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I. Introduction
The averaging and fitting procedures in RPP at present ignore correlations in the input data.

However, in some cases such correlation can be very important.
For example, the CP violation parameter φ+−, the K0

L −K0
S mass difference ∆m, and the K0

S

mean life τs are all correlated. Some measurements from this example are:
1. ADLER 92B

φ+− = 42.3± 4.6
2. CULLEN 70

∆m = 0.542± 0.006
3. GIBBONS 93

φ+− = 42.21 ± 0.9 + 189(∆m− 0.5286)− 460(τs − 0.8922)
4. CARITHERS 75

φ+− = 45.5± 2.8 + 244(∆m− 0.5348)
5. GEWENIGER 74B

τs = 0.8937± 0.0048
where φ+− is in units of degrees

∆m is in units of 1010h̄−1

τs is in units of 1010s

We may easily include the correlations in a χ2 fit by writing

χ2 =
∑

i

(f −mi)W i(f −mi)

and then minimizing χ2 with respect to the vector f . Here
mi = measurement vector for experiment i

W i= weight matrix (inverse of error matrix) for experiment i

f = fitted vector.
If an experiment does not measure some of the parameters, the weight for that parameter is zero
and the “measurement” value is irrelevant. In our example, GEWENIGER 74B is

m5 =

ϕ+−
∆m
τs

 =

 ∗
∗

0.8937

 W 5 =

 0 0 0
0 0 0
0 0 1/0.00482

 .

(The Quantities marked ∗ are irrelevant.)
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However, it is not obvious how to write the weight matrix for experiments such as GIBBONS 93
or CARITHERS 75, since the measurement of ϕ+− in these experiments is not independent, but
is dependent upon the values of ∆m and τs.

II. Weight matrix for dependent measurements
Dependent measurements such as GIBBONS 93 and CARITHERS 75 are normally written in

the form

f1 = m1 ± σ +
n∑

k=2

Ak(fk −mk) (2.1)

where mk are the measurements of n variables,
fk are the adjusted values of n variables.
Ak = ∂m1/∂mk k = 2, n are known constants, and
σ is the error in m1 with the remaining variables held constant.

We wish to determine the weight matrix for this type of measurement. The quantity that is really
measured is

x1 = m1 −
n∑

k=2

Akmk. (2.2)

Note that σ is also the error in x1

〈δx2
1〉 = σ2. (2.3)

For convenience, let us define A1 to be
A1 ≡ −1. (2.4)

Then we may write x1 as

x1 = −
n∑

k=1

Akmk. (2.5)

Now consider a set of n independent orthogonal variables xk k = 1, n where x1 is the variable just
defined, and x2 . . . xn are all unmeasured variables and are functions of the several mk’s. Let the
weight matrix for this set of variables be U .
We must have

Uij = 0 i 6= j (2.6)

since the variables are orthogonal and uncorrelated. Also

Ukk = 0 k = 2, n (2.7)

since these xk’s are unmeasured. Thus

U =


1/σ2 0 0

0 0 0 . . .
0 0 0

...

 (2.8)

or
Uk` =

1
σ2 δk1δ1`. (2.9)
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Now transform U back to the original m2,m3 · · · coordinates. Let the weight matrix in the m1

coordinates be W . The coordinate transformation from m1,m2,m3 · · · to x1, x2, x3 · · · is


x1

x2

x3
...

 = R


m1

m2

m3
...

 =


∂x1/∂m1 ∂x1/∂m2 ∂x1/∂m3

∂x2/∂m1 ∂x2/∂m2 ∂x2/∂m3 · · ·
∂x3/∂m1 ∂x3/∂m2 ∂x3/∂m3

...




m1

m2

m3
...

 (2.10)

or
x1 = Rijmj (2.11)

with
Rij = ∂xi/∂mj . (2.12)

Thus
R1j = −Aj . (2.13)

Since we have not specified the exact form of xk k = 2, n, we cannot write down the exact form of
Rij i = 2, n. As we shall see, this does not matter; these terms get multiplied by a weight of zero.

Ignore for the moment the fact that 〈δxiδxj〉 is infinite and simply think of these terms as
approaching infinity as a limit. Then we have

U−1
ij = 〈δxiδxj〉 (2.14)

and
W−1

ij = 〈δmiδmj〉. (2.15)

Then
U−1 = RW−1R̃ (2.16)

U = R̃−1WR−1 (2.17)

W = R̃UR (2.18)

Ok, we now see that in our case we have

Wij = RkiUk`R`j (2.19)

but since
Uk` =

1
σ2

R1kR1` (2.20)

we get

Wij =
1
σ2

R1iR1j (2.21)

or
Wij =

1
σ2

AiAj (2.22)
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i.e.,

W =
1
σ2


A2

1 A1A2 A1A3

A2A1 A2
2 A2A3 · · ·

A3A1 A3A2 A2
3

...

 (2.23)

with A1 = −1. The matrix W is, of course, singular. Thus, in our example GIBBONS 93 is

m3 =

ϕ+−
∆m
τs

 =

 42.21
0.5286
0.8922

 W 3 =
1

0.92

 1 −189 460
−189 1892 189 ∗ (−460)
460 189 ∗ (−460) (−460)2


and CARITHERS 75 is

m4 =

ϕ+−
∆m
τs

 =

 45.5
0.5348

∗

 W 4 =
1

2.82

 1 −224 0
−224 2242 0

0 0 0

 .

