^+e^-\\ etc. \bullet \bullet \bullet \\ \end{array} $	s
$\Gamma\left(K^{+}\overline{K}^{*}(892)^{0} + \text{c.c.}\right)/\Gamma_{\text{tot}}$ $\frac{ALUE \ [units \ 10^{-3}]}{6.7 \pm 0.8} \frac{EVTS}{0.33 \pm 0.12 \pm 0.45}$ $\frac{8.7 \pm 0.6}{6.82 \pm 0.05 \pm 0.09}$ $-\left(\frac{K^{0}}{K^{*}}(892)^{0} + \text{c.c.}\right)/\Gamma\left(\frac{K^{0}}{K^{0}}(892)^{0} + \text{c.c.}\right)/\Gamma\left(K^{0$	FRANKU VANNU BRAUN (C 6 8 .c.)/\(\Gamma_{\text{total}}\) (units 10^{-3}) (a) \(\text{DOCUMENT ID}\) \(\text{TE}\) \(\text{Total}\) (units 10^{-3}) (C) \(\text{OFFMAN}\) 88 M VANNUCCI 77 M (C) \(\text{VANNUCCI}\) 77 M (C) \(\text{VANNUCCI}\) 77 M (C) \(\text{VANNUCCI}\) 77 M (C) \(\text{VANNUCCI}\) 77 M (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE (C) \(\text{DOCUMENT ID}\) TE	LIN 83C MRR2 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 77 MRK1 JCCI 76 DASP Confidence Level = 10 V_{COMMENT} L1. V_{COMMENT}	4.1 1.0 0.1 12.2 0.007) Γ ₁₄ /Γ π ⁺ π ⁺ Γ ₁₄ /Γ Γ ₁₆ /Γ Γ ₁₆ /Γ	$VALUE \ (units\ 10^{-4})$ 3.6 ± 2±0.6 12 Including interference 13 Includes unknown $\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$ $VALUE \ (units\ 10^{-3})$ 1.30±0.25 OUR AVEF 1.10±0.17 ±0.18 1.6 ±0.3 $\Gamma(\Delta(1232)^{++}\overline{\Delta}(12)^{-4}$ $VALUE \ (units\ 10^{-3})$ 1.10±0.09±0.28 $\Gamma(\Sigma(1385)^{-}\overline{\Sigma}(138)^{-4}$ $VALUE \ (units\ 10^{-3})$ 1.03±0.13 OUR AVEF 1.00±0.04±0.21 1.19±0.04±0.25 0.86±0.18±0.22 1.03±0.24±0.25 $\Gamma(p\overline{p}\eta'(958))/\Gamma_{\text{tot}}$ $VALUE \ (units\ 10^{-3})$ 0.9 ±0.4 OUR AVEF 0.68±0.23±0.17 1.8 ±0.6 $\Gamma(\phi f'_2(1525))/\Gamma_{\text{tot}}$ $VALUE \ (units\ 10^{-4})$ 8 ±4 OUR AVER 12.3±0.6±2.0 4.8±1.8 • • We do not use 4.6±0.5 14 Re-evaluated using 15 including interference $\Gamma(\phi \pi^+\pi^-)/\Gamma_{\text{total}}$	12.13 12.13 12.13 12.13 12.14 12.15 12.15 12.16 12.17	FALVARD 88 25). ion f ₂ (1720) — i cludes scale factor EATON 84 PERUZZI 78 ial DOCUMENT ID EATON 84)// Ftotal DOCUMENT ID HENRARD HENRARD HENRARD EATON EATON 84 PERUZZI 78 ial DOCUMENT ID Icludes scale factor EATON 84 PERUZZI 78 AUGUSTIN 86 KK) = 0.713. io).	TECN TECN MRK2 MRK2 MRK2 MRK2 MRK2 FOR DM MRK2 MRK2 MRK1 TECN MRK2 MRK1 MRK2 MRK1 MRK2 MRK1 MRK2 MRK1 MRK2 MRK1 MRK2 MRK1 MRK2 MRK2 MRK1 MRK2 MRK2 MRK1	$J/\psi \rightarrow \text{hadrons}$ $\frac{COMMENT}{e^+ e^-}$ $\frac{COMMENT}{e^+ e^-}$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $12 e^+ e^- \rightarrow \Sigma$ $13 e^+ e^- \rightarrow \Sigma$ $14 e^+ e^- \rightarrow \Sigma$ $15 e^+ e^- \rightarrow \Sigma$ $17 e^- e^- \rightarrow \Sigma$ $17 $	F

 $J/\psi(1S) = J/\psi(3097)$

				σ, φ(13)	$\frac{-3/\psi(3071)}{-}$
$\Gamma(\phi K^{\pm} K_S^0 \pi^{\mp})/\Gamma_{\text{total}}$		Γ ₃₃ /Γ	$\Gamma(ho\eta)/\Gamma_{total}$		Γ ₄₃ /Γ
VALUE (units 10 ⁻⁴) EVTS 7.2±0.9 OUR AVERAGE	DOCUMENT ID TECN	COMMENT	VALUE (units 10 ⁻³) 0.193±0.013±0.029		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$7.4 \pm 0.9 \pm 1.1$ 7 $\pm 0.6 \pm 1.0$ 163 \pm 15	FALVARD 88 DM2 BECKER 87 MRK3	$J/\psi ightarrow ext{hadrons}$ $e^+ e^- ightarrow ext{hadrons}$	$\Gamma(\omega \eta'(958))/\Gamma_{\text{total}}$		г ₄₄ /Г
$\Gamma(\phi\eta)/\Gamma_{total}$		Γ ₃₄ /Γ	VALUE (units 10 ⁻³) 0.166±0.017±0.019	DOCUMENT ID TECN COFFMAN 88 MRK3	$\frac{COMMENT}{e^+ e^- \rightarrow 3\pi n'}$
<u>VALUE (units 10⁻³) EVTS</u> 0.714±0.030 OUR AVERAGE	DOCUMENT ID TECN		$\Gamma(\omega f_0(975))/\Gamma_{\text{total}}$		Γ ₄₅ /Γ
$0.661 \pm 0.045 \pm 0.078$ $0.72 \pm 0.03 \pm 0.01$ 330		$e^+ e^- \rightarrow K^+ K^- \eta$ $J/\psi \rightarrow \text{hadrons}$	VALUE (units 10 ⁻⁴)	DOCUMENT ID TECN	COMMENT
$\Gamma(\omega f_1(1420))/\Gamma_{\text{total}}$		Γ ₃₅ /Γ	1.41±0.27±0.21 ¹⁷ Assuming B(f_0 (975) $\rightarrow \pi \pi$	¹⁷ AUGUSTIN 89 DM2 r) = 0.78.	e ⁺ e ⁻
VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID TECN	COMMENT	$\Gamma(\rho\eta'(958))/\Gamma_{\text{total}}$	•	Γ ₄₆ /Γ
$6.8^{+1.9}_{-1.6} \pm 1.7$ 111^{+31}_{-26}	BECKER 87 MRK3	e ⁺ e [−] → hadrons	VALUE (units 10 ⁻³) EVTS	DOCUMENT ID TECN Error includes scale factor of 1.	COMMENT
$\Gamma(\Xi(1530)^-\overline{\Xi}^+)/\Gamma_{total}$		Γ ₃₆ /Γ	$0.114 \pm 0.014 \pm 0.016$	COFFMAN 88 MRK3	$J/\psi \rightarrow \pi^+ \pi^- \eta'$
$ \begin{array}{ccc} $	DOCUMENT ID TECN HENRARD 87 DM2	e ⁺ e ⁻	0.078±0.017±0.012 18	AUGUSTIN 86 DM2	$J/\psi ightarrow $ hadrons
$\Gamma(\rho K^{-}\overline{\Sigma}(1385)^{0})/\Gamma_{\text{total}}$		Γ ₃₇ /Γ	$\Gamma(\phi f_1(1285))/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) EVTS	DOCUMENT ID TECN	Γ ₄₇ /Γ
VALUE (units 10 ⁻³) EVTS	DOCUMENT ID TECN	COMMENT	0.8 ±0.5 OUR AVERAGE En 0.6 ±0.2±0.1 16 ± 6		$e^+e^- \rightarrow hadrons$
0.51±0.26±0.18 89	EATON 84 MRK2		$1.77 \pm 0.4 \pm 0.25$ 10	AUGUSTIN 86 DM2	$J/\psi ightarrow ext{hadrons}$
$\Gamma(\omega \pi^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-3})	DOCUMENT ID TECN	Γ ₃₈ /Γ COMMENT	$\Gamma(p\overline{p}\phi)/\Gamma_{\text{total}}$	DOCUMENT ID TEST	Γ ₄₈ /Γ
0.482±0.019±0.064		$e^+e^- \rightarrow \pi^0 \pi^+\pi^-\pi^0$	VALUE (units 10 ⁻⁴) 0.45±0.13±0.07	DOCUMENT ID TECN FALVARD 88 DM2	$\frac{\textit{COMMENT}}{\textit{J/}\psi \rightarrow \text{ hadrons}}$
$\Gamma(\phi\eta'(958))/\Gamma_{\text{total}}$		Γ ₃₉ /Γ	$\Gamma(a_2(1320)^{\pm}\pi^{\mp})/\Gamma_{total}$		Γ ₄₉ /Γ
	Error includes scale factor of		<u>VALUE (units 10^{−4}) CL%</u> <43 90	DOCUMENT ID TECN BRAUNSCH 76 DASP	COMMENT e+ e-
$0.308 \pm 0.034 \pm 0.036$		3 MRK3 $e^+ e^- \rightarrow K^+ K^- \eta'$	$\Gamma(K\overline{K}_2^*(1430) + \text{c.c.})/\Gamma_{\text{tot}}$		Γ ₅₀ /Γ
0.40 ±0.025±0.01 • • • We do not use the following		5 DM2 $J/\psi \rightarrow$ hadrons	VALUE (units 10 ⁻⁴) CL%	DOCUMENT ID TECN	COMMENT
<1.3 90	•	7 MRK1 e ⁺ e ⁻	< 40 90 • • • We do not use the follow	VANNUCCI 77 MRKI ving data for averages, fits, limits	$\begin{array}{ccc} e^+ e^- \rightarrow & \kappa^0 \overline{\kappa}_2^{*0} \\ \text{5, etc.} & \bullet & \bullet \end{array}$
$\Gamma(\phi f_0(975))/\Gamma_{\text{total}}$		Γ ₄₀ /Γ	<66 90	BRAUNSCH 76 DASP	$e^+e^- \rightarrow \kappa^{\pm} \overline{\kappa}_2^{\star \mp}$
VALUE (units 10 ⁻⁴) EVTS 3.2±0.5 OUR AVERAGE Error		COMMENT the ideogram below.	$\Gamma(K_2^*(1430)^0\overline{K}_2^*(1430)^0)$	Γ _{total}	Γ ₅₁ /Γ
$4.6 \pm 0.4 \pm 0.8$ 3.1 ± 0.6 2.6 ± 0.6 50	16 FALVARD 88 DM2 16 AUGUSTIN 86 DM2 16 GIDAL 81 MRK2	$J/\psi ightarrow $ hadrons $J/\psi ightarrow $ hadrons	<u>VALUE (units 10⁻⁴)</u> <u>CL%</u> <29 90	DOCUMENT ID TECN VANNUCCI 77 MRK	$ \begin{array}{c} COMMENT \\ e^+ e^- \rightarrow \\ \pi^+ \pi^- K^+ K^- \end{array} $
¹⁶ Assuming B($f_0(975) \rightarrow \pi \pi$)			$\Gamma(K^*(892)^0\overline{K}^*(892)^0)/\Gamma_{tc}$	otal	Γ ₅₂ /Γ
WEIGHTED AVERAC 3.2 ± 0.5 (Error s			VALUE (units 10 ⁻⁴) CL% <5 90	DOCUMENT ID TECN VANNUCCI 77 MRKI	$ \begin{array}{c} COMMENT \\ e^+e^- \rightarrow \end{array} $
0.2 1 0.0 (Entri	calca by 1.07			VAINIOCCI 11 WIRK	$\pi^+\pi^-K^+K^-$
N.			$\Gamma(\phi f_2(1270))/\Gamma_{\text{total}}$ VALUE (units 10 ⁻⁴) CL%	DOCUMENT ID TECN	Г ₅₃ /Г соммент
			<3.7 90	VANNUCCI 77 MRK	
			• • • We do not use the follow <4.5 90	ving data for averages, fits, limits	s, etc. • • •
				FALVARD 66 DIVIZ	$J/\psi ightarrow $ hadrons Γ_{54}/Γ
			$\Gamma(p\overline{p}\rho)/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) CL%	DOCUMENT ID TECN	COMMENT 54/1
			<0.31 90		2 $e^+e^- \rightarrow \text{hadrons } \gamma$
	L FALVARD	$\frac{\chi^2}{88 \text{ DM2}}$	$\Gamma(\phi\eta(1440) \rightarrow \phi\eta\pi\pi)/\Gamma$ VALUE (units 10^{-4}) CL%	total DOCUMENT ID TECN	Γ ₅₅ /Γ <i>COMMENT</i>
	FALVARD AUGUSTIN	88 DM2 2.5 86 DM2 0.0 81 MRK2 0.9	<2.5 90	18 FALVARD 88 DM2	$J/\psi \rightarrow \text{hadrons}$
		3.5	¹⁸ Includes unknown branching	g fraction $\eta(1440) \rightarrow \eta \pi \pi$.	
		ifidence Level = 0.176)	$\Gamma(\omega f_2'(1525))/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) CL%	DOCUMENT ID TECN	Г ₅₆ /Г соммент
0 2 4		0	<2.2 90	19 VANNUCCI 77 MRK	
$\Gamma(\phi f_0(975))/\Gamma_{\text{total}}$	units 10 ⁻⁴)		• • • We do not use the follow <2.8 90	ving data for averages, fits, limit 19 FALVARD 88 DM2	π , etc. \bullet \bullet \bullet $J/\psi \rightarrow \text{hadrons}$
$\Gamma(\Xi(1530)^0\overline{\Xi}^0)/\Gamma_{total}$		Γ_{41}/Γ	$<$ 2.8 90 19 Re-evaluated assuming B(f)		$J/\psi ightarrow ext{nagrons}$
VALUE (units 10^{-3}) EVTS $0.32 \pm 0.12 \pm 0.07$ 24 ± 9	DOCUMENT ID TECN HENRARD 87 DM2	e ⁺ e ⁻	$\Gamma(\Sigma(1385)^{0}\overline{\Lambda})/\Gamma_{\text{total}}$	-	Γ ₅₇ /Γ
$\Gamma(\Sigma(1385)^{-}\overline{\Sigma}^{+} \text{ (or c.c.)})/\Gamma$		Γ ₄₂ /Γ	VALUE (units 10 ⁻³) CL%	DOCUMENT ID TECN	COMMENT
VALUE (units 10 ⁻³) EVT5	DOCUMENT ID TECN	COMMENT COMMENT	<0.2 90 F(A(1222) † =) /F	HENRARD 87 DM2	e+ e-
0.31±0.05 OUR AVERAGE 0.30±0.03±0.07 74±8	HENRARD 87 DM2	$e^+ e^- \rightarrow \Sigma^{*-}$	$\Gamma(\Delta(1232)^+\overline{p})/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) CL%	DOCUMENT ID TECN	Γ ₅₈ /Γ <u>COMMENT</u>
$0.34 \pm 0.04 \pm 0.07$ 77 ± 9 $0.29 \pm 0.11 \pm 0.10$ 26		$e^+ e^- \rightarrow \Sigma^{*+}$ $e^+ e^- \rightarrow \Sigma^{*-}$	<0.1 90	HENRARD 87 DM2	
$0.31 \pm 0.11 \pm 0.11$ 28		$e^+ e^- \rightarrow \Sigma^{*+}$			

I/a/(15) = I/a/(2007)

$\pm 0.48 \pm 0.75$ ± 7.8 ± 1.2 $(\pi^{+}\pi^{-})K^{+}K^{-})$	5 GE EVTS GE 884 ± 30 90 3 52 /Γ total EVTS 30 al -γ and exclusion GE Evts GE 1420 133 331 20 1tribution (1+ EVTS 20 21 147	COCUMENT ID Cludes scale face EATON PERUZZI COCUMENT ID PALLIN EATON BRANDELIK BESCH PERUZZI	81 E 81 E 81 E 87 P 884 N 777 N 884 N 78 N 78 P 87 D 884 N 796 D 78 B	7 DM H MR 1 BOI 3 MR 1 BOI MRK1 MRK1 MRK1 MRK2 MRK1 DM MRK2 MRK1 DM M2	2 e ⁺ e ⁻ K2 e ⁺ e ⁻ K1 e ⁺ e ⁻ K1 e ⁺ e ⁻ COMMENT e ⁺ e ⁻ COMMENT e ⁺ e ⁻ e ⁺ e ⁻	$ \begin{array}{ccc} \Gamma_{72}, & & & \\ & - & \Sigma^0 \overline{\Sigma}^0 \\ & - & \Sigma^+ \overline{\Sigma}^- \\ & - & \Sigma^0 \overline{\Sigma}^0 \\ & & & & \\ & & & & \\ & & & & \\ & & & &$
$\frac{E}{E})/\Gamma_{\text{total}}$ $\frac{JE}{E} (\text{units } 10^{-3})$ $\pm 0.5 \text{OUR AVERA}$ $\pm 0.12 \pm 0.69$ $\pm 0.48 \pm 0.75$ ± 7.8 ± 1.2 $(\pi^{+}\pi^{-})K^{+}K^{-})$ $\frac{JE}{E} (\text{units } 10^{-4})$ 13 $\overline{p}\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{tot}}$ $\frac{JE}{E} (\text{units } 10^{-3})$ $\frac{JE}{E} (\text{units } 10^{-3})$ $\pm 0.04 \pm 0.30$ $\pm 0.01 \pm 0.15$ ± 0.2 ± 0.4 ± 0.5 ± 0.2 Assuming angular dis $\overline{p}/\Gamma(\Gamma_{\text{total}})$ $\frac{JE}{E} (\text{units } 10^{-3})$	EVTS EVTS	DOCUMENT ID PALLIN EATON BESCH PERUZZI DOCUMENT ID COLUMENT ID COLUMENT ID COLUMENT ID CALIN EATON BRANDELIK BESCH PERUZZI	87 D S P C D P C P C P C P C P C P C P C P C P	7 DM 4 MR 8 BOI 8 MR 1 BOI 9 MRK1 1 MRK1 1 MRK2 1 M	N COMM, 2 e+ e- K1 e+ e- K1 e+ e- COMMENT e+ e- COMMENT e+ e- e+ e-	- Σ ⁰ Σ̄ ⁰ - Σ ⁺ Σ̄ - Σ ⁰ Σ̄ ⁰ - Γ ₇₃
LE (units 10^{-3}) ± 0.5 OUR AVERA $\pm 0.12 \pm 0.69$ $\pm 0.48 \pm 0.75$ ± 7.8 ± 1.2 $(\pi^+\pi^-)K^+K^-)$ LE (units 10^{-4}) ± 0.5 ± 0.6 ± 0.9 OUR AVERA $\pm 0.65 \pm 0.28$ ± 0.6 ± 0.9 OUR AVERA $\pm 0.65 \pm 0.28$ $\pm 0.04 \pm 0.30$ $\pm 0.07 \pm 0.15$ ± 0.2 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.4 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.4 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.4 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.4 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.4 ± 0.9 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.1 ± 0.10 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.10 ± 0.10 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.10 $\pm 0.$	GE GE GE GE GE GE GE GE	PALLIN EATON BESCH PERUZZI DOCUMENT 1D VANNUCCI ding ω, η, η' DOCUMENT 1D PALLIN EATON BRANDELIK BESCH PERUZZI	87 84 81 78 77 N N 77 N N N N N N N N N N N N N	7 DM 4 MR 1 BOI 3 MR 19 MRK1 1.9 MRK2 MRK2 MRK1	2	- τ ⁰ τ̄ ⁰ τ̄ ⁰ - τ ⁺ τ̄ - τ ⁰ τ̄ ⁰ - τ ⁺ τ̄ - τ ⁰ τ̄ ⁰ - τ ₇₄
LE (units 10^{-3}) ± 0.5 OUR AVERA $\pm 0.12 \pm 0.69$ $\pm 0.48 \pm 0.75$ ± 7.8 ± 1.2 $(\pi^+\pi^-)K^+K^-)$ LE (units 10^{-4}) ± 0.5 ± 0.6 ± 0.9 OUR AVERA $\pm 0.65 \pm 0.28$ ± 0.6 ± 0.9 OUR AVERA $\pm 0.65 \pm 0.28$ $\pm 0.04 \pm 0.30$ $\pm 0.07 \pm 0.15$ ± 0.2 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.4 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.4 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.4 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.4 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.4 ± 0.9 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.1 ± 0.10 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.10 ± 0.10 Assuming angular dis $\overline{p}/\Gamma(\mu^+\mu^-)$ ± 0.10 $\pm 0.$	GE GE GE GE GE GE GE GE	PALLIN EATON BESCH PERUZZI DOCUMENT 1D VANNUCCI ding ω, η, η' DOCUMENT 1D PALLIN EATON BRANDELIK BESCH PERUZZI	87 84 81 78 77 N N 77 N N N N N N N N N N N N N	7 DM 4 MR 1 BOI 3 MR 19 MRK1 1.9 MRK2 MRK2 MRK1	2	- Σ ⁰ Σ̄ ⁰ - Σ ⁺ Σ̄ - Σ ⁰ Σ̄ ⁰ - Γ ₇₃
\pm 0.5 OUR AVERA \pm 0.12 \pm 0.69 \pm 0.48 \pm 0.75 \pm 7.8 \pm 1.2 $(\pi^+\pi^-)K^+K^-)$ $= (units 10^{-4})$ 13 $\overline{p}\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}}$ $= (units 10^{-3})$ ± 0.00 $= 0$	GE GE GE GE GE GE GE GE	PALLIN EATON BESCH PERUZZI DOCUMENT 1D VANNUCCI ding ω, η, η' DOCUMENT 1D PALLIN EATON BRANDELIK BESCH PERUZZI	87 84 81 78 77 N N 77 N N N N N N N N N N N N N	7 DM 4 MR 1 BOI 3 MR 19 MRK1 1.9 MRK2 MRK2 MRK1	2	$ \begin{array}{ccc} - & \Sigma^0 \overline{\Sigma}^0 \\ - & \Sigma^+ \overline{\Sigma} \\ - & \Sigma^0 \overline{\Sigma}^0 \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & $
±0.48±0.75 ±7.8 ±1.2 $(π^+π^-)K^+K^-)$ $E_{(units 10^{-4})}$ 13 $\overline{p}π^+π^-π^0)/\Gamma_{tot}$ Including $p\overline{p}π^+π^-$ $E_{(units 10^{-3})}$ ±0.9 OUR AVERA ±0.65 ±0.28 ±0.6 \overline{p})/ Γ_{total} $E_{(units 10^{-3})}$ ±0.11 OUR AVERA ±0.04±0.30 ±0.07±0.15 ±0.4 ±0.5 ±0.7 ±0.19	90 3 52 /F total EVTS 30 al - γ and exclu EVTS GE Error in 364 39 1420 133 133 20 1420 1433 1420 1433 1420 1440 1440 1450 1470 1470 1470 1470 1470 1470 1470 147	EATON BESCH PERUZZI DOCUMENT ID VANNUCCI Iding ω , η , η' DOCUMENT ID Cludes scale face EATON PERUZZI PALLIN EATON BRANDELIK BESCH PERUZZI	84 N N N N N N N N N N N N N N N N N N N	MRK1 EECN MRK1 MRK2 MRK1 EECN DM2	K2 e ⁺ e ⁻ NA e ⁺ e ⁻ K1 e ⁺ e ⁻ <u>COMMENT</u> e ⁺ e ⁻ <u>COMMENT</u> e ⁺ e ⁻ e ⁺ e ⁻	- Σ ⁺ Σ ⁻ - Σ ⁰ Σ ⁰ Γ ₇₃
\pm 7.8 \pm 1.2 $(\pi^+\pi^-)K^+K^-)$ $(\pi^+\pi^-)K^+K^-)$ $(\pi^+\pi^-)K^+K^-)$ $(\pi^+\pi^-)K^+K^-)$ $(\pi^+\pi^-)K^-K^ (\pi^+\pi^-)K^-K^ (\pi^+\pi^-)K^ $	3 52 /Γ total EVTS 30 al - γ and exclusion (14) EVTS 49 EVTS 6E 1420 133 131 20 141 itribution (1+) EVTS 20 21 142 20 21 142	BESCH PERUZZI DOCUMENT 1D VANNUCCI ding ω, η, η' DOCUMENT 1D EATON PERUZZI DOCUMENT 1D PALLIN EATON BRANDELIK BESCH PERUZZI	81 78 77 N N 777 N N 777 N N 778 N N N 778 N N N 778 N N N 790 D N N N N N N N N N N N N N N N N N N	EECN MRK1 1.9. MRK2 MRK1	NA $e^{+}e^{-}$ K1 $e^{+}e^{-}$ COMMENT $e^{+}e^{-}$ COMMENT $e^{+}e^{-}$ $e^{+}e^{-}$	- Σ ⁺ Σ ⁻ - Σ ⁰ Σ̄ ⁰ Γ ₇₃
# 1.2 $(\pi^+\pi^-)K^+K^-)$ $(\pi^+\pi^-)K^+K^-)$ 13 $\overline{p}\pi^+\pi^-\pi^0)/\Gamma_{tot}$ Including $p\overline{p}\pi^+\pi^-$ #5.9 OUR AVERA #0.65 ± 0.28 ± 0.6 \overline{p} $/\Gamma$ total #6.010 UR AVERA #0.04 ± 0.30 ± 0.07 ± 0.15 #0.4 #0.5 #0.7 #0.7 #0.11 ± 0.15 #0.4 #0.5 #0.7 #0.7 #0.7 #0.7 #0.7 #0.7 #0.7 #0.7	52 /F total EVTS 30 al γ and excluse EVTS GE Error in 364 39 EVTS GE 1420 133 133 120 intribution (1+ EVTS 20 21 1420 1420 1430 1440 1440 1440 1440 1440 1440 144	PERUZZI DOCUMENT 1D VANNUCCI ding ω, η, η' DOCUMENT 1D CIUDES SCAIE FAC EATON PERUZZI PALLIN EATON BRANDELIK BESCH PERUZZI	78 77 77 N 77 N 77 N 77 N 78 84 N 78 87 87 87 87 88 87 88 87 88	ECN MRK1 1.9. MRK2 MRK1	K1 e^+e^- $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ e^+e^- e^+e^-	Γ ₇₃
$(\pi^+\pi^-)K^+K^-)$ $(\pi^+\pi^-)K^+K^-)$ $(\pi^+\pi^-)K^+K^-)$ $(\pi^-)K^-K^-)$ $(\pi^-)K^-K^$	/ Total EVTS 30 al 7 and exclu EVTS GE Error in 364 39 EVTS GE 1420 133 1 331 20 1 331 20 1 4tribution (1+	DOCUMENT ID VANNUCCI ding ω, η, η' DOCUMENT ID CLUDES SCALE FACE ATON PERUZZI DOCUMENT ID PALLIN EATON BRANDELIK BESCH PERUZZI	77 N 77 N 77 N 77 N 77 N 77 N 77 N 77 N	ECN 1.9. MRK1 ECN 1.9.	<u>COMMENT</u> e ⁺ e ⁻ COMMENT e ⁺ e ⁻ e ⁺ e ⁻	Γ ₇₃
13 $\overline{p} \pi^+ \pi^- \pi^0$)/ Γ_{tot} Including $p\overline{p} \pi^+ \pi^ \overline{p} \pi^+ \pi^- \pi^0$)/ Γ_{tot} Including $p\overline{p} \pi^+ \pi^ E (onits 10^{-3})$ $E (onits 10^{-3})$ $E (onits 10^{-3})$ $E (onits 10^{-3})$ $E (onits 10^{-3})$ $E (onits 10^{-3})$ $E (onits 10^{-3})$ $E (onits 10^{-3})$ $E (onits 10^{-3})$ $E (onits 10^{-3})$ $E (onits 10^{-3})$ $E (onits 10^{-3})$	EVTS 30 al ¬ γ and exclu EVTS GE Error in 364 39 EVTS GE 1420 133 133 20 intribution (1+) EVTS 20 21 7	VANNUCCI ding ω, η, η' DOCUMENT ID CIUDES SCAIE FAC EATON PERUZZI DOCUMENT ID PALLIN EATON BRANDELIK BESCH PERUZZI	77 N ttor of 84 N 78 M 87 D 84 N 79C D 78 B	MRK1 ECN 1.9. MRK2 MRK1 ECN DM2	e+ e- <u>СОММЕНТ</u> e+ e- e+ e-	Γ ₇₄
13 $\overline{p} \pi^+ \pi^- \pi^0)/\Gamma_{\text{tot}}$ Including $p \overline{p} \pi^+ \pi^ E \text{ (units 10^{-3})}$ $\pm 0.05 \pm 0.28$ $\pm 0.65 \pm 0.28$ $\pm 0.65 \pm 0.28$ ± 0.10 \overline{p})/ $\Gamma \text{ total}$ $E \text{ (units 10^{-3})}$ $\pm 0.04 \pm 0.30$ $\pm 0.07 \pm 0.15$ ± 0.2 Assuming angular dis \overline{p} / $\Gamma (\mu^+ \mu^-)$ E 1 ± 0.02 Assuming angular dis \overline{p} / $\Gamma (\text{total})$ $E \text{ (units 10^{-3})}$	30 al \[\gamma \cdot \text{and exclusion} \] \[\frac{\varphi \cdot \varphi \text{5}}{\varphi \cdot \text{6E}} \] \[\frac{\varphi \varphi \text{5}}{\varphi \cdot \text{6E}} \] \[\frac{\varphi \varphi \text{5}}{\varphi \cdot \text{6E}} \] \[\frac{\varphi \varphi \text{5}}{\varphi \cdot \text{5}} \] \[\frac{\varphi \varphi \varphi \text{5}}{\varphi \cdot \varphi \varphi \text{5}} \] \[\varphi \varp	VANNUCCI ding ω, η, η' DOCUMENT ID CIUDES SCAIE FAC EATON PERUZZI DOCUMENT ID PALLIN EATON BRANDELIK BESCH PERUZZI	77 N ttor of 84 N 78 M 87 D 84 N 79C D 78 B	MRK1 ECN 1.9. MRK2 MRK1 ECN DM2	e+ e- <u>СОММЕНТ</u> e+ e- e+ e-	Г ₇₄
$\overline{p} \pi^+ \pi^- \pi^0)/\Gamma_{\text{tot}}$ Including $p \overline{p} \pi^+ \pi^ \pm 0.65 \pm 0.28 \pm 0.65 \pm 0.28 \pm 0.6$ $\overline{p})/\Gamma_{\text{total}}$ $\pm 0.11 \text{ OUR AVERA}$ $\pm 0.04 \pm 0.30 \pm 0.015 \pm 0.15 \pm 0.4$ $\pm 0.07 \pm 0.15 \pm 0.2$ Assuming angular dis $\overline{p})/\Gamma_{\text{total}}$ $\pm 0.07 \pm 0.15 \pm 0.2$ Assuming angular dis $\overline{p}/\Gamma_{\text{total}}$ $\pm 0.07 \pm 0.15 \pm 0.2$ ± 0.2 Assuming angular dis $\overline{p}/\Gamma_{\text{total}}$ $\pm 0.07 \pm 0.15 \pm 0.2$ $\pm 0.07 \pm 0.15 \pm 0.2$ $\pm 0.11 \pm 0.02$ Assuming angular dis $\overline{p}/\Gamma_{\text{total}}$ $\pm 0.02 \pm 0.07 \pm 0.07$	al — γ and exclusion and a scalar and a sc	ding ω , η , η' DOCUMENT ID Cludes scale face EATON PERUZZI DOCUMENT ID PALLIN EATON BRANDELIK BESCH PERUZZI	7 D B4 M 79C D 78 B	TECN 1.9. MRK2 MRK1 ECN DM2	<u>COMMENT</u> e ⁺ e ⁻ e ⁺ e ⁻	
Including $\rho \bar{\rho} \pi^+ \pi^ E (omits 10^{-3})$ $E (omits 10^{-3})$ $E 0 OUR AVERA$ $\pm 0.65 \pm 0.28$ ± 0.6 $\bar{\rho})/\Gamma total$ $E (omits 10^{-3})$ $\pm 0.01 \pm 0.01$ $\pm 0.04 \pm 0.30$ $\pm 0.07 \pm 0.15$ ± 0.2 Assuming angular dis $\bar{\rho}$ $\rho / \Gamma (\mu^+ \mu^-)$ $E = 1 \pm 0.02$ Assuming angular dis $\bar{\rho} / \eta / \Gamma total$ $E (omits 10^{-3})$	→ γ and exclue EVTS 10 GE Error in 364 39	COCUMENT ID Cludes scale face EATON PERUZZI COCUMENT ID PALLIN EATON BRANDELIK BESCH PERUZZI	78 M 87 D 88 M 79 D 79 D 78 B	1.9. MRK2 MRK1 ECN	e+ e- e+ e-	
\(\begin{align*} \limits \text{10}^{-3} \right) \\ \pi \text{ OVR AVERA} \\ \pi \text{.0.65} \pi \text{.0.28} \\ \pi \text{.0.65} \pi \text{.0.28} \\ \pi \text{.0.65} \pi \text{.0.28} \\ \pi \text{.0.65} \\ \pi \text{.0.11} \text{ OVR AVERA} \\ \pi \text{.0.11} \text{ OVR AVERA} \\ \pi \text{.0.17} \pi \text{.0.15} \\ \pi \text{.0.07} \pi \text{.0.15} \\ \pi \text{.0.2} \\ \pa \text{.0.28} \\ \pa \text{.0.29} \end{align*} \] \sqrt{\pi} \Big \Gamma \big \pi \big \pi \big \pi \text{.0.16} \\ \pi \text{.0.29} \\ \pa \text{.0.29} \\ \p	EVTS 1	COCUMENT ID Cludes scale face EATON PERUZZI COCUMENT ID PALLIN EATON BRANDELIK BESCH PERUZZI	78 M 87 D 88 M 79 D 79 D 78 B	1.9. MRK2 MRK1 ECN	e+ e- e+ e-	
± 0.9 OUR AVERA $\pm 0.65 \pm 0.28$ $\pm 0.65 \pm 0.28$ ± 0.6 \overline{p})/ Γ total EE (units 10^{-3}) ± 0.11 OUR AVERA $\pm 0.04 \pm 0.30$ $\pm 0.07 \pm 0.15$ ± 0.4 ± 0.5 ± 0.2 ± 0.5 ± 0.2 ± 0.5 ± 0.2 ± 0.5 ± 0.2 Assuming angular dis \overline{p} / Γ ($\mu^+\mu^-$) $\frac{E}{E}$ (units 10^{-3}) Γ (total E (units 10^{-3})	GE Error in 364 39	Cludes scale face EATON PERUZZI DOCUMENT ID PALLIN EATON BRANDELIK BESCH PERUZZI	78 M 87 D 88 M 79 D 79 D 78 B	1.9. MRK2 MRK1 ECN	e+ e- e+ e-	
\pm 0.6 \overline{p})/ Γ total E (units 10^{-3}) \pm 0.11 OUR AVERA \pm 0.04 \pm 0.30 \pm 0.4 \pm 0.5 \pm 0.2 Assuming angular dis \overline{p})/ Γ ($\mu^+\mu^-$) E 1 \pm 0.02 Assuming angular dis \overline{p} η)/ Γ total E (units 10^{-3})	39 EVTS	PERUZZI DOCUMENT ID PALLIN EATON BRANDELIK BESCH PERUZZI	78 M 87 D 84 M 79c D 78 B	MRK1 ECN DM2	e ⁺ e ⁻	Гъс
\overline{p})/ Γ total \overline{p} (units 10 ⁻³) ± 0.11 OUR AVERA $\pm 0.04 \pm 0.30$ $\pm 0.07 \pm 0.15$ ± 0.4 ± 0.5 ± 0.5 ± 0.2 Assuming angular dis \overline{p})/ Γ ($\mu^+\mu^-$) \overline{p} 1 ± 0.02 Assuming angular dis \overline{p} \overline{p} \overline{p} 1 τ	EV75 GE 1420 133 1331 20 14ribution (1+	PALLIN EATON BRANDELIK BESCH PERUZZI	87 D 84 M 79c D 78 B	ECN OM2		Γ
LE (units 10^{-3}) ± 0.11 OUR AVERA $\pm 0.04 \pm 0.30$ $\pm 0.07 \pm 0.15$ ± 0.4 ± 0.5 ± 0.4 ± 0.5 ± 0.2 Assuming angular dis \overline{p})/ $\Gamma(\mu^+\mu^-)$ (E) ± 0.2 Assuming angular dis \overline{p} η)/ Γ total E (units 10^{-3})	1420 133 1331 20 147ibution (1+	PALLIN EATON BRANDELIK BESCH PERUZZI	87 D 84 M 79c D 78 B	 ЭМ2	501414F1/F	F-75
± 0.11 OUR AVERA $\pm 0.04 \pm 0.30$ $\pm 0.07 \pm 0.15$ ± 0.4 ± 0.5 ± 0.2 Assuming angular dis \overline{p} // $\Gamma(\mu^+\mu^-)$ (E) ± 0.02 Assuming angular dis \overline{p} // Γ (total ± 0.02) ± 0.02 ± 0	1420 133 1331 20 147ibution (1+	PALLIN EATON BRANDELIK BESCH PERUZZI	87 D 84 M 79c D 78 B	 ЭМ2		. 15
$\pm 0.04 \pm 0.30$ $\pm 0.07 \pm 0.15$ ± 0.4 ± 0.5 ± 0.2 Assuming angular dis \overline{p})/ $\Gamma(\mu^+\mu^-)$ $\frac{1}{1002}$ Assuming angular dis \overline{p} / η)/ Γ total E (units 10^{-3})	1420 133 133 20 1420	EATON BRANDELIK BESCH PERUZZI	84 M 79c D 78 B		COMMENT	
$\pm 0.07 \pm 0.15$ ± 0.4 ± 0.5 ± 0.2 Assuming angular dis $\overline{\rho}$)/ $\Gamma(\mu^+\mu^-)$ $= 1 \pm 0.02$ Assuming angular dis $\overline{\rho}$ η)/ Γ total $= \frac{1}{2} (units 10^{-3})$	1420 133 1 331 20 1 stribution (1+	EATON BRANDELIK BESCH PERUZZI	84 M 79c D 78 B		e+ e-	
± 0.5 ± 0.2 Assuming angular dis \overline{p})/ $\Gamma(\mu^+\mu^-)$ = 1 = 1 = 1 Assuming angular dis = 1 =	$ 331 20 \text{ (tribution (1+))} $ $ \underbrace{EVTS}_{20} 21 \text{ (tribution (1+))} $	BESCH PERUZZI	78 B		e^+ e^-	
\pm 0.2 Assuming angular dis $\overline{ ho}$)/ $\Gamma(\mu^+\mu^-)$ \simeq 1 ± 0.02 Assuming angular dis $\overline{ ho}$ η)/ Γ total \simeq (units 10^{-3})	331 20 (tribution (1+) <u>EVTS</u> 21 (20)	PERUZZI		ASP		
Assuming angular dis $\overline{ ho}$)/ $\Gamma(\mu^+\mu^-)$ $= 1\pm 0.02$ Assuming angular dis $\overline{ ho}$ π)/ Γ total $= 1 \pm 0.03$	tribution (1+ $\frac{EVTS}{20} = \frac{I}{21}$		/8 IV	IRK1		
\overline{p})/ $\Gamma(\mu^+\mu^-)$ E 1±0.02 Assuming angular dis \overline{p} η)/ Γ total E (units 10 ⁻³)	<u>EVTS</u> 20 21 1	•			-	
$\frac{\partial E}{\partial t}$ 1±0.02 Assuming angular dis $\overline{\rho} \eta) / \Gamma_{ ext{total}}$ (E. (units 10 ⁻³)	20 21					Γ ₇₅ /
1 ± 0.02 Assuming angular dis $\overline{p}\eta\big)/\Gamma_{ ext{total}}$ (E (units 10^{-3})	20 21	OCUMENT ID	T	ECN	COMMENT	' 75/
$(\overline{\rho}\eta)/\Gamma_{\text{total}}$ (E (units 10 ⁻³)		WIIK			e+ e-	
E (units 10^{-3})	tribution (1+	$\cos^2 \theta$).				
E (units 10^{-3})						Γ ₇₆ ,
	EVTS (DOCUMENT ID	Ti	ECN	COMMENT	10,
	GE					
$\pm 0.13 \pm 0.15$ ± 1.2		EATON BRANDELIK			e+ e- e+ e-	
± 0.4		PERUZZI		MRK1		
$\overline{n}\pi^-)/\Gamma_{\text{total}}$						Γ ₇₇ ,
E (units 10 ⁻³)	EVTS (DOCUMENT ID	7	ECN	COMMENT	' 77,
±0.10 OUR AVERA		OCCUMENT ID		ECIV	COMMENT	
		EATON EATON			$e^+ e^- \rightarrow e^+ e^- \rightarrow$	
±0.07±0.16 ±0.7						$p\pi^-$
±1.2	5 {	BESCH	81 B	ONA	$e^+ e^- \rightarrow $	
±0.29 ±0.27		PERUZZI PERUZZI			$e^+ e^- \rightarrow e^+ e^- \rightarrow$	
	204	PERUZZI	70 IV	IKKI	e · e →	
Ē)/Γ _{total}						Γ ₇₈ ,
£ (units 10 ⁻³) ±0.4 OUR AVERA	GE Error in	DOCUMENT I			OMME	
	32 ± 11	HENRARD	87	1.8. S DM:		→ =- =+
$\pm 0.16 \pm 0.40$	194	EATON	84	MRI	K2 e ⁺ e ⁻	→ =-=+
± 0.8	71	PERUZZI	78	MRI	K1 e ⁺ e ⁻	
WEIGHTED A						
1.8 + 0.4 (Error scaled	by 1.8)				
						
\ A	V /.					
1 3	×/,					
- 1 13	×/,					
	∀ //					
	V /.					
	Y /					
	% //					
	3//					
	X/					2
	%		IEND:	DD.	07 5	$\frac{\chi^2}{10}$
						M2 1.8 RK2 1.4
			PERU 7	ZI		RK1 3.2
		[LIIOZ			
		[6.5 $el = 0.03$
			/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	L SATON	HENRARD EATON PERUZZI	W EATON 84 MI

VALUE (units 10⁻⁴) EVTS

32

 40 ± 20

 $\Gamma\!\left(\Xi\Xi\right)/\Gamma_{\text{total}}\;(\text{units }10^{-3})$

 $J/\psi(1S) = J/\psi(3097)$

$\Gamma(n\overline{n})/\Gamma_{\text{total}}$			Γ ₇₉ /Γ	$\Gamma(\gamma\eta\pi\pi)/\Gamma_{total}$				Γ ₉₄ /Γ
0.18±0.09	DOCUMENT ID TECN BESCH 78 BONA	COMMENT e+ e-		VALUE (units 10 ⁻³) 6.1 ±1.0 OUR AVERAGE	DOCUMENT ID		COMMENT	
	DESCRIPTION TO BOTTO		F /F	$5.85 \pm 0.3 \pm 1.05$	²⁴ EDWARDS ²⁴ EDWARDS		$J/\psi \to \eta \pi^+ \pi^-$ $J/\psi \to \eta 2\pi^0$	-
$\Gamma(\Lambda\overline{\Lambda})/\Gamma_{\text{total}}$ VALUE (units 10^{-3}) EVTS	DOCUMENT ID TECN	COMMENT	Γ ₈₀ /Γ	7.8 ±1.2±2.4 24 Broad enhancement at 170		838 CBAL	$J/\psi \rightarrow \eta 2\pi^{\circ}$	
.35±0.14 OUR AVERAGE Erro		COMMENT						- /-
1.38±0.05±0.20 1847 1.58±0.08±0.19 365	PALLIN 87 DM2 EATON 84 MRK2	e+ e- e+ e-		$\Gamma(\gamma\eta(1440) \rightarrow \gamma K\overline{K}\pi)/VALUE$	total DOCUMENT ID	TECN	COMMENT	Γ ₉₅ /Γ
1.58±0.08±0.19 365 2.6 ±1.6 5	BESCH 81 BONA			0.0048±0.0008 OUR AVERAG	GE			
1.1 ±0.2 196	PERUZZI 78 MRK1	e ⁺ e ⁻		0.0063 ± 0.0014 $0.0040 \pm 0.0007 \pm 0.001$	²⁵ WISNIEWSKI ²⁵ EDWARDS	87 MRK3	$J/\psi \rightarrow KK\pi\gamma$ $J/\psi \rightarrow K^+K^-$	_# 0 ~
$-(p\overline{p}\pi^0)/\Gamma_{\text{total}}$			Γ_{81}/Γ	$0.0040 \pm 0.0007 \pm 0.001$	25,26 SCHARRE	80 MRK2		. ,
(ALUE (units 10 ⁻³) EVTS	DOCUMENT ID TECN	COMMENT		25 Includes unknown branchir		$K\overline{K}\pi$.		
13±0.09±0.09 685	EATON 84 MRK2	a+ a-		²⁶ Corrected for spin-zero hyp	pothesis for $\eta(1440)$.			
4 ±0.4	BRANDELIK 79c DASP	$e^+ e^-$		$\Gamma(\gamma ho ho)/\Gamma_{total}$				Γ ₉₆ /Γ
00 ± 0.15	PERUZZI 78 MRK1	e+ e-		VALUE (units 10 ⁻³) CL%		TECN	COMMENT	
$-(\Lambda \overline{\Sigma}^- \pi^+ \text{ (or c.c.)})/\Gamma_{\text{total}}$			Γ_{82}/Γ	4.5 ±0.8 OUR AVERAGE 4.7 ±0.3 ±0.9	27 BALTRUSAIT.	.868 MRK3	$J/\psi \rightarrow 4\pi\gamma$	
ALUE (units 10 ⁻³) EVTS	DOCUMENT ID TEC	N COMMENT		$3.75 \pm 1.05 \pm 1.20$	²⁸ BURKE	82 MRK2	$J/\psi \rightarrow 4\pi\gamma$	
1.06±0.12 OUR AVERAGE	HENRARD 87 DM	12 e ⁺ e [−] → Λ	=+ _	• • We do not use the following the fol				
$0.90 \pm 0.06 \pm 0.16$ 225 ± 15 $0.11 \pm 0.06 \pm 0.20$ 342 ± 18				<0.09 90	²⁹ BISELLO	89B	$J/\psi \rightarrow 4\pi \gamma$	
.53±0.17±0.38 135	EATON 84 MR	$K2 e^+e^- \rightarrow \Lambda$	$\Sigma^+\pi^-$	27.4π mass less than 2.0 GeV 28.4π mass less than 2.0 GeV	/, $2\rho^0$ corrected to 2ρ	by factor of	3.	
$.38 \pm 0.21 \pm 0.35$ 118	EATON 84 MR	$e^+e^- \rightarrow \Lambda$	$\Sigma^- \pi^+$	$^{29}4\pi$ mass in the range 2.0–	25 GeV.			
$\Gamma(\rho K^- \overline{\Lambda})/\Gamma_{\text{total}}$			Γ_{83}/Γ	$\Gamma(\gamma \eta'(958))/\Gamma_{\text{total}}$				Γ ₉₇ /Γ
(ALUE (units 10 ⁻³) EVTS		COMMENT		VALUE (units 10 ⁻³) EVTS	DOCUMENT ID	TECN	COMMENT	
$0.89 \pm 0.07 \pm 0.14$ 307	EATON 84 MRK2	e^+ e^-		4.2±0.4 OUR AVERAGE 4.1±0.3±0.6	вьоом	83 CRAI	$e^+ e^- \rightarrow 3\gamma +$	
$(2(K^+K^-))/\Gamma_{\text{total}}$			Γ_{84}/Γ				hadrons γ	
ALUE (units 10 ⁻⁴)	DOCUMENT ID TECN	COMMENT		$4.6 \pm 0.4 \pm 0.65$ $4.7 \pm 0.3 \pm 0.9$			$e^+ e^- \rightarrow \gamma \eta \pi$ $e^+ e^- \rightarrow \gamma \rho^0$	
±3	VANNUCCI 77 MRK1	e+ e-		2.9 ± 1.1 6	BRANDELIK	79c DASP	$e^+ e^- \rightarrow 3\gamma$,
$(\rho K^{-} \overline{\Sigma}^{0}) / \Gamma_{\text{total}}$			Γ ₈₅ /Γ	• • We do not use the following the fol				
ALUE (units 10 ⁻³) EVTS	DOCUMENT ID TECN	COMMENT		3.8 ± 1.3 3.4 ± 0.7	³⁰ SCHARRE SCHARRE		$e^+e^- \rightarrow \gamma X$ $e^+e^- \rightarrow 2\pi 2\gamma$	v
0.29±0.06±0.05 90	EATON 84 MRK2	e+ e-		2.4±0.7 57			$e^+ e^- \rightarrow 2\gamma \rho$,
$\Gamma(K^+K^-)/\Gamma_{\text{total}}$			Γ ₈₆ /Γ	30 From the inclusive γ decay	y spectrum.			
(ALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID TECN	COMMENT	. 007	$\Gamma(\gamma 2\pi^+ 2\pi^-)/\Gamma_{\text{total}}$				Γ ₉₈ /Ι
.37±0.31 OUR AVERAGE	BALTRUSAIT85D MRK3	-+		VALUE (units 10 ⁻³)	DOCUMENT ID		COMMENT	
$1.39 \pm 0.24 \pm 0.22$ 107 1.2 ± 0.9 6	BRANDELIK 79C DASP			2.8 ±0.5 OUR AVERAGE 4.32±0.14±0.73	Error includes scale fa 31 BISELLO	ctor of 1.9. ! 89B DM2	See the ideogram $J/\psi \rightarrow 4\pi \gamma$	below.
$(\Lambda \overline{\Lambda} \pi^0)/\Gamma_{\text{total}}$			Γ ₈₇ /Γ	$4.32 \pm 0.14 \pm 0.73$ $2.08 \pm 0.13 \pm 0.35$	32 BISELLO	898 DM2	$1/\psi \rightarrow 4\pi\gamma$	
/ALUE (units 10 ⁻³) EVTS	DOCUMENT ID TECN	COMMENT	87/1	$3.05 \pm 0.08 \pm 0.45$ $4.85 \pm 0.45 \pm 1.20$	32 BALTRUSAIT 33 BURKE	86в MRK3 82 MRK2	$J/\psi \rightarrow 4\pi\gamma$	
.22±0.05±0.05 19±4	HENRARD 87 DM2	e ⁺ e ⁻		$\frac{31}{22}$ 4 π mass less than 3.0 GeV		82 MKK2	e'e	
$(\pi^+\pi^-)/\Gamma_{\text{total}}$			Γ ₈₈ /Γ	$^{32}4\pi$ mass less than 2.0 GeV	√.			
(" ")/ total (ALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID TECN	COMMENT	'88/'	$33 4\pi$ mass less than 2.5 GeV				
.47±0.23 OUR AVERAGE				WEIGHTED AVER	RAGE or scaled by 1.9)			
58 ± 0.20 ± 0.15 84 1.0 ± 0.5 5	BALTRUSAIT85D MRK3 BRANDELIK 78B DASP			3.5 (2.10				
.6 ±1.6	VANNUCCI 77 MRK1							
$\Gamma(K_S^0 K_L^0)/\Gamma_{\text{total}}$			Γ ₈₉ /Γ					
/ALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID TECN	COMMENT	. 150					
1.01±0.16±0.09 74	BALTRUSAIT850 MRK3							
$(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{total}$			Γ ₉₀ /Γ					
/ALUE (units 10 ⁻³) <u>CL</u> %	DOCUMENT ID TECN	COMMENT	. 90/ .					
<0.15 90		$e^+e^- \rightarrow \Lambda X$			1			
$(K_S^0 K_S^0)/\Gamma_{\text{total}}$			Γ ₉₁ /Γ		1			•
(NSNS)/ total (ALUE (units 10 ⁻⁴) CL%	DOCUMENT ID TECN	COMMENT	. >1/.		<u>_</u>	DICELLO	000 5110	<u>x</u> 2
<0.052 90	22 BALTRUSAIT85c MRK3			+		BISELLO	89B DM2 89B DM2	4.2 3.7
²² Forbidden by <i>CP</i> .				🂥	<u> </u>	BALTRUSAI BURKE	T 86B MRK3	0.3
	RADIATIVE DECAYS					POUVE	82 MRK2	10.8
—— I			Г ₉₂ /Г	LJ.≫	. \	(Conf	fidence Level =	
		COMMENT	1 92/1	0 2	4 6	8 1	0	
$(\gamma \eta_c(1S))/\Gamma_{total}$	DOCUMENT ID TECN			_		- "		
$(\gamma \eta_c(1S))/\Gamma_{\text{total}}$ ALUE EVTS .0127±0.0036	GAISER 86 CBAL	$J/\psi \rightarrow \gamma X$						
$(\gamma \eta_c(1S))/\Gamma_{\text{total}}$ ALUE EVTS .0127±0.0036 • • We do not use the following	GAISER 86 CBAL g data for averages, fits, limits,	, etc. • • •		$\Gamma\left(\gamma 2\pi^{+} 2\pi^{-}\right)/\Gamma_{t}$	otal (units 10 ⁻³)			
$(\gamma \eta_c(1S))/\Gamma_{\text{total}}$ ALUE EVTS .0127±0.0036 • • We do not use the following the	GAISER 86 CBAL	, etc. • • •		` ′	otal (units 10 ⁻³)			Γ ₉₉ /Ι
$(\gamma \eta_c(1S))/\Gamma_{\text{total}}$ ALUE EVTS .0127±0.0036 •• We do not use the following een 16 $(\gamma \pi^+ \pi^- 2\pi^0)/\Gamma_{\text{total}}$	GAISER 86 CBAL ig data for averages, fits, limits, BALTRUSAIT84 MRK3	, etc. \bullet \bullet \bullet $J/\psi \rightarrow 2\phi\gamma$	Γ ₉₃ /Γ	$\Gamma(\gamma 2\pi^+ 2\pi^-)/\Gamma_{t_1}$ $\Gamma(\gamma f_4(2050))/\Gamma_{total}$ VALUE (units 10^{-3})	Otal (units 10 ⁻³)	<u>TECN</u>	COMMENT	Γ ₉₉ /Ι
$\Gamma(\gamma \eta_c(1S))/\Gamma_{\text{total}}$ VALUE 0.0127 \pm 0.0036 • • • We do not use the following	GAISER 86 CBAL ig data for averages, fits, limits, BALTRUSAIT84 MRK3	, etc. \bullet \bullet \bullet $J/\psi \rightarrow 2\phi\gamma$	Г ₉₃ /Г	$\Gamma(\gamma f_4(2050))/\Gamma_{\text{total}}$	<u>DOCUMENT ID</u> 34 BALTRUSAIT	87 MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^-$	

 $J/\psi(1S) = J/\psi(3097)$

		09/1
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT 1.59±0.33 OUR AVERAGE	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48 Estimated by us from various fits. 49 Includes unknown branching fraction to a^0e^0 .	
$\Gamma(\gamma\eta(1490) \rightarrow \gamma\rho^0\rho^0)/\Gamma_{\text{total}}$ Γ_{101}/Γ	- (0)	₁₀ /「
VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT 1.36 ± 0.38 35,36 BISELLO 89B DM2 $J/\psi \rightarrow 4\pi\gamma$	VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT	
35 Estimated by us from various fits.	0.039±0.013 OUR AVERAGE 0.036±0.011±0.007 BLOOM 83 CBAL e ⁺ e ⁻	
36 Includes unknown branching fraction to $ ho^0$ $ ho^0$.	0.073 ± 0.047 10 BRANDELIK 79C DASP e^+e^-	
$\Gamma(\gamma f_2(1270))/\Gamma_{\text{total}}$ Γ_{102}/Γ		11/「
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN CHG COMMENT 1.38±0.14 OUR AVERAGE	VALUE CL% DOCUMENT ID TECN COMMENT < 0.006	
1.33 \pm 0.05 \pm 0.20	⁵⁰ Using B($f_1(1285) \to K\overline{K}\pi$) = 0.12.	
1.36 \pm 0.09 \pm 0.23 3/ BALTRUSAIT87 MRK3 $J/\psi \rightarrow \gamma \pi^+ \pi^-$ 1.48 \pm 0.25 \pm 0.30 178 EDWARDS 82B CBAL $e^+ e^- \rightarrow 2\pi^0 \gamma$	$\Gamma(\gamma \rho \overline{\rho} \pi^+ \pi^-)/\Gamma_{\text{total}}$	12/F
2.0 \pm 0.7 35 ALEXANDER 78 PLUT 0 e^+e^- 1.2 \pm 0.6 30 38 BRANDELIK 78B DASP e^+e^-	VALUE (units 10 ⁻³) CL% DOCUMENT ID TECN COMMENT	
$\pi^+\pi^-\gamma$	<0.79 90 EATON 84 MRK2 e^+e^-	
³⁷ Estimated using B($f_2(1270) \rightarrow \pi \pi$)=0.843 \pm 0.012. The errors do not contain the uncertainty in the $f_2(1270)$ decay.	$\Gamma(\gamma\gamma)/\Gamma_{total}$	₁₃ /Γ
38 Restated by us to take account of spread of E1, M2, E3 transitions.	VALUE (units 10 ⁻³) CL% DOCUMENT ID TECN COMMENT	
$\Gamma(\gamma f_2(1720) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$ Γ_{103}/Γ	<0.5 90 BARTEL 77 CNTR e ⁺ e ⁻	
ALUE (units 10 ⁻⁴) CL% DOCUMENT ID TECN COMMENT	* * * * * * * * * * * * * * * * * * * *	₁₄ /Γ
9.7 \pm 1.2 OUR AVERAGE 9.2 \pm 1.4 \pm 1.4 39 AUGUSTIN 88 DM2 $J/\psi \to \gamma K^+ K^-$	<u>VALUE (units 10⁻³) CL% DOCUMENT ID TECN COMMENT</u> <0.13 90 HENRARD 87 DM2 e ⁺ e [−]	
10.4 ± 1.2 ± 1.6 39 AUGUSTIN 88 DM2 $J/\psi \rightarrow \gamma K_S^0 K_S^0$		/ F
9.6 \pm 1.2 \pm 1.8 39 BALTRUSAIT87 MRK3 $J/\psi \rightarrow \gamma K^{+}K^{-}$ •• • We do not use the following data for averages, fits, limits, etc. • • •	$\Gamma(3\gamma)/\Gamma_{ ext{total}}$ Γ_{11} $\Gamma_{12}U$ V U U U U U U U U U U	₁₅ /Γ
< 0.8 90 40 BISELLO 89B $J/\psi \rightarrow 4\pi\gamma$	<0.055 90 PARTRIDGE 80 CBAL e ⁺ e ⁻	
1.6 \pm 0.4 \pm 0.3 41 BALTRUSAIT87 MRK3 $J/\psi \rightarrow \gamma \pi^+ \pi^-$ 3.8 \pm 1.6 42 EDWARDS 820 CBAL $e^+e^- \rightarrow \eta \eta \gamma$	$\Gamma(\gamma X(2200))/\Gamma_{\text{total}}$ Γ_{11}	₁₆ /Γ
³⁹ Includes unknown branching fraction to K^+K^- or $K_S^0 K_S^0$. We have multiplied K^+K^-	VALUE (units 10 ⁻⁴) DOCUMENT ID TECN COMMENT	.0/ -
measurement by 2, and K_{S}^{0} K_{S}^{0} by 4 to obtain $K\overline{K}$ result.	• • • We do not use the following data for averages, fits, limits, etc. • • •	
40 includes unknown branching fraction to ρ^0 ρ^0 . 41 includes unknown branching fraction to π^+ π^- .	1.5 S1 AUGUSTIN 88 DM2 $J/\psi \rightarrow \gamma K_S^0 K_S^0$	
42 Includes unknown branching fraction to $\eta\eta$.	51 Includes unknown branching fraction to κ_{S}^{0} κ_{S}^{0}	
$\Gamma(\gamma\eta)/\Gamma_{total}$		17/F
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT	<u>VALUE (units 10⁻⁵)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> • • • We do not use the following data for averages, fits, limits, etc. • • •	
0.86 ± 0.08 OUR AVERAGE $0.88 \pm 0.08 \pm 0.11$ BLOOM 83 CBAL e^+e^-	< 2.3 95 S2 AUGUSTIN 88 DM2 $J/\psi \rightarrow \gamma K^+ K^-$	
0.82 ± 0.10 BRANDELIK 79c DASP e^+e^- 0.3 ± 0.4 21 BARTEL 77 CNTR e^+e^-	< 1.6 95 ⁵² AUGUSTIN 88 DM2 $J/\psi ightarrow \gamma \kappa_{S}^{0} \kappa_{S}^{0}$	
	12.4 $^{+6.4}_{-5.2}$ ± 2.8 23 52 BALTRUSAIT860 MRK3 $J/\psi \to \gamma K_S^0 K_S^0$	
$\lceil (\gamma f_2'(1525)) / \Gamma_{ ext{total}} brace$ (ALUE (units 10^{-3}) CL% EVTS DOCUMENT ID TECN COMMENT	$8.4^{+3.4}_{-2.8} \pm 1.6$ 93 ⁵² BALTRUSAIT86D MRK3 $J/\psi \rightarrow \gamma K^{+} K^{-}$	
	52 Includes unknown branching fraction to K^{+} K^{-} or K^{0}_{S} K^{0}_{S} .	
0.63±0.10 OUR AVERAGE 0.70±0.17±0.11 43 AUGUSTIN 88 DM2 J/ψ →		
0.70 \pm 0.17 \pm 0.11	$J/\psi(1S)$ REFERENCES	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$J/\psi(1S)$ REFERENCES ALEXANDER 89 NP B320 45 + Bonvicini, Drell, Frey, Luth (LBL, MICH, SLAC))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 +Bonvicini, Drell, Frey, Luth (LBL, MICH, SLAC; AUGUSTIN 89 NP B320 1 +Cosme BISELLO 89B PR D39 701 Busetto+ (DM2 Collab.)	.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 + Bonvicini, Drell, Frey, Luth (LBL, MICH, SLAC AUGUSTIN 89 NP B320 1 + Cosme (DM2 Collab.) BISELLO 898 PR D39 701 Busetto+ (DM2 Collab.) AUGUSTIN 88 PRL 60 2238 + Calcaterra+ (DM2 Collab.) COFFMAN 88 PR D38 2695 + Dubois, Eigen, Hauser+ (Mark III Collab.)	.) .) .)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 +Cosme (DM2 Collab.) BISELLO 898 PR D39 701 Busetto+ (DM2 Collab.) COFFMAN 88 PR L60 2238 +Caketera+ (DM2 Collab.) COFFMAN 88 PR D38 2495 +Dubois, Eigen, Hauser+ FALVARD 88 PR D38 2706 +Ajaltouni+ AUGUSTIN 87 ZPHY C36 369 +Cosme+ (LALO, CLER, FRAS, PADO)	.) .) .) .) .)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 +Cosme (DM2 Collab.) BISELLO 898 PR D39 701 AUGUSTIN 89 PRL 60 2238 +Calcatera+ (DM2 Collab.) COFFMAN 88 PR D38 2695 +Ajatouni+ (CLER, FRAS, LALO, PADO AUGUSTIN 87 ZPHY C36 369 BAGLIN 87 NP B286 592 +GALTRUSAIT87 PR D35 2077 BECKER 87 PRL 59 186 +Blatrosatis, Coffman, Dubolois- (Mark III Collab.) BECKER 87 PRL 59 186 +Blatrosatis, Coffman, Dubolois- (Mark III Collab.)	.) .) .) .) .) .)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 +Cosme (DM2 Collab.) BISELLO 898 PR D39 701 BUSECTO+ (DM2 Collab.) COFFMAN 88 PR D38 2695 FALVARD 88 PR D38 2706 AUGUSTIN 87 ZPHY C36 369 BAGLIN 87 NP B266 592 BALTRUSAIT87 PR D35 2077 BECKER 87 PR L59 186 BISELLO 87 PL B192 239 HENRARD 87 PL B192 239 HENRARD 87 NP B266 592 BALTRUSAIT87 PR D35 2077 BECKER 87 PR L59 186 BISELLO 87 PL B192 239 HENRARD 87 NP B296 670 HAJIDOURI, Baldfini+ (PADO, CLER, FRAS, LALO, PADO) HENRARD 87 NP B292 670 HAJIDOURI, Baldfini+ (PADO, CLER, FRAS, LALO, PADO)	.) .) .) .) .) .) .) .)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 +Cosme (DM2 Collab.) BISELLO 898 PR D39 701 BUSECTO+ (DM2 Collab.) COFFMAN 88 PR D38 2695 FALVARD 88 PR D38 2706 AUGUSTIN 87 ZPHY C36 369 BAGLIN 87 NP B286 592 BALTRUSAIT87 PR D35 2077 BECKER 87 PR L59 186 BISELLO 87 PL B192 239 HENRARD 87 NP B296 670 PALLIN 87 NP B292 670 PALLIN	.) .) .) .) .) .) .) .) .)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 +Cosme (DM2 Collab.) BISELLO 898 PR D39 701 BUSECTO+ (DM2 Collab.) COFFMAN 88 PR D38 2706 AUGUSTIN 87 PR D38 2706 AUGUSTIN 87 ZPHY C36 369 BAGLIN 87 NP B286 592 BALTRUSAIT87 PR D35 2077 BECKER 87 PR L59 186 BISELLO 87 PL B192 239 HENRARD 87 NP B296 670 PALLIN 87 NP B292 670 PALTIN	.; .; .; .; .; .; .; .; .; .;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 +Cosme (DM2 Collab.) BISELLO 89B PR D39 701 BUSECTO+ (DM2 Collab.) AUGUSTIN 87 PR D38 2706 AUGUSTIN 87 ZPHY C36 369 BAGLIN 87 NP B286 592 BALTRUSAIT87 PR D35 2077 BECKER 87 PR L59 186 BISELLO 87 PL B192 239 HENRARD 87 NP B286 592 BALTRUSAIT87 PR D35 2077 PALLIN 87 NP B296 670 PALLIN 87 NP B292 670 P	-} -} -} -} -} -} -} -} -} -} -} -} -} -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 AUGUSTIN 89 NP B320 1 AUGUSTIN 89 PR D39 701 AUGUSTIN 88 PR L08 2695 FALVARD 88 PR D38 2695 FALVARD 88 PR D38 2706 BAGLIN 87 NP B326 592 BALTRISAIT85 PR L05 2077 BECKER 87 PRL 59 186 BISELLO 87 PR B32 297 HENRARD 87 NP B292 657 WISNEWSKI 67 CALT-68-1446 AUGUSTIN 87 NP B292 653 WISNEWSKI 67 CALT-68-1446 AUGUSTIN 88 PR D38 1222 BALTRUSAIT 86B PR D33 1222 BALTRUSAIT 86B PR D35 107 BISELLO 86B PR L1917 294 BALTRUSAIT 86B PR D35 107 BISELLO 86B PR D37 11 BALTRUSAIT 86B PR D37 11 BALTRUSAIT 85C PRL 55 1723 BALTRUSAIT 65C PRL 55 1723 BALTRU	· · · · · · · · · · · · · · · · · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 AUGUSTIN 89 NP B320 1 AUGUSTIN 89 NP B320 1 AUGUSTIN 88 PR L03 299 FALVARD 88 PR D38 2695 FALVARD 88 PR D38 2706 BAGLIN 87 NP B326 599 BALTRISAIT.85 PR L05 2077 BECKER 87 PRL 59 186 BISELLO 87 PR B32 297 HENDERS BECKER 87 PRL 59 186 BISELLO 87 PR B32 299 HAITENSAIT.87 NP B326 592 BASTRISAIT.86 BP RD 33 1222 BASTRISAIT.86 BP RD 33 1222 BASTRISAIT.86 BP RD 33 1222 BASTRISAIT.86 BP RD 35 107 BISELLO 86B PL B179 294 BASTRISAIT.86 BP RD 35 107 BISELLO 86B PR L05 107 BISELLO S6B PR L05 107 BISELO S6B PR L0	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 AUGUSTIN 89 NP B320 1 AUGUSTIN 89 PR D39 701 Busetto+ (DM2 Collab.) AUGUSTIN 88 PR L03 298 FALVARD 88 PR D38 2695 FALVARD 88 PR D38 2706 AUGUSTIN 87 ZPHY C36 369 BAGLIN 87 NP B286 592 BALTRISAIT87 PR D35 2077 BECKER 87 PRL 59 186 BISELLO 87 PRL 59 186 BISELLO 87 PRL 59 267 BISELLO 87 PRL 59 186 AUGUSTIN 87 NP B292 653 WISNEWSKI 87 CALT-68-1446 AUGUSTIN 88 PR D38 1222 BALTRUSAIT86B PR D33 1222 BALTRUSAIT86B PR D35 1225 BALTRUSAIT86B PR D35 1225 BALTRUSAIT86B PR D35 1225 BALTRUSAIT86B PR D35 1225 BALTRUSAIT86B PR D35 1225 BALTRUSAIT86B PR D37 11 BALTRUSAIT86B PR D37 122 BALTRUSAIT86B PR D38 1225 BALTRUSAIT86B PR D37 11 BALTRUSAIT86B PR D38 1225 BALTRUSAIT86B PR D37 11 BALTRUSAIT86B PR D38 1225 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 1225 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 121 BALTRUSAIT86B PR D38 64 BALTRUSAIT88 PR D39 804 BA	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 AUGUSTIN 89 NP B320 1 AUGUSTIN 89 PR D39 701 BISELLO 898 PR D39 701 BUSTELO 898 PR D39 701 BUSTELO 898 PR D39 701 BUSTELO 898 PR D38 2695 FALVARD 88 PR D38 2695 FALVARD 88 PR D38 2695 BAGLIN 87 NP B286 592 BALTRISAIT 87 PR D35 2077 BECKER 87 PRL 93 186 BISELLO 87 PRL 93 186 BISELLO 87 PRL 93 186 BUSTELO 88 PR D33 1222 BALTRUSAIT 86 BPR D33 1222 BALTRUSAIT 86 BPR D33 1222 BALTRUSAIT 86 BPR D34 111 BUSTELO 86B PRL 93 129 BUSTELO 86B PRL 93 129 BUSTELO 86B PRL 93 129 BUSTELO 86B PRL 93 129 BUSTELO 86B PRL 93 129 BUSTELO 86B PRL 93 122 BUSTELO 86B PRL 93 182 BUSTELO 86B PRL 93 122 BUSTELO 86B PRL 93 122 BUSTELO 86B PRL 93 122 BUSTELO 86B PRL 93 122 BUSTELO 86B PRL 93 122 BUSTEL	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 BISELLO 89B PR D39 701 AUGUSTIN 89 PR L50 2338 COFFMAN 88 PR D38 2695 FAIVARD 88 PR D38 2706 AUGUSTIN 87 PR D38 2706 AUGUSTIN 87 PR D38 2706 AUGUSTIN 87 PR D35 2077 BALTRUSAIT87 PR D35 2077 BECKER 87 PR L59 186 BISELLO 87 PL B192 239 HENRARD 87 NP B296 670 PALLIN 87 NP B296 670 PA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 BISELLO 89B PR D39 701 AUGUSTIN 89 PR L50 2338 COFFMAN 88 PR D38 2695 FAIVARD 88 PR D38 2706 AUGUSTIN 87 PR D38 2706 AUGUSTIN 87 PR D38 2706 AUGUSTIN 87 PR D38 2706 AUGUSTIN 87 PR D35 2077 BECKER 87 PR D35 2077 BECKER 87 PR L59 186 BISELLO 87 PL B192 239 HENRARD 87 NP B292 670 PALLIN	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 BISELLO 898 PR D39 701 AUGUSTIN 89 PR 160 2238 COFFMAN 88 PR 160 2238 COFFMAN 88 PR 160 2238 COFFMAN 87 PR 160 278 AUGUSTIN 87 PR 160 278 BALTRUSAIT. 87 PR 160 278 BALTRUSAIT. 87 PR 160 278 BALTRUSAIT. 87 PR 160 278 BECKER 87 PR 160 278 BELLO 87 PL B192 239 HENRARD 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B292 670 PAL	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 BISELLO 898 PR D39 701 AUGUSTIN 89 PR 103 2738 COFFMAN 88 PR 103 2738 COFFMAN 88 PR 103 2706 AUGUSTIN 87 PR 103 2706 AUGUSTIN 87 PR 103 2706 AUGUSTIN 87 PR 103 2706 AUGUSTIN 87 PR 103 2707 BALTRUSAIT. 87 PR 103 207 BECKER 87 PR 103 207 BELLO 87 PL B192 239 HENRARD 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B296 670 PALLIN 87 NP B292 670 PALL	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ALEXANDER 89 NP B320 45 AUGUSTIN 89 NP B320 1 AUGUSTIN 89 PR D39 701 AUGUSTIN 89 PR D39 701 AUGUSTIN 89 PR D39 2695 FALVARD 88 PR D38 2706 AUGUSTIN 87 ZPHY C36 369 BAGLIN 87 NP B296 592 BALTRIXSAIT87 PR D35 2077 BECKER 87 PRL 99 186 BISELLO 87 PRL 99 186 BISELLO 87 PRL 99 186 BISELLO 87 PRL 99 186 AUGUSTIN 87 NP B292 653 WISNEWSKI 87 CALT-68-1446 AUGUSTIN 87 NP B292 653 WISNEWSKI 87 CALT-68-1446 AUGUSTIN 88 PR D38 1222 BALTRIXSAIT86 BPR D38 1222 BALTRIXSAIT86 BPR D38 1222 BALTRIXSAIT86 BPR D38 1225 BALTRIXSAIT86 BPR D38 1225 BALTRIXSAIT86 BPR D38 121 BALTRIXSAIT86 BPR D38 1225 BALTRIXSAIT86 BPR D38 121 BALTRIXSAIT86 BPR D38 121 BALTRIXSAIT86 BPR D38 121 BALTRIXSAIT86 BPR D38 121 BALTRIXSAIT86 BPR D38 121 BALTRIXSAIT86 BPR D38 121 BALTRIXSAIT86 BPR D38 121 BALTRIXSAIT86 BPR D38 122 BALTRIXSAIT86 BPR D38 122 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 122 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 123 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BALTRIXSAIT86 BPR D38 124 BBR D38 124 BBR D38 124 BBR D38 124 BBR D38 124 BBR D38 124 BBR D38 124 BBR D38 124 BBR D38 124 BBR D38 124	

$J/\psi(1S) = J/\psi(3097), \chi_{c0}(1P)$

BRANDELIK SCHARRE Also ALEXANDER BESCH BRANDELIK PERUZZI BARTEL BUMESTER FELDMAN VANNUCCI BARTEL BRAUNSCH JEAN-MARIE BRAUNSCH	77 77 76 76 76	SLAC-PUB-2321 LBL-9502 PL 72B 493 PL 78B 347 PL 74B 292 PR D17 2901 PL 66B 489 PL 72B 135 PL 33C 285	+ (AACH, DESY, HAMB, MPIM, TOKY) (SLAC, LBL) Abrams, Alam, Blocker, Boyarski+ (SLAC, LBL) + Criegee+ (DESY, HAMB, SIEG, WUPP) + Eisermann, Kowalski, Eyss+ (BONN, DESY, MANZ) + Cords+ (AACH, DESY, HAMB, MPIM, TOKY) + Piccolo, Alam, Boyarski, Goldhaber+ (DESY, HABD, SIEG, WUPP) + Criegee+ + Peri (DESY, HAMB, MPIM, TOKY) + Abrams, Alam, Boyarski+ (DESY, HAMB, MPIM, SIEG, WUPP) (SLAC, LBL) + Duinker, Olsson, Steffen, Heintze+ (DESY, HEID) Braunschweigh+ (AACH, DESY, HAMB, MPIM+) + Abrams, Boyarski, Breidenbach+ (SLAC, LBL) (SLAC, LBL) (SLAC, LBL)
BALDINI BEMPORAD BOYARSKI DASP ESPOSITO FORD LIBERMAN WIIK	75 75 75 75 75 75B 75 75	Stanford Symp. 113 PRL 34 1357 PL 56B 491 LNC 14 73 PRL 34 604	Baldini-Celio, Bozzo, Capon+ (FRAS, ROMA) (PISA, FRAS) +Breidenbach, Bulos, Feldman+ (SLAC, LBL,) IPC Braunschweig+ (AACH, DESY, MPIM, TOKY) +Bartoli, Bisello+ (FRAS, NAPL, PADO, ROMA) +Beron, Hilger, Hofstadter+ (SLAC, PENN) (STAN) (DESY)
		0.7115	D DELATED DADEDO

OTHER RELATED PAPERS -

	0	EN MEEM EN ENS
BAGLIN 85	SLAC Summer Inst.	609 (LAPP, CERN, GENO, LYON, OSLO, ROMA+)
BARATE 83	PL 121B 449	+Bareyre, Bonamy+ (SACL, LOIC, SHMP, IND)
KIRK 79	PRL 42 619	+Goodman+ (FNAL, HARV, ILL, OXF, TUFT)
BIDDICK 77	PRL 38 1324	+Burnett+ (UCSD, UMD, PAVI, PRIN, SLAC, STAN)
CORDEN 77	PL 68B 96	+Dowell+ (BIRM, CERN, MPIM, NEUC, EPOL+)
YAMADA 77	Hamburg Conf. 69	(DESY, TOKY)
ANTIPOV 76	Tbilisi Conf. N8	+Bessubov, Budanov, Bushnin, Denisov+ (SERP)
BUSSER 76	NP B113 189	+Blumenfeld, Banner+ (CERN, COLU, ROCK, SACL)
SNYDER 76	PRL 36 1415	+Hom, Lederman, Appel+ (COLU, FNAL, STON)
ANDREWS 75	PRL 34 231	+Harvey, Lobkowicz, May+ (ROCH, CORN)
AUBERT 75	NP B89 1	+Becker, Biggs, Burger, Glenn+ (MIT, BNL)
BACCI 75B	LNC 12 269	+ Penco Stella Baldini-Colint (DOMA EDAS)
BALDINI 75B	PL 58B 475	Baldini-Celio, Capon, DelFabbro+ (FRAS, ROMA) +Boyer, Faissler, Garelick, Gettner+ (NEAS)
BLANAR 75	PRL 35 346	+Boyer, Faissler, Garelick, Gettner+ (NEAS)
BRAUNSCH 75	PL 53B 491	Braunschweig+ (AACH, HAMB, MUNI, TOKY)
BUSSER 75	PL 56B 482	+Blumenfeld, Banner+ (CERN, COLU, ROCK, SACL)
CAMÉRINI 75	PRL 35 483	+Learned, Prepost, Ash, Anderson+ (WISC, SLAC)
DAKIN 75	PL 56B 405	+Kreisler, Bolon, Heile+ (MASA, MIT, SLAC)
DASP 75B	PL 57B 297	Braunschweig+ (AACH, DESY, MPIM, TOKY)
GITTELMAN 75	PRL 35 1616	+Hanson, Larson, Loh+ (CORN)
GRECO 75	PL 56B 367	+Pancheri-Srivastava, Srivastava (FRAS)
HEINTZE 75	Stanford Symp. 97	(HEID)
JACKSON 75	NIM 128 13	+Scharre (LBL)
KNAPP 75	PRL 34 1040	+Lee, Bronstein+ (COLU, HAWA, CORN, ILL, FNAL)
KNAPP 758	PRL 34 1044	+Lee, Bronstein+ (COLU, HAWA, CORN, ILL, FNAL)
MARTIN 75B	PRL 34 288	+Bolon, Dakin, Feldman+ (MIT, MASA, SLAC)
SIMPSON 75	PRL 35 699	+Beron, Ford, Hilger, Hofstadter+ (STAN, PENN)
YENNIE 75	PRL 34 239	(CORN)
ABRAMS 74	PRL 33 1453	+Briggs, Augustin, Boyarski+ (LBL, SLAC)
ASH 74	LNC 11 705	+Zorn, Bartoli+ (FRAS, UMD, NAPL, PADO, ROMA)
AUBERT 74	PRL 33 1404	+Becker, Biggs, Burger, Chen, Everhart (MIT, BNL)
AUGUSTIN 74	PRL 33 1406	+Boyarski, Abrams, Briggs+ (SLAC, LBL)
BACCI 74	PRL 33 1408	+Bartoli, Barbarino, Barbiellini+ (FRAS)
Also 74B	PRL 33 1649	Bacci
BALDINI 74	LNC 11 711	Baldini-Celio, Bacci+ (FRAS, ROMA)
BARBIELLINI 74	LNC 11 718	+Bemporad+ (FRAS, NAPL, PISA, ROMA)
BRAUNSCH 74	PL 53B 393	Braunschweig+ (AACH, HAMB, MUNI, TOKY)
CHRISTENSON 70	PRL 25 1523	+Hicks, Lederman+ (COLU, BNL, CERN)

$\chi_{c0}(1P)$ or $\chi_{c0}(3415)$ [was $\chi(3415)$]

$$I^{G}(J^{PC}) = 0^{+}(0^{++})$$

Observed in the radiative decay $\psi(25) \to \chi_{C0}(1P)\gamma$. Therefore C=+. The observed decay into $\pi^+\pi^-$ or K^+K^- implies G=+, $J^P=0^+$, 2^+ , ... The angular distribution is consistent with J=0. J^P abnormal excluded by $\pi^+\pi^-$ and K^+K^- decays. $J^P=0^+$ preferred (FELDMAN 77).

		$\chi_{c0}(1P)$ MAS		
E (MeV)	EVTS	DOCUMENT ID		

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
3415.1± 1.0 OUR	AVERAGE				
3417.8 ± 0.4 ± 4		¹ GAISER	86	CBAL	$\psi(2S) \rightarrow \gamma X$
3414.8± 1.1	:				$e^+e^- \rightarrow hadrons$
3422.0 ± 10.0		² BARTEL	78B	CNTR	$e^+ e^- \rightarrow J/\psi 2\gamma$
$3416.0 \pm 3 \pm 4$		² TANENBAUM	78	MRK1	e+ e-
3415.0 ± 9.0		² BIDDICK	77	CNTR	$e^+ e^- \rightarrow \gamma X$
• • • We do not us	e the followin	g data for averages	, fits	, limits,	etc. • • •
3407.0 ± 8.0	2	4 WIIK	75	DASP	$e^+e^- \rightarrow J/\psi 2\gamma$

- ¹ Using mass of $\psi(25) = 3686.0$ MeV.
- 2 Mass value shifted by us by amount appropriate for $\psi(2S)$ mass = 3686 MeV and $J/\psi(1S)$ mass = 3097 MeV.
- 3 Systematic error added linearly by us.
- ⁴Only two events; this mass apparently never published.

$\chi_{c0}(1P)$ DECAY MODES

	Mode	Fraction (Γ _i /Γ)	Confidence level
	На	adronic decays	
Γ_1	$2(\pi^{+}\pi^{-})$ $\pi^{+}\pi^{-}K^{+}K^{-}$ $\rho^{0}\pi^{+}\pi^{-}$	(3.7±0.7) %	
Γ_2	$\pi^+\pi^-K^+K^-$	(3.0±0.7) %	
Γ_3	$ ho^0\pi^+\pi^-$	(1.6 ± 0.5) %	
ГΔ	$3(\pi^{+}\pi^{-})$	(1.5 ± 0.5) %	
Γ_5	$K^{+}\overline{K}^{*}(892)^{0}\pi^{-} + c.c.$	$(1.2\pm0.4)\%$	
Γ6	$\pi^{+}\pi^{-}$	$(7.5\pm2.1)\times10^{-3}$	
Γ ₇	K+ K-	$(7.1\pm2.4)\times10^{-3}$	
Γ ₈	$\pi^+\pi^-p\overline{p}$	$(5.0\pm2.0)\times10^{-3}$	
ΓĢ	$\rho \overline{p}$	< 9.0 × 10 ⁻⁴	90%
	Ra	diative decays	
Γ_{10}	$\gamma J/\psi(1S)$	$(6.6\pm1.8)\times10^{-3}$	
	77	< 1.5 × 10 ⁻³	90%

$\chi_{c0}(1P)$ PARTIAL WIDTHS

$\Gamma(\gamma\gamma)$						Γ ₁₁
VALUE (KeV)	CL%	DOCUMENT ID		TECN	COMMENT	
4.0 ± 2.8		LEE	85			
• • • We do not use the	following o	data for averages	s, fits	, limits,	etc. • • •	
<17	95	AIHARA	88D	TPC	$e^+e^-\toe^+$	e- X

$\chi_{c0}(1P)$ BRANCHING RATIOS

$\frac{\Gamma(2(\pi^+\pi^-))/\Gamma_{\text{total}}}{\frac{VALUE}{0.037\pm0.007}}$		DOCUMENT ID			$\frac{COMMENT}{\psi(25) \rightarrow \gamma \chi_{C0}}$	Γ ₁ /Γ
$\Gamma(\pi^+\pi^-K^+K^-)/\Gamma_{to}$ VALUE	tal	DOCUMENT ID		<u>TECN</u>	COMMENT	Γ ₂ /Γ
0.030 ± 0.007	5	TANENBAUM	78	MRK1	$\psi(2S) \rightarrow \gamma \chi_{C0}$	
$\Gamma(ho^0\pi^+\pi^-)/\Gamma_{ ext{total}}$		DOCUMENT ID		TECN	COMMENT	Γ_3/Γ
0.016±0.005					$\psi(2S) \rightarrow \gamma \chi_{CO}$	
$\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$		DOCUMENT ID		<u>TECN</u>	COMMENT	Γ ₄ /Γ
0.015±0.005	3	TANENBAUM	78	MRK1	$\psi(2S)\to~\gamma\chi_{C0}$	
$\Gamma(K^{+}\overline{K}^{*}(892)^{0}\pi^{-} + VALUE$	c.c.)/Γ _{tc}	otal DOCUMENT ID		TECN	COMMENT	Γ_5/Γ
0.012±0.004		TANENBALIM	78	MRK1	$\psi(2S) \rightarrow \gamma \chi_{CO}$	
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$		TANKE IN BANGIN		WINK 2	ψ(23) ···· γχου	Γ ₆ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	
75±21 OUR AVERAGE 70±30 80±30	5 5	BRANDELIK TANENBAUM	79в 78	DASP MRK1	$\begin{array}{ll} \psi(25) \to & \gamma \chi_{c0} \\ \psi(25) \to & \gamma \chi_{c0} \end{array}$	
$\Gamma(K^+K^-)/\Gamma_{\text{total}}$						Γ_7/Γ
VALUE (units 10 ⁻⁴) 71±24 OUR AVERAGE		DOCUMENT ID			COMMENT	
60 ± 30	5	BRANDELIK	79B	DASP	$\psi(25) \rightarrow \gamma \chi_{c0}$	
90 ± 40	5	TANENBAUM	78	MRK1	$\psi(2S) \rightarrow \gamma \chi_{CO}$	
$\Gamma(\pi^+\pi^-p\overline{p})/\Gamma_{\text{total}}$		DOCUMENT ID		TECN	COMMENT	Γ_8/Γ
0.005±0.002		TANENRALIM	78	MRK1	$\psi(2S) \rightarrow \gamma \chi_{CO}$	
		171142142710111	,,,	10111111	ψ(23) γχευ	
$\Gamma(p\overline{p})/\Gamma_{\text{total}}$						Γ_9/Γ
	CL%	DOCUMENT ID				
****		BRANDELIK	79B	DASP	$\psi(2S)\to~\gamma\chi_{c0}$	
5 Calculated using B(ψ (tainty in the ψ (25) de		$c_{CO}(1P)) = 0.09$	94; th	ne errors	do not contain the	e uncer-

RADIATIVE DECAYS ----

$\Gamma(\gamma J/\psi(1S))/\Gamma_{total}$					Γ_{10}/Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
66± 18 OUR AVERAGE					
60± 18	GAISER	86	CBAL	$\psi(25) \rightarrow \gamma$	XcO
320 ± 210	6 BRANDELIK	79B	DASP	$\psi(25) \rightarrow \gamma$	/Xc0
150 ± 100	⁶ BARTEL	78B	CNTR	$\psi(2S) \rightarrow \gamma$	(Xcn
210 ± 210	⁶ TANENBAUM	78	MRK1	$\psi(25) \rightarrow \gamma$	Xc0

$\chi_{c0}(1P), \chi_{c1}(1P)$

$\Gamma(\gamma\gamma)/\Gamma_{total}$						Γ_{11}/Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
<15	90	⁶ YAMADA	77	DASP	$e^+ e^- \rightarrow 3 \gamma$	
6 Calculated using B(tainty in the $\psi(2S)$		$\gamma \chi_{C0}(1P)) = 0.0$	94; t	he errors	do not contain	the uncer-

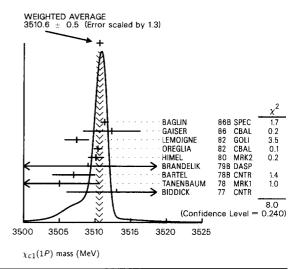
$\chi_{c0}(1P)$ REFERENCES

AIHARA	88D	PRL 60 2355	+Alston-Garniost+	(TPC Collab.)
GAISER	86	PR D34 711	+Bloom, Bulos, Godfrey+ (Ci	ystai Ball Collab.)
LEE	85	SLAC 282		(SLAC)
BRANDELIK	79B	NP B160 426	+Cords+ (AACH, DESY, HAM	B, MPIM, TOKY)
HIMEL	79	SLAC-223 Thesis		(SLAC)
Also	82	Private Comm.	Trilling	(LBL, UCB)
BARTEL	78B	PL 79B 492	+Dittmann, Duinker, Olsson, O'Neill+	(DESY, HEID)
TANENBAUM	78	PR D17 1731	+Alam, Boyarski+	(SLAC, LBL)
Also	82	Private Comm.	Trilling	(LBL, UCB)
BIDDICK	77	PRL 38 1324	+Burnett+ (UCSD, UMD, PAVI, PR	IN, SLAC, STAN)
FELDMAN	77	PL 33C 285	+Peri	(LBL, SLAC)
YAMADA	77	Hamburg Conf. 69		(DESY, TOKY)
WIIK	75	Stanford Symp. 69		(DESY)
		0.7115	- DEL ATED DADEDS	

OTHER RELATED PAPERS

OREGLIA	82	PR D25 2259	+Partridge+	(SLAC, CIT, HARV	, PRIN, STAN
BRANDELIK	79C	ZPHY C1 233	+	(AACH, DESY, HAMB,	MPIM, TOKY
KIRK	79	PRL 42 619	+Goodman+	(FNAL, HARV, ILI	L. OXF, TUFT
FELDMAN	77	PL 33C 285	+Perl		(LBL, SLAC)
FELDMAN	75B	PRL 35 821	+Jean-Marie, Sac	doulet, Vannucci+	(LBL, SLAC)
Also	75C	PRL 35 1189	Feldman		
Erratum.					
TANENBALIM	75	PRI 35 1323	+Whitaker Ahra	ms+	(LBL, SLAC)

$\chi_{c1}(1P)$ [was $\chi(3510)$ or $\chi_{c1}(3510)$


$$I^{G}(J^{PC}) = 0^{+}(1^{++})$$

Observed in the radiative sequential decay $\psi(2S) \to \chi_{c1}(1P)\gamma$, $\chi_{c1}(1P) \to J/\psi(1S)\gamma$. Therefore, C=+. The lack of decays into $\pi^+\pi^-$ or K^+K^- is suggestive of J^P =abnormal. The decays into 4π and 6π imply G=+, thus I=0. J=0,2 excluded by angular distribution in the $J/\psi(15)\gamma$ decay. $J^P=1^+$ preferred (FELDMAN 77, OREGLIA 82).

$\chi_{c1}(1P)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
3510.6± 0.5 OUR	AVERAGE	Error includes scale	facto	or of 1.3	. See the ideogram below.
3511.3± 0.4±0.4	30	BAGLIN	868	SPEC	$\bar{p} p \rightarrow e^+ e^-$
3512.3 ± 0.3 ± 4.0		¹ GAISER	86	CBAL	$\psi(2S) \rightarrow \gamma X$
3507.4 ± 1.7	91	² LEMOIGNE	82	GOLI	190 GeV π^- Be $\rightarrow \gamma 2\mu$
3510.4± 0.6		OREGLIA	82	CBAL	$e^+ e^- \rightarrow J/\psi 2\gamma$
3510.1 ± 1.1	254	³ HIMEL	80	MRK2	$e^+ e^- \rightarrow J/\psi 2\gamma$
3509.0 ± 11.0	21	BRANDELIK	79B	DASP	$e^+ e^- \rightarrow J/\psi 2\gamma$
3507.0 ± 3.0		³ BARTEL	78B	CNTR	$e^+ e^- \rightarrow J/\psi 2\gamma$
3505.0 ± 4 ± 4		3,4 TANENBAUM	78	MRK1	e+ e-
3513.0 ± 7.0	367	³ BIDDICK	77	CNTR	$\psi(25) \rightarrow \gamma X$
• • • We do not u	se the follow	ing data for averages	, fits	, limits,	etc. • • •
3510.0 ± 20.0		BARTEL	768	CNTR	$e^+e^- \rightarrow J/\psi 2\gamma$
3500 ±10	40	TANENBAUM	75	MRK1	Hadrons γ
3507.0 ± 7.0	7	WIIK	75	DASP	$e^+ e^- \rightarrow J/\psi 2\gamma$
Using mass of a					

 $^{^2} J/\psi(15)$ mass constrained to 3097 MeV.

$\chi_{c1}(1P)$ WIDTH

VALUE (MeV)	<u>CL%</u>	DOCUMENT II)	TECN	COMMENT	
<1.3	95	BAGLIN	86в	SPEC	$\overline{p}p \rightarrow e^+e^-$	
• • • We do not	use the following	g data for avera	ges, fits	, limits,	etc. • • •	
< 3.8	90	GAISER	86	CBAL	$\psi(25) \rightarrow \gamma X$	

$\chi_{c1}(1P)$ DECAY MODES

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	Confidence level
		Hadronic decays	
Γ_1	$3(\pi^+\pi^-)$	(2.2±0.8) %	
Γ_2	$2(\pi^{+}\pi^{-})$	(1.6±0.5) %	
Γ_3^-	$2(\pi^{+}\pi^{-})$ $\pi^{+}\pi^{-}K^{+}K^{-}$	$(9 \pm 4) \times 10^{-3}$	
Г₄	$\rho^0 \pi^+ \pi^-$	$(3.9\pm3.5)\times10^{-3}$	
Γ_5	$K^+ \overline{K}^* (892)^0 \pi^- + \text{c.c.}$	$(3.2\pm2.1)\times10^{-3}$	
Γ_6	$\pi^+\pi^-\rho\overline{\rho}$	$(1.4\pm0.9)\times10^{-3}$	
	$p \overline{p}$	(5.4-120)×10 ⁵	
ſ ₈	$\pi^{+}\pi^{-} + K^{+}K^{-}$	< 1.7 × 10 ⁻³	90%
	$\pi^{+} \pi^{-}$		
Γ_{10}	K+K-		
		Radiative decays	
Γ_{11}	$\gamma J/\psi(1S)$	$(27.3 \pm 1.6) \%$	
	77	$< 1.5 \times 10^{-3}$	90%

$\chi_{c1}(1P)$ PARTIAL WIDTHS

$\Gamma(\rho \overline{\rho})$				17
VALUE (eV)	DOCUMENT ID	TECN	COMMENT	
\bullet \bullet \bullet We do not use the following	data for averages, f	its, limits	, etc. • • •	
$57 + \frac{13}{-11} \pm 11$	BAGLIN 86	6B SPEC	$\overline{p} p \rightarrow e^+ e^-$	

$\chi_{c1}(1P)$ BRANCHING RATIOS — HADRONIC DECAYS —

 Γ_1/Γ

 $\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$

. (=\ /)/ · total				1,
VALUE	DOCUMENT ID			
0.022 ± 0.008	⁵ TANENBAUM 78	MRK1	$\psi(25) \to \ \gamma \chi_{C1}$	
$\Gamma(2(\pi^+\pi^-))/\Gamma_{\text{total}}$				Γ_2/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
0.016 ± 0.005	⁵ TANENBAUM 78	MRK1	$\psi(25) \to ~\gamma \chi_{C1}$	
$\Gamma(\pi^+\pi^-K^+K^-)/\Gamma_{total}$				Γ_3/Γ
VALUE (units 10-4)	DOCUMENT ID	TECN	COMMENT	
90 ± 40	⁵ TANENBAUM 78	MRK1	$\psi(2S) \rightarrow \gamma \chi_{c1}$	
$\Gamma(ho^0\pi^+\pi^-)/\Gamma_{total}$				Γ4/Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT	
39±35	5 TANENBAUM 78	MRK1	$\psi(2S) \rightarrow \gamma \chi_{C1}$	

³ Mass value shifted by us by amount appropriate for $\psi(25)$ mass = 3686 MeV and $J/\psi(15)$ mass = 3097 MeV.

⁴ From a simultaneous fit to radiative and hadronic decay channels.

$\Gamma(K^+\overline{K}^*(892)^0\pi^-$	+ c.c.),	$/\Gamma_{total}$				Γ_5/Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	
32±21		⁵ TANENBAUM	78	MRK1	$\psi(2S) \rightarrow \gamma \chi_{C1}$	
$\Gamma(\pi^+\pi^-\rho\overline{\rho})/\Gamma_{\text{tot}}$	al					Γ_6/Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID			COMMENT	
14±9		⁵ TANENBAUM	78	MRK1	$\psi(2S) \rightarrow \gamma \chi_{c1}$	
$\Gamma(p\overline{p})/\Gamma_{\text{total}}$						Γ_7/Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
> 0.54	95				$\overline{p}p \rightarrow \gamma e^+ e^-$	
<12.0	90	⁵ BRANDELIK	79 ₈	DASP	$\psi(25) \rightarrow \gamma \chi_{c1}$	
$[\Gamma(\pi^+\pi^-) + \Gamma(F)]$	(+K-)]/	Γ _{total}			(F ₉ +	Γ ₁₀)/Γ
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
<21		⁵ FELDMAN	77	MRK1	$\psi(25) \rightarrow \gamma \chi_{C1}$	
• • • We do not use	the follow	ing data for averages	s, fits	s, limits,	etc. • • •	
<38	90	⁵ BRANDELIK	79 B	DASP	$\psi(25) \rightarrow \gamma \chi_{C1}$	
⁵ Estimated using uncertainty in the	$B(\psi(2S) - \psi(2S))$ de	$ ightarrow \gamma \chi_{C1}(1P)) = 0$ cay.	0.087	. The	errors do not cor	itain the

$\Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}}$						Γ_{11}/Γ
VALUE	EVT5	DOCUMENT ID		TEÇN	COMMENT	
0.273 ± 0.016 OUR AVE	RAGE					
0.284 ± 0.021		GAISER	86	CBAL	$\psi(25) \rightarrow \gamma X$	
0.274 ± 0.046	943	⁶ OREGLIA	82	CBAL	$\psi(25) \rightarrow \gamma \chi_{C1}$	
0.28 ± 0.07		⁶ HIMEL	80	MRK2	$\psi(25) \rightarrow \gamma \chi_{c1}$	
0.19 ±0.05		⁶ BRANDELIK	79B	DASP	$\psi(2S) \rightarrow \gamma \chi_{c1}$	
0.29 ±0.05		⁶ BARTEL	78B	CNTR	$\psi(2S) \rightarrow \gamma \chi_{c1}$	
0.28 ±0.09		6 TANENBAUM	78	MRK1	$\psi(25) \rightarrow \gamma \chi_{c1}$	
• • • We do not use the	e following					
0.57 ±0.17		⁶ BIDDICK	77	CNTR	$\psi(25) \rightarrow \gamma X$	
$\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$						Γ_{12}/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.0015	90	6 YAMADA	77	DASP	$e^+e^- \rightarrow 3\gamma$	
⁶ Estimated using B(τ uncertainty in the ψ ($\psi(2S) \rightarrow (2S)$ decay	$\gamma \chi_{C1}(1P)) = 0$.087	. The	errors do not cor	ntain the

$\chi_{c1}(1P)$ REFERENCES

BAGLIN	86B	PL B172 455	(LAPP, CERN, GENO, LYON, OSLO, ROMA+)
GAISER	86	PR D34 711	+Bloom, Bulos, Godfrey+ (Crystal Ball Collab.)
LEMOIGNE	82	PL 113B 509	+Barate, Astbury+ (SACL, LOIC, SHMP, IND)
OREGLIA	82	PR D25 2259	+Partridge+ (SLAC, CIT, HARV, PRIN, STAN)
Also	82B	Private Comm.	Oreglia (SEAC, CIT, TIARY, FRAN, STAN)
HIMEL	80	PRL 44 920	+Abrams, Alam, Blocker+ (LBL, SLAC)
Also	82	Private Comm.	Trilling (LBL, UCB)
BRANDELIK	79B	NP B160 426	+Cords+ (AACH, DESY, HAMB, MPIM, TOKY)
BARTEL	78B	PL 79B 492	+Dittmann, Duinker, Olsson, O'Neill+ (DESY, HEID)
TANENBAUM	78	PR D17 1731	+Alam, Boyarski+ (SLAC, LBL)
Also	82	Private Comm.	Trilling (LBL, UCB)
BIDDICK	77	PRL 38 1324	+Burnett+ (UCSD, UMD, PAVI, PRIN, SLAC, STAN)
FELDMAN	77	PL 33C 285	+Perl (LBL, SLAC)
YAMADA	77	Hamburg Conf. 69	(DĖSY, TOKY)
BARTEL	76B	Tbilisi Conf. N75	+Duinker, Olsson, Heintze+ (DESY, HEID)
"ANENBAUM	75	PRL 35 1323	+Whitaker, Abrams+ (LBL, SLAC)
WIIK	75	Stanford Symp. 69	(DESY)

- OTHER RELATED PAPERS -

BARATE BRANDELIK KIRK BRAUNSCH FELDMAN HEINTZE	79	PL 121B 449 ZPHY C1 233 PRL 42 619 PL 57B 407 Stanford Symp. 39 Stanford Symp. 97	+ Goodman + Braunschweig +	ACH, DESY, HAMI (FNAL, HARV, (AACH, DES		(Y) (T) (Y) (V) (V)
HEINTZE SIMPSON	75 75	Stanford Symp. 97 PRL 35 699	+Beron, Ford, Hilger, H	lofstadter+	(HEI (STAN, PEN	

 $\chi_{c2}(1P)$ or $\chi_{c2}(3555)$ [was $\chi(3555)$]

$$I^{G}(J^{PC}) = 0^{+}(2^{++})$$

Observed in the radiative decay $\psi(2S) \to \chi_{c2}(1P)\gamma$. Therefore C=+. The observed decay into 4π and 6π imply G=+, thus I=0. J=0 is excluded by the angular distribution in the hadronic decays. J^P abnormal excluded by $\pi^+\pi^-$ and K^+K^- decays. $J^P=2^+$ preferred (FELDMAN 77, OREGLIA 82).

$\chi_{c2}(1P)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
3556.3 ± 0.4 OUR A	VERAGE			
3556.9± 0.4±0.5	50	BAGLIN	86B SPEC	$pp \rightarrow e^+ e^-$
3557.8 ± 0.2 ± 4		¹ GAISER	86 CBAL	$\psi(25) \rightarrow \gamma X$
3553.4 ± 2.2	66	² LEMOIGNE	82 GOLI	190 GeV π^- Be $\rightarrow \gamma 2\mu$
3555.9 ± 0.7		³ OREGLIA	82 CBAL	$e^+ e^- \rightarrow J/\psi 2\gamma$
3557 ± 1.5	69	⁴ HIMEL	80 MRK2	$e^+ e^- \rightarrow J/\psi 2\gamma$
3551.0 ± 11.0	15	BRANDELIK	79B DASP	$e^+e^- \rightarrow J/\psi 2\gamma$
3553.0 ± 4.0		⁴ BARTEL	78B CNTR	$e^+ e^- \rightarrow J/\psi 2\gamma$
3553.0 ± 4 ±4		4,5 TANENBAUM	78 MRK1	e+ e-
3563.0 ± 7.0	360	⁴ BIDDICK	77 CNTR	$e^+e^- \rightarrow \gamma X$
• • • We do not use	the followi	ng data for averages	, fits, limits,	etc. • • •
3550.0 ± 10.0		TRILLING	76 MRK1	$e^+ e^- \rightarrow \text{hadrons } \gamma$
3543.0 ± 10.0	4	WHITAKER	76 MRK1	$e^+ e^- \rightarrow J/\psi 2\gamma$

¹ Using mass of $\psi(2S) = 3686.0$ MeV.

Mode

- $^2J/\psi(1S)$ mass constrained to 3097 MeV.
- 3 Assuming $\psi(2S)$ mass = 3686 MeV and $J/\psi(1S)$ mass = 3097 MeV.
- Assuming $\psi(S)$ mass = 3686 MeV and $J/\psi(1S)$ mass = 3686 MeV and $J/\psi(1S)$ mass = 3097 MeV.
- ⁵ From a simultaneous fit to radiative and hadronic decay channels.

$\chi_{c2}(1P)$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
2.6 + 1.2 OUR AVE	RAGE			
$2.6^{+1.4}_{-1.0}$	50	BAGLIN	86B SPEC	$\overline{p} p \rightarrow e^+ e^-$
$2.8^{+2.1}_{-2.0}$		⁶ GAISER	86 CBAL	$\psi(2S) \rightarrow \gamma X$
4				

⁶ Errors correspond to 90% confidence level; authors give only width range.

$\chi_{c2}(1P)$ DECAY MODES

Fraction (F./F)

Confidence level

	Mode	Praction (1;/1) Confidence level
		Hadronic decays
Γ_1	$2(\pi^{+}\pi^{-})$ $\pi^{+}\pi^{-}K^{+}K^{-}$	(2.2±0.5) %
Γ_2	$\pi^{+}\pi^{-}K^{+}K^{-}$	(1.9±0.5) %
Γ3	$3(\pi^{+}\pi^{-})$ $\rho^{0}\pi^{+}\pi^{-}$ $K^{+}\overline{K}^{*}(892)^{0}\pi^{-} + c.c.$	(1.2±0.8) %
Γ_4	$\rho^0 \pi^+ \pi^-$	$(7 \pm 4) \times 10^{-3}$
Γ_5	$K^{+}\overline{K}^{*}(892)^{0}\pi^{-} + \text{c.c.}$	$(4.8\pm2.8)\times10^{-3}$
Γ_6	$\pi^+\pi^-p\overline{p}$	$(3.3\pm1.3)\times10^{-3}$
	$\pi^+\pi^-$	$(1.9\pm1.0)\times10^{-3}$
Γ8	K+K-	$(1.5\pm1.1)\times10^{-3}$
Γ9	$ ho \overline{ ho}$	$(9.0^{+4.5}_{-3.2}) \times 10^{-5}$
Γ_{10}	$J/\psi(1S)\pi^{+}\pi^{-}\pi^{0}$	< 1.5 % 90%
		Radiative decays
_	4.1.1.4.4	

Г11	$\gamma J/\psi(1S)$	$(13.5 \pm 1.1) \%$
Γ12		$(1.1\pm0.6)\times10^{-3}$

$\chi_{c2}(1P)$ PARTIAL WIDTHS

$\Gamma(p\overline{p})$						Г9
VALUE (eV)		DOCUMENT ID		TECN	COMMENT	
$233^{+51}_{-45} \pm 48$		BAGLIN	86в	SPEC	$\overline{p} \rho o e^+ e^-$	
$\Gamma(\gamma\gamma)$						Γ ₁₂
VALUE (KeV)	CL%	DOCUMENT ID		TECN	COMMENT	
2.8 ± 2.0		LEE	85			
• • • We do not use the	following	data for averag	ges, fits	, limits,	etc. • • •	
<4.2	95	AIHARA	880	TPC	$e^+ e^- \rightarrow e^+ e^-$	×

 $\chi_{c2}(1P)$, $\eta_{c}(2S) = \eta_{c}(3590)$

$\chi_{c2}(1P)$ BRANCHING RATIOS

	HADRONIC DEC	AYS —		
$\Gamma(2(\pi^+\pi^-))/\Gamma_{total}$				Γ_1/Γ
VALUE			COMMENT	
0.022 ± 0.005	⁷ TANENBAUM	78 MRK1	$\psi(25) \rightarrow \gamma \chi_{C2}$	
$\Gamma(\pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}$				Γ_2/Γ
VALUE	DOCUMENT ID		COMMENT	
0.019 ± 0.005	⁷ TANENBAUM	78 MRK1	$\psi(25) \rightarrow \gamma \chi_{C2}$	
$\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$				Γ_3/Γ
VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT	
0.012 ± 0.008	⁷ TANENBAUM	78 MRK1	$\psi(2S) \rightarrow \gamma \chi_{C2}$	
$\Gamma(ho^0\pi^+\pi^-)/\Gamma_{ m total}$				Γ_4/Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID		COMMENT	
68±40	⁷ TANENBAUM	78 MRK1	$\psi(2S) \rightarrow \gamma \chi_{C2}$	
$\Gamma(K^{+}\overline{K}^{*}(892)^{0}\pi^{-} + \text{c.c.})$)/Γ _{total}			Γ_5/Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT	
48±28	7 TANENBAUM	78 MRK1	$\psi(2S) \to ~\gamma \chi_{C2}$	
$\Gamma(\pi^+\pi^-p\overline{p})/\Gamma_{\text{total}}$				Γ_6/Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT	. 07 .
33±13	7 TANENBAUM		$\psi(25) \rightarrow \gamma \chi_{C2}$	
$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$				Γ_7/Γ
VALUE (units 10 ⁻³) EVTS	DOCUMENT ID	TECN	COMMENT	• //•
1.9±1.0 4		79c DASP	$\psi(25) \rightarrow \gamma \chi_{C2}$	
$[r(+-), r(\nu+\nu-)]$	<i>(</i> c			r \/r
$\left[\Gamma(\pi^+\pi^-) + \Gamma(K^+K^-)\right]$				Γ ₈)/Γ
VALUE (units 10 ⁻⁴) 24±10	DOCUMENT ID 7 TANENBAUM 7			
	771142140710111		ψ(2 3) · /λε2	- (-
$\Gamma(K^+K^-)/\Gamma_{\text{total}}$				Γ ₈ /Γ
VALUE (units 10 ⁻³) EVTS 1.5+1.1 2	7 BRANDELIK	TECN	COMMENT	
1.5±1.1 2	BRAINDELIN	rac DASF	$\psi(2S) \rightarrow \gamma \chi_{C2}$	
$\Gamma(p\overline{p})/\Gamma_{\text{total}}$				۲۹/۲
1/4/1/5 (:-:4-10-4)	DOCUMENT ID	TECN	COMMENT	
VALUE (units 10 ⁻⁴) CL%	DOCOMENT ID		COMMENT	
$0.90^{+0.41}_{-0.26}\pm0.19$	BAGLIN 8	36B SPEC	$\overline{\rho} \rho \rightarrow e^+ e^-$	
$0.90^{+0.41}_{-0.26} \pm 0.19$ • • • We do not use the follow	BAGLIN 8	B6B SPEC fits, limits,	$\overline{\rho} \rho \rightarrow e^+ e^-$ etc. • • •	
$0.90^{+0.41}_{-0.26}\pm0.19$	BAGLIN 8	36B SPEC	$\overline{\rho} \rho \rightarrow e^+ e^-$ etc. • •	
$0.90^{+0.41}_{-0.26} \pm 0.19$ • • • We do not use the follow	BAGLIN 8 wing data for averages, 7 BRANDELIK 7	B6B SPEC fits, limits,	$\overline{\rho} \rho \rightarrow e^+ e^-$ etc. • • •	Γ ₁₀ /Γ
$\begin{array}{c} 0.90^{+0.41}_{-0.26}\pm0.19 \\ \bullet \bullet \bullet \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	BAGLIN 6 ving data for averages, 7 BRANDELIK 7 cal DOCUMENT ID	B6B SPEC fits, limits, 79B DASP	$pp \rightarrow e^+e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$	
$0.90^{+0.41}_{-0.26} \pm 0.19$ • • • We do not use the follow <9.5 90 $\Gamma (J/\psi(15) \pi^{+} \pi^{-} \pi^{0})/\Gamma_{tot}$	BAGLIN 6 ving data for averages, 7 BRANDELIK 7 al <u>DOCUMENT ID</u>	66B SPEC fits, limits, 79B DASP	$\overline{p} p \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 cal DOCUMENT ID BARATE 6	B6B SPEC fits, limits, 79B DASP	$\overline{p} \rho \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ COMMENT 190 GeV π^- Be - $2\pi^2 \mu$	
$\begin{array}{ccc} 0.90^{+0.41}_{-0.26}\pm0.19 & & & \\ \bullet \bullet \bullet & \text{We do not use the folion} \\ < 9.5 & 90 & & \\ \Gamma(J/\psi(15)\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{tot}} \\ & & & \\ \times 0.015 & 90 & & \\ \Gamma_{i}\Gamma_{f}/\Gamma^{2}_{\text{total}} \text{ in } \rho \overline{\rho} \rightarrow \chi_{c2}(15) & & \\ \end{array}$	BAGLIN 8 wing data for averages, 7 BRANDELIK 3 al $\frac{DOCUMENT\ ID}{BARATE}$ 8 $(1P) \rightarrow \gamma\gamma$	36B SPEC fits, limits, 79B DASP TECN 31 SPEC	$\overline{p} \rho \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\underline{comment}$ 190 GeV π^- Be - $2\pi^2 \mu$	
$\begin{array}{ccc} 0.90^{+0.41}_{-0.26}\pm0.19 & & & \\ \bullet \bullet \bullet & \text{We do not use the folion} \\ < 9.5 & 90 & & \\ \Gamma(J/\psi(1S)\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{tot}} \\ \times & & & \\ \times & & & \\ \times & & & \\ C.015 & 90 & & \\ \Gamma_{I}\Gamma_{f}/\Gamma^{2}_{\text{total in }} & \text{in } p\overline{p} \rightarrow \chi_{C2}(\underline{\nu}_{XUE}^{2}) \\ \times & & & \\ \times & & & \\ \times & & & \\ \times & & & \\ \times & & & \\ \times & & & \\ \times & & & \\ \end{array}$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 al DOCUMENT ID BARATE 8 (1P) -> \(\gamma \gamma \gamma \) DOCUMENT ID DOCUMENT ID	B6B SPEC fits, limits, r9B DASP TECN TECN	$p\rho \rightarrow e^+e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{2\pi 2\mu}$ $\frac{\Gamma_9\Gamma}{COMMENT}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BAGLIN 8 wing data for averages, 7 BRANDELIK 3 al $\frac{DOCUMENT\ ID}{BARATE}$ 8 BAGLIN 8 BAGLIN 8	B66B SPEC fits, limits, r98 DASP TECN SPEC TECN SPEC	$\overline{p} \rho \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{2\pi 2\mu}$ $\overline{p} \rho \rightarrow \gamma \gamma$	₁₂ /Γ ²
0.90 $^+$ 0.41 $^+$ 0.19 • • • We do not use the follow <9.5 90 $\Gamma(J/\psi(1S)\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}}$ $\times 0.015$ 90 $\Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 \text{ in } p\overline{p} \rightarrow \chi_{\text{c2}}$ $\times 0.015$ 90 $VALUE (units 10^{-7}) \qquad EVTS$ $0.99 ^+ 0.46 \qquad \qquad 6$ 7 Estimated using $B(\psi(2S) ^-$	BAGLIN 8 wing data for averages, 7 BRANDELIK 3 al $\frac{DOCUMENT\ ID}{BARATE}$ 8 BAGLIN 8 BAGLIN 8	B66B SPEC fits, limits, r98 DASP TECN SPEC TECN SPEC	$\overline{p} \rho \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{2\pi 2\mu}$ $\overline{p} \rho \rightarrow \gamma \gamma$	₁₂ /Γ ²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BARATE 8 $DOCUMENT ID$ BARATE 8 $DOCUMENT ID$ BARATE 8 $DOCUMENT ID$ 8 BAGLIN 8 $T \times T \times T \times T \times T \times T \times T \times T \times T \times T \times$	B66B SPEC fits, limits, r98 DASP TECN SPEC TECN SPEC	$\overline{p} \rho \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{2\pi 2\mu}$ $\overline{p} \rho \rightarrow \gamma \gamma$	₁₂ /Γ ²
$\begin{array}{ccc} 0.90^{+0.41}_{-0.26}\pm0.19 \\ \bullet \bullet \bullet & \text{We do not use the folion} \\ <9.5 & 90 \\ \Gamma(J/\psi(1S)\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}} \\ \times & \text{CL}_{\pm}^{\chi} \\ <0.015 & 90 \\ \Gamma_{i}\Gamma_{f}/\Gamma_{\text{total}}^{2} & \text{in } p\overline{p} \rightarrow \chi_{C2}(\frac{\chi_{C2}}{2}) \\ \times & \text{MULUE (units } 10^{-7}) & \text{EVTS} \\ 0.99^{+0.46}_{-0.35} & 6 \\ 7 & \text{Estimated using B}(\psi(2S)_{-13}) \\ \times & \text{Total in the } \psi(2S) & \text{decay.} \\ 8 & \text{Assuming isotropic } \chi_{C2}(1F) \end{array}$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BARATE 8 $DOCUMENT ID$ BARATE 8 $DOCUMENT ID$ BARATE 8 $DOCUMENT ID$ 8 BAGLIN 8 $VX_{C2}(1P) = 0.078$	36B SPEC fits, limits, 179B DASP TECN 31 SPEC TECN 37B SPEC	$\overline{p} \rho \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{2\pi 2\mu}$ $\overline{p} \rho \rightarrow \gamma \gamma$	₁₂ /Γ ²
$\begin{array}{cccc} 0.90^{+}0.41_{-}0.19 \\ \bullet & \bullet & \bullet & \text{We do not use the follow} \\ <9.5 & 90 \\ \Gamma & (J/\psi(15)\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{tot}} \\ \times & & \text{CL}_{\underline{X}} \\ <0.015 & 90 \\ \hline & \Gamma_{i}\Gamma_{f}/\Gamma_{\text{total}}^{2} & \text{in } p\overline{p} \rightarrow \chi_{c2}(1000000000000000000000000000000000000$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BARATE 8 $\frac{DOCUMENT\ ID}{BARATE}$ 8 BAGLIN 8 BAGLIN 8 $\frac{1}{2}$ \frac	36B SPEC fits, limits, 179B DASP TECN 31 SPEC TECN 37B SPEC	$\overline{p} \rho \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{2\pi 2\mu}$ $\overline{p} \rho \rightarrow \gamma \gamma$	in 12/Γ²
$\begin{array}{cccc} 0.90^{+0.41}_{-0.26}\pm0.19 & & & & & & & \\ \bullet & \bullet & \bullet & \text{We do not use the folion} \\ <9.5 & & 90 & & & & \\ \Gamma(J/\psi(1S)\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}} & & & & \\ \chi_{ALUE} & & & & & \\ <0.015 & & 90 & & & \\ \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & & & & & \\ \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & & & & & \\ \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & & & & & \\ \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & & & & \\ \chi_{ALUE (units 10^{-7})} & & & & \\ \chi_{ALUE (units 10^{-7})} & & & & \\ \chi_{ALUE (units 10^{-7})} & & & & \\ \chi_{ALUE (units 10^{-7})} & & & & \\ \chi_{ALUE (units 10^{-7})} & & & & \\ \chi_{ALUE (units 10^{-7})} & & & & \\ \chi_{ALUE (units 10^{-7})} & & & & \\ \chi_{ALUE (units 10^{-7})} & & & & \\ \chi_{ALUE (units 10^{-7})} & & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE (units 10^{-7})} & & \chi_{C2} & \\ \chi_{ALUE$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BRANDELIK 7 BARATE 8 $(1P) \rightarrow \gamma \gamma$ $\frac{DOCUMENT\ ID}{8}$ 8 BAGLIN 8 $\rightarrow \gamma \chi_{C2}(1P)) = 0.078$ $?) \rightarrow \gamma \gamma \text{ distribution.}$ RADIATIVE DEC.	AYS	$\overline{p} \rho \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{2\pi 2\mu}$ To $\frac{COMMENT}{\overline{p} \rho \rightarrow \gamma \gamma}$ do not contain the	₁₂ /Γ ²
$\begin{array}{c} 0.90^{+0.41}_{-0.26}\pm0.19 \\ \bullet \bullet \bullet \text{ We do not use the folion} \\ <9.5 & 90 \\ \hline \Gamma(J/\psi(15)\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}} \\ <0.015 & 90 \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2}(10.015) \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2}(10.015) \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2}(10.015) \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2}(10.015) \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{EVTS} \\ \hline 0.99^{+0.46}_{-0.35} & \text{ecs.} \\ \hline 0.99^{+0.46}_{-0.35} & \text{ecs.} \\ \hline 0.88 \text{ssuming isotropic } \chi_{c2}(11.015) \\ \hline \Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}} \\ \hline \Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}} \\ \hline \Gamma_{\text{total}}^2 & \text{evt.} \\ \hline 0.135\pm0.011 \text{ OUR AVERAGE} \\ \hline \end{array}$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BRANDELIK 7 BARATE 8 $(1P) \rightarrow \gamma \gamma$ $\frac{DOCUMENT\ ID}{8}$ 8 BAGLIN 8 $\rightarrow \gamma \chi_{C2}(1P)) = 0.078$ P) $\rightarrow \gamma \gamma$ distribution. $\Rightarrow RADIATIVE\ DECLED$	AYS ASA SPEC TECN TECN TECN TECN TECN TECN TECN TECN TECN TECN TECN TECN TECN TECN TECN TECN TECN TECN TECN	$\overline{p} p \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{2\pi^2 \mu}$ To Go not contain the	in 12/Γ²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BRANDELIK 7 BARATE 8 $\frac{DOCUMENT\ ID}{BARATE}$ 8 BAGLIN 8 $\frac{DOCUMENT\ ID}{A}$ 8 BAGLIN 9 $\frac{1}{2} \rightarrow \gamma \chi_{c2}(1P)) = 0.078$ 9) $\rightarrow \gamma \gamma$ distribution. RADIATIVE DEC. DOCUMENT\ ID GAISER	AYS JECN 1600 1	$\overline{p} \rho \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{190 \text{ GeV } \pi^- \text{ Be } -2\pi^2 \mu}$ $\frac{COMMENT}{\overline{p} \rho \rightarrow \gamma \gamma}$ do not contain the	in 12/Γ²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BRANDELIK 7 BARATE 8 $(1P) \rightarrow \gamma \gamma$ $DOCUMENT 1D$ 8 BAGLIN 8 $\rightarrow \gamma \chi_{C2}(1P)) = 0.078$ P) $\rightarrow \gamma \gamma$ distribution. RADIATIVE DEC. GAISER 9 OREGLIA 19 9 OREGLIA 19	AYS TECN T	$p\rho \rightarrow e^+e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{190 \text{ GeV } \pi^- \text{ Be}} - \frac{\Gamma_9 \Gamma}{2\pi^2 \mu}$ $\frac{COMMENT}{p\rho \rightarrow \gamma \gamma}$ ido not contain the $\frac{COMMENT}{2\pi^2 \mu}$ $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\psi(2S) \rightarrow \gamma \chi_{C2}$	in 12/Γ²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BRANDELIK 7 BRANDELIK 7 BARATE 8 $(1P) \rightarrow \gamma \gamma$ $\frac{DOCUMENT\ ID}{8}$ 8 BAGLIN 8 $\rightarrow \gamma \chi_{C2}(1P)) = 0.078$ P) $\rightarrow \gamma \gamma$ distribution. RADIATIVE DEC. GAISER 9 OREGLIA 9 HIMEL 9 BRANDELIK 7 BRANDELIK 7	AYS TECN T	$\overline{p} \rho \rightarrow e^+ e^-$ etc. • • • $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\frac{COMMENT}{190 \text{ GeV } \pi^- \text{ Be } -2\pi^2 \mu}$ $\overline{p} \rho \rightarrow \gamma \gamma$ do not contain the $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\psi(2S) \rightarrow \gamma \chi_{C2}$ $\psi(2S) \rightarrow \gamma \chi_{C2}$	in 12/Γ²
0.90 $^{+0.41}_{-0.26}\pm0.19$ • • • We do not use the folion (9.5 90 $\Gamma(J/\psi(1S)\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{tot}}$ <0.015 90 $\Gamma_{i}\Gamma_{f}/\Gamma_{\text{total}}^{2}$ in $p\overline{p} \rightarrow \chi_{c2}$ $VALUE (units 10^{-7})$ EVTS 0.99 $^{+0.46}$ 0.99 $^{+0.46}$ 0.99 $^{+0.46}$ 0.98 Assuming isotropic χ_{c2} (1 Fixing the $\psi(2S)$ decay. 8 Assuming isotropic χ_{c2} (1 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 2 Assuming is	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BRANDELIK 7 BARATE 8 $(1P) \rightarrow \gamma \gamma$ DOCUMENT 10 8 BAGLIN 8 $\rightarrow \gamma \chi_{C2}(1P)) = 0.078$ P) $\rightarrow \gamma \gamma$ distribution. RADIATIVE DEC. DOCUMENT 10 GAISER 9 OREGLIA 9 HIMEL 8 9 BRANDELIK 9 BRANDELIK 9 BRANDELIK 9 BRANDELIK 9 BRANDELIK 9 BRANDELIK 9	AYS JECN 36 CBAL 32 CBAL 32 CBAL 36 CBAL 32 CPBL 36 CBAL 32 CBAL 37 CBAL 37 CBAL 37 CBAL 38 CMRK2 38 CMRK2 38 CMRK2	$\begin{array}{cccc} \overline{p} \rho & e^+ e^- \\ \text{etc.} & \bullet & \bullet \\ \psi(2S) & \rightarrow & \gamma \chi_{C2} \\ \hline \\ \frac{COMMENT}{190 \text{ GeV } \pi^- \text{ Be } -} \\ 2\pi 2\mu & & \Gamma_9 \Gamma \\ \hline \\ \frac{COMMENT}{\overline{p} \rho} & & \gamma \gamma \\ \text{do not contain the} \\ \hline \\ \frac{COMMENT}{\psi(2S)} & \rightarrow & \gamma \chi_{C2} \\ \psi(2S) & \rightarrow & \gamma \chi_{C2} \\ \psi(2S) & \rightarrow & \gamma \chi_{C2} \\ \psi(2S) & \rightarrow & \gamma \chi_{C2} \\ \psi(2S) & \rightarrow & \gamma \chi_{C2} \\ \psi(2S) & \rightarrow & \gamma \chi_{C2} \\ \psi(2S) & \rightarrow & \gamma \chi_{C2} \\ \psi(2S) & \rightarrow & \gamma \chi_{C2} \\ \end{array}$	in 12/Γ²
$\begin{array}{c} 0.90^{+0.41}_{-0.26}\pm 0.19 \\ \bullet \bullet \bullet \text{We do not use the foliov} \\ <9.5 & 90 \\ \hline \Gamma(J/\psi(1S)\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}} \\ <0.015 & 90 \\ \hline \Gamma_{i}\Gamma_{f}/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2}(15) \\ <0.015 & 90 \\ \hline \Gamma_{i}\Gamma_{f}/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2}(15) \\ \hline \Gamma_{i}\Gamma_{f}/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2}(15) \\ \hline 0.99^{+0.46}_{-0.35} & 6 \\ \hline \Gamma_{\text{extimated using B}}(\psi(2S)) & \text{decay.} \\ \hline \Gamma_{i}(\gamma J/\psi(1S))/\Gamma_{\text{total}} & EVTS \\ \hline \Gamma_{i}(\gamma J/\psi(1S))/\Gamma_{\text{total}} & EVTS \\ \hline 0.135 \pm 0.011 & \text{OUR AVERAGE} \\ \hline 0.124 \pm 0.015 & 0.124 \pm 0.015 \\ \hline 0.124 \pm 0.015 & 0.18 \pm 0.05 \\ \hline 0.13 \pm 0.03 & 0.11 & -0.07 \\ \hline \end{array}$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BRANDELIK 7 BRANDELIK 7 BARATE 8 $(1P) \rightarrow \gamma \gamma$ DOCUMENT 1D 8 BAGLIN 8 $\rightarrow \gamma \chi_{C2}(1P)) = 0.078$ P) $\rightarrow \gamma \gamma$ distribution. RADIATIVE DEC. DOCUMENT 1D GAISER 9 OREGLIA 9 HIMEL 8 9 BRANDELIK 9 BRANDELIK 9 BRANDELIK 9 BRANDELIK 9 BRANDELIK 9 SPITZER	36B SPEC fits, limits, 179B DASP TECN 37B SPEC TECN 37B SPEC 37B SPEC 4 SPEC 5 CBAL 32 CBAL 32 CBAL 32 CBAL 32 CBAL 32 CBAL 33 MRK2 36 CBAL 37B SPEC 4 SPEC 5 CBAL 6 CBAL 7 SPEC $\begin{array}{ll} \overline{p} \rho \to e^+ e^- \\ \text{etc.} \bullet \bullet \bullet \\ \psi(2S) \to \gamma \chi_{C2} \\ \hline \\ \frac{COMMENT}{190 \text{ GeV }} \pi^- \text{ Be} - \frac{1}{2} \pi^2 \mu \\ \hline \\ \frac{COMMENT}{\overline{p} \rho} \to \gamma \gamma \\ \text{id onot contain the} \\ \hline \\ \frac{COMMENT}{\psi(2S)} \to \gamma \chi_{C2} \\ \psi(2S) \to \gamma \chi_{C2} \\ \psi(2S) \to \gamma \chi_{C2} \\ \psi(2S) \to \gamma \chi_{C2} \\ \psi(2S) \to \gamma \chi_{C2} \\ \psi(2S) \to \gamma \chi_{C2} \\ \psi(2S) \to \gamma \chi_{C2} \\ \psi(2S) \to \gamma \chi_{C2} \\ \psi(2S) \to \gamma \chi_{C2} \\ \psi(2S) \to \gamma \chi_{C2} \\ \end{array}$	in 12/Γ²	
0.90 $^{+0.41}_{-0.26}\pm0.19$ • • • We do not use the folion (9.5 90 $\Gamma(J/\psi(1S)\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{tot}}$ <0.015 90 $\Gamma_{i}\Gamma_{f}/\Gamma_{\text{total}}^{2}$ in $p\overline{p} \rightarrow \chi_{c2}$ $VALUE (units 10^{-7})$ EVTS 0.99 $^{+0.46}$ 0.99 $^{+0.46}$ 0.99 $^{+0.46}$ 0.98 Assuming isotropic χ_{c2} (1 Fixing the $\psi(2S)$ decay. 8 Assuming isotropic χ_{c2} (1 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} (2 Fixing the χ_{c2}) 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 1 Assuming isotropic χ_{c2} 2 Assuming is	BAGLIN wing data for averages, 7 BRANDELIK THE BARATE BAGLIN BAGLIN THE POCUMENT ID BAGLIN THE POCUMENT ID BAGLIN THE POCUMENT ID GAISER OREGLIA HIMBL BRANDELIK BRANDELIK BRANTEL SPITZER TANENBAUM	AYS TECN 378 SPEC TECN 378 SPEC TECN 378 SPEC TECN 378 SPEC G: the errors AYS TECN 36 CBAL 30 MRK2 778 DASP 788 CNTR 78 PLUT 78 MRK1	$\overline{p} p ightarrow e^+ e^-$ etc. • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ COMMENT 190 GeV π^- Be - $2\pi 2\mu$ $\overline{p} p ightarrow \gamma \gamma$ is do not contain the $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$	in 12/Γ²
$\begin{array}{c} 0.90^{+0.41}_{-0.26}\pm 0.19 \\ \bullet \bullet \bullet \ \forall \text{We do not use the folion} \\ <9.5 & 90 \\ \hline \Gamma(J/\psi(1S)\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{total}} \\ <0.015 & 90 \\ \hline \Gamma_{i}\Gamma_{f}/\Gamma_{\text{total}}^{2} & \text{in } p\overline{p} \rightarrow \chi_{c2}(10.015) \\ \hline \chi_{ALUE} & \chi_{C2}(10.015) \\ \hline \chi_{ALUE} & \chi_{C2}(10.015) \\ \hline \chi_{C3}(10.015) & \chi_{C2}(10.015) \\ \hline \chi_{C3}(10.015) & \chi_{C3}(10.015) \\ \hline \chi_{C4}(10.015) & \chi_{C2}(10.015) \\ \hline \chi_{C4}(10.015) & \chi_{C2}(10.015) \\ \hline \chi_{C4}(10.015) & \chi_{C4}(10.015) \\ \hline \chi_{C4}(1$	BAGLIN 8 wing data for averages, 7 BRANDELIK 7 BRANDELIK 7 BRANDELIK 7 BARATE 8 $(1P) \rightarrow \gamma \gamma$ DOCUMENT 1D 8 BAGLIN 8 $\rightarrow \gamma \chi_{C2}(1P)) = 0.076$ $(2) \rightarrow \gamma \gamma$ distribution. 7 RADIATIVE DEC. 9 GAISER 9 OREGLIA 9 HIMEL 9 BRANDELIK 9 BRANDELIK 9 BRANDELIK 9 TANENBAUM 9 TANENB	AYS TECN 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 380 MRK2 381 SPEC 382 CBAL 383 MRK2 384 CBAL 385 MRK2 386 SPEC 387 SPEC 387 SPEC 387 SPEC 387 SPEC 387 SPEC 388 SPEC 38	$\overline{p} p ightarrow e^+ e^-$ etc. • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ COMMENT 190 GeV π^- Be - $2\pi 2\mu$ $\overline{p} p ightarrow \gamma \gamma$ is do not contain the $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$	in 12/Γ²
$\begin{array}{c} 0.90^{+0.41}_{-0.26}\pm 0.19 \\ \bullet \bullet \bullet \text{We do not use the foliov} \\ <9.5 & 90 \\ \hline \Gamma(J/\psi(1S)\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}} \\ <0.015 & 90 \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2} \\ <0.015 & 90 \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2} \\ \hline VALUE & (units 10^{-7}) & EVTS \\ 0.99^{+0.46} & 6 \\ \hline \Gamma_i\Gamma_{\text{total}} & \text{in } \psi(2S) & \text{decay.} \\ \hline R_{\text{Ssuming}} & \text{isotropic } \chi_{c2} \\ \text{In } & \text{Stimated using B} \\ \hline \Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}} & EVTS \\ \hline 0.135 \pm 0.011 & \text{OUR AVERAGE} \\ 0.124 \pm 0.015 & 0.124 \pm 0.015 \\ 0.18 \pm 0.05 & 0.13 \pm 0.03 \\ 0.11 & +0.13 & 0.03 \\ 0.11 & +0.07 & 0.13 \pm 0.08 \\ \bullet \bullet & \text{We do not use the follow of the stimated using B} \\ \hline 0.28 \pm 0.13 & 9 \\ \hline \text{Estimated using B} (\psi(2S) + 1) \\ \hline \Gamma(0.15) & 0.15 & 0.15 & 0.05 \\ \hline 0.28 \pm 0.13 & 9 \\ \hline \text{Estimated using B} \\ \hline 0.28 \pm 0.13 & 9 \\ \hline \end{array}$	BAGLIN 8 wing data for averages, 7 BRANDELIK 1 BARATE 1 BARATE 1 BARATE 1 BAGLIN 8	AYS TECN 378 SPEC 377 CNTR	$\begin{array}{c} \overline{p} \rho \rightarrow e^+ e^- \\ \text{etc.} \bullet \bullet \bullet \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \hline \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \hline \\ \frac{COMMENT}{190 \text{ GeV } \pi^- \text{ Be}} - \frac{1}{2\pi^2 \mu} \\ \hline \\ \overline{p} \rho \rightarrow \gamma \gamma \\ \text{ido not contain the} \\ \hline \\ \frac{COMMENT}{p} \rightarrow \gamma \gamma \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \end{array}$	E uncer-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BAGLIN 8 wing data for averages, 7 BRANDELIK 1 BARATE 1 BARATE 1 BARATE 1 BAGLIN 8	AYS TECN 378 SPEC 377 CNTR	$\begin{array}{c} \overline{p} \rho \rightarrow e^+ e^- \\ \text{etc.} \bullet \bullet \bullet \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \hline \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \hline \\ \frac{COMMENT}{190 \text{ GeV } \pi^- \text{ Be}} - \frac{1}{2\pi^2 \mu} \\ \hline \\ \overline{p} \rho \rightarrow \gamma \gamma \\ \text{ido not contain the} \\ \hline \\ \frac{COMMENT}{p} \rightarrow \gamma \gamma \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \end{array}$	E uncer-
$\begin{array}{c} 0.90^{+0.41}_{-0.26}\pm 0.19 \\ \bullet \bullet \bullet \text{We do not use the foliov} \\ <9.5 & 90 \\ \hline \Gamma(J/\psi(1S)\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}} \\ <0.015 & 90 \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2} \\ <0.015 & 90 \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2} \\ \hline VALUE & (units 10^{-7}) & EVTS \\ 0.99^{+0.46} & 6 \\ \hline \Gamma_i\Gamma_{\text{total}} & \text{in } \psi(2S) & \text{decay.} \\ \hline R_{\text{Ssuming}} & \text{isotropic } \chi_{c2} \\ \text{In } & \text{Stimated using B} \\ \hline \Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}} & EVTS \\ \hline 0.135 \pm 0.011 & \text{OUR AVERAGE} \\ 0.124 \pm 0.015 & 0.124 \pm 0.015 \\ 0.18 \pm 0.05 & 0.13 \pm 0.03 \\ 0.11 & +0.13 & 0.03 \\ 0.11 & +0.07 & 0.13 \pm 0.08 \\ \bullet \bullet & \text{We do not use the follow of the stimated using B} \\ \hline 0.28 \pm 0.13 & 9 \\ \hline \text{Estimated using B} (\psi(2S) + 1) \\ \hline \Gamma(0.15) & 0.15 & 0.15 & 0.05 \\ \hline 0.28 \pm 0.13 & 9 \\ \hline \text{Estimated using B} \\ \hline 0.28 \pm 0.13 & 9 \\ \hline \end{array}$	BAGLIN 8 wing data for averages, 7 BRANDELIK 1 BARATE 1 BARATE 1 BARATE 1 BAGLIN 8	AYS TECN 378 SPEC 377 CNTR	$p_P ightarrow e^+ e^-$ etc. • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ COMMENT 190 GeV π^- Be - $2\pi^2\mu$ $p_P ightarrow \gamma \gamma$ do not contain the $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • •	E uncer-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BAGLIN wing data for averages, 7 BRANDELIK BARATE a DOCUMENT ID BARATE BAGLIN RADIATIVE DEC. DOCUMENT ID GAISER GOREGLIA HIMEL BARATE FRANDELIK BARATE BARATE BARATE GAISER GOREGLIA HIMEL BARATE FRANDELIK BARATE BARATE BARATE FRANDELIK BARATE BARAT	AYS TECN 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 379 SPEC 379 SPEC 370 SPEC 371 SPEC 371 SPEC 371 SPEC 371 SPEC 371 SPEC 372 SPEC 373 SPEC 375 SPEC 375 SPEC 375 SPEC 376 SPEC 377 SPEC 37	$\begin{array}{c} \overline{p} \rho \rightarrow e^+ e^- \\ \text{etc.} \bullet \bullet \bullet \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \hline \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \hline \\ \frac{COMMENT}{190 \text{ GeV } \pi^- \text{ Be}} - \frac{1}{2\pi^2 \mu} \\ \hline \\ \overline{p} \rho \rightarrow \gamma \gamma \\ \text{ido not contain the} \\ \hline \\ \frac{COMMENT}{p} \rightarrow \gamma \gamma \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \psi(2S) \rightarrow \gamma \chi_{C2} \\ \end{array}$	F ₁₁ /Γ ²
$\begin{array}{c} 0.90^{+0.41}_{-0.26}\pm 0.19 \\ \bullet \bullet \bullet \text{We do not use the folion} \\ <9.5 & 90 \\ \hline \Gamma(J/\psi(1S)\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}} \\ <0.015 & 90 \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2} \\ <0.015 & 90 \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2} \\ \hline VALUE & (units 10^{-7}) & EVTS \\ 0.99^{+0.46} & 6 \\ \hline \Gamma_i \text{Estimated using B}(\psi(2S) - \text{tainty in the } \psi(2S) \text{ decay.} \\ \hline R_{\text{Assuming isotropic}} & \chi_{c2}(1F) \\ \hline \Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}} & EVTS \\ \hline 0.135 \pm 0.011 & \text{OUR AVERAGE} \\ 0.124 \pm 0.015 & 0.124 \pm 0.015 \\ 0.124 \pm 0.015 & 0.13 \pm 0.03 \\ 0.11 & \pm 0.03 & 0.11 \\ 0.18 & \pm 0.05 & 0.13 \pm 0.03 \\ 0.11 & \pm 0.03 & 0.11 \\ 0.07 & 0.13 & \pm 0.08 \\ \bullet \bullet \text{We do not use the follow } 0.28 \pm 0.13 \\ \hline g_{\text{Estimated using B}} & \Psi(2S) & \text{decay.} \\ \hline \Gamma(\gamma \gamma)/\Gamma_{\text{total}} & \Gamma_{\text{total}} & $	BAGLIN wing data for averages, 7 BRANDELIK all DOCUMENT ID BARATE 8 BAGLIN 8 BAGLIN 9 AC2(1P)) = 0.078 9 BRANDELIK 9 BRANDEL	AYS TECN 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 378 SPEC 379 SPEC 379 SPEC 370 SPEC 371 SPEC 371 SPEC 371 SPEC 371 SPEC 371 SPEC 372 SPEC 373 SPEC 375 SPEC 375 SPEC 375 SPEC 376 SPEC 377 SPEC 37	$p_P ightarrow e^+ e^-$ etc. • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ COMMENT 190 GeV π^- Be - $2\pi^2\mu$ $p_P ightarrow \gamma \gamma$ do not contain the $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • • $\psi(2S) ightarrow \gamma \chi_{C2}$ etc. • • • •	F ₁₁ /Γ ²
$\begin{array}{c} 0.90^{+0.41}_{-0.26}\pm 0.19 \\ \bullet \bullet \bullet \text{We do not use the folion} \\ <9.5 & 90 \\ \hline \Gamma(J/\psi(1S)\pi^+\pi^-\pi^0)/\Gamma_{\text{tot}} \\ <0.015 & 90 \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2} \\ <0.015 & 90 \\ \hline \Gamma_i\Gamma_f/\Gamma_{\text{total}}^2 & \text{in } p\overline{p} \to \chi_{c2} \\ \hline VALUE & & & & & & & \\ <0.015 & & & & & & \\ \hline VALUE & & & & & & \\ <0.015 & & & & & \\ \hline VALUE & & & & & & \\ \hline VALUE & & & & & & \\ \hline 0.99^{+0.46} & 6 & 6 \\ \hline 7 & \text{Estimated using B}(\psi(2S) \\ -0.35 & 6 & 6 \\ \hline Assuming isotropic & \chi_{c2}(1F) \\ \hline \Gamma(\gamma J/\psi(1S))/\Gamma_{\text{total}} & & & & \\ \hline VALUE & & & & & \\ \hline VALUE & & & & & \\ \hline 1.24\pm 0.011 & \text{OUR AVERAGE} \\ \hline 0.124\pm 0.015 & \text{0.104} & \text{4.79} \\ \hline 0.18\pm 0.05 & \text{0.13} \pm 0.03 \\ \hline 0.11 & +0.13 & \text{0.03} \\ \hline 0.13 & \pm 0.08 & \bullet & \text{We do not use the followous elements} \\ \hline 0.28 & \pm 0.13 & & & \\ \hline 9 & & & & \\ \hline 1.25 & & & & \\ \hline 1.$	BAGLIN wing data for averages, 7 BRANDELIK all BARATE $1P$ $1P$ $1P$ $1P$ $1P$ $1P$ $1P$ $1P$ $1P$ $1P$ $2P$	### 150 PEC ##	$\begin{array}{c} \overline{p} \rho \to e^+ e^- \\ \text{etc.} \bullet \bullet \bullet \\ \psi(2S) \to \gamma \chi_{C2} \\ \hline \\ \frac{COMMENT}{190 \text{ GeV }} \pi^- \text{ Be} - \frac{1}{2} \pi^2 \mu \\ \hline \\ \frac{COMMENT}{\overline{p} \rho} \to \gamma \gamma \\ \text{id not contain the} \\ \hline \\ \frac{COMMENT}{\psi(2S)} \to \gamma \chi_{C2} \\ \psi(2S) \to \gamma $	F ₁₁ /Γ ²

 $^{10}\,\mathrm{Derived}$ from $\Gamma_i\Gamma_f/\Gamma_{\mathrm{total}}^2$ in $\rho\overline{\rho}\to~\chi_{\mathcal{C}2}(1P)\to~\gamma\gamma$ measurement above.

$\chi_{c2}(1P)$ REFERENCES

AIHARA	88D	PRL 60 2355		(TPC Collab.)
BAGLIN	87B	PL B187 191		(R704 Collab.)
BAGLIN	86B	PL B172 455	(LAPP, CERN, GENO, LYON, OS	ilo, ROMA+)
GAISER	86	PR D34 711	+Bloom, Bulos, Godfrey+ (Crysta	il Ball Collab.)
LEE	85	SLAC 282		(SLAC)
LEMOIGNE	82	PL 113B 509	-Barate, Astbury+ (SACL, LOIC	SHMP, IND)
OREGLIA	82	PR D25 2259	+Partridge+ (SLAC, CIT, HARV,	PRIN. STAN)
Also	82B	Private Comm.	Oreglia	(EFI)
BARATE	81	PR D24 2994	+Astbury+ (SACL, LOIC, SHMP	CERN. IND)
HIMEL	80	PRL 44 920	+Abrams, Alam, Blocker -	(LBL. SLAC)
Also	82	Private Comm.	Trilling	(LBL, UCB)
BRANDELIK	79B	NP B160 426	+Cords+ {AACH, DESY, HAMB, I	
BRANDELIK	79C	ZPHY C1 233	+ (AACH, DESY, HAMB, I	
BARTEL	78B	PL 79B 492		DESY, HEID)
SPITZER	78	Kyoto Sum. Inst. 47		(HAMB)
TANENBAUM	78	PR D17 1731	+Alam, Boyarski+	(SLAC, LBL)
Also	82	Private Comm.	Trilling	(LBL, UCB)
BIDDICK	77	PRL 38 1324	+Burnett+ (UCSD, UMD, PAVI, PRIN,	
FELDMAN	77	PL 33C 285	+ Perl	(LBL, SLAC)
YAMADA	77	Hamburg Conf. 69		DÈSY, TOKY)
TRILLING	76	Stanford Symp. 437	,	(LBL)
WHITAKER	76	PRL 37 1596	+Tanenbaum, Abrams, Alam+	(SLAC, LBL)
		— OTHER	R RELATED PAPERS	
		0	THE THE PART ENG	
BARATE	83	PL 121B 449	+Bareyre, Bonamy + (SACL, LOIC	SHMP, IND)
KIRK	79	PRL 42 619	+Goodman+ (FNAL, HARV, ILL,	OXF, TUFT)
FELDMAN	77	PL 33C 285	+Perl	(LBL, SLAC)
FELDMAN	75B	PRL 35 821	Jean-Marie, Sadoulet, Vannucci+	(LBL, SLAC)
Also	75C	PRL 35 1189	Feldman	,
Erratum.				
TANENBAUM	75	PRL 35 1323	+Whitaker, Abrams+	(LBL, SLAC)

 $\eta_c(2S)$ or $\eta_c(3590)$

 $I^{G}(J^{PC}) = ?^{?}(?^{?+})$

OMITTED FROM SUMMARY TABLE

Our latest mini-review on this particle can be found in the 1984 edition. Needs confirmation.

$\eta_{c}(2S)$ MASS DOCUMENT ID TECN COMMENT VALUE (MeV) 1 EDWARDS 82c CBAL e^{+} e^{-} ightarrow γ X 3594.0 ± 5.0 $^{1}\operatorname{Assuming}$ mass of $\psi(\text{2S})=3686$ MeV. $\eta_{\mathcal{C}}(2S)$ WIDTH VALUE (MeV) CL% DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • EDWARDS 82C CBAL $e^+ e^- ightarrow \gamma$ X <8.0 95 $\eta_c(2S)$ DECAY MODES Mode Fraction (Γ_i/Γ) Γ_1 hadrons

$\eta_c(2S)$ BRANCHING RATIOS

Γ (hadron <u>VALUE</u> seen	s)/r _t	otal	DOCUMENT ID EDWARDS		$\frac{\textit{COMMENT}}{e^+ e^- \rightarrow \gamma X}$	Γ ₁ /Γ
	-	η	c(25) REFERE	NCES		
EDWARDS	82C	PRL 48 70	-Partridge, Peck-	+ (CIT,	HARV, PRIN, STAN,	SLAC)
		отн	HER RELATED	PAPERS		
OREGLIA PORTER BARTEL	82 81 788		+Partridge+ t. 355+Edwards+ +Dittmann, Duin	(CIT,	, CIT, HARV, PRIN, HARV, PRIN, STAN, 'Neill+ (DESY,	SLAC)

$I^{G}(J^{PC}) = 0^{-}(1^{--})$

$\psi(2S)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
3686.00 ± 0.10	413	ZHOLENTZ 8	OLYA	e+ e-

$\psi(2S) - J/\psi(1S)$ MASS DIFFERENCE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
589.07±0.13 OUR AVERAGE				
589.7 ±1.2	LEMOIGNE	82	GOLI	190 GeV π^- Be $\rightarrow 2\mu$
589.07 ± 0.13	¹ ZHQLENTZ	80	OLYA	$e^+ e^-$
538.7 ±0.8	LUTH	75	MRK1	

 $^{^{1}}$ Redundant with data in mass above.

$\psi(2S)$ WIDTH

 $\Gamma_{11} = 3(\pi^+\pi^-)\pi^0$

[a] See $\eta(1440)$ mini-review.

243 \pm 43 OUR EVALUATION Uses $\Gamma(ee)$ from ALEXANDER 89 and B(ee) = (88 \pm 13) \times 10⁻⁴ from FELDMAN 77.

$\psi(2S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ ₁	hadrons	(98.10±0.30) %	
Γ_2^-	virtual $\gamma ightarrow hadrons$	(2.9 ±0.4) %	
Γз	e+ e-	$(8.8 \pm 1.3) \times 1$	10^{-3}
Γ4	$\mu^+\mu^-$	(7.7 ±1.7)×	10-3

Decays into $J/\psi(15)$ and anything

15	$J/\psi(15)$ anything	(55 ±7)%	
۲6	$J/\psi(1S)$ neutrals	(22.6 ±2.9) %	
Γ7	$J/\psi(15)\pi^{+}\pi^{-}$	$(16.2 \pm 1.6)\%$	
Γ8	$J/\psi(1S)\pi^{0}\pi^{0}$	(8.6 ±1.2) %	
Г9	$J/\psi(1S)\eta$	(2.7 ±0.4)%	S=1.6
Γ_{10}	$J/\psi(1S)\pi^0$	$(9.7 \pm 2.1) \times 10^{-4}$	

Hadronic decays (3.5 ± 1.6) $\times 10^{-3}$

	$2(\pi^{+}\pi^{-})\pi^{0}$	(3.1 ± 0.7)	$) \times 10^{-3}$	
Γ_{13}	$\pi^{+}\pi^{-}K^{+}K^{-}$	(1.6 ± 0.4)	$) \times 10^{-3}$	
Γ_{14}	$\pi^+\pi^-\rho\overline{\rho}$	(8.0 ± 2.0)	$) \times 10^{-4}$	
Γ_{15}	$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}$ + c.c.	(6.7 ± 2.5)	$) \times 10^{-4}$	
Γ_{16}	$2(\pi^{+}\pi^{-})$	(4.5 ± 1.0)	$) \times 10^{-4}$	
Γ_{17}	$\frac{2(\pi^+\pi^-)}{\rho^0\pi^+\pi^-}$	(4.2 ± 1.5)	$) \times 10^{-4}$	
Γ_{18}		(1.9 ± 0.5)	$) \times 10^{-4}$	
Γ_{19}	$3(\pi^+\pi^-)$	(1.5 ± 1.0)	$) \times 10^{-4}$	
Γ_{20}	$\bar{p} p \pi^0$	(1.4 ± 0.5)	$) \times 10^{-4}$	
Γ_{21}	K ⁺ K ⁻	(1.0 ± 0.7)	$) \times 10^{-4}$	
Γ_{22}	$\pi^+\pi^-$	(8 ±5	$) \times 10^{-5}$	
Γ_{23}	$\pi^{+}\pi^{-}\pi^{0}$	(8 ±5) × 10 ⁻⁵	
Γ_{24}	۸۸	< 4	× 10 ⁻⁴	CL=90%
Γ_{25}	Ξ-Ξ+	< 2	× 10 ⁻⁴	CL=90%
Γ ₂₆		< 8.3	$\times 10^{-5}$	CL=90%
	$K^+K^-\pi^0$	< 2.96	\times 10 ⁻⁵	CL=90%
Γ ₂₈	$K^{+}\overline{K}^{*}(892)^{-}$ + c.c.	< 1.79	\times 10 ⁻⁵	CL=90%

Radiative decays

$\psi(2S)$ PARTIAL WIDTHS

Γ(hadrons)						Γ_1
VALUE (keV)		DOCUMENT ID		TECN	COMMENT	
• • • We do not use	e the followin	ig data for average	s, fits	, limits,	etc. • • •	
224 ± 56		LUTH	75	MRK1	e+ e-	
$\Gamma(e^+e^-)$						Γ3
VALUE (keV)		DOCUMENT ID		TECN	COMMENT	
2.14 ± 0.21		ALEXANDER	89	RVUE	See T mini-review	
• • • We do not use	e the followin	ng data for average	es, fits	, limits,	etc. • • •	
2.0 ±0.3		BRANDELIK				
2.1 ± 0.3		² LUTH	75	MRK1	e ⁺ e ⁻	
² From a simultane $= \Gamma(\mu^{+}\mu^{-})$	eous fit to e	$^+$ e^- , μ^+ μ^- , and	1 hadr	onic ch	annels assuming $\Gamma(e^{-1})$	- e ⁻)
$\Gamma(\gamma\gamma)$						Γ ₃₇
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	
<43	90	BRANDELIK	79 c	DASP	e^+e^-	

$\psi(2S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into $e^+\,e^-$ and with the total width is obtained from the integrated cross section into channel in the $e^+\,e^-$ annihilation. We list only data that have not been used to determine the partial width $\Gamma(I)$ or the branching ratio $\Gamma(I)/total$.

