
1PARTICLE DATA GROUP NOTES PDG{95{0114 August 1995Least Squares Fitting with Correlated Data ErrorsDon GroomLawrence Berkeley National Laboratory, Berkeley, CA 947201. IntroductionAlthough multivariate Gaussian distributions and least squares �tting with data correlations are discussedin RPP94 and earlier editions, it is less than obvious for the reader to deciper exactly how to introducehis data correlations into the formalism. The purpose of this note is to outline, in long form, revisions toSections 16.3.3 and 17.4 in RPP94. We �ll in many steps in the algebra for reference purposes; the actualrevision will be more succinct but hopefully not more cryptic.2. Revisions to Table 16.1An entry for the multivariate Gaussian distribution should be made just after the Gaussian entry:Probability density function CharacteristicDistribution f(variable; parameters) function �(u) Mean Variance �2MultivariateGaussian f(x;�; S) = 1(2�)n=2pjSj exp �i� � u� 12uTSu� � Sij� exp ��12 (x� �)TS�1(x� �)�3. Revisions to Section 16.3.3 (long form)The easiest generalization of the characteristic function for one random variable with a Gaussian distri-bution to many variables is � (x;�; S) = exp �i� � u� 12uTSu� : (1)To apply Eq. (12), we �rst calculate the �rst and second derivatives:@�@uj = �i�j �XSjlul��@2�@uj@uk = �Sjk�+ �i�j �XSjlul��i�k �XSkmum�� (2)Then i�1 @�@uj ���u=0 = �j = mean for the jth variablei�2 @2�@uj@uk ���u=0 = Sjk + �j�k = the ijth moment of the distribution. (3)



2By Eq. (13), we see that higher moments vanish.To make a little more sense out of Eq. (3),(a) Consider the transformation x0 = x��; in other words, measure the variables about the means. Thenit is evident that Sjk is the covariance about the mean; that is, E�(xj � �j)(xk � �k)�. For example,the variance of the kth variable, �2kk (or �2k) is Skk.(b) Consider the case when S is diagonal:S = 0BBB@�21 0 : : : 00 �22 : : : 00 0 . . . 0... ... ... �2n1CCCA (4)In this case, the variance for the kth variable is just �2k, and the characteristic function is just theproduct of c.f.'s for independent Gaussians.This approach leads to an easy inversion of the c.f.: Let U be an orthogonal matrix which diagonalizesS; i.e., (U�1SU)jk = S0 = �2k�jk. Then if y � U�1x0 = U�1(x� �) we see that Eq. (1) becomes� �v;S0� = exp h�12vTS0vi =Y exp h�12�2j v2j i : (5)From Table 16.1 in RPP94, it is then evident that the corresponding probability density function is theproduct of Gaussians:f �y;S0� = 1(2�)n=2Q�1�2 : : : �n exp h�12yTS0�1yi (6)The product in the denominator is recognized as the square root of the determinant jS0j. It only remains totransform back to the original variables. Since a determinant is invariant under orthogonal transformation,this term becomes pjSj, and we have for the probability density function corresponding to Eq. (1)f (x;�; S) = 1(2�)n=2pjSj exp h�12 (x� �)T S�1 (x� �)i (7)It is also worth pointing out that the variance matrices (not their inverses) are additive. For example,suppose that we have three variables, and the �rst two have both independent statistical errors and a commonerror, which might be the result of a common baseline with its own statistical errors (variance s2) which hasbeen subtracted from each. ThenS = 0@�21 0 00 �22 00 0 �231A+0@ s2 s2 0s2 s2 00 0 01A (8)This has all the right properties: The variance of the �rst variable is �21 + s2, and the covariance betweenthe �rst and second variables is s2, as required.If unequal amounts of the common baseline were subtracted from variables 1, 2, and 3|e.g., fractionsf1, f2, and f3, then we would haveS = 0@�21 0 00 �22 00 0 �231A+0@ f21 s2 f1f2s2 f1f3s2f1f2s2 f22 s2 f2f3s2f1f3s2 f2f3s2 f23 s2 1A (9)Finally, we note that the covariance matrix S can be related to the correlation matrix (a sort of nor-malized covariance matrix) de�ned by Eq. (14). With the de�nition �2k � Skk, we have �jk = Sjk=�j�k.



33. Revisions to Section 17.4 (long form)Non-independent yi'sEq. (15) is based on the assumption that the likelihood function is the product of independent Gaussiandistributions. More generally, the measured yi's are not independent, and we must consider them as beingfrom a multivariate distribution with nondiagonal covariance matrix S. As per the discussion in Sec. Normal(= 16.3.3), the generalization of Eq. (15) is�2 =Xij [yi � F (xi;�)]S�1ij �yj � F �xj ;��� : (10)We again note that the basic quantity is S rather than its inverse, and that it may be constructed by addingpieces containing correlations to the diagonal matrix containing individual statistical errors, described inSec. Normal (= 16.3.3).In the case of a �tting function linear in the parameters, one may di�erentiate �2 to �nd the general-ization of Eq. (16), and with the de�nitionsgm =Xij yi fm �xj�S�1ij�V �1b� �mn =Xi fn (xi) fm �xj�S�1ij (11)solve Eq. (17) for the estimators b�.Appendix: Equations from the main text referred to in this Note:Eq. 16.13, p. 1272 in RPP94:i�n dn�dun �����u=0 = Z 1�1 xnf (x) dx = �n : (12)Eq. 16.18, p. 1272 in RPP94:�1 = �1 (= �, the mean)�2 = m2 = �2 � �21 �= �2; the variance��3 = m3 = �3 � 3�1�2 + 2�21 : (13)Eq. 16.9, p. 1271 in RPP94:�xy = E �(x� �x) �y � �y�� =�x �y = Cov (x; y) =�x �y ; (14)Eq. 17.10, p. 1276 in RPP94:�2 = �2 lnL+ constant = NX1 [yi � F (xi;�)]2�2i : (15)



4Eq. 17.12, p. 1276 in RPP94:�12 @�2@�m =Xi fm (xi) yi �Pn �n fn (xi)�2i !=Xi yi fm (xi)�2i �Xn �n Xi fn (xi) fm (xi)�2i : (16)Eq. 17.14, p. 1277 in RPP94:b� = Vb� g : (17)