III. Forming the averages
To form the averages we use a standard weighted least-squares procedure with correlations.

We are given
mi = measurement vector for experiment i

W i = weight matrix (inverse of error matrix) for experiment i

We wish to find
f = fitted vector
E = error matrix for the fitted vector fi

We shall use matrix notation for the individual vectors with explicit sums over the experiments i.
Now we have

χ2 =
∑

i

(f −mi)W i(f −mi). (3.1)

To find the vector f , we minimize χ2 with respect to f . We have

0 =
1
2
∂χ2/∂f =

∑
i

W i(f −mi). (3.2)

Define
G =

∑
i

W i (3.3)

p =
∑

i

W imi; (3.4)

then equation (3.2) becomes
Gf − p = 0 (3.5)

or
f = G−1p. (3.6)
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We also want the error matrix E where

E = 〈δfδf〉. (3.7)

The measured error matrix for experiment i is given by

〈δmiδmi〉 = W i−1
. (3.8)

Let us define
Di = ∂f/∂mi. (3.9)

Then
E =

∑
i

DiW i−1
D̃i (3.10)

where the sum is over the experiments.
From equations (3.4) and (3.6), we see that

Di = G−1W i (3.11)

and thus

E = G−1

(∑
i

W iW i−1
W i

)
G−1. (3.12)

But since ∑
i

W iW i−1
W i =

∑
i

W i = G (3.13)

we have
E = G−1. (3.14)

Thus, we have our procedure. We form G and p using equations (3.3) and (3.4), then find f

and E using equations (3.6) and (3.14), and finally form χ2 using equation (3.1).

IV. Constrained fits
We may also impose constraints between the variables when we form the averages. In this

case, we use a standard weighted least squares procedure and introduce Lagrangian multipliers to
satisfy the constraints.
As in the previous section, we are given

mi = measurement vector for experiment i

W i = weight matrix (inverse of error matrix)for experiment i.
We wish to find

f = fitted vector
E = error matrix for the fitted vector f .

We also have some constraints b (b is a vector) for which we want b(f) = 0. We shall assume that
the constraints are linear and write

b = Bf + b0 (4.1)
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where B and b0 are constants.
If the constraints are not linear, we must iterate. We make a guess as to the values of f ,

expand the constraints b about those values, and solve to find new (hopefully better) values of f .
Then we repeat the process starting with the new values of f .

An obvious first guess is the result of an unconstrained average — or of a constrained fit with
the nonlinear constraints ignored.

We shall use matrix notation for the individual vectors and explicitly write the sums over the
experiments. We have

χ2 =
∑

i

(f −mi)W i(f −mi) (4.2)

which we wish to minimize with respect to the vector f . To include the constraints, we introduce
Lagrangian multipliers α and write

M = χ2 + 2bα. (4.3)

We then minimize M with respect to f and α. We find

0 =
1
2
∂M/∂f =

∑
i

W i(f −mi) + B̃α (4.4)

0 =
1
2
∂M/∂α = Bf + b0. (4.5)

Define
G ≡

∑
i

W i (4.6)

and
p ≡

∑
i

W imi (4.7)

and equation (4.4) becomes
Gf − p + B̃α = 0. (4.8)

Define
q ≡ G−1p (4.9)

and multiply equation (4.8) by G−1. We then get

f = q −G−1B̃α. (4.10)

We multiply equation (4.10) by B to get

Bf = Bq −BG−1B̃α (4.11)

then define
H ≡ BG−1B̃ (4.12)

and substitute equations (4.12) and (4.5) into equation (4.11) to get

α = H−1(b0 + Bq). (4.13)
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Thus, we have our solution. We use equation (4.13) to solve for α and then substitute it into
equations (4.10) to find f . We also wish to get the fitted error matrix E where

E ≡ 〈δfδf〉. (4.14)

We also have that the measured error matrix for experiment i is

〈δmiδmi〉 = W i−1
. (4.15)

Let us define
Di = ∂f/∂mi. (4.16)

Then
E =

∑
i

DiW i−1
D̃i (4.17)

where the sum is over the experiments. Now from equations (4.10) and (4.9)

Di = G−1∂p/∂mi −G−1B̃∂α/∂mi (4.18)

and from equation (4.13)
∂α/∂mi = H−1BG−1∂p/∂mi. (4.19)

Since from equation (4.7)
∂p/∂mi = W i (4.20)

we have that
Di = (1 −G−1B̃H−1B)G−1W i (4.21)

and

E =
(
1 −G−1B̃H−1B

)
G−1

(∑
i

W iW i−1
W i

)
G−1

(
1− B̃H−1BG−1

)
. (4.22)

Since ∑
i

W iW i−1
W i =

∑
i

W i = G (4.23)

we have
E = (1 −G−1B̃H−1B)G−1(1− B̃H−1BG−1) (4.24)

or
E = G−1 −G−1B̃H−1BG−1. (4.25)

We finally use equation (4.2) to find χ2.

V. Summary
We have

mi = measurement vector for experiment i

W i = weight matrix for experiment i.
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We wish to find
f = fitted vector
E = error matrix for the fitted vector f

χ2 for the average.
We may also have some constraints of the form

b = Bf + b0 (5.1)

where B and b0 are constants.
First form

G =
∑

i

W i (5.2)

p =
∑

i

W imi. (5.3)

Then invert G to get
G−1

and
q = G−1p. (5.4)

If we have no constraints
f = q

E = G−1.
(5.5)

If we do have some constraints, we form

H = BG−1B̃ (5.6)

α = H−1(b0 + Bq), (5.7)

and the fitted vector and error are
f = q −G−1B̃α (5.8)

E = G−1 −G−1B̃H−1BG. (5.9)

In either case, we form χ2 by
χ2 =

∑
i

(f −mi)W i(f −mi). (5.10)
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