$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma_{\text{tot}}$	tal			$\Gamma_1\Gamma_3/\Gamma$
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
\bullet \bullet We do not use the followin	g data for averages	, fits, limits,	etc. • • •	
2.2 ± 0.4	ABRAMS	75 MRK1	$e^+ e^-$	

$\psi(2S)$ BRANCHING RATIOS

$\Gamma(hadrons)/\Gamma_{total}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.981 ± 0.003	³ LUTH	75	MRK1	e+ e-	
$\Gamma(\text{virtual } \gamma \rightarrow \text{hadrons})$	/Γ _{total}				Γ_2/Γ
VALUE	DOCUMENT ID			COMMENT	
0.029 ± 0.004	4 LUTH	75	MRK1	e^+ e^-	
$\Gamma(e^+e^-)/\Gamma_{\rm total}$					Γ_3/Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
88±13	⁵ FELDMAN	77	RVUE	e+ e-	
$\Gamma(\mu^+\mu^-)/\Gamma_{total}$					Γ4/Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
77±17	6 HILGER	75	SPEC	e+ e-	
$\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$					Γ_4/Γ_3
VALUE	DOCUMENT ID		TECN	COMMENT	
0.89±0.16	BOYARSKI	750	MRK1	e+ e-	
311					

³ Includes cascade decay into $J/\psi(1S)$.

 0.53 ± 0.06

- DECAYS INTO $J/\psi(1S)$ AND ANYTHING -

$I(J/\psi(15) \text{ anything})/I_{\text{total}}$					Γ ₅ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.55±0.07 OUR AVERAGE					
0.51 ± 0.12	BRANDELIK	79c	DASP	$e^+ e^-$	
0.57 ± 0.08	ABRAMS	75	MRK1	$e^+ e^-$	
$\Gamma(J/\psi(1S) \text{ neutrals})/\Gamma(J/\psi(1S))$	(S) anything				Γ_6/Γ_5
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	
0.41 ± 0.02	TANENBAUM	76	MRK1	e^+ e^-	
$\Gamma(J/\psi(1S)\pi\pi)/\Gamma_{total}$				(1.	5Γ ₇ +3Γ ₈)/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.50±0.04 OUR AVERAGE					
0.48 ± 0.06	ABRAMS	758	MRK1	$e^+ e^- \rightarrow$	$J/\psi \pi^+ \pi^-$
0.51 ± 0.087	ABRAMS	75B		$e^+ e^- \rightarrow$	
0.54 ± 0.09	WIłK	75	DASP	$e^+ e^- \rightarrow$	$J/\psi \pi^+ \pi^-$
0.54 ± 0.18	WIIK	75	DASP	$e^+ \; e^- \; \rightarrow \;$	$J/\psi 2\pi^0$
$\Gamma(J/\psi(1S)\pi^0\pi^0)/\Gamma(J/\psi(1S)$	$\pi^{+}\pi^{-}$				Γ_8/Γ_7
VALUE	DOCUMENT ID		TECN	COMMENT	

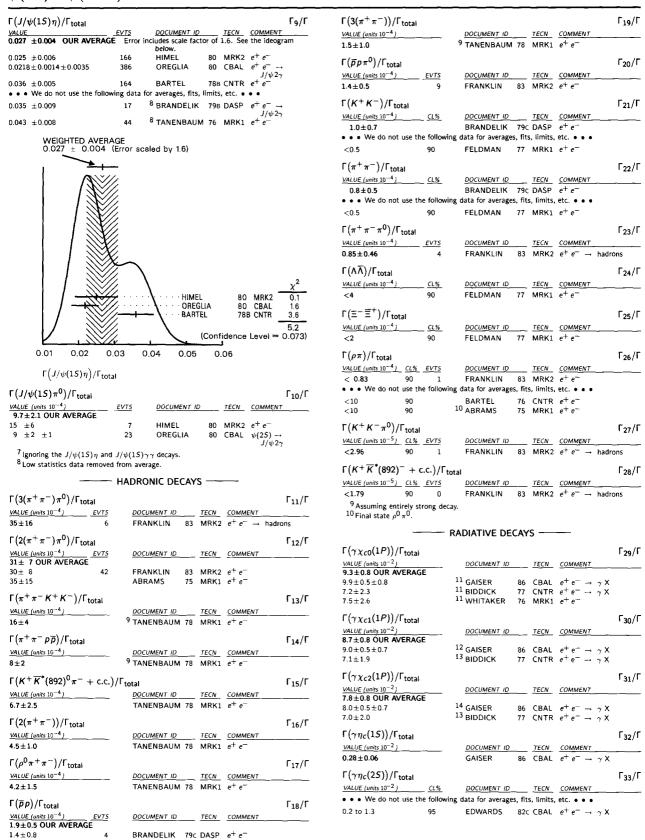
TANENBAUM 76 MRK1 e+ e-

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet 7 HILGER 0.64 ± 0.15 75 SPEC e+e-

 $^{^4}$ Included in $\Gamma(hadrons)/\Gamma_{total}$

From an overall fit assuming equal partial widths for e^+e^- and $\mu^+\mu^-$. For a measurement of the ratio see the entry $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$ below. Includes LUTH 75, HILGER 75, BURMESTER 77.

⁶ Restated by us using B($\psi(2S) \rightarrow J/\psi(1S)$ anything) = 0.55.


 2.3 ± 0.7

FELDMAN

77 MRK1 e+e-

Meson Full Listings

$\psi(2S) = \psi(3685)$

 $\psi(2S) = \psi(3685), \psi(3770)$

$\Gamma(\gamma \pi^0)/\Gamma_{\text{total}}$ VALUE (units 10^{-4})	C1.8/	DOCUMENT ID		TECN	COMMENT	Г ₃₄ /Г
< 54	<u>CL%_</u> 95	15 LIBERMAN				
• • • We do not use 1						
<100	90	WIIK	75	DASP	$e^+ e^-$	
$\Gamma(\gamma \eta'(958))/\Gamma_{\text{total}}$						Γ ₃₅ /Γ
VALUE (units 10 ⁻²)	CL%	DOCUMENT ID		TECN	COMMENT	
<0.11	90	16 BARTEL	76	CNTR	e+ e-	
• • • We do not use	he follow	ring data for average	s, fit	s, limits	, etc. • • •	
<0.6	90	17 BRAUNSCH	. 77	DASP	$e^+ e^-$	
$\Gamma(\gamma\eta)/\Gamma_{total}$						Г ₃₆ /Г
VALUE (units 10 ⁻²)	CL%	DOCUMENT ID		TECN	COMMENT	
<0.02	90	YAMADA	77	DASP	$e^+ e^- \rightarrow 3\gamma$	
$\Gamma(\gamma\eta(1440) \rightarrow \gamma F$	$(\overline{K}\pi)/\Gamma$	total				Γ ₃₈ /Γ

TECN COMMENT

80 MRK1 e+e-

18 SCHARRE < 0.12 90 11 Angular distribution (1+cos $^2\theta$) assumed.

VALUE (units 10^{-3})

- ¹² Angular distribution $(1-0.189\cos^2\theta)$ assumed.
- $^{13}\mathrm{Valid}$ for isotropic distribution of the photon.
- ¹⁴ Angular distribution (1-0.052 $\cos^2 \theta$) assumed.
- 15 Restated by us using B($\psi(2S) \to \mu^{+} \mu^{-}$) = 0.0077.
- 16 The value is normalized to the branching ratio for $\Gamma(J/\psi(1S)\eta)/\Gamma_{\mbox{total}}$.
- 17 Restated by us using total decay width 228 keV.
- 18 Includes unknown branching fraction $\eta(1440) \to K\overline{K}\pi$.

$\psi(2S)$ REFERENCES

DOCUMENT ID

ALEXANDER	89	NP B320 45	+Bonvicini, Drell, Frey, Luth (L	BL. MICH. SLAC)
GAISER	86	PR D34 711	+Bloom, Bulos, Godfrey+ (Ci	rystal Ball Collab.)
FRANKLIN	83	PRL 51 963	+Franklin, Feldman, Abrams, Alam+	
EDWARDS	82C	PRL 48 70	+Partridge, Peck+ (CIT, HARV, PF	
LEMOIGNE	82	PL 113B 509	+Barate, Astbury+ (SACL, L	OIC, SHMP, IND)
HIMEL	80	PRL 44 920	+Barate, Astbury+ (SACL, L +Abrams, Alam, Blocker+	(LBL, SLAC)
OREGLIA	80	PRL 45 959	+Partridge+ (SLAC, CIT, HA	RV, PRIN, STAN)
SCHARRE	80	PL 97B 329	+Trilling, Abrams, Alam, Blocker+	(SLAC, LBL)
ZHOLENTZ	80	PL 96B 214	+Trilling, Abrams, Alam, Blocker+ +Kurdadze, Lelchuk, Mishnev+ Zholentz, Kurdadze, Lelchuk+	(NOVO)
Also	81	SJNP 34 814	Zholentz, Kurdadze, Lelchuk+	(NOVO)
		Translated from YAF	34 1471.	
BRANDELIK	79B	NP B160 426	+Cords+ (AACH, DESY, HAM	
BRANDELIK	79C	ZPHY C1 233	 + (AACH, DESY, HAM 	
BARTEL	78B	PL 79B 492	+Dittmann, Duinker, Olsson, O'Neill+	
TANENBAUM		PR D17 1731	+Alam, Boyarski+	
BIDDICK	77	PRL 38 1324	+Burnett+ (UCSD, UMD, PAVI, PF	(IN, SLAC, STAN)
BRAUNSCH		PL 67B 249	Braunschweig+ (AACH, DESY, +Criegee+ (DESY, HAM +Perl	HAMB, MPIM+)
BURMESTER		PL 66B 395	+Criegee+ (DESY, HAM	AB, SIEG, WUPP)
FELDMAN	77	PL 33C 285	+Perl	(LBL, SLAC)
YAMADA	77	Hamburg Conf. 69		(DESY, TOKY)
BARTEL	76	PL 64B 483	+Duinker, Olsson, Steffen, Heintze+	(DESY, HEID)
TANENBAUM		PRL 36 402	+ Abrams, Boyarski, Bulos+ + Tanenbaum, Abrams, Alam+	(SLAC, LBL) IG
WHITAKER	76	PRL 37 1596	+Tanenbaum, Abrams, Alam+	
ABRAMS	75	Stanford Symp. 25		(LBL)
ABRAMS	75B	PRL 34 1181	+Briggs, Chinowsky, Friedberg+	(LBL, SLAC)
BOYARSKI	75C	Palermo Conf. 54	+Breidenbach, Bulos, Abrams, Briggs+	(SLAC, LBL)
HILGER	75		+Beron, Ford, Hofstadter, Howell+	
LIBERMAN	75			(STAN)
LUTH	75		+Boyarski, Lynch, Breidenbach+	
WIIK	75	Stanford Symp. 69		(DESY)

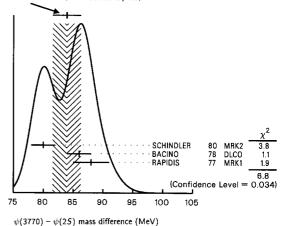
- OTHER RELATED PAPERS -

BARATE FRANKLIN	83 83B	PL 121B 449 SLAC-254 Thesis	+Bareyre, Bonamy+	(SACL, LOIC	, SHMP, IND) (STAN)
BARATE	81	PR D24 2994	+Astbury+	(SACL, LOIC, SHMP	, CERN, IND)
PARTRIDGE	80B	PRL 45 1150	+Peck+	(CIT, HARV, PRIN,	STAN, SLAC)
BURMESTER	77	PL 66B 395	+Criegee+	(DESY, HAMB,	SIEG, WUPP)
SNYDER	76	PRL 36 1415	+Hom, Lederman, Appe	I+ (COLU,	FNAL, STON)
AUBERT	75B	PRL 33 1624	+Becker, Biggs, Burger,	Glenn+	(MIT, BNL)
BRAUNSCH	75B	PL 57B 407	Braunschweig+	(AACH, DESY, I	MPIM, TOKY)
CAMERINI	75	PRL 35 483	+Learned, Prepost, Ash,	Anderson+	(WISC, SLAC)
FELDMAN	75B	PRL 35 821	+ Jean-Marie, Sadoulet,	Vannucci+	
GRECO	75	PL 56B 367	+Pancheri-Srivastava, Sr	ivastava	(FRAS)
JACKSON	75	NIM 128 13	+Scharre		(LBL)
SIMPSON	75	PRL 35 699	+Beron, Ford, Hilger, H		STAN, PENN)
ABRAMS	74	PRL 33 1453	+Briggs, Augustin, Boya	rski+	(LBL, SLAC)

 $I^{G}(J^{PC}) = ?^{?}(1^{--})$

ψ (3770) MASS

VALUE (MeV)	DOCUMENT ID	TECN COMMENT	_
3769.9±2.5 OUR EVALUATION		cale factor of 1.8. From $\psi(3685)$ mas	S
	and mass diffe	erence below.	
• • We do not use the following	g data for average	es, fits, limits, etc. • • •	
3764.0 ± 5.0		80 MRK2 $e^{+}e^{-}$	
3770 ±6.0		78 DLCO e ⁺ e ⁻	
3772.0±6.0	¹ RAPIDIS	77 MRK1 e ⁺ e ⁻	


¹ Errors include systematic common to all experiments.

$\psi(3770) - \psi(2S)$ MASS DIFFERENCE

VALUE (MeV)	DOCUMENT ID		TECN COMMENT
83.9±2.4 OUR AVERAGE	Error includes scale fact	or of	1.8. See the ideogram below.
80.0 ± 2.0	SCHINDLER		
86.0±2.0			DLCO e^+e^-
88.0±3.0	RAPIDIS	77	MRK1 e^+e^-

 $^{^2\,\}mathrm{SPEAR}~\psi(2S)$ mass subtracted (see SCHINDLER 80).

WEIGHTED AVERAGE 83.9 ± 2.4 (Error scaled by 1.8)

$\psi(3770)$ WIDTH

VALUE (MeV) 23.6±2.7 OUR FIT Error in	DOCUMENT ID	.1.	TECN	COMMENT
25.3±2.9 OUR AVERAGE				
24.0 ± 5.0	SCHINDLER	80	MRK2	e+ e-
24.0 ± 5.0	BACINO		DLCO	
28.0 ± 5.0	RAPIDIS	77	MRK1	e+ e-

$\psi(3770)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor
$\overline{\Gamma_1}$	DD	dominant	
Γ_2^-	$e^+ e^-$	$(1.12\pm0.17)\times10^{-5}$	1.2

$\psi(3770)$ PARTIAL WIDTHS

$\Gamma(e^+e^-)$					r_2
VALUE (keV)	DOCUMENT ID)	TECN	COMMENT	
0.26 ±0.04 OUR FIT	Error includes scale facto	or of 1.2.			
0.24 ±0.05 OUR AVER	AGE Error includes sca	le factor	of 1.2.		
0.276 ± 0.050	SCHINDLER	80 1	MRK2	e+ e-	
0.18 ±0.06	BACINO	78 I	DLCO	e+ e-	
• • • We do not use the	following data for average	ges, fits,	limits,	etc. • • •	
0.37 ±0.09	³ RAPIDIS	77 1	MRK1	$e^+ e^-$	
3 See also $\Gamma(e^+e^-)/\Gamma_{\rm t}$	otal below.				

ψ (3770) BRANCHING RATIOS

$\Gamma(\overline{DD})/\Gamma_{total}$						Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT		
dominant	PERUZZI	77	MRK1	e+ e- →	$D\overline{D}$	

 ψ (3770), ψ (4040), ψ (4160), ψ (4415)

$\Gamma(e^+e^-)/\Gamma_{ m total}$					Γ_2/Γ
VALUE (units 10^{-5})	DOCUMENT ID		TECN	COMMENT	
1.12±0.17 OUR FIT	Error includes scale factor of 1	.2.			
1.3 ±0.2	RAPIDIS 7	77	MRK1	$e^+ e^-$	

$\psi(3770)$ REFERENCES

SCHINDLER BACINO PERUZZI RAPIDIS	78 77		+Siegrist, Alam, Boyarski+ +Baumgarten, Birkwood+ +Piccolo, Feldman+ +Gobbi, Luke, Barbaro-Galtieri+	(Mark II Collab.) (SLAC, UCLA, UCI) SLAC. LBL. NWES, HAWA) (Mark I Collab.)
---	----------	--	---	--

$$I^{G}(J^{PC}) = ?^{?}(1^{--})$$

 J^{PC} for the ψ (4040) is known by its production in $e^+\,e^-$ collisions via singlephoton annihilation. I^G is not known, and the interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.

ψ (4040) MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
4040.0 ± 10.0	BRANDELIK 7	78C DASP	$e^+ \ e^-$

$\psi(4040)$ WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
52.0±10.0	BRANDELIK 780	DASP	e+ e-

ψ (4040) DECAY MODES

	Mode	Fraction $(\Gamma_{\tilde{I}}/\Gamma)$
Γ_1	e+ e-	$(1.4\pm0.4)\times10^{-5}$
	$D^0 \overline{D}^0$	seen
Γ_3	$D^*(2010)^0_0 \overline{D}^0_1 + \text{c.c.}$	seen
Γ_4	$D^*(2010)^0 D^*(2010)^0$	seen
Γ_5	$J/\psi(1S)$ hadrons	
Γ_6	$\mu^+\mu^-$	

ψ (4040) PARTIAL WIDTHS

$\Gamma(e^+e^-)$			Γ ₁
VALUE (keV)	DOCUMENT ID	TECN	COMMENT
0.75 ± 0.15	BRANDELIK	78c DASP	e^+ e^-

ψ (4040) BRANCHING RATIOS

$\Gamma(e^+e^-)/\Gamma_{\text{total}}$			Γ_1/Γ
VALUE (units 10 ⁻⁵)	DOCUMENT ID	TECN_COMN	MENT
• • • We do not use the folk	owing data for averages, t	fits, limits, etc. •	• •
~ 1.0	FELDMAN 7	7 MRK1 e ⁺ e	-
$\Gamma(D^0\overline{D}^0)/\Gamma(D^*(2010)^0\overline{D}^0)$	5 ⁰ + c.c.)		Γ_2/Γ_3
VALUE	DOCUMENT ID		
0.05 ± 0.03	¹ GOLDHABER 7	7 MRK1 e ⁺ e'	-
1 Phase-space factor (ho^{3}) e	xplicitly removed.		
$\Gamma(D^*(2010)^0 \overline{D}^*(2010)^0)$	$/\Gamma(D^*(2010)^0\overline{D}^0 + c$	c.c.)	Γ_4/Γ_3
VALUE	DOCUMENT ID		
32.0 ± 12.0	² GOLDHABER 7	7 MRK1 e ⁺ e ⁻	-
2 Phase-space factor (p^3) e	xplicitly removed.		

ψ (4040) REFERENCES

		Ψ(10, 112, 2112	. 0_0	
BRANDELIK Also FELDMAN GOLDHABER	78C 79C 77 77	PL 76B 361 ZPHY C1 233 PL 33C 285 PL 69B 503	+Cords+ Brandelik+ +Peri +Wiss, Abrams, Al	(AACH, DESY, HA	MB, MPIM, TOKY) MB, MPIM, TOKY) (LBL, SLAC) (LBL, SLAC)
OTHER RELATED PAPERS					
HEIKKILA ONO	84 84	PR D29 110 ZPHY C26 307	· Tornqvist, Ono		(HELS, TOKY) (ORSA)
SIEGRIST KIRKBY	82 79B	PR D26 969 Fermilab Symp. 107	+Schwitters, Alam.	Chinowsky+	(SLAC, LBL) (SLAC)
RICHARDSON LUTH PERUZZI AUGUSTIN	79 77 76 75	PL 82B 272 PL 70B 120 PRL 37 569 PRL 34 764	+Pierre, Abrams, A +Piccolo, Feldman, +Boyarski, Abrams,	Nguyen, Wiss+ Briggs+	(SLAC) (LBL, SLAC) (SLAC, LBL) (SLAC, LBL)
BACCI BOYARSKI ESPOSITO	75 75B 75	PL 58B 481 PRL 34 762 PL 58B 478	+Bidoli, Penso, Ste +Breidenbach, Abra +Felicetti, Peruzzi+	ams, Briggs+	(ROMA, FRAS) (SLAC, LBL) APL, PADO, ROMA)

 ψ (4160)

$$I^G(J^{PC}) = ?^?(1^{--})$$

 J^{PC} for the ψ (4160) is known by its production in e^+e^- collisions via singlephoton annihilation. $I^{\it G}$ is not known, and the interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.

	ψ (4160) MASS
VALUE (MeV) 4159.0±20.0	DOCUMENT ID TECN COMMENT BRANDELIK 78C DASP e ⁺ e ⁻
	ψ(4160) WIDTH
VALUE (MeV)	DOCUMENT ID TECN COMMENT
70 A ± 20 A	DRANDELIK 700 DACD of o-

$\psi(4160)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$e^{+}e^{-}$	$(10\pm4)\times10^{-6}$

ψ (4160) PARTIAL WIDTHS

$\Gamma(e^+e^-)$				Γ_1
VALUE (keV)	DOCUMENT ID	TECN	COMMENT	
0.77±0.23	BRANDELIK	78c DASP	$e^+ e^-$	

ψ (4160) REFERENCES

BRANDELIK	78C	PL 76B 361	+Cords+	(AACH, DESY, HAMB, MPIM, TOKY)		
OTHER RELATED PAPERS						
ONO	84	ZPHY C26 307		(ORSA)		

KIRKBY 79B Fermilab Symp. 107 BURMESTER 77 PL 66B 395 (SLAC) (DESY, HAMB, SIEG, WUPP) + Criegee +

 ψ (4415

 $0.47^{+0.10}_{-0.09}$ OUR AVERAGE

 0.49 ± 0.13

 0.44 ± 0.14

$$I^{G}(J^{PC}) = ?^{?}(1^{--})$$

 J^{PC} for the ψ (4415) is known by its production in $e^+\,e^-$ collisions via singlephoton annihilation. I^G is not known, and the interpretation of this state as a single resonance is unclear because of the expectation of substantial

	ψ (4415) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4415 ± 6 OUR AV				
4417.0 ± 10.0	BRANDELIK			
4414 ± 7	SIEGRIST			
	following data for average			
~ 4400	KNIES	77	PLUT	$e^+ e^- \rightarrow \mu^+ \mu^-$
	ψ (4415) WID	ТН		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
43 ±15 OUR AVERA	GE Error includes scale fa			
66.0 ± 15.0	BRANDELIK			e+ e-
33 ±10	SIEGRIST	76	MRK1	$e^+ e^-$
	ψ(4415) DECAY	MOD	ES	
Mode		Fract	ion (Γ _j ,	/r)
Γ ₁ hadrons		dom	inant	
Γ ₂ e ⁺ e ⁻		(1.1 ±	€0.4) ×	10-5
		(/	
	ψ (4415) PARTIAL	WID	THS	
$\Gamma(e^+e^-)$				
			TECH	COMMENT

BRANDELIK

SIEGRIST

78c DASP e+ e-

76 MRK1 e+e

$\psi(\text{4415}) \text{ BRANCHING RATIOS}$ $\Gamma(\text{hadrons})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{1}/\Gamma$ $\frac{VALUE}{\text{dominant}} \qquad \frac{DOCUMENT\ ID}{\text{SIEGRIST}} \qquad \frac{TECN}{76} \qquad \frac{COMMENT}{e^{+}e^{-}}$

ψ (4415) REFERENCES

BRANDELIK	PL 76B 361		+Cords+	(AACH, DESY,	HAMB, MPIM, TOKY)
KNIES SIEGRIST	Hamburg Symp. PRL 36 700	93	+Abrams, Boyarski,	Breidenbach+	(PLUTO Collab.) (LBL, SLAC)

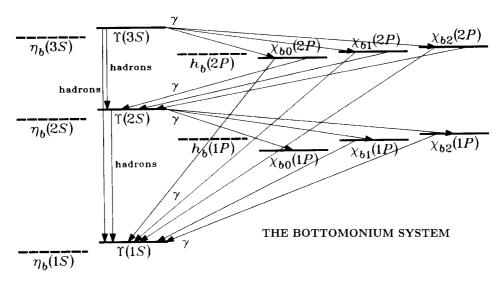
OTHER RELATED PAPERS ----

BURMESTER 77 PL 668 395 +Criegee+ (DESY, HAMB, SIEG, WUPP) LUTH 77 PL 708 120 +Pierre, Abrams, Alam, Boyarski+ (LBL, SLAC)

bb MESONS

NOTE ON WIDTH DETERMINATIONS OF THE Υ STATES

As is the case for $J/\psi(1S)$ and $\psi(2S)$, the full widths of the bound $b\bar{b}$ states $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ are not directly measurable, since they are much smaller than the energy resolution of the e^+e^- storage rings where these states are produced. The common indirect method to determine Γ starts from


$$\Gamma = \Gamma_{\ell\ell}/B_{\ell\ell} \,\,, \tag{1}$$

Υ(11020)

T(10860)

$\Upsilon(4S)$

 $B\overline{B}$ threshold

$$J^{PC} = 0^{-+}$$
 1^{--} 1^{+-} 0^{++} 1^{++} 2^{++}

The level scheme of the $b\bar{b}$ states showing experimentally established states with solid lines. Singlet states are called η_b and h_b , triplet states Υ and χ_{bJ} . In parentheses it is sufficient to give the radial quantum number and the orbital angular momentum to specify the states with all their quantum numbers. E.g., $h_b(2P)$ means 2^1P_1 with $n=2,\ L=1,\ S=0,\ J=1,\ PC=+-$. If found, D-wave states would be called $\eta_b(nD)$ and $\Upsilon_J(nD)$, with J=1,2,3 and $n=1,2,3,4,\cdots$. For the χ_b states, the spins of only the $\chi_{b2}(1P)$ and $\chi_{b1}(1P)$ have been experimentally established. The spins of the other χ_b are given as the preferred values, based on the quarkonium models. The figure also shows the observed hadronic and radiative transitions.

$\Upsilon(1S) = \Upsilon(9460)$

where $\Gamma_{\ell\ell}$ is one leptonic partial width and $B_{\ell\ell}$ is the corresponding branching fraction ($\ell=e, \mu, \text{ or } \tau$). One then assumes $e^{-\mu-\tau}$ universality and uses

$$\Gamma_{\ell\ell} = \Gamma_{ee}$$
 $B_{\ell\ell} = \text{average of } B_{cc}, \ B_{\mu\mu}, \ \text{and } B_{\tau\tau}$. (2)

The electronic partial width Γ_{ee} is also not directly measurable at e^+e^- storage rings, only the combination $\Gamma_{ee}\Gamma_{\rm had}/\Gamma$, where $\Gamma_{\rm had}$ is the hadronic partial width and

$$\Gamma_{\text{had}} + 3\Gamma_{ee} = \Gamma . \tag{3}$$

This combination is obtained experimentally from the energyintegrated hadronic cross section

$$\int_{\text{resonance}} \sigma(e^{+}e^{-} \to \Upsilon \to \text{hadrons})dE$$

$$= \frac{6\pi}{M^{2}} \frac{\Gamma_{ee}\Gamma_{\text{had}}}{\Gamma} C_{r} = \frac{6\pi}{M^{2}} \frac{\Gamma_{ee}^{(0)}\Gamma_{\text{had}}}{\Gamma} C_{r}^{(0)} , \qquad (4)$$

where M is the Υ mass, and C_r and $C_r^{(0)}$ are radiative correction factors. C_r is used for obtaining Γ_{ee} as defined in Eq. (1) and contains corrections from all orders of QED for describing $(b\bar{b}) \to e^+e^-$. The lowest order QED value $\Gamma_{ee}^{(0)}$, relevant for the comparison with potential-model calculations, is defined by the lowest order QED graph (Born term) alone and is about 7% lower than Γ_{ee} . In the past, this distinction had been overlooked by some authors as pointed out by ALEXANDER 89, BARU 86, COOPER 86, KOENIGSMANN 86, and others.

The Listings give experimental results on B_{ee} , $B_{\mu\mu}$, $B_{\tau\tau}$, and $\Gamma_{ee}\Gamma_{\rm had}/\Gamma$. The entries of the latter quantity have been re-evaluated using consistently the correction procedure of KURAEV 85. The partial width Γ_{ee} is obtained from the average values for $\Gamma_{ee}\Gamma_{\rm had}/\Gamma$ and $B_{\ell\ell}$ using

$$\Gamma_{ee} = \frac{\Gamma_{ee} \Gamma_{\text{had}}}{\Gamma(1 - 3B_{\ell\ell})} \ . \tag{5}$$

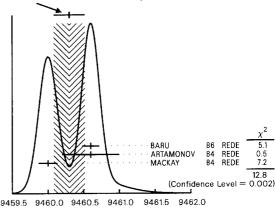
The total width Γ is then obtained from Eq. (1). We do not list Γ_{ee} and Γ values of individual experiments. The Γ_{ev} values in the Meson Summary Table are also those defined in Eq. (1) and no longer the lowest order quantities $\Gamma_{ee}^{(0)}$.

 $\Upsilon(1S)$ or $\Upsilon(9460)$

 $I^{G}(J^{PC}) = ?^{?}(1^{--})$

↑(15) MASS

 VALUE (MeV)
 DOCUMENT ID
 TECN
 COMMENT


 9460.32±0.22 OUR AVERAGE
 Error includes scale factor of 2.5. See the ideogram below.

 9460.59±0.12
 BARU
 86
 REDE
 $e^+e^- \rightarrow$ hadrons

 9460.6±0.4
 1 ARTAMONOV
 84
 REDE
 $e^+e^- \rightarrow$ hadrons

 9459.97±0.11±0.07
 MACKAY
 84
 REDE
 $e^+e^- \rightarrow$ hadrons

WEIGHTED AVERAGE 9460.32 = 0.22 (Error scaled by 2.5)

 $\Upsilon(1S)$ mass (MeV)

$\Upsilon(1S)$ WIDTH

VALUE (keV) DOCUMENT ID

52.1±2.1 OUR EVALUATION See ↑ mini-review.

T(15) DECAY MODES

Fraction (Γ_j/Γ)

 (2.97 ± 0.35) %

Confidence level

Γ_2	$\mu^{+}\mu^{-}$	$(2.57 \pm 0.0$	07) %	
Γ3	e+ e	(2.52 ± 0.3)	17) %	
		Hadronic decays		
Γ_4	$J/\psi(1S)$ anything	(1.1 ±0.4	4) \times 10 ⁻³	
Γ_5	$ ho\pi$	< 2.1	× 10 ⁻³	90%
		Radiative decays		
Γ ₆	$\gamma \eta'(958)$	< 1.3	$\times 10^{-3}$	90%
Γ_7	$\gamma \eta$	< 3.5	× 10 ⁻⁴	90%
Γ8	$\gamma f_2'(1525)$	< 1.35	× 10 ⁻⁴	90%
Γ9	$\gamma f_2(1720) \rightarrow \gamma K \overline{K}$	< 6.4	× 10 ⁻⁵	90%
Γ10	$\gamma f_2(1270)$	< 4.8	× 10 ⁻⁵	90%
Γ_{11}	$\gamma f_4(2220) \rightarrow \gamma K^+ K^-$	< 1.5	× 10 ⁻⁵	90%

$\Upsilon(1S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
1.24±0.04 OUR AVERAGE					
$1.23 \pm 0.02 \pm 0.05$	2 JAKUBOWSKI	88	CBAL	$e^+ e^- \rightarrow$	hadrons
$1.37 \pm 0.06 \pm 0.09$		84B	CLEO	$e^+ e^- \rightarrow$	hadrons
$1.17 \pm 0.06 \pm 0.10$	³ TUTS	83	CUSB	$e^+ e^- \rightarrow$	hadrons
$1.23 \pm 0.08 \pm 0.04$	3 ALBRECHT				
$1.13 \pm 0.07 \pm 0.11$	3 NICZYPORUK	82	LENA	$e^+e^- \rightarrow$	hadrons
1.09 ± 0.25	3 BOCK			$e^+e^ \rightarrow$	
1.35 ± 0.14	⁴ BERGER	79	PLUT	$e^+ e^- \rightarrow$	hadrons

² Radiative corrections evaluated following KURAEV 85.

 $^{^{1}\,\}mathrm{Value}$ includes data of ARTAMONOV 82.

 $^{^3}$ Radiative corrections reevaluated by BUCHMUELLER 88 following KURAEV 85. 4 Radiative corrections reevaluated by ALEXANDER 89 using B($\mu\mu)=0.026.$

Meson Full Listings $\Upsilon(1S) = \Upsilon(9460)$

$\Upsilon(1S)$ PARTIAL WIDTHS							
$\Gamma(e^+e^-)$ $\frac{VALUE~(keV)}{1.34\pm0.04~OUR~EVALUATIO}$	DOCUMENT ID	3					
Ψ	15) BRANCHING RATIOS						
$\Gamma(\tau^+\tau^-)/\Gamma_{\text{total}}$ $\frac{VALUE}{0.0297 \pm 0.0035}$ OUR AVERACO 0.027 ± 0.004 ± 0.002	F	'Г —					
0.034 ±0.004 ±0.004	$ \begin{tabular}{lll} 9 ALBRECHT & 85c ARG & $\Upsilon(25) \rightarrow τ \\ & GILES & 83 & CLEO & $e^{+}e^{+} \rightarrow \tau^{+}\tau^{-}$ \\ & B(\Upsilon(1S) \rightarrow ~\mu\mu) = 0.0256; \ not \ used \ for \ width \ evaluation \end{tabular} $	ıs.					
$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ $\frac{VALUE}{0.0257 \pm 0.0007 \text{ OUR AVERAGO}}$ $0.0252 \pm 0.0007 \pm 0.0007$	EVTS DOCUMENT ID TECN COMMENT E CHEN 89B CLEO $e^+e^- \rightarrow$	Г —					
$0.0261 \pm 0.0009 \pm 0.0011$	$\mu^+\mu^-$ KAARSBERG 89 CSB2 $e^+e^- \rightarrow$	i					
$0.0230 \pm 0.0025 \pm 0.0013$	86 ALBRECHT 87 ARG $\Upsilon(2S) \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	_					
$0.0284 \pm 0.0018 \pm 0.0020$	BESSON 84 CLEO $\Upsilon(25) \rightarrow \pi^+\pi^-\mu^+\mu^-$	-					
0.027 ±0.003 ±0.003	ANDREWS 83 CLEO $e^+e^- \rightarrow \mu^+\mu^-$						
$0.0270 \pm 0.0028 \pm 0.0014$ $0.032 \pm 0.013 \pm 0.003$	TUTS 83 CUSB $e^+e^- \rightarrow \mu^+\mu^-$ ALBRECHT 82 DASP $e^+e^- \rightarrow$						
0.038 ±0.015 ±0.002	NICZYPORUK 82 LENA $e^+e^- ightarrow$						
$0.014 \begin{array}{l} +0.034 \\ -0.014 \end{array}$	$\mu^+\mu^-$ BOCK 80 CNTR $e^+e^$ \rightarrow						
0.022 ±0.020	BERGER 79 PLUT $e^+e^- \rightarrow \mu^+\mu^-$						
$\Gamma(e^+e^-)/\Gamma_{\text{total}}$	F ₃ /	Γ					
0.0252±0.0017 OUR AVERAG 0.0242±0.0014±0.0014	307 ALBRECHT 87 ARG $\Upsilon(2S) \rightarrow$						
$0.028 \pm 0.003 \pm 0.002$	BESSON 84 CLEO $\Upsilon(2S) = 0.000$	-					
0.051 ±0.030	BESSON 84 CLEO $\Upsilon(25) \rightarrow \pi^+ \pi^- e^+ e^-$ BERGER 80c PLUT $e^+ e^- \rightarrow e^+ e^-$						
$\frac{\Gamma \left(J/\psi(1S) \text{ anything} \right)/\Gamma_{\text{tot}}}{\frac{VALUE \text{ (units } 10^{-3})}{1.1 \pm 0.4 \pm 0.2}} \frac{\text{CL\%}}{}$	al $\frac{DOCUMENT\ ID}{6\ \text{FULTON}}$ 89 $\frac{CDEO}{e^+e^- o \mu^+\mu^- X}$	г - -					
• • • We do not use the follo <20 90 $6 \text{ Using B}((J/\psi) \rightarrow \mu^+\mu^-$	ving data for averages, fits, limits, etc. $ullet$ $ullet$ $ullet$ NICZYPORUK 83 LENA $= (6.9 \pm 0.9)\%.$						
$\Gamma(\rho\pi)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) CL% <21 90	T ₅ /I <u>DOCUMENT ID</u> <u>TECN</u> NICZYPORUK 83 LENA	г.					
$\Gamma(\gamma \eta'(958))/\Gamma_{\text{total}}$	Γ ₆ /	г					
<u>VALUE (units 10^{−3})</u> <u>CL%</u> <1.3 90		- 1					
$ \frac{\Gamma(\gamma \eta)/\Gamma_{\text{total}}}{<3.5} \frac{\text{CL\%}}{90} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	г - І					
$\Gamma(\gamma f_2'(1525))/\Gamma_{\text{total}}$	Γ ₈ /ι	٢					
VALUE (units 10 ⁻⁵) CL% <13.5 90	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_					
• • • We do not use the follow $<$ 19.4 90 7 Assuming B($f_2'(1525) \rightarrow$	ring data for averages, fits, limits, etc. $\bullet \bullet \bullet$ $ 7 \text{ ALBRECHT} \qquad 89 \text{ARG} \qquad \Upsilon(15) \rightarrow \ \gamma \ \text{K}^+ \ \text{K}^- $ $ (\overrightarrow{K}) = 0.71. $	I					
$ \frac{\Gamma(\gamma f_2(1720) \to \gamma K \overline{K})}{\frac{VALUE \ (units \ 10^{-5})}{< 3.2}} \frac{CL\%}{90} $	DOCUMENT ID TECN COMMENT	г -					
	⁸ BEAN 86 CLEO $\Upsilon(1S) \rightarrow \gamma K^+ K^-$ ring data for averages, fits, limits, etc. • • • ⁸ ALBRECHT 89 ARG $\Upsilon(1S) \rightarrow \gamma K^+ K^-$						
< 2.1 90 <43 90 < 2.6 90	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
⁸ Assuming B($f_2(1720) \rightarrow f_2(1720) \rightarrow f$	$^{+}\pi^{-}) = 1.0.$						

$\Gamma(\gamma f_2(1270))/\Gamma_{\text{total}}$						Γ_{10}/Γ
VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT	
< 4.8	90	¹¹ BEAN	86	CLEO	$\Upsilon(15) \rightarrow \gamma \pi \pi$	
• • • We do not use the	followin	g data for average	s, fit:	s, limits,	etc. • • •	
<13	90	11 ALBRECHT	89	ARG	$\Upsilon(15) \rightarrow \gamma \pi^+$	π-
<81	90				$\Upsilon(15) \rightarrow \gamma X$	
11 Using B($f_2(1270) \rightarrow$	$\pi\pi)=$	0.84.				
$\Gamma(\gamma f_4(2220) \rightarrow \gamma K^+$	κ-)/	Γ _{total}				Γ_{11}/Γ
VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT	
	90	¹² FULTON	90B	CLEO	$\Upsilon(1S) \rightarrow \gamma K^+$	κ-
• • • We do not use the	followin	g data for average	s, fits	s, limits,	etc. • • •	
< 2.9	90	12 ALBRECHT	89	ARG	$\Upsilon(15) \rightarrow \gamma K^+$	κ-
<20	90	¹² BARU	89	MD1	$\Upsilon(15) \rightarrow \gamma K^+$	κ-
< 3.1	90				$\Upsilon(15) \rightarrow \gamma K^+$	
12 Including unknown bra	anching	ratio of f ₄ (2220) -	→ K	r+ κ		

$\Upsilon(1S)$ REFERENCES

FULTON	90B	PR D41 1401	+Hempstead	(CLEO Collab.)
ALBRECHT	89	ZPHY C42 349	+Boeckmann, Glaeser, Harder+	(ARGUS Collab.)
ALEXANDER	89	NP B320 45	+Bonvicini, Drell, Frey, Luth	(LBL, MICH, SLAC)
BARU	89	ZPHY C42 505	+Beilin, Blinov+	(NOVO)
CHEN	89B	PR D39 3528	+McIlwain, Miller+	(CLEO Collab.)
FULTON	89	PL B224 445	+Haas, Hempstead+	(CLEO Collab.)
KAARSBERG	89	PRL 62 2077	+Heintz+	(CUSB Collab.)
BUCHMUEL	88	HE e^+e^- Physics 412	Buchmueller, Cooper	(HANN, MIT)
Editors: A.	. Ali a	nd P. Soeding, World Si	cientific. Singapore	(
JAKUBOWSKI	88	ZPHY C40 49	+Antreasyan, Bartels+	(Crystal Ball Collab.) IGJPC
SCHMITT	88	ZPHY C40 199	+Antreasyan+	(Crystal Ball Collab.)
ALBRECHT	87	ZPHY C35 283	+Binder, Boeckmann, Glaeser+	(ARGUS Collab.)
BARU	86	ZPHY C30 551	+Blinov, Bondar, Bukin+	(NOVO)
BEAN	86	PR D34 905	+Bobbink, Brock, Engler+	(CLEO Collab.)
ALBRECHT	85C	PL 154B 452	+Drescher, Heller+	(ARGUS Collab.)
KURAEV	85	SJNP 41 466	+Fadin	(ASCI)
		Translated from YAF 4:		* *
ARTAMONOV		PL 137B 272	+Baru, Blinov, Bondar+	(NOVO)
BESSON	84	PR D30 1433	+Green, Hicks, Namjoshi, Sannes+	
GILES		PR D29 1285	+Hassard, Hempstead, Kinoshita+	
MACKAY	84	PR D29 2483	+Hasard, Giles, Hempstead+	(CUSB Collab.)
ANDREWS	83	PRL 50 807	+Avery, Berkelman, Cassel+	
GILES	83	PRL 50 877	 + (HARV, OSU, ROCH, F 	
NICZYPORUK	83	ZPHY C17 197	+ Jakubowski, Zełudziewicz+	(LENA Collab.)
TUTS	83	Cornell Conf. 284		(CUSB Collab.)
ALBRECHT	82	PL 116B 383		, HEID, LUND, ITEP)
ARTAMONOV		Pl. 118B 225	+Baru, Blinov, Bondar, Bukin, Grosh	
NICZYPORUK	82	ZPHY C15 299	+Folger, Bienlein+	(LENA Collab.)
BERGER		PL 93B 497	+Lackas+ (AACH, DESY,	HAMB, SIEG, WUPP)
	80	ZPHY C6 125		MPIM, DESY, HAMB)
BERGER	79	ZPHY C1 343	+Alexander+ (AACH, DESY,	HAMB, SIEG, WUPG)

----- OTHER RELATED PAPERS -----

COOPER	86	Berkeley Conf. 67	(MIT)
KOENIGS	86	DESY 86/136	Koenigsmann (DESY)
ALBRECHT	84	PL 134B 137	+Drescher, Heller+ (ARGUS Collab.)
ARTAMONOV	84	PL 137B 272	+Baru, Blinov, Bondar+ (NOVO)
ARTAMONOV	82	PL 118B 225	Koenigsmann (DESY) +Drescher, Heller+ (ARGUS Collab.) +Baru, Blinov, Bondar+ (NOVO) +Baru, Blinov, Bondar, Bukin, Groshev+ (NOVO)
MAGERAS	81	PRL 46 1115	+Bohringer, Finocchiaro+ (COLU, STON, LSU, MPIM)
MUELLER	81	PRL 46 1181	+ (RUTG, SYRA, LEMO, VAND, CORN, ITHA+)
NICZYPORUK	81	PRL 46 92	+Jakubowski, Zeludziewicz, Folger+ (LENA Collab.)
ALBRECHT	80	PL 93B 500	+Hofmann+ (DESY, DORT, HEID, LUND)
ANDREWS	80	PRL 44 1108	+Berkelman, Billing, Cabenda+ (CLEO Collab.)
BOHRINGER	80	PRL 44 1111	+Costantini, Finocchiaro (COLU, STON) Kourkoumelis+ (ATHU, NTUA, BNL, CERN+) +Besch, Biumenfeld+ (CERN, COLU, OXF, ROCK)
KOURKOU	80	PL 91B 481	Kourkoumelis+ (ATHI NTIIA RNI CERNA)
ANGELIS	79	PL 87B 398	+Besch, Biumenfeld+ (CERN COLU OXE ROCK)
BADIER	79	PL 86B 98	+Boucrot+ (SACL, CERN, CDEF, EPOL, LALO)
DARDEN	79	PL 80B 419	+Hofmann, Schubert+ (DESY, DORT, HEID, LUND)
BERGER	78	PL 76B 243	+Alexander+ (AACH, DESY, HAMB, SIEG, WUPG)
BIENLEIN	78	PL 78B 360	+Glawe, Bock, Blanar+ (DESY, HAMB, HEID, MPIM)
DARDEN	78	PL 76B 246	+Hofmann Schubert+ (DESY DORT HEID LLIND)
GARELICK	78	PR D18 945	+Hofmann, Schubert+ (DESY, DORT, HEID, LUND) +Gauthier, Hicks, Oliver+ +Appel, Herb, Hom+ (STON, FNAL, COLU)
KAPLAN	78	PRL 40 435	+Appel, Herb, Hom+ (STON ENAL COLLI)
YOH	78	PRL 41 684	+Herb Hom Lederman+ (COLLI ENAL STON)
COBB	77	PL 72B 273	+Herb, Hom, Lederman+ (COLU, FNAL, STON) +Iwata, Fabjan+ (BNL, CERN, SYRA, YALE)
HERB	77	PRL 39 252	+Hom, Lederman, Appel, Ito+ (COLU, FNAL, STON)
INNES	77	PRL 39 1240	+Appel, Brown, Herb, Hom+ (COLU, FNAL, STON)
			(COLO, TIAL, STOR)

 $\chi_{b0}(1P) = \chi_{b0}(9860), \ \chi_{b1}(1P) = \chi_{b1}(9890), \ \chi_{b2}(1P) = \chi_{b2}(9915)$

 $\chi_{b0}(1P)$ or $\chi_{b0}(9860)$

 $I^G(J^{PC}) = ??(0 \text{ preferred}^{++})$ J needs confirmation.

Observed in radiative decay of the $\Upsilon(25)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+.

$\chi_{b0}(1P)$ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT			
9859.8±1.3 OUR AVERAGE						
$9860.0 \pm 0.5 \pm 1.4$	1 ALBRECHT	85E ARG	$\Upsilon(25) \rightarrow \text{conv. } \gamma \times$			
9858.3 ± 1.6 ± 2.7		85 CBAL	$\Upsilon(2S) \rightarrow \gamma X$			
9864.1±7 ±1	¹ HAAS	84 CLEO	$\Upsilon(2S) \rightarrow \text{conv. } \gamma X$			
$9872.8 \pm 0.7 \pm 5.0$	¹ KLOPFEN	83 CUSB	$\Upsilon(2S) \rightarrow \gamma X$			
1 From γ energy below, assumin	g $\Upsilon(2S)$ mass =	10023.4 Me	V.			

γ ENERGY IN T(25) DECAY

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
162.3±1.3 OUR AVERAGE				
$162.1 \pm 0.5 \pm 1.4$	ALBRECHT	85E	ARG	$\Upsilon(2S) \rightarrow \text{conv. } \gamma X$
$163.8 \pm 1.6 \pm 2.7$	NERNST			$\Upsilon(2S) \rightarrow \gamma X$
158.0 ± 7 ± 1	HAAS	84	CLEO	$\Upsilon(2S) \rightarrow \text{conv. } \gamma X$
	data for average	s, fit	s, limits,	etc. • • •
$149.4 \pm 0.7 \pm 5.0$	KLOPFEN	83	CUSB	$\Upsilon(2S) \rightarrow \gamma X$

$\chi_{b0}(1P)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ ₁	$\gamma \Upsilon(15)$	<6 %	90%

$\chi_{b0}(1P)$ BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(1S))/\Gamma_{total}$						Γ_1/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.06	90	WALK	86	CBAL	$\Upsilon(25) \rightarrow$	$\gamma \gamma \ell^+ \ell^-$
• • • We do not use the	e following	data for average:	s, fit:	s, limits,	etc. • • •	
< 0.11	90	PAUSS	83	CUSB	$\Upsilon(25) \rightarrow$	$\gamma\gamma\ell^+\ell^-$

$\chi_{b0}(1P)$ REFERENCES

WALK	86	PR D34 2611	+Zschorsch+ (Crystal Ball Collab.)
ALBRECHT	85E	PL 1608 331	+Drescher, Heller+ (ARGUS Collab.)
NERNST	85	PRL 54 2195	+Antreasyan, Aschman+ (Crystal Ball Collab.)
HAAS	84	PRL 52 799	+ Jensen, Kagan, Kass, Behrends+ (CLEO Collab.)
KLOPFEN	83	PRL 51 160	Klopfenstein, Horstkotte+ (CUSB Collab.)
PAUSS	83	PL 130B 439	+Dieti, Eigen+ (MPIM, COLU, CORN, LSU, STON)

 $I^G(J^{PC}) = ?^?(1^{++})$ J needs confirmation.

Observed in radiative decay of the $\Upsilon(25)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+. J=1 from SKWARNICKI 87.

$\chi_{b1}(1P)$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
9891.9±0.7 OUR AVERAGE				
$9890.8 \pm 0.9 \pm 1.3$	¹ WALK	86	CBAL	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$9890.8 \pm 0.3 \pm 1.1$	1 ALBRECHT	85E	ARG	$\Upsilon(25) \rightarrow \text{conv. } \gamma \text{ X}$
$9892.0 \pm 0.8 \pm 2.4$	¹ NERNST	85	CBAL	$\Upsilon(2S) \rightarrow \gamma X$
$9893.6 \pm 0.8 \pm 1.0$	¹ HAAS	84	CLEO	$\Upsilon(2S) \rightarrow \text{conv. } \gamma X$
$9894.4 \pm 0.4 \pm 3.0$	¹ KLOPFEN	83	CUSB	$\Upsilon(2S) \rightarrow \gamma X$
9892.0 ± 3.0	¹ PAUSS	83	CUSB	$\Upsilon(25) \rightarrow \gamma \gamma \ell^+ \ell^-$
1 From γ energy below, assumin	g $\Upsilon(2S)$ mass $=$	1002	3.4 Me\	<i>'</i> .

γ ENERGY IN $\Upsilon(2S)$ DECAY

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
131.7±0.9±1.3	WALK	86 CBAL	$\Upsilon(25) \rightarrow \gamma \gamma \ell^{+} \ell^{-}$
131.7±0.3±1.1	ALBRECHT		$\Upsilon(2S) \rightarrow \text{conv. } \gamma X$
130.6 ± 0.8 ± 2.4	NERNST	85 CBAL	$\Upsilon(2S) \rightarrow \gamma X$
$129.0 \pm 0.8 \pm 1.0$	HAAS	84 CLEO	$\Upsilon(25) \rightarrow \text{conv. } \gamma \text{ X}$
$128.1 \pm 0.4 \pm 3.0$	KLOPFEN		$\Upsilon(25) \rightarrow \gamma X$
130.6 ± 3.0	PAUSS	83 CUSB	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

$\chi_{b1}(1P)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\gamma \Upsilon(1S)$	(35±8) %

$\chi_{b1}(1P)$ BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(1S))/\Gamma_{\text{total}}$					Γ_1/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	
0.35 ± 0.08 OUR AVERAGE					
$0.32 \pm 0.06 \pm 0.07$	WALK	86	CBAL	$\Upsilon(2S) \rightarrow$	$\gamma \gamma \ell^+ \ell^-$
0.47 ± 0.18	KLOPFEN	83	CUSB	T(25) →	$\gamma \gamma \ell^+ \ell^-$

$\chi_{b1}(1P)$ REFERENCES

SKWARNICKI	87	PRL 58 972	+Antreasyan, Besset+	(Crystal Ball Collab.) J
WALK	86	PR D34 2611	+Zschorsch+	(Crystal Ball Collab.)
ALBRECHT	85E	PL 160B 331	+Drescher, Heller+	(ARGUS Collab.)
NERNST	85	PRL 54 2195	+Antreasyan, Aschman+	(Crystal Ball Collab.)
HAAS	84	PRL 52 799	+Jensen, Kagan, Kass. Behrends+	(CLEO Collab.)
KLOPFEN	83	PRL 51 160	Klopfenstein, Horstkotte+	(CUSB Collab.)
PAUSS	83	PL 130B 439	+Dietl, Eigen+ (MPIM, COLU	, CORN, LSU, STON)

 $\chi_{b2}(1P)$ or $\chi_{b2}(9915)$

VALUE (MeV)

9913.2±0.6 OUR AVERAGE 9915.8±1.1±1.3 $I^G(J^{PC}) = ??(2^{++})$ J needs confirmation.

Observed in radiative decay of the $\Upsilon(25)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+. J=2 from SKWARNICKI 87.

$\chi_{b2}(1P)$ MASS DOCUMENT ID TECN COMMENT 1 WALK 86 CBAL $\Upsilon(2S) \rightarrow \gamma\gamma\ell^+\ell^-$ 1 ALBRECHT 85E ARG $\Upsilon(2S) \rightarrow \zeta\gamma$ CBAL $\Upsilon(2S) \rightarrow \zeta\gamma$

 $^1\mathrm{From}\ \gamma$ energy below, assuming $\Upsilon(2S)$ mass = 10023.4 MeV.

γ ENERGY IN T(2S) DECAY

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
109.6±0.6 OUR AVERAGE				
$107.0 \pm 1.1 \pm 1.3$	WALK	86	CBAL	$\Upsilon(25) \rightarrow \gamma \gamma \ell^+ \ell^-$
$110.6 \pm 0.3 \pm 0.9$	ALBRECHT	85E	ARG	$\Upsilon(2S) \rightarrow \text{conv. } \gamma X$
$110.4 \pm 0.8 \pm 2.2$	NERNST	85	CBAL	$\Upsilon(2S) \rightarrow \gamma X$
$109.5 \pm 0.7 \pm 1.0$	HAA5	84	CLEO	$\Upsilon(2S) \rightarrow \text{conv. } \gamma X$
$108.2 \pm 0.3 \pm 2.0$	KLOPFEN	83	CUSB	$\Upsilon(2S) \rightarrow \gamma X$
108.8 ± 4.0	PAUSS	83	CUSB	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

$\chi_{b2}(1P)$ DECAY MODES

	Mode	Fraction (Γ_j/Γ)
$\overline{\Gamma_1}$	$\gamma \Upsilon(1S)$	(22±4) %

$\chi_{b2}(1P)$ BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(1S))/\Gamma_{total}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.22±0.04 OUR AVERAGE					
$0.27 \pm 0.06 \pm 0.06$	WALK	86	CBAL	Y (25) →	$\gamma \gamma \ell^+ \ell^-$
0.20 ± 0.05	KLOPFEN	83	CUSB	$\Upsilon(2S) \rightarrow$	$\gamma \gamma \ell^+ \ell^-$

$\chi_{b2}(1P)$ REFERENCES

SKWARNICKI WALK ALBRECHT NERNST HAAS KLOPFEN	87 86 85E 85 84 83	PRL 58 972 PR D34 2611 PL 160B 331 PRL 54 2195 PRL 52 799 PRL 51 160	+Antreasyan, BessetZschorsch+ +Drescher, Heller+ +Antreasyan, Aschman+ +Jensen, Kagan, Kass, Behrends+ Klopfenstein, Horstkotte+ Diet Figen	(Crystal Ball Collab.) J (Crystal Ball Collab.) (ARGUS Collab.) (Crystal Ball Collab.) (CLEO Collab.) (CUSB Collab.) CORN LSU STON)
PAUSS	83	PL 130B 439	+Dietl, Eigen+ (MPIM, COLU.	CORN, LSU, STON)

 $\Upsilon(2S)$ or $\Upsilon(10023)$

$$I^{G}(J^{PC}) = ??(1^{--})$$

T(25) MASS

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
10.02330±0.00031 OUR AVERAGE			
10.0236 ±0.0005	BARU	86B REDE	$e^+e^- \rightarrow hadrons$
10.0231 ±0.0004	BARBER	84 REDE	$e^+ e^- \rightarrow \text{hadrons}$
¹ Reanalysis of ARTAMONOV 84.			

$\Upsilon(2S)$ WIDTH

 $\frac{\textit{VALUE (keV)}}{43\pm8 \; \text{OUR EVALUATION}} \quad \frac{\textit{DOCUMENT 1D}}{\text{See } \Upsilon \; \text{mini-review}}.$

$\Upsilon(2S)$ DECAY MODES

	Mode	Fraction (Γ ₁ /Γ)	Confidence level
$\overline{\Gamma_1}$	$\Upsilon(1S)\pi^+\pi^-$	(18.5 ±0.8)%	
Γ_2	$\Upsilon(1S)\pi^{0}\pi^{0}$	(8.8 ±1.1) %	
Γ3	$\tau^+\tau^-$	(1.7 ±1.6)%	
Γ_4	$\mu^+\mu^-$	(1.37 ± 0.26) %	
	e+ e-	(1.36±0.26) %	
Γ_6	$\Upsilon(1S)\pi^0$	< 8 ×	10-3 90%
Γ7	$\Upsilon(15)\eta$	< 2 ×	10 ⁻³ 90%
		Radiative decays	
Г8	$\gamma \chi_{b1}(1P)$	(6.7 ±0.9)%	
۲9	$\gamma \chi_{b2}(1P)$	(6.6 ±0.9)%	
Γ_{10}	$\gamma \chi_{b0}(1P)$	(4.3 ±1.0) %	
Γ_{11}	$\gamma f_2(1720)$	< 5.9 ×	10-4 90%
Γ_{12}	$\gamma f_2'(1525)$	< 5.3 ×	10-4 90%
Γ_{13}	$\gamma f_2(1270)$	< 2.41 ×	10-4 90%
Γ ₁₄	$\gamma f_4(2220)$		

$\Upsilon(2S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
0.562±0.027 OUR AVERAGE					
$0.54 \pm 0.04 \pm 0.02$	² JAKUBOWSKI	88	CBAL	e ⁺ e [−] →	hadrons
0.58 ±0.03 ±0.04	³ GILES	84B	CLEO	$e^+ e^- \rightarrow$	hadrons
0.59 ±0.03 ±0.05	3 TUTS	83	CUSB	e+ e- →	hadrons
0.60 ±0.12 ±0.07	3 ALBRECHT	82	DASP	$e^+ e^- \rightarrow$	hadrons
$0.54 \pm 0.07 ^{+0.09}_{-0.05}$	³ NICZYPORUK	81 C	LENA	$e^+e^-\to$	hadrons
0.41 ±0.18	³ BOCK	80	CNTR	e+ e- →	hadrons

ı

³ Radiative corrections reevaluated by BUCHMUELLER 88 following KURAEV 85.

$\Upsilon(2S)$ PARTIAL WIDTHS

Γ(e ⁺ e ⁻)		Г5
VALUE (keV)	DOCUMENT ID	
0.586 ± 0.029 OUR EVALUATION	$e^+e^- \rightarrow \text{hadrons. See } \Upsilon \text{ mini-review.}$	

Υ(25) BRANCHING RATIOS

$\Gamma(\Upsilon(1S)\pi^+\pi^-)/\Gamma_{to}$	tal				Γ_1/Γ
VALUE	EVTS	DOCUMENT I	D	TECN	COMMENT
0.185 ± 0.008 OUR AVE	RAGE				
$0.181 \pm 0.005 \pm 0.010$	11.6k	ALBRECHT	87	ARG	$e^+ e^- \rightarrow \pi^+ \pi^-$
0.169 ± 0.040		GELPHMAN	N 85	CBAL	e ⁺ e ⁻ →
$0.191 \pm 0.012 \pm 0.006$		BESSON	84	CLEO	$\pi^{+}\pi^{-}MM$
0.189 ± 0.026		FONSECA	84	CUSB	e+ e- →
0.21 ±0.07	7	NICZYPOR	UK 819	LENA	$e^{+} \stackrel{\ell^{-}\ell^{-}}{e^{-}} \stackrel{\pi^{+}\pi^{-}}{\rightarrow} \\ \ell^{+}\ell^{-} \stackrel{\pi^{+}\pi^{-}}{\rightarrow} $
$\Gamma(\Upsilon(1S)\pi^0\pi^0)/\Gamma_{\text{tota}}$	ıl				Γ_2/Γ
VALUE	EVTS	DOCUMENT ID	TE	CN CO	MMENT
0.088±0.011 OUR AVE	RAGE				
$0.095 \pm 0.019 \pm 0.019$	25	ALBRECHT	87 AF	₹G e+	$e^- \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$
0.080 ± 0.015		GELPHMAN	85 CE	BAL e+	$e^- \rightarrow \ell^+ \ell^- \pi^0 \pi^0$
0.103 ± 0.023		FONSECA	84 CL	JSB e+	$e^- \rightarrow \ell^+ \ell^- \pi^0 \pi^0$

	DOCUMENT ID		TEÇN	<u>COMMEN</u> T	Γ ₃ /
	HAAS		CLEO	e^+e^-	τ+ τ-
					Γ4/
CL%	DOCUMEN	VT ID	1	ECN COM	
	4 ALBREC	SEKG	89 ($e^- \rightarrow \mu^+ \mu^-$ $e^- \rightarrow \mu^+ \mu^-$
		.п.			$r \rightarrow \mu^+ \mu^- \rightarrow \mu^+ \mu^-$
		s, fits			
90	NICZYP	ORU	K 81c L	ENA e+e	- → μ ⁺ μ
$B(\Upsilon(1S) \rightarrow$	$\mu^+ \mu^- = 0.026$	ز			
C1.0V	DOCUMENT ID		TECN	COMMENT	Γ ₆ /
					P+ P- 22
,,	20112	٠.	00/12		· • 11
					$\Gamma_7/$
				COMMENT	
					_+ _= a+ -
				MM	
90	LURZ	87	CBAL	$e^+e^- \rightarrow$	$\ell^+\ell^-(\gamma\gamma,$
90	RESSON	84	CLEO	$3\pi^{\cup}$)	
3 0	DESSON	04	CLEU		
					Γ ₈ /
DACE	DOCUMENT ID	_	<u>TEÇN</u>	COMMENT	
MUE	ALBRECHT	85e	ARG	e+ e	γ conv ¥
	NERNST			e+ e- →	γX
	HAAS	84	CLEO	$e^+ e^- \rightarrow$	γ conv X
	KLOPFEN	83	CUSB	e ⁺ e ⁻ →	γΧ
					/و۲
-	DOCUMENT ID		<u>TECN</u>	COMMENT	. 9/
RAGE		_			
	ALBRECHT				
				e · e →	γ A γ conv ¥
	KLOPFEN	83	CUSB		
					·
	DOCUMENT ID		TECN	COMMENT	Γ ₁₀ /
RAGE	SOCOMEN ID		1 ECIN	COMMENT	
	ALBRECHT				
	NERNST			$e^+ e^- \rightarrow$	γX
e following a				e ⁺ e ⁻ →	γ conv X
onowing t	_				a. Y
	MEOFFEN	42	C03B	e · e →	.1 🗸
					Γ ₁₁ /
CL%	DOCUMENT ID		TECN	COMMENT	
		89	ARG	T(25) →	$\gamma K^{+} \overline{K^{-}}$
		s, fits	, limits,		
				$\Upsilon(2S) \rightarrow$	$\gamma \pi^+ \pi^-$
ng B(f ₂ (172 anching ratio	$0) \rightarrow K^+ K^-)$ o of $f_2(1720) \rightarrow$	=0	19. π ⁻ .		
					Γ ₁₂ /
CL%	DOCUMENT IN		TECN	COMMENT	' 12/
90 7	ALBRECHT	89	ARG	T(25) →	~ K+ K-
eg B(f' ₂ (152	$(25) \rightarrow K\overline{K}) =$	0.71.		. (=0)	, n n
-	•				Γ ₁₃ /
CL%	DOCUMENT ID		TECN	COMMENT	• 13/
90 8	ALBRECHT	89	ARG	T(25) →	γπ+π-
		.,		· (≥3) →	I W . K
n n j=0.04					
					Γ ₁₄ /
	DOCUMENT ID		TECN	COMMENT	
following d	data for averages	s, fits	, limits,	etc. • • •	
	AVERAGE 15 6 5 5 6 15 6 5 6 15 6 7 16 17 18 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	AVERAGE 15 6 6 4 ALBREC 5 6 6 4 ALBREC 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8	HAAS 84E	HAAS	HAAS 848 CLEO $e^+e^- \rightarrow \frac{CL\%}{e^+}$ DOCUMENT ID TECN COMMENT 15 KAARSBERG 89 CSB2 e^+e^- 6 4 ALBRECHT 85 ARG e^+e^- 6 4 ALBRECHT 85 ARG e^+e^- 6 6 4 ALBRECHT 85 ARG e^+e^- 6 following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •

 $\Upsilon(2S) = \Upsilon(10023), \chi_{b0}(2P) = \chi_{b0}(10235), \chi_{b1}(2P) = \chi_{b1}(10255)$

T(25) REFERENCES

ALBRECHT	89	ZPHY C42 349	+Boeckmann, Glaeser, Harder+	(ARGUS Collab.)
KAARSBERG	89	PRL 62 2077	+Heintz+	(CUSB Collab.)
BUCHMUEL	88	HE e+e- Physics 412	Buchmueller, Cooper	(HANN, MIT)
Editors: A.	Ali a	nd P. Soeding, World So		· · · · · · · · · · · · · · · · · · ·
JAKUBOWSKI	88	ZPHY C40 49	+Antreasyan, Bartels+	(Crystal Ball Collab.) IGJP
ALBRECHT	87	ZPHY C35 283	+Binder, Boeckmann, Glaeser+	(ARGUS Collab.)
LURZ	87	ZPHY C36 383	+Antreasyan, Besset+	(Crystal Ball Collab.)
BARU	86B	ZPHY C32 662	+Blinov, Bondar, Bukin -	(NOVO)
ALBRECHT	85	ZPHY C28 45	+Dreschell, Heller +	(ARGUS Collab.)
ALBRECHT	85E	PL 160B 331	+Drescher, Heller+	(ARGUS Collab.)
GELPHMAN	85	PR D11 2893	+Lurz, Antreasyan+	(Crystal Ball Collab.)
KURAEV	85	SJNP 41 466	+Fadin	(ASCI)
		Translated from YAF 41		
NERNST	85	PRL 54 2195	+Antreasyan, Aschman+	(Crystal Ball Collab.)
ARTAMONOV	84	PL 137B 272	+Baru, Blinov, Bondar+	(NOVO)
BARBER	84	PL 135B 498	 (DESY, ARGUS Collab. 	
BESSON	84	PR D30 1433	+Green, Hicks, Namjoshi, Sannes+	
FONSECA	84	NP B242 31	+Mageras, Son, Dietl, Eigen+	(CUSB Collab.)
GILES	84B	PR D29 1285	+Hassard, Hempstead, Kinoshita+	(CLEO Collab.)
HAAS	84	PRL 52 799	+ Jensen, Kagan, Kass, Behrends+	(CLEO Collab.)
HAAS	84B	PR D30 1996	+Jensen, Kagan, Kass, Behrends+	(CLEO Collab.)
KLOPFEN	83	PRL 51 160	Klopfenstein, Horstkotte+	(CUSB Collab.)
TUTS	83	Cornell Conf. 284		(CUSB Collab.)
ALBRECHT	82	PL 116B 383		HEID, LUND, ITEP)
NICZYPORUK	81B	PL 100B 95	+Chen, Folger, Lurz+	
NICZYPORUK	81C	PL 99B 169	+Chen, Vogel, Wegener+	
BOCK	80	ZPHY C6 125	+Blanar, Blum - (HEID, N	IPIM, DESY, HAMB)

- OTHER RELATED PAPERS -

ALEXANDER	89	NP B320 45	+Bonvicini, Orell, Frey, Luth	(LBL, MICH, SLAC)
COOPER	86	Berkeley Conf. 67	*	(MIT)
WALK	86	PR D34 2611	+Zschorsch+	(Crystal Ball Collab.)
ALBRECHT	84	PL 134B 137	+Drescher, Heller+	(ARGUS Collab.)
ARTAMONOV	84	PL 137B 272	+Drescher, Heller+ +Baru, Blinov, Bondar+ +Avery, Berkelman, Cassel+	(NOVO)
ANDREWS	83	PRL 50 807	+ Avery, Berkelman, Cassel+	(CLEO Collab.)
GREEN	82	PRL 49 617	+Sannes, Skubic, Snyder+	
MAGERAS	81	PRL 46 1115	+Bohringer, Finocchiaro+ (C	OLU, STON, LSU, MPIM)
MUELLER	81	PRL 46 1181	 + (RUTG, SYRA, LEM- 	O, VAND, CORN, ITHA+)
ANDREWS	80	PRL 44 1108	+Berkelman, Billing, Cabenda+	(CLEO Collab.)
ARESTOV	80	IHEP 80-165	+Bogoljubski+	(SERP)
BOHRINGER	80	PRL 44 1111		(COLU, STON)
KOURKOU	80	PL 91B 481	Kourkoumelis+ (ATI	HU, NTUA, BNL, CERN+)
UENO	79	PRL 42 486	+Brown, Herb, Ham, Fisk+	(FNAL, COLU, STON)
BIENLEIN	78	PL 78B 360		SY, HAMB, HEID, MPIM)
DARDEN	78	PL 76B 246	+Hofmann, Schubert+ (DE	SY, DORT, HEID, LUND)
KAPLAN	78	PRL 40 435	+Appel, Herb, Hom+	
YOH	78	PRL 41 684	+Herb, Hom, Lederman~	(COLU, FNAL, STON)
COBB	77	PL 72B 273	+lwata, Fabjan+ (8	
HERB	77	PRL 39 252	+Hom, Lederman, Appel, Ito+	(COLU, FNAL, STON)
INNES	77	PRL 39 1240	+Appel, Brown, Herb, Hom+	(COLU, FNAL, STON)

 $\chi_{b0}(2P)$ or $\chi_{b0}(10235)$

$$I^G(J^{PC}) = ??(0 \text{ preferred}^{++})$$

 $J \text{ needs confirmation.}$

Observed in radiative decay of the $\Upsilon(3S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+.

$\chi_{b0}(2P)$ MASS

VALUE (GeV)	DOCUMENT ID	TECN	COMMENT
10.2353 ± 0.0011 OUR AVERAGE			
10.2353 ± 0.0016	1 LEE-FRANZINI 87		
10.2352 ± 0.0016	1 LEE-FRANZINI 87	CUSB	$e^+ e^- \rightarrow \ell^+ \ell^- \gamma \gamma$
1 From a energy below assuming	T(35) mass - 10355	3 MeV	

γ ENERGY IN $\Upsilon(3S)$ DECAY

VALUE (MeV) 119.3±1.1 OUR AVERAGE	DOCUMENT ID	TECN	COMMENT
$\begin{array}{c} 119.3 \pm 1.6 \\ 119.4 \pm 1.6 \end{array}$	LEE-FRANZINI 87 LEE-FRANZINI 87		$\begin{array}{ccc} e^+ \ e^- \ \rightarrow \ \gamma X \\ e^+ \ e^- \ \rightarrow \ \ell^+ \ell^- \gamma \gamma \end{array}$

$\chi_{b0}(2P)$ DECAY MODES

Mode	Fraction (Γ_j/Γ)
γΥ(25) γΥ(15)	(7 ±4) % (1.4 ± 1.0) %

$\chi_{b0}(2P)$ BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(2S))/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
0.069 ± 0.041	² LEE-FRANZIN187	CUSB	e ⁺ e [−] →	778+ E
$\Gamma(\gamma \Upsilon(1S))/\Gamma_{\text{total}}$				Γ_2/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
0.014 ± 0.010	² LEE-FRANZINI 87	CUSB	e^+ $e^ \rightarrow$	778+ F
$\frac{2}{2}$ Using $B(\Upsilon(3S) \rightarrow \chi_{60})$	$(2P)_{2} = 0.048 \pm 0.014.$			

$\chi_{b0}(2P)$ REFERENCES

LEE-FRANZ	INI 87	Hamburg Conf. 13	9	(CUSB Collab.)
		—— отн	IER RELATED PAPERS -	
TUTS EIGEN HAN	83 82 82	Cornell Conf. 284 PRL 49 1616 PRL 49 1612	+Bohringer, Herb+ +Horstkotte, Imlay+	(CUSB Collab.) (CUSB Collab.) (CUSB Collab.)

 $I^G(J^{PC}) = ??(1 \text{ preferred}^{++})$ J needs confirmation.

Observed in radiative decay of the $\Upsilon(3S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+.

$\chi_{b1}(2P)$ MASS

VALUE (GeV)	DOCUMENT ID	TECN COMMENT
10.2552±0.0004 OUR AVERAGE		
10.2556±0.0005	LEE-FRANZINI 87	CUSB $e^+e^- \rightarrow \gamma X$
10.2548±0.00045	LEE-FRANZINI87	CUSB $e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$
1 From $_{\gamma}$ energy below assuming $^{\prime}$	$\Upsilon(3S)$ mass $=10355$.3 MeV.

γ ENERGY IN $\Upsilon(3S)$ DECAY

VALUE (MeV)	DOCUMENT ID TECN	COMMENT
99.6±0.4 OUR AVERAGE	Error includes scale factor of 1.2.	
99.2 ± 0.5	LEE-FRANZINI87 CUSB	$e^+ e^- \rightarrow \gamma X$
100.0 ± 0.45	LEE-FRANZINI87 CUSB	$e^+ e^- \rightarrow \ell^+ \ell^- \gamma \gamma$

$\chi_{b1}(2P)$ DECAY MODES

Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$
$\Gamma_1 \gamma \Upsilon(2S)$	(25 ±8) %
$\Gamma_2 \gamma \Upsilon(1S)$	(6.1±1.7) %

$\chi_{b1}(2P)$ BRANCHING RATIOS

(γ (23))/ total	DOCUMENT ID	TECN	COMMENT	11/1
0.247±0.083	2 LEE-FRANZINI 87		e ⁺ e [−] →	γγℓ+ ℓ-
$\Gamma(\gamma \Upsilon(1S))/\Gamma_{total}$				Γ_2/Γ
VALUE	DOCUMENT ID		COMMENT	
0.061 ± 0.017	² LEE-FRANZINI 87	CUSB	$e^+~e^-~\rightarrow$	$\gamma \gamma \ell^+ \ell^-$
² Using B($\Upsilon(3S) \rightarrow \chi_{b1}(2R)$	$(7)\gamma = 0.120 \pm 0.026$.			

$\chi_{b1}(2P)$ REFERENCES

EE-FRANZINI 87	Hamburg Conf. 139	(CUSB Collab.)
	OTHER RELATED PAPERS	-

 83
 Cornell Conf. 284
 (CUSB Collab.)

 82
 PRI 49 1616
 -Bohringer, Herb (CUSB Collab.)

 82
 PRI 49 1612
 +Horstxotte, Imlay (CUSB Collab.)

$\chi_{b2}(2P) = \chi_{b2}(10270), \Upsilon(3S) = \Upsilon(10355)$

 $\chi_{b2}(2P)$ or $\chi_{b2}(10270)$

 $I^G(J^{PC}) = ??(2 \text{ preferred}^{++})$ J needs confirmation.

Observed in radiative decay of the \Upsilon(35), therefore ${\it C}=+.$ Branching ratio requires E1 transition, M1 is strongly disfavored, therefore ${\it P}=+.$

$\chi_{b2}(2P)$ MASS

VALUE (GeV)	DOCUMENT ID	TECNCOMMENT	
10.2690 ± 0.0007 OUR AVERAGE			
		CUSB $e^+e^- \rightarrow \gamma X$	
10.2697 ± 0.00045	¹ LEE-FRANZINI 87	CUSB $e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$	

 $^{1} \, \mathrm{From} \; \gamma$ energy below, assuming $\Upsilon(35) \; \mathrm{mass} = 10355.5 \; \mathrm{MeV}.$

γ ENERGY IN $\Upsilon(3S)$ DECAY

VALUE (MeV)	DOCUMENT ID TECN	COMMENT	
85.9±0.7 OUR AVERAGE	Error includes scale factor of 2.1.		
36.7 ± 0.5	LEE-FRANZINI 87 CUSB	$e^+ e^- \rightarrow \gamma X$	
35.3 ± 0.45	LEE-FRANZINI87 CUSB	$e^+ e^- \rightarrow \ell^+ \ell^- \gamma \gamma$	

$\chi_{b2}(2P)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
•	γ Υ(25) γ Υ(15)	(19 ±7)% (6.3±1.8)%

$\chi_{b2}(2P)$ BRANCHING RATIOS

$\Gamma(\gamma \Upsilon(2S))/\Gamma_{\text{total}}$ $\frac{VALUE}{0.189 \pm 0.065}$	DOCUMENT ID 2 LEE-FRANZINI 87	<u>TECN</u> CUSB	$\frac{COMMENT}{e^+ e^-} \rightarrow$	$\frac{\Gamma_1/\Gamma}{\gamma\gamma\ell^+\ell^-}$
$\lceil (\gamma \Upsilon(1S)) / \Gamma_{total} \rceil$				Γ_2/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	
0.063 ± 0.018	² LEE-FRANZINI 87	CUSB	$e^+ e^- \rightarrow$	γγℓ+ ℓ-
² Using B($\Upsilon(3S) \rightarrow \chi_{b2}$	$(2P)\gamma = 0.128 \pm 0.029$			

$\chi_{b2}(2P)$ REFERENCES

LEE-FRANZINI 87 Hamburg Conf. 139 (CUSB Collab.)

--- OTHER RELATED PAPERS ---

TUTS EIGEN HAN	83 82 82	Cornell Conf. 284 PRL 49 1616 PRL 49 1612	+Bohringer, Herb+ +Horstkotte, Imlay+	(CUSB Collab.) (CUSB Collab.) (CUSB Collab.)
----------------------	----------------	---	--	--

 $I^{G}(J^{PC}) = ?^{?}(1^{--})$

$\Upsilon(3S)$ MASS

VALUE (GeV)		DOCUMENT ID		TECN	COMMENT
10.3553±0.0005	1	BARU	86в	REDE	$e^+ e^- \rightarrow \text{hadrons}$
1 Reanalysis of ARTAMONOV	84				

$\Upsilon(3S)$ WIDTH

<u>VALUE (keV)</u>
24.3±2.9 OUR EVALUATION See Υ mini-review.

T(35) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	$\Upsilon(2S)$ anything	(10.1 ±1.7) %
Γ_2	$\Upsilon(2S)\pi^+\pi^-$	$(2.2 \pm 0.5)\%$
Гз	$\Upsilon(1S)\pi^+\pi^-$	(3.63±0.31) %
Γ4	$\mu^+\mu^-$	(1.81 ± 0.17) %
Γ ₅	$e^{+}e^{-}$	(1.81 ± 0.25) %

Radiative decays

Г6	$\gamma \chi_{b2}(2P)$	(12.8	± 2.9) %
Γ_7	$\gamma \chi_{b1}(2P)$	(12.0	±2.6) %
Γ8	$\gamma \chi_{b0}(2P)$	(4.8	± 1.4) %

$\Upsilon(3S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma$	total			$\Gamma_0\Gamma_5/\Gamma$
VALUE (keV) 0.415±0.030 OUR AVERAGE	DOCUMENT IE Error includes sca	le factor of 1.1	COMMENT	
$0.45 \pm 0.03 \pm 0.03$ $0.39 \pm 0.02 \pm 0.03$	² GILES ² TUTS	84B CLEO 83 CUSB		
² Radiative corrections reeval	uated by BUCHML	ELLER 88 foll	owing KUR	AEV 85.

↑(3S) PARTIAL WIDTHS

$\Gamma(e^+e^-)$		Γ ₅
VALUE (keV)	DOCUMENT ID	
0.44 ± 0.03 OUR EVALUATION	$e^+ e^- \rightarrow \text{ hadrons. See } \Upsilon \text{ mini-review.}$	

T(35) BRANCHING RATIOS

	Υ(:	3 <i>5</i>) BRAN	ICHING	i RA	TIOS			
$\Gamma(\Upsilon(2S) \text{ anything})/I$	total							Γ_1/Γ
VALUE	EVTS	DOCU	MENT ID		TECN	COMM	ENT	
0.101±0.017	1.6k	BOW	соск	87	CLEO		$\underset{\pi^{-}\ell^{+}\ell^{-}}{\overset{\pi^{+}\pi^{+}}}$	- x,
$\Gamma(\Upsilon(2S)\pi^+\pi^-)/\Gamma_{to}$								Γ_2/Γ
VALUE 0.022±0.005 OUR AVE	EVTS RAGE	DOCUI	MENT ID	—	<u>TECN</u>	COMM	ENT	
0.021 ± 0.005	314	BOW	соск	87	CLEO		$\rightarrow \pi^+\pi^-$	
0.031 ± 0.020	5	MAGE	ERA\$	82	CUSB	$\Upsilon(35)$	$ \begin{array}{ccc} \pi^-\ell^+\ell^-\\ &\rightarrow&\pi^+\pi^- \end{array} $	- ℓ ⁺ ℓ ⁻
$\Gamma(\Upsilon(1S)\pi^+\pi^-)/\Gamma_{to}$								Γ_3/Γ
VALUE 0.0363±0.0031 OUR AV	<u>EVTS</u> ÆRAG	<u>DOCUI</u> E	MENT ID		<u>TECN</u>	<u>СОММ</u>	ENT	
0.0347 ± 0.0034	3.9k		COCK	87	CLEO		$\rightarrow \pi^+\pi^-$	
0.049 ±0.010	22	GREE	N	82	CLEO	$\Upsilon(3S)$	$\pi^-\ell^+\ell^-$ $\to \pi^+\pi^-$	- e+ e-
0.039 ± 0.013	26	MAG	ERAS	82	CUSB	T(35)	$\rightarrow \pi^+ \pi^-$	- ℓ ⁺ ℓ ⁻
$\Gamma(\mu^+\mu^-)/\Gamma_{total}$								Γ_4/Γ
VALUE 0.0181 ± 0.0017 OUR AV	EDAC	<u>EVTŞ</u>	<u>DOCUM</u>	ENT I	0	<u>TECN</u>	COMMENT	
$0.0202 \pm 0.0019 \pm 0.0033$			CHEN		89B	CLEO	e+ e	•
$0.0173 \pm 0.0015 \pm 0.0011$			KAARS	BER	G 89	CSB2	e+ e	•
0.033 ±0.013 ±0.007		1096	ANDRE	EWS	83	CLEO	e ⁺ e ⁻ μ ⁺ μ ⁻	•
$\Gamma(\gamma \chi_{b2}(2P))/\Gamma_{\text{total}}$		pacui	MENT ID		TECN	сомм	ENT	Γ_6/Γ
0.128±0.012±0.026			RANZIN				→ γ X	
$\Gamma(\gamma \chi_{b1}(2P))/\Gamma_{total}$								Γ_7/Γ
VALUE		DOCUI	MENT ID		<u>TECN</u>	COMM	ENT	
$0.120 \pm 0.011 \pm 0.024$		LEE-F	RANZIN	1187	CUSB	e ⁺ e ⁻	$\rightarrow \gamma X$	
$\Gamma(\gamma \chi_{b0}(2P))/\Gamma_{\text{total}}$								Γ_8/Γ
VALUE			MENT ID		TECN	COMM.		
$0.048 \pm 0.010 \pm 0.010$		LEE-F	RANZIN	II 87	CUSB	e^+ e^-	$\rightarrow \gamma X$	

$\Upsilon(3S)$ REFERENCES

CHEN	89B	PR D39 3528	+Mcliwain, Miller+	(CLEO Collab.)
KAARSBERG	89	PRL 62 2077	+Heintz+	(CUSB Collab.)
BUCHMUEL	88	HE_e+e- Physics 412		(HANN, MIT)
Editors: A.	. Ali a	ind P. Soeding, World Si	cientific. Singapore	(HANIN, WILL)
BOWCOCK	87	PRL 58 307	+Giles, Hassard, Kinoshita+	(CLEO Collab.)
LEE-FRANZINI	87	Hamburg Conf. 139	ones, resseres remosities,	(CUSB Collab.)
BARU	86B	ZPHY C32 662	+Blinov, Bondar, Bukin+	(NOVO)
KURAEV	85			(ASCI)
	00	SJNP 41 466 Translated from YAF 4:	1 '733.'''	(A3CI)
ARTAMONOV	84	PL 137B 272	+Baru, Blinov, Bondar+	(NOVO)
GILES	84B	PR D29 1285	+Hassard, Hempstead, Kinoshita+	(CLEO Collab.)
ANDREWS	83	PRL 50 807	Avery, Berkelman, Cassel+	(CLEO Collab.)
TUTS	83	Cornell Conf. 284		(CUSB Collab.)
GREEN	82	PRL 49 617	+Sannes, Skubic, Snyder+	(CLEO Collab.)
MAGERAS	82	PL 118B 453	+Herb, Imlay+ (COLU, CORN,	
			(, , , , , , , , , , , , , , , , , , ,	2001 1111 1111 (01014)
		OTHER	R RELATED PAPERS	
ALEXANDER	89	NP B320 45	+Bonvicini, Drell, Frey, Luth	(LBL, MICH, SLAC)
ARTAMONOV	84	PL 137B 272	+Baru, Blinov, Bondar+	(NOVO)
GILES	84B	PR D29 1285	+Hassard, Hempstead, Kinoshita+	(CLEO Collab.)
HAN	82	PRI 49 1612	+Horstkotte Imlav+	(CUSB Collab.)

CLEO Collab COLL					
HAN 82 PRL 49 1612 Horstotte, Imlay- CUSB Collab.	ARTAMONOV	84	PL 137B 272	+Baru, Blinov, Bondar+	(NOVO)
PETERSON 82 PL 114B 277 +Giannini, Lee Franzini- CUSB Collab.	GILES	84B	PR D29 1285	+Hassard, Hempstead, Kinoshita+	(CLEO Collab.)
ANDREWS 80 PRI. 44 1108 -Berkelman, Billing, Cabenda CCLEO Collab.	HAN	82	PRL 49 1612	+Horstkotte, Imlay+	(CUSB Collab.)
ANDREWS 80 PR. 14 1108 -Berkelman, Billing, Cabenda- (CLEO Collab.)	PETERSON	82	PL 114B 277	+Giannini, Lee-Franzini+	(CUSB Collab.)
UENO 79 PRL 42 486 -Brown. Herb, Hom, Fisk+ (FNAL, COLU, STON) KAPLAN 78 PRL 40 435 +Apel, Herb, Hom+ (STON, FNAL, COLU) YOH 78 PRL 41 684 +Herb, Hom, Lederman- (COLU, FNAL, STON) COBB 77 PRL 72B 273 +lwata, Fabjain+ (BNC, CERN, SYRA, YALE HERB 77 PRL 39 252 +Hom, Lederman, Appel, Ito+ (COLU, FNAL, STON)	ANDREWS	80	PRL 44 1108	+Berkelman, Billing, Cabenda+	(CLEO Collab.)
UENO 79 PRL 42 486 -Brown, Herb, Hom, Fisk+ (FNAL, COLU, STON) KAPLAN 78 PRL 40 435 +Appel, Herb, Hom+ (STON, FNAL, COLU) YOH 78 PRL 41 684 +Herb, Hom, Ledderman- (BCL, COLU, FNAL, STON) COBB 77 PRL 728 273 +Iwata, Fabjan+ (BNL, CERN, SYRA, YALE HERB 77 PRL 39 252 +Hom, Ledderman, Appel, Ito+ (COLU, FNAL, STON)	BOHRINGER	80	PRL 44 1111	+Costantini, Finocchiaro	(COLU. STON)
YOH 78 PRI 41 684 +Herb, Hom, Lederman (COLU, FNAI, STON) COBB 77 PL 72B 273 +Iwata, Fabjan+ (BNL, CERN, SYRA, YALE HERB 77 PRI 39 252 +Hom, Lederman, Appel, Ito+ (COLU, FNAI, STON)	UENO	79	PRL 42 486	-Brown, Herb, Hom, Fisk+	(FNAL, COLU, STON)
YOH 78 PRL 41 684 +Herb, Hom, Lederman- (COLU, FNAL, STON) COBB 77 PL 728 273 +Iwata, Fabjan+ (BNL, CERN, SYRA, YALE HERB 77 PRL 39 252 +Hom, Lederman, Appel, Ito+ (COLU, FNAL, STON)	KAPLAN	78	PRL 40 435	+Appel, Herb, Hom+	(STON, FNAL, COLU)
HERB 77 PRL 39 252 +Hom, Lederman, Appel, Ito+ (COLU, FNAL, STON)	YOH	78	PRL 41 684	+Herb, Hom, Lederman+	(COLU. FNAL. STON)
HERB 77 PRL 39 252 +Hom, Lederman, Appel, Ito+ (COLU, FNAL, STON)	COBB	77	PL 72B 273	+Iwata, Fabian+ (BNL	CERN. SYRA. YALE)
	HERB	77	PRL 39 252		
	INNES	77	PRL 39 1240		(COLU, FNAL, STON)

$\Upsilon(4S) = \Upsilon(10580), \Upsilon(10860), \Upsilon(11020), \text{Non-} q\overline{q} \text{ Candidates}$

 $\Upsilon(4S)$ or $\Upsilon(10580)$

 $I^{G}(J^{PC}) = ??(1^{--})$

(45) MASS

- ¹ Reanalysis of BESSON 85.
- No systematic error given.

Υ(45) WIDTH

 $\begin{array}{l} \underline{\textit{VALUE}\;(\textit{MeV})} \\ \textbf{23.8 \pm 2.2\;OUR\;AVERAGE} \\ 20.0 \pm 2 & \pm 4 \\ 25 & \pm 2.5 \end{array}$

 DOCUMENT ID
 TECN
 COMMENT

 BESSON
 85
 CLEO
 $e^+e^- \rightarrow$ hadrons

 LOVELOCK
 85
 CUSB
 $e^+e^- \rightarrow$ hadrons

↑(45) DECAY MODES

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Υ(45) PARTIAL WIDTHS

Υ(4S) REFERENCES

 BEBEK
 87
 PR D36 1289
 + Berkelman, Blucher, Cassel –
 (CLEO Collab.)

 BESSON
 85
 PRL 54 381
 + Green, Namjoshi, Sannes +
 (CLEO Collab.)

 LOVELOCK
 85
 PRL 54 377
 + Horstkotte, Klopfenstein +
 (CUSB Collab.)

OTHER RELATED PAPERS —

ANDREWS 80B PRL 45 219 - Berkelman, Cabenda, Cassel+ (CLEO Collab.) FINOCCHI... 80 PRL 45 222 Finocchiaro, Giannini, Lee-Franzini+ (CUSB Collab.)

 $\Upsilon(10860)$

 $I^{G}(J^{PC}) = ?^{?}(1^{--})$

Υ(10860) MASS

VALUE (GeV) 10.865±0.008 OUR AVERAGE 10.868±0.006±0.005 10.845±0.020

 $\begin{tabular}{lll} \hline \textit{DOCUMENT ID} & \textit{TECN} & \textit{COMMENT} \\ \hline Error includes scale factor of 1.1. \\ \hline \textit{BESSON} & 85 & CLEO & e^+ e^- \rightarrow & \textit{hadrons} \\ \hline \textit{LOVELOCK} & 85 & CUSB & e^+ e^- \rightarrow & \textit{hadrons} \\ \hline \end{tabular}$

℃(10860) WIDTH

↑(10860) DECAY MODES

 $\begin{array}{ccc} \mbox{Mode} & \mbox{Fraction } (\Gamma_i/\Gamma) \\ \mbox{Γ_1} & \mbox{e^+} \mbox{e^-} & \mbox{$(2.8 \pm 0.7) \times 10^{-6}$} \end{array}$

↑(10860) PARTIAL WIDTHS

T(10860) REFERENCES

 BESSON LOVELOCK
 85
 PRL 54 381
 +Green, Namjoshi, Sannes-+Horstkotte, Klopfenstein+
 (CLSD Collab.)

$\Upsilon(11020)$

 $I^{G}(J^{PC}) = ?^{?}(1^{--})$

↑(11020) MASS

 VALUE (GeV)
 DOCUMENT ID
 TECN
 COMMENT

 11.019±0.008 OUR AVERAGE
 11.019±0.005±0.007
 BESSON
 85
 CLEO
 e^+e^- → hadrons

 11.020±0.030
 LOVELOCK
 85
 CUSB
 e^+e^- → hadrons

T(11020) WIDTH

T(11020) DECAY MODES

Mode Fraction ($Γ_i/Γ$) $^ _1$ e^+e^- (1.6±0.5) × 10⁻⁶

Υ(11020) PARTIAL WIDTHS

T(11020) REFERENCES

BESSON 85 PRL 54 381 • Green, Namjoshi, Sannes+ (CLEO Collab.)
LOVELOCK 85 PRL 54 377 + Horstkotte, Klopfenstein+ (CUSB Collab.)

NON-qq CANDIDATES

We include here mini-reviews and reference lists on non- $q\,\overline{q}$ candidates. These are divided into two subsections:

- 1) Gluonium candidates, and
- 2) Other non- $q\overline{q}$ candidates: $q\overline{q}q\overline{q}$ and $q\overline{q}g$ hybrids. See also $N\overline{N}(1100-3600)$ for possible bound states.

NOTE ON NON- $q\overline{q}$ MESONS

The existence of a gluon self coupling in QCD suggests that in addition to the conventional $q\bar{q}$ meson states, there may be bound states including gluons: gluonia or glueballs, and hybrids $(q\bar{q}g)$. Another example of non- $q\bar{q}$ mesons could be multiquark states. For detailed reviews see, e.g., CLOSE 87. COOPER 86, MESHKOV 86, HEUSCH 86, TOKI 88.

The theoretical guidance on the properties of unusual states is often contradictory, and models which agree in the $q\bar{q}$ sector often differ in their predictions about new states. Among the naively expected signatures for gluonium are:

- (i) no place in $q\bar{q}$ nonets,
- (ii) flavor-singlet couplings,
- (iii) enhanced production in gluon-rich channels such as $J/\psi(1S)$ decay,
- (iv) reduced $\gamma \gamma$ coupling,
- (v) exotic quantum numbers not allowed for $q\overline{q}$ (in some cases).

However it must be pointed out that mixing effects and other dynamical effects will obscure these simple signatures. If the mixing is large, only counting the number of observed states remains a clear signal for non-exotic non- $q\bar{q}$ states.

Non- $q\overline{q}$ Candidates, Gluonium Candidates, Other Non- $q\overline{q}$ Candidates

For recent reviews on the $f_2(1720)$, see COOPER 86, MAL-LIK 87.

The three f_2 resonances between 2 and 2.4 GeV, have been observed in an OZI-rule-forbidden process $\pi p \to \phi \phi n$ (ETKIN 88). The OZI suppression has been used as a strong argument for favoring a gluonium interpretation of these states. The argument is, however, not fully compelling, since broad resonances, by unitarity, are expected to mix substantially, and therefore the OZI rule may not apply. Moreover, one of these resonances, the one closest to the $\phi \phi$ threshold, could possibly be interpreted as a $\phi \phi$ molecule (mesonium) candidate. A similar $\phi \phi$ mass spectrum is seen by ARMSTRONG 89B in the Ω spectrometer.

The DM2 and MARK-III collaborations see threshold $\phi\phi$ production but favor $J^P=0^-,$ not $2^+.$

The ASTERIX collaboration (MAY 89) finds a 2^{++} resonance in $p\bar{p}$ P-wave annihilation at 1565 MeV in the $\pi^+\pi^-\pi^0$ final state which may be a 4-quark state since there is no natural place in the $q\bar{q}$ model.

Other exotic or non- $q\bar{q}$ candidates: An isovector $\phi\pi^0$ resonance at 1480 MeV has been reported by BITYUKOV 87 in $\pi^-p \to \phi\pi^0n$ [see $\rho(1450)$]. Preliminary indications favor $J^{PC}=1^{--}$, i.e. nonexotic, but the large OZI rule violating branching ratio $\phi\pi:\omega\pi$ seems peculiar for a $(u\bar{u}-d\bar{d})$ I=1 $q\bar{q}$ object, (although ACHASOV 88 shows that a two step process can violate the rule, and an identification with $\rho(1450)$ could still be possible). In addition the small coupling to the photon makes an identification with the $\rho(1450)$ difficult (CLEGG 88). Therefore a $qq\bar{q}q$ interpretation comes to mind.

Another exotic candidate is the $\hat{\rho}(1405)$ (ALDE 88B, IDDIR 88) seen in one experiment under the $a_2(1320)$ in $\pi^-p \to \eta\pi^0n$ with the exotic quantum numbers $J^{PC}=1^{-+}$. See however TUAN 88 for a critical discussion. For another possible 1^{-+} candidate see the isosinglet X(1910).

A narrow resonance has been reported at ≈ 3100 MeV (BOURQUIN 86, KEKELIDZE 90) in several ($\Lambda \bar{p} + \text{pions}$) and ($\bar{\Lambda}p + \text{pions}$) states. The observation of the doubly charged states ($\Lambda \bar{p}\pi^-$ and $\bar{\Lambda}p\pi^+$) implies $I \geq 3/2$, clearly outside the $q\bar{q}$ system. In addition, a narrow peak is observed at ≈ 3250 MeV in the "hidden strangeness" combinations containing a pair of baryon-antibaryon (KEKELIDZE 90). However all these observations need confirmation.

Gluonium Candidates

OMITTED FROM SUMMARY TABLE

GLUONIUM CANDIDATES REFERENCES

KEKELIDZE	90	Hadron 89 Conf.	+ Aleev +	(BIS-2 Collab.)
ARMSTRONG	898	PL B221 221	+Benayoun- (CERN	, CDEF, BIRM, BARI, ATHU, LPNP
ARMSTRONG	89D	PL B227 186	+ Benavoun	(ATHU, BARI, BIRM, CERN, CDEF
MAY	89	PL B225 450	+ Duch, Heel	(ASTERIX Collab.)
WEINSTEIN	89	UTPT 89 03	+lsgur	(TNTO
ACHASOV	88	PL B207 199	+ Kozhevnikov	(NOVO)
ALDE	88	PL B201 160	+Bellazini, Binon+	(SERP. BELG, LANL, LAPP, PISA)
ALDE	88B	PL B205 397	+Binon, Boutemeur -	(SERP, BELG, LANL, LAPP)
ASTON	88D	NP B301 525	+ Awaji, Bienz +	(SLAC, NAGO, CINC, TOKY
BIRMAN	88	PRL 61 1557	+Chung, Peaslee+	(BNL, FSU, IND, SMAS)
CLEGG	88	ZPHY C40 313	Donnachie	(MCHS, LANC
ETKIN	88	PL B201 568	- Foley, Lindenbaum -	(BNL, CUNY)
GOUNARIS	88	PL B213 541	+ Neufeld	(CERN
IDDIR	88	PL B205 564	+Le Yaouanc, Ono+	(LPTP, TOKY
SLAUGHTER	88	MPL A3 1361		` (LANL

TOKI	88	AtP Conf.	(SLAC)
ALDE	87	PL B198 286	+Binon, Bricman+ (LANL, BRUX, SERP, LAPP)
ASTON	87	NP B292 693	+ Awaji, D'Amore+ (SLAC, NAGO, CINC, TOKY)
AU	87	PR D35 1633	+Morgan, Pennington (DURH, RAL)
CHANOWITZ	87	PL B187 409	(LBL)
CLOSE	87	RPP 51 833	(RHEL)
GIDAL.	87	PRL 59 2012	+Boyer, Butler, Cords, Abrams+ (LBL, SLAC, HARV)
GIDAL	87B	PRL 59 2016	+Boyer, Butler, Cords, Abrams+ (LBL, SLAC, HARV)
MALLIK	87	SLAC-PUB-4238	(Mark III Collab.)
PARTRIDGE	87	Moriond XXII Conf.	Patridge (SLAC)
SINHA	87	PR D35 952	+Okubo, Tuan (ROCH, HAWA)
AIHARA	86B	PRL 57 404	
			+Alston-Garnjost+ (TPC-2γ Collab.)
AIHARA	86C	PRL 57 2500	+Alston-Garnjost + (TPC-2γ Collab.)
AIHARA	86D	PRL 57 51	+Alston-Garnjost+ (TPC-2γ Collab.)
AKESSON	86	NP B264 154	+ Albrow, Almehed+ (Axial Field Spec. Collab.)
ALDE	86B	PL B177 120	+Binon, Bricman+ (SERP, BELG, LANL, LAPP)
ALDE	86€	PL B182 105	+Binon, Bricman+ (SERP, BELG, LANL, LAPP)
ALDE	86D	NP B269 485	+Binon, Bricman+ (BELG, LAPP, SERP, CERN)
ANDO	86	PRL 57 1296	+Imai+ (KEK, KYOT, NIRS, SAGA, TOKY, TSUK~)
ARMSTRONG	86D	Berkeley Conf. 7870	(CERN)
BISELLO	86B	PL B179 294	+Busetto, Castro, Limentani+ (DM2 Collab.)
BRAMON	86B	ZPHY C32 467	Casulleras (BARC)
CHUNG	86	Berkeley Conf. 725	(BNL)
COOPER	86	Berkeley Conf. 67	(MIT)
EISNER	86	Berkeley Conf. 1211	(SLAC)
HEUSCH	86	Consisted Composium	on Multiparticle Dynamics (SLAC)
LINDENBAUM			
	86	BNL 37412 preprint	(BNL)
LONGACRE		PL B177 223	-Etkin+ (BNL, BRAN, CUNY, DUKE, NDAM)
MESHKOV	86	Aspen Winter Conf.	(NBS)
AUGUSTIN	85	Moriond XX 1 479	- Calcaterra, Cosme + (ORSA, CLER, PADO, FRAS)
BALTRUSAIT		PR D32 566	Baltrusaitis, Coffman+ (CIT, UCSC, ILL, SLAC, WASH)
	85	PRL 55 779	-Fernow, Boehnlein - (BNL, FLOR, IND, SMAS)
COOPER	85	Bari Conf. 947	(SLAC)
ETKIN	85	PL 165B 217	-Foley, Longacre, Lindenbaum+ (BNL, CUNY)
LINDENBAUM	85	PL 165B 202	+Longacre (BNL)
LINDENBAUM	85B	BNL 36610 preprint	-Longacre (BNL)
RYBICKI	85	ZPHY C28 65	+Sakrejda (CRAC)
ARMSTRONG	84	PL 146B 273	-Bloodworth, Burns - (ATHU, BARI, BIRM, CERN)
AU	84	PL 167B 229	- Morgan, Pennington (RL)
BINON	84C	NC 80A 363	+Bricman, Donskov+ (BELG, LAPP, SERP, CERN)
DAUM	84	ZPHY C23 339	Hertzberger+ (AMST, CERN, CRAC, MPIM, OXF+)
GERSHTEIN	84	ZPHY C24 305	-Likhoded, Prokoshkin (SERP)
LINDENBAUM		PL 149B 407	-Lipkin (BNL, FNAL)
MORGAN	84	PL 137B 411	- Pennington (RHEL, DURH)
	83B	NP B224 193	
	83		
BAUBILLIER		ZPHY C17 309	+ (BIRM, CERN, GLAS, MSU, LPNP)
BINON	83	NC 78A 313	- Donskov, Duteif + (BELG, LAPP, SERP, CERN)
CASON	83	PR D28 1586	+Cannata, Baumbaugh, Bishop+ (NDAM, ANL)
ONO	83	ZPHY C21 109	+Pene (AACH, ORSA)
TEPER	83	Brighton Conf. 4	(LAPP)
WEINSTEIN	83B	PR D27 588	· Isgur (TNTO)
EDWARDS	82E	PRL 49 259	+Partridge, Peck+ (CIT. HARV, PRIN, STAN, SLAC)
ETKIN	82	PRL 49 1620	 Foley, Longacre, Lindenbaum+ (BNL, CUNY)
ETKIN	828	PR D25 1786	Foley, Lai (BNL, CUNY, TUFT, VAND)
ETKIN	82C	PR D25 2446	-Foley, Lai+ (BNL, CUNY, TUFT, VAND)
LIPKIN	82	PL 109B 326	(ANI.)
CHABAUD	81	APP B12 575	- Niczyporuk, Becker - (CERN, CRAC, MPIM)
DAUM	81D	PL 104B 246	-Bardsley- (ACCMOR Collab.)
DONOGHUE	81	PL 99B 416	+ Johnson, Li (MIT)
LINDENBAUM		NC 65A 222	(BNL)
SCHARRE	81	Bonn Conf. 163	(SLAC)
DIONISI	80	NP B169 1	+Gavillet+ (CERN, MADR, CDEF, STOH)
JAFFE	80	PRL 34 1645	-Johnson (MIT)
STANTON	79	PRL 42 346	- Brockman + (OSU, CARL, MCGI, TNTO)
ROBSON	77	NP B130 328	- Brockman = (OSU, CARL, MCGI, TNTO) (LIVP)
JAFFE	76		
	67	PL 60B 201	- Johnson (MIT) - Edwards, D'Andlau, Astier+ (CERN, CDEF, IRAD)
BAILLON	07	NC 50A 393	· Edwards, D Andiau, Astier+ (CERN, CDEF, IRAD)

Other Non- $q\overline{q}$ Candidates

OMITTED FROM SUMMARY TABLE

OTHER NON-qq CANDIDATES REFERENCES

KEKELIDZE	90	Hadron 89 Conf.	+Aleev+ (BIS-2 Collab.)
ACHASOV	88B	ZPHY C41 309	+Shestakov (NOVO)
SHOEMAKER	88	PR D37 1120	+ Shestakov (NOVO + Ko, Michael, Lander, Pellet + (UCD + Dzhelyadin, Dorofeev, Golovkin + (SERP)
BITYUKOV	87	PL B188 383	Dzhelyadin, Dorofeev, Golovkin+ (SERP)
CHANOWITZ	87	PL B187 409	(LBL)
LIU	87	PRL 58 2288	Kiu, Li (STON)
BALTRUSAIT	86B	PR D33 1222	Baitrusaitis, Coffman, Hauser+ (Mark III Collab. Busetto, Castro, Limentani+ (DM2 Collab.)
BISELLO	86	PL B179 289	Busetto, Castro, Limentani+ (DM2 Collab.)
BOURQUIN	86	PL B172 113	Brown + (GEVA, RAL, HEID, LAUS, BRIS, CERN)
BRIDGES	86	PRL 56 211	+Brown+ (BLSU, BNL, CASE, COLU, UMD, SYRA)
BRIDGES	86B	PRL 56 215	+Daftari, Kalogeropoulos, Debbe+ (SYRA, CASE)
BRIDGES	86C	PRL 57 1534	+Daftari, Kalogeropoulos+ (SYRA)
ACHASOV	85	ZPHY C27 99	+Daftari, Kalogeropoulos+ (SYRA) -Devyanin, Shestakov (NOVO)
DOVER	84	PL 146B 103	(ORSA)
JENKINS	84	PR D30 1409	Diamond, Kirsch - (FSU, BRAN, BNL, CINC, SMAS)
KITAZÓE	84	ZPHY C24 143	+ Wada, Kaburagi, Kawaguchi, Mori+ (KOBE, MIT
ONO	84	ZPHY C26 307	(ORSA)
AGUILAR	81C	ZPHY C6 109	Aguilar-Benitez+ (CERN, CDEF, MADR, STOH)
APEL	81	NP B193 269	+Augenstein, Bertolucci, Donskov+ (SERP, CERN)
BIONTA	81	PRL 46 970	-Carroll, Edelstein+ (BNL, CMU, FNAL, SMAS)
EVANGELISTA	81	NP B178 197	 (BARI, BONN, CERN, DARE, LIVP+
FRAME	81	PL 107B 301	 Hughes, Colley, Armstrong+ (GLAS, BIRM, CERN)
IRVING	81B	NP B193 1	 Loverre + (CERN, CDEF, MADR, STOH)
KOOIJMAN	80	PRL 45 316	- Arenton, Ayres, Diebold, May+ (ANL EFI - Trilling, Abrams, Alam, Blocker (SLAC, LBL
SCHARRE	80	PL 97B 329	-Trilling, Abrams, Alam, Blocker - (SLAC, LBL)
ALAM	78	PRL 40 1685	Baggett, Baglin- (IND. PURD, SLAC, VAND)
ARMSTRONG	78	PL 77B 447	Baggett, Baglin- (IND. PURD. SLAC. VAND -Frame, Hughes, Bienlein- (GLAS. DESY -Pennington (STOH, CERN -Navach, Rivet+ (LALO, CERN. CDEF. EPOL
HOLMGREN	78	PL 77B 304	Pennington (STOH, CERN)
BOUCROT	77	NP B121 251	Navach, Rivet+ (LALO, CERN, CDEF, EPOL
HOOGLAND	77	NP B126 109	+Grayer, Hyams, Blum, Dietl+ (AMST, CERN, MPIM)
MOSER	77	NP B129 28	(EFI
BRUNDIERS	76	PL 64B 107	+Brun, Fluri+ (FREI, SACL, ÉTH
BALTAY	75B	PL 57B 293	· Cautis, Cohen, Kalelkar, Pisello+ (COLU, BING)
DAVIS		NP B96 426	+Brun, Fluri+ (FREI, SACL, ETH -Cautis, Cohen, Kalelkar, Pisello+ (COLU, BING -Ammar, Kropac, Yarger+ (KANS, CCAC, ANL
ALAM	74	PL 53B 207	+Brabson, Galloway - (IND, PURD, SLAC, VAND)
COHEN	74	Boston Conf. 79	(COLU

Other Non- $q\bar{q}$ Candidates, Top and Fourth Generation Hadrons

OREN	74	NP B71 189	+Cooper, Fields, Rhines, Allison+	(ANL, OXF)
COHEN	73B	NP B53 1	+Ferbel, Slattery, Werner	(ROCH)
DURUSOY	73	PL 45B 517	+Baubillier, George, Armenise+	(LPNP, BARI)
FAIMAN	73	PL 43B 307	+Goldhaber, Zarmi	(CERN)
LIPKIN	73	PR D7 2262		(ANL, FNAL)
BUHL	72	NP B37 421	+Cline, Terrell	(WISC)
CHO	70B	PL 32B 409	+Derrick, Johnson, Musgrave+	(ANL, NWES, KANS)
GIACOMELLI	70	PL 33B 373	 + (BĞNA, SACL, 	AMST, REHO, EPOL)
LYS	70	PR D2 2525	+	(MICH)
ROSNER	70	Exp. Meson Spectrosco	opy 499	
DODD	69	PR 177 1991	+ Joldersma, Palmer, Samios	(BNL)
P:OSENFELD	68	Phil. Conf. 455		(LRL)
ROSNER .	68	PRL 21 950,1468		(TELA)

HEAVY QUARK SEARCHES

Searches for Top and Fourth Generation Hadrons

Experiments at e^+e^- colliders search for both top-flavored hadrons and vector toponium states, whereas experiments at $p\overline{p}$ colliders search only for top-flavored hadrons. Theoretical uncertainties are relatively small in $e^+e^$ collisions although details of the production cross section at threshold are not known, but uncertainties in $p\overline{p}$ collisions are somewhat larger due to our present ignorance of the details of the parton distributions in a proton and (to a lesser extent) of higher-order QCD corrections. Current $p\bar{p}$ collider experiments have limits which depend on the assumption that no two-body mode such as $t \rightarrow bH^+$ is available.

The last column specifies measured quantities: S = Sphericity, T = Thrust

MASS LIMITS for Top Hadrons in e^+e^- Collisions

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>45.8	95	¹ DECAMP	90F ALEP	isolated charged particle and aplanarity
 • • We do not use the for 	llowing d	ata for averages, fits	s, limits, etc.	• • •
>30.2	95	ABE	90D VNS	Event shape
>44.5	95	² AKRAWY	908 OPAL	Acoplanarity
>40.7	95	³ ABRAMS	89c MRK2	Event shape
>42.5	95	ABRAMS	89c MRK2	$t \rightarrow bH^{+},$ $H^{+} \rightarrow c\overline{s}$
>29.9	95	⁴ ADACHI	89c TOPZ	μ
>29.9	95	⁵ ENO	89 AMY	μ, e
>25.8	95	⁶ ADACHI	88 TOPZ	R, T, Acoplanarity
>25.9	95	⁷ IGARASHI	88 AMY	$T + (\mu, e)$
>25.9	95	⁸ SAGAWA	88 AMY	R, T
none E _{cm} =50	95	9 ABE	87 VNS	R, T, Acoplanarity
>25.5	95	10 YOSHIDA	87 VNS	R, T, Acoplanarity
none $E_{cm} = 39.79-46.78$	95	¹¹ ADEVA	86 MRKJ	R, Τ, μ
none E _{cm} = 40~46.78	95	12 ADEVA	85 MRKJ	μ
none E _{Cm} = 39.8–45.2		13 ALTHOFF	84c TASS	R, event shape
rone E _{cm} = 12.–43.		14 ALTHOFF	84I TASS	Aplanarity
none E _{cm} = 33-36.72	95	15 BEHREND	84D CELL	Aplanarity
rone E _{cm} = 38.66-46.78	95	15 BEHREND	84D CELL	Aplanarity
rone E _{Cm} < 38.54	99	¹⁶ ADEVA	83 MRKJ	R, T, $(\mu^{+} \mu^{-} X)$
none E _{Cm} < 38		ADEVA	838 MRKJ	$p_T(\mu)$, T
none E _{cm} = 14~36.7		17 BRANDELIK	82 TASS	R
none E _{cm} = 33-35.8		18 BARTEL	81 JADE	μ
rone E _{cm} = 30–36		19 BARBER	80 MRKJ	R, Τ, μ
none E _{cm} = 12-31.6		²⁰ BERGER	80 PLUT	μ
none E _{CM} = 31.6		²¹ BARBER	79 MRKJ	R, S, T
none E _{Cm} = 22-31.6		22 BARTEL	79 JADE	R
none E _{Cm} = 22-31.6		23 BARTEL	79B JADE	S
none E _{cm} = 22-31.6		²⁴ BERGER	79B PLUT	R, S, T, μ

- ¹ DECAMP 90F search was near the Z peak at LEP.
- 2 AKRAWY 90B search was restricted to data near the Z peak at $\sqrt{s}=$ 91.26 GeV at LEP. The excluded region is between 23.4 and 44.5 GeV if no H^+ decays exist. A charged Higgs decay shrinks the excluded region by increasing 23.4 GeV to $(m(H^+) + 5 \text{ GeV})$.
- 3 The ABRAMS 89c limit from an isolated track search is 40.0 GeV.
- ⁴ ADACHI 89C search was at $\sqrt{s}=56.5$ –60.8 GeV at TRISTAN using multi-hadron events accompanying muons.
- ⁵ ENO 89 search at $\sqrt{s} = 50$ –60.8 GeV at TRISTAN.
- 6 ADACH1 88 set limit $\sigma(top) < 8.2$ pb at CL=95% for top-flavored-hadron production from event shape analyses at Ecm = 52 GeV. By using the quark-parton model cross-section formula with first-order QCD corrections near the threshold, the above limit leads to a lower mass limit of 25.8 GeV at 95% confidence level for top quarks.
- 7 IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta \emph{R}(t) <$ 0.15 (95% CL) at $\sqrt{s} = 50-52$ GeV.
- 8 SAGAWA 88 set limit $\sigma(\text{top}) < 6.1$ pb at CL=95% for top-flavored hadron production from event shape analyses at $E_{\text{Cm}} = 52$ GeV. By using the quark parton model cross-section formula near threshold, the above limit leads to lower mass bounds of 25.9 GeV for charge 2/3 quarks.
- ⁹ ABE 87 set limit $\sigma(top) < 16$ pb at CL=95% for top-flavored hadron production, which should be compared with the full top-quark production cross section of 45.9 pb.
- 10 YOSHIDA 87 set limit $\sigma(top) <$ 17 pb at CL=95% for top-flavored hadron production from event shape analyses at $E_{\mbox{\footnotesize{cm}}}=52$ GeV. This limit should be compared with the

- full top-quark production cross section of 34 pb, which takes into account the effect of weak neutral current but neglects its axial-vector coupling contribution expected to be suppressed near threshold. After considering the radiative effects, top quarks of mass below 25.5 GeV can be excluded by the above limit.
- 11 ADEVA 86 give 95%CL upper bound on an excess of the normalized cross section, ΔR , as a function of the minimum c.m. energy (see their figure 3). An increase of the hadronic cross section predicted for full top-quark production ($\Delta R_{ ext{top}} \sim 1.5$) is then excluded up to $E_{CM}=46.6$ GeV. Toponium search sets limit $\Gamma(e^+e^-)B(hadrons)<3$ keV at CL=95% at $E_{CM}=44-46$ GeV. Also reported is an observation of eight low-thrust hadron events containing muons, which remains unexplained.
- 12 ADEVA 85 exclude toponium below 46.6 GeV and open top continuum below 23.3 GeV at CL = 95%. Toponium search sets limit $\Gamma(e^+e^-)$ B(hadrons) <3 keV.
- 13 ALTHOFF 84c narrow state search sets limit $\Gamma(e^+e^-)$ B(hadrons) <2.4 keV CL = 95% and heavy charge 2/3 quark pair production m>22 GeV, CL = 95%.
- 14 ALTHOFF 84: exclude heavy quark pair production for masses in GeV 5 < m < 20.3 (2/3 charge) using aplanarity distributions (CL = 95%).
- 15 BEHREND 84D exclude toponium below 46.7 GeV and continuum production below 23.3 GeV (2/3 charge) and 22.7 GeV (1/3 charge) at CL = 90%. Toponium search sets limit $\Gamma(e^+e^-)$ B(hadrons) <2.9 keV where toponium is expected to have $\Gamma(e^+e^-)=$ 4–5
- 16^{MeV} .

 10 ADEVA 83 energy scan excludes open top continuum below 38.54 GeV and toponium between 29.90 and 38.63 GeV $\Gamma(e^+e^-)$ B(hadrons) <2.0 keV at CL = 95%). Also set limit B(B $\rightarrow \mu^+ \mu^- X$) <0.007 (CL = 95%) which excludes flavor-changing neutral current in topless models.
- 17 BRANDELIK 82 got $R=4.01\pm0.03\pm0.2$ with no step for W>14 GeV. Narrow state search for W=33-36.7 GeV sets $\Gamma(e^+e^-)$ B(hadrons) <1.5 keV (CL = 95%).
- $^{18}\,\mathrm{BARTEL}$ 81 measures inclusive muons with momentum >1.4 GeV/c. Agree with expected semileptonic decays from charmed and bottom mesons.
- 19 BARBER 80 find no evidence for an open top-antitop threshold in $\it R$, thrust distributions and inclusive muons. Energy scan in the range $29.9 < E_{CM} < 31.6$ GeV reveals no hadron resonance corresponding to a (top-quark antitop-quark) bound state.
- 20 BERGER 80 measures inclusive muons with momentum > 2 GeV/c. Agree with expected semileptonic decays from charmed and bottom mesons
- 21 BARBER 79 R, thrust, spherocity indicate top production unlikely.
- ²² BARTEL 79 saw no evidence of new Q=2/3 quark production in R-ratio.
- 23 BARTEL 79B observe no significant accumulation of spherical events.
- 24 BERGER 799 find $R=3.88\pm0.22$ which along with sphericity and thrust behaviors is against open top-antitop channel below 30 GeV. Final muons are also consistent with expectation without top-quark state.

MASS LIMITS for Top Hadrons in $p\overline{p}$ Collisions

These experiments assume that no two-body mode such as $t \rightarrow bH^+$ is available. CL% VALUE (GeV) DOCUMENT ID TECN COMMENT 25 ABE 90c CDF $e + \text{jets} + \text{missing } E_T$ 95 • • • We do not use the following data for averages, fits, limits, etc. • • • ²⁶ ABE >72 95 90B CDF 27 AKESSON >69 95 90 UA2 $e + \text{Jets} + \text{missing } E_T$ ²⁸ ALBAJAR >41 88 UA1 e or μ + jets

- 25 ABE 90C cannot exclude m(t)<40 GeV, but this region is ruled out by other experiments. They study events with an energetic electron, missing transverse energy and two or more jets. Only the $t\bar{t}$ contribution (not $W\to tb$) is relevant for these masses.
- ²⁶ ABE 90B exclude the region 28-72 GeV.
- 27 AKESSON 90 searched for events having an electron with $ho_{T}~>$ 12 GeV, missing momentum > 15 GeV, and a jet with E_T > 10 GeV, $|\eta|$ < 2.2, and excluded m(t)between 30 and 69 GeV.

 28 ALBAJAR 88 study events at E_{Cm} = 546 and 630 GeV with a muon or isolated electron,
- ALBAJAK 88 Study events at $E_{CM} = 346$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for the production of charm and bottom, without the need for a new quark. The top-quark mass bound is obtained by using the $W \to t\bar{b}$ cross section normalized to their own $W \to t\bar{b}$ rate and by adding to it the $t\bar{t}$ contribution with a conservative value of the cross section with the lowest-order calculation. The analysis is not sensitive to the $W \to t\bar{b}$ contribution with a conservative value of the cross section with the lowest-order calculation. The analysis is not sensitive to the $W \to t\bar{b}$ $t\,\overline{b}$ process alone. The value quoted here is revised using the full $O(\alpha_5^3)$ cross section of ALTARELLI 88.

MASS LIMITS for b' (Fourth Generation) Hadrons in e^+e^- Collisions Search for hadrons containing a fourth-generation -1/3 quark denoted b'.

The last column specifies the assumption for the decay mode (CC denotes the conventional charged-current decay) and the event signature which is looked for.

VALUE (GeV)	CL%_	DOCUMENT ID	TECN	COMMENT
>46.0	95	²⁹ DECAMP	90F ALEP	any decay
• • • We do not use	the follow	ving data for average	s, fits, limits	, etc. • • •
none 19.4-28.2	95	ABE	90D VNS	Any decay; event shape
>28.3	95	ADACHI	90 TOPZ	B(FCNC)=100%; isol. γ or 4 iets
>41.4	95	30 AKRAWY	90B OPAL	
>45.2	95	30 AKRAWY	90B OPAL	
>27.5	95	³¹ ABE	89E VNS	$B(CC) = 1; \mu, e$
none 11.4-27.3	95	32 ABE	89G VNS	
>44.7	95	33 ABRAMS	89c MRK2	
>42.7	95	³³ ABRAMS	890 MRK2	
>42.0	95	³³ ABRAMS	89c MRK2	
>28.4	95	34,35 ADACHI	89c TOPZ	
>28.8	95	³⁶ ENO	89 AMY	
>27.2	95	36,37 ENO	89 AMY	any decay; event shape
>29.0	95	³⁶ ENO	89 AMY	$B(b' \rightarrow bg) \gtrsim 85\%;$ event shape

N BARYONS

(S=0, I=1/2)

 $n, N^0 = udd$ $D. N^+ = uud$

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$

p MASS

The mass is known much more precisely in u (atomic mass units) than in MeV; see the footnote. The conversion from u to MeV, 1 u = 931.49432 ± 0.00028 MeV, involves the relatively poorly known electronic charge.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
938.27231±0.00028	1 COHEN	87	RVUE	1986 CODATA value		
• • • We do not use the follo	wing data for average	s, fit	s, limits,	etc. • • •		
938.2796 ±0.0027	COHEN	73	RVUE	1973 CODATA value		
¹ The mass is known much r	more precisely in u: n	7 = 1	.007276	470 ± 0.000000012 u.		

P MASS

VALUE (MeV)	DOCUMENT ID TECH			COMMENT	
938.22 ±0.04 OUR AVERAGE					
938.30 ±0.13	ROBERTS	78	CNTR		
938.229 ± 0.049	ROBERSON	77	CNTR		
938.179 ± 0.058	HU	75	CNTR	Exotic atoms	
938.3 ±0.5	BAMBERGER	70	CNTR		

D MAGNETIC MOMENT

See the Note on Baryon Magnetic Moments in the A Listings.

VALUE (µN)	DOCUMENT I	DOCUMENT ID		COMMENT		
$2.792847386 \pm 0.000000063$	COHEN	87	RVUE	1986 CODATA value		
	g data for avera	ges, fits	, limits,	etc. • • •		
2.7928456 ± 0.0000011	COHEN	73	RVUE	1973 CODATA value		

P MAGNETIC MOMENT

A few early results have been omitted.

VALUE (µN)	DOCUMENT ID		TECN	COMMENT	
2.800 ±0.008 OUR AVERAGE					
-2.8005 ± 0.0090	KREISSL	88	CNTR	\bar{p}^{208} Pb 11 \rightarrow 10 X-ray	1
-2.817 ± 0.048	ROBERTS	78	CNTR	•	Ī
-2.791 ± 0.021	HU	75	CNTR	Exotic atoms	

p ELECTRIC DIPOLE MOMENT

A nonzero value is forbidden by both T invariance and P invariance

VALUE (10-23 e-cm)	EVTS	DOCUMENT ID		TECN	COMMENT
-3.7 ± 6.3		СНО	89	NMR	TI F molecules
 • • We do not use 	the followin	g data for average	s, fit	s, limits,	etc. • • •
< 400		DZUBA	85	THEO	Uses 129 Xe moment
130 ± 200		² WILKENING	84		
900 ± 1400		3 WILKENING	84		
700 ± 900	1G	HARRISON	69	MBR	Molecular beam
2 This MILL REMINE			_		

This WILKENING 84 value includes a finite-size effect and a magnetic effect. ³ This WILKENING 84 value is more cautious than the other and excludes the finite-size

effect, which relies on uncertain nuclear integrals.

$|q_p + q_e|$ CHARGE MAGNITUDE DIFFERENCE

See DYLLA 73 for a summary of experiments on the neutrality of matter. See also "n CHARGE" in the neutron Listings.

VALUE (10 ⁻²¹ e)	DOCUMENT ID		COMMENT	
<1.0	⁴ DYLLA	73	Neutrality of SF ₆	
• • We do not use the following	g data for average	es, fit	s, limíts, etc. • • •	
< 0.8	MARINELLI	84	Magnetic levitation	
⁴ Assumes that $q_n = q_p + q_e$.				

NOTE ON PROTON MEAN LIFE LIMITS

(by M. Goldhaber, Brookhaven National Laboratory, and F. Reines, University of California, Irvine)

Current ideas on the unification of the weak, electromagnetic, and strong forces suggest that baryon number might not be strictly conserved, so that the proton could decay. In the Particle Properties Summary Tables there are nearly thirty particles listed with a mass smaller than that of the proton (if we count both particles and antiparticles and different members of multiplets separately). Ten of these particles are fermions and the remainder bosons. There are then a great many possible two-body decay modes of the proton and an even larger number of three-body, etc., decay modes which satisfy charge, energy, momentum, and angular momentum conservation. Each decay mode has to contain at least one fermion to satisfy angular momentum conservation. Figure 1 shows masses of possible decay products of the proton.

The "decay signature" distributions as well as the backgrounds depend on detector characteristics (the material from which the detector is made, the method of detection, timing information, time resolution, etc.). The background, due chiefly to atmospheric neutrinos, depends also on the geomagnetic latitude and on the phase of the solar cycle with which the magnetic field of the sun is associated. The depth-dependent cosmic ray background is due to cosmic ray muons and their progeny. For each possible proton decay signature there is a finite probability of a background event with a similar signature, where the probability depends on the detector characteristics.

The simplest grand unified theory, minimal SU(5), predicts $e^+\pi^0$ to be the predominant proton decay mode; see Table I. The IMB lower limit on the partial mean life for this mode, 3.1×10^{32} years, is a factor of 40 higher than predicted by minimal SU(5) theory.

See also the reviews in Refs. 1-5.

See also the neutron-antineutron oscillations section in the neutron Full Listings below for another test of baryon conservation.

References

- 1. M. Goldhaber, P. Langacker, and R. Slansky, Science 210,
- 2. D.H. Perkins, Ann. Rev. Nucl. Part. Sci. 34, 1 (1984).
- 3. J.M. LoSecco, Comments Nucl. Part. Phys. 15, 23 (1985).
- 4. W. Lucha, Comments Nucl. Part. Phys. 16, 155 (1986).
- 5. M. Goldhaber et al., in Proceedings XXIII International Conference on High Energy Physics, Berkeley, 1986, ed. S.C. Loken (World Scientific, Singapore, 1986), p. 248.

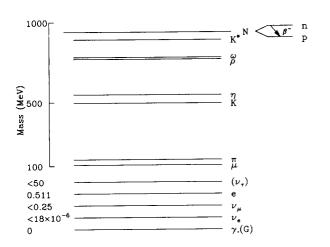


Figure 1. Masses of particles (in MeV) into which a proton might decay. The hypothetical graviton (G) is included.

Table I. Approximate ranges of the branching ratios

$$\mathrm{BR}(N \to \ell + M) = \frac{\Gamma(N \to \ell + M)}{\Gamma(N \to 2\text{-body})}$$

for the two-body proton decay $p \to \ell + M$ in the minimal conventional SU(5) model. This table was taken from Ref. 4.

Decay mode	Branching ratio (%)
$p \to e^+ \pi^0$	31–46
$p \to e^+ \eta$	0-8
$p \rightarrow e^+ \rho^0$	2-18
$p \to e^+ \omega$	15-29
$p \rightarrow \nu_e \pi^+$	11 - 17
$p \rightarrow \nu_e \rho^+$	1-7
$p \to \mu^+ K^0$	1-20
$p \rightarrow \nu_{\mu} K^{+}$	0-1

p MEAN LIFE

Test of baryon conservation. See proton partial mean lives section for limits which depend on decay modes, p = proton, p = bound neutron.

depend on de	cay modes. $p = proton, n$	n = bound neutron.	
LIMIT (years) PART	ICLE DOCUMENT	ID TECN	
$>1.6 \times 10^{25}$ p, n	^{5,6} EVANS	77	
• • • We do not u	se the following data for a	averages, fits, limits, etc. • • •	
$>$ 3. \times 10 ²³ p	⁶ DIX	70 CNTR	
$>3. \times 10^{23} p, n$	^{6,7} FLEROV	58	
⁶ Converted to m	f nucleons in ¹³⁰ Te nuclei ean life by dividing half-life f nucleons in ²³² Th nuclei	fe by $ln(2) = 0.693$.	

.....

P MEAN LIFE

LIMIT (years) PARTICLE	CL%_E	VTS	DOCUMENT ID		TECN	COMMENT
>1.1 × 10 ⁷			8 GOLDEN	79	SPEC	$\overline{p} \rightarrow X$
• • • We do not use t	he followin	g data	for averages, fits, I	imits	, etc. •	• •
>0.08	90	1				$\overline{\rho} \rightarrow e^- \pi^0$
$>3.7 \times 10^{-3}$			¹⁰ BREGMAN	78	CNTR	$\overline{p} \rightarrow X$

- ⁸ GOLDEN 79 value inferred from \overline{p}/p ratio in cosmic rays.
- $^9\,\mathrm{BELL}$ 79 stored antiprotons in ICE storage ring for 10 days. $^{10}\,\mathrm{BREGMAN}$ 78 stored antiprotons in ICE storage ring at CERN 85 hours.

p DECAY MODES

For N decays, p and n distinguish proton and neutron partial lifetimes.

	Mode	Partial mean life (10 ³⁰ years)	Confidence level
τ_1	$N \rightarrow e^+$ anything	>0.6 (n, p)	90%
τ_2	$N \rightarrow \mu^+$ anything	>12 (n, p)	90%
<i>T</i> 3	$N \rightarrow \nu$ anything		
τ_4	$N \rightarrow e^+ \pi^0$ anything	>0.6 (n, p)	90%
τ_5	$N \rightarrow e^+\pi$	>130 (n), >310 (p)	90%
τ_6	$N \rightarrow \mu^+ \pi$	>100 (n), >270 (p)	90%
T7	$N \rightarrow \nu \pi$	>100 (n), >25 (p)	90%
τ_8	$N \rightarrow e^+ K$	>1.3 (n), >150 (p)	90%
τ_9	$N \rightarrow \mu^+ K$	>1.1 (n), >120 (p)	90%
τ_{10}	$N \rightarrow \nu K$	>86 (n), >100 (p)	90%
τ_{11}	$N \rightarrow e^+ \rho$	>58 (n), >75 (p)	90%
τ_{12}	$N \rightarrow \mu^+ \rho$	>23 (n), >110 (p)	90%
τ_{13}	$N \rightarrow \nu \rho$	>19 (n), >27 (p)	90%
τ_{14}	$p \rightarrow e^+ \omega$	>45	90%
τ_{15}	$\rho \rightarrow \mu^+ \omega$	>57	90%
τ_{16}	$n \rightarrow \nu \omega$	>43	90%
τ_{17}	$ ho ightharpoonup e^+ \eta$	>140	90%
τ_{18}	$\rho \rightarrow \mu^+ \eta$	>69	90%
τ_{19}	$n \rightarrow \nu \eta$	>54	90%
τ_{20}	$\rho \rightarrow e^+ K^*(892)$	>52	90%
τ_{21}	$N \rightarrow \nu K^*(892)$	>22 (n), >20 (p)	90%
τ_{22}	$\rho \rightarrow e^+ \gamma$	>460	90%
τ_{23}	$\rho \rightarrow e^+ e^+ e^-$	>510	90%
T24	$p \rightarrow \mu^+ \gamma$	>380	90%
τ_{25}	$p \rightarrow \mu^+ \mu^+ \mu^-$	>190	90%
⁷ 26	$n \rightarrow \nu \gamma$	>9	90%
τ_{27}	$n \rightarrow e^+ e^- \nu$	>45	90%
τ_{28}	$n \rightarrow \mu^+ \mu^- \nu$	>16	90%
τ_{29}	$n \rightarrow 3\nu$	>0.0005	90%
τ_{30}	$\rho \rightarrow e^+ \mu^+ \mu^-$	>5.0	90%
τ_{31}	$\rho \rightarrow e^- \mu^+ \mu^+$	>6.0	90%
T32	$\rho \rightarrow e^-\pi^+\pi^+$	>2.0	90%
τ_{33}	$\rho \rightarrow \mu^+ \pi^+ \pi^-$	>3.3	90%
τ_{34}	$\rho \rightarrow \mu^- \pi^+ \pi^+$	>7.8	90%
T35	$n \rightarrow e^- \pi^+$	>65	90%
τ_{36}	$n \rightarrow \mu^- \pi^+$	>49	90%
T37	$n \rightarrow e^- K^+$	>0.23	90%
738	$n \rightarrow \mu^- K^+$	>4.7	90%
T39	$n \rightarrow e^- \rho^+$	>62	90%
τ_{40}	$n \rightarrow \mu^- \rho^+$	>7	90%

p PARTIAL MEAN LIVES

Mean life divided by branching fraction.

Anything = π , ρ , K, etc.

LIMIT (10³⁰ years) PARTICLE

>0.0002 p, n

Decaying particle — ρ = proton or n = bound neutron. Same event may appear under more than one partial decay mode. Background estimates may be accurate to a factor of 2.

NT.				BACKGROUND			
11T 30 _{years)}	PARTICLE	CL%	EVTS	ESTIMATE	DOCUMENT ID		TECN
0.6	p, n	90			11 LEARNED	79	RVUE
¹ The elec	ctron may be	primar	or sec	ondary.			
N → µ	ι ⁺ anythin	g)					τ_2
11T 30 years)	PARTICLE	CL%	EVTS	BACKGROUND ESTIMATE	DOCUMENT ID		TECN
2	р, п	90	2		12,13 CHERRY	81	HOME
• We o	lo not use th	e follow	ing dat	a for averages,	fits, limits, etc. • • •		
1.8	p, n	90			¹³ COWSIK	80	CNTR
6	p, n	90			¹³ LEARNED	79	RVUE
	e converted 2 on may be p			ts to 90% CL li	imit.		

CL% EVTS ESTIMATE

 \bullet $\,\bullet\,$ We do not use the following data for averages, fits, limits, etc. $\,\bullet\,$ $\,\bullet\,$

0

90

DOCUMENT ID

LEARNED

TECN

	$e^+\pi^0$ anyth	ing)		BACKGROUND			$ au_{4}$			he following 90	g data for averages, f 0 1.8	its, limits, etc. • • • SEIDEL		IMB
0 years)	PARTICLE	CL%	EVTS	ESTIMATE	DOCUMENT ID		TECN	> 70 > 77	р Р	90	0 1.8 5 4.5	HAINES	88 86	IMB
.6	p, n	90	0		LEARNED	79	RVUE	> 38	P	90	0 < 0.8	ARISAKA	85	KAI
			-					> 24	p (free)	90	7 8.5	BLEWITT	85	IMB
$l \rightarrow l$	$e^+\pi)$						$ au_{5}$			90	5 4	BLEWITT	85	
т	,			BACKGROUND			•		p	90	0			
years)	PARTICLE	CL%	EVTS	ESTIMATE	DOCUMENT ID		TECN	> 1.3	p	90	U	ALEKSEEV	81	BAI
0	n	90	0	<0.2	HIRATA	89c	KAMI	$\tau(N \rightarrow$	$\mu^+ K$					
0	p	90	0	0.6	SEIDEL	88		LIMIT	,		BACKGROUND			
					fits, limits, etc. • • •			(10 ³⁰ years)	PARTICLE	CL% I	EVTS ESTIMATE	DOCUMENT ID		TEC
0	P	90	0	< 0.04	HIRATA	89c I	KAMI	>120	p	90 90	1 0.4	HIRATA		C KA
0	n	90	0	1.6	SEIDEL	88	IMB	> 1.1	.n		0	BARTELT		SO
1.3	n	90	0		BARTELT	87	SOUD	• • • We	do not use t	ne followinį	g data for averages, f	its, limits, etc. • • •	•	
1.3	p	90	0		BARTELT	87 3	SOUD	> 3.0	p	90	0 0.7	PHILLIPS	89	HP
0	p	90	0	0.3	HAINES	86	IMB	> 19	P	90	3 2.5	SEIDEL	88	IME
1	n	90	8	9	HAINES	86	IMB	> 1.5	P	90	0	20 BARTELT	87	SO
4	p	90	0	< 0.4	ARISAKA	85	KAMI	> 40	p	90	7 6	HAINES	86	lMi
6	n	90	0	< 0.7	ARISAKA		KAMI	> 19	p	90	1 <1.1	ARISAKA	85	KA
2	p (free)	90	0	0.2	BLEWITT		IMB	> 6.7	p (free)	90	11 13	BLEWITT	85	IMI
								> 40	p	90	7 8	BLEWITT	85	IM
2	p	90	0	0.2	BLEWITT		IMB	> 6	p	90	1	BATTISTONI	84	NU
5	n	90	4	4	PARK		IMB	> 0.6		90	0	21 BARTELT		
5	p, n	90	0		BATTISTONI		NUSX		p	90	0	21 BARTELT	83	
0.5	ρ	90		0.3	14 BARTELT		SOUD		n			22 KDISTILL	83	
0.5	п	90	1	0.3	14 BARTELT		SOUD	> 5.8	ρ	90	2	22 KRISHNA	82	
5.8	ρ	90	2		15 KRISHNA		KOLR	> 2.0	p	90	0	CHERRY	81	
5.8	n	90	2		15 KRISHNA	82	KOLR	> 0.2	n	90		²³ GURR	67	CN.
0.1	n	90			¹⁶ GURR		CNTR	20 BART	ELT 87 limit	applies to	$\rho \rightarrow \mu^+ \kappa_S^0$.			
	acod on							21 Limit b	aced on zero	avante	=			
HTUT D	ased on zero	events.	limit 6	rom 1 confined e	nuont			44 We ha	ve calculated	90% CI lii	mit from 1 confined e	event		
re iidV /a hav	re converted 5	ou⁄o CL	. IIIIIE TI	CL mean life.	eveil.			23 We ha	ve converted	half-life to	90% CL mean life.			
- C HdV	ic convented fi	an-me	10 70%	CE mean life.										
→ ′	2 bodies, ν-	free \			lσ= 1		τ ₈ +τ ₉)	$\tau(N \rightarrow$	νK)					
•	_ Joures, P-			BACKCBOING	(15⊤	, P.T.	,8⊥,8)	LIMIT	,		BACKGROUND			
vears)	PARTICLE	CL%	EVTS	BACKGROUND ESTIMATE	DOCUMENT ID		TECN	(10 ³⁰ years)	PARTICLE	CL% E	EVTS ESTIMATE	DOCUMENT ID		TEC
						— -	TECN	>100	ρ	90	9 7.3	HIRATA	200	KA
• we	ao not use the	e tollow	ing dat	a tor averages, f	its, limits, etc. • • •			> 86	n	90	0 2.4	HIRATA		L NA
	p, n	90	0		ALEKSEEV	81	BAKS				g data for averages, f			. NA
	•					-	_				-			
→ 1	$\mu^+\pi)$						τ_6	> 15	n	90	1 1.8	BERGER	89	FRE
•	,			BACKGROUND			, 0	> 15	P	90	1 1.8	BERGER	89	FR
years)	PARTICLE	CL%	EVTS	ESTIMATE	DOCUMENT ID		TECN	> 0.28	ρ	90	0 0.7	PHILLIPS	89	HP
)		90						> 0.3	p	90	0	BARTELT	87	SO
	п		0	<0.2	HIRATA		KAMI	> 0.75	n	90	0	24 BARTELT	87	SO
) ,,,	, P	90			SEIDEL	88	IMR	> 10	p	90	6 5	HAINES	86	IME
• We	ao not use the	e follow	ing dat	a tor averages, f	its, limits, etc. • • •			> 15	n	90	3 5	HAINES	86	IME
)	p	90	0	< 0.07	HIRATA	89c I	KAMI	> 28	p	90	3 3	KAJITA	86	KA
3	'n	90		0.5	SEIDEL		ІМВ	> 32	'n	90	0 1.4	KAJITA	86	KAI
6	p	90		1	HAINES		IMB	> 1.8	p (free)	90	6 11	BLEWITT	85	IME
3	n	90		7	HAINES		IMB	> 9.6	p (nec)	90	6 5	BLEWITT	85	IME
		90						> 10		90	2 2			
5	p		0	<0.7	ARISAKA		KAMI		n			PARK	85	IME
)	n n (frank)	90	0	<0.4	ARISAKA		KAMI	> 5	n	90	0	BATTISTONI	84	NU:
}	p (free)	90	0	0.2	BLEWITT		IMB	> 2	P	90	0	BATTISTONI	84	ΝU
)	p	90		0.4	BLEWITT		IMB	> 0.3	n	90	0	25 BARTELT	83	SO
3	n	90	1	4	PARK	85 I	IMB	> 0.1	P	90	0	25 BARTELT	83	SOL
)	p, n	90	0		BATTISTONI	84 1	NUSX	> 5.8	p	90	1	²⁶ KRISHNA	82	KO
1.3	p, n	90	0		ALEKSEEV		BAKS	> 0.3	n	90	2	27 CHERRY	81	но
			-			•			ELT 87 limit					.,5
→ <i>t</i>	νπ)						$ au_7$				" - PN5.			
years)	,			BACKGROUND			,	40 M/a hai	ased on zero	00% CI II.	mit from 1 as-fi	wont		
years)	PARTICLE	CL%	EVTS	ESTIMATE	DOCUMENT ID		TECN	27 We have	ve converted	2 possible	mit from 1 confined e events to 90% CL lim	event.		
5	P	90		32.8	HIRATA		KAMI			- hassing	CTONES 10 90 /0 CL IIII	ne.		
)	n	90		3	HIRATA		KAMI	au(N ightarrow	$e^+ \rho$)					
			-	•	its, limits, etc. • • •	5,0		LIMIT	• /		BACKGROUND			
We								(10 ³⁰ years)	PARTICLE	CL% E	VTS ESTIMATE	DOCUMENT ID		TEC
	n	90		1.2	BERGER	89 F		>75	p	90	2 2.7	HIRATA	900	KA
	p	90	11		BERGER		FREJ	>58	n n	90	0 1.9	HIRATA		KA KA
i 1		90	73		HAINES	86 I	MB				g data for averages, fi		690	. KA
;)	n	~~	16	13	KAJITA	86 H	KAMI							
;)		90	0	1	KAJITA		KAMI	>38	n	90	2 4.1	SEIDEL		IME
i) !	n	90			PARK		МВ	> 1.2	ρ	90	0	BARTELT	87	SO
	n P		28		BATTISTONI		NUSX	> 1.5	n	90	0	BARTELT	87	
	n p n	90	28 0				NUSX	>17	p	90	7 7	HAINES	86	IME
	n p n n	90 90 90	0		BATTISTONI	U T 1		>14	n	90	9 4	HAINES	86	IME
	n p n n	90 90 90 90	0 ≤ 3		BATTISTONI 17 KRISHNA	82 4		>12	ρ	90	0 <1.2	ARISAKA	85	KA
.8	n p n n n p	90 90 90 90 90	0 ≤ 3 1		17 KRISHNA	82 H			n	90	2 <1	ARISAKA	85	KA
.8 .3	n p n n p p	90 90 90 90 90	0 ≤ 3		¹⁷ KRISHNA ¹⁸ CHERRY	81 H	HOME	> 6	**					IME
.8 .3	n p n n p p p	90 90 90 90 90 90	0 ≤ 3 1 2		¹⁷ KRISHNA ¹⁸ CHERRY ¹⁹ GURR	81 H		> 6 > 6.7	p (free)	90	6 6	BLEWITT	85	
.8 .3 .1 e hav	n p n n p p p p p p p p p p p p p p p p	90 90 90 90 90 90 90	0 ≤ 3 1 2	om 1 confined e	17 KRISHNA 18 CHERRY 19 GURR	81 H	HOME	> 6.7	p (free)			BLEWITT BLEWITT		
8 3 1 'e hav	n p n n p p p p e calculated 9 e converted 2	90 90 90 90 90 90 90 90 0% CL possib	0 ≤ 3 1 2 limit fr	om 1 confined e s to 90% CŁ lirr	17 KRISHNA 18 CHERRY 19 GURR	81 H	HOME	> 6.7 >17	p (free) p	90	7 7	BLEWITT	85	IME
8 3 1 'e hav	n p n n p p p p p p p p p p p p p p p p	90 90 90 90 90 90 90 90 0% CL possib	0 ≤ 3 1 2 limit fr	s to 90% CL lim	17 KRISHNA 18 CHERRY 19 GURR	81 H	HOME	> 6.7 >17 >12	p (free) p n	90 90	7 7 4 2	BLEWITT PARK	85 85	IME
.8 .3 .1 'e hav 'e hav	n p n n n p p p p p e calculated 9 e converted 2	90 90 90 90 90 90 90 90 0% CL possib	0 ≤ 3 1 2 limit fr	s to 90% CL lim	17 KRISHNA 18 CHERRY 19 GURR	81 H	HOME	> 6.7 >17 >12 > 0.6	p (free) p n n	90 90 90	7 7 4 2 1 0.3	BLEWITT PARK ²⁸ BARTELT	85 85 83	IME SO
i.8 i.3 i.1 /e hav	n p n n p p p p e calculated 9 e converted 2	90 90 90 90 90 90 90 90 0% CL possib	0 ≤ 3 1 2 limit fr	s to 90% CL lim	17 KRISHNA 18 CHERRY 19 GURR	81 H	HOME CNTR	> 6.7 >17 >12 > 0.6 > 0.5	p (free) p n n	90 90 90 90	7 7 4 2 1 0.3 1 0.3	BLEWITT PARK ²⁸ BARTELT ²⁸ BARTELT	85 85 83	IME SOL SOL
3 0 5 2 7 7 2 5.8 0.3 0.1 /e hav /e hav	n p n n n p p p p p e calculated 9 e converted 1 e+K)	90 90 90 90 90 90 90 90 0% CL possib	0 ≤ 3 1 2 limit fr	s to 90% CE lim CL mean life.	17 KRISHNA 18 CHERRY 19 GURR	81 H	HOME	> 6.7 >17 >12 > 0.6 > 0.5 > 9.8	p (free) p n n p	90 90 90 90 90	7 7 4 2 1 0.3 1 0.3	BLEWITT PARK 28 BARTELT 28 BARTELT 29 KRISHNA	85 85 83 83 82	IME SOL SOL KOL
3 3 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n p n n n p p p p p e calculated 9 e converted 1 e+K)	90 90 90 90 90 90 90 90 0% CL possib	$\begin{array}{c} 0\\ \leq 3\\ 1\\ 2\\ \end{array}$ limit frile event	s to 90% CL lim CL mean life. BACKGROUND	17 KRISHNA 18 CHERRY 19 GURR event. nit.	81 F 67 (HOME CNTR $ au_8$	> 6.7 >17 >12 > 0.6 > 0.5 > 9.8 > 0.8	p (free) p n n p p	90 90 90 90 90 90	7 7 4 2 1 0.3 1 0.3	BLEWITT PARK 28 BARTELT 28 BARTELT 29 KRISHNA 30 CHERRY	85 85 83 83 82	IME SOL SOL KOL
: : : : : : : : : : : : : : : : : : :	n p n n p p p p e calculated 9 e converted 2 e converted h e+K) PARTICLE	90 90 90 90 90 90 90 0% CL possib alf-life	$ \begin{array}{c} 0 \\ \leq 3 \\ 1 \\ 2 \end{array} $ limit frie event to 90%	s to 90% CŁ lim CL mean life. BACKGROUND ESTIMATE	17 KRISHNA 18 CHERRY 19 GURR event. nit.	81 F 67 C	HOME CNTR T8	> 6.7 >17 >12 > 0.6 > 0.5 > 9.8 > 0.8	p (free) p n n p p	90 90 90 90 90 90	7 7 4 2 1 0.3 1 0.3	BLEWITT PARK 28 BARTELT 28 BARTELT 29 KRISHNA 30 CHERRY	85 85 83 83 82	IME SOL SOL KOL
.8 .3 .1 e hav e hav → €	n p n n n p p p p e calculated 9 e converted 2 e converted h e+K) PARTICLE p	90 90 90 90 90 90 90 0% CL possib alf-life	$ \begin{array}{c} 0 \\ \leq 3 \\ 1 \\ 2 \end{array} $ limit frige event to 90%	s to 90% CL lim CL mean life. BACKGROUND	17 KRISHNA 18 CHERRY 19 GURR event. oit. DOCUMENT ID HIRATA	81 H 67 (HOME CNTR T8 TECN KAMI	> 6.7 >17 >12 > 0.6 > 0.5 > 9.8 > 0.8	p (free) p n n p p	90 90 90 90 90 90	7 7 4 2 1 0.3 1 0.3	BLEWITT PARK 28 BARTELT 28 BARTELT 29 KRISHNA 30 CHERRY	85 85 83 83 82	IME SOL SOL KOL
.8 .3 .1 e hav e hav → €	n p n n p p p p e calculated 9 e converted 2 e converted h e+K) PARTICLE	90 90 90 90 90 90 90 0% CL possib alf-life	$ \begin{array}{c} 0 \\ \leq 3 \\ 1 \\ 2 \end{array} $ limit frie event to 90%	s to 90% CŁ lim CL mean life. BACKGROUND ESTIMATE	17 KRISHNA 18 CHERRY 19 GURR event. nit.	81 F 67 C	HOME CNTR T8 TECN KAMI	> 6.7 >17 >12 > 0.6 > 0.5 > 9.8 > 0.8	p (free) p n n p p	90 90 90 90 90 90	7 7 4 2 1 0.3 1 0.3	BLEWITT PARK 28 BARTELT 28 BARTELT 29 KRISHNA 30 CHERRY	85 85 83 83 82	IME SOL SOL KOL
.8 .3 .1 e hav e hav → €	n p n n n p p p p e calculated 9 e converted 2 e converted h e+K) PARTICLE p	90 90 90 90 90 90 90 0% CL possib alf-life	$ \begin{array}{c} 0 \\ \leq 3 \\ 1 \\ 2 \end{array} $ limit frige event to 90%	s to 90% CŁ lim CL mean life. BACKGROUND ESTIMATE	17 KRISHNA 18 CHERRY 19 GURR event. oit. DOCUMENT ID HIRATA	81 H 67 (HOME CNTR T8 TECN KAMI	> 6.7 >17 >12 > 0.6 > 0.5 > 9.8 > 0.8 28 Limit b 29 We hav	p (free) p n n p p p p assed on zero re calculated re converted	90 90 90 90 90 90	7 7 4 2 1 0.3 1 0.3	BLEWITT PARK 28 BARTELT 28 BARTELT 29 KRISHNA 30 CHERRY	85 85 83 83 82	IME SOL SOL KOL
.8 .3 .1 e hav e hav → €	n p n n n p p p p e calculated 9 e converted 2 e converted h e+K) PARTICLE p	90 90 90 90 90 90 90 0% CL possib alf-life	$ \begin{array}{c} 0 \\ \leq 3 \\ 1 \\ 2 \end{array} $ limit frige event to 90%	s to 90% CŁ lim CL mean life. BACKGROUND ESTIMATE	17 KRISHNA 18 CHERRY 19 GURR event. oit. DOCUMENT ID HIRATA	81 H 67 (HOME CNTR T8 TECN KAMI	> 6.7 >17 >12 > 0.6 > 0.5 > 9.8 > 0.8	p (free) p n n p p p p assed on zero re calculated re converted	90 90 90 90 90 90	7 7 4 2 1 0.3 1 0.3	BLEWITT PARK 28 BARTELT 28 BARTELT 29 KRISHNA 30 CHERRY	85 85 83 83 82	IME SOL SOL KOL
.8 .3 .1 e hav e hav → €	n p n n n p p p p e calculated 9 e converted 2 e converted h e+K) PARTICLE p	90 90 90 90 90 90 90 0% CL possib alf-life	$ \begin{array}{c} 0 \\ \leq 3 \\ 1 \\ 2 \end{array} $ limit frige event to 90%	s to 90% CŁ lim CL mean life. BACKGROUND ESTIMATE	17 KRISHNA 18 CHERRY 19 GURR event. oit. DOCUMENT ID HIRATA	81 H 67 (HOME CNTR T8 TECN KAMI	> 6.7 >17 >12 > 0.6 > 0.5 > 9.8 > 0.8 28 Limit b 29 We had 30 We had	p (free) p n p p p p p p p p	90 90 90 90 90 90 90 events. 90% CL lir 2 possible o	7 7 4 2 1 0.3 1 0.3 1 0.3 2 mit from 0 confined e events to 90% CL lim	BLEWITT PARK 28 BARTELT 28 BARTELT 29 KRISHNA 30 CHERRY	85 85 83 83 82	IME SOI SOI KO
.8 .3 .1 le hav le hav → €	n p n n n p p p p e calculated 9 e converted 2 e converted h e+K) PARTICLE p	90 90 90 90 90 90 90 0% CL possib alf-life	$ \begin{array}{c} 0 \\ \leq 3 \\ 1 \\ 2 \end{array} $ limit frige event to 90%	s to 90% CŁ lim CL mean life. BACKGROUND ESTIMATE	17 KRISHNA 18 CHERRY 19 GURR event. oit. DOCUMENT ID HIRATA	81 H 67 (HOME CNTR T8 TECN KAMI	> 6.7 > 17 > 12 > 0.6 > 0.5 > 9.8 > 0.8 28 Limit b 29 We hav τ ($N \rightarrow p$	p (free) p n n p p p p assed on zero re calculated re converted	90 90 90 90 90 90 90 events. 90% CL lir 2 possible o	7 7 4 2 1 0.3 1 0.3 1 2 nit from 0 confined e	BLEWITT PARK 28 BARTELT 28 BARTELT 29 KRISHNA 30 CHERRY	85 85 83 83 82	IME SOI SOI KOI HO
3 3 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n p n n n p p p p e calculated 9 e converted 2 e converted h e+K) PARTICLE p	90 90 90 90 90 90 90 0% CL possib alf-life	$ \begin{array}{c} 0 \\ \leq 3 \\ 1 \\ 2 \end{array} $ limit frige event to 90%	s to 90% CŁ lim CL mean life. BACKGROUND ESTIMATE	17 KRISHNA 18 CHERRY 19 GURR event. oit. DOCUMENT ID HIRATA	81 H 67 (HOME CNTR T8 TECN KAMI	> 6.7 >17 >12 > 0.6 > 0.5 > 9.8 > 0.8 28 Limit b 29 We had 30 We had	p (free) p n p p p p p p p p	90 90 90 90 90 90 90 events. 90% CL lir 2 possible o	7 7 4 2 1 0.3 1 0.3 1 0.3 2 mit from 0 confined e events to 90% CL lim	BLEWITT PARK 28 BARTELT 28 BARTELT 29 KRISHNA 30 CHERRY	85 83 83 82 81	IME IME SOL SOL HOI

p

4.3 0 1	p	90	0	0.7	PHILLIPS	89	HPW	>100	р	90	0 0.6	SEIDEL	88	IME
1	p	90	0	0.5	SEIDEL	88	IMB	>200	p	90	5 3.3	HAINES	86	IM
	n	90	1	1.1	SEIDEL	88	IMB	> 64	p	90	0 < 0.8	ARISAKA	85	K
,	p	90		4.5	HAINES	86	IMB .	> 64	p (free)	90	5 6.5	BLEWITT	85	IM
7	n	90			HAINES	86	IMB	>200	P	90	5 4.7	BLEWITT	85	IM
2	p	90	ō	<0.7	ARISAKA	85	KAMI	> 1.2	p	90	2	36 CHERRY	81	
5	n	90	1	<1.2	ARISAKA	85	KAMI						-	
5.5	p (free)	90			BLEWITT	85	IMB	→ We hav	ve converted 2	possible e	vents to 90% CL lir	nit.		
5.5 6	p (nee)	90	4		BLEWITT	85	IMB	-(-	(+ n)					
		90	1		PARK	85	IMB	$\tau(p \rightarrow \mu$	$(1, \eta)$					
9	n	90	1	2	FARK	00	IIVID	LIMIT (10 ³⁰ years)	DARTICIE	C19(E)	BACKGROUND	DOCUMENT ID		TE/
· → 1	$\nu \rho$)						7.0			CL% EV		DOCUMENT ID	—	TEC
	ν ν)			B + 51/5B 01/4B			$ au_{13}$	>69	p	90	1 < 0.08	HIRATA	89c	KA
years)	PARTICLE	CL%	FVTS	BACKGROUND ESTIMATE	DOCUMENT ID		TECN	• • • We	do not use th	e following	data for averages, f	fits, limits, etc. • • •		
years/						~~~		> 1.3	p	90	0 0.7	PHILLIPS 1	89	HP
	P	90		1.5	HIRATA		KAMI	>34	p	90	1 1.5	SEIDEL	88	IME
	л	90		0.5	SEIDEL		IMB	>46	p	90	7 6	HAINES	86	IMI
• We	do not use th	e follow	ing dat	a for averages, f	its, limits, etc. • • •			>26	p	90	1 < 0.8	ARISAKA	85	KA
	n	90	4	2.4	BERGER	89	FREJ	>17	p (free)	90	6 6			IMI
	p	90		0.9	BERGER	89	FREJ	>46		90	7 8			IME
	n	90	4	3.6	HIRATA	89c	KAMI	>40	ρ	30	, 0	DECYVIII	05	HIVIL
	p	90		1.1	SEIDEL	88	IMB	$\tau(n \rightarrow \iota$	(n)					
	р Р	90		5	HAINES	86	IMB		(11)		n.c			
		90	15		HAINES	86	IMB	LIMIT (10 ³⁰ years)	PARTICLE	C1% =	BACKGROUND TS ESTIMATE	DOCUMENT ID		TEC
	n						KAMI			CL% EV				
	p	90			KAJITA	86		>54	n	90	2 0.9	HIRATA	890	: KA
	n - (fore)	90	2		KAJITA	86	KAMI	• • • We	do not use th	e following	data for averages, f	fits, limits, etc. • • •		
.1	p (free)	90		7	BLEWITT	85	IMB	>29	n	90	0 0.9	BERGER	89	FRE
4	p	90			BLEWITT	85	IMB	>16	n	90	3 2.1		88	IME
	n	90	7	3	PARK	85	IMB	>25	n	90	7 6	HAINES	86	IME
9	p	90	2		31 CHERRY	81	HOME	>30	n	90	0 0.4	KAJITA	86	KA
6	n	90	2		31 CHERRY	81	HOME	>18	n	90	4 3	PARK	85	IME
/e hov	e converted 1	nossihl	e event	s to 90% CL lin	nit.					90	2		81	HO
· c nav	converted a	- Possibi	40111	5 .0 7070 CE III				> 0.6	n				01	но
<i>→</i> e	+ω\						τ_{14}	37 We hav	ve converted 2	possible e	vents to 90% CL lin	nit.		
	. <i>-</i> ,			BACKGROUND			- 14							
years)	PARTICLE	CL%	EVTS	ESTIMATE	DOCUMENT ID		TECN	$\tau(p \rightarrow \epsilon$	e+ K*(892))					
4-5-31		90		1.45	HIRATA	900	KAMI	LIMIT			BACKGROUND			
	p						DOM:	(10 ³⁰ years)	PARTICLE	CL% EV	TS ESTIMATE	DOCUMENT ID		TEC
We	ao not use th	e tollow	ing dat	a ior averages, t	its, limits, etc. • • •		-	>52	p	90	2 1.55	HIRATA	89c	KA
	p	90	1	1.0	SEIDEL	88	IMB			e following		fits, limits, etc. • • •		
5	p	90	0		BARTELT	87	SOUD			90	1 <1	ARISAKA	85	KA
	p	90	6	5.3	HAINES	86	IMB	>10	ρ	70	1 1	AMBANA	00	A.A
	p	90	1	<1.4	ARISAKA	85	KAMI	+ (N →	ν K *(892))					
	p (free)	90		7.5	BLEWITT	85	IMB	,	VN (032))		DACKSOO INS			
	p (Hee)	90		5.7	BLEWITT	85	IMB	LIMIT (10 ³⁰ years)	PARTICLE	CL% EV	BACKGROUND TS ESTIMATE	DOCUMENT ID		TEC
.6	p	90		0.3	32 BARTELT		SOUD	-						
.8	p	90	1		33 KRISHNA	82	KOLR	>22	n	90	0 2.1	BERGER		
.8	p	90	2		34 CHERRY		HOME	>20	P	90	5 2.1	HIRATA	89C	KA
			-		C., E.,			• • • We	do not use th	e following	data for averages, f	fits, limits, etc. • • •		
ımit b	ased on zero	events.	timin 1	0 a	ovents			>17	p	90	0 2.4	BERGER	89	FRI
ve nav	re carculated	30% CL	ornit fi	rom 0 confined of ts to 90% CL lin	evenis. nit			>21	n	90	4 2.4	HIRATA	89c	: KA
ve nav	ve converted 2	2 possibl	e event	.5 to 90% CL lir	mr.			>10	p	90	7 6	HAINES	86	
	.+)						T	> 5	n	90	8 7	HAINES	86	IME
							τ_{15}	> 8						KA
. <i>μ</i>	(ω)									90	3 2	KA.JITA		
	,	CIN	EVTC	BACKGROUND	DOCUMENT ID		TECN		р п	90 90	3 2 2 1 6	KAJITA KAJITA	86	KΔ
→ µ years)	PARTICLE	<u>CL%</u>		ESTIMATE	DOCUMENT ID		TECN	> 6	л	90	2 1.6	KAJITA	86 86	
years)	PARTICLE P	90	2	1.9	HIRATA		TECN KAMI	> 6 > 5.8	л р (free)	90 90	2 1.6 10 16	KAJITA BLEWITT	86 86 85	IM
years)	PARTICLE P	90	2	1.9				> 6 > 5.8 > 9.6	n ρ (free) ρ	90 90 90	2 1.6 10 16 7 6	KAJITA BLEWITT BLEWITT	86 86 85 85	IME
<i>years)</i> We	PARTICLE P	90	2 ing dat	1.9	HIRATA	ı		> 6 > 5.8 > 9.6 > 7	n p (free) p n	90 90 90 90	2 1.6 10 16 7 6 1 4	KAJITA BLEWITT BLEWITT PARK	86 86 85 85	IMI IMI
<i>years)</i> We	PARTICLE p do not use th	90 ie follow	2 ing dat 0	ESTIMATE 1.9 a for averages, t	HIRATA fits, limits, etc. • •	ı	KAMI	> 6 > 5.8 > 9.6 > 7 > 2.1	p (free) p n	90 90 90 90 90	2 1.6 10 16 7 6 1 4	KAJITA BLEWITT BLEWITT PARK ³⁸ BATTISTONI	86 86 85 85	IMI IMI
<i>years)</i> We	PARTICLE p do not use th p p	90 ie follow 90 90	2 ing dat 0	1.9 a for averages, t 0.7	HIRATA fits, limits, etc. • • • PHILLIPS	89	HPW	> 6 > 5.8 > 9.6 > 7 > 2.1	p (free) p n	90 90 90 90 90	2 1.6 10 16 7 6 1 4	KAJITA BLEWITT BLEWITT PARK ³⁸ BATTISTONI	86 86 85 85	IMI IMI
years) We	PARTICLE p do not use th p p p	90 ie follow 90 90 90	2 ing dat 0 2 2	ESTIMATE 1.9 a for averages, 1 0.7 1.3 1	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES	89 88 86	HPW IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have	n p (free) p n p	90 90 90 90 90	2 1.6 10 16 7 6 1 4	KAJITA BLEWITT BLEWITT PARK ³⁸ BATTISTONI	86 86 85 85	IMI IMI
years) We	PARTICLE p do not use th p p p p p p (free)	90 90 90 90 90 90 90	2 ing dat 0 2 2 9	ESTIMATE 1.9 a for averages, 1 0.7 1.3 1 8.7	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT	89 88 86 85	HPW IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have	n p (free) p n p	90 90 90 90 90	2 1.6 10 16 7 6 1 4	KAJITA BLEWITT BLEWITT PARK ³⁸ BATTISTONI	86 86 85 85	IMI IMI
years) We	PARTICLE p do not use th p p p	90 ie follow 90 90 90	2 ing dat 0 2 2	ESTIMATE 1.9 a for averages, 1 0.7 1.3 1 8.7	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES	89 88 86 85	HPW IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We har $\tau(p \rightarrow e$	p (free) p p p eve converted 1	90 90 90 90 90 L possible e	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim	KAJITA BLEWITT BLEWITT PARK ³⁸ BATTISTONI oit.	86 86 85 85	IMI IMI IMI NU
years) • We • 4	PARTICLE P do not use the p p p p p (free) p	90 90 90 90 90 90 90	2 ing dat 0 2 2 9	ESTIMATE 1.9 a for averages, 1 0.7 1.3 1 8.7	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT	89 88 86 85	HPW IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have	p (free) p p p eve converted 1	90 90 90 90 90 L possible e	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim	KAJITA BLEWITT BLEWITT PARK ³⁸ BATTISTONI	86 85 85 85 82	IME IME NU
years) We	PARTICLE P do not use the p p p p p (free) p	90 ne follow 90 90 90 90	2 ing dat 0 2 2 9	ESTIMATE 1.9 a for averages, 1 0.7 1.3 1 8.7 7	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT	89 88 86 85	HPW IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We har $\tau(p \rightarrow e$	p (free) p p p p ve converted 1	90 90 90 90 90 L possible e	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim	KAJITA BLEWITT BLEWITT PARK ³⁸ BATTISTONI oit.	86 85 85 85 82	IME IME NU
years) • We • • • •	PARTICLE p do not use th p p p p p p p p p p p p (free) p	90 90 90 90 90 90 90	2 ing dat 0 2 2 9 8	ESTIMATE 1.9 a for averages, 1 0.7 1.3 1 8.7 7	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT	89 88 86 85	HPW IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have $\tau(p \to e^{LIMIT}_{(10^{30} years)})$ >460	p (free) p p p p p p p p p p	90 90 90 90 90 1 possible e	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID	86 85 85 85 82	IME IME NU
years) We 4	PARTICLE p do not use th p p p p p p p p p (free) p	90 90 90 90 90 90 90	2 ing dat 0 2 2 9 8	ESTIMATE 1.9 a for averages, 1 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT BLEWITT	89 88 86 85 85	HPW IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We har $\tau(p \rightarrow e$ $\frac{LMHT}{(10^{30} \text{ years})}$ > 460 ••• We	p (free) p n p ve converted : e+ \gamma) PARTICLE p do not use the	90 90 90 90 90 1 possible e	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TTS ESTIMATE 0 0.6 data for averages,	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID SEIDEL fits, limits, etc. • • •	86 85 85 85 82	IME IME NU
years) We 4 5 years)	PARTICLE p p p p p p p f(free) p P PARTICLE n	90 90 90 90 90 90 90 90	2 ing dat 0 2 2 9 8 8	ESTIMATE 1.9 a for averages, 1 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT BLEWITT DOCUMENT ID HIRATA	89 88 86 85 85	HPW IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have $\tau(p \rightarrow e$ $^{LIMIT}_{(10^{30} \ years)}$ > 460 •• We > 360	$ \begin{array}{c} n \\ p \\ n \\ p \end{array} $ ve converted 1 $ \begin{array}{c} e^{+} \gamma \\ \end{array} $ $ \begin{array}{c} e^{ARTICLE} \\ p \\ \end{array} $ do not use the	90 90 90 90 90 1 possible e 20 20 90 e following	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS STIMATE 0 0.6 data for averages, 0 0.3	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI oit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES	86 86 85 85 85 82 88	IME IME NU TEC IMI
years) We 4 5 years)	PARTICLE p p p p p p p f(free) p P PARTICLE n	90 90 90 90 90 90 90 90	2 ing dat 0 2 2 9 8 8 EVTS 3 ing dat	ESTIMATE 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • •	89 88 86 85 85	HPW IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We har $\tau (p \rightarrow e$ $t_{(10^{30} \text{ years})}$ > 460 • • • We > 360 > 87	p (free) p n p we converted p p p p p p p p	90 90 90 90 90 L possible e	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT	86 86 85 85 85 82 88 88	TEC
years) We 4 5 years)	PARTICLE p p p p p p p f(free) p P PARTICLE n	90 90 90 90 90 90 90 90	2 ing dat 0 2 2 9 8 8 EVTS 3 ing dat	ESTIMATE 1.9 a for averages, 1 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • •	89 88 86 85 85	HPW IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have th	p (free) p n p we converted : $e^+ \gamma$ $\frac{e^+ \gamma}{p}$ do not use the p p (free) p	90 90 90 90 90 1 possible e	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS STIMATE 0 0.6 data for averages, 0 0.3	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI sit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BLEWITT	86 86 85 85 85 82 88 86 85 85 85	TEC
years) We 4 5 years)	PARTICLE p p p p p p p f(free) p P PARTICLE n do not use the	90 90 90 90 90 90 90 90	2 ing dat 0 2 2 9 8 8 EVTS 3 ing dat 1	ESTIMATE 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • •	89 88 86 85 85 89	HPW IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have 1000 years) > 460 • • • We > 360 > 87 > 360 > 0.1	p (free) p n p ve converted : e+ \gamma\) PARTICLE p do not use th p p (free) p	90 90 90 90 90 1 possible e ^o 2 <u>CL%</u> <u>EV</u> 90 e following 90 90 90	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2 0 0.2	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT	86 86 85 85 85 82 88 86 85 85 85	TEC
years) We 4 5 years)	PARTICLE p do not use the p p p p (free) p PARTICLE n do not use the	90 90 90 90 90 90 90	2 ing dat 0 2 2 9 8 8 EVTS 3 ing dat 1	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT HIRATA fits, limits, etc. • • • BERGER SEIDEL HAINES	89 88 86 85 85 89	HPW IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have 1000 years) > 460 • • • We > 360 > 87 > 360 > 0.1	p (free) p n p ve converted : e+ \gamma\) PARTICLE p do not use th p p (free) p	90 90 90 90 90 1 possible e ^o 2 <u>CL%</u> <u>EV</u> 90 e following 90 90 90	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI sit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BLEWITT	86 86 85 85 85 82 88 86 85 85 85	TEC
years) We 4 5 years)	PARTICLE p do not use the p p p p p p f(free) p PARTICLE n PARTICLE n	90 90 90 90 90 90	2 ing dat 0 2 2 9 8 5 3 ing dat 1 2 6	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • • BERGER SEIDEL	89 88 86 85 85 89 89	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	>6 >5.8 >9.6 >7 >2.1 38 We have $\tau(\rho \rightarrow \epsilon \frac{L/M/T}{(10^{30} \text{ years})}$ >460 •• • We >360 >87 >360 >0.1 39 We have	p (free) p n p we converted p p p p p p p p	90 90 90 90 90 1 possible e ^o 2 <u>CL%</u> <u>EV</u> 90 e following 90 90 90	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2 0 0.2	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI sit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BLEWITT	86 86 85 85 85 82 88 86 85 85 85	TEC
years) We 4 5 years)	PARTICLE P do not use the p p p p (free) p P PARTICLE n do not use the n n	90 90 90 90 90 90 90 90 90 90 et follow 90 90	2 ing dat 0 2 2 9 8 8 EVTS 3 ing dat 1 2 6 2	ESTIMATE 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3 6	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • • BERGER SEIDEL HAINES KAJITA PARK	89 88 86 85 85 89 89 88 86 86	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	>6 >5.8 >9.6 >7 >2.1 38 We have $\tau(\rho \rightarrow \epsilon \frac{L/M/T}{(10^{30} \text{ years})}$ >460 •• • We >360 >87 >360 >0.1 39 We have	p (free) p n p ve converted : e+ \gamma\) PARTICLE p do not use th p p (free) p	90 90 90 90 90 1 possible e ^o 2 <u>CL%</u> <u>EV</u> 90 e following 90 90 90	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2 0 0.2	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI sit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BLEWITT	86 86 85 85 85 82 88 86 85 85 85	TEC
years) • We • Ve • Ve • Ve • Ve • Ve • Ve	PARTICLE p do not use th p p p p p (free) p PARTICLE n do not use th	90 90 90 90 90 90 90 90 90 e follow 90 90 90 90	2 ing dat 0 2 2 9 8 EVTS 3 ing dat 1 2 6 2 1	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3 6 2	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • • BERGER SEIDEL HAINES KAJITA PARK	89 88 86 85 85 89 89 88 86 86 86 85	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We har $\tau(\rho \rightarrow \epsilon)$ $\frac{LIMIT}{(10^{30} \text{ years})}$ > 460 • • • We > 360 > 0.1 39 We har $\tau(\rho \rightarrow \epsilon)$	p (free) p n p ve converted : $e^+ \gamma$) $\frac{PARTICLE}{p}$ do not use th p p (free) p p ve converted ! $e^+ e^+ e^-$	90 90 90 90 90 0 possible ed. 20 20 20 20 20 20 20 20 20 20 20 20 20	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2 0 0.2 0 0.2 0 0.4 BACKGROUND	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI sit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BLEWITT	86 86 85 85 85 82 88 86 85 85 85	TEC
years) • We • Ve • Ve • Ve • Ve • Ve • Ve	PARTICLE P do not use the p p p p (free) p PARTICLE n do not use the n n n	90 90 90 90 90 90 90 90 90 e follow 90 90 90 90 90	2 ing dat 0 2 2 9 8 EVTS 3 ing dat 1 2 6 2 1 2	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3 6 2 2	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • • BERGER SEIDEL HAINES KAJITA PARK 35 CHERRY	89 88 86 85 85 89 89 88 86 86 86 85	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We har $\tau(\rho \rightarrow \epsilon)$ $\frac{LIMIT}{(10^{30} \text{ years})}$ > 460 • • • We > 360 > 0.1 39 We har $\tau(\rho \rightarrow \epsilon)$	p (free) p n p ve converted : $e^+ \gamma$) $\frac{PARTICLE}{p}$ do not use th p p (free) p p ve converted ! $e^+ e^+ e^-$	90 90 90 90 90 0 possible ed. 20 20 20 20 20 20 20 20 20 20 20 20 20	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2 0 0.2	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI sit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BLEWITT	86 86 85 85 85 82 88 86 85 85 85	TEC
years) • We • Ve • Ve • Ve • Ve • Ve • Ve	PARTICLE P do not use the p p p p (free) p PARTICLE n do not use the n n n	90 90 90 90 90 90 90 90 90 e follow 90 90 90 90 90	2 ing dat 0 2 2 9 8 EVTS 3 ing dat 1 2 6 2 1 2	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3 6 2	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • • BERGER SEIDEL HAINES KAJITA PARK 35 CHERRY	89 88 86 85 85 89 89 88 86 86 86 85	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We har \(\begin{align*} \tau(\beta) & \text{of } \\ \tau(\beta) & \text{of } \\ \tau(\beta) & \text{of } \\ \text{of } & \te	p (free) p p p p p p p p p p	90 90 90 90 1 possible er 21.% EV 90 e following 90 90 90 90	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2 0 0.2 BACKGROUND TS ESTIMATE BACKGROUND TS ESTIMATE	KAJITA BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BLEWITT 39 GURR	86 86 85 85 85 82 88 86 85 85 85	IM IMI NU
years) We 4 5 → v years) We O We have	PARTICLE p do not use the p p p p f(free) p PARTICLE n do not use the n n n n n n n n n n n n n n n n n n n	90 90 90 90 90 90 90 90 90 e follow 90 90 90 90 90	2 ing dat 0 2 2 9 8 EVTS 3 ing dat 1 2 6 2 1 2	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3 6 2 2	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • • BERGER SEIDEL HAINES KAJITA PARK 35 CHERRY	89 88 86 85 85 89 89 88 86 86 86 85	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have \(\begin{align*} \psi & \cdot & \cd	p (free) p n p we converted p p p p p p p p p	90 90 90 90 90 1 possible er 90 e following 90 90 90 90	2 1.6 10 16 7 6 1 4 1 vent to 90% CL (im BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2 00% CL mean life. BACKGROUND TS ESTIMATE 0 0.3	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI sit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BLEWITT 39 GURR DOCUMENT ID HAINES	86 86 85 85 82 88 86 85 67	TEC
years) We 4 5 $\rightarrow \nu$ years) We 0 We have	PARTICLE p do not use the p p p p f(free) p PARTICLE n do not use the n n n n n n n n n n n n n n n n n n n	90 90 90 90 90 90 90 90 90 e follow 90 90 90 90 90	2 ing dat 0 2 2 9 8 EVTS 3 ing dat 1 2 6 2 1 2	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 2.7 1.3 6 2 2 2 ts to 90% CL lir	HIRATA fits, limits, etc. • • • PHILLIPS SEIDEL HAINES BLEWITT BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • • BERGER SEIDEL HAINES KAJITA PARK 35 CHERRY	89 88 86 85 85 89 89 88 86 86 86 85	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have \(\begin{align*} \psi & \cdot & \cd	p (free) p n p ve converted : $e^+ \gamma$) $\frac{PARTICLE}{p}$ do not use the p p ve converted : $e^+ e^+ e^-$) $\frac{PARTICLE}{p}$ do not use the	90 90 90 90 90 1 possible er 90 e following 90 90 90 90 90 90 6 6 6 6 6 6 6 6 6 6 6	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TTS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2 0 0.2 0 0.2 0 0.5 ESTIMATE DESTIMATE 0 0.3 ACKGROUND TTS ESTIMATE 0 0.3 data for averages, 0 0.3 CL mean life.	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT 39 GURR DOCUMENT ID HAINES fits, limits, etc. • •	86 86 85 85 85 82 88 86 85 67	TEC
years) We 4 5 $\rightarrow \nu$ years) We 0 We have	pARTICLE p do not use the p p p p (free) p PARTICLE n do not use the n n n n n n n n n n n n n n n n n n n	90 90 90 90 90 90 90 90 et follow 90 90 90 90 90 90 90 90 90	2 2 2 9 8 8 EVTS 3 3 ing datt 1 2 6 6 2 1 2 2 1	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3 6 2 2 ts to 90% CL lir BACKGROUND	HIRATA PHILLIPS SEIDEL HAINES BLEWITT BLEWITT HIRATA fits, limits, etc. • • • • • • • • • • • • • • • • • • •	89 88 86 85 85 89 89 88 86 86 86 85	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have $\tau(p \rightarrow e$ $\frac{LIMIT}{(10^{30} \text{ years})}$ > 460 •• We > 360 > 87 > 360 > 0.1 39 We have $\tau(p \rightarrow e$ $\frac{LIMIT}{(10^{30} \text{ years})}$ > 510 •• We > 89	p (free) p n p we converted p p p p p p p p	90 90 90 90 90 10 10 10 10 10 10 10 10 10 10 10 10 10	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.2 0 0.2 0 0.2 0 CL mean life. BACKGROUND TS ESTIMATE 0 0.3 data for averages, 0 0.5	KAJITA BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BURNTT URNTT BURNT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNT BURNT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNT	86 86 85 85 85 82 88 86 85 87 86	TEC IM
years) We 4 5 $years)$ We 0 $years)$ $years)$	PARTICLE p do not use the p p p p p (free) p PARTICLE n do not use the n n n n n n n n n n n n n n n n n n n	90 90 90 90 90 90 90 90 90 er follow 90 90 90 90 90 2 possib	2 2 ing dat 0 2 2 9 8 8 EVTS 3 3 ing dat 1 2 6 6 2 1 2 2 le even	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3 6 2 2 ts to 90% CL lir BACKGROUND ESTIMATE	HIRATA PHILLIPS SEIDEL HAINES BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • • BERGER SEIDEL HAINES SEIDEL HAINES KAJITA PARK 35 CHERRY nit.	89 88 85 85 89 88 86 86 85 81	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have \(\begin{align*} \psi & \cdot & \cd	p (free) p n p ve converted : $e^+ \gamma$) $\frac{PARTICLE}{p}$ do not use the p p ve converted : $e^+ e^+ e^-$) $\frac{PARTICLE}{p}$ do not use the	90 90 90 90 90 1 possible er 90 e following 90 90 90 90 90 90 6 6 6 6 6 6 6 6 6 6 6	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TTS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2 0 0.2 0 0.2 0 0.5 ESTIMATE DESTIMATE 0 0.3 ACKGROUND TTS ESTIMATE 0 0.3 data for averages, 0 0.3 CL mean life.	KAJITA BLEWITT BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT 39 GURR DOCUMENT ID HAINES fits, limits, etc. • •	86 86 85 85 85 82 88 86 85 87 86	TEC IM
$\frac{\text{years}}{4}$ We $\frac{1}{4}$ We $\frac{1}{4}$ We $\frac{1}{4}$ We $\frac{1}{4}$	pARTICLE p do not use the p p p p (free) p PARTICLE n do not use the n n n n n n n n n n n n n n n n n n n	90 90 90 90 90 90 90 90 et follow 90 90 90 90 90 90 90 90 90	2 2 2 9 8 8 EVTS 3 3 ing datt 1 2 6 6 2 1 2 2 1	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3 6 2 2 ts to 90% CL lir BACKGROUND	HIRATA PHILLIPS SEIDEL HAINES BLEWITT BLEWITT HIRATA fits, limits, etc. • • • • • • • • • • • • • • • • • • •	89 88 85 85 89 88 86 86 85 81	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have $\tau(p \rightarrow 6$ $\frac{LIMIT}{(10^{30} \text{ years})}$ > 460 • • • We > 360 > 0.1 39 We have $\tau(p \rightarrow 6$ $\frac{LIMIT}{(10^{30} \text{ years})}$ > 510 • • • We > 89 > 510	p (free) p n p (free) p n p ve converted p p p p p p p p p p	90 90 90 90 90 10 10 10 10 10 10 10 10 10 10 10 10 10	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.2 0 0.2 0 0.2 0 CL mean life. BACKGROUND TS ESTIMATE 0 0.3 data for averages, 0 0.5	KAJITA BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BURNTT URNTT BURNT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNT BURNT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNT	86 86 85 85 85 82 88 86 85 87 86	TEC IME
wears) We 4 We We Ve We Ve No No Ve No No No No No No No No No N	PARTICLE p do not use the p p p p (free) p PARTICLE n do not use the n n n n n n n n n n n n n n n n n n n	90 90 90 90 90 90 90 90 90 er follow 90 90 90 90 90 2 possib	2 2 ing dat 0 2 2 9 8 8 EVTS 3 3 ing dat 1 2 6 6 2 1 2 2 le even	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3 6 2 2 ts to 90% CL lir BACKGROUND ESTIMATE	HIRATA PHILLIPS SEIDEL HAINES BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • • BERGER SEIDEL HAINES SEIDEL HAINES KAJITA PARK 35 CHERRY nit.	89 88 85 85 89 88 86 86 85 81	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	>6 >5.8 >9.6 >7 >2.1 38 We har $\tau(p \rightarrow e \text{ LIMIT (10^{30} years)})$ >460 $\bullet \bullet \bullet \text{ We}$ >360 >0.1 39 We har $\tau(p \rightarrow e \text{ LIMIT (10^{30} years)})$ >510 $\bullet \bullet \bullet \text{ We}$ >89 >510 $\tau(p \rightarrow f \text{ LIMIT (10^{30} years)})$	p (free) p p p p p p p p p p	90 90 90 90 90 10 10 10 10 10 10 10 10 10 10 10 10 10	2 1.6 10 16 7 6 11 4 1 vent to 90% CL lim BACKGROUND CTS ESTIMATE 0 0.6 data for averages, 0 0.3 0 0.2 0 0.2 0 0.2 0 0.5 0 0.3 data for averages, 0 0.7	KAJITA BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BURNTT URNTT BURNT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNT BURNT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNT	86 86 85 85 85 82 88 86 85 87 86	TEC
we we we we we we we we we we we we we w	PARTICLE p do not use the p p p p (free) p PARTICLE n do not use the n n n n n n n n n n n n n n n n n n n	90 90 90 90 90 90 90 90 90 er follow 90 90 90 90 90 2 possib	2 2 ing dat 0 2 2 9 8 8 EVTS 3 3 ing dat 1 2 6 6 2 1 2 2 le even	ESTIMATE 1.9 1.9 0.7 1.3 1 8.7 7 BACKGROUND ESTIMATE 2.7 a for averages, 1 0.7 1.3 6 2 2 ts to 90% CL lir BACKGROUND ESTIMATE	HIRATA PHILLIPS SEIDEL HAINES BLEWITT DOCUMENT ID HIRATA fits, limits, etc. • • • BERGER SEIDEL HAINES SEIDEL HAINES KAJITA PARK 35 CHERRY nit.	89 88 85 85 89 88 86 86 85 81	HPW IMB IMB IMB IMB IMB IMB IMB IMB IMB IMB	> 6 > 5.8 > 9.6 > 7 > 2.1 38 We have $\tau(p \rightarrow 6$ $\frac{LIMIT}{(10^{30} \text{ years})}$ > 460 • • • We > 360 > 0.1 39 We have $\tau(p \rightarrow 6$ $\frac{LIMIT}{(10^{30} \text{ years})}$ > 510 • • • We > 89 > 510	p (free) p p p p p p p p p p	90 90 90 90 90 1 possible e 90 e following 90 90 auff-life to 9	2 1.6 10 16 7 6 1 4 1 vent to 90% CL lim BACKGROUND TS ESTIMATE 0 0.6 data for averages, 0 0.2 0 0.2 0 0.2 0 CL mean life. BACKGROUND TS ESTIMATE 0 0.3 data for averages, 0 0.5	KAJITA BLEWITT PARK 38 BATTISTONI iit. DOCUMENT ID SEIDEL fits, limits, etc. • • • HAINES BLEWITT BURNTT URNTT BURNT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNT BURNT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNTT BURNT	86 86 85 85 85 82 88 86 85 87 86	TEC IM

р

	_			···· -					-	-		-					
	do not use the		•	•	its, limits, etc. • • •						t use the		-	ta for averages, fits,			
> 97	p	90		2	HAINES		IMB		> 2.7	n		90		0.7	PHILLIPS	89	HPW
> 61	p (free)	90 90		0.2	BLEWITT BLEWITT				>25 >27	n n		90 90	7		HAINES PARK	86	IMB IMB
>280 > 0.3	ρ	90	U	0.6	40 GURR		IMB CNTR		>21	"		90	2	3	PARK	85	IMID
	p				GORK	01	CNIK		$\tau(n \rightarrow e)$	- K	+)						τ
™We ha	ve converted h	alf-life	to 90%	CL mean life.					LIMIT		,			BACKGROUND			
$\tau(p \rightarrow$	$\mu^{+} \mu^{+} \mu^{-})$						τ ₂₅		(10 ³⁰ years)	PAR	TICLE	CL%	<u>EVTS</u>	ESTIMATE	DOCUMENT ID		TECN
LINET	,			BACKGROUND			- 25		>0.23	n		90	0	0.7	PHILLIPS	89	HPW
(10 ³⁰ years)	PARTICLE	CL%	EVTS	ESTIMATE	DOCUMENT ID		TECN		1-	- 1/-	+1						
>190	p	90	1	0.1	HAINES	86	IMB		$\tau(n \to \mu$. ^	')						τ
• • • We	do not use the	follow	ing dat	a for averages, f	its, limits, etc. • • •				LIMIT (10 ³⁰ years)	PAR	TICLE	CL%	EVTS	BACKGROUND ESTIMATE	DOCUMENT ID		TECN
> 10.5	p	90	0	0.7	PHILLIPS	89	HPW	1	>4.7	n		90	0	-	PHILLIPS	89	HPW
> 44	p (free)	90		0.7	BLEWITT	85		•	74.1	"		30	U	0.7	THEELES	03	111 **
>190	p	90	1	0.9	BLEWITT	85			$\tau(n \rightarrow e$	$-\rho^+$	-)						τ
> 2.1	p	90	1		⁴¹ BATTISTONI	82	NUSX		LIMIT	•	,			BACKGROUND			
⁴¹ We ha	ve converted 1	possib	le even	t to 90% CL limi	it.				(10 ³⁰ years)	PAR	TICLE	<u>CL%</u>	<u>EVT5</u>	ESTIMATE	DOCUMENT ID		TECN
		•							>62	n		90	2	4.1	SEIDEL	88	IMB
$\tau(n \rightarrow$							τ_{26}		• • • We d	on ot	t use the	follow	ing dat	a for averages, fits,	limits, etc. • • •	•	
LIMIT (10 ³⁰ years)	04071017	C18/		BACKGROUND					>12	n		90	13	6	HAINES	86	IMB
			_	ESTIMATE	DOCUMENT ID		TECN		>12	n		90	5	3	PARK	85	IMB
> 9	n do not uso the	90 Sallow		60	HAINES	86	IMB		-1-	ا ــــــــــــــــــــــــــــــــــــ	-1						
					its, limits, etc. • • •				$\tau(n \rightarrow \mu$	ρ^{\uparrow})						74
>11	n	90	28	19	PARK	85	IMB		LIMIT (10 ³⁰ years)	PAP	TICLE	CL%	EVTS	BACKGROUND ESTIMATE	DOCUMENT ID		TECN
$\tau(n \rightarrow$	۱., - م +م								>7	n		90		1.1	SEIDEL	88	IMB
				DACKCES: 11:5			τ_{27}				t 1150 +h~			1.1 a for averages, fits,			IMR
(10 ³⁰ vears)	PARTICLE	CL%	EVTS	BACKGROUND ESTIMATE	DOCUMENT ID		TECN				. use the		-	•			
>45	n	90		5	HAINES	86	IMB		>2.6	n		90		0.7	PHILLIPS	89	HPW
					its, limits, etc. • • •				>9 >0	п		90	7		HAINES	86	IMB
		90		3	PARK		IMB		>9	n		90	2	2	PARK	85	IMB
>26	n	90	4	,	FARK	85	IIVID										
$\tau(n \rightarrow$	$\mu^{+} \mu^{-} \nu$						$ au_{28}$						REFE	RENCES FOR p			
	,			BACKGROUND			- 20							•			
LIMIT (10 ³⁰ years)	PARTICLE	CL%	EVTS		DOCUMENT ID		TECN		BERGER CHO	89 89	NP B313 PRL 63	3 509		+Froehlich, Moench+ +Sangster, Hinds	(FR	REJUS	CoHab.) (YALE)
>16	n	90	14	7	HAINES	86	IMB		HIRATA	89C	PL B220	308	-	-Kajita, Kifune, Kihara+	(Kamio	kande	Čollab.)
• • • We	do not use the	follow	ing dat	a for averages, f	its, limits, etc. 🔹 🔹 🔹				PHILLIPS KREISSL	89 88	PL B224 ZPHY C	348	-	-Matthews, Aprile, Cline-	FOC, STRB, THES,	(HPW	Collab.)
> 5.1	п	90	0	0.7	PHILLIPS	89	HPW	1	SEIDEL	88	PRL 61 :	2522		+Bionta, Blewitt, Bratton	+	(IMB	Collab.)
>19	n	90	4	7	PARK	85	IMB	•	BARTELT	87 89	PR D36 PR D40	1990		+Courant, Heller+			Collab.)
,	- >								Aiso COHEN	87	RMP 59	1121	atum -	Bartelt, Courant, Heller- +Taylor	F (3)	(RISC	Collab.) ., NBS)
$\tau(n \rightarrow$	$3\nu)$						τ_{29}		HAINES KAJITA	86 86	PRL 57		-	Bionta, Blewitt, Bratton	, Casper+	(ÌMB	Collab.)
LIMIT	045755			BACKGROUND					ARISAKA	85	JPSJ 55 JPSJ 54	3213		⊢Arisaka, Koshiba, Nakah +Kajita, Koshiba, Nakaha			
	PARTICLE	CL%	EVTS	ESTIMATE	DOCUMENT ID		TECN		BLEWITT	85 85	PRL 55 : PL 154B	2114		+LoSecco, Bionta, Bratto		(IMB	Collab.)
>0.0005	n	90	0		LEARNED	79	RVUE		DZUBA PARK	85	PRL 54 3	22		+Flambaum, Silvestrov +Blewitt, Cortez, Foster+		(IMB	NOVO) Collab.)
-(n →	$e^{+} \mu^{+} \mu^{-}$						T 00		BATTISTONI	84	PL 133B	454		-Bellotti, Bologna, Camp	ana+ (N	USEX	Collab.)
I (P	ε μ ,			BACKGROUND			$ au_{30}$		MARINELLI WILKENING	84 84	PL 137B PR A29			+Morpurgo +Ramsey, Larson		(HARV	(GENO) (VIRG)
(10 ³⁰ years,	PARTICLE	CL%	EVTS	ESTIMATE	DOCUMENT ID		TECN		BARTELT	83	PRL 50	651	-	+Courant, Heller, Joyce,	Marshak+	(MINI)	i, ANL)
>5.0	0	90		0.7	PHILLIPS	89		J	BATTISTONI KRISHNA	82 82	PL 118B PL 115B	349		+Bellotti, Bologna, Çamp Krishnaswamy, Menon+	ana+ (N TATA, (OSKC.	Collab.) TOKY)
			_					•	ALEKSEEV	81	JETPL 3	3 651		-Bakatanov, Butkevich, V	/oevodskii+		(LENI)
$\tau(p \rightarrow$	$e^{-} \mu^{+} \mu^{+})$						τ_{31}		CHERRY	81	Translate PRL 47	1507	2E1FP -	33 664. +Deakyne, Lande, Lee, S	teinberg+	(PENN	l, BNL)
LIMIT	ŕ			BACKGROUND					COWSIK	80	PR D22	2204	-	+Narasimhan	=		(TATA)
(10 ³⁰ years,		CL%	<u>EVTS</u>	<u>ESTIMATE</u>	DOCUMENT ID		TECN		BELL GOLDEN	79 79	PL 86B PRL 43	1196		+Calvetti, Carron, Chaney +Horan, Mauger, Badhwa	r, Cittolin+ ir, Lacy+	(NASA	(CERN) PSLL)
>6.0	ρ	90	0	0.7	PHILLIPS	89	HPW	ł	LEARNED	79	PRL 43	907	-	+Reines, Soni			(UCI)
-(n ·	α-π+π+)								BREGMAN ROBERTS	78 78	PL 78B PR D17	358	-	+Calvetti, Carron, Cittolir	i, mauer, Herr+	(WILL:	(CÉRN) RHEL)
LIANT	$e^{-}\pi^{+}\pi^{+})$			DACKERS			τ_{32}		EVANS	77	Science 1			Steinberg		(BNL,	PENN)
LIMIT (10 ³⁰ years)	PARTICLE	CL%	EVTS	BACKGROUND ESTIMATE	DOCUMENT ID		TECN		ROBERSON HU	77 75	PR C16 NP A254	403		+King, Kunselman+ +Asano, Chen, Cheng, D	(WYOM, CIT, CMI	(COLU	YALE)
>2.0	ρ	90		0.7	PHILLIPS	89		1	COHEN DYLLA	73 73	JPCRD 2 PR A7 1	2 663	-	+ Taylor	- '	(RISC	, NBS)
	•	,,,	J			39	**	•	BAMBERGER		PR A7 I			+King +Lynen, Piekarz+	(MPIH,	CERN	(MIT) KARL)
$\tau(p \rightarrow$	$\mu^{+}\pi^{+}\pi^{-})$						$ au_{33}$		DIX	70	Case The	esis		·	(1414 11 1)		(CASE)
	•			BACKGROUND					HARRISON GURR	69 67	PRL 22 : PR 158			+Sandars, Wright +Kropp, Reines, Meyer	fi	CASE	(OXF) WITW)
	PARTICLE	CL%		ESTIMATE	DOCUMENT ID		TECN	_	FLEROV	58	DOKL 3		-	+Klochkov, Skobkin, Tere	ntev		(USSR)
>3.3	ρ	90	0	0.7	PHILLIPS	89	HPW	ł				_ ^-	uen	RELATED PAPE	DC		
/	+-+1											- 01	HEK	KELATED PAPE	к5 ——		
$(p \rightarrow$	$\mu^{-}\pi^{+}\pi^{+})$						$ au_{34}$		MAMYRIN	83	JETP 57			Aruev, Alekseenko			(IOFF)
LIMIT /10 ³⁰ vears	PARTICLE	CL%	EVTS	BACKGROUND ESTIMATE	DOCUMENT ID		TECN		FRANKLIN	77	Translate PR D16	d from 910	ZETF 8	4 1980.			(HAIF) P
>7.8	p	90		0.7	PHILLIPS	89			KALOGERO		PRL 37			Kalogeropoulos, Chiu, S	udarshan (SYRA,	TEXA) P
~ i .u	r	, 0	J	0.1	FINELIFA	09	LIE VV	•									
$\tau(n \rightarrow$	$e^{-}\pi^{+}$)						$ au_{35}$										
LIMIT	,			BACKGROUND			. 33										
(10 ³⁰ years)	PARTICLE	CL%	EVTS	ESTIMATE	DOCUMENT ID		TECN	_									
>65	п	90	0	1.6	SEIDEL	88	IMB	ł									
• • • We	do not use the	follow	ing dat	a for averages, f	its, limits, etc. 🔹 🔹 🔹			-									
>16	n	90	9	7	HAINES	86	IMB										
>25	n	90	2		PARK												
(_ 4\																
$\tau(n \rightarrow$,						$ au_{36}$										
LIMIT (10 ³⁰ years)	PARTICLE	CL%	EVTC	BACKGROUND	DOCUMENT ID		TECN										
				ESTIMATE	DOCUMENT ID	^-	TECN										
>49	n	90	0	0.5	SEIDEL	88	IMB	ı									

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1986 edition (Physics Letters 170B) or in earlier editions

n MASS

The mass is known much more precisely in u (atomic mass units) than in MeV; see the footnotes. The conversion from u to MeV, 1 u = 931.49432 ± 0.00028 MeV, involves the relatively poorly known electronic charge.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
939.56563±0.00028	1 COHEN	87	RVUE	1986 CODATA value
• • • We do not use the f	ollowing data for average	es, fits	s, limits,	etc. • • •
939.56564 ± 0.00028	2,3 GREENE	86	SPEC	$n\rho \rightarrow d\gamma$
939.5731 ±0.0027	3 COHEN	73	RVUE	1973 CODATA value
1 The mass is known mu				

- 2 The mass is known much more precisely in u: $m=1.008664919\pm0.000000014$ u.
- ³ These determinations are not independent of the n-p mass difference measurements below.

77 MASS

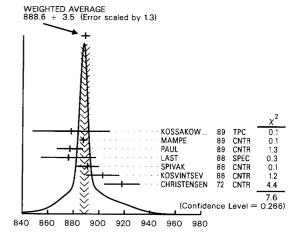
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
939.485±0.051	59	4 CRESTI 86	нвс	pp → nn

⁴This is a corrected result (see the erratum). The error is statistical. The maximum systematic error is 0.029 MeV.

n - p MASS DIFFERENCE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1.293318 ±0.000009	⁵ COHEN	87	RVUE	1986 CODATA value
• • We do not use the folion	wing data for averag	es, fits	s, limits,	etc. • • •
1.2933328 ± 0.0000072	GREENE	86	SPEC	$n\rho \rightarrow d\gamma$

1.293429 ±0.000036 73 RVUE 1973 CODATA value ⁵ Calculated by us from the COHEN 87 ratio $m(n)/m(p) = 1.001378404 \pm 0.000000009$. In u, $m(n) - m(p) = 0.001388434 \pm 0.000000009$ u.


n MEAN LIFE

We now compile only direct measurements of the lifetime, not those inferred from decay correlation measurements. (Limits on lifetimes for bound neutrons are given in the section "p PARTIAL MEAN LIVES.")

For a review, see EROZOLIMSKII 89 and papers that follow it. The issue in which these articles appear is the "Proceedings of the International Workshop on Fundamental Physics with Slow Neutrons" (Grenoble 1989).

am below.
rons
rons
ons
rons
88
t

⁶ This measurement has been withdrawn (J. Byrne, private communication, 1990).

neutron mean life (s)

n MAGNETIC MOMENT

VALUE (μ _N)	DOCUMENT ID		TECN	COMMENT
-1.91304275±0.00000045	COHEN	87	RVUE	1986 CODATA value
• • • We do not use the following	g data for average	s, fits	, limits,	etc. • • •
1.91304277 + 0.00000048	7 OPEENE	82	MPS	

n ELECTRIC DIPOLE MOMENT

A nonzero value is forbidden by both T invariance and P invariance. See RAM-SEY 82B for a review. A number of early results have been omitted.

VALUE (10 ⁻²⁶ e-cm)	CL%	DOCUMENT ID		TECN	COMMENT
< 12	95	SMITH	90	MRS	$d = (-3 \pm 5) \times 10^{-26}$
• • We do not use the	e following o	data for averages	, fit:	s, limits,	etc. • • •
< 26	95	ALTAREV	86	MRS	$d = (-14 \pm 6) \times 10^{-26}$
3 ± 48		PENDLEBURY	84	MRS	Ultracold neutrons
< 60	90	ALTAREV	81	MRS	$d = (21 \pm 24) \times 10^{-26}$
<160	90	ALTAREV	79	MRS	$d = (40 \pm 75) \times 10^{-26}$

n ELECTRIC POLARIZABILITY α_n

Following is the electric polarizability $lpha_n$ defined in terms of the induced electric dipole moment by D = $4\pi\epsilon_0\alpha_B$ E. For a review, see SCHMIEDMAYER 89.

VALUE (10 ⁻³ fm ³)	DOCUMENT ID	TECN	COMMENT	_
$1.1 \substack{+0.4 \\ -0.6}$ OUR AVERAGE				
$1.17 + 0.43 \\ -1.17$	ROSE 90	CNTR	$\gamma d \rightarrow \gamma n p$	
0.8 ± 1.0 1.2 ± 1.0			n Pb, n Bi transmission n Pb, n C transmission	

n CHARGE

See also " $|q_p+q_e|$ CHARGE MAGNITUDE DIFFERENCE" in the proton Listings.

VALUE (10° 21 e)	DOCUMENT ID		TECN	COMMENT	_
- 0.4 ± 1.1	⁸ BAUMANN	88		Cold n deflection	
• • We do not use the form	flowing data for average	s, fits	, limits,	etc. • • •	
-15 ± 22	⁹ GAEHLER	82	CNTR	Reactor neutrons	
_					

⁸ The BAUMANN 88 error ± 1.1 gives the 68% CL limits about the the value -0.4. 9 The GAEHLER 82 error ± 22 gives the 90% CL limits about the the value -15.

 $^{^7}$ GREENE 82 measures the moment to be (1.04187564 \pm 0.00000026) imes 10^{-3} Bohr magnetons. The value above is obtained by multiplying this by $m(\rho)/m(e)=1836.152701\pm0.000037$ (the 1986 CODATA value from COHEN 87).

Limit on n n Oscillations

MEAN TIME FOR ATT TRANSITION IN VACUUM

Test of baryon conservation. Limits are derived from experimental limits on $\Delta B=2$ nuclear decay processes, using theoretical assumptions for nuclear physics effects. Theoretical discussions of the motivations for $n\bar{n}$ oscillations appear in MOHAPATRA 80 and MOHAPATRA 89. Phenomenological analyses are in DOVER 83 and DOVER 85. There is some controversy about whether nuclear physics and model dependence can complicate the analysis for bound neutrons (from which the best limit comes); for a discussion see DOVER 89 and KABIR 83 (see also papers submitted to Phys. Rev. C by Kabir and Noble and by Dover et al.).

•	,	,				
VALUE (5)	CL%_	DOCUMENT ID		TECN	COMMENT	
>1.2 × 10 ⁸	90	TAKITA	86	CNTR	Kamiokande	
• • • We do not use t	he following	data for average	s, fits	s, limits,	etc. • • •	
$>4.7 \times 10^{5}$	90	BRESSI	89	CNTR	Reactor neutrons	1
$>1. \times 10^6$	90	FIDECARO	85	CNTR	Reactor neutrons	
$> 8.8 \times 10^{7}$	90	PARK	85B	CNTR		
$>3. \times 10^{7}$		BATTISTONI	84	NUSX		
$> 2.7 \times 10^7 - 1.1 \times 10^8$		JONES	84	CNTR		
$>2. \times 10^{7}$		CHERRY	83	CNTR		
$>3. \times 10^{7}$		ALBERICO	82	THEO		
>1. × 10 ⁸		CHETYRKIN	81	THEO		
>5. × 10 ⁷	90	COWSIK	81	THEO		

n DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
Γ1	$pe^-\overline{\nu}_e$	100 %	
		Charge conservation (Q) violating mode	
Γ_2	$\rho \nu_e \overline{\nu}_e$	$Q < 9 \times 10^{-24}$	90%

π BRANCHING RATIOS

$(p\nu_e\nu_e)/1$ total Forbidden by char	ge conserva	tion.				1 2/1
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	•
$< 9 \times 10^{-24}$	90	BARABANOV	80	CNTR	71 Ga \rightarrow	⁷¹ Ge X
• • • We do not use th	e following	data for average	s, fit	s, limits,	etc. • •	•
$< 9.7 \times 10^{-18}$	90	ROY				113m In neut.
$< 7.9 \times 10^{-21}$		VAIDYA				87m Sr neut.
$< 3 \times 10^{-19}$		NORMAN	79	CNTR	87 Rb \rightarrow	87m Sr neut.

NOTE ON BARYON DECAY PARAMETERS

(by E.D. Commins, University of California, Berkeley)

Baryon semileptonic decays

The typical baryon semileptonic decay is described by a matrix element, the hadronic part of which may be written as:

$$\overline{B}_f \left[f_1(q^2) \gamma_\lambda + i \ f_2(q^2) \sigma_{\lambda\mu} q^\mu + g_1(q^2) \gamma_\lambda \gamma_5 + g_3(q^2) \gamma_5 q_\lambda \right] B_i \ .$$

Here B_i and \overline{B}_f are spinors describing the initial and final baryons and $q=p_i-p_f$, while the terms in f_1 , f_2 , g_1 , and g_3 account for vector, induced tensor ("weak magnetism"), axial vector, and induced pseudoscalar contributions.¹ Second-class current contributions are ignored here. In the limit of zero momentum transfer, f_1 reduces to the vector coupling constant g_V , and g_1 reduces to the axial-vector coupling constant g_A . The latter coefficients are related by Cabibbo's theory,² generalized to six quarks (and three mixing angles) by Kobayashi and Maskawa.³ The g_3 term is negligible for transitions in which an e^\pm is emitted, and gives a very small correction, which can be estimated by PCAC,⁴ for μ^\pm modes. Recoil effects include weak magnetism, and are taken into account adequately by considering terms of first order in

$$\delta = (m_i - m_f)/(m_i + m_f) ,$$

where m_i and m_f are the masses of the initial and final baryons.

The experimental quantities of interest are the total decay rate, the lepton-neutrino angular correlation, the asymmetry coefficients in the decay of a polarized initial baryon, and the polarization of the decay baryon in its own rest frame for an unpolarized initial baryon. Formulae for these quantities are derived by standard means⁵ and are analogous to similar formulae for beta decay.⁶ For comparison with high-precision experiments, it is necessary to modify the form factors at $q^2 = 0$ by a "dipole" q^2 dependence, and also to apply appropriate radiative corrections.⁷

The ratio g_A/g_V may be written as

$$g_A/g_V = |g_A/g_V| e^{i\phi_{AV}} .$$

The presence of a "triple correlation" term in the transition probability, proportional to $\text{Im}(g_A/g_V)$ and of the form

$$\sigma_i \cdot (\mathbf{p}_\ell \times \mathbf{p}_\nu)$$

for initial baryon polarization or

$$\sigma_f \cdot (\mathbf{p}_\ell \times \mathbf{p}_\nu)$$

for final baryon polarization, would indicate failure of time-reversal invariance. The phase angle ϕ has been measured precisely only in neutron decay (and in ¹⁹Ne nuclear beta decay), and the results are consistent with T invariance.

Hyperon nonleptonic decays

The most general decay amplitude for $J^P=1/2^+$ hyperons may be written in the form

$$M = G_F m_{\pi}^2 \cdot \overline{B}_f (A - B\gamma_5) B_i ,$$

where A and B are constants.¹ Then the transition rate is proportional to

$$\begin{split} R &= 1 + \gamma \ \widehat{\boldsymbol{\omega}}_f \cdot \widehat{\boldsymbol{\omega}}_i + (1 - \gamma) (\ \widehat{\boldsymbol{\omega}}_f \cdot \widehat{\mathbf{n}}) (\ \widehat{\boldsymbol{\omega}}_i \cdot \widehat{\mathbf{n}}) \ + \\ & \alpha (\ \widehat{\boldsymbol{\omega}}_f \cdot \widehat{\mathbf{n}} + \ \widehat{\boldsymbol{\omega}}_i \cdot \widehat{\mathbf{n}}) - \beta \ \widehat{\mathbf{n}} \cdot (\ \widehat{\boldsymbol{\omega}}_f \times \widehat{\boldsymbol{\omega}}_i) \ , \end{split}$$

where $\hat{\mathbf{n}}$ is a unit vector in the direction of the final baryon momentum, and $\hat{\omega}_i$ and $\hat{\omega}_f$ are unit vectors in the directions of the initial and final baryon spins. Also,

$$\alpha = 2 \operatorname{Re}(s^* p) / (|s|^2 + |p|^2)$$

$$\beta = 2 \operatorname{Im}(s^*p) / (|s|^2 + |p|^2)$$
,

and

$$\gamma = (|s|^2 - |p|^2)/(|s|^2 + |p|^2),$$

where s=A and $p=|\mathbf{p}_f|B/(E_f+m_f)$; here E_f and \mathbf{p}_f are the energy and momentum of the final baryon. The parameters α , β , and γ satisfy

$$\alpha^2 + \beta^2 + \gamma^2 = 1 .$$

An additional parameter ϕ is defined by

$$\beta = (1 - \alpha^2)^{1/2} \sin \phi .$$

In the Listings, we compile α and ϕ for each decay, since these quantities are most closely related to experiment and are essentially uncorrelated. When necessary, we have changed the signs of reported values to agree with our sign conventions.

In the Baryon Summary Table, we give α , ϕ , and Δ (defined below) with errors, and also give the value of γ without error.

Time-reversal invariance requires, in the absence of finalstate interactions, that s and p be relatively real, and therefore that $\beta = 0$. However, for the decays discussed here, the final-state interaction is strong. Thus

$$s = |s| e^{i\delta_s}$$
 and $p = |p| e^{i\delta_p}$,

where δ_s and δ_p are the pion-baryon s- and p-wave strong interaction phase shifts. We then have

$$\beta = \frac{-2|s||p|}{|s|^2 + |p|^2} \sin(\delta_s - \delta_p) .$$

One also defines $\Delta = -\tan^{-1}(\beta/\alpha)$. If T invariance holds, $\Delta = \delta_s - \delta_p$. For $\Lambda \to p\pi^-$ decay, the value of Δ may be compared with the s- and p-wave phase shifts in low-energy $\pi^- p$ scattering, and the results are consistent with T invariance.

References

- 1. E.D. Commins and P.H. Bucksbaum, Weak Interactions of Leptons and Quarks (Cambridge University Press, Cambridge, England, 1983).
- N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
- 3. M. Kobayashi and T. Maskawa, Progr. Theor. Phys. 49, 652 (1973).
- 4. M.L. Goldberger and S.B. Treiman, Phys. Rev. 111, 354 (1958).
- 5. P.H. Frampton and W.K. Tung, Phys. Rev. D3, 1114 (1971).
- 6. J.D. Jackson, S.B. Treiman, and H.W. Wyld, Jr., Phys. Rev. 106, 517 (1957), and Nucl. Phys. 4, 206 (1957).
- 7. Y. Yokoo, S. Suzuki, and M. Morita, Progr. Theor. Phys. **50**, 1894 (1973).

n → pe- v DECAY PARAMETERS

DOCUMENT ID TECN COMMENT

See the above Note on Baryon Decay Parameters.

BA / BV

1.261 ± 0.004 OUR AVERAGE				
-1.262 ± 0.005	BOPP			e mom-n spin corr.
-1.261 ± 0.012				e mom-n spin corr.
-1.259 ± 0.017		78	CNTR	proton recoil spectrum
-1.258 ± 0.015	11 KROHN	75	CNTR	e mom-n spin corr.
• • We do not use the follow	ing data for average	s, fit	s, limits,	etc. • • •
-1.226 ± 0.042	MOSTOVOY	83	RVUE	
-1.263 ± 0.015		77	CNTR	See EROZOLIMSKII 79
-1.250 ± 0.036	10 DOBROZE	75	CNTR	See STRATOWA 78
-1.263 ± 0.016	¹² KROPF	74	RVUE	n decay alone
-1.250 ± 0.009	¹² KROPF	74	RVUE	n decay + nuclear ft
10 These experiments measure	the absolute value of	f RA	/gy onl	у.

β ASYMMETRY PARAMETER A

DOCUMENT ID		<u>TECN</u>
¹⁴ EROZOLIM	79	CNTR
¹⁴ KROHN	75	CNTR
corrected for radiative eff	ects	and weak magnetism.
	/ERAGE 13 BOPP 14 EROZOLIM 14 KROHN	/ERAGE 13 BOPP 86 14 EROZOLIM 79

rections are small compared to the errors.

$\overline{\nu}$ ASYMMETRY PARAMETER B

This is the neutron-spin antineutrino-momentum correlation coefficient.

VALUE	DOCOMENTIO	/ EC.IV
0.997±0.028 OUR AVERAGE		
0.995 ± 0.034	CHRISTENSEN70	CNTR
1.00 ±0.05	EROZOLIM 700	CNTR

e-	N COEFFICIE	NT	a	
VALUE	DOCUMENT ID		TECN	COMMENT
-0.102 ±0.005 OUR AVERAGE				
-0.1017 ± 0.0051	STRATOWA	78	CNTR	Proton recoil spectrum
-0.091 ± 0.039	GRIGOREV	68	SPEC	Proton recoil spectrum

ϕ_{AV} , PHASE ANGLE OF g_A RELATIVE TO g_V

i ime reversai invariance requ	iires this to be U d	N TS	υ.	
VALUE (°)	DOCUMENT ID		TECN	COMMENT
180.07±0.18 OUR EVALUATION		and		quantity D given in the g_{A}/g_{V} in $\sin\phi_{AV}=$
180.09 ± 0.18 OUR AVERAGE	- (- ,),			
179.71 ±0.39	EROZOLIM	78	CNTR	Polarized neutrons
180.35 ± 0.43	EROZOLIM	74	CNTR	Polarized neutrons
180.14±0.22	STEINBERG	74	CNTR	Polarized neutrons
• • • We do not use the following	data for averages	, fit:	s, limits,	etc. • • •
181.1 ±1.3	⁵ KROPF	74	RVUE	n decay
15 KROPF 74 reviews all data thr	ough 1972.			

TRIPLE CORRELATION COEFFICIENT D

These are measurements of the component of n spin perpendicular to the decay plane

in β decay. Should be zero	if I invariance is not vi	oiated.	
VALUE	DOCUMENT ID	TECN	COMMENT
$(-0.5 \pm 1.4) \times 10^{-3}$ OUF	RAVERAGE		
$+\ 0.0022 \pm 0.0030$	EROZOLIM 78		
-0.0027 ± 0.0050	¹⁶ EROZOLIM 74	CNTR	Polarized neutrons
-0.0011 ± 0.0017	STEINBERG 74	CNTR	Polarized neutrons

16 EROZOLIMSKII 78 says asymmetric proton losses and nonuniform beam polarization may give a systematic error up to 0.003, thus increasing the EROZOLIMSKII 74 error to 0.005. STEINBERG 74 and STEINBERG 76 estimate these systematic errors to be insignificant in their experiment.

REFERENCES FOR n

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.

ROSE	90	PL B234 460	+Zurmuehl, Rulthusen, Ludwig+ (GOET, MPHY, MANZ)	
SMITH	90	PL B234 191	+Crampin+ (SUSS, RAL, HARV, WASH, ILLG, MUNT)	
BRESSI	89 89	ZPHY C43 175	+Calligarich, Cambiaghi+ (INFN, MILA, PAVI, ROMA)	
DOVER EROZOLIM	89	NIM A284 13 NIM A284 89	+Gal, Richard (BNL, HEBR, ISNG) Erozolimskii (LENI)	
KOSSAKOW		NP A503 473	Kossakowski, Grivot+ (LAPP, SAVO, ISNG, ILEG)	
MAMPE	89	PRL 63 593	+Ageron, Bates, Pendlebury, Steyer! (ILLG, RISL, SUSS, URI)	
MOHAPATRA	89	NIM A284 1	(UMD)	
PAUL	89	ZPHY C45 25	+Anton, Paul, Paul, Mampe (BONN, WUPP, MPIH, ILLG)	
SCHMIEDM	89	NIM A284 137	Schmiedmayer, Rauch, Riehs (WIEN)	
BAUMANN	88	PR D37 3107	+Gaehler, Kalus, Mampe (BAYR, MUNI, ILLG)	
KOESTER	88	ZPHY A329 229	+Waschkowski, Meier (MUNI, MUNT)	
LAST SCHMIEDM	88 88	PRL 60 995 PRL 61 1065	+Arnold, Doehner, Dubbers+ (HEID, ILLG, ANL) Schmiedmayer, Rauch, Riehs (TUW)	
Also	88B	PRL 61 2509 erratum	Schmiedmayer, Rauch, Riehs (TUW) Schmiedmayer, Rauch, Riehs (TUW)	
SPIVAK	88	JETP 67 1735	(KIAE)	
3. 14	-	Translated from ZETF 9	14 1.	
COHEN	87	RMP 59 1121	+ Taylor (RISC, NBS)	
ALTAREV	86	JETPL 44 460	+Borisov, Borovikova, Brandin, Egorov+ (LENI)	
BOPP	86	Translated from ZETFP PRL 56 919	+Dubbers, Hornig, Klemt, Last+ (HEID, ANL, ILLG)	
Also	88	ZPHY C37 179	Klemt, Bopp, Hornig, Last+ (HEID, ANL, ILLG)	
CRESTI	86	PL B177 206	+Pasquali, Peruzzo, Pinori, Sartori (PADO)	
Also	88	PL B200 587 errat.	Cresti, Pasquali, Peruzzo, Pinori, Sartori (PADO)	
GREENE	86	PRL 56 819	+Kessler, Deslattes, Boerner (NBS, ILLG)	
KOSVINTSEV	86	JETPL 44 571	+Morozov, Terekhov (KIAE)	
TAKITA	86	Translated from ZETFP	44 444. +Arisaka, Kajita, Kifune, Koshiba+ (KEK, TOKY)	
DOVER	85	PR D34 902 PR C31 1423	+Arisaka, Kajita, Kifune, Koshiba+ (KEK, TOKY) +Gal, Richard (BNL)	
FIDECARO	85	PL 156B 122	-Lanceri+ (CERN, ILLG, PADO, RAL, SUSS)	
PARK	858	NP B252 261	+Blewitt, Cortez, Foster+ (IMB Collab.)	
BATTISTONI	84	PL 133B 454	+Bellotti, Bologna, Campana+ (NUSEX Collab.)	
JONES	84	PRL 52 720	+Bionta, Blewitt, Bratton+ (IMB Collab.)	
PENDLEBURY		PL 136B 327	+Smith, Golub, Byrne+ (SUSS, HARV, RAL, ILLG)	
CHERRY	83	PRL 50 1354	+Lande, Lee, Steinberg, Cleveland (PENN, BNL)	
DOVER	83	PR D27 1090	+Gal, Richards (BNL)	
KABIR MOSTOVOY	83 83	PRL 51 231 JETPL 37 196	(HARV) (KIAE)	
MOSTOVOT	03	Translated from ZETFP	37 162.	
ROY	83	PR D28 1770	+Vaidya, Ephraim, Datar, Bhatki+ (TATA)	
VAIDYA	83	PR D27 486	+Roy, Ephraim, Datar, Bhattacherjee (TATA)	
ALBERICO	82	PL 114B 266	+Bottino, Molinari (CERN, TORI)	
GAEHLER	82	PR D25 2887	+Kalus, Mampe (BAYR, ILLG)	
GREENE RAMSEY	82 82B	Metrologia 18 93 RPP 45 95	+ (YALE, HARV, ILLG, SUSS, ORNL, CENG) (HARV)	
ALTAREV	81	PL 102B 13	+Borisov, Borovikova, Brandin, Egorov+ (LENI)	
CHETYRKIN	81	PL 99B 358	+Kazarnovsky, Kuzmin+ (INRM)	
COWSIK	81	PL 101B 237	+ Nussinov (UMD)	
BARABANOV	80	JETPL 32 359	+Veretenkin, Gavrin+ (LENI)	
51.5115		Translated from ZETFP		
BYRNE KOSVINTSEV	80 80	PL 92B 274 JETPL 31 236	+Morse, Smith, Shaikh, Green, Greene (SUSS, RL) +Kushnir, Morozov, Terekhov (JINR)	
KOSVINTSEV	00	Translated from ZETFP		
MOHAPATRA	80	PRL 44 1316	+Marshak (CUNY, VPI)	
ALTAREV	79	JETPL 29 730	+Borisov, Brandin, Egorov, Ezhov, Ivanov+ (LENI)	
F00701114	70	Translated from ZETFP		
EROZOLIM	79	SJNP 30 356 Translated from YAF 30	Erozolimskii, Frank, Mostovoy+ (KIAE)	
NORMAN	79	PRL 43 1226	+Seamster (WASH)	
BONDAREN	78	JETPL 28 303	Bondarenko, Kurguzov, Prokofev+ (KIAE)	
		Translated from ZETFP	28 328.	
Also	82	Smolenice Conf.	Bondarenko (KIAE)	
EROZOLIM	78	SJNP 28 48 Translated from YAF 28	Erozolimskii, Mostovoy, Fedunin, Frank+ (KIAE)	
STRATOWA	78	PR D18 3970	+Dobrozemsky, Weinzierl (SEIB)	
EROZOLIM	77	JETPL 23 663	Erozolimskii, Frank, Mostovoy+ (KIAE)	
CTEMPERS	20	Translated from ZETFP		
STEINBERG DOBROZE	76 75	PR D13 2469	+Liaud, Vignon, Hughes (YALE, ISNG) Dobrozemsky, Kerschbaum, Moraw, Paul+ (SEIB)	
KROHN	75	PR D11 510 PL 55B 175	Dobrozemsky, Kerschbaum, Moraw, Paul+ (SEIB) +Ringo (ANL)	
EROZOLIM	74	JETPL 20 345	Erozolimskii, Mostovoy, Fedunin, Frank+	
		Translated from ZETFP	20 745.	

¹¹ KROHN 75 includes events of CHRISTENSEN 70.

¹² KROPF 74 reviews all data through 1972.

Baryon Full Listings n, N's and Δ 's

KROPF Also	74 70	ZPHY 267 129 NP A154 160	+Paul Paul	(LINZ) (VIEN)
STEINBERG	74	PRL 33 41	+Liaud, Vignon, Hughes	(YALE, ISNG)
COHEN	73	JPCRD 2 663	+ Taylor	(RISC, NBS)
CHRISTENSEN	1 72	PR D5 1628	+Nielson, Bahnsen, Brown+	(RISO)
CHRISTENSEN	170	PR C1 1693	+Krohn, Ringo	(ANL)
EROZOLIM	70C	PL 33B 351	Erozolimskii, Bondarenko, Mostovoy, Obinyak	ov+ (KIAE)
GRIGOREV	68	SJNP 6 239	Grigor'ev, Grishin, Vladimirsky, Nikolaevskii+	(ITEP)
		Translated from	YAF 6 329.	

NOTE ON N AND Δ RESONANCES

I. Introduction

(by G. Höhler, University of Karlsruhe)

The excited states of the nucleon have been studied in a large number of formation and production experiments. Production experiments are unsuitable for accurate determination of resonance parameters but will be essential in searching for the many nucleon resonances predicted to exist but also to decouple from the πN channel.¹

The masses, widths, and elasticities of the N and Δ resonances in the Baryon Summary Table come almost entirely from partial-wave analyses of πN total, elastic, and charge-exchange scattering data (see Sec. II). Partial-wave analyses have also been used on much smaller data sets to get $N\eta$, ΛK , and ΣK branching fractions. Other branching fractions come from isobar-model analyses of $\pi N \to N\pi\pi$ data (Sec. III). Finally, some $N\gamma$ branching fractions have been determined from photoproduction experiments (Sec. IV).

Table 1 lists all the N and Δ entries in the Baryon Listings and gives our evaluation of the status of each, both overall and channel by channel. Only the established resonances (overall status 3 or 4 stars) appear in the Baryon Summary Table. We consider a resonance to be established only if it has been seen in at least two independent analyses and the relevant partial-wave amplitudes do not behave erratically or have large errors. Some recent data^{2,3} above 1 GeV/c differ appreciably from earlier data and thus also from predictions of the existing analyses, so a cautious attitude is called for. Problems at lower momenta will be discussed in Sec. II.

The Baryon Listings give, in addition to the usual Breit-Wigner parameters, the positions and residues of the poles of the resonant partial waves on the second sheet of the complex energy plane. These come from $\pi N \to \pi N$ partialwave analyses and from $\pi N \to N\pi\pi$ isobar-model analyses.

There are two extensive reviews of nucleon resonances, $^{4.5}$ and there have in recent years been several Conferences and Workshops on πN Physics. $^{6-9}$

Further progress in understanding N and Δ resonances will depend on investigations of three types.

(1) New data: Much new data has been published in recent years by groups working at LAMPF, ¹⁰ and there is also some new data from Leningrad¹¹ and Moscow.³ The results include preliminary spin-rotation data, the first such in the resonance region. Some results were available long before publication¹² and were included in one of the Karlsruhe analyses (see Sec. II).

New high-precision data in the low-energy region (see Ref. 7 and W. Kluge's review and other contributions in

Table 1. The status of the N and Δ resonances. Only those with an overall status of *** or **** are included in the main Baryon Summary Table

		0 11			Statu	s as se	en in -		
Particle	$L_{2I\cdot 2J}$	Overall status	$N\pi$	$N\eta$	ΛK	ΣK	$\Delta\pi$	$N\rho$	$N\gamma$
N(939)	P_{11}	****							
N(1440)	P_{11}	****	****	*			***	*	***
N(1520)	D_{13}	****	***	*			****	****	***
N(1535)	S_{11}	****	***	****			*	**	***
N(1540)	P_{13}	*					*	*	
N(1650)	S_{11}	****	***	*	***	**	***	*	***
N(1675)	D_{15}	****	****	*	*		****	*	***
N(1680)	F_{15}	****	***				***	****	***
N(1700)	D_{13}	***	***	*	**	*	**	*	**
N(1710)	P_{11}	***	***	**	**	*	**	*	***
N(1720)	P_{13}	****	****	*	**	*	*	*	*
N(1960)	?	*				*			
N(1990)	F_{17}	**	**	*	*	*			*
N(2000)	F_{15}	**	**	*	*	*			
N(2080)	D_{13}	**	**	*	*				*
N(2090)	S_{11}	*	*						
N(2100)	P_{11}	*	*						
N(2190)	G_{17}	****	****	*	*	*			*
N(2200)	D_{15}	**	**	*	*				
N(2220)	H_{19}	****	****	*					
N(2250)	G_{19}	****	****	*					
N(2600)	I_{111}	***	***						
N(2700)	K_{113}	**	**						
Δ (1232)		****	****	F			· ·		***
. ,	P ₃₃		****	F o			*	*	***
$\Delta(1550)$	$P_{33} P_{31}$	*	***	o			*	*	*
$\Delta(1550)$ $\Delta(1600)$	P ₃₃ P ₃₁ P ₃₃	*	**	o r			* ** **		
$\Delta(1550) \\ \Delta(1600) \\ \Delta(1620)$	P_{33} P_{31} P_{33} S_{31}	* ** ***	**	o r b		*	* ** ***	*	*
$\Delta(1550)$ $\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$	P_{33} P_{31} P_{33} S_{31} P_{33}	*	**	o r b i	d	*	**	* ***	* **
$\Delta(1550)$ $\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1900)$	P_{33} P_{31} P_{33} S_{31} S_{31} S_{31}	* ** *** ***	** ****	o r b i	d d		**	* **** **	* ** ***
$\Delta(1550)$ $\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1900)$ $\Delta(1905)$	P_{33} P_{31} P_{33} S_{31} S_{31} S_{31} S_{31} S_{35}	* ** *** ***	** **** ***	o r b i	d	*	** *** ***	* *** **	* ** *** ***
$\Delta(1550)$ $\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$	P_{33} P_{31} P_{33} S_{31} P_{33} S_{31} S_{31} S_{31} S_{31} S_{31} S_{31}	* ** *** *** ***	** *** *** ***	o r b i		*	** *** ***	* *** * * *	* ** *** ***
$\Delta(1550)$ $\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$	P_{33} P_{31} P_{33} S_{31} P_{33} S_{31} P_{33} S_{31} F_{35} P_{31} P_{33}	* ** *** *** *** ***	** *** *** ***	o r b i	d e	* *	** *** ** **	* *** * * *	* ** ** ** ** * * * * * * *
$\Delta(1550)$ $\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$ $\Delta(1930)$	$\begin{array}{c} P_{33} \\ P_{31} \\ P_{33} \\ S_{31} \\ D_{33} \\ S_{31} \\ F_{35} \\ P_{31} \\ P_{33} \\ D_{35} \end{array}$	* ** *** *** *** *** *** ***	** *** *** *** ***	o r b i	d e	* * *	** *** ** **	* *** * * *	* ** ** ** * * * * * * * * *
$\Delta(1550)$ $\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$ $\Delta(1930)$ $\Delta(1940)$	$\begin{array}{c} P_{33} \\ P_{31} \\ P_{33} \\ S_{31} \\ D_{33} \\ S_{31} \\ F_{35} \\ P_{31} \\ P_{33} \\ D_{35} \\ D_{33} \end{array}$	* ** *** *** *** *** *** *** ***	** *** *** *** *** ***	o r b i	d e	* * *	** *** ** **	* *** * * *	* ** ** ** * * * * * * * * *
$\Delta(1550)$ $\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$ $\Delta(1930)$ $\Delta(1940)$ $\Delta(1950)$	P_{33} P_{31} P_{33} S_{31} D_{33} S_{31} F_{35} F_{31} P_{33} P_{33} P_{33} P_{33} P_{33} P_{33} P_{33} P_{33}	* ** *** *** *** *** *** ***	** *** *** *** *** *** ***	o r b i	d e	* * * *	** *** ** ** **	* *** * * *	* ** ** ** * ** * * * * * * *
$\Delta(1550)$ $\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$ $\Delta(1930)$ $\Delta(1940)$ $\Delta(1950)$ $\Delta(2000)$	P_{33} P_{31} P_{33} S_{31} D_{33} S_{31} F_{35} P_{31} P_{33} F_{35} P_{31} P_{33} P_{33} P_{33} P_{33} P_{35} P_{35}	* ** *** *** *** *** *** ***	** *** *** *** *** *** ***	o r b i	d e	* * * *	** *** ** ** **	* *** * * * * * *	* ** ** ** * ** * * * * * * *
$\Delta(1550)$ $\Delta(1600)$ $\Delta(1620)$ $\Delta(1700)$ $\Delta(1900)$ $\Delta(1905)$ $\Delta(1910)$ $\Delta(1920)$ $\Delta(1930)$ $\Delta(1940)$ $\Delta(1950)$ $\Delta(2000)$ $\Delta(2150)$	$P_{33} \\ P_{31} \\ P_{33} \\ S_{31} \\ P_{33} \\ S_{31} \\ F_{35} \\ P_{31} \\ P_{33} \\ D_{35} \\ D_{33} \\ F_{37} \\ F_{35} \\ S_{31}$	* ** *** *** *** *** *** *** ***	** *** *** *** *** *** ***	o r b i F o r b i	d e n	* * * *	** *** ** ** **	* *** * * * * * *	* ** ** ** * ** * * * * * * *
$\begin{array}{l} \Delta(1905) \\ \Delta(1910) \\ \Delta(1920) \\ \Delta(1930) \\ \Delta(1940) \\ \Delta(1950) \\ \Delta(2000) \\ \Delta(2150) \\ \Delta(2200) \end{array}$	$P_{33} \\ P_{31} \\ P_{33} \\ S_{31} \\ P_{33} \\ S_{31} \\ F_{35} \\ P_{31} \\ P_{33} \\ D_{35} \\ D_{33} \\ F_{37} \\ F_{35} \\ S_{31} \\ G_{37}$	* ** *** *** *** *** *** *** *** *** *** ***	** *** *** *** *** *** ** *** ***	o r b i F o r b i	d e	* * * *	** *** ** ** **	* *** * * * * * *	* ** ** ** * ** * * * * * * *
$\begin{array}{c} \Delta(1550) \\ \Delta(1600) \\ \Delta(1600) \\ \Delta(1620) \\ \Delta(1700) \\ \Delta(1900) \\ \Delta(1900) \\ \Delta(1910) \\ \Delta(1910) \\ \Delta(1920) \\ \Delta(1930) \\ \Delta(1940) \\ \Delta(1940) \\ \Delta(2100) \\ \Delta(2200) \\ \Delta(2300) \\ \Delta(2300) \end{array}$	P ₃₃ P ₃₁ P ₃₃ S ₃₁ D ₃₃ S ₃₁ F ₃₅ P ₃₁ P ₃₃ D ₃₅ D ₃₃ F ₃₇ F ₃₅ S ₃₁ G ₃₇ H ₃₉	* ** **** **** *** *** *** ***	** *** *** *** *** *** * *** * ***	o r b i F o r b i	d e n	* * * *	** *** ** ** **	* *** * * * * * * *	* ** ** ** * ** * * * * * * *
$\begin{array}{c} \Delta(1550) \\ \Delta(1600) \\ \Delta(1600) \\ \Delta(1620) \\ \Delta(1700) \\ \Delta(1900) \\ \Delta(1905) \\ \Delta(1910) \\ \Delta(1910) \\ \Delta(1930) \\ \Delta(1930) \\ \Delta(1940) \\ \Delta(1950) \\ \Delta(2150) \\ \Delta(2150) \\ \Delta(2300) \\ \Delta(2350) \\ \end{array}$	P ₃₃ P ₃₁ P ₃₃ S ₃₁ D ₃₃ S ₃₁ F ₃₅ P ₃₁ P ₃₃ D ₃₅ D ₃₃ F ₃₇ F ₃₅ S ₃₁ G ₃₇ H ₃₉	* ** *** *** *** *** *** *** *** *** *** *** ***	** *** *** *** *** * ** * * *	o r b i F o r b i	d e n	* * * *	** *** ** ** **	* *** * * * * * * *	* ** ** ** * ** * * * * * * *
$\begin{array}{c} \Delta(1550) \\ \Delta(1600) \\ \Delta(1600) \\ \Delta(1600) \\ \Delta(1700) \\ \Delta(1900) \\ \Delta(1905) \\ \Delta(1910) \\ \Delta(1920) \\ \Delta(1930) \\ \Delta(1940) \\ \Delta(1950) \\ \Delta(2000) \\ \Delta(2150) \\ \Delta(2300) \\ \Delta(2350) \\ \Delta(2390) \\ \Delta(2390) \\ \Delta(2390) \end{array}$	$P_{33} \\ P_{31} \\ P_{33} \\ S_{31} \\ P_{33} \\ S_{31} \\ S_{31} \\ S_{31} \\ S_{31} \\ P_{33} \\ D_{35} \\ P_{31} \\ P_{33} \\ P_{35} \\ S_{31} \\ G_{37} \\ F_{439} \\ D_{35} \\ F_{37}$	* ** *** *** *** *** *** *** ** *	** *** *** *** *** * ** * * *	o r b i F o r b i	d e n d d	* * * *	** *** ** ** **	* *** * * * * * * *	* ** ** ** * ** * * * * * * *
Δ(1550) Δ(1600) Δ(1600) Δ(1700) Δ(1900) Δ(1905) Δ(1910) Δ(1920) Δ(1930) Δ(1940) Δ(2000) Δ(2150) Δ(2300) Δ(2350) Δ(2350) Δ(2390) Δ(2400)	P_{33} P_{31} P_{33} S_{31} P_{33} S_{31} S_{31} S_{35} S_{31} S_{35} S_{31} S_{35} S_{31} S_{35} S_{35} S_{35} S_{37} S_{37} S_{37} S_{37} S_{39}	* ** *** **** **** *** *** *** *	** *** *** *** *** * ** * * *	o r b i F o r b i	d e n d d	* * * *	** *** ** ** **	* *** * * * * * * *	* ** ** * * * * * * * * * * * * * * * *
$\begin{array}{c} \Delta(1550) \\ \Delta(1600) \\ \Delta(1600) \\ \Delta(1600) \\ \Delta(1700) \\ \Delta(1900) \\ \Delta(1905) \\ \Delta(1910) \\ \Delta(1920) \\ \Delta(1920) \\ \Delta(1940) \\ \Delta(1950) \\ \Delta(2000) \\ \Delta(2150) \\ \Delta(2300) \\ \Delta(2350) \\ \Delta(2390) \\ \Delta(2390) \end{array}$	$P_{33} \\ P_{31} \\ P_{33} \\ S_{31} \\ P_{33} \\ S_{31} \\ S_{31} \\ S_{31} \\ S_{31} \\ P_{33} \\ D_{35} \\ P_{31} \\ P_{33} \\ P_{35} \\ S_{31} \\ G_{37} \\ F_{439} \\ D_{35} \\ F_{37}$	* ** *** **** **** **** *** *** **	** *** *** *** *** * ** * * *	o r b i F o r b i	d e n d d	* * * *	** *** ** ** **	* *** * * * * * * *	** ** ** * ** * * * * * * *

- **** Good, clear, and unmistakable.
- *** Good, but in need of clarification or not absolutely certain.
- ** Not established; needs confirmation.
- * Evidence weak; could disappear.

Ref. 6) are of some relevance to the lower resonances, insofar as dispersion relations need input from all momenta. They are more important for analytic continuations into the unphysical region below threshold for tests of predictions from chiral perturbation theory, for instance for the πN σ term (see Gasser and Sainio's contribution to Ref. 6 and mine to Ref. 7). Unfortunately, the new low-energy experiments don't all agree with one another.

(2) New analyses: Existing partial-wave solutions will need to be adjusted to get a good fit to the new data. First should come single-energy analyses combined with a

Baryon Full Listings N's and Δ 's

study of the zeros of invariant and transversity scattering amplitudes, as was done in earlier work of our group⁴ and of the Leningrad group.¹³ The zeros must lie on trajectories and fulfill conditions derived from the Mandelstam hypothesis (see Sec. 2.4.3 in Ref. 4 and also Ref. 14). Instead of cutting off the tail of high partial waves, one should use Koch's results.¹⁵

Around the $\Delta(1232)$ and below, the electromagnetic corrections are fairly large. They should be treated using the relativistic dispersion-relation method developed by the NORDITA group. ¹⁶ Less reliable methods based on potential models are unfortunately still in use.

New data on πN scattering reactions leading to inelastic final states should be included. Related to this is the search for shadow poles (see Sec. II).

Finally, a new analysis of the type carried out by the CMU-LBL and Karlsruhe-Helsinki groups is essential, but these groups lack the manpower to do it. Without an analysis on this level of sophistication, new data will not significantly improve our knowledge of the resonance parameters.

Single-energy analyses in accord with the program described above have recently been carried out by the Karlsruhe group on all new data below 700 MeV/c (excepting data on inelastic reactions). Apparently the only other group working in this field is the VPI group (see Arndt in Ref. 6). This group's SAID facility includes a program for single-energy analysis and it also distributes results of an energy-dependent partial-wave analysis four times per year. However, the group's methods of analysis do not take into account some of the essential points noted above. A detailed documentation of the method and a comparison with other solutions are not available. See Sec. II for further comments.

(3) New theoretical investigations: Many theoretical authors disregard the fact that the Breit-Wigner resonance parameters we give are different from the quantities they calculate in their models. This is no problem for Skyrmion models, 17 which predict scattering amplitudes, but in quark shell models or lattice calculations the authors calculate energies of stable excited states and ignore the mass shifts expected from the strong coupling to the decay channels. It is essential to estimate these mass shifts before making detailed comparisons between the theoretical results and the experimentally determined resonance parameters.

References for Section I

- 1. R. Koniuk and N. Isgur, Phys. Rev. **D21**, 1868 (1980).
- 2. D.J. Candlin et al., Nucl. Phys. **B244**, 23 (1984).
- 3. B.M. Abramov et al., V.P. Kanavets et al., and I.S. Alekseev et al., in *Proceedings of the 3rd International Symposium on* πN and NN Physics, Leningrad (April 1989), in press.
- G. Höhler, Pion-Nucleon Scattering, Landolt-Börnstein Vol. I/9b2 (1983), ed. H. Schopper, Springer Verlag.
- 5. A.J.G. Hey and R.L. Kelly, Phys. Reports $\mathbf{96}$, 71 (1983).
- 6. Proceedings of the 3^{rd} International Symposium on πN and NN Physics, Leningrad (April 1989), in press.

- Proceedings of the 12th International Conference on Few Body Problems in Physics, Vancouver (July 1989), to appear in Nucl. Phys. A.
- Proceedings of the International Conference on Hadron Spectroscopy (HADRON 89), Ajaccio (September 89), in press.
- 9. Excited Baryons 1988, Troy, NY (August 1988).
- A. Mokhtari et al., Phys. Rev. D35, 810 (1987);
 M.E. Sadler et al., Phys. Rev. D35, 2718 (1987);
 M.E. Sadler, in Proceedings: Physics with Light Mesons, and the Second International Workshop on πN Physics, Los Alamos Report LA-11184-C (1987), p. 200; J.A. Wightman et al., Phys. Rev. D38, 3365 (1989); C.J. Seftor et al., Phys. Rev. D39, 2457 (1989); G.J. Kim et al., Phys. Lett. B219, 62 (1989); D.B. Barlow et al., Phys. Rev. Lett. 62, 1009 (1989); and M.E. Sadler in Ref. 6.
- V.V. Abaev et al., Sov. J. Nucl. Phys. 48, 852 (1988) = Yad. Fiz. 48, 1338 (1988); and S.P. Kruglov et al. in Ref. 6.
- Y. Suzuki et al., Nucl. Phys. **B294**, 961 (1987), and M.Minowa et al., Nucl. Phys. **B294**, 979 (1985).
- 13. V.V. Abaev et al., Z. Phys. A322, 603 (1985).
- I. Stefanescu, Fortschr. Physik 35, 573 (1987).
- 15. R. Koch, Z. Phys. C29, 597 (1985).
- B. Tromborg et al., Phys. Rev. D15, 725 (1977), and Helv. Phys. Acta 51, 584 (1978).
- 17. See, for example, G. Holzwarth's paper in Ref. 6.

II. Two-body partial-wave analyses and determination of resonance parameters

(by G. Höhler, University of Karlsruhe)

 πN partial-wave analysis: Even if all measurable $\pi p \to \pi p$ scattering data were known with high accuracy, it would not be possible to obtain a unique set of partial waves from the data alone, since a common phase of all transversity amplitudes is not determined. It is essential to add the theoretical constraints of unitarity, isospin invariance, and analyticity. See Ref. 1 for a precise mathematical statement and a discussion of the stability problem, and Ref. 2 (Sec. 2.1) for a brief review.

The strength of the unitarity constraint alone (that is, without analyticity) for π^+p scattering was investigated by Atkinson et al.³ The lesson is that the tail of high partial waves should not be cut off sharply (as was done by the pioneers in this field, but also in some recent analyses^{4,5}), since equally good fits can sometimes be obtained with changes of the small tail coupled with substantial changes in low partial waves. In general, there are a few high partial waves that are too large to be neglected but too small to be determined accurately. We return to this point below.

In QCD, isospin is not exactly conserved in strong interactions because the masses of the up and down quarks are not identical. However, despite some earlier reports for violations of isospin invariance, the only confirmed violation is seen in total cross section data in the $\Delta(1232)$ region, the manifestation being the slightly different masses and widths of the Δ^{++} and Δ^0 . See Ref. 6 for a recent test of isospin invariance at intermediate energies.

Baryon Full Listings N's and Δ 's

The problem of getting a unique solution remains even if one includes differential-cross-section, polarization, and spinrotation data from all three reactions $(\pi^{\pm}p \rightarrow \pi^{\pm}p)$ and $\pi^- p \to \pi^0 n$), plus the constraints of unitarity and isospin invariance. It is still necessary to add analyticity constraints, and much stronger ones than just the forward dispersion relations. Constraints based on the Mandelstam hypothesis⁷ have been used successfully only in the CMU-LBL⁸ and KH⁹ analyses. In these analyses, long tails of high partial waves were admitted, but only global results about the high waves, not details about a particular one of them, are reliable. The two groups worked with different sets of data. For example, a large elastic $\pi^{\pm}p$ data set of Bardsley et al. (Rutherford Lab, 1976) was not used in the KH analyses (it was never published). The groups made independent decisions in cases of discrepancies between data sets or normalizations, and they used different dispersion constraints. Nevertheless, there is reasonable agreement between the two sets of partial-wave amplitudes, which are shown in Fig. 1. The solutions shown in Fig. 1 will be referred to below as the CMU-LBL and KH80 solutions.

In subsequent investigations, the KH group has tested the consistency of its KH80 solution with various consequences of the Mandelstam hypothesis. $^{2,10-12}$ The results confirm that there exists a prescription based on general principles for obtaining a unique partial-wave solution. Furthermore, they show that at present there is no evidence for additional singularities that could possibly follow from QCD. However, problems may arise if discrepancies in the low-energy region (see Sec. I) are resolved in favor of certain data sets. A quantitative calculation of πN scattering amplitudes in the physical region is far beyond the possibilities of the present techniques available in QCD.

The resonance parameters in the Baryon Summary Table are mainly determined from the CMU-LBL and KH analyses. More details of the CMU-LBL, KH80, and KA84 (see below) solutions, including speed plots, may be found in Ref. 13.

The results of phase-shift analyses of the VPI group⁴ are not shown in Fig. 1 for the following reasons. The VPI analyses are based on a special parametrization of the partial-wave amplitudes using a large number of adjustable parameters. This parametrization ignores the well-known left-hand singularities of these amplitudes¹⁴ (even the nucleon Born term), which start not far below threshold. The discontinuities along the nearby parts of these cuts have been calculated by many authors, in particular by J. Hamilton et al. and more recently by R. Koch. 11 The solution obtained by the VPI group is not unique, since it would be equally justified to use other parametrizations that would lead to more or less different results. Furthermore, the VPI analysis does not use data above 1.1 GeV, so that it is unlikely that the left wings of the strongly coupled resonances located above this energy are well described. Finally, electromagnetic corrections are calculated

using an old method based on a potential model instead of on the NORDITA method mentioned in Sec. I.

It is remarkable that many experimentalists disregard the importance of dispersion-relation constraints and uniqueness, and treat the VPI analysis on an equal footing with the CMU-LBL and KH analyses. They use the SAID program package of Arndt et al., although they know only vaguely what these programs do. The SAID facility is useful, but it suffers from the above-mentioned shortcomings of the phase-shift analysis and from a lack of documentation.

An improvement of the methods used in the CMU-LBL and KH80 analyses has been developed by Koch, based on our evaluation of Mandelstam's double spectral function near the physical region, ¹⁵ and in connection with his new evaluation of the πN partial-wave dispersion relations. ¹¹ The result is a prediction for the high partial waves. Detailed figures are shown in Refs. 13 and 16.

Since the KH80 solution⁹ as well as the "data points" of the CMU-LBL solution⁸ shown in Fig. 1 result from an iteration procedure that ends with a fit to the data, the amplitudes fluctuate somewhat with energy. The CMU-LBL group then used energy-dependent fits to obtain smoothed amplitudes (see Fig. 1). From the KH80 solution, Koch produced two smooth solutions (not shown in Fig. 1) by using KH80 for evaluations of the partial-wave dispersion relations¹¹ (solution KA84) and for evaluations of the partial-wave projections of the fixed-t dispersion relations¹² (KA85). The latter method is an exact version of the approach of Chew et al.¹⁷ It can be applied only up to about 0.5 GeV/c. These smoothed versions do not have the erratic properties seen in Fig. 1 on the left wings of some of the resonances. The approximate agreement of the two results¹² supports the validity of the Mandelstam hypothesis.

Plots of the zero trajectories of invariant and transversity amplitudes calculated from the CMU-LBL and KA84 solutions show that, at some energies, the present results are not satisfactory. The need for corrections follows also from discrepancies of the analyses with some of the new data mentioned in Sec. I, in particular with the data of Kim et al. (Ref. 10 in Sec. I).

We have made preliminary single-energy analyses using only data up to $700~{\rm MeV/}c$ measured after the completion of the KH80 analysis. ¹⁹ A few of the lower partial waves were varied and the higher partial waves were fixed as given by the KA84 solution. The analysis will be extended to higher momenta.

The discrepancies of predictions from the KH80 and KA84 solutions with the data between 427 and 687 MeV/c (see Ref. 10 in Sec. I) can easily be removed by relatively small changes of a few partial waves. The only resonant amplitude in this range, the P_{11} , changes only slightly. The largest correction, which occurs in the S_{11} amplitude, could be used in a new analysis of the $N(1535)S_{11}$ resonance. However, the new data lie only on the left wing of this resonance, on which the inelasticity increases rapidly due to the opening of the $n\eta$ channel.

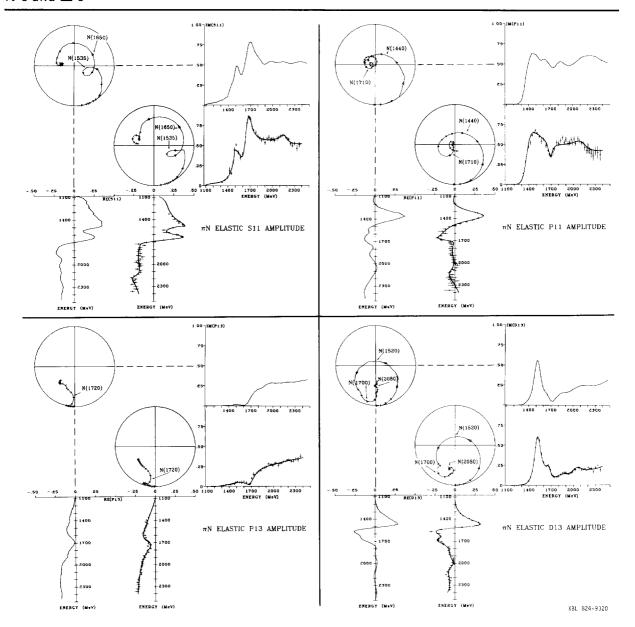


Fig. 1(a). The $L_{2I\cdot 2J}=S_{11}$, P_{11} , P_{13} , and D_{13} partial-wave amplitudes for πN elastic scattering. The upper plot for each amplitude is from HOEHLER 79 and the lower one is from CUTKOSKY 80. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots (in the projections of the CUTKOSKY 80 amplitudes, the "data points" are results of energy-independent fits, and the curves are from an energy-dependent fit to join them).

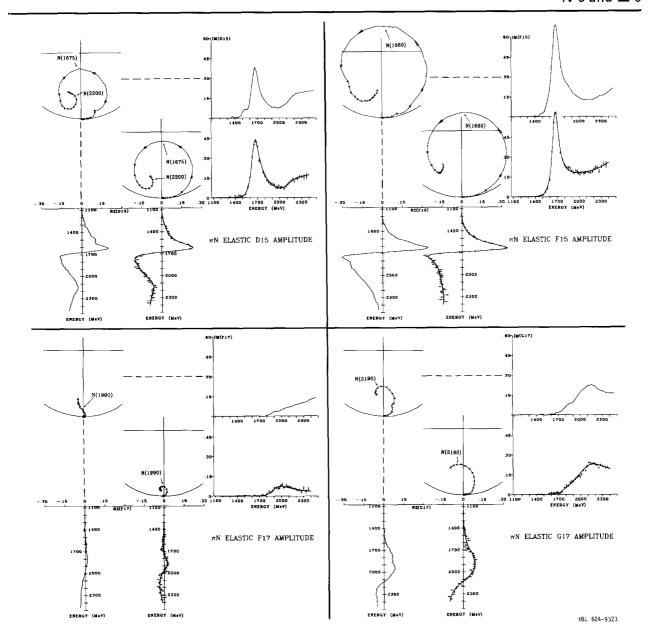


Fig. 1(b). The $L_{2I.2J} = D_{15}$, F_{15} , F_{17} , and G_{17} partial-wave amplitudes for πN elastic scattering. The upper plot for each amplitude is from HOEHLER 79 and the lower one is from CUTKOSKY 80. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots (in the projections of the CUTKOSKY 80 amplitudes, the "data points" are results of energy-independent fits, and the curves are from an energy-dependent fit to join them).

N's and Δ 's

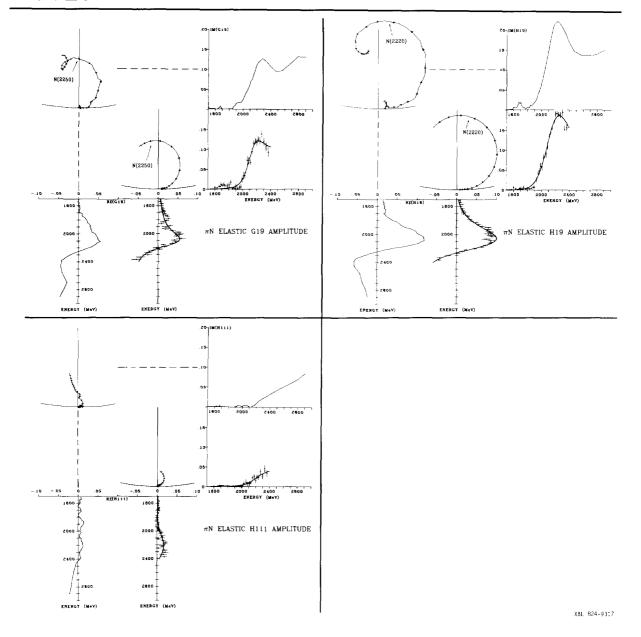


Fig. 1(c). The $L_{2I\cdot 2J}=G_{19}$, H_{19} , and H_{111} partial-wave amplitudes for πN elastic scattering. The upper plot for each amplitude is from HOEHLER 79 and the lower one is from CUTKOSKY 80. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots (in the projections of the CUTKOSKY 80 amplitudes, the "data points" are results of energy-independent fits, and the curves are from an energy-dependent fit to join them).

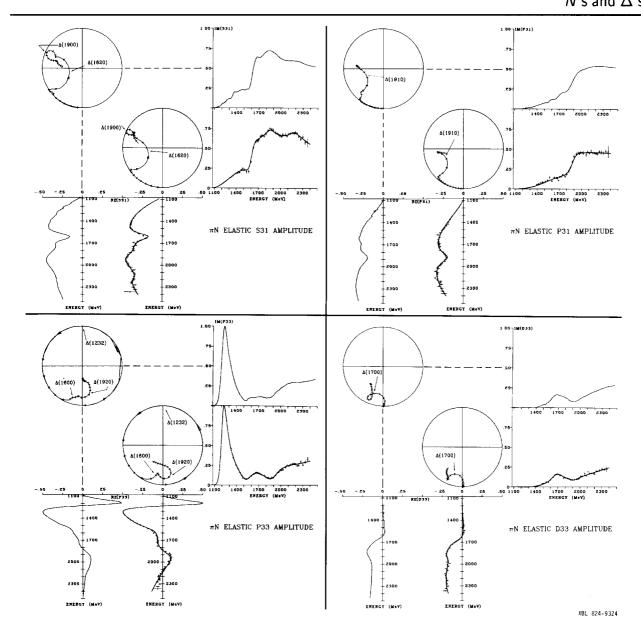


Fig. 1(d). The $L_{2I\cdot 2J}=S_{31}$, P_{31} , P_{33} , and D_{33} partial-wave amplitudes for πN elastic scattering. The upper plot for each amplitude is from HOEHLER 79 and the lower one is from CUTKOSKY 80. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots (in the projections of the CUTKOSKY 80 amplitudes, the "data points" are results of energy-independent fits, and the curves are from an energy-dependent fit to join them).

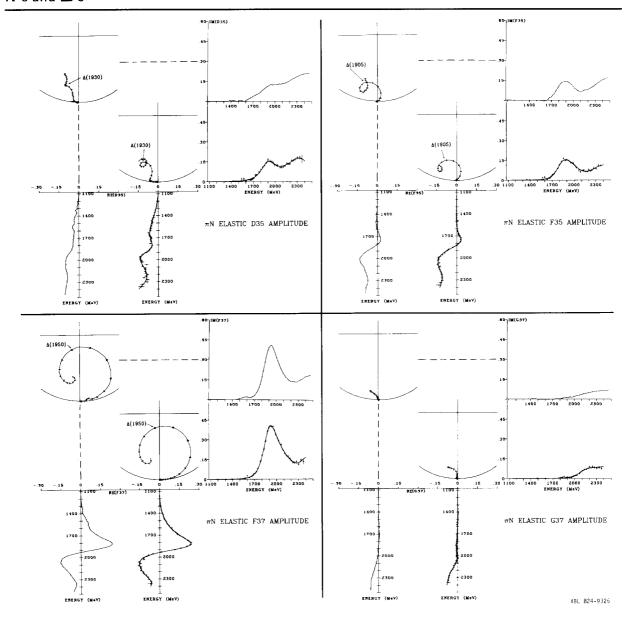


Fig. 1(e). The $L_{2I\cdot 2J}=D_{35}$, F_{35} , F_{37} , and G_{37} partial-wave amplitudes for πN elastic scattering. The upper plot for each amplitude is from HOEHLER 79 and the lower one is from CUTKOSKY 80. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots (in the projections of the CUTKOSKY 80 amplitudes, the "data points" are results of energy-independent fits, and the curves are from an energy-dependent fit to join them).

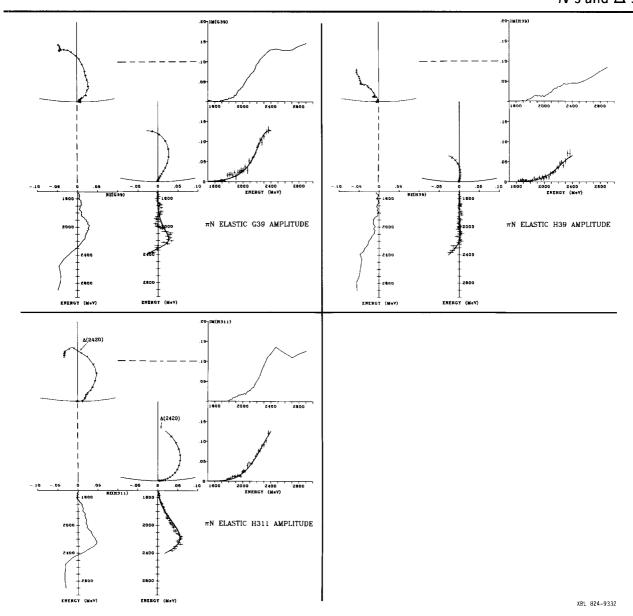


Fig. 1(f). The $L_{2I\cdot2J}=G_{39}$, H_{39} , and H_{311} partial-wave amplitudes for πN elastic scattering. The upper plot for each amplitude is from HOEHLER 79 and the lower one is from CUTKOSKY 80. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots (in the projections of the CUTKOSKY 80 amplitudes, the "data points" are results of energy-independent fits, and the curves are from an energy-dependent fit to join them).

The preliminary measurements of spin-rotation parameters²⁰ are in reasonable agreement with the CMU-LBL and KH80 solutions, in particular if one plots the spinrotation angle. These parameters vary dramatically near the kinematical points where a zero trajectory of the transversity amplitude intersects the physical region and the polarization is ± 1 (Ref. 18), but it seems they are not as helpful as one might hope for in the determination of resonance parameters. In principle, they allow a test of isospin invariance at each energy and scattering angle where data exist, but due to the errors it is not clear that this test is useful in practice. For more on this subject, see my contribution to Ref. 6 of Sec. I.

The conclusion from our preliminary analysis is that some corrections to the large partial waves of the KH and CMU-LBL solutions can be estimated, but the small partial waves, such as the small P waves, are still not well determined. Dispersion-relation constraints will be helpful only after the discrepancies between the new low-energy experiments are resolved.

Experiments carried out at Los Alamos and at Leningrad have much improved the information on cross sections and polarization parameters. However, even at six selected momenta, the polarization parameters in some important kinematical regions have large errors or have not been measured. In our analysis, we have problems with the charge-exchange differential cross sections of Borcherding et al.²¹ (which have not been published). The discrepancies between the total cross section data are sometimes much larger than the errors (see Sec. 2.2.1.2 in Ref. 2).

Above 2.2 GeV/c, the data are still too sparse for a good determination of the larger number of important partial waves. Evidence for resonances in this region has been reported by Hendry²² and by Koch.⁹ Hendry used an energy-dependent parametrization without analyticity constraints. Koch used analyticity constraints and additional data (Ref. 23, and Ref. 12 in Sec. I). A table of his partial-wave amplitudes from 2 to 6 GeV/c may be found in Ref. 2, pp. 86-91.

Determination of resonance parameters: The differences between the CMU-LBL and KH partial-wave amplitudes would decrease if the analyses were repeated with a more accurate and uniform set of data. This is not true, however, for the differences between the two sets of resonance parameters. At present, no dynamical theory gives a clear prescription for getting the parameters from the amplitudes, so there is no unique and generally accepted definition of these parameters. Usually, of course, generalized Breit-Wigner formulas are fit to the amplitudes where appropriate, but every author has his favored parametrization, and the errors are related to the choice. The parameters given by the KH group and in the earlier work of the CMU-LBL group are of this sort. The groups differ, for example, in the treatment of thresholds for inelastic final states and in assumptions about the background. A more sophisticated multichannel coupled resonance scheme was used in the final CMU-LBL analysis,8 and their parameters should be preferred to those of the KH group.

It is often clear that some who quote resonance parameters from the Baryon Summary Table are not well-informed on how these parameters have been determined. They treat the values and their errors as "experimental data," that is, too seriously, without understanding the uncertainties. Or they do not distinguish clearly between a phase-shift analysis and the determination of resonance parameters. As noted above, from a given phase-shift solution one can derive considerably different resonance parameters. See also the last paragraph of Sec. I.

One difficulty that becomes increasingly important as the energy increases is that "background terms," namely diffraction and ρ exchange, make contributions to the partial waves that look like highly inelastic resonances (see Ref. 2, Sec. 2.4.1.1). The energy dependences are different, but at high energies data are insufficient to determine accurately the speed with which a partial-wave amplitude traverses the complex plane. Furthermore, it is a dynamical question whether or not this background is part of the resonance mechanism.

If the resonances are ordered according to the shapes of their Argand plots, there is a continuous transition from clean textbook-type resonances to tiny wiggles on large backgrounds. The Baryon Summary Table lists all objects that have a "resonance-like" shape on the Argand diagram and a maximum of the speed. The reader must decide which of these are "resonances" in the framework of his or her model.

Resonance poles: The Baryon Listings give a second set of resonance parameters, the positions and residues of the resonance poles of the partial-wave amplitudes on the second sheet of the s plane. These may be determined in a more or less model-independent way. Table 2 summarizes some of the recent results. 4,8,24 Note, however, that Fonda et al. 25 were able to fit even the P_{33} amplitude in the vicinity of 1230 MeV without a pole. A theoretical assumption or argument that excludes such parametrizations is needed.

A special situation arises when a resonance is located near the threshold of an inelastic channel that is strongly coupled to the πN system. For example, the $\Delta \pi$ threshold is near the $N(1440)P_{11}$, and the $N\eta$ threshold is near the $N(1535)S_{11}$. In these cases, a single resonance usually has poles on more than one sheet of the Riemannian surface. ²⁶

The CMU-LBL group has listed only the poles nearest the real s-axis.⁸ Using a coupled-channel K-matrix formalism, Arndt et al.⁴ found two poles on different sheets for the $N(1440)P_{11}$, but only one pole for the $N(1535)S_{11}$. There was speculation about a "splitting of the P_{11} ," but Cutkosky²⁷ concluded that it is most likely that the second pole is the shadow pole investigated in Ref. 26. Recently, Pearce and Gibson studied the observable effects of poles and shadow poles in coupled-channel systems in a model, ²⁸ and pointed out that for two coupled P waves and small coupling the Argand diagram looks remarkably like that of the KH80 P_{11} amplitude in the range up to about 800 MeV. This may suggest a relation between the $N(1440)P_{11}$ and $N(1710)P_{11}$ resonances. (The latter resonance was not seen in Ref. 4.)

This interpretation differs from Cutkosky's, so further work is necessary. Best would be to use the method of Cutkosky et al.⁸ to search for shadow poles.

In a recent paper, Elsey and Afnan³⁰ calculated directly the complex poles of the S-matrix in the cloudy bag model instead of starting as usual with stable bound states. Their application to the Roper resonance should be reconsidered, taking into account the above-mentioned results.

It should be emphasized that the details of the partial-wave solution are less important than the method used to extract the poles. For example, Arndt using his method finds two poles for the $N(1440)P_{11}$ even when applying it to the KH solution!

Table 2. Determinations of pole parameters of 3- and 4-star N and Δ resonances. Cutkosky et al.⁸ and Arndt et al.⁴ take into account inelastic channels in the isobar approximation. Sararu²⁴ uses Koch's smoothed version¹¹ of the Karlsruhe solution without taking into account inelastic scattering. In the inelastic region, a resonance generally has poles in several sheets of the energy plane. The parameters here are of the pole reached most directly from the physical region. This condition can be ambiguous when a strong inelastic channel $(\Delta \pi, N\eta, N\rho,$ etc.) opens within the width of the resonance. Two poles are given for the $N(1440)P_{11}$ (Ref. 4).

	Pole posit	ion (MeV)	Re	sidue	
Resonance	ReW	$-2\times \text{Im}W$	$ r ({ m MeV})$	<i>θ</i> (°)	Ref.†
$N(1440)P_{11}$	1375 ± 30 1355 1416	180 ± 40 200 156	52 ± 5 62 118	-100 ± 35 -108 -4	C A
$N(1520)D_{13}$	1510 ± 5 1508	114 ± 10 124	$\begin{array}{c} 35 \pm 2 \\ 40 \end{array}$	$-12 \pm 5 \\ -9$	C A
$N(1535)S_{11}$	1510 ± 50 1464	260 ± 80 150	120 ± 40 40	$+15 \pm 45 \\ -44$	C A
$N(1650)S_{11}$	1640 ± 20 1656	150 ± 30 108	60 ± 10 34	$-75 \pm 25 \\ -54$	C A
$N(1675)D_{15}$	1660 ± 10 1658	140 ± 10 136	$\begin{array}{c} 31 \pm 5 \\ 32 \end{array}$	-30 ± 10 -20	C A
$N(1680)F_{15}$	1667 ± 5 1668 1671	110 ± 10 110 122	34 ± 2 33 25	-25 ± 5 -18 -20	C A S
$N(1700)D_{13}$	1660 ± 30 1676	90 ± 40 48	$\begin{array}{c} 6\pm 3 \\ 2 \end{array}$	$0 \pm 50 + 43$	C A
$N(1710)P_{11}$	$1690 \pm 20 \atop \text{(not)}$	80 ± 20 seen)	8 ± 2	$+175 \pm 35$	C A
$N(1720)P_{13}$	1680 ± 30 1690 1670	120 ± 40 66 188	8 ± 2 3.7 8	-160 ± 30 -138 -127	C A S
$N(2190)G_{17}$	2100 ± 50 2056	400 ± 160 580	25 ± 10 40	-30 ± 50 -18	C S
$N(2220)H_{19}$	2160 ± 80 2130	480 ± 100 340	45 ± 20 19	$-45 \pm 25 \\ -47$	C S
$N(2250)G_{19}$	2150 ± 50	360 ± 100	20 ± 6	-50 ± 20	С
$N(2600)I_{111}$	2589	460			S

(continued)

	Pole posit	ion (MeV)	Re	sidue	
Resonance	${ m Re}W$	$-2\times \text{Im}W$	$ r ({ m MeV})$	$\theta(^{\circ})$	Ref.†
$\Delta(1232)P_{33}$	1210 ± 1 1211 1209	100 ± 2 102 100	53 ± 2 56	-47 ± 1 -30	C A S
$\Delta(1620)S_{31}$	1600 ± 15 1592	120 ± 20 108	15 ± 2 13	-110 ± 20 -117	C A
$\Delta(1700)D_{33}$	1675 ± 25 1674 1680	220 ± 40 336 226	13 ± 3 32 14	-20 ± 25 -24 $+34$	C A S
$\Delta(1900)S_{31}$	1870 ± 40	180 ± 50	10 ± 3	$+20 \pm 40$	C
$\Delta(1905)F_{35}$	1830 ± 40 1872 1850	280 ± 60 228 220	25 ± 8 23 10	-50 ± 20 -13 -11	C A S
$\Delta(1910)P_{31}$	1880 ± 30 1883	200 ± 40 392	$\begin{array}{c} 20 \pm 4 \\ 27 \end{array}$	-90 ± 30 -89	C S
$\Delta(1920)P_{33}$	1900 ± 80 (not	300 ± 100 seen)	24 ± 4	-150 ± 30	C A
$\Delta(1930)D_{35}$	1890 ± 50	260 ± 60	18 ± 6	-20 ± 40	C
$\Delta(1950)F_{37}$	1890 ± 15 1864 1890	260 ± 40 216 242	50 ± 7 50 32	-33 ± 8 -20 -22	C A S
$\Delta(2420)H_{311}$	2360 ± 100	420 ± 100	18 ± 6	-30 ± 40) C

 $^{\dagger}C$ = Cutkosky et al., 8 A = Arndt et al., 4 and S = Sararu. 24

It would be of interest to extend the search for a shadow pole to the $N(1535)S_{11}$, which is closely related to the $n\eta$ threshold (see, for instance, Ref. 29). The rapid increase of inelasticity at the $n\eta$ threshold leads in the partial-wave dispersion relation to a positive contribution to the real part, and thereby to a resonance-like wiggle in the Argand diagram.³¹

Remarkably, there exist families of resonances in which the pole positions are the same within errors; i.e., degeneracy is not excluded (see Sec. 2.4.1.6 in Ref. 2). For example, all six isospin-1/2 partial waves from S_{11} to F_{15} have a well-established resonance with a pole near $\sqrt{s} = (1665-60i)$ MeV, and at least six of the seven possible isospin-3/2 resonances from S_{31} to F_{37} have a pole near (1880-120i) MeV.

We have not included in the Listings the zeros of the partial-wave amplitudes given in Ref. 4, because a zero in the neighborhood of a resonance pole only gives information about the background. However, zero trajectories of the invariant and transversity amplitudes may be of fundamental importance (Ref. 2, Sec. 2.4.3).

Inelastic 2-body reactions: Analyses of the reactions $\pi N \to N\eta, \pi N \to \Lambda K$, and $\pi N \to \Sigma K$ are similar to analyses of the elastic channel. However, the data are far less complete and accurate, and energy-dependent parametrizations must be used.

The best results, giving resonance masses and widths as well as couplings, follow from the $\pi^- p \to \Lambda K^0$ data of the Rutherford group.³² One analysis used a reggeized K^* -exchange term to represent the nonresonant and high partial

waves. Another used a Lagrangian model for the long-range forces.³³ In general, agreement with the $\pi N \to \pi N$ analyses is good, but there are differences about the $N(1675)D_{15}$ and $N(1710)P_{11}$ widths and the $N(2200)D_{15}$ mass.

In an analysis of the less accurate $\pi^-p \to n\eta$ data,³⁴ partial waves were parametrized as Breit-Wigner resonances without background. The resonance spectrum was taken from the $\pi N \to \pi N$ analyses, and the data were used to determine the $n\eta$ couplings. For the resonances with relatively large couplings, the masses and widths were varied in a second step.

The results derived from the bubble-chamber data for $\pi^+p\to\Sigma^+K^+$ have large uncertainties. Values of the resonance masses were assumed and Breit-Wigner forms and an empirical ansatz for the background were used for partial waves up to F waves (the G waves are probably not negligible at 1.7 GeV/c). The addition of precise data from 1820 to 2350 MeV³⁶ allowed an improved analysis. A unique solution was found. Above 2 GeV, all the resonances with two or more stars are seen, but none of the 1-star states is supported. Recently new $\pi^+p\to\Sigma^+K^+$ data, polarization parameters from 1.49 to 2.069 GeV/c and spin-rotation parameters from 1.69 to 1.88 GeV/c, have been published. These will be important for future analyses.

Isgur³⁹ has pointed out that distortions of resonance couplings can occur in cases such as $\pi N \to \Delta \to \Sigma K$ if the threshold is just below the resonance mass.

References for section II

- 1. I. Sabba-Stefanescu, Z. Phys. C41, 453 (1988).
- G. Höhler, Pion-Nucleon Scattering, Landolt-Börnstein Vol. I/9b2 (1983), ed. H. Schopper, Springer Verlag.
- D. Atkinson, M. De Roo, and T. Polman, Phys. Lett. 148B, 361 (1984); D. Atkinson and I.S. Stefanescu, Commun. Math. Phys. 101, 291 (1985).
- 4. R.A. Arndt, J.M. Ford, and L.D. Roper, Phys. Rev. D32, 1085 (1985); and R.A. Arndt in Proceedings of the 3rd International Symposium on πNN and NN Physics, Leningrad (April 1989). The pole parameters given in our Table 2 are an updated edition of the published results; R.A. Arndt, private communication.
- V.V. Abaev, S.P. Kruglov, and F. Nichitiu, Z. Phys. A322, 603 (1985).
- 6. J.A. Wightman et al., Phys. Rev. **D38**, 3365 (1988).
- S. Mandelstam, Phys. Rev. 112, 1344 (1958); and Rep. Progr. Phys. 25, 99 (1962).
- R.E. Cutkosky et al., Phys. Rev. **D20**, 2804 and 2839 (1979);
 R.L. Kelly et al., Phys. Rev. **D20**, 2782 (1979);
 and in Proceedings of the IVth International Conference on Baryon Resonances (Toronto, 1980), ed. N. Isgur, p. 19;
 and in Proceedings of the 3rd LAMPF II Workshop, Vol. II (1983) p. 785.
- E. Pietarinen, Nucl. Phys. B107, 21 (1976); R. Koch, in Proceedings of the IVth International Conference on Baryon Resonances (Toronto, 1980), ed. N. Isgur, p. 3;
 G. Höhler et al., Handbook of Pion-Nucleon Scattering, Physics Data 12-1 (1979); R. Koch and E. Pietarinen, Nucl. Phys. A336, 331 (1980); G. Höhler, in Proceedings of the 3rd LAMPF II Workshop, Vol. I (1983) p. 334; and Lecture Notes in Physics 234, 111 (1984).

- 10. R. Koch, Z. Phys. C15, 161 (1982).
- 11. R. Koch, Z. Phys. C29, 597 (1985).
- 12. R. Koch, Nucl. Phys. A448, 707 (1986).
- R. Koch and M. Sararu, Karlsruhe Report TKP 84-6 (1984).
- W.R. Frazer and J.R. Fulco, Phys. Rev. 119, 1420 (1960);
 and S.C. Frautschi and J.D. Walecka, Phys. Rev. 120, 1487 (1960).
- G. Höhler et al., Karlsruhe Report TKP 83–24 (1983);
 P.A. Klumpp, Karlsruhe Report TKP 84–2 (1984).
- 16. G. Höhler and R. Koch, πN Newsletter No. 1 (1984).
- G.F. Chew, M.L. Goldberger, F. Low, and Y. Nambu, Phys. Rev. 106, 1337 (1957).
- V.V. Abaev, G. Höhler, A. Schulte, and J. Stahov, preprint in preparation.
- G. Höhler, M. Rittberger, and J. Stahov, preprint in preparation.
- D.B. Barlow et al., Phys. Rev. Lett. 62, 1009 (1989); and
 V.V. Abaev et al., Sov. J. Nuc. Phys. 48, 852 (1988) =
 Yad. Fiz. 48, 1338 (1988).
- 21. F.O. Borcherding, UCLA Thesis 1982, unpublished.
- 22. A.W. Hendry, Ann. of Phys. **D21**, 1 (1981).
- K.A. Jenkins et al., Phys. Rev. **D21**, 2445 (1980); M. Fukushima et al., Nucl. Phys. **B167**, 307 (1980); S. Terada et al., Nucl. Phys. **B175**, 1 (1980).
- 24. M. Sararu, Karlsruhe report TKP 84-6 (1984).
- L. Fonda, G.C. Ghirardi, and G.L. Shaw, Phys. Rev. D8, 353 (1973).
- 26. R.J. Eden and J.R. Taylor, Phys. Rev. B133, 1575 (1964).
- R. Cutkosky, in Proceedings: Physics with Light Mesons, and the Second International Workshop on πN Physics, Los Alamos Report LA-11184-C (1987), p. 167.
- B.C. Pearce and B.F. Gibson, Phys. Rev. C40, 902 (1989).
 On shadow poles, see also G.M. Hale et al., Phys. Rev. Lett. 59, 763 (1987), and D. Morgan et al., Phys. Rev. Lett. 59, 2818 (1987).
- A.T. Davies and R.G. Moorhouse, Nuovo Cim. 52, 1112 (1967).
- 30. J.A. Elsey and I.R. Afnan, Phys. Rev. **D40**, 2353 (1989).
- 31. J. Ball and W.R. Frazer, Phys. Rev. Lett. 7, 204 (1961).
- R.D. Baker et al., Nucl. Phys. B141, 29 (1978); D.H. Saxon et al., Nucl. Phys. B162, 522 (1980); K.W. Bell et al., Nucl. Phys. B222, 389 (1983); and R.D. Baker et al., Nucl. Phys. B126, 365 (1977).
- 33. M. Musette, Nuovo Cim. **57A**, 37 (1980).
- 34. R.D. Baker et al., Nucl. Phys. ${\bf B156},\,93$ (1979).
- Ph. Livanos et al., in Proceedings of the IVth International Conference on Baryon Resonances (Toronto, 1980), ed. N. Isgur, p. 35.
- 36. D.J. Candlin et al., Nucl. Phys. **B226**, 1 (1983).
- 37. D.J. Candlin et al., Nucl. Phys. B238, 477 (1984).
- J. Haba et al., Nucl. Phys. **B299**, 627 (1988); and
 D.J. Candlin et al., Nucl. Phys. **B311**, 613 (1989).
- 39. N. Isgur et al., Nucl. Phys. **B243**, 189 (1984).

III. The $\pi N \to N \pi \pi$ reaction

(by D.M. Manley, Kent State University)

The $\pi N \to N\pi\pi$ reaction has been studied up to c.m. energies of about 2000 MeV using isobar models. Isobar models parametrize partial-wave amplitudes with a coherent sum

of terms that describe quasi-2-body scattering processes; e.g., $\pi N \to \Delta(1232)\pi$, $\pi N \to N \rho$, and $\pi N \to N(1440)\pi$. The models rest on the observation that almost all $\pi N \to N \pi \pi$ events lie in quasi-2-body bands in the Dalitz plots. The couplings obtained from the analyses provide stringent constraints on quark models of baryon structure. Details of the isobar-model formalism are given in our 1982 edition.¹

The Listings give the results from five analyses, none of them new.

LONGACRE 75² and LONGACRE 78³ (LBL-SLAC) estimated resonance parameters based, in part, on $\pi N \to N\pi\pi$ partial-wave amplitudes obtained from an analysis of 170,000 $\pi^- p \rightarrow n \pi^- \pi^+, \ \pi^- p \rightarrow p \pi^- \pi^0, \ \text{and} \ \pi^+ p \rightarrow p \pi^+ \pi^0 \ \text{events}$ with c.m. energies between 1300 and 1990 MeV.4 The analysis included the $\Delta(1232)\pi$, $N\rho$, and $N(\pi\pi)_S$ intermediate states, where $(\pi\pi)_S$ is the strong isospin-0 S-wave $\pi\pi$ interaction. Our Listings give masses, widths, and couplings for nine Nand five Δ resonances from LONGACRE 75, and pole positions for ten N and seven Δ resonances from LONGACRE 78. The resonance parameters included in this edition were estimated from a T matrix that satisfies unitarity and which was derived from a K-matrix parametrization of $\pi N \to N\pi$ and $\pi N \to N\pi\pi$ partial-wave amplitudes. Parameters we give from LONGACRE 75 were estimated by drawing Breit-Wigner circles through Argand plots (Method II of that paper). Parameters from LONGACRE 78 were estimated by searching for poles in the T matrix (following Method III of LON-GACRE 75). We do not include in this edition parameters from Method I of LONGACRE 75, since the masses and widths were taken from an elastic partial-wave analysis and the couplings violate unitarity. Those parameters may be found in our 1986 edition.⁵

LONGACRE 77⁶ (Saclay) is a similar but independent analysis of 91,000 $\pi^-p \to n\pi^-\pi^+$, $\pi^-p \to p\pi^-\pi^0$, and $\pi^+p \to p\pi^+\pi^0$ events with c.m. energies between 1360 and 1760 MeV.⁷ Our Listings give masses, widths, pole positions, and couplings for ten N and five Δ resonances, including an $N(1540)P_{13}$ and a $\Delta(1550)P_{31}$, which this analysis suggested for the first time.

NOVOSELLER 78⁸ (Cal Tech) estimated resonance couplings to the inelastic channels by fitting partial-wave amplitudes with a resonant parametrization of the T matrix. Masses and widths of resonances were fixed to the results of elastic phase-shift analyses. Two solutions are given, one based on the $\pi N \to N\pi\pi$ amplitudes of the LBL-SLAC analysis (referred to in the Listings as a Breit-Wigner fit to HERNDON 75⁴), the other on a similar analysis that included the effects of one-pion exchange (referred to in the Listings as a Breit-Wigner fit to NOVOSELLER 78B⁹). The Listings give couplings for two N and three Δ resonances between 1650 and 1970 MeV.

BARNHAM 80¹⁰ (Imperial College) estimated resonance parameters by a procedure similar to Method I of LONGACRE 75.² The $\pi N \to N\pi\pi$ amplitudes were obtained from an analysis of 44,000 $\pi^+ p \to p\pi^+\pi^0$ and $\pi^+ p \to n\pi^+\pi^+$ events with c.m. energies between 1400 and 1700 MeV; hence, it concerns

only Δ resonances. It included the $\Delta(1232)\pi$, $N(1440)\pi$, and $N\rho$ intermediate states. The Listings give masses, widths, and couplings for four Δ resonances.

MANLEY 84 (VPI & SU)¹¹ is an analysis of 241,000 $\pi^-p \to n\pi^-\pi^+$, $\pi^-p \to p\pi^-\pi^0$, $\pi^+p \to p\pi^+\pi^0$, and $\pi^+p \to n\pi^+\pi^+$ events with c.m. energies between 1320 and 1930 MeV. It included the $\Delta(1232)\pi$, $N(1440)\pi$, $N(\pi\pi)_S$, and $N\rho$ intermediate states. Partial-wave amplitudes were fitted to a resonant parametrization of the T matrix to obtain smoothed Argand plots; however, resonance parameters were not published. The Listings give signs of couplings for eight N and eight Δ resonances, including a $\Delta(2000)F_{35}$, which this analysis suggested for the first time.

A compilation of the signs of various $\pi N \to N\pi\pi$ couplings determined from these analyses is given in our 1986 edition.⁵ For further details of the analyses, see both our 1982 and 1986 editions.^{1,5}

At this time, a new multichannel coupled resonance analysis based in part on the $\pi N \to N\pi\pi$ amplitudes of MANLEY 84 is underway.¹³ This analysis parametrizes the amplitudes using a manifestly time-reversal-invariant and unitary S matrix, somewhat along the lines proposed by Novoseller.¹⁴ The results of this analysis will be discussed in our 1992 edition.

References for section III

- 1. Particle Data Group, Phys. Lett. 111B (1982).
- 2. R.S. Longacre et al., Phys. Lett. 55B, 415 (1975).
- 3. R.S. Longacre et al., Phys. Rev. D17, 1795 (1978).
- D.J. Herndon et al., Phys. Rev. D11, 3183 (1975); also see A.H. Rosenfeld et al., Phys. Lett. 55B, 486 (1975).
- 6. Particle Data Group, Phys. Lett. 170B (1986).
- R.S. Longacre and J. Dolbeau, Nucl. Phys. **B122**, 493 (1977).
- 8. J. Dolbeau et al., Nucl. Phys. **B108**, 365 (1976).
- 9. D.E. Novoseller, Nucl. Phys. **B137**, 509 (1978).
- D.E. Novoseller, Nucl. Phys. B137, 445 (1978).
- 11. K.W.J. Barnham et al., Nucl. Phys. B168, 243 (1980).
- D.M. Manley et al., Phys. Rev. **D30**, 904 (1984); and D.M. Manley, Phys. Rev. Lett. **52**, 2122 (1984).
- 13. D.M. Manley and E.M. Saleski, unpublished.
- 14. D.E. Novoseller, Nucl. Phys. B176, 153 (1980).

IV. Photoproduction and Compton scattering

(by R.L. Crawford, University of Glasgow)

Pion photoproduction: The $N\gamma$ couplings of the N and Δ resonances have been obtained in a large number of partial-wave analyses of single-pion photoproduction, $\gamma N \to \pi N$, on protons and neutrons. The couplings, $A_{1/2}$ and $A_{3/2}$, are related to the helicity amplitudes of the process, $A_{\ell^{\pm}}$ and $B_{\ell^{\pm}}$, by

$$\begin{split} A_{\ell^{\pm}} &= \mp \alpha \; C_{N\pi} \; A_{1/2} \\ B_{\ell^{\pm}} &= \pm 4 \alpha [(2J-1)(2J+3)]^{-1/2} \; C_{N\pi} \; A_{3/2} \; , \end{split}$$

where

$$\alpha \; \equiv \; \left[\frac{1}{\pi} \frac{k}{q} \frac{1}{(2J+1)} \frac{M_N}{M_R} \frac{\Gamma_\pi}{\Gamma^2} \right]^{1/2} \; . \label{eq:alpha}$$

Here k and q are the photon and pion c.m. momenta; J is the angular momentum, M_R the mass, Γ the full width, and Γ_{π} the $N\pi$ partial width of the resonance; M_N is the nucleon mass; and $C_{N\pi}$ is the Clebsch-Gordan coefficient for the decay of the resonance into the relevant $N\pi$ charge state.

The large amount of pion photoproduction data, including many measurements from single and double polarization experiments, has permitted an accurate evaluation of the couplings for many of the resonances with masses below 2 GeV, and has given at least qualitative information about most of the others. However, most photoproduction analyses rely heavily upon $\pi N \to \pi N$ analyses for information on the existence, masses, and widths of the resonances. The only photoproduction analyses that give masses and widths as well as couplings are BERENDS 75, BERENDS 77, BARBOUR 78, and CRAWFORD 80. These results are of interest since they concern the charge +1 states of the resonances. In particular, the mass of the $\Delta(1232)^+$ seems to be as well determined as are the masses of the Δ^{++} and Δ^0 , obtained from $\pi^+ p$ and $\pi^- p$ scattering.

There are three main methods of analysis:

- (a) The simple isobar model: This is the simplest form of energy-dependent partial-wave analysis (DPWA). The partial waves are parametrized as Breit-Wigner resonances plus smooth background. The Listings give results from FELLER 76, TAKEDA 80, and BRATASHEVSKIJ 80.
- (b) Fixed-t dispersion relations (FTDR): The analyses in the Listings that use this technique are BARBOUR 78, ARAI 80, CRAWFORD 80, FUJII 81, and AWAJI 81.
- (c) Energy-independent partial wave analysis (IPWA): The Listings give results from BERENDS 77 and CRAWFORD 83.

NOELLE 78 is a hybrid analysis using FTDR in a coupled-channel calculation. Further details of these methods may be found in our 1982 edition.¹

Compton scattering: Two analyses, ISHII 80 and WADA 84, contribute measurements of the couplings obtained from Compton scattering on protons. Both are isobar analyses. In general, there is good agreement with results from photoproduction. The differences should not be taken seriously since the quality and quantity of the photoproduction data are much higher and constrain the values of the couplings more strongly than do the Compton scattering data.

Resonance couplings in the Listings: The Listings omit a number of analyses that are now obsolete. Most of the older results may be found in our 1982 edition.¹

The errors quoted for the couplings in the Listings are calculated in different ways in different analyses and therefore should be used with care. In general, it is likely that the systematic differences between the analyses caused by using different parametrization schemes are more indicative of the true uncertainties than are the quoted errors.

Probably the most reliable analyses are those from Glasgow (BARBOUR 78, CRAWFORD 80, and CRAWFORD 83) and those from Tokyo or based on the Tokyo analyses (ARAI 80, FUJII 81, and AWAJI 81). Table 3 gives a compilation of the couplings from these analyses (unchanged since our 1988 edition). The errors given are a combination of the statistical errors quoted in the analyses and the systematic differences between them. Two values are quoted for $A_{1/2}$ of the $\Delta(1620)\,S_{31}$ to take account of the surprisingly large spread in values obtained for it. This seems to be due to the different methods of treating the imaginary background in this partial wave. The second value given uses only the Glasgow analyses. These have always succeeded in getting stable and acceptable values for the mass and width of this resonance, and it seems reasonable to infer that the coupling obtained is accurate.

 $N\gamma$ branching fractions: The Baryon Summary Table gives $N\gamma$ branching fractions for those resonances whose couplings are considered to have an unambiguous sign. The $N\gamma$ partial width Γ_{γ} is given by

$$\Gamma_{\gamma} \; = \; \frac{k^2}{\pi} \frac{2 M_N}{(2J+1) M_R} \left[\; |\, A_{1/2} \,|^{\, 2} + \, |\, A_{3/2} \,|^{\, 2} \right] \; \; , \label{eq:Gamma_gamma}$$

where M_N and M_R are the masses of the nucleon and the resonance, J is the resonance spin, and k is the photon c.m. decay momentum. The couplings $A_{1/2}$ and $A_{3/2}$ are taken from Table 3.

The E2/M1 ratio for the $\Delta(1232)P_{33}$: There is renewed interest in the ratio of electric to magnetic multipoles (E2/M1 ratio) for the photon couplings of the $\Delta(1232)P_{33}$, and two groups have used data from previous partial wave analyses to examine this ratio. Various parametrizations of the multipoles in terms of resonance plus background have been used. Results from TANABE 85 and DAVIDSON 86 are quoted in the Listings. Also given as PDG 86 is the average value from the $\Delta(1232)P_{33}$ couplings from the most reliable photoproduction partial wave analyses. Christillin and Dillon² also look at the E2/M1 ratio but do not give a specific value. although their results suggest that it should lie between zero and -0.02. They discuss the need for better data. Their papers comment on other analyses in relation to their own. The Particle Data Group value is consistent with the others that treat the $\Delta(1232)P_{33}$ multipoles in a more detailed way. Effectively, the couplings in the partial wave analyses are given by the ratio of the imaginary parts of the multipoles at the resonance energy and, as is pointed out by Christillin and Dillon, the result is the required ratio if the background phase is small.

Table 3. A compilation of measured $N\gamma$ decay couplings. Sources are given in the text.

(a) Proton-ta	arget co	ouplings	
Resonance	Heli- city) Status
$N(1440)P_{11}$	1/2	-69 ± 7	good
$N(1520)D_{13}$	$\frac{1/2}{3/2}$	$-22 \pm 10 + 167 \pm 10$	good good
$N(1535)S_{11}$	1/2	$+73\pm14$	good
$N(1650)S_{11}$	1/2	$+48\pm16$	good
$N(1675)D_{15}$	$\frac{1/2}{3/2}$	$+19 \pm 12 +19 \pm 12$	good, nonzero good, nonzero
$N(1680)F_{15}$	$\frac{1/2}{3/2}$	$-17 \pm 10 + 127 \pm 12$	good, nonzero good
$N(1700)D_{13}$	$\frac{1/2}{3/2}$	-22 ± 13 0 ± 19	good, small fair, small
$N(1710)P_{11}$	1/2	$+5\pm16$	fair, small
$N(1720)P_{13}$	$\frac{1/2}{3/2}$	$+52 \pm 39$ -35 ± 24	poor fair
$N(1990)F_{17}$	$\frac{1/2}{3/2}$	$+24 \pm 30 +31 \pm 55$	poor bad
$\Delta(1232)P_{33}$	$\frac{1/2}{3/2}$	-141 ± 5 -258 ± 11	very good very good
$\Delta(1550)P_{31}$	1/2	$+16\pm16$	doubtful
$\Delta(1600)P_{33}$	$\frac{1/2}{3/2}$	$-20 \pm 29 \\ +1 \pm 22$	poor, small fair, small
$\Delta(1620)S_{31}$	$\frac{1/2}{(1/2)}$	$+19 \pm 16 +30 \pm 10$	$\begin{array}{c} \text{fair} \\ \text{good} & -\!$
$\Delta(1700)D_{33}$	$\frac{1/2}{3/2}$	$+116 \pm 17 +77 \pm 28$	$egin{array}{c} egin{array}{c} egin{array}$
$\Delta(1900)S_{31}$	1/2	$+10 \pm ?$?
$\Delta(1905)F_{35}$	$\frac{1/2}{3/2}$	$+27 \pm 13$ -47 ± 19	good fair
$\Delta(1910)P_{31}$	1/2	-12 ± 30	poor
$\Delta(1920)P_{33}$	$\frac{1/2}{3/2}$	$+40 \pm ?$ $+23 \pm ?$? ?
$\Delta(1930)D_{35}$	$\frac{1/2}{3/2}$	-30 ± 40 -10 ± 35	poor poor
$\Delta(1950)F_{37}$	$\frac{1/2}{3/2}$	-73 ± 14 -90 ± 13	good good

(continued)

(b) Neutron-target couplings

Resonance	Heli- city	Couplings $(\text{GeV}^{-1/2} \times 10^{-3})$	Status
$\overline{N(1440)P_{11}}$	1/2	$+37 \pm 19$	fair
$N(1520)D_{13}$	$\frac{1/2}{3/2}$	-65 ± 13 -144 ± 14	good good
$N(1535)S_{11}$	1/2	-76 ± 32	fair
$N(1650)S_{11}$	1/2	-17 ± 37	poor
$N(1675)D_{15}$	$\frac{1/2}{3/2}$	-47 ± 23 -69 ± 19	fair fair
$N(1680)F_{15}$	$\frac{1/2}{3/2}$	$+31 \pm 13 \\ -30 \pm 14$	good good
$N(1700)D_{13}$	$\frac{1/2}{3/2}$	0 ± 56 -2 ± 44	bad bad
$N(1710)P_{11}$	1/2	-5 ± 23	fair, small
$N(1720)P_{13}$	$\frac{1/2}{3/2}$	-2 ± 26 -43 ± 94	fair, small very bad
$N(1990)F_{17}$	$\frac{1/2}{3/2}$	-49 ± 45 -122 ± 55	poor poor

 $K\Lambda$ photoproduction: The Listings now give results from TANABE 89, an isobar analysis of $\gamma p \to \Lambda K^+$ that includes those resonances which have a non-negligible branching ratio to ΛK^+ . These are the $N(1650)S_{11}$, the $N(1700)D_{13}$, the $N(1710)P_{11}$, the $N(1720)P_{13}$, and the $N(2190)G_{17}$. The mass of the D_{13} is set rather high at 1880 MeV in the analysis. The isobar contributions to the electric and magnetic multipoles are parametrized in the form

$$\begin{split} M_{\ell^{\pm}} &= \left\{ \frac{1}{k_R \, q_R \, \ell(\ell+1)} \frac{v_\ell(qR)}{v_\ell(q_R R)} \right\}^{1/2} \\ &\qquad \times \frac{M_R \, \Gamma \, \sqrt{X_P X_K} \, \exp(i\theta)}{(M_R^2 - s - i M_R \, \Gamma)} \\ E_{\ell^{\pm}} &= \left\{ \frac{1}{k_R \, q_R \, (\ell \pm 1)(\ell \pm 1 + 1)} \, \frac{v_\ell(qR)}{v_\ell(q_R R)} \right\}^{1/2} \\ &\qquad \times \frac{M_R \, \Gamma \, \sqrt{X_P X_K} \, \exp(i\theta)}{(M_R^2 - s - i M_R \Gamma)} \; . \end{split}$$

Here k and q are the photon and kaon momenta, X_P and X_K are the branching ratios to γp and ΛK^+ , $v_\ell(qR)$ is a barrier penetration factor, and θ is a phase angle. The Listings give $\sqrt{X_P X_K}$ and the phase angle θ .

References for section IV

- 1. Particle Data Group, Phys. Lett. 111B (1982).
- P. Christillin and G. Dillon, Nucl. Phys. A479, 577c (1989), and J. Phys. G15, 967 (1989).

Baryon Full Listings N(1440)

 $N(1440) P_{11}$

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B). In addition, results in this region from production experiments, which used to be listed separately as the next entry, have been entirely omitted. They too may be found in our 1982 edition.

N(1440) MASS

	` '				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
1400 to 1480 OUR ESTIMATE					
L440±30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
1410±12	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
 We do not use the following 	data for average	s, fit:	s, limits,	etc. • • •	
1411	CRAWFORD				
1472	¹ BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$	
L417	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$	
1460	BERENDS	77	IPWA	$\gamma N \rightarrow \pi N$	
1380	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$	
1390	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$	

N(1440) WIDTH

VALUE (MeV) 120 to 350 OUR ESTIMATE	DOCUMENT ID Our best guess is 200		TECN √.	COMMENT
340 ± 70	CUTKOSKY			
135±10 • • • We do not use the follow	HOEHLER ing data for average			
334	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
113	¹ BAKER			
331	BARBOUR			$\gamma N \rightarrow \pi N$
279	BERENDS			$\gamma N \rightarrow \pi N$
200	² LONGACRE			
200	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1440) POLE POSITION

REAL PART

DOCUMENT ID TECN COMMENT CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ 1375 ± 30 • • We do not use the following data for averages, fits, limits, etc. 4 ARNDT 85 DPWA $\pi N \rightarrow \pi N$ 1359 1381 or 1379 ⁵ LONGACRE 78 IPWA $\pi N \rightarrow N \pi \pi$ 1360 or 1333 ² LONGACRE 77 IPWA πN → Nππ

-2 × IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
180 ± 40 • • • We do not use the following	CUTKOSKY data for averages			
209 or 210	⁴ ARNDT ⁵ LONGACRE ² LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$

N(1440) ELASTIC POLE RESIDUE

REAL PART

DOCUMENT ID TECN COMMENT VALUE (MeV) -9 ± 31 CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ **IMAGINARY PART** TECN COMMENT VALUE (MeV, CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ -51 ± 7

N(1440) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Г	Nπ	50-70 %	
Γ_2	$N\eta$		
Γ3	$N\pi\pi$	30-50 %	
Γ4	$\Delta \pi$	10-20 %	
Γ ₅	$\Delta(1232)\pi$, <i>P</i> -wave		
Γ ₆	Nρ	10-15 %	
Γ ₇	$N\rho$, $S=1/2$, P -wave		
Γ8	$N\rho$, $S=3/2$, P -wave		
Γ٩	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	5-20 %	
Γ ₁₀	$p\gamma$	0.08-0.10 %	
Γ_{11}	$p\gamma$, helicity=1/2		
Γ ₁₂	$n\gamma$	0.01-0.06 %	
Γ ₁₃	$n\gamma$, helicity=1/2		

The above branching fractions are our estimates, not fits or averages.

N(1440) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT
0.5 to 0.7 OUR ESTIN			1401	COMMENT
0.68 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.54 . 0.05	HOEHLER	70	101474	
	$\pi ightarrow N(1440) ightarrow N \eta$			$\pi N \rightarrow \pi N$ $(\Gamma_1 \Gamma_2)^{\frac{1}{2}} / !$ COMMENT
VALUE	$\pi \to N(1440) \to N\eta$ DOCUMENT ID		TECN	$(\Gamma_1\Gamma_2)^{1/2}/!$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N$ VALUE • • • We do not use the	$\pi o extstyle$	s, fit:	TECN 5, limits,	$(\Gamma_1\Gamma_2)^{1/2}/!$ etc. • • •
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in N	$\pi o extstyle$	s, fit:	TECN 5, limits,	$(\Gamma_1\Gamma_2)^{1/2}/!$

resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

VALUE	DOCUMENT ID		TECN	COMMENT
+ (large)	7 MANLEY			
+0.41	^{2,8} LONGACRE			
+ 0.37	3 LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{T}$	$N(1440) \rightarrow N \rho$, DOCUMENT ID			
0.0	MANIFY	84	IPWA	$\pi N \rightarrow N \pi \pi$

 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow N(1440) \rightarrow \Delta(1232)\pi, P\text{-wave}$

VALUE	DOCUMENT ID		IECN	COMME	V I	
0.0	MANLEY	84	IPWA	$\pi N \rightarrow$	$N \pi \pi$	
-0.11	^{2.8} LONGACRE					
+0.23	³ LONGACRE	75	IPWA	$\pi N \rightarrow$	$N \pi \pi$	
N.						

$$\frac{(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\pi \rightarrow}{0.0} \underbrace{\begin{array}{c} N(1440) \rightarrow N\rho, \ S=3/2, \ P\text{-wave} \\ 0.0 & \frac{DOCUMENT \ ID}{\text{MANLEY}} \\ +0.18 & 2.8 \ \text{LONGACRE} \end{array}}_{\text{N}} \underbrace{\begin{array}{c} FECN \\ FECN \\ FECN \\ \text{COMMENT} \\ \text{N} \rightarrow N\pi\pi \\$$

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1440) \rightarrow N(\pi$	$(\pi)_{S-\text{wave}}^{I=0}$	$(\Gamma_1\Gamma_9)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		
+ (large)	MANLEY		
-0.18	^{2.8} LONGACRE		
-0.23	³ LONGACRE	75 IPWA	$\pi N \rightarrow N \pi \pi$

N(1440) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(1440) ightarrow p \gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.069 ±0.018	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.063 ± 0.008	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
-0.069 ± 0.004	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.066 ± 0.004	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.079 ± 0.009	BRATASHEV	.80	DPWA	$\gamma N \rightarrow \pi N$
-0.068 ± 0.015	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.0584 ± 0.0148	ISHII	80	DPWA	Compton scattering
-0.075 ± 0.015	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.087 ± 0.006	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the following of	lata for averages	, fits	, limits,	etc. • • •
-0.129	WADA	84	DPWA	Compton scattering
-0.125	NOELLE	78		$\gamma N \rightarrow \pi N$
-0.076	BERENDS	77	IPWA	$\gamma N \rightarrow \pi N$

$N(1440) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
0.037 ± 0.010	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
0.030 ± 0.003	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
0.023 ± 0.009	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.019 ± 0.012	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.056 ± 0.015	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.029 ± 0.035	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.059\pm0.016$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
0 062	¹⁰ NOELLE	78		$\gamma N \rightarrow \pi N$

N(1440) FOOTNOTES

- 1 BAKER 79 finds a coupling of the N(1440) to the N η channel near (but slightly below) _ threshold.
- ² LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \rightarrow N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- 4 ARNDT 85 finds a second P_{11} pole at (1410, -80) MeV.
- ⁵ LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- 6An alternative which cannot be distinguished from this is to have a P_{13} resonance with M=1530 MeV, $\Gamma=79$ MeV, and elasticity =+0.271.
- ⁷ MANLEY 84 considers this coupling sign to be well determined.
- ⁸LONGACRE 77 considers this coupling to be well determined.
- 9 WADA 84 is inconsistent with other analyses; see the Note on N and Δ Resonances.
- 10 Converted to our conventions using M=1486 MeV, $\Gamma=613$ MeV from NOELLE 78.

N(1440) REFERENCES

For early references, see Physics Letters 111B (1982).

ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
WADA	84	NP B247 313	+Egawa, Imanishi, Ishii, Kato, Ukai+	(INUS)
CRAWFORD	83	NP B211 1	+ Morton	(GLAS)
ILAWA	81	Bonn Conf. 352	+ Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
FUJII	81	NP B187 53	+Hayashii, Iwata, Kajikawa+	(TOKY)
ARAI	80	Toronto Conf. 93	,,,,,,	(TOKY)
Also	82	NP B194 251	Arai, Fujii	(TOKY)
BRATASHEV	. 80	NP B166 525	Bratashevskij, Gorbenko, Derebchinskij+	(KHAR)
CRAWFORD	80	Toronto Conf. 107	,,	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
ISHII	80	NP B165 189	+Egawa, Kato, Mivachi+	(KYOT, TOKY)
TAKEDA	80	NP B168 17	+Arai, Fujii, Ikeda, Iwasaki+	(TOKY)
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
NOELLE	78	PTP 60 778		(NAGO)
BERENDS	77	NP B136 317	+ Donnachie	(LEID, MCHS) IJP
LONGACRE	77	NP B122 493	+Dolbeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
FELLER	76	NP B104 219	+Fukushima, Horikawa, Kajikawa+	(NAGO, OSAK) IJP
FELTESSE	75	NP B93 242	+Aved, Barevre, Borgeaud, David+	(SACL) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP

$N(1520) D_{13}$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B). In addition, results in this region from production experiments, which used to be listed separately as the next entry, have been entirely omitted. They too may be found in our 1982 edition.

N(1520) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1510 to 1530 OUR ESTIMATE				
1525 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1519± 4	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
ullet $ullet$ We do not use the following	data for averages	, fits	s, limits,	etc. • • •
1504	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1503	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1510	BERENDS	77	IPWA	$\gamma N \rightarrow \pi N$
		77	IPWA	$\pi N \rightarrow N \pi \pi$
1520	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1520) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
100 to 140 OUR ESTIMATE	Our best guess is 12:	5 Me	٠V.	
120 ± 15	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
114 ± 7	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the folio	wing data for average	s, fit	s, limits,	etc. • • •
124	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
183	BAKER	79	DPWA	$\pi^- \rho \rightarrow n\eta$
135	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
105	BERENDS			$\gamma N \rightarrow \pi N$
110	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
150	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1520) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1510±5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	e following data for average	s, fit	s, limits,	etc. • • •
1510	ARNDT			$\pi N \rightarrow \pi N$
1514 or 1511	³ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1508 or 1505	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY P VALUE (MeV)			TECN	COMMENT
114±10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
 • • We do not use the 	following data for average	s, fit	s, limits,	etc. • • •
122	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
146 or 137	³ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
				$\pi N \rightarrow N \pi \pi$

N(1520) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
34±2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
-7 ± 3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

N(1520) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Nπ	50-60 %
Γ_2	$N\eta$	~ 0.1 %
Γ_3	$N\pi\pi$	40-50 %
Γ4	$\Delta \pi$	20-30 %
Γ_5	$\Delta(1232)\pi$, <i>S</i> -wave	
Γ_6	$\Delta(1232)\pi$, <i>D</i> -wave	
Γ_7	$N\rho$	15-25 %
Γ8	$N\rho$, $S=1/2$, D-wave	
Г9	$N\rho$, $S=3/2$, S -wave	
Γ_{10}	$N\rho$, $S=3/2$, D-wave	
Γ_{11}	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	<5 %
Γ_{12}	$p\gamma$	0.43-0.57 %
Γ_{13}	$p\gamma$, helicity=1/2	
Γ_{14}	$p\gamma$, helicity=3/2	
Γ_{15}	$n\gamma$	0.34-0.51 %
Γ_{16}	$n\gamma$, helicity=1/2	
Γ_{17}	$n\gamma$, helicity=3/2	

N(1520) BRANCHING RATIOS

F(A(-)/F

' ('\'')/' total				11/1
VALUE	DOCUMENT ID		TECN	COMMENT
0.5 to 0.6 OUR ESTIMATE				
0.58 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.54 ± 0.03	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$. , .			$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
0.02	BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
+0.011 or +0.058	FELTESSE	75	DPM/A	1488-1745 MeV

Note: Signs of couplings from $\pi N \to N\pi\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$			
VALUE	DOCUMENT ID	TECN	COMMENT
- (large)	4 MANLEY		
-0.26	1,5 LONGACRE	77 IPWA	$\pi N \rightarrow N \pi \pi$
-0.24	² LONGACRE	75 IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{ m total}$ in $N\pi ightarrow$	$N(1520) \rightarrow \Delta(12)$	32)π, <i>D</i> -1	wave $(\Gamma_1\Gamma_6)^{\frac{1}{2}}/\Gamma$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{total} \text{ in } N\pi \to \frac{VALUE}{2}$		32)π, <i>D</i> -1	wave $(\Gamma_1\Gamma_6)^{\frac{1}{2}}/\Gamma$
VALUE — (large)	N(1520) → Δ(12 DOCUMENT ID 4 MANLEY	32)π, <i>D-</i> <u>TECN</u> 84 IPWA	wave $(\Gamma_1\Gamma_6)^{\frac{1}{2}}/\Gamma$ $\tau N \rightarrow N\pi\pi$
VALUE	N(1520) → △(12	32)π, <i>D-</i> <u>TECN</u> 84 IPWA	wave $(\Gamma_1\Gamma_6)^{\frac{1}{2}}/\Gamma$ $\tau N \rightarrow N\pi\pi$

Baryon Full Listings N(1520), N(1535)

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$			wave $(\Gamma_1\Gamma_9)^{1/2}/\Gamma$
- (large)	4 MANLEY	84 IPW/A	π N → N π π
-0.35	1,5 LONGACRE 2 LONGACRE	77 IPWA	$\pi N \rightarrow N \pi \pi$
-0.24	² LONGACRE	75 IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi$ $ o$			
VALUE	DOCUMENT ID		COMMENT
-0.13	^{1,5} LONGACRE ² LONGACRE	77 IPWA	$\pi N \rightarrow N \pi \pi$
0.17	² LONGACRE	75 IPWA	$\pi N \rightarrow N \pi \pi$

N(1520) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(1520) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.028 ± 0.014	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.007 ±0.004	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.032 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.032 ± 0.004	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.031 ± 0.009	BRATASHEV	. 80	DPWA	$\gamma N \rightarrow \pi N$
-0.019 ±0.007	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.0430 ± 0.0063	ISHII	80	DPWA	Compton scattering
-0.016 ± 0.008	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.005 ± 0.005	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following of	lata for averages	, fits	, limits,	etc. • • •
-0.012	WADA	84	DPWA	Compton scattering
0.008	NOELLE	78		$\gamma N \rightarrow \pi N$
0.021	REPENIOS	77	ΙΡΙΛ/Δ	~ N N

$N(1520) \rightarrow p\gamma$, helicity-3/2 amplitude $A_{3/2}$

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
WEDE TOEK .)	DOCUMENT		TECIV	COMMENT
0.156 ± 0.022	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.168 ± 0.013	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
0.178 ± 0.003	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.162 ±0.003	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.166 ±0.005	BRATASHEV	. 80	DPWA	$\gamma N \rightarrow \pi N$
0.167 ±0.010	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
0.1695 ± 0.0014	ISHII	80	DPWA	Compton scattering
+0.157 ±0.007	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
+0.164 ±0.008	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
0.168	WADA	84	DPWA	Compton scattering
0.206	⁶ NOELLE	78		$\gamma N \rightarrow \pi N$
± 0.075	RERENDS	77	IPWA	~ N π N

$N(1520) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.066 ± 0.013	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.067 ± 0.004	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
-0.076 ± 0.006	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.071 ± 0.011	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.056 ± 0.011	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.050 ± 0.014	TAKEDA	80	DPWA	γN πN
-0.055 ± 0.014	BARBOUR			$\gamma N \rightarrow \pi N$
• • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
-0.060	⁶ NOELLE	78		$\gamma N \rightarrow \pi N$

$N(1520) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.124 ± 0.009	AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$
-0.158 ± 0.003	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
-0.147 ± 0.008	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.148 ± 0.009	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.144 ± 0.015	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.118 ± 0.011	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$
-0.141 ± 0.015	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the following	data for average	es, fit	s, limits,	etc. • • •
-0.127	⁶ NOELLE	78		$\gamma N \rightarrow \pi N$

N(1520) FOOTNOTES

¹ LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix

amplitudes. 3 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay

(CERN) partial-wave analysis.

MANLEY 84 considers this coupling sign to be well determined.

FLONGACE 77 considers this coupling to be well determined. 6 Converted to our conventions using M=1528 MeV, $\Gamma=187$ MeV from NOELLE 78.

N(1520) REFERENCES

For early references, see Physics Letters 111B (1982). For very early references, see Rev. Mod. Phys. 37, 633 (1965).

ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
WADA	84	NP B247 313	+Egawa, Imanishi, Ishii, Kato, Ukai+	(INUS)
CRAWFORD	83	NP B211 1	+Morton	(GLAS)
ILAWA	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
FUJII	81	NP B187 53	+Hayashii, Iwata, Kajikawa+	(TOKY)
ARAI	80	Toronto Conf. 93		(TOKY)
Aiso	82	NP B194 251	Arai, Fujii	(TOKY)
BRATASHEV	80	NP B166 525	Bratashevskij, Gorbenko, Derebchinskij+	(KHAR)
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+ Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
ISHII	80	NP B165 189	+Egawa, Kato, Miyachi+	(KYOT, TOKY)
TAKEDA	80	NP B168 17	+Arai, Fujii, Ikeda, Iwasaki+	(TOKY)
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Aiso	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
NOELLE	78	PTP 60 778		(NAGO)
BERENDS	77	NP B136 317	+Donnachie	(LEID, MCHS) IJP
LONGACRE	77	NP B122 493	+ Dolbeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
FELLER	76	NP B104 219	+Fukushima, Horikawa, Kajikawa+	(NAGO, OSAK) IJP
FELTESSE	75	NP B93 242	+Ayed, Bareyre, Borgeaud, David+	(SACL) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP

$N(1535) S_{11}$

 $I(J^P) = \frac{1}{2}(\frac{1}{2})$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

N(1535) MASS

DOCUMENT ID		TECN	COMMENT
CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
ing data for average	es, fit	s, limits,	etc. • • •
CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
BEREND\$	77	IPWA	$\gamma N \rightarrow \pi N$
BHANDARI	77	DPWA	Uses Nn cusp
¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
	CUTKOSKY HOEHLER ing data for average CRAWFORD BARBOUR BERENDS BHANDARI 1 LONGACRE	CUTKOSKY 80 HOEHLER 79 ing data for averages, fit CRAWFORD 80 BARBOUR 78 BERENDS 77 BHANDARI 77 1 LONGACRE 77	CUTKOSKY 80 IPWA HOEHLER 79 IPWA ing data for averages, fits, limits, CRAWFORD 80 DPWA BARBOUR 78 DPWA BERENDS 77 IPWA BHANDARI 77 DPWA 1 LONGACRE 77 IPWA

N(1535) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
100 to 250 OUR ESTIMATE	Our best guess is 15	0 Me	٠V.	
240 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
120 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follo	wing data for average	s, fits	s, limits,	etc. • • •
136	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
180	BAKER	79	DPWA	$\pi^- p \rightarrow n \eta$
132	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
57	BERENDS	77	IPWA	$\gamma N \rightarrow \pi N$
139 ± 33	BHANDARI	77	DPWA	Uses $N\eta$ cusp
135	1 LONGACRE			
100	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1535) POLE POSITION DOCUMENT ID

TECNI COMMENT

REAL	PART
MALLIE /	Adal/)

The state of	DOCOMENT	1207	COMMITTEE
1510 ± 50	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages, fit	s, limits,	etc. • • •
1461			$\pi N \rightarrow \pi N$
1496 or 1499	³ LONGACRE 78	IPWA	$\pi N \rightarrow N \pi \pi$
1519± 4	BHANDARI 77		
1525 or 1527	¹ LONGACRE 77	IPWA	$\pi N \rightarrow N \pi \pi$

−2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
260 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	ig data for average	es, fit	s, limits,	etc. • • •
140	ARNDT			
103 or 105	3 LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
140 ± 32	BHANDARI	77	DPWA	Uses $N\eta$ cusp
135 or 123	$^{ m 1}$ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

N(1535) ELASTIC POLE RESIDUE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
116 ± 46	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the fo	ollowing data for averages, fi	ts, limits.	, etc. • • •
20±21	BHANDARI 77	DPWA	Uses Nη cusp
IMAGINARY PART	DOCUMENT ID	TECN	COMMENT
31±92	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the fo	ollowing data for averages, fi	ts, limits	, etc. • • •
13+ 8	BHANDARI 77	DPWA	Uses Nn cusp

N(1535) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	Nπ	35-50 %	
Γ_2	$N\eta$	45-55 %	
Γ_3^-	Νππ	~ 10 %	
Γ_4	$\Delta\pi$	<5 %	
Γ ₅	$\Delta(1232)\pi$, <i>D</i> -wave		
Γ ₆	$N\rho$	~ 5 %	
Γ ₇	$N\rho$, $S=1/2$, S-wave		
Γ8	$N\rho$, $S=3/2$, D-wave		
و۲	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	~ 5 %	
Γ ₁₀		0.1-0.2 %	
Γ11	$p\gamma$, helicity=1/2		
	πγ	0.15-0.35 %	
	$n\gamma$, helicity=1/2		

The above branching fractions are our estimates, not fits or averages.

N(1535) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				11/1
VALUE	DOCUMENT ID		TECN	COMMENT
0.35 to 0.50 OUR ESTIMAT	E			
0.50 ± 0.10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.38 ±0.04	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the folio	owing data for averages	, fit	s, limits,	etc. • • •
0.297 ± 0.026	BHANDARI	77	DPWA	Uses $N\eta$ cusp
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$				$(\Gamma_1\Gamma_2)^{1\!\!/_{\!\!2}}/\Gamma$
VALUE	DOCUMENT ID	—	TECN	COMMENT
+0.33	BAKER	79	DPWA	$\pi^- \rho \rightarrow n\eta$
+0.48	FELTESSE	75	DPWA	1488-1745 MeV

Note: Signs of couplings from $\pi N \to N\pi\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1535) \rightarrow \Delta(1232)$)π, <i>D</i> -v	vave $(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT
0.00	¹ LONGACRE 77		
0.06	² LONGACRE 75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi \to$	$N(1535) \rightarrow N \rho, S=$:1/2, <i>S</i> -	wave $(\Gamma_1\Gamma_7)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT
(small)	⁴ MANLEY 84		
-0.10	¹ LONGACRE 77		
0.09	² LONGACRE 75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{ ext{total}} \ ext{in} \ N\pi ightarrow$			$(\Gamma_1\Gamma_9)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	<u>TECN</u>	
+ (small)	⁴ MANLEY 84		$\pi N \rightarrow N \pi \pi$
-0.08	¹ LONGACRE 77		$\pi N \rightarrow N \pi \pi$
+0.09	² LONGACRE 75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1535) PHOTON DECAY AMPLITUDES

For the definition of the γ N decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(1535) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
0.053 ±0.015	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.077 ±0.021	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
0.083 ±0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.080 ± 0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.029 ±0.007	BRATASHEV	80	DPWA	$\gamma N \rightarrow \pi N$
0.065 ±0.016	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
0.0704 ± 0.0091	ISHII	80	DPWA	Compton scattering
+0.082 ±0.019	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
+0.070 ±0.004	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following d	ata for averages	, fits	, limits,	etc. • • •
0.055	WADA	84	DPWA	Compton scattering
0.046	NOELLE	78		$\gamma N \rightarrow \pi N$
+0.034	BERENDS	77	IPWA	$\gamma N \rightarrow \pi N$

$N(1535) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
0.035 ± 0.014	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.062 ± 0.003	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
-0.075 ± 0.019	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.075 ± 0.018	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.098 ± 0.026	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.011 ± 0.017	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$
-0.112 ± 0.034	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the form	llowing data for average	s, fit	s, limits,	etc. • • •
-0.048	5 NOELLE	78		$\gamma N \rightarrow \pi N$

N(1535) FOOTNOTES

- 1 LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \longrightarrow N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- 2 From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ³LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ⁴ MANLEY 84 considers this coupling sign to be well determined.
- ⁵Converted to our conventions using M=1548 MeV, $\Gamma=73$ MeV from NOELLE 78.

N(1535) REFERENCES

For early references, see Physics Letters 111B (1982).

ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
WADA	84	NP B247 313	+Egawa, Imanishi, Ishii, Kato, Ukai+	(INUS)
CRAWFORD	83	NP B211 1	+Morton	(GLAS)
AWA JI	81	Bonn Conf. 352	+ Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
FUJII	81	NP B187 53	+Hayashii, Iwata, Kajikawa+	(TOKY)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fujii	(TOKY)
BRATASHEV	80	NP B166 525	Bratashevskij, Gorbenko, Derebchinskij	(KHAR)
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
ISHII	80	NP B165 189	+Egawa, Kato, Miyachi+	(KYOT, TOKY)
TAKEDA	80	NP B168 17	+Arai, Fujii, Ikeda. lwasaki+	(TOKY)
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kalser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLA5)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
NOELLE	78	PTP 60 778		(NAGO)
BERENDS	77	NP B136 317	+Donnachie	(LEID, MCHS) IJP
BHANDARI	77	PR D15 192	+Chao	(CMU) IJP
LONGACRE	77	NP B122 493	+Dolbeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
FELLER	76	NP B104 219	+Fukushima, Horikawa, Kajikawa+	(NAGO, OSAK) IJP
FELTESSE	75	NP B93 242	+Ayed, Bareyre, Borgeaud, David+	(SACL) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP
		OTHEI	R RELATED PAPERS	-
DAVIES	67B	NC 52A 1112	+Moorhouse	(GLAS, RHEL)

Baryon Full Listings N(1540), N(1650)

 $N(1540) P_{13}$

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$ Status: *

OMITTED FROM SUMMARY TABLE

Not seen in $\pi N \to \pi N$ analyses, and its existence is thus doubtful.

	N(1540) MASS		
VALUE (MeV)	DOCUMENT ID 1 LONGACRE 77	TECN	COMMENT
	- EONGACKE 11	IFVVA	# NV → NV # #
	N(1540) WIDTH		
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
200	¹ LONGACRE 77	IPWA	$\pi N \rightarrow N \pi \pi$
٨	(1540) POLE POSI	TION	
REAL PART	,		COMMENT
	(1540) POLE POSITE DOCUMENT ID 1 LONGACRE 77	<u>TECN</u>	$\frac{\textit{COMMENT}}{\pi \textit{N} \rightarrow \textit{N} \pi \pi}$
REAL PART VALUE (MeV)	DOCUMENT ID	TECN 1PWA	$\pi N \rightarrow N \pi \pi$

N(1540) DECAY MODES

	Mode	
$\overline{\Gamma_1}$	Nπ	
Γ_2	$\Delta(1232)\pi$, <i>P</i> -wave	
Γ_3^-	$N\rho$, $S=1/2$, P -wave	
Γ4	$N\rho$, $S=3/2$, P -wave	
Γ_5	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	
	$p\gamma$, helicity=1/2	
Γ,	$p\gamma$, helicity=3/2	

N(1540) BRANCHING RATIOS

Note: Signs of couplings from $\pi N \rightarrow N \pi \pi$ analyses were changed in the 1986 delition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{-0.11}$	$ \begin{array}{c c} \textbf{\textit{N}} (1540) \rightarrow \Delta (1232) \pi, \ \textit{\textit{P-wave}} & (\Gamma_1 \Gamma_2)^{\frac{1}{2}} / \Gamma \\ \hline \begin{array}{ccc} \textit{\textit{DOCUMENT ID}} & \textit{\textit{TECN}} & \textit{\textit{COMMENT}} \\ \hline 1 \text{LONGACRE} & \textit{\textit{77}} & \text{IPWA} & \textit{\textit{R}} N \rightarrow N \pi \pi \end{array} \end{array} $
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total in } N \pi} \rightarrow \frac{VALUE}{+0.08}$	$N(1540) \rightarrow N\rho, S=1/2, P-wave \frac{(\Gamma_1\Gamma_3)^{1/2}/\Gamma}{\frac{DOCUMENT\ ID}{1\ LONGACRE} 77\ IPWA \frac{COMMENT}{\pi} N \rightarrow N\pi\pi}$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{0.00}$	$\begin{array}{c} \textit{N(1540)} \rightarrow \textit{N}\textit{p, S=3/2, P-wave} \\ \frac{\textit{DOCUMENT ID}}{\textit{1} \; \text{LONGACRE}} & \textit{77} & \textit{IPWA} & \textit{\pi}\textit{N} \rightarrow \textit{N}\textit{\pi}\textit{\pi} \end{array} $
$(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total in }} N\pi \rightarrow \frac{VALUE}{0.00}$	$\begin{array}{c c} N(1540) \rightarrow N \ (\pi\pi)_{5\text{-wave}}^{I=0} & (\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma \\ \hline \begin{array}{cccc} DOCUMENT \ ID & TECN \\ \hline 1 \ LONGACRE & 77 & IPWA & \pi N \rightarrow N \pi \pi \end{array} \end{array}$

N(1540) PHOTON DECAY AMPLITUDES

For the definition of the γ N decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(1540) \rightarrow$	$p\gamma$, helicity-1/2 amplitude	$A_{1/2}$
* 10		

VALUE (GeV ^{-1/2})	DOCUMENT ID	TECN	COMMENT
-0.014 ± 0.028	CRAWFORD 83	IPWA	$\gamma N \rightarrow \pi N$
$N(1540) \rightarrow p\gamma$, helicity-3/2 a	mplitude A _{3/2}		

• • • • • • • • • • • • • • • • • • • •	-,-		
VALUE ($GeV^{-1/2}$)	DOCUMENT ID	TECN	COMMENT
0.009 ± 0.027	CRAWFORD 83	IPWA	$\gamma N \rightarrow \pi N$

N(1540) FOOTNOTES

N(1540) REFERENCES

CRAWFORD	83	NP B211 1	+Morton
LONGACRE	77	NP B122 493	+Dolbeau
Aiso	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet

 $N(1650) S_{11}$

DEAL DADT

 $I(J^P) = \frac{1}{2}(\frac{1}{2})$ Status: ***

(GLAS) (SACL) IJP (SACL) IJP

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

	N(1650) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1620 to 1680 OUR ESTI	MATE			
1650 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1670 ± 8	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	e following data for average	s, fit	s, limits,	etc. • • •
1688	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1672	MUSETTE			$\pi^- p \rightarrow \Lambda K^0$
1680	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
1680	BAKER	78	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1694	BARBOUR			$\gamma N \rightarrow \pi N$
1700 ± 5	¹ BAKER			$\pi^+ p \rightarrow \Lambda K^0$
1680	¹ BAKER	77	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
1700	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1675	KNASEL	75	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
1660	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1650) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
100 to 200 OUR ESTIMATE	Our best guess is 15	0 Me	V.	
150 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
180 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follo	wing data for average	s, fits	, limits,	etc. • • •
183	CRAWFORD			$\gamma N \rightarrow \pi N$
179	MUSETTE	80	IPWA	$\pi^- p \rightarrow \Lambda K^0$
120	SAXON			$\pi^- p \rightarrow \Lambda K^0$
90	BAKER	78	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
193	BARBOUR			$\gamma N \rightarrow \pi N$
130 ± 10	¹ BAKER			$\pi^- p \rightarrow \Lambda K^0$
90		77	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
170	² LONGACRE			$\pi N \rightarrow N \pi \pi$
170	KNASEL	75	DPWA	$\pi^- p \rightarrow \Lambda K^0$
130	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1650) POLE POSITION

1640 ± 20 • • • We do not use the following 1660 1648 or 1651 1699 or 1698	DOCUMENT ID		TECN	COMMENT
1660 1648 or 1651	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1648 or 1651	data for average	s, fit:	s, limits,	etc. • • •
	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
1699 or 1698	4 LONGACRE			
	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
150 ± 30	CUTKOSKY			$\pi N \rightarrow \pi N$
 We do not use the following 	data for average	s, fit	s, limits,	etc. • • •
122	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
117 or 119	⁴ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
174 or 173	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

N(1650) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
16 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
-58 ± 12	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

 $^{^1}$ LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi\,N\,\to\,N\,\pi\,\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

N(1650) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Νπ	55-65 %
Γ_2	$N\eta$	~ 1.5 %
Γ3	ΛK	~ 8 %
Γ4	ΣΚ	
Γ ₅	Νππ	20-35 %
Γ ₆	$\Delta \pi$	<10 %
Γ7	$\Delta(1232)\pi$, <i>D</i> -wave	
Γ8	$N\rho$	5-30 %
Γ9	$N\rho$, $S=1/2$, S-wave	
Γ10	$N\rho$, $S=3/2$, D-wave	
Γ11	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	<15 %
	N(1440) π, S-wave	
Γ13	, ,	0.04-0.16 %
Γ14	$p\gamma$, helicity=1/2	
Γ15		0-0.17 %
Γ16	$n\gamma$, helicity=1/2	

The above branching fractions are our estimates, not fits or averages.

N(1650) BRANCHING RATIOS

Γ(N π)/Γ _{total}	DOCUMENT ID		<u>TECN</u>	Γ ₁ /Γ
0.55 to 0.65 OUR ESTIMATE 0.65 ± 0.10 0.61 ± 0.04	CUTKOSKY HOEHLER			$ \begin{array}{ccc} \pi N \to & \pi N \\ \pi N \to & \pi N \end{array} $
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{-0.09}$	$N(1650) \rightarrow N \eta$ $\frac{DOCUMENT ID}{5 \text{ BAKER}}$	70	TECN	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$				$(\Gamma_1\Gamma_3)^{1/2}/\Gamma$
- 0.22				$\pi^- \rho \to \Lambda K^0$
-0.22				$\pi^- p \rightarrow \Lambda K^0$
• • We do not use the follo				
- 0.25	6 BAKER			See SAXON 80
-0.23 ± 0.01	1 BAKER			
- 0.25	¹ BAKER			
0.12	KNASEL	75	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi \to VALUE$	N(1650) → ∑K		TECN	$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
• • We do not use the follo				
- 0.254	LIVANOS			
0.066 to 0.137	7 DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$
0.20	KNASEL			

Note: Signs of couplings from $\pi N \to N\pi\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)~S_{31}$ coupling to $\Delta(1232)\pi$.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } \mathbf{N}\pi \rightarrow VALUE}$	$N(1650) \rightarrow \Delta(1)$			
+ (large)	8 MANLEY	84	IPW/A	$\pi N \rightarrow N \pi \pi$
+0.29	2,9 LONGACRE	77	ID\A/A	-N N
+0.15	3 LONGACRE	76	ID\A/A	-N - N
1 0.13	LONGACILE	,,	11 117	K 7 € 7 € K K
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$				
VALUE	DOCUMENT ID			
-	MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$
+0.17	2,9 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-0.16	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{\text{large}}$ $+0.29$	$N(1650) \rightarrow N \rho$, $\frac{DOCUMENT ID}{MANLEY}$ 2,9 LONGACRE		TECN	COMMENT
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1650) \rightarrow N(1650)$	$(\pi)_{S}^{I}$	=0 G-wave	$(\Gamma_1\Gamma_{11})^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID			COMMENT
+	MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$
0.00	2,9 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
+ 0.25	3 LONGACRE	75	IPWA	
$\frac{(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \to \frac{VALUE}{+}$	N(1650) → N(1 DOCUMENT ID MANLEY		TECN	COMMENT

N(1650) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(1650) \rightarrow p\gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
0.033 ± 0.015	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.050 ± 0.010	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
0.065 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.061 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.031 ± 0.017	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.048\pm0.017$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
$+0.068\pm0.009$	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the followin	g data for average	s. fit	s. limits.	etc. • • •

• • • we do not use the following data for averages, fits, limits, etc. • • •

0.091 WADA 84 DPWA Compton scattering

$N(1650) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECNCOMMENT
-0.008 ± 0.004	AWAJI	81	DPWA $\gamma N \rightarrow \pi N$
0.004 ± 0.004	FUJII	81	DPWA $\gamma N \rightarrow \pi N$
0.010 ± 0.020	ARAI	80	DPWA $\gamma N \rightarrow \pi N$ (fit 1)
0.008 ± 0.019	ARAI	80	DPWA $\gamma N \rightarrow \pi N$ (fit 2)
-0.068 ± 0.040	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$
-0.011 ± 0.011	TAKEDA	80	DPWA $\gamma N \rightarrow \pi N$
-0.045 ± 0.024	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$

N(1650) $\gamma p \rightarrow \Lambda K^+$ AMPLITUDES

For definitions, see Sec. IV of the Note on N and Δ Resonances preceding the N(1440).

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } p \gamma$	\rightarrow $N(1650) \rightarrow \Lambda K^+$	$(E_{0+} \text{ amplitude})$
VALUE (units 10 ⁻³)	DOCUMENT ID	TECN
ullet $ullet$ We do not use the	following data for averages, fi	its, limits, etc. • • •
8.13	TANABE 89	DPWA
$p\gamma \rightarrow N(1650) \rightarrow \Lambda$	K^+ phase angle $ heta$	$(E_{0+} \text{ amplitude})$
$p\gamma \rightarrow N(1650) \rightarrow \Lambda$ VALUE (degrees)	K ⁺ phase angle θ	(E_{0+} amplitude)
VALUE (degrees)		TECN_

N(1650) FOOTNOTES

 $^{1}\,\mathrm{The}$ two BAKER 77 entries are from an IPWA using the Barrelet-zero method and from a conventional energy-dependent analysis.

² LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \rightarrow N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

³ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

4 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

 5 BAKER 79 fixed this coupling during fitting, but the negative sign relative to the N(1535) is well determined.

6 The overall phase of BAKER 78 couplings has been changed to agree with previous

conventions. Superseded by SAXON 80. ⁷ The range given for DEANS 75 is from the four best solutions.

8 MANLEY 84 considers this coupling sign to be well determined.

9 LONGACRE 77 considers this coupling to be well determined.

N(1650) REFERENCES

For early references, see Physics Letters 111B (1982).

TANABE	89	PR C39 741	+Kohno, Bennhold	(MANZ)
Also	89	NC 102A 193	Kohno, Tanabe, Bennhold	(MANZ)
ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
WADA	84	NP B247 313	+Egawa, Imanishi, Ishii, Kato, Ukai+	(INUS)
BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Lintern+	`(RL) IJP
CRAWFORD	83	NP B211 1	+Morton	(GLAS)
AWA JI	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
FUJII	81	NP B187 53	+Hayashii, Iwata, Kajikawa+	(TOKY)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fujii	(TOKY)
CRAWFORD	80	Toronto Conf. 107	•	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMŮ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	+Baton, Coutures, Kochowski, Neveu	(SACL) IJP
MUSETTE	80	NC 57A 37		(BRUX) IJP

Baryon Full Listings N(1650), N(1675)

SAXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth +	(RHEL, BRIS) IJP
TAKEDA	80	NP B168 17	+Arai, Fujii, Ikeda, Iwasaki+	(TOKY)
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BAKER	78	NP B141 29	- Blissett, Bloodworth, Broome+	(RL, CAMB) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
BAKER	77	NP B126 365	+Blissett, Bloodworth, Broome, Hart+	(RHEL) IJP
LONGACRE	77	NP B122 493	+Dolbeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
FELLER	76	NP B104 219	+Fukushima, Horikawa, Kajikawa+	(NAGO, OSAK) LIP
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
KNASEL	75	PR D11 1	+Lindquist, Nelson+ (CHIC, \	NUSL, OSU, ANL) UP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP

$N(1675) D_{15}$

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^-)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B). In addition, results in this region from production experiments, which used to be listed separately in an entry following the N(1700), have been entirely omitted. They too may be found in our 1982 edition.

N(1675) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1660 to 1690 OUR ES	TIMATE			
1675 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1679± 8	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use:	the following data for average	s, fit	s, limits,	etc. • • •
1685	CRAWFORD			$\gamma N \rightarrow \pi N$
1670	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1680	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1650	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1660	² LONGACRE	75	IDM/A	$\pi N \rightarrow N \pi \pi$

N(1675) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
120 to 180 OUR ESTIMATE	Our best guess is 15	5 Me	V.	
160 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
120 ± 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follow	wing data for average	s, fit	s, limits,	etc. • • •
191	CRAWFORD			$\gamma N \rightarrow \pi N$
40	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
88	BAKER	79	DPWA	$\pi^- \rho \rightarrow n\eta$
192	BARBOUR			$\gamma N \rightarrow \pi N$
130	1 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
150	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1675) POLE POSITION

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1660±10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use to	he following data for average	s, fit	s, limits,	etc. • • •
1661	ARNDT			$\pi N \rightarrow \pi N$
1663 or 1668	³ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1649 or 1650	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY VALUE (MeV)	PART DOCUMENT ID		TECN	COMMENT
140 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	he following data for average	s, fit	s, limits,	etc. • • •
142	ARNDT			$\pi N \rightarrow \pi N$
146 or 171	³ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
170 01 171				$\pi N \rightarrow N \pi \pi$

N(1675) ELASTIC POLE RESIDUE

DOCUMENT ID	<u></u>	EÇN	COMMENT	
CUTKOSKY	80 IF	PWA	$\pi N \rightarrow \pi N$	
DOCUMENT ID		ECN	COMMENT	
CUTKOSKY	80 IF	PWA	$\pi N \rightarrow \pi N$	
	CUTKOSKY	CUTKOSKY 80 IF	CUTKOSKY 80 IPWA	CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$

N(1675) DECAY MODES

	Mode	Fraction $(\Gamma_{\tilde{I}}/\Gamma)$	
Γ_1	Nπ	35-40 %	
Γ_2	$N\eta$	~ 1 %	
Γ_3	Λ <i>K</i>	~ 0.1 %	
Γ_4	ΣΚ		
Γ_5	Νππ	60-65 %	
Γ_6	$\Delta \pi$	55-60 %	
Γ_7	$\Delta(1232)\pi$, <i>D</i> -wave		
Γ8	$\Delta(1232)\pi$, <i>G</i> -wave		
Γ9	$N\rho$	<10 %	
Γ_{10}	$N\rho$, $S=1/2$, D -wave		
Γ_{11}	$N\rho$, $S=3/2$, D -wave		
Γ_{12}	$N\rho$, $S=3/2$, G -wave		
Γ_{13}	$N(\pi\pi)_{S\text{-wave}}^{I=0}$	< 5 %	
Γ_{14}	$N(1520)\pi$, P -wave		
Γ_{15}	$p\gamma$	~ 0.01 %	
Γ_{16}	$p\gamma$, helicity=1/2		
Γ_{17}	$p\gamma$, helicity=3/2		
Γ_{18}	$n\gamma$	0.07-0.12 %	
Γ_{19}	$n\gamma$, helicity=1/2		
Γ ₂₀	$n\gamma$, helicity=3/2		

The above branching fractions are our estimates, not fits or averages.

N(1675) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TEÇN	COMMENT
0.35 to 0.40 OUR ESTIMAT	E			
0.38 ± 0.05	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.38 ± 0.03	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}}$ in $N\pi$ —	$N(1675) \rightarrow Nn$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE			TECN	
- 0.07	BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
0.0 or + 0.009	FELTESSE	75	DPWA	1488-1745 MeV
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi - \Gamma_{\text{VALUE}}$	N(1675) → AK		TECN	$(\Gamma_1\Gamma_3)^{1/2}/\Gamma$
				$\pi^- p \rightarrow \Lambda K^0$
-0.01				
+ 0.036	⁴ SAXON			$\pi^- \rho \rightarrow \Lambda K^0$
-0.034 ± 0.006	DEVENISH	74E	1	Fixed-t dispersion rel.
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}}$ in $N\pi$ —	$N(1675) \rightarrow \Sigma K$			$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
• • • We do not use the fol	lowing data for average	s, fit	s, limits,	etc. • • •
< 0.003	⁵ DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$

Note: Signs of couplings from $\pi N \to N\pi\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1675) \rightarrow \Delta(1232)$	π , <i>D</i> -wave	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		
+ (large)	⁶ MANLEY 84	IPWA πN -	$\rightarrow N\pi\pi$
+ 0.46	1,7 LONGACRE 77	IPWA πN -	→ Nππ
+ 0.50	² LONGACRE 75	IPWA πN-	$\rightarrow N \pi \pi$
• • We do not use the following the fol	owing data for averages, fit	s, limits, etc. e	• •
+ 0.5	⁸ NOVOSELLER 78	IPWA πN-	→ N ππ
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1675) \rightarrow N \rho, S=$	3/2, <i>D</i> -wave	$(\Gamma_1\Gamma_{11})^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN COMM	MENT
- (small)	MANLEY 84	IPWA πN -	$\rightarrow N \pi \pi$
-0.15	1.7 LONGACRE 77	IPWA πN -	\rightarrow $N\pi\pi$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{total} \ in \ \mathcal{N}\pi \to $	$N(1675) \rightarrow N(\pi\pi)^{I}_{5}$	=0 5-wave	$(\Gamma_1\Gamma_{13})^{1\!\!/_{\!\!2}}/\Gamma$
VALUE	DOCUMENT ID 1,7 LONGACRE 77	TECN COMM	MENT
+0.03	^{1,7} LONGACRE 77	IPWA πN	\rightarrow N π π
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{total} \text{ in } N\pi \to$			
VALUE	DOCUMENT ID	TECN COMM	1ENT
_0.15	MANIEV 84	IPWA # M -	→ N = =

MANLEY

84 IPWA $\pi N \rightarrow N \pi \pi$

VALUE -0.15

N(1675) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(1675) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID	TECN	COMMENT
0.021 ± 0.011	CRAWFORD 83	3 IPWA	$\gamma N \rightarrow \pi N$
0.034 ± 0.005	AWAJI 81	L DPWA	$\gamma N \rightarrow \pi N$
0.006 ± 0.005	ARAI 80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.006 ± 0.004	ARAI 80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.023 ± 0.015	CRAWFORD 80	DPWA	$\gamma N \rightarrow \pi N$
$+0.022\pm0.010$	BARBOUR 78	B DPWA	$\gamma N \rightarrow \pi N$
$+0.034 \pm 0.004$	FELLER 70	DPWA	$\gamma N \rightarrow \pi N$

$N(1675) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
0.015 ± 0.009	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.024 ± 0.008	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
0.030 ± 0.004	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.029 ± 0.004	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.003 ± 0.012	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.015\pm0.006$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
$\pm 0.019 \pm 0.009$	FFLLER	76	DPWA	$\sim N \rightarrow \pi N$

$N(1675) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
0.057 ± 0.024	AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$
-0.033 ± 0.004	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
0.039 ± 0.017	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.025 ± 0.027	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.059 ± 0.015	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.021 ± 0.011	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$
-0.066 ± 0.020	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$N(1675) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
0.077 ± 0.018	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.069 ± 0.004	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
-0.066 ± 0.026	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.071 ± 0.022	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.059 ± 0.020	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.030 ± 0.012	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$
-0.073 ± 0.014	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

N(1675) FOOTNOTES

- 1 LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ² From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ³LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi\,N\to\,N^{'}\pi\,\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ⁴SAXON 80 finds the coupling phase is near 90°.
- $^5\,\mathrm{The}$ range given is from the four best solutions. DEANS 75 disagrees with $\pi^+\,p\,\to\,$ $\Sigma^{+}\,K^{+}$ data of WINNIK 77 around 1920 MeV. 6 MANLEY 84 considers this coupling sign to be well determined.
- ⁷LONGACRE 77 considers this coupling to be well determined. ⁸ A Breit-Wigner fit to the HERNDON 75 IPWA.

N(1675) REFERENCES

For early references, see Physics Letters 111B (1982).

ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Lintern+	`(RL) IJP
CRAWFORD	83	NP B211 1	+ Morton	(GLAS)
AWA.JI	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
FUJIE	81	NP B187 53	+Hayashii, Iwata, Kajikawa+	(TOKY)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fuiii	(TOKY)
CRAWFORD	80	Toronto Conf. 107	* *	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
SAXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) IJP
TAKEDA	80	NP B168 17	+Arai, Fujii, Ikeda, Iwasaki+	(TOKY)
BAKER	79	NP B156 93	+Brown, Clark, Davies, Departer, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
ΔIso	80	Toronto Conf. 3	Koch	(KADI) LID

BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
NOVOSELLER	78	NP B137 509		(CIT) IJP
Also	78B	NP B137 445	Novoseller	(CIT) IJP
LONGACRE	77	NP B122 493	+ Doibeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
WINNIK	77	NP B128 66	+Toaff, Revel, Goldberg, Berny	(HAIF) I
FELLER	76	NP B104 219	+Fukushima, Horikawa, Kajikawa+	(NAGO, OSAK) IJP
DEANS	75	NP B96 90	+ Mitchell, Montgomery+	(SFLA, ALAH) IJP
FELTESSE	75	NP B93 242	+Ayed, Bareyre, Borgeaud, David+	(SACL) IJP
HERNDON	75	PR D11 3183	+Longacre, Miller, Rosenfeld+	(LBL, SLAC)
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP
DEVENISH	74B	NP B81 330	+Froggatt, Martin	(DESY, NORD, LOUC)

$\overline{N(1680)} F_{15}$

 $I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B). In addition, results in this region from production experiments, which used to be listed separately in an entry following the N(1700), have been entirely omitted. They too may be found in our 1982 edition.

	(2000)	~~		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1670 to 1690 OUR EST	IMATE			
1680 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1684± 3	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use th	e following data for average	s, fit	s, limits,	etc. • • •
1682	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1680	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1660	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1685	KNASEL	75	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
1670	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1680) MASS

N(1680) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
110 to 140 OUR ESTIMATE	Our best guess is 125 M	∕leV.	
120±10	CUTKOSKY 8	0 IPWA	$\pi N \rightarrow \pi N$
128± 8	HOEHLER 7	9 IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following the fol	wing data for averages,	fits, limits,	, etc. • • •
121	CRAWFORD 8	0 DPWA	$\gamma N \rightarrow \pi N$
119	BARBOUR 7	8 DPWA	$\gamma N \rightarrow \pi N$
150	¹ LONGACRE 7		
155			$\pi^- \rho \rightarrow \Lambda K^0$
130	² LONGACRE 7	5 IPWA	$\pi N \rightarrow N \pi \pi$

N(1680) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1667±5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	data for average	s, fit:	s, limits,	etc. • • •
1680	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
1668 or 1674	3 LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1656 or 1653	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY PART	DOCUMENT ID		TECN	COMMENT
	-			
110±10	CUTKOSKY			
• • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
120	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
132 or 137	³ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
145 or 143	1 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

N(1680) ELASTIC POLE RESIDUE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
31 ± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TEÇN	COMMENT
-14 ± 3	CUTKOSKY	80	ID\A/A	$\pi N \rightarrow \pi N$

Baryon Full Listings N(1680)

N(1680)	DECAY	MODES
MITOORI	DECAT	NUCLES

	Mode	Fraction (Γ_i/Γ)	
$\overline{\Gamma_1}$	Ν π	55-65 %	
Γ_2	$N\eta$	<1 %	
Γ3	Λ <i>K</i>	not seen	
Γ4	ΣΚ		
Γ_5	$N\pi\pi$	35-45 %	
Γ_6	$\Delta \pi$	10-15 %	
Γ_7	$\Delta(1232)\pi$, <i>P</i> -wave		
Γ8	$\Delta(1232)\pi$, <i>F</i> -wave		
Г9	$N\rho$	10-20 %	
Γ_{10}	$N\rho$, $S=1/2$, F -wave		
Γ_{11}	$N\rho$, $S=3/2$, P -wave		
Γ_{12}	$N\rho$, $S=3/2$, F-wave		
Γ_{13}	$N \rho$, $S=3/2$, F-wave $N (\pi \pi)_{S-\text{wave}}^{I=0}$	15-20 %	
Γ_{14}		0.21-0.30 %	
Γ_{15}	$\rho\gamma$, helicity=1/2		
Γ_{16}	$\rho\gamma$, helicity=3/2		
Γ_{17}	$n\gamma$	0.02-0.05 %	
Γ ₁₈	$n\gamma$, helicity=1/2		
Γ19	$n\gamma$, helicity=3/2		

The above branching fractions are our estimates, not fits or averages.

N(1680) BRANCHING RATIOS

74(100	o) bixaiteriiit	O IX	A1103	
$\Gamma(N\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		<u>TECN</u>	Γ_1/Γ
0.55 to 0.65 OUR ESTIMATE				
0.62 ± 0.05	CUTKOSKY			$\pi N \rightarrow \pi N$
0.65 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \to N$			TECN	$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
VALUE				
not seen	BAKER	79	DPWA	$\pi^- \rho \rightarrow n\eta$
$\Gamma(N\eta)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ ₂ /Γ
• • We do not use the followin				
0.0005 or 0.001	4 CARRERAS	70	MPWA	t pole + resonance
0.0004	4 BOTKE	69	MPWA	t pole + resonance
0.003 ± 0.002	⁴ DEANS	69	MPWA	t pole + resonance
$\Gamma(N\eta)/\Gamma(N\pi)$				Γ_2/Γ_1
	DOCUMENT ID			
• • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
< 0.027	HEUSCH	66	RVUE	π^0 , η photoproduction
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \to N\pi$ Coupling to ΛK not require	d in the analyses of the distribution of the d		TECN	COMMENT
0.01	KNASEL	75	DPWA	$\pi^- p \rightarrow \Lambda K^0$
-0.009 ± 0.009	DEVENISH	746	3	Fixed-t dispersion rel.
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \to N_0$	(1680) → ΣK		TECN_	$(\Gamma_1\Gamma_4)^{1/2}/\Gamma$
• • We do not use the followin				
<0.001				$\pi N \rightarrow \Sigma K$

Note: Signs of couplings from $\pi N \rightarrow N \pi \pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)~S_{\mbox{31}}$ coupling to $\Delta(1232)\,\pi.$

$(\Gamma_i \Gamma_f)^{4/2} / \Gamma_{\text{total}} \text{ in } N\pi$	$\rightarrow N(1680) \rightarrow \Delta(1$	232) π , F	-wave $(\Gamma_1\Gamma$	7) ⁷² /F
VALUE	DOCUMENT ID			
— (large)			$A \pi N \rightarrow N \pi \pi$	
-0.27	1,7 LONGACRE			
-0.25	² LONGACRE	75 IPW	$A \pi N \rightarrow N \pi \pi$	
• • • We do not use the	following data for average	es, fits, limi	ts, etc. • • •	
	8 NOVOSELLEE	R 78 IPW	$A \pi N \rightarrow N \pi \pi$	
-0.38				
-0.38 $\left(\Gamma_i\Gamma_f\right)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi$		232)π, F	-wave (Γ ₁ Γ	₈) ^{1/2} /Г
				8) ^{1/2} /Г
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{total}$ in $N\pi$		84 IPW	$COMMENT$ $\pi N \rightarrow N \pi \pi$	8) ^{1/2} /Г
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi$	$ \rightarrow N(1680) \rightarrow \Delta(1) $ $ \begin{array}{c} DOCUMENT ID \\ 6 \text{ MANLEY} \\ 1.7 \text{ LONGACRE} \end{array} $	84 IPW 77 IPW	$ \begin{array}{cccc} A & \pi N \rightarrow N \pi \pi \\ A & \pi N \rightarrow N \pi \pi \end{array} $	8) ^{1/2} /Г
$(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi$ VALUE + (small)	$ \rightarrow N(1680) \rightarrow \Delta(1) $ $ \begin{array}{c} DOCUMENT ID \\ 6 \text{ MANLEY} \\ 1.7 \text{ LONGACRE} \end{array} $	84 IPW 77 IPW	$COMMENT$ $\pi N \rightarrow N \pi \pi$	8) ^{1/2} / Г
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi$ $\frac{VALUE}{+ \text{ (small)}}$ $+ 0.07$	→ N(1680) → Δ(1 DOCUMENT ID 6 MANLEY 1.7 LONGACRE 2 LONGACRE	84 IPW 77 IPW 75 IPW	$\begin{array}{cccc} & & & & & & & & \\ A & & & & & & & & \\ A & & & &$	8) ^{1/2} / Γ

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1680) \rightarrow N\rho$	S=	3/2, <i>P</i> -	wave $(\Gamma_1\Gamma_{11})^{1/2}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
- (large)	6 MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$
-0.23	1.7 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
- 0.30	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
• • • We do not use the follow	wing data for average	es, fit	s, limits	etc. • • •
-0.34	⁸ NOVOSELLE	R 78	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$				
VALUE	DOCUMENT ID			
- (small)	MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$
- 0.15	^{1.7} LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1680) \rightarrow N$ (
+ (large)	6 MANLEY	84	ID\A/A	= N . N = =
-0.31	1.7 LONGACRE			
+0.30	² LONGACRE	76	IDM/A	-N - N
• • We do not use the folio				
+ 0.42	⁸ NOVOSELLE	78	IPWA	$\pi N \rightarrow N \pi \pi$

N(1680) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(1680) \rightarrow \rho \gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.017 ± 0.018	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.009 ± 0.006	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.028 ± 0.003	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.026 ± 0.003	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.018 ± 0.014	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.005 ± 0.015	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.009 ± 0.002	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$

$N(1680) \rightarrow \rho \gamma$, helicity-3/2 amplitude A_{3/2}

	-,	_		
VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
0.132 ± 0.010	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.115 ± 0.008	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
0.115 ± 0.003	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.122 ± 0.003	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.141 ± 0.014	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.138 \pm 0.021$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
$+0.121\pm0.010$	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$

$N(1680) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

	-,-	_	
VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN COMMENT
0.017 ± 0.014	AWA JI	81	DPWA $\gamma N \rightarrow \pi N$
0.032 ± 0.003	FUJII	81	DPWA $\gamma N \rightarrow \pi N$
0.026 ± 0.005	ARAI	80	DPWA $\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.028 ± 0.014	ARAI	80	DPWA $\gamma N \rightarrow \pi N$ (fit 2)
0.044 ± 0.012	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$
0.025 ± 0.010	TAKEDA	80	DPWA $\gamma N \rightarrow \pi N$
+ 0.037 ± 0.010	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$

$N(1680) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

	,	* .	. ,	•	J, -		
VALUE	$(GeV^{-1/2})$			DOCUMENT	ID	TECN	COMMENT
-0.03	3 ± 0.013			AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$
-0.02	3 ± 0.005			FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
0.02	4 ± 0.009			ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.02	9 ± 0.017			ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.03	3 ± 0.015			CRAWFOR	D 80	DPWA	$\gamma N \rightarrow \pi N$
-0.03	5 ± 0.012			TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$
-0.03	8±0.018			BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

N(1680) FOOTNOTES

- 1 LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \longrightarrow N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ² From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix
- amplitudes. 3 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \rightarrow N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ⁴ The parametrization used may be double counting.
- The parametrization used may be dodone contains.

 The range given is from 3 of 4 best solutions; not present in solution 1. DEANS 75 disagrees with $\pi^+p^- \to \Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV.

 MANLEY 84 considers this coupling sign to be well determined.
- ⁷LONGACRE 77 considers this coupling to be well determined.
- ⁸ A Breit-Wigner fit to the HERNDON 75 IPWA.

Γ₁ /Γ

N(1680) REFERENCES

For early references, see Physics Letters 111B (1982). For very early references, see Rev. Mod. Phys. 37, 633 (1965).

				a m
ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Lintern+	(RL) IJP
CRAWFORD	83	NP B211 1	+Morton	(GLAS)
ILAWA	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
FUJII	81	NP B187 53	+Hayashii, Iwata. Kajikawa+	(TOKY)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fujii	(TOKY)
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
SAXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) IJP
TAKEDA	80	NP B168 17	+Arai, Fulii, Ikeda, Iwasaki+	(TOKY)
BAKER	79	NP B156 93	+Brown, Clark, Davies, Departer, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
NOVOSELLER	78	NP B137 509	,	(CIT) IJP
Also	78B	NP B137 445	Novoseller	(CIT) IJP
BAKER	77	NP B126 365	+Blissett, Bloodworth, Broome, Hart+	(RHEL) IJP
LONGACRE	77	NP B122 493	+ Dolbeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
WINNIK	77	NP B128 66	+Toaff, Revel, Goldberg, Berny	(HAIF) I
FELLER	76	NP B104 219	+Fukushima, Horikawa, Kajikawa+	(NAGO, OSAK) IJP
DEANS	75	NP B96 90	+ Mitchell, Montgomery+	(SFLA, ALAH) IJP
HERNDON	75	PR D11 3183	+Longacre, Miller, Rosenfeld+	(LBL, SLAC)
KNASEL	75	PR D11 1		WUSL, OSU, ANL) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP
DEVENISH	74B	NP B81 330		SY, NORD, LOUC)
CARRERAS	70	NP BB1 330 NP B16 35	+ Proggatt, Martin (DE + Donnachie	(DARE, MCHS)
BOTKE	69	PR 180 1417	+ Donnachie	
			. 186	(UCSB)
DEANS	69 66	PR 185 1797	+ Wooten	(SFLA)
HEUSCH	ob	PRL 17 1019	+Prescott, Dashen	(CIT)

$N(1700) D_{13}$

$$I(J^P) = \frac{1}{2}(\frac{3}{2})$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B). In addition, results in this region from production experiments, which used to be listed separately as the next entry, have been entirely omitted. They too may be found in our 1982 edition.

The various partial-wave analyses do not agree very well.

N(1700) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1670 to 1730 OUR ESTIMATE				
1675 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1731 ± 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	data for averages	s, fits	, ilmits,	etc. • • •
1709	CRAWFORD			$\gamma N \rightarrow \pi N$
1650	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1880	¹ BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
l690 to 1710	BAKER	78	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
1719	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1670±10	² BAKER	77	IPWA	$\pi^- p \rightarrow \Lambda \kappa^0$
1690	² BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1660	3 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1710	⁴ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1700) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
70 to 120 OUR ESTIMATE	Our best guess is 100	MeV	·	
90 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
110 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follow	owing data for average	s, fit:	s, limits,	etc. • • •
166	CRAWFORD			$\gamma N \rightarrow \pi N$
70	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
87	¹ BAKER			$\pi^- p \rightarrow n\eta$
70 to 100	BAKER	78	DPWA	$\pi^- p \rightarrow \Lambda K^0$
126	BARBOUR			$\gamma N \rightarrow \pi N$
90 ± 25	² BAKER	77		$\pi^- \rho \rightarrow \Lambda K^0$
100	² BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda K^0$
600	³ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
300	⁴ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1700) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1660±30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

```
\bullet \,\bullet\, We do not use the following data for averages, fits, limits, etc. \,\bullet\, \,\bullet\,
                                                              85 DPWA \pi N \rightarrow \pi N
1670
                                           ARNDT
1710 or 1678
                                         ^{5} LONGACRE 78 IPWA \pi N \rightarrow N \pi \pi 3 LONGACRE 77 IPWA \pi N \rightarrow N \pi \pi
1616 or 1613
-2 × IMAGINARY PART
                                           DOCUMENT ID
                                                                   TECN COMMENT
VALUE (MeV)
                                           CUTKOSKY 80 IPWA \pi N \rightarrow \pi N
 90 \pm 40
• • • We do not use the following data for averages, fits, limits, etc. • • •
 80
                                           ARNDT
                                                              85 DPWA \pi N \rightarrow \pi N
                                         5 LONGACRE
                                                             78 IPWA \pi N \rightarrow N \pi \pi
77 IPWA \pi N \rightarrow N \pi \pi
607 or 567
                                         <sup>3</sup> LONGACRE
577 or 575
                            N(1700) ELASTIC POLE RESIDUE
```

REAL PART VALUE (MeV) 6±3	DOCUMENT ID CUTKOSKY 8	TECN 10 IPWA	$\frac{\textit{COMMENT}}{\pi \ \textit{N} \ \rightarrow \ \pi \ \textit{N}}$
IMAGINARY PART	DOCUMENT ID		COMMENT
0±5	CUTKOSKY 8	0 IPWA	$\pi N \rightarrow \pi N$

N(1700) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Г	Nπ	5-15 %
Γ_2	$N\eta$	~ 4 %
Γ_3	Λ <i>K</i>	~ 0.2 %
Γ_4	ΣΚ	
Γ_5	$N\pi\pi$	80-90 %
Γ_6	$\Delta \pi$	15-70 %
Γ_7	$\Delta(1232)\pi$, <i>S</i> -wave	
Γ8	$\Delta(1232)\pi$, <i>D</i> -wave	
Г9	$N \rho$	<20 %
Γ_{10}	$N\rho$, $S=1/2$, D -wave	
Γ_{11}	$N\rho$, $S=3/2$, S -wave	
Γ_{12}	$N\rho$, $S=3/2$, D -wave	
Γ_{13}	$N(\pi\pi)_{S\text{-wave}}^{I=0}$	<70 %
Γ_{14}	$\rho\gamma$	~ 0.01 %
Γ_{15}	$p\gamma$, helicity=1/2	
Γ_{16}	$p\gamma$, helicity=3/2	
Γ ₁₇	$n\gamma$	
Γ ₁₈	$n\gamma$, helicity=1/2	
Γ_{19}	$n\gamma$, helicity=3/2	

The above branching fractions are our estimates, not fits or averages.

N(1700) BRANCHING RATIOS

 $\Gamma(N\pi)/\Gamma_{\bullet \bullet \bullet \bullet}$

' ('V'')/' total				11/1
VALUE	DOCUMENT ID		TECN	COMMENT
0.05 to 0.15 OUR ESTIMATE				
0.11 ± 0.05	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.08 ± 0.03	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1700) \rightarrow N\eta$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
0.065	BAKER	79	DPWA	$\pi^- \rho \rightarrow n\eta$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1700) \rightarrow \Lambda K$			$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID			
-0.012	BELL			$\pi^- \rho \rightarrow \Lambda \kappa^0$
-0.012	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda \kappa^0$
$+0.026\pm0.019$	DEVENISH	74B		Fixed-t dispersion rel.
• • • We do not use the follo	wing data for average:	s, fit	s, limits,	etc. • • •
~0.04	6 BAKER	78	DPWA	See SAXON 80
-0.03 ± 0.004	² BAKER	77	IPWA	$\pi^- \rho \rightarrow \Lambda K^0$
-0.03	² BAKER	77	DPWA	$\pi^- \rho \rightarrow \Lambda \kappa^0$
. /				-1
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$				(Γ ₁ Γ ₄) ^{1/} 2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
• • We do not use the follow	wing data for average	s, fit	s, limits,	etc. • • •
not seen	LIVANOS	80	DPWA	$\pi \rho \rightarrow \Sigma K$
< 0.017	⁷ DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$

Baryon Full Listings N(1700), N(1710)

Note: Signs of couplings from $\pi N \to N \pi \pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)~S_{\mbox{31}}$ coupling to $\Delta(1232)\pi.$

$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \to \frac{VALUE}{\text{small}}$	$N(1700) \rightarrow \Delta(1100) \rightarrow \Delta(11$		TECN	COMMENT
0.00	3 LONGACRE			
-0.16	4 LONGACRE	75	IPWA	
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi \to \frac{VALUE}{T}$	$N(1700) \rightarrow \Delta(1100)$			
+ (small)	MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$
-0.12	3 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
+0.14	⁴ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{2}$	DOCUMENT ID		TECN	COMMENT
-0.07	3 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
+ 0.07	⁴ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$	$N(1700) \rightarrow N$ (7			
+ (small)	MANLEY			
0.00				
	3 LONGACRE			
+0.2	³ LONGACRE ⁴ LONGACRE		IPWA	

N(1700) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(1700) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.016 ± 0.014	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.002 ± 0.013	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.028 ± 0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.029 ± 0.006	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.024 ± 0.019	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.033 ± 0.021	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.014 ± 0.025	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$

$N(1700) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV-1/2)	DOCUMENT ID	TECN	COMMENT
-0.009 ± 0.012	CRAWFORD 8	3 IPWA	$\gamma N \rightarrow \pi N$
0.029 ± 0.014	AWAJI 8	1 DPWA	$\gamma N \rightarrow \pi N$
-0.002 ± 0.005	ARAI 8	0 DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.014 ± 0.005	ARAI 8	0 DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.017 ± 0.014	CRAWFORD 8	0 DPWA	$\gamma N \rightarrow \pi N$
-0.014 ± 0.025	BARBOUR 7	8 DPWA	$\gamma N \rightarrow \pi N$
0.0 ± 0.014	FELLER 7	6 DPWA	$\gamma N \rightarrow \pi N$

$N(1700) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN COMMENT	
0.006 ± 0.024	AWA JI	81	DPWA $\gamma N \rightarrow \pi N$	
-0.002 ± 0.013	FUJII	81	DPWA $\gamma N \rightarrow \pi N$	
-0.052 ± 0.030	ARAI	80	DPWA $\gamma N \rightarrow \pi N \text{ (fit 1)}$	
-0.055 ± 0.030	ARAI	80	DPWA $\gamma N \rightarrow \pi N$ (fit 2)	
0.052 ± 0.035	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$	
$+0.050\pm0.042$	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$	

$N(1700) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.033 ± 0.017	AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$
0.018 ± 0.018	FUJII	81	DPWA	$\gamma N \rightarrow \pi N$
-0.037 ± 0.036	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.035 ± 0.024	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.041 ± 0.030	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.035\pm0.030$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$\gamma p \rightarrow \Lambda K^+$ AMPLITUDES N(1700)

For definitions, see Sec. IV of the Note on N and Δ Resonances preceding the N(1440).

$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } p\gamma \rightarrow$	$N(1700) \rightarrow \Lambda K^+$	$(E_{2-}$ amplitude)
VALUE (units 10^{-3})	DOCUMENT ID	<u>TECN</u>
• • • We do not use the fol	llowing data for averages, f	fits, limits, etc. • • •
4.09	TANABE 89	9 DPWA

VALUE (units 10 ⁻³)	DOCUMENT ID	TECN	
• • • We do not use the	e following data for averages,	fits, limits, etc.	
-7.09	TANABE 8	39 DPWA	
A//1700)	ΛK^+ phase angle θ		$(E_{2-}$ amplitude)
$p\gamma \rightarrow N(1700) \rightarrow$	AA phase angle o		(L2 amplitude)
		TECN	(L2 amplicade
VALUE (degrees)	DOCUMENT ID e following data for averages,		(- , ,

N(1700) FOOTNOTES

90 DD C30 741

N(1700) REFERENCES

For early references, see Physics Letters 111B (1982).

IANABE	89	PR C39 741	+Kohno, Bennhold	(MANZ)
Also	89	NC 102A 193	Kohno, Tanabe, Bennhold	(MANZ)
ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Linters	1+ (RL) IJP
CRAWFORD	83	NP B211 1	+Morton	(GLAS)
AWA JI	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Aiso	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
FUJII	81	NP B187 53	+ Hayashii, Iwata, Kajikawa+	(TOKY)
ARAI	80	Toronto Conf. 93	•	(TOKY)
Also	82	NP B194 251	Arai, Fujii	(TOKY)
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	+Baton, Coutures, Kochowski, Neveu	(SACL) IJP
SAXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Eva-	ns+ (RHEL) IJP
HOEHLER	79	PDAT 12-1	-Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BAKER	78	NP B141 29	+Blissett, Bloodworth, Broome+	(RL, CAMB) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
BAKER	77	NP B126 365	+Blissett, Bloodworth, Broome, Hart+	(RHEL) IJP
LONGACRE	77	NP B122 493	- Dolbeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
FELLER	76	NP B104 219	+Fukushima, Horikawa, Kajikawa+	(NAGO, OSAK) IJP
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja-	(LBL, SLAC) IJP
DEVENISH	74B	NP B81 330	+Froggatt, Martin	(DESY, NORD, LOUC)

$N(1710) P_{11}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

The various partial-wave analyses do not agree very well.

N(1710) MASS

VALUE (MeV)	DOCUMENT ID	TEC	COMMENT COMMENT
1680 to 1740 OUR ESTIMATI	E		
1700 ± 50	CUTKOSKY	80 IPW	$A \pi N \rightarrow \pi N$
1723 ± 9	HOEHLER	79 IPW	$A \pi N \rightarrow \pi N$
• • • We do not use the follo	wing data for average	s, fits, limi	its, etc. • • •
1692	CRAWFORD	80 DPV	$VA \gamma N \rightarrow \pi N$
1730	SAXON	80 DPV	$VA \pi^- \rho \rightarrow \Lambda K^0$
1690	BAKER	79 DPV	$VA \pi^- \rho \rightarrow n\eta$
1650 to 1680	BAKER	78 DPV	$VA \pi^- \rho \rightarrow \Lambda K^0$
1721	BARBOUR	78 DPV	$VA \gamma N \rightarrow \pi N$
1625 ± 10	¹ BAKER	77 IPW	$A \pi^- \rho \rightarrow \Lambda K^0$
1650	¹ BAKER	77 DPV	$VA \pi^- \rho \rightarrow \Lambda K^0$
1720	² LONGACRE	77 IPW	$A \pi N \rightarrow N \pi \pi$
1670	KNASEL	75 DPV	$VA \pi^+ \rho \rightarrow \Lambda K^0$
1710	3 LONGACRE	75 IPW	$A \pi N \rightarrow N \pi \pi$

 $^{^{1}}$ The high mass found by BAKER 79 may be influenced by the N(2080).

 $^{^{2}\,\}mbox{The two BAKER}$ 77 entries are from an IPWA using the Barrelet-zero method and from a conventional energy-dependent analysis.

³LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the First (second) value uses, in addition to $\pi N \rightarrow N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

⁴ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

⁵LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi\,N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

⁶ The overall phase of BAKER 78 couplings has been changed to agree with previous conventions.

7 The range given is from the four best solutions.

Baryon Full Listings N(1710)

N(1710) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
90 to 130 OUR ESTIMATE	Our best guess is 110	Me\	/	
90±30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1.20 ± 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the fo	ollowing data for average	s, fit	s, limits,	etc. • • •
540	BELL	83	DPWA	$\pi^- p \rightarrow \Lambda K^0$
200	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
550	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
97	BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
90 to 150	BAKER	78	DPWA	$\pi^- p \rightarrow \Lambda K^0$
67	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
.60 ± 6	¹ BAKER	77	IPWA	$\pi^- p \rightarrow \Lambda K^0$
95	¹ BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1.20	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
74	KNASEL	75	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
75	3 LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1710) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID	_	TECN	COMMENT
1690 ± 20	CUTKOSKY :	30	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the	following data for averages,	fit	s, limits,	etc. • • •
1708 or 1712	4 LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1.720 or 1711	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY PA	ART DOCUMENT ID	_	TECN	COMMENT
80 ± 20	CUTKOSKY 8	30	IPWA	$\pi N \rightarrow \pi N$
 • • We do not use the 	following data for averages,	fit	s, limits,	etc. • • •
17 or 22	4 LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
123 or 115	² LONGACRE	77	ID\A/A	- N - N

N(1710) ELASTIC POLE RESIDUE

REAL PART	
VALUE (MeV)	
-8 ± 2	

DOCUMENT ID TECN COMMENT CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$

IMAGINARY PART VALUE (MeV)

1. ± 5

-0.14

TECN COMMENT CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$

N(1710) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	Ν π	10-20 %	
Γ_2	$N\eta$	~ 25 %	
Γ_3	Λ <i>K</i>	~ 15 %	
Γ_4	ΣΚ	2-10 %	
Γ_5	$N\pi\pi$	<50 %	
Γ_6	$\Delta \pi$	10-20 %	
Γ_7	$\Delta(1232)\pi$, <i>P</i> -wave		
Γ8	$N\rho$	5-35 %	
Γ9	$N\rho$, $S=1/2$, P -wave		
Γ_{10}	$N\rho$, $S=3/2$, P-wave		
Γ_{11}	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	5-35 %	
Γ_{12}	$p\gamma$, helicity=1/2		
Γ12	$n\gamma$, helicity=1/2		

The above branching fractions are our estimates, not fits or averages.

N(1710) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ ₁ ,
VALUE	DOCUMENT ID		TECN	COMMENT
0.10 to 0.20 OUR ESTIN	MATE			
0.20 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.12 ± 0.04	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N_T$	$r \rightarrow N(1710) \rightarrow N n$			([,[_a) ^{1/2}
VALUE	$r \rightarrow N(1710) \rightarrow N\eta$ DOCUMENT ID stollowing data for average		<u>TECN</u> s, limits,	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}$ etc. • • •
VALUE	<u>DOCUMENT ID</u> e following data for average	es, fit	s, limits,	COMMENT
VALUE ■ • • We do not use the 0.22	<u>DOCUMENT ID</u> e following data for average	es, fit	s, limits,	COMMENT etc. • • •

SAXON

80 DPWA $\pi^- p \rightarrow \Lambda K^0$

-0.12	5 BAKER	78	DPWA See SAXON 80
-0.05 ± 0.03	¹ BAKER	77	IPWA $\pi^- \rho \rightarrow \Lambda K^0$
-0.10	¹ BAKER		DPWA $\pi^- \rho \rightarrow \Lambda K_0^0$
0.10	KNASEL	75	DPWA $\pi^- \rho \rightarrow \Lambda K^0$
(F.F.) ¹ / ₂ /F in N	N/1710\ . \ \ K		(F.F.) ¹

• • We do not use the following data for averages, fits, limits, etc. • •

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1710) \rightarrow \Sigma K$			$(\Gamma_1\Gamma_4)^{1/2}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.034	LIVANOS	80	DPWA	$\pi p \rightarrow \Sigma K$
0.075 to 0.203	⁶ DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$

Note: Signs of couplings from $\pi N \to N \pi \pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

4.1			- 1
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1710) \rightarrow \Delta(123)$	2)π, <i>P</i> -wave	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN COMM	NT
_	MANLEY 8	4 IPWA πN —	Νππ
-0.17	² LONGACRE 7 ³ LONGACRE 7	7 IPWA πN	Νππ
+0.20	³ LONGACRE 7	5 IPWA π N -	Νππ
(5.5.)1/2.(5	******		· 1/4 ·-
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$			
VALUE	DOCUMENT ID	TECN COMMI	ENT
+	MANLEY 8 2 LONGACRE 7 3 LONGACRE 7	4 IPWA πN	Νππ
+0.19	² LONGACRE 7	7 IPWA πN	Νππ
-0.20	³ LONGACRE 7	5 1PWA πN →	Νππ
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{ m total}$ in $N\pi$ $ ightarrow$	M(1710) . No C	-2/2 Bwava	(F.F)½/F
	$N(1110) \rightarrow Np, 3$	-3/2, r-wave	(11 10) 7
VALUE	DOCUMENT ID 2 LONGACRE 7	TECN COMM	ENT
+0.31	² LONGACRE 7	7 IPWA πN —	Νππ
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(1710) \rightarrow N (\pi \pi$)/=0 S-wave	$(\Gamma_1\Gamma_{11})^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID 2 LONGACRE 7		EN I
_ 0.26	4 LONGACRE 7	7 ΙΡ\Λ/Δ Λ/	N

N(1710) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

³ LONGACRE 75 IPWA $\pi N \rightarrow N \pi \pi$

$N(1710) \rightarrow p\gamma$, helicity-1/2 amplitude $A_{1/2}$ VALUE (GeV-1/2)

-0.28

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
0.006 ± 0.018	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.028 ± 0.009	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.009 ± 0.006	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.012 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.015 ± 0.025	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.001\pm0.039$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
$+0.053\pm0.019$	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
$N(1710) \rightarrow n\gamma$, helicity-1/2 a	mplitude A _{1/2}	2		
VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN COMMENT	_
0.000 ± 0.018	AWAJI	81	DPWA $\gamma N \rightarrow \pi N$	
-0.001 ± 0.003	FUJII	81	DPWA $\gamma N \rightarrow \pi N$	
0.005 ± 0.013	ARAI	80	DPWA $\gamma N \rightarrow \pi N$ (fit 1)	
0.011 ± 0.021	ARAI	80	DPWA $\gamma N \rightarrow \pi N$ (fit 2)	
-0.017 ± 0.020	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$	
-0.028 ± 0.045	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$	

$\gamma p \rightarrow \Lambda K^+$ AMPLITUDES

For definitions, see Sec. IV of the Note on N and Δ Resonances preceding the N(1440).

	\rightarrow N(1710) \rightarrow \wedge K ⁺			$(M_{1-}$ amplitude)
VALUE (units 10 ⁻³)	DOCUMENT ID		<u>TECN</u>	
 • • We do not use the 	following data for averages,	fits	, limits, et	tc. • • •
-7.21	TANABE	00	DPWA	
		09	DPWA	
$ ho \gamma ightarrow N(1710) ightarrow N$			TECN_	$(M_{1-}$ amplitude)
$ ho\gamma ightarrow N(1710) ightarrow N$	ΛK^+ phase angle $ heta$	_	TECN	,

Baryon Full Listings *N*(1710), *N*(1720)

N(1710) FOOTNOTES

- $^1\,\rm The$ two BAKER 77 entries are from an IPWA using the Barrelet-zero method and from a conventional energy-dependent analysis.
- a Conventional energy-dependent analysis of the Unitarized T-matrix; the first (second) value uses, in addition to $\pi N \rightarrow N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ³ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- 4 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ⁵ The overall phase of BAKER 78 couplings has been changed to agree with previous conventions.
- ⁶ The range given for DEANS 75 is from the four best solutions.

N(1710) REFERENCES

For early references, see Physics Letters 111B (1982).

TANABE	89	PR C39 741	- Kohno, Bennhold	(MANZ)
Also	89	NC 102A 193	Kohno, Tanabe, Bennhold	(MANZ)
MANLEY	84	PR D30 904	+ Arndt, Goradia, Teplitz	(VPI)
BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Lintern+	(RL) UP
CRAWFORD	83	NP B211 1	+ Morton	(GLAS)
AWA.JI	81	Bonn Conf. 352	+Kalikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
FUJII	81	NP B187 53	+Hayashii, Iwata, Kajikawa+	(TOKY)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fulii	(TOKY)
CRAWFORD	80	Toronto Conf. 107	•	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	-Baton, Coutures, Kochowski, Neveu	(SACL) IJP
SAXON	80	NP B162 522	-Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+ Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BAKER	78	NP B141 29	+Blissett, Bloodworth, Broome+	(RL, CAMB) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
BAKER	77	NP B126 365	+Blissett, Bloodworth, Broome, Hart+	(RHEL) ⊔P
LONGACRE	77	NP B122 493	+Dolbeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
FELLER	76	NP B104 219	Fukushima, Horikawa, Kajikawa -	(NAGO, OSAK) IJP
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
KNASEL	75	PR D11 1		/USL, OSU, ANL) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP

$N(1720) P_{13}$

MACON MANUE

 $I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$ Status: ***

TECN COMMENT

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

N(1720) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1690 to 1800 OUR EST	IMATE			
1700 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1710 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
	e following data for average	s, fit	s, limits,	etc. • • •
1785	CRAWFORD	80		$\gamma N \rightarrow \pi N$
1690	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1710 to 1790	BAKER	78	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1809	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1640 ± 10	¹ BAKER	77	IPWA	$\pi^- \rho \rightarrow \Lambda K^0$
1710	¹ BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1750	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1850	KNASEL	75	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
1720	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1720) WIDTH

VALUE (MeV)	DUCUMENT ID	TECH	COMMENT	
125 to 250 OUR ESTIMATE	Our best guess is 20	0 MeV.		
125 ± 70	CUTKOSKY	80 IPWA	$\pi N \rightarrow \pi N$	
190 ± 30	HOEHLER	79 IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the folk	owing data for average	s, fits, limit	s, etc. • • •	
308	CRAWFORD	80 DPW	$A \gamma N \rightarrow \pi N$	
120	SAXON	80 DPW	$A \pi^- \rho \rightarrow \Lambda K^0$	
447	BAKER	79 DPW	$A \pi^- \rho \rightarrow n\eta$	
300 to 400	BAKER	78 DPW	$\Lambda \pi^- \rho \to \Lambda K^0$	
285	BARBOUR		$A \gamma N \rightarrow \pi N$	
200 ± 50	1 BAKER		$\pi^- p \rightarrow \Lambda K^0$	
500	¹ BAKER	77 DPW	$A \pi^- \rho \rightarrow \Lambda K^0$	
130	² LONGACRE		$\pi N \rightarrow N \pi \pi$	
327			$A \pi^- \rho \rightarrow \Lambda K^0$	
150	³ LONGACRE	75 IPWA	$\pi N \rightarrow N \pi \pi$	

N(1720) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1680 ± 30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	e following data for average	, fit	s, limits,	etc. • • •
1705	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
1716 or 1716	⁴ LONGACRE			
1745 or 1748	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY F				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
120 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the	e following data for average:	, fit:	s, limits,	etc. • • •
80	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
124 or 126	⁴ LONGACRE			
135 or 123	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

N(1720) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
· 8 ± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
- 3 ± 4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

N(1720) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Nπ	10-20 %
Γ_2	$N\eta$	~ 3.5 %
Γ3	ΛK	~ 5 %
Γ ₄	ΣΚ	2-5 %
Γ_5	Νππ	<75 %
Γ_6	$\Delta \pi$	<15 %
Γ_7	$\Delta(1232)\pi$, <i>P</i> -wave	
Γ8	$N\rho$	<75 %
Г9	$N\rho$, $S=1/2$, P -wave	
Γ_{10}	$N\rho$, $S=3/2$, P -wave	
Γ_{11}	$N(\pi\pi)_{S-\text{wave}}^{I=0}$	<20 %
Γ_{12}	$p\gamma$	
	$p\gamma$, helicity=1/2	
Γ ₁₄	$\rho\gamma$, helicity=3/2	
Γ ₁₅	$n\gamma$	
Γ ₁₆	$n\gamma$, helicity=1/2	
Γ ₁₇	$n\gamma$, helicity=3/2	
	The above branching fractions are ou	r estimates, not fits or averages.

N(1720) BRANCHING RATIOS

$\frac{\Gamma(N\pi)/\Gamma_{\text{total}}}{0.10 \text{ to } 0.20 \text{ OUR ESTIMATE}}$	DOCUMENT ID		<u>TECN</u>	Γ ₁ /Γ
0.10 to 0.20 OUR ESTIMATE 0.10 ± 0.04	CUTKOSKY	80	ID\A/A	$\pi N \rightarrow \pi N$
0.14±0.03	HOEHLER			$\pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \to I$	$V(1720) \rightarrow N\eta$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
-0.08	BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow I$			TECAL	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID			
-0.09				$\pi^- p \rightarrow \Lambda K^0$
-0.11				$\pi^- \rho \rightarrow \Lambda \kappa^0$
• • We do not use the follow				
-0.09	⁵ BAKER	78	DPWA	See SAXON 80
-0.06 ± 0.02	¹ BAKER	77	IPWA	$\pi^- \rho \rightarrow \Lambda K^0$
-0.09	¹ BAKER	77	DPWA	$\pi^- p \rightarrow \Lambda \kappa^0$
$(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow I$ VALUE 0.051 to 0.087	N(1720) → ∑K DOCUMENT ID 6 DEANS			$(\Gamma_1\Gamma_4)^{1/2}/\Gamma$
0.031 (0 0.067	DEANS	13	DEVIA	$nN \rightarrow ZN$

Note: Signs of couplings from $\pi N \to N \pi \pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)~S_{31}$ coupling to $\Delta(1232)\pi$.

$$\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{\frac{1}{2}}/\Gamma_{\text{total in }N\pi \to N}}{-0.17} \frac{N(1720) \to \Delta(1232)\pi, \ P\text{-wave}}{2 \text{ LONGACRE}} \frac{\left(\Gamma_{1}\Gamma_{7}\right)^{\frac{1}{2}}/\Gamma}{1 \text{ IPWA}} \frac{COMMENT}{\pi \ N \to N\pi \pi}$$

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$	$N(1720) \rightarrow N\rho$, $S=1/2$, P -wave $(\Gamma_1\Gamma_9)^{1/2}/\Gamma$
- 0.26	2 LONGACRE 77 IPWA TAL NITT
+ 0.40	² LONGACRE 77 IPWA $\pi N \rightarrow N \pi \pi$ ³ LONGACRE 75 IPWA $\pi N \rightarrow N \pi \pi$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi \to \frac{VALUE}{T}$	$N(1720) \rightarrow N \rho$, S=3/2, P-wave $(\Gamma_1 \Gamma_{10})^{\frac{1}{2}}/\Gamma$ $\frac{DOCUMENT ID}{2 \text{ LONGACRE}}$ 77 IPWA $\pi N \rightarrow N \pi \pi$
+ 0.15	² LONGACRE 77 IPWA $\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{T}$	$N(1720) \rightarrow N (\pi\pi)_{S-\text{wave}}^{I=0} \qquad (\Gamma_1\Gamma_{11})^{\frac{1}{2}}/\Gamma$ $\frac{DOCUMENT ID}{^2 \text{LONGACRE}} \qquad \frac{TECN}{77} \qquad \frac{COMMENT}{\pi N \rightarrow N\pi\pi}$
- 0.19	² LONGACRE 77 IPWA $\pi N \rightarrow N \pi \pi$

N(1720) PHOTON DECAY AMPLITUDES

For the definition of the $\gamma\,N$ decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(1720) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID	TECN	COMMENT
0.044±0.066	CRAWFORD 83	IPWA	$\gamma N \rightarrow \pi N$
-0.004 ± 0.007	AWAJI 81	DPWA	$\gamma N \rightarrow \pi N$
0.051 ± 0.009	ARAI 80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.071 ± 0.010	ARAI 80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.038 ± 0.050	CRAWFORD 80	DPWA	$\gamma N \rightarrow \pi N$
$+0.111\pm0.047$	BARBOUR 78	DPWA	$\gamma N \rightarrow \pi N$

$N(1720) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID	TECN	COMMENT
-0.024 ± 0.006	CRAWFORD 8	3 IPWA	$\gamma N \rightarrow \pi N$
-0.040 ± 0.016	AWAJI 8	B1 DPWA	$\gamma N \rightarrow \pi N$
-0.058 ± 0.010	ARAI 8	30 DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.011 ± 0.011	ARAI 8	0 DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.014 ± 0.040	CRAWFORD 8	30 DPWA	$\gamma N \rightarrow \pi N$
-0.063 ± 0.032	BARBOUR 7	78 DPWA	$\gamma N \rightarrow \pi N$

$N(1720) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
0.002 ± 0.005	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.019 ± 0.033	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.001 ± 0.038	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.003 ± 0.034	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.007\pm0.020$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$N(1720) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

	-,			
VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.015 ± 0.019	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.139 ± 0.039	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.134 ± 0.044	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.018 ± 0.028	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.051\pm0.051$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

N(1720) $\gamma p \rightarrow \Lambda K^+$ AMPLITUDES

For definitions, see Sec. IV of the Note on N and Δ Resonances preceding the N(1440).

(-/				
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\rm total}$ in $p\gamma \to$	$N(1720) \rightarrow \Lambda K^+$		$(E_{1+} \text{ amplitude})$	
VALUE (units 10 ⁻³)	DOCUMENT ID	TECN		
• • • We do not use the fol	lowing data for averages,	fits, limits, e	tc. • • •	
9.52	TANABE	89 DPWA		I
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } p \gamma \rightarrow \frac{VALUE (units 10^{-3})}{}$		TECN	$(M_{1+} \text{ amplitude})$	
• • We do not use the fol	lowing data for averages,	fits, limits, e	tc. • • •	
3.18	TANABE	89 DPWA		ı
$p\gamma \rightarrow N(1720) \rightarrow \Lambda K$	$^+$ phase angle $ heta$		$(E_{1+}$ amplitude)	
VALUE (degrees)	DOCUMENT ID	TECN		
• • • We do not use the fol	lowing data for averages,	fits, limits, e	tc. • • •	
103.4	TANABE	89 DPWA		ı

N(1720) FOOTNOTES

- $^{1}\,\mbox{The two BAKER 77}$ entries are from an IPWA using the Barrelet-zero method and from a conventional energy-dependent analysis.
- ² LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ³ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- 4 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- The overall phase of BAKER 78 copulings has been changed to agree with previous
- The range given is from the four best solutions. DEANS 75 disagrees with $\pi^+ \, \rho \to \Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV.

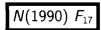
N(1720) REFERENCES

For early references, see Physics Letters 111B (1982).

TANABE	89	PR C39 741	+Kohno, Bennhold	(MANZ)
Also	89	NC 102A 193	Kohno, Tanabe, Bennhold	(MANZ)
ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Lintern+	(RL) IJP
CRAWFORD	83	NP B211 1	+Morton	(GLAS)
ILAWA	81	Bonn Conf. 352	+ Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
ARAI	80	Toronto Conf. 93	-,-,,,,,	(TOKY)
Also	82	NP B194 251	Arai, Fujii	(τοκγί
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMÙ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) UP
5AXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BAKER	78	NP B141 29	+Blissett, Bloodworth, Broome+	(RL, CAMB) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
BAKER	77	NP B126 365	+Blissett, Bloodworth, Broome, Hart+	(RHEL) IJP
LONGACRE	77	NP B122 493	+ Dolbeau	(SACL) IJP
Also	76	NP B108 365	Doibeau, Triantis, Neveu, Cadiet	(SACL) IJP
WINNIK	77	NP B128 66	+Toaff, Revel, Goldberg, Berny	(HAIF) I
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
KNASEL	75	PR D11 1	+Lindquist, Nelson+ (CHIC, V	VUSL, OSU, ANL) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP

N(1960)

 $I(J^P) = \frac{1}{2}(?^?)$ Status: * J, P need confirmation.


OMITTED FROM SUMMARY TABLE

A narrow peak in $\Sigma(1385)^ K^+$ diffractively produced by neutrons on quasifree nucleons of carbon, aluminum, and copper. The spin-parity is one of $5/2^+$, $7/2^-$, etc.

N(1960) MASS

VALUE (MeV) 1956 + 8 - 6			DOCUMENT ID		TECN BIS2	<u>COMMENT</u> Σ(1385) ⁻ K ⁺
			N(1960) WID	тн		
VALUE (MeV)			DOCUMENT ID		TECN	COMMENT
27 ± 15			ALEEV	84B	BIS2	$\Sigma(1385)^{-}$ K ⁺
		N(1960) REFER	ENC	ES	
ALEEV	84B	ZPHY C25 205	+ (JINR,	BERL.	LEBD.	MOSU, PRAG, SOFI, TBLI)
		—— отн	ER RELATED	PAP	ERS ·	
AMAGLOBELI	87	SJNP 45 632 Translated from YAF		Kekelio	ize+	(JINR)
ALEEV	86	SJNP 44 652 Translated from YAF	+	(BERL	, JINR,	MOSU, PRAG, SOFI, TBLI)

Baryon Full Listings N(1990), N(2000)

 $I(J^{P}) = \frac{1}{2}(\frac{7}{2}^{+})$ Status: **

OMITTED FROM SUMMARY TABLE

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

The various analyses do not agree very well with one another.

	N(1990) MAS	SS	
VALUE (MeV)	DOCUMENT ID		TECNCOMMENT
2018	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$
1970 ± 50	CUTKOSKY	80	IPWA $\pi N \rightarrow \pi N$
2005 ± 150	HOEHLER	79	IPWA $\pi N \rightarrow \pi N$
1999	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$
	N(1990) WID	тн	
VALUE (MeV)	N(1990) WID	гн	TECN COMMENT
VALUE (MeV)	` ,	TH 80	
	DOCUMENT ID	_	
295	DOCUMENT ID CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$ IPWA $\pi N \rightarrow \pi N$

N(1990) POLE POSITION

REAL	PART
VALUE (MeV)

 1900 ± 30

DOCUMENT ID TECN COMMENT CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$

-2 × IMAGINARY PART

VALUE (MeV) DOCUMENT ID TECN COMMENT 260 ± 60 CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$

N(1990) ELASTIC POLE RESIDUE

REAL PA	RT

VALUE (MeV) 5 + 4

DOCUMENT ID TECN COMMENT CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$

IMAGINARY PART

VALUE (MeV) -8 ± 4

DOCUMENT ID TECN COMMENT CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$

N(1990) DECAY MODES

Mode

 $N\pi$ Γ_2 $N\eta$

 ΛK

 Γ_3 ΣK

Νππ

 $p\gamma$, helicity=1/2

 $p\gamma$, helicity=3/2

 $n\gamma$, helicity=1/2 $n\gamma$, helicity=3/2

N(1990) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.06 ± 0.02	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.04 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{total} \text{ in } N\pi \to$	$N(1990) \rightarrow N\eta$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.043	BAKER	79	DPWA	$\pi^- p \rightarrow n \eta$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi \to$	$N(1990) \rightarrow \Lambda K$			$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
+0.01	BELL			$\pi^- \rho \rightarrow \Lambda K^0$
not seen	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
-0.021 ± 0.033	DEVENISH	748	1	Fixed-t dispersion rel.
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$				$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
0.010 to 0.023	¹ DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$
0.06	LANGBEIN	73	IPWA	$\pi N \rightarrow \Sigma K \text{ (sol. 1)}$

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{total} \text{ in } \mathcal{N}\pi \to$	$N(1990) \rightarrow N\pi\pi$		$(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT
not seen	MANLEY 84	IPWA	$\pi N \rightarrow N \pi \pi$
not seen	LONGACRE 75	IPWA	$\pi N \rightarrow N \pi \pi$

N(1990) PHOTON DECAY AMPLITUDES

For the definition of the γ N decay amplitudes, see Sec. IV of the Note on N and $\boldsymbol{\Delta}$ Resonances preceding the Baryon Listings.

$N(1990) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
0.030 ± 0.029	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
0.001 ± 0.040	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
0.040	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$N(1990) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

	/-		
VALUE (GeV ^{-1/2})	DOCUMENT ID	TECN	COMMENT
0.086 ± 0.060	AWA JI 81	DPWA	$\gamma N \rightarrow \pi N$
0.004 ± 0.025	CRAWFORD 80	DPWA	$\gamma N \rightarrow \pi N$
+ 0.004	BARBOUR 78	DPWA	$\sim N \rightarrow \pi N$

$N(1990) \rightarrow n\gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.001	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.078 ± 0.030	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.069	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$N(1990) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

. , , , , , , , , , , , , , , , , , , ,	. 3/2		
VALUE (GeV-1/2)	DOCUMENT ID	TECN	COMMENT
~ 0.178	AWA JI 81	DPWA	$\gamma N \rightarrow \pi N$
-0.116 ± 0.045	CRAWFORD 80	DPWA	$\gamma N \rightarrow \pi N$
-0.072	BARBOUR 78	DPWA	$\gamma N \rightarrow \pi N$

N(1990) FOOTNOTES

N(1990) REFERENCES

For early references, see Physics Letters 111B (1982).

MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Linter	n+ (RL) IJP
AWA JI	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	-Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
SAXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Eva	ns+ (RHEL)IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP
DEVENISH	74B	NP B81 330	+Froggatt, Martin	(DESY, NORD, LOUC)
LANGBEIN	73	NP B53 251	Wagner	(MUNI) IJP

$N(2000) F_{15}$

 $I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$ Status: **

OMITTED FROM SUMMARY TABLE

Older results have been retained simply because there is little information at all about this possible state.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1882 ± 10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
2025	AYED	76	IPWA	$\pi N \rightarrow \pi N$
1970	¹ LANGBEIN	73	IPWA	$\pi N \rightarrow \Sigma K \text{ (sol. 2)}$
2175	ALMEHED	72	IPWA	$\pi N \rightarrow \pi N$
1930	DEANS	72	MPWA	$\gamma \rho \rightarrow \Lambda K \text{ (sol. D)}$
	N(2000) WID	н		
VALUE (MeV)	,		TECN	COMMENT
<u>VALUE (MeV)</u> 95±20	N(2000) WILL DOCUMENT ID HOEHLER		TECN IPWA	COMMENT π N → π N
95 ± 20	DOCUMENT ID	79	IPWA	
95 ± 20 157	DOCUMENT ID HOEHLER	79 76	IPWA IPWA	$\pi N \rightarrow \pi N$
VALUE (MeV) 95 ± 20 157 170	DOCUMENT ID HOEHLER AYED	79 76	IPWA IPWA IPWA	$\pi N \rightarrow \pi N$ $\pi N \rightarrow \pi N$

AI(2000) MASS

 $^{^{\}rm 1}\,{\rm The}$ range given for DEANS 75 is from the four best solutions.

 Γ_1/Γ

N(2000) DECAY MODES

	Mode	
Γ_1	Nπ	
	$N\eta$	
	ΛŔ	
	ΣΚ	
Γ ₅		

N(2000) BRANCHIN	G R	ATIOS	
$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.04 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
80.0	AYED	76	IPWA	$\pi N \rightarrow \pi N$
0.25	ALMEHED	72	IPWA	$\pi N \rightarrow \kappa N$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{ ext{total}}$ in $N\pi o$				$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID			COMMENT
+ 0.03	BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$	N(2000) → AK DOCUMENT ID		TECN	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
not seen	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } \mathbf{N}\pi \to \frac{VALUE}{2}$			TECN	$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
0.022	DOCUMENT ID DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$
0.05				$\pi N \rightarrow \Sigma K \text{ (sol. 2)}$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } p \gamma \rightarrow$	N(2000) → ∧ K		TECN	$(\Gamma_5\Gamma_3)^{\frac{1}{2}}/\Gamma$
0.0022	DEANS	72	MPWA	$\gamma p \rightarrow \Lambda K \text{ (sol. D)}$

N(2000) FOOTNOTES

 1 Not seen in solution 1 of LANGBEIN 73. 2 Value given is from solution 1 of DEANS 75; not present in solutions 2, 3, or 4.

N(2000) REFERENCES

SAXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) UP
AYED	76	CEA-N-1921 Thesis		(SACL) IJP
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
LANGBEIN	73	NP B53 251	+Wagner	(MUNI) DP
ALMEHED	72	NP B40 157	+Lovelace	(LUND, RUTG) IJP
DEANS	72	PR D6 1906	+ Jacobs, Lyons, Montgomery	(SFLA) IJP

$N(2080) D_{13}$

 265 ± 40

 $I(J^P) = \frac{1}{2}(\frac{3}{2})$ Status: **

79 IPWA $\pi N \rightarrow \pi N$

OMITTED FROM SUMMARY TABLE

There is some evidence for two resonances in this wave between 1800 and 2200 MeV (see CUTKOSKY 80). However, the solution of HOEHLER 79 is quite different.

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

	N(2080) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1920	BELL	83	DPWA	$\pi^- p \rightarrow \Lambda K^0$
1880 ± 100	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2060± 80	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1900	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
2081 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
	N (2080) WID	тн		
VALUE (MeV)	N(2080) WID	тн	TECN	COMMENT
<u>VALUE (MeV)</u> 320	, ,	TH 83		$\frac{COMMENT}{\pi^- p \to \Lambda K^0}$
			DPWA	
320	DOCUMENT ID	83	DPWA IPWA	$\frac{\pi^- p \to \Lambda K^0}{\pi N \to \pi N \text{ (lower)}}$

HOEHLER

N(2080) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1880±100	1 CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$ (lower mass)
2050± 70	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$ (higher mass)
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
***************************************	DOCOMETET 1D		/ ECIV	COMMENT
160±80	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N \text{ (lower mass)}$

N(2080) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
- 2±14	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$ (lower mass)
30 ± 20	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$ (higher mass)
IMAGINARY PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
10± 5	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$ (lower mass)
0±52	¹ CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$ (higher mass)

N(2080) DECAY MODES

	Mode
$\overline{\Gamma_1}$	Νπ
Γ_2	$N\eta$
Γ_3	ΛK
Γ_4	ΣK
Γ_5	$N\pi\pi$
Γ_6	$\rho\gamma$, helicity=1/2
Γ_7	$\rho\gamma$, helicity=3/2
Γ8	$n\gamma$, helicity=1/2
Γ9	$n\gamma$, helicity=3/2
Γ_{10}	$p\gamma$
_	

N(2080) BRANCHING RATIOS

DOCUMENT ID

TECN COMMENT

73 MPWA $\gamma p \rightarrow p \eta$

	<u> </u>			COMMENT
0.10 ± 0.04				$\pi N \rightarrow \pi N \text{ (lower mass)}$
0.14 ± 0.07	$^{ m 1}$ CUTKOSKY	80	IPWA	mass) $\pi N \rightarrow \pi N$ (higher
0.06 ± 0.02	HOEHLER	79	IPWA	mass) $\pi N \rightarrow \pi N$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\rm total}$ in $N\pi$ $ o$	$N(2080) \rightarrow Nn$			(Γ ₁ Γ ₂) ^{1/2} /Γ
VALUE			TECN	COMMENT
not seen	BAKER	79	DPWA	$\pi^- \rho \rightarrow n\eta$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi$ \rightarrow	N(2080) → ∧K			$(\Gamma_{1}\Gamma_{3})^{\frac{1}{2}}/\Gamma$
VALUE			TECN	COMMENT
+0.04	BELL	83	DPWA	$\pi^- p \rightarrow \Lambda K^0$
+0.03	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda \kappa^0$
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(2080) \rightarrow \Sigma K$			$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
0.014 to 0.037	DOCUMENT ID DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } p \gamma \rightarrow$	$N(2080) \rightarrow Nn$			$(\Gamma_{10}\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT (. 10. 2) /
1			144.	COMMENT

N(2080) PHOTON DECAY AMPLITUDES

HICKS

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(2080) \rightarrow p\gamma$, helicity-1/2 amplitude $A_{1/2}$

 $\Gamma(N\pi)/\Gamma_{\rm total}$

VALUE

0.0037

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.020 ± 0.008	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
0.026 ± 0.052	DEVENISH	74	DPWA	$\gamma N \rightarrow \pi N$

Baryon Full Listings

N(2080), N(2090), N(2100)

$N(2080) \rightarrow p\gamma$, helicity-3	/2 amplitude A _{3/2}	!
VALUE (GeV-1/2)	DOCUMENT ID	
0.017 0.011	ALAZA II	01

TECN COMMENT 81 DPWA $\gamma N \rightarrow \pi N$ 0.017 ± 0.011 0.128 ± 0.057 DEVENISH 74 DPWA $\gamma N \rightarrow \pi N$

$N(2080) \rightarrow n\gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
0.007 ± 0.013	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
0.053 ± 0.083	DEVENISH	74	DPWA	$\gamma N \rightarrow \pi N$

$N(2080) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID	_	TECN	COMMENT
-0.053 ± 0.034	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
0.100 ± 0.141	DEVENISH	74	DPWA	$\gamma N \rightarrow \pi N$

N(2080) FOOTNOTES

N(2080) REFERENCES

For early references, see Physics Letters 111B (1982).

BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Linter	n+ (RL)IJP
AWAJI	81	Bonn Conf. 352	+ Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
CUTKOSKY	80	Toronto Conf. 19	-Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
SAXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) UP
BAKER	79	NP 8156 93	+Brown, Clark, Davies, Depagter, Eva	ns+ (RHEL) IJP
HOEHLER	79	PDAT 12-1	+ Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
WINNIK	77	NP B128 66	+ Toaff, Revel, Goldberg, Berny	(HAIF) !
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ÀLAH) IJP
DEVENISH	74	PL 52B 227	+Lyth, Rankin	(DESY, LANC, BONN) IJP
HICKS	73	PR D7 2614	- Deans, Jacobs, Lyons -	(CMU, ORNL, SFLA) IJP

$N(2090) S_{11}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$
 Status: *

OMITTED FROM SUMMARY TABLE

Any structure in the S_{11} wave above 1800 MeV is listed here. A few early results that are now obsolete have been omitted.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2180±80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1880 ± 20	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

N(2090) WIDTH					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
350 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
95 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	

N(2090) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2150 ± 70	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1937 or 1949	$^{ m 1}$ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
350 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
139 or 131	¹ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$

N(2090) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID		<u>TECN</u>	COMMENT
40 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART VALUE (MeV) 0±60	DOCUMENT ID	80	TECN IPWA	$\frac{COMMENT}{\pi \ N \ \rightarrow \ \pi \ N}$

N(2090) DECAY MODES

	Mode
Γ_1	Νπ
Γ_2	ΛK
Γ_3	$N\pi\pi$

N(2090) BRANCHING RATIOS

VALUE	DOCUMENT ID		TECN	COMMENT
0.18 ± 0.08	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.09 ± 0.05	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	N(2090) → ∧ K		TCC11	$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$

$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi$ \rightarrow	$N(2090) \rightarrow \Lambda K$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
not seen	SAXON	80	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$

N(2090) FOOTNOTES

N(2090) REFERENCES

CUTKOSKY Also SAXON HOEHLER Also LONGACRE	80 79 80 79 80 78	Toronto Conf. 19 PR D20 2839 NP B162 522 PDAT 12-1 Toronto Conf. 3 PR D17 1795	- Forsyth, Babcock, Kelly, Hendrick Cutkosky, Forsyth, Hendrick, Kelly + Baker, Bell, Blissett, Bloodworth + + Kaiser, Koch, Pietarinen Koch - Lasinski, Rosenfeld, Smadia +	(CMU, LBL) IJF (CMU, LBL) (RHEL, BRIS) IJF (KARL) IJF (KARL) IJF (LBL, SLAC)
--	----------------------------------	--	--	---

 $N(2100) P_{11}$

 2050 ± 20

 $\Gamma(N\pi)/\Gamma_{\text{total}}$

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: *

 Γ_1/Γ

OMITTED FROM SUMMARY TABLE

	N(2100) MASS		
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2125 ± 75	CUTKOSKY 8	0 IPWA	$\pi N \rightarrow \pi N$
2050 + 20	HOEHLER 7	Q IP\A/Δ	- N → - N

	N(2100) WID	ТН		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
260 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
200 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

N(2100) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2120 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
240 + 80	CHTKOSKY	an	ΙΡ\Λ/Δ	$\pi N \rightarrow \pi N$

N(2100) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
11 ± 7	CUTKOSKY 80	IPWA	π N · · + π N
IMAGINARY PART	DOCUMENT ID	TECN	COMMENT
8±6	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

N(2100) DECAY MODES

	Mode		
Γ ₁	$N\pi$		

N(2100) BRANCHING RATIOS

VALUE DOCUMENT ID TECN COMMENT
0.12 ± 0.03 CUTKOSKY 80 IPWA π N \rightarrow π N
0.10 ± 0.04 HOEHLER 79 IPWA $\pi N \rightarrow \pi N$

 $^{^1}$ CUTKOSKY 80 finds a lower mass D_{13} resonance, as well as one in this region. Both

are listed here. 2 The range given for DEANS 75 is from the four best solutions. Disagrees with $\pi^+\,\rho\to\Sigma^+\,K^+$ data of WINNIK 77 around 1920 MeV.

 $^{^{1}\, {\}sf LONGACRE}$ 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to π N \rightarrow N π π data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

N(2100) REFERENCES

CUTKOSKY	80	Toronto Conf. 19
Aiso	79	PR D20 2839
HOEHLER	79	PDAT 12-1
Also	80	Toronto Conf. 3

+Forsyth, Babcock, Kelly, Hendrick Cutkosky, Forsyth, Hendrick, Kelly +Kaiser, Koch, Pietarinen Koch

(CMU, LBL) IJP (CMU, LBL) (KARL) IJP (KARL) IJP

$N(2190) G_{17}$

$$I(J^P) = \frac{1}{2}(\frac{7}{2})$$
 Status: ****

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

N(2190) MASS

VALUE (MeV)	DOCUMENT ID		TECN COMMENT
2120 to 2230 OUR ESTIN	-	00	ADVAVA AV AV
2200 ± 70	CUTKOSKY		IPWA $\pi N \rightarrow \pi N$
2140±12	HOEHLER		IPWA $\pi N \rightarrow \pi N$
2140 ± 40	HENDRY	78	MPWA $\pi N \rightarrow \pi N$
 • • We do not use the 	following data for average	s, fit	s, limits, etc. • • •
2098	CRAWFORD		DPWA $\gamma N \rightarrow \pi N$
2180	SAXON	80	DPWA $\pi^- p \rightarrow \Lambda K^0$
2140	BAKER	79	DPWA $\pi^- p \rightarrow n\eta$
2117	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$

N(2190) WIDTH

VALUE (MeV) 200 to 500 OUR ESTIMATE	DOCUMENT ID Our best guess is 35	<u>тесі</u> 0 МеV.	N COMMENT
500 ± 150	CUTKOSKY	80 IPW	$A \pi N \rightarrow \pi N$
390± 30	HOEHLER	79 IPW	$A \pi N \rightarrow \pi N$
270 ± 50	HENDRY	78 MP\	$NA \pi N \rightarrow \pi N$
• • • We do not use the follow	ving data for average	s, fits, lim	its, etc. • • •
238	CRAWFORD	80 DPV	$VA \gamma N \rightarrow \pi N$
80	SAXON	80 DPV	$VA \pi^- \rho \rightarrow \Lambda K^0$
319	BAKER	79 DPV	VA $\pi^- p \rightarrow n\eta$
220	BARBOUR	78 DPV	$VA \gamma N \rightarrow \pi N$

N(2190) POLE POSITION

REAL PART VALUE (MeV)	DOC
2100 ± 50	CU-

CUMENT ID TECN COMMENT TKOSKY 80 IPWA $\pi N \rightarrow \pi N$

−2 × IMAGINARY PART

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
400±160	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

N(2190) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	
22±14	

DOCUMENT ID TECN COMMENT CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$

IMAGINARY PART

VALUE (MeV)	
-13 ± 20	

DOCUMENT ID		TECN	COMMENT
CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

N(2190) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
Γ1	Nπ	~ 14 %
Γ_2	$N\eta$	~ 3 %
Γ3	٨K	~ 0.3 %
Γ4	ΣΚ	
Γ_5	$N\pi\pi$	
Γ ₆	$N \rho$, $S=3/2$, D -wave	
Γ7	$p\gamma$, helicity=1/2	
Γ8	$p\gamma$, helicity=3/2	
Γ٩	$n\gamma$, helicity=1/2	
Γ ₁₀	$n\gamma$, helicity=3/2	
	The above branching fractions are	our estimates, not fits or averages.

N(2190) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$			Γ_1/Γ
VALUE	DOCUMENT ID	TECN	COMMENT
\sim 0.14 OUR ESTIMATE			
0.12 ± 0.06	CUTKOSKY		$\pi N \rightarrow \pi N$
0.14 ± 0.02	HOEHLER	79 IPWA	$\pi N \rightarrow \pi N$
0.16 ± 0.04	HENDRY	78 MPW	$A \pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{T}$	DOCUMENT ID		
+0.052	BAKER	79 DPW.	$A \pi^- \rho \rightarrow n\eta$
$(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total in } N\pi} \rightarrow \frac{VALUE}{-0.02}$ -0.02	DOCUMENT ID BELL SAXON	83 DPW	$\begin{array}{ccc} A & \pi^- p \to \Lambda K^0 \\ A & \pi^- p \to \Lambda K^0 \end{array}$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$N(2190) \rightarrow \Sigma K$		$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
	DOCUMENT ID	TECN	
• • We do not use the follo			
0.014 to 0.019	¹ DEANS	75 DPW	$A \pi N \rightarrow \Sigma K$
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{-\text{ (large)}}$	DOCUMENT ID	TECN	

N(2190) PHOTON DECAY AMPLITUDES

For the definition of the $\gamma\,{\it N}$ decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$N(2190) \rightarrow \rho \gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV-1/2)	DOCUMENT ID	TECN	COMMENT
• • We do not use the follow	ving data for average	s, fits, limits,	etc. • • •
-0.055	CRAWFORD	80 DPWA	$\gamma N \rightarrow \pi N$
-0.030	BARBOUR	78 DPWA	$\gamma N \rightarrow \pi N$

$N(2190) \rightarrow p\gamma$, helicity-3/2 amplitude $A_{3/2}$

VALUE (GeV-1/2)	DOCUMENT ID	TECN	COMMENT	
• • • We do not use the follow	wing data for average	s, fits, limits	, etc. • • •	
0.081	CRAWFORD	80 DPWA	$\lambda \gamma N \rightarrow \pi N$	
+0.180	BARBOUR	78 DPW/	$\sim N \rightarrow \pi N$	

$N(2190) \rightarrow n\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GEV -/-)	DOCUMENT ID	/ ECN	COMMENT	_
• • • We do not use the	following data for averages, t	fits, limits,	etc. • • •	
-0.042	CRAWFORD 86	0 DPWA	$\gamma N \rightarrow \pi N$	
-0.085	BARBOUR 7	8 DPWA	$\gamma N \rightarrow \pi N$	

$N(2190) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

14(2230) 17 /, Helle	icy 5/2 dimplicade /13/2	4	
VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN COMMENT
ullet $ullet$ We do not use the	following data for averages	s, fit:	s, limits, etc. • • •
-0.126	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$
+0.007	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$

$N(2190) \gamma p \rightarrow \Lambda K^{+} AMPLITUDES$

For definitions, see Sec. IV of the Note on N and Δ Resonances preceding the N(1440).

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } p \gamma \rightarrow$	$N(2190) \rightarrow \Lambda K^+$	$(E_{4-}$ amplitude)
VALUE (units 10 ⁻³)		<u>CN</u>
• • • We do not use the fo	llowing data for averages, fits, li	mits, etc. • • •
2.04	TANABE 89 DF	PWA
1/		

2.04	TANABL	DI WA	
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } p \gamma \rightarrow$	$N(2190) \rightarrow \Lambda K^+$		(M ₄ amplitude)
VALUE (units 10 ⁻³)	DOCUMENT ID	TECN	
• • • We do not use the follo	wing data for averages,	fits, limits, etc.	
-5.78	TANABE 8	9 DPWA	

-3.70	TANABL	09	DF WA	
$p\gamma \rightarrow N(2190) \rightarrow \Lambda F$	C^+ phase angle θ			$(E_{4-}$ amplitude)
VALUE (degrees)	DOCUMENT ID		TECN	
• • • We do not use the fo	llowing data for average	s, fit	s, limits, et	C. • • •
-27.5	TANABE	89	DPWA	

N(2190) FOOTNOTES

¹ The range given for DEANS 75 is from the four best solutions. Disagrees with π^+ $p \rightarrow$ $\Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV.

Baryon Full Listings

N(2190), N(2200), N(2220)

N(2190) REFERENCES

For early references, see Physics Letters 111B (1982).

TANABE	89	PR C39 741	+ Kohno, Bennhold	(MANZ)
Also	89	NC 102A 193	Kohno, Tanabe, Bennhold	(MANZ)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
Also	84B	PRL 52 2122	Manley	(VPI)
BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Lintern+	(RL) IJP
CRAWFORD	80	Toronto Conf. 107	,	(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Aiso	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
SAXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
HENDRY	78	PRL 41 222		(IND, LBL) IJP
Also	81	ANP 136 1	Hendry	(IND)
WINNIK	77	NP B128 66	+ Toaff, Revel, Goldberg, Berny	(ĤAIF) I
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ÀLAH) IJP

$N(2200) D_{15}$

VALUE (MeV)

 $N\pi$

-0.03

-0.05

 $360\pm80\,$

 $I(J^P) = \frac{1}{2}(\frac{5}{2})$ Status: **

TECN COMMENT

83 DPWA $\pi^- p \rightarrow \Lambda K_0^0$

80 DPWA $\pi^- p \rightarrow \Lambda K^0$

80 IPWA $\pi N \rightarrow \pi N$

OMITTED FROM SUMMARY TABLE

The mass is not well determined. A few early results have been omitted.

	N(2200) MAS	ŝS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1900	BELL	83	DPWA	$\pi^- p \rightarrow \Lambda K^0$
2180 ± 80	CUTKOSKY	80		$\pi N \rightarrow \pi N$
1920	SAXON	80	DPWA	$\pi^- p \rightarrow \Lambda K^0$
2228 ± 30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
	N(2200) WID	TH		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
130	BELL	83	DPWA	$\pi^- p \rightarrow \Lambda K^0$
400 ± 100	CUTKOSKY			$\pi N \rightarrow \pi N$
220	SAXON			$\pi^- p \rightarrow \Lambda K^0$
310 ± 50	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
	N(2200) POLE PO	SIT	ION	
REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2100 ± 60	CUTKOSKY		IPWA	

CUTKOSKY N(2200) ELASTIC POLE RESIDUE

DOCUMENT ID

REAL PART VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
0±17	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART VALUE (MeV) -20±10	DOCUMENT ID CUTKOSKY 80	TECN IPWA	$\frac{COMMENT}{\pi \ N \ \longrightarrow \ \pi \ N}$

N(2200) DECAY MODES

Γ ₃ Λ <i>K</i>				
N(2200) BRANCHIN	G R	ATIOS	
$\Gamma(N\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ_1/Γ
0.10±0.03 0.07±0.02	CUTKOSKY HOEHLER	80	IPWA	$ \begin{array}{ccc} \pi N \to & \pi N \\ \pi N \to & \pi N \end{array} $
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$				$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
<u>VALUE</u> 0.066	BAKER			$\frac{COMMENT}{\pi^- \rho \rightarrow n\eta}$
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$	$N(2200) \rightarrow \Lambda K$ DOCUMENT ID		TECN	$\frac{(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma}{COMMENT}$

BELL

SAXON

N(2200) REFERENCES

LL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Lintern+	
TKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMU.
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU.
XON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL,
KER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans-	(F
EHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	ίκ
Also	80	Toronto Conf. 3	Koch	(H

$N(2220) H_{19}$

 $500\pm150\,$

 365 ± 30 450 ± 150 $I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

N(2220) MA	SS		
DOCUMENT ID		TECN	COMMENT
-	80	ΙΡ\Λ/Δ	± N → ± N
lowing data for average	s, fit	s, limits,	etc. • • •
BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
	TE CUTKOSKY HOEHLER HENDRY	TE CUTKOSKY 80 HOEHLER 79 HENDRY 78 lowing data for averages, fit	TE CUTKOSKY 80 IPWA HOEHLER 79 IPWA HENDRY 78 MPWA lowing data for averages, fits, limits,

-			IPWA		
			IPWA		
н	ENDRY	18	MPWA	π IV —	πIV

N(2220) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2160 ± 80	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
-2 × IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
480 ± 100	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

N(2220) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
32 ± 20	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
-32 ± 20	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

N(2220) DECAY MODES

N	Mode	Fraction (Γ_i/Γ)
Γ_1 Λ	V π	~ 18 %
Γ ₂ Λ	Vη	~ 0.5 %
Γ ₃ Λ	NK	~ 0.2 %

The above branching fractions are our estimates, not fits or averages. N(2220) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
\sim 0.18 OUR ESTIMATE				
0.15 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.18 ± 0.015	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
0.12 ± 0.04	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi \to VALUE$	$N(2220) \rightarrow N\eta$ DOCUMENT ID		<u>TECN</u>	$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
0.034	BAKER	79	DPWA	$\pi^- p \rightarrow n\eta$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$	$N(2220) \rightarrow \Lambda K$ DOCUMENT ID		<u>TECN</u>	$(\Gamma_1\Gamma_3)^{1/2}/\Gamma$
not required	BELL	83	DPWA	$\pi^- \rho \rightarrow \Lambda K^0$
not seen	SAXON	80		$\pi^- p \rightarrow \Lambda K^0$

N(2220), N(2250), N(2600), N(2700)

N(2220) REFERENCES

For early references, see Physics Letters 111B (1982).

BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Lintern+	(RL) IJP
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
SAXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
HENDRY	78	PRL 41 222		(INĎ, LBL) IJP
Also	81	ANP 136 1	Hendry	(IND)

$N(2250) G_{19}$

REAL PART

 $I(J^P) = \frac{1}{2}(\frac{9}{2}^-)$ Status: ***

	N(2250) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2250 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2268± 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
2200 ± 100	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$

N(2250) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 500 OUR ESTIMATE	Our best guess is 300	Me	V	
480 ± 120	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
300 ± 40	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
350 ± 100	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$

N(2250) POLE POSITION

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2150 ± 50	CUTKOSKY 80) IPWA	$\pi N \rightarrow \pi N$
-2 × IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
360 ± 100	CUTKOSKY 86) IPWA	$\pi N \rightarrow \pi N$

N(2250) ELASTIC POLE RESIDUE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
13±7	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
MAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
-15±6	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

N(2250) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
Γ_1	Nπ	~ 10 %
Γ_2	$N\eta$	\sim 2 %
Γ3	Λ <i>K</i>	\sim 0.3 %
	The above branching fractions are our	estimates, not fits or averages.

N(2250) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$			Γ_1/Γ
VALUE	DOCUMENT ID	TECN	COMMENT
~ 0.10 OUR ESTIMATE			
0.10 ± 0.02	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
0.10 ± 0.02	HOEHLER 79	IPWA	$\pi N \rightarrow \pi N$
0.09 ± 0.02	HENDRY 78	MPWA	$\pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{-0.043}$	DOCUMENT ID		$\frac{(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma}{\frac{COMMENT}{\pi^-\rho\rightarrown\eta}}$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{-0.02}$ not seen	$N(2250) \rightarrow \Lambda K$ DOCUMENT ID BELL SAXON 80		$\frac{\left(\Gamma_{1}\Gamma_{3}\right)^{\frac{1}{2}}/\Gamma}{\frac{COMMENT}{\pi^{-}\rho\rightarrow~\Lambda~K^{0}}}$

N(2250) REFERENCES

BELL	83	NP B222 389	+Blissett, Broome, Daley, Hart, Lintern+	(RL) IJP
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
SAXON	80	NP B162 522	+Baker, Bell, Blissett, Bloodworth+	(RHEL, BRIS) IJP
BAKER	79	NP B156 93	+Brown, Clark, Davies, Depagter, Evans+	(RHEL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
HENDRY	78	PRL 41 222		(INĎ, LBL) IJP
Also	81	ANP 136 1	Hendry	(IND)

$N(2600) I_{1,11}$

 $I(J^P) = \frac{1}{2}(\frac{11}{2}^-)$ Status: ***

N(2600) MASS						
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
2580 to 2700 OUR ESTIMATE						
2577 ± 50	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$		
2700 ± 100	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$		

N(2600) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
>300 OUR ESTIMATE Our	best guess is 400 MeV.		
400 ± 100	HOEHLER 79	IPWA	$\pi N \rightarrow \pi N$
900 ± 100	HENDRY 78	MPWA	$\pi N \rightarrow \pi N$

N(2600) DECAY MODES

	Mode	Fraction (Γ_i/Γ)		
$\overline{\Gamma_1}$	Νπ	~ 5 %		

N(2600) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMEN	IT	
\sim 0.05 OUR ESTIMATE						
0.05 ± 0.01	HOEHLER	79	IPWA	$\pi N \rightarrow$	π N	
0.08 ± 0.02	HENDRY	78	MPWA	$\pi N \rightarrow$	πN	

N(2600) REFERENCES

HUEHLER	79	PDA1 12-1	+Kaiser, Koch, Pietarinen	(KARL)IJI
Also	80	Toronto Conf. 3	Koch	(KARL) IJE
HENDRY	78	PRL 41 222		(IND, LBL) IJF
Also	81	ANP 136 1	Hendry	(IND)

$N(2700) K_{1,13}$

 $I(J^P) = \frac{1}{2}(\frac{13}{2}^+)$ Status: **

OMITTED FROM SUMMARY TABLE

	N(2700) MAS	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2612± 45	HOEHLER	79	IPWA	$\pi N \rightarrow \pi \Lambda$
3000 ± 100	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
	N(2700) WID	ТН		****
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
350 ± 50	HOEHLER	79	IPWA	$\pi N \rightarrow \pi \Lambda$
900±150	HENDRY	78	MPWA	$\pi N \rightarrow \pi \Lambda$
	N(2700) DECAY N	4OE	DES	
Mode				
Γ ₁ Ν π				

N(2700) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.04 ± 0.01	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
0.07 ± 0.02	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	

 $N\pi$

Baryon Full Listings

N(2700), $N(\sim 3000)$, $\Delta(1232)$

N(2700) REFERENCES

 HOEHLER
 79
 PDAT 12-1
 +Kaiser, Koch, Pietarinen
 (KARL) IJP

 Also
 80
 Toronto Conf. 3
 Koch
 (KARL) IJP

 HENDRY
 78
 PRL 41 222
 (INDL LBL) IJP

 Also
 81
 ANP 136 1
 Hendry
 (INDL LBL) IJP

$N(\sim 3000 \; { m Region})$ Partial-Wave Analyses

OMITTED FROM SUMMARY TABLE

We list here miscellaneous high-mass candidates for isospin-1/2 resonances found in partial-wave analyses.

Our 1982 edition had an N(3245), an N(3690), and an N(3755), each a narrow peak seen in a production experiment. Since nothing has been heard from them since the 1960's, we declare them to be dead. There was also an N(3030), deduced from total cross-section and 180° elastic cross-section measurements; it is the KOCH 80 $L_{1.15}$ state below.

$N(\sim 3000)$ MASS VALUE (MeV) DOCUMENT ID TECN COMMENT 2600 80 IPWA $\pi N \rightarrow \pi N D_{13}$ 3100 KOCH 80 IPWA $\pi N \rightarrow \pi N L_{1,15}$ wave 3500 косн 80 IPWA $\pi N ightarrow \pi N \ M_{1,17}$ wave 3500 to 4000 80 IPWA $\pi \, {\it N} \, ightarrow \, \pi \, {\it N} \, \, {\it N}_{1,19}$ wave KOCH 3500 ± 200 HENDRY 78 MPWA $\pi N \rightarrow \pi N L_{1.15}$ wave 78 MPWA $\pi \, {\it N} \, ightarrow \, \pi \, {\it N} \, \, M_{1,17}$ wave 3800 ± 200 HENDRY 78 MPWA $\pi N \rightarrow \pi N N_{1,19}$ wave 4100 ± 200 HENDRY $N(\sim 3000)$ WIDTH DOCUMENT ID TECN COMMENT VALUE (MeV) 78 MPWA $\pi N \rightarrow \pi N L_{1.15}$ wave HENDRY 1300 ± 200 78 MPWA $\pi N \rightarrow \pi N M_{1,17}$ wave 1600 ± 200 HENDRY 78 MPWA π N \rightarrow π N N_{1.19} wave 1900 ± 300 HENDRY N(~ 3000) DECAY MODES Mode

N(~ 3000) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.055 ± 0.02	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	L _{1,15} wave
0.040 ± 0.015	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	$M_{1.17}$ wave
0.030 ± 0.015	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	$N_{1,19}$ wave

$N(\sim 3000)$ REFERENCES

косн	80	Toronto Conf.	3	(KARL) IJP
HENDRY	78	PRL 41 222		(IND, LBL) IJP
Also	81	ANP 136 1	Hendry	(IND) IJP

Δ BARYONS

(S = 0, I = 3/2)

 $\Delta^{++}=uuu$, $\Delta^{+}=uud$, $\Delta^{0}=udd$, $\Delta^{-}=ddd$

 $\Delta(1232) P_{33}$

 1233.8 ± 0.2

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$
 Status: ***

 $\pi N \rightarrow \pi N 70-370$ MeV

Most of the results published before 1977 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B). In addition, results in this region from production experiments, which used to be listed separately as the next entry, have been entirely omitted. They too may be found in our 1982 edition.

A/1000 MACCEC

	Δ(1232) MAS	5E5		
MIXED CHARGES	DOCUMENT ID		TECN	COMMENT
1230 to 1234 OUR ESTIMAT	-			
1232±3	CUTKOSKY			$\pi N \rightarrow \pi N$
1233 ± 2	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$\Delta(1232)^{++}$ MASS				
VALUE (MeV)	DOCUMENT ID		TEÇN	COMMENT
1230.9 ± 0.3	KOCH	80B	IPWA	$\pi N \rightarrow \pi N$
1230.6 ± 0.2	ZIDELL	80	DPWA	$\pi N \rightarrow \pi N 0-350 \text{ MeV}$
1231.1 ± 0.2	PEDRONI	78		π N → π N 70-370 MeV
Δ(1232) ⁺ MASS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1234.9 ± 1.4	MIROSHNIC	79		Fit photoproduction
• • We do not use the foll	owing data for average:	, fits	, limits,	etc. • • •
1231.6	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1231.2	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1231.8	BERENDS	75	IPWA	$\gamma p \rightarrow \pi N$
$\Delta(1232)^0$ MASS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1233.6±0.5	косн	80B	IPWA	$\pi N \rightarrow \pi N$
1232.5 ± 0.3	ZIDELL	80	DPWA	$\pi N \rightarrow \pi N 0-350 \text{ MeV}$

Δ^0 - Δ^{++} MASS DIFFERENCE

PEDRONI

VALUE (MeV)	DOCUMENT ID	COMMENT
ullet $ullet$ We do not use the following	data for averages, fit	s, limits, etc. • • •
2.7 ± 0.3	¹ PEDRONI 78	See the masses

$\Delta(1232)$ WIDTHS

MIXED CHARGES VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
110 to 120 OUR ESTIMATE				COMMETA
120±5	CUTKOSKY			$\pi N \rightarrow \pi N$
116 ± 5	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
Δ (1232) ⁺⁺ WIDTH				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
111.0±1.0	косн	80B	IPWA	$\pi N \rightarrow \pi N$
113.2±0.3	ZIDELL	80	DPWA	$\pi N \rightarrow \pi N 0-350 \text{ MeV}$
111.3 ± 0.5	PEDRONI	78		π N → π N 70-370 MeV
$\Delta(1232)^+$ WIDTH				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
131.1 ± 2.4	MIROSHNIC	79		Fit photoproduction
• • • We do not use the follow	owing data for average	s, fits	, limits,	etc. • • •
111.2	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
111.0	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
$\Delta(1232)^0$ WIDTH				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
113.0±1.5	косн	808	IPWA	$\pi N \rightarrow \pi N$
121.3±0.4	ZIDELL	80	DPWA	$\pi N \rightarrow \pi N 0-350 \text{ MeV}$

Δ^0 - Δ^{++} WIDTH DIFFERENCE

VALUE (MeV)	DOCUMENT ID	COMMENT
• • We do not use the follow	ving data for averages, t	its, limits, etc. • • •
6.6 ± 1.0	PEDRONI 7	B See the widths

Δ(1232) POLE POSITIONS

REAL PART, MIXED CHARGES

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
1210 ± 1	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi$	· N
\bullet \bullet We do not use the following	data for averages	, fits	, limits,	etc. • •	•
1210	ARNIDT	85	ΠΡΙΛ/Δ	- N → -	- N

-IMAGINARY PART, MIXED CHARGES

VALUE (MeV)	DOCUMENT ID	TE	CN C	COMMENT
50 ± 1	CUTKOSKY	80 IP	WA 1	$\tau N \rightarrow \pi N$
• • We do not use the following	ig data for averages	, fits, li	mits, e	tc. • • •
50	ARNDT	85 DF	WA 1	$\tau N \rightarrow \pi N$

REAL PART, $\Delta(1232)^{++}$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1210.70±0.16	² ZIDELL	80	DPWA	π N → π N 0-350 Me\
1209.6 ±0.5	³ VASAN	76B		Fit to CARTER 73
• • • We do not use the following	ig data for averag	es, fits	s, limits,	etc. • • •
1210.4 ±0.17	⁴ ZIDELL	78		
1210.5 to 1210.8	⁵ VASAN	76B		Fit to CARTER 73

-IMAGINARY PART, Δ(1232)++

VALUE (MeV)	DOCUMENT II		TECN	COMMENT
49.61 ±0.12	² ZIDELL	80	DPWA	$\pi N \rightarrow \pi N 0-350 \text{ MeV}$
50.4 ± 0.5	³ VASAN	76B		Fit to CARTER 73
• • • We do not use the	e following data for averag	ges, fits,	limits,	etc. • • •
49.745 ± 0.14	⁴ ZIDELL	78		
49.9 to 50.0	5 VASAN	76B		Fit to CARTER 73

REAL PART, Δ(1232)+

VALUE (MeV)	DOCUMENT ID	COMMENT
1206.9 \pm 0.9 to 1210.5 \pm 1.8	MIROSHNIC 79	Fit photoproduction
1208.0 ± 2.0	CAMPBELL 76	Fit photoproduction

-IMAGINARY PART A(1232)+

	.,	
VALUE (MeV)	DOCUMENT ID	COMMENT
55.6 ± 1.0 to 58.3 ± 1.1	MIROSHNIC 79	Fit photoproduction
53.0 + 2.0	CAMPRELL 76	Fit photoproduction

REAL PART, $\Delta(1232)^0$

VALUE (MeV)

1210.30 ± 0.36	² ZIDELL	80 DP	WA $\pi N \rightarrow \pi N 0-350$ i	v
1210.75 ± 0.6	³ VASAN	76B	Fit to CARTER 73	
• • • We do not use the fo	ollowing data for avera	iges, fits, lin	nits, etc. • • •	
1209.5 ± 0.41	4 ZIDELL	78		
1210.2	5 1/46 4 81	760	Elt to CARTER 73	

DOCUMENT ID

______TECN___COMMENT

-IMAGINARY PART, A(1232)0

-IMAGINAKT FAKT, <u>D</u> (1232)					
VALUE (MeV)	DOCUMENT	ID TE	CN COMMENT		
54.0 ±0.26	² ZIDELL	80 DF	PWA $\pi N \rightarrow \pi N 0-350 \text{ MeV}$		
52.8 ±0.6	³ VASAN	76B	Fit to CARTER 73		
• • We do not use the follo	wing data for avera	iges, fits, li	mits, etc. • • •		
52.45 ± 0.2	4 ZIDELL	78			
52.9 to 53.1	⁵ VASAN	76B	Fit to CARTER 73		

Δ(1232) ELASTIC POLE RESIDUES

ABSOLUTE VALUE, MIXED CHARGES

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
53 ± 2	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

I HASE, MINED CHANGES			
VALUE	DOCUMENT ID	TECN	COMMENT
-0.82 ± 0.02	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

ABSOLUTE VALUE, $\Delta(1232)^{++}$

VALUE (MeV)	DOCUMENT ID	COMMENT
• • • We do not use the following	data for averages, f	its, limits, etc. • • •
52.4 to 53.2		BB Fit to CARTER 73
52.1 to 52.4	⁵ VASAN 76	58 Fit to CARTER 73

PHASE, Δ(1232) [⊤] [⊤]			
VALUE	DOCUMENT	ID COMMENT	
• • • We do not use the fo	ollowing data for avera	ages, fits, limits, etc. • • •	
-0.822 to -0.833	3 VASAN	76B Fit to CARTER 73	
-0.823 to -0.830	⁵ VASAN	76B Fit to CARTER 73	

ABSOLUTE VALUE, Δ(1232)0

Į.	ALUE (MeV)	DOCUMENT ID		COMMENT
•	• • We do not use the following	data for averages	, fits	, limits, etc. • • •
5	4.8 to 55.0		76в	Fit to CARTER 73
5	5.2 to 55.3	⁵ VASAN	76B	Fit to CARTER 73

PHASE, $\Delta(1232)^0$

VALUE	DOCUMENT ID	COMMENT
• • We do not use the following	g data for average	es, fits, limits, etc. • • •
-0.840 to -0.847	3 VASAN	76B Fit to CARTER 73
-0.848 to -0.856	⁵ VASAN	76B Fit to CARTER 73

Δ(1232) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ_1	Nπ	99.4 %	
Γ_2	$N\gamma$	0.56-0.66 %	
Γ3	$N\gamma$, helicity=1/2		
Γ_4	$N\gamma$, helicity=3/2		

The above branching fractions are our estimates, not fits or averages.

Δ(1232) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.994 OUR ESTIMATE					
1.0	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
1.0	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	

Δ(1232) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$\Delta(1232) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.145 ± 0.015	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.138 ± 0.004	AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$
-0.147 ± 0.001	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.145 ± 0.001	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.136 ± 0.006	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.142 ± 0.007	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.141 ± 0.004	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the foll	owing data for average	s, fit	s, limits,	etc. • • •
-0.140	6 NOFILE	78		~ N N

$\Delta(1232) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.263 ± 0.026	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.259 ± 0.006	IL AWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.264 ± 0.002	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.261 ± 0.002	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.247 ± 0.010	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.271 ± 0.010	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.256 ± 0.003	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the following	g data for average	es, fit	s, limits,	etc. • • •
-0.247	6 NOELLE	78		$\gamma N \rightarrow \pi N$

$\Delta(1232) \rightarrow N\gamma$, E_2/M_1 ratio

	DOCOMENT 10	1001	COMMENT
• • • We do not use the following	data for averag	es, fits, limits,	etc. • • •
-0.015 ± 0.002	DAVIDSON	86 FIT	$\gamma N \rightarrow \pi N$
-0.013 ± 0.005	PDG	86 FIT	$\gamma N \rightarrow \pi N$
$+0.037 \pm 0.004$	TANABE	85 FIT	$\gamma N \rightarrow \pi N$

DOCUMENT ID

Δ (1232) PHASE OF M1+(3/2) PHOTOPRODUCTION MULTIPOLE AMPLITUDE POLE RESIDUE

Information on the phase (and magnitude) of the M1+(3/2) multipole amplitude pole residue is contained implicitly in the paper of MIROSHNICHENKO 79. They find that the phase is consistent with being equal to that of the elastic pole residue.

Δ(1232)⁺⁺ MAGNETIC MOMENT

See also HELLER 87.

VALUE (n.m.)	DOCUMENT ID	COLUMNIT
• • • We do not use the follow		COMMENT
+4.7 to +6.7	-	78 $\pi^+ p \rightarrow \pi^+ p \gamma$

Baryon Full Listings

$\Delta(1232), \Delta(1550), \Delta(1600)$

Δ(1232) FOOTNOTES

- 1 Using $\,\pi^\pm\,\textit{d}\,$ as well, PEDRONI 78 determine (M $^--M^{++})+(M^0-M^+)/3=4.6\pm0.2$ MeV. 2 The accuracy claimed by ZIDELL 80 on the real part is considerably better than is allowed
- by uncertainties in the beam momentum.
- ³ This VASAN 76B value is from fits to the coulomb-barrier-corrected CARTER 73 phase shift.
 4 ZIDELL 78 fits the nuclear phase shift without coulomb barrier corrections.
- ⁵ This VASAN 76B value is from fits to the CARTER 73 nuclear phase shift without coulomb barrier corrections.
- ⁶ Converted to our conventions using M = 1232 MeV, $\Gamma = 110$ MeV from NOELLE 78.

Δ(1232) REFERENCES

For early references, see Physics Letters 111B (1982).

HELLER DAVIDSON	87 86	PR C35 718 PRL 56 804	+Kumano, Martinez, Moniz +Mukhopadhyay, Wittman	(LANL, MIT, ILL)
PDG	86	PL 170B	Aguilar-Benitez, Porter+	(RPI)
ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
TANABE	85	PR C31 1876	+Ohta	(TOKY)
CRAWFORD	83	NP B211 1	+Morton	(GLAS)
AWAJI	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fujii	(TOKY)
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL)
KOCH	80B	NP A336 331	+Pietarinen	(KARL) UP
ZIDELL	80	PR D21 1255	+Arndt, Roper	(VPI) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
MIROSHNIC	79	SJNP 29 94	Miroshnichenko, Nikiforov, Sanin+	(KHAR) IJP
		Translated from YAF 29		
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
NEFKENS	78	PR D18 3911	+Arman, Ballagh, Glodis, Haddock -	(UCLA, CATH) IJP
NOELLE	78	PTP 60 778		(NAGO)
PEDRONI	78	NP A300 321	-Gabathuler, Domingo, Hirt+	(SIN, ISNG, KARL+) IJP
ZIDELL	78	LNC 21 140	+Arndt, Roper	(VPI) UP
CAMPBELL	76	PR D14 2431	+Shaw, Ball	(BOIS, UCI, UTAH) IJP
FELLER	76	NP B104 219	+Fukushima, Horikawa, Kajikawa+	(NAGO, OSAK) IJP
VASAN	76B	NP B106 535	,	(CMU) IJP
Also	76	NP B106 526	Vasan	(CMU) IJP
BERENDS	75	NP B84 342	+Donnachie	(LEID, MCHS)
CARTER	73	NP B58 378	+Bugg, Carter	(CAVE, LOQM) UP

$\Delta(1550) P_{31}$

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$$
 Status: *

OMITTED FROM SUMMARY TABLE

Not seen in $\pi N \rightarrow \pi N$ analyses, and its existence is thus doubtful

Δ(1550) MA	SS		
DOCUMENT ID		TECN	COMMENT
BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
$\Delta(1550)$ WID	TH		
• /	TH	TECN	COMMENT
Δ(1550) WID DOCUMENT ID BARNHAM	TH 80	TECN IPWA	$\frac{COMMENT}{\pi N \rightarrow N \pi \pi}$
DOCUMENT ID	80	IPWA	
	DOCUMENT ID BARNHAM CRAWFORD	BARNHAM 80 CRAWFORD 80	DOCUMENT ID TECN BARNHAM 80 IPWA CRAWFORD 80 DPWA

VALUE (MeV)
1554 or 1553
0 IMACINIADV DADT

	DOCUMENT ID		TECN	COMME	VT
1	LONGACRE	77	IPWA	π N →	Νππ

–2×IMAGINARY PART VALUE (MeV)

105 or 104

DOCUMENT ID TECN COMMENT ¹ LONGACRE 77 IPWA $\pi N \rightarrow N \pi \pi$

Δ(1550) DECAY MODES

Γ_1	$N\pi$
Γ_2	$\Delta(1232)\pi$, P-wave
$\overline{\Gamma_3}$	$N\rho$, $S=3/2$, P-way
Γ.	N ≈ helicity=1/2

Mode

Δ(1550) BRANCHING RATIOS

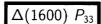
Note: Signs of couplings from $\pi\,{\it N}\,\to\,{\it N}\,\pi\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } \mathbf{N}\pi \rightarrow VALUE}$	$\Delta(1550) \rightarrow \Delta(1232)$	2) π , <i>P</i> -wave $(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$	
0.13±0.05 -0.11		1 PWA $\pi N \rightarrow N \pi \pi$ 1 PWA $\pi N \rightarrow N \pi \pi$	-
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(1550) \rightarrow N \rho, S =$	=3/2, P -wave $(\Gamma_1\Gamma_3)^{1/2}/\Gamma$	
0.17 ± 0.05 - 0.08	BARNHAM 80		-

Δ(1550) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$\Delta(1550) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}


VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
0.016 ± 0.016 0.013	CRAWFORD			
0.013	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$

Δ(1550) FOOTNOTES

¹ LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

Δ(1550) REFERENCES

CRAWFORD	83	NP B211 1	+Morton	(GLAS)
BARNHAM	80	NP B168 243	+Glickman, Mier Jedrzejowicz+	(LOIC)
CRAWFORD LONGACRE Also	80 77 76	Toronto Conf. 107 NP B122 493 NP B108 365	+Dolbeau Dolbeau, Triantis, Neveu, Cadiet	(GLAS) (SACL) IJP (SACL) IJP

REAL PART

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$
 Status: **

OMITTED FROM SUMMARY TABLE

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

The various analyses are not in good agreement.

	$\Delta(1600)$ MAS	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1690	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
1600 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1522 ± 13	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
1560	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1640	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
	Δ(1600) WID	ТН		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
	DADAULANA		101474	
	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
250	CUTKOSKY	80	IPWA	$\pi N \rightarrow N \pi \pi$ $\pi N \rightarrow \pi N$
250 300 ± 100				$\pi N \rightarrow \pi N$
250 300±100 220± 40 180	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$ $\pi N \rightarrow \pi N$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1581	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
1550 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1609 or 1610	³ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1541 or 1542	$^{ m 1}$ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
300	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
200 ± 60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
323 or 325	³ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
178 or 178	1 LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1600) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID	TEÇN	COMMENT
-15 ± 6	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
8±8	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

Δ(1600) DECAY MODES

Mode $N\pi$ ΣK $\Delta(1232)\pi$, P-wave $\Delta(1232)\pi$, F-wave $N\rho$, S=1/2, P-wave Γ_5 $N\rho$, S=3/2, P-wave Γ_7 $N\rho$, S=3/2, F-wave $N(1440)\pi$, P-wave Γ8 $N\gamma$, helicity=1/2 $N\gamma$, helicity=3/2

Δ(1600) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.18 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.21 ± 0.06	HOEHLER	79	1PWA	$\pi N \rightarrow \pi N$
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{0.006 \text{ to } 0.042}$	$\Delta(1600) \rightarrow \sum K$ $\frac{DOCUMENT\ ID}{4\ DEANS}$		<u>TECN</u> DPWA	$\frac{(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma}{\sum_{\kappa} N \to \Sigma \kappa}$

Note: Signs of couplings from $\pi N \rightarrow N \pi \pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{ ext{total}}$ in $N\pi ightarrow$	DOCUMENT ID	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
+ (large)		IPWA $\pi N \rightarrow N \pi \pi$
$+0.24 \pm 0.05$		IPWA $\pi N \rightarrow N \pi \pi$
+0.34	1,6 LONGACRE 77	IPWA $\pi N \rightarrow N \pi \pi$
+0.30	² LONGACRE 75	IPWA $\pi N \rightarrow N \pi \pi$
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{-0.07}$	$\frac{\Delta(1600) \rightarrow \Delta(1232)}{\frac{DOCUMENT ID}{1.6 \text{ LONGACRE}}}$) π , F-wave $(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$ IPWA $\pi N \rightarrow N \pi \pi$
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{+0.10}$	$\Delta(1600) \rightarrow N\rho, S = \frac{DOCUMENT ID}{1.6 \text{ LONGACRE}}$	1/2, <i>P</i> -wave $(\Gamma_1\Gamma_5)^{1/2}/\Gamma$ 1PWA $\pi N \rightarrow N \pi \pi$
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\rm total} \ {\rm in} \ N\pi \to \frac{VALUE}{+0.10}$		$3/2$, <i>P</i> -wave $(\Gamma_1\Gamma_6)^{1/2}/\Gamma$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{+ (\text{large})} + 0.23 \pm 0.04$	Δ(1600) → N (1440) 5 MANLEY 84 BARNHAM 80) π , P -wave $(\Gamma_1\Gamma_8)^{\frac{1}{2}}/\Gamma$. TECN COMMENT IPWA $\pi N \rightarrow N \pi \pi$ IPWA $\pi N \rightarrow N \pi \pi$

Δ(1600) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$\Delta(1600) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.039 ± 0.030	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.046 ± 0.013	AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$
0.005 ± 0.020	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
0.000 ± 0.030	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
0.0 ± 0.020	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
-0.200	⁷ WADA	84	DPWA	Compton scattering

$\Delta(1600) \rightarrow N\gamma$, helicity-3/2 amplitude $A_{3/2}$

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.013 ± 0.014	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.025 ± 0.031	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.009 ± 0.020	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
0.000 ± 0.045	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
0.0 ±0.015	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
0.023	WADA	84	DPWA	Compton scattering

Δ(1600) FOOTNOTES

Δ(1600) REFERENCES

For early references, see Physics Letters 111B (1982).

MANLEY 84 PR D30 904 + Arndt. Goradia, Teplitz (VPI WADA 84 NP B247 313 + Egawa, Ilmanishi, Ishii, Kato, Ukai+ (INUS CRAWFORD 83 NP B211 1 + Morton (GLAS))))
CRAWFORD 83 NP B211 1 +Morton (GLAS))))
)))
))
AWAJI 81 Bonn Conf. 352 +Kajikawa (NAGO)
Also 82 NP B197 365 Fu[ii, Hayashii, Iwata, Kajikawa+ (NAGO	
BARNHAM 80 NP B168 243 +Glickman, Mier-Jedrzejowicz+ (LOIC	
CRAWFORD 80 Toronto Conf. 107 (GLAS)
CUTKOSKY 80 Toronto Conf. 19 +Forsyth, Babcock, Kelly, Hendrick (CMU, LBL) IJP
Also 79 PR D20 2839 Cutkosky, Forsyth, Hendrick, Kelly (CMU, LBL) IJP
HOEHLER 79 PDAT 12-1 +Kaiser, Koch, Pietarinen (KARL) IJP
Also 80 Toronto Conf. 3 Koch (KARL) IJP
BARBOUR 78 NP B141 253 +Crawford, Parsons (GLAS)
LONGACRE 78 PR D17 1795 +Lasinski, Rosenfeld, Smadja+ (LBL, SLAC)
LONGACRE 77 NP B122 493 +Dolbeau (SACL) IJP
Also 76 NP B108 365 Dolbeau, Triantis, Neveu, Cadlet (SACL) IJP
WINNIK 77 NP B128 66 +Toaff, Revel, Goldberg, Berny (HAIF) I
FELLER 76 NP B104 219 +Fukushima, Horikawa, Kajikawa+ (NAGO. OSAK) IJP
DEANS 75 NP B96 90 +Mitchell, Montgomery+ (SFLA, ALAH	
LONGACRE 75 PL 55B 415 +Rosenfeld, Lasinski, Smadja+ (LBL, SLAC) IJP

 $\Delta(1620) S_{31}$

$$I(J^P) = \frac{3}{2}(\frac{1}{2})$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

$\Delta(1620)$ MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1600 to 1650 OUR ESTIMATE				
1620 ±20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
l610 ± 7	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the followin	g data for average	s, fit	s, limits,	etc. • • •
1620	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
1712.8± 6.0	¹ CH E W	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
1786.7± 2.0	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
1657	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1662	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1580	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1600	3 LONGACRE			$\pi N \rightarrow N \pi \pi$

$\Delta(1620)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
120 to 160 OUR ESTIMATE	Our best guess is 14	0 Me	V.	
140 ±20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
139 ±18	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the folion	wing data for average	s, fit	s, limits,	etc. • • •
120	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
228.3 ± 18.0	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$ (lower
	_			mass)
30.0 ± 6.4	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$ (higher
				mass)
161	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
180	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
120	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
150	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

 $^{^1}$ LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi\,N\,\longrightarrow\,N\,\pi\,\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

² From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix

³ LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

 $^{^4}$ The range given is from the four best solutions. DEANS 75 disagrees with $\pi^+\,\rho$ \to $\Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV. 5 MANLEY 84 considers this coupling sign to be well determined.

⁶ LONGACRE 77 considers this coupling to be well determined.

 $^{^7\,\}text{WADA}$ 84 is inconsistent with other analyses — see the Note on N and Δ Resonances.

Baryon Full Listings

$\Delta(1620), \Delta(1700)$

Δ(1620) POLE POSITION

REAL PART	DOCUMENT ID		TECN	COMMENT
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1600 ± 15	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
 • • We do not use the 	following data for averages	, fits	s, limits,	, etc. • • •
1599	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
1583 or 1583	⁴ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1575 or 1572	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY PA VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
120 + 20	CUTKOSKY	80	ΙΡ\Λ/Δ	$\pi N \rightarrow \pi N$
	following data for averages			
120	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
143 or 149	⁴ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
119 or 128	² LONGACRE	77	IDVA/A	$\pi N \rightarrow N \pi \pi$

Δ(1620) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
-5±5	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
-14 ± 3	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

Δ(1620) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
$\overline{\Gamma_1}$	Nπ	25-35 %	
Γ_2	$N\pi\pi$	65-75 %	
Γ_3	$\Delta \pi$	60-70 %	
Γ4	$\Delta(1232)\pi$, D-wave		
Γ_5	$N\rho$	10-20 %	
Γ ₆	$N\rho$, $S=1/2$, S-wave		
Γ_7	$N\rho$, $S=3/2$, D-wave		
Γ8	$N(1440)\pi$, S-wave		
Г	$N\gamma$	~ 0.03 %	
Γ ₁₀	$N\gamma$, helicity=1/2		

The above branching fractions are our estimates, not fits or averages.

Δ(1620) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.25 to 0.35 OUR ESTIMATE				
0.25 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.35 ± 0.06	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
0.60	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$ (lower mass)
0.36	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$ (higher mass)

Note: Signs of couplings from $\pi\,N\,\rightarrow\,\,N\,\pi\,\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\,\pi.$

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(1620) \rightarrow \Delta(1$	232)	π, D-v	vave $(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID			
- (large)	⁵ MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$
-0.33 ± 0.06	BARNHAM			$\pi N \rightarrow N \pi \pi$
- 0.39	^{2,6} LONGACRE		IPWA	$\pi N \rightarrow N \pi \pi$
-0.40	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\pi$ \rightarrow				
VALUE	DOCUMENT ID 5 MANLEY			
+ (large)				
$+0.40\pm0.10$	BARNHAM			
+0.08	^{2,6} LONGACRE		IPWA	$\pi N \rightarrow N \pi \pi$
+0.28	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$				
VALUE	DOCUMENT ID			
– (small)	MANLEY			
- 0.13	^{2.6} LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\rm total} \ {\rm in} \ N\pi \ ightarrow$				
VALUE	DOCUMENT ID			
0.11 ± 0.05	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1620) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$\Delta(1620) \rightarrow N\gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
0.035 ± 0.010	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.010 ± 0.015	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
-0.022 ± 0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.026 ± 0.008	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.021 ± 0.020	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
0.126 ± 0.021	TAKEDA	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.034 \pm 0.028$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
-0.005 ± 0.016	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$
ullet $ullet$ We do not use the following of	data for averages	, fits	, limits,	etc. • • •
0.066	WADA	84	DPWA	Compton scattering

Δ(1620) FOOTNOTES

- $^1\,\mathrm{CHEW}$ 80 reports two S_{31} resonances at somewhat higher masses than other analyses. Problems with this analysis are discussed in section 2.1.11 of HOEHLER 83.
- ²LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N\pi\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- ³ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix
- ⁴ LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ⁵ MANLEY 84 considers this coupling sign to be well determined.

Δ(1620) REFERENCES

For early references, see Physics Letters 111B (1982).

ARNDT	85	PR D32 1085	- Ford, Roper	(VPI)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
WADA	84	NP B247 313	+Egawa, Imanishi, Ishii, Kato, Ukai+	(INUS)
CRAWFORD	83	NP B211 1	+ Morton	(GLAS)
HOEHLER	83	Landolt-Boernstein 1/9	9B2	(KARL)
AWA JI	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Aiso	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fujii	(TOKY)
BARNHAM	80	NP B168 243	- Glickman, Mier-Jedrzejowicz +	(LOIC)
CHEW	80	Toronto Conf. 123		(LBL) IJP
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	- Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) DP
TAKEDA	80	NP B168 17	+Arai, Fujii, Ikeda, Iwasaki	(TOKY)
HOEHLER	79	PDAT 12-1	 Kaiser, Koch, Pietarinen 	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	-Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+ Lasinski, Rosenfeld, Smadja +	(LBL, SLAC)
LONGACRE	77	NP B122 493	+ Dolbeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
FELLER	76	NP B104 219	+Fukushima, Horikawa, Kajikawa+	(NAGO, OSAK) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP

$\Delta(1700) D_{33}$

VALUE (MeV)

1710 ±30

 $1718.4 + 13.1 \\
-13.0$

1680

1650

1622

1629

1600

1680

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^-)$$
 Status: ***

IPWA $\pi N \rightarrow N \pi \pi$

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

$\Delta(1700)$ MASS DOCUMENT ID TECN COMMENT 1630 to 1740 OUR ESTIMATE CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ 79 IPWA $\pi N \rightarrow \pi N$ HOEHLER \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet BARNHAM 80 IPWA $\pi N \rightarrow N \pi \pi$ $^{1}\,\mathrm{CHEW}$ 80 BPWA $\pi^+ \rho \rightarrow \pi^+ \rho$ CRAWFORD 80 DPWA $\gamma N \rightarrow \pi N$ BARBOUR DPWA $\gamma N \rightarrow \pi N$ 78 ² LONGACRE 77 IPWA $\pi N \rightarrow N \pi \pi$

$\Delta(1700)$ WIDTH

³ LONGACRE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
190 to 300 OUR ESTIMATE	Our best guess is 250	MeV.	
280 ±80	CUTKOSKY	80 IPWA	$\pi N \rightarrow \pi N$
230 ±80	HOEHLER	79 IPWA	$\pi N \rightarrow \pi N$

⁶ LONGACRE 77 considers this coupling to be well determined.

• • • We do not use the follow	wing data for average	es, fit	s, limits, etc. • • •
160	BARNHAM	80	IPWA $\pi N \rightarrow N \pi \pi$
193.3 ± 26.0	¹ CHEW	80	BPWA $\pi^+ p \rightarrow \pi^+ p$
209	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$
216	BARBOUR	78	DPWA $\gamma N \rightarrow \pi N$
200	² LONGACRE	77	IPWA $\pi N \rightarrow N \pi \pi$
240	3 LONGACRE	75	IPWA $\pi N \rightarrow N \pi \pi$

Δ(1700) POLE POSITION

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1675 ± 25	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
 • • We do not use th 	ne following data for average	s, fit	s, limits	etc. • • •
1668	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
1681 or 1672	⁴ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
1600 or 1594	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
−2 × IMAGINARY	PART			
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
220 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use th	ne following data for average	s, fit	s, limits	etc. • • •
320	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
245 or 241	⁴ LONGACRE	78	1PWA	$\pi N \rightarrow N \pi \pi$
208 or 201	² LONGACRE	77	ID\A/A	$\pi N \rightarrow N \pi \pi$

Δ(1700) ELASTIC POLE RESIDUE

REAL PART	DOCUMENT ID		TECN	COMMENT
12±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART	DOCUMENT ID		TECN	COMMENT
-4±5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Δ(1700) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
Γ ₁	Νπ	10-20 %	
Γ_2	ΣΚ		
Γ_3	$N \pi \pi$	80-90 %	
Γ4	$\Delta \pi$	50-90 %	
Γ_5	$\Delta(1232)\pi$, S-wave		
Γ6	$\Delta(1232)\pi$, <i>D</i> -wave		
Γ7	$N\rho$	<35 %	
٦ ₈	$N\rho$, $S=1/2$, D -wave		
و٦	$N\rho$, $S=3/2$, S -wave		
F ₁₀	$N\rho$, $S=3/2$, D -wave		
Γ_{11}	$N\gamma$	0.14-0.33 %	
Γ ₁₂	$N\gamma$, helicity=1/2		
Γ_{13}	$N\gamma$, helicity=3/2		

The above branching fractions are our estimates, not fits or averages.

Δ(1700) BRANCHING RATIOS

VALUE	DOCUMENT ID	1	TECN	COMMENT	
0.10 to 0.20 OUR EST	IMATE				
0.12 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
0.20 ± 0.03	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use t	he following data for averag	es, fit	s, limits,	etc. • • •	
0.16	¹ CHEW	00	D DVA/A	+ - + .	_
0.16	- CHEW	80	DPVVA	$\pi \cdot p \rightarrow \pi \cdot p$,
			DPWA		
$(\Gamma_i\Gamma_f)^{1\!\!/2}/\Gamma_{ m total}$ in N	$I\pi \rightarrow \Delta(1700) \rightarrow \Sigma K$ DOCUMENT ID	(TECN_		, 1√2) ¹ /2/
VALUE	$d\pi \rightarrow \Delta(1700) \rightarrow \Sigma K$	(<u>TECN</u>	(Г	
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{ ext{total}}$ in N	$J\pi o \Delta(1700) o \Sigma K$	es, fit	<u>TECN</u> s, limits,	(Г <u>COMMENT</u> etc. • •	

Note: Signs of couplings from π N \rightarrow N π π analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)~S_{\mbox{31}}$ coupling to $\Delta(1232)\,\pi.$

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(1700) \rightarrow \Delta(11)$	232))π, S-w	vave $(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
+	6 MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$
$+0.18 \pm 0.04$				$\pi N \rightarrow N \pi \pi$
+0.30	^{2,7} LONGACRE			
±0.24	3 LONGACRE	75	ID\A/A	- M → M

VALUE	DOCUMENT ID		π, D -ν <u>τεςν</u>	COMMENT
+	6 MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$
0.14 ± 0.04	BARNHAM		IPWA	$\pi N \rightarrow N \pi \pi$
+0.05	2,7 LONGACRE		IPWA	$\pi N \rightarrow N \pi \pi$
+0.10	³ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$				
VALUE	DOCUMENT ID			
$+0.17\pm0.05$	BARNHAM	80	IPWA	$\pi N \rightarrow N \pi \pi$
16	4 (1700)	_	a /a . c	(= =)1/2 (=
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \to VALUE}$	DOCUMENT ID		TECN	COMMENT
<u>VALUE</u> +	DOCUMENT ID MANLEY	84	TECN IPWA	$\frac{COMMENT}{\pi N \rightarrow N \pi \pi}$
<u>VALUE</u> + +0.04	DOCUMENT ID MANLEY 2,7 LONGACRE	84 77	TECN IPWA IPWA	$ \begin{array}{ccc} COMMENT \\ \pi N \to N \pi \pi \\ \pi N \to N \pi \pi \end{array} $
+	DOCUMENT ID MANLEY	84 77	TECN IPWA IPWA	$ \begin{array}{ccc} COMMENT \\ \pi N \to N \pi \pi \\ \pi N \to N \pi \pi \end{array} $
$ \begin{array}{c} + \\ + 0.04 \\ - 0.30 \end{array} $ $ (\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\begin{array}{c} \frac{DOCUMENT\ ID}{\text{MANLEY}} \\ ^{2,7}\ \text{LONGACRE} \\ ^{3}\ \text{LONGACRE} \\ \end{array}$ $\Delta(1700) \rightarrow N\rho.$	84 77 75	TECN IPWA IPWA IPWA	$\begin{array}{ccc} \underline{COMMENT} \\ \pi N \to & N \pi \pi \\ \pi N \to & N \pi \pi \\ \pi N \to & N \pi \pi \end{array}$ $- \text{wave} \qquad (\Gamma_1 \Gamma_{10})^{\frac{1}{2}} / \Gamma$
<u>VALUE</u> + + 0.04 - 0.30	DOCUMENT ID MANLEY 2,7 LONGACRE 3 LONGACRE	84 77 75	TECN IPWA IPWA IPWA	$\begin{array}{ccc} \underline{COMMENT} \\ \pi N \to & N \pi \pi \\ \pi N \to & N \pi \pi \\ \pi N \to & N \pi \pi \end{array}$ $- \text{wave} \qquad (\Gamma_1 \Gamma_{10})^{\frac{1}{2}} / \Gamma_1$

Δ(1700) PHOTON DECAY AMPLITUDES

For the definition of the $\gamma \, {\it N}$ decay amplitudes, see Sec. IV of the Note on ${\it N}$ and $\boldsymbol{\Delta}$ Resonances preceding the Baryon Listings.

$\Delta(1700) \rightarrow N\gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
0.111 ± 0.017	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.089 ± 0.033	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
0.112 ± 0.006	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.130 ± 0.006	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.123 ± 0.022	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.130\pm0.037$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
$+0.072\pm0.033$	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$

$\Delta(1700) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
0.107 ± 0.015	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.060 ± 0.015	AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$
0.047 ± 0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.050 ± 0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.102 ± 0.015	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.098\pm0.036$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
$+0.087\pm0.023$	FELLER	76	DPWA	$\gamma N \rightarrow \pi N$

Δ(1700) FOOTNOTES

Problems with CHEW 80 are discussed in section 2.1.11 of HOEHLER 83.

Problems with CHEW 80 are discussed in section 2.1.11 or HOEHLER 63. 2 LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.

³ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix

4 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

The range given is from the four best solutions. DEANS 75 disagrees with $\pi^+ p \to \Sigma^+ K^+$ data of WINNIK 77 around 1920 MeV. 6 MANLEY 84 considers this coupling sign to be well determined.

⁷ LONGACRE 77 considers this coupling to be well determined.

Δ(1700) REFERENCES

For early references, see Physics Letters 111B (1982).

ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
CRAWFORD	83	NP B211 1	+Morton	(GLAS)
HOEHLER	83	Landolt-Boernstein 1/	9B2	(KARL)
AWA JI	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fujii	(TOKY)
BARNHAM	80	NP B168 243	+Glickman, Mier-Jedrzejowicz+	`(LOIC)
CHEW	80	Toronto Conf. 123	•	(LBL) IJP
CRAWFORD	80	Toronto Conf. 107		(ĜLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
LIVANO5	80	Toronto Conf. 35	+Baton, Coutures, Kochowski, Neveu	(SACL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
LONGACRE	77	NP B122 493	+ Dolbeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
WINNIK	77	NP B128 66	+Toaff, Revel, Goldberg, Berny	(HAIF) I
FELLER	76	NP B104 219	+Fukushima, Horikawa, Kajikawa+	(NAGO, ÖSAK) IJP
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP

Baryon Full Listings $\Delta(1900), \Delta(1905)$

 $\Delta(1900) S_{31}$

 $I(J^P) = \frac{3}{2}(\frac{1}{2})$ Status: ***

Δ(1900) MASS

VALUE	(MeV)	DOCUMENT ID		TECN	COMMENT
1850	to 2000 OUR EST	IMATÉ			
1890	± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1908	±30	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • •	We do not use the	following data for average	s, fit	s, limits,	etc. • • •
1918.5	5 ± 23.0	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
1803		CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$

$\Delta(1900)$ WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
130 to 300 OUR ESTIMATE	Our best guess is 15	0 MeV.	
170 ±50	CUTKOSKY	80 IPWA	$\pi N \rightarrow \pi N$
140 ±40	HOEHLER	79 IPWA	$\pi N \rightarrow \pi N$
• • We do not use the follo	wing data for average	s, fits, limits	, etc. • • •
93.5 ± 54.0	CHEW	80 BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
137	CRAWFORD	80 DPWA	$\gamma N \rightarrow \pi N$

Δ(1900) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID	TEC	N COMMENT
1870 ± 40	CUTKOSKY 8	30 IPW	$VA \pi N \rightarrow \pi N$
• • • We do not use the fol	lowing data for averages,	fits, lim	its, etc. • • •
2029 or 2025	1 LONGACRE	78 IP V	$VA \pi N \rightarrow N \pi \pi$
O IMAGINIADY DAD	т		

-2 × IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
180 ± 50	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages, fit	s, limits,	etc. • • •
164 or 163	¹ LONGACRE 78	IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1900) ELASTIC POLE RESIDUE

R	E.	ΑL	F	Α	R	Т

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
9+4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

IMAGINARY PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
3±7	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Δ(1900) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Nπ	5-15 %
Γ_2	ΣΚ	not seen
Γ_3	$N\rho$, $S=3/2$, D-wave	
Γ_4	$N(1440) \pi$, <i>S</i> -wave	
Γ ₅	$N\gamma$, helicity=1/2	

The above branching fractions are our estimates, not fits or averages.

Δ(1900) BRANCHING RATIOS

1(1)0	0, 5.0			
$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.05 to 0.15 OUR ESTIMATE				
0.10 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.08 ± 0.04	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the followin	g data for average	es, fit	s, limits,	etc. • • •
0.28	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta$	(1900) → Σ <i>K</i>			$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
VALUE	DOCUMENT ID			
< 0.03	CANDLIN	84	DPWA	$\pi^+ \rho \rightarrow \Sigma^+ K^+$
• • • We do not use the followin	g data for averag	es, fit	s, limits,	, etc. • • •
0.076	² DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$
0.11	LANGBEIN	73	IPWA	$\pi N \rightarrow \Sigma K \text{ (sol. 1)}$
0.12	LANGBEIN	73	IPWA	$\pi N \rightarrow \Sigma K \text{ (sol. 2)}$
$(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \Delta(1900) \rightarrow N\rho, S=3/2, D\text{-wave} \qquad (\Gamma_1 \Gamma_3)^{1/2}/\Gamma$				
VALUE	DOCUMENT ID		TECN	
large	MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(1900) \rightarrow N(1440)\pi$, S-	wave $(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID TECN	COMMENT
+ (large)	MANLEY 84 IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1900) PHOTON DECAY AMPLITUDES

For the definition of the $\gamma\,{\it N}$ decay amplitudes, see Sec. IV of the Note on ${\it N}$ and $\boldsymbol{\Delta}$ Resonances preceding the Baryon Listings.

$\Delta(1900) \rightarrow N\gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
-0.004 ± 0.016	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.029 ± 0.008	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
	data for average	s, fit	s, limits,	etc. • • •
-0.006 to -0.025	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$

∆(1900) FOOTNOTES

- 1 LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi\,N\to\,N\pi\,\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ² The value given is from solution 1; the resonance is not present in solutions 2, 3, or 4.

Δ(1900) REFERENCES

For early references, see Physics Letters 111B (1982).

CANDLIN	84	NP B238 477	-Lowe, Peach, Scotland-	(EDIN, RAL, LOWC)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
CRAWFORD	83	NP B211 1	+ Morton	(GLAS)
AWA JI	81	Bonn Conf. 352	+ Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
CHEW	80	Toronto Conf. 123		(LBL) IJP
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Aiso	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
LANGBEIN	73	NP B53 251	+Wagner	(MUM)

$\Delta(1905) F_{35}$

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

Δ(1905) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1890 to 1920 OUR ESTIMATE 1910 ± 30	CUTKOSKY			
1905 ± 20 • • • We do not use the following	HOEHLER			
1960 +40				$\pi^+ p \rightarrow \Sigma^+ K^+$
1787.0 + 6.0 5.7	CHEW			$\pi^+ \rho \rightarrow \pi^+ \rho$
1880	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1892	BARBOUR			
1830	¹ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

$\Delta(1905)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN COMMENT
250 to 400 OUR ESTIMAT	E Our best guess is 30	0 Me	eV.
400 ±100	CUTKOSKY	80	IPWA $\pi N \rightarrow \pi N$
260 ± 20	HOEHLER	79	IPWA $\pi N \rightarrow \pi N$
• • • We do not use the fo	ollowing data for average	s, fit	ts, limits, etc. • • •
270 ± 40	CANDLIN	84	DPWA $\pi^+ p \rightarrow \Sigma^+ K^+$
66.0^{+}_{-} $\begin{array}{c} 24.0\\ 16.0 \end{array}$	CHEW	80	BPWA $\pi^+ p \rightarrow \pi^+ \rho$
193	CRAWFORD	80	DPWA $\gamma N \rightarrow \pi N$
159			DPWA $\gamma N \rightarrow \pi N$
220	1 LONGACRE	75	IPWA $\pi N \rightarrow N \pi \pi$

Δ(1905) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1830 ± 40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use th	e following data for averages	, fits	, limits,	etc. • • •
1830				$\pi N \rightarrow \pi N$
1813 or 1808	² LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$

 -19 ± 8

Δ(1905) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID	<u>TECN</u>	COMMENT
16 ± 8	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART	DOCUMENT ID	<u>TECN</u>	COMMENT

Δ(1905) DECAY MODES

CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	Nπ	5-15 %
Γ_2	ΣΚ	<3 %
Гз	$N\pi\pi$	<75 %
Γ4	$\Delta\pi$	~ 25 %
Γ_5	$\Delta(1232)\pi$, <i>P</i> -wave	
Γ_6	$\Delta(1232)\pi$, F-wave	
Γ7	$N\rho$	<50 %
Γ8	$N\rho$, $S=3/2$, P -wave	
Го	$N\rho$, $S=3/2$, F-wave	
Γ ₁₀	$N\rho$, $S=1/2$, F-wave	
Γ11	Nγ	0.01-0.05 %
Γ_{12}	$N\gamma$, helicity=1/2	
Γ ₁₃	$N\gamma$, helicity=3/2	

The above branching fractions are our estimates, not fits or averages.

Δ(1905) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.05 to 0.15 OUR ESTIMA	ATE			
0.08 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.15 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
\bullet \bullet We do not use the	following data for average	s, fit	s, limits,	etc. • • •
			DDMA	$\pi^+ p \rightarrow \pi^+ p$
0.11	CHEW	80	BPWA	$\pi^{\prime} \rho \rightarrow \pi^{\prime} \rho$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\rm total}$ in $N\pi$	→ Δ(1905) → Σ <i>K</i>			, (Γ ₁ Γ ₂) ^{1/2} /Γ
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi$	$\rightarrow \Delta(1905) \rightarrow \Sigma K$ $\frac{DOCUMENT \ ID}{}$		TECN	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\rm total}$ in $N\pi$	$\frac{\rightarrow \Delta(1905) \rightarrow \Sigma K}{\frac{DOCUMENT \ ID}{CANDLIN}}$	84	TECN DPWA	$\frac{(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma}{\frac{COMMENT}{\pi^+\rho\to~\Sigma^+\kappa^+}}$
$\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi}{VALUE}$ -0.015 ± 0.003		84 s, fit	TECN DPWA s, limits,	$\frac{(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma}{\frac{COMMENT}{\pi^+\rho\to~\Sigma^+\kappa^+}}$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi$ VALUE -0.015 ± 0.003 • • • We do not use the		84 s, fit	TECN DPWA s, limits, DPWA	$\begin{array}{c} (\Gamma_1\Gamma_2)^{1\!\!/2}/\Gamma \\ \frac{COMMENT}{\pi^+\rho\rightarrow\Sigma^+\kappa^+} \\ \text{etc.} \bullet \bullet \end{array}$

Note: Signs of couplings from $\pi N \to N\pi\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$	DOCUMENT ID	TECN	COMMENT
+ (small)	MANLEY 84	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$			
VALUE	DOCUMENT ID		
+	4 MANLEY 84	IPWA	$\pi N \rightarrow N \pi \pi$
+0.17	⁵ NOVOSELLER 78	IPWA	$\pi N \rightarrow N \pi \pi$
+ 0.06	6 NOVOSELLER 78	IPWA	$\pi N \rightarrow N \pi \pi$
+0.20	¹ LONGACRE 75	IPWA	$\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$			
VALUE	DOCUMENT ID		
+0.26	5 NOVOSELLER 78		
+0.11 to $+0.33$	7 NOVOSELLER 78		
+0.33	¹ LONGACRE 75	IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1905) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$\Delta(1905) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
0.021 ± 0.010	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.043 ± 0.020	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
0.022 ± 0.010	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
0.031 ± 0.009	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
0.024 ± 0.014	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.033\pm0.018$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$\Delta(1905) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.056 ± 0.028	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
-0.025 ± 0.023	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.029 ± 0.007	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.045 ± 0.006	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.072 ± 0.035	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.055 ± 0.019	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

Δ(1905) FOOTNOTES

- $^{1}\,\mbox{From}$ method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- 2LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ³The range given for DEANS 75 is from the four best solutions.
- ⁴ MANLEY 84 considers this coupling sign to be well determined and suggests that the large $N\rho$ decay seen in previous analyses is predominantly from a higher mass F_{35} resonance. See the Listings for the $\Delta(2000)$ F_{35} .
- ⁵ A Breit-Wigner fit to the HERNDON 75 IPWA.
- ⁶ A Breit-Wigner fit to the NOVOSELLER 78B IPWA.
- ⁷ A Breit-Wigner fit to the NOVOSELLER 78B IPWA; the phase is near 90°.

Δ(1905) REFERENCES

For early references, see Physics Letters 111B (1982).

ARNDT	85	PR D32 1085	+Ford, Roper	(VPI)
CANDLIN	84	NP B238 477	+Lowe, Peach, Scotland+	(EDIN, RAL, LÒWC)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
Also	84B	PRL 52 2122	Manley	(VPI)
CRAWFORD	83	NP B211 1	+Morton	(GLAS)
AWAJI	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fujii	(TOKY)
CHEW	80	Toronto Conf. 123	•	` (LBL) IJP
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMŮ, ŁBLÍ IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	+Baton, Coutures, Kochowski, Neveu	` (SACL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
NOVOSELLER	78	NP B137 509		(CIT) IJP
NOVOSELLER	78B	NP B137 445		(CIT) IJP
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
HERNDON	75	PR D11 3183	+Longacre, Miller, Rosenfeld+	(LBL, SLAC)
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP

$\Delta(1910) P_{31}$

 $I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

Δ(1910) MASS VALUE (MeV) DOCUMENT ID TECN COMMENT 1850 to 1950 OUR ESTIMATE 80 IPWA $\pi N \rightarrow \pi N$ 1910 ± 40 CUTKOSKY 1888 ± 20 HOEHLER 79 IPWA $\pi N \rightarrow \pi N$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ CHEW 80 BPWA $\pi^+ p \rightarrow \pi^+ p$ 1715.2 ± 21.0 ¹ CHEW BPWA $\pi^+ p \rightarrow \pi^+ p$ 1778.4 ± 9.0 80 1960.1 ± 21.0 ¹ CHEW BPWA $\pi^+ p \rightarrow \pi^+ p$ 80 $2121.4 + 13.0 \\ -14.3$ 80 BPWA $\pi^+ p \rightarrow \pi^+ p$ 80 DPWA $\gamma N \rightarrow \pi N$ 1921 CRAWFORD 1899 BARBOUR DPWA $\gamma N \rightarrow \pi N$ ² LONGACRE 1790 77 IPWA $\pi N \rightarrow N \pi \pi$

Baryon Full Listings $\Delta(1910), \Delta(1920)$

Δ(1910) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 to 330 OUR ESTIMATE	Our best guess is 22	0 Me	V.	
225 ±50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
280 ±50	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following the fol	wing data for average	s, fit:	s, limits,	etc. • • •
93.3 ± 55.0	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
23.0 ± 29.0	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
152.9 ± 60.0	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
172.2 ± 37.0	1 CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
351	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
230	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
170	² LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1910) POLE POSITION

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
1880 ± 30	CUTKOSKY 8	IO IPWA	$\pi N \rightarrow \pi N$
 • • We do not use th 	ne following data for averages,	fits, limits,	, etc. • • •
1792 or 1801	² LONGACRE 7	7 IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY			COMMENT
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
VALUE (MeV) 200 ± 40	DOCUMENT ID CUTKOSKY 8		
200 ± 40		10 IPWA	$\pi N \rightarrow \pi N$

Δ(1910) ELASTIC POLE RESIDUE

REAL PART	DOCUMENT ID	TECN	COMMENT
0 ± 10	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART	DOCUMENT ID	TECN	COMMENT
- 20 + 4	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

Δ(1910) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
$\overline{\Gamma_1}$	Νπ	15-25 %	
Γ_2	ΣΚ	not seen	
Гз	Νππ	<75 %	
Γ_4	$\Delta \pi$	small	
Γ_5	$\Delta(1232)\pi$, <i>P</i> -wave		
Γ_6	$N\rho$	small	
Γ7	$N\rho$, $S=3/2$, P -wave		
Γ8	$N(1440)\pi$	large	
Гэ	$N(1440)\pi$, P -wave		
Γ_{10}	$N\gamma$, helicity=1/2		

The above branching fractions are our estimates, not fits or averages.

Δ(1910) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{total}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.15 to 0.25 OUR ESTIMATE				
0.19 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.24 ± 0.06	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
0.18	¹ CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$
0.20	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
0.17	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
0.40	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \to \Delta($	1010) , T.K			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
			TEC41	
VALUE	DOCUMENT ID			COMMENT
< 0.03	CANDLIN			$\pi^+ \rho \rightarrow \Sigma^+ K^+$
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •
-0.019	LIVANOS	80	DPWA	$\pi p \rightarrow \Sigma K$
0.082 to 0.184	³ DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$

Note: Signs of couplings from $\pi N \to N\pi\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(1910) \rightarrow \Delta(1232)$	π , <i>P</i> -wave	$(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN COMMENT	
0.06	2 LONGACRE 77	IPWA #N → N	·ππ

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(1910) \rightarrow N\rho, S=3$	$3/2$, <i>P</i> -wave $(\Gamma_1\Gamma_7)^{1/2}/\Gamma$
VALUE	DOCUMENT ID	TECN COMMENT
+0.29	² LONGACRE 77	IPWA $\pi N \rightarrow N \pi \pi$
• • • We do not use the follo	wing data for averages, fit:	s, limits, etc. • • •
+0.17	⁴ NOVOSELLER 78	IPWA $\pi N \rightarrow N \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$		π , P -wave $(\Gamma_1\Gamma_9)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	
+ (large)	⁵ MANLEY 84	IPWA $\pi N \rightarrow N \pi \pi$

Δ(1910) PHOTON DECAY AMPLITUDES

For the definition of the $\gamma \mathit{N}$ decay amplitudes, see Sec. IV of the Note on N and $\boldsymbol{\Delta}$ Resonances preceding the Baryon Listings.

$\Delta(1910) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
0.014 ± 0.030	CRAWFORD	83	IPWA	$\gamma N \rightarrow \pi N$
0.025 ± 0.011	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$
-0.012 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.031 ± 0.004	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.005 ± 0.030	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.035 ± 0.021	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

Δ(1910) FOOTNOTES

- 1 CHEW 80 reports four resonances in the P_{31} wave. Problems with this analysis are discussed in section 2.1.11 of HOEHLER 83. 2 LONGACRE 77 pole positions are from a search for poles in the unitarized T-matrix; the first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis. The other LONGACRE 77 values are from eyebali fits with Breit-Wigner circles to the T-matrix amplitudes. 3 The last constant of the tension of the second constant of the sec
- ³ The range given for DEANS 75 is from the four best solutions.
- 4 Evidence for this coupling is weak; see NOVOSELLER 78. This coupling assumes the
- 5 MANLEY 84 finds this decay mode accounts for all the inelasticity.

Δ(1910) REFERENCES

For early references, see Physics Letters 111B (1982).

CANDLIN	84	NP B238 477	+Lowe, Peach, Scotland+	(EDIN, RAL, LOWC)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
CRAWFORD	83	NP B211 1	+Morton	(GLAS)
HOEHLER	83	Landolt-Boernstein 1/9E	32	(KARL)
ILAWA	81	Bonn Conf. 352	Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fujil	(TOKY)
CHEW	80	Toronto Conf. 123		(LBL) IJP
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	+Baton, Coutures, Kochowski, Neveu	(SACL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
NOVOSELLER	78	NP B137 509		(CIT) IJP
Also	78B	NP B137 445	Novoseller	(CIT) IJP
LONGACRE	77	NP B122 493	+ Dolbeau	(SACL) IJP
Also	76	NP B108 365	Dolbeau, Triantis, Neveu, Cadiet	(SACL) IJP
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP

$\Delta(1920) P_{33}$

 $I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

$\Delta(1920)$ MASS

/ALUE (MeV) I860 to 2160 OUR ESTIM	DOCUMENT ID		TECN	COMMENT
.920 ±80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1868 ±10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the fol	lowing data for average CANDLIN			etc. • • • $\pi^+ p \rightarrow \Sigma^+ K^+$
1840 ±40	1 CHEW			$\pi^+ \rho \rightarrow \Sigma^- K$ $\pi^+ \rho \rightarrow \pi^+ \rho$
1955.0±13.0	C			
2065.0 + 13.6	¹ CH E W	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$

$\Delta(1920)$ WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
190 to 300 OUR ESTIMATE	Our best guess is 250	MeV.	
300 ±100	CUTKOSKY	80 IPWA	$\pi N \rightarrow \pi N$
220 ± 80	HOEHLER	79 IPWA	$\pi N \rightarrow \pi N$

Baryon Full Listings $\Delta(1920), \Delta(1930)$

200 ± 40			PWA $\pi^+ p \rightarrow \Sigma^+ K^+$		
88.3 ± 35.0	1 CHEW		PWA $\pi^+ p \rightarrow \pi^+ p$		
62.0± 44.0	¹ CHEW	80 BF	PWA $\pi^+ p \rightarrow \pi^+ p$		

$\Delta(1920)$ POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1900 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
300±100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Δ(1920) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
-21±7	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

IMAGINARY PART

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
-12±11	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

Δ(1920) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	Nπ	15–20 %
Γ_2	ΣΚ	~ 5 %
Γ_3	$\Delta(1232)\pi$, P-wave	
Γ4	$N(1440)\pi$, P-wave	
Γs	$N\gamma$, helicity=1/2	
Γ ₆	$N\gamma$, helicity=3/2	
	The above branching frac	ctions are our estimates, not fits or averages.

Δ(1920) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$	DOCUMENT ID	TECN	Γ_1/Γ
0.15 to 0.20 OUR ESTIMATE			
0.20 ± 0.05	CUTKOSKY	80 IPWA	$\pi N \rightarrow \pi N$
0.14 ± 0.04	HOEHLER	79 IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follo	wing data for averages	fits, limits,	etc. • • •
0.24	1 CHEW		
0.18	¹ CHEW	00 BDWA	-tp - +p
0.16	- CHEW	OU DPVVA	$\pi \cdot p \rightarrow \pi \cdot p$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(1920) \rightarrow \Sigma K$		$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT
-0.052+0.015	CANDLIN	84 DPWA	$\pi^+ \rho \rightarrow \Sigma^+ K^+$
• • We do not use the folion			•
- 0.049	LIVANOS ² DEANS	80 DPWA	$\pi \rho \rightarrow \Sigma K$
0.048 to 0.120	- DEANS	75 DPWA	$\pi N \rightarrow \Sigma K$
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$	$\Delta(1920) \rightarrow \Delta(12)$		
+	MANIFY	84 IPWA	$\pi N \rightarrow N \pi \pi$
0.3	MANLEY 3 NOVOSELLER	78 IPWA	$\pi N \rightarrow N \pi \pi$
0.27	4 NOVOSELLER	78 IDWA	# N → N # #
0.27	NOVOSELLEN	10 11 11	# 1 4 → 1 4 # #
$(\Gamma_I \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow VALUE}$	$\Delta(1920) \rightarrow N(14)$		
+	MANLEY	84 IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1920) PHOTON DECAY AMPLITUDES

For the definition of the $\gamma \, \textit{N}$ decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$\Delta(1920) \rightarrow N\gamma$, helicity-1/2 amplitude A_{1/2}

	- /			
VALUE (GeV-1/2)	DOCUMENT ID		TECN	COMMENT
0.040±0.014	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$

$\Delta(1920) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

(, , ,	 3/2			
$VALUE (GeV^{-1/2})$	DOCUMENT ID		TECN	COMMENT
0.023 ± 0.017	 ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$

Δ(1920) FOOTNOTES

- 1 CHEW 80 reports two P_{33} resonances in this mass region. Problems with this analysis are discussed in section 2.1.11 of HOEHLER 83. 2 The range given for DEANS 75 is from the four best solutions.
- $^3\,\text{A}$ Breit-Wigner fit to the HERNDON 75 IPWA; the phase is near $-\,90^{\circ}\,.$ 4 A Breit-Wigner fit to the NOVOSELLER 78B IPWA; the phase is near -90° .

Δ(1920) REFERENCES

For early references, see Physics Letters 111B (1982).

CANDLIN	84	NP B238 477	+Lowe, Peach, Scotland+	(EDIN, RAL, LOWC)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
HOEHLER	83	Landolt-Boernstein 1	/9B2	(KARL)
AWAJI	81	Bonn Conf. 352	+ Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
CHEW	80	Toronto Conf. 123		(LBL) IJP
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	+Baton, Coutures, Kochowski, Neveu	(SACL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Aiso	80	Toronto Conf. 3	Koch	(KARL) IJP
NOVOSELLER	78	NP B137 509		(CIT)
NOVOSELLER	78B	NP B137 445		(CIT)
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
HERNDON	75	PR D11 3183	+Longacre, Miller, Rosenfeld+	(LBL, SLAC)

$\Delta(1930) D_{35}$

VALUE (MeV)

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

The various analyses are not in good agreement.

$\Delta(1930)$ MASS

VALUE	(MeV)	DOCUMENT ID		TECN	COMMENT
1890	to 1960 OUR ESTIMATE				
1940	±30	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1901	±15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • •	We do not use the following of	data for averages	, fits	s, limits,	etc. • • •
1910.0	$0^{+15.0}_{-17.2}$	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
2000		CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
2024		BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

Δ(1930) WIDTH

DOCUMENT ID TECN COMMENT

150 to 350 OUR ESTIMATE	Our best guess is 25	0 Me	eV.	
320 ±60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
195 ±60	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following the fol	owing data for average	s, fit	s, limits,	etc. • • •
$74.8^{+17.0}_{-16.0}$	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
442	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
462	BARBOUR	78	DOW/A	~ N M

Δ(1930) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1890 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
260±60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Δ(1930) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
17±7	CUTKOSKY 8	0 IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART	DOCUMENT ID	TECN	COMMENT
-6±12		BO IPWA	$\pi N \rightarrow \pi N$

Baryon Full Listings $\Delta(1930), \Delta(1940)$

Δ(1930) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	Nπ	5–15 %
Γ_2	ΣΚ	not seen
Γз	$N\pi\pi$	not seen
Γ4	$N\gamma$, helicity=1/2	
Γ_5	$N\gamma$, helicity=3/2	
	The above branching fractions are ou	r estimates, not fits or averages.

Δ(1930) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.05 to 0.15 OUR ESTIMATE				
0.14 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.04 ± 0.03	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follow	ing data for averag	es, fit	s, limits,	, etc. • • •
0.11	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \to I$	\(1030) → \(\nabla k	,		$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID			COMMENT
< 0.015	CANDLIN	84	DPWA	$\pi^+ \rho \rightarrow \Sigma^+ K^+$
• • • We do not use the follow	ing data for averag	es, fit	s, limits,	, etc. • • •
-0.031	LIVANOS	80	DPWA	$\pi \rho \rightarrow \Sigma K$
0.018 to 0.035	¹ DEANS	75	DPWA	$\pi N \rightarrow \Sigma K$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow I$	$\Delta(1930) \rightarrow N\pi$	π		(Γ ₁ Γ ₃) ^½ /Γ
VALUE	DOCUMENT ID		TECN	
not seen	MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$
not seen	LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1930) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$\Delta(1930) \rightarrow N\gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV-1/2)	DOCUMENT ID		<u>TECN</u>	COMMENT	_
0.009 ± 0.009	AWAJI	81	DPWA	$\gamma N \rightarrow \pi N$	
-0.030 ± 0.047	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$	
-0.062 ± 0.064	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$	
. (

$\Delta(1930) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.025 ± 0.011	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.033 ± 0.060	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
$+0.019\pm0.054$	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

Δ(1930) FOOTNOTES

Δ(1930) REFERENCES

For early references, see Physics Letters 111B (1982).

CANDLIN	84	NP B238 477	+Lowe, Peach, Scotland+	(EDIN, RAL, LOWC)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
ILAWA	81	Bonn Conf. 352	+Kajikawa	(NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
CHEW	80	Toronto Conf. 123	•	(LBL) IJP
CRAWFORD	80	Toronto Conf. 107		(GLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Keily	(CMU, LBL) IJP
LIVANOS	80	Toronto Conf. 35	+Baton, Coutures, Kochowski, Neveu	(SACL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP

$\Delta(1940) D_{33}$

 $I(J^P) = \frac{3}{2}(\frac{3}{2})$ Status: *

	Δ(1940) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2058.1 ± 34.5	CHEW			$\pi^+ p \rightarrow \pi^+ p$
1940 ±100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
	Δ(1940) WID	ТН		
VALUE (MeV)	DOCUMENT ID			
198.4± 45.5	CHEW			$\pi^+ p \rightarrow \pi^+ p$
200 ±100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
Δ((1940) POLE PO	SIT	ION	
REAL PART	DOCUMENT ID		TECN	COMMENT
VALUE (MeV) 1900±100	CUTKOSKY		IPWA	
1915 or 1926	1 LONGACRE		IPWA	
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID			COMMENT
200 ± 60	CUTKOSKY 1 LONGACRE		IPWA IPWA	$\pi N \rightarrow \pi N$ $\pi N \rightarrow N \pi \pi$
190 or 186	- LUNGACKE	70	IPVVA	$\pi N \rightarrow N \pi \pi$
Δ(194) ELASTIC POI	LE F	RESIDU	E
REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
-6±5	CUTKOSKY		IPWA	$\pi N \rightarrow \pi N$
IMACINADY DART				COMMENT
IMAGINARY PART	DOCUMENT ID		TECN	COMINENT
	DOCUMENT ID			$\pi N \to \pi N$
VALUE (MeV) 6±5		80	IPWA	
VALUE (MeV) 6±5	CUTKOSKY	80	IPWA	
<u>VALUE (MeV)</u> 6±5 Δ Mode Γ ₁ Nπ	CUTKOSKY	80	IPWA	
<u>VALUE (MeV)</u> 6±5 Δ Mode Γ ₁ Nπ Γ ₂ Σ Κ	CUTKOSKY	80	IPWA	
<u>VALUE (MeV)</u> 6±5 Δ Mode Γ ₁ Nπ	CUTKOSKY	80	IPWA	

Δ(1940) BRANCHING RATIOS

VALUE	DOCUMENT ID		TECN	COMMENT	
0.18	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$	
0.05 ± 0.02	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
1/2	. () =			/	1/2 /5
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}}$ in $N\pi$ -	\rightarrow $\Delta(1940) \rightarrow \Sigma K$			(Г ₁ Г	₂) ^{1/} 2/Γ

Δ(1940) PHOTON DECAY AMPLITUDES

For the definition of the $\gamma\,{\it N}$ decay amplitudes, see Sec. IV of the Note on ${\it N}$ and $\boldsymbol{\Delta}$ Resonances preceding the Baryon Listings.

$\Delta(1940) \rightarrow N\gamma$, helicity-1/2 amplitude $A_{1/2}$

VALUE (GeV ^{-1/2})	DOCUMENT ID	TEÇN	COMMENT
-0.036 ± 0.058	AWAJI 81	DPWA	$\gamma N \rightarrow \pi N$

$\Delta(1940) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

	,		
VALUE (GeV-1/2)	DOCUMENT ID	TECN	COMMENT
-0.031 ± 0.012	AWAJI 81	DPWA	$\gamma N \rightarrow \pi N$

$\Delta(1940)$ FOOTNOTES

 $^{^{\}rm 1}\,{\rm The}$ range given for DEANS 75 is from the four best solutions.

 $^{^1}$ LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi\,N\to~N\pi\,\pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.

Δ(1940) REFERENCES

CANDLIN AWAJI	84 81	NP B238 477 Bonn Conf. 352	+Lowe, Peach, Scotland+ +Kaiikawa	(EDIN, RAL, LOWC) (NAGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
CHEW CUTKOSKY	80 80	Toronto Conf. 123	Frank Britanik Kalla Handala	(LBL) IJP (CMU, LBL) IJP
Also	79	Toronto Conf. 19 PR D20 2839	+Forsyth, Babcock, Kelly, Hendrick Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)

$\Delta(1950) F_{37}$

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$$
 Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B). In abelition, results in this region from production experiments, which used to be listed separately as the next entry, have been entirely omitted. They too may be found in our 1982 edition.

Δ(1950) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1910 to 1960 OUR ESTIMATE				
1950 ±15	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1913 ± 8	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
1925 ±20	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$
1855.0 ⁺ 11.0 -10.0	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
1902	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1912	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
1925	1 LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1950) WIDTH

VALUE (MeV)	DOCUMENT ID			COMMENT
200 to 340 OUR ESTIMATE	Our best guess is 24	0 Me	V.	
340 ±50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
224 ±10	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the follo	wing data for average	s, fits	, limits,	etc. • • •
330 ±40	CANDLIN	84	DPWA	$\pi^+ \rho \rightarrow \Sigma^+ K^+$
$157.2^{+22.0}_{-19.0}$	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
225	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
198	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$
240	¹ LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1950) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1890±15	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	ng data for average	s, fits	, limits,	etc. • • •
1858	ARNDT			
1924 or 1924	² LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
260±40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • We do not use the following	ng data for average	s, fits	, limits,	etc. • • •
238	ARNDT	85	DPWA	$\pi N \rightarrow \pi N$
258 or 258	² LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$

Δ(1950) ELASTIC POLE RESIDUE

REAL PART	DOCUMENT ID	TECN	COMMENT
42±7	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
-27±7	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

Δ(1950) DECAY MODES

	Mode	Fraction (Γ_I/Γ)	
$\overline{\Gamma_1}$	Νπ	35-45 %	
Γ_2	ΣΚ	not seen	
Γ_3	$N\pi\pi$	<40 %	
Γ_4	$\Delta\pi$	~ 30 %	
Γ ₅	$\Delta(1232)\pi$, F-wave		
Γ6	$\Delta(1232)\pi$, H-wave		
Γ ₇	$N\rho$	<10 %	
Γ8	$N \rho$, $S=1/2$, F-wave		
ΓĢ	$N\rho$, $S=3/2$, F-wave		
Γ ₁₀	$N(1680)\pi$, P-wave		
Γ11	Nγ	0.08-0.17 %	
Γ12	$N\gamma$, helicity=1/2		
Γ13	$N\gamma$, helicity=3/2		

The above branching fractions are our estimates, not fits or averages.

Δ(1950) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ	
VALUE	DOCUMENT ID		TECN	COMMENT	
0.35 to 0.45 OUR ESTIMATI					
0.39 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
0.38 ± 0.02	HOEHLER	79	1PWA	$\pi N \rightarrow \pi N$	
• • We do not use the foll	owing data for average	s, fit	s, limits,	etc. • • •	
0.44	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$	
1/.				14	

Note: Signs of couplings from $\pi N \to N\pi\pi$ analyses were changed in the 1986 edition to agree with the baryon-first convention; the overall phase ambiguity is resolved by choosing a negative sign for the $\Delta(1620)$ S_{31} coupling to $\Delta(1232)\pi$.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(1950) \rightarrow \Delta(1232)\pi$, F-wave $(\Gamma_1\Gamma_5)^{1/2}/\Gamma$
VALUE	DOCUMENT ID TECN COMMENT
+ (large)	⁴ MANLEY 84 IPWA $\pi N \rightarrow N \pi \pi$
0.21	⁵ NOVOSELLER 78 IPWA $\pi N \rightarrow N \pi \pi$
0.38	⁶ NOVOSELLER 78 IPWA $\pi N \rightarrow N \pi \pi$
+0.32	¹ LONGACRE 75 IPWA $\pi N \rightarrow N \pi \pi$
	$\Delta(1950) \rightarrow N\rho$, $S=3/2$, F-wave $(\Gamma_1\Gamma_9)^{1/2}/\Gamma$
VALUE	DOCUMENT ID TECN COMMENT
0.24	7 NOVOSELLER 78 IPWA $\pi N \rightarrow N \pi \pi$
0.43	⁸ NOVOSELLER 78 IPWA $\pi N \rightarrow N \pi \pi$
+0.24	¹ LONGACRE 75 IPWA $\pi N \rightarrow N \pi \pi$
	$\Delta(1950) \rightarrow N(1680)\pi$, <i>P</i> -wave $(\Gamma_1\Gamma_{10})^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID TECN COMMENT
+0.20	MANLEY 84 IPWA $\pi N \rightarrow N \pi \pi$

Δ(1950) PHOTON DECAY AMPLITUDES

For the definition of the γN decay amplitudes, see Sec. IV of the Note on N and Δ Resonances preceding the Baryon Listings.

$\Delta(1950) \rightarrow N\gamma$, helicity-1/2 amplitude A $_{1/2}$

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.068 ± 0.007	AWA JI	81	DPWA	$\gamma N \rightarrow \pi N$
-0.091 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.083 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.067 ± 0.014	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.058 ± 0.013	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$\Delta(1950) \rightarrow N\gamma$, helicity-3/2 amplitude A_{3/2}

VALUE (GeV ^{-1/2})	DOCUMENT ID		TECN	COMMENT
-0.094 ± 0.016	ILAWA	81	DPWA	$\gamma N \rightarrow \pi N$
-0.101 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 1)}$
-0.100 ± 0.005	ARAI	80	DPWA	$\gamma N \rightarrow \pi N \text{ (fit 2)}$
-0.082 ± 0.017	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
-0.075 ± 0.020	BARBOUR	78	DPWA	$\gamma N \rightarrow \pi N$

$\Delta(1950)$, $\Delta(2000)$, $\Delta(2150)$

Δ(1950) FOOTNOTES

- $^{
 m 1}$ From method II of LONGACRE 75: eyeball fits with Breit-Wigner circles to the T-matrix amplitudes.
- 2LONGACRE 78 values are from a search for poles in the unitarized T-matrix. The first (second) value uses, in addition to $\pi N \to N \pi \pi$ data, elastic amplitudes from a Saclay (CERN) partial-wave analysis.
- ³The range given is from the four best solutions. DEANS 75 disagrees with $\pi^+ p \rightarrow$
- Σ^+K^+ data of WINNIK 77 around 1920 MeV. ⁴ MANLEY 84 considers this coupling sign to be well determined. ⁵ A Breit-Wigner fit to the HERNDON 75 IPWA; the phase is near -60° .
- 6 A Breit-Wigner fit to the NOVOSELLER 78B IPWA; the phase is near -60° .
- ⁷ A Breit-Wigner fit to the HERNDON 75 IPWA; the phase is near 120°

⁸ A Breit-Wigner fit to the NOVOSELLER 78B IPWA; the phase is near 120°.

Δ(1950) REFERENCES

For early references, see Physics Letters 111B (1982).

ARNOT	85	PR D32 1085	+Ford, Roper	(VPI)
CANDLIN	84	NP B238 477	+Lowe, Peach, Scotland+	(EDIN, RAL, LÓWC)
MANLEY	84	PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
Also	84B	PRL 52 2122	Manley	(VPI)
AWAJI	81	Bonn Conf. 352	+Kajikawa	(NÀGO)
Also	82	NP B197 365	Fujii, Hayashii, Iwata, Kajikawa+	(NAGO)
ARAI	80	Toronto Conf. 93		(TOKY)
Also	82	NP B194 251	Arai, Fujii	(TOKY)
CHEW	80	Toronto Conf. 123		` (LBL) IJP
CRAWFORD	80	Toronto Conf. 107		(ĜLAS)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMÚ, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) DP
BARBOUR	78	NP B141 253	+Crawford, Parsons	(GLAS)
LONGACRE	78	PR D17 1795	+Lasinski, Rosenfeld, Smadja+	(LBL, SLAC)
NOVOSELLER	78	NP B137 509		(CIT) IJP
NOVOSELLER	78B	NP B137 445		(CIT) IJP
WINNIK	77	NP B128 66	+Toaff, Revel, Goldberg, Berny	(ĤAIF) I
DEANS	75	NP B96 90	+Mitchell, Montgomery+	(SFLA, ALAH) IJP
HERNDON	75	PR D11 3183	+Longacre, Miller, Rosenfeld+	(LBL, SLAC)
LONGACRE	75	PL 55B 415	+Rosenfeld, Lasinski, Smadja+	(LBL, SLAC) IJP
			•	

$\Delta(2000) F_{35}$

REAL PART

 $I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$ Status: **

OMITTED FROM SUMMARY TABLE

Δ(2000) MASS				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
~ 2000	MANLEY	84	IPWA	$\pi N \rightarrow N \pi \pi$
2200 ± 125	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
400 ± 125	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

$\Delta(2000)$ POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2150±100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
-2 × IMAGINARY PART	DOCUMENT ID		TECN	COMMENT
350 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Δ(2000) ELASTIC POLE RESIDUE

VALUE (MeV)	DOCUMENT ID TECH	COMMENT
-14±13	CUTKOSKY 80 IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART		
VALUE (MeV)	DOCUMENT IDTECN_	COMMENT
8 ± 22	CUTKOSKY 80 IPWA	$\pi N \rightarrow \pi N$

A(2000) DECAY MODES

	E(2000) BEENT MOBES	
	Mode	
Γ ₁	$N\pi$	
Γ_2	$N\rho$, $S=3/2$, P -wave	
	<u>.</u>	

Δ (2000) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$			Γ_1/Γ
VALUE	DOCUMENT ID	TECN	COMMENT
0.07 ± 0.04	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
$ \frac{\left(\Gamma_I \Gamma_f\right)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{+ \text{ (large)}} $	$\Delta(2000) \rightarrow N \rho, S = \frac{DOCUMENT ID}{1 \text{ MANLEY}}$ 84	TECN	COMMENT

$\Delta(2000)$ FOOTNOTES

Δ(2000) REFERENCES

MANLEY		PR D30 904	+Arndt, Goradia, Teplitz	(VPI)
Also	84B	PRL 52 2122	Manley	(VPI)
CUTKOSKY	80	Toronto Conf. 19		(CMU, LBL)
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL)

 $\Delta(2150) S_{31}$

 $I(J^P) = \frac{3}{2}(\frac{1}{2})$ Status: *

OMITTED FROM SUMMARY TABLE

	Δ(2150) MAS	>	
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2047.4± 27.0	1 CHEW 8	BO BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
2203.2 ± 8.4	¹ CHEW 8	BO BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
2150 ±100	CUTKOSKY 8	30 IPWA	$\pi N \rightarrow \pi N$

$\Delta(2150)$ WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
121.6± 62.0	1 CHEW 80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
120.5± 45.0	1 CHEW 80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
200 ±100	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

$\Delta(2150)$ POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2140±80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
200 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Δ(2150) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4±10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
-6±6	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Δ(2150) DECAY MODES

	Mode		
Γ ₁	Nπ		
Γ_2	ΣΚ		

Δ(2150) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.41	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$	
0.37	¹ CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$	
0.08 ± 0.02	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(2150) \rightarrow \Sigma K$		$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE		TECN	COMMENT
< 0.03	CANDLIN 84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$

 $^{^1}$ MANLEY 84 considers this coupling sign to be well determined. This resonance has not been seen in $\pi\,\textit{N}\,\rightarrow\,\,\pi\,\textit{N}$ analyses. Thus its coupling to the $\textit{N}\,\pi$ channel is expected to

Δ(2150) FOOTNOTES

 $^1\mathrm{CHEW}$ 80 reports two S_{31} resonances in this mass region. Problems with this analysis are discussed in section 2.1.11 of HOEHLER 83.

Δ(2150) REFERENCES

CANDLIN	84	NP B238 477	+Lowe, Peach, Scotland+	(EDIN, RAL, LOWC)
HOEHLER	83	Landolt-Boernstein 1/9	B2	(KARL)
CHEW	80	Toronto Conf. 123		(LBL) IJF
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJF
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL)

 $\Delta(2200) G_{37}$

 $I(J^P) = \frac{3}{2}(\frac{7}{2})$ Status: *

OMITTED FROM SUMMARY TABLE

The various analyses are not in good agreement.

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2200 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2215 ± 60	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
2280 ± 80	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
 • • We do not use t 	he following data for average	s, fit	s, limits,	etc. • • •
2280 ± 40	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$

A(2200) MASS

Δ(2200) WIDTH							
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT			
450 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$			
400 ± 100	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$			
400±150	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$			
• • We do not use the following	data for average	s, fit	s, limits,	etc. • • •			
400 ± 50	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$			

Δ(2200) POLE POSITION

REAL PART VALUE (MeV) DOCUMENT ID TECN COMMENT 2100 ± 50 CUTKOSKY 80 IPWA $\pi N \to \pi N$ -2 × IMAGINARY PART DOCUMENT ID TECN COMMENT VALUE (MeV) CUTKOSKY 80 IPWA $\pi N \rightarrow \pi N$ 340 ± 80

Δ(2200) ELASTIC POLE RESIDUE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
3±5	CUTKOSKY	30 IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN_	COMMENT

REAL PART

IMAGINARY PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
-8±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

$\Delta(2200)$ DECAY MODES

	Mode	
Γ ₁ Γ ₂	<i>Ν</i> π Σ <i>Κ</i>	

Δ(2200) BRANCHING RATIOS							
$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ		
VALUE	DOCUMENT ID		TECN	COMMENT			
0.06 ± 0.02	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$			
0.05 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$			
0.09 ± 0.02	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$			
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{ m total}$ in $N\pi$ $ ightarrow$	$\Delta(2200) \rightarrow \Sigma K$			(Γ ₁ Γ ₂) ^{1/2} /Γ		
VALUE	DOCUMENT ID		TECN	COMMENT			
-0.014 ± 0.005	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+$	- κ+		

Δ(2200) REFERENCES

CANDLIN	84	NP B238 477		+Lowe, Peach, Scotland+	(EDIN, RAL, LOWC)
CUTKOSKY	80	Toronto Conf. 19	19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJI
Also	79	PR D20 2839		Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL) IJI
HOEHLER	79	PDAT 12-1		+Kaiser, Koch, Pietarinen	(KARL) IJI
Also	80	Toronto Conf. 3	3	Koch	(KARL) IJI
HENDRY	78	PRL 41 222			(IND, LBL) IJ
Also	81	ANP 136 1		Hendry	(IND)

$\Delta(2300) H_{39}$

 $I(J^{p}) = \frac{3}{2}(\frac{9}{2}^{+})$ Status: **

OMITTED FROM SUMMARY TABLE

	Δ(2300) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2204.5 ± 3.4	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
2400 ±125	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2217 ± 80	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
2450 ±100	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
• • • We do not use the fo	ollowing data for average	es, fit	s, limits,	etc. • • •
2400	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$

$\Delta(2300)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
32.3 ± 1.0	CHEW	80	BPWA	$\pi^+ \rho \rightarrow \pi^+ \rho$
425 ±150	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
300 ±100	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
500 ±200	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	, fits	s, limits,	etc. • • •
200	CANDLIN	84	DPWA	$\pi^+ p \rightarrow \Sigma^+ K^+$

Δ(2300) POLE POSITION

REAL PART	DOCUMENT ID		TECN	COMMENT
2370 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
420 ± 160	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Δ(2300) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
9±4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART	DOCUMENT ID		TECN	COMMENT
-3±5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Δ(2300) DECAY MODES

	Mode		
Γ_1	Nπ ΣΚ		
Γ_2	ΣΚ		

Δ(2300) BRANCHING RATIOS

$I(N\pi)/I_{total}$					11/1
VALUE	DOCUMENT ID		TECN	COMMENT	
0.05	CHEW	80	BPWA	$\pi^+ p \rightarrow \pi^+ p$	
0.06 ± 0.02	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
0.03 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
0.08 ± 0.02	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	
1/					1/

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\pi \rightarrow$	$\Delta(2300) \rightarrow \Sigma K$		$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TEÇN	COMMENT
-0.017	CANDLIN 84	DPWA	$\pi^+ \rho \rightarrow \Sigma^+ K^+$

Δ(2300) REFERENCES

CANDLIN	84	NP B238 477		+Lowe, Peach, Scotland+	(EDIN, RAL, LOWC)
CHEW	80	Toronto Conf.	123		(LBL) IJP
CUTKOSKY	80	Toronto Conf.	19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839		Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL)
HOEHLER	79	PDAT 12-1		+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf.	3	Koch	(KARL) IJP
HENDRY	78	PRL 41 222			(IND. LBL) IJP
Also	81	ANP 136 1		Hendry	(IND)
					,

REAL PART

Baryon Full Listings

 $\Delta(2350), \Delta(2390)$

$\Delta(2350)$	D_{35}
----------------	----------

 $I(J^P) = \frac{3}{2}(\frac{5}{2})$ Status: *

 $\Delta(2390) F_{37}$

 $\Gamma(N\pi)/\Gamma_{\text{total}}$

 $I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$ Status: *

OMITTED FROM SUMMARY TABLE

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2400 ± 125	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2305 ± 26	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

Δ (2350) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
400 ± 150	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
300 ± 70	HOEHLER 79	IPWA	$\pi N \rightarrow \pi N$

Δ(2350) POLE POSITION

REAL PART	DOCUMENT ID	TECN	COMMENT
2400 ± 125	CUTKOSKY 8	0 IPWA	$\pi N \rightarrow \pi N$
-2 × IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
400 ± 150	CUTKOSKY 8	0 IPWA	$\pi N \rightarrow \pi N$

Δ(2350) ELASTIC POLE RESIDUE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
5 ± 17	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
-14+10	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

$\Delta(2350)$ DECAY MODES

	Mode				
Γ1	$N\pi$				
Γ_2	ΣΚ				

Δ(2350) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.20 ± 0.10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.04 ± 0.02	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{<0.015}$	$\Delta(2350) \to \Sigma K$ $\frac{DOCUMENT ID}{CANDLIN}$	84	<u>TECN</u> DPWA	$\frac{(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma}{\pi^+\rho \to \Sigma^+\kappa^+}$

Δ(2350) REFERENCES

CANDLIN	84	NP B238 477		+Lowe, Peach, Scotland+	(EDIN, RAL, LOWC)
CUTKOSKY	80	Toronto Conf.	19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJI
Also	79	PR D20 2839		Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL)
HOEHLER	79	PDAT 12-1		+Kaiser, Koch, Pietarinen	(KARL) IJF
Also	80	Toronto Conf.	3	Koch	(KARL) IJI

OMITTED FROM SUMMARY TABLE

Δ(2390) MASS					
<u>VALUE (MeV)</u> 2350±100 2425± 60	DOCUMENT ID CUTKOSKY 80 HOEHLER 79		$ \begin{array}{ccc} COMMENT \\ \pi N \to & \pi N \\ \pi N \to & \pi N \end{array} $		
Δ(2390) WIDTH					
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT		
300±100 300± 80	CUTKOSKY 80 HOEHLER 79		$ \begin{array}{ccc} \pi N \to & \pi N \\ \pi N \to & \pi N \end{array} $		

Δ (2390) POLE POSITION

REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2350 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
-2 × IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
260 + 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

Δ(2390) ELASTIC POLE RESIDUE

REAL PART VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
0 ± 13	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
-12 ± 6	CUTKOSKY 80	IPWA	$\pi N \rightarrow \pi N$

Δ(2390) DECAY MODES

 Mode	
Nπ Σ K	

Δ(2390) BRANCHING RATIOS

 Γ_1/Γ

()/				-,
VALUE	DOCUMENT ID		TECN	COMMENT
0.08 ± 0.04	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
0.07 ± 0.04	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } \mathbf{N} \pi \rightarrow VALUE}$	Δ (2390) $\rightarrow \Sigma K$		TECN	$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$

< 0.015 84 DPWA $\pi^+ p \rightarrow \Sigma^+ K^+$ CANDLIN

Δ(2390) REFERENCES

CANDLIN	84	NP B238 477	+Lowe, Peach, Scotland+	(EDIN, RAL, LOWC)
CUTKOSKY	80	Toronto Conf. 19	+Forsyth, Babcock, Kelly, Hendrick	(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL)
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP

Δ(24	00)	G_{39}

 $I(J^P) = \frac{3}{2}(\frac{9}{2}^-)$ Status: **

OMITTED FROM SUMMARY TARIE

	Δ(2400) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2300±100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2468 ± 50	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
2200±100	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
	Δ(2400) WID	тн		
VALUE (MeV)	DOCUMENT 10		TECN	COMMENT
330±100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
480±100 450±200	HOEHLER HENDRY	79 78	IPWA MDWA	$\pi N \rightarrow \pi N$ $\pi N \rightarrow \pi N$
-30 1 200	TILIVOK 1	′°	MEVVA	π IV → π IV
Δ(2	400) POLE PO	SIT	ION	
REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2260±60	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2 × IMAGINARY PART			.,	
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
320±160	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
Δ(2400)	ELASTIC POL	 E R	ESIDU	 E
REAL PART				
VALUE (MeV)	DOCUMENT ID			COMMENT
7 ± 4	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
IMAGINARY PART	DOCUMENT ID		TECN	COMMENT
-3±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
Δ(2	2400) DECAY N	100	DES	
Mode				
Γ ₁ Νπ Γ ₂ Σ <i>Κ</i>				
12 41				
			ATIOS	
Δ(240	0) BRANCHING	3 R/	41103	
$\Gamma(N\pi)/\Gamma_{\text{total}}$	•	3 K		Γ ₁ /Γ
$\Gamma(N\pi)/\Gamma_{ ext{total}}$	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>
$\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.05 ± 0.02	DOCUMENT ID	80	TECN IPWA	$\pi N \rightarrow \pi N$
Γ(Nπ)/Γ _{total} VALUE 0.05 ± 0.02 0.06 ± 0.03	DOCUMENT ID		TECN IPWA IPWA	$ \begin{array}{ccc} COMMENT & & \\ \pi N \rightarrow & \pi N & \\ \pi N \rightarrow & \pi N \end{array} $
$\Gamma(N\pi)/\Gamma_{\text{total}}$ $VALUE$ 0.05 ± 0.02 0.06 ± 0.03 0.10 ± 0.03	DOCUMENT ID CUTKOSKY HOEHLER HENDRY	80 79	TECN IPWA	$ \begin{array}{ccc} COMMENT & \\ \pi N \to & \pi N \\ \pi N \to & \pi N \\ \pi N \to & \pi N \end{array} $
$\frac{\Gamma(N\pi)/\Gamma_{\text{total}}}{^{\text{vALUE}}}$ 0.05 ± 0.02 0.06 ± 0.03 0.10 ± 0.03 $(\Gamma_{i}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \Delta($	DOCUMENT ID CUTKOSKY HOEHLER HENDRY 2400) → ∑K	80 79 78	<u>TECN</u> IPWA IPWA MPWA	$\begin{array}{ccc} \underline{COMMENT} \\ \pi N \to & \pi N \\ \pi N \to & \pi N \\ \pi N \to & \pi N \end{array}$ $(\Gamma_1 \Gamma_2)^{1/2} / \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2$
$\Gamma(N\pi)/\Gamma_{ ext{total}}$ $VALUE$ 0.05 ± 0.02 0.06 ± 0.03 0.10 ± 0.03 $\Gamma_{\Gamma}\Gamma_{f}$ $VALUE$ $VALUE$	DOCUMENT ID CUTKOSKY HOEHLER HENDRY 2400) → ∑K DOCUMENT ID	80 79 78	TECN IPWA IPWA MPWA	COMMENT $ \begin{array}{ccc} \pi N & \rightarrow & \pi N \\ \pi N & \rightarrow & \pi N \\ \pi N & \rightarrow & \pi N \end{array} $ $ (\Gamma_1 \Gamma_2)^{1/2} / \Gamma_1 $ COMMENT
$\frac{\Delta(2400)}{\Gamma(N\pi)/\Gamma_{\text{total}}}$ $\frac{VALUE}{0.05 \pm 0.02}$ 0.06 ± 0.03 0.10 ± 0.03 $(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \Delta(100)$ $\frac{VALUE}{< 0.015}$	DOCUMENT ID CUTKOSKY HOEHLER HENDRY 2400) → ∑K	80 79 78	TECN IPWA IPWA MPWA	$\begin{array}{ccc} \underline{COMMENT} \\ \pi N \to & \pi N \\ \pi N \to & \pi N \\ \pi N \to & \pi N \end{array}$ $(\Gamma_1 \Gamma_2)^{1/2} / \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2 \Gamma_2$
$\Gamma(N\pi)/\Gamma_{ ext{total}}$ $VALUE$ 0.05 ± 0.02 0.06 ± 0.03 0.10 ± 0.03 $\Gamma(\Gamma \Gamma_f)^{1/2}/\Gamma_{ ext{total}}$ in $N\pi \to \Delta$ $VALUE$ < 0.015	DOCUMENT ID CUTKOSKY HOEHLER HENDRY 2400) → ∑K DOCUMENT ID	80 79 78	TECN IPWA IPWA MPWA TECN DPWA	COMMENT $ \begin{array}{ccc} \pi N & \rightarrow & \pi N \\ \pi N & \rightarrow & \pi N \\ \pi N & \rightarrow & \pi N \end{array} $ $ (\Gamma_1 \Gamma_2)^{1/2} / \Gamma_1 $ COMMENT
$\frac{\Gamma(N\pi)/\Gamma_{\text{total}}}{^{VALUE}}$ 0.05 ± 0.02 0.06 ± 0.03 0.10 ± 0.03 $(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \Delta($ $\frac{VALUE}{< 0.015}$ $\Delta($ CANDLIN 84 NP B238 477	DOCUMENT ID CUTKOSKY HOEHLER HENDRY 2400) → ∑K DOCUMENT ID CANDLIN 2400) REFERE +Lowe, Peach, Sc	80 79 78 84	TECN IPWA IPWA MPWA TECN DPWA ES	COMMENT $\pi N \to \pi N$ $\pi N \to \pi N$ $\pi N \to \pi N$ $\pi N \to \pi N$ $(\Gamma_1 \Gamma_2)^{1/2} / \Gamma$ COMMENT $\pi^+ p \to \Sigma^+ K^+$ (FDIN, RAL, LOWC)
$ \begin{array}{c cccc} \Gamma(N\pi)/\Gamma_{total} \\ \hline \nu_{ALUE} \\ 0.05 \pm 0.02 \\ 0.06 \pm 0.03 \\ 0.10 \pm 0.03 \\ \hline 0.10 \pm 0.03 \\ \hline (\Gamma_{f}\Gamma_{f})^{\frac{1}{2}}/\Gamma_{total} & \text{in } N\pi \rightarrow \Delta (\\ \hline \nu_{ALUE} \\ \hline < 0.015 \\ \hline \\ \hline CANDLIN & 84 & \text{NP B238 477} \\ \Gamma_{CUTKOSKY} & 80 & \text{Toronto Conf. 19} \\ Also & 79 & \text{PR D20 2839} \\ \hline \end{array} $	DOCUMENT ID CUTKOSKY HOEHLER HENDRY 2400) → ∑K DOCUMENT ID CANDLIN 2400) REFERE +Lowe, Peach, Se +Forsyth, Babcocl	80 79 78 84 NCL	TECN IPWA IPWA MPWA TECN DPWA THE NOTICE TO THE NEW TECN THE NEW TEC	COMMENT $\pi N \to \pi N$ $\pi N \to \pi N$ $\pi N \to \pi N$ $\pi N \to \pi N$ $(\Gamma_1 \Gamma_2)^{1/2} / \Gamma$ COMMENT $\pi^+ p \to \Sigma^+ K^+$ (FDIN, RAL, LOWC)
$\Gamma(N\pi)/\Gamma_{\text{total}}$ VALUE 0.05 ± 0.02 0.06 ± 0.03 0.10 ± 0.03 $(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}}$ in $N\pi \to \Delta$ (ΔΑΙUE <0.015 Δ(CANDLIN 84 NP B238 477 CUTKOSKY 80 Teronto Conf. 19	DOCUMENT ID CUTKOSKY HOEHLER HENDRY 2400) → ∑K DOCUMENT ID CANDLIN 2400) REFERE +Lowe, Peach, Sc	80 79 78 84 NCL	TECN IPWA IPWA MPWA TECN DPWA SS 1+ Iy, Hendrick, Kel	COMMENT $\pi N \to \pi N$ $\pi N \to \pi N$ $\pi N \to \pi N$ $(\Gamma_1 \Gamma_2)^{1/2} / \Gamma$ COMMENT $\pi^+ p \to \Sigma^+ K^+$ (EDIN, RAL, LOWC)

$\Delta(2420) H_{3,11}$

 $I(J^P) = \frac{3}{2}(\frac{11}{2}^+)$ Status: ***

Most of the results published before 1975 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

	Δ(2420) MA	SS			
VALUE (MeV) 2380 to 2450 OUR ESTIMAT	DOCUMENT ID		TECN	COMMENT	
2400 ±125	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
2416 ± 17	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
2400 ± 60	HENDRY	78		$\pi N \rightarrow \pi N$	
• • We do not use the follow					
2400 2358.0± 9.0	CANDLIN CHEW	84 80		$\begin{array}{ccc} \pi^+ \rho \to & \Sigma^+ K^+ \\ \pi^+ \rho \to & \pi^+ \rho \end{array}$	
	Δ(2420) WID	тн			_
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
300 to 500 OUR ESTIMATE 450 ±150				• •	
340 ± 28	CUTKOSKY HOEHLER		IPWA IPWA	$\pi N \rightarrow \pi N$ $\pi N \rightarrow \pi N$	
460 ±100	HENDRY	78		$\pi N \rightarrow \pi N$	
• • We do not use the follow			s, limits,	etc. • • •	
400	CANDLIN	84		$\pi^+ p \rightarrow \Sigma^+ K^+$	
202.2± 45.0	CHEW	80		$\pi^+ p \rightarrow \pi^+ p$	
					
Δ	(2420) POLE PO	SIT	ION		
REAL PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
2360±100	CUTKOSKY	80	IPWA		_
		•		* * * * * * * * * * * * * * * * * * *	
-2 × IMAGINARY PART	DOCUMENT ID		TECH		
420±100	DOCUMENT ID CUTKOSKY			COMMENT	
420 ± 100	CUTROSKT	80	IPWA	$\pi N \rightarrow \pi N$	
Δ(242	0) ELASTIC POI	LE F	RESIDU	E	_
REAL PART VALUE (MeV)					
16±8	DOCUMENT ID CUTKOSKY			COMMENT	_
10±0	CUTROSKT	80	IPWA	$\pi N \rightarrow \pi N$	
MAGINARY PART					
VALUE (MeV)	DOCUMENT ID			COMMENT	
-9±11	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
	(2420) DECAY	MOE	DES		
Mode		Fract	ion (Γ_i /	Γ)	
-1 Νπ -2 ΣΚ		5–15	%		
	420) BRANCHIN	G P	ATIOS		_
$\Gamma(N\pi)/\Gamma_{\text{total}}$, Divisoriile	J 11	A1103	-	
(NM)/ total ALUE	DOCUMENT 12		TECT		1/
0.05 to 0.15 OUR ESTIMATE	DOCUMENT ID		IECN	COMMENT	_
0.08 ± 0.03	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
0.08 ± 0.015	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
0.11 ± 0.02	HENDRY			$\pi N \rightarrow \pi N$	

0.22	CHEW	80	BPWA $\pi^+ \rho \rightarrow \pi^+ \rho$
$\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{1/2}/\Gamma_{\text{total}} \text{ in } N\pi \rightarrow \frac{VALUE}{-0.016}$	$\Delta(2420) \rightarrow \Sigma K$ DOCUMENT ID CANDLIN		$\begin{array}{c} (\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma \\ \hline \text{DPWA} & \pi^+\rho \rightarrow \; \Sigma^+K^+ \end{array}$

78 MPWA $\pi N \rightarrow \pi N$

HENDRY

0.22

Δ(2420) REFERENCES

CANDLIN CHEW	84 80	NP B238 477 Toronto Conf. 123	+Lowe, Peach, Scotland+	(EDIN, RAL, LOWC)
CUTKOSKY	80	Toronto Conf. 123	+Forsyth, Babcock, Kelly, Hendrick	(LBL) IJP
				(CMU, LBL) IJP
Also	79	PR D20 2839	Cutkosky, Forsyth, Hendrick, Kelly	(CMU, LBL)
HOEHLER	79	PDAT 12-1	+Kaiser, Koch, Pietarinen	(KARL) IJP
Also	80	Toronto Conf. 3	Koch	(KARL) IJP
HENDRY	78	PRL 41 222		(IND. LBL) IJP
Also	81	ANP 136 1	Hendry	(IND)

 $\Delta(2750)$, $\Delta(2950)$, $\Delta(\sim 3000)$

 $\Delta(2750) I_{3,13}$

 $I(J^P) = \frac{3}{2}(\frac{13}{2})$ Status: **

OMITTED FROM SUMMARY TABLE

	Δ(2750) MA	SS	
VALUE (MeV)	DOCUMENT ID		TECN COMMENT
2794 ± 80	HOEHLER	79	
2650 ± 100	HENDRY	78	MPWA $\pi N \rightarrow \pi N$
	Δ(2750) WID	ТН	
VALUE (MeV)	DOCUMENT ID		TECN COMMENT
350 ± 100	HOEHLER	79	IPWA $\pi N \rightarrow \pi N$
500 ± 100	HENDRY	78	MPWA $\pi N \rightarrow \pi N$
	Δ(2750) DECAY	MOI	DES
Mode			
Γ ₁ Νπ			

Δ(2750) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.04 ± 0.015	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
0.05 ± 0.01	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	

Δ(2750) REFERENCES

			(-100) 11-		
HOEHLER Also HENDRY	79 80 78	PDAT 12-1 Toronto Conf. PRL 41 222		Koch, Pietarinen	(KARL) IJP (KARL) IJP (IND, LBL) IJP
Also	81	ANP 136 1	Hendry		(IND)

 $\Delta(2950) K_{3,15}$

Mode

 $\Gamma_1 N \pi$

 $I(J^P) = \frac{3}{2}(\frac{15}{2}^+)$ Status: **

OMITTED FROM SUMMARY TABLE

	Δ(2950) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2990±100	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
2850±100	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
	Δ(2950) WIE	тн	•	
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
330 ± 100	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
700 ± 200	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$
	Δ(2950) DECAY	моі	DES	<u>-</u>

Δ(2950) BRANCHING RATIOS

			,							
Γ(Ν π)/Γ	total			DOCUMEN	T ID		TEÇN_	COMME	NT.	Γ ₁ /Γ
0.04 ± 0.02				HOEHLE	R	79	IPWA	$\pi N \rightarrow$	πN	
0.03 ± 0.01				HENDRY	,	78	MPWA	$\pi\: N \: \to \:$	πN	
			Λ(20	50) REF	EER	FNC	FS			
		•	Δ(29	30) KLI	LI	LIVE				
HOEHLER Also HENDRY	79 80 78	PDAT 12-1 Toronto Conf. 3 PRL 41 222	ı	+Kaiser, K Koch	(och,	Pietarii	nen			(KARL) IJP (KARL) IJP (IND, LBL) IJP
Also	81	ANP 136 1		Hendry						(IND)

$\Delta(\sim 3000 \; {\sf Region})$ Partial-Wave Analyses

OMITTED FROM SUMMARY TABLE

We list here miscellaneous high-mass candidates for isospin-3/2 resonances found in partial-wave analyses.

Our 1982 edition also had a $\Delta(2850)$ and a $\Delta(3230)$. The evidence for them was deduced from total cross-section and 180° elastic cross-section measurements. The $\Delta(2850)$ has been resolved into the $\Delta(2750)$ $I_{3,13}$ and $\Delta(2950)$ $K_{3,15}$. The $\Delta(3230)$ is perhaps related to the $K_{3,13}$ of HENDRY 78 and to the $L_{3,17}$ of KOCH 80.

VALUE (MeV)	DOCUMENT ID		TECN	COMME	NT
3300	¹ косн	80	IPWA	$\pi N \rightarrow$	$\pi N L_{3.17}$ wave
3500	$^{ m 1}$ KOCH	80	IPWA	$\pi N \rightarrow$	π N M _{3.19} wave
2850 ± 150	HENDRY	78	MPWA	$\pi N \rightarrow$	π N 13.11 wave
3200 ± 200	HENDRY	78	MPWA	$\pi N \rightarrow$	π N K _{3.13} wave
3300 ± 200	HENDRY	78	MPWA	$\pi N \rightarrow$	$\pi N L_{3,17}$ wave
3700 ± 200	HENDRY	78	MPWA	$\pi N \rightarrow$	π N M _{3.19} wave
4100 ± 300	HENDRY	78	MPWA	π N →	π N N _{3,21} wave
	Δ(~ 3000) WI	DTF	1		

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
700 ± 200	HENDRY	78	MPWA	$\pi N \rightarrow \pi N I_{3.11}$ wave
1000 ± 300	HENDRY	78	MPWA	$\pi N \rightarrow \pi N K_{3,13}$ wave
1100 ± 300	HENDRY	78	MPWA	$\pi N \rightarrow \pi N L_{3,17}$ wave
1300 ± 400	HENDRY	78	MPWA	$\pi\text{N}\rightarrow\pi\text{N}\text{M}_{3,19}$ wave
1600 ± 500	HENDRY	78	MPWA	$\pi \text{N} \rightarrow \pi \text{N} \text{N}_{3,21} \text{wave}$

$\Delta (\sim 3000)$ DECAY MODES

 Γ_1 $N\pi$

∆(~ 3000) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.06 ±0.02	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	13,11 wave
0.045 ± 0.02	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	K _{3,13} wave
0.03 ± 0.01	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	L _{3,17} wave
0.025 ± 0.01	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	M _{3,19} wave
0.018 ± 0.01	HENDRY	78	MPWA	$\pi N \rightarrow \pi N$	$N_{3,21}$ wave

Δ (\sim 3000) FOOTNOTES

 1 In addition, KOCH 80 reports some evidence for an S_{31} $\Delta(2700)$ and a P_{33} $\Delta(2800)$.

Δ (\sim 3000) REFERENCES

KOCH HENDRY Also	80 78 81	Toronto Conf. PRL 41 222 ANP 136 1	3 Hendry	(KARL) IJP (IND, LBL) IJP (IND)
------------------------	----------------	--	-------------	---------------------------------------

Z BARYONS (S = +1)

NOTE ON THE S = +1 BARYON SYSTEM

The evidence for strangeness +1 baryon resonances was reviewed in our 1976 edition,¹ and has been reviewed more recently by Kelly² and by Oades.³ New partial-wave analyses^{4,5} appeared in 1984 and 1985, and both claimed that the P_{13} and perhaps other waves resonate. However, the results permit no definite conclusion — the same story heard for 20 years. The standards of proof must simply be more severe here than in a channel in which many resonances are already known to exist. The present skepticism against baryons not made of three quarks, and the lack of any experimental activity in this area, make it likely that another 20 years will pass before the issue is decided. Nothing new at all has been published in this area since our 1986 edition,⁶ and we simply refer to that for listings of the $Z_0(1780)P_{01}$, $Z_0(1865)D_{03}$, $Z_1(1725)P_{11}$, $Z_1(2150)$, and $Z_1(2500)$.

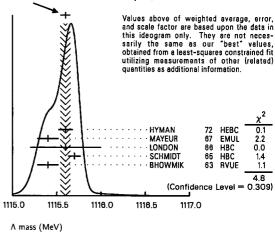
References

- 1. Particle Data Group, Rev. Mod. Phys. 48, S188 (1976).
- 2. R.L. Kelly, in *Proceedings of the Meeting on Exotic Resonances* (Hiroshima, 1978), ed. I. Endo et al.
- G.C. Oades, in Low and Intermediate Energy Kaon-Nucleon Physics (1981), ed. E. Ferrari and G. Violini.
- K. Hashimoto, Phys. Rev. C29, 1377 (1984).
- 5. R.A. Arndt and L.D. Roper, Phys. Rev. **D31**, 2230 (1985).
- 6. Particle Data Group, Phys. Lett. 170B, 289 (1986).

Λ BARYONS (S = -1, I = 0) $\Lambda^0 = uds$

$$I(J^P) = 0(\frac{1}{2}^+)$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.


Λ MASS

The fit uses Λ , Σ^+ , Σ^0 , Σ^- mass and mass-difference measurements.

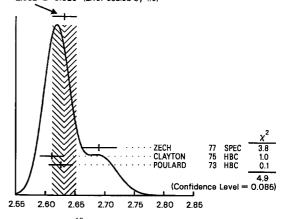
VALUE (MeV) 1115.63±0.05 OL	EVTS	DOCUMENT IE		<u>TECN</u>		
1115.57±0.06 Ot		Error includes so			See the ideo	gram
1115.59 ± 0.08	935	below. HYMAN	72	HEBC		
1115.39 ± 0.08 1115.39 ± 0.12	195	MAYEUR	67	EMUL		
1115.6 ± 0.4		LONDON	66	нвс		
1115.65±0.07	488	1 SCHMIDT 2 BHOWMIK	65 63	HBC		

¹ Since our final values for the Σ and Λ masses come from doing an overall fit to all measured masses and mass differences, we use the uncorrelated measurements from SCHMIDT 65 rather than those coming from the overall fit reported in that paper. Since there seems to be no convincing reason to ignore data using range measurements, we include here values depending on proton and pion ranges. The SCHMIDT 65 masses have been reevaluated using our April 1973 proton and K^{\pm} and π^{\pm} masses. P. Schmidt, private communication (1974).

WEIGHTED AVERAGE 1115.57 ± 0.06 (Error scaled by 1.3)

Λ - Λ MASS DIFFERENCE

A test of CPT.


VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
0.00±0.12 OUR AVERAGE	Error includes scale	facto	or of 2.1	
-0.29 ± 0.15	BADIER	67	HBC	2.4 GeV/c pp
0.05 ± 0.06	CHIEN	66	HBC	6.9 GeV/ <i>c</i> ¬pp

Λ MEAN LIFE

Measurements with an error $\geq 0.1\times 10^{-10}$ s have been omitted, and only the latest high-statistics measurements are used for the average.

VALUE (10 ⁻¹⁰ s)	EVTS	DOCUMENT ID		TECN	COMMENT
2.632 ± 0.020 OUR	AVERAGE	Error includes scale	facto	or of 1.6	. See the ideogram below.
2.69 ±0.03	53k	ZECH	77	SPEC	Neutral hyperon beam
2.611 ± 0.020	34k	CLAYTON	75	HBC	0.96-1.4 GeV/c K p
2.626 ± 0.020	36k	POULARD	73	HBC	0.4-2.3 GeV/c K- p
• • • We do not us	e the followi	ng data for averages	s, fits	, limits,	etc. • • •
2.69 ±0.05	6582	ALTHOFF	73B	OSPK	$\pi^+ n \rightarrow \Lambda K^+$
2.54 ± 0.04	4572	BALTAY	71B	HBC	K [−] p at rest
2.535 ± 0.035	8342	GRIMM	68	HBC	
2.47 ± 0.08	2600	HEPP	68	HBC	
2.35 ± 0.09	916	BURAN	66	HLBC	
$2.452 + 0.056 \\ -0.054$	2213	ENGELMANN	66	нвс	
2.59 ± 0.09	794	HUBBARD	64	HBC	
2.59 ± 0.07	1378	SCHWARTZ	64	HBC	
2.36 ± 0.06	2239	BLOCK	63	HEBC	

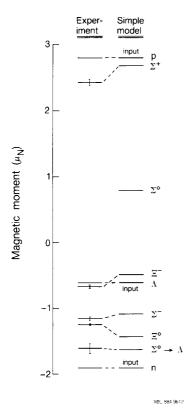
WEIGHTED AVERAGE 2.632 ± 0.020 (Error scaled by 1.6)

 Λ mean life (10 $^{-10}$ s)

The mass has been raised 35 keV to take into account a 46 keV increase in the proton mass and an 11 keV decrease in the π^{\pm} mass (note added 1967 edition, RMP 39, 1).

 $(\tau_{\Lambda} - \tau_{\overline{\Lambda}}) / \tau_{AVERAGE}$, MEAN LIFE DIFFERENCE A test of CPT.

VALUE	DOCUMENT ID	TECN	COMMENT
0.044 ± 0.085	BADIER 67	HBC	2.4 GeV/c pp


NOTE ON BARYON MAGNETIC MOMENTS

The figure shows the measured magnetic moments of the stable baryons. It also shows the predictions of the simplest quark model, using the measured p, n, and Λ moments as input. In this model, the moments are 1

$$\begin{array}{ll} \mu_p = (4\mu_u - \mu_d)/3 & \mu_n = (4\mu_d - \mu_u)/3 \\ \mu_{\Sigma^+} = (4\mu_u - \mu_s)/3 & \mu_{\Sigma^-} = (4\mu_d - \mu_s)/3 \\ \mu_{\Xi^0} = (4\mu_s - \mu_u)/3 & \mu_{\Xi^-} = (4\mu_s - \mu_d)/3 \\ \mu_{\Lambda} = \mu_s & \mu_{\Sigma^0} = (2\mu_u + 2\mu_d - \mu_s)/3 \end{array}$$

and the $\Sigma^0 \to \Lambda$ transition moment is

$$\mu_{\Sigma^0\Lambda} = (\mu_d - \mu_u)/\sqrt{3}$$
.

The quark moments that result from this simple model are $\mu_u = +1.852\,\mu_N, \; \mu_d = -0.972\,\mu_N, \; {
m and} \; \; \mu_s = -0.613\,\mu_N. \; {
m The}$ corresponding effective quark masses, taking the quarks to be Dirac point particles, where $\mu = q\hbar/2m$, are 338, 322, and 510 MeV. As the figure shows, the model gives a good first approximation to the experimental moments. For efforts to make a better model, we refer to the literature.²

References

1. See, for example, D.H. Perkins, Introduction to High Energy Physics (Addison-Wesley, Reading, MA, 1987), or

- D. Griffiths, Introduction to Elementary Particles (Harper & Row, New York, 1987).
- See, for example, J. Franklin, Phys. Rev. **D29**, 2648 (1984); H.J. Lipkin, Nucl. Phys. B241, 477 (1984); K. Suzuki, H. Kumagai, and Y. Tanaka, Europhys. Lett. 2, 109 (1986); S.K. Gupta and S.B. Khadkikar, Phys. Rev. D36, 307 (1987); M.I. Krivoruchenko, Sov. Jour. Nucl. Phys. 45, 109 (1987); L. Brekke and J.L. Rosner, Comments Nucl. Part. Phys. 18, 83 (1988); K.-T. Chao, Phys. Rev. D41, 920 (1990); and references cited therein.

A MAGNETIC MOMENT

See the Note on Baryon Magnetic Moments above. Measurements with an error $\geq 0.15 \ \mu_M$ have been omitted.

VALUE (μ_N)	EVTS	DOCUMENT ID		TECN	COMMENT	
-0.613 ± 0.00	4 OUR AVERAGE					
-0.606 ± 0.01	5 200k	COX	81	SPEC		
-0.6138 ± 0.00	47 3M	SCHACHIN	78	SPEC		
-0.59 ± 0.07	350k	HELLER	77	SPEC		
-0.57 ± 0.05	1.2M	BUNCE	76	SPEC		
-0.66 ± 0.07	1300	DAHL-JENSEI	V 71	EMUL	200 kG field	

A ELECTRIC DIPOLE MOMENT

A nonzero value is forbidden by both T invariance and P invariance.

VALUE (10 ⁻¹⁶ e-cm)	CL%	DOCUMENT ID		TECN
< 1.5	95	³ PONDROM	81	SPEC
• • • We do not use th	ne following	g data for average	s, fit	s, limits, etc. • • •
<100	95	4 BARONI	71	EMUL
< 500	95	GIBSON	66	EMUL
³ PONDROM 81 mea ⁴ BARONI 71 measur	sures (— 3. es (— 5.9 ±	0 ± 7.4) × 10^{-17} ± 2.9) × 10^{-15} e	7 _{e-c}	m.

A DECAY MODES

Fraction $(\Gamma_{\tilde{I}}/\Gamma)$	
(64.1 ±0.5)%	
(35.7 ±0.5)%	
(+ 00 + 0 22) 10=3	

рπ $n\pi^0$ Γ_2 Γ_3 $n\gamma$ Γ_4 [a](8.5 ± 1.4) $\times 10^{-4}$ рπ $(8.34 \pm 0.14) \times 10^{-4}$ $pe^- \overline{\nu}_e$ Γ_5 $(1.57\pm0.35)\times10^{-4}$

[a] See the Listings below for the pion momentum range used in this measurement.

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 24 measurements and one constraint to determine 5 parameters. The overall fit has a χ^2 13.6 for 20 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{\mathsf{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

Mode

A BRANCHING RATIOS

$\Gamma(\rho\pi^-)/\Gamma(N\pi)$				$\Gamma_1/(\Gamma_1+\Gamma_2)$
VALUE 0.642 ± 0.005 OUR F	EVTS	DOCUMENT ID	TECN	COMMENT
0.640 ± 0.005 OUR A				
0.646 ± 0.008	4572	BALTAY	718 HBC	K p at rest
0.635 ± 0.007	6736	DOYLE	69 HBC	$\pi^- p \rightarrow \Lambda K^0$
0.643 ± 0.016	903	HUMPHREY	62 HBC	
0.65 ± 0.05		COLUMBIA	60 HBC	
0.627 ± 0.031		CRAWFORD	598 HRC	

$\Gamma(n\pi^0)/\Gamma(N\pi)$		_			$\Gamma_2/(\Gamma_1+\Gamma_2)$
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	
0.358±0.005 OUR FIT	DACE				
0.304±0.025 OUR AVE	KAGE	DDOM/N	63	WI DC	
0.35 ±0.05	75	BROWN	63	HLBC	
0.291 ± 0.034	75	CHRETIEN BAGLIN	63 60	HLBC	
0.28 ±0.08 0.43 ±0.14		CRAWFORD		HBC	
0.23 ±0.09		EISLER	57	HLBC	
$\Gamma(n\gamma)/\Gamma(n\pi^0)$		2.002	•		Γ_3/Γ_2
· · / · · /		BOOK MICHELL ID		TECH	-, -
VALUE (units 10 ⁻³) 2.9 ±0.9 OUR FIT	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
2.9 ±0.9 OUR FIT 2.86±0.74±0.57	24	BIAGI	86	SPEC	SPS hyperon beam
	24	DIAGI	00	31 2.0	
$\Gamma(p\pi^-\gamma)/\Gamma(p\pi^-)$					Γ_4/Γ_1
VALUE (units 10 ⁻³)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.32±0.22	72	BAGGETT	72 c	HBC	$\pi^- < 95 \text{ MeV}/c$
$\Gamma \big(\rho e^- \overline{\nu}_e \big) / \Gamma \big(\rho \pi^- \big)$					Γ_5/Γ_1
VALUE (units 10 ⁻³)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.301 ± 0.019 OUR FIT					
1.301±0.019 OUR AVE		00110011111		CDEC	CDC harmon bases
1.335 ± 0.056	7111	BOURQUIN	83	SPEC	SPS hyperon beam
1.313±0.024	10k	WISE	80	SPEC	$\pi^- \rho \rightarrow \kappa^0 \Lambda$
1.23 ±0.11	544	LINDQUIST	77	SPEC HBC	$\pi \rho \rightarrow K^{\circ} \Lambda$
1.27 ±0.07	1089 1078	KATZ ALTHOFF		OSPK	
1.31 ±0.06 1.17 ±0.13	86	5 CANTER	71	HBC	K ⁻ ρ at rest
1.17 ±0.13 1.20 ±0.12	143	6 MALONEY	69	HBC	n pariest
1.17 ±0.18	120	6 BAGLIN	64	FBC	K [−] freon 1.45 GeV/c
1.23 ±0.20	150	6 ELY	63	FBC	10011 1145 00470
• • • We do not use the				_	, etc. • • •
1.32 ±0.15	218	5 LINDQUIST	71		See LINDQUIST 77
⁵ Changed by us from 2/3.	n Γ(<i>ρe</i> -	$\overline{ u}_e)/\Gamma(N\pi)$ assumi	ng tì	ne autho	ors used $\Gamma(\rho\pi^-)/\Gamma_{\text{total}} =$
	Γ(pe ⁻	$\overline{ u}_e)/\Gamma(N\pi)$ because	Г(р	e ⁻ ν)/Γ	$(ho\pi^-)$ is the directly mea-
$\Gamma(p\mu^-\overline{\nu}_\mu)/\Gamma(N\pi)$					$\Gamma_6/(\Gamma_1+\Gamma_2)$
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
1.57±0.35 OUR FIT					
1.57±0.35 OUR AVER	AGE				
1.4 ± 0.5	14	BAGGETT	72E	HBC	$K^- \rho$ at rest
2.4 ±0.8	9	CANTER	71E	HBC	$K^- \rho$ at rest
1.3 ± 0.7	3	LIND	64	RVUE	
1.5 ± 1.2	2	RONNE	64	FBC	
	2		64	FBC	

A DECAY PARAMETERS

See the Note on Baryon Decay Parameters in the neutron Listings. Some early results have been omitted.

α_{-} FOR $\Lambda \rightarrow$	pπ ⁻				
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.642 ± 0.013 OU	RAVERAGE				
0.584 ± 0.046	8500	ASTBURY	75	SPEC	
0.649 ± 0.023	10325	CLELAND	72	OSPK	
0.67 ± 0.06	3520	DAUBER	69	HBC	From \equiv decay
0.645 ± 0.017	10130	OVERSETH	67	OSPK	Λ from $π$ ⁻ p
0.62 ± 0.07	1156	CRONIN	63	CNTR	Λ from $\pi^- p$
= ====					(11-01)
	$\Lambda \rightarrow p\pi^{-}$				$(tan \phi = \beta \ / \ \gamma)$
VALUE (°)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
- 6.5± 3.5 OUF	RAVERAGE				
- 7.0± 4.5	10325	CLELAND	72	OSPK	Λ from $\pi^ p$
~ 8.0± 6.0	10130	OVERSETH	67	OSPK	Λ from $\pi^- p$
13.0 ± 17.0	1156	CRONIN	63	OSPK	Λ from $\pi^- p$
, ,,	- 0) ((4)			
$\alpha_0 / \alpha = \alpha(/$	$(\rightarrow n\pi^{\circ})/c$				
	<u>EVT\$</u>	DOCUMENT_ID		TECN	COMMENT
1.01 ±0.07 OU	R AVERAGE	_			
1.000 ± 0.068	4760	⁷ OLSEN	70	OSPK	$\pi^+ n \rightarrow \Lambda K^+$
1.10 ± 0.27		CORK	60	CNTR	
7 OLSEN 70 CO	mnares proton a	nd neutron distrib	ution	s from /	decay

OLSEN 70 compares proton and neutron distributions from A decay. $[\alpha, (\Lambda) + \alpha, (\overline{\Lambda})] / [\alpha, (\Lambda) - \alpha, (\overline{\Lambda})]$

$- \alpha_{-}(\Lambda) + \alpha_{+}(\Lambda)$)) / α_(^)	$-\alpha_{+}(\Lambda)$				
Zero if CP is	conserved.	-				
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	_
-0.03±0.06 OUR	AVERAGE					
$+0.01 \pm 0.10$	770	TIXIER	88	DM2	$J/\psi \rightarrow \Lambda \overline{\Lambda}$	
-0.07 ± 0.09	4063	BARNES	87	CNTR	$\overline{\rho}\rho \rightarrow \overline{\Lambda}\Lambda LEAR$	
-0.02 ± 0.14	10k	⁸ CHAUVAT	85	CNTR	pp, pp ISR	

 $^{^8}$ CHAUVAT 85 actually gives $\alpha_+(\bar{\Lambda})/\alpha_-(\Lambda)=-1.04\pm0.29.$ Assumes polarization is same in $\bar{p}p\to\bar{\Lambda}$ X and $pp\to\Lambda$ X. Tests of this assumption, based on C-invariance and fragmentation, are satisfied by the data.

 g_A / g_V FOR $\Lambda \to p e^- \overline{
u}_e$ Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the Note on Baryon Decay Parameters in the neutron Listings. The measurements all assume that

the form factor g	$_{2} = 0. Se$	ee also the footnot	e on l	DWORK	IN 90.	
VALUE	EVT5	DOCUMENT ID		<u>TECN</u>	COMMENT	
-0.718±0.015 OUR A	VERAGE					
$-0.719 \pm 0.016 \pm 0.012$	37k	9 DWORKIN	90	SPEC	$e\nu$ angular corr.	
-0.70 ± 0.03	7111	BOURQUIN	83	SPEC	$\Xi \rightarrow \Lambda \pi^-$	
-0.734 ± 0.031	10k	¹⁰ WISE	81	SPEC	$e\nu$ angular correl.	
• • • We do not use t	ne followi	ng data for average	es, fit	s, limits,	etc. • • •	
-0.63 ± 0.06	817	ALTHOFF	73	OSPK	Polarized A	
⁹ The tabulated result assumes the weak-magnetism coupling $w \equiv g_W(0)/g_V(0)$ to be 0.97, as given by the CVC hypothesis and as assumed by the other listed measurements. However, DWORKIN 90 measures w to be 0.15 \pm 0.30, and then $g_A/g_V = -0.731 \pm 0.016$. 10 This experiment measures only the absolute value of g_A/g_V						

REFERENCES FOR A

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1986 edition (Physics Letters 170B) or in

•			
DWORKIN	90	PR D41 780	+Cox, Dukes, Overseth+ (MICH, WISC, RUTG, MINN)
TIXIER	88	PL B212 523	+Ajaltouni, Falvard, Jousset+ (DM2 Collab.)
BARNES	87	PL B199 147	+ (CMU, SACL, LANL, VIEN, FREI, ILL, UPPS+)
BIAGI	86	ZPHY C30 201	 (BRIS, CERN, GEVA, HEID, LAUS, LOQM, RAL)
CHAUVAT	85	PL 163B 273	+Erhan, Hayes+ (CERN, UDCF, UCLA, SACL)
BOURQUIN	83	ZPHY C21 1	+Brown+ (BRIS, GEVA, HEID, LALO, RL, STRB)
COX	81	PRL 46 877	+Dworkin+ (MICH, WISC, RUTG, MINN, BNL)
PONDROM	81	PR D23 814	+Handler, Sheaff, Cox+ (WISC, MICH, RUTG, MINN)
WISE	81	PL 98B 123	+ Jensen, Kreisler, Lomanno, Poster+ (MASA, BNL)
WISE	80	PL 91B 165	+ Jensen, Kreisler, Lomanno, Poster+ (MASA, BNL)
SCHACHIN	78	PRL 41 1348	Schachinger, Bunce, Cox+ (MICH, RUTG, WISC)
HELLER	77	PL 68B 480	+Overseth, Bunce, Dydak+ (MICH, WISC, HEID)
LINDQUIST	77	PR D16 2104	+Swallow, Sumner+ (EFI, OSU, ANL)
Also	76	JP G2 L211	Lindquist, Swallow+ (EFI, WUSL, OSU, ANL)
ZECH	77	NP B124 413	+Dydak, Navarria+ (SIEG, CERN, DORT, HEID)
BUNCE	76 75	PRL 36 1113 NP B99 30	+Handler, March, Martin+ (WISC, MICH, RUTG) +Gallivan, Jafar+ (LOIC, CERN, ETH, SACL)
ASTBURY CLAYTON	75	NP B95 130	+Bacon, Butterworth, Waters+ (LOIC, RHEL)
ALTHOFF	73	PL 43B 237	+Brown, Freytag, Heard, Heintze+ (CERN, HEID)
ALTHOFF	73B	NP B66 29	+Brown, Freytag, Heard, Heintze+ (CERN, HEID)
KATZ	73	Maryland Thesis	(UMD)
POULARD	73	PL 46B 135	+Givernaud, Borg (SACL)
BAGGETT	72B	ZPHY 252 362	+Baggett, Eisele, Filthuth, Frehse+ (HEID)
BAGGETT	72C	PL 42B 379	+Baggett, Eisele, Filthuth, Frehse, Hepp+ (HEID)
CLELAND	72	NP B40 221	+Conforto, Eaton, Gerber+ (CERN, GEVA, LUND)
HYMAN	72	PR D5 1063	+Bunneil, Derrick, Fields, Katz+ (ANL, CMU)
ALTHOFF	71	PL 37B 531	+Brown, Freytag, Heard, Heintze+ (CERN, HEID)
BALTAY	71B	PR D4 670	+Bridgewater, Cooper, Habibi+ (COLU, BING)
BARONI	71	LNC 2 1256	+Petrera, Romano (ROMA)
CANTER	71	PRL 26 868	+Cole, Lee-Franzini, Loveless+ (STON, COLU)
CANTER	71B	PRL 27 59 NC 3A 1	+Cole, Lee-Franzini, Loveless+ (STON, COLU) + (CERN, ANKA, LAUS, MPIM, ROMA)
DAHL-JENSEN LINDQUIST	71	PRL 27 612	+ (CERN, ANKA, LAUS, MPIM, ROMA) +Sumner+ (EFI, WUSL, OSU, ANL)
OLSEN	70	PRL 24 843	+Pondrom, Handler, Limon, Smith+ (WISC, MICH)
DAUBER	69	PR 179 1262	+Berge, Hubbard, Merrill, Miller (LRL)
DOYLE	69	UCRL 18139 Thesis	(LRL)
MALONEY	69	PRL 23 425	+Sechi-Zorn (UMD)
GRIMM	68	NC 54A 187	(HEID)
HEPP	68	ZPHY 214 71	+Schleich (HEID)
BADIER	67	PL 25B 152	+Bonnet, Briandet, Sadoulet (EPOL)
MAYEUR	67	U.Libr.Brux.Bul. 32	+Tompa, Wickens (BELG, LOUC)
OVERSETH	67	PRL 19 391	+Roth (MICH, PRIN)
BURAN	66	PL 20 318	+Eivindson, Skjeggestad, Tofte+ (OSLO)
CHIEN	66	PR 152 1171	+Lach, Sandweiss, Taft, Yeh, Oren+ (YALE, BNL)
ENGELMANN	66	NC 45A 1038	+Filthuth, Alexander+ (HEID, REHO)
GIBSON LONDON	66 66	NC 45A 882 PR 143 1034	+Green (BRIS)
SCHMIDT	65	PR 140B 1328	+Rau, Goldberg, Lichtman+ (BNL, SYRA) (COLU)
BAGLIN	64	NC 35 977	+Bingham+ (EPOL, CERN, LOUC, RHEL, BERG)
HUBBARD	64	PR 135B 183	+Berge, Kalbfleisch, Shafer+ (LRL)
LIND	64	PR 135B 1483	+Binford, Good, Stern (WISC)
RONNE	64	PL 11 357	+ (CERN, EPOL, LOUC, BERG+)
SCHWARTZ	64	UCRL 11360 Thesis	(LRL)
BHOWMIK	63	NC 28 1494	+Goyal (DELH)
BLOCK	63	PR 130 766	+Gessaroli, Ratti+ (NWES, BGNA, SYRA, ORNL)
BROWN	63	PR 130 769	+Kadyk, Trilling, Roe+ (LRL, MICH)
CHRETIEN	63	PR 131 2208	+ (BRAN, BROW, HARV, MIT)
CRONIN	63	PR 129 1795	+Overseth (PRIN)
ELY	63	PR 131 868	+Gidal, Kalmus, Oswald, Powell+ (LRL)
HUMPHREY	62	PR 127 1305	+Ross (LRL)
BAGLIN COLUMBIA	60 60	NC 18 1043 Rochester Conf. 726	+Bloch, Brisson, Hennessy+ (EPOL) Schwartz+ (COLU)
CORK	60	PR 120 1000	+Kerth, Wenzel, Cronin+ (LRL, PRIN, BNL)
CRAWFORD	59B	PRL 2 266	+Cresti, Douglass, Good, Ticho+ (LRL)
EISLER	57	NC 5 1700	+Plano, Samios, Schwartz+ (COLU, BNL)
	•		(602010112)

Λ 's and Σ 's

NOTE ON Λ AND Σ RESONANCES

I. Introduction

In the Listing of the $\Lambda(1405)$, there is a new note by R.H. Dalitz on the status of that resonance. Otherwise, there are no new results on Λ and Σ resonances for this edition. The field remains at a standstill. It can only be revived if a kaon factory is built. What follows is the review from our 1986 edition: it summarizes "recent" progress and problems. For another brief overview, see Tripp. 1

Table 1 is an attempt to evaluate the status, both overall and channel by channel, of each Λ and Σ resonance in the full Baryon Listings; the evaluations are of course partly subjective. A blank indicates there is no evidence at all; either the relevant couplings are small or the resonance does not really exist. The main Baryon Summary Table includes only the established resonances (overall status 3 or 4 stars). A number of the 1-and 2-star entries may eventually disappear, but there are certainly many resonances yet to be discovered underlying the established ones.

None of the Λ 's and Σ 's proposed since the mid 1970's couple strongly to the main 2-body decay channels $N\overline{K}$, $\Lambda\pi$, and $\Sigma\pi$, and thus they seldom appear in cross sections or invariant mass distributions. However, when the reactions $\overline{K}N \to \overline{K}N$, $\overline{K}N \to \Lambda\pi$, and $\overline{K}N \to \Sigma\pi$ are analyzed, some of the partial-wave amplitudes traverse small, more-or-less resonance-like circles. The question in each case is: Is this really a resonance, or is it an idle meander? Is the effect even real, or is it the result of imperfect data and analysis?

II. Formation experiments

(by G.P. Gopal, Rutherford Appleton Laboratory)

Partial-wave analyses have been made mainly for the $N\overline{K}$, $\Lambda\pi$, and $\Sigma\pi$ channels, but there are also a few results for the ΞK , $\Lambda\omega$, and some quasi-2-body channels. Early analyses usually covered only the range of a single bubble chamber experiment. Although the amplitudes from analyses in neighboring mass ranges often did not join smoothly, they did give fairly reliable information about the strongly coupled resonances. More recent analyses have used the Breit-Wigner forms of the dominant resonances as input to provide constraints in determining the overall amplitudes and thus in learning about the less prominent resonances. Besides covering wider ranges, some of the more ambitious of the analyses at the lower energies have treated several channels simultaneously, so that unitarity constraints are automatically satisfied and only a single mass and width is obtained for each resonance.

In the mid and late 1970's, much new data became available. Results from several large K^-p bubble chamber experiments were published, $^{2-5}$ and other bubble chamber experiments studied K^-n reactions and K_L^0p reactions. Counter experiments measured the $K^-p \to \overline{K}^0n$ total and differential cross sections at low energies, the K^-p polarizations down to 1630 MeV for the first time, the three polarizations from 1700

Table 1. The status of the Λ and Σ resonances. Only those with an overall status of *** or **** are included in the main Baryon Summary Table.

				Stati	us as seer	n in —
Particle	$L_{I\cdot 2J}$	Overall status	$N\overline{K}$	$\Lambda\pi$	$\Sigma\pi$	Other channels
Λ(1116)	P_{01}	****		F		$N\pi(\text{weakly})$
$\Lambda(1405)$	S_{01}	****	****	0	***	
$\Lambda(1520)$	D_{03}	****	****	Γ	***	$\Lambda\pi\pi,\Lambda\gamma$
$\Lambda(1600)$	P_{01}	***	***	b	**	
$\Lambda(1670)$	S_{01}	****	****	i	****	$\Lambda \eta$
Λ(1690)	D_{03}	****	****	d	****	$\Lambda\pi\pi, \Sigma\pi\pi$
Λ(1800)	S_{01}	***	***	d	**	$N\overline{K}^*, \Sigma(1385)$
Λ(1810)	P_{01}	***	***	e	**	$N\overline{K}^*$
Λ(1820)	F_{05}	****	****	n	****	$\Sigma(1385)\pi$
$\Lambda(1830)$	D_{05}	****	***	F	****	$\Sigma(1385)\pi$
Λ(1890)	P_{03}	****	****	0	**	$N\overline{K}^*, \Sigma(1385)$
A(2000)	00	*		г	*	$\Lambda\omega, N\overline{K}^{*}$
$\Lambda(2000)$	F_{07}	*	4	b	*	1100, 14 11
$\Lambda(2020)$ $\Lambda(2100)$	G_{07}	****	****	i	***	$\Lambda \omega, N \overline{K}^*$
, ,	-					$\Lambda\omega, N\overline{K}^*$
$\Lambda(2110)$	F_{05}	***	**	d	*	
$\Lambda(2325)$	D_{03}	*	*	d		$\Lambda \omega$
$\Lambda(2350)$		***	***	е	*	
$\Lambda(2585)$		**	**	n		
$\Sigma(1193)$	P_{11}	***				$N\pi(\text{weakly})$
$\Sigma(1385)$	P_{13}	****		****	****	
$\Sigma(1480)$		*	*	*	*	
$\Sigma(1560)$		**		**	**	
$\Sigma(1580)$	D_{13}	**	*	*		
$\Sigma(1620)$	S_{11}	**	**	*	*	
$\Sigma(1660)$	P_{11}	***	***	*	**	
$\Sigma(1670)$	D_{13}	****	****	****	****	several others
$\Sigma(1690)$		**	*	**	*	$\Lambda\pi\pi$
$\Sigma(1750)$	S_{11}	***	***	**	*	$\Sigma \eta$
$\Sigma(1770)$	P_{11}	*				•
$\Sigma(1775)$	D_{15}	****	****	****	***	several others
$\Sigma(1840)$	P_{13}	*	*	**	*	
$\Sigma(1880)$	P_{11}	**	**	**		$N\overline{K}^*$
$\Sigma(1915)$	F_{15}^{11}	****	***	****	***	$\Sigma(1385)\pi$
$\Sigma(1940)$	D_{13}	***	*	***	**	quasi-2-body
$\Sigma(2000)$	S_{11}	*		*		$N\overline{K}^*, \Lambda(1520)$
$\Sigma(2030)$	F_{17}	****	****	****	**	several others
$\Sigma(2070)$	F_{15}	*	*		*	
$\Sigma(2080)$	P_{13}	**		**		
$\Sigma(2100)$	G_{17}	*		*	*	
$\Sigma(2250)$		***	***	*	*	
$\Sigma(2455)$		**	*			
$\Sigma(2620)$		**	*			
$\Sigma(3000)$		*	*	*		
$\Sigma(3170)$		*				multi-body

- *** Good, clear, and unmistakable.
- *** Good, but in need of clarification or not absolutely certain.
- ** Not established; needs confirmation.

 * Evidence weak; could disappear.

to 1900 MeV with an order of magnitude increase in statistics, 10 the K^-n elastic angular distributions from 1600 to 1800 MeV 11 and from 1900 to 2300 MeV, 12 and the 180° K^-p and 0° $\Sigma^-\pi^+$ differential cross sections from 1550 to 1900 MeV. 13

More recently, there have been new measurements of K^-n elastic scattering between 1600 and 1740 MeV. ¹⁴ Also, new total and differential cross-section data on K^-p , \overline{K}^0n , $\Sigma^{\pm}\pi^{\mp}$, and $\Lambda\pi^0$ between 1437 and 1486 MeV have became available. ¹⁵ They clearly show the onset of P-wave amplitudes by 1450 MeV, which brings into question analyses of low energy data that assumed only S waves were significant. Finally,

Baryon Full Listings Λ 's and Σ 's

there are new $\Sigma^{\pm}\pi^{\mp}$ differential cross-section and polarization distributions in a region where data were sparse, from 1650 to 1715 MeV.¹⁶

We now compare the more recent analyses with each other and with the data. Some of the data have yet to be incorporated into any analysis.

The $N\overline{K}$ channel: The most recent analysis ¹⁷ is an update of the old Rutherford Lab-Imperial College (RLIC 77) analysis. ¹⁸ As before, it is a conventional energy-dependent analysis with the added constraint that the masses and widths of the resonances had to be consistent with those determined in the inelastic channels analyzed previously — $\Lambda\pi$, $\Sigma\pi$, $\Lambda(1520)\pi$, $\Sigma(1385)\pi$, and $N\overline{K}^*(892)$. The analysis also goes closer to threshold, covering 1470 to 2170 MeV. It does not include the data from a number of the more recent experiments mentioned above. As before, angular distributions (a total of 5110 data points) were fit directly. The new amplitudes differ little from the RLIC 77 amplitudes. However, the K^-n data removed some of the uncertainties in the Σ resonances.

The LBL-Mt. Holyoke-CERN analysis 19 covers the narrower range of 1500 to 1940 MeV and also includes most of the new data. It is an energy-dependent analysis using a unitary background parametrized in terms of scattering lengths. The cusp effects at the $\Lambda\eta$ and $\Sigma\eta$ thresholds are included by introducing a square-root singularity in the energy variation of the widths of the appropriate resonances. This group's own high-statistics charge-exchange data 8 (which do not agree with bubble chamber measurements) all but kill the less well-established resonances.

The University College, London (UCL) K-matrix energy-dependent analysis 20 covers from 1540 to 2000 MeV. The $N\overline{K}$ amplitudes are consistent with those of the other analyses over most of this range. However, at the low end there are major differences, due to the absence of constraints from the $\Lambda(1520)$, which lies just outside the range covered. The K^-n angular distributions and K^-p polarization measurements are not fit very well.

The above analyses, all below 2200 MeV, are complemented by the College de France-Saclay (CdF-S) energy-dependent analysis⁵ covering from 2070 to 2440 MeV. Besides the conventional polynomial parametrization of the background amplitudes, also tried is a parametrization using constraints imposed by the duality hypothesis (that s-channel backgrounds come exclusively from the t-channel Pomeron exchange amplitude). With 30 fewer free parameters, the results are consistent with the conventional approach.

The $\Sigma\pi$ channel: There is very little agreement, particularly about the lower partial waves, between the two multichannel analyses. The low-energy $K_L^0 p \to \Sigma^0 \pi^+$ data are better explained by the RLIC 77 amplitudes than by the UCL amplitudes. At the high end, there is good continuity between the RLIC 77 amplitudes and those from the single-channel analysis of the CdF-S collaboration covering from 2070 to 2440 MeV. The $\Lambda(1520)$ and $\Lambda(2110)$ resonances.

which lie outside the range covered by the UCL analysis, clearly provide strong constraints.

The $\Lambda\pi$ channel: This isospin-1 channel has been the subject of many energy-dependent and -independent analyses (for example, RLIC 77,¹⁸ UCL,²⁰ Baillon-Litchfield,²¹ de Bellefon-Berthon,²² and Van Horn²³). However, even the widespread use of the method of Barrelet zeroes has not helped to resolve the Σ spectrum — probably because most Σ resonances simply do not couple strongly to the $N\overline{K}$ initial state.

Quasi-2-body channels: The Rutherford Lab-Imperial College group has made energy-dependent analyses of the $\Lambda(1520)\pi$, $\Sigma(1385)\pi$, and $N\overline{K}^*(892)$ channels over the widest ranges for which data are available. The data were extracted from the appropriate 3-particle final states by making 4-variable fits to an incoherent superposition of quasi-2-body final states and 3-particle Lorentz-invariant phase space. The quality of the fits suggests a maximum model-dependent systematic uncertainty of 10%. The $\Lambda\omega$ channel has been analyzed from threshold to 2440 MeV by the CdF-S collaboration. 5

Sign conventions for resonance couplings: In terms of the isospin-0 and -1 elastic scattering amplitudes A_0 and A_1 , the amplitude for $K^-p\to \overline{K}^0n$ scattering is $\pm (A_1-A_0)/2$, where the sign depends on conventions used in conjunction with the Clebsch-Gordan coefficients (such as, is the baryon or the meson the "first" particle). If this reaction is partial-wave analyzed and if the overall phase is chosen so that, say, the $\Sigma(1775)D_{15}$ amplitude at resonance points along the positive imaginary axis (points "up"), then any Σ at resonance will point "up" and any Λ at resonance will point "down" (along the negative imaginary axis). Thus the phase at resonance determines the isospin. The above ignores background amplitudes in the resonating partial waves.

That is the basic idea. In a similar but somewhat more complicated way, the phases of the $\overline{K}N \to \Lambda\pi$ and $\overline{K}N \to \Sigma\pi$ amplitudes for a resonating wave help determine the SU(3) multiplet to which the resonance belongs. Again, a convention has to be adopted for some overall arbitrary phases: which way is "up"? Our convention is that of Levi-Setti²⁴ and is shown in Figure 1, which also compares experimental results with theoretical predictions for the signs of several resonances. In the Listings, a + or - sign in front of a measurement of an inelastic resonance coupling indicates the sign (the absence of a sign means that the sign is not determined, not that it is positive). For more details, see Appendix II of our 1982 edition. 25

Argand plots: Figure 2 shows some representative Argand plots of partial-wave amplitudes. For the $N\overline{K}$ channel we show the amplitudes from RLIC 77¹⁸ and from LBL-Mt. Holyoke-CERN, ¹⁹ and for the $\Lambda\pi$ and $\Sigma\pi$ channels we show those from RLIC 77¹⁸ and from UCL. ²⁰

Λ 's and Σ 's

Errors on masses and widths: The errors quoted on resonance parameters from partial-wave analyses are often only statistical, and the parameters can change by more than these errors when a different parametrization of the waves is used. Furthermore, the different analyses use more or less the same data, so it is not really appropriate to treat the different determinations of the resonance parameters as independent or to average them together. In any case, the spread of the masses, widths, and branching fractions from the different analyses is certainly a better indication of the uncertainties than are the quoted errors. In the Baryon Summary Table, usually a range reflecting the spread of the values is given rather than a particular value with error.

For three states, the $\Lambda(1520)$, the $\Lambda(1820)$, and the $\Sigma(1775)$, there is enough information to make an overall fit to the various branching fractions. It is then necessary to use the quoted errors, but the errors obtained from the fit should not be taken seriously.

III. Production experiments

Partial-wave analyses of course separate partial waves, whereas a peak in a cross section or an invariant mass distribution usually cannot be disentangled from background and analyzed for its quantum numbers; and more than one resonance may be contributing to the peak. Results from partial-wave analyses and from production experiments are generally kept separate in the Listings, and in the Baryon Summary Table results from production experiments are used only for the low-mass states. The $\Sigma(1385)$ and $\Lambda(1405)$ of course lie below the $\overline{K}N$ threshold and nearly everything about them is learned from production experiments; and production and formation experiments agree quite well in the case of $\Lambda(1520)$ and results have been combined. There is some disagreement between production and formation experiments in the 1600–1700 MeV region: see the Note on the $\Sigma(1670)$.

References

- R.D. Tripp, in Proceedings of the Third LAMPF II Workshop (Los Alamos, 1983), Vol. II, p. 635.
- T.S. Mast et al., Phys. Rev. D14, 13 (1976), and references cited therein.
- B. Conforto et al., Nucl. Phys. B105, 189 (1976); and W. Cameron et al., Nucl. Phys. B193, 21 (1981).
- 4. R.J. Hemingway et al., Nucl. Phys. **B91**, 12 (1975).
- A. de Bellefon et al., Nuovo Cim. 42A, 403 (1977); Nuovo Cim. 37A, 175 (1977); Nucl. Phys. B90, 1 (1975); and Nuovo Cim. 41A, 96 (1977).
- M.J. Corden et al., Nucl. Phys. B125, 61 (1977).
- A. Engler et al., Phys. Rev D18, 3061 (1978); W. Cameron et al., Nucl. Phys. B132, 189 (1978); and M.J. Corden et al., Nucl. Phys. B155, 13 (1979).
- M. Alston-Garnjost et al., Phys. Rev. D17, 2216 (1978); and D17, 2226 (1978).
- 9. R.D. Ehrlich et al., Phys. Lett. **71B**, 455 (1977).
- 10. H.C. Bryant et al., Nucl. Phys. B168, 207 (1980).
- 11. C.J.S. Damerell et al., Nucl. Phys. **B155**, 13 (1979).
- 12. Y. Declais et al., CERN 77-16 (1977).
- M. Alston-Garnjost et al., Phys. Rev. D21, 1191 (1980).
- 14. O. Braun et al., Nucl. Phys. **B203**, 349 (1982).
- J. Ciborowski et al., J. Phys. G8, 13 (1982); and D. Evans et al., J. Phys. G9, 885 (1983).
- H. Kioso et al., Nucl. Phys. A433, 619 (1985).
- G.P. Gopal, in Proceedings of the IVth International Conference on Baryon Resonances (Toronto, 1980), edited by N. Isgur, p. 159.
- G.P. Gopal et al., Nucl. Phys. B119, 362 (1977).
- 19. M. Alston-Garnjost et al., Phys. Rev. D18, 182 (1978).
- B.R. Martin et al., Nucl. Phys. B126, 266 (1977); B126, 285 (1977); and B127, 349 (1977).
- 21. P. Baillon and P.J. Litchfield, Nucl. Phys. B94, 39 (1975).
- A. de Bellefon and A. Berthon, Nucl. Phys. B109, 129 (1976).
- 23. A.J. Van Horn, Nucl. Phys. B87, 145 (1975).
- 24. R. Levi-Setti, in *Proceedings of the Lund International Conference on Elementary Particles* (Lund, 1969), p. 339.
- 25. Particle Data Group, Phys. Lett. 111B (1982).

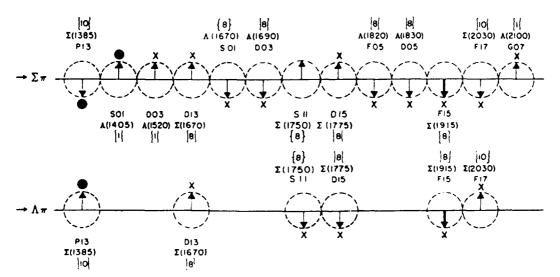


Figure 1. The signs of the imaginary parts of resonating amplitudes in the $\overline{K}N \to \Lambda\pi$ and $\Sigma\pi$ channels. The signs of the $\Sigma(1385)$ and $\Lambda(1405)$, marked with a \bullet , are set by convention, and then the others are determined relative to them. The signs required by the SU(3) assignments of the resonances are shown with an arrow, and the experimentally determined signs are shown with an \times .

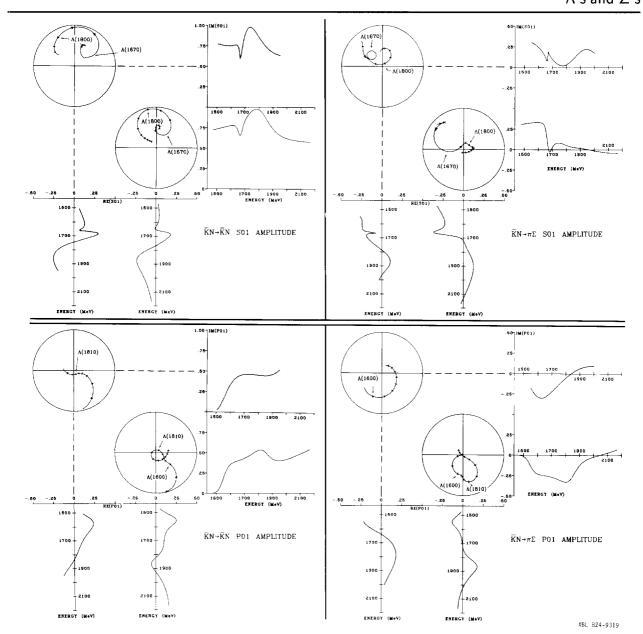


Figure 2(a). The $L_{I^*2J}=S_{01}$ and P_{01} partial-wave amplitudes for $\overline{K}N$ scattering in the elastic and $\Sigma\pi$ channels. The lower plot for each amplitude is from GOPAL 77, the upper plots for the elastic amplitudes are from ALSTON 78, and the upper plots for the $\Sigma\pi$ amplitudes are from MARTIN 77. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonances are shown at their nominal positions [the $S_{01}\Lambda(1405)$ is of course below threshold and is not shown]. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots.

Λ 's and Σ 's

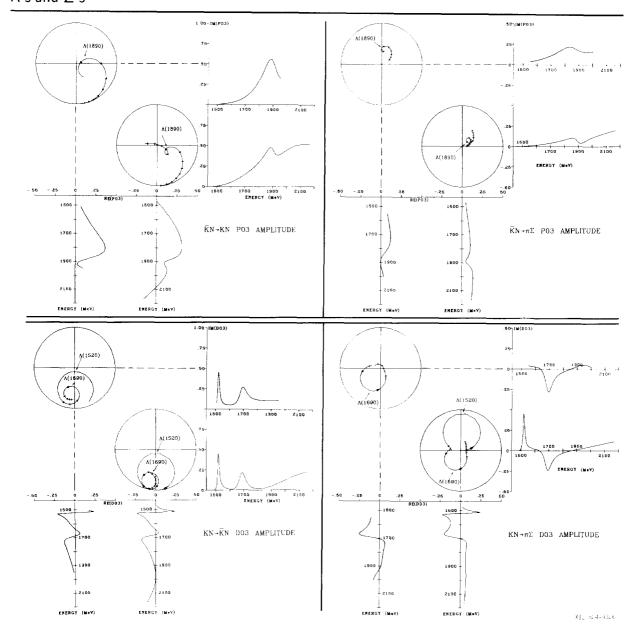


Figure 2(b). The $L_{I\cdot 2J}=P_{03}$ and D_{03} partial-wave amplitudes for $\overline{K}N$ scattering in the elastic and $\Sigma\pi$ channels. The lower plot for each amplitude is from GOPAL 77, the upper plots for the elastic amplitudes are from ALSTON 78, and the upper plots for the $\Sigma\pi$ amplitudes are from MARTIN 77. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots.

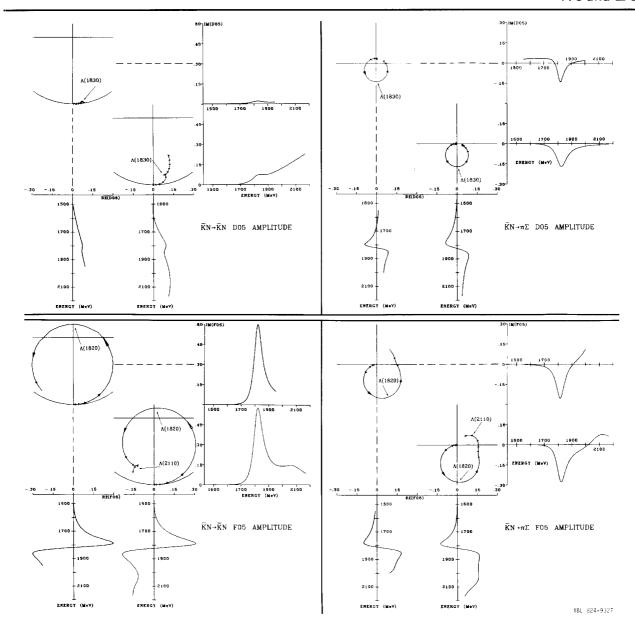


Figure 2(c). The $L_{I\cdot 2J}=D_{05}$ and F_{05} partial-wave amplitudes for $\overline{K}N$ scattering in the elastic and $\Sigma\pi$ channels. The lower plot for each amplitude is from GOPAL 77, the upper plots for the elastic amplitudes are from ALSTON 78, and the upper plots for the $\Sigma\pi$ amplitudes are from MARTIN 77. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonances are shown at their nominal positions. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots.

Λ 's and Σ 's

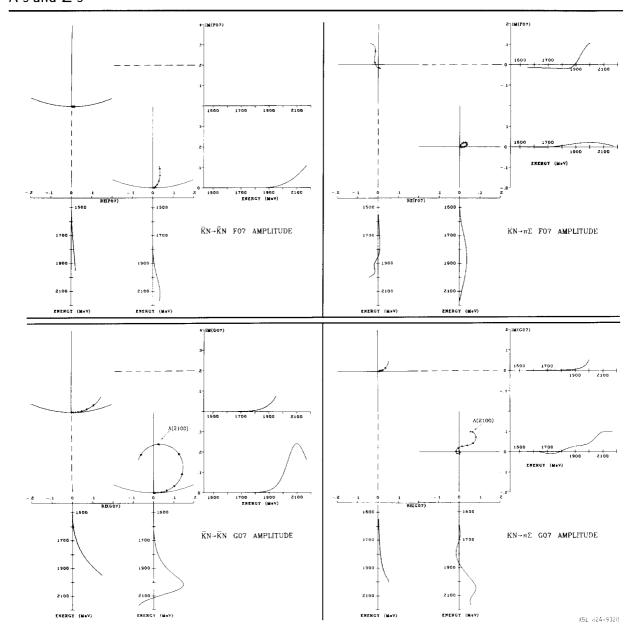
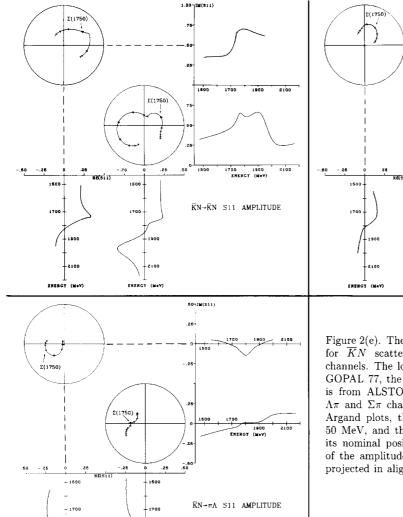
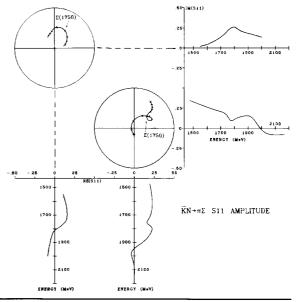
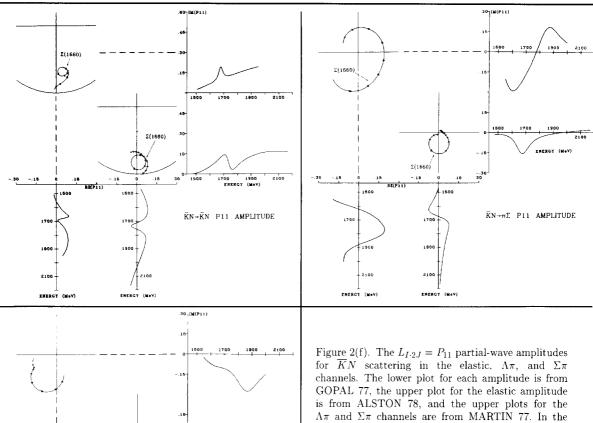
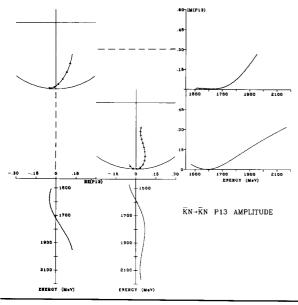
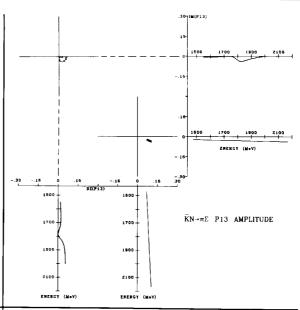



Figure 2(d). The $L_{I\cdot 2J}=F_{07}$ and G_{07} partial-wave amplitudes for $\overline{K}N$ scattering in the elastic and $\Sigma\pi$ channels. The lower plot for each amplitude is from GOPAL 77, the upper plots for the elastic amplitudes are from ALSTON 78, and the upper plots for the $\Sigma\pi$ amplitudes are from MARTIN 77. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonance is shown at its nominal position. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots.

1900


Figure 2(e). The $L_{I^*2J}=S_{11}$ partial-wave amplitudes for $\overline{K}N$ scattering in the elastic, $\Lambda\pi$, and $\Sigma\pi$ channels. The lower plot for each amplitude is from GOPAL 77, the upper plot for the elastic amplitude is from ALSTON 78, and the upper plots for the $\Lambda\pi$ and $\Sigma\pi$ channels are from MARTIN 77. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonance is shown at its nominal position. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots.


Λ 's and Σ 's

ENERGY (MeV) KN→πΛ P11 AMPLITUDE 2100 ENERGY (MeV)

Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonance is shown at its nominal position. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots.

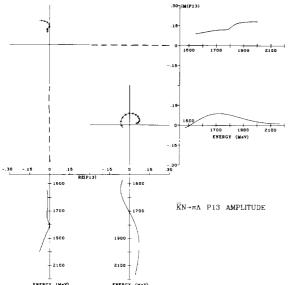
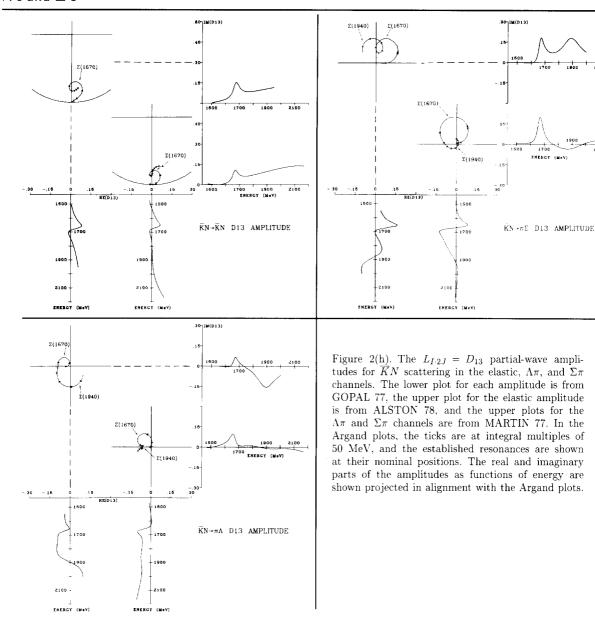
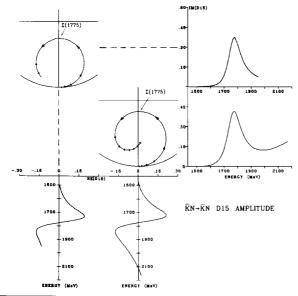
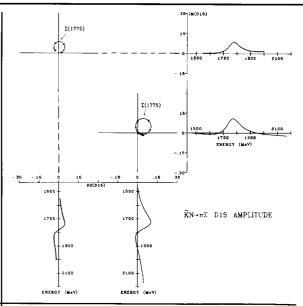





Figure 2(g). The $L_{I^*2J}=P_{13}$ partial-wave amplitudes for $\overline{K}N$ scattering, in the elastic, $\Lambda\pi$, and $\Sigma\pi$ channels. The lower plot for each amplitude is from GOPAL 77, the upper plot for the elastic amplitude is from ALSTON 78, and the upper plots for the $\Lambda\pi$ and $\Sigma\pi$ channels are from MARTIN 77. In the Argand plots, the ticks are at integral multiples of 50 MeV [the $\Sigma(1385)$ is of course below threshold and is not shown]. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots.

Λ 's and Σ 's

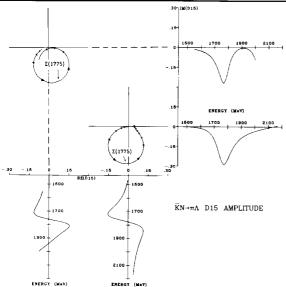
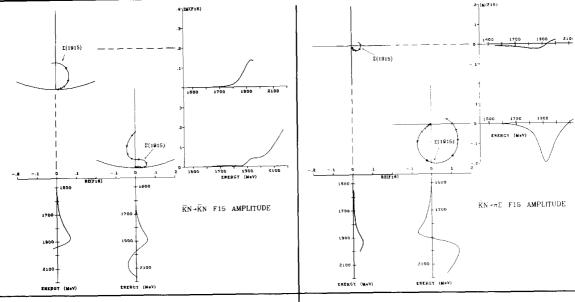



Figure 2(i). The $L_{I\cdot 2J}=D_{15}$ partial-wave amplitudes for $\overline{K}N$ scattering in the elastic, $\Lambda\pi$, and $\Sigma\pi$ channels. The lower plot for each amplitude is from GOPAL 77, the upper plot for the elastic amplitude is from ALSTON 78, and the upper plots for the $\Lambda\pi$ and $\Sigma\pi$ channels are from MARTIN 77. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonance is shown at its nominal position. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots.

Λ 's and Σ 's

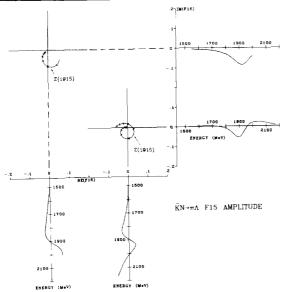
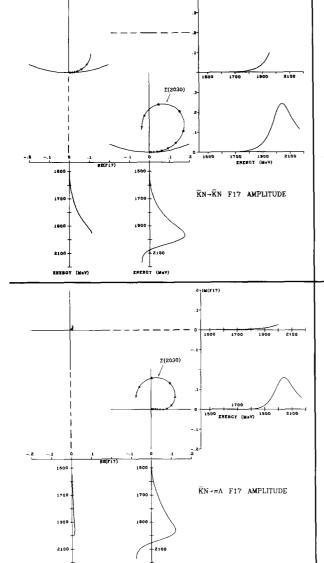



Figure 2(j). The $L_{I\cdot 2J}=F_{15}$ partial-wave amplitudes for $\overline{K}N$ scattering in the elastic, $\Lambda\pi$, and $\Sigma\pi$ channels. The lower plot for each amplitude is from GOPAL 77, the upper plot for the elastic amplitude is from ALSTON 78, and the upper plots for the $\Lambda\pi$ and $\Sigma\pi$ channels are from MARTIN 77. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonance is shown at its nominal position. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots.

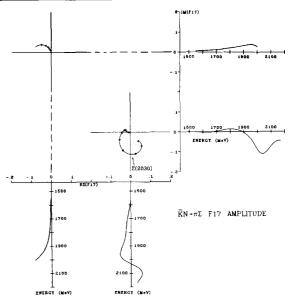


Figure 2(k). The $L_{I\cdot 2J}=F_{17}$ partial-wave amplitudes for $\overline{K}N$ scattering in the elastic, $\Lambda\pi$, and $\Sigma\pi$ channels. The lower plot for each amplitude is from GOPAL 77, the upper plot for the elastic amplitude is from ALSTON 78, and the upper plots for the $\Lambda\pi$ and $\Sigma\pi$ channels are from MARTIN 77. In the Argand plots, the ticks are at integral multiples of 50 MeV, and the established resonance is shown at its nominal position. The real and imaginary parts of the amplitudes as functions of energy are shown projected in alignment with the Argand plots.

Baryon Full Listings Λ(1405)

 $\Lambda(1405) S_{01}$

 $I(J^{P}) = 0(\frac{1}{2})$ Status: ***

NOTE ON THE $\Lambda(1405)$

(by R.H. Dalitz, Oxford University)

It is generally accepted that the $\Lambda(1405)$ is a well-established $J^P=1/2^-$ resonance. It is assigned to the lowest L=1 supermultiplet of the 3-quark system and paired with the $J^P=3/2^ \Lambda(1520)$. Lying about 30 MeV below the $N\overline{K}$ threshold, the $\Lambda(1405)$ can be observed directly only as a resonance bump in the $(\Sigma\pi)^0$ subsystem in final states of production experiments. It was first reported by ALSTON 61B in the reaction $K^-p\to \Sigma\pi\pi\pi$ at 1.15 GeV/c and has since been seen in at least eight other experiments, so that there is no doubt about its existence.

Only two production experiments have had statistics adequate for a detailed analysis: THOMAS 73, with about 400 $\Sigma^{\pm}\pi^{\mp}$ events from $\pi^{-}p \to K^{0}(\Sigma\pi)^{0}$ at 1.69 GeV/c; and HEMINGWAY 85, with 766 $\Sigma^{+}\pi^{-}$ and 1106 $\Sigma^{-}\pi^{+}$ events from $K^{-}p \to (\Sigma\pi\pi)^{+}\pi^{-}$ at 4.2 GeV/c, after selection on $1600 \leq M(\Sigma\pi\pi)^{+} \leq 1720$ MeV and momentum transfer ≤ 1.0 (GeV/c)² to purify the $\Lambda(1405) \to (\Sigma\pi)^{0}$ sample. The mass and width estimates from these two experiments are in agreement, with masses around 1395–1400 MeV and widths around 60 MeV (the mass 1391 \pm 1 MeV quoted by Hemingway is from the best Breit-Wigner fit, which is an unacceptable fit to the data).

The Byers-Fenster tests on these data give only $J \geq 1/2$ and no parity determination. Neither spin nor parity have yet been determied directly by experiment. The early indications for $J^P=1/2^-$ came from the analysis of low-energy $N\overline{K}$ scattering and reaction data in a constant-scattering-length approach (see KIM 65, SAKITT 65, and earlier references cited therein), because Re A(I=0) was found to be large and negative. The first multichannel energy-dependent K-matrix analysis (KIM 67) strengthened the case for a Λ resonance of mass about 1400–1420 MeV strongly coupled to the I=0 S-wave $N\overline{K}$ system.

THOMAS 73 and HEMINGWAY 85 both found the $\Lambda(1405)$ bump to be asymmetric and not well-fitted by a Breit-Wigner resonance function with constant parameters. This asymmetry involves a rapid fall in intensity as the $N\overline{K}$ threshold energy is approached from below, readily interpreted as due to a strong coupling of the $\Lambda(1405)$ to the S-wave $N\overline{K}$ channel (see DALITZ 81). This striking S-shaped cusp behavior at a new threshold is characteristic of an S-wave coupling; the other below-threshold strangeness -1 resonance, the $\Sigma(1385)$, has no such asymmetry because its $N\overline{K}$ coupling is P-wave. For the $\Lambda(1405)$, this asymmetry is the sole direct evidence that $J^P=1/2$.

Following the early work cited above, a considerable literature has developed on proper procedures for phenomenological extrapolation below the $N\overline{K}$ threshold, partly in order to

strengthen the evidence for the spin-parity of the $\Lambda(1405)$ and partly to provide an estimate for the amplitude $f(N\overline{K})$ in the unphysical domain below the $N\overline{K}$ threshold, which is needed for evaluation of the dispersion relation for $N\overline{K}$ and NK forward scattering amplitudes. These procedures are based on the analysis of the low-energy formation data $(N\overline{K})$ total and partial S-wave cross sections for \overline{K} laboratory momenta in the range 100–300 MeV/c; for recent reviews, see MILLER 84, BARRETT 89). In most recent work, the $(\Sigma\pi)^0$ production spectrum is included in the data fitted (see, e.g., CHAO 73).

It is now accepted that the data can be fitted phenomenologically only with an S-wave pole in the reaction amplitudes below $N\overline{K}$ threshold, but there is still controversy about the physical origin of this pole. For a review on this topic, see DALITZ 81 and DALITZ 82. Two extreme possibilities are: (a) an L = 1 unitary-flavor-singlet 3-quark baryon state. coupled with the S-wave meson-baryon systems; or (b) an unstable $N\overline{K}$ bound state, analogous to the (stable) deuteron in the NN system. If (a) holds, we have to understand why the $\Lambda(1405)$ mass is so much lower than that of its partner, the $\Lambda(1520)$, since this requires very large spin-orbit splittings in the QCD-inspired nonrelativistic quark model. Such splittings are considered to be excluded on other grounds (see ISGUR 80, CAPSTICK 86, and CAPSTICK 89). If (b) holds, another $(I, J^P) = (0.1/2^-)$ resonance is needed to replace the $\Lambda(1405)$ in the L=1 supermultiplet, and this resonance must lie close to the $\Lambda(1520)$, a region already well-explored by $N\overline{K}$ experiments with no evidence at all of any such resonance. Intermediate structures are possible; for example, the Cloudy Bag Model allows the configurations (a) and (b) to mix and finds (VEIT 84, VEIT 85, JENNINGS 86) the intensity of configuration (a) in the $\Lambda(1405)$ to be only 14%. Such models naturally predict a second $1/2^ \Lambda$ state close to the $\Lambda(1520)$.

There are difficulties even in the determination of the mass and width of the resonance from the $(\Sigma\pi)^0$ data. This mass spectrum is usually interpreted using the "Watson approximation," which states that the production rate $R(\Sigma\pi)$ of the final $(\Sigma\pi)^0$ state has a mass dependence proportional to $(\sin^2\delta_{\Sigma\pi})/q$, q being the $\Sigma\pi$ c.m. momentum, in a $\Sigma\pi$ mass range where $\delta_{\Sigma\pi}$ is not far from $\pi/2$ and only the $\Sigma\pi$ channel is open, i.e. between the $\Sigma\pi$ and the $N\overline{K}$ thresholds. It is more useful to consider the product $qR(\Sigma\pi)$, since it is proportional to $\sin^2\delta_{\Sigma\pi}$. It is then convenient to define the mass M to be the mass value at which $\sin^2\delta_{\Sigma\pi}=1$. The width Γ may be determined from the rate at which $\delta_{\Sigma\pi}$ goes through $\pi/2$, or from the FWHM; this is a matter of convention. The determination of M and Γ from the data suffers from the following difficulties:

(i) The absolute value of $\delta_{\Sigma\pi}$ is not directly determined. Only $\sin^2\delta_{\Sigma\pi}$ can be determined, and that only after $R(\Sigma\pi)$ is scaled to give $\sin^2\delta_{\Sigma\pi}=1$ at the peak for the best fit to the data. Thus the bump must be assumed to arise from a resonance. This might not always be the case, but for the

 $\Lambda(1405)$ this assumption is supported by the analysis of the low-energy $N\overline{K}$ data and its extrapolation below the $N\overline{K}$ threshold.

(ii) The form of the best fit to the $M(\Sigma\pi)$ bump has considerable uncertainty, even with data as good as Hemingway's. For a c.m. energy E below a strong S-wave threshold, the general form for $\delta_{\Sigma\pi}$ is

$$q \cot \delta_{\Sigma\pi} = \frac{1 + \kappa\alpha}{\gamma + \kappa(\alpha\gamma - \beta^2)} \ ,$$

where α, β , and γ are the (generally energy-dependent) $NN, N\Sigma$, and $\Sigma\Sigma$ elements of the I=0 S-wave K-matrix for the $(\Sigma\pi, N\overline{K})$ system, and κ is the magnitude of the (imaginary) c.m. momentum k_K for the $N\overline{K}$ system below threshold. The elements (α, β, γ) are real functions of E; they have no branch cuts at the $\Sigma\pi$ and $N\overline{K}$ thresholds, but they are permitted to have poles in E along the real E axis. The determination of $\delta_{\Sigma\pi}$ from the shape of the $M(\Sigma\pi)$ distribution thus requires the determination of three real functions. Even if they are assumed to be constant over the resonance region, it is clear that the available data cannot provide their determination, especially if data below 1370 MeV are ruled out as being outside the range where the Watson approximation is valid. We note that $\delta_{\Sigma\pi}$ reaches the value $\pi/2$ when $\kappa=-1/\alpha$.

The plot of $qR(\Sigma\pi)$ for Hemingway's $\Sigma^+\pi^-$ data has three almost equal bins centered on 1395, 1405, and 1415 MeV. A good fit by eye, giving an S cusp at 1432 MeV and fitting the low-energy data down to 1360 MeV, would suggest that $M\approx 1405$ MeV is a reasonable estimate. However, it should be emphasized that the strong asymmetry of the $qR(\Sigma\pi)$ distribution gives rise to very considerable uncertainty in the determination of the location of the peak of this distribution; we are accustomed to fitting distributions that are symmetric, where the location of the axis of symmetry can be determined rather accurately. After some trials, it appears possible to draw curves giving acceptable fits to the data with peak values lying anywhere in the range 1400 to 1410 MeV. There is therefore considerable uncertainty in the mass; a reasonable assessment is M=1405 MeV. The FWHM gives $\Gamma=60$ to 70 MeV.

Accepting the close connection of $\delta_{\Sigma\pi}$ with the low-energy $N\overline{K}$ data, it becomes attractive to analyze these two sets of data together, for there is a large body of accurate data for the laboratory momentum range $100 \le k_K \le 300 \text{ MeV}/c$ (see MILLER 84). The two sets of data span c.m. energies from 1370 MeV to 1490 MeV, and it would be unreasonable to expect the K-matrix elements to be energy independent over such a broad range. In fact, for the I=0 channels, a linear energy dependence for K^{-1} has been adopted routinely ever since the work of KIM 67, and it is essential when the $qR(\Sigma\pi)$ data and the low-energy $N\overline{K}$ data are fitted together. However, $qR(\Sigma\pi)$ is not always well-fitted in this way; the value obtained for M varies a good deal from one type of fit to another. This is not surprising since the $\Sigma\pi$ mass spectrum contributes only 9 data points in a total of about 200. The conclusion is that the value

obtained for the $\Lambda(1405)$ from such an overall fit does not necessarily represent an improvement on estimates obtained from the $q\,R(\Sigma\pi)$ data alone; the value obtained may be a function of the representation used (K-matrix, relativistic—separable or non-separable—potentials, etc.) to describe these interactions over the full range of energy.

The present status of the $\Lambda(1405)$ thus depends considerably on theoretical arguments about what assumptions are most reasonable, a somewhat unsatisfactory basis for a fourstar rating. Nevertheless, there is no known reason to doubt its existence and its quantum numbers. A measurement of the energy-level shift and width for the 1s level of kaonic hydrogen (also for kaonic deuterium) would give a valuable check on our present analyses of the $(\Sigma \pi, N\overline{K})$ amplitudes, since $k_K \approx 0$ for the K^-p atom corresponds to an energy roughly midway between those for the two sets of data. The three measurements of $(\Delta E - i\Gamma/2)$ for kaonic hydrogen in the literature are inconsistent with one another and require Re[A(I=0)+A(I=1)] to have a sign opposite that given by the current values from $N\overline{K}$ reaction data (see BATTY 89). An accurate measurement of $(\Delta E - i\Gamma/2)$ for kaonic hydrogen is urgently needed. Processes where the $\Lambda(1405)$ is indirectly involved, e.g., as an intermediate state in $K^-p \to \Sigma^0 \gamma$ and $\Lambda \gamma$ (see WHITEHOUSE 89), are now being investigated and may ultimately give valuable information on the $\Lambda(1405)$ parameters.

To settle the nature of the $\Lambda(1405)$ will require much further research, both experimental and theoretical. Higher-statistics experiments on the production and decay of the $\Lambda(1405)$ are needed, but good K^- beams for this work are not available, and the experiments will not be possible until a kaon factory is built. Not all of the low-energy $N\overline{K}$ reaction cross sections are sufficiently well determined, especially those involving \overline{K}^0p interactions, which have not been studied for 20 years. Kaonic hydrogen stands out as one area where suitable K^- beams are still available; measurements on it could be made now and might greatly clarify our understanding of the $(\Sigma\pi, N\overline{K})$ system.

Λ(1405) MASS PRODUCTION EXPERIMENTS DOCUMENT ID TECN COMMENT VALUE (MeV) EVTS 1400 to 1410 OUR ESTIMATE 1 HEMINGWAY 85 HBC 1391 ± 1 700 K- p 4.2 GeV/c ² THOMAS p 1.69 GeV/c ~ 1405 400 73 HBC 1405 120 BARBARO-68B DBC K- d 2.1-2.7 GeV/c 1400 ± 5 BIRMINGHAM 66 нвс K⁻ p 3.5 GeV/c 1382 ± 8 **ENGLER** HDBC $p, \pi^{+} d 1.68 \text{ GeV}/c$ 65 1400 ± 24 MUSGRAVE нвс pp 3-4 GeV/c 65 ALEXANDER 62 HBC p 2.1 GeV/c ALSTON 62 HBC p 1.2-0.5 GeV/c ALSTON 61B HBC K = p 1.15 GeV/c EXTRAPOLATIONS BELOW NK THRESHOLD COMMENT TECN 3 MARTIN 1411 K-matrix fit 81 ⁴ CHAO 1406 DPWA 0-range fit (sol. B) 73 1421 MARTIN 70 RVUE Constant K-matrix

MARTIN

KIM

5 KITTEL

5 SAKITT

KIM

HBC

нвс

67

66 HBC

65 HBC

65 HBC

Constant K-matrix

0-effective-range fit

0-effective-range fit

0-effective-range fit

K-matrix fit

1416

 1403 ± 3

 1407.5 ± 1.2

 1410.7 ± 1.0

 1409.6 ± 1.7

$\Lambda(1405), \Lambda(1520)$

		V(1402) AND I	н		
PRODUCTION	I EXPERIMEN	ITS			
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
45 to 65 OUR ES	TIMATE				
32 ± 1	700	¹ HEMINGWAY	85	HBC	K [−] p 4.2 GeV/c
45 to 55	400	² THOMAS	73	HBC	π p 1.69 GeV/c
35	120	BARBARO	68B	DBC	K^- d 2.1–2.7 GeV/c
50 ± 10	67	BIRMINGHAM	66	HBC	K [−] p 3.5 GeV/c
89 ± 20		ENGLER	65	HDBC	
60 ± 20		MUSGRAVE	65	HBC	
35 ± 5		ALEXANDER	62	HBC	
50		ALSTON	62	HBC	
20		ALSTON	610	HBC	

EXTRAPOLATIONS BELOW NK THRESHOLD

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
30	³ MARTIN	81		K-matrix fit	
55	^{4,6} CHAO	73	DPWA	0-range fit (sol. B)	
20	MARTIN	70	RVUE	Constant K-matrix	
29 ±6	MARTIN	69	HBC	Constant K-matrix	
50 ±5	KIM	67	HBC	K-matrix fit	
34.1 ± 4.1	⁵ KITTEL	66	HBC		
37.0 ± 3.2	KIM	65	HBC		
28.2 ± 4.1	⁵ SAKITT	65	HBC		

Λ(1405) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
$\overline{\Gamma_1}$	Σπ	100 %
Гэ	NK	

Λ(1405) BRANCHING RATIOS

$\Gamma(N\overline{K})/\Gamma(\Sigma\pi)$					Γ_2/Γ_1
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
<3	95	HEMINGWAY 85	HBC	K- p 4.2 GeV/c	

Λ(1405) FOOTNOTES

- $^1\, {\sf HEMINGWAY}$ 85 finds the $\Sigma\, \pi$ mass distribution is asymmetric and a Breit-Wigner fit is
- poor.

 2 THOMAS 73 data is fit by CHAO 73 (see next section).
- 3 The MARTIN 81 fit includes the ${\it K}^{\pm}\,{\it p}$ forward scattering amplitudes and the dispersion relations they must satisify.
- ⁴ See also the accompanying paper of THOMAS 73.
- ⁵ Data of SAKITT 65 are used in the fit by KITTEL 66.
- 6 An asymmetric shape, with $\Gamma/2=41$ MeV below resonance, 14 MeV above.

Λ(1405) REFERENCES

HEMINGWAY MARTIN CHAO THOMAS MARTIN AISO BARBARO KIM BIRMINGHAM KITTEL ENGLER KIM MUSGRAVE SAKITT ALEXANDER	85 81 73 73 70 69 69B 68B 67 66 65 65 65 65	NP B253 742 NP B179 33 NP B56 46 NP B56 46 NP B56 15 NP B16 479 PR 183 1352 PRL 12 1573 PRL 19 1074 PR 152 1148 PRL 15 224 PRL 15 224 PRL 15 224 PRL 15 224 PRL 15 224 PRL 18 224 PRL 18 224 PRL 18 224 PRL 18 224 PRL 18 247	+Engler, Fisk, Kraemer +Ross +Sakitt Martin, Sakitt Barbaro-Galtieri, Chadwick+ +Otter, Wacek +Fisk, Kraemer, Meltzer, Westgard+ +Petmezas+ +Day, Glasser, Seeman, Friedman+ +Kalbfleisch, Miller, Smith	(VIEN) (CMU, BNL) IJ (COLU) LOIC, SACL) (UMD, LRL) (LRL)
ALEXANDER ALSTON	62 62	PRL 8 447 CERN Conf. 311	+Kalbfleisch, Miller, Smith +Alvarez, Ferro-Luzzi+	(LRL) I (LRL) I
ALSTON	61B	PRL 6 698	+Alvarez, Eberhard, Good+	(LRL) I

- OTHER RELATED PAPERS -

BARRETT	89	NC 102A 179		(SURR)
BATTY	89	NC 102A 255	+ Gal	(RAL, HEBR)
CAPSTICK	89	Excited Baryons '88, p.	32	(GUEL)
LOWE	89	NC 102A 167		(BIRM)
WHITEHOUSE	89	PRL 63 1352	+ (BIRM, BOST, BRCO,	BNL, CASE, BUDA, TRIU)
SIEGEL	88	PR C38 2221	+Weise	(REGE)
WORKMAN	88	PR D37 3117	+Fearing	(TRIU)
SCHNICK	87	PRL 58 1719	+Landau	(ORST)
CAPSTICK	86	PR D34 2809	+Isgur	(TNTO)
JENNINGS	86	PL B176 229		`(TRIU)
MALTMAN	86	PR D34 1372	+ sgur	(LANL, ŤNTO)
ZHONG	86	PL B171 471	+ Thomas, Jennings, Barrett	(ADLD, TRIU, SURR)
BURKHARDT	85	NP A440 653	+ Lowe, Rosenthal	(NOTT, BIRM, WMIU)
DAREWYCH	85	PR D32 1765	+Koniuk, Isgur	(YORK, TNTO)
VEIT	85	PR D31 1033	+Jennings, Thomas, Barrett	(TRIU, ADLD, SURR)
KIANG	84	PR C30 1638	+Kumar, Nogami, VanDijk	(DALH, MCMS)
MILLER	84			(LOUC)
	rsectio	ns between Particle and	Nuclear Physics, p. 783	, , , ,

VANDIJK	84	PR D30 937		(MCMS)
VEIT	84	PL 137B 415	+Jennings, Barrett, Thomas	(TRIU, SURR, CERN)
DALITZ	82		+McGinley, Belyea, Anthony	(OXF)
Heidelberg	Conf.,	p. 201		, ,
DALITZ	81		+ McGinley	(OXF)
Low and Ir	terme		on-Nucleon Physics, p.381	
MARTIN	81B	Low and Interm	ediate Energy Kaon-Nucleon Phys., p.	97 (DURH)
OADES	77	NC 42A 462	+Rasche	(AARH, ZURI)
SHAW	73	Purdue Conf. 4	17	(UCI)
BARBARO	72	LBL-555	Barbaro-Galtieri	(LBL)
DOBSON	72	PR D6 3256	+ McElhaney	(HÀWA)
RAJASEKA	72	PR D5 610	Rajasekaran	(TATA)
CLINE	71	PRL 26 1194	+Laumann, Mapp	(WISC)
MARTIN	71	PL 35B 62	+Martin, Ross	(DURH, LOUC, RHEL)
DALITZ	67	PR 153 1617	+Wong, Rajasekaran	(OXF, BOMB)
DONALD	66	PL 22 711	-Edwards, Lys, Nisar, Moore	(LIVP)
KADYK	66	PRL 17 599	+Oren, Goldhaber, Goldhaber,	Trilling (LRL)
ABRAMS	65	PR 139B 454	+Sechi-Zorn	(ÙMD)

$\Lambda(1520) D_{03}$

 $I(J^P) = 0(\frac{3}{2})$ Status: ***

Discovered by FERRO-LUZZI 62; the elaboration in WATSON 63 is the classic paper on the Breit-Wigner analysis of a multichannel resonance.

The measurements of the mass, width, and elasticity published before 1975 are now obsolete and have been omitted. They were last listed in our 1982 edition (Physics Letters 111B).

Production and formation experiments agree quite well, so they are listed together here.

Λ(1520) MASS

VALUE (MeV) 1519.5 ±1.0 O 1519.50±0.18 O		DOCUMENT ID		TECN	COMMENT
1517.3 ± 1.5	300	BARBER	80D	SPEC	$\gamma p \rightarrow \Lambda(1520) K^{+}$
1519 ±1		GQPAL	80	DPWA	$\overline{K}N \to \overline{K}N$
1517.8 ± 1.2	5k	BARLAG	79	HBC	K ρ 4.2 GeV/c
1520.0 ± 0.5		ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1519.7 ± 0.3	4k	CAMERON	77	HBC	K ⁻ ρ 0.96-1.36 GeV/c
1519 ±1		GOPAL	77	DPWA	K N multichannel
1519.4 ± 0.3	2000	CORDEN	75	DBC	K [−] d 1.4–1.8 GeV/c

Λ(1520) WIDTH

VALUE (MeV) 15.6 ±1.0 OUR ESTIM 15.59±0.27 OUR AVER		DOCUMENT ID		TECN	COMMENT
16.3 ± 3.3	300	BARBER	80D	SPEC	$\gamma p \rightarrow \Lambda(1520) K^{+}$
16 ±1		GOPAL	80	DPWA	$\overline{K}N \to \overline{K}N$
14 ±3	677	¹ BARLAG	79	HBC	K- p 4.2 GeV/c
15.4 ±0.5		ALSTON	78	DPWA	$\overline{K}N \to \overline{K}N$
16.3 ± 0.5	4k	CAMERON	77	HBC	K ρ 0.96-1.36 GeV/c
15.0 ± 0.5		GOPAL	77	DPWA	K N multichannel
15.5 ± 1.6	2000	CORDEN	75	DBC	$K^- d 1.4$ –1.8 GeV/ c

Λ(1520) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
$\overline{\Gamma_1}$	NK	45 ± 1%	
Γ_2	$\Sigma \pi$	42 ± 1%	
Γ3	Λ ππ	10 ± 1%	
Γ4	$\Sigma(1385)\pi$		
Γ_5	$\Sigma(1385)\pi (\rightarrow \Lambda\pi\pi)$		
	$\Lambda(\pi\pi)_{S-wave}$		
Γ_7	$\Sigma \pi \pi$	$0.9 \pm 0.1\%$	
Γ8	$\Lambda\gamma$	$0.8\pm0.2\%$	
Γg	$\Sigma^0 \gamma$		

CONSTRAINED FIT INFORMATION

An overall fit to 9 branching ratios uses 24 measurements and one constraint to determine 6 parameters. The overall fit has a χ^2 16.5 for 19 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{ ext{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

<i>x</i> ₂	-63									
<i>x</i> ₃	-32	-33								
<i>x</i> ₇	-4	-3	-1							
<i>×</i> 8	-9	-8	-4	0						
<i>X</i> 9	-24	-21	-10	-1	-2					
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₇	<i>x</i> ₈					
۸(1520) BRANCHING RATIOS										

```
See "Sign conventions for resonance couplings" in the Note on \Lambda and \Sigma Resonances.
\Gamma(N\overline{K})/\Gamma_{\text{total}}
                                                                                                       \Gamma_1/\Gamma
VALUE
0.45 ±0.01 OUR ESTIMATE
                                             DOCUMENT ID TECN COMMENT
0.448 ± 0.007 OUR FIT Error includes scale factor of 1.2.
0.455 ± 0.011 OUR AVERAGE
0.47 ±0.02
                                                                 80 DPWA KN → KN
0.45 \pm 0.03
                                              ALSTON-...
                                                                78 DPWA \overline{K}N \rightarrow \overline{K}N
                                                                75 DBC K- d 1.4-1.8 GeV/c
0.448 \pm 0.014
                                              CORDEN
\bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet
0.47 \pm 0.01
                                             GOPAL
                                                                77 DPWA See GOPAL 80
                                                                76 HBC K^- p \rightarrow \overline{K}^0 n
0.42
\Gamma(\Sigma \pi)/\Gamma_{\text{total}}
                                                                                                      \Gamma_2/\Gamma
                                             DOCUMENT ID TECN COMMENT
0.42 ±0.01 OUR ESTIMATE
0.421 ± 0.007 OUR FIT Error includes scale factor of 1.2.
0.423 ± 0.011 OUR AVERAGE
                                             CORDEN 75 DBC K^- d 1.4–1.8 GeV/c BARBARO-... 69B HBC K^- p 0.28–0.45 GeV/c
0.418 \pm 0.017
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
0.46
                                                                71 DPWA K-matrix analysis
                                             KIM
\Gamma(\Sigma\pi)/\Gamma(N\overline{K})
                                                                                                    \Gamma_2/\Gamma_1
<u>VALUE</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>
0.940±0.026 OUR FIT Error includes scale factor of 1.3.
0.95 ±0.04 OUR AVERAGE Error includes scale factor of 1.7. See the ideogram below.
0.98 \pm 0.03
                                          <sup>2</sup> GOPAL
                                                               77 DPWA KN multichannel
                                             BURKHARDT 69 HBC K^- p 0.8–1.2 GeV/c SCHEUER 68 DBC K^- N 3 GeV/c
0.82 \pm 0.08
1.06 \pm 0.14
0.96 \pm 0.20
                                             DAHL
                                                                67 HBC
                                                                               \pi^- p 1.6-4 GeV/c
0.73 \pm 0.11
                                             DAUBER
                                                                67 HBC
• • • We do not use the following data for averages, fits, limits, etc. • • •
1.06 \pm 0.12
                                             BERTHON
                                                               74 HBC
                                                                               Quasi-2-body σ
1.72 \pm 0.78
                                             MUSGRAVE
                                                                65 HBC
            WEIGHTED AVERAGE 0.95 ± 0.04 (Error scaled by 1.7)
                                                   Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our "best" values, obtained from a least-squeres constrained fit
                                                   utilizing measurements of other (related) quantities as additional information.
                                                                                 77 DPWA
69 HBC
68 DBC
                                                                                                    1.0
2.7
0.6
                                                              GOPAL
                                                              BURKHARDT
                                                              SCHEUER
                                                              DAHI
                                                                                  67
                                                              DAUBER
```

	L	<u> </u>		<u> </u>	_	(C	onfidence Lev	el = 0.083)
1	0.4	0.6	8.0	1.0	1.2	1.4	1.6	
	Γ(Σ	π)/Γ(Ν	'K)					
Γ(Λππ)/Γ _{tot}	al						Γ ₃ /Γ
0.10 ±0	.01 C	UR EST	IMATE	DOC	UMENT ID	<u> </u>	ECN COMMENT	
0.095±0 0.096±0								

3 MAST

75 DBC K- d 1.4-1.8 GeV/c

73B IPWA $K^-p \rightarrow \Lambda \pi \pi$

 0.091 ± 0.006

 0.11 ± 0.01

$\Gamma(\Lambda\pi\pi)/\Gamma(N\overline{K})$				Γ3,
VALUE	DOCUMENT ID	i	TECN	COMMENT
0.213±0.012 OUR FIT Error i	ncludes scale facto		2.	
0.202±0.021 OUR AVERAGE				
0.22 ± 0.03	BURKHARD	T 69	нвс	K- p 0.8-1.2 GeV/c
0.19 ± 0.04	SCHEUER	68	DBC	K- N 3 GeV/c
0.17 ±0.05	DAHL	67	HBC	$\pi^- p$ 1.6-4 GeV/c
0.21 ± 0.18	DAUBER	67	HBC	$K^- p 2 \text{ GeV}/c$
 • • We do not use the following 	ng data for averag	es, fit	s, limits,	etc. • • •
0.27 ±0.13	BERTHON	74	HBC	Quasi-2-body σ
0.2	KIM	71	DPWA	K-matrix analysis
$\Gamma(\Sigma\pi)/\Gamma(\Lambda\pi\pi)$				Γ.,
VALUE	DOCUMENT ID		TECN	Γ _{2/}
	udes scale factor of		TECH	COMMENT
3.9 ±0.6 OUR AVERAGE				
3.9 ±1.0	UHLIG	67	нвс	K- p 0.9-1.0 GeV/c
3.3 ±1.1	BIRMINGHA	M 66	HBC	K [−] p 3.5 GeV/c
4.5 ±1.0	ARMENTER	0565 0	HBC	, ,
$\Gamma(\Sigma(1385)\pi)/\Gamma_{\text{total}}$				ΓΔ
VALUE	DOCUMENT ID		TECN	COMMENT
0.041±0.005			TECN	
0.071 ± 0.003	CHAN	72	нвс	$K^- p \rightarrow \Lambda \pi \pi$
$\Gamma(\Sigma(1385)\pi (\rightarrow \Lambda\pi\pi))/\Gamma$	$(\Lambda \pi \pi)$			Γ ₅ /
The $\Lambda \pi \pi$ mode is largely	dùe to Σ(1385)π.	Only	the valu	es of $(\Sigma(1385)\pi)/(\Lambda$
given by MAST 73B and C	ORDEN 75 are ba	sed on	real 3-b	ody partial-wave analy
The discrepancy between t	he two results is e	ssentia	illy due 1	to the different hypothe
made concerning the shape				
VALUE	DOCUMENT ID			COMMENT
0.58±0.22	CORDEN		DBC	$K^- d$ 1.4–1.8 GeV/ c
0.82±0.10	4 MAST		IPWA	$K^- \rho \rightarrow \Lambda \pi \pi$
• • We do not use the following	-		, limits,	etc. • • •
0.39 ± 0.10	⁵ BURKHARD	Γ 71	HBC	$K^- p \rightarrow (\Lambda \pi \pi) \pi$
$\Gamma(\Lambda(\pi\pi)_{S\text{-wave}})/\Gamma(\Lambda\pi\pi)$				F .
VALUE	DOCUMENT ID		TECN	Γ ₆ /
0.20±0.08	CORDEN	75	DBC	K ⁻ d 1.4-1.8 GeV/c
5.20 ± 0.08	CORDEN	75	DBC	K a 1.4-1.8 GeV/c
$\Gamma(\Sigma \pi \pi)/\Gamma_{\text{total}}$				Г
VALUE	DOCUMENT ID		TECN	COMMENT
0.009 ±0.001 OUR ESTIMATI				
0.0086±0.0005 OUR FIT				
0.0086±0.0005 OUR AVERAGE	_			
0.007 ±0.002	6 CORDEN	75	DBC	$K^- d$ 1.4-1.8 GeV/c
0.0085 ± 0.0006	⁷ MAST	73		$K^- \rho \rightarrow \Sigma \pi \pi$
0.010 ±0.0015	BARBARO	69B	HBC	K- p 0.28-0.45 GeV
$\Gamma(\Lambda\gamma)/\Gamma_{\rm total}$				r.
VALUE EVTS	DOCUMENT IS		TECH	Гв
0.008 ±0.002 OUR ESTIMATE	DOCUMENT ID		1 ECIV	COMMENT
0.0079±0.0014 OUR FIT	•			
0.0080±0.0014 00K111	MAST	680	нвс	Using
230	THE T	000		$\Gamma(N\overline{K})/\Gamma_{\text{total}}=0.4$
· (=0) · · ·				(···//· total—o
$\Gamma(\Sigma^0 \gamma)/\Gamma_{\text{total}}$				و۲
/ALUE	DOCUMENT ID		TECN	COMMENT
0.0195±0.0034 OUR FIT	0			
0.02 ±0.0035	⁸ MAST	68B	HBC	Not measured; see no
	(1520) FOOTS		c	
	(1520) FOOTN		3	
1 From the best-resolution sam	ple of $\Lambda \pi \pi$ events	only.		
² The $\overline{K}N \rightarrow \Sigma \pi$ amplitude a				

 $\Sigma \pi$ amplitude at resonance is $+0.46 \pm 0.01$.

³ Assumes $\Gamma(N\overline{K})/\Gamma_{\text{total}} = 0.46 \pm 0.02$.

⁴ Both $\Sigma(1385)\pi$ DS_{03} and $\Sigma(\pi\pi)$ DP_{03} contribute.

 $^{5}\,\text{The central bin}$ (1514–1524 MeV) gives 0.74 \pm 0.10; other bins are lower by 2-to-5 standard deviations. 6 Much of the $\Sigma \pi \pi$ decay proceeds via $\Sigma(1385)\pi$.

⁷ Assumes $\Gamma(N\overline{K})/\Gamma_{\text{total}} = 0.46$.

8 Calculated from \(\Gamma(n)/\)/fotal, assuming SU(3). Needed to constrain the sum of all the branching ratios to be unity.

Λ(1520) REFERENCES

BARBER	80D	ZPHY C7 17	+Dainton, Lee, Marshall+ (DARE, LANC, SHEF)
GOPAL	80	Toronto Conf. 159	(RHEL) UP
BARLAG	79	NP B149 220	+Blokziji, Jongejans+ (AMST, CERN, NIJM, OXF)
ALSTON	78	PR D18 182	Alston-Garnjost, Kenney+ (LBL, MTHO, CERN) IJP
Also	77	PRL 38 1007	Alston-Garnjost, Kenney+ (LBL, MTHO, CERN) IJP
CAMERON	77	NP B131 399	+Franek, Gopal, Kalmus, McPherson+ (RHEL, LOIC) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+ (LOIC, RHEL) UP
MAST	76	PR D14 13	+Alston-Garnjost, Bangerter+ (LBL)
CORDEN	75	NP B84 306	+Cox, Dartnell, Kenyon, O'Neale+ (BIRM)
BERTHON	74	NC 21A 146	+Tristram+ (CDEF, RHEL, SACL, STRB)
MAST	73	PR D7 3212	+Bangerter, Alston-Garnjost+ (LBL) UP
MAST	73B	PR D7 5	
CHAN	72	PRL 28 256	
BURKHARDT	71	NP B27 64	+Filthuth Kluge+ (HEID CERN SACL)

Baryon Full Listings $\Lambda(1520)$, $\Lambda(1600)$, $\Lambda(1670)$

KIM 7	71	PRL 27 356		(HARV) IJP
Also 7	70	Duke Conf. 161	Kim	(HARV) IJP
BARBARQ 6	59B	Lund Conf. 352	Barbaro-Galtieri, Bangerter, Mast, Tripp	(LRL)
Also 7	70	Duke Conf. 95	Tripp	(LRL)
BURKHARDT 6	59	NP B14 106	+Filthuth, Kluge+ (HEID, EFI, CERI	N, SACL)
MAST 6	68B	PRL 21 1715	+Alston-Garnjost, Bangerter, Galtieri+	(LRL)
SCHEUER 6	58	NP B8 503		Collab.)
DAHL 6	57	PR 163 1377	+Hardy, Hess, Kirz, Miller	(LRL)
DAUBER 6	57	PL 24B 525	+Malamud, Schlein, Slater, Stork	(ÚCLA)
UHLIG 6	57	PR 155 1448	+Charlton, Condon, Glasser, Yodh+ (UM	ID, NRL)
BIRMINGHAM 6	56	PR 152 1148	(BIRM, GLAS, LOIC, OXI	F. RHEL)
ARMENTEROS 6	55C	PL 19 338	+Ferro-Luzzi+ (CERN, HEII	
MUSGRAVE 6	55	NC 35 735	+Petmezas+ (BIRM, CERN, EPOL, LOI	C. SACL)
WATSON 6	53	PR 131 2248	+Ferro-Luzzi, Tripp	(LRL) IJP
FERRO-LUZZI 6		PRL 8 28	+ Tripp. Watson	(LRL) IJP

$\Lambda(1600) P_{01}$

$$I(J^P) = O(\frac{1}{2}^+)$$
 Status: ***

See also the $\Lambda(1810)$ P_{01} . There are quite possibly two P_{01} states in this region.

Λ(1600) MASS VALUE (MeV) 1560 to 1700 OUR ESTIMATE TECN COMMENT DOCUMENT ID GOPAL 80 DPWA $\overline{K}N \rightarrow \overline{K}N$ 1703 ± 100 ALSTON-.. 78 DPWA $\overline{K}N \rightarrow \overline{K}N$ 77 DPWA KN multichannel 1573 ± 25 GOPAL DPWA $K^- \rho \rightarrow \Sigma \pi$ KANE 1596 ± 6 74 LANGBEIN IPWA K N multichannel $1620\pm~10$ 72 • • • We do not use the following data for averages, fits, limits, etc. • • • 1572 or 1617 ¹ MARTIN 77 DPWA KN multichannel ² CARROLL 1646 ± 7 76 DPWA Isospin-0 total σ 1570 KIM 71 DPWA K-matrix analysis

Λ(1600) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 250 OUR ESTIMATE	Our best guess is 150	MeV		
116 ± 20	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$
593 ± 200	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
147 ± 50	GOPAL	77	DPWA	K N multichannel
175 ± 20	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
60 ± 10	LANGBEIN	72	IPWA	K N multichannel
• • • We do not use the folio	owing data for average	s, fits	, limits,	etc. • • •
247 or 271	¹ MARTIN	77	DPWA	K N multichannel
20	² CARROLL	76	DPWA	Isospin-0 total σ
50	KIM	71	DPWA	K-matrix analysis

Λ(1600) DECAY MODES

Mode	Fraction (F _i /F)
NK	15-30 %
$\Sigma \pi$	10-60 %

The above branching fractions are our estimates, not fits or averages.

Λ(1600) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.15 to 0.30 OUR ESTIN					
0.23 ± 0.04	GOPAL			$\overline{K}N \rightarrow \overline{K}N$	
0.14 ± 0.05	ALSTON			$\overline{K}N \rightarrow \overline{K}N$	
0.25 ± 0.15	LANGBEIN	72	IPWA	K N multichannel	
Min do not use the	e following data for averag	es, fits	, limits,	etc. • • •	
• • • We do not use the					
	GOPAL			See GOPAL 80	
0.24 ± 0.04 0.30 or 0.29	GOPAL ¹ MARTIN			See GOPAL 80 $\overline{K}N$ multichannel $(\Gamma_1\Gamma_2)$) ^{1/2} /
0.24±0.04 0.30 or 0.29 (Γ _i Γ _f) ^{1/2} /Γ _{total} in <i>Ν̄</i> Ī	GOPAL 1 MARTIN $\overline{K} \to \Lambda(1600) \to \Sigma \pi$	77	DPWA	\overline{K} N multichannel) ^{1/2} /
0.24±0.04 0.30 or 0.29 (Γ _i Γ _f) ^{1/2} /Γ _{total} in <i>Ν̄̄̄</i>	GOPAL 1 MARTIN $ \overline{K} \rightarrow \Lambda(1600) \rightarrow \Sigma \pi $ DOCUMENT ID	77	DPWA TECN	\overline{K} N multichannel $(\Gamma_1\Gamma_2$) ^{1/2} /
0.24 ± 0.04 0.30 or 0.29 $(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\bar{I}$ VALUE -0.16 ± 0.04	GOPAL 1 MARTIN $\overline{K} \to \Lambda(1600) \to \Sigma \pi$	77	DPWA <u>TECN</u> DPWA	\overline{K} N multichannel $(\Gamma_1\Gamma_2$) ^{1/2} /
0.24±0.04 0.30 or 0.29	GOPAL 1 MARTIN $ \overline{K} \rightarrow \Lambda(1600) \rightarrow \Sigma \pi $ DOCUMENT ID GOPAL	77 77 74	DPWA TECN DPWA DPWA	\overline{K} N multichannel $ (\Gamma_1\Gamma_2 \over \underline{COMMENT} \overline{K}$ N multichannel) ^{1/2} /
0.24 ± 0.04 0.30 or 0.29 $(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N^{\frac{1}{2}}$ -0.16 ± 0.04 -0.33 ± 0.11 0.28 ± 0.09	GOPAL 1 MARTIN $\overline{K} ightarrow \Lambda(1600) ightarrow \Sigma \pi rac{DOCUMENT ID}{GOPAL}$ KANE	77 77 74 72	TECN DPWA DPWA IPWA	\overline{K} N multichannel $ (\Gamma_1\Gamma_2 \over \overline{K} N \text{ multichannel } K^- \rho \to \Sigma \pi \overline{K} N \text{ multichannel } K^- \rho \to \Sigma N multich$) ^{1/2} /
0.24 ± 0.04 0.30 or 0.29 $(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N^{\frac{1}{2}}$ -0.16 ± 0.04 -0.33 ± 0.11 0.28 ± 0.09	GOPAL $ \overline{K} \rightarrow \Lambda(1600) \rightarrow \Sigma \pi $ $ \overline{GOPAL} $ $ \overline{KANE} $ LANGBEIN	77 77 74 72 es, fits	TECN DPWA DPWA IPWA IPWA	\overline{K} N multichannel $ (\Gamma_1\Gamma_2 \over \overline{K} N \text{ multichannel } K^- \rho \to \Sigma \pi \overline{K} N \text{ multichannel } K^- \rho \to \Sigma N multich$) ^{1/2} /

Λ(1600) FOOTNOTES

 2 A total cross-section bump with (J+1/2) Γ_{el} / Γ_{total} = 0.04.

Λ(1600) REFERENCES

80	Toronto Conf. 159	•	(RHEL) IJP
78	PR D18 182	Alston-Garniost, Kenney+	(LBL, MTHO, CERN) IJP
77	PRL 38 1007	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
77	NP B119 362	+Ross, VanHorn, McPherson+	(LOIC, RHEL) IJP
77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
77B	NP B126 266	Martin, Pidcock	(LOUC)
77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
76	PRL 37 806	-Chiang, Kycia, Li, Mazur, Michae	l+ (BNL)I
76B	PL 65B 487		(CERN, HEID, MPIM) IJP
74	LBL-2452		(LBL) IJP
72	NP B47 477	+-Wagner	(MPIM) IJP
71	PRL 27 356		(HARV) UP
	78 77 77 77 778 77C 76 76B 74 72	78 PR D18 182 77 PRL 38 1007 77 NP B119 362 77 NP B129 362 77 NP B126 266 77C NP B126 285 76 PRL 37 806 76B PL 65B 487 74 LBL-2452 72 NP B47 477	78 PR 018 182 Alston-Garnjost, Kenney+ 77 PRL 38 1007 Alston-Garnjost, Kenney+ 78 NP B119 362 +Ross, VanHorr, McPherson+ 778 NP B126 256 Arric, NP B126 255 Martin, Pidcock 776 PRL 37 806 -Chiang, Kyda, Li, Mazur, Michae 768 PL 658 487 -Piaun, Grimm, Strobele+ 74 LBL-2452 +Wagner 78 PRL 38 1007 79 PRL 38 1007 79 PRL 37 806 -Chiang, Kyda, Li, Mazur, Michae -Braun, Grimm, Strobele+ -Wagner -Wagner

$\Lambda(1670) S_{01}$

$$I(J^P) = 0(\frac{1}{2})$$
 Status: ***

The measurements of the mass, width, and elasticity published before 1974 are now obsolete and have been omitted. They were last listed in our 1982 edition (Physics Letters 111B).

	Λ(1670) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1660 to 1680 OUR ESTIMATE				
1670.8 ± 1.7	KOISO			$K^- \rho \rightarrow \Sigma \pi$
1667 ±5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1671 ±3	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1670 ±5	GOPAL	77	DPWA	K N multichannel
1675 ±2	HEPP	76B	DPWA	$K^- N \rightarrow \Sigma \pi$
1679 ±1	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
1665 ±5	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
• • • We do not use the following	g data for average	es, fits	, limits,	etc. • • •
1664	¹ MARTIN	77	DPWA	K N multichannel

Λ(1670) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
25 to 50 OUR ESTIMATE	Our best guess is 35 M	eV.	
34.1 ± 3.7	KOISO	85 DPWA	$K^- \rho \rightarrow \Sigma \pi$
29 ± 5	GOPAL	80 DPWA	$\overline{K}N \rightarrow \overline{K}N$
29 ± 5	ALSTON	78 DPWA	$\overline{K}N \rightarrow \overline{K}N$
45 ±10	GOPAL	77 DPWA	K N multichannel
46 ± 5	HEPP	76B DPWA	$K^- N \rightarrow \Sigma \pi$
40 ± 3	KANE	74 DPWA	$K^- p \rightarrow \Sigma \pi$
19 ± 5	PREVOST	74 DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
• • • We do not use the foll	lowing data for averages	s, fits, limits,	etc. • • •
12	¹ MARTIN	77 DPWA	K N multichannel

Λ(1670) DECAY MODES

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	
Γ ₁	NK	15-25 %	
Γ_2	$\Sigma \pi$	20-60 %	
Γ_3	$\Lambda\eta$	15-35 %	
Γ_4	$\Sigma(1385)\pi$		

The above branching fractions are our estimates, not fits or averages.

Λ(1670) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.15 to 0.25 OUR ESTIMATE				
0.18 ± 0.03	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.17 ± 0.03	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
• • • We do not use the follow	wing data for average	s, fit	s, limits,	etc. • • •
0.20 ± 0.03	GOPAL	77	DPWA	See GOPAL 80
0.15	¹ MARTIN	77	DPWA	K N multichannel
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Lambda(1670) \rightarrow \Sigma \pi$			$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.26 ± 0.02	KOISO	85	DPWA	$K^- \rho \rightarrow \Sigma \pi$
0.01 0.00	CODAL	77	DDMAA	V Al multichannel

$$\begin{array}{c|ccccc} (\Gamma_i\Gamma_f)^{1/2}/\Gamma_{total} \text{ in } N\overline{K} \rightarrow & \Lambda(1670) \rightarrow \Lambda\eta & & (\Gamma_1\Gamma_3)^{1/2}/\Gamma_{total} \\ \hline & & DOCUMENT ID & TECN & COMMENT \\ \hline +0.20\pm0.05 & BAXTER & 73 & DPWA & K^-p \rightarrow & neutrals \\ \end{array}$$

¹ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

• • • We do not use the following data for averages, fits, limits, etc. • • • 0.24 71 DPWA K-matrix analysis ARMENTEROS69C HBC 0.26 0.20 or 0.23 BERLEY 65 HBC

Λ(1670) FOOTNOTES

 $^{1}\,\mathrm{MARTIN}$ 77 obtains identical resonance parameters from a T-matrix pole and from a Breit-Wigner fit.

A(1670) REFERENCES

KOISO	85	NP A433 619	+Sai, Yamamoto, Kofler	(TOKY, MASA)
GOPAL	80	Toronto Conf. 159		(RHEL) IJP
ALSTON	78	PR D18 182	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
Also	77	PRL 38 1007	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock	(LOUC)
Atso	77C	NP B126 285	Martin, Pidcock	(LOUC) NP
HEPP	76B	PL 65B 487	+Braun, Grimm, Strobele+	(CERN, HEID, MPIM) IJP
LONDON	75	NP B85 289	+Yu. Boyd+ (BNL. CER	N. EPOL, ORSA, TORI)
KANE	74	LBL-2452		(LBL) IJP
PREVOST	74	NP B69 246	+Barloutaud+	(SACL, CERN, HEID)
BAXTER	73	NP B67 125	+Buckingham, Corbett, Dunn+	(OXF) IJP
KIM	71	PRL 27 356	•	(HARV) UP
Also	70	Duke Conf. 161	Kim	(HARV) IJP
ARMENTERO:		Lund Paper 229 d in LEVI-SETTI 69.	+Baillon+	(CERN, HEID, SACL) IJP
BERLEY	65	PRL 15 641	+Connolly, Hart, Rahm, Stonehill+	(BNL) IJP

$(1690) D_{03}$

$$I(J^P) = O(\frac{3}{2})$$
 Status: ***

The measurements of the mass, width, and elasticity published before 1974 are now obsolete and have been omitted. They were last listed in our 1982 edition (Physics Letters 111B).

Λ(1690) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1685 to 1695 OUR ESTIMATE				
$1.695.7 \pm 2.6$	KOISO	85	DPWA	$K^- p \rightarrow \Sigma \pi$
1690 ±5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1.692 ±5	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1690 ±5	GOPAL	77	DPWA	K N multichannel
1690 ±3	HEPP	76B	DPWA	$K^- N \rightarrow \Sigma \pi$
1689 ±1	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
 • • We do not use the following 	g data for average	es, fits	, limits,	etc. • • •
1687 or 1689	1 MARTIN	77	DPWA	K N multichannel
1692 ±4	CARROLL	76	DPWA	Isospin-0 total σ

Λ(1690) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
60 to 70 OUR ESTIMATE	Our best guess is 60 N	∕leV.		
57.2± 5.6	KOISO	85	DPWA	$K^- \rho \rightarrow \Sigma \pi$
51 ± 5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
54 ±10	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
50 ± 5	GOPAL	77	DPWA	K N multichannel
32 ± 8	HEPP	76B	DPWA	$K^- N \rightarrow \Sigma \pi$
60 ± 4	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • We do not use the f	following data for average	es, fits	, limits,	etc. • • •
i2 or 62	1 MARTIN	77	DPWA	K N multichannel
88	CARROLL	76	DPWA	Isospin-0 total σ

Λ(1690) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Г1	NK	20-30 %	
Γ_2	$\Sigma \pi$	20-40 %	
Γ_3	Λππ	~ 25 %	
Γ4	Σππ	~ 20 %	
Γ_5	$\Lambda\eta$		
٦٦	$\Sigma(1385)\pi$. S-wave		

The above branching fractions are our estimates, not fits or averages.

Λ(1690) BRANCHING RATIOS

The sum of all the quoted branching ratios is more than 1.0. The two-body ratios are from partial-wave analyses, and thus probably are more reliable than the threebody ratios, which are determined from bumps in cross sections. Of the latter, the $\Sigma\pi\pi$ bump looks more significant. (The error given for the $\Lambda\pi\pi$ ratio looks unreasonably small.) Hardly any of the $\Sigma \pi \pi$ decay can be via Σ (1385), for then seven times as much $\Lambda\pi\pi$ decay would be required. See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ ₁ /
VALUE	DOCUMENT ID		TECN	COMMENT
0.2 to 0.3 OUR ESTIMATE				
0.23 ± 0.03	GOPAL			
0.22 ± 0.03	ALSTON			
• • We do not use the folion	wing data for average	s, fit	s, limits,	etc. • • •
0.24 ± 0.03	GOPAL	77	DPWA	See GOPAL 80 KN multichannel
0.28 or 0.26	¹ MARTIN	77	DPWA	K N multichannel
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	Λ(1690) → Σσ			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}$
VALUE	DOCUMENT ID		TECN	
-0.34 ± 0.02	KOISO			$K^- p \rightarrow \Sigma \pi$
-0.25 ± 0.03	GOPAL			K N multichannel
-0.29 ± 0.03				
-0.28±0.03	LONDON	75	HLBC	$\begin{array}{ccc} K^- N \to & \Sigma \pi \\ K^- \rho \to & \Sigma^0 \pi^0 \end{array}$
-0.28±0.02	KANE	74	DPW/A	$K^- p \rightarrow \Sigma \pi$
• • We do not use the following the fol				
-0.30 or -0.28				K N multichannel
-0.30 Or -0.28	- WARTIN	11	DPWA	A /V multichannel
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	$\Lambda(1690) \rightarrow \Lambda \eta$			$(\Gamma_1\Gamma_5)^{1/2}$
VALUE	DOCUMENT ID			
0.00 ± 0.03	BAXTER	73	DPWA	$K^- p \rightarrow \text{neutrals}$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	$\Lambda(1690) \rightarrow \Lambda \pi \tau$	т		$(\Gamma_1\Gamma_3)^{1/2}$
VALUE	DOCUMENT ID		TECN	COMMENT
• • We do not use the folion				
0.25 ± 0.02	² BARTLEY	68	HDBC	$K^- \rho \rightarrow \Lambda \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \frac{VALUE}{2}$	Λ(1690) → Σπ	π		$(\Gamma_1\Gamma_4)^{1/2}$
	DOCUMENT ID		<u>TECN</u>	COMMENT
0.21	ARMENTERO	\$680	HDBC	$K^- N \rightarrow \Sigma \pi \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to VALUE}$				
+0.27 +0.04	DOCUMENT ID			
+0.21 ±0.04	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385)\pi$
	Λ(1690) FOOTN	ОТІ	ES .	

 1 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. Another \textit{D}_{03} Λ at 1966 MeV is also suggested by MARTIN 77, but is very uncertain. ²BARTLEY 68 uses only cross-section data. The enhancement is not seen by PRE-

Λ(1690) REFERENCES

KOISO	85	NP A433 619	+Sai, Yamamoto, Kofler	(TOKY, MASA)
GOPAL	80	Toronto Conf. 159		(RHEL) IJP
ALSTON	78	PR D18 182	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
Aiso	77	PRL 38 1007	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock	(LOUC)
Also	77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
CARROLL	76	PRL 37 806	+Chiang, Kycia, Li, Mazur, Michael+	(BNL) I
HEPP	76B	PL 65B 487	+Braun, Grimm, Strobele+	(CERN, HEID, MPIM) IJP
LONDON	75	NP B85 289	+Yu, Boyd+ (BNL, CERN	EPOL, ORSA, TORI)
KANE	74	LBL-2452		(LBL) IJP
PREVOST	74	NP B69 246	+ Barloutaud+	(SACL, CERN, HEID)
BAXTER	73	NP B67 125	+Buckingham, Corbett, Dunn+	(OXF) IJP
PREVOST	71	Amsterdam Conf.		(CERN, HEID, SACL)
ARMENTEROS		NP B8 216	+Baillon+	(CERN, HEID, SACL) F
BARTLEY	68	PRL 21 1111	+Chu, Dowd, Greene+	(TUFT, FSU, BRAN)I

 $\Lambda(1800), \Lambda(1810)$

 $\Lambda(1800) S_{01}$

 $I(J^P) = O(\frac{1}{2})$ Status: ***

This is the second resonance in the S_{01} wave, the first being the $\Lambda(1670)$.

	Λ(1800) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1720 to 1850 OUR ESTIMATE 1841±10	GOPAL	80	DPWA	$\overline{K}N \to \overline{K}N$
1725 ± 20	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1825 ± 20	GOPAL	77	DPWA	K N multichannel
1830 ± 20	LANGBEIN	72	1PWA	K N multichannel
 ◆ ◆ We do not use the following 	data for average	s, fit	s, limits,	etc. • • •
1767 or 1842	1 MARTIN	77	DPWA	K N multichannel
1780	KIM	71	DPWA	K-matrix analysis
1872 ± 10	BRICMAN	708	DPWA	$\overline{K}N \rightarrow \overline{K}N$

Λ(1800) WIDTH

VALUE (MeV)	DOCUMENT ID	
200 to 400 OUR ESTIMATE	Our best guess is 30	IU MeV.
228 ± 20	GOPAL	80 DPWA $\overline{K}N \rightarrow \overline{K}N$
185 ± 20	ALSTON	78 DPWA $\overline{K}N \rightarrow \overline{K}N$
230 ± 20	GOPAL	77 DPWA \overline{K} N multichannel
70 ± 15	LANGBEIN	72 IPWA $\overline{K} N$ multichannel
• • We do not use the follo	wing data for average	es, fits, limits, etc. • • •
435 or 473	¹ MARTIN	77 DPWA $\overline{K}N$ multichannel
40	KIM	71 DPWA K-matrix analysis
100 ± 20	BRICMAN	70B DPWA $\overline{K}N \rightarrow \overline{K}N$

A(1800) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
Γ ₁	NK	25-40 %	
Γ_2	$\Sigma \pi$	seen	
Γ_3	$\Sigma(1385)\pi$	seen	
Γ4	NK*(892)	seen	
Γ_5	$N\overline{K}^*$ (892), $S=1/2$, S -wave		
Γ ₆	$N\overline{K}^*(892)$, $S=3/2$, <i>D</i> -wave		

The above branching fractions are our estimates, not fits or averages.

Λ(1800) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.25 to 0.40 OUR ESTIMATE				
0.36 ± 0.04	GOPAL			
0.28 ± 0.05	ALSTON			
0.35 ± 0.15	LANGBEIN	72	IPWA	K N multichannel
• • We do not use the following	ng data for average	s, fit	s, limits,	etc. • • •
0.37 ± 0.05	GOPAL	77	DPWA	See GOPAL 80
1.21 or 0.70	$^{ m 1}$ MARTIN	77	DPWA	K N multichannel
0.80	KIM	71	DPWA	K-matrix analysis
0.18 ± 0.02	BRICMAN	70E	DPWA	$\overline{K} N \rightarrow \overline{K} N$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda$ VALUE	$(1800) \rightarrow \Sigma \pi$		TECN	$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
- 0.08 ± 0.05				K N multichannel
• • • We do not use the following				
-0.74 or -0.43				K N multichannel
0.24	KIM	71	DPWA	K-matrix analysis
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \Lambda$.(1800) → Σ(1	385)	π	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	$\frac{COMMENT}{K^- p \rightarrow \Sigma(1385) \pi}$
$+0.056 \pm 0.028$	CAMERON	78	DPWA	$K^- p \rightarrow \Sigma(1385) \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \Lambda$	$(1800) \rightarrow N\overline{K}$	*(89	2), <i>S</i> =	1/2, <i>S</i> -wave $(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	
-0.17 ± 0.03	² CAMERON	78E	DPWA	$\frac{COMMENT}{K^- p \rightarrow N \overline{K}^*}$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{total} \text{ in } \mathbf{N} \overline{K} \to \Lambda$	$(1800) \rightarrow N\widetilde{K}$	*(89	2), <i>S</i> =	
				(┌₁┌ ₆) ^⅓ 2/┌
VALUE	DOCUMENT ID		TECN	COMMENT

CAMERON

78B DPWA $K^- \rho \rightarrow N \overline{K}^*$

 -0.13 ± 0.04

Λ(1800) FOOTNOTES

 1 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. 2 The published sign has been changed to be in accord with the baryon-first convention.

Λ(1800) REFERENCES

GOPAL	80	Toronto Conf. 15	9	(RHEL) IJP
ALSTON	78	PR D18 182	Alston-Garnjost, Kenney+ (LBL,	MTHO, CERN) IJP
Also	77	PRL 38 1007	Alston-Garnjost, Kenney+ (LBL,	MTHO, CERN) IJP
CAMERON	78	NP B143 189	+Franek, Gopal, Bacon, Butterworth+	(RHEL, LOIC) IJP
CAMERON	78B	NP B146 327	+Franek, Gopal, Kalmus, McPherson+	(RHEL, LOIC) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+	(LOIC, RHEL) UP
MARTIN	77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock	(LOUC)
Also	77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
LANGBEIN	72	NP B47 477	+Wagner	(MPIM) IJP
KIM	71	PRL 27 356		(HARV) IJP
Also	70	Duke Conf. 161	Kim	(HARV) IJP
BRICMAN	70B	PL 33B 511	+Ferro-Luzzi, Lagnaux	(CERN) IJP

$\Lambda(1810) P_{01}$

 $I(J^P) = O(\frac{1}{2}^+)$ Status: ***

Almost all the recent analyses contain a P_{01} state, and sometimes two of them, but the masses, widths, and branching ratios vary greatly. See also the $\Lambda(1600)$ P_{01} .

Λ(1810) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1750 to 1850 OUR ESTIMATE				
1841 ± 20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1853 ± 20	GOPAL	77	DPWA	K N multichannel
1735 ± 5	CARROLL	76	DPWA	Isospin-0 total σ
1746 ± 10	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
1780 ± 20	LANGBEIN	72	IPWA	K N multichannel
$\bullet~\bullet~$ We do not use the following	data for average	s, fits	i, limits,	etc. • • •
1861 or 1953	¹ MARTIN	77	DPWA	K N multichannel
1755	KIM	71	DPWA	K-matrix analysis
1800	ARMENTERO	S70	HBC	$\overline{K}N \rightarrow \overline{K}N$
1750	ARMENTERO	570	HBC	$\overline{K}N \rightarrow \Sigma \pi$
1690 ± 10	BARBARO	70	HBC	$\overline{K}N \rightarrow \Sigma \pi$
1740	BAILEY	69	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1745	ARMENTERO	S68B	HBC	$\overline{K}N \to \overline{K}N$

Λ(1810) WIDTH

VALUE (MeV)	DOCUMENT ID TECN COMMENT
50 to 250 OUR ESTIMATE	Our best guess is 150 MeV.
164 ± 20	GOPAL 80 DPWA $\overline{K}N \rightarrow \overline{K}N$
90 ± 20	CAMERON 788 DPWA $K^- p \rightarrow N \overline{K}^*$
166 ± 20	GOPAL 77 DPWA \overline{K} N multichannel
46 ± 20	PREVOST 74 DPWA $K^- N \rightarrow \Sigma(1385)\pi$
120 ± 10	LANGBEIN 72 IPWA KN multichannel
• • We do not use the foll	owing data for averages, fits, limits, etc. • • •
535 or 585	¹ MARTIN 77 DPWA \overline{K} N multichannel
28	CARROLL 76 DPWA Isospin-0 total σ
35	KIM 71 DPWA K-matrix analysis
30	ARMENTEROS70 HBC $\overline{K}N \rightarrow \overline{K}N$
70	ARMENTEROS70 HBC $\overline{K}N \rightarrow \Sigma\pi$
22	BARBARO 70 HBC $\overline{K}N \rightarrow \Sigma \pi$
300	BAILEY 69 DPWA $\overline{K}N \rightarrow \overline{K}N$
147	ARMENTEROS688 HBC

Λ(1810) DECAY MODES

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	
Γ_1	NK	20-50 %	
Γ_2	$\Sigma \pi$	10-40 %	
Γ_3	$\Sigma(1385)\pi$	seen	
Γ_4	$N\overline{K}^*$ (892)	30-60 %	
Γ5	$N \dot{\vec{K}}^*$ (892), $S=1/2$, P -wave		
Γ ₆	$N\overline{K}^*$ (892), $S=3/2$, P -wave		

The above branching fractions are our estimates, not fits or averages.

A(1810) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.2 to 0.5 OUR ESTIMATE					
0.24 ± 0.04	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.36 ± 0.05	LANGBEIN	72	IPWA	K № multichannel	

0.21 ± 0.04				etc. • • • See GOPAL 80 K N multichannel
0.52 or 0.49	¹ MARTIN	77		
0.30	KIM	71		K-matrix analysis
0.15	ARMENTER	OS70	DPWA	$\overline{K} N \rightarrow \overline{K} N$
0.55	BAILEY			$\overline{K}N \to \overline{K}N$
0.4	ARMENTER	OS68E	DPWA	$\overline{K}N \rightarrow \overline{K}N$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	Λ(1810) → Σ ₇	r		(Γ ₁ Γ ₂) ^{1/2} /Γ
VALUE	DOCUMENT IL)	TECN	COMMENT
-0.24 ± 0.04				K N multichannel
• • • We do not use the folio	wing data for averag	ges, fit	s, limits,	etc. • • •
+0.25 or +0.23	¹ MARTIN	77	DPWA	K N multichannel
< 0.01	LANGBEIN	72	IPWA	K N multichannel
0.17	KIM ² ARMENTER	71	DPWA	K-matrix analysis
+0.20	² ARMENTER	OS70	DPWA	$\overline{K}N \rightarrow \Sigma \pi$
-0.13 ± 0.03				$\overline{K} N \rightarrow \Sigma \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow VALUE}$	Λ(1810) → Σ(<u>DOCUMENT II</u>	1385)	π TECN	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
+ 0.18 ± 0.10				$K^- N \rightarrow \Sigma(1385) \pi$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Lambda(1810) \rightarrow N^{7}$	K*(89	12), <i>5</i> =	1/2, <i>P</i> -wave (Γ ₁ Γ ₅) ^{1/2} /Γ
VALUE	DOCUMENT IL)	TECN	
-0.14 ± 0.03	² CAMERON	78E	DPWA	$\frac{COMMENT}{K^- p \rightarrow N \overline{K}^*}$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Lambda(1810) \rightarrow N^{\frac{1}{2}}$	₹*(89	2), <i>S</i> =	• 1
VALUE	DOCUMENT IL	,	TECN	$(\Gamma_1\Gamma_6)^{\frac{1}{2}}/\Gamma$
+0.35±0.06				$K^- \rho \rightarrow N \overline{K}^*$

A(1810) FOOTNOTES

1 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

² The published sign has been changed to be in accord with the baryon-first convention.

Λ(1810) REFERENCES

GOPAL	80	Toronto Conf. 159		(RHEL) IJP
CAMERON	78B	NP B146 327	+Franek, Gopal, Kalmus, McPherson-	RHEL, LOIC) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock	(LOUC)
Also	77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
CARROLL	76	PRL 37 806	+Chiang, Kycia, Li, Mazur, Michael+	(BNL) I
PREVOST	74	NP B69 246	+Barloutaud+	(SACL, CERN, HEID)
LANGBEIN	72	NP B47 477	+Wagner	(MPIM) IJP
KIM	71	PRL 27 356		(HARV) IJP
Also	70	Duke Conf. 161	Kim	(HARV) IJP
ARMENTEROS	70	Duke Conf. 123	+Baillon+	(CERN, HEID, SACL) IJP
BARBARO	70	Duke Conf. 173	Barbaro-Galtieri	(LRL) IJP
BAILEY	69	UCRL 50617 Thesis		(LLL) IJP
ARMENTEROS	68B	NP B8 195	+Baillon+	(CERN, HEID, SACL) IJP

$\Lambda(1820) F_{05}$

$$I(J^P) = O(\frac{5}{2}^+)$$
 Status: ***

This resonance is the cornerstone for all partial-wave analyses in this region. Most of the results published before 1973 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

Most of the quoted errors are statistical only; the systematic errors due to the particular parametrizations used in the partial-wave analyses are not included. For this reason we do not calculate weighted averages for the mass and width.

Λ(1820) MASS

VALUE (MeV)	DOCUMENT ID		TECN COMMENT
1815 to 1825 OUR ESTI	MATE		
1823±3	GOPAL	80	DPWA $\overline{K}N \rightarrow \overline{K}N$
1819±2	ALSTON	78	DPWA $\overline{K}N \rightarrow \overline{K}N$
1822±2	GOPAL	77	DPWA KN multichannel
1821 ± 2	KANE	74	DPWA $K^- p \rightarrow \Sigma \pi$
• • • We do not use the	e following data for average	es, fit	s, limits, etc. • • •
1830	DECLAIS	77	DPWA $\overline{K}N \rightarrow \overline{K}N$
1817 or 1819	¹ MARTIN	77	DPWA K N multichannel

Λ(1820) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN COMMENT
70 to 90 OUR ESTIMATE	Our best guess is 80 Me	eV.	
77 ± 5	GOPAL	80	DPWA $\overline{K}N \rightarrow \overline{K}N$
72±5	ALSTON	78	DPWA $\overline{K}N \rightarrow \overline{K}N$
31 ± 5	GOPAL	77	DPWA KN multichannel
37±3	KANE	74	DPWA $K^- p \rightarrow \Sigma \pi$

• • • We do not use the following data for averages, fits, limits, etc. • • • 82 DECLAIS 77 DPWA $\overline{K}N \rightarrow \overline{K}N$ 76 or 76 MARTIN 77 DPWA $\overline{K}N$ multichannel

Λ(1820) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	NK	55-65 %
Γ_2	$\Sigma \pi$	8-14 %
Гз	$\Sigma(1385)\pi$	5-10 %
Γ_4	$\Sigma(1385)\pi$, <i>P</i> -wave	
Γ_5	$\Sigma(1385)\pi$, F-wave	
Γ ₆	$\Lambda \eta$	
Γ7	Σππ	

The above branching fractions are our estimates, not fits or averages.

Λ(1820) BRANCHING RATIOS

Errors quoted do not include uncertainties in the parametrizations used in the partial-wave analyses and are thus too small. See also "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.55 to 0.65 OUR ESTIMATE				
0.58 ± 0.02	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.60 ± 0.03	ALSTON	78	DPWA	$\overline{K} N \rightarrow \overline{K} N$
• • • We do not use the follow	ving data for averag	es, fit	s, limits,	etc. • • •
0.51	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.57 ± 0.02	GOPAL	77	DPWA	See GOPAL 80
0.59 or 0.58	¹ MARTIN	77	DPWA	K N multichannel

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	$\Lambda(1820) \rightarrow \Sigma \pi$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.28 ± 0.03	GOPAL	77	DPWA	K N multichannel
-0.28 ± 0.01	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
We do not use the follo	wing data for averages	fite	limite	otc

• • • We do not use the following data for averages, fits, limits, etc. • • • -0.25 or -0.25 or -0.25 MARTIN 77 DPWA \overline{K} N multichant

 $\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\overline{K} \rightarrow \Lambda(1820) \rightarrow \Lambda\eta}{\frac{DOCUMENT ID}{-0.096^{+0.040}_{-0.020}}} \frac{\Lambda(1820) \rightarrow \Lambda\eta}{\text{RADER}} \frac{TECN}{73 \text{ MPWA}}$

Λ(1820) FOOTNOTES

 1 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. 2 There is a suggestion of a bump, enough to be consistent with what is expected from $\Sigma(1385) \to ~\Sigma\pi$ decay.

³ The published sign has been changed to be in accord with the baryon-first convention.

Λ(1820) REFERENCES

GOPAL	80	Toronto Conf. 159	(RHEL) IJP
ALSTON	78	PR D18 182	Alston-Garnjost, Kenney+ (LBL, MTHO, CERN) IJP
Also	77	PRL 38 1007	Alston-Garnjost, Kenney+ (LBL, MTHO, CERN) IJP
CAMERON	78	NP B143 189	+Franek, Gopal, Bacon, Butterworth+ (RHEL, LOIC) IJP
DECLAIS	77	CERN 77-16	+Duchon, Louvel, Patry, Seguinot+ (CAEN, CERN) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+ (LOIC, RHEL) IJP
MARTIN	77	NP B127 349	+Pidcock, Moorhouse (LOUC, GLAS) IJP
Also	778	NP B126 266	Martin, Pidcock (LOUC)
Also	77C	NP B126 285	Martin, Pidcock (LOUC) IJP
KANE	74	LBL-2452	`(LBL)JJP
PREVOST	74	NP B69 246	+Barloutaud+ (SACL, CERN, HEID)
RADER	73	NC 16A 178	+Barloutaud+ (SACL, HEID, CERN, RHEL, CDEF)
ARMENTEROS	68C	NP B8 216	+Baillon+ (CERN, HEID, SACL)

 $\Lambda(1830), \Lambda(1890)$

 $\Lambda(1830)~D_{05}$

 $I(J^P) = O(\frac{5}{2})$ Status: ***

For results published before 1973 (they are now obsolete), see our 1982 edition (Physics Letters 111B).

The best evidence for this resonance is in the $\Sigma\pi$ channel.

Λ(1830) MASS						
VALUE (MeV) 1810 to 1830 OUR ESTIMATE	DOCUMENT ID		<u>T</u> ECN	COMMENT		
1831 ± 10	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$		
1825 ± 10	GOPAL	77	DPWA	K N multichannel		
1825 ± 1	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$		
• • We do not use the following	ig data for average	s, fit	s, limits,	etc. • • •		
1817 or 1818	¹ MARTIN	77	DPWA	K N multichannel		

Λ(1830) WIDTH

VALUE (MeV) 60 to 110 OUR ESTIMATE	DOCUMENT ID Our best guess is 95	MeV.	TECN	COMMENT
100 ± 10	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
94 ± 10	GOPAL	77	DPWA	K N multichannel
119± 3	KANE	74	DPWA	$K^{+}p \rightarrow \Sigma \pi$
• • We do not use the following	owing data for averag	ges, fit:	s, limits,	etc. • • •
56 or 56	¹ MARTIN	77	DPWA	K N multichannel

Λ(1830) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ_1	NK	3-10 %	
Γ_2	$\Sigma \pi$	35-75 %	
Γ_3^-	$\Sigma(1385)\pi$	>15 %	
Γ4	$\Sigma(1385)\pi$, D-wave		
Γ_5	$\wedge \eta$		

The above branching fractions are our estimates, not fits or averages.

A(1830) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE 0.03 to 0.10 OUR ESTIMATE	DOCUMENT ID		<u>TECN</u>	COMMENT
	GOPAL	20	D DUA/A	7 N 7 N
0.08 ± 0.03				
0.02 ± 0.02	ALSTON			
• • We do not use the follow	wing data for average	s, fit	s, limits,	etc. • • •
0.04 ± 0.03				See GOPAL 80
0.04 or 0.04	¹ MARTIN	77	DPWA	K N multichannel
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{-0.17 \pm 0.03}$	DOCUMENT ID			$\frac{(\Gamma_1\Gamma_2)^{1/2}/\Gamma}{\overline{K} \text{ N multichannel}}$
-0.15 ± 0.01	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the follo				
-0.17 or -0.17	¹ MARTIN	77	DPWA	K N multichannel
-0.17 or -0.17 $ (\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to $	$\Lambda(1830) \rightarrow \Lambda \eta$			$\overline{\textit{K}}$ N multichannel $\left(\Gamma_{1}\Gamma_{5}\right)^{1/2}/\Gamma$

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	$\Lambda(1830) \rightarrow \Sigma(138)$	$85)\pi$	$(\Gamma_1\Gamma_3)$
VALUE	DOCUMENT ID	TECN	COMMENT
$+0.141 \pm 0.014$	² CAMERON	78 DPWA	$K^- \rho \rightarrow \Sigma(1385)$
$+0.13 \pm 0.03$	PREVOST	74 DPWA	$K^- N \rightarrow \Sigma(1385)$

Λ(1830) FOOTNOTES

 $^1\,\text{The}$ two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. $^2\,\text{The}$ CAMERON 78 upper limit on G-wave decay is 0.03. The published sign has been changed to be in accord with the baryon-first convention.

Λ(1830) REFERENCES

			The second secon
GOPAL	80	Toronto Conf. 159	
ALSTON	78	PR D18 182	Alston-Garnjost, Kenney+ (LBL, MTHO, CERN) IJP
Also	77	PRL 38 1007	Alston-Garnjost, Kenney+ (LBL, MTHO, CERN) IJP
CAMERON	78	NP B143 189	+Franek, Gopal, Bacon, Butterworth+ (RHEL, LOIC) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+ (LOIC, RHEL) IJP
MARTIN	77	NP B127 349	+ Pidcock, Moorhouse (LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock (LOUC)
Also	77C	NP B126 285	Martin, Pidcock (LOUC) IJP
KANE	74	LBL-2452	(LBL) IJP
PREVOST	74	NP B69 246	+Barloutaud+ (SACL, CERN, HEID)
RADER	73	NC 16A 178	Barloutaud+ (SACL, HEID, CERN, RHEL, CDEF)

$\Lambda(1890) P_{03}$

 $I(J^P) = O(\frac{3}{2}^+)$ Status: ***

For results published before 1974 (they are now obsolete), see our 1982 edition (Physics Letters 111B).

The $J^P=3/2^+$ assignment is consistent with all available data (including polarization) and recent partial-wave analyses. The dominant inelastic modes remain unknown.

Λ(1890) MASS					
VALUE (MeV) 1850 to 1910 OUR ESTIMATE	DOCUMENT ID		<u>TECN</u>	COMMENT	
1897 ± 5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
1908 ± 10	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
1900 ± 5	GOPAL	77	DPWA	K N multichannel	
1894 ± 10	HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$	
• • • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •	
1856 or 1868 1900	¹ MARTIN ² NAKKASYAN			$\overline{K}N$ multichannel $K^- \rho \rightarrow \Lambda \omega$	

Λ(1890) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
60 to 200 OUR ESTIMATE Our	best guess is 100	MeV	. —	
74 ± 10	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
119 ± 20	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
72±10	GOPAL	77	DPWA	K N multichannel
107 ± 10	HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$
• • • We do not use the following	data for averages	s, fits	, limits,	etc. • • •
191 or 193	¹ MARTIN	77	DPWA	K N multichannel
100	² NAKKASYAN	75	DPWA	$K^- p \rightarrow \Lambda \omega$

A(1890) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ_1	NK	20-35 %	
Γ_2	$\Sigma \pi$	3-10 %	
Γ_3	$\Sigma(1385)\pi$	seen	
Γ_4	$\Sigma(1385)\pi$, <i>P</i> -wave		
Γ_5	$\Sigma(1385)\pi$, F-wave		
Γ_6	$N\overline{K}^{*}(892)$	seen	
Γ_7	$N\overline{K}^*(892), S=1/2, P$ -wave		
Γ8	$\Lambda \omega$		

The above branching fractions are our estimates, not fits or averages.

Λ(1890) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

80 DPWA $\overline{K}N \rightarrow \overline{K}N$
N 70 DOMA ZA ZA
N 78 DPWA $\overline{K}N \rightarrow \overline{K}N$
GWAY 75 DPWA $K^- p \rightarrow \overline{K} N$
averages, fits, limits, etc. • • •
77 DPWA See GOPAL 80 N 77 DPWA KN multichannel
N 77 DPWA \overline{K} N multichannel
$\begin{array}{c c} \Sigma \pi & (\Gamma_1 \Gamma_2)^{\frac{1}{2}} / \Gamma \\ \hline 77 & DPWA & K N multichannel \\ \text{overages, fits, limits, etc.} & \bullet & \bullet \\ \end{array}$
N 77 DPWA \overline{K} N multichannel
$Λω$ $(Γ_1Γ_8)^{1/2}/Γ$
RI 77 IPWA $K^- p \rightarrow \Lambda \omega$ SYAN 75 DPWA $K^- p \rightarrow \Lambda \omega$
SYAN 75 DPWA K ⁻ p → Λω
1

DOCUMENT ID TECN COMMENT TECN CAMERON 78 DPWA $K^-p \rightarrow \Sigma(1385)\pi$

 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}}$ in $N\overline{K} \rightarrow \Lambda(1890) \rightarrow \Sigma(1385) \pi$, *P*-wave

 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Lambda(1890) \rightarrow \Sigma(1385)\pi$, F-wave

 -0.126 ± 0.055

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	$\Lambda(1890) \rightarrow N\overline{K}$	*(892)		
				$(\Gamma_1\Gamma_6)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT	
-0.07 ± 0.03	3,4 CAMERON	78B DPWA	$K^- p \to$	NK*

Λ(1890) FOOTNOTES

- $\frac{1}{2}$ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
- Found in one of two best solutions.

 The published sign has been changed to be in accord with the baryon-first convention.
- ⁴Upper limits on the P_3 and F_3 waves are each 0.03.

Λ(1890) REFERENCES

	GOPAL	80	Toronto Conf.	159			(RHEL) IJP
	ALSTON	78	PR D18 182		Alston-Garnjost, Kenney+	(LBL,	MTHO, CERN) IJP
	Also	77	PRL 38 1007		Alston-Garnjost, Kenney+	(LBL,	MTHO, CERN) IJP
-	CAMERON	78	NP B143 189		+Franek, Gopal, Bacon, Butterworth	+	(RHEL, LOIC) IJP
-	CAMERON	78B	NP B146 327		+Franek, Gopal, Kalmus, McPherson	+	(RHEL, LOIC) IJP
	BACCARI	77	NC 41A 96		+Poulard, Revel, Tallini+		(SACL, CDEF) IJP
	GOPAL	77	NP B119 362		+Ross, VanHorn, McPherson+		(LOIC, RHEL) IJP
- 1	MARTIN	77	NP B127 349		+Pidcock, Moorhouse		(LOUC, GLAS) IJP
	Also	77B	NP B126 266		Martin, Pidcock		(LOUC)
	Also	77C	NP B126 285		Martin, Pidcock		(LOUC) IJP
- 0	HEMINGWAY	75	NP B91 12		+Eades, Harmsen+	(CERN	. HEID. MPIM) IJP
-	NAKKASYAN	75	NP B93 85			,	(CERN) IJP

$\Lambda(2000)$

$$I(J^P) = 0(??)$$
 Status: *

OMITTED FROM SUMMARY TABLE

We list here all the ambiguous resonance possibilities with a mass around 2 GeV. The proposed quantum numbers are D3 (BARBARO-GALTIERI 70 in $\Sigma\pi$), D_3+F_5 , P_3+D_5 , or P_1+D_3 (BRANDSTETTER 72 in $\Lambda\omega$), and S_1 (CAMERON 78B in $N\overline{K}^*$). The first two of the above analyses should now be considered obsolete. See also NAKKASYAN 75.

Λ(2000) MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2030 ± 30	CAMERON 78B	DPWA	$K^- p \rightarrow N \overline{K}^*$
1935 to 1971	¹ BRANDSTET72	DPWA	$K^- p \rightarrow \Lambda \omega$
1951 to 2034	¹ BRANDSTET72	DPWA	$K^- p \rightarrow \Lambda \omega$
2010 ± 30	BARBARO 70	DPWA	$K^- p \rightarrow \Sigma \pi$

Λ(2000) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
125 ± 25	CAMERON 78B	DPWA	$K^- p \rightarrow N \overline{K}^*$
180 to 240	¹ BRANDSTET72		
73 to 154	¹ BRANDSTET72	DPWA	(higher mass)
130 ± 50	BARBARO 70	DPWA	$K^- \rho \rightarrow \Sigma \pi$

Λ(2000) DECAY MODES

Γ_1	NK
Γ_2	$\Sigma \pi$
Γ_3	$\Lambda \omega$
Γ_4	$N\overline{K}^*$ (892), $S=1/2$, S-wave
Γ_5	$N\overline{K}^*$ (892), $S=3/2$, D-wave

Mode

Λ(2000) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \frac{VALUE}{-0.20 \pm 0.04}$	DOCUMENT ID	$\begin{array}{ccc} & & & & & & & & & \\ \frac{TECN}{DPWA} & & & & & & & & \\ K^- \rho & \rightarrow & \Sigma \pi & & & & & \end{array}$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{0.17 \text{ to } 0.25}$ 0.04 to 0.15	DOCUMENT ID 1 BRANDSTET72	$\begin{array}{cc} & & & \left(\Gamma_1\Gamma_3\right)^{1\!\!/2}/\Gamma \\ \underline{\textit{TECN}} & \underline{\textit{COMMENT}} \\ \text{DPWA} & (\text{lower mass}) \\ \text{DPWA} & (\text{higher mass}) \end{array}$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{total} \ in \ \mathbf{N}\overline{\mathbf{K}} \to$	$\Lambda(2000) \rightarrow N\overline{K}^*(89)$	
<u>VALUE</u> -0.12±0.03	DOCUMENT ID 2 CAMERON 788	$\frac{(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma}{\text{DPWA } K^- p \to N\overline{K}^*}$

$$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Lambda(2000) \rightarrow N\overline{K}^*(892), S=3/2, D\text{-wave}$$

VALUE DOCUMENT ID TECN COMMENT $+0.09 \pm 0.03$ CAMERON 78B DPWA $K^- p \rightarrow N \overline{K}^*$

A(2000) FOOTNOTES

 $^{
m 1}$ The parameters quoted here are ranges from the three best fits; the lower state probably has $J \leq 3/2$, and the higher one probably has $J \leq 5/2$.

² The published sign has been changed to be in accord with the baryon-first convention.

Λ(2000) REFERENCES

CAMERON 78B NAKKASYAN 75 BRANDSTET... 72 NP B146 327 NP B93 85 NP B39 13 Duke Conf. 173 +Franek, Gopal, Kalmus, McPherson+ (RHEL, LOIC) IJP (CERN) IJP Brandstetter, Butterworth+ (RHEL, CDEF, SACL) (LRL) IJP BARBARO-... 70 Barbaro-Gaitieri

 $\Lambda(2020) F_{07}$

< 0.05

$$I(J^P) = O(\frac{7}{2}^+)$$
 Status: *

OMITTED FROM SUMMARY TABLE

In LITCHFIELD 71, need for the state rests solely on a possibly inconsistent polarization measurement at 1.784 GeV/c. HEMINGWAY 75 does not require this state. GOPAL 77 does not need it in either $N\overline{K}$ or $\Sigma\pi$. With new K^-n angular distributions included, DECLAIS 77 sees it. However, this and other new data are included in GOPAL 80 and the state is not required. BACCARI 77 weakly supports it.

Λ(2020) MASS

VALUE (MeV) DOCU	IMENT ID TECN	COMMENT
2140 BAC	CARI 77 DPWA	$K^- p \rightarrow \Lambda \omega$
2117 DEC	LAIS 77 DPWA	$\overline{K}N \rightarrow \overline{K}N$
2100±30 LITC	HFIELD 71 DPWA	$K^- p \rightarrow \overline{K} N$
2020±20 BAR	BARO 70 DPWA	$K^- \rho \rightarrow \Sigma \pi$

Λ(2020) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
128	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
167	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
120 ± 30	LITCHFIELD	71	DPWA	$K^- \rho \rightarrow \overline{K} N$
160 ± 30	BARBARO	70	DPWA	$K^- \rho \rightarrow \Sigma \pi$

A(2020) DECAY MODES

	Mode		
Г	NK	 	-
Γ_2	$\Sigma \pi$		
Γ_3	$\Lambda \omega$		

A(2020) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$			Γ ₁ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT
0.05	DECLAIS 77	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.05 ± 0.02	LITCHFIELD 71	DPWA	$K^- \rho \rightarrow \overline{K} N$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K}$	$ \rightarrow $	<u>TEÇN</u>	$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
-0.15 ± 0.02	BARBARO 70	DPWA	$K^- \rho \rightarrow \Sigma \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K}$	$\rightarrow \Lambda(2020) \rightarrow \Lambda \omega$		(Γ₁Γ₃) ¹ /₂/Γ

Λ(2020) REFERENCES

77 DPWA $K^-p \rightarrow \Lambda \omega$

BACCARI

GOPAL BACCARI DECLAIS GOPAL HEMINGWAY LITCHFIELD BARRADO.	71	Toronto Conf. 159 NC 41A 96 CERN 77-16 NP B119 362 NP B91 12 NP B30 125 Duba Conf. 177	+Poulard, Revel, Tallini+ +Duchon, Louvel, Patry, Seguinot+ +Ross, VanHorn, McPherson+ +Eades, Harmsen+ +, Lesquoy+	(RHEL) (SACL, CDEF) I. (CAEN, CERN) I (LOIC, RHEL) (CERN, HEID, MPIM) I (RHEL, CDEF, SACL) I
BARBARO	70	Duke Conf. 173	Barbaro-Galtieri	(LRL) I.

$\Lambda(2100), \Lambda(2110)$

 $\Lambda(2100) G_{07}$

$$I(J^P) = O(\frac{7}{2})$$
 Status: ***

Discovered by COOL 66 and by WOHL 66. Most of the results published before 1973 are now obsolete and have been omitted. They may be found in our 1982 edition (Physics Letters 111B).

This entry only includes results from partial-wave analyses. Parameters of peaks seen in cross sections and in invariant-mass distributions around 2100 MeV used to be listed in a separate entry immediately following. It may be found in our 1986 edition (Physics Letters 170B).

Λ(2100) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2090 to 2110 OUR ESTIMATE				
2104 ± 10	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$
2106 ± 30	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2110 ± 10	GOPAL	77	DPWA	K N multichannel
2105 ± 10	HEMINGWAY	75	DPWA	$K^- \rho \rightarrow \overline{K} N$
2115 ± 10	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
• • • We do not use the following	data for averages	, fits	, limits,	etc. • • •
2094	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
2094	DECLAIS			
2110 or 2089	$^{ m 1}$ NAKKASYAN	75	DPWA	$K^- \rho \rightarrow \Lambda \omega$

Λ(2100) WIDTH

VALUE (MeV)	DOCUMENT ID		COMMENT
100 to 250 OUR ESTIMATE	Our best guess is 200	MeV.	
157 ± 40	DEBELLEFON	78 DPWA	$\overline{K}N \rightarrow \overline{K}N$
250 ± 30	GOPAL	77 DPWA	K N multichannel
241 ± 30	HEMINGWAY	75 DPWA	$K^- \rho \rightarrow \overline{K} N$
152±15	KANE	74 DPWA	$K^- p \rightarrow \Sigma \pi$
• • We do not use the follo	wing data for averages.	, fits, limits,	etc. • • •
98	BACCARI	77 DPWA	$K^- p \rightarrow \Lambda \omega$
250	DECLAIS		
244 or 302	¹ NAKKASYAN	75 DPWA	$K^- p \rightarrow \Lambda \omega$

Λ(2100) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
Γ_1	NK	25-35 %	
Γ_2	$\Sigma \pi$	~ 5 %	
Γ_3	$\Lambda\eta$	<3 %	
Γ_4	$\equiv K$	< 3 %	
Γ_5	$\Lambda \omega$	<8 %	
Γ ₆	$N\overline{K}^{*}(892)$	10-20 %	
Γ7	$N \frac{\dot{K}^*}{K}$ (892), $S=1/2$, G -wave		
Γ_8	$N\overline{K}^*$ (892), $S=3/2$, D -wave		

The above branching fractions are our estimates, not fits or averages.

Λ(2100) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$	DOCUMENT IN		TECH:	Γ_1/Γ
0.25 to 0.35 OUR ESTIMATE	DOCUMENT ID		TECN	COMMENT
0.34±0.03	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.24 ± 0.06	DEBELLEFON			
0.31 ± 0.03				$K^- \rho \rightarrow \overline{K} N$
• • We do not use the following				
-	-			
0.29	DECLAIS			
0.30 ± 0.03	GOPAL	77	DPWA	See GOPAL 80
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \Lambda(2)$				$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
VALUE	DOCUMENT ID			
$+0.12 \pm 0.04$				K N multichannel
$+0.11 \pm 0.01$	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Lambda(2)$				$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
-0.050 ± 0.020	RADER	73	MPWA	$K^- \rho \rightarrow \Lambda \eta$
$\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{\frac{1}{2}}/\Gamma_{total} \text{ in } N\overline{K} \rightarrow \Lambda(2)}{N^{2}} = \Lambda(2)$ 0.035 ± 0.018 ••• We do not use the following	DOCUMENT ID	71	TECN DPWA	$K^- p \rightarrow \Xi K$
0.003	MULLER	69B	DPWA	$K^- \rho \rightarrow \Xi K$
0.05	TRIPP			

$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{total} \ in \ N\overline{K} \to$	$\Lambda(2100) \rightarrow \Lambda \omega$			$(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID 2 BACCARI 2 BACCARI 2 BACCARI 1 NAKKASYAN		TECN	COMMENT
-0.070	² BACCARI	77	DPWA	GD ₃₇ wave
+ 0.011	² BACCARI	77	DPWA	GG ₁₇ wave
+0.008	² BACCARI	77	DPWA	GG ₃₇ wave
0.122 or 0.154	¹ NAKKASYAN	75	DPWA	$K^- \rho \rightarrow \Lambda \omega$
$(\Gamma_i\Gamma_f)^{1\!\!/2}/\Gamma_{total} \ in \ N\overline{\mathcal{K}} \to $	$\Lambda(2100) \rightarrow N\overline{K}^*$	'(89	2), <i>5</i> =3	
				$(\Gamma_1\Gamma_8)^{1/2}/\Gamma$
VALUE	DOCUMENT ID			
$+0.21 \pm 0.04$	CAMERON	78B	DPWA	$K^- \rho \rightarrow N \overline{K}^*$
$(\Gamma_i\Gamma_f)^{1\!\!/2}/\Gamma_{total} \ in \ N\overline{K} \to $	$\Lambda(2100) \rightarrow N\overline{K}^*$	(89	2), <i>S</i> =:	
VALUE	DOCUMENT ID		TECN	$(\Gamma_1\Gamma_7)^{1/2}/\Gamma$
~ 0.04 ± 0.03	3 CAMERON	788	DPM/A	$K^- p = N\overline{K}^*$
5.5.1.0.00	CHAILMON	100	DI WA	n = nn
The NAKKASVAN 75 vol	Λ(2100) FOOTN			Forb has also

- $^{
 m 1}$ The NAKKASYAN 75 values are from the two best solutions found. Each has the $\Lambda(2100)$ and one additional resonance (P_3 or F_5).
- $\frac{2}{3}$ Note that the three for BACCARI 77 entries are for three different waves.
- Shote that the linee for BACCARI II childs are to three different ways. The published sign has been changed to be in accord with the baryon-first convention. The upper limit on the G_3 wave is 0.03.

Λ(2100) REFERENCES

$$I(J^P) = O(\frac{5}{2}^+)$$
 Status: ***

For results published before 1974 (they are now obsolete), see our 1982 edition (Physics Letters 111B). All the references have been retained.

This resonance is in the Baryon Summary Table, but the evidence for it could be better.

Λ(2110) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2090 to 2140 OUR ESTIN	MATE			
2092 ± 25	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2125 ± 25	CAMERON	78B	DPWA	$K^{-} \rho \rightarrow N \overline{K}^{*}$
2106 ± 50	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2140 ± 20	DEBELLEFON	77	DPWA	$K^- \rho \rightarrow \Sigma \pi$
2100 ± 50	GOPAL	77	DPWA	K N multichannel
2112± 7	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
• • We do not use the	following data for average:	, fits	i, limits,	etc. • • •
2137	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
2103	¹ NAKKASYAN			

Λ(2110) WIDTH

VALUE (MeV)	DOCUMENT ID	TEC	VCOMMENT
150 to 250 OUR ESTIMATE	Our best guess is 200	MeV.	
245 ± 25	GOPAL	80 DPV	$VA \overline{K} N \rightarrow \overline{K} N$
160 ± 30	CAMERON	788 DPV	$VA K^- \rho \rightarrow N\overline{K}^*$
251 ± 50	DEBELLEFON	78 DPV	$VA \overline{K} N \rightarrow \overline{K} N$
140 ± 20	DEBELLEFON	77 DPV	VA $K^- p \rightarrow \Sigma \pi$
200 ± 50	GOPAL	77 DPV	VA \overline{K} N multichannel
190 ± 30	KANE	74 DPV	VA $K^- \rho \rightarrow \Sigma \pi$
• • We do not use the follo	wing data for averages	s, fits, limi	its, etc. • • •
132	BACCARI	77 DPV	$VA K^- p \rightarrow \Lambda \omega$
391	¹ NAKKASYAN	75 DPV	$VA K^- p \rightarrow \Lambda \omega$

Λ(2110) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	NK	5-25 %
Γ_2	$\Sigma \pi$	10-40 %
Γ_3	$\Lambda \omega$	seen
Γ_4	$\Sigma(1385)\pi$	seen
Γ ₅	$\Sigma(1385)\pi$, <i>P</i> -wave	
Γ ₅ Γ ₆	N K* (892)	10-60 %
Γ_7	$N\overline{K}^*$ (892), $S=1/2$, F -wave	

The above branching fractions are our estimates, not fits or averages.

Λ(2110) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$			Γ_1/Γ
VALUE	DOCUMENT ID	TECN	COMMENT
0.05 to 0.25 OUR ESTIMATE			_
0.07 ± 0.03	GOPAL 80) DPWA	$\overline{K}N \to \overline{K}N$
0.27 ± 0.06	² DEBELLEFON 78		
 ● ● We do not use the follow 	owing data for averages, f	its, limits,	etc. • • •
0.07 ± 0.03	GOPAL 77	7 DPWA	See GOPAL 80
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Lambda(2110) \rightarrow \Sigma \pi$		(Γ₁Γ₂) ^{1/2} /Γ
VALUE	DOCUMENT ID		
+ 0.14 ± 0.01	DEBELLEFON 7		
	KANE 74		
• • We do not use the folk			
$+0.10\pm0.03$	GOPAL 7	7 DPWA	K N multichannel
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	· Λ(2110) → Λω		$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \text{VALUE}$	DOCUMENT ID	TECN	COMMENT
	DOCUMENT ID BACCARI 7	TECN 7 DPWA	$\frac{COMMENT}{K^- p \to \Lambda \omega}$
VALUE	DOCUMENT ID	TECN 7 DPWA	$\frac{COMMENT}{K^- p \to \Lambda \omega}$
<0.05 0.112	DOCUMENT ID BACCARI 73 1 NAKKASYAN 75	TECN T DPWA DPWA	$\begin{array}{c} \underline{COMMENT} \\ K^- p \to \Lambda \omega \\ K^- p \to \Lambda \omega \end{array}$
<u>VALUE</u> < 0.05	$\begin{array}{c} DOCUMENT ID \\ BACCARI & 77 \\ 1 NAKKASYAN & 75 \\ \hline & \Lambda(2110) \rightarrow \Sigma(1385) \end{array}$	<u>TECN</u> 7 DPWA 5 DPWA 6)π	$\begin{array}{c} \underline{COMMENT} \\ K^- p \to \Lambda \omega \\ K^- p \to \Lambda \omega \end{array}$ $\left(\Gamma_1 \Gamma_4 \right)^{\frac{1}{2}} / \Gamma$
$ \begin{array}{c} \frac{VALUE}{<0.05} \\ 0.112 \end{array} $ $ (\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \infty $	$\begin{array}{c} DOCUMENT ID \\ BACCARI & 77 \\ 1 NAKKASYAN & 75 \\ \hline & \Lambda(2110) \rightarrow \Sigma(1385) \end{array}$	<u>TECN</u> 7 DPWA 5 DPWA 6)π	$\begin{array}{c} \underline{COMMENT} \\ K^- p \to \Lambda \omega \\ K^- p \to \Lambda \omega \end{array}$
VALUE < 0.05 0.112 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow VALUE$	$\frac{DOCUMENT ID}{BACCARI}$ 1 NAKKASYAN 7: 1 NAKKASYAN 7: 1 NAKMASYAN 7: 1 NAKMASYAN 7: 2 NAMERON 7:	TECN T DPWA DPWA TECN DPWA	$\begin{array}{c} \underline{COMMENT} \\ K^- p \to \Lambda \omega \\ K^- p \to \Lambda \omega \end{array}$ $\left(\Gamma_1 \Gamma_4 \right)^{\frac{1}{2}} / \Gamma$
VALUE. <0.05 0.112 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow VALUE}$ $+0.071 \pm 0.025$	$\frac{DOCUMENT ID}{BACCARI}$ 1 NAKKASYAN 7: 1 NAKKASYAN 7: 1 NAKMASYAN 7: 1 NAKMASYAN 7: 2 NAMERON 7:	TECN T DPWA DPWA TECN DPWA	$\begin{array}{c} \underline{\text{COMMENT}} \\ K^-p \to \Lambda \omega \\ K^-p \to \Lambda \omega \\ \\ \hline (\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma \\ \underline{\text{COMMENT}} \\ K^-p \to \Sigma (1385)\pi \end{array}$
VALUE. <0.05 0.112 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow VALUE}$ $+0.071 \pm 0.025$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	7 DPWA 5 DPWA 6 DPWA 7 DPWA 8 DPWA 8 DPWA	$\begin{array}{c} \underline{\text{COMMENT}} \\ K^- p \to \Lambda \omega \\ K^- p \to \Lambda \omega \\ \\ \underline{\text{($\Gamma_1\Gamma_4$)}^{1/2}/\Gamma} \\ K^- p \to \Sigma (1385) \pi \end{array}$ $({\Gamma_1\Gamma_6})^{1/2}/{\Gamma}$
VALUE <0.05 0.112 $(\Gamma_{i}\Gamma_{f})^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{(\Gamma_{i}\Gamma_{f})^{1/2}}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{(\Gamma_{i}\Gamma_{f})^{1/2}}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{(\Gamma_{i}\Gamma_{f})^{1/2}}$	$\frac{DOCUMENT ID}{BACCARI}$ 1 NAKKASYAN 7: 1 NAKKASYAN 7: 1 NAKMASYAN 7: 1 NAKMASYAN 7: 2 NAMERON 7:	7 DPWA 5 DPWA 6 DPWA 7 DPWA 8 DPWA 8 DPWA	$\begin{array}{c} \underline{\text{COMMENT}} \\ K^- p \to \Lambda \omega \\ K^- p \to \Lambda \omega \\ \\ \underline{\text{($\Gamma_1\Gamma_4$)}^{1/2}/\Gamma} \\ K^- p \to \Sigma (1385) \pi \end{array}$ $({\Gamma_1\Gamma_6})^{1/2}/{\Gamma}$

Λ(2110) FOOTNOTES

 $^{1}_{2}$ Found in one of two best solutions. 2 The published error of 0.6 was a misprint.

³ The CAMERON 78 upper limit on *F*-wave decay is 0.03. The sign here has been changed to be in accord with the baryon-first convention.

 4 The published sign has been changed to be in accord with the baryon-first convention. The CAMERON 78B upper limits on the P_3 and F_3 waves are each 0.03.

Λ(2110) REFERENCES

GOPAL	80	Toronto Conf. 159		(RHEL) IJP
CAMERON	78	NP B143 189	+Franek, Gopal, Bacon, Butterworth+	(RHEL, LOIC) IJP
CAMERON	78B	NP B146 327	+Franek, Gopal, Kalmus, McPherson+	(RHEL, LOIC) IJP
DEBELLEFON	78	NC 42A 403	De Bellefon, Berthon, Billoir+	(CDEF, SACL) IJP
BACCARI	77	NC 41A 96	+Poulard, Revel, Tallini+	(SACL, CDEF) IJP
DEBELLEFON	77	NC 37A 175	De Bellefon, Berthon, Billoir+	(CDEF, SACL) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+	(LOIC, RHEL) IJP
NAKKASYAN	75	NP B93 85		(CERN) LIP
KANE	74	LBL-2452		(LBL) IJP

$\Lambda(2325) D_{03}$

 $I(J^P) = O(\frac{3}{2})$ Status: *

OMITTED FROM SUMMARY TABLE

BACCARI 77 finds this state with either $J^P=3/2^-$ or $3/2^+$ in a energy-dependent partial-wave analyses of $K^-\rho\to\Lambda\omega$ from 2070 to 2436 MeV. A subsequent semi-energy-independent analysis from threshold to 2436 MeV selects $3/2^-$. DEBELLEFON 78 (same group) also sees this state in an energy-dependent partial-wave analysis of $K^-p \to \overline{K}N$ data, and finds J^P $=3/2^-$ or $3/2^+$. They again prefer $J^P=3/2^-$, but only on the basis of model-dependent considerations.

	Λ(2325) MASS			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
2342±30	DEBELLEFON 78			
2327 ± 20	BACCARI 77	DPWA	$K^- p \rightarrow \Lambda \omega$	
	Λ(2325) WIDTH			
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
177 ± 40	DEBELLEFON 78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
160 ± 40	BACCARI 77	IPWA	$K^- p \rightarrow \Lambda \omega$	
	Λ(2325) DECAY MOD	ES		
Mode				
$\Gamma_1 N\overline{K}$				
$\Gamma_2^ \Lambda\omega$				
	Λ(2325) BRANCHING R	ATIOS	·	
$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1

			$\Gamma_1/$
 DOCUMENT ID	TECN	COMMENT	
DEBELLEFON 78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to$	$\Lambda(2325) \rightarrow \Lambda \omega$			(Γ ₁ Γ ₂) ^{1/2} /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.06 ± 0.02	1 BACCARI	77	IPWA	DS ₃₃ wave
0.05 ± 0.02	¹ BACCARI	77	DPWA	DD ₁₃ wave
0.08 ± 0.03	1 BACCARI	77	DPWA	DD ₃₃ wave

Λ(2325) FOOTNOTES

Λ(2325) REFERENCES

DEBELLEFON 78 BACCARI 77

VALUE 0.19 ± 0.06

De Bellefon, Berthon, Billoir+ +Poulard, Revel, Tallini+

(CDEF, SACL) IJP (SACL, CDEF) IJP

 $(2350) H_{09}$

 $I(J^P) = O(\frac{9}{2}^+)$ Status: ***

DAUM 68 favors $J^P = 7/2^-$ or $9/2^+$. BRICMAN 70 favors $9/2^+$. LASIN-SKI 71 suggests three states in this region using a Pomeron + resonances model. There are now also three formation experiments from the College de France-Saclay group, DEBELLEFON 77, BACCARI 77, and DEBELLE-FON 78, which find $9/2^+$ in energy-dependent partial-wave analyses of $\overline{K} \, N \to \Sigma \pi$, $\Lambda \omega$, and $N \, \overline{K}$.

Λ(2350) MASS

	DOCUMENT ID		TECN	COMMENT
2340 to 2370 OUR ESTIMATE				
2370 ± 50	DEBELLEFON	78	DPWA	$\overline{K}N \to \overline{K}N$
2365 ± 20	DEBELLEFON	77	DPWA	$K^- \rho \rightarrow \Sigma \pi$
2358 ± 6	BRICMAN	70	CNTR	Total, charge exchange
ullet $ullet$ We do not use the following d	ata for averages	, fits	, limits,	etc. • • •
2372	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
2344 ± 15	COOL	70	CNTR	$K^- p$, $K^- d$ total
2360 ± 20	LU	70	CNTR	$\gamma p \rightarrow K^+ Y^*$
2340 ± 7	BUGG	68	CNTR	$K^- p$, $K^- d$ total

¹ Note that the three BACCARI 77 entries are for three different waves.

$\Lambda(2350)$, $\Lambda(2585)$ Bumps, Σ^+

Λ(2350) WIDTH

ALUE (MeV)	DOCUMENT ID		TECN	COMMENT
00 to 250 OUR ESTIMATE	Our best guess is 150	Me	·V.	
04 ± 50	DEBELLEFON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
10 ± 20	DEBELLEFON	77	DPWA	$K^- \rho \rightarrow \Sigma \pi$
24 ± 30	BRICMAN	70	CNTR	Total, charge exchange
We do not use the foll	owing data for averages	, fit	s, limits,	etc. • • •
57	BACCARI	77	DPWA	$K^- p \rightarrow \Lambda \omega$
90	COOL			K^-p , K^-d total
55	LU	70	CNTR	$\gamma p \rightarrow K^+ Y^*$
40 ± 20	BUGG	68	CNTR	K^-p , K^-d total

Λ(2350) DECAY MODES

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$
Γ_1	NK	~ 12 %
Γ_2	$\Sigma \pi$	~ 10 %
۲3	$\Lambda \omega$	

The above branching fractions are our estimates, not fits or averages.

A(2350) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\frac{\Gamma(N\overline{K})/\Gamma_{\text{total}}}{\sim 0.12 \text{ OUR ESTIMATE}}$	DOCUMENT ID	<u>TECN</u>	Γ ₁ /Γ
0.12 ± 0.04	DEBELLEFON 78	DPWA	$\overline{K} N \rightarrow \overline{K} N$
$\begin{array}{c} \left(\Gamma_{i}\Gamma_{f}\right)^{1/2}/\Gamma_{total} \text{ in } N\overline{K} \rightarrow \\ \frac{VALUE}{-0.11\pm0.02} \end{array}$	Λ(2350) → Σπ DOCUMENT ID DEBELLEFON 77	_	
$\frac{\left(\Gamma_i\Gamma_f\right)^{1/2}/\Gamma_{\text{total in }} N \overline{K} \rightarrow}{\frac{VALUE}{<0.05}}$	$\Lambda(2350) \rightarrow \Lambda \omega$ DOCUMENT ID BACCARI 77		$\frac{\left(\Gamma_{1}\Gamma_{3}\right)^{\frac{1}{2}}/\Gamma}{\kappa^{-}\rho\rightarrow\Lambda_{\omega}}$

Λ(2350) REFERENCES

DEBELLEFON	78	NC 42A 403	De Bellefon, Berthon, Billoir+ (CDEF, SACL) IJP
BACCARI	77	NC 41A 96	- Poulard, Revel, Tallini+ (SACL, CDEF) IJP
DEBELLEFON	77	NC 37A 175	De Bellefon, Berthon, Billoir+ (CDEF, SACL) IJF
LASINSKI	71	NP B29 125	(EFI) UF
BRICMAN	70	PL 31B 152	- Ferro-Luzzi, Perreau - (CERN, CAEN, SACL)
COOL	70	PR D1 1887	+Giacomelli, Kycia, Leontic, Li+ (BNL) I
Also	66	PRL 16 1228	Cool, Giacomelli, Kycia, Leontic, Lundby+ (BNL) I
LU	70	PR D2 1846	+Greenberg, Hughes, Minehart, Mori+ (YALE)
BUGG	68	PR 168 1466	+Gilmore, Knight+ (RHEL, BIRM, CAVE) !
DAUM	68	NP B7 19	+Erne, Lagnaux, Sens, Steuer, Udo (CERN) JP

Λ(2585) Bumps

Mode

NK

 $I(J^P) = 0(??)$ Status: **

OMITTED FROM SUMMARY TABLE

Λ(2585) MAS (BUMPS)	SS		
DOCUMENT ID	TECN	COMMENT	
ABRAMS	70		$K^- p$, $K^- d$ total
LU	70	CNTR	$\gamma \rho \rightarrow K^+ Y^*$
(BUMPS)	ΤΗ	TECN	COMMENT
	70		$K^- p$, $K^- d$ total
LU			$\gamma p \rightarrow K^+ Y^*$
	A(2585) WID (BUMPS) DOCUMENT ID ABRAMS LU A(2585) WID (BUMPS) DOCUMENT ID ABRAMS	A(2585) WIDTH (BUMPS) DOCUMENT ID ABRAMS 70 LU 70 A(2585) WIDTH (BUMPS) DOCUMENT ID ABRAMS 70	\(\begin{array}{cccccccccccccccccccccccccccccccccccc

Λ(2585) BRANCHING RATIOS (BUMPS)

Λ(2585) FOOTNOTES (BUMPS)

 $^{1}\,\mathrm{The}$ resonance is at the end of the region analyzed — no clear signal.

Λ(2585) REFERENCES (BUMPS)

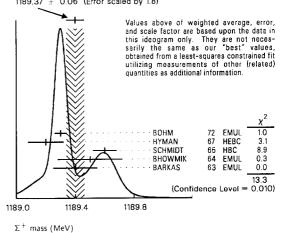
ABRAMS	70	PR D1 1917	+Cool, Giacomelli, Kycia, Leontic, Li+	(BNL) I
Also	66	PRL 16 1228	Cool, Giacomelli, Kycia, Leontic, Lundby+	(BNL) I
BRICMAN	70	PL 31B 152	+Ferro-Luzzi, Perreau+ (CERN, CAEN	SACL)
LU	70	PR D2 1846	- Greenberg, Hughes, Minehart, Mori+	(YALE)

Σ BARYONS (S = -1, I = 1)

 $\Sigma^+ = uus$, $\Sigma^0 = uds$, $\Sigma^- = dds$

$$I(J^P) = 1(\frac{1}{2}^+)$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.


Σ+ MASS

The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1189.37 ± 0.07 OUF	R FIT Error	includes scale facti	or of	2.1.	
1189.37 ± 0.06 OUF	RAVERAGE	Error includes sca	ile fac	tor of 1.	8. See the ideogram
		below.			•
1189.33 ± 0.04	607	¹ BOHM	72	EMUL	
1189.16 ± 0.12		HYMAN	67	HEBC	
1189.61 ± 0.08	4205	SCHMIDT	65	HBC	See note with A mass
1189.48 ± 0.22	58	² BHOWMIK	64	EMUL	
1189.38 ± 0.15	144	² BARKAS	63	EMUI	

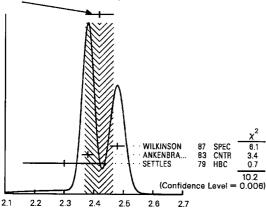
 1 BOHM 72 is updated with our 1973 K^- , π^- , and π^0 masses (RMP 45, No. 2, Pt. II). 2 These masses have been raised 30 keV to take into account a 46 keV increase in the proton mass and a 21 keV decrease in the π^0 mass (note added 1967 edition, RMP 39, 1).

WEIGHTED AVERAGE 1189,37 ± 0.06 (Error scaled by 1.8)

Σ⁺ MEAN LIFE

Measurements with an error $\geq 0.1 \times 10^{-10}$ s have been omitted.

VALUE (10 ⁻¹⁰ s)	EVTS	DOCUMENT ID	TECN	COMMENT
0.799±0.004 OUR AV	/ERAGE			
0.798 ± 0.005	30k	MARRAFFINO 80	HBC	$K^- \rho 0.42-0.5 \text{ GeV}/c$
0.807 ± 0.013	5719	CONFORTO 76	HBC	$K^- \rho 1 - 1.4 \text{ GeV}/c$
0.83 ± 0.04	526	BAKKER 71	DBC	$K^- n \rightarrow \Sigma^+ \pi^- \pi^-$
0.795 ± 0.010	20k	EISELE 70	HBC	$K^- p$ at rest
0.803 ± 0.008	10664	BARLOUTAUD 69	HBC	$K^- \rho 0.4-1.2 \text{ GeV}/c$
0.83 ± 0.032	1300	³ CHANG 66	HBC	
0.80 ± 0.07	381	COOK 66	OSPK	
0.84 ± 0.09	181	BALTAY 65	HBC	
0.76 ±0.03	900	CARAYAN 65	HBC	
$0.749^{+0.056}_{-0.052}$	192	GRARD 62	нвс	
0.765 ± 0.04	456	HUMPHREY 62	HBC	


³We have increased the CHANG 66 error of 0.018; see our 1970 edition, RMP 42, 123.

Σ+ MAGNETIC MOMENT

See the Note on Baryon Magnetic Moments in the Λ Listings. Measurements with an error $\geq~0.3~\mu_{N}$ have been omitted.

VALUE (μ _N)	EVTS	DOCUMENT ID		TECN	COMMENT
2.42 ±0.05 OUR AVERAGE	Error in	cludes scale factor of	of 3.	1. See t	he ideogram below.
$2.479 \pm 0.012 \pm 0.022$	137k	WILKINSON	87	SPEC	400 GeV pBe
2.38 ±0.02	44k	ANKENBRA	83	CNTR	210 GeV hyperon beam
2.30 ±0.14	14k	SETTLES	79	нвс	K ⁻ p 0.42-0.50 GeV/c

 Σ^+ magnetic monent (μ_N)

Σ+ DECAY MODES

	Mode	Fraction (Γ_i/Γ) Confidence leve
$\overline{\Gamma_1}$	$p\pi^0$	(51.57±0.30) %
Γ_2	$n\pi^+$	(48.30±0.30) %
	$p\gamma$	$(1.25\pm0.07)\times10^{-3}$
	$n\pi^+\gamma$	[a] $(4.5 \pm 0.5) \times 10^{-4}$
Γ ₅	$\Lambda e^+ u_e$	$(2.0 \pm 0.5) \times 10^{-5}$

$\Delta S = \Delta Q$ (SQ) or Flavor-Changing neutral current (FC)

		violating in				
6	$ne^+ u_e$	5Q	<	5	× 10 ⁻⁶	90%
7	$n\mu^+ u_\mu$	SQ	<	3.0	× 10 ⁻⁵	90%
8	pe+e-	FC	<	7	$\times 10^{-6}$	

[a] See the Listings below for the pion momentum range used in this measurement.

CONSTRAINED FIT INFORMATION

An overall fit to 2 branching ratios uses 13 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=7.5$ for 11 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one

$$x_2 -100$$
 $x_3 9 -11$
 $x_1 x_2$

Σ^+ BRANCHING RATIOS

$\Gamma(n\pi^+)/\Gamma(N\pi$	7)				$\Gamma_2/(\Gamma_1+\Gamma_2)$
VALUE	<u>EVT5</u>	DOCUMENT ID		TECN	COMMENT
0.4836±0.0030 C	OUR FIT				
0.4836±0.0030 (OUR AVERAGE				
0.4828 ± 0.0036	10k	4 MARRAFFING	08 0	HBC	K- p 0.42-0.5 GeV/c
0.488 ± 0.008	1861	NOWAK	78	HBC	
0.484 ± 0.015	537	TOVEE	71	EMUL	
0.488 ± 0.010	1331	BARLOUTAU	D69	HBC	K [−] p 0.4–1.2 GeV/c
0.46 ± 0.02	534	CHANG	66	HBC	
0.490 ± 0.024	308	HUMPHREY	62	HBC	

⁴ MARRAFFINO 80 actually gives $\Gamma(p\pi^0)/\Gamma(\text{total}) = 0.5172 \pm 0.0036$.

$\Gamma(ho\gamma)/\Gamma(ho\pi^0)$					Γ_3/Γ_1
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
2.43±0.14 OUR FIT					
2.43±0.14 OUR AVE	RAGE				
$2.81 \pm 0.39 ^{+0.21}_{-0.43}$	408	HESSEY	89	CNTR	$\mathcal{K}^- \rho o \Sigma^+ \pi^-$ at rest
2.52 ± 0.28	190	⁵ KOBAYASHI	87	CNTR	$\pi^+ \rho \rightarrow \Sigma^+ K^+$
$2.46 + 0.30 \\ -0.35$	155	BIAGI	85	CNTR	CERN hyperon beam
2.11 ± 0.38	46	MANZ	80	HBC	$K^- p \rightarrow \Sigma^+ \pi^-$
2.1 ± 0.3	45	ANG	69B	HBC	K [−] p at rest
2.76 ± 0.51	31	GERSHWIN	69B	HBC	$K - p \rightarrow \Sigma^{+} \pi^{-}$
3.7 ± 0.8	24	BAZIN	65	HBC	K ⁻ p at rest

 5 KOBAYASHI 87 actually gives $\Gamma(\rho\gamma)/\Gamma({\rm total})=(1.30\,\pm\,0.15)\times 10^{-3}$.

 $\Gamma(n\pi^+\gamma)/\Gamma(n\pi^+)$ Γ_4/Γ_2 The π^+ momentum cuts differ, so we do not average the results but simply use the

latest value in the Summary Table.

VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 0.93 ± 0.10 180 EBENHOH 73 HBC $\pi^+ < 150 \text{ MeV}/c$ • • We do not use the following data for averages, fits, limits, etc. • •

0.93 \pm 0.10 180 EBENHOH 73 HBC π^+ < 150 MeV/c • • We do not use the following data for averages, fits, limits, etc. • • • 0.27 \pm 0.05 29 ANG 69B HBC π^+ < 110 MeV/c = 8AZIN 65B HBC π^+ < 116 MeV/c

 $\Gamma(\Lambda e^+ \nu_e)/\Gamma_{\text{total}}$ Γ_5/Γ VALUE (units 10⁻⁵) EVTS DOCUMENT ID TECN COMMENT 2.0±0.5 OUR AVERAGE 1.6 ± 0.7 BALTAY 69 HBC K^-p at rest 2.9 ± 1.0 10 EISELE 69 HBC K-p at rest K^-p at rest 2.0 ± 0.8

 $\Gamma(ne^+\nu_e)/\Gamma(n\pi^+)$ Test of $\Delta S = \Delta Q$ rule. Experiments with an effective denominator less than 100,000

have been omitted. <u>EFFECTIVE DENOM. EVTS</u> $< 1.1 \times 10^{-5} \text{ OUR LIMIT}$ Our 90% CL limit = (2.3 events)/(effective denominator sum). [Number of events increased to 2.3 for a 90% confidence level.]

111000 0 6 EBENHOH 74 HBC $^{\prime\prime}$ P at rest 105000 0 6 SECHI-ZORN 73 HBC $^{\prime\prime}$ P at rest

⁶ Effective denominator calculated by us.

EFFECTIVE DENOM. EVTS DOCUMENT ID TECN.
< 6.2 × 10⁻⁵ OUR LIMIT Our 90% CL limit = (6.7 events)/(effective denominator sum). [Number of events increased to 6.7 for a 90% confidence level.]

33800 BAGGETT 69B HBC 7 EISELE 62000 69B HBC 8 COURANT 10150 0 64 HBC 8 NAUENBERG 64 HBC 1710 0 120 GALTIERI 62 EMUL

⁷ Effective denominator calculated by us.

⁸ Effective denominator taken from EISELE 67.

Σ^+ , Σ^0

$\Gamma(pe^+e^-)/\Gamma_{\text{total}}$				Γ ₈ /Γ
VALUE (units 10 ⁻⁶)	DOCUMENT ID	TECN TECN	K p at rest	
<7			•	
9 ANG 698 found three pe^+e $\Sigma^+ o p\gamma$. The limit given			→ e¹ e⁻ conversio	n fror
$\Gamma(\Sigma^+ o ne^+ u_e)/\Gamma(\Sigma^$	$\rightarrow ne^{-}\overline{\nu}_{e})$			
VALUE CL% EVTS				
<0.009 OUR LIMIT Our 90%	CL limit, using $\Gamma(n)$	$e^+ \nu_e)/\Gamma(n$	π^+) above.	
• • We do not use the follow	ing data for average	s, fits, limits	, etc. • • •	
< 0.019 90 0	EBENHOH		K^-p at rest	
< 0.018 90 0	SECHI-ZORN			
< 0.12 95 0				
< 0.03 90 0	EISELE	69B HBC	See EBENHOH 74	
$\Gamma(\Sigma^+ \rightarrow n\mu^+\nu_\mu)/\Gamma(\Sigma^-$	$\rightarrow n\mu^-\overline{\nu}_{\mu}$			
VALUE EVTS	DOCUMENT ID	<u>TECN</u>	COMMENT	
<0.12 OUR LIMIT Our 90%	CL limit, using $\Gamma(n)$	$\iota^+ u_\mu) / \Gamma(n \circ$	τ ⁺) above.	
• • • We do not use the follow	ing data for average	s, fits, limits	i, etc. • • •	
$0.06^{+0.045}_{-0.03}$ 2	EISELE	69в НВС	K^-p at rest	
$\Gamma(\Sigma^+ \to n\ell^+\nu)/\Gamma(\Sigma^- \to Test \text{ of } \Delta S = \Delta Q \text{ rule.}$	$n\ell^-\overline{\nu})$			
VALUEEVTS	DOCUMENT ID	<u>TECN</u>		
<0.043 OUR LIMIT Our 90%	CL limit, using [F(ne ⁺ νe) +	$\Gamma(n\mu^+\nu\mu)$]/ $\Gamma(n\pi^+$) .
• • We do not use the follow			-	
< 0.08	NORTON	69 HBC		
<0.034 0	BAGGETT	67 HBC		
Σ	DECAY PARAI	METERS		

See the Note on Baryon Decay Parameters in the neutron Listings. A few early results have been omitted.

α_0 FOR Σ^+ -	$\rightarrow p\pi^0$ EVTS	DOC <u>UM</u> ENT ID		TECN	COMMENT
$-0.980 ^{+ 0.017}_{- 0.015}$	OUR FIT				
$-0.980 ^{\displaystyle +0.017}_{\displaystyle -0.013}$	OUR AVERAGE				
$-0.945 + 0.055 \\ -0.042$	1259	10 LIPMAN	73	OSPK	$\pi^+ \rho \rightarrow \Sigma^+$
-0.940 ± 0.045	16k	BELLAMY	72	ASPK	$\pi^+ p \rightarrow \Sigma^+ K^+$
-0.98 +0.05 -0.02	1335	¹¹ HARRIS	70	OSPK	$\pi^+ p \rightarrow \Sigma^+ K^+$
-0.999 ± 0.022	32k	BANGERTER	69	нвс	$K^ p$ 0.4 GeV/ c
10 Decay proto	ns scattered off a	luminum.			

11 Decay		conttored	- FF	carbon	
Decay	protons	scattereu	OII	Carbon.	

ϕ_0 ANGLE FOR Σ^+	$\rightarrow \rho \pi$	-0			$(\tan\!\phi_0=\beta\ /\ \gamma)$
VALUE (°)	EVTS	DOCUMENT ID		TECN	COMMENT
36 ±34 OUR AVER	AGE				
$38.1 + 35.7 \\ -37.1$	1259	12 LIPMAN	73	OSPK	$\pi^+ p \rightarrow \Sigma^+ K^+$
22 ±90		¹³ HARRIS	70	OSPK	$\pi^+ \rho \rightarrow \Sigma^+ K^+$

¹² Decay proton scattered off aluminum.

¹³ Decay protone scattered off carbon

¹³ Decay protons sca	attered off carb	on.			
α_{+} / α_{0}					
Older results ha	ave been omitte				
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.069 ± 0.013 OUR	FIT				
-0.073 ± 0.021	23k	MARRAFFING	08 (HBC	$K^{-} p 0.42-0.5 \text{ GeV}/c$
α_+ FOR $\Sigma^+ \rightarrow I$	$\eta \pi^+$				
VALUE	EVIS	DOCUMENT ID		TECN	COMMENT
0.068 ± 0.013 OUR F	IT				
0.066 ± 0.016 OUR A	VERAGE				
0.037 ± 0.049	4101	BERLEY	70B	HBC	
0.069 ± 0.017	35k	BANGERTER	69	HBC	K [−] p 0.4 GeV/c
ϕ_+ ANGLE FOR	$\Sigma^+ o n \pi^+$				$(tan\phi_+ = \beta \ / \ \gamma)$
MALLIE (C.)		DOCUMENT ID		TECN	COMMENT

VALUE				COMMITTEE	_
167 ± 20 OUR AVE					
184 ± 24	1054	14 BERLEY	708 HBC		
143 ± 29	560	BANGERTER	69B HBC	$K^ p$ 0.4 GeV/ c	

 $^{^{14}\,\}mbox{Changed from 176 to }184^{\rm c}$ to agree with our sign convention.

$\alpha_{\gamma} \text{ FOR } \Sigma^{+} \rightarrow p \gamma$,				
VALUE	EVTS	DOCUMENT, ID		TECN	COMMENT
-0.83±0.12 OUR AVE	RAGE				
$-0.86\pm0.13\pm0.04$	190	KOBAYASHI	87	CNTR	$\pi^+ \rho \rightarrow \Sigma^+ K^+$
$-0.53^{+0.38}_{-0.36}$	46	MANZ	80	HBC	$K^- p \rightarrow \Sigma^+ \pi^-$
$-1.03^{+0.52}_{-0.42}$	61	GERSHWIN	69B	HBC	$K^- p \rightarrow \Sigma^+ \pi^-$

REFERENCES FOR Σ^+

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.

HESSEY	89	ZPHY C42 175	+Booth, Fickinger, Gall+ (BNL-811 Collab.)
KOBAYASHI	87	PRL 59 868	+Haba, Homma, Kawai, Miyake~ (KYOT)
WILKINSON	87	PRL 58 855	-Handler+ (WISC, MICH, RUTG, MINN)
BIAGI	85	ZPHY C28 495	-Bourquin+ (BRIS, CERN, GEVA, HEID+)
ANKENBRA		PRL 51 863	Ankenbrandt, Berge+ (FNAL, IOWA, ISU, YALE)
MANZ	80	PL 96B 217	-Reucroft, Settles, Wolf+ (MPIM, VAND)
MARRAFFINO		PR D21 2501	+Reucroft, Roos, Waters+ (VAND, MPIM)
SETTLES	79	PR D20 2154	+Manz, Matt, Hansl, Herynek+ (MPIM, VAND)
NOWAK	78	NP B139 61	- Armstrong, Davis+ (LOUC, BELG, DURH, WARS) - Gopal, Kalmus, Litchfield, Ross+ (RHEL, LOIC)
CONFORTO	76 74	NP B105 189	- Gopal, Kalmus, Litchfield, Ross+ (RHEL, LOIC) - Eisele, Engelmann, Filthuth, Hepp+ (HEID)
EBENHOH	73	ZPHY 266 367	+Eisele, Filthuth, Hepp, Leitner, Thouw+ (HEID)
EBENHOH	73	ZPHY 264 413 PL 43B 89	+Uto, Walker, Montgomery+ (RHEL, SUSS, LOWC)
LIPMAN SECHI-ZORN	73	PR D8 12	+Snow (UMD)
BELLAMY	72	PL 39B 299	+Anderson, Crawford+ (LOWC, RHEL, SUSS)
BOHM	72	NP B48 1	(BERL, UBEL, BRUX, IASD, DUUC, LOUC+)
Also	73	IIHE-73.2 Nov	Bohm (BERL, UBEL, BRUX, IASD, DUUC, LOUC+)
BAKKER	71	LNC 1 37	+Hoogland, Kluyver, Massard+ (SABRE Collab.)
COLE	71	PR D4 631	+Lee-Franzini, Loveless, Baltay+ (STON, COLU)
TOVEF	71	NP B33 493	+ (LOUC, UBEL, BERL, BRUX, DUUC, WARS)
BERLEY	70B		+ Yamin, Hertzbach, Kofler+ (BNL, MASA, YALE)
EISELE	70	ZPHY 238 372	+Filthuth, Hepp, Presser, Zech (HEID)
HARRIS	70	PRL 24 165	+Overseth, Pondrom, Dettmann (MICH, WISC)
ANG	69B	ZPHY 228 151	+Ebenhoh, Eisele, Engelmann, Filthuth • (HEID)
BAGGETT	69B	MDDP-TR-973 Thesis	(UMD)
BALTAY	69	PRL 22 615	Franzini, Newman, Norton+ (COLU, STON)
BANGERTER	69	UCRL 19244 Thesis	(LRL)
BANGERTER	69B	PR 187 1821	+ Alston-Garnjost, Galtieri, Gershwin + (LRL)
BARLOUTAUE	69	NP B14 153	+DeBellefon, Granet+ (SACL, CERN, HEID)
EISELE	69	ZPHY 221 1	+Engelmann, Filthuth, Fohlisch, Hepp+ (HEID)
Also	64	PRL 13 291	Willis, Courant+ (BNL, CERN, HEID, UMD)
EISELE	69B	ZPHY 221 401	+Engelmann, Filthuth, Fohlisch, Hepp+ (HEID)
GERSHWIN	69B	PR 188 2077	+Alston-Garnjost, Bangerter+ (LRL)
Also	69	UCRL 19246 Thesis	Gershwin (LRL)
NORTON	69	Nevis 175 Thesis	(COLU)
BAGGETT	67	PRL 19 1458	+Day, Glasser, Kehoe, Knop+ (UMD)
Also	68	Vienna Abs. 374	Baggett, Kehoe (UMD)
Also	68B	Private Comm.	Baggett (UMD)
BARASH	67	PRL 19 181	+Day, Glasser, Kehoe, Knop+ (UMD)
EISELE	67	ZPHY 205 409	Engelmann, Filthuth, Folish, Hepp+ (HEID)
HYMAN	67	PL 25B 376	+Loken, Pewitt, McKenzie+ (ANL, CMU, NWE5)
CHANG	66	PR 151 1081	(COLU)
Also	65	Nevis 145 Thesis	Chang (COLU)
COOK	66	PRL 17 223	+Ewart, Masek, Orr, Platner (WASH)
BALTAY	65	PR 140B 1027	+Sandweiss, Culwick, Kopp+ (YALE, BNL)
BAZIN	65	PRL 14 154	+ Blumenfeld, Nauenberg+ (PRIN, COLU)
BAZIN	658	PR 140B 1358	+Plano, Schmidt+ (PRIN, RUTG, COLU)
CARAYAN	65	PR 138B 433	Carayannopoulos, Tautfest, Willmann (PURD)
SCHMIDT	65	PR 140B 1328	(COLU)
BHOWMIK	64	NP 53 22	+ Jain, Mathur, Lakshmi (DELH)
COURANT	64	PR 136B 1791	+Fitthuth+ (CERN, HEID, UMD, NRL, BNL)
NAUENBERG	64	PRL 12 679	+ Marateck - (COLU, RUTG, PRIN)
BARKAS	63	PRL 11 26	+Dyer, Heckman (LRL)
Also	61	UCRL 9450 Thesis	Dyer (LRL)
GALTIERI	62	PRL 9 26	+Barkas, Heckman, Patrick, Smith (LRL) +Smith (LRL)
GRARD	62	PR 127 607	+Smith (LRL) +Ross (LRL)
HUMPHREY	62	PR 127 1305	TINOS (ENC)

$$I(J^P) = 1(\frac{1}{2}^+)$$

The spin and parity have not been measured directly. They are of course assumed to be the same as for the Σ^+ and $\Sigma^-.$

Σ^0 MASS

The fit uses Σ^+ , Σ^0 , Σ^- , and A mass and mass-difference measurements.

VALUE (MeV) <u>NOCUMENT ID</u>

1192.55±0.10 OUR FIT Error includes scale factor of 1.4.

$\Sigma^- - \Sigma^0$ MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
4.89 ± 0.08 OUR FI	T Error includ	les scale factor of	1.2.		
4.86 ± 0.08 OUR AV	ERAGE Error	r includes scale fa	ctor	of 1.2.	
4.87 ± 0.12	37	DOSCH	65	HBC	
5.01 ± 0.12	12	SCHMIDT	65	HBC	See note with A mass
4.75 ± 0.1	18	BURNSTEIN	64	HBC	

Σ⁰ – Λ MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
76.92±0.10 OUR FIT	Error inclu	ides scale factor of	of 1.4		
76.55 ± 0.25 OUR AVER	RAGE				
76.23 ± 0.55	109	COLAS	75	HLBC	$\Sigma^0 \rightarrow \Lambda_{\gamma}$
76.63 ± 0.28	208	SCHMIDT	65	HBC	See note with A mass

1.82 + 0.25

Σ⁰ MEAN LIFE

These lifetimes are deduced from measurements of the cross sections for the Primakoff process $\Lambda \to \Sigma^0$ in nuclear Coulomb fields. An alternative expression of the same information is the $\Sigma^0.\Lambda$ transition magnetic moment given in the following section. The relation is $(\mu_{\Sigma\Lambda}/\mu_N)^2~\tau=1.92951\times 10^{-19}~s$ (see DEVLIN 86).

VALUE (10 ⁻²⁰ s) 7.4±0.7 OUR EVALUATION	Using $\mu_{\sum \Lambda}$ (see the above note).			<u>COMMENT</u>		
$6.5^{+1.7}_{-1.1}$	¹ DEVLIN	86	SPEC	Primakoff effect		
$7.6 \pm 0.5 \pm 0.7$	² PETERSEN	86	SPEC	Primakoff effect		
• • • We do not use the foll	owing data for averag	es, fit	s, limits,	etc. • • •		
5.8 ± 1.3	1 DYDAK	77	SPEC	See DEVLIN 86		

 $^{^1\,\}mathrm{DEVLIN}$ 86 is a recalculation of the results of DYDAK 77 removing a numerical approximation made in that work.

$|\mu(\Sigma^0 \to \Lambda)|$ TRANSITION MAGNETIC MOMENT

See the note in the Σ^0 mean-life section above. Also, see the Note on Baryon Magnetic Moments in the Λ Listings.

VALUE (μ _N)	DOCUMENT ID		TECN	COMMENT	
1.61±0.08 OUR AVERAGE					
$1.72^{+0.17}_{-0.19}$	3 DEVLIN	86	SPEC	Primakoff effect	
1.59±0.05±0.07	⁴ PETERSEN	86	SPEC	Primakoff effect	
• • • We do not use the followi	ng data for averag	es, fit	s, limits	, etc. • • •	

3 DYDAK

77 SPEC See DEVLIN 86

Σ^0 DECAY MODES

	Mode	Fraction $(\Gamma_{\hat{I}}/\Gamma)$	Confidence level
Γ_1	Λγ	100 %	
Γ_2	$\Lambda \gamma \gamma$	< 3 %	90%
Γ_3	$\Lambda e^+ e^-$	[a] 5×10^{-3}	

[a] A theoretical value using QED; see the Full Listings.

Σ⁰ BRANCHING RATIOS

$\frac{\Gamma(\Lambda\gamma\gamma)/\Gamma_{\text{total}}}{<0.03}$	<u>CL%</u> 90	DOCUMENT ID	75	Γ ₂ /Ι <u>ΤΕCΝ</u> HLBC	Γ
$\Gamma(\Lambda e^+ e^-)/\Gamma_{\text{total}}$ $VALUE$ 0.00545		DOCUMENT ID FEINBERG	58	$\frac{COMMENT}{\text{Theoretical QED calculation}}$	г -

REFERENCES FOR Σ^0

DEVLIN PETERSEN DYDAK COLAS DOSCH SCHMIDT	86 86 77 75 65 65	PR D34 1626 PRL 57 949 NP B118 1 NP B91 253 PL 14 239 PR 140B 1328		(RUTG) MICH, MINN) DORT, HEID) (ORSA) (HEID) (COLU)
SCHMIDT BURNSTEIN	65 64	PR 140B 1328 PRL 13 66	+Day, Kehoe, Zorn, Snow	(COLU) (UMD)
FEINBERG	58	PR 109 1019	+Day, Kenoe, Zorn, Snow	(BNL)

$$I(J^P) = 1(\frac{1}{2}^+)$$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.

$\Sigma^- \; \text{MASS}$

The fit uses Σ^+ , Σ^0 , Σ^- , and Λ mass and mass-difference measurements.

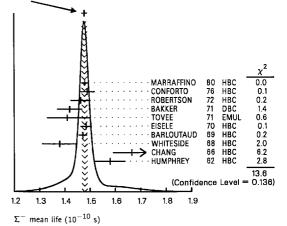
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
1197.43 ±0.06	OUR FIT Error	includes scale fac	ctor c	f 1.6.			
1197.50 ±0.05	OUR AVERAGE						
1197.532 ± 0.057		GALL	88	CNTR	Σ^- Pb, Σ^- W atoms		
1197.43 ±0.08	3000	SCHMIDT	65	HBC	See note with A mass		
• • • We do not	use the following	data for average	s, fits	s, limits,	etc. • • •		
1197.24 ±0.15		¹ DUGAN	75	CNTR	Exotic atoms		
¹ GALL 88 concludes that the DUGAN 75 mass needs to be reevaluated.							

$\Sigma^- - \Sigma^+$ MASS DIFFERENCE

VALUE (MeV) 8.07±0.09 OUR FIT	EVTS	DOCUMENT II		TECN
8.09 ± 0.16 OUR AVER		acs scarc ractor	0, 1.,.	
7.91 ± 0.23	86	вонм	72	EMUL
8.25 ± 0.25	2500	DOSCH	65	нвс
8.25 ± 0.40	87	BARKAS	63	EMUL

Σ^- – Λ MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
81.81 ± 0.07 OUR FI	T Error incl	udes scale factor of	of 1.5	5 .	
81.69±0.07 OUR A	/ERAGE				
81.64 ± 0.09	2279	HEPP	68	HBC	
81.80 ± 0.13	85	SCHMIDT	65	HBC	See note with A mass
81.70 ± 0.19		BURNSTEIN	64	HBC	


Σ- MEAN LIFE

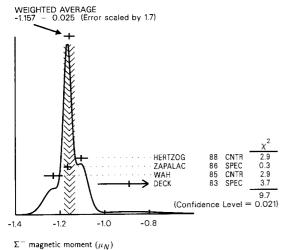
Measurements with an error $\geq~0.2\times10^{-10}$ s have been omitted.

VALUE (10 ⁻¹⁰ s) 1.479±0.011 OUR	AVERAGE	DOCUMENT ID Error includes scale	fact	<u>TECN</u> or of 1.3	COMMENT See the ideogram below.
1.480 ± 0.014	16k	MARRAFFINC	80	HBC	K [−] p 0.42–0.5 GeV/c
1.49 ± 0.03	8437	CONFORTO	76	HBC	K [−] p 1−1.4 GeV/c
1.463 ± 0.039	2400	ROBERTSON	72	HBC	K- p 0.25 GeV/c
1.42 ± 0.05	1383	BAKKER	71	DBC	$K^- N \rightarrow \Sigma^- \pi \pi$
$1.41 \begin{array}{c} +0.09 \\ -0.08 \end{array}$		TOVEE	71	EMUL	
1.485 ± 0.022	100k	EISELE	70	HBC	K [−] p at rest
1.472 ± 0.016	10k	BARLOUTAU	69	HBC	K ⁻ ρ 0.4-1.2 GeV/c
1.38 ± 0.07	506	WHITESIDE	68	HBC	K^-p at rest
1.666 ± 0.075	3267	² CHANG	66	HBC	K [−] p at rest
1.58 ± 0.06	1208	HUMPHREY	62	HBC	K- p at rest

 $^2\mathrm{We}$ have increased the CHANG 66 error of 0.018; see our 1970 edition, RMP 42, 123.

WEIGHTED AVERAGE 1.479 ± 0.011 (Error scaled by 1.3)

 $^{^2}$ An additional uncertainty of the Primakoff formalism is estimated to be < 5%.


³ DEVLIN 86 is a recalculation of the results of DYDAK 77 removing a numerical approx-

imation made in that work. 4 An additional uncertainty of the Primakoff formalism is estimated to be < 2.5%.

Σ- MAGNETIC MOMENT

See the Note on Baryon Magnetic Moments in the A Listings. Measurements with an error \geq 0.3 $\mu_{\mbox{\it N}}$ have been omitted.

VALUE (µN)	EVTS	DOCUMENT ID		TECN	COMMENT
-1.157±0.025 OUR AVERAG	E Error in	cludes scale fact below.	or of	1.7. See	the ideogram
$-1.105\pm0.029\pm0.010$		HERTZOG	88	CNTR	Σ Pb, Σ W
$-1.166\pm0.014\pm0.010$	671k	ZAPALAC	86	SPEC	$ne^-\nu$, $n\pi^-$ de-
$\begin{array}{ccc} -1.23 & \pm 0.03 & \pm 0.03 \\ -0.89 & \pm 0.14 \end{array}$	516k	WAH DECK			$\begin{array}{c} cays \\ \rho Cu \rightarrow \ \Sigma^- X \\ \rho Be \rightarrow \ \Sigma^- X \end{array}$

Σ- DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	nπ ⁻	(99.848±0.005) %
Γ_2	$n\pi^-\gamma$	[a] (4.6 ± 0.6) $\times 10^{-4}$
Γ_3	$ne^-\overline{\nu}_e$	$(1.017\pm0.034)\times10^{-3}$
Γ_4	$n\mu^-\overline{ u}_\mu$	$(4.5 \pm 0.4) \times 10^{-4}$
Γ_5	$\Lambda e^- \overline{ u}_e$	$(5.73 \pm 0.27) \times 10^{-5}$

[a] See the Listings below for the pion momentum range used in this measurement.

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 16 measurements and one constraint to determine 4 parameters. The overall fit has a χ^2 = 8.7 for 13 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j \rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{ ext{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₃	-64		
<i>x</i> ₄	-77	0	
<i>X</i> 5	-5	0	0
	x_1	<i>x</i> ₃	X4

Σ- BRANCHING RATIOS

 $\Gamma(n\pi^-\gamma)/\Gamma(n\pi^-)$ Γ_2/Γ_1

The π^+ momentum cuts differ, so we do not average the results but simply use the latest value in the Summary Table.

VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	COMMENT
0.46 ± 0.06	292	EBENHOH	73 HBC	$\pi^+ < 150~{ m MeV}/c$
• • • We do not us	e the following	g data for averag	es, fits, limits	, etc. • • •
0.10 ± 0.02	23	ANG	69B HBC	$\pi^- < 110~{ m MeV}/c$
~ 1.1		BAZIN	658 HBC	$\pi^- < 166~{ m MeV}/c$

$\Gamma(ne^-\overline{\nu}_e)/\Gamma(n$				Γ_3/Γ_1
Measuremen VALUE (units 10 ⁻³)		or $\geq 0.2 imes 10^{-3}$ ha		
1.019±0.034 OUR		DOCUMENTID		COMMENT
1.019 ^{+0.031} _{-0.036} OUR	AVERAGE			
0.96 ±0.05	2847	BOURQUIN	83C SPEC	SPS hyperon beam
$1.09 \begin{array}{l} +0.06 \\ -0.08 \end{array}$	601	³ EBENHOH	74 HBC	K^-p at rest
$1.05 \begin{array}{l} +0.07 \\ -0.13 \end{array}$	455	³ SECHI-ZORN	73 HBC	K [−] p at rest
0.97 ± 0.15	57	COLE	71 HBC	$K^- \rho$ at rest
1.11 ± 0.09	180	BIERMAN	68 HBC	

 3 An additional negative systematic error is included for internal radiative corrections and latest form factors; see BOURQUIN 83c.

$\Gamma(n\mu^-\overline{\nu}_\mu)/\Gamma(n\pi^-$)				Γ_4/Γ_1
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
0.45 ± 0.04 OUR FIT					
0.45 ± 0.04 OUR AVE	RAGE				
0.38 ± 0.11	13	COLE	71	HBC	K^-p at rest
0.43 ± 0.06	72	ANG	69	HBC	$K^- p$ at rest
0.43 ± 0.09	56	BAGGETT	69	HBC	K [−] p at rest
0.56 ± 0.20	11	BAZIN	65B	HBC	$K^- p$ at rest
0.66 ± 0.15	22	COURANT	64	HBC	
$\Gamma(\Lambda e^- \overline{ u}_e)/\Gamma(n\pi^-$)				Γ_5/Γ_1
VALUE (units 10 -4)	EVTS	DOCUMENT ID		TECN	COMMENT
0.574±0.027 OUR FI	F ——				
0.574±0.027 OUR AV	'ERAGE				
0.561 ± 0.031	1620	4 BOURQUIN	82	SPEC	SPS hyperon beam
0.63 ± 0.11	114	THOMPSON	80	ASPK	Hyperon beam
0.52 ± 0.09	31	BALTAY	69	HBC	$K^- \rho$ at rest
0.69 ± 0.12	31	EISELE	69	HBC	$K^ \rho$ at rest
0.64 ± 0.12	35	BARASH	67	HBC	K [−] p at rest
0.75 ±0.28	11	COURANT	64	HBC	K [−] p at rest

⁴ The value is from BOURQUIN 83B, and includes radiation corrections and new accep-

Σ^- DECAY PARAMETERS

See the Note on Baryon Decay Parameters in the neutron Listings. Older, outdated results have been omitted.

ALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.068±0.008 OUF	RAVERAGE				
-0.062 ± 0.024	28k	HANSL	78	HBC	$K^- p \rightarrow \Sigma^- \pi^+$
-0.067 ± 0.011	60k	BOGERT	70	HBC	K [−] p 0.4 GeV/c
		DANCEDTED		1100	10 0 1 C-11/-
- 0.071 ± 0.012	51k	BANGERTER	69	HBC	K ⁻ ρ 0.4 GeV/c
- 0.071 ± 0.012 6 ANGLE FOR Σ (ALUE (°)			69	TECN	$(tan\phi = \beta / \gamma$
ANGLE FOR Σ	$E^- \rightarrow n\pi^-$				$(\tan\!\phi=\beta\ /\ \gamma$
b ANGLE FOR Σ	$E^- \rightarrow n\pi^-$	DOCUMENT ID		TECN	$(\tan\!\phi=\beta\ /\ \gamma$

 g_A/g_V FOR $\Sigma^- \to ne^- \overline{
u}_e$ Measurements with fewer than 500 events have been omitted. Where necessary, signs have been changed to agree with our conventions, which are given in the Note on Baryon Decay Parameters in the neutron Listings. What is actually listed is $|g_1/f_1 - 0.237g_2/f_1|$. This reduces to $g_A/g_V \equiv g_1(0)/f_1(0)$ on making the usual assumption that $g_2 = 0$. See also the note on HSUEH 88.

doodinption that 5	2 0. 00	c diso the hote on			
VALUE	EVT5	DOCUMENT ID		TECN	COMMENT
0.340 ± 0.017 OUR AV	/ERAGE				
$+0.327\pm0.007\pm0.019$					Σ- 250 GeV
+0.34 ±0.05	4456	7 BOURQUIN	83c	\$PEC	SPS hyperon beam
0.385 ± 0.037	3507	⁸ TANENBAUM	74	ASPK	
• • • We do not use th	e following	g data for averages	, fits	, limits,	etc. • • •
0.29 ±0.07	25k	HSUEH	85	SPEC	See HSUEH 88
$0.17 \begin{array}{l} +0.07 \\ -0.09 \end{array}$	519	DECAMP	77	ELEC	Hyperon beam

 6 The sign is, with our conventions, unambiguously positive. The value assumes, as usual, that $g_2=0.$ If g_2 is included in the fit, than (with our sign convention) $g_2=-0.56\pm0.37,$ with a corresponding reduction of g_A/g_V to $+0.20\pm0.08.$

⁷ BOURQUIN 83c favors the positive sign by at least 2.6 standard deviations.

 8 TANENBAUM 74 gives 0.435 \pm 0.035, assuming no q^2 dependence in g_A and g_V . The listed result allows q^2 dependence, and is taken from HSUEH 88.

$f_2(0)/f_1(0)$ FOR $\Sigma^- \rightarrow ne^- \overline{\nu}_e$

The signs have been changed to be in accord with our conventions, given in the Note

on Daiyon Deca	y rananneter	3 in the neutron L	istnigs.	
VALUE	EVTS	DOCUMENT ID	TEC	NCOMMENT
0.97 ± 0.14 OUR AVE	RAGE			
$0.96 \pm 0.07 \pm 0.13$	50k	HSUEH	88 SPE	C Σ ⁻ 250 GeV
1.02 ± 0.34	4456	BOURQUIN	83c SPE	EC SPS hyperon beam

TRIPLE CORRELATION COEFFICIENT D for $\Sigma^- \rightarrow ne^- \bar{\nu}_e$

The coefficien	t D of the te	rm $DP (\hat{p}_e \times \hat{p}_i)$	ا) in tl	he Σ¯	→ ne ⁻ v decay angular
distribution. A	nonzero valu	e would indicate	a viola	ation of	time-reversal invariance.
VALUE	<u>EVTS</u>	DOCUMENT IL		TECN	COMMENT
0.11 ± 0.10	50k	HSUEH	88	SPEC	Σ- 250 GeV

NOTE ON $\Sigma^- \to \Lambda e^- \overline{\nu}_e$ DECAY

The vector part of the hadronic amplitude for the decay $\Sigma^- \to \Lambda e^- \overline{\nu}_e$ is of special interest because the vector weak current is proportional to an isospin rotation of the isovector part of the electromagnetic current. This strong form of CVC predicts that

$$f_1(q^2) = 0 \quad \text{for} \ 0 < q^2 \leq (m_{\Sigma^-} - m_\Lambda)^2 \ , \label{eq:f1}$$

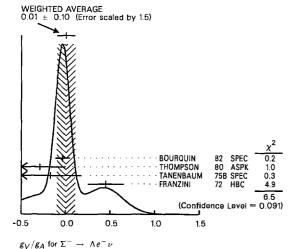
and also relates $f_2(0)$ to the $\Sigma^0\Lambda$ transition magnetic moment or to the amplitude for the decay $\Sigma^0 \to \Lambda \gamma$ by

$$\begin{split} f_2(0) &= -\sqrt{2} \ \mu_{\Sigma^0 \Lambda} / e \hbar \\ &= -\sqrt{3/2} \ \mu_n / e \hbar \qquad [\text{by SU}(3)] \\ &= 1.17 \ m_p^{-1} \ . \end{split}$$

No SU(3) symmetry is assumed here except in the relation of $\mu_{\Sigma^0\Lambda}$ to the magnetic moment of the neutron, μ_n .

The experimental data were analyzed on the assumption that $f_1(q^2)=0$ and $f_2(q^2)=f_2(0)$ over the entire kinematical range of q^2 for $\Sigma^- \to \Lambda e^- \overline{\nu}_e$. The results are listed in the ratio of $g_{MW}=-m_{\Sigma^-}f_2(0)$ to $g_A=g_1(0)$.

See also the Note on Baryon Decay Parameters in the neutron section of the Full Listings.


g_V/g_A FOR $\Sigma^- \rightarrow \Lambda e^- \nu$

For the sign convention, see the Note on Baryon Decay Parameters in the neutron Listings. The value is predicted to be zero by conserved vector current theory. The values averaged assume CVC_SU(3) weak magnetism term.

values avi	values averaged assume CVC-50(3) weak magnetism term.					
VALUE	<u>EVTŞ</u>	DOCUMENT ID				
0.01 ± 0.10	OUR AVERAGE	Error includes sca	le factor o	f 1.5. See the ideogram		
		below.				
-0.034 ± 0.080	1620	9 BOURQUIN	82 SPE	C SPS hyperon beam		
-0.29 ± 0.29	114	THOMPSON	80 ASP	K BNL hyperon beam		
-0.17 ± 0.35	55		75B SPE	C BNL hyperon beam		
$+0.45 \pm 0.20$	186	^{9,10} FRANZINI	72 HBC			

⁹The sign has been changed to agree with our convention.

¹⁰ The FRANZINI 72 value includes the events of earlier papers.

 g_{WM}/g_A FOR $\Sigma^- \rightarrow \Lambda e^- \nu$

ı

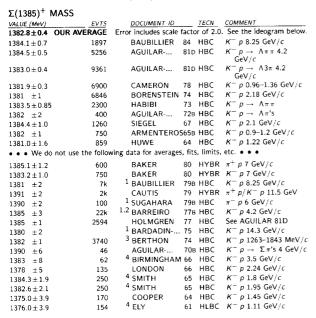
The values of	footen assume n	ne CVC prediction	8V	_ 0.	
VALUE	EVTS	DOCUMENT ID		TECN_	COMMENT
2.4 ±1.7 OUR AV	/ERAGE				
1.75 ± 3.5	114	THOMPSON	80	ASPK	BNL hyperon beam
3.5 ±4.5	55	TANENBAUM	75 8	SPEC	BNL hyperon beam
2.4 ± 2.1	186	FRANZINI	72	HBC	

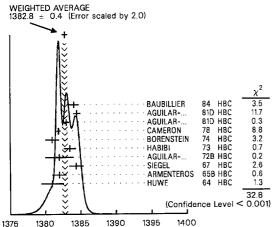
REFERENCES FOR Σ~

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.

		BB: 18.401	
GALL	88	PRL 60 186	+Austin+ (BOST, MIT, WILL, CIT, CMU, WYOM)
HERTZOG	88	PR D37 1142	+Eckhause+ (WILL, BOST, MIT, CIT, CMU, WYOM)
HSUEH	88	PR D38 2056	 + (CHIC, ELMT, FNAL, IOWA, ISU, LENI, YALE)
ZAPALAC	86	PRL 57 1526	 (EFI, ELMT, FNAL, IOWA, ISU, LENI, YALE)
HSUEH	85	PRL 54 2399	+Muller+ (CHIC, ELMT, FNAL, ISU, LENI, YALE)
WAH	85	PRL 55 2551	+Cardello, Cooper, Teig+ (FNAL, IOWA, ISU)
BOURQUIN	83B	ZPHY C21 27	+ (BRIS, GEVA, HEID, LALO, RL, STRB)
BOURQUIN	83C	ZPHY C21 17	+ (BRIS, GEVA, HEID, LALO, RL, STRB)
DECK	83	PR D28 1	+Beretvas, Devlin, Luk+ (RUTG, WISC, MICH, MINN)
BOURQUIN	82	ZPHY C12 307	+Brown+ (BRIS, GEVA, HEID, LALO, RL, STRB)
MARRAFFINO	80	PR D21 2501	+Reucroft, Roos, Waters+ (VAND, MPIM)
THOMPSON	80	PR D21 25	+Cleland, Cooper, Dris, Engels+ (PITT, BNL)
HANSL	78	NP B132 45	+Manz, Matt, Reucroft, Settles+ (MPIM, VAND)
DECAMP	77	PL 66B 295	
	76		
CONFORTO		NP B105 189	+Gopal, Kalmus, Litchfield, Ross+ (RHEL, LOIC)
DUGAN	75	NP A254 396	+Asano, Chen, Cheng, Hu, Lidofsky+ (COLU, YALE)
TANENBAUM	75B	PR D12 1871	+Hungerbuhler+ (YALE, FNAL, BNL)
EBENHOH	74	ZPHY 266 367	+Eisele, Engelmann, Filthuth, Hepp+ (HEID)
TANENBAUM	74	PRL 33 175	+Hungerbuhler+ (YALE, FNAL, BNL)
EBENHOH	73	ZPHY 264 413	+Eisele, Filthuth, Hepp, Leitner, Thouw+ (HEID)
SECHI-ZORN	73	PR D8 12	+Snow (UMD)
вонм	72	NP B48 1	+ (BERL, UBEL, BRUX, IASD, DUUC, LOUC+)
FRANZINI	72	PR D6 2417	+ (COLU, HEID, UMD, STON)
ROBERTSON	72	Thesis	(IIT)
BAKKER	71	LNC 1 37	+Hoogland, Kluyver, Massard+ (SABRE Collab.)
COLE	71	PR D4 631	+Lee-Franzini, Loveless, Baltay+ (STON, COLU)
Also	69	Nevis 175 Thesis	Norton (COLU)
TOVEE	71	NP B33 493	+ (LOUC, UBEL, BERL, BRUX, DUUC, WARS)
BERLEY	70B	PR D1 2015	+Yamin, Hertzbach, Kofler+ (BNL, MASA, YALE)
BOGERT	70	PR D2 6	+Lucas, Taft, Willis, Berley+ (BNL, MASA, YALE)
EISELE	70	ZPHY 238 372	+Filthuth, Hepp, Presser, Zech (HEID)
ANG	69	ZPHY 223 103	+Eisele, Engelmann, Filthuth+ (HEID)
ANG		ZPHY 228 151	+Ebenhoh, Eisele, Engelmann, Filthuth+ (HEID)
BAGGETT	69	PRL 23 249	+Kehoe, Snow (UMD)
BALTAY	69	PRL 22 615	+Franzini, Newman, Norton+ (COLU, STON)
BANGERTER	69	UCRL 19244 Thesis	(LRL)
BANGERTER	69B	PR 187 1821	+Alston-Garnjost, Galtieri, Gershwin+ (LRL)
BARLOUTAUD		NP B14 153	+DeBellefon, Granet+ (SACL, CERN, HEID)
EISELE	69	ZPHY 221 1	
			+Engelmann, Filthuth, Fohlisch, Hepp+ (HEID)
BIERMAN	68	PRL 20 1459	+Kounosu, Nauenberg+ (PRIN)
HEPP	68	ZPHY 214 71	+Schleich (HEID)
WHITESIDE	68	NC 54A 537	+Gollub (OBER)
BARASH	67	PRL 19 181	+Day, Glasser, Kehoe, Knop+ (UMD)
CHANG	66	PR 151 1081	(COLU)
BAZIN	65B	PR 1408 1358	+Plano, Schmidt+ (PRIN, RUTG, COLU)
DOSCH	65	PL 14 239	+Engelmann, Filthuth, Hepp, Kluge (HEID)
Also	66	PR 151 1081	Chang (COLU)
SCHMIDT	65	PR 140B 1328	(COLU)
BURNSTEIN	64	PRL 13 66	+Day, Kehoe, Zorn, Snow (UMD)
COURANT	64	PR 136B 1791	+Filthuth+ (CERN, HEID, UMD, NRL, BNL)
BARKAS	63	PRL 11 26	+Dyer, Heckman (LRL)
HUMPHREY	62	PR 127 1305	+Ross (LRL)

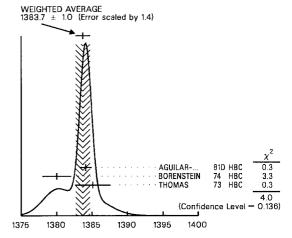
$\Sigma(1385) P_{13}$

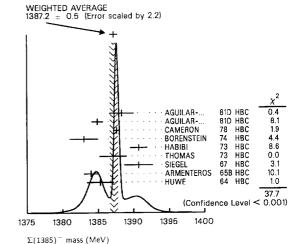

$$I(J^P) = 1(\frac{3}{2}^+)$$
 Status: ***


Discovered by ALSTON 60. Early measurements of the mass and width for combined charge states have been omitted. They may be found in our 1984 edition (Rev. Mod. Phys. 56, No. 2, Part II, April 1984).

We average only the most significant determinations. We do not average results from inclusive experiments with large backgrounds or results which are not accompanied by some discussion of experimental resolution. Nevertheless systematic differences between experiments remain. (See the ideograms in the Listings below.) These differences could arise from interference effects that change with production mechanism and/or beam momentum. They can also be accounted for in part by differences in the parametrizations employed. (See BORENSTEIN 74 for a discussion on this point.) Thus BORENSTEIN 74 uses a Breit-Wigner with energy-independent width, since a P-wave was found to give unsatisfactory fits. CAMERON 78 uses the same form. On the other hand HOLMGREN 77 obtains a good fit to their $\Lambda\pi$ spectrum with a P-wave Breit-Wigner, but includes the partial width for the $\Sigma\pi$ decay mode in the parametrization. AGUILAR-BENITEZ 81D gives masses and widths for five different Breit-Wigner shapes. The results vary considerably. Only the best-fit S-wave results are given here.

$\Sigma(1385)$


Σ(1385) MASSES


 $\Sigma(1385)^+$ mass (MeV)

$\Sigma (1385)^0$ MASS VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1383.7±1.0 OUR A					See the ideogram below.
1384.1 ± 0.8	5722				$K^- \rho \rightarrow \Lambda 3\pi 4.2$ GeV/c
1380 ±2	3100	⁵ BORENSTEIN	74	нвс	$K^- \rho \rightarrow \Lambda 3\pi \ 2.18$ GeV/c
1385.1 ± 2.5	240	⁴ THOMAS	73	HBC	$\pi^- \rho \rightarrow \Lambda \pi^0 \kappa^0$
• • • We do not u	se the followi	ing data for average	s, fits	, limits,	etc. • • •
1389 ±3	500	6 BAUBILLIER	79в	HBC	$K^- p$ 8.25 GeV/c

 $\Sigma(1385)^0$ mass (MeV)

$\Sigma(1385)^- \text{ MASS}$		
VALUE (MeV)	EVTS	DOCUMENT ID TECN COMMENT
1387.2 ± 0.5 OUR AVE	RAGE	
1388.3 ± 1.7	620	AGUILAR 81D HBC $K^-p \rightarrow \Lambda \pi \pi 4.2$ GeV/c
1384.9 ± 0.8	3346	AGUILAR 81D HBC $K^- p \rightarrow \Lambda 3\pi 4.2$ GeV/c
1387.6 ± 0.3	9720	CAMERON 78 HBC $K^+ \rho$ 0.96–1.36 GeV/ c
1383 ±2	2303	BORENSTEIN 74 HBC $K^- \rho 2.18 \text{ GeV}/c$
1390.7 ± 1.2	1900	HABIBI 73 HBC $K^- p \rightarrow \Lambda \pi \pi$
1387.1 ± 1.9	630	⁴ THOMAS 73 HBC $\pi^- \rho \rightarrow \Lambda \pi^- K^+$
1390.7 ± 2.0	370	SIEGEL 67 HBC $K^- p$ 2.1 GeV/ c
1384 ±1	1380	ARMENTEROS65B HBC $K^{-} \rho$ 0.9–1.2 GeV/c
1385.3 ± 1.9	1086	⁴ HUWE 64 HBC $K^- p$ 1.15–1.30 GeV/ c
• • • We do not use	the follo	wing data for averages, fits, limits, etc. • • •
1383 ±1	4.5k	1 BAUBILLIER 798 HBC K^{+} ρ 8.25 GeV/ c
1380 ±6	150	1 SUGAHARA 798 HBC π^{-} $ ho$ 6 GeV/ c
1387 ±3	12k	1,2 BARREIRO 77B HBC K-p 4.2 GeV/c
1391 ±3	193	HOLMGREN 77 HBC See AGUILAR 81D
1383 ±2		¹ BARDADIN 75 HBC <i>К</i> р 14.3 GeV/ <i>c</i>
1389 ±1	3060	3 BERTHON 74 HBC K ⁻ p 1263–1843 MeV/c
1389 ±9	15	LONDON 66 HBC K p 2.24 GeV/c
1391.5 ± 2.6	120	4 SMITH 65 HBC $K^- \rho$ 1.8 GeV/ c
1399.8 ± 2.2	58	⁴ SMITH 65 HBC $K^- \rho$ 1.95 GeV/ ϵ
1392.0 ± 6.2	200	COOPER 64 HBC $K^- \rho$ 1.45 GeV/c
1382 ±3	93	DAHL 61 DBC $K^- d$ 0.45 GeV/ c
1376.0 ± 4.4	224	⁴ ELY 61 HLBC $K^{-} p 1.11 \text{ GeV}/c$

$\Sigma(1385)^{-} - \Sigma(1385)^{+}$ MASS DIFFERENCE

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following o	lata for averages	, fits	, limits,	etc. • • •
- 2 to +6	95 7	BORENSTEIN	74	нвс	K- p 2.18 GeV/c
7.2 ± 1.4		HABIBI	73	HBC	$K^- p \rightarrow \Lambda \pi \pi$
6.3 ± 2.0	7	SIEGEL	67	HBC	$K^- p 2.1 \text{ GeV}/c$
11 ±9	7	LONDON	66	HBC	K-p 2.24 GeV/c
9 ±6		LONDON		HBC	$\Lambda 3\pi$ events
2.0 ± 1.5	7	ARMENTEROS	65B	HBC	$K^- p 0.9-1.2 \text{ GeV}/c$
7.2 ± 2.1	7	SMITH	65	HBC	K- p 1.8 GeV/c
17.2 ± 2.0	7	SMITH	65	HBC	K-p 1.95 GeV/c
17 ±7	7	COOPER	64	HBC	K- p 1.45 GeV/c
4.3 ± 2.2	7	HUWE	64	HBC	$K^{-} \rho 1.22 \text{ GeV}/c$
0.0 ± 4.2	7	ELY	61	HLBC	$K^- \rho$ 1.11 GeV/ c

$\Sigma(1385)^0 - \Sigma(1385)^+$ MASS DIFFERENCE

VALUE (MeV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	following	data for averages, fits	, limits,	etc. • • •
-4 to +4	95	⁷ BORENSTEIN 74	нвс	K [−] p 2.18 GeV/c

$\Sigma(1385)^- - \Sigma(1385)^0$ MASS DIFFERENCE

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
• • • We do not use the follo	owing data for averages, fi	ts, limits	etc. • • •
2.0 ± 2.4	7 THOMAS 73	нвс	$\pi^- D \rightarrow \Lambda \pi^- K^+$

Σ(1385) WIDTHS

		Σ(1385) WIDT	HS		
Σ(1385) ⁺ WIDTH						
VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
35.8 ± 0.8 OUR AVER	AGE	-				
37.2 ± 2.0	1897	- 1	BAUBILLIER	84	HBC	K [−] p 8.25 GeV/c
35.1 ± 1.7	5256	,	AGUILAR	81D	HBC	$K^- p \rightarrow \Lambda \pi \pi 4.2$ GeV/c
37.5 ± 2.0	9361		AGUILAR	810	нвс	$K^- p \rightarrow \Lambda 3\pi 4.2$ GeV/c
35.5 ± 1.9	6900		CAMERON	78	HBC	K- p 0.96-1.36 GeV/c
34.0 ± 1.6	6846	8		74	HBC	$K^- \rho \ 2.18 \ \text{GeV}/c$
38.3 ± 3.2	2300	9	HABIBI	73	HBC	$K^- \rho \rightarrow \Lambda \pi \pi$
32.5 ± 6.0	400		AGUILAR	72 _B	HBC	$K^- \rho \rightarrow \Lambda \pi$'s
36 ± 4	1260		SIEGEL	67	HBC	K ⁻ p 2.1 GeV/c
32.0 ± 4.7	750	9,	ARMENTEROS	65B	HBC	K- p 0.95-1.20 GeV/c
46.5 ± 6.4	859	9 1	HUWE	64	HBC	K-p 1.15-1.30 GeV/c
• • • We do not use the	ne followi	ng da	ita for averages	, fits	, limits,	etc. • • •
40 ± 3	600	(BAKER	80	HYBR	π^+ p 7 GeV/c
37 ± 2	750		BAKER	80	HYBR	K [−] p 7 GeV/c
37 ± 2	7k	1	BAUBILLIER	79B	HBC	K [−] p 8.25 GeV/c
30 ± 4	2k		CAUTIS	79	HYBR	$\pi^{+} \rho / K^{-} \rho$ 11.5 GeV
30 ± 6	100		SUGAHARA	79B	HBC	π p 6 GeV/c
43 ± 5	22k	1,2	BARREIRO	77B	HBC	K [−] p 4.2 GeV/c
34 ± 2	2594	- 1	HOLMGREN	77	HBC	See AGUILAR 81D
40.0 ± 3.2				75	HBC	K [−] p 14.3 GeV/c
48 ± 3	3740	3	BERTHON	74	HBC	K- p 1263-1843 MeV/c
33 ±20	46	9,	AGUILAR	70B	HBC	$K^- p \rightarrow \Sigma \pi$'s 4 GeV/c
25 ± 32	62	9	BIRMINGHAM	66	HBC	K [−] p 3.5 GeV/c
30.3 ± 7.5	250	9 :	SMITH	65	HBC	K [−] p 1.8 GeV/c
33.1 ± 8.3	250	9 :	HTIME	65	HBC	K- p 1.95 GeV/c
51 ±16	170		COOPER	64	HBC	K- p 1.45 GeV/c
48 ±16	154	9	ELY	61	HLBC	$K^- p 1.11 \text{ GeV}/c$
$\Sigma(1385)^0$ WIDTH						
VALUE (MeV)	EVT5		DOCUMENT ID		TECN	COMMENT
36 ± 5 OUR AVER		-	DOCOMENT ID	_	1201	COMMENT
34.8± 5.6	5722	1	AGUILAR	81D	нвс	$K^- p \rightarrow \Lambda 3\pi 4.2$ GeV/c
39.3 ± 10.2	240	9 -	THOMAS	73	HBC	$\pi^- \rho \rightarrow \Lambda \pi^0 \kappa^0$
• • • We do not use the	he followi	ng da	ita for averages	, fits	, limits,	etc. • • •
53 ± 8	3100	10	BORENSTEIN	74	нвс	$K^- \rho \rightarrow \Lambda 3\pi \ 2.18$ GeV/c
30 ± 9	106		CURTIS	63	OSPK	π ⁻ p 1.5 GeV/c
$\Sigma(1385)^-$ WIDTH						
VALUE (MeV)	EVTS		DOCUMENT ID	tor.	TECN	COMMENT See the ideogram below.
38.4±10.7	620		AGUILAR		HBC	$K^- p \rightarrow \Lambda \pi \pi 4.2$
34.6+ 4.2	3346		AGULAR.	91n	HRC	GeV/c

AGUILAR-... 81D HBC

8 BORENSTEIN 74 HBC

9 ARMENTEROS65B HBC

78 HBC

73 HBC

73 HBC

67 HBC

CAMERON

9 HABIBI

⁹ SIEGEL

9 THOMAS

34.6± 4.2

39.2 ± 1.7

 35 ± 3 51.9 ± 4.8

48.2± 7.7

31.0 ± 6.5

38.0± 4.1

3346

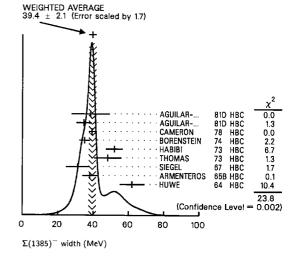
9720

2303

1900

630

370


1382

 $K = p \rightarrow \Lambda 3\pi \ 4.2$ GeV/c

 $K^- p$ 0.96–1.36 GeV/c $K^- p$ 0.96–1.36 GeV/c $K^- p$ 2.18 GeV/c $K^- p \rightarrow \Lambda \pi \pi$ $\pi^- p \rightarrow \Lambda \pi^- K^0$ $K^- p$ 2.1 GeV/c

K⁻ ρ 0.95-1.20 GeV/c K⁻ ρ 1.15-1.30 GeV/c

44 ± 4	4.5k	¹ BAUBILLIER	79B	HBC	K ⁻ ρ 8.25 GeV/c
58 ± 4	150	¹ SUGAHARA	79B	HBC	$\pi^- \rho$ 6 GeV/c
45 ± 5	12k	1,2 BARREIRO	77B	HBC	K- p 4.2 GeV/c
35 ±10	193	HOLMGREN	77	HBC	See AGUILAR 81D
47 ± 6		¹ BARDADIN	75	HBC	K ⁻ p 14.3 GeV/c
40 ± 3	3060	3 BERTHON	74	HBC	K- p 1263-1843 MeV/c
29.2 ± 10.6	120	⁹ SMITH	65	HBC	K [−] p 1.80 GeV/c
17.1 ± 8.9	58	⁹ SMITH	65	HBC	K [−] p 1.95 GeV/c
88 ± 24	200	⁹ COOPER	64	HBC	K ⁻ ρ 1.45 GeV/c
40		DAHL	61	DBC	K- d 0.45 GeV/c
66 ±18	224	9 ELY	61	HLBC	K- p 1.11 GeV/c

Σ(1385) POLE POSITIONS

Σ(1385)' REAL PART	DOCUMENT ID	COMMENT
1379+1	LICHTENBERG74	Extrapolates HABIBI 73
Σ(1385) ⁺ –IMAGINARY PAR		COMMENT
17.5 ± 1.5	LICHTENBERG74	Extrapolates HABIBI 73
Σ(1385) REAL PART	DOCUMENT ID	COMMENT
1383 ± 1	LICHTENBERG74	Extrapolates HABIBI 73
Σ(1385) – IMAGINARY PAR	DOCUMENT ID	COMMENT
22.5±1.5	LICHTENBERG74	Extrapolates HABIBI 73

Σ(1385) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	Λπ	88±2 %
Γ_2	$\Sigma \pi$	12±2 %
Γ_3	$\Lambda \gamma$	
Γ_4	$\Sigma \gamma$	
Γ ₅	NK	
	The above branching	fractions are our estimates, not fits or averages.

Σ(1385) BRANCHING RATIOS

$\Gamma(\Sigma\pi)/\Gamma(\Lambda\pi)$	DOCUMENT ID		TECN	CHG	Γ_2/Γ_1
0.135±0.011 OUR AVERAGE	BOCOMENT IB		JECH	<u> </u>	COMMENT
0.20 ±0.06	DIONISI	78B	HBC	±	$K^- p \rightarrow Y^* K \overline{K}$
0.16 ±0.03	BERTHON	74	нвс	+	K ⁻ ρ 1.26-1.84 GeV/c
0.11 ±0.02	BERTHON	74	нвс	-	K ρ 1.26-1.84 GeV/c
0.21 ±0.05	BORENSTEIN	74	нвс	+	$ \begin{array}{c} K^- p \\ $
0.18 ±0.04	MAST	73	MPWA	±	$ \begin{array}{c} K^{-} p \rightarrow \\ $
0.10 ±0.05	THOMAS	73	нвс	-	$\pi^- \stackrel{\Sigma^- \pi^+ \pi}{p \to \Lambda K \pi}, \Sigma K \pi$

Baryon Full Listings $\Sigma(1385)$, $\Sigma(1480)$ Bumps

+0.586±0.319		11 DEVENISH	74B			dispersion rel.
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}}$ in	$N\overline{K} \rightarrow \Sigma$	$L(1385) \rightarrow \Lambda \pi$		CHG	СОММЕ	(Γ ₅ Γ ₁) ^{1/2} /Γ
< 0.05	90	COLAS				575–970 MeV
$\Gamma(\Sigma\gamma)/\Gamma(\Lambda\pi)$	CL%	DOCUMENT ID		TECN	COMM	Γ ₄ /Γ ₃
< 0.06	90	COLAS	75	HLBC	к- р	575–970 MeV
• • • We do not use						
$\Gamma(\Lambda\gamma)/\Gamma(\Lambda\pi)$ VALUE	CL%	DOCUMENT ID		TECN	сомм	Γ ₃ /Γ _:
0.17 ± 0.17	1	MEISNER	72	нвс	1 eve	nt only
• • • We do not use	the following	ng data for average	es, fits	, limits,	etc. •	• •
$\Gamma(\Lambda\gamma)/\Gamma_{total}$	EVTS	DOCUMENT ID		<u>TECN</u>	COMM	Г ₃ /Г <u>немт</u>
<0.04 0.04 ±0.04		ALSTON BASTIEN	62 61	HBC HBC	±0 ±	K [−] p 1.15 GeV/c
• • • We do not use	the following	ng data for average	es, fits	, limits	etc. •	• •
0.09 ± 0.04		HUWE	64	нвс	\pm	K- p 1.2-1.7 GeV
$\begin{array}{c} 0.08 & \pm 0.06 \\ 0.163 \pm 0.041 \end{array}$		LONDON ARMENTER		нвс нвс	+ ±	K ⁻ p 2.24 GeV/c K ⁻ p 0.95-1.20 GeV/c
0.13 ±0.04 0.13 ±0.04		COLLEY PAN		HBC DBC	_0 +	$K^- N 1.5 \text{ GeV}/c$ $\pi^+ \rho \rightarrow \Lambda K \pi$, $\Sigma K \pi$
0.16 ±0.07		AGUILAR			+	K ⁻ ρ 3.9, 4.6 GeV/c

Σ(1385) FOOTNOTES

- ¹ From fit to inclusive $\Lambda \pi$ spectrum.
- ² Includes data of HOLMGREN 77.
- ⁴ Includes data of HOLMGREN 77. ³ The errors are statistical only. The resolution is not unfolded. ⁴ The error is enlarged to $\Gamma/N^{1/2}$. See the note on the K^* (892) mass in the 1984 edition. ⁵ From a fit to $\Lambda\pi^0$ with the width fixed at 34 MeV. ⁶ From fit to inclusive $\Lambda\pi^0$ spectrum with the width fixed at 40 MeV.

- Results from $\Lambda \pi^+ \pi^-$ and $\Lambda \pi^+ \pi^- \pi^0$ combined by us. 9 The error is enlarged to $4\Gamma/N^{1/2}$. See the note on the $K^*(892)$ mass in the 1984
- edition. 10 Consistent with +, 0, and widths equal.
- $^{11}\,\mathrm{An}$ extrapolation of the parametrized amplitude below threshold.

Σ(1385) REFERENCES

BAUBILLIER 84	ZPHY C23 213	→ (BIRM, CERN, GLAS, MSU, LPNP)
AGUILAR 81D	AFIS A77 144	Aguilar-Benitez, Salicio (MADR)
BAKER 80	NP B166 207	+Chima, Dornan, Gibbs, Hall, Miller+ (LOIC)
BAUBILLIER 79B	NP B148 18	 + (BIRM, CERN, GLAS, MSU, LPNP)
CAUTIS 79	NP B156 507	+Ballam, Bouchez, Carroll, Chadwick+ (SLAC)
SUGAHARA 79B	NP B156 237	+Ochiai, Fukui, Cooper+ (KEK, OSKC, KINK)
CAMERON 78	NP B143 189	+Franek, Gopal, Bacon, Butterworth+ (RHEL, LOIC)
DIONISI 78B	PL 78B 154	+Armenteros, Diaz (CERN, AMST, NIJM, OXF)
BARREIRO 77B	NP B126 319	+Berge, Ganguli, Blokzijl+ (CERN, AMST, NIJM)
HOLMGREN 77	NP B119 261	+Aguilar-Benitez, Kluyver+ (CERN, AMST, NIJM)
BARDADIN 75	NP B98 418	Bardadin-Otwinowska+ (SACL, EPOL, RHEL)
COLAS 75	NP B91 253	+Farwell, Ferrer, Six (ORSA)
BERTHON 74	NC 21A 146	+ Tristram+ (CDEF, RHEL, SACL, STRB)
BORENSTEIN 74	PR D9 3006	+Kalbfleisch, Strand- (BNL, MICH)
DEVENISH 74B	NP B81 330	+ Froggatt, Martin (DESY, NORD, LOUC)
LICHTENBERG 74	PR D10 3865	(IND)
Also 74B	Private Comm.	Lichtenberg (IND)
HABIBI 73	Nevis 199 Thesis	(COLU)
Also 73	Purdue Conf. 387	Baltay, Bridgewater, Cooper+ (COLU, BING)
MAST 73	PR D7 3212	+Bangerter, Alston-Garnjost+ (LBL) IJP
Also 73B	PR D7 5	Mast, Bangerter, Alston-Garnjost + (LBL) IJP
THOMAS 73	NP B56 15	→Engler, Fisk, Kraemer (CMU) JP
AGUILAR 72B	PR D6 29	Aguilar-Benitez, Chung, Eisner, Samios (BNL)
MEISNER 72	NC 12A 62	(UNC, LBL)
COLLEY 71B	NP B31 61	+Cox, Eastwood, Fry+ (BIRM, EDIN, GLAS, LOIC)
AGUILAR 70B	PRL 25 58	Aguilar-Benitez, Barnes, Bassano+ (BNL, SYRA)
PAN 69	PRL 23 808	+Forman (PENN)!
SIEGEL 67	UCRL 18041 Thesis	(LRL)
BIRMINGHAM 66	PR 152 1148	(BIRM, GLAS, LOIC, OXF, RHEL)
LONDON 66	PR 143 1034	+Rau, Goldberg, Lichtman+ (BNL, SYRA) J
ARMENTEROS 65B	PL 19 75	+ (CERN, HEID, SACL)
SMITH 65	UCLA Thesis	(UCLA)
COOPER 64	PL 8 365	+Filthuth, Fridman, Malamud+ (CERN, AMST)
HUWE 64	UCRL 11291 Thesis	(LRL) JP
Also 69	PR 180 1824	Huwe (LRL)
CURTIS 63	PR 132 1771	+Coffin, Meyer, Terwilliger (MICH) J
ALSTON 62	CERN Conf. 311	+ Alvarez, Ferro-Luzzi+ (LRL)
BASTIEN 61	PRL 6 702	+Ferro-Luzzi, Rosenfeld (LRL)
DAHL 61	PRL 6 142	+Horwitz, Miller, Murray, White (LRL)
ELY 61	PRL 7 461	+Fung, Gidal, Pan, Powell, White (LRL) J
ALSTON 60	PRL 5 520	+Alvarez, Eberhard, Good, Graziano+ (LRL)

$\Sigma(1480)$ Bumps

 $I(J^P) = 1(??)$ Status: *

OMITTED FROM SUMMARY TABLE

These are peaks seen in $\Lambda \pi$ and $\Sigma \pi$ spectra in the reaction $\pi^+ p \to (Y \pi) K^+$ at 1.7 GeV/c. Also, the Y polarization oscillates in the same region.

MILLER 70 suggests a possible alternate explanation in terms of a reflection of N(1675) $\to \Lambda K$ decay. However, such an explanation for the $(\Sigma^+ \pi^0) K^+$ channel in terms of $\Delta(1650) \rightarrow \Sigma K$ decay seems unlikely (see PAN 70). In addition such reflections would also have to account for the oscillation of the Y polarization in the 1480 MeV region.

HANSON 71, with less data than PAN 70, can neither confirm nor deny the existence of this state. MAST 75 sees no structure in this region in $K^- \rho \to \Lambda \pi^0$.

ENGELEN 80 performs a multichannel analysis of $K^-p \to p\overline{K}^0\pi^-$ at 4.2 GeV/c. They observe a 3.5 standard-deviation signal at 1480 MeV in $p\overline{K}^0$ which cannot be explained as a reflection of any competing channel.

Σ(1480) MASS (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1480	120	ENGELEN	80	HBC	+	K- p →
						$(\rho \overline{K}^0) \pi^-$
1485 ± 10		CLINE	73	MPWA	-	$K^- d \rightarrow (\Lambda \pi^-) p$
1479 ± 10		PAN	70	HBC	+	$\pi^+ p \rightarrow$
						$(\Lambda \pi^+) K^+$
1465 ± 15		PAN	70	нвс	+	
1465 ± 15		PAN	70	нвс	+	$(\Lambda \pi^{+}) K^{+}$ $\pi^{+} p \rightarrow (\Sigma \pi) K^{+}$

$\Sigma(1480)$ WIDTH (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
80 ± 20	120	ENGELEN	80	нвс	+	$K^- \rho \rightarrow$
						$(\rho \overline{\kappa}^0) \pi^-$
40 ± 20		CLINE	73	MPWA	-	$K^- d \rightarrow (A \pi^-) p$
31 ± 15		PAN	70	нвс	+	$(\tilde{\Lambda}\pi^{-})p$ $\pi^{+}p \rightarrow$
						$(\Lambda \pi^{+}) K^{+}$ $\pi^{+} p \rightarrow$
30 ± 20		PAN	70	HBC	+	$\pi^+ p \rightarrow$
						$(\Sigma \pi) K^+$

Σ(1480) DECAY MODES (PRODUCTION EXPERIMENTS)

		Σ(1/8)) RRAM	CHING R	ATIOS	
Γ ₂	_					

Mode NK Γ_1

(PRODUCTION EXPERIMENTS)

$\Gamma(\Sigma\pi)/\Gamma(\Lambda\pi)$ VALUE 0.82 ± 0.51	DOCUMENT ID	70	TECN HBC	Γ_3/Γ_2
$\frac{\Gamma(N\overline{K})/\Gamma(\Lambda\pi)}{\frac{VALUE}{0.72\pm0.50}}$	DOCUMENT ID	70	<i>TECN</i> HBC	Γ ₁ /Γ ₂ +
$\Gamma(N\overline{K})/\Gamma_{\text{total}}$ <u>VALUE</u> small	DOCUMENT ID	73	TECN_ MPWA	$\frac{\Gamma_1/\Gamma}{\frac{\textit{COMMENT}}{\textit{K}^- \textit{d} \rightarrow (\Lambda \pi^-) \textit{p}}}$

Σ(1480) REFERENCES (PRODUCTION EXPERIMENTS)

ENGELEN	80	NP B167 61	 Jongejans, Dionisi+ (NIJM, AMST,	CERN, OXF)
MAST	75	PR D11 3078	 Alston-Garnjost, Bangerter + 		(LBL)
CLINE	73	LNC 6 205	- Laumann, Mapp		(WISC) IJP
HANSON	71	PR D4 1296	+Kalmus, Louie		(LBL)1
MILLER	70	Duke Conf. 229			(PURD)
PAN	70	PR D2 49	+Forman, Ko, Hagopian, Selove		(PENN)
Also	69	PRL 23 808	Pan, Forman		(PENN) I
Also	698	PRL 23 806	Pan, Forman		(PENN) I

 $\Sigma(1560)$ Bumps

 $I(J^P) = 1(??)$ Status: **

OMITTED FROM SUMMARY TABLE

This entry lists peaks reported in mass spectra around 1560 MeV without implying that they are necessarily related.

DIONISI 78B observes a 6 standard-deviation enhancement at 1553 MeV in the charged $\Lambda/\Sigma\pi$ mass spectra from $K^-p\to (\Lambda/\Sigma)\pi K\overline{K}$ at 4.2 GeV/c. In a CERN ISR experiment, LOCKMAN 78 reports a narrow 6 standard-deviation enhancement at 1572 MeV in $\Lambda\pi^\pm$ from the reaction $pp\to \Lambda\pi^+\pi^-X$. These enhancements are unlikely to be associated with $\Sigma(1580)$ (which has not been confirmed by several recent experiments – see the next entry in the Listings).

CARROLL 76 observes a bump at 1550 MeV (as well as one at 1580 MeV) in the isospin-1 \overline{KN} total cross section, but uncertainties in cross section measurements outside the mass range of the experiment preclude estimating its significance.

See also MEADOWS 80 for a review of this state.

Σ (1560) MASS (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1553 ± 7	121	DIONISI	78B	нвс	±	K ⁻ p →
1572±4	40	LOCKMAN	78	SPEC	±	$ \begin{array}{c} (Y\pi)K\overline{K} \\ \rho\rho \to \Lambda\pi^+\pi^- \\ X \end{array} $

Σ(1560) WIDTH (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
79 ± 30	121	DIONISI	78B	нвс		κ ⁻ p →
15± 6	40	¹ LOCKMAN	78	SPEC	±	$ \begin{array}{c} (Y\pi)K\overline{K} \\ pp \to \Lambda\pi^+\pi^- \\ X \end{array} $

Σ(1560) DECAY MODES (PRODUCTION EXPERIMENTS)

	Mode	 _	
Γ_1	$\Lambda \pi$	 	
Γ_2	$\Sigma \pi$		

Σ (1560) BRANCHING RATIOS (PRODUCTION EXPERIMENTS)

$\frac{\Gamma(\Sigma\pi)/\left[\Gamma(\Lambda\pi) + \Gamma(\Sigma\pi)\right]}{\frac{VALUE}{0.35 \pm 0.12}}$	DOCUMENT ID	78B HBC	<u>СНG</u> ±	$\begin{array}{c} \Gamma_2/(\Gamma_1+\Gamma_2) \\ \frac{COMMENT}{K^- \rho \rightarrow} \\ (Y\pi)K\overline{K} \end{array}$
$\Gamma(\Lambda\pi)/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID	TECN	<u>CHG</u>	COMMENT
seen	LOCKMAN	78 SPEC	±	$pp \rightarrow \Lambda \pi^+ \pi^-$

$\Sigma(1560)$ FOOTNOTES (PRODUCTION EXPERIMENTS)

 $^{1}\,\mathrm{The}$ width observed by LOCKMAN 78 is consistent with experimental resolution.

Σ (1560) REFERENCES (PRODUCTION EXPERIMENTS)

MEADOWS DIONISI LOCKMAN CARROLL	80 78B 78 76	Toronto Conf. 283 PL 78B 154 CEN DPHPE 78-01 PRL 37 806	+Armenteros, Diaz (CERN, +Meyer, Rander, Poster, Schlein+ +Chiang, Kycia, Li, Mazur, Michael+	(CINC) AMST, NIJM, OXF) I (UCLA, SACL)
CARROLL	76	PRL 37 806	+Chiang, Kycia, Li, Mazur, Michael+	(BNL) I

$\Sigma(1580) D_{13}$

 $I(J^P) = 1(\frac{3}{2})$ Status: **

OMITTED FROM SUMMARY TABLE

Seen in the isospin-1 $\overline{K}\,N$ cross section at BNL (LI 73, CARROLL 76) and in a partial-wave analysis of $K^-p\to \Lambda\pi^0$ for c.m. energies 1560–1600 MeV by LITCHFIELD 74. LITCHFIELD 74 finds $J^P=3/2^-$. Not seen by ENGLER 78 or by CAMERON 78C (with larger statistics in $K^0_L p\to \Lambda\pi^+$ and $\Sigma^0\pi^+$).

	Σ(1580) MA	SS		
VALUE (MeV) 1583 ± 4	DOCUMENT ID			
1582±4	² LITCHFIELD	76 74	DPWA	Isospin-1 total α $K^- p \rightarrow \Lambda \pi^0$
	Σ(1580) WID	ТН		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
15	¹ CARROLL ² LITCHFIELD	76	DPWA	Isospin-1 total σ
11±4	² LITCHFIELD	74	DPWA	$K^- p \rightarrow \Lambda \pi^0$
	Σ(1580) DECAY N	MOE	DES	
Mode				
$\Gamma_1 = N\overline{K}$				
$\Gamma_2 \Lambda \pi$				
Γ_3 $\Sigma \pi$				

Σ(1580) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID			COMMENT
$+0.03\pm0.01$	² LITCHFIELD	74	DPWA	KN multichannel
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \frac{VALUE}{2}$	DOCUMENT ID		<u>TECN</u>	$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
not seen	CAMERON	78c	нвс	$K_I^0 \rho \rightarrow \Lambda \pi^+$
not seen	ENGLER	78	нвс	$\kappa_{IP}^{0} \rightarrow \Lambda \pi^{+}$
$+0.10\pm0.02$	CAMERON ENGLER 2 LITCHFIELD	74	DPWA	$\kappa^{\perp} \rho \rightarrow \Lambda \pi^{0}$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow VALUE$	$\Sigma(1580) \rightarrow \Sigma \pi$		TECN	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
not seen	CAMERON	78c	HBC	
not seen	ENGLER	78	нвс	$\begin{array}{ccc} \kappa_{I}^{0} \rho \rightarrow & \Sigma^{0} \pi^{+} \\ \kappa_{I}^{0} \rho \rightarrow & \Sigma^{0} \pi^{+} \end{array}$
$+0.03\pm0.04$	² LITCHFIELD	74		KN multichannel

$\Sigma(1580)$ FOOTNOTES

- $\frac{1}{2}$ CARROLL 76 sees a total-cross-section bump with (J+1/2) $\Gamma_{\mbox{el}}$ / $\Gamma_{\mbox{total}}$ = 0.06.
- ² The main effect observed by LITCHFIELD 74 is in the $\Lambda\pi$ final state; the $\overline{K}N$ and $\Sigma\pi$ couplings are estimated from a multichannel fit including total-cross-section data of LI 73.

Σ(1580) REFERENCES

CAMERON ENGLER CARROLL LITCHFIELD LI	78C 78 76 74 73	NP B132 189 PR D18 3061 PRL 37 806 PL 51B 509 Purdue Conf. 283	+Capiluppi+ (BGNA, EDIN, GLAS +Keyes, Kraemer, Tanaka, Cho+ +Chiang, Kycla. Li, Mazur, Michael+	, PISA, RHEL) I (CMU, ANL) (BNL) I (CERN) IJP (BNL) I
		ОТНЕ	R RELATED PAPERS —	
ENGLER	76	PL 63B 231	+Keves, Kraemer, Schlereth, Tanaka+	(CMIL AND)

$\Sigma(1620)$, $\Sigma(1620)$ Production Experiments

 $\Sigma(1620) S_{11}$

 $I(J^P) = 1(\frac{1}{2})$ Status: **

OMITTED FROM SUMMARY TABLE

The S_{11} state at 1697 MeV reported by VANHORN 75 is tentatively listed under the Σ (1750). CARROLL 76 sees two bumps in the isospin-1 total cross section near this mass.

Production experiments are listed separately in the next entry.

	Σ(1620) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1600 ± 6	¹ MORRIS	78	DPWA	$K^- n \rightarrow \Lambda \pi^-$
1608 ± 5	² CARROLL	76		Isospin-1 total σ
1633±10	³ CARROLL	76		Isospin-1 total σ
1630 ± 10	LANGBEIN	72		K N multichannel
1620	KIM	71	DPWA	K-matrix analysis
	Σ(1620) WID	ТН		
VALUE (MeV)	Σ(1620) WID	ТН	TECN	COMMENT
<u>VALUE (MeV)</u> 87 + 19	, ,	TH 		$\frac{\textit{COMMENT}}{\textit{K}^- \textit{n} \rightarrow \Lambda \pi^-}$
87 ± 19	DOCUMENT ID		DPWA	
	DOCUMENT ID	78	DPWA DPWA DPWA	$K^- n \rightarrow \Lambda \pi^-$ Isospin-1 total σ Isospin-1 total σ
87 ± 19 15	DOCUMENT ID 1 MORRIS 2 CARROLL	78 76	DPWA DPWA DPWA	$K^- n \rightarrow \Lambda \pi^-$ Isospin-1 total σ

Σ(1620) DECAY MODES

Γ ₁	ΝK
Γ_2	Λπ
Γ.	$\sum \pi$

Mode

Σ(1620) BRANCHING RATIOS

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.22±0.02	LANGBEIN	72	IPWA	K N multichannel
0.05	KIM	71	DPWA	K-matrix analysis
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow VALUE}$	$\Sigma(1620) \rightarrow \Lambda \pi$ DOCUMENT ID		<u>TECN</u>	$\frac{(\Gamma_1\Gamma_2)^{1/2}/\Gamma}{COMMENT}$
0.12+0.02	1 MORRIS	78	DPWA	$K^- n \rightarrow \Lambda \pi^-$
not seen	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda \pi$
0.15	KIM	71	DPWA	K-matrix analysis
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to VALUE}$	$\Sigma(1620) \rightarrow \Sigma \pi$		<u>TECN</u>	$(\Gamma_1\Gamma_3)^{1/2}/\Gamma$
not seen	HEPP	768	DPWA	$K^- N \rightarrow \Sigma \pi$
0.40 ± 0.06	LANGBEIN	72	IPWA	K N multichannel
0.08	KIM	71	DPWA	K-matrix analysis

$\Sigma(1620)$ FOOTNOTES

- 1 MORRIS 78 obtains an equally good fit without including this resonance.
- 2 Total cross-section bump with (J+1/2) $\Gamma_{\rm el}$ / $\Gamma_{\rm total}$ is 0.06 seen by CARROLL 76.
- 3 Total cross-section bump with (J+1/2) $\Gamma_{\rm el}$ / $\Gamma_{\rm total}$ is 0.04 seen by CARROLL 76.

Σ(1620) REFERENCES

PRL 37 806 B PL 65B 487 NP 894 39 NP 887 145 B NP 887 157 NP B47 477 PRL 27 356	+ Albright, Colleraine, Kimel, Lannutti + Chiang, Kycia, Li, Mazur, Michael - + Braun, Grimm, Strobele+ + Litchfield VanHorn - Wagner Kim	(FSU) IJP (BNL) I (CERN, HEID, MPIM) IJP (CERN, RHEL) IJP (LBL) IJP (MPIM) IJP (HARV) IJP (HARV) IJP
665	6 PRL 37 806 66B PL 65B 487 5 NP 894 39 5 NP 687 145 55B NP 687 157 72 NP 847 477 71 PRL 27 356	6 PER 37 806 + Chiang, Kycia, Li, Mazur, Michael - Baun, Grimm, Strobele + Baun, Grimm, Strobele + Linchfield 5 N P 893 39 + Linchfield 5 N P 887 145 - VanHorn 7 N P 887 157 VanHorn 12 N P 887 157 - Wagner 1 PRL 27 356

$\Sigma(1620)$ Production Experiments

 $I(J^P) = 1(??)$

OMITTED FROM SUMMARY TABLE

Formation experiments are listed separately in the previous entry.

The results of CRENNELL 69B at $3.9~{\rm GeV}/c$ are not confirmed by SABRE 70 at $3.0~{\rm GeV}/c$. However, at $4.5~{\rm GeV}/c$, AMMANN 70 sees a peak at 1642 MeV which on the basis of branching ratios they do not associate with the $\Sigma(1670)$. See MILLER 70 for a review of these conflicts.

Σ(1620) MASS (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1642±12		AMMANN	70	DBC		K⁻ N 4.5 GeV/c
1618± 3	20	BLUMENFELD	69	HBC	+	$\kappa_L^0 p$
1619 ± 8						$K^{-}N \rightarrow \Lambda \pi \pi \pi$
• • • We do not us	e the following	data for averages	, fits	s, limits,	etc. •	• •
1616± 8		CRENNELL	68	DBC	±	See CREN- NELL 698

Σ (1620) WIDTH (PRODUCTION EXPERIMENTS)

VALUE (MeV)E	VTS	DOCUMENT ID		TECN	CHG	COMMENT
55 ± 24		AMMANN	70	DBC		K™ N 4.5 GeV/c
30±10	20	BLUMENFELD	69	HBC	+	
72 - 22		CRENNELL	69в	DBC	±	
• • • We do not use the	following o	lata for averages	, fits	, limits,	etc. •	• •
66±16		CRENNELL	68	DBC	±	See CREN- NELL 69B

Σ (1620) DECAY MODES (PRODUCTION EXPERIMENTS)

	Mode
Г1	NK
Γ_2	$\Lambda\pi$
Γ3	$\Sigma \pi$
Γ4	$\Lambda\pi\pi$
Γ_5	$\Sigma(1385)\pi$
Γ ₆	$\Lambda(1405)\pi$

Σ (1620) BRANCHING RATIOS (PRODUCTION EXPERIMENTS)

$\Gamma(\Lambda\pi\pi)/\Gamma(\Lambda\pi)$					Γ_4/Γ_2
	VTS	DOCUMENT ID		TECN	<u>CHG</u>
~ 2.5	14	BLUMENFELD	69	HBC	+
$\Gamma(N\overline{K})/\Gamma(\Lambda\pi)$					Γ_1/Γ_2
VALUE		DOCUMENT ID		TECN	CHG COMMENT
0.4 + 0.4		AMMANN	70	DBC	$K^- p$ 4.5 GeV/c
0.0±0.1		CRENNELL	68	DBC	- See CREN- NELL 698
$\Gamma(\Lambda\pi)/\Gamma_{\text{total}}$					Γ_2/Γ
VALUE		DOCUMENT ID		TECN_	<u>CHG</u>
large		CRENNELL	68	DBC	=
$\Gamma(\Sigma(1385)\pi)/\Gamma(\Lambda\pi)$					Γ_5/Γ_2
VALUE	C1.%	DOCUMENT ID		TECN_	CHG COMMENT
< 0.3	95	AMMANN	70	DBC	K ⁻ ρ 4.5 GeV/c
0.2±0.1	,,	CRENNELL	68	DBC	±
$\Gamma(\Sigma\pi)/\Gamma(\Lambda\pi)$					Γ_3/Γ_2
VALUE	CL%	DOCUMENT ID		TECN_	COMMENT
<1.1	95	AMMANN	70	DBC	\mathcal{K}^- N 4.5 GeV/ c
$\Gamma(\Lambda(1405)\pi)/\Gamma(\Lambda\pi)$					Γ_6/Γ_2
VALUE		DOCUMENT ID		TECN_	COMMENT
0.7 ± 0.4	_	AMMANN	70	DBC	K- p 4.5 GeV/c

Σ(1620) REFERENCES (PRODUCTION EXPERIMENTS)

AMMANN	70	PRL 24 327	+Garfinkel, Carmony, Gutay+	(PURD, IND)
Also	73	PR D7 1345	Ammann, Carmony, Garfinkel+	(PURD, IUPU)
MILLER	70	Duke Conf. 229	,,	(PURD)
SABRE	70	NP B16 201	Barloutaud, Merril, Schever+	(SABRE Collab.)
BLUMENFELD	69	PL 29B 58	+Kalbfleisch	(BNL) I
CRENNELL	69B	Lund Paper 183	+Karshon, Lai, O'Neil, Scarr+	(BNL, CUNY)
Results are	quot	ed in LEVI-SETTI 69C.		
Also	69C	Lund Conf.	Levi-Setti	(EFI)
CRENNELL	68	PRL 21 648	+Delaney, Flaminio, Karshon+	(BNL, CUNY) I
			•	, , , , ,

$\Sigma(1660) P_{11}$

$$I(J^P) = 1(\frac{1}{2}^+)$$
 Status: ***

For results published before 1974 (they are now obsolete), see our 1982 edition (Physics Letters 111B).

Σ(1660) MASS						
VALUE		DOCUMENT ID		TECN	COMMENT	
1.630	to 1690 OUR ESTIMATE					
1.665.1	1 ± 11.2	1 KOISO	85	DPWA	$K^- p \rightarrow \Sigma \pi$	
1670	±10	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
1.679	±10	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
1676	±15	GOPAL	77	DPWA	K N multichannel	
1668	±25	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$	
1670	±20	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$	
	We do not use the following	data for average	s, fit:	s, limits,	etc. • • •	
1565	or 1597	² MARTIN	77	DPWA	K N multichannel	
1660	±30	3 BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda\pi$	
1671	± 2	⁴ PONTE	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$	

Σ(1660) WIDTH

VALUE (MeV)	DOCUMENT ID		COMMENT
40 to 200 OUR ESTIMATE	Our best guess is 100 M	1eV.	
81.5 ± 22.2	¹ KOISO 8	5 DPWA	$K^- \rho \rightarrow \Sigma \pi$
152 ± 20	GOPAL 8	30 DPWA	$\overline{K}N \rightarrow \overline{K}N$
38 ± 10	ALSTON 7	78 DPWA	$\overline{K}N \rightarrow \overline{K}N$
120 ± 20	GOPAL 7	77 DPWA	K N multichannel
$230 \begin{array}{c} +165 \\ -60 \end{array}$	VANHORN 7	75 DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
250 ±110	KANE 7	74 DPWA	$K^- \rho \rightarrow \Sigma \pi$
• • • We do not use the foll	owing data for averages,	fits, limits,	etc. • • •
202 or 217 80 ± 40 81 ± 10	² MARTIN 7 ³ BAILLON 7 ⁴ PONTE 7	75 IPWA	$\overline{K}N \rightarrow \Lambda\pi$

Σ(1660) DECAY MODES

	Mode	Fraction (Γ_I/Γ)
	NK	10-30 %
	$\Lambda\pi$	seen
L^3	$\Sigma \pi$	seen

Σ(1660) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ			
VALUE	DOCUMENT, ID		TECN	COMMENT			
0.1 to 0.3 OUR ESTIMATE							
0.12 ± 0.03	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$			
0.10 ± 0.05	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$			
• • • We do not use the follow	ing data for averag	es, fit	s, limits,	etc. • • •			
< 0.04	GOPAL	77	DPWA	See GOPAL 80			
0.27 or 0.29	² MARTIN	77	DPWA	K N multichannel			
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\overline{K} \to$	$\Sigma(1660) \rightarrow \Lambda \pi$			(Γ₁Γ₂) ^⅓ 2/Γ			
VALUE	DOCUMENT ID		TECN	COMMENT			
< 0.04	GOPAL	77	DPWA	K N multichannel			
$0.12^{+0.12}_{-0.04}$	VANHORN	75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$			
• • • We do not use the following data for averages, fits, limits, etc. • •							
-0.10 or -0.11		77	DPWA	K N multichannel			
-0.04 ± 0.02	3 BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda\pi$			

75 DPWA $K^- \rho \rightarrow \Lambda \pi^0$

 $+0.16 \pm 0.01$

VALUE	DOCUMENT	D	TECN	COMMENT
-0.13 ± 0.04	¹ KOISO	85	DPWA	$K^- p \rightarrow \Sigma \pi$
-0.16 ± 0.03	GOPAL	77	DPWA	KN multichannel
-0.11 ± 0.01	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
 We do not use the 	following data for avera	ges, fit	s, limits,	etc. • • •
-0.34 or -0.37	² MARTIN	77	DPWA	K N multichannel
not seen	HEPP	76B	DPWA	$K^- N \rightarrow \Sigma \pi$

Σ(1660) FOOTNOTES

 $^1{\rm The}$ evidence of KOISO 85 is weak. $^2{\rm The}$ two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

³ From solution 1 of BAILLON 75; not present in solution 2.

 $^4\,\mathrm{From}$ solution 2 of PONTE 75; not present in solution 1.

Σ(1660) REFERENCES

KOISO	85	NP A433 619	+Sai, Yamamoto, Kofler	(TOKY, MASA)
GOPAL	80	Toronto Conf. 159		(RHEL) IJP
ALSTON	78	PR D18 182	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
Also	77	PRL 38 1007	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock	(LOUC)
Also	77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
HEPP	76B	PL 65B 487	+Braun, Grimm, Strobele+	(CERN, HEID, MPIM) IJP
BAILLON	75	NP B94 39	+Litchfield	(CERN, RHEL) IJP
PONTE	75	PR D12 2597	+Hertzbach, Button-Shafer+	(MASA, TENN, UCR) IJP
VANHORN	75	NP B87 145		(LBL) IJP
Also	75B	NP B87 157	VanHorn	(LBL) UP
KANE	74	LBL-2452		(LBL) IJP

NOTE ON THE $\Sigma(1670)$ REGION

Production experiments: The measured $\Sigma \pi / \Sigma \pi \pi$ branching ratio for produced $\Sigma(1670)$'s is strongly dependent on momentum transfer. This was first discovered by EBERHARD 69, who suggested that there exist two Σ resonances with the same mass and quantum numbers: one with a large $\Sigma \pi \pi$ [mainly $\Lambda(1405)\pi$] decay mode produced peripherally, and the other with a large $\Sigma\pi$ decay mode produced at larger angles. These results were confirmed by AGUILAR-BENITEZ 70, ASPELL 74, ESTES 74, and TIMMERMANS 76. The most likely quantum numbers for both the $\Sigma \pi$ and the $\Lambda(1405)\pi$ states are D_{13} . There is also possibly a third Σ , the $\Sigma(1690)$ in the Listings, the main evidence for which is a large $\Lambda \pi / \Sigma \pi$ branching ratio. These topics have been reviewed by EBERHARD 73 and by MILLER 70.

Formation experiments: Two states are also observed near this mass in formation experiments. One of these, the $\Sigma(1670)D_{13}$, has the same quantum numbers as those observed in production and has a large $\Sigma \pi / \Sigma \pi \pi$ branching ratio; it may well be the $\Sigma(1670)$ produced at larger angles (see TIMMERMANS 76). The other state, the $\Sigma(1660)P_{11}$, has different quantum numbers from those seen in production, and its $\Sigma \pi / \Sigma \pi \pi$ branching ratio is unknown. Thus its relation to the produced $\Sigma(1670)$'s is obscure.

Baryon Full Listings $\Sigma(1670)$

$\Sigma(1670) D_{13}$

 $I(J^P) = 1(\frac{3}{2})$ Status: ***

For most results published before 1974 (they are now obsolete), see our 1982 edition (Physics Letters 111B).

Results from production experiments are listed separately in the next entry.

Σ(1670) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1665 to 1685 OUR ESTIMATE				
1665.1 ± 4.1	KOISO	85		$K^- p \rightarrow \Sigma \pi$
1682 ± 5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1679 ±10	ALSTON	78	DPWA	$\overline{K} N \rightarrow \overline{K} N$
1670 ± 5	GOPAL	77	DPWA	\overline{K} N multichannel
1670 ± 6	HEPP	768	DPWA	$K^- N \rightarrow \Sigma \pi$
1685 ±20	BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi$
1659 + 12 - 5	VANHORN	75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
1670 ± 2	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
• • • We do not use the following	data for average	s, fits	, limits,	etc. • • •
1667 or 1668	1 MARTIN	77	DPWA	K N multichannel
1650	DEBELLEFON	76	IPWA	$K^- \rho \rightarrow \Lambda \pi^0$
1671 ± 3	PONTE	75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$ (sol. 1)
1655 ± 2	PONTE	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$ (sol. 2)

Σ(1670) WIDTH

VALUE (MAL)	DOCUMENT ID	,	TECN	COMMENT
VALUE (MeV)			LCN	COMMENT
40 to 80 OUR ESTIMATE Or	ir best guess is 60 ivie	٧.		
65.0 ± 7.3				$K^- p \rightarrow \Sigma \pi$
79 ±10	GOPAL			
56 ±20	ALSTON	78 E	DPWA	$\overline{K}N \rightarrow \overline{K}N$
50 ± 5	GOPAL	77 E	DPWA	K N multichannel
56 ± 3	HEPP	76B [AWPC	$K^- N \rightarrow \Sigma \pi$
85 ± 25				$\overline{K}N \rightarrow \Lambda \pi$
32 ±11	VANHORN	75 E	DPWA	$K^- p \rightarrow \Lambda \pi^0$
79 ± 6	KANE	74 [DPWA	$K^- \rho \rightarrow \Sigma \pi$
• • • We do not use the follow	ving data for averages	, fits,	limits,	etc. • • •
46 or 46	¹ MARTIN	77 F	DPWA	K N multichannel
80	DEBELLEFON	76 1	DIA/A	$\kappa = 0 \rightarrow \Lambda \pi^0$
44 ±11	PONTE			$K^- p \rightarrow \Lambda \pi^0$ (soi. 1)
76 ± 5	PONTE	75 E	DPWA	$K^- p \rightarrow \Lambda \pi^0$ (sol. 2)

Σ(1670) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ_1	NK	7–13 %	
Γ_2	$\Lambda \pi$	5-15 %	
Γ_3	$\Sigma \pi$	30-60 %	
Γ4	Λ π π		
Γ ₅	Σππ		
Γ6	$\Sigma(1385)\pi$		
Γ ₇	$\Sigma(1385)\pi$, S-wave		
Γ8	$\Lambda(1405)\pi$		
Γg	Λ(1520)π		

The above branching fractions are our estimates, not fits or averages.

Σ(1670) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.07 to 0.13 OUR ESTIMATE				
0.10 ± 0.03	GOPAL			$\overline{K}N \to \overline{K}N$
0.11 ± 0.03	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
• • • We do not use the follow	ving data for average	s, fit	s, limits,	etc. • • •
0.08 ± 0.03	GOPAL			See GOPAL 80
0.07 or 0.07	¹ MARTIN	77	DPWA	\overline{K} N multichannel
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	$\Sigma(1670) \rightarrow \Lambda \pi$			$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
0.17 ±0.03	² MORRIS	78	DPWA	$K^- n \rightarrow \Lambda \pi^-$
0.13 ± 0.02	² MORRIS	78	DPWA	$K^- n \rightarrow \Lambda \pi^-$
+0.10 ±0.02	GOPAL	77	DPWA	K N multichannel
+0.06 ±0.02	BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi$
+0.09 ±0.02	VANHORN	75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
$+0.018 \pm 0.060$	DEVENISH	746	3	Fixed-t dispersion rel.

+0.08 or +0.08	¹ MARTIN	77	DPWA	K N mult	ichannel
+ 0.05	DEBELLEFO	N 76	IPWA	$K^- \rho \rightarrow$	$\Lambda \pi^0$
0.08 ±0.01	PONTE	75	DPWA	K- p →	$\Lambda \pi^0$ (sol. 1
0.17 ± 0.01	PONTE	75	DPWA	$K^-p \rightarrow$	$\Lambda \pi^0$ (sol. 2
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} -$	→ Σ(1670) → Σπ				$(\Gamma_1\Gamma_3)^{1/2}$
VALUE	DOCUMENT ID		TECN	COMMENT	
$+0.20\pm0.02$	KOISO	85	DPWA	$K^- p \rightarrow$	Σπ
$+0.21\pm0.02$	GOPAL	77	DPWA	K N mult	ichannel
$+0.20\pm0.01$	HEPP			$K^- N \rightarrow$	
$+0.21\pm0.03$	KANE			$K^- p \rightarrow$	
 • • We do not use the fo 	llowing data for averag	es, fits	i, limits,	etc. • •	•
+0.18 or +0.17	$^{ m 1}$ MARTIN	77	DPWA	₹ N mult	ichannet
$\Gamma(\Lambda \pi \pi)/\Gamma_{total}$					Γ4,
VALUE	DOCUMENT ID		TECN	COMMENT	
		es fits	limits	etc. • •	•
 • • We do not use the to 	llowing data for averag				
<0.11 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} - 1$	ARMENTER $\rightarrow \Sigma(1670) \rightarrow \Sigma(1670)$	0568E 1 385)	нвс π, <i>S</i>-w	$\mathcal{K}^- ho\;(\Gamma_1$ ave	(Γ ₁ Γ ₇) ^{1/2} ,
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{total}$ in $N\overline{K}$ -	ARMENTER \rightarrow $\Sigma(1670) \rightarrow \Sigma(1670) \rightarrow \Sigma$	DS68E	HBC π , S-w <u>TECN</u>	K ⁻ ρ (Γ ₁ ave <u>соммент</u>	(Γ ₁ Γ ₇) ^{1/2} ,
<0.11 $(\Gamma_f \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{VALUE}{+0.11 \pm 0.03}$	ARMENTER $ \begin{array}{c} $	0568E 1 385) 74	HBC π , S-w <u>TECN</u> DPWA	$K^- p (\Gamma_1$ ave $\frac{COMMENT}{K^- N} \rightarrow$	$(\Gamma_1\Gamma_7)^{1/2}$ $\Sigma(1385)\pi$
<0.11 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{VALUE}{VALUE} + 0.11 \pm 0.03$ • • • We do not use the fo	ARMENTER $\rightarrow \Sigma(1670) \rightarrow \Sigma(1$	74 ses, fits	HBC π, S-w <u>TECN</u> DPWA s, limits,	$K^- p (\Gamma_1$ ave COMMENT $K^- N \rightarrow \text{etc.} \bullet \bullet$	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}$ $\Sigma(1385)\pi$
<0.11 $(\Gamma_f \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{VALUE}{+0.11 \pm 0.03}$	ARMENTER $ \begin{array}{c} $	74 ses, fits	HBC π, S-w <u>TECN</u> DPWA s, limits,	$K^- p (\Gamma_1$ ave $\frac{COMMENT}{K^- N} \rightarrow$	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}$ $\Sigma(1385)\pi$
<0.11 $ (\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total in } N \overline{K}} - \frac{1}{2} + 0.11 \pm 0.03 $ • • • We do not use the form of the contraction of	ARMENTER $\rightarrow \Sigma(1670) \rightarrow \Sigma(1$	74 ses, fits	HBC π, S-w <u>TECN</u> DPWA s, limits,	$K^- p (\Gamma_1$ ave COMMENT $K^- N \rightarrow \text{etc.} \bullet \bullet$	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}$ $\Sigma(1385)\pi$
<0.11 $ (\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} - \frac{VALUE}{+0.11 \pm 0.03} $ • • • We do not use the fo 0.17 ± 0.02 $\Gamma(\Sigma \pi \pi) / \Gamma_{\text{total}} $	ARMENTER $\rightarrow \Sigma(1670) \rightarrow \Sigma(1$	74 tes, fits	HBC π, S-w TECN DPWA s, limits, DBC	$K^- p (\Gamma_1)$ ave $\begin{array}{c} COMMENT \\ K^- N \rightarrow \\ \text{etc.} \bullet \bullet \\ K^- N \rightarrow \end{array}$	(Γ ₁ Γ ₇) ^{1/2} , Σ(1385)π Λππ
<0.11 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{1}{2} + 0.11 \pm 0.03$ • • • We do not use the fo 0.17 ± 0.02 $\Gamma(\Sigma \pi \pi) / \Gamma_{\text{total}}$	ARMENTER → Σ(1670) → Σ(DOCUMENT ID PREVOST Illowing data for average 3 SIMS DOCUMENT ID	74 ses, fits	π, S-w TECN DPWA i, limits, DBC	$K^- p$ (Γ_1 ave COMMENT $K^- N \rightarrow \text{etc.} \bullet \bullet \bullet$ $K^- N \rightarrow \text{COMMENT}$	$\frac{\left(\Gamma_{1}\Gamma_{7}\right)^{\frac{1}{2}}}{\Sigma(1385)\pi}$ $\Lambda\pi\pi$ Γ_{5}
<0.11 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{1}{2} + 0.11 \pm 0.03$ • • • We do not use the fo 0.17 ± 0.02 $\Gamma(\Sigma \pi \pi) / \Gamma_{\text{total}}$	ARMENTER → Σ(1670) → Σ(DOCUMENT ID PREVOST Illowing data for average 3 SIMS DOCUMENT ID	74 (es, fits	π, S-w TECN DPWA s, limits, DBC TECN s, limits,	$K^- p$ (Γ_1 ave <u>COMMENT</u> $K^- N \rightarrow \text{etc.} \bullet \bullet \bullet \bullet$ $K^- N \rightarrow \text{COMMENT}$ etc. $\bullet \bullet \bullet \bullet$	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}$ $\Sigma(1385)\pi$ $\Lambda\pi\pi$
<0.11 $(\Gamma_i \Gamma_f)^{1/2}_2/\Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{VALUE}{4} + 0.11 \pm 0.03$ • • • We do not use the fo 0.17 ± 0.02 $\Gamma(\Sigma \pi \pi)/\Gamma_{\text{total}}$ VALUE • • • We do not use the fo < 0.14	ARMENTER → ∑(1670) → ∑(: — DOCUMENT ID PREVOST RIOWING data for averag 3 SIMS — DOCUMENT ID ROCUMENT ID ROCUMENT ID ROCUMENT ID	74 (es, fits	π, S-w TECN DPWA s, limits, DBC TECN s, limits,	$K^- p$ (Γ_1 ave <u>COMMENT</u> $K^- N \rightarrow \text{etc.} \bullet \bullet \bullet \bullet$ $K^- N \rightarrow \text{COMMENT}$ etc. $\bullet \bullet \bullet \bullet$	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}$ $\Sigma(1385)\pi$ $\Lambda\pi\pi$
<0.11 $(\Gamma_i \Gamma_f)^{1/2}_{2}/\Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{VALUE}{4}$ • • • We do not use the fo 0.17 \pm 0.02 $\Gamma(\Sigma \pi \pi)/\Gamma_{\text{total}}$ • • • We do not use the fo <0.14 $\Gamma(\Lambda(1405)\pi)/\Gamma_{\text{total}}$	ARMENTER ARMENTER DOCUMENT ID PREVOST Illowing data for averag 3 SIMS DOCUMENT ID DOCUMENT ID ARMENTER 4 ARMENTER	2568E 1385) 74 res, fits 68 res, fits	π, S-w <u>TECN</u> DPWA s, limits, DBC <u>TECN</u> s, limits,	$K^{-} p (\Gamma_{1}$ ave $COMMENT$ $K^{-} N \rightarrow etc. \bullet \bullet \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}$ $\Sigma(1385)\pi$ $\Lambda\pi\pi$ Γ_5 σ σ σ σ σ σ σ σ
<0.11 $(\Gamma_{i}\Gamma_{f})^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{VALUE}{VALUE}$ • • • We do not use the fo 0.17 \pm 0.02 $\Gamma(\Sigma\pi\pi)/\Gamma_{\text{total}}$ • • • We do not use the fo <0.14 $\Gamma(\Lambda(1405)\pi)/\Gamma_{\text{total}}$ VALUE	ARMENTER → ∑(1670) → ∑(:	74 (es, fits 68 CS68E	### HBC ### FECN DPWA SI, limits, DBC ### TECN SI, limits, HBC ### TECN TECN	$K^- p \ (\Gamma_1$ ave $COMMENT$ $K^- N \rightarrow etc. \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	$(\Gamma_{1}\Gamma_{7})^{\frac{1}{2}}$ $\Sigma(1385)\pi$ $\Lambda\pi\pi$ Γ_{5} σ σ $\Gamma_{1}=0.09$
<0.11 $(\Gamma_{i}\Gamma_{f})^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{VALUE}{VALUE}$ • • • We do not use the fo 0.17 \pm 0.02 $\Gamma(\Sigma\pi\pi)/\Gamma_{\text{total}}$ • • • We do not use the fo <0.14 $\Gamma(\Lambda(1405)\pi)/\Gamma_{\text{total}}$ VALUE	ARMENTER → ∑(1670) → ∑(:	74 (es. fits 68 C) S68E	π, S-w TECN DPWA s, limits, DBC TECN s, limits, HBC TECN s, limits,	$K^- p \ (\Gamma_1$ ave $COMMENT$ $K^- N \rightarrow etc. \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}$ $\Sigma(1385)\pi$ $\Lambda\pi\pi$ Γ_5 $d(\Gamma_1=0.09$
<0.11 $(\Gamma_{i}\Gamma_{f})^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{VALUE}{VALUE}$ • • • We do not use the fo 0.17 \pm 0.02 $\Gamma(\Sigma\pi\pi)/\Gamma_{\text{total}}$ • • • We do not use the fo <0.14 $\Gamma(\Lambda(1405)\pi)/\Gamma_{\text{total}}$ • • • We do not use the fo <0.06	ARMENTER ARMENTER DOCUMENT ID PREVOST RIOWING data for averag 3 SIMS DOCUMENT ID ARMENTER DOCUMENT ID DOCUMENT ID ARMENTER ARMENTER ARMENTER ARMENTERI	74 (1385) 74 (1385) 68 (13	### HBC ### FECN DPWA S, limits, DBC ### TECN S, limits, HBC ### TECN S, limits, HBC ### HBC	$K^- p \ (\Gamma_1$ ave $COMMENT$ $K^- N \rightarrow etc. \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}$ $\Sigma(1385)\pi$ $\Lambda\pi\pi$ Γ_5 σ σ σ σ σ σ σ σ σ σ
<0.11 $(\Gamma_{i}\Gamma_{f})^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} - \frac{VALUE}{VALUE}$ • • • We do not use the fo 0.17 \pm 0.02 $\Gamma(\Sigma\pi\pi)/\Gamma_{\text{total}}$ • • • We do not use the fo <0.14 $\Gamma(\Lambda(1405)\pi)/\Gamma_{\text{total}}$ • • • • We do not use the fo <0.14	ARMENTER ARMENTER DOCUMENT ID PREVOST RIOWING data for averag 3 SIMS DOCUMENT ID ARMENTER DOCUMENT ID DOCUMENT ID ARMENTER ARMENTER ARMENTER ARMENTERI	DS68E 1385) 74 68 68 es, fits OS68E OS68E	HBC π, S-w TECN DPWA s, limits, DBC TECN s, limits, HBC TECN s, limits, HBC	K^-p (Γ_1 ave COMMENT $K^-N \rightarrow etc. \bullet \bullet etc. \bullet \bullet etc. \bullet \bullet etc. \bullet \bullet etc. \bullet \bullet etc. \bullet \bullet etc. \bullet \bullet etc. \bullet \bullet etc. \bullet \bullet etc. \bullet \bullet etc. \bullet et$	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}$ $\Sigma(1385)\pi$ $\Lambda\pi\pi$ Γ_5 σ σ σ σ σ σ σ σ σ σ

Σ(1670) FOOTNOTES

BERLEY

DOCUMENT ID

BRUCKER

69 HBC K-p 0.6-0.82 GeV/c

TECN COMMENT

6 CAMERON 77 DPWA P-wave decay

70 DBC $K^- N \rightarrow \Sigma \pi \pi$

 Γ_8/Γ_6

- $^{1}\,\mathrm{The}$ two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
- ²Results are with and without an S_{11} $\Sigma(1620)$ in the fit.

 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \Sigma(1670) \rightarrow \Lambda(1520) \pi$

< 0.03

 0.23 ± 0.08

 0.081 ± 0.016

 $\Gamma(\Lambda(1405)\pi)/\Gamma(\Sigma(1385)\pi)$

- ³SIMS 68 uses only cross-section data. Result used as upper limit only.
- ⁴ Ratio only for $\Sigma 2\pi$ system in I=1, which cannot be $\Sigma(1385)$.
- 5 Assuming the $\Lambda(1405)\pi$ cross-section bump is due only to $3/2^-$ resonance.
- ⁶ The CAMERON 77 upper limit on F-wave decay is 0.03.

Σ(1670) REFERENCES

KOISO	85	NP A433 619	+Sai, Yamamoto, Kofler	(TOKY, MASA) (RHEL) IJP
GOPAL ALSTON	80 78	Toronto Conf. 159 PR D18 182	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
Also	77	PRL 38 1007	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
MORRIS	78	PR D17 55	+ Albright, Colleraine, Kimel, Lannutt	i (FSU) IJP
CAMERON	77	NP B131 399	+Franek, Gopal, Kalmus, McPherson	 + (RHEL, LOIC) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock	(LOUC)
Also	77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
DEBELLEFON	76	NP B109 129	De Bellefan, Berthon	(CDEF) IJP
HEPP	76B	PL 65B 487	+Braun, Grimm, Strobele-	(CERN, HEID, MPIM) IJP
BAILLON	75	NP B94 39	+ Litchfield	(CERN, RHEL)IJP
PONTE	75	PR D12 2597	+Hertzbach, Button-Shafer→	(MASA, TENN, UCR) IJP
VANHORN	75	NP 887 145		(LBL) IJP
Also	75B	NP B87 157	VanHorn	(LBL) IJP
DEVENISH	74B	NP B81 330	Froggatt, Martin	(DESY, NORD, LOUC)
KANE	74	LBL-2452		(LBL) IJP
PREVOST	74	NP B69 246	- Barloutaud+	(SACL, CERN, HEID)
BRUCKER	70	Duke Conf. 155	Harrison, Sims, Albright, Chandler-	
BERLEY	69	PL 30B 430	-Hart, Rahm, Willis, Yamamoto	(BNL)
ARMENTEROS	68E	PL 28B 521	+Baillon+	(CERN, HEID. SACL)
SIMS	68	PRL 21 1413	+Albright, Bartley, Meer+	(FSU, TUFT, BRAN)

Baryon Full Listings $\Sigma(1670)$ Bumps

$\Sigma(1670)$ Bumps

 $I(J^P) = 1(??)$

OMITTED FROM SUMMARY TABLE

Formation experiments are listed separately in the preceding entry.

Probably there are two states at the same mass with the same quantum numbers, one decaying to $\Sigma\pi$ and $\Lambda\pi$, the other to $\Lambda(1405)\pi$. See the note in front of the preceding entry.

$\begin{array}{c} \Sigma(1670) \text{ MASS} \\ \text{(PRODUCTION EXPERIMENTS)} \end{array}$

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1670± 4		1 CARROLL	76	DPWA		Isospin-1 total σ
1675 ± 10		² HEPP	76	DBC	-	K- N 1.6-1.75 GeV/c
1665± 1		APSELL	74	нвс		K ⁻ p 2.87 GeV/c
1688 ± 2 or 1683 ± 5	1200	BERTHON	74	HBC	0	Quasi-2-body σ
1670± 6		AGUILAR	70E	нвс		$K^- \rho \rightarrow \Sigma \pi \pi$ 4 GeV
1668±10		AGUILAR	70E	HBC		$K^- \rho \rightarrow \Sigma 3\pi 4$ GeV
1.660 ± 10		ALVAREZ	63	HBC	+	K ρ 1.51 GeV/c
• • We do not use the	following	data for averages,	fits,	limits, e	tc. •	• •
1668±10	150	3 FERRERSORIA	481	OMEG	-	$\pi^- p$ 9,12 GeV/ c
1655 to 1677		TIMMERMAN	S76	HBC	+	K- p 4.2 GeV/c
1665 ± 5		BUGG	68	CNTR		$K^- p$, d total σ
1661± 9	70	PRIMER	68	нвс	+	See BARNES 69E
1685		ALEXANDER	620	нвс	-0	π ⁻ p 2-2.2 GeV/c

Σ (1670) WIDTH (PRODUCTION EXPERIMENTS)

VALU	E (MeV)	EVTS	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	COMMENT
67.	0± 2.4		APSELL	74	HBC		K- p 2.87 GeV/c
110	±12		AGUILAR	70B	нвс		$K^- \rho \rightarrow \Sigma \pi \pi 4$ GeV
135	+40 -30		AGUILAR	70B	HBC		$K^- p \rightarrow \Sigma 3\pi 4$ GeV
40	± 10		ALVAREZ	63	HBC	+	
	 We do not us 	e the following o	data for averages	s, fits	, limits,	etc.	• •
90	±20		FERRERSORIA	81	OMEG	_	$\pi^ p$ 9,12 GeV/ c
52		1	CARROLL	76	DPWA		Isospin-1 total σ
48	to 63		TIMMERMAN:	S76	HBC	+	K^- p 4.2 GeV/c
30	±15		BUGG	68	CNTR		
60	±20	70	PRIMER	68	HBC	+	See BARNES 69E
45			ALEXANDER	62C	HBC	-0	

$\Sigma(1670)$ DECAY MODES (PRODUCTION EXPERIMENTS)

	Mode
Γ_1	NK
Γ_2	$\Lambda\pi$
Γ_3	$\Sigma \pi$
Γ4	$\Lambda\pi\pi$
Γ ₅	$\Sigma \pi \pi$
Γ6	$\Sigma(1385)\pi$
Γ7	$\Lambda(1405)\pi$

Σ(1670) BRANCHING RATIOS (PRODUCTION EXPERIMENTS)

$\Gamma(N\overline{K})/\Gamma(\Sigma\pi)$						Γ_1/Γ_3
VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
< 0.03		TIMMERMAN	S76	HBC	+	K- p 4.2 GeV/c
< 0.10		BERTHON	74	HBC	0	Quasi-2-body σ
< 0.2		AGUILAR	70B	HBC		
<0.26		BARNES	69E	нвс	+	K [−] p 3.9–5 GeV/c
0.025		BUGG	68	CNTR	0	Assuming $J = 3/2$
<0.24	0	PRIMER	68	HBC	+	K ⁻ p 4.6-5 GeV/c
< 0.6		LONDON	66	HBC	+	K- p 2.25 GeV/c
< 0.19	0	ALVAREZ	63	HBC	+	K [−] p 1.15 GeV/c
$\geq 0.5 \pm 0.25$		SMITH	63	HBC	~0	

				<u>~(</u> .	101	o) bumps
$\Gamma(\Lambda\pi)/\Gamma(\Sigma\pi)$ VALUE	<u>EVTS</u>	DOCUMENT ID		TEÇN	CHG	Γ_2/Γ_3
0.76±0.09		ESTES	74	нвс	0	K [−] p 2.1,2.6
0.45 ± 0.15		BARNES	69E	нвс	+	GeV/ <i>c</i> K− p 3.9–5 GeV/ <i>c</i>
0.15 ± 0.07		HUWE	69	HBC	+	
0.11 ± 0.06 • • • We do not use t	33 he followii	BUTTON	68 s fit:	HBC : limits	+ etc •	K [−] p 1.7 GeV/c
$\leq 0.45 \pm 0.07$	ne ionown	TIMMERMAN		HBC	+	K ⁻ p 4.2 GeV/c
0.55 ± 0.11		BERTHON	74	HBC	0	Quasi-2-body σ
0	0	PRIMER	68	HBC	+	See BARNES 69E
<0.6 1.2	130	LONDON ALVAREZ	66 63	HBC HBC	+	K ⁻ p 2.25 GeV/c K ⁻ p 1.15 GeV/c
1.2	130	SMITH	63	НВС	-0	κ p 1.15 GeV/e
$\Gamma(\Lambda\pi\pi)/\Gamma(\Sigma\pi)$						Γ_4/Γ_3
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
< 0.6		LONDON	66	HBC	+	$K^- \rho$ 2.25 GeV/c
0.56 0.17	90	ALVAREZ SMITH	63 63	HBC HBC	+ -0	K [−] p 1.15 GeV/c
		5	-		•	Γ-/Γο
$\Gamma(\Sigma \pi \pi)/\Gamma(\Sigma \pi)$	EVTS	DOCUMENT ID		TECN	CHG	Γ ₅ /Γ ₃
largest at small angles		ESTES	74	нвс	0	K [−] p 2.1,2.6
• • • We do not use t	he followi	ng data for average	s, fit	s, limits	, etc. •	GeV/ <i>c</i> • • •
< 0.2		² HEPP	76	DBC	-	K-N 1.6-1.75
0.56	180	ALVAREZ	63	нвс	+	GeV/ <i>c</i> K ⁻ p 1.15 GeV/ <i>c</i>
$\Gamma(\Lambda(1405)\pi)/\Gamma(\Sigma\tau)$	r)					Γ_7/Γ_3
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1.8 ± 0.3 to 0.02 ± 0.07		3,4 TIMMERMAN	S76	нвс	+	$K^- ho$ 4.2 GeV/ c
0.07 largest at small angles		ESTES	74	нвс	±	K [−] p 2.1,2.6 GeV/c
$3.0\ \pm1.6$	50	LONDON	66	нвс	+	K-p 2.25 GeV/c
• • We do not use t		-				
0.58 ± 0.20	17	PRIMER	68	нвс	+	See BARNES 69E
$\Gamma(\Sigma\pi)/\Gamma(\Sigma\pi\pi)$		BOS		TEC.		Γ ₃ /Γ ₅
varies with prod. angle		DOCUMENT ID 5 APSELL	74	TECN HBC	<u>CHG</u> +	COMMENT K - p 2.87 GeV/c
1.39±0.16		BERTHON	74	нвс	ò	Quasi-2-body σ
2.5 to 0.24		⁴ EBERHARD	69	HBC		K [−] p 2.6 GeV/c
<0.4 0.30±0.15		BIRMINGHAN LONDON	1 66	HBC HBC	+	K ⁻ ρ 3.5 GeV/c K ⁻ ρ 2.25 GeV/c
	`	LONDON	00	HDC	_	
$\Gamma(\Lambda(1405)\pi)/\Gamma(\Sigma_1)$	(π)	DOCUMENT ID		TECN	cuc	Γ ₇ /Γ ₅
0.97±0.08		TIMMERMAN	IS76	HBC	2710	K ⁻ p 4.2 GeV/c
1.00 ± 0.02		APSELL	74	HBC		K ⁻ ρ 2.87 GeV/c
$0.90^{+0.10}_{-0.16}$		EBERHARD	65	нвс	+	$\mathit{K}^-\mathit{p}$ 2.45 GeV/c
$\Gamma(\Lambda(1405)\pi)/\Gamma(\Sigma($	1385\#\					Γ_7/Γ_6
VALUE	1303 / 11 /	DOCUMENT ID		TECN	CHG	COMMENT 17/16
<0.8		EBERHARD	65	нвс	+	K- p 2.45 GeV/c
$\Gamma(\Lambda\pi\pi)/\Gamma(\Sigma\pi\pi)$						Γ_4/Γ_5
VALUE						COMMENT
0.35 ± 0.2		BIRMINGHAN	1 66	нвс	+	K [−] p 3.5 GeV/c
$\Gamma(\Lambda\pi)/\Gamma(\Sigma\pi\pi)$						Γ_2/Γ_5
<0.2		<u>DOCUMENT ID</u> BIRMINGHAN			<u>снс</u> +	K- p 3.5 GeV/c
$\Gamma(\Lambda\pi)/[\Gamma(\Lambda\pi) + 1]$	$\Gamma(\Sigma\pi)$					$\Gamma_2/(\Gamma_2+\Gamma_3)$
VALUE <0.6		<u>DOCUMENT ID</u> AGUILAR	701	TECN		
	`	AGUILAR	7 UE	י ווטל		_ ,_
$\Gamma(\Sigma(1385)\pi)/\Gamma(\Sigma_1)$	π)	DOCUMENT ID		TECN	COL	Γ ₆ /Γ ₃
		TIMMERMAN				9 4.2 GeV/c
					,	<u> </u>

Σ (1670) QUANTUM NUMBERS (PRODUCTION EXPERIMENTS)

VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
$J_{-}^{P} = 3/2^{-}$	400	BUTTON	68	HBC	±	$\Sigma^0 \pi$
$J^P = 3/2^-$		EBERHARD	67	HBC	+	$\Lambda(1405)\pi$
$J^P = 3/2^+$		LEVEQUE	65	HBC		$\Lambda(1405)\pi$

$\Sigma(1670)$ Bumps, $\Sigma(1690)$ Bumps, $\Sigma(1750)$

Σ(1670) FOOTNOTES

- 1 Total cross-section bump with (J+1/2) Γ_{el} / Γ_{total} = 0.23.
- ² Enhancements in $\Sigma\pi$ and $\Sigma\pi\pi$ cross sections. ³ Backward production in the $\Lambda\pi^-$ K⁺ final state.
- ⁴ Depending on production angle.
- ⁵ APSELL 74, ESTES 74, and TIMMERMANS 76 find strong branching ratio dependence on production angle, as in earlier production experiments.

Σ(1670) REFERENCES (PRODUCTION EXPERIMENTS)

FERRERSORIA 81	NP B178 373	+Treille, Rivet, Volte+ (CERN, CDEF,	
CARROLL 76	PRL 37 806	+Chiang, Kycia, Li, Mazur, Michael+	
HEPP 76	NP B115 82	+Braun, Grimm, Stroebele+ (CERN,	HEID, MPIM) I
TIMMERMANS 76	NP B112 77	+Engelen+ (NIJM, CERN	, AMST, OXF) JP
APSELL 74	PR D10 1419	+Ford, Gourevitch+ (BRAN, UMD,	SYRA, TUFT) I
BERTHON 74	NC 21A 146		SACL, STRB)
ESTES 74	LBL-3827 Thesis		(LBL)
AGUILAR 70B	PRL 25 58	Aguilar-Benitez, Barnes, Bassano+	(BNL, SYRA)
BARNES 69E	BNL 13823	+Chung, Eisner, Flaminio+	(BNL, SYRA)
EBERHARD 69	PRL 22 200	+Friedman, Pripstein, Ross	(LRL)
HUWE 69	PR 180 1824		(LRL)
BUGG 68	PR 168 1466	+Gilmore, Knight+ (RHEL,	BIRM, CAVE) I
BUTTON 68	PRL 21 1123	Button-Shafer	(MASA, LRL) JP
PRIMER 68	PRL 20 610	+Goldberg, Jaeger, Barnes, Dornan+	(SYRA, BNL)
EBERHARD 67	PR 163 1446	- Pripstein, Shively, Kruse, Swanson	
BIRMINGHAM 66	PR 152 1148	(BIRM, GLAS, LOIC	, OXF, RHEL)
LONDON 66	PR 143 1034	+Rau, Goldberg, Lichtman+	(BNL, SYRA) IJ
EBERHARD 65	PRL 14 466	+Shively, Ross, Siegal, Ficenec+	(LRL, ILL) I
LEVEQUE 65	PL 18 69	 (SACL, EPOL, GLAS, LOIC 	
ALVAREZ 63	PRL 10 184	Alston, Ferro-Luzzi, Huwe+-	(LRL) I
SMITH 63	Athens Conf. 67	,	(LRL)
ALEXANDER 62C	CERN Conf. 320	+ Jacobs, Kalbfleisch, Miller+	(LRL) I
			, ,

$\Sigma(1690)$ Bumps

 $I(J^P) = 1(??)$ Status: **

OMITTED FROM SUMMARY TABLE

See the note preceding the $\Sigma(1670)$ Listings. Seen in production experiments only, mainly in $\Lambda \pi$.

Σ(1690) MASS (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID	_	TECN	CHG	COMMENT
1698 ± 20	70	1 GODDARD 7	79	HBC	+	$\pi^+ p$ 10.3 GeV/c
1707 ± 20	40	² GODDARD 7	79	HBC	+	$\pi^{+} \rho \ 10.3 \ \text{GeV}/c$
1698 ± 20	15	ADERHOLZ 6	69	HBC	+	$\pi^+ \rho$ 8 GeV/c
1682 ± 2	46	BLUMENFELD (69	нвс	+	κ_{IP}^{0}
1700 ± 20		MOTT 6	69	HBC	+	K^{-} p 5.5 GeV/c
1694 ± 24	60	³ PRIMER 6	68	HBC	+	K ⁻ ρ 4.6-5 GeV/c
1700 ± 6		⁴ SIMS 6	58	HBC	_	$K^- N \rightarrow \Lambda \pi \pi$
1715 ± 12	30	COLLEY	67	HBC	+	$K^- \rho$ 6 GeV/ c

Σ(1690) WIDTH (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVT5	DOCUMENT ID	TECN	CHG	COMMENT
240 ± 60	70	¹ GODDARD 79	нвс	+	$\pi^{+} p 10.3 \text{ GeV}/c$
130^{+100}_{-60}	40	² GODDARD 79	нвс	+	π^+p 10.3 GeV/c
142 ± 40	15	ADERHOLZ 69	HBC	+	π^+ p 8 GeV/c
25 ± 10	46	BLUMENFELD 69	HBC	+	$\kappa_{I}^{0} \rho$
130 ± 25		MOTT 69	HBC	+	$\kappa^{-} p$ 5.5 GeV/c
105± 35	60	³ PRIMER 68	HBC	+	K [−] p 4.6–5 GeV/c
62 ± 14		⁴ SIMS 68	HBC	_	$K^- N \rightarrow \Lambda \pi \pi$
$100\pm~35$	30	COLLEY 67	HBC	+	$K^- p$ 6 GeV/ c

Σ(1690) DECAY MODES (PRODUCTION EXPERIMENTS)

	Mode	
Γ ₁	NK	
Γ_2	$\Lambda\pi$	
Γ3	$\Sigma \pi$	
Γ_4	$\Sigma(1385)\pi$	
Γ_5	$\Lambda \pi \pi \text{ (including } \Sigma(1385)\pi)$	

Σ(1690) BRANCHING RATIOS (PRODUCTION EXPERIMENTS)

$\Gamma(N\overline{K})/\Gamma(\Lambda\pi)$	EVTS	DOCUMENT ID		TECN	CHG	Γ_1/Γ_2
small		GODDARD	79	HBC	+	$\pi^+ p$ 10.2 GeV/c
< 0.2		MOTT	69	HBC	_	$K^- p$ 5.5 GeV/c
0.4 ± 0.25	18	COLLEY	67	нвс	+	6/30 events
$\Gamma(\Sigma\pi)/\Gamma(\Lambda\pi)$						Γ_3/Γ_2
VALUE	CL%	DOCUMENT ID		TECN	CHG	COMMENT
small		GODDARD	79	HBC	+	$\pi^{+} \rho \ 10.2 \ \text{GeV}/c$
< 0.4	90	MOTT	69	HBC	+	K- p 5.5 GeV/c
0.3 ± 0.3		COLLEY	67	HBC	+	4/30 events
$\Gamma(\Sigma(1385)\pi)/\Gamma(\Lambda_1)$	π)					Γ_4/Γ_2
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
< 0.5		MOTT	69	нвс	-	$K^- ho 5.5 \; { m GeV}/c$
$\Gamma(\Lambda\pi\pi$ (including)	Σ(1385)π]	$)/\Gamma(\Lambda\pi)$				Γ_5/Γ_2
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
2.0 ± 0.6		BLUMENFEL	D 69	HBC	+	31/15 events
0.5 ± 0.25		COLLEY	67	HBC	-	15/30 events
$\Gamma(\Sigma(1385)\pi)/\Gamma(\Lambda n)$	ππ (includ	ling $\Sigma(1385)\pi$)			Γ_4/Γ_5
VALUE	•	DOCUMENT ID		TECN	CHG	COMMENT
large		SIMS	68	HBC	_	$K^- N \rightarrow \Lambda \pi \pi$
small		COLLEY	67	HBC	+	K ⁻ ρ 6 GeV/c

Σ(1690) FOOTNOTES (PRODUCTION EXPERIMENTS)

1 From $\pi^+p \to (\Lambda\pi^+)K^+$. J>1/2 is not required by the data. 2 From $\pi^+p \to (\Lambda\pi^+)(K\pi)^+$. J>1/2 is indicated, but large background precludes a definite conclusion.

definite conclusion. 3 See the $\Sigma(1670)$ Listings. AGUILAR-BENITEZ 70B with three times the data of PRIMER 68 find no evidence for the $\Sigma(1690)$.

 4 This analysis, which is difficult and requires several assumptions and shows no unambiguous $\Sigma(1690)$ signal, suggests $J^P=5/2^+$. Such a state would lead all previously known Y^* trajectories.

Σ(1690) REFERENCES (PRODUCTION EXPERIMENTS)

GODDARD	79	PR D19	1350	- Key, Luste. Pre	ntice, Yoon,	Gordon+	(TNTO	, BNL) IJ
AGUILAR	70B	PRL 25	58	Aguilar-Benitez,	Barnes, Bass	ano		(BNL,	SYRA)
ADERHOLZ	69	NP B11	259	+Bartsch+	(AACH,	BERL, C	ERN, .	JAGL,	WARS) I
BLUMENFELD	69	PL 29B	58	+Kalbfleisch					(BNL) I
MOTT	69	PR 177	1966	+Ammar, Davis,	Kropac, Slate	:+	(NWES	, ANL) I
Also	67	PRL 18	266	Derrick, Fields,	Loken, Amma	ar	(ANL, I	NWES) I
PRIMER	68	PRL 20	610	+Goldberg, Jaege	r, Barnes, Do	ornan	,	(SYRA	, BNL) I
SIMS	68	PRL 21	1413	+Albright, Bartley	v, Meer∔	- (FSU, T	UFT,	BRAN) I
COLLEY	67	PL 24B	489	- '	(BIRM, GLAS	s, LOIC,	MUNI,	OXF,	RHEL) I

$\Sigma(1750) S_{11}$

$$I(J^P) = 1(\frac{1}{2})$$
 Status: ***

For most results published before 1974 (they are now obsolete), see our 1982 edition (Physics Letters 111B).

There is evidence for this state in many partial-wave analyses, but with wide variations in the mass, width, and couplings. The latest analyses indicated significant couplings to $N\overline{K}$ and $\Lambda\pi$, as well as to $\Sigma\eta$ whose threshold is at 1746 MeV (JONES 74).

Σ(1750) MASS

VALUE (MeV)	DOCUMENT ID		TEÇN	COMMENT
1730 to 1800 OUR ESTIMATE				
1756 ± 10	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1770 ± 10	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1770 ± 15	GOPAL	77	DPWA	K N multichannel
• • • We do not use the following	g data for average	s, fit	s, limits,	etc. • • •
1800 or 1813		77	DPWA	K N multichannel
1715±10	² CARROLL	76		Isospin-1 total σ
1730	DEBELLEFON	76	IPWA	$K^- \rho \rightarrow \Lambda \pi^0$
1780 ± 30	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda \pi \text{ (sol. 1)}$
1700 ± 30	BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi \text{ (sol. 2)}$
$1697 + 20 \\ -10$	VANHORN	75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
1785 ± 12	CHU	74		Fits $\sigma(K^- n \rightarrow \Sigma^- \eta)$
1760 ± 5	³ JONES	74	HBC	Fits $\sigma(K^- \rho \rightarrow \Sigma^0 \eta)$
1739 ± 10	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385)\pi$

Σ(1750) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
60 to 160 OUR ESTIMATE	Our best guess is 90 N	Λe∨.		
64±10	GOPAL	80		$\overline{K}N \rightarrow \overline{K}N$
161 ± 20	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
60±10	GOPAL	77	DPWA	K N multichannel
• • • We do not use the follow	lowing data for averages	s, fit:	s, limits,	etc. • • •
117 or 119				K N multichannel
10	² CARROLL			
110	DEBELLEFON	76	IPWA	$K^- \rho \rightarrow \Lambda \pi^0$
140±30	BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi \text{ (sol. 1)}$
160 ± 50	BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi \text{ (sol. 2)}$
66 ^{+ 14} _{- 12}	VANHORN	75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
89 ± 33	CHU	74	DBC	Fits $\sigma(K^- n \rightarrow \Sigma^- \eta)$
92± 7	3 JONES	74	нвс	Fits $\sigma(K^- \rho \rightarrow \Sigma^0 \eta)$
108 ± 20	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385)\pi^{\prime\prime}$

Σ(1750) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	NK	10–40 %
Γ_2	$\Lambda \pi$	seen
Γ_3	$\Sigma \pi$	<8 %
Γ_4	$\Sigma \eta$	15-55 %
Γ_5	$\Sigma(1385)\pi$	
Γ_6	$\Lambda(1520)\pi$	

The above branching fractions are our estimates, not fits or averages. Σ(1750) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
0.1 to 0.4 OUR ESTIMATE			D D) 4/4	7. 7. v
0.14±0.03	GOPAL ALSTON			$\overline{K}N \to \overline{K}N$
0.33±0.05				
• • We do not use the follo				
0.15 ± 0.03				See GOPAL 80
0.06 or 0.05	¹ MARTIN	77	DPWA	K N multichannel
1/				1/
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Sigma(1750) \rightarrow \Lambda \pi$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
0.04 ±0.03	GOPAL	77	DPWA	K N multichannel
• • • We do not use the follo	wing data for averages	, fits	s, limits,	etc. • • •
-0.10 or -0.09	1 MARTIN	77	DPWA	K N multichannel
-0.12	DEBELLEFON	76	IPWA	$K^- \rho \rightarrow \Lambda \pi^0$
-0.12 ± 0.02	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda \pi \text{ (sol. 1)}$
-0.13 ±0.03	BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi \text{ (sol. 2)}$
-0.13 ± 0.04	VANHORN	75	DPWA	$\overline{K}N \to \Lambda\pi$ (sol. 2) $K^-p \to \Lambda\pi^0$ Fixed-t dispersion rel.
-0.120 ± 0.077	DEVENISH	74B		Fixed-t dispersion rel.
1/				1/
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow VALUE}$	DOCUMENT ID			COMMENT
<u>VALUE</u> -0.09 ± 0.05	. <u>DOCUMENT ID</u> GOPAL	77	DPWA	COMMENT K N multichannel
VALUE	GOPAL wing data for averages	77 5, fits	DPWA s, limits,	COMMENT K N multichannel etc. • • •
<u>VALUE</u> - 0.09 ± 0.05	GOPAL wing data for averages	77 5, fits	DPWA s, limits,	COMMENT K N multichannel
$VALUE \\ -0.09 \pm 0.05 \\ \bullet \bullet \bullet \text{ We do not use the follows:}$	GOPAL wing data for averages	77 5, fit:	DPWA s, limits, DPWA	COMMENT K N multichannel etc. • • •
VALUE - 0.09 ± 0.05 • • • We do not use the follo + 0.06 or + 0.06	DOCUMENT ID GOPAL wing data for averages 1 MARTIN LANGBEIN ∑(1750) → ∑n	77 5, fit: 77 72	DPWA s, limits, DPWA IPWA	\overline{K} N multichannel etc. • • • • \overline{K} N multichannel \overline{K} N multichannel
<u>VALUE</u> -0.09 ± 0.05 • • • We do not use the follo $+0.06$ or $+0.06$ 0.13 ± 0.02	DOCUMENT ID GOPAL wing data for averages 1 MARTIN LANGBEIN ∑(1750) → ∑n	77 5, fit: 77 72	DPWA s, limits, DPWA IPWA	COMMENT \overline{K} N multichannel etc. • • • \overline{K} N multichannel \overline{K} N multichannel ($\Gamma_1\Gamma_1$) $^{1/2}$ (Γ_2)
VALUE $ -0.09 \pm 0.05 $ • • • We do not use the follo $ +0.06 \text{ or } +0.06 $ $ 0.13 \pm 0.02 $ $ (\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow $	DOCUMENT ID GOPAL wing data for averages 1 MARTIN LANGBEIN ∑(1750) → ∑n	77 5, fit: 77 72	DPWA s, limits, DPWA IPWA	COMMENT \overline{K} N multichannel etc. • • • \overline{K} N multichannel \overline{K} N multichannel
VALUE -0.09 ± 0.05 • • We do not use the follo $+0.06 \text{ or } +0.06$ 0.13 ± 0.02 $\left(\Gamma_{I}\Gamma_{f}\right)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{1}{2}$ VALUE	$\begin{array}{c} \underline{\textit{DOCUMENT ID}} \\ \underline{\textit{GOPAL}} \\ \text{wing data for averages} \\ 1 \\ \underline{\textit{MARTIN}} \\ \underline{\textit{LANGBEIN}} \\ \\ \underline{\textit{\Sigma(1750)}} \rightarrow \underline{\textit{\Sigma}} \eta \\ \underline{\textit{pocument io}} \\ 3 \\ \underline{\textit{JONES}} \end{array}$	77 5, fits 77 72	DPWA s, limits, DPWA IPWA <u>TECN</u> HBC	COMMENT \overline{K} N multichannel etc. • • • • \overline{K} N multichannel \overline{K} N multichannel $(\Gamma_1\Gamma_4)^{1/2}/\Gamma$ COMMENT Fits $\sigma(K^-p \to \Sigma^0 \eta)$
VALUE -0.09 ± 0.05 • • • We do not use the follo $+0.06 \text{ or } +0.06$ 0.13 ± 0.02 $(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{0.23 \pm 0.01}$	$\begin{array}{c} \underline{\textit{DOCUMENT ID}} \\ \underline{\textit{GOPAL}} \\ \text{wing data for averages} \\ 1 \\ \underline{\textit{MARTIN}} \\ \underline{\textit{LANGBEIN}} \\ \\ \underline{\textit{SC}(1750)} \rightarrow \underline{\textit{ST}} \\ \underline{\textit{DOCUMENT ID}} \\ 3 \\ \underline{\textit{JONES}} \\ \text{wing data for averages} \end{array}$	77 5, fits 77 72 74 5, fits	DPWA s, limits, DPWA IPWA <u>TECN</u> HBC	COMMENT \overline{K} N multichannel etc. • • • • \overline{K} N multichannel \overline{K} N multichannel $(\Gamma_1\Gamma_4)^{1/2}/\Gamma$ COMMENT Fits $\sigma(K^-\rho \to \Sigma^0\eta)$ etc. • • •
VALUE $ -0.09 \pm 0.05 $ • • We do not use the follo $ +0.06 \text{ or } +0.06 $ $ 0.13 \pm 0.02 $ $ (\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow VALUE $ $ 0.23 \pm 0.01 $ • • We do not use the follo	$\begin{array}{c} \underline{\textit{DOCUMENT ID}} \\ \underline{\textit{GOPAL}} \\ \text{wing data for averages} \\ \underline{^{1}} \ MARTIN \\ LANGBEIN \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}} \\ \underline{\mathcal{T}} \\ \underline{\mathcal{T}(1750)} \\ \underline{^{3}} \ JONES \\ \\ \text{wing data for averages} \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1750)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1350)} \\ \\ \underline{\mathcal{\Sigma}(1750)} \rightarrow \ \underline{\mathcal{\Sigma}(1750)} \\ $	77 77 77 72 74 74 75, fit: 69	DPWA s, limits, DPWA IPWA TECN HBC s, limits, DBC	COMMENT \overline{K} N multichannel etc. • • • \overline{K} N multichannel \overline{K} N multichannel $(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$ COMMENT Fits $\sigma(K^-p\to\Sigma^0\eta)$ etc. • • • Threshold bump $(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$
VALUE -0.09 ± 0.05 • • • We do not use the follo $+0.06 \text{ or } +0.06$ 0.13 ± 0.02 $(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{0.23 \pm 0.01}$ • • • We do not use the follows seen $(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{0.23 \pm 0.01}$	$\begin{array}{c} \underline{\textit{DOCUMENT ID}} \\ \underline{\textit{GOPAL}} \\ \text{wing data for averages} \\ 1 \\ \underline{\textit{MARTIN}} \\ \underline{\textit{LANGBEIN}} \\ \\ \Sigma(1750) \rightarrow \Sigma \eta \\ \underline{\textit{DOCUMENT ID}} \\ 3 \\ \underline{\textit{JONES}} \\ \text{wing data for averages} \\ \underline{\textit{CLINE}} \\ \\ \Sigma(1750) \rightarrow \Sigma(13) \\ \underline{\textit{DOCUMENT ID}} \\ \underline{\textit{DOCUMENT ID}} \\ \\ \underline{\textit{DOCUMENT ID}} \end{array}$	77 77 77 72 74 74 69	DPWA s, limits, DPWA IPWA TECN HBC s, limits, DBC	COMMENT \overline{K} N multichannel etc. • • • • \overline{K} N multichannel \overline{K} N multichannel $\frac{\left(\Gamma_1\Gamma_4\right)^{1/2}/\Gamma}{COMMENT}$ Fits $\sigma(K^-p\to\Sigma^0\eta)$ etc. • • • Threshold bump $\frac{\left(\Gamma_1\Gamma_5\right)^{1/2}/\Gamma}{COMMENT}$
VALUE -0.09 ± 0.05 • • • We do not use the follo $+0.06 \text{ or } +0.06$ 0.13 ± 0.02 $(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{\sqrt{\Gamma_i \Gamma_f}}$ 0.23 ± 0.01 • • • We do not use the follows een $(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{\sqrt{\Gamma_i \Gamma_f}}$ $+0.18 \pm 0.15$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	77 77 77 72 74 69 885)	DPWA s, limits, DPWA IPWA TECN HBC s, limits, DBC TECN DPWA	COMMENT \overline{K} N multichannel etc. • • • \overline{K} N multichannel \overline{K} N multichannel $(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$ COMMENT Fits $\sigma(K^-\rho \to \Sigma^0 \eta)$ etc. • • • Threshold bump $(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$ COMMENT $K^-N \to \Sigma(1385) \pi$
VALUE -0.09 ± 0.05 • • • We do not use the follo $+0.06 \text{ or } +0.06$ 0.13 ± 0.02 $(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{0.23 \pm 0.01}$ • • • We do not use the follo seen $(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{VALUE}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	77 77 77 72 74 5, fit: 69 885)	DPWA s, limits, DPWA IPWA TECN HBC s, limits, DBC TECN DPWA	COMMENT \overline{K} N multichannel etc. • • • \overline{K} N multichannel \overline{K} N multichannel $(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$ COMMENT Fits $\sigma(K^-\rho \to \Sigma^0\eta)$ etc. • • • Threshold bump $(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$ COMMENT $K^-N \to \Sigma(1385)\pi$ $(\Gamma_1\Gamma_6)^{\frac{1}{2}}/\Gamma$

Σ(1750) FOOTNOTES

CAMERON 77 DPWA P-wave decay

²A total cross-section bump with $(J+1/2) \Gamma_{el} / \Gamma_{total} = 0.30$.

 0.032 ± 0.021

• • • We do not use the following data for averages, fits, limits, etc. • •

Σ(1750) REFERENCES

GOPAL	80	Toronto Conf.	159			(RHEL) IJP
ALSTON	78	PR D18 182		Alston-Garnjost, Kenney+	(LBL,	MTHO, CERN) IJP
Aiso	77	PRL 38 1007		Alston-Garnjost, Kenney+	(LBL,	MTHO, CERN) IJP
CAMERON	77	NP B131 399		+Franek, Gopal, Kalmus, McPhers	on+	(RHEL, LOIC) IJP
GOPAL	77	NP B119 362		+Ross, VanHorn, McPherson+		(LOIC, RHEL) IJP
MARTIN	77	NP B127 349		+Pidcock, Moorhouse		(LOUC, GLAS) IJP
Also	77B	NP B126 266		Martin, Pidcock		(LOUC)
Also	77C	NP B126 285		Martin, Pidcock		(LOUC) IJP
CARROLL	76	PRL 37 806		+Chiang, Kycia, Li, Mazur, Micha	el+	(BNL) I
DEBELLEFON	76	NP B109 129		De Bellefon, Berthon		(CDEF) IJP
BAILLON	75	NP B94 39		+ Litchfield		(CERN, RHEL) IJP
VANHORN	75	NP B87 145				(LBL) IJP
Also	75B	NP 887 157		VanHorn		(LBL) IJP
CHU	74	NC 20A 35		+Bartley+	(PLAT,	TUFT, BRAN) IJP
DEVENISH	74B	NP B81 330		+Froggatt, Martin	(DESY,	NORD, LOUC)
JONES	74	NP B73 141				(CHIC) IJP
PREVOST	74	NP B69 246		+Barloutaud+	(SACI	., CERN, HEID)
LANGBEIN	72	NP B47 477		+Wagner		(MPIM) IJP
CLINE	69	LNC 2 407		+Laumann, Mapp		(WISC)

$\Sigma(1770) P_{11}$

 $I(J^P) = 1(\frac{1}{2}^+)$ Status: *

OMITTED FROM SUMMARY TABLE

Evidence for this state now rests solely on solution 1 of BAILLON 75, (see the footnotes) but the $\Lambda\pi$ partial-wave amplitudes of this solution are in disagreement with amplitudes from most other $\Lambda\pi$ analyses.

Σ(1770) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1738±10	¹ GOPAL	77	DPWA	K N multichannel
1770 ± 20	² BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi$
1772	³ KANE	72	DPWA	$K^- \rho \rightarrow \Sigma \pi$

Σ(1770) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
72±10	¹ GOPAL	77	DPWA	K N multichannel
80±30	² BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi$
80	³ KANE	72	DPWA	$K^- p \rightarrow \Sigma \pi$

Σ(1770) DECAY MODES

	Mode
Γ ₁	NK
Γ_2	$\Lambda\pi$
Γ_3	$\Sigma \pi$

Σ(1770) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ ₁ /Γ
0.14 ± 0.04	¹ GOPAL	77	DPWA	KN multichannel
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \frac{VALUE}{2}$	$\Sigma(1770) \rightarrow \Lambda \pi$ DOCUMENT ID		TECN	$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
< 0.04	GOPAL	77	DPWA	K N multichannel
-0.08 ± 0.02	² BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda \pi$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \frac{VALUE}{2}$	DOCUMENT ID		TECN_	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
< 0.04	GOPAL			K N multichannel
-0.108	³ KANE	72	DPWA	$K^- p \rightarrow \Sigma \pi$

Σ(1770) FOOTNOTES

- 1 Required to fit the isospin-1 total cross section of CARROLL 76 in the \overline{K} N channel. The addition of new K^-p polarization and K^-n differential cross-section data in GOPAL 80 find it to be more consistent with the $\Sigma(1660)$ P_{11} .
- ² From solution 1 of BAILLON 75; not present in solution 2.
- ³Not required in KANE 74, which supersedes KANE 72.

Σ(1770) REFERENCES

GOPAL GOPAL CARROLL BAILLON KANE KANE	80 77 76 75 74 72	Toronto Conf. 159 NP B119 362 PRL 37 806 NP B94 39 LBL-2452 PR D5 1583	+Ross, VanHorn, McPherson+ +Chiang, Kycia, Li, Mazur, Michael+ +Litchfield	(RHEL) (LOIC, RHEL) IJP (BNL) I (CERN, RHEL) IJP (LBL) IJP (LBL)
--	----------------------------------	---	--	--

¹ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

³ An 5-wave Breit-Wigner fit to the threshold cross section with no background and errors statistical only.

$\Sigma(1775)$

 $\Sigma(1775) D_{15}$

 $I(J^P) = 1(\frac{5}{2})$ Status: ***

Discovered by GALTIERI 63, this resonance plays the same role as cornerstone for isospin-1 analyses in this region as the $\Lambda(1820)$ does in the isospin-0 channel.

For most results published before 1974 (they are now obsolete), see our 1982 edition (Physics Letters 111B).

~	(1775	MASS
21	1//3	INIASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1770 to 1780 OUR ESTIMATE				
1778 ± 5	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1777 ± 5	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1774± 5	GOPAL	77	DPWA	K N multichannel
1775 ± 10	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda \pi$
1774 ± 10	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
1772 ± 6	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the following	data for averages	, fit:	s, limits,	etc. • • •
1772 or 1777	MARTIN	77	DPWA	K N multichannel
1765	DEBELLEFON	76	IPWA	$\kappa^- \rho \rightarrow \Lambda \pi^0$

Σ(1775) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
105 to 135 OUR ESTIMATE	Our best guess is 120) Me	V.	
137±10	GOPAL			
116±10	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
130±10	GOPAL	77	DPWA	K N multichannel
125 ± 15	BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi$
146 ± 18	VANHORN	75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
154 ± 10	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
• • We do not use the follogous	wing data for averages	, fits	, limits,	etc. • • •
102 or 103	¹ MARTIN	77	DPWA	K N multichannel
120	DEBELLEFON	76	IPWA	$K^- \rho \rightarrow \Lambda \pi^0$

Σ(1775) DECAY MODES

	Mode	Fraction (Γ_j/Γ)	
$\overline{\Gamma_1}$	NK	37-43%	
Γ_2	$\Lambda \pi$	14-20%	
Γ_3	$\Sigma \pi$	2-5%	
Γ ₄	$\Sigma(1385)\pi$	8-12%	
Γ_5	$\Sigma(1385)\pi$, <i>D</i> -wave		
Γ_6	$\Lambda(1520)\pi$	17-23%	
Γ_7	Σππ		

The above branching fractions are our estimates, not fits or averages.

CONSTRAINED FIT INFORMATION

An overall fit to 8 branching ratios uses 16 measurements and one constraint to determine 6 parameters. The overall fit has a $\chi^2=$ 26.4 for 11 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / \left(\delta x_i \cdot \delta x_j \right)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\rm total}$. The fit constrains the x_i whose labels appear in this array to sum to one.

Σ(1775) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances. Also, the errors quoted do not include uncertainties due to the parametrization used in the partial-wave analyses and are thus too small.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ1/Γ
VALUE	DOCUMENT ID	TECN	COMMENT	1,
0.37 to 0.43 OUR ESTIN	MATE			
0.430±0.026 OUR FIT	Error includes scale factor	of 1.9.		
0.391 ± 0.017 OUR AVER	AGE			
0.40 ±0.02	GOPAL	80 DPW	$A \overline{K} N \rightarrow \overline{K} N$	
0.37 +0.03	ALSTON-	78 DPW/	A KN - KN	

 0.41 ± 0.03 GOPAL 77 DPWA See GOPAL 80 1 MARTIN 77 DPWA KN multichannel $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Sigma(1775) \rightarrow \Lambda \pi$ VALUE DOCUMENT ID TEC 0.255±0.013 OUR FIT Error includes scale factor of 1.1. TECN COMMENT -0.262±0.015 OUR AVERAGE -0.28 ± 0.03 GOPAL 77 DPWA KN multichannel 75 IPWA $\overline{K}N \rightarrow \Lambda \pi$ -0.25 ± 0.02 BAILLON $-0.28 \begin{array}{l} +0.04 \\ -0.05 \end{array}$ 75 DPWA $K^- \rho \rightarrow \Lambda \pi^0$ VANHORN -0.259 ± 0.048 DEVENISH Fixed-t dispersion rel. • • • We do not use the following data for averages, fits, limits, etc. • • • -0.29 or -0.28¹ MARTIN 77 DPWA KN multichannel DEBELLEFON 76 IPWA $K^- \rho \rightarrow \Lambda \pi^0$ $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Sigma(1775) \rightarrow \Sigma \pi$ TECN COMMENT DOCUMENT ID 0.095±0.014 OUR FIT Error includes scale factor of 1.6. 0.098 ± 0.016 OUR AVERAGE Error includes scale factor of 1.8 GOPAL 77 DPWA KN multichannel KANE 74 DPWA $K^- \rho \rightarrow \Sigma \pi$ • • • We do not use the following data for averages, fits, limits, etc. • • 1 MARTIN 77 DPWA K N multichannel +0.08 or +0.08 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Sigma(1775) \rightarrow \Lambda(1520) \pi$ DOCUMENT ID TECN COMMENT 0.286±0.016 OUR FIT Error includes scale factor of 1.9. 0.303 ± 0.009 OUR AVERAGE Signs on measurements were ignored. ² CAMERON 77 DPWA $K^- \rho \rightarrow \Lambda(1520) \pi^0$ BARLETTA 72 DPWA $K^- \rho \rightarrow \Lambda(1520) \pi^0$ 0.31 ± 0.02 ARMENTEROS65C HBC $K^-p \rightarrow \Lambda(1520)\pi^0$ 0.27 ± 0.03 $(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$ $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Sigma(1775) \rightarrow \Sigma(1385) \pi$ DOCUMENT ID TECN COMMENT 0.188 ± 0.010 OUR AVERAGE Signs on measurements were ignored. 78 DPWA $K^- p \rightarrow \Sigma(1385) \pi$ 74 DPWA $K^- N \rightarrow \Sigma(1385) \pi$ - 0.184 ± 0.011 3 CAMERON PREVOST $+0.20 \pm 0.02$ • • • We do not use the following data for averages, fits, limits, etc. • • SIMS 68 DBC $K^- N \rightarrow \Lambda \pi \pi$ ARMENTEROS67C HBC $K^- p \rightarrow \Lambda \pi \pi$ $K^- p \rightarrow \Lambda \pi \pi$ 0.24 ± 0.03 $\Gamma(\Lambda\pi)/\Gamma(N\overline{K})$ Γ_2/Γ_1 DOCUMENT ID TECN COMMENT 0.35±0.04 OUR FIT Error includes scale factor of 1.2.

• • • We do not use the following data for averages, fits, limits, etc. • • •

Σ(1775) FOOTNOTES

¹ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

DOCUMENT ID

DOCUMENT ID

UHLIG

UHLIG

UHLIG

• • • We do not use the following data for averages, fits, limits, etc. • • •

67 HBC

⁴ ARMENTEROS68C HDBC $K^-N \rightarrow \Sigma \pi \pi$

67 HBC

TECN COMMENT

TECN COMMENT

67 HBC K- p 0.9 GeV/c

K- p 0.9 GeV/c

DOCUMENT ID TECN COMMENT

 Γ_7/Γ

 Γ_4/Γ_1

 Γ_6/Γ_1

- 2 This rate combines *P*-wave- and *F*-wave decays. The CAMERON 77 results for the separate *P*-wave- and *F*-wave decays are -0.303 ± 0.010 and -0.037 ± 0.014 . The published signs have been changed here to be in accord with the baryon-first convention.
- 3 The CAMERON 78 upper limit on G-wave decay is 0.03.

0.192±0.031 OUR FIT Error includes scale factor of 1.4

0.44±0.07 OUR FIT Error includes scale factor of 2.3.

 0.33 ± 0.05

 0.25 ± 0.09

 0.28 ± 0.05

 $\Gamma(\Sigma\pi\pi)/\Gamma_{\mathsf{total}}$

 $\Gamma(\Sigma(1385)\pi)/\Gamma(N\overline{K})$

 $\Gamma(\Lambda(1520)\pi)/\Gamma(N\overline{K})$

⁴ For about 3/4 of this, the $\Sigma\pi$ system has I=0 and is almost entirely $\Lambda(1520)$. For the rest, the $\Sigma\pi$ has I=1, which is about what is expected from the known $\Sigma(1775) \rightarrow \Sigma(1385)\pi$ rate, as seen in $\Lambda\pi\pi$.

Σ(1775) REFERENCES

GOPAL	80	Toronto Conf. 159		(RHEL) IJP
ALSTON	78	PR D18 182	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
Also	77	PRL 38 1007	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
CAMERON	78	NP B143 189	+Franek, Gopal, Bacon, Butterworth	
CAMERON	77	NP B131 399	+Franek, Gopal, Kalmus, McPherson	
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	778	NP B126 266	Martin, Pidcock	(LOUC)
Aiso	77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
DEBELLEFON	76	NP B109 129	De Bellefon, Berthon	(CDEF) IJP
BAILLON	75	NP B94 39	+Litchfield	(CERN, RHEL) IJP
VANHORN	75	NP B87 145		(LBL) IJP
Also	75B	NP B87 157	VanHorn	(LBL) IJP
DEVENISH	74B	NP B81 330	+Froggatt, Martin	(DESY, NORD, LOUC)
KANE	74	LBL-2452		(LBL) IJP
PREVOST	74	NP B69 246	+Barloutaud+	(SACL, CERN, HEID)
BARLETTA	72	NP B40 45	,	(EFI) UP
Also	66	PRL 17 841	Fenster, Gelfand, Harmsen+	(CHIC, ANL, CERN) IJP
ARMENTEROS		NP B8 216	+Baillon+	(CERN, HEID, SACL) I
SIMS	68	PRL 21 1413	+Albright, Bartley, Meer+	(FSU, TUFT, BRAN)
ARMENTEROS		ZPHY 202 486	+Ferro-Luzzi+	(CERN. HEID, SACL)
UHLIG	67	PR 155 1448	+Charlton, Condon, Glasser, Yodh+	(UMD, NRL)
ARMENTEROS		PL 19 338	+Ferro-Luzzi+	(CERN, HEID, SACL) IJP
GALTIERI	63	PL 6 296	+Hussain. Tripp	(LRL) Li

 $I(J^P) = 1(\frac{3}{2}^+)$ Status: *

OMITTED FROM SUMMARY TABLE

For the time being, we list together here all resonance claims in the P_{13} wave between 1700 and 1900 MeV.

	Σ(1840) MA	SS		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1798 or 1802	¹ MARTIN	77	DPWA	K N multichannel
1720± 30	² BAILLON	75		$\overline{K}N \rightarrow \Lambda \pi$
1.925 ± 200	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
1840 ± 10	LANGBEIN	72	IPWA	K N multichannel
	Z/1940) WID	ты		
-	Σ(1840) WID	тн		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
93 or 93		77	DPWA	K N multichannel
93 or 93 120±30	DOCUMENT ID		DPWA	
93 or 93		77	DPWA IPWA	K N multichannel

Σ(1840) DECAY MODES

Mode	
$\Gamma_1 = N\overline{K}$	
$\Gamma_2 = \Lambda \pi$	
$\Gamma_3 \Sigma \pi$	

Σ(1840) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE		_	TECN	COMMENT
0 or 0	¹ MARTIN	77		K N multichannel
0.37 ± 0.13	LANGBEIN	72	IPWA	K N multichannel
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to VALUE}$	$\Sigma(1840) \rightarrow \Lambda \pi$		TECN	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
+0.03 or +0.03	1 MARTIN	77		K N multichannel
+0.11 ±0.02	² BAILLON			$\overline{K}N \rightarrow \Lambda \pi$
+0.06 ±0.04	VANHORN	75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
+0.122±0.078	DEVENISH	74B		Fixed-t dispersion rel.
0.20 ± 0.04	LANGBEIN	72	IPWA	K N multichannel
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to$				$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.04 or -0.04	¹ MARTIN	77		K N multichannel
0.15 ± 0.04	LANGBEIN	72	IPWA	K N multichannel

Σ(1840) REFERENCES

MARTIN	77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock	(LOUC)
Also	77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
BAILLON	75	NP B94 39	+Litchfield	(CERN, RHEL) IJP
VANHORN	75	NP B87 145		(LBL) IJP
Also	75B	NP B87 157	VanHorn	(LBL) IJP
DEVENISH	74B	NP B81 330	+Froggatt, Martin	(DESY, NORD, LOUC)
LANGBEIN	72	NP B47 477	+Wagner	(MIMM)

$\Sigma(1880) P_{11}$

 $\Gamma(N\overline{K})/\Gamma_{\text{total}}$

VALUE

 $I(J^P) = 1(\frac{1}{2}^+)$ Status: **

OMITTED FROM SUMMARY TABLE

A P_{11} resonance is suggested by several partial-wave analyses, but with wide variations in the mass and other parameters. We list here all claims which lie well above the P_{11} $\Sigma(1770)$.

Σ(1880) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1826 ± 20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1870 ± 10	CAMERON	78B	DPWA	$K^- \rho \rightarrow N \overline{K}^*$
1847 or 1863	¹ MARTIN	77	DPWA	K N multichannel
1960 ± 30	² BAILLON			$\overline{K} N \rightarrow \Lambda \pi$
1985 ± 50	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
1898	³ LEA	73	DPWA	Multichannel K-matrix
~ 1850	ARMENTEROS	570	IPWA	$\overline{K}N \rightarrow \overline{K}N$
1950 ± 50	BARBARO	70	DPWA	$K^- N \rightarrow \Lambda \pi$
1920 ± 30	LITCHFIELD	70	DPWA	$K^- N \rightarrow \Lambda \pi$
1850	BAILEY	69	DPWA	$\overline{K}N \to \overline{K}N$
1882 ± 40	SMART	68	DPWA	$K^- N \rightarrow \Lambda \pi$

$\Sigma(1880)$ WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
86 ± 15	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
80 ± 10	CAMERON	78B	DPWA	$K^- \rho \rightarrow N \overline{K}^*$
216 or 220		77	DPWA	K N multichannel
260 ± 40				$\overline{K}N \rightarrow \Lambda\pi$
220 ± 140	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
222	³ LEA	73	DPWA	Multichannel K-matrix
~ 30	ARMENTEROS	70	IPWA	$\overline{K}N \rightarrow \overline{K}N$
200 ± 50	BARBARO	70	DPWA	$K^- N \rightarrow \Lambda \pi$
170 ± 40				$K^- N \rightarrow \Lambda \pi$
200	BAILEY	69	DPWA	$\overline{K}N \to \overline{K}N$
222 ± 150	SMART	68	DPWA	$K^- N \rightarrow \Lambda \pi$

Σ(1880) DECAY MODES

NK		
$\Lambda \pi$		
$\Sigma \pi$ $N \overline{K}^*$ (892), $S=1/2$, P -w $N \overline{K}^*$ (892), $S=3/2$, P -w		
$N\overline{K}^*$ (892), $S=1/2$, $P-w$	ave	
$N\overline{K}^*(892), S=3/2, P-w$	ave	

Σ(1880) BRANCHING RATIOS

DOCUMENT ID

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

TECN COMMENT

 Γ_1/Γ

0.06 ± 0.02	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.27 or 0.27	¹ MARTIN	77	DPWA	K N multichannel
0.31	³ LEA	73	DPWA	Multichannel K-matrix
0.20	ARMENTERO	\$70	IPWA	$\overline{K}N \rightarrow \overline{K}N$
0.22	BAILEY	69	DPWA	$\overline{K} N \rightarrow \overline{K} N$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\overline{K} \to$	$\Sigma(1880) \rightarrow \Lambda \pi$			$(\Gamma_{1}\Gamma_{2})^{1/2}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.24 or -0.24	¹ MARTIN	77	DPWA	K N multichannel
-0.12 ± 0.02	² BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi$
$+0.05 \begin{array}{c} +0.07 \\ -0.02 \end{array}$	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
-0.169 ± 0.119	DEVENISH	74B		Fixed-t dispersion rel.
-0.30	³ LEA	73	DPWA	Multichannel K-matrix
-0.09 ± 0.04	BARBARO	70	DPWA	$K^- N \rightarrow \Lambda \pi$
-0.14 ± 0.03	LITCHFIELD	70	DPWA	$K^- N \rightarrow \Lambda \pi$
-0.11 ± 0.03	SMART	68	DPWA	$K^- N \rightarrow \Lambda \pi$

 $[\]frac{1}{2}$ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. $^2\,\mathrm{From}$ solution 1 of BAILLON 75; not present in solution 2.

$\Sigma(1880), \Sigma(1915)$

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \frac{VALUE}{+0.30 \text{ or } +0.29}$ not seen	DOCUMENT ID 1 MARTIN 77	$\begin{array}{c} & (\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma \\ \hline \text{DPWA} & \overline{\textit{K N}} \text{ multichannel} \\ \text{DPWA} & \text{Multichannel K-matrix} \end{array}$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{total} \ in \ N\overline{K} \to$	$\Sigma(1880) \rightarrow N\overline{K}^*(89)$	
<u>VALUE</u> - 0.05 ± 0.03	DOCUMENT ID 4 CAMERON 786	$\frac{(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma}{\text{3 DPWA } K^-\rho \to N\overline{K}^*}$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{total} \ in \ \mathcal{N}\overline{\mathcal{K}} \to$	$\Sigma(1880) \rightarrow N\overline{K}^*(89)$	
<u>VALUE</u> + 0.11 ± 0.03	DOCUMENT ID CAMERON 788	$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & & & $

Σ(1880) FOOTNOTES

- ¹ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
- $^2\,\mbox{From solution}$ 1 of BAILLON 75; not present in solution 2.
- ³ Only unconstrained states from table 1 of LEA 73 are listed.
- ⁴ The published sign has been changed to be in accord with the baryon-first convention.

Σ(1880) REFERENCES

GOPAL	80	Toronto Conf. 159		(RHEL) IJP
CAMERON	78B	NP B146 327	+Franek, Gopal, Kalmus,	McPherson+ (RHEL, LOIC) IJP
MARTIN	77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock	(LOUC)
Also	77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
BAILLON	75	NP B94 39	+Litchfield	(CERN, RHEL) IJP
VANHORN	75	NP B87 145		(LBL) IJP
Also	75B	NP B87 157	VanHorn	(LBL) IJP
DEVENISH	74B	NP B81 330	+Froggatt, Martin	(DESY, NORD, LOUC)
LEA	73	NP B56 77	+Martin, Moorhouse+	(RHEL, LOUC, GLAS, AARH) IJP
ARMENTEROS	70	Duke Conf. 123	+Baillon+	(CERN, HEID, SACL) IJP
BARBARO	70	Duke Conf. 173	Barbaro-Galtieri	(LRL) IJP
LITCHFIELD	70	NP B22 269		(RHEL) IJP
BAILEY	69	UCRL 50617 Thesis		(LLL) IJP
SMART	68	PR 169 1330		(LRL) IJP

$\Sigma(1915) F_{15}$

$$I(J^P) = 1(\frac{5}{2}^+)$$
 Status: ***

Discovered by COOL 66. For results published before 1974 (they are now obsolete), see our 1982 edition (Physics Letters 111B).

This entry only includes results from partial-wave analyses. Parameters of peaks seen in cross sections and invariant-mass distributions in this region used to be listed in in a separate entry immediately following. They may be found in our 1986 edition (Physics Letters 170B).

Σ(1915) MASS

VALUE (MeV)		DOCUMENT ID		TECN	COMMENT
1900 to 1935 OUR ESTIMATE					
1937 ± 20		ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1894± 5	1	CORDEN	77c		$K^- n \rightarrow \Sigma \pi$
1909 ± 5	1	CORDEN	77c		$K^- n \rightarrow \Sigma \pi$
1920±10		GOPAL	77	DPWA	K N multichannel
1900± 4	2	CORDEN	76	DPWA	$K^- n \rightarrow \Lambda \pi^-$
1920±30		BAILLON	75	IPWA	$\overline{K} N \rightarrow \Lambda \pi$
1914 ± 10		HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$
1920 + 15		VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
1920± 5		KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the following	d	ata for averages	, fits	, limits,	etc. • • •
not seen 1925 or 1933 1915	3		77	DPWA	$\overline{K} N \to \overline{K} N$ $\overline{K} N$ multichannel $K^- p \to \Lambda \pi^0$

Σ(1915) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
80 to 160 OUR ESTIMATE	Our best guess is 120	Me∨.	
161 ± 20	ALSTON	78 DPWA	$\overline{K} N \rightarrow \overline{K} N$
107 ± 14	¹ CORDEN	77c	$K^- n \rightarrow \Sigma \pi$
85 ± 13	¹ CORDEN	77 C	$K^- n \rightarrow \Sigma \pi$
130 ± 10	GOPAL.	77 DPWA	K N multichannel
75 ± 14	² CORDEN	76 DPWA	$K^- n \rightarrow \Lambda \pi^-$
70 ± 20	BAILLON	75 IPWA	$\overline{K} N \rightarrow \Lambda \pi$
85 ± 15	HEMINGWAY		$K^- p \rightarrow \overline{K} N$
102 ± 18	VANHORN	75 DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
162 ± 25	KANE	74 DPWA	$K^- \rho \rightarrow \Sigma \pi$

• • • We do not use the following data for averages, fits, limits, etc. • • • 171 or 173
3 MARTIN 77 DPWA \overline{K} N multichannel DEBELLEFON 76 IPWA $K^-p \rightarrow \Lambda \pi^0$

Σ(1915) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	NK	5-15 %	
Γ_2	$\Lambda \pi$	seen	
Γ_3	$\Sigma \pi$	seen	
Γ_4	$\Sigma(1385)\pi$	< 5 %	
Γ ₅	$\Sigma(1385)\pi$, <i>P</i> -wave		
Γ ₆	$\Sigma(1385)\pi$, <i>F</i> -wave		

The above branching fractions are our estimates, not fits or averages.

Σ(1915) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
0.05 to 0.15 OUR ESTIMATE	4			
0.03 ± 0.02	⁴ GOPAL			
0.14 ± 0.05	ALSTON			
0.11 ± 0.04	HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$
• • We do not use the following	data for averages	s, fit	s, limits.	etc. • • •
0.05 ± 0.03	GOPAL	77	DPWA	See GOPAL 80
0.08 or 0.08	3 MARTIN	77	DPWA	K N multichannel
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma($	1915) $\rightarrow \Lambda \pi$ DOCUMENT ID		TECN	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
-0.09 ± 0.03			DPWA	K N multichannel
-0.10 ± 0.01	² CORDEN	76	DPWA	$K^- n \rightarrow \Lambda \pi^-$
-0.06 ± 0.02	BAILLON			
-0.09 ± 0.02	VANHORN	75	DPWA	$\kappa^- \rho \rightarrow \Lambda \pi^0$
-0.087 ± 0.056	DEVENISH	748		Fixed-t dispersion rel.
• • We do not use the following	data for averages	s, fit:	s, limits,	etc. • • •
-0.09 or -0.09				K N multichannel
0.10	DEBELLEFON	76	IPWA	$K^- \rho \rightarrow \Lambda \pi^0$

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	$\Sigma(1915) \rightarrow \Sigma \pi$		$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT
-0.17 ± 0.01	¹ CORDEN	77C	$K^- n \rightarrow \Sigma \pi$
~ 0.15 ± 0.02	¹ CORDEN	77c	$K^- n \rightarrow \Sigma \pi$
-0.19 ± 0.03	GOPAL	77 DPWA	R N multichannel
-0.16 ± 0.03	KANE	74 DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the follow	wing data for average	s, fits, limits,	etc. • • •

-0.05 or -0.05 3 MARTIN 77 DPWA $\overline{K}N$ multichannel

 $\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{\sum(1915) \rightarrow \sum(1385)\pi, P\text{-wave}}{\sum OCUMENT ID} \frac{\Gamma_{i}\Gamma_{i}\Gamma_{j}}{\sum DOCUMENT ID} \frac{TECN}{\sum COMMENT} \frac{COMMENT}{\sum CAMERON} \frac{COMMENT}{78} \frac{TECN}{\sum COMMENT} \frac{COMMENT}{\sum CAMERON} \frac{COMMENT$

 $\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{1\!/2}/\Gamma_{total} \text{ in } N\overline{K} \rightarrow}{+0.039 \pm 0.009} \xrightarrow{\Sigma (1915) \rightarrow \Sigma (1385) \pi, F\text{-wave} \atop DOCUMENT ID} \frac{\Gamma_{b}}{15 \text{ CAMERON}} \times \frac{\Gamma_{b}}{$

Σ(1915) FOOTNOTES

- $\frac{1}{2}$ The two entries for CORDEN 77C are from two different acceptable solutions.
- ² Preferred solution 3; see CORDEN 76 for other possibilities.
- ³ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.
 ⁴ The mass and width are fixed to the GOPAL 77 values due to the low elasticity.
- ⁵ The published sign has been changed to be in accord with the baryon-first convention.

Σ(1915) REFERENCES

GOPAL	80	Toronto Conf. 159		(RHEL) IJP
ALSTON	78	PR D18 182	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
Also	77	PRL 38 1007	Alston-Garnjost, Kenney+	(LBL, MTHO, CERN) IJP
CAMERON	78	NP B143 189	+Franek, Gopal, Bacon, Butterworth	1+ (RHEL, LOIC) IJP
CORDEN	77C	NP B125 61	+Cox, Kenyon, O'Neale, Stubbs, Su	morok+ (BIRM) IJP
DECLAIS	77	CERN 77-16	+Duchon, Louvel, Patry, Seguinot+	(CAEN, CERN) IJP
GOPAL	77	NP B119 362	-Ross, VanHorn, McPherson+	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	-Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock	(LOUC)
Also	77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
CORDEN	76	NP B104 382	-Cox, Dartnell, Kenyon, O'Neale+	(BIRM) IJP
DEBELLEFON	76	NP B109 129	De Bellefon, Berthon	(CDEF) UP
BAILLON	75	NP B94 39	+Litchfield	(CERN, RHEL) IJP
HEMINGWAY	75	NP B91 12	+Eades, Harmsen	(CERN, HEID, MPIM) IJP
VANHORN	75	NP B87 145		(LBL) IJP
Also	75B	NP B87 157	VanHorn	(LBL) IJP
DEVENISH	74B	NP B81 330	+Froggatt, Martin	(DESY, NORD, LOUC)
KANE	74	LBL-2452	==	(LBL) IJP
COOL	66	PRL 16 1228	+ Giacomelli, Kycia, Leontic, Lundby	+ (BNL)

 $(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$

Baryon Full Listings $\Sigma(1940), \Sigma(2000)$

$\Sigma(1940) D_{13}$

$$I(J^P) = 1(\frac{3}{2}^-)$$
 Status: ***

For results published before 1974 (they are now obsolete), see our 1982 edition (Physics Letters 111B).

Not all analyses require this state. It is not required by the GOYAL 77 analysis of $K^- n \to (\Sigma \pi)^-$ nor by the GOPAL 80 analysis of $K^- n \to K^- n$. See also HEMINGWAY 75.

Σ(1940) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1900 to 1950 OUR ESTIMATE				
1920 ± 50	GOPAL	77	DPWA	$\overline{K}N$ multichannel
1950 ± 30	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda \pi$
$1949 + 40 \\ -60$	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
1935 ± 80	KANE	74	DPWA	$K^- \rho \rightarrow \Sigma \pi$
1940 ± 20	LITCHFIELD	74B	DPWA	$K^- \rho \rightarrow \Lambda(1520) \pi^0$
1950 ± 20	LITCHFIELD	74C	DPWA	$K^- p \rightarrow \Delta(1232)\overline{K}$
• • • We do not use the following	data for averages	, fits	, limits,	etc. • • •
1886 or 1893				K N multichannel
1940	DEBELLEFON	76	IPWA	$K^- p \rightarrow \Lambda \pi^0, F_{17}$

Σ(1940) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
150 to 300 OUR ESTIMATE	Our best guess is 220 Me	v	
170±25	CAMERON 78B		
300 ± 80	GOPAL 77	DPWA	K N multichannel
150±75	BAILLON 75	IPWA	$\overline{K}N \rightarrow \Lambda \pi$
160^{+70}_{-40}	VANHORN 75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
330 ± 80	KANE 74	DPWA	$K^- p \rightarrow \Sigma \pi$
60±20	LITCHFIELD 74B	DPWA	$K^- p \rightarrow \Lambda(1520) \pi^0$
70 ^{+ 30} _{- 20}	LITCHFIELD 740	DPWA	$K^- \rho \rightarrow \Delta(1232) \overline{K}$

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

157 or 159 1 MARTIN 77 DPWA $\overline{\textit{K}}$ N multichannel

Σ(1940) DECAY MODES

	Mode	Fraction (Γ_j/Γ)
$\overline{\Gamma_1}$	NK	<20 %
Γ_2	$\Lambda\pi$	seen
Γ_3	$\Sigma \pi$	seen
Γ4	$\Sigma(1385)\pi$	seen
Γ_5	$\Sigma(1385)\pi$, S-wave	
Γ6	$\Lambda(1520)\pi$	seen
Γ7	$\Lambda(1520)\pi$, P-wave	
Γ8	$\Lambda(1520)\pi$, F-wave	
Гэ	$\Delta(1232)\overline{K}$	seen
Γ ₁₀	$\Delta(1232)\overline{K}$, S-wave	
Γ11	$\Delta(1232)\overline{K}$, D-wave	
Γ ₁₂	N K *(892)	seen
Γ ₁₃		

Σ(1940) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
<0.2 OUR ESTIMATE				
< 0.04	GOPAL			K N multichannel
0.14 or 0.13	¹ MARTIN	77	DPWA	K N multichannel
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{total} \ in \ \mathbf{N}\overline{K} \to$				$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.06 ± 0.03	GOPAL	77	DPWA	K N multichannel
-0.04 ± 0.02	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda \pi$
$-0.05 \begin{array}{c} +0.03 \\ -0.02 \end{array}$	VANHORN	75	DPWA	$K^- \rho \rightarrow \Lambda \pi^0$
-0.153 ± 0.070	DEVENISH	74B		Fixed-t dispersion rel.
• • • We do not use the follo	wing data for average	s, fit	s, limits,	etc. • • •
-0.15 or -0.14	1 MARTIN	77	DPWA	\overline{K} N multichannel

VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT			
-0.08 ± 0.04	GOPAL	77	DPWA	K N multichannel			
-0.14 ± 0.04	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$			
• • We do not use the follo							
+0.16 or $+0.16$	¹ MARTIN	77	DPWA	KN multichannel			
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Sigma(1940) \rightarrow \Lambda(1940)$	520)	π, <i>P</i> -w	ave $(\Gamma_1\Gamma_7)^{1/2}/\Gamma$			
VALUE	DOCUMENT ID		TECN	COMMENT			
< 0.03	CAMERON	77	DPWA	$K^- p \rightarrow \Lambda(1520) \pi^0$			
-0.11 ± 0.04	LITCHFIELD	74B	DPWA	$K^- p \to \Lambda(1520) \pi^0$ $K^- p \to \Lambda(1520) \pi^0$			
$(\Gamma_i\Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\overline{K} \to \frac{1}{2}$	DOCUMENT ID		<u>TEÇN</u>	COMMENT			
0.062 ± 0.021	CAMERON	77	DPWA	$K^- p \rightarrow \Lambda(1520) \pi^0$			
-0.08 ± 0.04	LITCHFIELD	748	DPWA	$K^- p \rightarrow \Lambda(1520) \pi^0$ $K^- p \rightarrow \Lambda(1520) \pi^0$			
$\begin{array}{c} (\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow \\ \frac{VALUE}{-0.16 \pm 0.05} \end{array}$							
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow VALUE}$	DOCUMENT ID		TECN	COMMENT			
-0.14 ± 0.05	LITCHFIELD	740	DPWA	$K^- p \rightarrow \Delta(1232)\overline{K}$			
$\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{1/2}/\Gamma_{\text{total in }N\overline{K}}\rightarrow}{VALUE}$ +0.066 ±0.025	$\Sigma(1940) \rightarrow \Sigma(1)$	385)	π TECN	$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$			
$+0.066\pm0.025$	4 CAMERON	78	DPWA	$K^- \rho \rightarrow \Sigma(1385) \pi$			

Σ(1940) FOOTNOTES

3 CAMERON

 $^{
m 1}$ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

²The published sign has been changed to be in accord with the baryon-first convention.

 3 Upper limits on the D_1 and D_3 waves are each 0.03.

 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Sigma(1940) \rightarrow N\overline{K}^*(892)$

 $(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Sigma(1940) \rightarrow \Sigma \pi$

Σ(1940) REFERENCES

GOPAL	80	Toronto Conf. 159		(RHEL)
CAMERON	78	NP B143 189	+Franek, Gopal, Bacon, Butterworth	+ (RHEL, LOIC) IJP
CAMERON	78B	NP B146 327	+Franek, Gopal, Kalmus, McPherson	+ (RHEL, LOIC) IJP
CAMERON	77	NP B131 399	+Franek, Gopal, Kalmus, McPherson	+ (RHEL, LOIC) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+	(LOIC, RHEL) IJP
GOYAL	77	PR D16 2746	+Sodhi	(DELH)
MARTIN	77	NP B127 349	+Pidcock, Moorhouse	(LOUC, GLAS) IJP
Also	77B	NP B126 266	Martin, Pidcock	(LOUC)
Also	77C	NP B126 285	Martin, Pidcock	(LOUC) IJP
DEBELLEFON	76	NP B109 129	De Bellefon, Berthon	(CDEF) IJP
BAILLON	75	NP B94 39	+Litchfield	(CERN, RHEL) IJP
HEMINGWAY	75	NP B91 12	+Eades, Harmsen+	(CERN, HEID, MPIM) IJP
VANHORN	75	NP B87 145		(LBL) IJP
Also	75B	NP B87 157	VanHorn	(LBL) IJP
DEVENISH	74B	NP B81 330	+Froggatt, Martin	(DESY, NORD, LOUC)
KANE	74	LBL-2452		(LBL) IJP
LITCHFIELD	74B	NP B74 19	+Hemingway, Baillon+	(CERN, HEID) IJP
LITCHFIELD	74C	NP B74 39	+Hemingway, Baillon+	(CERN, HEID) IJP

$\Sigma(2000) S_{11}$

 -0.09 ± 0.02

 $I(J^P) = 1(\frac{1}{2})$ Status: *

TECN COMMENT

78B DPWA $K^- p \rightarrow N \overline{K}^*$

OMITTED FROM SUMMARY TABLE

We list here all reported S_{11} states lying above the $\Sigma(1750)$ S_{11} .

Σ(2000) MA	SS		
DOCUMENT ID		TECN	COMMENT
GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
GOPAL	77	DPWA	K N multichannel
¹ MARTIN	77	DPWA	K N multichannel
VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
, ,	TH		
			COMMENT
			$\overline{K}N \to \overline{K}N$
			K N multichannel
¹ MARTIN	77		K N multichannel
	75		$K^- \rho \rightarrow \Lambda \pi^0$
	DOCUMENT ID GOPAL GOPAL 1 MARTIN VANHORN	GOPAL 80 GOPAL 77 1 MARTIN 77 VANHORN 75 Σ(2000) WIDTH DOCUMENT ID GOPAL 80 GOPAL 77	DOCUMENT ID TECN

 $\Sigma(2000), \Sigma(2030)$

Σ(2000) DECAY MODES

	Mode	
$\overline{\Gamma_1}$	NK	_
Γ_2	$\Lambda\pi$	
Γ_3^-	$\Sigma \pi$	
Γ4	$\Lambda(1520)\pi$	
Γ_5	$N\overline{K}^*$ (892), $S=1/2$, S-wave	
Γ ₆	$N\overline{K}^*$ (892), $S=1/2$, S -wave $N\overline{K}^*$ (892), $S=3/2$, D -wave	

Σ(2000) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN_	COMMENT
0.51 ± 0.05	GOPAL	80	DPWA	$\overline{K}N \to \overline{K}N$
0.44 ± 0.05	GOPAL			See GOPAL 80
0.62 or 0.57	1 MARTIN	77	DPWA	K N multichannel
$(\Gamma_i \Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{0.08 \pm 0.03}$ - 0.19 or - 0.18 not seen	DOCUMENT ID GOPAL 1 MARTIN BAILLON	77 77 75	DPWA DPWA IPWA	$\frac{\left(\Gamma_{1}\Gamma_{2}\right)^{1/2}/\Gamma}{\overline{K}N \text{ multichannel}}$ $\overline{K}N \text{ multichannel}$ $\overline{K}N \to \Lambda\pi$ $K^{-}\rho \to \Lambda\pi^{0}$
$+0.07 + 0.02 \\ -0.01$	VANHORN	75	DPWA	$\kappa \rho \rightarrow \Lambda \pi^0$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \frac{VALUE}{+0.20 \pm 0.04} + 0.26 \text{ or } +0.24$	DOCUMENT ID	77	DPWA	$\frac{\left(\Gamma_{1}\Gamma_{3}\right)^{1/2}/\Gamma}{\frac{COMMENT}{K\ N\ \text{multichannel}}$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow VALUE}$	$\Sigma(2000) \rightarrow \Lambda(15)$	520)	π	$(\Gamma_1\Gamma_4)^{1/2}/\Gamma$
$+0.081 \pm 0.021$	DOCUMENT ID 2 CAMERON	77	DPWA	P-wave decay
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to$	$\Sigma(2000) \rightarrow N\overline{K}$	*(89	92), <i>5</i> =	1/2, <i>S</i> -wave (Γ ₁ Γ ₅) ^{1/2} /Γ
VALUE	2 CAMERON		TECN	COMMENT
$+0.10\pm0.02$	² CAMERON	78B	DPWA	$K = \rho \rightarrow NK^{-}$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Sigma(2000) \rightarrow N\overline{K}$	*(89	92), <i>S</i> =	3/2, <i>D</i> -wave $(\Gamma_1\Gamma_6)^{1/2}/\Gamma$
VALUE	DOCUMENT ID		TECN	
-0.07 ± 0.03	CAMERON	78B	DPWA	$K^- \rho \rightarrow N \overline{K}^*$

Σ(2000) FOOTNOTES

Σ(2000) REFERENCES

		`	,	
GOPAL CAMERON CAMERON GOPAL MARTIN Also Also BAILLON VANHORN Also	80 78B 77 77 77 77B 77C 75 75	Toronto Conf. 159 NP B146 327 NP B131 399 NP B119 362 NP B127 349 NP B126 266 NP B126 285 NP B94 39 NP B87 145 NP B87 157	+Franck, Gopal, Kalmus, McPherson+ +Franck, Gopal, Kalmus, McPherson+ +Ross, VanHorn, McPherson+ +Pidock, Moorhouse Martin, Pidock Martin, Pidock +Litchfield VanHorn	(RHEL) IJP (RHEL, LOIC) IJP (RHEL, LOIC) IJP (RHEL, LOIC) IJP (LOIC, RHEL) IJP (LOUC, GLAS) IJP (LOUC) (LOUC) IJP (CERN, RHEL) IJP (LBL) IJP
71150	,,,,			,

$\Sigma(2030) F_{17}$

 $I(J^P) = 1(\frac{7}{2}^+)$ Status: ***

Discovered by COOL 66 and by WOHL 66. For most results published before 1974 (they are now obsolete), see our 1982 edition (Physics Letters 111B).

This entry only includes results from partial-wave analyses. Parameters of peaks seen in cross sections and invariant-mass distributions around 2030 MeV may be found in our 1984 edition, Rev. Mod. Phys. 56 (April 1984, Part II).

Σ((2030)) M	IASS
----	--------	-----	------

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
2025 to 2040 OUR ESTIMATE			
2036 ± 5	GOPAL	80 DPV	$VA \overline{K} N \rightarrow \overline{K} N$
2038 ± 10	CORDEN	77B	$K^- N \rightarrow N \overline{K}^*$
2040 ± 5	GOPAL	77 DPV	√A \overline{K} N multichannel
2030± 3	¹ CORDEN	76 DPV	$VA K^- n \rightarrow \Lambda \pi^-$
2035 ± 15	BAILLON	75 IPW	$A \overline{K} N \rightarrow \Lambda \pi$
2038 ± 10	HEMINGWAY		VA K [−] ρ → \overline{K} N
2042 ± 11	VANHORN	75 DPV	$VA K^- p \rightarrow \Lambda \pi^0$
2020 ± 6	KANE	74 DPV	$VA K^- \rho \rightarrow \Sigma \pi$
2035 ± 10	LITCHFIELD	74B DPV	$VA K^- p \rightarrow \Lambda(1520) \pi^0$
2020 ± 30	LITCHFIELD	74C DPV	$VA K^- p \rightarrow \Delta(1232)\overline{K}$
2025 ± 10	LITCHFIELD	74D DPV	$VA K^- p \rightarrow \Lambda(1820) \pi^0$
• • • We do not use the following	data for average	s, fits, limi	ts, etc. • • •
2027 to 2057	GOYAL	77 DPV	$VA K^- N \rightarrow \Sigma \pi$
2030	DEBELLEFON	76 IPW	A $K^- p \rightarrow \Lambda \pi^0$

Σ(2030) WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
150 to 200 OUR ESTIMATE	Our best guess is 180) MeV.	
172 ± 10	GOPAL	80 DPWA	$\overline{K} N \rightarrow \overline{K} N$
137 ± 40	CORDEN	77B	$K^- N \rightarrow N \overline{K}^*$
190 ± 10	GOPAL	77 DPWA	K N multichannel
201 ± 9	¹ CORDEN	76 DPWA	$K^- n \rightarrow \Lambda \pi^-$
180 ± 20	BAILLON	75 IPWA	$\overline{K} N \rightarrow \Lambda \pi$
172 ± 15	HEMINGWAY		$K^- p \rightarrow \overline{K} N$
178 ± 13	VANHORN	75 DPWA	$K^- p \rightarrow \Lambda \pi^0$
111± 5	KANE	74 DPWA	$K^- p \rightarrow \Sigma \pi$
160 ± 20	LITCHFIELD	74B DPWA	$K^- p \rightarrow \Lambda(1520) \pi^0$
200 ± 30	LITCHFIELD	74c DPWA	$K^- p \rightarrow \Delta(1232)\overline{K}$
• • We do not use the follow	wing data for average	s, fits, limits,	etc. • • •
260	DECLAIS	77 DPWA	$\overline{K} N \rightarrow \overline{K} N$
126 to 195	GOYAL	77 DPWA	$K^- N \rightarrow \Sigma \pi$
160	DEBELLEFON	76 IPWA	$K^- p \rightarrow \Lambda \pi^0$
70 to 125	LITCHFIELD	74D DPWA	$K^- p \rightarrow \Lambda(1820) \pi^0$

Σ(2030) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ_1	NK	17-23 %	
Γ_2	$\Lambda \pi$	17-23 %	
Γ_3	$\Sigma \pi$	5-10 %	
Γ_4	ΞK	<2 %	
Γ_5	$\Sigma(1385)\pi$	5-15 %	
Γ_6	$\Sigma(1385)\pi$, <i>F</i> -wave		
Γ_7	$\Lambda(1520)\pi$	10-20 %	
Γ8	$\Lambda(1520)\pi$, <i>D</i> -wave		
Γ_9	$\Lambda(1520)\pi$, G-wave		
Γ_{10}		10-20 %	
Γ_{11}	$\Delta(1232)\overline{K}$, F-wave		
Γ_{12}	$\Delta(1232)\overline{K}$, H-wave		
Γ_{13}	N \overline{K}^* (892)	<5 %	
Γ_{14}	$N\overline{K}^*$ (892), $S=1/2$, F -wave		
Γ_{15}	$N\overline{K}^*$ (892), $S=3/2$, F-wave		
Γ_{16}	$\Lambda(1820)\pi$, <i>P</i> -wave		

The above branching fractions are our estimates, not fits or averages.

Σ(2030) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.17 to 0.23 OUR ESTIMATE					
0.19 ± 0.03	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.18 ± 0.03	HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$	

¹ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

 $^{^{2}\,\}mathrm{The}$ published sign has been changed to be in accord with the baryon-first convention.

Baryon Full Listings $\Sigma(2030), \Sigma(2070)$

	• •		
• • • We do not use the follow	ving data for averages	s, fits, limits,	etc. • • •
0.15	DECLAIS	77 DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.24 ± 0.02	GOPAL	77 DPWA	See GOPAL 80
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Sigma(2030) \rightarrow \Lambda \pi$		$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE Total III WAR	DOCUMENT ID	TECN	COMMENT ('1'2) /'
+0.18 ±0.02	GOPAL	77 DPWA	K N multichannel
+0.20 ±0.01	¹ CORDEN	76 DPWA	\overline{K} N multichannel $K^- n \to \Lambda \pi^ \overline{K} N \to \Lambda \pi$ $K^- \rho \to \Lambda \pi^0$
+0.18 ±0.02	BAILLON	75 IPWA	$\overline{K}N \rightarrow \Lambda \pi$
+0.20 ±0.01	VANHORN	75 DPWA	$\kappa^- \rho \rightarrow \Lambda \pi^0$
$+0.195\pm0.053$	DEVENISH	74B	Fixed-t dispersion rel.
• • We do not use the follow	ving data for average:	s, fits, limits,	etc. • • •
0.20	DEBELLEFON	76 IPWA	$\kappa^- \rho \rightarrow \Lambda \pi^0$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}}$ in $N\overline{K} \rightarrow$	$\Sigma(2030) \rightarrow \Sigma \pi$ DOCUMENT ID CORDEN CORDEN	TECN	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
<u>VALUE</u> -0.09 ±0.01	2 CORDEN	77.0	K- 0 → Σ=
-0.09 ± 0.01 -0.06 ± 0.01	² CORDEN	77C	$K^- n \rightarrow \Sigma \pi$ $K^- n \rightarrow \Sigma \pi$
-0.15 ±0.03	GOPAL	77 DPWA	K N multichannel
-0.10 ±0.01	KANE	74 DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the follow			
-0.085 ± 0.02	³ GOYAL	77 DPWA	$K^- N \rightarrow \Sigma \pi$
(F.F.) 1/2 /F . in N.W.	Z(2030) = K		$(\Gamma_1\Gamma_4)^{1/2}/\Gamma$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to VALUE}$	DOCUMENT IN	TECN	COMMENT (114) /
0.023	MILLER	69R DPWA	K- p → = K
< 0.05	BURGUN	68 DPWA	$K^- p \rightarrow \Xi K$
<0.05	TRIPP	67 RVUE	$K^- p \rightarrow \Xi K$ $K^- p \rightarrow \Xi K$ $K^- p \rightarrow \Xi K$
-1			
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to VALUE}$	$\Sigma(2030) \rightarrow \Lambda(18)$	820)π, <i>P</i> -w <u>τεςν</u>	ave (Γ ₁ Γ ₁₆) ^{1/2} /Γ
0.14 ± 0.02			$K^- n \rightarrow N \overline{K} \pi^-$
0.18 ± 0.04	LITCHFIELD	740 DPWA	$K^- \rho \rightarrow \Lambda(1820) \pi^0$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow VALUE$	$\Sigma(2030) \rightarrow \Lambda(19)$	520)π, <i>D</i> -w	rave (Γ ₁ Γ ₈) ^{1/2} /Γ
+0.114±0.010	4 CAMERON	77 DPWA	$K^- p \rightarrow \Lambda(1520) \pi^0$
0.14 ±0.03	LITCHFIELD	74B DPWA	$K^- p \rightarrow \Lambda(1520) \pi^0$ $K^- p \rightarrow \Lambda(1520) \pi^0$
• • • We do not use the follow	wing data for average	s, fits, limits,	etc. • • •
0.10 ±0.03	⁵ CORDEN	75B DBC	$K^- n \rightarrow N \overline{K} \pi^-$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	E(2020) A(1)	E20) - C.,	····· (F.F.) ¹ / ₂ (F
	Z(2030) → /\(1:	52U)π, G-W	COMMENT
VALUE	4 CAMERON	77 DD\A/A	$K^- \rho \rightarrow \Lambda(1520) \pi^0$
$+0.146 \pm 0.010$ 0.02 ± 0.02			$K^- p \rightarrow \Lambda(1520)\pi^0$ $K^- p \rightarrow \Lambda(1520)\pi^0$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to VALUE}$			wave (Γ ₁ Γ ₁₁) ^{1/2} /Γ
0.16±0.03			$K^- \rho \rightarrow \Delta(1232)\overline{K}$
• • • We do not use the follo			
0.17 ± 0.03			$K^- n \rightarrow N \overline{K} \pi^-$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$.232) K , <i>H</i> -	wave $(\Gamma_1\Gamma_{12})^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	<u>TECN</u>	COMMENT
0.00 ± 0.02	LITCHFIELD	74C DPWA	$K^- p \rightarrow \Delta(1232)\overline{K}$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	$\Sigma(2030) \rightarrow \Sigma(1$	385) π	$(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT
$+0.153\pm0.026$	⁴ CAMERON	78 DPWA	$K^- \rho \rightarrow \Sigma(1385)\pi$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Sigma(2030) \rightarrow N\overline{K}$	^{r*} (892), <i>S</i> =	$1/2$, <i>F</i> -wave $(\Gamma_1\Gamma_{14})^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN	(1 1 14)'*/I
VALUE	4 CAMERON		
$+0.06\pm0.03$ -0.02 ± 0.01	CORDEN	788 DPWA 778	$K^- p \rightarrow N \overline{K}^*$ $K^- d \rightarrow N N \overline{K}^*$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$	$\Sigma(2030) \rightarrow N\overline{K}$	*(892), <i>S</i> =	3/2, <i>F</i> -wave
			$(\Gamma_{1}\Gamma_{15})^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		COMMENT
+0.04±0.03	6 CAMERON		$K^- p \rightarrow N \overline{K}^*$
-0.12 ± 0.02	CORDEN	77B	$K^- d \rightarrow NN\overline{K}^*$

Σ(2030) FOOTNOTES

- ¹ Preferred solution 3; see CORDEN 76 for other possibilities.
- The two entries for CORDEN 77c are from two different acceptable solutions.
- This coupling is extracted from unnormalized data.

 4 The published sign has been changed to be in accord with the baryon-first convention.
- ⁵ An upper limit.
- 6 The upper limit on the G_3 wave is 0.03.

Σ(2030) REFERENCES

GOPAL	80	Toronto Conf. 159	(RHEL) IJP
CAMERON	78	NP B143 189	+Franek, Gopal, Bacon, Butterworth+ (RHEL, LOIC) IJP
CAMERON	78B	NP B146 327	+Franek, Gopal, Kalmus, McPherson+ (RHEL, LOIC) IJP
CAMERON	77	NP B131 399	+Franek, Gopal, Kalmus, McPherson+ (RHEL, LOIC) IJP
CORDEN	77B	NP B121 365	+Cox, Kenyon, O'Neale, Stubbs, Sumorok+ (BIRM) IJP
CORDEN	77C	NP B125 61	+Cox, Kenyon, O'Neale, Stubbs, Sumorok+ (BIRM) IJP
DECLAIS	77	CERN 77-16	+Duchon, Louvel, Patry, Seguinot+ (CAEN, CERN) IJP
GOPAL	77	NP B119 362	+Ross, VanHorn, McPherson+ (LOIC, RHEL) IJP
GOYAL	77	PR D16 2746	+Sodhi (DELH) IJP
CORDEN	76	NP B104 382	+Cox, Dartnell, Kenyon, O'Neale+ (BIRM) IJP
DEBELLEFON	76	NP B109 129	De Bellefon, Berthon (CDEF) IJP
BAILLON	75	NP B94 39	+Litchfield (CERN, RHEL) IJP
CORDEN	75B	NP B92 365	+Cox, Dartnell, Kenyon, O'Neale+ (BIRM) IJP
HEMINGWAY	75	NP B91 12	+Eades, Harmsen+ (CERN, HEID, MPIM) IJP
VANHORN	75	NP B87 145	(LBL) IJP
Also	75B	NP B87 157	VanHorn (LBL) IJP
DEVENISH	74B	NP B81 330	+Froggatt, Martin (DESY, NORD, LOUC)
KANE	74	LBL-2452	(LBL) IJP
LITCHFIELD	74B	NP B74 19	+Hemingway, Baillon+ (CERN, HEID) IJP
LITCHFIELD	74C	NP B74 39	+Hemingway, Baillon+ (CERN, HEID) IJP
LITCHFIELD	74D	NP B74 12	+Hemingway, Baillon+ (CERN, HEID) IJP
MULLER	69B	UCRL 19372 Thesis	(LRL)
BURGUN	68	NP B8 447	+Meyer, Pauli, Tallini+ (SACL, CDEF, RHEL)
TRIPP	67	NP B3 10	+Leith+ (LRL, SLAC, CERN, HEID, SACL)
COOL	66	PRL 16 1228	+Giacomelli, Kycia, Leontic, Lundby+ (BNL)
WOHL	66	PRL 17 107	+Solmitz, Stevenson (LRL) IJP

$\Sigma(2070) F_{15}$

 $I(J^P) = 1(\frac{5}{2}^+)$ Status: *

OMITTED FROM SUMMARY TABLE

This state suggested by BERTHON 70B finds support in GOPAL 80 with new K^-p polarization and K^-n angular distributions. The very broad state seen in KANE 72 is not required in the later (KANE 74) analysis of $\overline{K}N \to$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2051 ± 25	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
2057	KANE	72	DPWA	$K^- \rho \rightarrow \Sigma \pi$
2070 ± 10	BERTHON	70B	DPWA	$K^- \rho \rightarrow \Sigma \pi$

$\Sigma(2070)$ WIDTH

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
300±30	GOPAL 8	0 DPWA	$\overline{K}N \rightarrow \overline{K}N$
906	KANE 7	2 DPWA	$K^- \rho \rightarrow \Sigma \pi$
140 ± 20	BERTHON 7	'0в DPWA	$K^- p \rightarrow \Sigma \pi$

Σ(2070) DECAY MODES

	Mode
$\overline{\Gamma_1}$	ΝK
Γ_2	$\Sigma \pi$

Σ(2070) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.08 ± 0.03	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$
$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow$				$(\Gamma_1\Gamma_2)^{1/2}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
+ 0.104	<u>DOCUMENT ID</u> KANE			$\frac{COMMENT}{K^- p \rightarrow \Sigma \pi}$
		72	DPWA	

Σ(2070) REFERENCES

f. 159	(RHEL) IJP
	(LBL)
l .	(LBL)
+Vrana, Butterworth+	(CDEF, RHEL, SACL) IJP
3	nf. 159 3 7 +Vrana, Butterworth+

 $\Sigma(2080), \Sigma(2100), \Sigma(2250)$

$$\Sigma(2080) P_{13}$$

$$I(J^P) = 1(\frac{3}{2}^+)$$
 Status: **

OMITTED FROM SUMMARY TABLE

Suggested by some but not all partial-wave analyses across this region.

	Σ(2080) MASS
VALUE (MeV)	DOCUMENT ID TECN COMMENT
2091 ± 7	¹ CORDEN 76 DPWA $K^- n \rightarrow \Lambda \pi^-$
2070 to 2120	DEBELLEFON 76 IPWA $K^- p \rightarrow \Lambda \pi^0$
2120 ± 40	BAILLON 75 IPWA $\overline{K} N \rightarrow \Lambda \pi$ (sol. 1)
2140 ± 40	BAILLON 75 IPWA $\overline{K}N \rightarrow \Lambda \pi$ (sol. 2)
2082 ± 4	COX 70 DPWA See CORDEN 76
2070 ± 30	LITCHFIELD 70 DPWA $K^- N \rightarrow \Lambda \pi$
	Σ(2080) WIDTH
VALUE (MeV)	,
	DOCUMENT ID TECN COMMENT
186±48	DOCUMENT ID TECN COMMENT 1 CORDEN 76 DPWA $K^- n \rightarrow \Lambda \pi^-$
VALUE (MeV) 186±48 100 240±50	DOCUMENT ID TECN COMMENT 1 CORDEN 76 DPWA $K^- n \rightarrow \Lambda \pi^-$ DEBELLEFON 76 IPWA $K^- p \rightarrow \Lambda \pi^0$
186 ± 48 100 240 ± 50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
186±48 100	DOCUMENT ID TECN COMMENT 1 CORDEN 76 DPWA $K^- n \rightarrow \Lambda \pi^-$ DEBELLEFON 76 IPWA $K^- p \rightarrow \Lambda \pi^0$

Σ(2080) DECAY MODES

	Mode
$\overline{\Gamma_1}$	NK
г.	Λ

Σ(2080) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$(\Gamma_i\Gamma_f)^{1/2}/\Gamma_{total} \ in \ N\overline{K} \to$				$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.10 ± 0.03				$K^- n \rightarrow \Lambda \pi^-$
-0.10	DEBELLEFON	76	IPWA	$K^- p \rightarrow \Lambda \pi^0$
-0.13 ± 0.04	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda\pi$ (sol. 1 and
				2)
-0.16 ± 0.03	COX	70	DPWA	See CORDEN 76
-0.09 ± 0.03	LITCHFIELD	70	DPWA	$K^- N \rightarrow \Lambda \pi$

Σ(2080) FOOTNOTES

Σ(2080) REFERENCES

BAIL		76 76 75 75 70 70	NP B104 382 NP B109 129 NP B90 1 NP B94 39 NP B19 61 NP B22 269	+ Cox. Dartnell, Kenyon De Bellefon, Berthon De Bellefon, Berthon, + Litchfield + Islam, Colley +	Brunet+	(BIRM) IJ (CDEF) IJ (CDEF, SACL) IJ (CERN, RHEL) IJ EDIN, GLAS, LOIC) IJ (RHEL) IJ
COX	LLÓN	75 70	NP B94 39 NP B19 61	+ Litchfield		(CERN, RHEL) EDIN. GLAS, LOIC)

 $\Sigma(2100) G_{17}$

 $I(J^P) = 1(\frac{7}{2})$ Status: *

OMITTED FROM SUMMARY TABLE

	Σ(2100) MASS
VALUE (MeV)	DOCUMENT ID TECN COMMENT
2060 ± 20	BARBARO 70 DPWA $K^- \rho \rightarrow \Lambda \pi^0$
2120 ± 30	BARBARO 70 DPWA $K^- ho ightarrow \Sigma \pi$
	Σ(2100) WIDTH
	2(2100) 1110
VALUE (MeV)	DOCUMENT ID TECH COMMENT
VALUE (MeV) 70 ± 30	, ,

Σ(2100) DECAY MODES

	Mode
Γ_1	$N\overline{K}$
Γ_2	$\Lambda \pi$
Γ_3	$\Sigma \pi$

Σ(2100) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$(\Gamma_i \Gamma_f)^{72} / \Gamma_{\text{total}} \text{ in } NK \rightarrow$	$\Sigma(2100) \rightarrow \Lambda \pi$		$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID	TECN	COMMENT
-0.07 ± 0.02	BARBARO 70	DPWA	$K^- p \rightarrow \Lambda \pi^0$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \rightarrow$	$\Sigma(2100) \rightarrow \Sigma \pi$		$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \frac{VALUE}{2}$	$\Sigma(2100) \rightarrow \Sigma \pi$ DOCUMENT ID	TECN	$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$

Σ(2100) REFERENCES

BARBARO-... 70 Duke Conf. 173 B

Barbaro-Galtieri

(LRL) IJP

Σ(2250)

$$I(J^P) = 1(?^?)$$
 Status: ***

Results from partial-wave analyses are too weak to warrant separating them from the production and cross-section experiments. LASINSKI 71 in $\overline{K}N$ using a Pomeron + resonances model, and DEBELLEFON 76, DEBELLEFON 77, and DEBELLEFON 78 in energy-dependent partial-wave analyses of $\overline{K}N \to \Lambda\pi$, $\Sigma\pi$, and $N\overline{K}$, respectively, suggest two resonances around this mass.

	Σ(2250) MAS	S		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2210 to 2280 OUR ESTIMATE				
2270 ± 50	DEBELLEFON			D ₅ wave
2210 ± 30	DEBELLEFON	78	DPWA	Gg wave
2275 ± 20	DEBELLEFON	77	DPWA	D ₅ wave
2215 ± 20	DEBELLEFON	77	DPWA	G _q wave
2300 ± 30	DEBELLEFON	75 B	HBC	$\kappa^- \rho \rightarrow \Xi^{*0} \kappa^0$
$2251 + 30 \\ -20$	VANHORN	75	DPWA	${\it K}^- \rho \rightarrow \Lambda \pi^0 , {\it F}_5 {\rm wave}$
2280 ± 14	AGUILAR	70B	HBC	K- p 3.9, 4.6 GeV/c
2237 ± 11	BRICMAN	70	CNTR	Total, charge exchange
2255 ± 10	COOL	70	CNTR	$K^- p$, $K^- d$ total
2250 ± 7	BUGG	68	CNTR	$K^- p$, $K^- d$ total
• • • We do not use the following of	data for averages	, fits	, limits,	etc. • • •
2260	DEBELLEFON	76	IPWA	D ₅ wave
2215	DEBELLEFON	76	IPWA	Gq wave
2250 ± 20	LU	70	CNTR	$\gamma p \rightarrow K^+ Y^*$
2245	BLANPIED	65	CNTR	$\gamma p \rightarrow K^+ Y^*$
2299 ± 6	воск	65	нвс	pp 5.7 GeV/c

 $^{^{1}\,\}mathrm{Preferred}$ solution 3; see CORDEN 76 for other possibilities, including a D_{15} at this mass.

Σ(2250) WIDTH

VALUE (MeV)	DOCUMENT ID TECN COMMENT
60 to 150 OUR ESTIMATE	Our best guess is 100 MeV.
120 ± 40	DEBELLEFON 78 DPWA D ₅ wave
80 ± 20	DEBELLEFON 78 DPWA G ₉ wave
70 ± 20	DEBELLEFON 77 DPWA D ₅ wave
60 ± 20	DEBELLEFON 77 DPWA G ₉ wave
130 ± 20	¹ DEBELLEFON 75B HBC $K^- p \rightarrow \Xi^{*0} K^0$
192±30	VANHORN 75 DPWA $K^- p \rightarrow \Lambda \pi^0$, F_5 wave
100 ± 20	AGUILAR 70B HBC $K^- p$ 3.9, 4.6 GeV/c
164 ± 50	BRICMAN 70 CNTR Total, charge exchange
230 ± 20	BUGG 68 CNTR K^-p , K^-d total
 • • We do not use the fo 	llowing data for averages, fits, limits, etc. • • •
100	DEBELLEFON 76 IPWA D ₅ wave
140	DEBELLEFON 76 IPWA G wave
170	COOL 70 CNTR $K = \rho$, $K = d$ total
125	LU 70 CNTR $\gamma p \rightarrow K^+ Y^*$
150	BLANPIED 65 CNTR $\gamma p \rightarrow K^+ Y^*$
21^{+17}_{-21}	BOCK 65 HBC $\overline{p}p$ 5.7 GeV/c

Σ(2250) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	NK	<10 %	
Γ_2	$\Lambda\pi$	seen	
Γ_3	$\Sigma \pi$	seen	
Γ ₃ Γ ₄	$\Sigma \pi N K \pi$		
	$\Xi(1530) K$		

The above branching fractions are our estimates, not fits or averages.

Σ(2250) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on Λ and Σ Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	
<0.1 OUR ESTIMATE					
0.08 ± 0.02	DEBELLEFON				
0.02 ± 0.01	DEBELLEFON	78	DPWA	G ₉ wave	
$(J+\frac{1}{2})\times\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID				
 • • We do not use the formula 	ollowing data for average	s, fit	s, limits,	etc. • • •	
0.16 ± 0.12	BRICMAN	70	CNTR	Total, cha	rge exchange
0.42	COOL	70	CNTR	K - p, K -	d total
0.47	BUGG	68	CNTR		
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K}$	$\rightarrow \Sigma(2250) \rightarrow \Lambda \pi$				$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	
-0.16 ± 0.03	VANHORN	75	DPWA	$K^- p \rightarrow$	$\Lambda \pi^0$, F_5 wave
• • • We do not use the fo	ollowing data for average	s, fit	s, limits,	etc. • • •	
+0.11	DEBELLEFON	1 76	IPWA	D _E wave	
0.10	DEBELLEFON				
0.18					Λπ0, G ₉ wave
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K}$	$\rightarrow \Sigma(2250) \rightarrow \Sigma_{\pi}$				$(\Gamma_1\Gamma_3)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	
+0.06±0.02	DEBELLEFON				
-0.03 ± 0.02	DEBELLEFON				
+0.07	BARBARO				$\Sigma \pi$, G_9 wave
$\Gamma(N\overline{K})/\Gamma(\Sigma\pi)$					Γ_1/Γ_3
VALUE	DOCUMENT ID		TECN	COMMENT	-, -
• • We do not use the form					
< 0.18	BARNES	69	нвс	1 standard	l dev. limit
$\Gamma(\Lambda\pi)/\Gamma(\Sigma\pi)$					Γ_2/Γ_3
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the fo	ollowing data for average	es, fit	s, limits,	etc. • • •	•
< 0.18	BARNES	69	HBC	1 standard	dev. limit
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K}$	→ ∇(2250) → =(1	E30,	K		$(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$
(f) / total NY VALUE		JJ0,	TECN	COMMENT	(11.2) /1
TALVE			7 E C/Y	COMMENT	-*0 ~0

Σ(2250) FOOTNOTES

1 DEBELLEFON 758 HBC $K^- p \rightarrow \Xi^{*0} K^0$

 0.18 ± 0.04

Σ(2250) REFERENCES

DEBELLEFON	78	NC 42A 403	De Bellefon, Berthon, Billoir+	(CDEF, SACL) IJI
DEBELLEFON	77	NC 37A 175	De Bellefon, Berthon, Billoir+	(CDEF, SACL) IJF
DEBELLEFON	76	NP B109 129	De Bellefon, Berthon	(CDEF) IJF
Also	75	NP B90 1	De Bellefon, Berthon, Brunet+	(CDEF, SACL) IJF
DEBELLEFON	75B	NC 28A 289	De Bellefon, Berthon, Billoir+	(CDEF, SACL)
VANHORN	75	NP B87 145		(LBL) IJF
Also	75B	NP B87 157	VanHorn	(LBL) IJE
LASINSKI	71	NP B29 125		(EFI) IJF
AGUILAR	70B	PRL 25 58	Aguilar-Benitez, Barnes, Bassano+	(BNL, SYRA)
BARBARO	70	Duke Conf. 173	Barbaro-Galtieri	(LRL) IJF
BRICMAN	70	PL 31B 152	+Ferro-Luzzi, Perreau+ (CERN	. CAEN, SACL)
COOL	70	PR D1 1887	+Giacomelli, Kycia, Leontic, Li+	(BNL)1
Aiso	66	PRL 16 1228	Cool, Giacomelli, Kycia, Leontic, Lundby+	(BNL) I
LU	70	PR D2 1846	+Greenberg, Hughes, Minehart, Mori+	(YALE)
BARNES	69	PRL 22 479	+Flaminio, Montanet, Samios+	(BNL, SYRA)
BUGG	68	PR 168 1466		. BIRM, CAVE) I
BLANPIED	65	PRL 14 741	+Greenberg, Hughes, Kitching, Lu+	(YALE, CEA)
BOCK	65	PL 17 166	+Cooper, French, Kinson+	(CERN, SACL)

Σ (2455) Bumps

 $I(J^P) = 1(??)$ Status: **

OMITTED FROM SUMMARY TABLE

There is also some slight evidence for Y^* states in this mass region from the reaction $\gamma p \to K^+ X$ — see GREENBERG 68.

Σ(2455) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2455±10	ABRAMS	70	CNTR	K^-p , K^-d total
2455 ± 7	BUGG	68	CNTR	$K^- p$, $K^- d$ total

Σ(2455) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
140	ABRAMS	70	CNTR	$K^- p$, $K^- d$ total
100±20	BUGG	68	CNTR	

Σ(2455) DECAY MODES

	Mode			
Γ1	NK			

Σ(2455) BRANCHING RATIOS

$(J+\frac{1}{2})\times I(NK)/I_{total}$				11/1
VALUE	DOCUMENT ID		TECN	COMMENT
0.39	ABRAMS	70	CNTR	$K^- \rho$, $K^- d$ total
0.05 ± 0.05	1 BRICMAN	70	CNTR	Total, charge exchange
0.3	BUGG	68	CNTR	

Σ(2455) FOOTNOTES

Σ(2455) REFERENCES

ABRAMS	70	PR D1 1917	+Cool, Giacomelli, Kycia, Leontic,	Li+	(BNL) f
Aiso	67E	PRL 19 678	Abrams, Cool, Giacomelli, Kycia,	Leontic+	(BNL)
BRICMAN	70	PL 31B 152	+Ferro-Luzzi, Perreau+	(CERN,	CAEN, SACL)
BUGG	68	PR 168 1466	+Gilmore, Knight+	(RHEL,	BIRM, CAVE) I
GREENBERG	68	PRL 20 221	+Hughes, Lu, Minehart+		(YALE)

 $^{^{1}\}mathrm{Seen}$ in the (initial and final state) D_{5} wave. Isospin not determined.

 $^{^{\}rm 1}\,{\rm Fit}$ of total cross section given by BRICMAN 70 is poor in this region.

$\Sigma(2620)$ Bumps, $\Sigma(3000)$ Bumps, $\Sigma(3170)$ Bumps

Σ(2620)	Bumps
---------	-------

 $I(J^P) = 1(??)$ Status: **

OMITTED FROM SUMMARY TABLE

	Σ(2620) MA	SS		
VALUE (MeV) 2542±22 2620±15	DOCUMENT ID DIBIANCA ABRAMS			$\frac{COMMENT}{K^- N \rightarrow \Xi K \pi}$ $K^- p, K^- d \text{ total}$
	Σ(2620) WID	ТН		
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
221 ± 81 175	DIBIANCA ABRAMS			$K^- N \rightarrow \Xi K \pi$ $K^- p, K^- d \text{ total}$

Σ(2620) DECAY MODES

Mode

 $\Gamma_1 = N \overline{K}$

Σ(2620) BRANCHING RATIOS

$(J+\frac{1}{2})\times\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.32	ABRAMS	70	CNTR	$K^- p$, $K^- d$ total
0.36 ± 0.12	BRICMAN	70	CNTR	Total, charge exchange

Σ(2620) REFERENCES

DIBIANCA	75	NP B98 137
ABRAMS	70	PR D1 1917
Also	67E	PRL 19 678
BRICMAN	70	PL 31B 152

+Endorf (CMU) +Cool, Giacomelli, Kycia, Leontic, Li+ (BNL)! Abrams, Cool, Giacomelli, Kycia, Leontic+ +Ferro-Luzzi, Perreau+ (CERN, CAEN, SACL)

Σ (3000) Bumps

 $I(J^P) = 1(??)$ Status: *

OMITTED FROM SUMMARY TABLE

Seen as an enhancement in $\Lambda\pi$ and $\overline{K}N$ invariant mass spectra and in the missing mass of neutrals recoiling against a K^0 .

	Σ(3000) MASS			
VALUE (MeV)	DOCUMENT ID	TECN	CHG	COMMENT
3000	EHRLICH 66	HBC	0	$\pi^- p 7.91 \text{ GeV}/c$

Σ(3000) DECAY MODES

	Mode

 $\begin{array}{ccc} \Gamma_1 & N \, \overline{K} \\ \Gamma_2 & \Lambda \, \pi \end{array}$

Σ(3000) REFERENCES

EHRLICH 66 PR 152 1194

+Selove, Yuta

(PENN) I

$\Sigma(3170)$ Bumps

 $I(J^p) = 1(??)$ Status: *

OMITTED FROM SUMMARY TABLE

Seen by AMIRZADEH 79 as a narrow 6.5-standard-deviation enhancement in the reaction $K^-\rho \to Y^{*+}\pi^-$ using data from independent high statistics bubble chamber experiments at 8.25 and 6.5 GeV/c. The dominant decay modes are multibody, multistrange final states and the production is via isospin-3/2 baryon exchange. Isospin 1 is favored.

Not seen in a K^-p experiment in LASS at 11 GeV/c (ASTON 85B).

Σ (3170) MASS (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
3170±5	35	AMIRZADEH 79	нвс	$K^- \rho \rightarrow Y^{*+} \pi^-$

Σ (3170) WIDTH (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
<20	35	¹ AMIRZADEH 79	нвс	$K^- \rho \rightarrow Y^{*+} \pi^-$

Σ (3170) DECAY MODES (PRODUCTION EXPERIMENTS)

	Mode
Γ ₁	Λ <i>K</i> K π's Σ <i>K</i> K π's

 $\Xi K \pi$'s

C/A W 77 1.1 /F

Σ(3170) BRANCHING RATIOS (PRODUCTION EXPERIMENTS)

I (ΛΚΚπ'S)/I total			1 ₁ /1
VALUE	DOCUMENT ID	TECN	COMMENT
seen	AMIRZADEH 79	HBC	$K^- \rho \rightarrow Y^{*+} \pi^-$
$\Gamma(\Sigma K \overline{K} \pi' s) / \Gamma_{total}$			Γ ₂ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT
seen	AMIRZADEH 79	HBC	$K^- \rho \rightarrow Y^{*+} \pi^-$
$\Gamma(\Xi K \pi' s)/\Gamma_{total}$			Γ ₃ /Γ
VALUE	DOCUMENT ID	TECN	COMMENT
seen	AMIRZADEH 79	HBC	$K^- \rho \rightarrow Y^{*+} \pi^-$

$\begin{array}{c} \Sigma(3170) \text{ FOOTNOTES} \\ \text{(PRODUCTION EXPERIMENTS)} \end{array}$

Σ(3170) REFERENCES (PRODUCTION EXPERIMENTS)

ASTON AMIRZADEH		PR D32 2270 PL 89B 125		- Carnegie I	(SLAC, CARL, CNRC, CINC) (BIRM, CERN, GLAS, MSU, LPNP, CAMB+) I
Also	80	Toronto Conf.	263	Kinson+	(BIRM, CERN, GLAS, MSU, LPNP) I

 $^{^{\}mathrm{1}}$ Observed width consistent with experimental resolution.

E BARYONS

$$(S=-2, I=1/2)$$

 $\Xi^0=uss$, $\Xi^-=dss$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

The parity has not actually been measured, but + is of course expected.

^		
Ξv	M	155

VALUE (MeV) 1314.9±0.6	OUR FIT	DOCUMENT ID	TECN
1314.8±0.8	OUR AVERAGE		
1315.2 ± 0.92	49	WILQUET 72	HLBC
1313.4 ± 1.8	1	PALMER 68	HBC

Ξ- - Ξ⁰ MASS DIFFERENCE

VALUE (MeV) 6.4±0.6 OUR FIT	EVTS	DOCUMENT ID		TECN	COMMENT
6.3±0.7 OUR AVERAG	GE				
6.9 ± 2.2	29	LONDON	66	HBC	
6.1 ± 0.9	88	PJERROU	65B	HBC	
6.8 ± 1.6	23	JAUNEAU	63	FBC	
• • • We do not use t	he following	data for average	s, fits	s, limits,	etc. • • •
6.1 ± 1.6	45	CARMONY	64B	нвс	See PJERROU 658

∃0 MEAN LIFE

VALUE (10 ⁻¹⁰ s)	EVTS	DOCUMENT ID		TECN	COMMENT
2.90 ± 0.09 OUR AVE	RAGE				
2.83 ± 0.16	6300	¹ ZECH	77	SPEC	Neutral hyperon beam
$2.88^{+0.21}_{-0.19}$	652	BALTAY	74	нвс	1.75 GeV/ $c\ K^-\ p$
$2.90^{+0.32}_{-0.27}$	157	² MAYEUR	72	HLBC	2.1 GeV/c K-
$3.07^{+0.22}_{-0.20}$	340	DAUBER	69	нвс	
3.0 ±0.5	80	PJERROU	65B	HBC	
$2.5 \begin{array}{c} +0.4 \\ -0.3 \end{array}$	101	HUBBARD	64	нвс	
$3.9 \begin{array}{c} +1.4 \\ -0.8 \end{array}$	24	JAUNEAU	63	FBC	
• • • We do not use	the followin	g data for average	s, fits	, limits,	etc. • • •
$3.5 \begin{array}{c} +1.0 \\ -0.8 \end{array}$	45	CARMONY	64B	нвс	See PJERROU 658
¹ The ZECH 77 re	sult is $\tau_{-\alpha}$:	= [2.77-(τ _* -2.6	91] ×	10-10	s. in which we use $\tau_* =$

 1 The ZECH 77 result is $\tau_{\equiv 0}=[2.77-(\tau_{\Lambda}-2.69)]\times 10^{-10}$ s, in which we use $\tau_{\Lambda}=2.63\times 10^{-10}$ s. 2 The MAYEUR 72 value is modified by the erratum.

Ξ^0 magnetic moment

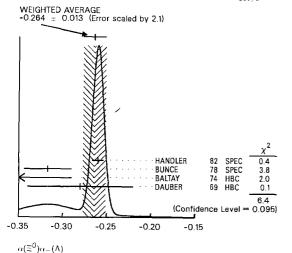
See the Note on Baryon Magnetic Moments in the $\boldsymbol{\Lambda}$ Listings.

VALUE (μ_N)	EVTS	DOCUMENT I	D	TECN
-1.250±0.014 OUR	AVERAGE			
-1.253 ± 0.014	270k	cox	81	SPEC
-1.20 ± 0.06	42k	BUNCE	79	SPEC

Ξ⁰ DECAY MODES

	Mode		Frac	tion (Γ_i/Γ)	-	Confidence	level
Γ_1	Λπ ⁰		1	00	%		
Γ_2	$\Lambda \gamma$		(1.06 ± 0.16	× 10	-3	
Γ_3	$\Sigma^0\gamma$		(3.6 ±0.4	× 10	-3	
Γ_4	$\Sigma^+ e^- \overline{\nu}_e$		<	1.1	× 10	-3	90%
Γ_5	$\Sigma^+ \mu^- \overline{\nu}_{\mu}$		<	1.1	× 10	- 3	90%
	$\Delta S = \Delta Q (SQ) \text{ or } \Delta S$	= 2 (Δ <i>S</i>)	violating m	odes		
Γ_6	$\Sigma^- e^+ \nu_e$	SQ	<	9	× 10	-4	90%
Γ_7	$\Sigma^- \mu^+ \nu_{\mu}$	SQ	<	9	× 10	-4	90%
Γ8	$ ho \pi^-$	$\Delta 5$	<	4	× 10	-5	90%
Γ9	$pe^-\overline{\nu}_e$	ΔS	<	1.3	× 10 ⁻	-3	
Γ_{10}	$p\mu^-\overline{\nu}_{\mu}$	ΔS	<	1.3	× 10	-3	

Ξ^0 branching ratios


		Ξο Ε	BRANCHING	RAT	105		
$\Gamma(\Lambda\gamma)/\Gamma(\Lambda\pi^0)$)						Γ_2/Γ_1
VALUE (units 10 ⁻³)	,	EVTS	DOCUMENT ID		TECN	COMMENT	
1.06±0.12±0.11		116	JAMES		SPEC		
• • • We do not 5 ±5	use the	tollowing 1	YEH	25, fit 74		etc. • • • Effective denom.:	-200
	0)		160	/4	пъс	Effective defiorit.	
$\Gamma(\Sigma^0\gamma)/\Gamma(\Lambda\pi)$							Γ_3/Γ_1
VALUE (units 10 ⁻³) 3.56±0.42±0		% EVTS 85	<u>DOCUMEN</u> TEIGE	T ID			
● ● We do not					0, 5,		ons
< 8	90		BENSING			PS2 <i>K = W</i> 6 Ge	V/c
<65	90	0-1	YEH		74 HI	BC Effective de- nom.=60	
$\Gamma(\Sigma^+e^-\overline{\nu}_e)/\Gamma$	-(A =0)					110111.=00	Г./Г.
VALUE (units 10^{-3})		=VTS	DOCUMENT ID		TECN	COMMENT	Γ_4/Γ_1
< 1.1	90		YEH		HBC	Effective denom.:	=2100
• • • We do not	use the	following	data for average	s, fit	s, limits,		
< 1.5			DAUBER	69	HBC		
< 7 <13			HUBBARD TICHO	66 63	HBC HBC		
r(z+=)//	r(a_ 0)						F /F
$\Gamma(\Sigma^+\mu^-\overline{\nu}_\mu)/\Gamma$ VALUE (units 10^{-3})		EVEC	DOCUMENT ID		TECN	COMMENT	Γ_5/Γ_1
<1.1	90	0	YEH		HBC	Effective denom.:	=2100
• • • We do not	use the	following					
<1.5			DAUBER	69	HBC		
<7			HUBBARD	66	нвс		
$\Gamma(\Sigma^-e^+\nu_e)/\Gamma$	$(\Lambda \pi^0)$	le					Γ_6/Γ_1
Test of ΔS VALUE (units 10^{-3})			DOCUMENT ID		TECN	COMMENT	
<0.9	90	0	YEH		HBC	Effective denom.	=2500
• • • We do not	use the	following	data for average	s, fit	s, limits,	etc. • • •	
<1.5 <6			DAUBER HUBBARD	69 66	HBC HBC		
	- / · · · · · · ·		HODDARD	00	пьс		
$\Gamma(\Sigma^-\mu^+\nu_\mu)/\Gamma$ Test of ΔS	$(\Lambda \pi^0)$ $i = \Delta \Omega r$	ule					Γ_7/Γ_1
VALUE (units 10 ⁻³)	CL% E	VTS	DOCUMENT ID		TECN	COMMENT	
<0.9	90	0	YEH		нвс	Effective denom.	=2500
• • • We do not	use the	following				etc. • • •	
<1.5 <6			DAUBER HUBBARD	69 66			
	.0\						- /-
$\Gamma(p\pi^-)/\Gamma(\Lambda\pi$ $\Delta S=2$. For		first-ord	er weak interact	ion.			Γ_8/Γ_1
VALUE (units 10 ⁻⁵)	<u>CL%</u> _E	VTS	DOCUMENT ID		TECN	COMMENT	
	90	following	GEWENIGER			ata	
• • • We do not < 180	90	ollowing 0	YEH	25, fit 74	s, iimits, HBC	etc. • • • Effective denom.:	-1300
< 90	,,,	v	DAUBER	69		Enective denom.:	-1300
< 500			HUBBARD	66			
<2700			TICHO	63	нвс		
$\Gamma(pe^-\overline{\nu}_e)/\Gamma(r)$	(π^0)	. 					Γ_9/Γ_1
VALUE (units 10^{-3})	CL% E	i tirst-orai :VTS	er weak interacti DOCUMENT ID	on.	TECN	COMMENT	
< 1.3			DAUBER		нвс		
• • • We do not						etc. • • •	
< 3.4 < 6	90	0	YEH HUBBARD	74 66	HBC HBC	Effective denom.	=670
<27			TICHO	63	HBC		
$\Gamma(\rho\mu^-\overline{\nu}_\mu)/\Gamma($	$\Lambda \pi^0$)					r	- 10/Γ ₁
Δ <i>5</i> =2. For	rbidden ir		er weak interacti	ion.		'	10/1
VALUE (units 10 ⁻³)	<u>CL%E</u>	VTS	DOCUMENT ID		TECN	COMMENT	
<1.3 • • • We do not	use the	following	DAUBER data for average	69 s. fit	HBC s. limits.	etc. • • •	
<3.5	90	0	YEH	74	HBC	Effective denom.=	=664
<6			HUBBARD	66			

Ξ0.Ξ-

Ξ^0 DECAY PARAMETERS

See the Note on Baryon Decay Parameters in the neutron Listings.

$\alpha(\tilde{z}^0) \alpha_{-}(\Lambda)$					
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.264±0.013 OUR AVERAGE	Error	includes scale facto below.	r of	2.1. See	the ideogram
$-0.260 \pm 0.004 \pm 0.005$	300k	HANDLER	82	SPEC	FNAL hyperons
-0.317 ± 0.027	6075	BUNCE	78	SPEC	FNAL hyperons
-0.35 ± 0.06	505	BALTAY	74	HBC	K ⁻ ρ 1.75
-0.28 ±0.06	739	DAUBER	60	HBC	GeV/c

 α FOR $\Xi^0 \to \Lambda \pi^0$

The above average, $\alpha(\Xi^0)\alpha_-(\Lambda)=-0.264\pm0.013$, where the error includes a scale factor of 2.1, divided by our current average $\alpha_-(\Lambda)=0.642\pm0.013$, gives the following value for $\alpha(\Xi^0)$.

VALUE DOCUMENT ID -0.411±0.022 OUR EVALUATION Error includes scale factor of 2.1.

ϕ ANGLE FOR Ξ	$0 \rightarrow \Lambda \pi^0$				$(\tan\phi=eta/\gamma)$
VALUE (°)	EVTS	DOCU MENT ID		TECN	COMMENT
21 ± 12 OUR AVE	RAGE				
16 ± 17	652	BALTAY	74	HBC	1.75 GeV/c K ⁻ p
38 ± 19	739	³ DAUBER		HBC	
-8 ± 30	146	⁴ BERGE	66	HBC	
3					

 3 DAUBER 69 uses $\alpha_{\Lambda}=0.647\pm0.020,$ 4 The errors have been multiplied by 1.2 due to approximations used for the Ξ polarization; see DAUBER 69 for a discussion.

$\alpha \text{ FOR } \equiv^0 \rightarrow \Lambda \gamma$ $\frac{VALUE}{+0.43\pm0.44}$	EVT5 87	DOCUMENT ID JAMES 90	TECN SPEC	COMMENT FNAL hyperons	ı
$\alpha \text{ FOR } \Xi^0 \to \Sigma^0 \gamma$	C) (T)	000/1451/7 10			
+0.20+0.32+0.05	EVTS 85	DOCUMENT ID	SDEC	COMMENT	

REFERENCES FOR ≡⁰

JAMES	90	PRL 64 843	-Heller, Border, Dworkin+ (MINN, MICH, WISC, RUTG)
TEIGE	89	PRL 63 2717	- Beretvas, Caracappa, Devlin+ (RUTG, MICH, MINN)
BENSINGER	88	PL B215 195	+Fortner, Kirsch, Piekarz+ (BRAN, DUKE, NDAM, SMAS)
HANDLER	82	PR D25 639	-Grobel, Pondrom+ (WISC, MICH, MINN, RUTG)
COX	81	PRL 46 877	Dworkin- (MICH, WISC, RUTG, MINN, BNL)
BUNCE	79	PL 86B 386	+Overseth, Cox+ (BNL, MICH, RUTG, WISC)
BUNCE	78	PR D18 633	· Handler, March, Martin - (WISC, MICH, RUTG)
ZECH	77	NP B124 413	Dydak, Navarria+ (SIEG, CERN, DORT, HEID)
GEWENIGER	75	PL 57B 193	+Giesdal, Presser+ (CERN HEID)
BALTAY	74	PR D9 49	+Gjesdal, Presser+ (CERN, HEID) -Bridgewater, Cooper, Gershwin (COLU, BING) J
YEH	74	PR D10 3545	+Gaigalas, Smith, Zendle, Baltay+ (BING, COLU)
MAYEUR	72	NP B47 333	+VanBinst, Wilquet - (BRUX, CERN, TUFT, LOUC)
Also	73	NP B53 268 erratum	Mayeur
WILQUET	72	PL 42B 372	+Fliagine, Guy+ (BRUX, CERN, TUFT, LOUC)
DAUBER	69	PR 179 1262	+Berge, Hubbard, Merrill, Miller (LRL)
PALMER	68	PL 26B 323	+Radojicic, Rau, Richardson+ (BNL, SYRA)
BERGE	66	PR 147 945	-Eberhard, Hubbard, Merrill - (LRL)
HUBBARD	66	UCRL 11510 Thesis	(LRL)
LONDON	66	PR 143 1034	-Rau, Goldberg, Lichtman+ (BNL, SYRA)
PJERROU	65B	PRL 14 275	+Schlein, Slater, Smith, Stork, Ticho (UCLA)
Also	65	Thesis	Pjerrou (UCLA)
CARMONY	64B	PRL 12 482	+Pjerrou, Schlein, Slater, Stork+ (UCLA)
HUBBARD	64	PR 135B 183	+Berge, Kalbfleisch, Shafer (LRL)
JAUNEAU	63	PL 4 49	(EPOL, CERN, LOUC, RHEL, BERG)
Also	63C	Siena Conf. 1 1	Jauneau (EPOL, CERN, LOUC, RHEL, BERG)
TICHO	63	BNL Conf. 410	(UCLA)
			(0.00.1)

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

The parity has not actually been measured, but + is of course expected.

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.

		Ξ- MASS			
VALUE (MeV) 1321.32±0.13 OUR	EVTS	DOCUMENT ID		TECN	COMMENT
1321.34±0.14 OUR					
1321.46 ± 0.34	632	DIBIANCA	75	DBC	4.9 GeV/c K- d
1321.12 ± 0.41	268	WILQUET	72	HLBC	
1321.87 ± 0.51	195	1 GOLDWASSER	R 70	HBC	5.5 GeV/c K- p
1321.67 ± 0.52	6	CHIEN	66	нвс	6.9 GeV/c ⊅p
1321.4 ± 1.1	299	LONDON	66	HBC	/
1321.3 ±0.4	149	PJERROU	65B	нвс	
1321.1 ±0.3	241	² BADIER	64	нвс	
1321.4 ±0.4	517	² JAUNEAU	630	FBC	
1321.1 ±0.65	62	² SCHNEIDER	63	нвс	

 $[\]frac{1}{2}$ GOLDWASSER 70 uses $m(\Lambda) = 1115.58$ MeV.

 $^{^2}$ These masses have been increased 0.09 MeV because the Λ mass increased.

		Ξ ⁺ MASS	_		
		_ WA33			
VALUE (MeV)	EVTS	DOCUMENT ID	_	TECN	COMMENT
1321.32±0.13 OUR	FIT				
1321.20 ± 0.33 OUR	AVERAGE				
1321.6 ± 0.8	35	VOTRUBA	72	нвс	10 GeV/c K+ p
1321.2 ± 0.4	34	STONE	70	HBC	•
1320.69 ± 0.93	5	CHIEN	66	HBC	6.9 GeV/ <i>c pp</i>

∃" MEAN LIFE

Measurements with an error $> 0.2 \times 10^{-10}$ s or with systematic errors not included have been omitted.

	DOCUMENT ID		TECN	COMMENT
AVERAGE				
32k	BOURQUIN	84	SPEC	Hyperon beam
41k	BOURQUIN	79	SPEC	Hyperon beam
4286	HEMINGWAY	78	HBC	4.2 GeV/c K ⁻ p
	DIBIANCA	75	DBC	4.9 GeV/c K d
4303	BALTAY	74	HBC	1.75 GeV/c K- p
680	MAYEUR	72	HLBC	2.1 GeV/c K-
2610	DAUBER	69	HBC	
299	LONDON	66	HBC	
246	PJERROU	65B	HBC	
794	HUBBARD	64	HBC	
517	JAUNEAU	63D	FBC	
	41k 4286 4303 680 2610 299 246 794	41k BOURQUIN 4286 HEMINGWAY DIBIANCA 4303 BALTAY 680 MAYEUR 2610 DAUBER 299 LONDON 246 PJERROU 794 HUBBARD	41k BOURQUIN 79 4286 HEMINGWAY 78 DIBIANCA 75 4303 BALTAY 74 680 MAYEUR 72 2610 DAUBER 69 299 LONDON 66 246 PJERROU 65B 794 HUBBARD 64	41k BOURQUIN 79 SPEC 4286 HEMINGWAY 78 HBC DIBIANCA 75 DBC 4303 BALTAY 74 HBC 680 MAYEUR 72 HLBC 2610 DAUBER 69 HBC 299 LONDON 66 HBC 246 PJERROU 656 HBC 794 HUBBARD 64 HBC

E⁺ MEAN LIFE

VALUE (10 10 s)	EVT5	DOCUMENT ID		TECN	COMMENT
1.6 ± 0.3	34	STONE	70	нвс	
• • • We do not u	se the followin	ng data for averag	es, fit	s, limits	, etc. • • •
$1.55^{+0.35}_{-0.20}$	35	³ VOTRUBA	72	нвс	10 GeV/ <i>c</i> Κ ⁺ ρ
$1.9 \begin{array}{c} +0.7 \\ -0.5 \end{array}$	12	³ SHEN	67	нвс	
1.51 ± 0.55	5	3 CHIEN	66	HBC	6.9 GeV/c ¬pp
³ The error is sta	tistical only.				

E" MAGNETIC MOMENT

See the Note on Baryon Magnetic Moments in the Λ Listings.

VALUE (μ _N) - 0.679 ± 0.031 OUR A	EVTS	DOCUMENT ID		TECN	COMMENT
-0.661 ± 0.036 ± 0.036 -0.69 ± 0.04 • • • We do not use the	44k 218k	TROST RAMEIKA	84	SPEC	Ξ ⁻ ~ 250 GeV/c 400 GeV ρBe
2.1 ± 0.8 0.1 ± 2.1	2436 2724	COOL BINGHAM	74	OSPK	1.8 GeV/c K ⁻ p 1.8 GeV/c K ⁻ p

TECN COMMENT

74 HBC

 Γ_{10}/Γ_{1}

Effective denom.=150

=-	DECAY	MODES
_	DECAL	MICOLO

	Mode		Frac	tion (Γ _j	_i /Γ)	Confidence level
$\Gamma_{\rm L}$	Λπ-]	.00	%	
Γ_2	$\mathbf{\Sigma}^- \gamma$		(2.3±1	i.0) × 10	4
Гз	$\Lambda e^- \overline{ u}_e$		(5.5 ± 0	0.3) × 10 ⁻¹	4
Γ_4	$\Lambda \mu^- \overline{\nu}_{\mu}$		(3.5 ± 3	3.5) × 10	4
Γ_5	$\Sigma^0 e^{-\frac{r}{\nu}e}$		(8.7 ± 1	l.7) × 10	5
Γá	$\Sigma^0 \mu^- \overline{ u}_\mu$		<	8	× 10	4 90%
Γ ₇	$\Xi^0 e^- \overline{\nu}_e$		<	2.3	× 10 ⁻	3 90%
		$\Delta S = 2 (\Delta S)$ viola	ting	modes		
Γ_8	$n\pi^{-}$	Δ5	<	1.9	× 10	5 90%
Γg	$ne^-\overline{ u}_e$	ΔS	<	3.2	× 10 ⁻	3 90%
Γ ₁₀	$n\mu^-\overline{\nu}_{\mu}$	ΔS	<	1.5	%	90%
Γ11	$p\pi^-\pi^-$	Δ5	<	4	× 10	4 90%
Γ12	$\rho\pi^-e^-\overline{\nu}_e$	Δ5	<	4	× 10	4 90%
Γ13	$\rho\pi^-\mu^-\overline{\nu}_{\mu}$	Δ5	<	4	× 10	4 90%

	Ξ-	BRANCHING	RAT	IOS	
A number	of early results	have been omitte	ed.		
$\Gamma(\Sigma^-\gamma)/\Gamma(\Lambda\pi^-$)				Γ_2/Γ_1
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
2.27 ± 1.02	9	BIAGI	8 7 B	SPEC	SPS hyperon beam
$\Gamma(\Lambda e^- \overline{\nu}_e)/\Gamma(\Lambda \pi$:-)				Γ_3/Γ_1
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
0.550±0.030 OUR					
0.564 ± 0.031	2857	BOURQUIN	83	SPEC	SPS hyperon beam
0.30 ± 0.13	11	THOMPSON	80	ASPK	Hyperon beam
$\Gamma(\Lambda\mu^-\overline{\nu}_\mu)/\Gamma(\Lambda\tau)$,				Γ_4/Γ_1
VALUE (units 10 ⁻³)	L% EVTS	DOCUMENT ID		TECN	COMMENT
0.35 ± 0.35	1	YEH	74	HBC	Effective denom.=2859
• • • We do not us	e the following	g data for average	s, fits	s, limits,	etc. • • •
< 2.3	0 0	THOMPSON	80	ASPK	Effective denom.=1017
< 1.3		DAUBER	69	HBC	
<12		BERGE	66	HBC	
$\Gamma(\Sigma^0 e^- \overline{\nu}_e)/\Gamma(\Lambda$					Γ_5/Γ_1
VALUE (units 10 ⁻³)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.087 ± 0.017	154	BOURQUIN	83	SPEC	SPS hyperon beam
$\Gamma(\Sigma^0\mu^-\overline{\nu}_\mu)/\Gamma(\Lambda^0)$	(π^{-})				Γ_6/Γ_1
VALUE (units 10 ⁻³)	L% EVTS	DOCUMENT ID		TECN	COMMENT
	0 0	YEH	74	HBC	Effective denom.=3026
• • • We do not us	e the following	data for average	s, fits	, limits,	etc. • • •
<5		BERGE	66	нвс	
$\left[\Gamma\left(\Lambda e^{-}\overline{\nu}_{e}\right)+\Gamma\right]$	$(\Sigma^0 e^- \overline{\nu}_e)]/$	$\Gamma(\Lambda\pi^-)$			$(\Gamma_3+\Gamma_5)/\Gamma_1$
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not us	e the following				etc. • • •
0.651 ± 0.031	3011	4 BOURQUIN		SPEC	SPS hyperon beam
0.68 ± 0.22	17	⁵ DUCLOS	71	OSPK	
⁴ See the separat	e BOURQUIN	83 values for F	(v _e)/Γ($\Lambda\pi^-)$ and $\Gamma(\Sigma^0e^-\overline{ u}_e)/$
$\Gamma(\Lambda\pi^-)$ above.		- 0			
is about a factor			ne C	aDIDDO I	theory predicts the Σ^0 rate
$\Gamma(\Xi^0 e^- \overline{\nu}_e)/\Gamma(\Lambda$,				Γ_7/Γ_1
VALUE (units 10^{-3})	L% EVTS	DOCUMENT ID		TECN	COMMENT
	0 0	YEH	74	HBC	Effective denom.=1000

<2.3	90	0	YEH	74	нвс	Effective denom.=1000
$\Gamma(n\pi^-)/\Gamma(n\pi^-)$		- E	rder weak interacti			Γ ₈ /Γ
Δ5=2. VALUE (units 10					TECN	COMMENT
< 0.019	90		BIAGI			SPS hyperon beam
• • • We do	not use the	followir	ng data for average			
<3.0	90	0	YEH	74	нвс	Effective denom.=760
<1.1			DAUBER	69	HBC	
< 5.0			FERRO-LUZZ	63	нвс	
$\Gamma(ne^{-\overline{\nu}_e})$	$\Gamma(\Lambda\pi^{-})$					Γ ₉ /Γ
		n first-o	rder weak interacti	on.		3,

VALUE (units 10^{-3}) CL% EVTS DOCUMENT ID TECN COMMENT 90 0 YEH 74 HBC Effective denom.=715 • • • We do not use the following data for averages, fits, limits, etc. • •

<10 90 BINGHAM 65 RVUE

VALUE (units 10-4)			der weak interacti <u>DOCUMENT ID</u>		TECN	COMMENT		
<3.7	90	0	YEH	74	нвс	Effective denom.=6200		
$\Gamma(p\pi^-e^-\overline{\nu}_e)/\Gamma(\Lambda\pi^-)$ $\Delta S=2$. Forbidden in first-order weak interaction.								
VALUE (units 10^{-4})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT		
<3.7	90	0	YEH	74	нвс	Effective denom.=6200		
$\Gamma(p\pi^-\mu^-\overline{\nu}_\mu)/\Gamma(\Lambda\pi^-)$ $\Delta S=2$. Forbidden in first-order weak interaction.								
VALUE (units 10 ⁻⁴)	CL%	EVT5	DOCUMENT ID		TECN	COMMENT		
<3.7	90	0	YEH	74	нвс	Effective denom.=6200		
= DECAY PARAMETERS								

DOCUMENT ID

YEH

 $\begin{array}{c} \Gamma(n\mu^-\overline{\nu}_\mu)/\Gamma(\Lambda\pi^-) \\ \Delta S = 2. \ \ \text{Forbidden in first-order weak interaction.} \end{array}$

VALUE (units 10⁻³) CL% EVTS

90

<15.3

See the Note on Baryon Decay Parameters in the neutron Listings.

 $\alpha(\Xi^-)\alpha_-(\Lambda)$ VALUE EVTS DOCUMENT ID TECN COMMENT — 0.293±0.007 OUR AVERAGE Error includes scale factor of 1.8. See the ideogram below. $-0.303\pm0.004\pm0.004$ 192k RAMEIKA 86 SPEC 400 GeV pBe -0.257 ± 0.020 11k ASTON 85B LASS 11 GeV/c K- p $-\,0.260\pm0.017$ 21k BENSINGER 85 MPS 5 GeV/c K- p 82 SPEC SPS hyperon beam 80c ASPK BNL hyperon -0.299 ± 0.007 150k BIAGI $-\,0.315\pm0.026$ 9046 CLELAND beam 4.2 GeV/c K⁻ p -0.239 ± 0.021 6599 HEMINGWAY 78 HBC $-\,0.243\pm0.025$ 4303 BALTAY 74 HBC 1.75 GeV/c K⁻ ρ 74 OSPK 1.8 GeV/c K⁻ ρ -- 0.252 ± 0.032 2436 COOL

DAUBER

69 HBC

WEIGHTED AVERAGE -0.293 \pm 0.007 (Error scaled by 1.8)

 $\alpha(\Xi^-)\alpha_-(\Lambda)$

 α FOR $\Xi^- \rightarrow \Lambda \pi^-$

 -0.253 ± 0.028

The above average, $\alpha(\Xi^-)$ $\alpha_-(\Lambda)=-0.293\pm0.007$, where the error includes a scale factor of 1.8, divided by our current average $\alpha_-(\Lambda)=0.642\pm0.013$, gives the following value for $\alpha(\Xi^-)$.

<u>DOCUMENT ID</u>
- **0.456 ± 0.014 OUR EVALUATION** Error includes scale factor of 1.8.

ϕ AN	IGLE	FOR $\Xi^- \to \Lambda \pi^-$				$(\tan\phi=\beta/\gamma)$
VALUE	(2)	EVTS	DOCUMENT ID		TECN	COMMENT
4	± 4	OUR AVERAGE				
5	± 10	11k	ASTON	858	LASS	K- p
14.7	7 ± 16.0	21k	⁶ BENSINGER	85	MPS	5 GeV/c K p
11	± 9	4303	BALTAY	74	HBC	1.75 GeV/c K- p
5	± 16	2436	COOL	74	OSPK	1.8 GeV/c K- p
- 26	± 30	2724	BINGHAM	70B	OSPK	
-14	± 11	2781	DAUBER	69	HBC	Uses $\alpha_{\Lambda} = 0.647 \pm 0.020$
0	± 12		⁷ BERGE	66	HBC	
0	± 20.4	364	⁷ LONDON	66	HBC	Using $\alpha_{\Lambda} = 0.62$
54	±30	356	⁷ CARMONY	64B	HBC	**

 $^6_-$ BENSINGER 85 used $\alpha_{\mbox{$\Lambda$}}=$ 0.642 \pm 0.013.

 $^{^7}$ The errors have been multiplied by 1.2 due to approximations used for the Ξ polarization; see DAUBER 69 for a discussion.

 Ξ^{-} , Ξ 's, Ξ (1530)

 g_A / g_V FOR $\Xi^- \to \Lambda e^- \overline{\nu}_e$ VALUE EVTS DOCUMENT ID TECN COMMENT OCCUMENT ID O

 8 BOURQUIN 83 assumes that $g_2=0.$ Also, the sign has been changed to agree with our conventions, given in the Note on Baryon Decay Parameters in the neutron Listings.

REFERENCES FOR E

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.

TROST	89	PR D40 1703	+McCliment, Newsom, Hseuh, Mueller+ (FNAL-715 Collab.)
BIAGI	87B	ZPHY C35 143	(BRIS, CERN, GEVA, HEID, LAUS, LOQM, RAL)
RAMEIKA	86	PR D33 3172	+Beretvas, Deck+ (RUTG, MICH, WISC, MINN)
ASTON	85B	PR D32 2270	+Carnegie+ (SLAC, CARL, CNRC, CINC)
BENSINGER	85	NP B252 561	+ (CHIC, ELMT, FNAL, ISU, LENI, SMAS)
BOURQUIN	84	NP B241 1	+ (BRIS, GEVA, HEID, LALO, RAL, STRB)
RAMEIKA	84	PRL 52 581	+Beretvas, Deck+ (RUTG, MICH, WISC, MINN)
BOURQUIN	83	ZPHY C21 1	+Brown+ (BRIS, GEVA, HEID, LALO, RL, STRB)
BIAGI	82	PL 112B 265	+ (BRIS, CAMB, GEVA, HEID, LAUS, LOOM, RL)
BIAGI	82B	PL 112B 277	+ (LOQM, GEVA, RL, HEID, CAMB, LAUS, BRIS)
CLELAND	80C	PR D21 12	+Cooper, Dris, Engels, Herbert+ (PITT, BNL)
THOMPSON	80	PR D21 25	+Cleland, Cooper, Dris, Engels+ (PITT, BNL)
BOURQUIN	79	PL 87B 297	+ (BRIS, GEVA, HEID, ORSA, RHEL, STRB)
HEMINGWAY	78	NP B142 205	+Armenteros+ (CERN, ZEEM, NIJM, OXF)
DIBIANCA	75	NP B98 137	+Endorf (CMU)
BALTAY	74	PR D9 49	+Bridgewater, Cooper, Gershwin+ (COLU, BING) J
COOL	74	PR D10 792	+ Giacomelli, Jenkins, Kycia, Leontic, Li+ (BNL)
Aiso	72	PRL 29 1630	Cool, Giacomelli, Jenkins, Kycia, Leontic+ (BNL)
YEH	74	PR D10 3545	+Gaigalas, Smith, Zendle, Baltay - (BING, COLU)
MAYEUR	72	NP 847 333	+VanBinst, Wilguet+ (BRUX, CERN, TUFT, LOUC)
VOTRUBA	72	NP B45 77	+Safder, Ratcliffe (BIRM, EDIN)
WILQUET	72	PL 42B 372	+Fliagine, Guy+ (BRUX, CERN, TUFT, LOUC)
DUCLOS	71	NP B32 493	+Freytag, Heintze, Heinzelmann, Jones+ (CERN)
BINGHAM	70B	PR D1 3010	+Cook, Humphrey, Sander+ (UCSD, WASH)
GOLDWASSER	70	PR D1 1960	+Schultz (ILL)
STONE	70	PL 32B 515	- Berlinghieri, Bromberg, Cohen, Ferbel + (ROCH)
DAUBER	69	PR 179 1262	+Berge, Hubbard, Merrill, Miller (LRL) J
SHEN	67	PL 25B 443	+Firestone, Goldhaber (UCB, LRL)
BERGE	66	PR 147 945	+Eberhard, Hubbard, Merrill+ (LRL)
CHIEN	66	PR 152 1171	+Lach, Sandweiss, Taft, Yeh, Oren (YALE, BNL)
LONDON	66	PR 143 1034	+Rau, Goldberg, Lichtman+ (BNL, SYRA)
BINGHAM	65	PRSL 285 202	(CERN)
PJERROU	658	PRL 14 275	+ Schlein, Slater, Smith, Stork, Ticho (UCLA)
Also	65	Thesis	Pjerrou (UCLA)
BADIER	64	Dubna Conf. 1 593	+Demoulin, Barloutaud+ (EPOL, SACL, ZEEM)
CARMONY	64B	PRL 12 482	+Pjerrou, Schlein, Slater, Stork+ (UCLA) J
HUBBARD	64	PR 135B 183	+Berge, Kalbfleisch, Shafer+ (LRL)
FERRO-LUZZI	63	PR 130 1568	+Alston-Garnjost, Rosenfeld, Wojcicki (LRL)
JAUNEAU	63D	Siena Conf. 4	 (EPOL, CERN, LOUC, RHEL, BERG)
Also	63B	PL 5 261	Jauneau - (EPOL, CERN, LOUC, RHEL, BERG)
SCHNEIDER	63	PL 4 360	(CERN)

OTHER RELATED PAPERS

PONDROM 85 PRPL 122 57 Review of FNAL hyperon experiments. (WISC)

NOTE ON E RESONANCES

The accompanying table gives our evaluation of the present status of the Ξ resonances. Not much is known about Ξ resonances. This is because (1) they can only be produced as a part of a final state, and so the analysis is more complicated than if direct formation were possible. (2) they are produced with small cross sections (typically a few μ b), and (3) the final states are topologically complicated and difficult to study with electronic techniques. Thus our early information about Ξ resonances came entirely from bubble chamber experiments, where the numbers of events are small, and only in recent years have electronic experiments made significant contributions. However, there is nothing at all new on Ξ resonances since our 1988 edition.

For a detailed earlier review, see Meadows.¹

References

 B.T. Meadows, in Proceedings of the IVth International Conference on Baryon Resonances (Toronto, 1980), ed. N. Isgur, p. 283.

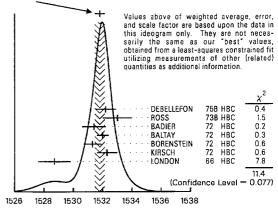
Table 1. The status of the Ξ resonances. Only those with an overall status of *** or **** are included in the Baryon Summary Table.

					Status	as seen in	
Particle	Overall L_{2I+2J} status $\Xi\pi$ Λ	ΛK	ΣK	$\Xi(1530)\pi$	Other channels		
Ξ(1318)	P_{11}	****					Decays weakly
$\Xi(1530)$	P_{13}	****	****				, ,
$\Xi(1620)$		*	*				
$\Xi(1690)$		***		***	**		
$\Xi(1820)$	D_{13}	***	**	***	**	**	
$\Xi(1950)$		***	**	**		*	
$\Xi(2030)$	1	***		**	***		
$\Xi(2120)$		*		*			
$\Xi(2250)$		**					3-body decays
$\Xi(2370)$	1	**					3-body decays
$\Xi(2500)$		*		*	*		3-body decays

- **** Good, clear, and unmistakable.
- ** Good, but in need of clarification or not absolutely certain.
- Not established: needs confirmation.
- * Evidence weak; could disappear.

$$\Xi(1530) P_{13}$$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$
 Status: ***


This is the only Ξ resonance whose properties are all reasonably well known. Spin-parity $3/2^+$ is favored by the data.

We use only those determinations of the mass and width that are accompanied by some discussion of systematics and resolution.

Ξ(1530) MASSES

$\Xi(1530)^0$ MASS	•			
VALUE (MeV)	EVT5	DOCUMENT ID	TECN	COMMENT
1531.80±0.32 OUI	RFIT Error in	cludes scale factor o	f 1.3.	
1531.78 ± 0.34 OUI	R AVERAGE		actor of 1.	.4. See the ideogram
		below.		
1532.2 ±0.7		DEBELLEFON 7		
1533 ±1		ROSS 7	зв нвс	$K^- \rho \rightarrow \Xi \overline{K} \pi(\pi)$
1531.4 ± 0.8	59	BADIER 7	2 HBC	K^{-} p 3.95 GeV/c
1532.0 ±0.4	1262	BALTAY 7	2 HBC	K [™] p 1.75 GeV/c
1531.3 ± 0.6	324	BORENSTEIN 7	2 HBC	K^- p 2.2 GeV/c
1532.3 ± 0.7	286	KIRSCH 7	2 HBC	K- p 2.87 GeV/c
1528.7 ±1.1	76	LONDON 6	6 HBC	K^{-} p 2.24 GeV/c
• • • We do not u	ise the following	ς data for averages, t	its, limits,	etc. • • •
1532.1 ±0.4	1244	ASTON 8	5B LASS	$K^- p$ 11 GeV/c
1532.1 ±0.6	2700	1 BAUBILLIER 8	18 HBC	K [™] p 8.25 GeV/c
1530 ±1	450	BIAGI 8	1 SPEC	SPS hyperon beam
1527 ± 6	80	SIXEL 7	9 HBC	K- p 10 GeV/c
1535 ±4	100	SIXEL 7	9 HBC	K- p 16 GeV/c
1533.6 + 1.4	97	BERTHON 7	4 HBC	Quasi-2-body σ

WEIGHTED AVERAGE 1531.78 \pm 0.34 (Error scaled by 1.4)

 $\Xi(1530)^0$ mass (MeV)

-/1E20\- MACC				
E(1530) → MASS	DOCUMENT ID		T-C1	COMMENT
VALUE (MeV) EVTS 1535.0±0.6 OUR FIT	DOCUMENT ID		TECN	COMMENT
1535.2±0.8 OUR AVERAGE				
1534.5 ± 1.2	DEBELLEFON	75 D	HRC	$K^- \rho \rightarrow \Xi^- \overline{K} \pi$
1535.3±2.0	ROSS		HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$
1536.2±1.6 185	KIRSCH	72	HBC	
1535.7±3.2 38	LONDON	66	HBC	K ⁻ p 2.87 GeV/c K ⁻ p 2.24 GeV/c
• • We do not use the following				
1540 ±3 48	BERTHON	74	HBC	Quasi-2-body σ
1534.7±1.1 334	BALTAY	72	нвс	K ⁻ p 1.75 GeV/c
≣(1530) ⁻ - ∃	E(1530) ⁰ MAS	S D	IFFERE	ENCE
VALUE (MeV) 3.2±0.6 OUR FIT	DOCUMENT ID		TECN	COMMENT
2.9±0.9 OUR AVERAGE				
2.7±1.0	DALTAY	70	UDC	V= - 1 75 C-1//-
	BALTAY	72	HBC	K p 1.75 GeV/c
2.0±3.2	MERRILL	66	HBC	K- p 1.7-2.7 GeV/c
5.7±3.0	PJERROU		HBC	K ⁻ p 1.8−1.95 GeV/c
• • We do not use the following		, fits	, limits,	etc. • • •
	² KIRSCH	72	HBC	K [−] p 2.87 GeV/c
7 ±4	² LONDON	66	HBC	K-p 2.24 GeV/c
	-/			· .
	E(1530) WIDT	HS		
≣(1530) ⁰ WIDTH				
VALUE (MeV) EVTS 9.1±0.5 OUR AVERAGE	DOCUMENT ID	_	<u>TECN</u>	COMMENT
	DEDELLEGON	-	unc	
9.5±1.2	DEBELLEFON			$K^- p \rightarrow \Xi^- \overline{K} \pi$
9.1 ± 2.4	ROSS		HBC	$K^- p \rightarrow \Xi K \pi(\pi)$
11 ±2	BADIER		HBC	K [−] p 3.95 GeV/c
9.0 ± 0.7	BALTAY	72	HBC	$K^- p$ 1.75 GeV/ c
8.4 ± 1.4	BORENSTEIN	72	HBC	Ξ- π+
11.0 ± 1.8	KIRSCH	72	HBC	Ξ- π+
7 ±7	BERGE	66	HBC	$K^- p$ 1.5–1.7 GeV/c
8.5 ± 3.5	LONDON	66	HBC	K- p 2.24 GeV/c
7 ±2	SCHLEIN		нвс	K-p 1.8, 1.95 GeV/c
• • We do not use the following				
	¹ BAUBILLIER			
			HBC	K ⁻ p 8.25 GeV/c
	3 SIXEL	79	HBC	K - p 10 GeV/c
14 ±5 100	3 SIXEL	79	HBC	K [−] p 16 GeV/c
E(1530) [−] WIDTH				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
9.9 ^{+1.7} _{-1.9} OUR AVERAGE				
9.6±2.8	DEBELLEFON	750	HRC	$K^- \rho \rightarrow \Xi^- \overline{K} \pi$
8.3±3.6				
	ROSS		HBC	$K^- p \rightarrow \Xi \overline{K} \pi(\pi)$
$7.8^{+3.5}_{-7.8}$	BALTAY	72	HBC	K [−] p 1.75 GeV/c
16.2±4.6	KIRSCH	72	нвс	$\Xi^{-} \pi^{0}$. $\Xi^{0} \pi^{-}$
				_ " , _ "
Ξ(153	0) POLE POS	ITIC	ONS	
E(1530) ⁰ REAL PART				
VALUE	DOCUMENT ID		COMME	<u>VT</u>
1531.6±0.4	LICHTENBERG	574	Using H	IABIBI 73
E(1530) ⁰ IMAGINARY PART				
VALUE	DOCUMENT ID		COMME	VT.
4.45±0.35	LICHTENBERG			
E(1530) REAL PART				
VALUE	DOCUMENT ID		COMME	VT
1534.4±1.1	LICHTENBERG			
E(1530) IMAGINARY PART			_	
VALUE	DOCUMENT ID	_	COMME	VT
$3.9 + 1.75 \\ -3.9$	LICHTENBERG	74	Using H	IABIBI 73
=/16	30) DECAY M		FS	
	•			
Mode	F	racti	on $(\Gamma_j /$	Γ) Confidence lev
$\Gamma_1 \equiv \pi$	1	00 %	6	
Γ ₂ = α	-	-10		

<4 %

DOCUMENT ID TECN COMMENT

KALBFLEISCH 75 HBC K-p 2.18 GeV/c

Ξ(1530) BRANCHING RATIOS

CL%

90

 $\Gamma_2 \equiv \gamma$

VALUE

< 0.04

 $\Gamma(\Xi\gamma)/\Gamma_{\text{total}}$

Ξ(1530) FOOTNOTES

- ¹ BAUBILLIER 81B is a fit to the inclusive spectrum. The resolution (5 MeV) is not unfolded.

 Redundant with data in the mass Listings.
- ³ SIXEL 79 doesn't unfold the experimental resolution of 15 MeV.

Ξ(1530) REFERENCES

ASTON	85B	PR D32 2270	+Carnegie+ (SLAC, CARL, CNRC, CINC)
BAUBILLIER	81B	NP B192 1	+ (BIRM, CERN, GLAS, MSU, LPNP)
BIAGI	81	ZPHY C9 305	 (BRIS, CAMB, GEVA, HEID, LAUS, LOQM, RHEL)
SIXEL	79	NP B159 125	+Bottcher+ (AACH, BERL, CERN, LOIC, VIEN)
DEBELLEFON	75B	NC 28A 289	De Bellefon, Berthon, Billoir+ (CDEF, SACL)
KALBFLEISCH	75	PR D11 987	+Strand, Chapman (BNL, MICH)
BERTHON	74	NC 21A 146	+ Tristram+ (CDEF, RHEL, SACL, STRB)
LICHTENBERG	74	PR D10 3865	(IND)
Also	74B	Private Comm.	Lichtenberg (IND)
HABIBI	73	Nevis 199 Thesis	(COLU)
ROSS	73B	Purdue Conf. 355	+Lloyd, Radojicic (OXF)
BADIER	72	NP B37 429	+Barrelet, Charlton, Videau (EPOL)
BALTAY	72	PL 42B 129	+Bridgewater, Cooper, Gershwin+ (COLU, BING)
BORENSTEIN	72	PR D5 1559	+Danburg, Kalbfleisch+ (BNL, MICH)
KIRSCH	72	NP B40 349	+Schmidt, Chang+ (BRAN, UMD, SYRA, TUFT) I
BERGE	66	PR 147 945	+Eberhard, Hubbard, Merrill+ (LRL)1
LONDON	66	PR 143 1034	+Rau, Goldberg, Lichtman+ (BNL, SYRA) J
MERRILL	66	UCRL 16455 Thesis	(LRL) JF
PJERROU	658	PRI, 14 275	+Schlein, Slater, Smith, Stork, Ticho (UCLA)
SCHLEIN	63B	PRL 11 167	+Carmony, Pjerrou, Slater, Stork, Ticho (UCLA) IJI

OTHER RELATED PAPERS

MAZZUCATO		NP B178 1	+Pennino+	(AMST, CERN, NIJM, OXF)
BRIEFEL	77	PR D16 2706	+Gourevitch, Chang+	(BRAN, UMD, SYRA, TUFT)
BRIEFEL		PR D12 1859	+Gourevitch+	(BRAN, UMD, SYRA, TUFT)
HUNGERBU	74	PR D10 2051	Hungerbuhler, Majka+	(YALE, FNAL, BNL, PITT)
BUTTON	66	PR 142 883	Button-Shafer, Lindsey,	Murray, Smith (LRL) JP

(1620)

 $I(J^P) = \frac{1}{2}(??)$ Status: * J, P need confirmation.

OMITTED FROM SUMMARY TABLE

What little evidence there is consists of weak signals in the $\Xi\pi$ channel. A number of other experiments (e.g., BORENSTEIN 72 and HASSALL 81) have looked for but not seen any effect.

VALUE (MeV) 1624 ± 3 1633 ± 12 1606 ± 6	31 34 29	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\overline{K}_{\pi}$
		Ξ(1620) WIDTH	
VALUE (MeV)	EVTS	DOCUMENT ID TECNCOMMENT	
22.5	31	¹ BRIEFEL 77 HBC $K^- \rho$ 2.87	GeV/c
40 ±15	34	DEBELLEFON 75B HBC K ⁻ p → 3	
21 ± 7	29	ROSS 72 HBC $K^- p \rightarrow \Xi^- \pi^+ I$	(* ⁰ (892)

Ξ(1620) MASS

Ξ(1620) DECAY MODES

Mode

 $\equiv \pi$

90%

 Γ_2/Γ

Ξ(1620) FOOTNOTES

 $^{1}\,\mbox{The fit}$ is insensitive to values between 15 and 30 MeV.

∃(1620) REFERENCES

HASSALL	81	NP B189 397	+Ansorge, Carter, Neale+		(CAMB, MSU)
BRIEFEL	77	PR D16 2706	+Gourevitch, Chang+	(BRAN.	UMD, SYRA, TUFT)
Also	70	Duke Conf. 317	Briefel+		UMD, SYRA, TUFT)
Also	75	PR D12 1859	Briefel, Gourevitch+		UMD, SYRA, TUFT)
DEBELLEFON	75B	NC 28A 289	De Bellefon, Berthon, Billoi		(CDEF, SACL)
BORENSTEIN	72	PR D5 1559	+Danburg, Kalbfleisch+		(BNL, MICH) I
ROSS	72	PL 38B 177	+Buran, Lloyd, Mulvey, Rado	jicic	(OXF) I

OTHER RELATED PAPERS -

HUNGERBU SCHMIDT KALBFLEISCH APSELL	73 70 69	PR D10 2051 Purdue Conf. 363 Duke Conf. 331 PRL 23 884	Hunge +	rbuhler, Majka+	(YALE, FNAL, BNL, PITT) (BRAN) (BNL)I (BRAN, UMD, SYRA, TUFT)
BARTSCH	69	PL 28B 439	+	(AA	CH, BERL, CERN, LOIC, VIEN)

 $\Xi(1690), \Xi(1820)$

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: ***

DIONISI 78 sees a threshold enhancement in both the neutral and negatively charged $\Sigma \overline{K}$ mass spectra in $K^- p \rightarrow (\Sigma \overline{K}) K \pi$ at 4.2 GeV/c. The data from the $\Sigma \overline{K}$ channels alone cannot distinguish between a resonance and a large scattering length. Weaker evidence at the same mass is seen in the corresponding $\Lambda \overline{K}$ channels, and a coupled-channel analysis yields results consistent with a new Ξ .

BIAGI 81 sees an enhancement at 1700 MeV in the diffractively produced ΛK^- system. A peak is also observed in the $\Lambda \overline{K}^0$ mass spectrum at 1660 MeV that is consistent with a 1720 MeV resonance decaying to $\Sigma^0\overline{\kappa}^0$, with the γ from the Σ^0 decay not detected.

BIAGI 87 provides further confirmation of this state in diffractive dissociation of Ξ^- into ΛK^- . The significance claimed is 6.7 standard deviations.

	∃(1690) MASSES
690) ⁰ MASS	

Ξ(1690) ⁰ MASS					
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1699±5	175	¹ DIONISI	78	HBC	$K^ \rho$ 4.2 GeV/ c
1684 ± 5	183	² DIONISI	78	HBC	K^- p 4.2 GeV/c
Ξ(1690) - MASS	EVTS	DOCUMENT ID		TECN	COMMENT
1691.1± 1.9±2.0	104	BIAGI	87	SPEC	Ξ- Be 116 GeV
1700 ±10	150	³ BIAGI	81	SPEC	Ξ ⁻ Η 100, 135 GeV
1694 ± 6	45	4 DIONISI	78	HBC	K− p 4.2 GeV/c

Ξ(1690) WIDTHS

$\Xi(1690)^{0}$ WIDTH <u>VALUE (MeV)</u> 44 ± 23 20 ± 4	EVT5 175 183	DOCUMENT ID 1 DIONISI 2 DIONISI	78 78	TECN HBC HBC	COMMENT K - p 4.2 GeV/c K - p 4.2 GeV/c
Ξ(1690) WIDTH VALUE (MeV) CL%	<i>EVTS</i>	DOCUMENT ID	87	TECN	COMMENT = Be 116 GeV
< 8 90 47±14 26± 6	150 45	3 BIAGI 4 DIONISI	81 78		Ξ H 100, 135 GeV K p 4.2 GeV/c

Ξ(1690) DECAY MODES

	Mode	Fraction (Γ_I/Γ)
Γ_1	۸K	seen
Γ_2	$\Sigma \overline{K}$	seen
Γ_3	$\Xi \pi$	
Γ_4	$\equiv^- \pi^+ \pi^0$	
Γ_5	$\Xi^{-}\pi^{+}\pi^{-}$	
Γ6	$\Xi(1530)\pi$	

Ξ(1690) BRANCHING RATIOS

$\Gamma(\Lambda \overline{K})/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
seen	104	BIAGI	87	SPEC	-	Ξ ⁺ Be 116 GeV
$\Gamma(\Sigma \overline{K})/\Gamma(\Lambda \overline{K})$						Γ_2/Γ_1
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
2.7 ± 0.9		DIONISI	78	HBC	0	K^- p 4.2 GeV/c
3.1 ± 1.4		DIONISI	78	нвс	-	K⁻ p 4.2 GeV/c
$\Gamma(\Xi\pi)/\Gamma(\Sigma\overline{K})$						Γ_3/Γ_2
VALUE		DOCUMENT ID		TECN	<u>ÇHG</u>	COMMENT
< 0.09		DIONISI	78	HBC	0	K^- p 4.2 GeV/ c
$\Gamma(\Xi^-\pi^+\pi^0)/\Gamma(\Sigma\overline{K})$)					Γ_4/Γ_2
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
< 0.04		DIONISI	78	нвс	0	K = ρ 4.2 GeV/c
$\Gamma(\Xi^-\pi^+\pi^-)/\Gamma_{total}$						Γ ₅ /Γ
VALUE	EVT5	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
possibly seen	4	BIAGI	87	SPEC	-	Ξ [−] Be 116 GeV
$\Gamma(\Xi^-\pi^+\pi^-)/\Gamma(\Sigma \overline{K})$	(i)					Γ_5/Γ_2
VALUE		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
< 0.03		DIONISI	78	нвс	-	K ρ 4.2 GeV/c

$\Gamma(\Xi(1530)\pi)/\Gamma(\Sigma\overline{K})$					Γ_6/Γ_2
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
< 0.06	DIONISI	78	HBC	_	K- p 4.2 GeV/c

Ξ(1690) FOOTNOTES

∃(1690) REFERENCES

BIAGI	87	ZPHY C34 15	+	(BRIS, CERN, GEVA, HEID, LAUS, LOQM, RAL)!
BIAGI	81	ZPHY C9 305	+	(BRIS, CAMB, GEVA, HEID, LAUS, LOQM, RHEL)
DIONISI	78	PL 80B 145	+ Diaz.	Armenteros (CERN, AMST, NIJM, OXF) I

 $\Xi(1820) \ D_{13}$

$$I(J^P) = \frac{1}{2}(\frac{3}{2})$$
 Status: ***

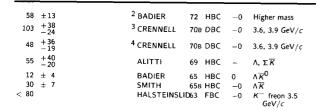
The clearest evidence is an 8-standard-deviation peak in ΛK^{-} seen by GAY 76. TEODORO 78 favors J=3/2, but cannot make a parity discrimination. BIAGI 87C is consistent with J=3/2 and favors negative parity for this J value.

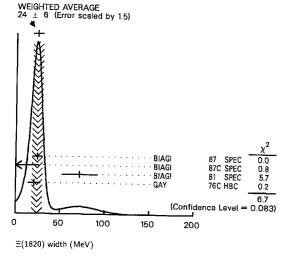
Ξ(1820) MASS

We only average the measurements that appear to us to be most significant and

<u>VALUE (</u> 1823 ∃		EVTS UR ESTIMATE	DOCUMENT ID		<u>TECN</u>	<u>CHG</u>	COMMENT
1823.4∃	£ 1.4 O	UR AVERAGE					
1819.4 =	= 3.1 ± 2	2.0 280 1	BIAGI	87	SPEC	0	Ξ- Be → (Λ <i>K</i> -) X
1826 3	: 3 ±1	1 54	BIAGI	87c	SPEC	0	Ξ _Be $\rightarrow (\Lambda \overline{K}^0)$
1822	- 6		JENKINS	83	MPS	-	$K^{-}\stackrel{\frown}{p} \rightarrow K^{+}$ (MM)
1830 =	- 6	300	BIAGI	81	SPEC	-	SPS hyperon beam
1823 =	± 2	130	GAY	76C	HBC	-	K [−] p 4.2 GeV/c
• • • V	Ne do no	ot use the following o	data for averages	, fits	, limits,	etc. •	• •
1797 ±	± 19	74	BRIEFEL	77	нвс	0	K- p 2.87 GeV/c
1829 ±	± 9	68	BRIEFEL	77	HBC	-0	Ξ(1530) π
1860	t·14	39	BRIEFEL	77	HBC	-	$\Sigma^- \overline{\kappa}^0$
1870 J	Ł 9	44	BRIEFEL	77	HBC	0	$\Lambda \overline{K}^0$
1813	<u>+</u> 4	57	BRIEFEL	77	HBC		Λ <i>K</i> ⁻
1807	- 27		DIBIANCA	75	DBC	-0	$\Xi \pi \pi$, $\Xi^* \pi$
1762 J	£ 8	28 2	BADIER	72	HBC	-0	$\Xi \pi$, $\Xi \pi \pi$, $Y K$
1838	÷ 5	38 2	BADIER	72	HBC	-0	$\Xi \pi$, $\Xi \pi \pi$, $Y K$
1830 =	±10	25 3	CRENNELL	70s	DBC	-0	3.6, 3.9 GeV/c
1826 =	±12	4	CRENNELL	70B	DBC	-0	3.6, 3.9 GeV/c
1830 =	±10	40	ALITTI	69	HBC	_	Λ , $\Sigma \overline{K}$
1814 =	± 4	30	BADIER	65	HBC	0	$\Lambda \overline{K}^0$
1817 -	± 7	29	SMITH	65C	HBC	-0	$\Lambda \overline{\kappa}^0$, $\Lambda \kappa^-$
1770			HALSTEINSLIC	063	FBC	-0	K^- freon 3.5 GeV/ c

Ξ(1820) WIDTH


VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
24	+15 -10	OUR ESTIMATE					
24	± 6	OUR AVERAGE	Error includes scale below.	fact	or of 1.	5. See	the ideogram
24.6	5.3	3 280	¹ BIAGI	87	SPEC	0	Ξ [−] Be → (Λ K [−]) X
12	± 14	±1.7 54	BIAGI	87c	SPEC	0	Ξ^- Be $\rightarrow (\Lambda \overline{K}^0)$
72	± 20	300	BIAGI	81	SPEC		SPS hyperon beam
21		130	GAY		HBC	-	K^- p 4.2 GeV/ c
• • •	We do	not use the following	ng data for averages	s, fits	, limits,	etc. •	• •
99	± 57	74	BRIEFEL	77	HBC	0	$K^- \rho$ 2.87 GeV/c
52	± 34	68	BRIEFEL	77	HBC	0	$\Xi(1530)\pi$
72	± 17	39	BRIEFEL	77	HBC	_	$\Sigma = \overline{K}^0$
44	± 11	44	BRIEFEL	77	HBC	0	$\Lambda \overline{\kappa}^0$
26	± 11	57	BRIEFEL	77	HBC	-	Λ <i>K</i> -
85	\pm 58		DIBIANCA	75	DBC	-0	$\Xi \pi \pi$, $\Xi^* \pi$
51	± 13		² BADIER	72	HBC	-0	Lower mass


 $^{^1\,\}mbox{From a fit to the }\Sigma^+\,{\cal K}^-\mbox{ spectrum}.$

² From a coupled-channel analysis of the Σ^+ K^- and $\Lambda \overline{K}^0$ spectra. ³ A fit to the inclusive spectrum from $\Xi^- N \to \Lambda K^- X$.

 $^{^4}$ From a coupled-channel analysis of the Σ^0 K^- and ΛK^- spectra.

 $\Xi(1820)$

Ξ(1820) DECAY MODES

Mode	Fraction (Γ_i/Γ)	
$ \Gamma_1 \Lambda \overline{K} \Gamma_2 \Sigma \overline{K} \Gamma_3 \Xi \pi \Gamma_4 \Xi (1530) \pi \Gamma_5 \Xi \pi \pi \text{ (not } \Xi (1530) \pi) $	large small small small	

Ξ(1820) BRANCHING RATIOS

The dominant modes seem to be $\Lambda\overline{K}$ and (perhaps) $\Xi(1530)\pi,$ but the branching fractions are very poorly determined.

$\Gamma(\Lambda \overline{K})/\Gamma_{\text{total}}$ $VALUE$ 0.30 ± 0.15	<u>DOCUMENT ID</u> ALITTI	69	TECN HBC	<u>CHG</u> –	Γ ₁ /Γ <u>COMMENT</u> K ⁻ p 3.9-5 GeV/c
$\Gamma(\Xi\pi)/\Gamma_{\text{total}}$ $\frac{VALUE}{0.10 \pm 0.10}$	<u>DOCUMENT ID</u> ALITTI	69	<u>TECN</u> HBC	<u>снс</u> –	Γ ₃ /Γ <u>COMMENT</u> K ⁻ p 3.9–5 GeV/c
$ \begin{array}{c c} \Gamma(\Xi\pi)/\Gamma(\Lambda\overline{K}) \\ \hline \nu_{ALUE} & \underline{CL\%} \\ < 0.36 & 95 \\ 0.20 \pm 0.20 & \end{array} $	DOCUMENT ID GAY BADIER	760 65	TECN HBC HBC	<u>снс</u> – 0	Γ_3/Γ_1 $\frac{COMMENT}{K^- p 4.2 \text{ GeV}/c}$ $K^- p 3 \text{ GeV}/c$
$\frac{\Gamma(\Xi\pi)/\Gamma(\Xi(1530)\pi)}{^{VALUE}}$ $1.5^{+0.6}_{-0.4}$	DOCUMENT ID	70	<i>TECN</i> HBC	<u>снс</u> 0	$\frac{\Gamma_3/\Gamma_4}{COMMENT}$ $K^- p 2.87 \text{ GeV}/c$
$ \begin{split} &\Gamma(\Sigma\overline{K})/\Gamma_{total} \\ &\underbrace{_{VALUE}}_{0.30\pm0.15} \\ &\bullet \bullet \text{ We do not use the following} \end{split} $	<u>DOCUMENT ID</u> ALITTI data for average:	69 s, fit:	<u>TECN</u> HBC s, limits,	<i>CHG</i> − etc. •	Γ ₂ /Γ <u>COMMENT</u> K - p 3.9-5 GeV/c

TRIPP

67 RVUE

Use SMITH 65c

< 0.02

$\Gamma(\Sigma \overline{K})/\Gamma(\Lambda \overline{K})$					Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.24 ± 0.10	GAY	760	нвс	-	K [−] p 4.2 GeV/c
$\Gamma(\Xi(1530)\pi)/\Gamma_{total}$					Γ4/Γ
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.30 ± 0.15	ALITTI	69	нвс	-	K− p 3.9–5 GeV/c
	owing data for average	s, fits	, limits	, etc. (• • •
seen	ASTON	85B	LASS		K- p 11 GeV/c
not seen	⁵ HASSALL	81	нвс		K-p 6.5 GeV/c
< 0.25	⁶ DAUBER	69	нвс		K ⁻ ρ 2.7 GeV/c
$\Gamma(\Xi(1530)\pi)/\Gamma(\Lambda \overline{K})$					Γ_4/Γ_1
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.38 ± 0.27 OUR AVERAGE	Error includes scale fa			57.15	
1.0 ±0.3	GAY	76C	HBC	_	K- p 4.2 GeV/c
0.26±0.13	SMITH	65C	нвс	-0	K ⁻ p 2.45-2.7 GeV/c
$\Gamma(\Xi \pi \pi \text{ (not } \Xi(1530)\pi))$	/Γ(Λ \ K)				Γ_5/Γ_1
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.30 ± 0.20	BIAGI	87	SPEC		= Be 116 GeV
	owing data for average:	s, fits	, limits,	etc.	
< 0.14	7 BADIER	65	нвс	0	1 st. dev. limit
>0.1	SMITH	65c	нвс	-0	K ⁻ p 2.45-2.7 GeV/c
E/=	(=(=(+=0=))				
$\Gamma(\Xi\pi\pi \pmod{\Xi(1530)\pi})$, ,				Γ_5/Γ_4
VALUE	DOCUMENT ID	_	TECN	CHG	COMMENT
consistent with zero	GAY		HBÇ	-	K ⁻ ρ 4.2 GeV/c
• • We do not use the following		s, fits	, limits,	etc. •	• •
0.3 ± 0.5	⁸ APSELL	70	HBC	0	$K^- \rho$ 2.87 GeV/c

∃(1820) FOOTNOTES

- 1 BIAGI 87 also sees weak signals in the in the $\Xi^-\pi^+\pi^-$ channel at 1782.6 \pm 1.4 MeV ($\Gamma=6.0\pm1.5$ MeV) and 1831.9 \pm 2.8 MeV ($\Gamma=9.6\pm9.9$ MeV). 2 BADIER 72 adds all channels and divides the peak into lower and higher mass regions. The data can also be fitted with a single Breit-Wigner of mass 1800 MeV and width 150 MeV
- From a fit to inclusive $\Xi \pi$, $\Xi \pi \pi$, and ΛK^- spectra.
- ⁴ From a fit to inclusive $\Xi\pi$ and $\Xi\pi\pi$ spectra only.
- ⁵ Including $\Xi \pi \pi$.
- Thought π a. 6 DAUBER 69 uses in part the same data as SMITH 65c. 7 For the decay mode $\Xi^-\pi^+\pi^0$ only. This limit includes $\Xi(1530)\pi$.
- $^{8}\,\mathrm{Or}$ less. Upper limit for the 3-body decay.

Ξ(1820) REFERENCES

BIAGI	87	ZPHY C34 15	+ (BRIS, CERN, GEVA, HEID, LAUS, LOQM, RAL)
BIAGI	87C	ZPHY C34 175	+ (BRIS, CERN, GEVA, HEID, LAUS, LOOM, RAL) JP
ASTON	85B	PR D32 2270	+Carnegie+ (SLAC, CARL, CNRC, CINC)
JENKINS	83	PRL 51 951	+Albright, Diamond+ (FSU, BRAN, LBL, CINC, SMAS)
BIAGI	81	ZPHY C9 305	+ (BRIS, CAMB, GEVA, HEID, LAUS, LOQM, RHEL)
HASSALL	81	NP B189 397	+Ansorge, Carter, Neale+ (CAMB, MSU)
TEODORO	78	PL 77B 451	+Diaz, Dionisi, Blokzijl+ (AMST, CERN, NIJM, OXF) JP
BRIEFEL	77	PR D16 2706	+Gourevitch, Chang+ (BRAN, UMD, SYRA, TUFT)
Also	69	PRL 23 884	Apsell+ (BRAN, UMD, SYRA, TUFT)
GAY	76	NC 31A 593	+Jeanneret, Bogdanski+ (NEUC, LAUS, LIVP, LPNP)
GAY	76C	PL 62B 477	+Armenteros, Berge+ (AMST, CERN, NIJM) IJ
DIBIANCA	75	NP B98 137	+Endorf (CMU)
BADIER	72	NP B37 429	+Barrelet, Charlton, Videau (EPOL)
APSELL	70	PRL 24 777	+ (BRAN, UMD, SYRA, TUFT) I
CRENNELL	70B	PR D1 847	+Karshon, Lai, O'Neall, Scarr, Schumann (BNL)
ALITTI	69	PRL 22 79	+Barnes, Flaminio, Metzger+ (BNL, SYRA) (
DAUBER	69	PR 179 1262	+Berge, Hubbard, Merrill, Miller (LRL)
TRIPP	67	NP B3 10	+Leith+ (LRL, SLAC, CERN, HEID, SACL)
BADIER	65	PL 16 171	+Demoulin, Goldberg+ (EPOL, SACL, AMST) I
SMITH		Athens Conf. 251	+Lindsey (LRL)
SMITH	65C	PRL 14 25	+Lindsey (LRL) +Lindsey, Button-Shafer, Murray (LRL) (JP
HALSTEINSLI	D 63	Siena Conf. 1 73	+ (BERG, CERN, EPOL, RHEL, LOUC) I
			•
		OTHE	R RELATED PAPERS

				=	
TEODORO BRIEFEL SCHMIDT MERRILL	78 75 73 68	PL 77B 451 PR D12 1859 Purdue Conf. 363 PR 167 1202	+Diaz. Dionisi, Blokzijl+ +Gourevitch+ +Shafer	(AMST. CERN, NIJM, OXF) (BRAN, UMD, SYRA, TUFT) (BRAN) (LRL)	
SMITH	64	PRL 13 61	+Lindsey, Murray, Button-St	nafer+ (LRL)	IJP

 $\Xi(1950), \Xi(2030)$

三(1950)

 $I(J^P) = \frac{1}{2}(?^?)$ Status: ***

We list here everything reported between 1875 and 2000 MeV. The accumulated evidence for a Ξ near 1950 MeV seems strong enough to include a Ξ (1950) in the main Baryon Table, but not much can be said about its properties. In fact, there may be more than one Ξ near this mass.

		Ξ(1950) MAS	SS		
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1950±15 OUR ES	TIMATE				
1944± 9	129	BIAGI	87		Ξ^- Be $\rightarrow (\Xi^- \pi^+) \pi^-$
1963 ± 5 ± 2	63	BIAGI	87c	SPEC	Ξ^- Be $\rightarrow (\Lambda \overline{K}^0)$ X
1937 ± 7	150	BIAGI	81	SPEC	SPS hyperon beam
1961 ± 18	139	BRIEFEL	77	HBC	2.87 $K^- p \rightarrow \Xi^- \pi^+ X$
1936 ± 22	44	BRIEFEL	77	HBC	2.87 $K^- \rho \to \Xi^0 \pi^- X$
1964 ± 10	56	BRIEFEL	77	HBC	$\Xi(1530) \pi$
1900 ± 12		DIBIANCA	75	DBC	$\Xi \pi$
1952 ± 11	25	ROSS	73c		$(\Xi\pi)^{-}$
1956 ± 6	29	BADIER	72	HBC	$\Xi \pi$, $\Xi \pi \pi$, $Y K$
1955 ± 14	21	GOLDWASSER	R 70	HBC	$\Xi \pi$
1894 ± 18	66	DAUBER	69	HBC	$\Xi \pi$
1930 ± 20	27	ALITTI	68	HBC	Ξ- π ⁺
1933 ± 16	35	BADIER	65	HBC	Ξ- π+

		E(1950) WID⊺	ГН		
VALUE (MeV) 60±20 OUR EST	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
100 ± 31	129	BIAGI			Ξ^- Be $\rightarrow (\Xi^- \pi^+) \pi^-$
$25 \pm 15 \pm 1.2$	63	BIAGI	87c	SPEC	Ξ^- Be $\rightarrow (\Lambda \overline{K}^0) X$
60 ± 8	150	BIAGI	81	SPEC	SPS hyperon beam
159 ± 57	139	BRIEFEL	77	HBC	2.87 $K^- p \rightarrow \Xi^- \pi^+ X$
87 ± 26	44	BRIEFEL	77	HBC	2.87 $K^- \rho \to \Xi^0 \pi^- X$
60 ± 39	56	BRIEFEL	77	HBC	$\Xi(1530) \pi$
63 ± 78		DIBIANCA	75	DBC	$\equiv \pi$
38 ± 10		ROSS	73c		$(\Xi\pi)^-$
35 ± 11	29	BADIER	72	HBC	$\Xi \pi$, $\Xi \pi \pi$, $Y K$
56 ± 26	21	GOLDWASSER	70	HBC	$\Xi \pi$
98 ± 23	66	DAUBER	69	HBC	Ξ π
80 ± 40	27	ALITTI	68	HBC	Ξ- π+
140 ± 35	35	BADIER	65	нвс	Ξ π'+

∃(1950) DECAY MODES

	Mode	Fraction $(\Gamma_{\tilde{I}}/\Gamma)$	
Γ_1	ΛK	seen	
Γ_2	$\Sigma \overline{K}$	possibly seen	
Γ_3	$\equiv \pi$	seen	
Γ_4	$\Xi(1530)\pi$		
Γ_5	$\Xi \pi \pi \pmod{\Xi(1530)\pi}$		

Ξ(1950) BRANCHING RATIOS

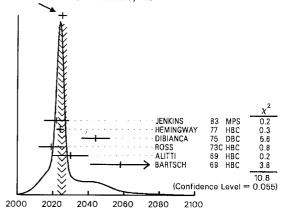
$\Gamma(\Sigma \overline{K})/\Gamma(\Lambda \overline{K})$							Γ_2/Γ_1
VALUE	CL%	EVT5	DOCUMENT ID		<u>TECN</u>	COMMENT	
<2.3	90	0	BIAGI	87c	SPEC	Ξ ⁻ Be 116 GeV	
$\Gamma(\Sigma \overline{K})/\Gamma_{\text{total}}$							Γ_2/Γ
VALUE		EVTS	DOCUMENT ID		TECN	COMMENT	
possibly seen		17	HASSALL	81	нвс	K [−] p 6.5 GeV/c	
$\Gamma(\Xi\pi)/\Gamma(\Xi(15))$	30)π)	1					Γ_3/Γ_4
VALUE			DOCUMENT ID		<u>TECN</u>		
$2.8 {}^{+}_{-} {}^{0.7}_{0.6}$			AP\$ELL	70	нвс		
$\Gamma(\Xi \pi \pi \pmod{\Xi})$	1530	π))/Γ(Γ_5/Γ_4
VALUE			DOCUMENT ID		<u>TECN</u>		
0.0 ± 0.3			APSELL	70	нвс		

Ξ(1950) REFERENCES

BIAGI BIAGI BIAGI HASSALL BRIEFEL Also	87 87C 81 81 77 70	ZPHY C34 15 ZPHY C34 175 ZPHY C9 305 NP B189 397 PR D16 2706 Duke Conf. 317	(BRIS, CERN, GEVA, HEID, LAUS, LOQM, RAL) (BRIS, CERN, GEVA, HEID, LAUS, LOQM, RAL) (BRIS, CAMB, GEVA, HEID, LAUS, LOQM, RHEL) +Ansorge, Carter, Neale+ (CAMB, MSU) +Gourevitch, Chang+ (BRAN, UMD, SYRA, TUFT) Briefel- (BRAN, UMD, SYRA, TUFT)
DIBIANCA	75	NP B98 137	+Endorf (CMU)
ROSS	73C	Purdue Conf. 345	+ Lloyd, Radojicic (OXF)
BADIER	72	NP B37 429	+Barrelet, Charlton, Videau (EPOL)
APSELL	70	PRL 24 777	+ (BRAN, UMD, SYRA, TUFT)
GOLDWASSER	70	PR D1 1960	+Schultz (ILL)
DAUBER	69	PR 179 1262	+Berge, Hubbard, Merrill, Miller (LRL)
ALITTI	68	PRL 21 1119	+Flaminio, Metzger, Radojicic+ (BNL, SYRA)
BADIER	65	PL 16 171	+Demoulin, Goldberg - (EPOL, SACL, AMST)

Ξ(2030)

 $I(J^P) = \frac{1}{2} (\geq \frac{5}{2})$ Status: ***

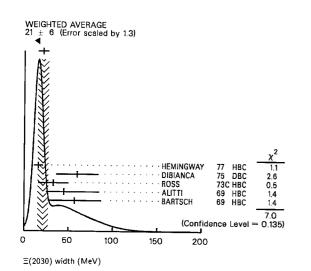

The evidence for this state has been much improved by HEMINGWAY 77, who see an eight standard deviation enhancement in $\Sigma \overline{K}$ and a weaker coupling to $\Lambda \overline{K}$. ALITTI 68 and HEMINGWAY 77 observe no signals in the $\Xi \pi \pi$ (or $\Xi(1530)\pi$) channel, in contrast to DIBIANCA 75. The decay (Λ/Σ) $\overline{K}\pi$ reported by BARTSCH 69 is also not confirmed by HEMINGWAY 77.

A moments analysis of the HEMINGWAY 77 data indicates at a level of three standard deviations that J > 5/2.

Ξ(2030) MASS

VALUE (Me	v) EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2025 ±	5 OUR ESTIMATE					
2025.1±	2.4 OUR AVERAGE	Error includes scale	facto	or of 1.3	. See	the ideogram below.
2022 ±	7	JENKINS	83	MPS	_	$K^- p \rightarrow K^+$
				unc		MM
$2024 \pm$	2 200	HEMINGWAY	11	HRC	-	K™ p 4.2 GeV/c
2044 ±	8	DIBIANCA	75	DBC	-0	$\Xi \pi \pi$, $\Xi^* \pi$
$2019 \pm$	7 15	ROSS	73C	HBC	-0	$\Sigma \overline{K}$
2030 ±1	0 42	ALITTI	69	HBC		$K^- p 3.9-5$
						GeV/c
2058 ±1	7 40	BARTSCH	69	HBC	-0	K- p 10 GeV/c

WEIGHTED AVERAGE 2025.1 ± 2.4 (Error scaled by 1.3)



 $\Xi(2030)$ mass (MeV)

Ξ(2030) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
20 - 15 OUR ESTIMATE						
21 ± 6 OUR AVERAGE	Error inclu	des scale factor	of 1	.3. See	the ide	ogram below.
16 ± 5	200	HEMINGWAY	77	HBC		K- p 4.2 GeV/c
60 ± 24		DIBIANCA	75	DBC	-0	$\Xi \pi \pi$, $\Xi^* \pi$
33 ± 17	15	ROSS	73c	HBC	-0	$\Sigma \overline{K}$
45 ^{+ 40} _{- 20}		ALITTI	69	нвс	-	K = ρ 3.9–5 GeV/c
57 + 30		BARTSCH	69	HBC	-0	K ⁻ ρ 10 GeV/c

Baryon Full Listings $\Xi(2030),\Xi(2120)$

Ξ(2030) DECAY MODES

=(2030) RRANCHING PATIOS

	Ξ(2030)) BRANCHIN	G R	ATIOS		
$\Gamma(\Xi\pi)/[\Gamma(\Lambda\overline{K})+\Gamma($	$(\Sigma \overline{K}) +$	$\Gamma(\Xi\pi) + \Gamma(\Xi$	(15	$30)\pi)]$		
VALUE		DOCUMENT ID		TECN		(Γ ₁ +Γ ₂ +Γ ₃ +Γ ₄) <u>COMMENT</u>
• • We do not use the	following					
<0.30		ALITTI		нвс	-	1 standard dev. limit
$\Gamma(\Xi\pi)/\Gamma(\Sigma\overline{K})$						Γ_3/Γ_2
VALUE	CL%	DOCUMENT ID		TECN	CHG	COMMENT
< 0.19	95	HEMINGWAY	77	HBC	-	$K^- p$ 4.2 ${\rm GeV}/c$
$\Gamma(\Lambda \overline{K})/[\Gamma(\Lambda \overline{K}) + \Gamma(\Lambda \overline{K})]$	$(\Sigma \overline{K}) +$	$\Gamma(\Xi\pi) + \Gamma(\Xi$	(15	30)π)]		
· // [· /	` /	() (, ,,	Γ_1/Γ_1	$(\Gamma_1+\Gamma_2+\Gamma_3+\Gamma_4)$
VALUE		DOCUMENT ID		TECN		COMMENT
0.25 ± 0.15		ALITTI	69	нвс	-	K [−] p 3.9–5 GeV/c
$\Gamma(\Lambda \overline{K})/\Gamma(\Sigma \overline{K})$						Γ_1/Γ_2
VALUE		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.22 ± 0.09		HEMINGWAY	77	HBC	-	$K^- \rho$ 4.2 GeV/c
$\Gamma(\Sigma \overline{K})/[\Gamma(\Lambda \overline{K}) + \Gamma(\Sigma \overline{K})]$	$(\Sigma \overline{K}) +$	$\Gamma(\Xi\pi) + \Gamma(\Xi\pi)$	(15	30) \pi)]		
				_		$(\Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4)$
VALUE		DOCUMENT ID	_	TECN	CHG	COMMENT
0.75 ± 0.20		ALITTI	69	HBC	_	K ⁻ ρ 3.9-5 GeV/c
$\Gamma(\Xi(1530)\pi)/[\Gamma(\Lambda \overline{K})]$) + (\S	\overline{K}) + $\Gamma(\Xi\pi)$	+ F	(Ξ(153	30)π)	1
· · · // L · ·	, ,	, , ,		` `	ΓΔŹ	$(\Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4)$
VALUE		DOCUMENT ID		TECN		
• • • We do not use the	following (data for average	s, fit	s, limits,	etc.	• •
< 0.15		ALITTI	69	нвс	-	1 standard dev. limit
$[\Gamma(\Xi(1530)\pi) + \Gamma(\Xi$	ππ (not	Ξ(1530)π))],	/r(x	\overline{K}		$(\Gamma_4 + \Gamma_5)/\Gamma_2$
VALUE	CL%	DOCUMENT ID		TECN	CHG	COMMENT
< 0.11	95 1	HEMINGWAY	77	HBC	_	K [−] p 4.2 GeV/c
$\Gamma(\Lambda \overline{K} \pi)/\Gamma_{\text{total}}$						Γ ₆ /Γ
VALUE		DOCUMENT ID		<u>TECN</u>	COMA	1ENT

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

seen

BARTSCH

69 HBC K-p 10 GeV

$\frac{\Gamma(\Lambda \overline{K}\pi)/\Gamma(\Sigma \overline{K})}{\overset{VALUE}{<0.32}}$	<u>CL%</u> 95	DOCUMENT ID HEMINGWAY 77	TECN HBC	$\begin{array}{cc} & \Gamma_6/\Gamma_2 \\ \underline{\mathit{CHG}} & \underline{\mathit{COMMENT}} \\ - & K^- \ \mathit{p} \ 4.2 \ GeV/\mathit{c} \end{array}$
$\frac{\Gamma(\Sigma \overline{K} \pi)/\Gamma_{\text{total}}}{\frac{VALUE}{\bullet} \bullet \bullet \text{ We do not use to the support }}$	he followin	DOCUMENT ID	TECN ts limits	Γ ₇ /Γ
seen		BARTSCH 69		
$\frac{\Gamma(\Sigma \overline{K} \pi)/\Gamma(\Sigma \overline{K})}{\text{VALUE}}$ <0.04	<u>CL%</u> 95	DOCUMENT ID 2 HEMINGWAY 77		Γ_7/Γ_2 <u>CHG</u> <u>COMMENT</u> - $K^- p$ 4.2 GeV/c

Ξ(2030) FOOTNOTES

∃(2030) REFERENCES

DIBIANCA 75 ROSS 73C ALITTI 69 BARTSCH 69	PRL 51 951 PL 68B 197 PL 62B 477 NP B98 137 Purdue Conf. 345 PRL 22 79 PL 28B 439	+Armenteros+ Gay, Armenteros, Berge+ +Endorf +Lloyd, Radojicic +Barnes, Flaminio, Metzger+ + (AACH,	, BRAN, LBL, CINC, SMAS) (AMST, CERN, NIJM, OXF) IJ (AMST, CERN, NIJM) (CMU) (OXF) (BNL, SYRA) I BERL, CERN, LOIC, VIEN)
ALITTI 68	PL 28B 439 PRL 21 1119	+ (AACH, +Flaminio, Metzger, Radojicic+	

$\Xi(2120)$

 $I(J^P) = \frac{1}{2}(?^?)$ Status: * J, P need confirmation.

OMITTED FROM SUMMARY TABLE

	Ξ(2120) MAS	SS	
VALUE (MeV) 2137±4 2123±7	 DOCUMENT ID 1 CHLIAPNIK 2 GAY	79 HBC	COMMENT K+ p 32 GeV/c K- p 4.2 GeV/c
	Ξ(2120) WID	тн	

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
<20 25 ± 12	18			K ⁺ ρ 32 GeV/c K ⁻ ρ 4.2 GeV/c

Ξ(2120) DECAY MODES

Mode Γ_1

Ξ(2120) BRANCHING RATIOS

		Γ_1/Γ
DOCUMENT ID	TECN	COMMENT
1 CHLIAPNIK	79 HBC	$K^+ \rho \rightarrow (\overline{\Lambda} K^+) X$
² GAY	76c HBC	K [−] p 4.2 GeV/c
	1 CHLIAPNIK	1 CHLIAPNIK 79 HBC 2 GAY 76C HBC

∃(2120) FOOTNOTES

 1 CHLIAPNIKOV 79 does not uniquely identify the K^+ in the $(\overline{\Lambda}K^+)$ X final state. It also reports bumps with fewer events at 2240, 2540, and 2830 MeV. 2 GAY 76C sees a 4-standard deviation signal. However, HEMINGWAY 77, with more events from the same experiment points out that the signal is greatly reduced if a cut is made on the 4-momentum u. This suggests an anomalous production mechanism if the $\Xi(2120)$ is real.

Ξ(2120) REFERENCES

CHLIAPNIK... 79 NP B158 253 HEMINGWAY 77 PL 68B 197 GAY 76C PL 62B 477

Chliapnikov, Gerdyukov+ +Armenteros+ +Armenteros, Berge+

(CERN, BELG, MONS) (AMST, CERN, NIJM, OXF) (AMST, CERN, NIJM)

¹ For the decay mode $\Xi_{-}^{-}\pi^{+}\pi_{-}^{-}$ only. ² For the decay mode $\Sigma^{\pm} K^{-} \pi^{\mp}$ only.

 $\Xi(2250), \Xi(2370), \Xi(2500)$

(2250)

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: **
J, P need confirmation.

OMITTED FROM SUMMARY TABLE

The evidence for this state is mixed. BARTSCH 69 sees a bump of not much statistical significance in $\Lambda \overline{K} \pi$, $\Sigma \overline{K} \pi$, and $\Xi \pi \pi$ mass spectra. GOLD-WASSER 70 sees a narrower bump in $\Xi\pi\pi$ at a higher mass. Not seen by HASSALL 81 with 45 events/ μ b at 6.5 GeV/c. Seen by JENKINS 83. Perhaps seen by BIAGI 87.

		∃(2250) MAS	S			
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2189± 7	66	BIAGI	87	SPEC	-	Ξ ⁻ Be → (Ξ ⁻ π ⁺ π ⁻)
2214± 5		JENKINS	83	MPS	-	$K^{-}p \rightarrow K^{+}$ MM
2295 ± 15	18	GOLDWASSER	70	HBC	-	K- p 5.5 GeV/
2244 ± 52	35	BARTSCH	69	нвс		K [∞] ρ 10 GeV/c
		Ξ(2250) WID7	ГН			
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
46 ± 27	66	BIAGI	87	SPEC		Ξ^{-} Be $$ $(\Xi^{-}$ π^{+} π^{-})
		GOLDWASSER	70	нвс	_	K p 5.5 GeV/
< 30						

∃(2250) DECAY MODES

 $\Xi \pi \pi$

 Γ_2 $\Lambda \overline{K} \pi$ $\Sigma \overline{K} \pi$

Ξ(2250) REFERENCES

BIAGI	87	ZPHY C34 15
JENKINS	83	PRL 51 951
HASSALL	81	NP B189 397
GOLDWASSER	70	PR D1 1960

+ (BRIS, CERN, GEVA, HEID, LAUS, LOQM, RAL) +Albright, Diamond+ (FSU, BRAN, LBL, CINC, SMAS) +Ansorge, Carter, Neale+ (CAMB, MSU) -Schultz

(AACH, BERL, CERN, LOIC, VIEN)

 $I(J^P) = \frac{1}{2}(??)$ Status: ** J, P need confirmation.

OMITTED FROM SUMMARY TABLE

		Ξ(2370) MAS	SS			
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2356 ± 10		JENKINS	83	MPS	-	$K^- \rho \rightarrow K^+$ MM
2370	50	HASSALL	81	HBC	-0	K- p 6.5 GeV/c
2373 ± 8	94	AMIRZADEH	80	HBC	-0	K- p 8.25 GeV/c
2392 ± 27		DIBIANCA	75	DBC		$\Xi 2\pi$
		Ξ(2370) WID	TH			
VALUE (MeV)	EVTS	Ξ(2370) WID	TH	TEÇN	<u>CHG</u>	COMMENT
VALUE (MeV)	EVTS 50	,	TH 81	TECN HBC	<u>снс</u> –0	<u>соммент</u> К [—] р 6.5 GeV/с
		DOCUMENT ID				·

Ξ(2370) DECAY MODES

	Mode
Γ ₁	$\Lambda \overline{K} \pi$ Includes $\Gamma_4 + \Gamma_6$.
Γ_2	$\Sigma \overline{K} \pi$ Includes $\Gamma_5 + \Gamma_6$.
Γ_3	$\Omega_{-}K$
Γ_4	$\Lambda \overline{K}^*$ (892)
Γ_5	$\Sigma \overline{K}^*(892)$
Γ ₆	$\Sigma(1385)\overline{K}$

Ξ(2370) BRANCHING RATIOS

$\Gamma(\Lambda \overline{K} \pi) / \Gamma_{\text{total}}$						Γ_1/Γ
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
seen		AMIRZADEH	80	HBC	0	K [−] p 8.25 GeV/c
$\Gamma(\Sigma \overline{K}\pi)/\Gamma_{total}$						Γ_2/Γ
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
seen		AMIRZADEH	80	HBC	-0	$K^- \rho$ 8.25 GeV/ c
$[\Gamma(\Lambda \overline{K}\pi) + \Gamma(\Sigma \overline{K}\pi)]$	·)]/Γ _{tot}	al				$(\Gamma_1 + \Gamma_2)/\Gamma$
VALUE	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
seen	50	HASSALL	81	нвс	-0	$K^- \rho$ 6.5 GeV/c
$\Gamma(\Omega^-K)/\Gamma_{\text{total}}$						Γ_3/Γ
VALUE		DOCUMENT ID		TECN	CHG	COMMENT
0.09 ± 0.04		¹ KINSON	80	HBC		$K^- p$ 8.25 GeV/ c
$[\Gamma(\Lambda \overline{K}^*(892)) + \Gamma(3)]$	$\Sigma \overline{K}^*$ (89	(2))]/Γ _{total}				$(\Gamma_4 + \Gamma_5)/\Gamma$
VALUE		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.22 ± 0.13		¹ KINSON	80	HBC	-	K ⁻ ρ 8.25 GeV/c
$\Gamma(\Sigma(1385)\overline{K})/\Gamma_{\text{total}}$						Γ_6/Γ
VALUE		DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.12 ± 0.08		¹ KINSON	80	нвс	-	K [−] p 8.25 GeV/c

Ξ(2370) FOOTNOTES

 $^{1}\,\mathrm{KiNSON}$ 80 is a reanalysis of AMIRZADEH 80 with 50% more events.

Ξ(2370) REFERENCES

JENKINS	83	PRL 51 951	+Albright, Diamo	nd+ (FSU, BRAI	N, LBL, CINC. SMAS)
HASSALL	81	NP B189 397	+Ansorge, Carter	, Neale+	
AMIRZADEH	80	PL 90B 324	+	(BIRM, CERN	I, GLAS, MSU, LPNP) I
KINSON	80	Toronto Conf. 263	*	(BIRM, CERN	I, GLAS, MSU, LPNP) I
DIBIANCA	75	NP B98 137	Endorf		(CMU)

(2500)

VALUE

 0.5 ± 0.2

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: *

 $J_1 P$ need confirmation.

 $\Gamma_2/(\Gamma_1+\Gamma_2+\Gamma_3+\Gamma_5)$

TECN CHG

69 HBC

OMITTED FROM SUMMARY TABLE

The ALITTI 69 peak might be instead the $\Xi(2370)$ or might be neither the $\Xi(2370)$ nor the $\Xi(2500)$

		Ξ(2500) MA	SS			
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2505 ± 10		JENKINS	83	MPS	-	$K^- p \rightarrow K^+$ MM
2430 ± 20	30	ALITTI	69	нвс	-	K ⁻ p 4.6-5 GeV/c
2500 ± 10	45	BARTSCH	69	HBC	-0	K- p 10 GeV/d
		Ξ(2500) WID	тн			
				TECN	<u>CHG</u>	
VALUE (MeV) 150+60 -40		Ξ(2500) WIE			<u>CHG</u>	

150 d		ALITTI BARTSCH	69 HBC 69 HBC	
		E(2500) DECAY	MODES	
	Mode			
Γ ₅	$ \Xi \pi $ $ \Sigma \overline{K} $ $ \Xi \pi \pi $ $ \Xi (1530) \pi $ $ \wedge K \pi + \Sigma \overline{K} \pi $			
	≣(2	2500) BRANCHII	NG RATIO	S
Γ(Ξ	π)/ $[\Gamma(\Xi\pi) + \Gamma(\Lambda \overline{K})$	$+ \Gamma(\Sigma \overline{K}) + \Gamma($	Ξ(1530)π)	
<u>VALU</u>		<u>DOCUMENT ID</u> ALITTI	69 HBC	
۲(۸	\overline{K})/ $\Gamma(\Xi\pi) + \Gamma(\Lambda\overline{K})$	$+\Gamma(\Sigma\overline{K})+\Gamma($	(Ξ(1530) π)]

DOCUMENT ID

ALITTI

${\Gamma(\Sigma \overline{K})/[\Gamma(\Xi \pi) + \Gamma(\Lambda \overline{K}) + 1]}$	Γ(Σ <u>K</u>) + Γ(Ξ	=(15	30) #)]	
VALUE 0.5 ± 0.2	DOCUMENT ID ALITTI	69	TECN HBC	Γ ₃ /(Γ ₁ +Γ ₂ +Γ ₃ +Γ ₅) -
$\Gamma(\Xi(1530)\pi)/[\Gamma(\Xi\pi) + \Gamma(\Lambda)]$	\overline{K}) + $\Gamma(\Sigma \overline{K})$	+ [·(Ξ(153	$[30)\pi]$
VALUE <0.2	DOCUMENT ID	69	TECN HBC	$\Gamma_5/(\Gamma_1+\Gamma_2+\Gamma_3+\Gamma_5)$ COMMENT 1 standard dev. limit
$\Gamma(\Xi\pi\pi)/\Gamma_{\text{total}}$ $\frac{VALUE}{\text{seen}}$	DOCUMENT ID BARTSCH	69	TECN HBC	Γ ₄ /Γ -0
$\frac{\left[\Gamma(\Lambda \overline{K}\pi) + \Gamma(\Sigma \overline{K}\pi)\right]/\Gamma_{total}}{\frac{VALUE}{sseen}}$	<u>DOCUMENT ID</u> BARTSCH	69	<u>TECN</u> HBC	Г ₆ /Г -0

Ξ(2500) REFERENCES

JENKINS ALITTI BARTSCH	69	PRL 51 95 PRL 22 79 PL 28B 43	•		, Diamon Flaminio,	Metzg	er+	BRAN, BERL,		(BNL,	SYRA)
DATE: Dell	0,	1 2 200 43	,,	Ψ.		(/-	исп,	DERL,	CERN,	LUIC.	VIEN

Ω BARYONS (S = -3, I = 0) $Ω^- = sss$

 Ω^-

$$I(J^P) = 0(\frac{3}{2}^+)$$

The unambiguous discovery in both production and decay was by BARNES 64. The quantum numbers have not actually been measured, but follow from the assignment of the particle to the baryon decuplet. DEUTSCHMANN 78 and BAUBILLIER 78 rule out J=1/2 and find consistency with J=3/2.

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.

Ω^{-}	MASS
34	IVIASS

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1672.43±0.32 OUR A	WERAGE				
1673 ±1	100	HARTOUNI	85	SPEC	80−280 GeV K ⁰ C
1673.0 ± 0.8	41	BAUBILLIER	78	HBC	8.25 GeV/c K p
1671.7 ± 0.6	27	HEMINGWAY	78	HBC	4.2 GeV/c K- p
1673.4 ± 1.7	4	¹ DIBIANCA	75	DBC	4.9 GeV/c K ⁻ d
1673.3 ± 1.0	3	PALMER	68	HBC	K p 4.6, 5 GeV/c
1671.8 ± 0.8	3	SCHULTZ	68	HBC	K ⁻ p 5.5 GeV/c
1674.2 ±1.6	5	SCOTTER	68	HBC	K- p 6 GeV/c
1672.1 ± 1.0	1	² FRY	55	EMUL	
• • • We do not use	the followin	g data for average	s, fits	s, limits,	etc. • • •
1671.43 ± 0.78	13	³ DEUTSCH	73	HBC	K- p 10 GeV/c
1671.9 ±1.2	6	³ SPETH	69	нвс	See
1673.0 ±8.0	1	ABRAMS	64	нвс	→ DEUTSCHMANN 73
1670.6 ±1.0	1	² FRY	55B	EMUL	
1615	1	⁴ EISENBERG	54	EMUL	

- ¹ DIBIANCA 75 gives a mass for each event. We quote the average.
- 2 The FRY 55 and FRY 55B events were identified as Ω^- by ALVAREZ 73. The masses assume decay to ΛK^- at rest. For FRY 55B, decay from an atomic orbit could Doppler shift the K^- energy and the resulting Ω^- mass by several MeV. This shift is negligible for FRY 55 because the Ω decay is approximately perpendicular to its orbital velocity, as is known because the Λ strikes the nucleus (L.Alvarez, private communication 1973). We have calculated the error assuming that the orbital n is 4 or larger.
- 3 Excluded from the average; the Ω^- lifetimes measured by the experiments differ significantly from other measurements.
- 4 The EISENBERG 54 mass was calculated for decay in flight. ALVAREZ 73 has shown that the Ω interacted with an Ag nucleus to give $\it K^-$ EAg.

$\overline{\Omega}^+$ MASS

VALUE (MeV) 1672.6±0.7 OUR AVER	EVTS AGE	DOCUMENT ID	TECN_	COMMENT
1672 ±1	72	HARTOUNI	85 SPEC	80−280 GeV K ⁰ C
1673.1 ± 1.0	1			12 GeV/c K ⁺ d

Ω^- MEAN LIFE

Measurements with an error $>~0.1\times10^{-10}$ s have been omitted.

$VALUE (10^{-10} s)$	EVTS	DOCUMENT ID		TECN	COMMENT			
0.822 ± 0.012 OUR	AVERAGE							
0.811 ± 0.037	1096	LUK	88	SPEC	p Be 400 GeV			
0.823 ± 0.013	12k	BOURQUIN	84	SPEC	SPS hyperon beam			
• • • We do not use the following data for averages, fits, limits, etc. • • •								
0.822 ± 0.028	2437	BOURQUIN	79B	SPEC	See BOURQUIN 84			

Ω^- DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level					
$\overline{\Gamma_1}$	Λ <i>K</i> -	(67.8±0.7) %						
Γ_2	$\equiv^0 \pi^-$	(23.6±0.7) %						
Γ_3	$\equiv -\pi^0$	(8.6±0.4) %						
Γ_4	$\Xi^-\pi^+\pi^-$	$(4.3^{+3.4}_{-1.3}) \times 10^{-4}$						
Γ_5	$\Xi(1530)^{0}\pi^{-}$	$(6.4^{+5.1}_{-2.0}) \times 10^{-4}$						
Γ_6	$\Xi^0 e^- \overline{\nu}_e$	$(5.6\pm2.8)\times10^{-3}$						
Γ ₇	$\equiv -\gamma$	< 2.2 × 10 ⁻³	90%					
	$\Delta S = 2 \ (\Delta S) \ \text{violating modes}$							
Γ8	Λπ-	ΔS < 1.9 $\times 10^{-4}$	90%					

Ω^- BRANCHING RATIOS

The BOURQUIN 84 values (which include results of BOURQUIN 79B, a separate experiment) are much more accurate than any other results, and so the other results have been omitted.

$\Gamma(\Lambda K^-)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	EVTS	DOCUMENT ID		<u>TEÇN</u>	COMMENT
0.678±0.007 • • • We do not use	14k	BOURQUIN			SPS hyperon beam
0.686 ± 0.013	1920	BOURQUIN			See BOURQUIN 84
$\Gamma(\Xi^0\pi^-)/\Gamma_{total}$					Γ ₂ /Γ
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.236±0.007	1947	BOURQUIN	84		SPS hyperon beam
• • We do not use	the following				
0.234 ± 0.013	317	BOURQUIN	79B	SPEC	See BOURQUIN 84
$\Gamma(\Xi^-\pi^0)/\Gamma_{\text{total}}$					Г ₃ /Г
VALUE	EVTS	DOCUMENT ID		<u>TECN</u>	COMMENT
0.086±0.004 • • • We do not use	759	BOURQUIN			SPS hyperon beam
0.080 ± 0.008	145	BOURQUIN			See BOURQUIN 84
$\Gamma(\Xi^-\pi^+\pi^-)/\Gamma_{\text{tot}}$	al				Γ ₄ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT
$4.3^{+3.4}_{-1.3}$	4	BOURQUIN	84	SPEC	SPS hyperon beam
Γ(Ξ(1530) ⁰ π ⁻)/Γ	total				Г ₅ /Г
VALUE (units 10-4)		DOCUMENT ID		TECN	COMMENT
$6.4^{+5.1}_{-2.0}$	4	5 BOURQUIN	84	SPEC	SPS hyperon beam
• • We do not use	the followin				
~ 20	1				See BOURQUIN 84
⁵ The same 4 events $\Xi(1530)^0 \rightarrow \Xi^0 \tau$	s as in the p of decays in	revious mode, with			factor to take into account
$\Gamma(\Xi^0 e^- \overline{\nu}_e) / \Gamma_{\text{total}}$					Г ₆ /Г

• • • • • • • • • • • • • • • • • • •	usc ti	CIONOVVIII	g data ioi average	3, III.3	s, minis,	etc.
~ 10		3	BOURQUIN	79B	SPEC	See BOURQUIN 84
$\Gamma(\Xi^-\gamma)/\Gamma_{\text{total}}$						Γ ₇ /Γ
VALUE (units 10 ⁻³)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<2.2	90	9				SPS hyperon beam
 ● ● We do not 	use th	e followin	g data for average	s, fits	, limits,	etc. • • •
< 3.1	90	0	BOURQUIN	79B	SPEC	See BOURQUIN 84
$\Gamma(\Lambda\pi^-)/\Gamma_{\text{total}}$						Γ ₈ /Γ
			der weak interacti	on.		
VALUE (units 10 ⁻⁴)	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
< 1.9						SPS hyperon beam
• • • We do not	use th	e followin,	g data for average	s, fits	, limits,	etc. • • •
<13	90	0	BOURQUIN	79R	SPEC	See BOUROUN 84

DOCUMENT ID

BOURQUIN

TECN

COMMENT

84 SPEC SPS hyperon beam

VALUE (units 10⁻³)

 5.6 ± 2.8

 Ω^{-} , $\Omega(2250)^{-}$, $\Omega(2380)^{-}$, $\Omega(2470)^{-}$

Ω^- DECAY PARAMETERS

 α FOR $\Omega^- \to \Lambda K^-$

Some ea	rly results	have been	omitted.
---------	-------------	-----------	----------

Some early r	Some early results have been omitted.							
VALUE	EVTS	DOCUMENT ID 1		TECN	COMMENT	_		
-0.026 ± 0.026 OU	JR AVERAGE							
-0.034 ± 0.079	1743	LUK	88	SPEC	pBe 400 GeV			
-0.025 ± 0.028	12k	BOURQUIN	84	SPEC	SPS hyperon beam			
α FOR $\Omega^- \to \Xi^0 \pi^-$								
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	_		
$+0.09\pm0.14$	1630	BOURQUIN	84	SPEC	SPS hyperon beam			
$\begin{array}{c} \alpha \ FOR \ \Omega^- \to \\ \frac{\mathit{VALUE}}{+0.05 \pm 0.21} \end{array}$	$\frac{\Xi^{-}\pi^{0}}{\frac{EVTS}{614}}$	<u>DOCUMENT ID</u> BOURQUIN	84	<u>TECN</u> SPEC	COMMENT SPS hyperon beam			

REFERENCES FOR Ω^-

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.

LUK	88	PR D38 19	+Beretvas, Deck+ (RUTG, WISC, MICH, MINN)
HARTOUNI	85	PRL 54 628	+Atiya, Holmes, Knapp, Lee+ (COLU, ILL, FNAL)
BOURQUIN	84	NP B241 1	 (BRIS, GEVA, HEID, LALO, RAL, STRB)
Aiso	79	PL 87B 297	Bourquin+ (BRIS, GEVA, HEID, ORSA, RHEL, STRB)
BOURQUIN	79B	PL 88B 192	+ (BRIS, GEVA, HEID, LALO, RAL)
BAUBILLIER	78	PL 78B 342	+ (BIRM, CERN, GLAS, MSU, LPNP) J
DEUTSCH	78	PL 73B 96	Deutschmann+ (AACH, BERL, CERN, INNS, LOIC+) J
HEMINGWAY	78	NP B142 205	+Armenteros+ (CERN, ZEEM, NIJM, OXF)
DIBIANCA	75	NP B98 137	+Endorf (CMU)
ALVAREZ	73	PR D8 702	(LBL)
DEUTSCH	73	NP B61 102	Deutschmann, Kaufmann, Besliv+ (ABCLV Collab.)
FIRESTONE	71B	PRL 26 410	+ Goldhaber, Lissauer, Sheldon, Trilling (LRL)
SPETH	69	PL 29B 252	+ (AACH, BERL, CERN, LOIC, VIEN)
PALMER	68	PL 26B 323	+Radojicic, Rau, Richardson+ (BNL, SYRA)
SCHULTZ	68	PR 168 1509	+ (ILL, ANL, NWES, WISC)
SCOTTER	68	PL 26B 474	(BIRM, GLAS, LOIC, MUNI, OXF)
ABRAMS	64	PRL 13 670	-Burnstein, Glasser + (UMD, NRL)
BARNES	64	PRL 12 204	
FRY	55	PR 97 1189	+ Schneps, Swami (WISC)
FRY	55B	NC 2 346	+Schneps, Swami (WISC)
EISENBERG	54	PR 96 541	(CORN)

$\Omega(2250)^{-}$

 $I(J^P) = O(??)$ Status: ***

$\Omega(2250)^-$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
2252± 9 OUR AVERAG	3E			
2253 ± 13	44	ASTON	878 LASS	K [−] p 11 GeV/c
2251 ± 9 ± 8	78	BIAGI	86B SPEC	SPS E beam

$\Omega(2250)^-$ WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
55±18 OUR AVERAGE				
81 ± 38	44	ASTON	87B LASS	K^- p 11 GeV/ c
48 ± 20	78	BIAGI	86B SPEC	SPS ≡ beam

$\Omega(2250)^-$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	Ξ-π+K-	seen
Γ_2	$\Xi(1530)^0 K^-$	seen

$\Omega(2250)^-$ BRANCHING RATIOS

$\Gamma(\Xi(1530)^0 K^-)/\Gamma(\Xi^-\pi^+K^-)$					
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT	
~ 1.0	44	ASTON	878 LASS	$K^- p$ 11 GeV/ c	
0.70 ± 0.20	49	BIAGI	86B SPEC	Ξ- Be 116 GeV/c	

$\Omega(2250)^-$ REFERENCES

ASTON	87B	PL B194 579	+Awaji, Bienz, Bird+	(SLAC, NAGO, CINC, TOKY)
BIAGI	86B	ZPHY C31 33	+ (LOQM, GEVA	A, RAL, HEID, LAUS, BRIS, CERN)

$\Omega(2380)^{-}$

Status: **

OMITTED FROM SUMMARY TABLE

$\Omega(2380)^-$ MASS							
VALUE (MeV) 2384 ± 9 ± 8	<u>EVTS</u> 45	DOCUMENT ID BIAGI	TECN 86B SPEC	COMMENT SPS = beam			
Ω(2380) [—] WIDTH							
VALUE (MeV) 26 ± 23	EVTS 45	DOCUMENT ID	7ECN 86B SPEC	COMMENT SPS Ξ [−] beam			

$\Omega(2380)^-$ DECAY MODES

	Mode		
Γ ₁ Γ ₂ Γ ₃	$ \Xi^{-} \pi^{+} K^{-} \Xi (1530)^{0} K^{-} \Xi^{-} \overline{K}^{*} (892)^{0} $		

Ω(2380) BRANCHING RATIOS

$\Gamma(\Xi(1530)^{0}$	κ⁻)/Γ(Ξ	$-\pi^+ \kappa$	(-)		Γ:	$_2/\Gamma_1$
VALUE	CL%	EVTS	DOCUMENT ID	TECN	COMMENT	
< 0.44	90	9	BIAGI	86B SPEC	Ξ^- Be 116 GeV/ c	
Γ(Ξ- K *(89	$(2)^{0})/\Gamma(\Xi$	$-\pi^{+}K$	(-)		Γ:	₃ /Γ ₁
VALUE		EVŢ5	DOCUMENT ID	TECN	COMMENT	
0.5 ± 0.3		21	BIAGI	86B SPEC	Ξ^- Be 116 GeV/ c	

Ω(2380) - REFERENCES

AGI 86B ZPHY C31 33 - (LOQM, GEVA, RAL. HEID, LAUS, BRIS, CERN)

$\Omega(2470)^{-}$

Status: **

OMITTED FROM SUMMARY TABLE

A peak in the $\Omega^-\pi^+\pi^-$ mass spectrum with a signal significance claimed to be at least 5.5 standard deviations. There is no reason to seriously doubt the existence of this state, but unless the evidence is overwhelming we usually wait for confirmation from a second experiment before elevating peaks to the Summary Table.

		Ω(2470) - MA	ASS		
VALUE (MeV) 2474 ± 12	<i>EVTS</i> 59	DOCUMENT ID		COMMENT K- p 11 GeV/c	
		Ω(2470) ⁻ WIE	тн		
VALUE (Mal/)	FVTS	DOCUMENT IO	TECN	COMMENT	

59 ASTON 886 LASS K⁻ p 11 GeV/c

$\Omega(2470)^-$ DECAY MODES

	Mode	 	
Γ ₁	$\Omega^-\pi^+\pi^-$		

$\Omega(2470)^-$ REFERENCES

ASTON	88G PL B215 799	Awaji, Bienz, Bird+-	(SLAC, NAGO, CINC, TOKY)

CHARMED BARYONS

(C = +1)

 $\begin{array}{lll} \Lambda_c^+ = udc, & \Sigma_c^{++} = uuc, & \Sigma_c^+ = udc, & \Sigma_c^0 = ddc, \\ \Xi_c^+ = usc, & \Xi_c^0 = dsc, & \Omega_c^0 = ssc \end{array}$

NOTE ON CHARMED BARYONS

Figures 1(a) and 1(b) show the SU(4) multiplets that have as their "ground floors" (a) the SU(3) octet that contains the nucleon and (b) the SU(3) decuplet that contains the $\Delta(1232)$. All the particles in a given SU(4) multiplet have the same spin and parity. The only charmed baryons that have been discovered each contain one charmed quark and belong to the first floor of the multiplet shown in Figure 1(a). Figure 2 shows this first floor, pulled apart into two SU(3) multiplets, a $\overline{3}$ that contains the $\Lambda_c(2285)$ and the $\Xi_c(2470)$, both of which decay weakly, and a 6 that contains the $\Sigma_c(2455)$, which decays strongly to $\Lambda_c \pi$. A second Ξ_c and an Ω_c remain to be discovered to fill out the 6, and a host of other baryons with one or more charmed quarks are needed to fill out the full SU(4) multiplets in Figure 1. Furthermore, every N or Δ baryon resonance "starts" a multiplet like that in Figure 1(a) or 1(b), so the woods are full of charmed baryons, most of which no doubt will forever remain undiscovered.

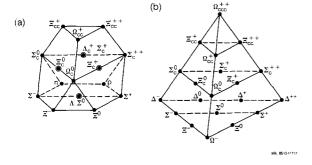


Figure 1. SU(4) multiplets of baryons made of u, d, s, and c quarks. (a) The 20-plet with an SU(3) octet on the "ground floor." (b) The 20-plet with an SU(3) decuplet on the ground floor.

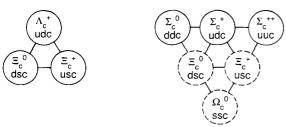


Figure 2. The SU(3) multiplets on the "first floor" of the SU(4) multiplet of Figure 1(a). The particles in dashed circles have yet to be discovered.

The states of the $\overline{\bf 3}$ multiplet are antisymmetric under interchange of the two light quarks (the u,d, and s quarks), and the states of the $\bf 6$ multiplet are symmetric under interchange of these quarks. Actually, there is probably some mixing between the pure $\overline{\bf 3}$ and $\bf 6$ $\overline{\bf c}_c$ states (they have all the same ordinary quantum numbers) to form the physical $\overline{\bf c}_c$ states.

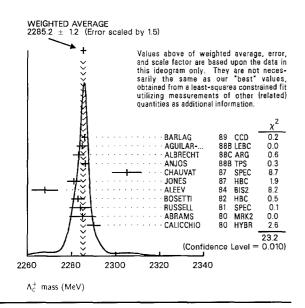
It need hardly be said that the flavor symmetries Figure 1 displays are very badly broken, but the figure is the simplest way to see what charmed baryons should exist. For an entry into the literature on models of charmed baryons, see Ref. 1.

References

K. Maltman and N. Isgur, Phys. Rev. **D22**, 1701 (1980);
 S. Capstick and N. Isgur, Phys. Rev. **D34**, 2809 (1986);
 W. Kwong, J.L. Rosner, and C. Quigg, Ann. Rev. Nucl. Part. Sci. **37**, 325 (1987); and S. Fleck and J.M. Richard, Part. World **1**, 67 (1990).

$$I(J^P) = 0(\frac{1}{2}^+)$$

J has not actually been measured yet. J=1/2 is of course expected. The quark content is $u\,d\,c$.


We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1986 edition (Physics Letters 170B) or in earlier editions.

Λ_c^+ MASS

We only average the measurements with an error less than 10 MeV. It seems clear that the early values around 2260 MeV were too low.

VALUE (Me	·V)		<u>EVTS</u>		DOCUMENT II	p	TECN	COMMENT
2285.2±	1.2 OI	JR FIT	Error	inclu	des scale fact	or of 1.	5.	
2285.2±	1.2 0	JR AVER	AGE	Erro	r includes sca	ale facto	or of 1.5	. See the ideogram below.
$2285.8\pm$	$0.6 \pm$	1.2	101		BARLAG	89	CCD	$\rho K^{-} \pi^{+} + c.c.$
$2284.7\pm$	2.3±	0.5	5		AGUILAR	. 88в	LEBC	$pK^{-}\pi^{+} + c.c.$
$2283.1\pm$	1.7 ±	2.0	628		ALBRECHT	88c	ARG	$\rho K^- \pi^+$, $\rho \overline{K}^0$, $\Lambda 3\pi$
$2286.2 \pm$	1.7±	0.7	97		ANJOS	88B	TPS	$pK^{-}\pi^{+} + c.c.$
$2305 \pm$	3 ±	6	621		CHAUVAT	87	SPEC	pp 63 GeV ISR
$2281 \pm$	3		2		JONES	87	HBC	$pK^-\pi^+$
2268 ±	6		187		ALEEV	84	BIS2	$\Lambda \pi^+ \pi^+ \pi^-$,
								$\rho K_{S}^{0} \pi^{+} \pi^{-}$
2283 ±	3		3		BOSETTI	82	HBC	ρK- π+
2284 ±	5		55		RUSSELL	81	SPEC	$p\overline{K}^0 + c.c.$
2285 ±	6		39		ABRAMS	80	MRK2	$pK^{-}\pi^{+} + c.c.$
2290 ±	3		1		CALICCHIO	80	HYBR	$pK^-\pi^+$
• • • W	e do no	t use the	follov	ving c	lata for avera	ges, fits	s, limits,	etc. • • •
2301 ±	17		4		ADAMOVIC	H 87	EMUL.	γ A 20-70 GeV/c
2285.6±	1.1		14		BARLAG	87	CCD	See BARLAG 89
2293 ±	6 ±3	0	78		DIESBURG	87	SPEC	nA ~ 600 GeV
2300 ±	25		1		AMMAR	86	EMUL	$\Sigma^+\pi^+\pi^-$
2266 ±	13		8		USHIDA	86	EMUL	Wideband $ u$
2270 ±	15		3		KITAGAKI	82	DBC	$\Sigma^0 \pi^+$
2260 ±	20		1		ALLASIA	80	EMUL	pK π+
2275 ±	10		19		KITAGAKI	80	DBC	$\Lambda \pi^+$, $\rho \overline{K}^0$
2257 ±	10		6		BALTAY	79	HLBC	$\Lambda \pi^{+}$
2254 ±	12		1		CNOPS	79	DBC	p K* (892) - π+
2262 ±	10		30	1	GIBONI	79	SPEC	p K - π+
2260 ±	10		60		KNAPP	76	SPEC	$\frac{1}{\Lambda} 2\pi^{-} \pi^{+}$
2260 ±	20		1		CAZZOLI	75	HBC	$\Lambda 2\pi^+ \pi^-$
1								

 $^{-1}$ GIBONI 79 has been changed from 2255 \pm 4 MeV by the authors; see KERNAN 79.

Λ+ MEAN LIFE

Measurements with an error $\geq~1.0\times10^{-13}$ s have been omitted

VALUE (10 - 13 s)	EVTS	DOCUMENT ID		TECN	COMMENT
$1.91^{+0.17}_{-0.13}$ OUR AVE	RAGE				
$1.96^{+0.23}_{-0.20}$	101	BARLAG	89	CCD	$pK^{-}\pi^{-} + c.c.$
$1.2 \begin{array}{c} +0.5 \\ -0.3 \end{array}$	9	AGUILAR	888	LEBC	
$2.2 \pm 0.3 \pm 0.2$	97	ANJOS	88B	TPS	$pK^{-}\pi^{+} + c.c.$
$2.3 \begin{array}{c} +0.9 \\ -0.6 \end{array} \pm 0.4$	11	ADAMOVICH	87	EMUL	γ A 20–70 GeV/ c
$1.1 \begin{array}{c} +0.8 \\ -0.4 \end{array}$	9	AMENDOLIA	87	SPEC	γ Ge-Si, $p K^- \pi^+ \pi^0$
$2.0 \begin{array}{c} +0.7 \\ -0.5 \end{array}$	13	USHIDA	86	EMUL	
• • • We do not use	the following	data for average	s, fits	s, limits,	etc. • • •
$1.4 \ ^{+\ 0.5}_{-\ 0.3} \ \pm 0.3$	14	BARLAG	87	CCD	See BARLAG 89

Ac DECAY MODES

	Mode	Fraction (Γ _I /Γ)	
Γ_1	$p\overline{K}^0$	(1.6±0.6) %	
Γ_2	$\rho K^- \pi^+$	(2.8 ± 0.8) %	
Γ_3	$p\overline{K}^{*}(892)^{0}$	[a] $(6.0 \pm 3.1) \times 10^{-3}$	
ΓΔ	$\Delta(1232)^{++}K^{-}$	$(5.7 \pm 2.8) \times 10^{-3}$	
Γ ₅	$\rho \overline{K}^{0} \pi^{+} \pi^{-}$	(8.1 ± 3.5) %	
	$pK^{-}\pi^{+}\pi^{0}$	seen	
Γ7	p K*(892) ⁻ π ⁺	seen	
Γ8	$\Delta(1232)\overline{K}^{*}(892)$	seen	
Γ9	Λ anything	(27 ±9)%	
Γ_{10}	$\Lambda \pi^+$	seen	
Γ_{11}	$\Lambda \pi^- \pi^+ \pi^-$	(1.9 ± 0.7) %	
Γ_{12}	$\Sigma^0\pi^+$	seen	
	Σ^{\pm} anything	(10 ±5)%	
14	$\Sigma^+ \pi^0$		
	$\Sigma^+\pi^+\pi^-$	(10 ±8)%	
	e^+ anything	(4.5 ± 1.7) %	
۲17	pe^+ anything	(1.8±0.9) %	
Γ ₁₈	$\rho \overline{K}^0 \pi^- \pi^0 e^+ \nu$		
19	Λe^+ anything	(1.1 ± 0.8) %	
	ρ hadrons		
r ₂₁	all except Γ_1 , Γ_2 , Γ_5 , and Γ_{11}	[b] (86 ±5) %	

[a] Corrected for the $\overline{K}^*(892)^0 - \overline{K}^0 \pi^0$ mode.

[b] A dummy mode used by the fit.

CONSTRAINED FIT INFORMATION

An overall fit to 5 branching ratios uses 9 measurements and one constraint to determine 5 parameters. The overall fit has a χ^2 1.6 for 5 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\langle \delta x_i \delta x_j
angle / (\delta x_i \, \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv$ $\Gamma_i/\Gamma_{ ext{total}}$. The fit constrains the x_i whose labels appear in this array to sum to

A+ BRANCHING RATIOS

	n _c	DIAMETING	IVATIOS		
$\Gamma(\rho K^-\pi^+)/\Gamma_{\text{tota}}$	al				Γ_2/Γ
VALUEC	L% EVTS	DOCUMENT ID	TECN	COMMENT	
0.028 ± 0.008 OUF	RFIT				
0.025 ± 0.009 OUF	RAVERAGE				
0.041 ± 0.024	208	² ALBRECHT	88E ARG		
0.022 ± 0.010	39	ABRAMS	80 MRK2	e ⁺ e ⁻ 5.2 GeV	
• • • We do not use	e the followin	g data for average	s, fits, limits,	etc. • • •	
>0.044 90	0 6	³ AGUILAR	88B LEBC	pp 27.4 GeV	
² ALBRECHT 88E	use their resu	alt $B(B \rightarrow \Lambda_c^+ X)$	$\cdot B(\Lambda_C^+ \rightarrow \rho$	$K^-\pi^+) = (0.30 \pm$	0.12 ±
0.06)% plus B(B	$\rightarrow \Lambda_c^+ X) =$	$(7.4 \pm 2.9)\%$ from	other measu	rements of inclusiv	e proton

and Λ yields in B decays.

³ The AGUILAR-BENITEZ 88B lower limit is, on the face of it, in disagreement with the ABRAMS 80 measurement. However, the limit assumes that $\tau(\Lambda_{\rm C})=1.2\times 10^{-13}\,$ s, Additional of measurement, inconvever, the limit assumes that $\tau(\Lambda_C) = 1.2 \times 10^{-19}$ s, and it "decreases by 20% [to >0.035] assuming a lifetime of 1.7×10^{-13} s instead." Our average for $\tau(\Lambda_C)$ is still higher, $(1.91 {}^{+0.17}_{-0.13}) \times 10^{-13}$ s (see the mean-life section), which if correct would further reduce the limit. The two experiments then do not disagree so badly. Given the very limited statistics and the uncertainties all around, we include the ABRAMS 80 result, which claims to be a measurement rather than a limit, in our

$\frac{\Gamma(\rho \overline{K}^0)/\Gamma(\rho K^- \pi \nu)}{\frac{\nu_{ALUE}}{0.58 \pm 0.11} \text{ OUR F}}$	CL% _E	<u>vts</u>	DOCUMENT	· 10	TE	CN COMMENT	Γ_1/Γ_2
0.58 ± 0.11 OUR A $0.55 \pm 0.17 \pm 0.14$ $0.62 \pm 0.15 \pm 0.03$ 0.5 ± 0.25 • • • We do not use		45 73 12 wing data	ANJOS ALBRECH WEISS of for average		80 M	RG $e^{+}e^{-}$ 10 6 RK2 $e^{+}e^{-}$ 5.2	Se∨
>0.67	90	50	RUSSELL		81 SP	EC Photoprodu	iction
$\Gamma(\rho \overline{K}^*(892)^0)/\Gamma($	$pK^-\pi^+$ ne \overline{K}^{*0} —	$\overline{K}^0 \pi^0$	mode.				Γ_3/Γ_2
0.22 ± 0.09 OUR AVE	EVTS	<u>DC</u>	CUMENT ID		<u>TECN</u>	COMMENT	
$\begin{array}{c} 0.42 \pm 0.24 \\ 0.18 \pm 0.10 \end{array}$	12		ASILE EISS			$pp \rightarrow \Lambda_C^+ e^-$ 2 $e^+ e^-$ 5.2 GeV	×
$\Gamma(\Delta(1232)^{++}K^{-}$)/Γ(<i>pK</i>						Γ_4/Γ_2
VALUE 0.20±0.08 OUR AVE	EVTS		CUMENT ID			COMMENT	
0.40±0.17 0.17±0.07	17	BA	ASILE	818	CNTR	$pp \rightarrow \Lambda_C^+ e^-$: $e^+ e^-$ 5.2 GeV	x
$\Gamma(p\overline{K}^0\pi^+\pi^-)/\Gamma($		nc	CUMENT ID		TE/N	COMMENT	Γ_5/Γ_1
• • • We do not use				_			
< 3.3 90		-	JSSELL	81		Photoproduction	า
$\Gamma(\rho \overline{K}^0 \pi^+ \pi^-)/\Gamma($	ρK-π+	-)					Γ_5/Γ_2
VALUE			CUMENT ID		TECN	COMMENT	
• • • We do not use	the follow	wing data	for average	s, fits	s, limits,	etc. • • •	
< 1.7	90	ΑN	NJOS	90	TPS	γ Be 70−260 Ge	V
$\Gamma(\rho K^- \pi^+ \pi^0)/\Gamma_t$	otal						Γ_6/Γ
VALUE	EVTS	DC	CUMENT ID		TECN	COMMENT	
seen	44	AM	MENDOLIA	87	SPEC	ი Ge-Si	
$\Gamma(pK^*(892)^-\pi^+)$	$/\Gamma_{total}$						Γ_7/Γ
VALUE	<u>EVTS</u>		CUMENT ID		TECN	COMMENT	
seen	1	CN	IOPS	79	DBC	νN in BNL 7-ft	
- / - / \ T * /							- /-

DOCUMENT ID

AMENDOLIA 87 SPEC ~ Ge-Si

TECN COMMENT

 Γ_8/Γ

 $\Gamma(\Delta(1232)\overline{K}^*(892))/\Gamma_{\text{total}}$

VALUE

seen

EVT5

35

 Λ_c^+ , Σ_c (2455)

$\Gamma(\Lambda \text{ anything})/\Gamma_{\text{total}}$ Γ_9/Γ	F/A -+
Γ(Λ anything)/Γ _{total} Γ ₉ /Γ <u>VALUE EVTS DOCUMENT ID TECN COMMENT</u>	$\Gamma(\Lambda e^+ \text{ anything})/\Gamma(\Lambda \text{ anything})$ Γ_{19}/Γ VALUE DOCUMENT ID TECN COMMENT
.27±0.09 OUR AVERAGE	• • • We do not use the following data for averages, fits, limits, etc. • • •
0.49 ± 0.24 ADAMOVICH 87 EMUL γ A 20-70 GeV/c 0.23 ± 0.10 8 4 ABE 86 HYBR 20 GeV γ P	0.027 ± 0.017 10 SON 82 DBC ν d in FNAL 15-ft
⁴ ABE 86 includes A's from Σ^0 decay.	10 SON 82 uses own data and $\Lambda\mu^-$ e $^+$ events of MURTAGH 79.
$\Gamma(\Lambda\pi^+)/\Gamma(ho \overline{K}^0)$ Γ_{10}/Γ_1 We regard this mode as seen, but with a limit given by the ALBRECHT 88c result.	$\Gamma(\Lambda\pi^+\pi^+\pi^-)/\Gamma(\Lambda e^+ \text{ anything})$ Γ_{11}/Γ_{11} VALUE CL% DOCUMENT ID TECN COMMENT
<u>ALUE CL% EVTS DOCUMENT ID TECN COMMENT</u> seen OUR EVALUATION	<1.7 90 KLEIN 89 MRK2 e^+e^- 29 GeV
<0.26 90 SALBRECHT 88C ARG e ⁺ e ⁻ 10 GeV •• We do not use the following data for averages, fits, limits, etc. •••	$\Gamma(e^+ ext{ anything})/\Gamma_{ ext{total}}$ $\Gamma_{ ext{16}}/\Gamma_{ ext{200}}$ $\Gamma_{ ext{200}}/\Gamma_{ ext{200}}$ $\Gamma_{ ext{200}}/\Gamma_{ ext{200}}/\Gamma_{ ext{200}}/\Gamma_{ ext{200}}$
<0.4 90 40 RUSSELL 81 SPEC Photoproduction	0.045 \pm 0.017 VELLA 82 MRK2 e^+e^- 4.5-6.8 GeV
0.51 ⁺ 0.62 9 KITAGAKI 80 DBC ν d in FNAL 15-ft	
$0.67^{+0.78}_{-0.35}$ 5 ⁶ BALTAY 79 HLBC ν Ne-H in 15-ft	REFERENCES FOR A _c ⁺
5 This ALBRECHT 88c result is redundant with their limit on $\Gamma(\Lambda\pi^+)/\Gamma(\rhoK^-\pi^+)$, below. 6 Calculated by KITAGAKI 80 from BALTAY 79 results.	We have omitted some papers that have been superseded by later experiment. The omitted papers may be found in our 1986 edition (Physics Letters 170B) or earlier editions.
$\Gamma(\Lambda \pi^+)/\Gamma(\rho K^- \pi^+)$ Γ_{10}/Γ_2	ANJOS 90 PR D41 801 +Appel, Bean+ (Tagged Photon Spectrometer Collab.) BARLAG 89 PL B218 374 +Becker, Boehringer, Bosman+ (ACCMOR Collab.)
<u>CL% DOCUMENT ID TECN COMMENT</u> <0.16 90 ALBRECHT 88C ARG e ⁺ e ⁻ 10 GeV	KLEIN 89 PRL 62 2444 +Himel, Abrams, Amidei, Baden+ (Mark II Collab.) AGUILAR 888 ZPHY C40 321 Aguilar-Benitez, Allison, Bailly+ (LEBC-EHS Collab.)
• • We do not use the following data for averages, fits, limits, etc. • • •	Also 87 PL B189 254 Aguilar-Benitez, Allison, Bailly+ (LEBC-EHS Collab.) Also 87B PL B199 462 Aguilar-Benitez, Allison, Bailly+ (LEBC-EHS Collab.)
(0.33 90 ANJOS 90 TPS γ Be 70–260 GeV	Also 88 SJNP 48 833 Begalli, Otter, Schulte, Gensch+ (LEBC-EHS Collab.) Translated from YAF 48 1310. ALBRECHT 88C PL B207 109 + (ARGUS Collab.)
(0.8 90 WEISS 80 MRK2 e ⁺ e ⁻ 5.2 GeV	ALBRECHT 88E PL B210 263 +Boeckmann, Glaeser+ (ARGUS Collab.) ANJOS 88B PRL 60 1379 +Appel+ (Tagged Photon Spectrometer Collab.)
$(\Lambda \pi^+ \pi^+ \pi^-)/\Gamma_{ ext{total}}$ $\Gamma_{11}/\Gamma_{ ext{ALUE}}$ EVTS DOCUMENT ID TECN COMMENT	ADAMOVICH 87 EPL 4 887 + Alexandrov, Bolta+ (Photon Emulsion Collab.) Also 87 SJNP 46 447 Viaggi, Gessaroli+ (Photon Emulsion Collab.)
019±0.007 OUR FIT	Translated from YAF 46 799. AMENDOLIA 87 ZPHY C36 513 +Bagliesi, Batignani, Beck+ (CERN NA1 Collab.)
.028 \pm 0.007 \pm 0.011 70 ⁷ BOWCOCK 85 CLEO e^+e^- 10.5 GeV ⁷ See BOWCOCK 85 for assumptions made on charm production and $\Lambda_{\rm C}$ production from	BARLAG 87 PL 8184 283 (MPIM, CERN, RAL, ANK, BRIS, CRAC+) CHAUVAT 87 PL 8199 304 + Cousins, Hayes+ (CERN, UCLA, SACL, UDCF) DIESBURG 87 PRL 59 2711 + Ladbury+ (COLO, ILL, FNAL, BGNA, MILA, INFN)
charm to get this result.	JONES 87 ZPHY C36 593 + Jones+ (BIRM, CERN, LOIC, MPIM, OXF, LOUC) ABE 86 PR D33 1 + (SLAC Hybrid Facility Photon Collab.)
$(\Lambda \pi^+ \pi^+ \pi^-)/\Gamma(\rho \overline{K}^0)$ Γ_{11}/Γ_1	AMMAR 86 JETPL 43 515 + Ammosov, Bakic, Baranov, Burnett+ (ITEP) Translated from ZETFP 43 401.
ALUE CL% EVTS DOCUMENT ID TECN COMMENT	USHIDA 86 PRL 56 1767 +Kondo- (AICH, FNAL, GIFU, GYEO, KOBE, SEOU+) BOWCOCK 85 PRL 55 923 +Gies, Hassard, Kinoshita+ (CLEO Collab.) ALEEV 84 ZPHY C23 333 +Arefiev, Balandin, Bedryshev+ (BIS-2 follab.)
• • We do not use the following data for averages, fits, limits, etc. • • • 3.1 90 220 RUSSELL 81 SPEC Photoproduction	ALEEV 84 ZPHY C23 333 + Arefiev, Balandin, Berdyshev+ (BIS-2 Collab.) BOSETTI 82 PL 109B 234 + Graessler+ (AACH, BONN, CERN, MPIM, OXF) KITAGAKI 82 PRL 48 299 + Tanaka, Yuta+ (TOHO, IT, UMD, STON, TUFT)
(A + + -) (F(N- +)	SON 82 PRL 49 1128 + Snow, Chang+ (UMD, IIT, STON, TOHO, TUFT) VELLA 82 PRL 48 1515 + Trilling, Abrams, Alam+ (SLAC, LBL, UCB)
$(\Lambda \pi^+ \pi^+ \pi^-)/\Gamma(p K^- \pi^+)$ ALUE CL% EVTS DOCUMENT ID TECN COMMENT	BALLAGH 81 PR D24 7 +Bingham+ (LBL, UCB, FNAL, HAWA, WASH, WISC) BASILE 81B NC 62A 14 +Romeo+ (CERN, BGNA, PGIA, FRAS)
0.68±0.15 OUR FIT	RUSSELL 81 PRL 46 799 + Avery, Butler, Gladding+ (ILL, FNAL, COLÚ) ABRAMS 80 PRL 44 10 + Alam, Blocker, Bovarskí+ (SLAC, LRL)
0.64 ± 0.15 OUR AVERAGE $0.82 \pm 0.29 \pm 0.27$ 44 ANJOS 90 TPS γ Be 70–260 GeV	ALLASIA 80 NP BI76 13 + (ANKA, LIBH, CERN, DUUC, LOÚC, KEYN+) CALICCHIO 80 PL 938 521 + (BARI, BIRM, BRUX, CERN, EPOL, RHEL+) KITAGAKI 80 PRL 45 955 + Tanaka, Yuta+ (TOHO, JIT, LIMD, STORT
$0.61\pm0.16\pm0.04$ 105 ALBRECHT 88c ARG e^+e^- 10 GeV • We do not use the following data for averages, fits, limits, etc. • • •	KITAGAKI 80
(1.4 90 WEISS 80 MRK2 e^+e^- 5.2 GeV	CNOPS 79 PRL 42 197 +Connolly, Kahn, Kirk, Murtagh, Palmer+ (BNL) GIBONI 79 PL 85B 437 + (AACH, CERN, HARV, MUNI, NWES, UCR)
(20 + -) (=(4 + 1 +)	KERNAN 79 Lepton Conf. FNAL (UCR) MURTAGH 79 Fermilab Symp. 277 (FNAL)
ALUEEVTS DOCUMENT ID TECN COMMENT	KNAPP 76 PRL 37 882 +Lee, Leung, Smith+ (COLU, HAWA, ILL, FNAL) CAZZOLI 75 PRL 34 1125 +Cnops, Connolly, Louttit, Murtagh+ (BNL)
3±1.2 OUR FIT 3±1.2 130 ALEEV 84 BIS2 nC 40-70 GeV	
$(\Sigma^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{13}/Γ	$\Sigma_c(2455)$ $I(J^P) = 1(\frac{1}{2}^+)$
ALUE EVTS DOCUMENT ID TECN COMMENT 1±0.05 5 ABE 86 HYBR 20 GeV \(\gamma \textit{D} \)	
$(\Sigma^0\pi^+)/\Gamma_{ ext{total}}$ Γ_{12}/Γ	J^P not confirmed. $1/2^+$ is the quark model prediction.
ALUE EVTS DOCUMENT ID TECN COMMENT pen 3 KITAGAKI 82 DBC v d in FNAL 15-ft	Σ_c (2455) MASSES
$(\Sigma^+\pi^+\pi^-)/\Gamma_{ ext{total}}$ $\Gamma_{15}/\Gamma_{ ext{LUE}}$ $EVTS$ DOCUMENT ID TECK COMMENT	The mass measurements in this section are redundant with the mass difference measurements that follow. We get the masses by adding the $\Sigma_{\mathcal{C}}$ (2455) – $\Lambda_{\mathcal{C}}^{+}$ mass
10±0.08 ADAMOVICH 87 EMUL γA 20-70 GeV/c	differences to the Λ_c^+ mass.
• We do not use the following data for averages, fits, limits, etc. • •	$\Sigma_c(2455)^{++}$ MASS
een 1 AMMAR 86 EMUL νΑ	<u>VALUE (MeV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> <u>COMMENT</u> 2453.0 ± 1.2 OUR FIT Error includes scale factor of 1.4.
(p hadrons)/F _{total} F ₂₀ /F ALUE DOCUMENT ID TECN COMMENT	 • • We do not use the following data for averages, fits, limits, etc.
• • We do not use the following data for averages, fits, limits, etc. • • •	2449 \pm 3 2 JONES 87 HBC $++$ $\nu \rho$ in BEBC 2480 1 ADAMOVICH 84 EMUL $++$ γA (OMEGA)
41 \pm 0.24 ADAMOVICH 87 EMUL γ A 20–70 GeV/ c	2454 ± 5 1 BOSETTI 82 HBC ++ See JONES 87
$(pe^+ \text{ anything})/\Gamma_{\text{total}}$ Γ_{17}/Γ	2425 ± 10 6 BALTAY 79 HLBC ++ ν Ne-H in 15-ft >2439 1 BARISH 778 DBC ++ ν d in 12-ft
ALUE DOCUMENT ID TECN COMMENT	2426 ± 12 1 CAZZOLI 75 HBC $++$ νp in BNL 7-ft
8 VELLA 82 MRK2 e^+e^- 4.5–6.8 GeV 8 VELLA 82 includes protons from Λ decay.	$\Sigma_c(2455)^+$ MASS
(A. J	\(\frac{VALUE (MeV)}{2453.2 \pm 3.2 \text{QUR FIT}} \) \(\frac{DOCUMENT ID}{EVTS} \) \(\frac{TECN}{TECN} \) \(\frac{CHG}{COMMENT} \)
(\lambda e^+ anything)/\Gamma_total \Gamma_{\text{19}}/\Gamma \\ \text{ALUE} \text{CL\% EVTS} \text{DOCUMENT ID} \text{TECN} \text{COMMENT}	• • • We do not use the following data for averages, fits, limits, etc. • • •
	2457 ± 4 1 CALICCHIO 80 HBC + νp in BEBC-TST
0.011 ± 0.008 9 VELLA 82 MRK2 e^+e^- 4.5-6.8 GeV	2 CALLECTIO 60 11BC + νρ III BEBC-131
·	2 Checenio iii filibe + VI iii BEBC-131

 $\Sigma_c(2455), \Xi_c^+$

ALUE (MeV)	EVTS	DOCUMENT I		TECN	CHG	COMMENT
2452.7± 1.3 OUF	RFIT Error	includes scale fa	ctor of	1.4.		
• • • We do not us	e the followin	g data for averag	ges, fit:	s, limits,	etc.	• • •
2462 ± 26	1	AMMAR	86	EMUL	0	νΑ

$\Sigma_c(2455)$ – Λ_c^+ MASS DIFFERENCES

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
167.8 ± 0.4 OUR FIT						
167.7 ± 0.4 OUR AV	ERAGE					
167.8 ± 0.4 ± 0.3	54	BOWCOCK	89	CLEO	++	e^+e^- 10 GeV
168.2 ± 0.5 ± 1.6	92	ALBRECHT	88D	ARG	++	$e^+\;e^-$ 10 GeV
167.4 ± 0.5 ± 2.0	46	DIESBURG	87	SPEC	++	nA ∼ 600 GeV
167 ± 1	2	JONES	87	HBC	++	νp in BEBC
168 ± 3	6	BALTAY	79	HLBC	++	u Ne-H in 15-ft
• • • We do not use	the followin	g data for average	s, fits	, limits,	etc.	• • •
166 ± 1	1	BOSETTI	82	нвс	++	See JONES 87
166 ±15	1	CAZZOLI	75	нвс	++	νp in BNL 7-ft
$\Sigma_c^+ - \Lambda_c^+$ MASS D	IFFEREN	CE				
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
168.0 ± 3.0 OUR FIT						
168 +3	1	CALICCHIO	80	HBC	+	νρ in BEBC-TS

$\Sigma_c^0 - \Lambda_c^+$ MASS DIFFERENCE

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
167.6±0.6 OUR FIT	Error inclu	ides scale factor of	1.1.		
$168.4 \pm 1.0 \pm 0.3$	14	ANJOS	890 TPS	0	γ Be 90-260 GeV
• • • We do not use	the followin	g data for averages	, fits, limits	, etc. (• • •
$167.9 \pm 0.5 \pm 0.3$	48	1 BOWCOCK	89 CLEO	0	$e^+\;e^-$ 10 GeV
$167.0 \pm 0.5 \pm 1.6$	70	1 ALBRECHT	88D ARG	0	$e^+ e^-$ 10 GeV
$178.2 \pm 0.4 \pm 2.0$	85	² DIESBURG	87 SPEC	0	nA ∼ 600 GeV
163 ±2	1	AMMAR	86 EMUL	0	ν A

¹ This result enters the fit through the Σ_c^{++} - Σ_c^0 mass difference given in the next

section. 2 See the note in the $\Sigma_{\cal C}^{+\,+}$ – $\Sigma_{\cal C}^0$ mass difference section below.

Σ_c (2455) MASS DIFFERENCES

Σ_c^{++} – Σ_c^0 MASS DIFFERENCE

DIESBURG 87 is completely incompatible with the other experiments, which is surprising since it agrees with them about the $\Sigma_{\mathcal{C}}(2455)^{++} - \Lambda_{\mathcal{C}}^{+}$ mass difference. We

go with the majority her	Ç.		
VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
0.2±0.5 OUR FIT Error i	ncludes scale factor of 1	2.	
0.4 ± 0.6 OUR AVERAGE	Error includes scale fact	or of 1.3.	
$-0.1\pm0.6\pm0.1$	BOWCOCK 8		
$+ 1.2 \pm 0.7 \pm 0.3$	ALBRECHT 8	8D ARG	$e^+e^-\sim$ 10 GeV
• • • We do not use the follow	wing data for averages,	fits, limits,	etc. • • •
$\sim 10.8 \pm 2.9$	DIESBURG 8	7 SPEC	nA ∼ 600 GeV

Σ_c (2455) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\Lambda_{c}^{+}\pi$	100 %

Σ_c (2455) REFERENCES

ANJOS BOWCOCK ALBRECHT	89D 89 88D	PRL 62 1721 PRL 62 1240 PL B211 489	+Appel, Bean, Bracker, Browder + (TPS Collab.) +Kinoshita, Pipkin, Procario, Wilson + (CLEO Collab.) -Boeckmann, Glaeser + (ARGUS Collab.)	
DIESBURG	87	PRL 59 2711	 Ladbury+ (COLO, ILL, FNAL, BGNA, MILA, INFN) 	
JONES	87	ZPHY C36 593	+Jones+ (BIRM, CERN, LOIC, MPIM, OXF, LOUC)	
AMMAR	86	JETPL 43 515	+Ammosov, Bakic, Baranov, Burnett+ (ITEP)	
		Translated from ZETFP		
ADAMOVICH	84	PL 140B 119	+Alexandrov, Bolta, Bravo+ (WA58 Collab.)	
BOSETTI	82	PL 109B 234	~ Graessler+ (AACH, BONN, CERN, MPIM, OXF)	
CALICCHIO	80	PL 93B 521	 (BARI, BIRM, BRUX, CERN, EPOL, RHEL+) 	
BALTAY	79	PRL 42 1721	- Caroumbalis, French, Hibbs+ (COLU, BNL)	I
BARISH	77B	PR D15 1	+Derrick, Dombeck, Musgrave+ (ANL, PURD)	
KNAPP	76	PRL 37 882	· Lee, Leung, Smith+ (COLU, HAWA, ILL, FNAL)	
CAZZOLI	75	PRL 34 1125	+Cnops, Connolly, Louttit, Murtagh+ (BNL)	

According to the quark model, the Ξ_c^+ (quark content usc) and Ξ_c^0 form an isospin doublet, and the spin-parity ought to be $J^P=1/2^+$. None of $I,\ J,$ or P have actually been measured.

		Ξ_c^+ MASS			
FIT	EVTS	DOCUMENT ID	TECN	COMMENT	
AVE	RAGE				
	23	ALAM	89 CLEO	$e^{+} \; e^{-} \; 10.6 \; {\rm GeV}$	
^	-	D 4 C 1 4 C	00-000	= C 220 C-V	

VALUE (MeV)
2466.8± 2.4 OUR 2466.5± 2.5 OUR $2467 \pm 3 \pm 4$ $2466.5 \pm \ 2.7 \pm \ 1.2$ 89C CCD π^- Cu 230 GeV 2459 ± 5 ± 30 56 $^{1}\,\mathrm{COTEUS}$ 87 SPEC nA ~ 600 GeV 2460 ± 25 82 BIAGI 83 SPEC Σ^- Be 135 GeV

 $^1\mathrm{Although}$ COTEUS 87 claims to agree well with BIAGI 83 on the mass and width, there appears to be a discrepancy between the two experiments. BIAGI 83 sees a single peak (stated significance about 6 standard deviations) in the $\Lambda K^-\pi^+\pi^+$ mass spectrum. COTEUS 87 sees *two* peaks in the same spectrum, one at the Ξ_c^+ mass, the other 75 MeV lower. The latter is attributed to $\Xi_c^+ \to \Sigma^0 K^- \pi^+ \pi^+ \to (\Lambda \gamma) K^- \pi^+ \pi^+,$ with the γ unseen. The *combined* significance of the double peak is stated to be 5.5 standard deviations. But the absence of any trace of a lower peak in BIAGI 83 seems to us to throw into question the interpretation of the lower peak of COTEUS 87.

Ξ⁺_c MEAN LIFE

VALUE (10 · 13 s) E	VTS	DOCUMENT ID	TECN	COMMENT
$3.0^{+1.0}_{-0.6}$ OUR AVERAGE	Error inc	ludes scale facto	r of 1.1.	
$2.0^{+1.1}_{-0.6}$	6	BARLAG	89c CCD	π^- (K^-) Cu 230 GeV
$4.0^{+1.8+1.0}_{-1.2-1.0}$		COTEUS	87 SPEC	nA ∼ 600 GeV
$4.8 ^{+2.9}_{-1.8}$	53	BIAGI	85¢ SPEC	Σ^- Be 135 GeV

E+ DECAY MODES

	Mode	Fraction (Γ_f/Γ)
	ΛK-π+π+	seen
Γ_2	$\Sigma^0 K^- \pi^+ \pi^+$	seen
Γ_3	$\Xi^{-} \pi^{+} \pi^{+}$	seen
Γ_4	Σ· K-π+	seen

≡⁺_c BRANCHING RATIOS

$\Gamma(\Lambda K^- \pi^+ \pi^+)/\Gamma_{to}$	tal					Γ_1/Γ
VALUE	EVTS	DOCUMENT I	D	TECN	COMMENT	
seen	82	² BIAGI	83	SPEC	Σ^- Be 135 GeV	

 $^{2}\,\text{BIAGI 85B look for but do not see the}\,\,\Xi_{c}^{+}\,\,\text{in}\,\,\rho\,K^{-}\,\,\overline{K}^{0}\,\,\pi^{+}\,\,\text{(branching fraction}\,\,<0.08\,\,\text{with}\,\,90\%\,\,\text{CL}),\,\rho\,2\,K^{-}\,\,2\pi^{+}\,\,(<0.03,\,90\%\,\,\text{CL}),\,\Omega^{-}\,\,K^{+}\,\,\pi^{+}\,\,,\,\Lambda\,K^{*\,0}\,\,\pi^{+}\,,\,\text{and}\,\,\Sigma(1385)^{+}\,\,K^{-}\,\,\pi^{+}\,.$

$\Gamma(\Sigma^0 K^- \pi^+ \pi^+)/\Gamma(\Lambda K^- \pi^+ \pi^+)$						Γ_2/Γ_1
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
0.84 ± 0.36	102	COTEUS	87	SPEC	<i>n</i> A ∼ 600 GeV	
$\Gamma(\Xi^-\pi^+\pi^+)/\Gamma_{total}$						Γ_3/Γ
VALUE	EVT5	DOCUMENT ID		<u>TECN</u>	COMMENT	
seen	23	ALAM	89	CLEO	e ⁺ e [−] 10.6 GeV	
$\Gamma(\Sigma^{+}K^{-}\pi^{+})/\Gamma(\Xi^{-}$	$\pi^{+}\pi^{+})$					Γ_4/Γ_3
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.09 {}^{+ 0.13 + 0.03}_{- 0.06 - 0.02}$	5	BARLAG	89c	CCD	$2\sum_{\pi^{-}}^{+}K^{-}\pi^{+}$, 3	

REFERENCES FOR Ξ_c^+

ALAM 89 PL B226 401 - K	atayama, Kim, Li, Lou, Sun, Bortoletto+ (CLEO Collab.)
BARLAG 89C PL B233 522 ~B	oehringer, Bosman+ (ACCMOR Collab.)
COTEUS 87 PRL 59 1530 +B	inkley+ (COLO, ILL, FNAL, BĠNA, MILA, INFN)
BIAGI 85B ZPHY C28 175 -	(BRIS, CERN, GEVA, HEID, LAUS, LOQM-)
BIAGI 85C PL 150B 230 ·	(BRIS, CERN, GEVA, HEID, LAUS, LOQM+)
BIAGI 83 Pt 122B 455 ·	(BRIS, CERN, GEVA, HEID, LAUS, LOQM+)

 Ξ_c^0 , Ω_c^0 , Λ_b^0 , Dibaryons

According to the quark model, the Ξ_c^0 (quark content dsc) and Ξ_c^+ form an isospin doublet, and the spin-parity ought to be $J^P=1/2^+$. None of $I,\ J,$ or P have actually been measured.

Ξ٥.	MASS

VALUE (MeV) 2473.0 ± 2.0 OUR FIT	EVTS	DOCUMENT II		TECN	COMMENT
2473.1 ± 2.0 OUR AVE	RAGE				
$2473.3 \pm 1.9 \pm 1.2$	4	BARLAG	90	CCD	π^- (K^-) Cu 230 GeV
2472 ±3 ±4	19	ALAM	89	CLEO	e ⁺ e ⁻ 10.6 GeV
• • • We do not use t	he followin	g data for avera	ges, fits	s, limits,	etc. • • •
2471 ±3 ±4	14	AVERY	89	CLEO	See ALAM 89

$\Xi_c^0 - \Xi_c^+$ MASS DIFFERENCE

VALUE (MeV) 6.2 ± 2.6 OUR FIT	DOCUMENT ID		TECN	COMMENT
6.1 ± 2.6 OUR AVERAGE				
$+6.8 \pm 3.3 \pm 0.5$	BARLAG			π^- (K^-) Cu 230 GeV
+5 ±4 ±1	ALAM	89	CLEO	$\Xi_c^0 \rightarrow \Xi^- \pi^+, \Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$

Ξ_c^0 MEAN LIFE

VALUE (10 ⁻¹³ s)	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.82^{+0.59}_{-0.30}$	4	BARLAG	90	CCD	π^- (K $^-$) Cu 230 GeV	ı

∃⁰ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁ Γ ₂	$\Xi^- \pi^+ p K^- \overline{K}^* (892)^0$	seen seen

REFERENCES FOR =

BARLAG	90	PL B236 495	+Becker, Boehringer, Bosman+	(ACCMOR Collab.)
ALAM	89	PL B226 401	+Katayama, Kim, Li, Lou, Sun, E	
AVERY	89	PRL 62 863	+Besson, Garren, Yelton, Bowcocl	

$$I(J^P) = ?(?^?)$$

I, J, P need confirmation.

OMITTED FROM SUMMARY TABLE

A cluster of three $\Xi^- K^- \pi^+ \pi^+$ events. The $\Omega^0_{\mathcal{C}} - \Xi^+_{\mathcal{C}}$ mass difference is 280 \pm 10 MeV. The existence of the effect and its interpretation as being the $\Omega^0_{\mathcal{C}}$ (quark content ssc) need confirmation.

Ω_c^0 MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
2740±20	3	BIAGI	85B SPEC	Σ − Be →

REFERENCES FOR Ω_c^0

BIAGI	85B ZPHY C28 175	+	(BRIS, CERN, GEVA, HEID, LAUS, LOQM+)

BOTTOM (BEAUTY) BARYON

$$(B = -1)$$

$$\Lambda_b^0 = u \, d \, b$$

$$I(J^P) = ?(?^?)$$

I, J, P need confirmation.

OMITTED FROM SUMMARY TABLE

The claim by BASILE 81 to have discovered the Λ_{D}^{0} (quark content udb) is hotly disputed by DRIJARD 82. BASILE 82 is the reply, and DRIJARD 82B is the reply to that.

The decay of the Λ^0_b to the final state observed by ARENTON 86 is Cabibbo suppressed, whereas the decay of a Ξ^0_b to this final state is allowed. ARENTON 86 thus only claims to have observed a baryon which probably has a b quark and which has a D^0 among the decay products, not necessarily the Λ^0_b .

Λ_b MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
~ 5750	4	ARENTON	86	FMPS	$\Lambda K_{S}^{0} 2\pi^{+} 2\pi^{-}$
5425 + 175 - 75		BASILE	81	SFM	62 GeV <i>pp</i>

Λ_b DECAY MODES

	Mode	Fraction (Γ_I/Γ)
Γ ₁	$\rho D^0 \pi^- $	seen
Γ ₂	$\Lambda K^0 2\pi^+ 2\pi^-$	seen

Λ_b BRANCHING RATIOS

-Г($pD^{o}\pi^{-})/\Gamma_{\text{total}}$						Γ_1/Γ
VA.	LUE		DOCUMENT ID		TECN	COMMENT	
see	en		BASILE	81	SFM	$D^0 \rightarrow \kappa^- \pi^+$	
Γ($\Lambda K^0 2\pi^+ 2\pi^-)/\Gamma_1$	total					Γ_2/Γ
VA	LUE	EVTS	DOCUMENT ID		TECN	COMMENT	
sec	en	. 4	ARENTON	86	FMPS	$\Lambda K_c^0 2\pi^+ 2\pi^+$	

REFERENCES FOR Ab

NOTE ON DIBARYON RESONANCES

Dibaryons were reviewed in our 1986 edition¹ and have been reviewed more extensively by Locher, Sainio, and Svarc.² We no longer compile data on dibaryons. See our 1988 edition³ for our last compilation.

References

- 1. Particle Data Group, Phys. Lett. 170B, 337 (1986).
- M.P. Locher, M.E. Sainio, and A. Svarc, Adv. Nucl. Phys. 17, 47 (1986).
- 3. Particle Data Group, Phys. Lett. **B204**, 472 (1988).

OTHER COMPILATIONS OF INTEREST

Compilation of Coupling Constants and Low-Energy Parameters

O. Dumbrajs, R. Koch, H. Pilkuhn, G.C. Oades, H. Behrens, J.J. de Swart, P. Kroll Nucl. Phys. B216, 277 (1983)

Pion Nucleon Scattering: 1) Tables of Data, 2) Methods and Results of Phenomenological Analyses

G. Höhler (ed. H. Schopper) Landolt-Börnstein New Series Volumes I/9 b1 (1982) and I/9 b2 (1983)

Compilation of Cross Sections I: π^+ and π^- Induced Reactions

V. Flaminio, W.G. Moorhead, D.R.O. Morrison, N. Rivoire

CERN-HERA Report 83-01 (1983)

Compilation of Cross Sections II: K^+ and K^- Induced Reactions

V. Flaminio, W.G. Moorhead, D.R.O. Morrison,N. RivoireCERN-HERA Report 83-02 (1983)

Compilation of Cross Sections III: p and \overline{p} Induced Reactions

V. Flaminio, W.G. Moorhead, D.R.O. Morrison,N. RivoireCERN-HERA Report 84-01 (1984)

Scattering of Elementary Particles: NN and KN

J. Bystricky, P. Carlson, C. Lechanoine, F. Lehar, F. Mönnig, K.R. Schubert (ed. H. Schopper) Landolt-Börnstein New Series Volume 1/9 a (1980)

Current Experiments in Elementary Particle Physics

C.G. Wohl, F.E. Armstrong, T.G. Trippe, G.P. Yost, Y. Oyanagi, D.C. Dodder, Yu.G. Ryabov, S.R. Slabospitsky, R. Frosch, A. Olin, F. Lehar, I.A. Klumov, I.I. Ivanov

Lawrence Berkeley Laboratory Report LBL-91, revised (1989)

A User's Guide to Particle Physics Computer-Searchable Databases on the SLAC-SPIRES System

A. Rittenberg

Lawrence Berkeley Laboratory Report 19173 (1986) (This is not a compilation itself, but a guide to SLAC computer compilations.)

Major Detectors in Elementary Particle Physics

G. Gidal, B. Armstrong, A. Rittenberg Lawrence Berkeley Laboratory Report LBL-91, supplement, revised (1985)

A Guide to Data in Elementary Particle Physics

G.P. Yost, A. Rittenberg, B. Armstrong, M. Ferguson, Jr., B.S. Levine, K.H. Simpson, T.G. Trippe, M.J. Visser, G.S. Wagman, C.G. Wohl, A. Ogawa, S.I. Alekhin, N.G. Demidov, V.V. Ezhela, S.B. Lugovsky, N.L. Petrova, S.R. Slabospitsky, Yu.G. Stroganov, A.N. Shelkovenko, A.N. Tolstenkov, O.P. Yushchenko Lawrence Berkeley Laboratory Report LBL-90, revised (1986)

Table of Isotopes, 7th Edition

C.M. Lederer, V.S. Shirley, E. Browne, J.M. Dairiki,
R.E. Doebler, A.A. Shihab-Eldin, L.J. Jardine,
J.K. Tuli, A.B. Buyrn
John Wiley & Sons, New York (1978)

Table of Radioactive Isotopes

E. Browne and R.B. Firestone (Editor: V.S. Shirley) John Wiley & Sons, New York (1986)

1986 Adjustment of the Fundamental Physical Constants

E.R. Cohen and B.N. Taylor Rev. Mod. Phys. **59**, 1121 (1987)

Compilation of Structure Functions of Deep Inelastic Scattering

R.G. Roberts and M.R. Whalley RAL Report RAL-84-125 (1984)

Compilation of Nucleon-Nucleon and Nucleon-Antinucleon Elastic Scattering Data

M.K. Carter, P.D.B. Collins, and M.R. Whalley RAL Report RAL-86-002 (1986)

Compilation of Data on $\gamma\gamma \to \text{Hadrons}$

R.G. Roberts and M.R. Whalley RAL Report RAL-86-058 (1986)

Compilation of Data on the Energy-Energy Correlation and its Asymmetry in e^+e^- Annihilation

W.J. Stirling and M.R. Whalley RAL Report RAL-87-107 (1987)

Astronomical Almanac

(US Government Printing Office, Washington, and Her Majesty's Printing Office, London)(annual)

Chart of the Nuclides

F.W. Walker, J.R. Parrington, and F. Feiner
General Electric Co., Nuclear Energy Operations,
175 Curtner Av., M/C 397,
San Jose CA 95125 USA
(14th edition, 1989)